Sibsankar Haldar
Motorola, Inc.

and

Alex A. Aravind
University of Northem British Columbia

PEARSON

Delhi * Chennai « Chandigarh
Upper Saddle River, NJ = Boston * London

QUl'IHP'U' - Qinn-ﬂ.nnm L] "ﬂﬂl‘l Hi"l'l"lﬂ L} Tnmnln L] Tn.'l"!..rn

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. Microsoft Windows (Computer file) 2. Linux. 3. Operating systems (Computers)
I. Aravind, Alex A. (Alex Alagarsamy), 1965- IL. Title.
QAT6.76.063H3433 2009
005.4'3 dec22
2008051401

Copyright © 2009 Dorling Kindersley (India) Pvt. Ltd.
Licensees of Pearson Education in South Asia

This book is sold subject to the condition that it shall not, by way of trade or otherwise,
be lent, resold, hired out, or otherwise circulated without the publisher's prior written
consent in any form of binding or cover other than that in which it is published and
without a similar condition including this condition being imposed on the subsequent
purchaser and without limiting the rights under copyright reserved above. No part of this
publication may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), without the prior written permission of both the copyright owner
and the above-mentioned publisher of this book.

ISBN 978-81-317-1548-2

Head Office: 7th Floor, Knowledge Boulevard, A-B(A), Sector-62, Noida
Registered Office: 14 Local Shopping Centre, Panchsheel Park, New Delhi 110 017,
India

Typeset in 10/12 Times Roman by ACEPRO India Private Ltd.
Printed in India at Sanat Printers

Pearson Education Inc., Upper Saddle River, NJ
Pearson Education Ltd., London

Pearson Education Australia Pty, Limited, Sydney
Pearson Education Singapore, Pte. Ltd

Pearson Education North Asia Ltd, Hong Kong
Pearson Education Canada, Ltd., Toronto

Pearson Educacion de Mexico, S.A. de C.V,
Pearson Education-Japan, Tokyo

Pearson Education Malaysia, Pte. Ltd.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Learning Objectives

After reading this chapter, you should be able to:
4 Describe the purpose of a process.
Define the attributes of a process.

Distinguish between a process and a program.

F
A
4 ldentify the relationship between a thread and a process.
A

Describe process and thread management.

4.1 Introduction

We know from Chapter 2 that a hardware platform is composed of many different
hardware resources that do purposeful work. However, general users of a com-
puter may have no interest in knowing about these hardware resources; their
primary interest is in running utility programs of the system, the application
programs they themselves develop, and the output their programs produce. When
a user executes a program, the execution requires various resources to accomplish
the task. For example, it needs the CPU and the main memory. We know that the
operating system is the sole manager of all resources hardware and software in
a computer system and is responsible for their allocation and deallocation. The key
question is to whom does the operating system allocate resources? The short
aANSWer 1s, to program executions. We discuss the long answer at length below.
You may have noted that many users may run a single application program
simultaneously. A single user may also run an application more than once simul-
taneously. In short, simultaneous executions of the same program are possible in a
computer system. Forexample, many users may run a particular text editor program
(say, vi) simultaneously. Even in such a case, the resource requirements for one
editor execution differ from those for other executions of the same editor program,'

'In this context, program means a standalone executable application program or utility.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

the design, development,
and implementation of most
operating systems.

% A process may be
viewed as the eventual
avatar of a solution to a
problem. A solution is first
abstracted as an algorithm
in the software design
phase, transformed into an
application program in the
programming phase, and
finally created as a process
to solve the intended pro
blem by execution of the
comesponding program
under the premise of an
operating system. Every
process has a program as s
component and, at any
given time, it is in a state of
executing the program,.

DOCKET

_ ARM

gaERteEE aEmaaEEEaaEE R WALt TR R s

i Sl

to understand this concept to comprehend c]ear]y the working
modern operating systems.

We frequently use the terminologies program execution, ol
process interchangeably to mean the same action. Processes and
cutions are in one-to-one correspondence with each other. The op
starts an execution of a program (i.e., a new computation)
process. The process is allocated some main memory to hold it
data. When a process is started, the operating system brings (|
required program and data in the allocated main memory, and buil
“execution context” of the process. Note that each process star
defined initial context. The operating system then allocates a
various resources to and from the process as the execution o
evolves. The process execution context stores this resource-alloc
tion, and the current state of the program execution and the oth
related to it. In short, the operating system uses a process as a hand
one-program execution,

When a program is given to the operating system for ¢
system builds the other components of the program execu
necessary attributes, and eventually shapes them all into a w
that we call a process that can be conveniently, effectively,
managed in the operating system to accomplish the program’s
This brings us to a set of basic questions about processes: wh
process? What are its main components and what exactly are
play during the lifetime of the process? What are the states that
transit through and what kind of privilege modes can it adopt
conditions during its lifetime? How are processes created, |
destroyed in a system?

This chapter aims to answer the above and related questi
processes. The next three chapters also deal with topics prima
processes and their management.

e TR EERTy

4.2 Process Abstraction

Performing a task using a computer essentially requires executing
gram. Therefore, an operating system, on receiving a specific tash
have a suitable program available to execute the task. The entity wl
the task described in a given program is called a process. (See B
evolution of the process terminology.) Every process has a |
execution component and acquires its behaviour mostly from tk
program. In short, program executions are abstracted as processes |

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

e Sl e ™ L R

B ol b o b B,] e Y L o

T RN RN TR Y LT O e e

| on completio

-

4.1 Evolution of Process

Historically, large software systems underwent
many painful development and maintenance
cycles. Many of them failed miserably. Then
came the concept of the structured system. The
concept of the process was one of the many
structuring tools devised to muster the complex-
ity of large software systems. An operating sys-
tem too is a large complex system, and the
process concept has been in use as a structuring
tool here as well, especially to handle its runtime
complexity. Since its inception, the concept of
the operating system has evolved constantly, and
has undergone several revisions and advance-
ments. The concept of the process evolved
alongside the operating system. (The original
terminology employed to describe it was “task”,
and later “job”. The term “process™ has super-
seded them.)

To understand the evolution of the concept of
process, we start with the open-shop and closed-
shop era. In that era, a computer system had only
one CPU available. The whole of the memory
and the CPU were given over to one program
until it completed the execution; no user inter-
action was allowed during the execution of that
program. In such situation, no additional infor-
mation was needed to execute the program, and
therefore, in the open-shop and closed-shop
(batch) systems, a process simply meant a “pro-
gram or job in execution”.

The situation changed in the era of multi-
programming, where more than one program was
allowed to share the main memory, the CPU, and
other system resources simultaneously. Apart
from this, it became possible for many users
to request the system to execute the same pro-
\gram simultaneously. Therefore, each program

execution has certain fundamental re
These requirements are maintaining
{owner id, program id, etc.) for its id
an exclusive and secure space for its
and of other related information (adc
a mechanism to record its current exe
(as it could lose the CPU any tim
execution), a stack (to hold values of
temporary variables, return addresse
operating system specifically suppli
as additional information is not ex|
vided by the given program. This
system to effectively execute and
program execution even if there are
executions of the same and other pro;
additional information provided by t
system and the given program toge
logical structure called the process
gram execution.

When a process does not have cc
CPU, it may be waiting for the CF
from an IO device, or for data fi
process in the system. That is, in thi
process can exist in various logical s
its lifetime. This state information al
the part of the process. Thus in
programming era, a process is to be
program execution, along with its
management information, and exis
state of action. There is no perfect
accepted definition of a process.
usage of the term seems to have coine
MULTICS days in 1960s.

The concept of a thread as an actiy
process is the latest addition to thi
Threads are strands of program execu
ded in a process.

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

