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Abstract

We examine the problem of estimating the parameters of a multinomial
distribution over a large number of discrete outcomes, most of which
do not appear in the training data. We analyze this problem from a
Bayesian perspective and develop a hierarchical prior that incorporates
the assumption that the observed outcomes constitute only a small subset
of the possible outcomes. We show how to efficiently perform exact
inference with this form of hierarchical prior and compare it to standard
approaches.

1 Introduction

One of the most important problems in statistical inference is multinomial estimation: Given
a past history of observations independent trials with a discrete set of outcomes, predict
the probability of the next trial. Such estimators are the basic building blocks in more
complex statistical models, such as prediction trees [1, 12, 11], hidden Markov models [9]
and Bayesian networks [3, 6]. The roots of multinomial estimation go back to Laplace’s
work in the 18th century [7].

In Bayesian theory, the classic approach to multinomial estimation is via the use of the
Dirichlet distribution (see for instance [4]). Laplace’s “law of succession” and other
common methods can be derived using Bayesian inference with the Dirichlet distribution
as a prior distribution. The Dirichlet distribution has several properties that are useful
in statistical inference. In particular, estimates with Dirichlet priors are consistent (the
estimate converges with probability one to the true distribution), conjugate (the posterior
distribution is also a Dirichlet distribution), and can be computed efficiently (queries of
interest have a closed-form solution). Furthermore, theoretical studies of online prediction
of individual sequences show that prediction using Dirichlet priors is competitive with any
other prior distribution (see for instance [2] and the references therein).

Unfortunately, in some key applications, Dirichlet priors are unwieldy. These applications
are characterized by several features: (a) The set of possible outcomes is extremely large,
and often not known in advance. (b) The number of training examples is small compared
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to the number of possible outcomes. (c) The outcomes that have positive probability
constitute a relatively small subset of the possible outcomes; this subset, however, is not
known in advance. In these situations, predictions based on a Dirichlet priors tend to assign
most of the probability mass to outcomes that were not seen in the training set.

For example, consider a natural language application, where outcomes are words drawn
from an English dictionary, and the problem is predicting the probability of words that follow
a particular word, say “Bosnia”. If we do not have any prior knowledge, we can consider
any word in the dictionary as a possible candidate. Yet, our knowledge of language would
lead us to believe that in fact, only few words, such as “Herzegovina”, should naturally
follow the word “Bosnia”. Furthermore, even in a large corpus, we do not expect to see
many training examples that involve this phrase. As another example consider the problem
of estimating the parameters of a discrete dynamical system. Here the task is to find a
distribution over the states that can be reached from a particular state s (possibly after the
system receives an external control signal). Again, in many domains it is natural to assume
that the system is sparse: only a small subset of states is reachable from any state.

In this paper, we present a Bayesian treatment of this problem using an hierarchical prior
that averages over an exponential number of hypotheses each of which represents a subset
of the feasible outcomes. Such a prior was previously used in a specific context of online
prediction using suffix tree transducers [11]. As we show, although this prior involves
exponentially many hypotheses, we can efficiently perform predictions. Moreover, our
approach allows us to deal with countably infinite number of outcomes.

2 Dirichlet priors

Let X be a random variable that can take L possible values from a set £. Without loss of
generality, let ¥ = {1,...L}. We are given a training set D that contains the outcomes
of N independent draws z!,... =¥ of X from an unknown multinomial distribution P*.
We denote by N; be the number of occurrences of the symbol i in the training data. The
multinomial estimation problem is to find a good approximation for P*.

This problem can be stated as the problem of predicting the outcome £V +! givenz!, ... z/V.
Given a prior distribution over the possible multinomial distributions, the Bayesian estimate
is:

PNt 2 2N 6 = /P(xN+1 |1 8,6)P(@|z!,...,2V, €)do (1)
where @ = (6, ...,60L) is a vector that describes possible values of the (unknown) proba-

bilities P*(1), ..., P*(L), and £ is the “context” variable that denotes all other assumptions
about the domain. (We consider particular contexts in the next section.)

The posterior probability of 8 can rewritten using Bayes law as:
PO |z, ....zV &) x P(z!, ..., 2V | 6,6)P(8] €)= PO |¢) HeN ()

The family of Dirichlet distributions is conjugate to the multinomial dlstrlbunon. That is,
if the prior distribution is from this family, so is the posterior. A Dirichlet prior for X is
specified by hyperparameters a1, . . ., ar, and has the form:

;)
PO 16 = [ Fias

where I'(z) = [~ t*~le~!dt is the gamma function. Given a Dirichlet prior, the initial
prediction for each value of X is P(X! =i | €) = [6; P(6 | €)d8 = a; /3 ; aj. Ttis
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easy to see that, if the prior is a Dirichlet prior with hyperparameters o, .. ., ar, then the
posterior is a Dirichlet with hyperparameters a; + Nj,...,ar + Ny. Thus, we get that
the prediction for XN+ is P(XN+!1 =i | 2!, 2N €) = (ei + Ni)/3; (e + Nj).
We can think of the hyperparameters «; as the number of “imaginary” examples in which
we saw outcome i. Thus, the ratio between hyperparameters corresponds to our initial
assessment of the relative probability of the corresponding outcomes. The total weight of
the hyperparameters represent our confidence (or entrenchment) in the prior knowledge.
As we can see, if this weight is large, our estimates for the parameters tend to be further off
from the empirical frequencies observed in the training data.

3 Hierarchical priors

We now describe structured priors that capture our uncertainty about the set of “feasible”
values of X. We define a random variable V' that takes values from the set 2% of possible
subsets of X. The intended semantics for this variable is that 8; > 0iff: € V.

Clearly, the hypothesis V = X' (for ' C X) is consistent with training data only if X'
contains all the indices ¢ for which N; > 0. We denote by Z° the set of observed symbols.
That is, ° = {7 : N; > 0}, and we let k° = |X°|.

Suppose we know the value of V. Given this assumption, we can define a Dirichlet prior
over possible multinomial distributions @ if we use the same hyper-parameter o for each
symbol in V. Formally, we define the prior:

r
(IV]o) 167" O 6:i=1,Vi,6:>0, and6; =0Oforalli g V) (3)

P(9|V) = F(a)'vl L
i€

Using Eq. (2), we have that:

2N ifi ey

P(xN+! :i|x‘,...,x”,v)={ (1)V|a+N (4)

otherwise

Now consider the case where we are uncertain about the actual set of feasible outcomes.
We construct a two tiered prior over the values of V. We start with a prior over the size
of V, and then assume that all sets of the same cardinality have the same prior probability.
We let the random variable S denote the cardinality of V. We assume that we are given a
distribution P(S = k) fork = 1,..., L. We define the prior over sets to be:

N\ !
Pvis=h= ) )
We now examine how to compute the posterior predictions given this hierarchical prior. Let
D denote the training data ', ..., V. Then it is easy to verify that
N4l _ o+ N;
P(XN+' =i | D) Zka+ Z P(V | D) (6)
V|VI=k,ieV

Let us now examine which sets V' actually contribute to this sum.

First, we note that sets that do not contain X° have zero posterior probability, since they
are inconsistent with the observed data. Thus, we can examine only sets V' that contain X°.
Second, as we noted above, P(D | V) is the same for all sets of cardinality & that contain
X°. Moreover, by definition the prior for all these sets is the same. Using Bayes rule, we
conclude that P(V | D) is the same for all sets of size k that contain Z°. Thus, we can
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simplify the inner summation in Eq. (6), by multiplying the number of sets in the score of
the summation by the posterior probability of such sets.

There are two cases. If i € X, then any set V' that has non-zero posterior probability for i
appears in the sum. Thus, in this case we can write:

a + N;
ka+ N

P(XN*'=i|D)= P(S=k|D) ifieXx°
If ¢ X°, then we need to estimate the fraction of subsets of V' with non-zero posterior that
contain 7. This leads to an equation similar to the one above, but with a correction for this
fraction. By symmetry all unobserved outcomes have the same posterior probability. Thus,
we can simply divide the mass that was not assigned to the observed outcomes among the
unseen symbols.

Notice that the single term in Eq. (3) that depends on N; can be moved outside
the summation. Thus, to make predictions, we only need to estimate the quantity:

C(D, L) = Yk opo St P(k | D)

P(XN“:HD)—_—{ k_"]@f“ﬁc(p L) ifi € 27
—=(1-C(D,L)) ifigZx

We can therefore think of C'(D, L) as scaling factor that we apply to the Dirichlet prediction
that assumes that we have seen all of the feasible symbols. The quantity 1 — C(D, L) is the
probability mass assigned to novel (i.e., unseen) outcomes. Using properties of Dirichlet
priors we get the following characterization of C(D, L).

and then

Proposition 3.1: P(S =k | D) = Z_mLT where my; = P (S = k) gy, r(r;;(::z)\r)-
k! >ko

Proof: To compute C(D, L), we need to compute P(S = k | D). Using Bayes rule, we

have that
P(D|S=k)P(S=k)

S P(D]5 = F)P(S = k)

By introduction of variables, we have that:

P(D|S=k)= > PD|V)P(V|S=k).
VDI |V|=k

P(k| D) = (7

Using standard properties of Dirichlet priors, we have that if £° C V, then

_ I(V]e) (o + Ny)
POV = v 1L TTw ®

Now, using Eq. (8) and (5), we get that if £° C V, and k = |V, then

k) Tlka+ N) il
Thus, _
P(D|S=k) = (i::) (f) F(kaki)N (o)~ I;FMN)
_ ek M(ka)
= [ prT@)™ I;I o+ ; )] = ko)' Tkas ) 10
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P(S=k | D)
c(p,L)
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Figure 1: Left: Illustration of the posterior distribution P(S | D) for different values of V,
with k° = 20, L = 100, a = .25, and P(S = k) o« 0.25*. Right: Illustration showing the
change in C(D, L) for different values of N, with k° = 25,a = 1, and P(S = k) « 0.9*.

The term in the square brackets does not depend on the choice of k. Thus, it cancels out
when plug Eq. (10) in Eq.(7). The desired equality follows directly. il

From the above proposition we immediately get that
-1

L
k°a + N
C(D,L):(Z FEI_N"'") ka . (11)

k=ko k!> ke

Notethat P(S = k | D) and C(D, L) depend only on k° and N and does not depend on the

distribution of counts among the k° observed symbols. Also note that when /V is sufficiently

larger than k° (and this depends on the choice of ), then the term (k _",za)! . l"(]l-c(::}\/)

much smaller than 1. This implies that the posterior for larger sets decays rapidly. We can
see this behavior on the left hand side of Figure 1 that shows the posterior distribution of
P(S | D) for different dataset sizes.

4 Unbounded alphabets

By examining the analytic form of C'(D, L), we see that the dependency on L is expressed
only in the number of terms in the summation. If the terms my vanish for large k, then
C (D, L) becomes insensitive to the exact size of the alphabet. We can see this behavior on
the right hand side of Figure 1, which shows C(D, L) as a function of L. As we can see,
when L is close to k°, then C(D, L) is close to 1. As L grows, C(D, L) asymptotes to a
value that depends on N and k° (as well as a and the prior P(S = k)).

This discussion suggests that we can apply our prior in cases where we do not know L
in advance. In fact, we can assume that L is unbounded. That is, X is isomorphic to
{1,2,...}. Assume that we assign the prior P(S = k) for each choice of L, and that
limp 0 P(S = k) exists for all k. We define C(D o0) = th_,oo C(D,L). We then

use for prediction the term P(XN*! =i | D) = 2-C(D, )

For this method to work, we have to ensure that C(D, 0o) is well defined; that is, that the
limit exists. Two such cases are identified by the following proposition (proof omitted).

Proposition 4.1: If P(S = k) is exponentially decreasing in k or ifa > 1 and P(S = k)
is polynomially decreasing in k, then C(D, o) is well-defined.

In practice we evaluate C(D, c0) by computing successive values of (the logarithm of)
my, until we reach values that are significantly smaller than the largest value beforehand.
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