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Abstract—The Lincoln Adaptable Real-time Information 
Assurance Testbed, LARIAT, is an extension of the testbed 
created for DARPA 1998 and 1999 intrusion detection (ID) 
evaluations.  LARIAT supports real-time, automated and 
quantitative evaluations of ID systems and other 
information assurance (IA) technologies.  Components of 
LARIAT generate realistic background user traffic and real 
network attacks, verify attack success or failure, score ID 
system performance, and provide a graphical user interface 
for control and monitoring.  Emphasis was placed on 
making LARIAT easy to adapt, configure and run without 
requiring a detailed understanding of the underlying 
complexity. LARIAT is currently being exercised at four 
sites and is undergoing continued development and 
refinement. 
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1.  INTRODUCTION 
DARPA off-line intrusion detection evaluations performed 
in 1998 and 1999 at MIT Lincoln Laboratory provided 
comprehensive technical evaluations of the accuracy of 
research intrusion detection systems [1-8].  These 
evaluations assessed the performance of DARPA-funded 
intrusion detection technology and supported reseachers 
developing that technology.  Intrusion detection systems 
were evaluated for detection accuracy by providing both 
realistic background traffic and attacks to allow 
measurement of false alarm and attack detection rates.  The 
evaluation assisted research and development by providing 

extensive examples of realistic background traffic.  Usage 
patterns of a wide variety of common services were 
modeled and these models were the basis for the synthesis 
of realistic user-sessions using real services and protocols.  
Synthetic users surfed the web, sent, read, and replied to 
email, transferred files with FTP, logged into hosts with 
Telnet and SSH, authored documents, and edited and 
compiled code.  Many examples of a wide range of attacks 
were also provided.  These evaluations were not designed to 
evaluate complete, deployable intrusion detection systems 
or commercial systems, but rather to evaluate the accuracy 
of alternative technical approaches. 
Off-line datasets are available from these evaluations.  They 
contain extensive examples of normal and attack traffic run 
on a realistic testbed network.  These datasets include 
network traces, Solaris BSM and Windows NT auditing 
logs, other log files, and file system information.  They 
allow researchers to easily and quickly perform many 
identical trial runs with different intrusion detection 
techniques.  These datasets are unique and have been used 
by many researchers. More than 160 sites have downloaded 
the data from these evaluations to test and develop intrusion 
detection systems.  
As extensive as the datasets are, the DARPA evaluations 
were nevertheless limited. They used a reasonable, but not 
exhaustive, set of attacks with a limited set of actions 
performed as part of each attack. They also used a simple 
network topology, a non-restrictive security policy, a 
limited number of victim machines, probabilistic low-
volume background traffic, and simple scoring. In addition, 
they evaluated ID systems that detected only atomic attack 
actions instead of correlating many component attacks to 
detect attack scenarios. The off-line format also limited the 
evaluations to passive intrusion detection systems that can 
operate in an off-line mode.  This format is difficult to use 
with systems that query hosts or other network components, 
with systems that respond by changing network or host 
configurations, and with commercial systems that must be 
connected directly to an actual network or installed on a 
host. A separate real-time component of the evaluation [11] 
responded to some of these needs.  However, it was time 
consuming to run since evaluators had to setup and run the 
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evaluation at one central location for each intrusion 
detection system that was evaluated.  
The DARPA evaluations provided insight into desired 
characteristics of software that support IA evaluations. It is 
expensive and time consuming to setup and run background 
traffic and attacks for days and weeks.  Attacks fail and 
machines crash, often for reasons that are difficult to predict 
and avoid.  Verifying that attacks run successfully, cleaning 
up, and scoring putative detection alerts is more complex 
than expected. Complete automation of background traffic 
generation and attack launch coordination is essential, along 
with automated network and host initialization, attack 
verification and cleanup, and integrated scoring software. 
This software must enable short, repeatable test runs to 
separately evaluate different aspects of IA system 
performance. 
The Lincoln Adaptable Real-time Information Assurance 
Testbed (LARIAT) was developed to address the most 
important limitations of the DARPA evaluations and form a 
next-generation evaluation testbed that builds on past 
experience. It supports both development and evaluation of 
IA systems, it can generate both component attacks and 
multi-component attacks, it automates many of the time-
consuming components of past evaluations, it can be 
distributed and run at many sites, it can support complex 
hierarchical testbed networks that include defensive 
technologies such as firewalls, it can sustain high traffic 
rates, and test runs are repeatable and easily configured. We 
are aware of no other evaluation systems with such 
capabilities. Past evaluations reviewed in [1] have been 
difficult to configure and run.  Recent commercial intrusion 
detection evaluations [2] have addressed some of the past 
limitations like the testbed complexity but still do not 
consider false alarm rates, and only use a limited range of 
attacks.  The evaluations performed by Shipley [2] answer 
some important questions about the usability of available 
commercial technology, such as the ability to keep up with 
high traffic rates and the ability to remotely manage and 
control devices across an enterprise.  Our work tends to 
focus on measuring the detection and false alarm rates of 
systems in a quantitative and repeatable manner with a goal 
of providing the technology and recorded network traffic to 
the community so that better intrusion detection technology 
can be developed.  Although some systems provide 
components similar to those in LARIAT we are aware of no 
system with all the desired capabilities. The remainder of 
this paper describes the design of LARIAT, current uses, 
and future plans.  
 

2.  LARIAT 
Two design goals were established for LARIAT: (1) 
support real-time evaluations and (2) create a deployable, 
configurable and easy-to-use testbed.  Previous evaluations 
were time consuming and expensive.  Our experience is that 
roughly four months are required to produce high quality 
evaluation results for every new ID system tested.  Tasks 
performed during this time include learning about the new 

ID system, configuring it to work in an off-line mode, 
developing software to interpret the native output format, 
running the evaluation, and saving and interpreting the 
results.  LARIAT eliminates the requirement for off-line 
operation, and greatly simplifies the setup and operation.  
We developed an architecture that ties all the software 
components together and provides complete automation of 
all evaluation phases.  We have automated traffic 
generation, attack scheduling, system configuration, 
experiment runs and analysis.   
 
The remaining sections explain LARIAT.  Section 2.1 
describes the phases required to perform an evaluation, and 
how LARIAT automates and controls these steps.  Section 
2.2 describes how the user configures the experiment and 
the background traffic configuration.  Section 2.3 covers the 
attacks.  Section 2.4 describes the software implementation 
and Section 2.5 describes the hardware used in the base 
testbed. 
 
2.1  Experiment Steps— 

An experiment is composed of the eight steps shown in 
Figure 1.  These steps represent the flow of an experiment.  
Starting at the top of the figure, a user selects a profile that 
specifies the background traffic, the attacks to be run, and 
the experiment duration.  The remaining seven steps are 
automated and controlled by the director software.  The 
director allows the user to control testbed capabilities 
without having to interact with any of the individual hosts, 
thereby relieving the end-user from detailed knowledge of 
LARIAT.  The automated phases are described below. 
 

Verify / Score
- examine attack logs
- verify attack success
- examine IDS output (future)
- score IDS (future)

Distribute Configurations
- distribute profiles to hosts

Pre-conditions
- setup network conditions required
for the test (eg. Anonymous ftp)

- generate traffic & attack scripts
- schedule attack + traffic scripts
- start loggers Run Traffic

-view progress in “real-time”
- attacks, IDS output 

Clean Up
- reinstate corrupted files
- remove pre-conditions
- archive traffic scripts
- clear process table

Network Discovery
Verify accessibility of hosts and services

Initialize Network
- reset user accounts
- remove old traffic
- clear logs
- clear process table

Select Profile
- select & edit traffic profile 
- select attacks & strike time

 
Figure 1 - Automated run sequence.  After a user selects a 

profile LARIAT automates all the phases of an experiment. 
 
Initialize Network— 
During this step the test network is initialized.  User 
accounts, log files and processes are all set to pre-specified 
configurations.   
 
Distribute Configuration— 
The traffic configuration and experiment details are 
distributed to each host.   
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Pre-Conditions— 
Tasks are performed that prepare for the flow of synthetic 
traffic.  The traffic generators synthesize user traffic by 
building scripts for each background traffic session.  These 
scripts use a custom extension [6] to the Expect scripting 
language [18], [19] that was developed for the 1998 and 
1999 evaluations.  Fine-grained control of how long 
simulated human users wait between entering commands in 
interactive sessions and how long it takes to type commands 
using probabilistic inter-character delays is possible.  Attack 
scripts are also prepared so that both the attack and 
background traffic scripts can be scheduled to run at the 
appropriate times on each traffic generator and attacker.   
 
Run Traffic— 
At this point the evaluation commences.  During the run, the 
progress of background traffic and attacks can be viewed in 
real-time via the GUI.   
 
Verify and Score— 
Upon completion of the run, or at a specified interval after 
each attack, the system scans attacker logs and searches for 
evidence of the attack on the victim host, in an effort to 
verify the successful completion of each attack.  Alerts from 
the ID systems are stored for analysis so that they can be 
compared against a verified list of attacks.   
Generation of background traffic is important because it 
provides real user traffic on the network within which 
attacks will be injected.  Ideally an ID system should only 
send alerts when it identifies real attacks (true detections) 
and not when a user performs a legitimate action (false 
alarm). 
In future versions, LARIAT might be able to score an ID 
system by interpreting native ID alerts.  Currently two 
problems exist.  First each vendor uses a proprietary 
message alert format that would require a custom parser to 
interpret the message content.  The IETF community is 
overcoming this problem by creating the IDMEF standard 
to standardize the ID alert format; though currently the 
message content format in not standardized and varies 
between users. 
 
Clean Up— 
After the verification and scoring, cleanup scripts, specific 
to each attack, remove evidence of that attack run, resetting 
any changes made by the attack script.  A cleanup can range 
from reinstating a corrupted file to restoring an entire hard 
drive from a stored image.  Hosts involved in background 
traffic are also re-initialized.  Continuing user sessions are 
killed, as in the earlier “Initialization” phase, to ensure that 
test runs start from common system state, even if a test run 
is terminated before completing.  After this last step 
additional experiments can be run. 
 
2.2  Background Traffic— 

To start a test run, a user must first select a profile for the 
background traffic.  A background traffic profile defines the 

operating environment to be simulated by the testbed and 
contains information such as the type of services (eg. http, 
ftp) that will be emulated, the statistical distribution of each 
service over the course of a day, and the traffic rate.  The 
background traffic profile can be modified with respect to 
the content and distribution of services.   
The traffic profiles were determined by recording and 
analyzing the network traffic distribution and composition 
from a US military base.  New traffic profiles can be added 
and configured to suit a particular network environment. 
Figure 2 shows how a user can setup an experiment.  The 
top portion in the panel allows the experimenter to control 
experiment duration and select a previously defined 
background traffic profile.  By editing these profiles a user 
can quickly setup and run an experiment.  Finer control of 
traffic generation can be achieved by selecting the 
Advanced button. 
Figure 3 shows a screen capture of the panel that allows 
background traffic modification.  The upper part of the 
panel shows the aggregate traffic to be generated, including 
the start and end times, a global rate modifier, and profiles 
of the arrival rates of the user sessions of each traffic type.  
The traffic profile graph gives the expected number of 
session arrivals (y-axis) for each 15-minute interval 
throughout a 24-hour day (x-axis).  The lower part of Figure 
3 shows how the user specifies the amount of FTP traffic to 
be generated, with the profile for the FTP session arrivals 
per 15-minute time interval, on a similar graph (plotted by 
itself).  Arrival rate and distribution of sessions of each type 
can be adjusted to specify aggregate content of background 
traffic.  This allows testing of an intrusion detection system 
in a range of operating environments or testing of system 
throughput with high traffic rates.    
 

 
Figure 2 - The LARIAT GUI profile-selection panel. 
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Figure 3 - The LARIAT GUI profile-editing panel.  Here 

the user can modify the background traffic profile. 
 
User sessions for each traffic type are constructed from 
probabilistic models of user actions in a manner similar to 
those of the 1999 evaluation data [6].  Although the 
interface controls the arrival of session start times, the 
system has internal models of managers, programmers, 
secretaries and system administrators.  
Figure 4 show an example of the probability of executing 
commands for 5 programmers using telnet.   
 
 

2.3  Attacks— 

LARIAT manages attacks to be run during an experiment 
via the director GUI.  This permits LARIAT to provide a 
consistent, simple interface to the experimenter while 
supporting the scheduling and execution of a large number 
of attack types against a variety of network hosts and across 
numerous operating systems releases. 
 
2.3.1  Attack Framework— 

The attack framework provides the following major 
capabilities: (1) attack component abstraction (2) an API to 
simplify adding and creating attacks (3) management and 
composition of attack components (4) an attack scenario 
model (5) an attacker’s knowledge-base. 
 
2.3.1.1 Attack Component Abstraction and Management— 

Attack components developed for LARIAT do not reference 
the network configuration.  As a result, we are able to reuse 
the same components with different variations or options to 
suit a particular attacker’s goal.  The abstraction also 
enables deployment to organizations with different network 
addresses and topologies.  The attack components 
themselves are modified to accept all the relevant 
parameters as arguments, which are then supplied at 
runtime. 
A separate XML file, used to describe all the properties of 
an attack, is created that accompanies the exploit code.  
Information contained within the description file includes 
the required parameters, information about what the attack 
requires to run, what it provides when complete, the skill 
level of the attacker, the visibility of the attack and other 
related information.  To simplify the process of describing 
each attack for the user, some information is automatically 
extracted from the NIST ICAT meta-database [17] and 
incorporated into the attack component description file.     
To organize and manage the attacks, each attack component 

 
Figure 4 - Probability of executing commands for 5 programmers using telnet 
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is catalogued by it’s CAN or CVE number [16] [17] and a 
short textual description.  For example, the sadmind attack 
is stored in a directory called 
CVE_1999_0977_Buffer_Overflow_in_Solaris_sadmind.  
The directory with all the attack and supporting code is 
encrypted until required.  The decryption, setup and re-
encryption steps are performed during the run’s “Pre-
condition” and “Cleanup” phases shown in Figure 1.  The 
attack description file is stored unencrypted so that it can be 
processed by the director or by a user who is interested in 
knowing about the attack without having to read the attack 
code.  The director loads the attack component description 
files so that they can be searched, manipulated and 
displayed to the user via the GUI.  Before a run is started 
the director will process the attack description files involved 
in an experiment and substitute the attack parameter 
variables with the specific testbed values. 
 
2.3.1.2 Attack Framework API— 

New attacks are incorporated into LARIAT using an attack 
component API.  The API supports the capability to launch 
attacks in their native format (perl, shell script, binary, etc.) 
and can be used to store and retrieve information about 
attacks into a common data repository.   
 
2.3.1.3 Attack Scenario Model— 

Figure 5 shows an example of the attack model in which a 
series of attack components are linked together to exploit a 
Microsoft IIS and take control of the host platform.  The 
attack model is similar to the requires/provides model [12] 
and has been implemented to provide the following 
capabilities.   First it ensures that as attack components are 
linked together, that the information provided by one 
component is what the next one requires.  This is especially 
helpful for a user that lacks detailed knowledge of the attack 
components.  Second it is used to ensure that if a component 
fails during a run that any subsequent components that 
depended on the information provided are not executed.  
For example if an external scan used to identify a firewall 
fails to execute correctly then we should not launch any 
components that utilized information provided by that 
component such as an internal network scan or a remote-to-
local exploit to a host protected by the firewall.  Once the 
dependencies are specified for each component, the 
framework ensures the correct execution. 
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Figure 5 - Attack scenario using the LARIAT attack model 

 
All scenario run-time information is stored in the attacker 

knowledge-base.  Currently the knowledge-base informs the 
remote attacking hosts which attacks to launch and their 
parameters, records whether the attacks launched 
successfully, ensures that all the requirements for a 
particular attack are satisfied before running and stores the 
eventual success or failure of the attack.  The knowledge 
base is also used by attack components to store and retrieve 
any information gained during a scenario.  This provides a 
means to pass information gained from one component to 
the next.  By using the API to store and retrieve information 
we can ensure interoperability of the attack components.   
The attack knowledge-base is currently implemented as an 
XML file that is sent during the network initialization phase 
to every host involved with an attack.  The knowledge-base 
is distributed to every host to ensure that there are no 
control traffic artifacts within the network traffic during a 
run.  At the end of a run the knowledge-base is retrieved by 
the director to help determine ground-truth and display any 
information or error messages to the user.   
 
2.3.2  Attack Profile— 

Attack profiles abstract and manage the set of attack 
scenarios used in an experiment.  An example of an attack 
scenario is the recent DDoS dataset created by Lincoln 
Laboratory [5].  In this scenario an attacker compromises 
several internal hosts protected by a firewall; installs 
attacker software on the remote hosts, and signals a 
coordinated denial of service attack against a site on the 
Internet.   
An attack profile contains one or more attack scenarios of 
arbitrary length.  The LARIAT director is used to load an 
attack profile, as shown in the lower portion of Figure 2.  
The attack profile can be interactively modified and saved 
from the director before it is executed. Attack profiles 
contain multiple attack scenarios to allow different 
scenarios or variations of a single scenario to be run. This 
feature allows the thorough testing of a particular hardware 
device, software system, or the scenario itself. 
 
2.3.3  Attack Scenarios— 

Attack scenarios are a temporal sequence of atomic attack 
components.  Attack components can be either exploits, 
such as a buffer overflow, support functionality such as 
scans or code transport, or other techniques used by an 
attacker.  Individual attack components are aggregated into 
attack scenarios with the intention of recreating an 
attacker’s actions with the greatest possible fidelity. 
Scenarios typically begin with elements of network 
discovery, such as probing and scanning.  Next, a victim 
host is compromised.  Finally an attacker captures a “flag” 
and removes evidence of the security breech.   
We have developed six scenarios that are representative of 
different attack classes; one is shown in Figure 6 and 
illustrates part of the current LARIAT testbed used at 
Lincoln Laboratory.  Here LARIAT is configured as a 
stand-alone network with no external network connections.  
A firewall is used to separate the internal network from the 
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