
Undecidability of Static AnalysisWilliam LandiSiemens Corporate Research Inc755 College Rd EastPrinceton, NJ 08540wlandi@scr.siemens.comAbstractStatic Analysis of programs is indispensable to any software tool, environment, or systemthat requires compile time information about the semantics of programs. With theemergence of languages like C and LISP, Static Analysis of programs with dynamicstorage and recursive data structures has become a �eld of active research. Such analysisis di�cult, and the Static Analysis community has recognized the need for simplifyingassumptions and approximate solutions. However, even under the common simplifyingassumptions, such analyses are harder than previously recognized. Two fundamentalStatic Analysis problems are May Alias and Must Alias. The former is not recursive(i.e., is undecidable) and the latter is not recursively enumerable (i.e., is uncomputable),even when all paths are executable in the program being analyzed for languages withif-statements, loops, dynamic storage, and recursive data structures.Categories and Subject Descriptors: D.3.1 [Programming Languages]: Processors; F.1.1 [Com-putation by Abstract Devices]: Models of Computation� bounded-action devices; F.4.1 [MathLogic and Formal Languages]: Mathematical Logic� computability theoryGeneral Terms: Languages, TheoryAdditional Key Words and Phrases: Alias analysis, data 
ow analysis, abstract interpretation,halting problem From acm Letters on Programming Languages and Systems,Vol. 1, No. 4, December 1992, Pages 323-337.Permission to copy without fee all or part of this material is grantedprovided that the copies are not made or distributed for direct commercialadvantage, the ACM copyright notice and the title of the publication andits date appear, and notice is given that copying is by permission of theAssociation for Computing Machinery. To copy otherwise, or to republish,requires a free and/or speci�c permission.c
1992 ACM 1057-4514/92/1200-0323$01.501
Columbia Ex 2038-1 

Symantec v Columbia 
IPR2015-00375

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


1 IntroductionStatic Analysis is the processes of extracting semantic information about a program at compiletime. One classical example is the live variables [4] problem; a variable x is live at a statements i� on some execution x is used (accessed) after s is executed without being rede�ned. Otherclassical problems include reaching de�nitions, available expressions, and very busy expressions [4].There are two main frameworks for doing Static Analysis: Data Flow Analysis [4] and AbstractInterpretation [3]. The framework is not relevant to this paper, as we show that two fundamentalStatic Analysis problems are harder than previously acknowledged, regardless of the frameworkused.We view the solution to a Static Analysis problem as the set of \facts" that hold for a givenprogram. Thus, for live variables the solution is f(x; s)j variable x is live at statement sg. Withthat in mind, we review a few de�nitions:� A set is recursive i� it can be accepted by a Turing machine that halts on all inputs.� A set is recursively enumerable i� it can be accepted by a Turing machine which may or maynot halt on all inputs.Static Analysis originally concentrated on FORTRAN, and was predominately con�ned to asingle procedure (intraprocedural analysis) [7, 9, 15]. However, even this simple form of StaticAnalysis is not recursive. The di�culty lies in conditionals. There are, in general, many pathsthrough a procedure, but not all paths correspond to an execution. For example, considerif (x > -1) y = 1;if (x < 0) y = -1;Execution of this fragment always executes exactly one then branch. It is impossible for both orneither then branches to be executed. Static Analysis is not recursive since determining whichpaths are executable is not recursive. To overcome this problem, Static Analysis is performedassuming that all paths through the program are executable [2]. This assumption is not alwaysvalid, but it is safe [2].1 Also, it simpli�es the problem and allows Static Analysis of FORTRANprocedures to be done fairly e�ciently. Some approaches (for example [16]) categorize some pathsas not executable. However, these techniques have limited applicability, and often must assumethat paths are executable.With a basis of a �rm understanding of intraprocedural Static Analysis of FORTRAN, StaticAnalysis of entire programs (interprocedural analysis) was investigated. Myers [14] came up withthe negative result that many interprocedural Static Analysis problems are NP complete. Prac-tically, this means that interprocedural Static Analysis must make further approximations overintraprocedural analysis or take an exponential amount of time.With the emergence of popular languages like C and LISP, the Static Analysis community hasturned its attention to languages with pointers, dynamic storage, and recursive data structures. Itis widely accepted that Static Analysis under these conditions is hard. The general feeling is thatit is probably NP complete [11, 13, 12]; this is incorrect. Recently, the problem of �nding aliaseswas shown to be P-space hard [10]. Unfortunately, this is still an underestimate.1The term conservative is used in [2] instead of safe. 2
Columbia Ex 2038-2 

Symantec v Columbia 
IPR2015-00375

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


An alias occurs at some point during execution of a program when two or more names exist forthe same storage location. For example, the C statement \p = &v" creates an alias between �p andv. Aliases are associated with program points, indicating not only that �p and v refer to the samelocation during execution, but also where in the program they refer to the same location. Aliasing,statically �nding aliases, is a fundamental problem of Static Analysis. Consider the problem of�nding live variables for: s1: v = 1;s2: p = &v;s3: w = 2;s4: printf("%d",�p);The variable v is live at s3 only because �p is aliased to v when program point s4 is executed.Aliasing also in
uences most interesting Static Analysis problems. Any problem that is in
uencedby aliasing is at least as hard as aliasing. There are two types of aliasing.May Alias Find the aliases that occur during some execution of the program.Must Alias Find the aliases that occur on all executions of the program.Finding the aliases can mean determining the set of all aliases which hold at some associatedprogram points, or determining whether x and y are names for the same location at a particularprogram point s. We use the latter meaning as, in general, the set of all aliases maybe in�nite insize. We formally de�ne May Alias as a boolean function:may-aliasP(s; hx; yi) is true i� there is an execution of program P to program point s(including the e�ects of executing s) on which x and y refer to the same location.Must Alias is de�ned analogously. We show that, for languages with if-statements, loops, dynamicstorage, and recursive data structures, Intraprocedural May Alias is not recursive (i.e., is undecid-able) and Intraprocedural Must Alias is not recursively enumerable (i.e., is uncomputable) evenwhen all paths in a program are executable by reducing ([5], p. 321-322) the halting problem intoan alias problem. This is a di�erent from the result of Kam and Ullman [8] that the MOP solutionis undecidable for monotone frameworks.2 Reduction of the Halting Problem to an Alias ProblemA Deterministic Turing Machine (DTM) [1] is a tuple (Q,T,I,�,�,q0,qf) where:� Q = fq1, q2, ..., qnQg is the set of states� T = f�1; �2; :::; �nTg is the set of tape symbols� I � T is the set of input symbols� �: (Q � T) ! (Q � T � fL,R,Sg) is the transition function23
Columbia Ex 2038-3 

Symantec v Columbia 
IPR2015-00375

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


� � 2 T � I is the blank symbol� q0 2 Q is the start state� qf 2 Q is the �nal stateWe assume that � is a total function and that the DTM will not move o� the left end of the tape. Ingeneral, neither of these assumptions are true, but any Turing machine can be modi�ed to conformto them.In this section, we specify a machine reduce (Figure 1) which takes a DTM M and input stringw and procedures a program C such that� may-aliasC(s; h��current state,valid simulationi) is true i� M halts on w.� must-aliasC(s; h��current state,not validi) is true i� M does not halt on w.� all paths through C are executable2.1 Representing an IDAn Instantaneous Description (ID) is an encoding of the following information:� contents of the DTM's tape� current state of the DTM� location of the tape headAn ID is usually represented by a string xqiy 2 T�QT� where the tape contains xy in�nitely paddedto the right with blanks, the current state is qi, and the tape head is scanning the �rst character ofy.3 We encode this information in the alias pattern of a program execution. By alias pattern, wemean the relationship of names to each other.We use a doubly linked list to represent the tape of a DTM: prev sym next . Foreach �i 2 T we create a variable �i. The \sym" �eld points to �i i� the tape location contains �i.Thus, the tape that contained \hello" padded to the right with blanks (�) is represented by thealias pattern: r r r r r r� � � � �r r r r r rr r r r r r- - - - -

@

@R

�

�	l:h: ? e: ? o: ? �: ?2L moves tape head left, R moves tape head right, and S leaves the tape head where it is.3qi is underlined in xqiy to make the state stand out from the tape string.4
Columbia Ex 2038-4 

Symantec v Columbia 
IPR2015-00375

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


For each qi 2 Q we create a variable qi and there are two additional variables, current stateand tape head. Current state points to the current state of the machine, and tape headindicates the tape head location by pointing into the list representing the tape. The ID = heq2llois represented by:tape head: r
?r r r r r r� � � � �r r r r r rr r r r r r- - - - -

@

@R

�

�	l:h: ? e: ? o: ? �: ?

q1: q2: ... qnQ :current state: r
?2.2 Programming LanguageIn order to perform the required reduction, we need to construct a program from a DTM. Theprogram is in C, but it could be any language with if-statements, loops, dynamic storage, andrecursive data structures. We use the address operator (&) but it is not fundamentally necessaryto the proof. To specify a C program from a DTM, we need the meta-statements: #for and #if.The syntax and meaning of these are relatively straight forward and should be apparent from thefollowing examples: #for i = 1 to 3xi = i;#endfor 9>=>; represents 8><>: x1 = 1;x2 = 2;x3 = 3;#for i = 1 to 3xi = i;#if i is oddyi = i;#endif#endfor 9>>>>>>>=>>>>>>>; represents 8>>>>><>>>>>: x1 = 1;y1 = 1;x2 = 2;x3 = 3;y3 = 3;Also, we use next bool for reading program input. It returns the next boolean value from the inputstream. If the end of the stream has been encountered, it returns 0.2.3 Simulating a DTMIn Section 2.1, we showed how we represent an ID with aliases. In this section, we show how tosimulate a DTM with the alias pattern of executions of a particular program. We now specify reduce(Figure 1) which constructs a program from a DTM M = (Q,T,I,�,�,q0,qf) with initial input w 25

Columbia Ex 2038-5 
Symantec v Columbia 

IPR2015-00375
f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


