
d mod_perl

m

piijj.-,-,'•-_^ '.'•T • -^'".i'"

; •• r-x^^^.;-. :• \i

i/5^ >%;• -/yp^ &;

Modu
Perl and C

O'REILLY Lincoln Stein & Doug MacEachern
1 AT&T - Exhibit 1008

2

Writing Apache Modules
with Perl and C

Lincoln Stein and Doug MacEachern

O’RE|LLY°

Beijing - Cambridge - Famlaam - Kéiln - Sebastopol - Toleyo

2

3

Writing Apache Modules with Perl and B
hy Lincoln Stein and Doug .\rIaeF.a<:l1ern

Copyifiglit CC) 1999 O‘Reilly e\' Associates, Inc. All rights reserx ed.
Printecl in the United States of America.

Ptihlished hy O’Reilly & Associates, Inc., 101 Morris Street, Sehrtstopol, CA 95472.

Editor: Linda Mui

Production Editor: Melanie Wzing

Printing History:

March 1999: First Edition.

The association between the image of a white-tailed eagle and the topic of Apache modules
is a trademark oi'O’Reilly & Associates, Inc. Nutshell Handbook, the Nutshell I-iandhook logo,
and the O‘Reilly logo are registered trademarks ol’ O’Reilly & Associates, Inc. Many of the
designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this hook, and O’Reilly & Associates. Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

\\’fhile every precaution has been taken in the preparation ofthis hook, the publisher /,1.‘-2SL!I]1C.‘a‘
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-1565-92567-(J |2(il1-1 I-U4]
ILSII

4

V

1)., mi’: c:I_1c:prer.'
. Cm1fentHci.ml1ers as

,.--,-,_r(, P7‘ocessors

. Vr'rfua!1)ocmnents

. serif-recrfon

. Processing Irzput

. ,-ipctCbe:.'Regrlstrjt

. Iczndlfirg Errors

2/.-m:1'nt'7'zg Content 7/1tt H017’!
Hcmrtle-rs

. Method Handlers

This chapter is about writing content handlers for the Apache response phase,

when the contents of the page are actually produced. In this chapter you'll learn

how to produce dynamic pages from thin air, how to modify real documents on

the fly to produce effects like server—side includes, and how Apache interacts with

the MIiv[F,—typing system to select which handler to invoke.

Starting with this chapter we shift to using the Apache Perl API exclusively for

code examples and function prototypes. The Perl AP] covers the majority of what

C programmers need to use the Glanguage AP]. What’s missing are various mem-

ory management functions that are essential to C programmers but irrelevant in

Perl. If you are a C programmer, just have patience and the missing pieces will be

filled in eventually. In the meantime, follow along with the Perl examples and

enjoy yourself. Maybe you’ll even become a convert.

Content Handlers as File Processors

Early web servers were designed as engines for transmitting physical files from the

host machine to the browser. Even though Apache does much more, the file-

oriented legacy still remains. Files can be sent to the browser unmodified or

passed through content handlers to transform them in various ways before send-

ing them on to the browser. Even though many of the documents that you pro-

duce with modules have no corresponcling physical files, some parts of Apache

still behave as if they did.

When Apache receives a request, the URI is passed through any URI translation

handlers that may be installed (see Chapter 7. Other Reqtiesr Pbases, for informa-

tion on how to roll your own), transforming it into a file path. The mool_czlz'as

translation handler (compiled in by default) will first process any Al-m'.s‘, SCripfAZias,

5

86 Chapter 4: Content Hcmdlers

Redirect, or other nzon.’_ctf:fczs directives. If none applies, the br1;D_core default trans-

lator will simply prepend the Doctrmemffeoot directory to the beginning of the URI.

Next, Apache attempts to divide the file path into two parts: a “filename” part

which usually (but not always) corresponds to a physical file on the host’s filesys-

tem, and an “additional path information” part corresponding to additional stuff

that follows the filename. Apache divides the path using a very simple-minded

algorithm. It steps through the path components from left to right until it finds

something that doesn’t correspond to a directory on the host machine. The part of

the path up to and including this component becomes the filename, and every-

thing that’s left over becomes the additional path information.

Consider a site with a document root of /bome/www that has just received a

request for URI /abt:/n.'e_/'/gbi. The way Apache splits the file path into filename and

path information parts depends on what directories it finds in the document root:

Physical Directory | Translated Filename Additional Path Information /!.2rJrn.e/www /borne/wwttt/cu'JC /cI.'ej7glJi

/home/www/ctbc /bome/tttwttfictbc/def /gbi

/home/www/abc/de/' /br)me/tttuzttmbc/cieflgbi empty

 /bome/www/ctbe/ale/Kg/J1' //Jome/wtuttfictlztc/dcflglsti empty

Note that the presence of any actual files in the path is irrelevant to this process.

The division between the filename and the path information dep~‘ends only on

what directories are present.

Once Apache has decided where the file is in the path, it determines what MIME

type it might be. This is again one of the places where you can intervene to alter

the process with a custom type handler. The default type handler (moa.’_-mime) just

compares the filename’s extension to a table of MIME types. If there’s a match, this

becomes the MIME type. If no match is found, then the MIME type is undefined.

Again, note that this mapping from filename to MIME type occurs even when
there’s no actual file there.

There are two special cases. If the last component of the filename happens to be a

physical directory, then Apache internally assigns it a “magic" MIME type, defined

by the DIR_MAGIC_TYPE constant as bt‘tpd/unix-directory. This is used by the

directory module to generate automatic directory listings. The second special case

occurs when you have the optional m0a'Hmz'me_magz'c module installed and the

file actually exists. In this case Apache will peek at the first few bytes of the file’s

contents to determine what type of file it might be. Chapter 7' shows you how to

write your own MIME type checker handlers to implement more sophisticated

MIME type determination schemes.

h-T-‘l~n.v-:I»:';_t::.'«3.«r.

6

7
Coflrerrt Iilcmdlers as File [’roce.x'so-rs 87

After Apache has determined the name and type of the file referenced by the lllll,
i[decides what to do about it. One way is to use information hard—wired into the
modules static data structures. The :nodule’s handle-r_rec table, which we
describe in detail in Chapter ll"), CAP! Re/erertce Gtride, Part I, declares the mod-
ule’s willingness to handle one or more tu;t§_{ic MIME types and associates a con-
[ent handler with each one. For example, the mod_cgt' module associates MIME

type 5rj)])z.'t'ccm'o'rz/:c—i9trg0a’—cgf with its cgf_/.m1m’fei~() handler subroutine. When
Apaclie detects that a filename is of type crpp.lr'ecm'orrKr—bItp.cl—.:'gif it invokes egL'_
]g(1i’£6.l/8?'(_) and passes it inl’ormation about the file. A module can also declare it.s

desire to handle an ordinary MIME type. such as £'l'Cl’(30/c]llfCrl?!I'?l‘l(3. or even a wild-

Cdrd type, such as video/*. In this case, all requests for [Fills with matching MIME

types will be passed through the modules content handler unless some other
module registers a more specific type.

Newer modules use a more flexible method in which content handlers are associ-

ated with files at runtime using explicit names. When this method is used, the

module declares one or more content handler names in its handler_rec array

instead of", or in addition to, l\/llMF. types. Some examples of content handler

names you might have seen include cgi—5ci-apt, seruer—:frt_./O, sert.»ei'—pmsed, r'map¢/2'19,

and pe7‘l—5crr;DI. Handler names can be associated with files using either Add]-Ian"
dler‘ or 5etHcmdZer directives. Aa.'dHa'rza.’lei-‘ associates a handler with a particular

file extension. For example, a typical configttration file will contain this line to

associate sbrml files with the server-side include handler:

Addfiandler server—parsed .shtm1

Now, the server-parseci handler defined by rrroc2.’_:'nclude will be called on to pro-

cess all files ending in “.shtm1" regardless of their MIME type.

SeIHcmdl.’er is used within <Directo2y>, <f.occm'on>, and <F:'/'es> sections to associ-

ate a particular handler with an entire section of the site's URI space. In the two

examples that follow, the <L0ccm'on> section attaches the se-ruer—par5ea’ method to

all files within the virtual directory /sbrml, while the <Files> section attaches i'map—

flle to all files that begin with the prefix “map—”:

<Location /shtml>

SetHand1er server—parsed
</Location>

<Files map—*>

SetHandler imap—file
</Files>

Surprisingly, the Acicihlczrzcilei" and Set!-Imrcller directives are not actually imple-

mented in the Apache core. They are implemented by the standard mod_actz'orts

7

88 (Jrapter 4: (jrmtent Haridlem4a______4,______c_______.________d_____________,____._____s._______#__________H

module, which is compiled into the server by del’aul1. In Chapter 7, we show how
to reimplement mocI'_ctcti'o'rzs using the Perl API.

You'll probably want to use explicitly named content handlers in your modules
rather than hardcoded MIME types. Explicit handler names malte configuration
iiies cleaner and easier to understand. Plus, you don't have to invent a new magic

i\/IIMl*". t.ype every time you add a handler.

Things are slightly dil"t'erent for moa'_pen’ users because two directives are needed
to assign a content handler to a directory or tile. The reason For this is that the
only real content handler defined by moc£_pen' is its internal pe-n’—sc:rtTpt handler.
You use SetHan.dler to assign per1—sc1‘i'p! the respmisibility for a directory or partial

URI, and then Lise a Pen.’Hcmdler directive to tell the pen.’—scri?pt handler which Perl
module to execute. Directories supervised by Perl AP! content handlers will look

something like this:

<Location /graph>

Setflandler per1—script

PerlHandler Apaehe::Graph

</Location>

Don't tiy to assign per!'—5crt'pr to a file extension using something like AddHa.nd1er
perl—seript .131; this is generally useless because you’d need to set PerlHcm—
dler too. If you'd like to associate a Perl content handler with an extension, you
should use the <Fz'les> directive. Here’s an example:

<Files ~ "\.graph$">

SetHandler per1»script

Per1Handler Apache::Graph
4/Fi1es>

There is no U2'zSetHand!ei' directive to undo the effects of SeIHcma.'ler. However,

should you ever need to restore a subdirectory‘s handler to the default, you can
do it with the directive Setj-Iandler defau1t:—handler, as follows:

<Location /graph/tutorial>
SetHandler default—handler

</Location>

Adding oz Canned Footer to Pages

To show you how content handlers work, we’ll develop a module with the Perl
API that adds a canned footer to all pages in a particular directory. You could use

this, for example, to automatically add copyright iiitoi‘1i121tioi1 and a link back to
the home page. Later on, well turn this module into a l"ull—t’eatured navigation bar.

Example 4-1 gives the code for Apache.-.-Footer, and Figure 4-—1 shows a screenshot
of it in action. Since this is our first substantial module, we‘ll step through the code

section by section.

8

V
Content" Hcmdlers as File Processors

WindowFile Edit View Go Directory

Wu!-Jackl Ftrwartil Home’ Ed't Reload lxsaci !t1t—atces 0 en... "Print... Finl . ‘ i E ,..'_l l__.......-E__| __JP _ _ .

Bookmarks Options

Location: ttp : //l ocal hostffoote rfdemo. html

This page contains a" canned footer

The two lines at the bottom of this page aren't in the original source. code, but were
added by .€=.::acl1e::l7oor.:'-.r

© 1998 -.'."'Rt-iii}! 3.: A.\‘soc.iates
Last Moe’! ted: Wedzlpr 8 07:48:04 1998

Fz'gu.-re 4-1. 'Ill)tJ_fl)()!(:‘I‘ on Ibis page ZU'.CIS generatecl cl-Ltftjfficllfccilb.’ by Apache.-:Foo!ei'.

package Apache: :Foot:er;

use strict;

use Apache: :Constants qwtzcommonl;

use Apache::File (l;

The code begins by declaring its package name and loading various Perl modules

that it depends on. The use strict pragma activates Perl checks that prevent us

from using global variables before declaring them, disallows the use of function

calls without the parentheses, and prevents other unsafe practices. The

Apczc/ye.-.-Cortsianrs module defines constants for the various Apache and H’I”I‘P

result codes; we bring in only those constants that belong to the frequently used

.-common? set. Apczcbe.-.-File defines methods that are useful for manipulating files.

sub handler {

my $r : shift;

return DECLINED unless Sr->content_type() eq ‘text/html‘;

The bcma.’/er() subroutine does all the work of generating the content. It is roughly

divided into three parts. In the first part, it fetches information about the requested

file and decides whether it wants to handle it. In the second part, it creates the

canned footer dynamically from inforination that it gleans about the file. In the

third part, it rewrites the file to include the footer.

In the first part of the process, the handler retrieves the Apache request object and

stores it in $r. Next it calls the requests cortIenI_rype() method to retrieve its

MIME type. Unless the document is of type text/brml, the handler stops here and

returns a DECLINED result code to the server. This tells Apache to pass the

9

90 Chapter‘ 4: Content .Hrmdlers

document on to any other handlers that have declared their willingness to handle

this type of document. In most cases, this means that the document or image will

he passed through to the browser in the usual way.

my Sfile = $r—>filename;

unless (ee Sr—>finfo) {

$re>1og_error(“File does not exist: Sfile");
return NOT_FOUND;

}

unless (rr _) {

$r—>log_error("File permissions deny access: Sfile");
return FORBIDDEN;

}

At this point we go ahead and recover the file path, by calling the request 0bject’s

fl'lerta:tne() method. just because Apache has assigned the document a MIME type

doesn’t mean that it actually exists or, if it exists, that its permissions allow it to be

read by the current process. The next two blocks of code check for these cases.

Using the Perl —e file test, we check whether the file exists. If not, we log an error

to the server log using the request objects i.'og_error() method and return a result
code of NOT_FOUND. This will cause the server to return a page displaying the

404 “Not Found” error (exactly what's displayed is under the control of the Error-

Docmnenl directive).

There are several ways to perform file status checks in the Perl API. The simplest

way is to recover the file’s pathname using the request object’s filemzme() method,

and pass the result to the Perl -2 file test:

unless (—e $r~>fi1ename) {

$r~>log_error("File does not exist: Sfile“);
return NOT_FOUND;

}

A more efficient way, however, is to take advantage of the fact that during its path

walking operation Apache already performed a system smr() call to collect filesys-
tem information on the file. The resulting status structure is stored in the request

object and can be retrieved with the objects ‘/IrTry"0() method. So the more efficient
idiom is to use the test —e $r—>finfo. I

Once fz'rzfo() is called, the 5tat() information is stored into the magic Perl file-

handle _ and can be used for subsequent file testing and statO operations, saving

even more CPU time. Using the _ filehandie, we next test that the file is readable

by the current process and return FORBIDDEN if this isn’t the case. This displays a
405 “Forbidden" error.

my $modtime = loealtime((stat _)[9]);

10

(.0 H“;-,1-,v,.r. 1m-rzctlers as File Processors 9!

Wm. performing these tests, we get the file moclillcation time by calling sIat(). We
‘M in L193 the _ filehandle here too, avoiding the overhead of repeating the stat()
.y_;1L.[n call. The modification time is passed to the burlt—m Perl 1oca.r.’rzme() func-s - _

mm U) eonvert it into a ht1man—readable string.
my Sfhi
unless (Sfh = Apache::File+>new{$file)l {

$rA>log_error("Couldn't open $file for reading: $1");
return SERVEILERROR;

}

Ar this point, we attempt to open the file for reading using Apache.-.~File’s nc-'w(')
method. For the most part, Apache.-.-File acts just like Perl's IO.-.-File object—oriented
[/0 package, returning a filehandle on success or nrzdcg/" on failure. Since we've
already handled the two failure modes that we know how to deal with, we return
a result code of SERVER_ERROR if the open is unsuccesslul. This immediately
;1h()t‘[S all processing of the document and causes Apache to display a 500 “Inter-

nal Server Error” message.

my Sfooter = <<END;
<hr>

© 1998 O‘Rei11y & Associates

Last Modified: $modtime
END

Having successfully opened the file, we build the footer. The footer in this

example script is entirely static, except For the document rnodification date that is

computed on the fly.

$r—>send_http_header;

while (<$fh>) {

s1(</BODY>)!$footer$1!oi;

} continue {

$r->print ($_) .-
}

The last phase is to rewrite the document. First we tell Apache to send the HTTP

header. There’s no need to set the content type first because it already has the

appropriate value. We then loop through the document looking for the closing

</l3OD‘Y'> tag. When we find it, we use a substitution statement to insert the footer

in front of it. The possibly modified line is now sent to the browser using the

request object’s pr-*z.'m() method.

return OK;

10

11

92 Chapter 4: Content Handlers

At the end, we return an OK result code to Apache and end the handler subrou-

tine definition. Like any other .pm file, the module itself must end by returning a

true value (usually 1) to signal Perl that it compiled correctly.

If all this checking for the existence and readability of the file before processing

seems a bit pedantic, don’t worry. It’s actually unnecessary for you to do this.

Instead of explicitly checking the file, we could have simply returned DECLINED if

the attempt to open the file failed. Apache would then pass the URI to the default

file handler which will perform its own checks and display the appropriate error

messages. Therefore we could have replaced the file tests with the single line:‘

my $fh = Apache::File—>new($file) || return DECLINED;

Doing the tests inside the module this way makes the checks explicit and gives us
a chance to intervene to rescue the situation. For example, we might choose to

search for a text file of the same name and present it instead. The explicit tests

also improve module performance slightly, since the system wastes a small amount

of CPU time when it attempts to open a nonexistent file. If most of the files the

module serves do exist, however, this penalty won’t be significant.

Example 4-]. Adding oz Cmmed Footer to H771/II. Pages

package Apache::Footer;

file: Apache/Footer.pm

use strict;

use Apache::Constants qw(:comon);

use Apache::File ();

sub handler {

my Sr = shift;
return DECLINED unless $r—>content_type() eq ‘text/html';

my $fi1e = $r—>fi1ename;

unless (—e $r—>finfo) {

$r—>1og_error(“File does not exist: Sfile");
return NOT_FOUND;

}

unless (-r _) {

$r->log_error("File permissions deny access: $fi1e");
return FORBIDDEN ;

}

my smodtime = 1oca1time((stat _)[9]);

my $fh;

unless ($fh = Apache::File->new($file)) {

$r—>log_error("Couldn't open $file for reading: $2");
return SERVER_ERROR;

11

lx
llu

l

,_:__....i..,._.........._._...._._.........._...._._...._.._.,._,_,.,.__...,.,,........-4......-.s..........,.....,,.._._-__

12

1i'\.'m7'zple 4-1. .4ctcl'z'i-rig oi (,'cn'mea.' 1'?'rm!er Io lI'!_ila’1.l’c£gc.x' (C()I1HI1Ii'(’(U

my Sfooter = <<END;

4'11-">

&Copy; 1998 http://www.0ra.C0m/“>O'Rei1ly & Associates

Last Modified: $m0dtime
END

Sr->send_http_header;

while (<$fh>) t

s!{</BODY>)!$footer$1loi;

} continue [

$r—>print($_);

}

return OK;

}

1;
END _

There are several ways to install and use the Apcmbe.-.-Footer content handler. If all

the files that needed footers were _<_=,atl1ei‘ed in one place in the directory tree, you

would probably want to attach xlpczc/2e.~.-Footertr) that location:

<Location /footer>

SetHandler per1~script
Perlfiandler Apache::Footer

</Location>

If the files were scattered about the document tree, it might be more convenient to

map Apache.-.-Footer to a unique iilename extension, such as footer: To achieve

this, the following directives would stiliice:

AddType text/html .footer
<Fi1es ~ "\.footer$“>

SetHandler perl—seript

Perlfiandler Apache::Footer
</Fi1es>

Note that it's important to associate MIME type text‘/btrnl with the new extension;

otherwise, Apache won’t be able to determine its content type during the MIME

type checl<ing phase.

If your server is set up to allow per—directory access control files to include file

information directives, you can place any of these handler directives inside a brac-

cess file. This allows you to change handlers without restarting the server. For

example, you could replace the <£ocaH'o1'z> section shown earlier with a Jalaccess

file in the directory where you want the footer module to be active:

Setflandler perl—script

Per1Handler Apache::Footer

12

13

94 Cbczpter 4." Content 1—Irmd1'ers

A Server-Sz'cz’e Include System

The obvious limitation of the Apac/:1e:.-Footer example is that the footer text is

hardeoded into the code. Changing the footer becomes a nontrivial task, and using

different footers for various parts of the site becomes impractical. A much more

flexible solution is provided by Vivek Khera’s Apacl9e:.-5mzdwr'cb module. This

module “sandwiches" HTML pages between canned headers and footers that are

determined by runtime configuration directives. The Apache.-.-Sandrutcb module

also avoids the overhead of parsing the request document; it simply uses the sub-

request mechanism to send the header, body, and footer files in sequence.

We can provide more power than Apache.-.-Srmdwicb by using server-side

includes. Sewer—side includes are small snippets of code embedded within HTML

comments. For example, in the standard server—side includes that are imple-

mented in Apache, you can insert the current time and date into the page with a
comment that looks like this:

Today is <!——#echo var="DATEfiLOCAL"——>.

In this section, we Lise mod_pen.' to develop our own system of server—side

includes, using a simple but extensible scheme that lets you add new types of
includes at a moment’s whim. The basic idea is that HTML authors will create files

that contain comments of this form:

<!--#DIREC'TIE PARAM1 PARAM2 PARAM3 PARAM4.. .-—>

A directive name consists of any sequence of alphanumeric characters or under—

scores. This is followed by a series of optional parameters, separated by spaces or

commas. ’arameters that contain whitespace must be enclosed in single or dou-

ble quotes in shell command style. Backslash escapes also work in the expected
manner.

The directives themselves are not hardcoded into the module but are instead

dynamically loaded from one or more configuration files created by the site

administrator. This allows the administrator to create a standard menu of includes

that are available to the site’s HTML authors. Each directive is a short Perl subrou-

tine. A simple directive looks like this one:

sub HELLO { “Hello Worldl“: }

This defines a subroutine named HELLOO that returns the string “Hello World!" /\

document can now include the string in its text with a comment formatted like this
one:

I said <1-—#HLLO——>

A more complex subroutine will need access to the Apache object and the server-

side include parameters. To accommodate this, the Apache object is passed as the

first function argument, and the server—side include parameters, if any, follow.

13

14

Cgflfeilf Handlers as File PI”'0CBSS0l‘S 95

Here’s a function definition that returns any field from the incoming request’s

HTTP header, using the Apache object's /9ecm,’er'_m() method:

sub HTTP_HEADER {

my (Sr,$field) = @_;

$r—>header_in($field);

}

‘xx’/ith this subroutine definition in place, HTML authors can insert the [fser—Agr3m

iield into their document using a comment like this one:

You are using the browser <!—— #HTTP_HEADER User—Agent ——>_

Example 4-2 shows an HTML file that uses a few of these includes, and Figure 4-2

shows what the page looks like after processing.

Exmnple 4-2. /in HTML File 7736!! U.\'es Exiertdea’ .S‘ei‘iier—_S‘i'cfe lnclmles

<html> <head> <title>Server—Side Includes</title></head>

(body bgcolor=white>
<h1>server—Side Inc1udes</h1>

This is some straight text.<p>

This is a "<!—— #HELLO ——>" include <p>

The file size is <!—— #FSIZE ——>, and it was

last modified on <i—— #MODTIME %x ——><p>

Today is <!—— #DATE "%A, in anno domini %Y“——>.<p>

The user agent is <!~~#HTTP_HEADER User—Agent——>.<p>

Oops: <!——#OOPS O——><p>

Here is an included file:

<pre>

<!——#INCLUDE /include.txt l——>

</pre>

<!——fiFOOTER——>

</body> </html>

Implementing this type of server—side include system might seem to be something

of a challenge, but in fact the code is surprisingly compact (Example 4-3). This

module is named Apache.-.-E551, for “extensible serve1'—side includes.”

Again, we’ll step through the code one section at a time.

package Apache::ESSI;

use strict;

use Apache::Constants qw(:comon);

use Apache::File ();

use Text::ParseWords qw(quoteword5);

my (%MODIFIED, %SU'BSTITUTION);

14

15

 96 Chapter 4': Contem Hmzrliers

7 —» Netsc e: Server-Side Includes - .1
File Edit View (in Baal-crnarks Options Directory Window

Bankl iiarunmii Home} Edit] Reload] mad ll'i't(i{_[('ESl 0pen...l PrinL.;| I-‘It

Location: oca'|hast;'test.ehtml

.. _.-..,,->,e. .._ .._.. ,-,o....._..._..._.._.._..........-.

Serve-1‘— Side Includes
This is some straight text.

This is a "Hello World!" include.

Today is Saturday, in arms domains" 1998.

The user ag-_ent is Mazaffas/3.01Go!d(X3l,'f;Lemax 2. 0.33 .1585).

Oops: flffegczi r:£e'vz'sz'c:rz fiy zero at/zzsrlfzome/immu/cor1fi’essz'.defs (me 45, chzuaflr 24. j

i
I
II

1 The file size is 59? bytes, and it was last modified on U4./18;"98

\ Here is anineluded file:
I

the quick brown fox jumps over the sleeping dog

to 1993 -_?_i?gilli3 Associates J
Last iivforlzfieti: Sm.‘ Apr E6’ 0?:50:57 1998‘

-. __.._____._._.__:_+.,..........__._.-.,‘#.__._..______. .w.7 ,, __ e-._.__,,,,,,,.

' .3-R;

F£gr,r.i'e 4-2. /1 pugegeizenzited by /lj.'J6£C/J8.‘.'}L'55I

We start as before by declaring the package name and loading various Perl libraiy
modules. in addilion to the modules that we loaded in the Apache.-.-Footer‘ exznn—

ple, we import the quoIewom's() function from the standard Perl Text.-.-Parsell’/ora’5
module. This routine provides command shell—~like parsing of strings that coniain

quote marks and backslash escapes. We also define two lexical variables,
%MODIFIED and %SUBSTITUTION, which are global to the package.

sub handler {

my $r = shift;

$r—>cor1t;ent_type() eq ‘text/html' return DECLINED;

my $fh 2 Apache::E'ile—>new($r—>filename) return DECLINED;
my Ssub = read_definit:ions($r) | i return SERV'E:R_ERROR;
$ 1: —> ser1d_ht tp_header;

$r->print($sub->($r, $fh)):
return OK ;

15

16

C0f£f8fll'1'1'(£?’l(UG?'S as File Processors ‘)7

The f.?C£i’iC£'f€‘.*‘(V)‘ subroutine is quite short. As in the /lpcrcbe;-/*'oorer example,

,{7gti'idler(') starts by examining the content type of the document being requested

and declines to handle requests for non—i‘l'l'l‘vlL documents. The handler recovers

the file's physical path by calling the request object's _/i‘i’ei'icime() method and

attempts to open it. if the file open fails, the handler again returns an error code oi’

DECLINED. This avoids Apcidie.-:Fooi'ei"‘s tedious checking of the file's existence

and access permissions, at the cost of some efficiency every time a nonexistent file

is requested.

Once the file is opened, we call an internal function named reaci'_a’cf/iirii'ii'oris().

This function reads the server—side includes configuration file and generates an

;1n()l'1}’ITl()Ll.‘~i subroutine to do the actual processing of the document. If an error

occurs while processing the configuration file, 'I'(36£Cf__£fi:f/fl’!.fff()}1S() returns irrza,'cff

and we return SE:RVER__ERROR in order to abort the transaction. Otherwise, we

send the I-ITTP header and invoke the anonymous subroutine to perform the sub-

stitutions on the contents of the file. The result of invoking the subroutine is sent

to the client using the request objects prmr() method, and we return a result code

of OK to indicate that everything went smoothly.

sub reac1_deEiniti0ns {

my Sr = shift;

my Sdef 2 $r~>c3ir_c:onfig('ESSIDefs');
return unless Sdef;

return unless —e ($def = $r—>server__root_relat;ive{$def));

Most of the interesting work occurs in i'ecic£_dc{/ii'1i£ioiis(). The idea here is to read

the server—side include definitions, compile them, and then Lise them to generate

an anonymous subroutine that does the actual substitutions. in order to avoid

recompiling this subroutine unnecessarily, we cache its code reference in the

package variable %SUBS'I‘ITUTION and reuse it if we can.

The f€CI6?L6fE"fl!'??l.[;f0T!$() subroutine begins by retrieving the path to the file that

contains the server—side include definitions. This information is contained in a per-

tlirectoiy configuration variable named ESSIDefs, which is set in the configura—

tion file using the PerlSerl/‘ctr directive and retrieved within the handler with the

request objects a’i'r_co'rifz'g() method (see the end of the example for a representa-

tive configuration file entry). If, for some reason, this variable isn‘t present, we

return imdef Like other Apache configuration files, we allow this file to be speci-

fied as either an absolute path or a partial path relative to the server root. We pass

the path to the request object’s serue7;rooi_r‘e!at:.'ue(_) method. This convenient

function prepends the server root to relative paths and leaves absolute paths

alone. W/e next check that the file exists using the -9 file test operator and return

Lmdefif not.

return $SUBSTITUTION{$def} if $MODIFIED{$def} && SMODII-‘IED{$def} <= —M ;

16

17

98 C'l.mpter 4'.‘ Content l—L:mcl!e2's

Having recovered the name of the definitions file, we next check the cache to see

whether the subroutine definitions are already cached and, if so, whether the file

hasn’t changed since the code was compiled and cached. We use two hashes for

this purpose. The %SUBSTI'I'UTION array holds the compiled code and %I~/IODIFIED

contains the modification date of the definition file the last time it was compiled.

Both hashes are indexed by the definition file's path, allowing the module to han-

dle the case in which several server—side include definition files are used for differ-

ent parts of the document tree. if the modification time listed in %MODIFIED is less

than or equal to the definition file’s current modification date, we return the
cached subroutine.

my $pae]-zage = join " : : ", #_PACKAGE__, $def;

Spackage =~ tr/a—zA—ZD~9_/_/C;

The next two lines are concerned with finding a unique namespace in which to

compile the server—side include functions. Putting the functions in their own

namespace decreases the chance that function side effects will have unwanted

effects elsewhere in the module. We take the easy way out here by using the path

to the definition file to synthesize a package name, which we store in a variable

named $package.

eval "package Spaekage; do ‘$def"';
if($@l {

$r—>log_error("Eva1 of $def did not return true: $@“);
return;

}

We then invoke ez2al() to compile the subroutine definitions into the newly cho-

sen namespace. We use the package declaration to set the namespace and do to
load and run the definitions file. We use do here rather than the more common

require because do unconditionally recompiles code files even if they have been

loaded previously. If the em! was unsuccessful, we log an error and return imdejf

$SUBS‘I‘ITUTION{$def} = sub {

do_substitutions ($paekage, @_) ,-
};

$MODIFIED{$def} : —M $def; # store modification date
return $SUBSTITUTION[$def};

}

Before we exit 2“(2‘6lC?L6!‘E_’f1"."i7..'.-1'.fO1’I5(), we create a new anonymous subroutine that

invokes the a’o_substz?m.rioiis() function, store this subroutine in %SUBS‘I‘I'I’UTION,

and update %MODIFIED with the modification date of the definitions file. We then

return the Code reference to our caller. We interpose a new anonymous subrou-

tine here so that we can add the contents of the Spackage variable to the list of

variables passed to the do_su.bs£:'mtioi25() function.

sub do_substitutions {

my spackage = shift;

17

18

Content Hamllers as File Processors 99

my/($r. Sfh) = @_;

R Make sure that eval() errors aren't trapped.

local $SIG{__WARN__j;

local $SIG{__J3IE__};

local $/; fislurp Sfh

my Sdata = <Sfh>;

Sdata =~ s/<!——\s*\#(\w+) # start of a function name
\s*(.*?) # optional parameters

\s*——> # end of cement

/call_sub($package, $1, $r, $2)/xseg;
$data;

}

\‘(/hen bcmdler() invokes the anonymous subroutine, it calls clo_su.bsii'm.tion.sO to
do the replacement of the server—side include directives with the output of their
corresponding routines. We start off by localizing the $SIG{__WARN__} and
$SIG{__DIE___} handlers and setting them back to the default Perl COR13.-.-wcm'z(_)
and CORE.-.-dz'e() subroutines. This is a paranoid precaution against the use oi"
CG].-.-Cmgr), which some moa.’_perl users load into Apache during the startup phase
in order to produce nicely formatted server error log messages. The subroutine
continues by fetching the lines of the page to be processed and joining them in a

single scalar value named $data.

We then invoke a string substitution function to replace properly formatted com»

ment strings with the results of invoking the corresponding server—side include
function. The substitution uses the 9 flag to treat the replacement part as a Perl

expression to be evaluated and the g flag to perform the search and replace glo-
bally. The search half of the function looks like this:

/<!——\s*\#l\w+)\s*(.*?)\s*—fi>/

This detects the server—side include comments while capturing the directive name

in $1 and its optional arguments in $2.

The replacement of the function looks like this;

/ca11_sub($package, $1, Sr, $2)/

This just invokes another utility function, cal[_si.ib(), passing it the package name,
the directive name, the request object, and the list of parameters.

sub eall_sub {

my($package, Sname, $r, Sargs) = @_;

my Ssub = \&{join '::‘, $package, $name};
$r—>chdir_file;

my Sres = eval { $sub—>{$r, quotewords('[,]',O,$args)) };
return “[$@]" if $@;
return $res;

l

The ca.i’l_si,tb() routine starts off by obtaining a reference to the subroutine using:

its fully qualifiecl name. It does this by joining the package name to the subroutine

18

19

100 (,‘baj)rer 4: Contents Hamllers

name and then using the funky Perl \&{ . . .} syntax to turn this string into a sub-

routine reference. As a convenience to the HTML author, before invoking the sub-

routine we call the request ohject’s C.‘}l7C!.l'-.l'_'/;ll.lll8(:) method. This simply makes the

current directory the same as the requested file, which in this case is the HTML file

containing the server-side includes.

The scrver—side include function is now invoked, passing it the request object and

the optional arguments. We call q:tr)i‘ez.v()i'cl_s‘() to split up the arguments on com-

mas or whitespace. In order to trap fatal runtime errors that might occur during the
t‘unction’s execution, the call is done inside an euictlfl hlock. If the call function

fails, we return the error messa_e,c it died with captured within S@. Otherwise, we

return the value of the call function.

At the bottom of Example 4-5 is an example entry For pen’.co'nj/'(()t' bttpaflcorzfif

you prefer). The idea here is to make /tpctcbe.-.-ES51tlte content handler for all Files
ending with the extension .ebnm.'. We do this with a <File5> configuration section

that contains the appropriate Se/Hm-Id/tar and Per/Iflmdler directives. We use the

Pen’Set‘Vai' directive to point the module to the server—relative definitions file,

con/7955!. defs.

In addition to the <Fifle5> section, we need to ensure that Apache knows that

.ebrmz.’ files are just a special type of l—]’[i'ML file. We use xtcicfijtpe to tell Apache to

treat .e/yrml files as MIME type text//Jim].

You could also use <[.ocatz'on> or <Difrecro1j2> to assign the Apache.-.-E551 content

handler to a section of the document tree, or a dil"l"er‘ent <Fi£e5> directive to make

Apache.-:ESSI the content handler for all HTML files.

Exmnple 4-5. /in 1Elxiei'zst’bt'eS911-'er—.\‘z'de lHcl.ucl'e ._']ts{em.

package Apache::ESSI;

it file: Apache/ESSI.pm

use strict;

use Apache::Constant5 qw(:common);

use Apache::Fi1e (};

use Text::ParseWords qw(quotew0rds);

my (%MODIFIED, %SUBSTITUTION);

sub handler {

my Sr = Shift;

$r—>content_type() eq ‘text/html‘ |l return DECLINED;

my $fh = Apache::File—>new($r—>filename) || return DECLINED;

my $sub = read_definitions($r) || return SERVER_ERROR;
$r—>send_http_header;

Sr->print($sub—>(Sr, $fh});
return OK;

19

20

E

Content Handlers as File Processors

Example 4-3. An Extensible Ser7Jer—Side mclucle System (ccmtmuecl)

sub read_definitions {

my $r = shift;

my Sdef = $r—>dir_config('ESSIDefs');
return unless Sdef;

return unless -e (Sdef = $r—>server_root_relative($def));

return $SUBSTITUTION{$def} if $MODIFIED{$def} && $MODIFIED{$def} <= —M

my Spackage = join “::", __PACKAGE__, sdef;

Spackage =~ tr/a—zA-Z0—9_/_/c:

eval "package $package; do '$def'“;

if($@) {

$r—>1og_error("Eval of Sdef did not return true: $@");
return;

}

$SUBSTITUTION($def} = sub {

do_substitutions($Dackage, @_);

};

$MODIFIED{$def} = —M Sdef; # store modification date
return $SUBSTITUTION{$def};

1

sub do_substitutions {

my spackage = shift;

1nY($rr = @_r'

Make sure that eval() errors aren't trapped.

local $SIG{__wARN__};

local $SIG{__DIE__};

local $/; #slurp Sfh

my $data = <$fh>;

$data =~ s/<!—-\s*\#(\w+) # start of a function name
\s*(.*?) # optional parameters
\s*——> # end of coment

/cal1_sub($package, $1, Sr, $2)/xseg;

$data;

}

sub ca11_sub {

my($package, sname, $r, sargs) = @_;

my $sub = \&{join '::', spackage, Sname};
$r->chdir_fi1e;

my $res = eval { $sub~>($r, quotewords('[,]',0,$args)) };
return "[$@]" if $@;
return Sres;

20

..l

101

21

102 Chapter 4: Content Ilrzmllezs

Here are some peniconfdirectives to go with A/Jctctve.-.-E551:

<Files ~ “\.ehtml$">

SetHandler perl—script

PerlHandler Apache::ESSI
Perlsetvar ESSIDefs conf/essi.defs

</Files>

AddType text/html .ehtml

At this point you’d probably like a complete seiver—side include definitions file to

go with the module. Example 4-4 gives a short file that defines a core set of func~

tions that you can build on top of. Among the functions defined here are ones for

inserting the size and modification date of the current file, the date, fields from the

browser's HTTP request header, and a function that acts like the C preprocessor

#in.clude macro to insert the contents of a file into the current document. There's

also an include called OOPS which divides the number 10 by the argument you

provide. Pass it an argument of zero to see how runtime errors are handled.

The INCLUDEO function inserts whole files into the current document. It accepts

either a physical pathname or a “virtual" path in URI space. A physical path is only

allowed if it lives in or below the current directoiy. This is to avoid exposing sen-

sitive files such as /etc/passwa’.

If the $virtual flag is passed, the function translates from URI space to a physi-

cal path name using the 1oo!aup_m‘i() z1nti_/E142-mtni.e(,) methods:

$file = $r—>lookupHuri($path)->filename;

The request object’s lookup_zm’O method creates an Apache subrequest for the

specified URI. During the subrequest, Apache does all the processing that it ordi-

narily would on a real incoming request up to, but not including, activating the

content handler. [0o1aup_uri() returns an Apctr:be.-.-5ubReqttesI object, which inher~

its all its behavior from the Apache request class. We then call this ob;'ect’s

j2‘lename() method in order to retrieve its translated physical file name.

Exczmple 4-4. Server—Sz'de Ivzclucle F-tt-ncti'or:. Defz'm'!i'or:.s'

Definitions for server—side includes.

it This file is require'd, and therefore must end with
a true value.

use Apache: :File () ,-

use Apache::Util qw(ht_time sizewstring);

insert the string "Hello World!"
sub HELLO {

my $r = shift;
"Hello World!";

21

22

Content Ha-mllers as File Processors 103

['.'mm[)!e 4-4. Sear'z1er—.S'!.ca'r: Include Fzmcimn l)e_/Iim'!iu-H5 (Cwz!:‘m.aed)

fl insert today's date possibly modified by'a strftimet) format

string
sub DATE {

my ($r,$format) = @_;

return scalar(localtime) unless Sformat;

return ht_time(time, $format, O);

insert the modification time of the document, possibly modified

by a strftime{) format string.
sub MODTIME {

my ($r,$format) = @_;

my $mtime = (stat $r->finfo)[9];

return localtime($mtime) unless Sformat;

return ht_time($mtime, Sformat, 0);

fl insert the size of the current document
sub FSIZE [

my Sr = shift;

return.size_string —s $r—>finfo;
}

divide 10 by the argument (used to test runtime error trapping)
sub OOPS { 10/$_[l]; }

insert a canned footer

sub FOOTER {

my Sr = shift;

my Smodtime = MODTIM($r);
return <<END;

<hr>

© 1998 <a ‘nref="http://www.ora.com/">O'Reilly Scamp; Associates

Last Modified: $modtime
END

}

insert the named field from the incoming request

sub HTTPfiI-EEADER {

my ($r.$h} = @_;

$r—>header_in($h);

#ensure that path is relative, and does not contain ".."

sub is_be1ow_only { $_[O] !~ m:{“/{(“|/)\.\.(/1$)): }

Insert the contents of a file. If the $virtual flag is set

does a document—root lockup, otherwise treats filename as a

physical path.

sub INCLUDE {

my ($r,Spath,$virtua1) = @_;

my Sfile;

22

23

104 (jhaplcr 4: C0m’enl Hcmdlers

1jxam])le 4-4. .\‘ei‘r=ea'—.‘»'z'.c!e lircfmscie Fmzclfrm I)e/‘z'm'.rt'oi-is fr:ruztt'n-ueci)

if($virtual) {

$ fi le = Sr—>lo0kup_uri ($path) —>filename;
}

else {

unless{is_below_on1y($path)) {

die "Can't include $path\n";
l»

Sfile = Spath;
}

my Sfh 2 Apache::Fi1e~>new{$fi1e)]| die "Couldn't open Sfile: $!\n“;
local $/;

return <$fh>;

}

1;

If you’re a fan of‘ scrver—side includes, you should also check out the Apache Emb-

perl and ePen’ packages. Both packages, along with several others available from

the Cl’A\i, huilcl on moc2.’_perl to create a Perl-like programming language embed-

ded entirely within set‘ver—siClc includes.

Converting Image Formats

Another useful application of Apache content handlers is converting file Formats

on the fly. For example. with a little help from the Aladdin Ghostscript interpreter,

you can dynamically convert Adobe Acrobat (PDF) files into GIF images when

dealing with :1 hrowser that doesn’t have the Acrobat plug—in installed.‘

In this section, we show a content handler that converts image files on the fly. It

takes advantage oi" Kyle Shorter’s fmctge.-.-Mcrgicle package, the Perl interface to

John Cris1y’s Fm-ageMagick library. Image.-.-Ilrlagicie interconverts a large number of

image formats, including JPEG, PNG, TIFF, GIF, MPEG, PPM, and even PostScript.

It can also transforin images in various ways, such as cropping, rotating, solari‘/.-

ing, sharpening, sampling, and blurring.

The Apac/ye.-.-xlricigicle content handler accepts URIS in this form:

/pa £:h/ to/ image. ext:/Fil terl /Fil ter2?arg=Va1 ue&arg= value . . .

" At least in theory, you can divine what Ml1'\'lli types a browser prefers by examining; the contents of the
Accqptheadcrudui$r—>header_in('Accept').Accomhngto fim:H1W1’pnnocoL dusshotddreuwnii
list UFMIME types that the browser can handle along with a numeric preference score. The CC-Lpm motl-
ule even has an m.'c;ef:i'(_) function that leverages th is information to choose the best format for a given
document type. Unfortunately, this part of the l-l'I"]'l’ protocol has atrophiecl, and neither Netsc:1pe’s nor
Microsoffls hrowsen. give enough information in the Accept header to make it useful for content negoti-
anon.

23

24

 Content Handlers as File Processors 105

In its simplest form, the handler can be used to perform image format conversions

on the fly. For example, if the actual file is named bluebz'rd.gz'f and you request

blttebirdgpg, the content handler automatically converts the GIF into a JPEG file

and returns it. You can also pass arguments to the converter in the query string.

For example, to specify a progressive JPEG image (interlace = "Line") with a

quality of 50 percent, you can fetch the file by requesting a URI like this one:

/images/bluebird.jpg?interlace=Line&quality=50

You can also run one or more filters on the image prior to the conversion. For

example, to apply the “Charcoal” filter (which makes the image look like a char-

coal sketch) and then put a decorative border around it (the “Frame" filter), you

can request the image like this:

/images/bluebird.jpg/Charcoal/Frame?qua1ity=75

Any named arguments that need to be passed to the filter can be appended to the

query string, along with the conversion arguments. In the last example, we can

specify a gold-colored frame this way:

/images/bluebird.jpg/Charcoal/Frame?qua1ity=75&co1or=go1d

This API doesn't allow you to direct arguments to specific filters. Fortunately, most

of the filters that you might want to apply together don’t have overlapping argu-

ment names, and filters ignore any arguments that don’t apply to them. The full list

of filters and conversion operations can be found at the Per|Magick web site,

located at bttp://www.wizardsdupont.com/Cristy/www{perl.btml. You’ll find point-

ers to the latest ImageMagick code library there as well.

One warning before you use this Apache module on your system: some of the

operations can be very CPU-intensive, particularly when converting an image with

many colors, such as JPEG, to one that has few colors, such as GIF. You should

also be prepared for Image.-.-Magiclas memory consumption, which is nothing
short of voracious.

Example 4-5 shows the code for Apac/9e:.-Magicle.

package Apache::Magick;

use strict;

use Apache::Constants qw(:common);

use Image::Magick ();

use Apache::File ();

use Fi1e::Basename qw(fileparse);
use Dirflandle ();

We begin as usual by bringing in the modules we need. We bring in Apacbe.-.-C'on-

stcmts, File.-.-Basename for its file path parsing utilities, Dz'rHomdle() for object-

oriented interface to directory reading functions, and the Image.-.-Magicle module
itself.

24

25

106 Chapter‘ 4: Comem.‘ Hamilers

my %LegalArguments = map { $_ => 1 }

qw (adjoin background bordercolor colormap colorspace
colors compress density dispose delay dither

display font format iterations interlace

loop magick mattecolor monochrome page pointsize

preview_type quality scene subimage subrange
size tile texture treedepth undercolor);

my %LegalFilters = map { $_ => 1 }

qw{AddNoise Blur Border Charcoal Chop

Contrast Crop Colorize Coment Cyclecolormap

Despeckle Draw Edge Emboss Enhance Equalize Flip Flop

Frame Gamma Implode Label Layer Magnify Map Minify

Modulate Negate Normalize OilPaint Opaque Quantize
Raise ReduceNoise Rotate Sample Scale Segment Shade

Sharpen Shear Solarize Spread Swirl Texture Transparent
Threshold Trim Wave Zoom);

We then define two hashes, one for all the filter and conversion arguments recog-

nized by Image.-.~Magz'c1e and the other for the various filter operations that are
available. These lists were cut and pasted from the Image.-.-Magicla documentation.

We tried to exclude the ones that were not relevant to this module, such as ones

that create multiframc animations, but a few may have slipped through.

sub handler [

my Sr = shift;

get the name of the requested file

my $£i1e = $r—>filename;

If the file exists and there are no transformation arguments

just decline the transaction. It will be handled as usual.
return DECLINED unless $r—>args || $r—>path_info || !—r $r—>£info;

The bancfl.-2r() routine begins as usual by fetching the name of the requested file.
We decline to handle the transaction if the file exists, the query string is empty,

and the additional path information is empty as well. This is just the common case

of the browser trying to fetch an unmodified existing file.

my Ssource;

my ($base, Sdirectory, $extension) - fileparse($file, '\.\w+');
if (—r $r—>finfo) { # file exists, so it becomes the source

$s0urce = $file;
}

else { # file doesn't exist, so we search for it
return DECLINED unless —r Sdirectory;

$source = findfiimage($r, Sdirectory, $base);

unless ($source) {

$r—>log_error("Couldn‘t find a replacement for Sfile“);
return NOT_FOUND;

25

26

Content Hcmdlers as [We Processors 107

We now use Ff/G.'.'B6£Se1:'r:zme’s _f-1'.'l.’t’:‘1’)iCI.".\‘C’(V',) function to parse the requested file into

its basename (the filename without the extension), the directory name, and the

extension. We check again whether we can read the file, and if so it becomes the

source for the conversion. Otherwise, we search the directory for another image

file to convert into the format of the requested file. For example, if the URI

requested is b/itebi'rd._,rpeg and we find a file named b£z.rebz'rd.g{/,‘ we invoke

Image.-.-A/Iagfcla to do the conversion. The search is done by an internal subroutine

named fr'rm.’_r'mage(',), which we’ll examine later. If successful, the name of the

source image is stored in Ssource. If t1risLiccessl’t1l, we log the error with the log_

error() function and return a NOT_FOUND result code.

$r—>send_http_header;

return OK if $r—>header_only;

At this point, we send the I-ITTP header using serrd_bti;o_beade2'(). The next line

represents an optimization that we haven’t seen before. it may be that the client

isn’t interested in the content of the image file, but just in its meta—information,

such as its length and MIME type. In this case, the browser sends an I-ITTP HEAD

request rather than the usual GET. When Apache receives a HEAD request, it sets

/9eczoier_oni32() to true. If we see that this has happened, we return from the han-

dler immediately with an OK status code. Although it wouldn’t hurt to send the

document body anyway, respecting the I-IF./XI) request results in a slight savings in

processing efficiency and makes the module compliant with the I-ITTP protocol.

my $q = Image::Magickw>new;

my Serr = $q—>Read($source);

Otherwise, it’s time to read the source image into memory. We create a new

Image.-.-Magicle object, store it in a variable named $q, and then load the source

image file by calling its Reczd() method. Any error message returned by Read() is

stored into a variable called Serr.

my %argument;s = $r—>args,-

Run the filters

for (split '/', $r—>path_inf0l {

my Sfilter = ucfirst $_;

next unless $LegalFilters{$filter};

$err l|= $q—>$filter(%arguments);

Remove invalid arguments before the Conversion

for (keys %arguments} {

delete $arguments{$_} unless $LegalArguments{$fi};
}

The next hase of the rocess is to re are for the ima we mani ulation. The firstP P E; P

thing we do is tid u the in wt aarameters. We retrieve the Lie strin vI

parameters by calling the request objec1’s .cirgs() method and store them in a hash

named %arguments.

26

27

(Li.-rapier‘ 4: Contem‘ lrlcmdlersI 08

We then call the request object's pC£l'f9_f}‘{/.O(‘:) method to retrieve the additional
path information. We split the path info into a series of filter names and canonical-
ize them by capitalizing their initial letters using the Perl built—in operator trcfl'7r5f()_
Each of the filters is applied in turn, skipping over any that aren’t on the list of fil-
ters that Iinczge.-.-11/Icrgicle accepts. We do an OR assignment into $err_. so that we
maintain the first non—null error message, if any. Having run the files, we remove
from the %arguments array any arguments that aren’t valid in I-nzage.-.-Mczgr'cle.’s file
format conversion calls.

Create a temporary file name to use for conversion
my($tmpnam, $fh} = Apache::File—>tmpfile;

lntcrge.-.-Magr'c!c needs to write the image to a temporary file. We call the
Apcrcbe.-.-Fz'fe tin];/i'r’e() method to create a suitable temporary
ful, i‘.mpfi'!e() returns the name of the temporary File, which we store in the vari-
able Stmpnam, and a filehandle open for writing into the file, which we store in
the variable $fh. The map‘/’r'ie() method is specially written to avoid a “race condi-

appears to be unused when the module

file name. If success-

tion” in which the temporary file name

first checks for it but is created by someone else before it can be opened.

fi Write out the modified image
fi1eno($fh));

The next task is to have Inmge.-.-11/Iagick perform the requested conversion and
write it to the temporary file. The safest way to do this would be to pass it the
temporary file's already opened filehandle. Unfortunately, Irnage.-.-Magicle doesn't
accept filehandles; its ii’/rr‘r'.e(i) method expects a filename, or the special filenanie —
to write to standard output. However, we can trick it into writing to the filehandle
by reopening standard output on the filehandle, which we do by passing the file-
handle’s numeric file descriptor to open() using the rarely seen :>&= notation. See
the open() entry in the pert’/-‘z.m.c manual page for complete details.

Since STDOtl'l‘ gets reset before every Perl API transaction, there’s no need to save
and restore its original value.

Sextension =~ s/“\.//;

$err ll: $q—>Write('fi1ename‘ => "\U$extension\L:—", %arguments);
if (Serr) {

unlink Stmpnam;

$r—>1og_error($err);
return SERVER_ERROR;

}
close $Eh;

We now call Irimge.-.-11/Iczgfc!e.’s W/n're() method with the argument ' filename‘ =>
EXTENSION: — where EXTLWSION is the uppercased extension of the document
that the remote user requested. We also tack on any conversion arguments that

27

28

(jg-ntem’ Hrmdlers as File Processors 109

were requested. For example, if the remote user requested bluebird. jpg?

qua1ity=75. the call to l-l’/;~,i,t(-,’(:) ends up looking like this:

$q—>write('fi1ename'=>'JPG:+','quality'=>75);

If any errors occurred duringg, this step or the previous ones, we delete the tempo—

{my file, log the errors, and return at SERVER_ERROR status code.

At this point the conversion is all done!

fl reopen for reading

Sfh = Apache::File—>new($tmpnam);
unless ($fh) {

Sr—>log_error("Couldn't open Stmpnam: 3!");

return SERVER_ERROR;

send the file

$r~>send_fd{$fh);

clean up and go

unl ink $ tmpnam;
return OK;

}

If the catll to ii.’/rz're(") was successful, we need to send the contents of the tempo-

rary file to the waiting browser. We could open the file, read its contents, and

send it off using a series ol"pr.r?m‘() calls, as we've done previously, but in this case

there‘s El slightly easier way. After reopening the file with Apache.-.-Fz'le’s new()

method, we call the request ohject’s send_‘fIrl() method to transmit the contents of

the filehandle in one step. The serzd_fd() method accepts all the same filehandle

data types as the Perl huilt—in I/O operators. After sending off the file, we clean up

by unlinking the temporary file and returning an OK status.

Well now turn our attention to the fz‘r:.d_image() subroutine, which is responsible

for searching the directoiy for at suitable tile to use as the image source if the

requested file can’t he found:

sub find_image (

my (Sr, $directory, Sbase) = @_;

my Sdh = DirHand1e—>new($directory) or return;

The jlfr1d_:'n-zageO utility subroutine is stmiglttforward. It takes the request object,

the parsed directoiy name. and the batsename of the requested file and attempts to

Search this directory for an image file that shares the same bzisename. The routine

opens 2: directory handle with Dir]-Icmdle—>'n:ew() and l[(3I'21[(iS over its entries.

my $source;

for my Sentry ($dh—>read) {

my Scandidate = fileparse($entry,

if ($base eq $candidate) {

‘\-\W+'):

28

29

I I 0 Chapter‘ 4: Cement Hcmdlers

determine whether this is an image file

$source = join ", $directory, Sentry;

my $subr = $r—>lookup_file($source);

last if $subr—>content_type =- m:“image/:;

undef Ssource;

}

For each entry in the directory listing, we parse out the basename using

f2'lepai*5e(). If the hasename is identical to the one we're searching for, we call the

request objects loolai,ip_fi'le() method to activate an Apache subrequest. lookup_

fz'le() is similar to [OO£3l'.'£1O__1£3"l'-lf), which we saw earlier in the context of server—side
includes, except that it accepts a physical pathname rather than a URI. Because of

this, loolazLp_fz'Ie() will skip the URI [ranslali()n phase, but it will still cause Apache

to trigger all the various handlers up to, but not including, the content handler.

In this case, we’re using the suhrequest for the sole purpose of getting at the

MIME type of the file. If the file is indeed an image of one sort or another, then

we save the request in a lexical variable and exit the loop. Otherwise, we keep

searching.

$dh—>close;

return Ssource;

}

At the end of the loop, $source will be undefined if no suitable image file was

found, or it will contain the full pathname to the image file if we were successful.

We close the directory handle, and return $source.

Example 4-5. Apache.-:11/Ictgicle C'0m.*en'.\‘ Image FO:l‘m.6l{.\‘ on [be Fly

package Apache::Magick;

file: Apache/Magick.pm

use strict;

use Apache::Constants gw(:common};

use Image::Magick ();

use Apache::File ();

use File::Basename qw(fileparse):

use Dirfiandle ();

my %LegalArguments = map { $_ => 1]

qw (adjoin background bordercolor colormap colorspace

colors compress density dispose delay dither

display font format iterations interlace

loop magick mattecolor monochrome page pointsize

preview_type quality scene subimage subrange
size tile texture treedepth undercolorl;

my %LegalFilters = map { $_ => 1 }

qw(AddNoise Blur Border Charcoal Chop

Contrast Crop Colorize Comment Cyclecolormap

Despeckle Draw Edge Emboss Enhance Equalize Flip Flop

29

30

j 111Content I-Icmdlers as File Processors

[;x¢:z1nple /1-5. Apczcire.-.-fvlagick C'om1er!s Image l«‘r1r1mus (m the Fly (cr.>11Ii11L1ea:')

Frame Gama Implode Label Layer Magnify Map Minify
Modulate Negate Normalize OilPaint Opaque Quantize

Raise ReduceNoise Rotate Sample Scale Segment Shade

Sharpen Shear Solarize Spread Swirl Texture Transparent

Threshold Trim wave Zoom);

sub handler {
my Sr = shift;

get the name of the requested file

my $file = $r—>filename;

If the file exists and there are no transformation arguments

just decline the transaction. It will be handled as usual.

return DECLINED unless Sr—>args II $r->Path_iDfO II 1-I $r">finf0;

my Ssource;

my ($base, $direct0ry, Sextension) = fileparse($file, '\.\w+');
if (-r $r->finf0) { # file exists, so it becomes the source

Ssource - $file;

}

else { # file doesn't exist, so we search for it

return DECLINED unless —r $directory;

$source = find_image($r, Sdirectory, Sbase);
}

unless ($s0urce) [

$r->l0g_err0r("C0uldn't find a replacement for Sfile");
return NOT_FOUND;

$r—>send_http_header;

return OK if $r—>header_pnly;

Read the image

my $q = Image::Magick—>new;

my $err = $q—>Read($source);

Conversion arguments are kept in the query string, and the

image filter operations are kept in the path info

my %arguments = $r->args;

Run the filters

for (split '/', $r—>path_info) {

my Sfilter = ucfirst $_;

next unless $LegalFilters{Sfilter};

$err ||= $q—>Sfilter(%arguments);

Remove invalid arguments before the conversion

for (keys %arguments) {

delete $arguments{$_} unless $LegalArguments{$_};

30

31

 112 Chapter 4: Content Handlers

1:'xc1:n,t2:'c 4» 5. Apctclw.-.-zlrfctgicfi? C'c;1'1z'em‘ lnmge Furnzcm rm the F52 (cru'21z'mr.ec[)

Create a temporary file name to use for conversion

my($tmpnam, $fh) = Apache::File—>tmpfile;

Write out the modified image

open(STDOUT, ">&=“ . fileno($fh));

$extension =~ s/“\.f/;

Serr ||= $q—>Write('filename' => ”\U$extension\L:—“, %argumentS):
if ($err) {

unlink $tmpnam:

$r—>l0g_error{$err);

return SERVER_ERROR;

}

close Sfh;

fi At this point the Conversion is all done!

reopen for reading

$fh = Apache::File—>new($tmpnam);
unless ($fh) {

$r~>l0g_err0r(“Couldn't open Stmpnam: $!“);
return SERVER_ERROR;

send the file

$r—>send_fd($fh);

clean up and go

unlink $tmpnam;
return OK:

sub find_image [

my (Sr, $directory. $base) = @_;

my Sdh = DirHand1e—>new($directory) or return;

my Ssource;

for my Sentry ($dh—>read) {

my $candidate = fileparse($entry, '\.\w+'};

if ($base eq $candidate) {

determine whether this is an image file

Ssource join ", Sdirectory, $entry;

my Ssubr = $r—>lookup_file($source);

last if $subr—>content_type =~ m:“image/:;
undef Ssource;

}

$dh—>close;

return Ssource;
}

1:
END

31

In this chapter:
• Web Programming

Then and Now

• The Apache Project

• The Apache C and
Perl APIs

• Ideas and Success

Stories

Server-Side

Programming
with Apache

Before the World Wide Web appeared, client/server network programming was a
drag. Application developers had to develop the communications protocol, write
the low-level network code to reliably transmit and receive messages, create a user
interface at the client side of the connection, and write a server to listen for incom
ing requests, service them properly, and transmit the results back to the client.
Even simple client/server applications were many thousand lines of code, the
development pace was slow, and programmers worked in C.

When the web appeared in the eariy '90s, all that changed. The web provided a
simple but versatile communications protocol standard, a universal network client,
and a set of reliable and well-written network servers. In addition, the early
servers provided developers with a server extension protocol called the Common
Gateway Interface (CGI). Using CGI, a programmer could get a simple client/
server application up and running in 10 lines of code instead of thousands. Instead
of being limited to C or another "systems language," CGI allowed programmers to
use whatever development environment they felt comfortable with, whether that
be the command shell, Peri, Python, REXX, Visual Basic, or a traditional compiled
language. Suddenly client/server programming was transformed from a chore into
a breeze. The number of client/server applications increased 100-fold over a
period of months, and a new breed of software developer, the "web program
mer," appeared.

The face of network application development continues its rapid pace of change.
Open the pages of a web developer's magazine today and you'll be greeted by a
bewildering array of competing technologies. You can develop applications using
server-side include technologies such as PHP or Microsoft's Active Server Pages
(ASP). You can create client-side applications with Java, JavaScript, or Dynamic

32

33

2 Chapter I: Server-Side Programming with Apache

HTML (DHTML). You can serve pages directly out of databases with products like

the Oracle web server or Lotus Domino. You can write high—performance server-

side applications using a proprietary server application programming interface

(API). Or you can combine server- and client-side programming with integrated

development environments like Netscape’s Live\X/‘ire or NeXT’s WebObjects. CGI

scripting is still around too, but enhancements like FastCGI and ActiveState’s Perl

ISAPI are there to improve script performance.

All these choices can be overwhelming, and it isn’t always clear which develop-

ment system offers the best tradeoff between power, performance, compatibility,

and longevity. This chapter puts a historical perspective on web application devel-

opment and shows you how and where the Apache C and Perl APls fit into the

picture.

Web Programming Tben and Now

In the beginning was the web server. Specifically, in the very very beginning was

CERN bttpd, a C-language server developed at CERN, the European high-energy

physics lab, by Tim Berners-Lee, Ari Luotonen, and Henrik Frystyk Nielsen around

1991. CERN btrpd was designed to serve static web pages. The server listened to

the network for Uniform Resource Locator (URL) requests using what would even-

tually be called the HTTP/0.9 protocol, translated the URLs into file paths, and

returned the contents of the files to the Waiting client. If you wanted to extend the

functionality of the Web server—for example, to hook it up to a bibliographic

database of scientific papers—you had to modify the servers source code and

recompile.

This was neither very flexible nor Very easy to do. So early on, CERN bttpd was

enhanced to launch external programs to handle certain URL requests. Special

URLs, recognized with a complex system of pattern matching and string transfor-

mation rules, would invoke a command shell to run an external script or program.

The output of the script would then be redirected to the browser, generating a

web page on the fly. A simple scheme allowed users to pass argument lists to the

script, allowing developers to create keyword search systems and other basic

applications.

Meanwhile, Rob McCool, of the National Center for Supercomputing Applications

at the University of Illinois, was developing another web server to accompany

NCSA’s browser product, Mosaic. NCSA btrpd was smaller than CERN brand, faster

(or so the common wisdom had it), had a host of nifty features, and was easier

than the CERN software to configure and install. It quickly gained ground on

CERN bttpa’, particularly in the United States. Like CERN bttpd, the NCSA product

had a facility for generating pages on the fly with external programs but one that

33

34

Web Programming Then and Now 3

differed in detail from CERN btq)d’s. Scripts written to work with NCSA htzpd

wouldn’t work with CERN httpd and vice versa.

The Birth of CGI

Fortunately for the world, the CERN and the NCSA groups did not cling tena-

ciously to “their" standards as certain latter-day software vendors do. Instead, the

two groups got together along with other interested parties and worked out a

common standard called the Common Gateway Interface.

CGI was intended to be the duct tape of the web—a flexible glue that could

quickly and easily bridge between the web protocols and other forms of informa-

tion technology. And it worked. By following a few easy conventions, CGI scripts

can place user-friendly web frontends on top of databases, scientific analysis tools,

order entry systems, and games. They can even provide access to older network

services, such as gopher, whois, or WAIS. As the web changed from an academic

exercise into big business, CGI came along for the ride. Every major server ven-

dor (with a couple of notable exceptions, such as some of the Macintosh server

developers) has incorporated the CGI standard into its product. It comes very

close to the “write once, run everywhere” development environment that applica-

tion developers have been seeking for decades.

But CGI is not the highest-performance environment. The Achilles’ heel of a CGI

script is that every time a web server needs it, the server must set up the CGI envi-

ronment, read the script into memory, and launch the script. The CGI protocol

works well with operating systems that were optimized for fast process startup and

many simultaneous processes, such as Unix dialects, provided that the server

doesn’t become very heavily loaded. However, as load increases, the process cre-

ation bottleneck eventually turns formerly snappy scripts into molasses. On operat-

ing systems that were designed to run lightweight threads and where full pro-

cesses are rather heavyweight, such as Windows NT, CGI scripts are a

performance disaster.

Another fundamental problem with CGI scripts is that they exit as soon as they fin-

ish processing the current request. If the CGI script does some time—consuming

operation during startup, such as establishing a database connection or creating

complex data structures, the overhead of reestablishing the state each time it’s

needed is considerable——and a pain to program around.

Server APIs

An early alternative to the CGI scripting paradigm was the invention of web server

APIs (application programming interfaces), mechanisms that the developer can use

to'extend the functionality of the server itself by linking new modules directly to

34

35

4 C'I_1a[)Ier 1'.‘ Serr.rer—.S'r‘de Pmg-mvrn-n 1'ng with Apache

the server executable. For example, to search a database from within it web page,

a developer could write a module that combines calls to web server functions with
calls to a relational database library. Add a dash or two of program logic to trans-

form URLs into SQL, and the web server suddenly becomes a fancy database front-

end. Server AP1s typically provide extensive access to the innards of the server

itself, allowing developers to customi’/.e how it performs the various phases of the
HTTP transaction. Although this might seem like an esoteric feature, it.’s quite

powerful.

The earliest web API that we know of was built into the Plexus web server, writ-

ten by Tony Sanders of 138131. Plexus was a 1()() percent pure Perl server that did
almost everything that web servers of the time were expected to do. Written

entirely in Perl Version 4, Plexus allowed the webmaster to extend the server by
adding new source files to be compiled and run on an as~needed basis.

AP1s invented later include NSAP1, the interface for Netscape servers; ISAPI, the

interface used by Microsoft's Internet Information Server and some other Win-
dows—based servers; and of course the Apache web servers AP1, the only one of

the bunch that doesn't have a cute acronym.

Sewer A1315 provide performance and access to the guts of the server's software,

giving them programining powers beyond those of mere mortal CO1 scripts. Their
drawbacks include a steep learning curve and often a certain amount of risk and

inconvenience, not to mention limited portability. As an example of the risk, a bug

in an API module can crash the whole sewer. Because of the tight linkage

between the server and its AP1 modules, it’s never as easy to install and debug a

new module as it is to install and debug a new CG! script. On some platforms, you

might have to bring the server down to recompile and link it. On other platforms,

you have to worry about the details of dynamic loading. However, the biggest

problem of server AP1s is their limited portability. A server module written for one

AP1 is unlikely to work with another vendor’s server without extensive revision.

Server-Side Inclucles

Another server—side solution uses server~side includes to embed snippets of code

inside HTML comments or special—purpose tags. NCS/\ bttpcl was the first to imple-

ment seiver—side includes. More advanced members of this species include

Microsoffs Active Server Pages, Allaire Cold Fusion, and PHP, all of which turn

HTML into a miniature programming language complete with variables, looping

constructs, and database access methods.

Netscape servers recognize 1-1Tt\/11. pages that have been enhanced with scraps of
_1avaScript code (this is distinct from elient—side _]avaScripi, which we talk about

later). Embperl, a facility that runs on top of Apache's m,oc1.’_perl module, marries

35

36

H;/U1; Pr‘0gr'a:r1m.:‘ng ’i"I;:erz cm.c1N0w 5 —

[—['1‘i\/ll. to Perl, as does Perlficript, an Activefitate extension for Microsoft Internet

lntoi'iii;ttioi1 Server.‘

The main problem with server—side includes and other HTML extensions is that

;[1ev'r'e ml box; No standards exist for server—side includes, and pages written for

one vendors web server will definitely not run ttnmodilied on another's_

Embedded Interpreters

To avoid some of the problems of proprietary APIs and server—side includes, sev-

eral vendors have turned to using embedded high—level interpretive languages in

their servers. Embedded interpreters often come with CGI emulation layers, allow»

ing script tiles to be executed directly by the server without the overhead of invok-

ing separate processes. An embedded interpreter also eliminates the need to make

dramatic changes to the server software itself. in many cases an embedded inter-

preter provides a smooth path for speeding up CGI scripts because little or no

source code modification is necessary.

lixamples of embedded interpreters include inod_p_yapacbe, which embeds a

Python interpreter. When a Python script is requested, the latency between load-

ing the script and running it is dramatically reduced because the interpreter is

already in memory. A similar module exists for the TCL language.

Sun Microsystems' “servlet” API provides a standard way for web servers to run

small programs written in the Java programming language. Depending on the

implementation, a portion of the Java tuntime system may be embedded in the

web server or the web server itself may be written in java. Apache's servlet sys-

tem uses ct)~pi‘ocess(-is rather than an embedded interpreter. These implementa-

tions all avoid the overhead of launching a new external process for each request.

Much oi’ this book is about moa’_perl, an Apache module that embeds the Perl

interpreter in the server. However, as we shall see, m0cl_perI goes well beyond

providing an emulation layer for CGI scripts to give programmers complete access
to the Apache API.

Script Co-processing

Another wa to avoid the latenc of CGI scri ts is to keea them loaded and run-I

niny, all the time as a eo—process. When the server needs the script to generate a

page, it sends it a message and waits for the response.

The first system to use co—processing was the FastCGl protocol, released by Open

Market in 1996. Under this system, the web server runs FastCGI scripts as separate

‘ ActiveState Tool Corp_, /3211]‘).-//zrtzrrztr.aciwestare.crm.'/

36

37

6 C'I;Jrrpter 1: 5ei'ver—Sr'de Progmn-imz'ng Apache

processes just like ordinary CGI scripts. However, once launched, these scripts

don't immediately exit when they finish processing the initial request. instead, they

go into an infinite loop that awaits new incoming requests, processes them, and

goes back to waiting. Things are arranged so that the FastCGI process's input and

output streams are redirected to the web server and a CGi—like environment is set

tip at the beginning of each request.

Existing CGI scripts can be adapted to use FastCGI by making a few, usually pain-

less, changes to the script source code. implementations of FastCGi are available

for Apache, as well as Zeus, Netscape, Microsoft HS, and other servers. However,

I-7astCGI has so far failed to win wide acceptance in the web development commu-

nity, perhaps because of Open Marl<et’s retreat from the web server market. Fortu-

nately, a group of volunteers have picked up the Apache -modfi/'a5rcgz' module and

are continuing to support and advance this freeware implementation. You can find

out more about mod__fczsi.‘cgi' at the wwzu.fasrcgiI.com website. Commercial imple-

mentations of FastCGl are also available from Fast Engines, inc.

(wwtufasierigines.com), which provides the Netscape and Microsoft IIS versions of
FastCGI.

Another co—processing system is an Apache module called modfjseru, which you

can find at the project homepage, l9i.‘rp.-//_;‘ava.apacbe.org/ mod__;'5eru allows

Apache to run java servlets using Sun’s servlet API. However, unlike most other

servlet systems, -mod_jsen/ uses something called the “]Se1v Protocol" to allow the

web server to communicate with Java scripts running as separate processes. You

can also control these servlets via the Apache Perl API using the Apache.-.-Seriflet

module written by Ian Kluft.

Client-Side Scrzpting

An entirely different way to improve the performance of web~based applications is

to move some or all of the processing from the server side to the client side. It

seems silly to send a fill—out form all the way across the Internet and back again if

all you need to do is validate that the user has filled in the Zip Code field cor-

rectly. This, and the ability to provide more dynamic interfaces, is a big part of the

motivation for client—side scripting.

in cIient—side systems, the browser is more than an HTML rendering engine for the

web pages you send it. Instead, it is an active participant, executing commands

and even running small programs on your behalf. javascript, introduced by

Netscape in early 1995, and VBScript, introduced by Microsoft soon afterward,

embed a browser scripting language in HTML documents. When you combine

browser scripting languages with cascading style sheets, document layers, and

other HTML enhancements, you get “Dynamic HTML” (DHTML). The problem

with DHTML is that it’s a compatibility nightmare. The browsers built by Microsoft

37

.-..-.-.a.-.._.--

38

Wei, 1);-ogmi-nnzing T/gen mid Now 7

mg Netiscape implement dil’fei‘ent sets of DHTML features, and features vary even

between browser version numbers. Developers must choose which browser to

5-upport. or use mind—bogg|ingly axvltward workarounds to support more than one

Iypc of browser. Entire books have been written about DHTMI. W()['lx':tI'()LlI”lClSl

Then there are java applets. _]ava burst onto the web development scene in 1995

with an unprecedented level of publicity and has been going strong ever since. A

ful[—i"eatured programming language from Sun Microsystems, java can be used to

write standalone applications, server—side extensions (“servlets,” which we dis—

cussed earlier), and client~side “applet” applications. Despite the similarity in

names, Java and _]avaScript share little in common except a similar syntax. _]ava’s

ability to run both at the server side and the client side makes Java more suitable

for the implementation of complex software development projects than _]avaScript
(i:’Vl35C1'lp[, and the language is more stable than either of those two.

However, although java claims to solve client—side compatibility problems. the

many slight differences in implementation of the java runtime library in different

browsers has given it a reputation for “write once, debug everywhere." Also,

because of security concerns, java applets are very much restricted in what they
can do, although this is expected to change once Sun and the vendors introduce a

security model based on unforgeable digital signatures.

Microsoft’s ActiveX technology is a repackaging of its COM (Common Object

Model) architecture. Activex allows dynamic link libraries to be packed up into
"controls,” shipped across the Internet, and run on the user’s computer. Because

Activex controls are compiled binaries, and because COM has not been adopted
by other operating systems, this technology is most suitable for uniform intranet

environments that consist of Microsoft Windows machines running a recent ver-
sion of Internet Explorer.

Integrated Development Environments

Integrated development environments try to give software developers the best of

both client—side and server—side worlds by providing a high—level view of the appli-
cation. In this type of environment, you don’t worry much about the details of

how web pages are displayed. Instead, you concentrate on the application logic
and the user interface.

The development environment turns your program into some mixture of database

access queries, server—side procedures, and client—side scripts. Some popular envi-

ronments of this sort include Netscape’s “Live” development systems (I.ive\‘>C«’ire for

client—server applications and LiveConnect for database connectivity_),' NeXT’s

’ As this book was going to press, Netscape announced that it was dropping support for l.ive\‘(/ire, trans“
forming it ft'om :1 “l.ive" product into a “dead” one.

38

39

8 Chapter 1: Server-Side Programming with Apache

object-oriented Webobjects, Allaire's ColdFusion, and the Microsoft FrontPage

publishing system. These systems, although attractive, have the same disadvantage

as embedded HTML languages: once you’ve committed to one of these environ-

ments, there’s no backing out. There’s not the least whiff of compatibility across

different vendors’ development systems.

Mozleing the Choice

Your head is probably spinning with all the possibilities. Which tool should you

use for your own application development? The choice depends on your applica-

tion's requirements and the tradeoffs you’re willing to accept. Table 1-1 gives the

authors’ highly subjective ranking of thedifferent development systems’ pros and
cons.

Table 1-1. C'mnpczrz'soiz of Web Development Soluflons

Portability Performance Simplicity Power

CGI ++

FastCGI ++

Server API ++++

Server-side includes ++

DHTML ++

Client—side Java +++

Embedded interpreter ++++

Integrated system ++++

In this table, the “Portability” column indicates how easy it is to move a web appli-

cation from one server to another in the case of server—side systems, or from one

make of web browser to another in the case of client-side solutions. By “Perfor-

mance,” we mean the interactive speed of the application that the user perceives

more than raw data processing power of the system. “Simplicity” is our gut feeling

for the steepness of the system’s learning curve and how convenient the system is

to develop in once you’re comfortable with it. “Power” is an estimate of the capa-

bilities of the system: how much control it provides over the way the application

behaves and its flexibility to meet creative demands.

If your main concern is present and future portability, your best choice is vanilla

CGI. You can be confident that your CGI scripts will work properly with all

browsers, and that you'll be able to migrate scripts from one server to another

with a minimum of hardship. CGI scripts are simple to write and offer a fair

amount of flexibility, but their performance is poor.

If you want power and performance at all costs, go with a server API. The applica-

tions that you write will work correctly with all browsers, but you’ll want to think

39

.
T
;1

‘s

1‘;
3
1
'1.

-i
—i1..

3

3..
:1!H

i‘i.

..*....a-L‘E‘_

'-".=‘.:»$aJi;>;.

J5:i.~.‘-.~..:.<.».‘«.‘.:';'g;'-'-x“*\‘§x_~:__--:u.-33.55.-3,1?A,_4.._._.-‘‘g:;g=..—5:.;...'..,,;4=,..-.3-.2.-1;...;,‘..-.~

40

The Apache Project 9

rwice before moving your programs to a different server. Chances are that a large

chunk of your application will need to be rewritten when you migrate from one
vendor’s API to another’s.

FastCGI offers a marked performance improvement but does require you to make

some minor modifications to CGI script source code in order to use it.

If you need a sophisticated graphical user interface at the browser side, then some

component of your application must be client-side java or DHTML. Despite its

compatibility problems, DHTML is worth considering, particularly when you are

running an intranet and have complete control over your users’ choice of browsers.

java applets improve the compatibility situation. So long as you don’t try to get too

fancy, there’s a good chance that an applet will run on more than one version of a

single vendor's browser, and perhaps even on browsers from different vendors.

If you're looking for ease of programming and a gentle learning curve, you should

consider a server-side include system like PHP or Active Server Pages. You don’t

have to learn the whole language at once. Just start writing HTML and add new

features as you need them. The cost of this simplicity is portability once again.

Pages written for one vendor’s server-side include system won’t work correctly

with a different vendor's system, although the HTML framework will still display

correctly.

A script interpreter embedded in the web server has much better performance

than a standalone CGI script. In many cases, CGI scripts can be moved to embed-

ded interpreters and back again without source code modifications, allowing for

portability among different servers. To take the most advantage of the features

offered by embedded interpreters, you must usually write server—specific code,

which sacrifices portability and adds a bit of complexity to the application code.

The Apache Project

This book is devoted to developing applications with the Apache web server API,

so we turn our attention now to the short history of the Apache project.

The Apache project began in 1995 when a group of eight volunteers, seeing that

web software was becoming increasingly commercialized, got together to create a

supported open source web server. Apache began as an enhanced version of the

public-domain NCSA server but steadily diverged from the original. Many new fea-

tures have been added to Apache over the years: significant features include the

ability for a single server to host multiple virtual web sites, a smorgasbord of

authentication schemes, and the ability for the server to act as a caching proxy. In

some cases, Apache is way ahead of the commercial vendors in the features wars.

For example, at the time this book was written only the Apache web server had

implemented the H’ITP/1.1 Digest Authentication scheme.

40

41

I0 Chapter I: Server—Sz'de Programming with Apache

Internally the server has been completely redesigned to use a modular and exten-

sible architecture, turning it into what the authors describe as a “web server tool-

kit.” In fact, there’s very little of the original NCSA httpa’ source code left within

Apache. The main NCSA legacy is the configuration files, which remain backward-

compatible with NCSA httpa’.

Apache’s success has been phenomenal. In less than three years, Apache has risen

from relative obscurity to the position of market leader. Netcraft, a British market

research company that monitors the growth and usage of the Web, estimates that

Apache servers now run on over 50 percent of the Internet’s web sites, making it

by far the most popular web server in the world. Microsoft, its nearest rival, holds

a mere 22 percent of the market.‘ This is despite the fact that Apache has lacked
some of the conveniences that common wisdom holds to be essential, such as a

graphical user interface for configuration and administration.

Apache has been used as the code base for several commercial server products.

The most successful of these, C2Net’s Stronghold, adds support for secure commu-

nications with Secure Socket Layer (SSL) and a forrn-based configuration manager.

There is also WebTen by Tenon Intersystems, a Macintosh PowerPC port, and the

Red Hat Secure Server, an inexpensive SSL—supporting server from the makers of
Red Hat Linux.

Another milestone was reached in November of 1997 when the Apache Group

announced its port of Apache to the Windows NT and 95 operating systems

(Win52). A fully multithreaded implementation, the Win32 port supports all the

features of the Unix version and is designed with the same modular architecture as

its brother. Freeware ports to 05/2 and the AmigaOS are also available.

In the summer of 1998, IBM announced its plans to join with the Apache volun-

teers to develop a version of Apache to use as the basis of its secure Internet com-

merce server system, supplanting the servers that it and Lotus Corporation had

previously developed.

Why use Apache? Many web sites run Apache by accident. The server software is

small, free, and well documented and can be downloaded without filling out

pages of licensing agreements. The person responsible for getting his organiza-

tion's web site up and running downloads and installs Apache just to get his feet

wet, intending to replace Apache with a “real" server at a later date. But that date

never comes. Apache does the job and does it well.

* Impressive as they are, these numbers should be taken with a grain or two of salt. Netcraft’s survey
techniques count only web servers connected directly to the Internet. The number of web servers running
intranets is not represented in these counts, which might inflate or deflate Apache’s true market share.

41

42

f

The 4P(gC]_’h9 Pl'()j€3Cf II

llowcvcr, there are better reasons for using Apache. Like other successful open
sot!

Apa

{Cc products such as Perl, the GNU tools, and the Linux operating system,

Che has some big advantages over its commercial rivals.

1:1: /‘czsr mid e[fic:r'em‘
The Apache web server core consists of 25,()(){) lines of highly tuned C code. it

uses many tricks to eke every last drop of pert'ormance out of the HTTP proto—

col and, as a result, runs taster and consumes less system resources than many

commerci:-tl servers. Its modular architecture allows you to build a server that

contains just the Functionality that you need and no more.

It is‘ portable

Apache runs on all Unix variants, including the popular freeware Linux operat-

ing system. It also runs on Microsoft Windows systems (95, 98, and NT), 08/2,

and even the bs2()()(] mainframe architecture.

as well sr.i.,r)j)or.~fea'

Apache is supported by a cast of thousands. Beyond the core Apache Group

developers, who respond to bug reports and answer technical questions via

email, Apache is supported by a community of webmasters with hundreds of

thousands of hours of aggregate experience behind them. Questions posted to

the Usenet newsgroup comp.irytbsystems.wwwserueis.i.mi'x are usually

answered within hours. If you need a higher level of’ support, you can pur-

chase Stronghold or another commercial version of Apache and get all the

benefits of the freeware product, plus trained professional help.

It won ’I go crzuaty

In the sot'tware world, a vendor’s size or stock market performance is no guar-

antee of its staying power. Companies that look invincible one year become

losers the next. in 1988, who would have thought the Digital Equipment

whale would be gobbled up by the Compaq minnow just 10 years later? Good

community software projects don't go away. Because the source code is avail—

able to all, someone is always there to pick up the torch when a member of

the core developer group leaves.

It ’s stable or-rid reliczble

All software contains bugs. Wlien a commercial server contains a bug there's

an irresistible institutional temptation for the vendor to cover tip the problem

or offer misleading reassurances to the public. With Apache, the entire devel—

opment process is open to the public. The source code is all there for you to

review, and you can even eavesdrop on the development process by subscrib-

ing to the developer’s mailing list. As a result, bugs don’t remain hidden for

long, and they are usually fixed rapidly once uncovered. if you get really des-

perate, you can dig into the source code and Fix the problem yourself. (If you

do so, please send the Fix back to the community!)

42

43

Chapter I: Server-Side Programming with Apache

It’: gotfeatures to burn
Because of its modular architecture and many contributors, Apache has more

features than any other web server on the market. Some of its features you

may never use. Others, such as its powerful URL rewriting facility, are peer-

less and powerful.

It ’5 extensible

Apache is open and extensible. If it doesn’t already have a feature you want,

you can write your own server module to implement it. In the unlikely event
that the server API doesn’t support what you want to do, you can dig into the

source code for the server core itself. The entire system is open to your

inspection; there are no black boxes or precompiled libraries for you to work
around.

It’s easy to administer

Apache is configured with plain—text configuration files and controlled with a
simple command—line tool. This sounds like a deficiency when compared to
the fancy graphical user interfaces supplied with commercial servers, but it
does have some advantages. You can save old copies of the configuration files
or even commit them to a source code control system, allowing you to keep

track of all the configuration changes you’ve made and to return to an older

version if something breaks. You can easily copy the configuration files from
one host machine to another, effectively cloning the server. Lastly, the ability to

control the server from the command line lets you administer the server from

anywhere that you can telnet from—you don't even need web connectivity.

This being said, Apache does provide simple web-based interfaces for view-

ing the current configuration and server status. A number of people are work-
ing on administrative GU15, and there is already a web interface for remotely
managing web user accounts (the user_manage tool available at bttp://
stein.csbl.org/~lstein/user_manage). '

It ma/ees you pan‘ ofa community

When you install an Apache server you become part of a large Virtual commu-
nity of Apache webmasters, authors, and developers. You will never feel that
the software is something whose use has been grudgingly granted to you by a

corporate entity. Instead, the Apache server is owned by its community. By
using the Apache server, you automatically own a bit of it too and are contrib-
uting, if even in only a small way, to its continued health and development.
Welcome to the club!

Tbe Apache C and Perl APIS

The Apache module API gives you access to nearly all of the server's internal pro-

cessing. You can inspect what it’s doing at each step of the HTTP transaction cycle

43

44

The Apache C and Perl APIS I3

and intervene at any of the steps to customize the server’s behavior. You can
arrange for the server to take custom actions at startup and exit time, add your
own directives to its configuration files, customize the process of translating URLs
into file names, create Custom authentication and authorization systems, and even

tap into the server’s logging system. This is all done via modules—self—contained
pieces of code that can either be linked directly into the server executable, or
loaded on demand as a dynamic shared object (DSO).

The Apache module APT was intended for C programmers. To write a traditional
compiled module, you prepare one or more C source files with a text editor, com—
pile them into object files, and either link them into the server binary or move
them into a special directory for D805. If the module is implemented as a DSO,

you'll also need to edit the server configuration file so that the module gets loaded
at the appropriate time. You’ll then launch the server and begin the testing and

debugging process.

This sounds like a drag, and it is. It’s even more of a drag because you have to

worry about details of memory management and configuration file processing that
are tangential to the task at hand. A mistake in any one of these areas can crash
the server.

For this reason, the Apache server C API has generally been used only for substan-

tial modules which need high performance, tiny modules that execute very fre-

quently, or anything that needs access to server internals. For small to medium
applications, one-offs, and other quick hacks, developers have used CGI scripts,
FastCGI, or some other development system.

Things changed in 1996 when Doug MacEachern introduced modqperl, a com-

plete Perl interpreter wrapped within an Apache module. This module makes
almost the entire Apache AP] available to Perl programmers as objects and method

calls. The parts that it doesn’t export are C—specific routines that Perl programmers

don’t need to worry about. Anything that you can do with the C APT you can do

with mod4391*] with less fuss and bother. You don’t have to restart the server to

add a new mod_perl module, and a buggy module is less likely to crash the
server.

We have found that for the vast majority of applications mod_perl is all you need.

For those cases when you need the raw processing power or the small memory

footprint that a compiled module gives you, the C and Perl forms of the API are
close enough so that you can prototype the application in mod_perl first and port

it to C later. You may well be surprised to find that the “prototype" is all you really
need!

This book uses modJeri to teach you the Apache API. This keeps the examples

short and easy to understand, and shows you the essentials without bogging down

44

45

I 4 C‘lJapte1‘ I: Server‘-Srrle Progmmmzng rum.) A[)acl;2e

in detail. Toward the end of the book we show you how to port Apache modules

written in Perl into C to get the memory and execution efficiency of a compiled

language.

Ideas and Success Stories

To give you an impression of the power and versatility of the Apache API, here

are some examples of what people have done with it. Some of the modules

described here have been incorporated into Apache and are now part of the stan-

dard distribution. Others are third-party modules that have been developed to

solve particular mission—critica| tasks.

A movie database

The Internet Movie Database (bH[).'//urww.r'mdb.Com/) uses mod_perl.' to make

queries against a vast database of film and television movies. The system

rewrites URLs on the fly in order to present pages in the language of the user’s

choice and to quickly retrieve the results of previously cached searches. In

1998, the site won the coveted \X/'ebby award for design and service.

No more URL spelling errors

URLs are hard things to type, and many HTML links are broken because of a

single typo in a long URL. The most frequent errors are problems with capitali-

zation, since many I-ITML authors grew up in a case—insensitive MS—DOS/Win-

dows world before entering the case—sensitive web.

moa,’_speli-Hg [sic}, part of the standard Apache distribution, is 21 Glanguage

module that catches and fixes typographical errors on the fly. If no immediate

match to a requested URL is found, it checks for capitalization variations and a

variety of character insertions, omissions, substitutions, and transpositions, try-

ing to find a matching valid document on the site. If one is found, it gener-

ates a redirect request, transparently forwarding the browser to the correct

resource. Otherwise, it presents the user with a menu of closest guesses to
choose from.

An 0-rbcmnpzrs /Jousmg reriewai.’ system.

At Texas A&M University, students have to indicate each academic year

whether they plan to continue living in campus—provided housing. For the

1997~—1998 academic year, the university decided to move the process from its

current error—prone manual system to a web—based solution. The system was

initially implemented using Active\X/are‘s PerlScript to drive a set of Microsoft

Internet Information Server Active Server Pages, but with less than two weeks

to go before deployment it was clear that the system would be too slow to

handle the load. The system was hurriedly rewritten to use mod_perl on top of

45

7

46

1

Ideas and Success Stories 15 -T_

the NT version of Apache, resulting in a measured 60-fold increase in perfor-
mance. The system went online in the nick of time and functioned without a
hitch, serving 400,000 documents generated on the fly to 10,000 people over

the course of the four-day registration period.

Scripting languages embedded in HTML

The PHP system (bttp.-//www.plap.net/) is a powerful scripting language that
processes programs embedded within HTML documents. The language pro-
vides support for persistent connections to ODBC and Unix databases, on-the-
fly graphics, and LDAP searches. The language is implemented both as a CGI _
script that can run on top of any server and as a high-performance C-language
module for Apache.

The ePerl (lattp.-//u)tUw.engelscball.com/sw/eperl/) and Embperl (latlp://
perl.apacbe.o7g/embperl/) systems are like PHP, but use mod_perl to embed
snippets of Perl code directly inside HTML pages. They can do anything that
Perl can do, including opening network connections to other Internet ser-

vices, accessing databases, and generating dynamic documents based on user

input.

An advertising banner server

No web application needs higher performance than banner ad servers, which
are pummeled by millions of requests per day. One banner ad vendor, whose
conventional CGI-based system was topping out at 1.5 banners per second,

moved its system to modJyerl and experienced a greater than 10-fold perfor-
mance boost. The vendor is now serving 10 million banners a week from a

single host.

A dynamic map server

The www.stadtplandienst.de site uses the mod_perl API with the ImageMag-

ick graphics library to create dynamic searchable tourist maps for Berlin and
other German cities. The system is fast and responsive, despite the computa-

tionally intensive nature of its job and its frequently heavy load.

A commodities trading system

Lind-Waldock 8: Co. (bt1.‘p://www.lind-waldoclacom/), the world’s largest dis-

count commodities trading firm, uses mod_perl running under the Stronghold

version of Apache to generate live and delayed quotes, dynamic charts, and
late-breaking news, as well as a frontend to their online order entry system.

The system is tightly integrated with the company’s relational database system
for customer authentication and transaction processing.

Brian Fitzpatrick, a member of the consulting team that designed and imple-
mented the system, was pleasantly surprised at how smooth the process was:

“mod_perl allowed us to work the web sewer and code around our design-
not the other way around.”

46

._.._.,_.

47

I6 Chapter I: Server-Side Programming with Apache
A document management system :3’

The Advanced Computer Communications company maintains more than 1500 '
documents in various formats scattered among multiple NFS-mounted file sys-
tems in its internal network. Their document management system periodically
indexes the scattered documents by document name, creation date, and con-

tent, then uses the mod_perl interface to the Apache API to allow users to
search and retrieve documents of interest to them. The system automatically

performs document format conversion. Some are sent to the browser for
download, others are precompressed with PKZIP to reduce transmission time,
and still others are converted into formats that can be displayed directly in the

browser window.

These applications represent only a few of the possible uses for the Apache mod-
ule API. What you can do with it is limited only by your imagination. The rest of
this book shows you how to turn your ideas into reality.

47

