
LARIAT: Lincoln Adaptable Real-time Information
Assurance Testbed12

Lee M. Rossey, Robert K. Cunningham, David J. Fried, Jesse C. Rabek, Richard P. Lippmann,

Joshua W. Haines, and Marc A. Zissman
Lincoln Laboratory, Massachusetts Institute of Technology

244 Wood Street
Lexington, Massachusetts 02420-9108

{lee,rkc}@sst.ll.mit.edu

1 0-7803-7231-X/01/$10.00/© 2002 IEEE
2 This work was sponsored by AF/ESC under Air Force Contract F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those
of the authors and are not necessarily endorsed by the United States Government.

Abstract—The Lincoln Adaptable Real-time Information
Assurance Testbed, LARIAT, is an extension of the testbed
created for DARPA 1998 and 1999 intrusion detection (ID)
evaluations. LARIAT supports real-time, automated and
quantitative evaluations of ID systems and other
information assurance (IA) technologies. Components of
LARIAT generate realistic background user traffic and real
network attacks, verify attack success or failure, score ID
system performance, and provide a graphical user interface
for control and monitoring. Emphasis was placed on
making LARIAT easy to adapt, configure and run without
requiring a detailed understanding of the underlying
complexity. LARIAT is currently being exercised at four
sites and is undergoing continued development and
refinement.

Keywords: Real-time, quantitative, repeatable, realistic,
automated, testbed, evaluations, intrusion detection

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. LARIAT
 3. USES OF LARIAT
 4. CURRENT WORK
 5. SUMMARY
 6. ACKNOWLEDGEMENTS

1. INTRODUCTION
DARPA off-line intrusion detection evaluations performed
in 1998 and 1999 at MIT Lincoln Laboratory provided
comprehensive technical evaluations of the accuracy of
research intrusion detection systems [1-8]. These
evaluations assessed the performance of DARPA-funded
intrusion detection technology and supported reseachers
developing that technology. Intrusion detection systems
were evaluated for detection accuracy by providing both
realistic background traffic and attacks to allow
measurement of false alarm and attack detection rates. The
evaluation assisted research and development by providing

extensive examples of realistic background traffic. Usage
patterns of a wide variety of common services were
modeled and these models were the basis for the synthesis
of realistic user-sessions using real services and protocols.
Synthetic users surfed the web, sent, read, and replied to
email, transferred files with FTP, logged into hosts with
Telnet and SSH, authored documents, and edited and
compiled code. Many examples of a wide range of attacks
were also provided. These evaluations were not designed to
evaluate complete, deployable intrusion detection systems
or commercial systems, but rather to evaluate the accuracy
of alternative technical approaches.
Off-line datasets are available from these evaluations. They
contain extensive examples of normal and attack traffic run
on a realistic testbed network. These datasets include
network traces, Solaris BSM and Windows NT auditing
logs, other log files, and file system information. They
allow researchers to easily and quickly perform many
identical trial runs with different intrusion detection
techniques. These datasets are unique and have been used
by many researchers. More than 160 sites have downloaded
the data from these evaluations to test and develop intrusion
detection systems.
As extensive as the datasets are, the DARPA evaluations
were nevertheless limited. They used a reasonable, but not
exhaustive, set of attacks with a limited set of actions
performed as part of each attack. They also used a simple
network topology, a non-restrictive security policy, a
limited number of victim machines, probabilistic low-
volume background traffic, and simple scoring. In addition,
they evaluated ID systems that detected only atomic attack
actions instead of correlating many component attacks to
detect attack scenarios. The off-line format also limited the
evaluations to passive intrusion detection systems that can
operate in an off-line mode. This format is difficult to use
with systems that query hosts or other network components,
with systems that respond by changing network or host
configurations, and with commercial systems that must be
connected directly to an actual network or installed on a
host. A separate real-time component of the evaluation [11]
responded to some of these needs. However, it was time
consuming to run since evaluators had to setup and run the

Columbia Ex 2048-1
Symantec v Columbia

IPR2015-00375
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

evaluation at one central location for each intrusion
detection system that was evaluated.
The DARPA evaluations provided insight into desired
characteristics of software that support IA evaluations. It is
expensive and time consuming to setup and run background
traffic and attacks for days and weeks. Attacks fail and
machines crash, often for reasons that are difficult to predict
and avoid. Verifying that attacks run successfully, cleaning
up, and scoring putative detection alerts is more complex
than expected. Complete automation of background traffic
generation and attack launch coordination is essential, along
with automated network and host initialization, attack
verification and cleanup, and integrated scoring software.
This software must enable short, repeatable test runs to
separately evaluate different aspects of IA system
performance.
The Lincoln Adaptable Real-time Information Assurance
Testbed (LARIAT) was developed to address the most
important limitations of the DARPA evaluations and form a
next-generation evaluation testbed that builds on past
experience. It supports both development and evaluation of
IA systems, it can generate both component attacks and
multi-component attacks, it automates many of the time-
consuming components of past evaluations, it can be
distributed and run at many sites, it can support complex
hierarchical testbed networks that include defensive
technologies such as firewalls, it can sustain high traffic
rates, and test runs are repeatable and easily configured. We
are aware of no other evaluation systems with such
capabilities. Past evaluations reviewed in [1] have been
difficult to configure and run. Recent commercial intrusion
detection evaluations [2] have addressed some of the past
limitations like the testbed complexity but still do not
consider false alarm rates, and only use a limited range of
attacks. The evaluations performed by Shipley [2] answer
some important questions about the usability of available
commercial technology, such as the ability to keep up with
high traffic rates and the ability to remotely manage and
control devices across an enterprise. Our work tends to
focus on measuring the detection and false alarm rates of
systems in a quantitative and repeatable manner with a goal
of providing the technology and recorded network traffic to
the community so that better intrusion detection technology
can be developed. Although some systems provide
components similar to those in LARIAT we are aware of no
system with all the desired capabilities. The remainder of
this paper describes the design of LARIAT, current uses,
and future plans.

2. LARIAT
Two design goals were established for LARIAT: (1)
support real-time evaluations and (2) create a deployable,
configurable and easy-to-use testbed. Previous evaluations
were time consuming and expensive. Our experience is that
roughly four months are required to produce high quality
evaluation results for every new ID system tested. Tasks
performed during this time include learning about the new

ID system, configuring it to work in an off-line mode,
developing software to interpret the native output format,
running the evaluation, and saving and interpreting the
results. LARIAT eliminates the requirement for off-line
operation, and greatly simplifies the setup and operation.
We developed an architecture that ties all the software
components together and provides complete automation of
all evaluation phases. We have automated traffic
generation, attack scheduling, system configuration,
experiment runs and analysis.

The remaining sections explain LARIAT. Section 2.1
describes the phases required to perform an evaluation, and
how LARIAT automates and controls these steps. Section
2.2 describes how the user configures the experiment and
the background traffic configuration. Section 2.3 covers the
attacks. Section 2.4 describes the software implementation
and Section 2.5 describes the hardware used in the base
testbed.

2.1 Experiment Steps—

An experiment is composed of the eight steps shown in
Figure 1. These steps represent the flow of an experiment.
Starting at the top of the figure, a user selects a profile that
specifies the background traffic, the attacks to be run, and
the experiment duration. The remaining seven steps are
automated and controlled by the director software. The
director allows the user to control testbed capabilities
without having to interact with any of the individual hosts,
thereby relieving the end-user from detailed knowledge of
LARIAT. The automated phases are described below.

Verify / Score
- examine attack logs
- verify attack success
- examine IDS output (future)
- score IDS (future)

Distribute Configurations
- distribute profiles to hosts

Pre-conditions
- setup network conditions required
for the test (eg. Anonymous ftp)

- generate traffic & attack scripts
- schedule attack + traffic scripts
- start loggers Run Traffic

-view progress in “real-time”
- attacks, IDS output

Clean Up
- reinstate corrupted files
- remove pre-conditions
- archive traffic scripts
- clear process table

Network Discovery
Verify accessibility of hosts and services

Initialize Network
- reset user accounts
- remove old traffic
- clear logs
- clear process table

Select Profile
- select & edit traffic profile
- select attacks & strike time

Figure 1 - Automated run sequence. After a user selects a

profile LARIAT automates all the phases of an experiment.

Initialize Network—
During this step the test network is initialized. User
accounts, log files and processes are all set to pre-specified
configurations.

Distribute Configuration—
The traffic configuration and experiment details are
distributed to each host.

Columbia Ex 2048-2
Symantec v Columbia

IPR2015-00375
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Pre-Conditions—
Tasks are performed that prepare for the flow of synthetic
traffic. The traffic generators synthesize user traffic by
building scripts for each background traffic session. These
scripts use a custom extension [6] to the Expect scripting
language [18], [19] that was developed for the 1998 and
1999 evaluations. Fine-grained control of how long
simulated human users wait between entering commands in
interactive sessions and how long it takes to type commands
using probabilistic inter-character delays is possible. Attack
scripts are also prepared so that both the attack and
background traffic scripts can be scheduled to run at the
appropriate times on each traffic generator and attacker.

Run Traffic—
At this point the evaluation commences. During the run, the
progress of background traffic and attacks can be viewed in
real-time via the GUI.

Verify and Score—
Upon completion of the run, or at a specified interval after
each attack, the system scans attacker logs and searches for
evidence of the attack on the victim host, in an effort to
verify the successful completion of each attack. Alerts from
the ID systems are stored for analysis so that they can be
compared against a verified list of attacks.
Generation of background traffic is important because it
provides real user traffic on the network within which
attacks will be injected. Ideally an ID system should only
send alerts when it identifies real attacks (true detections)
and not when a user performs a legitimate action (false
alarm).
In future versions, LARIAT might be able to score an ID
system by interpreting native ID alerts. Currently two
problems exist. First each vendor uses a proprietary
message alert format that would require a custom parser to
interpret the message content. The IETF community is
overcoming this problem by creating the IDMEF standard
to standardize the ID alert format; though currently the
message content format in not standardized and varies
between users.

Clean Up—
After the verification and scoring, cleanup scripts, specific
to each attack, remove evidence of that attack run, resetting
any changes made by the attack script. A cleanup can range
from reinstating a corrupted file to restoring an entire hard
drive from a stored image. Hosts involved in background
traffic are also re-initialized. Continuing user sessions are
killed, as in the earlier “Initialization” phase, to ensure that
test runs start from common system state, even if a test run
is terminated before completing. After this last step
additional experiments can be run.

2.2 Background Traffic—

To start a test run, a user must first select a profile for the
background traffic. A background traffic profile defines the

operating environment to be simulated by the testbed and
contains information such as the type of services (eg. http,
ftp) that will be emulated, the statistical distribution of each
service over the course of a day, and the traffic rate. The
background traffic profile can be modified with respect to
the content and distribution of services.
The traffic profiles were determined by recording and
analyzing the network traffic distribution and composition
from a US military base. New traffic profiles can be added
and configured to suit a particular network environment.
Figure 2 shows how a user can setup an experiment. The
top portion in the panel allows the experimenter to control
experiment duration and select a previously defined
background traffic profile. By editing these profiles a user
can quickly setup and run an experiment. Finer control of
traffic generation can be achieved by selecting the
Advanced button.
Figure 3 shows a screen capture of the panel that allows
background traffic modification. The upper part of the
panel shows the aggregate traffic to be generated, including
the start and end times, a global rate modifier, and profiles
of the arrival rates of the user sessions of each traffic type.
The traffic profile graph gives the expected number of
session arrivals (y-axis) for each 15-minute interval
throughout a 24-hour day (x-axis). The lower part of Figure
3 shows how the user specifies the amount of FTP traffic to
be generated, with the profile for the FTP session arrivals
per 15-minute time interval, on a similar graph (plotted by
itself). Arrival rate and distribution of sessions of each type
can be adjusted to specify aggregate content of background
traffic. This allows testing of an intrusion detection system
in a range of operating environments or testing of system
throughput with high traffic rates.

Figure 2 - The LARIAT GUI profile-selection panel.

Columbia Ex 2048-3
Symantec v Columbia

IPR2015-00375
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Figure 3 - The LARIAT GUI profile-editing panel. Here

the user can modify the background traffic profile.

User sessions for each traffic type are constructed from
probabilistic models of user actions in a manner similar to
those of the 1999 evaluation data [6]. Although the
interface controls the arrival of session start times, the
system has internal models of managers, programmers,
secretaries and system administrators.
Figure 4 show an example of the probability of executing
commands for 5 programmers using telnet.

2.3 Attacks—

LARIAT manages attacks to be run during an experiment
via the director GUI. This permits LARIAT to provide a
consistent, simple interface to the experimenter while
supporting the scheduling and execution of a large number
of attack types against a variety of network hosts and across
numerous operating systems releases.

2.3.1 Attack Framework—

The attack framework provides the following major
capabilities: (1) attack component abstraction (2) an API to
simplify adding and creating attacks (3) management and
composition of attack components (4) an attack scenario
model (5) an attacker’s knowledge-base.

2.3.1.1 Attack Component Abstraction and Management—

Attack components developed for LARIAT do not reference
the network configuration. As a result, we are able to reuse
the same components with different variations or options to
suit a particular attacker’s goal. The abstraction also
enables deployment to organizations with different network
addresses and topologies. The attack components
themselves are modified to accept all the relevant
parameters as arguments, which are then supplied at
runtime.
A separate XML file, used to describe all the properties of
an attack, is created that accompanies the exploit code.
Information contained within the description file includes
the required parameters, information about what the attack
requires to run, what it provides when complete, the skill
level of the attacker, the visibility of the attack and other
related information. To simplify the process of describing
each attack for the user, some information is automatically
extracted from the NIST ICAT meta-database [17] and
incorporated into the attack component description file.
To organize and manage the attacks, each attack component

Figure 4 - Probability of executing commands for 5 programmers using telnet

Columbia Ex 2048-4
Symantec v Columbia

IPR2015-00375
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

is catalogued by it’s CAN or CVE number [16] [17] and a
short textual description. For example, the sadmind attack
is stored in a directory called
CVE_1999_0977_Buffer_Overflow_in_Solaris_sadmind.
The directory with all the attack and supporting code is
encrypted until required. The decryption, setup and re-
encryption steps are performed during the run’s “Pre-
condition” and “Cleanup” phases shown in Figure 1. The
attack description file is stored unencrypted so that it can be
processed by the director or by a user who is interested in
knowing about the attack without having to read the attack
code. The director loads the attack component description
files so that they can be searched, manipulated and
displayed to the user via the GUI. Before a run is started
the director will process the attack description files involved
in an experiment and substitute the attack parameter
variables with the specific testbed values.

2.3.1.2 Attack Framework API—

New attacks are incorporated into LARIAT using an attack
component API. The API supports the capability to launch
attacks in their native format (perl, shell script, binary, etc.)
and can be used to store and retrieve information about
attacks into a common data repository.

2.3.1.3 Attack Scenario Model—

Figure 5 shows an example of the attack model in which a
series of attack components are linked together to exploit a
Microsoft IIS and take control of the host platform. The
attack model is similar to the requires/provides model [12]
and has been implemented to provide the following
capabilities. First it ensures that as attack components are
linked together, that the information provided by one
component is what the next one requires. This is especially
helpful for a user that lacks detailed knowledge of the attack
components. Second it is used to ensure that if a component
fails during a run that any subsequent components that
depended on the information provided are not executed.
For example if an external scan used to identify a firewall
fails to execute correctly then we should not launch any
components that utilized information provided by that
component such as an internal network scan or a remote-to-
local exploit to a host protected by the firewall. Once the
dependencies are specified for each component, the
framework ensures the correct execution.

1.1.1
External
Network

Scan

1.1.1
External
Network

Scan

1.1.3
Internal
Network

Scan

1.1.3
Internal
Network

Scan

1.1.4
Identify

IIS
Server

1.1.4
Identify

IIS
Server

1.1.5
Remote-
to-User
exploit

1.1.5
Remote-
to-User
exploit

1.1.6
Download
User-to-

Superuser
code

1.1.6
Download
User-to-

Superuser
code

1.1.7
User-to-
Superus

er
exploit

1.1.7
User-to-
Superus

er
exploit

1.1.2.2
Blind IDS Agent

1.1.2.2
Blind IDS Agent

1.1.2.1
Identify

IDS
Agent

1.1.2.1
Identify

IDS
Agent

Time

1.1.1
External
Network

Scan

1.1.1
External
Network

Scan

1.1.3
Internal
Network

Scan

1.1.3
Internal
Network

Scan

1.1.4
Identify

IIS
Server

1.1.4
Identify

IIS
Server

1.1.5
Remote-
to-User
exploit

1.1.5
Remote-
to-User
exploit

1.1.6
Download
User-to-

Superuser
code

1.1.6
Download
User-to-

Superuser
code

1.1.7
User-to-
Superus

er
exploit

1.1.7
User-to-
Superus

er
exploit

1.1.2.2
Blind IDS Agent

1.1.2.2
Blind IDS Agent

1.1.2.1
Identify

IDS
Agent

1.1.2.1
Identify

IDS
Agent

Time

Figure 5 - Attack scenario using the LARIAT attack model

All scenario run-time information is stored in the attacker

knowledge-base. Currently the knowledge-base informs the
remote attacking hosts which attacks to launch and their
parameters, records whether the attacks launched
successfully, ensures that all the requirements for a
particular attack are satisfied before running and stores the
eventual success or failure of the attack. The knowledge
base is also used by attack components to store and retrieve
any information gained during a scenario. This provides a
means to pass information gained from one component to
the next. By using the API to store and retrieve information
we can ensure interoperability of the attack components.
The attack knowledge-base is currently implemented as an
XML file that is sent during the network initialization phase
to every host involved with an attack. The knowledge-base
is distributed to every host to ensure that there are no
control traffic artifacts within the network traffic during a
run. At the end of a run the knowledge-base is retrieved by
the director to help determine ground-truth and display any
information or error messages to the user.

2.3.2 Attack Profile—

Attack profiles abstract and manage the set of attack
scenarios used in an experiment. An example of an attack
scenario is the recent DDoS dataset created by Lincoln
Laboratory [5]. In this scenario an attacker compromises
several internal hosts protected by a firewall; installs
attacker software on the remote hosts, and signals a
coordinated denial of service attack against a site on the
Internet.
An attack profile contains one or more attack scenarios of
arbitrary length. The LARIAT director is used to load an
attack profile, as shown in the lower portion of Figure 2.
The attack profile can be interactively modified and saved
from the director before it is executed. Attack profiles
contain multiple attack scenarios to allow different
scenarios or variations of a single scenario to be run. This
feature allows the thorough testing of a particular hardware
device, software system, or the scenario itself.

2.3.3 Attack Scenarios—

Attack scenarios are a temporal sequence of atomic attack
components. Attack components can be either exploits,
such as a buffer overflow, support functionality such as
scans or code transport, or other techniques used by an
attacker. Individual attack components are aggregated into
attack scenarios with the intention of recreating an
attacker’s actions with the greatest possible fidelity.
Scenarios typically begin with elements of network
discovery, such as probing and scanning. Next, a victim
host is compromised. Finally an attacker captures a “flag”
and removes evidence of the security breech.
We have developed six scenarios that are representative of
different attack classes; one is shown in Figure 6 and
illustrates part of the current LARIAT testbed used at
Lincoln Laboratory. Here LARIAT is configured as a
stand-alone network with no external network connections.
A firewall is used to separate the internal network from the

Columbia Ex 2048-5
Symantec v Columbia

IPR2015-00375
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

