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STATEMENT OF RELATED CASES 

No other appeal in or from this same civil action was previously before this 

court or any other court of appeals.  No other cases are pending between the same 

parties and there are no known or pending cases that will directly affect or be 

directly affected by this court’s decision in this matter.  
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PRELIMINARY STATEMENT 

This appeal concerns claim constructions that violate this Court’s rules of 

claim interpretation.  A construction may not import limitations restricting claims 

to particular embodiments or examples.  Claims are presumed to have their full 

scope.  This presumption is only overcome by a clear definition or words of 

manifest exclusion or restriction disavowing claim scope.  Without finding any 

definition or disclaimer, the District Court strayed from these core principles and 

issued a two-page claim construction order that limits the claims to specific 

embodiments and examples from the specification. 

This litigation involves six Columbia patents from three distinct families 

relating to important advances in computer security.  The patents describe novel 

ways to use machine learning to detect previously unknown viruses and malicious 

computer intrusions, often called “zero day” attacks.  Each patent family describes 

using models of program behavior to diagnose programs as malicious or benign.  

The patents explain how these models of program behavior may be created using 

different types of ingredients. 

The first patent family, U.S. Patent Nos. 7,487,544 and 7,979,907, describes, 

among other things, extracting “byte sequence features” from executable email 

attachments to determine whether they are malicious.  The District Court 

incorrectly construed the term “byte sequence feature” to be limited to only “a 
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representation of machine code instructions,” even though the specification 

expressly discloses byte sequence features that are not representations of machine 

code instructions.  Using this faulty construction, the District Court compounded 

the error by holding claims 1 and 16 of the ’544 patent indefinite under section 112 

¶ 2 on the grounds that they cover mutually exclusive embodiments.  This holding 

is incorrect—the claims track the express teaching of the specification. 

The second family, U.S. Patent Nos. 8,074,115 and 8,601,322, teaches ways 

to determine if a program is “anomalous” by using machine learning to create 

models of function calls that programs make when they run.  The meaning of 

“anomalous” in these patents is “behavior that deviates from normal and may 

correspond to an attack.”  The District Court departed from this plain meaning in 

the intrinsic record, incorrectly reading the term “anomalous” to require a 

deviation from a “model of typical, attack free computer system usage” created 

with only “attack free” data.  There is no justification for importing only “attack 

free” data or other restrictions into the claims.  Indeed, rather than exclude the use 

of attack data in the model, the specification, the claims as filed, and the claims as 

issued all specify using attack data when creating the model.  Moreover, in 

explaining this aspect of its construction, the District Court did not cite the ’115 

and ’322 patents, but instead only referred to the unrelated third family in the case.  
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Applying a construction from one patent family to another is contrary to the well-

settled principle that claims of unrelated patents are construed separately. 

The third patent family at issue, U.S. Patent Nos. 7,448,084 and 7,913,306, 

describes how modeling activity on particular locations in a computer system – the 

Windows registry and file system – can improve detection of anomalous program 

behavior reflecting an intrusion.  The District Court again improperly read in 

extraneous, negative limitations to the terms “anomaly/anomalous” and 

“probabilistic model of normal computer system usage,” requiring a model created 

using only “attack free” data.  The claim language is not so limited and the 

specification teaches otherwise. 

In order to redress promptly these incorrect claim constructions, Columbia 

stipulated to judgment of non-infringement under Rule 54(b).  The District Court’s 

claim constructions are incorrect and should be reversed.  The corresponding 

judgment should be vacated and the case remanded so it can proceed under proper 

claim constructions. 
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JURISDICTIONAL STATEMENT 

The U.S. District Court for the Eastern District of Virginia had subject 

matter jurisdiction over this action pursuant to 28 U.S.C. § 1338(a). 

On November 4, 2014, the District Court entered a Final Judgment Pursuant 

to Rule 54(b) of the Federal Rules of Civil Procedure pursuant to the parties’ 

stipulation of non-infringement based on the District Court’s claim constructions 

and ruling that certain claims of the ’544 patent were invalid as indefinite.  A1-8. 

On November 10, 2014, Columbia timely filed its Notice of Appeal in 

accordance with 28 U.S.C. § 2107(a) and Rule 4(a) of the Federal Rules of 

Appellate Procedure.  A314-16. 

This Court has jurisdiction over this appeal pursuant to 28 U.S.C. § 

1295(a)(1). 
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STATEMENT OF THE ISSUES 

1. Whether the judgment of non-infringement of the ’544 and ’907 

patents must be vacated because the District Court erred in limiting “byte sequence 

feature” to a “representation of machine code instructions,” when no lexicography 

or disavowal restricts claim scope. 

2. Whether the judgment of indefiniteness of claims 1 and 16 of the ’544 

patent must be vacated because the District Court erred in concluding that the 

claim terms “byte sequence feature” and “byte string representative of resources” 

are directed to separate and mutually exclusive embodiments. 

3. Whether the judgment of non-infringement of the ’115 and ’322 

patents must be vacated because the District Court erred in construing 

“anomaly/anomalous” to require “deviation/deviating from a model” generated 

with only “typical, attack-free data” and, when doing so, relied on the disclosure of 

a different patent family. 

4. Whether the judgment of non-infringement of the ’084 and ’306 

patents must be vacated because the District Court erred in construing 

“probabilistic model of normal computer system usage” and “anomaly/anomalous” 

by imposing a negative limitation requiring a model generated with only “typical, 

attack-free data.” 
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STATEMENT OF THE CASE 

I. THE PARTIES 

Columbia is a leading university and research institution.  The next 

generation computer security techniques at issue in this case were developed at 

Columbia’s School of Engineering and Applied Sciences, which includes the 

Department of Computer Science—a department dedicated to training future 

leaders to solve important security challenges.  A194-95.  Symantec is based in 

Mountain View, California and sells popular computer security products and 

services, including “Norton” antivirus software.  A195.   

Columbia brought this action in December 2013 alleging that Symantec 

antivirus and computer security products and services infringed six Columbia 

patents from three separate families.  A160-68; A173-190; A193-202; A209-28.1  

The asserted patent families are (1) U.S. Patent Nos. 7,487,544 (the ’544 patent) 

and 7,979,907 (the ’907 patent), (2) U.S. Patent Nos. 7,448,084 (the ’084 patent) 

and 7,913,306 (the ’306 patent), and (3) U.S. Patent Nos. 8,074,115 (the ’115 

                                           

1 Columbia also alleged state law claims relating to Columbia intellectual 
property in “decoy” technology and to correct inventorship on a patent presently 
assigned to Symantec.  A202-08; A228-36.  These claims are separate from the 
Asserted Patents addressed in the judgment at issue on this appeal and have been 
stayed.  A14. 
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patent) and 8,601,322 (the ’322 patent) (collectively “Asserted Patents”).  Each 

family has a distinct disclosure with distinct priority dates. 

II. THE ASSERTED PATENTS 

A. Background 

Computer networks are continually becoming larger and more complex, and 

the amount of sensitive information exchanged and accessible on networked 

computers is increasing dramatically.  As a result, there is a strong need for 

technologies preventing malicious viruses and other harmful intrusions to 

computers.  The technology at issue concerns important advances meeting this 

need.  ’544 patent, A48 (1:30-2:67); ’084 patent, A83-84 (1:41-3:10); ’115 patent, 

A124 (1:20-44).   

One challenge in computer security involves detecting attacks never 

previously seen by an intrusion detection system.  These attacks sometimes are 

referred to as “zero-day” attacks because developers have “zero days” beforehand 

to patch the vulnerability.  A382. 

Professors Salvatore Stolfo and Angelos Keromytis and their students in 

Columbia’s Intrusion Detection Lab and Network Security Lab pioneered next 

generation technologies based on, among other things, machine learning 

techniques providing vastly improved detection of new viruses and attacks.  A196-
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201.  The Asserted Patents concern the application of machine learning techniques 

to various areas of computer security. 

Machine learning is a subfield of artificial intelligence and statistics.  A382-

83.  Machine learning systems are able to learn automatically from data.  ’544 

patent, A48 (1:65-2:45); ’084 patent, A87 (10:1-11).  The first step involves 

collecting large amounts of data.  ’544 patent, A50 (5:16-27).  Next, in a training 

phase, the collected data is fed into a machine learning algorithm to generate a 

model based on important parts of the data called features.  ’544 patent, A50 (5:28-

6:6); ’084 patent, A87-88 (10:1-11, 12:49-65); ’115 patent, A125 (3:28-45).  A 

model is the encapsulation of the automatically-generated insights that the machine 

learning algorithm derived from the training data.  ’544 patent, A49-50 (4:67-5:5).  

As additional training data is obtained, the model may be modified.  A54-57 (14:4-

22, cl. 5).  The model is then deployed in the field.  New programs not seen during 

the training phase are run through, or compared to, the model.  ’544 patent, A50 

(5:6-15); ’084 patent, A88 (12:36-48); ’115 patent, A125 (3:46-56).  The system 

can classify or evaluate the new program based on the comparison with the model.  

’544 patent, A51 (8:3-12). 

Model creation using machine learning raises two questions:  what the 

model represents and what ingredients are used to create the model.  These are 

different concepts.  For example, anomaly detection models can detect deviations 
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from normal behavior.  The ingredients for such a model include attack-free data 

but also can include attack data.  ’115 patent, A133-34 (cls. 1, 8, 18, 29, 39); A674.  

By analogy, a model of a fresh apple could consider the attributes of a fresh apple 

in isolation but may be enriched by considering how fresh apples differ from rotten 

apples.  A382-83; A398-402. 

B. The ’544 and ’907 Patents 

The ’544 and ’907 patents are entitled “System and Methods for Detection 

of New Malicious Executables.”  The ’544 and ’907 patents generally relate to 

“detecting malicious executable programs, and more particularly to the use of data 

mining techniques to detect such malicious executables in email attachments.”  

’544 patent, A48 (1:33-37).  The patents improved on prior art approaches relying 

on specific signatures of known viruses and were directed at a new technique for 

classifying executables as malicious or benign “which is not limited to particular 

types of files . . . and which provides the ability to detect new, previously unseen 

files.”  A48 (1:39-2:1, 2:64-67).   

An executable fundamentally is a collection of bytes.  A50 (6:29-35); A582-

84 (describing sections of files in Windows Portable Executable (PE) format); 

A598 (“Initialized data for a section consists of simple blocks of bytes.”).  Both 

parties’ experts agreed during claim construction that an executable may be 

organized into sections containing sequences of bytes representing different 
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functions.  A1700-05; A1322-25.  For example, an executable contains the 

program’s instructions.  Symantec’s expert stated that these “machine code 

instructions” are byte sequences “that tell a computer’s central processing unit 

what to do.”  A1321.  Machine code instructions are not the only sequences of 

bytes in an executable.  An executable also may contain information about 

“resources” that the program uses, such as dynamically linked libraries or “DLLs” 

the program may invoke, and may also contain “plain text strings” with other data.  

A50-51 (6:23-8:2); A389-92.2  Resource information and plain text strings may be 

in a different section than the machine code instructions, such as in the program 

“header.”  A50-51 (6:48-58, 7:40-53).  Although the machine code instructions, 

resource information, and plain text strings may reflect different functions and may 

be in different locations in the executable, they all are indisputably made up of 

sequences of bytes.  A635-39 (example of byte sequences containing resource 

information); A594-97 (example of byte sequences that are plain text strings); 

A1700-05 (explaining how byte sequences may represent machine code 

instructions, resource information, and plain text strings).     

                                           

2 Dynamic link libraries (DLLs) generally are libraries of frequently used 
functions that an executable may call, for example, to interact with the operating 
system.  A50-51 (6:35-7:39); A90-91.  Plain text strings are sequences of printable 
characters that may appear in various places in an executable, such as the string 
“microsoft.”  A51 (7:40-8:2); A1704-1705. 
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The inventors of the ’544 and ’907 patents described a technique that could 

analyze the entirety, or selected parts, of an executable.  The approach of the ’544 

and ’907 patents involves extracting information from an executable for use in a 

machine learning system to classify the executable.  The patents refer to the 

properties or attributes of the sequences of bytes in the executable that are analyzed 

as “byte sequence features.”  The term “byte sequence feature” is used in the 

specification and claims to describe a broad category of information derived from 

sequences of bytes in the executable to be classified.  That is, the data to be 

analyzed, like pieces of evidence in the dossier on a suspect, could be multiple 

types of information from the entire executable or just a part.  The extraction of 

“byte sequence features” from executables is a concept in all claims of the ’544 

and ’907 patents.  A49 (3:23-24) (“A byte sequence feature is subsequently 

extracted from the executable attachment.”); see, e.g., A57 (cl. 1).  The byte 

sequence features are then used in a machine learning system to classify the 

executable.  A49 (3:24-29); A51 (8:3-55).  

Various examples of byte sequence features are described.  The Summary 

describes how in one embodiment “[e]xtracting the byte sequence feature from the 

executable attachment may comprise converting the executable attachment from 

binary format to hexadecimal format.”  A49 (3:34-37).  In this embodiment, byte 

sequence features are extracted from the entire file and “each byte sequence in the 
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program is used as a feature.”  A50 (6:21-22) (describing embodiment using utility 

known as “hexdump” to convert the entire file to hexadecimal).  In other words, 

this embodiment includes byte sequence features representing machine code 

instructions but also includes byte sequence features representative of all other 

information in the executable.   

The Summary also describes an embodiment in which “extracting the byte 

sequence features from the executable attachment may comprise creating a byte 

string representative of resources referenced by said executable attachment.”  A49 

(3:37-40).  In other words, in this embodiment, the byte sequence features 

extracted must represent a specific type of information in the executable, the 

“resources” referenced by the executable, not all the information in the executable.  

These embodiments are described in greater detail in the “Detailed Description of 

Exemplary Embodiments,” which describes using as byte sequence features all the 

byte sequences in a file, sequences of machine code instructions, information 

generated by examining resource information in the executable, or information 

generated by examining plain text strings.  A50-51 (5:57-8:2). 

C. The ’115 and ’322 Patents 

The ’115 and ’322 patents are entitled “Methods, Media and Systems for 

Detecting Anomalous Program Executions.”  These patents recognize that certain 

activity – function calls made by running programs – can be a leading indicator of 
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intrusions or attacks.  ’115 patent, A125 (3:28-56).  As the specification describes, 

“instrumenting, monitoring, and analyzing application-level program function calls 

and/or arguments . . . can be used to detect anomalous program executions that 

may be indicative of a malicious attack or program fault.”  A125 (3:7-15).  Other 

aspects of the claims not at issue on this appeal include the use of an “emulator” in 

analyzing the function calls and notifying an “application community” once 

malicious activity is detected.  A126 (6:31-47); A133 (cl. 1). 

The claims all require a “model of function calls.”  A133 (cl. 1).  The model 

of function calls is developed from running programs and inspecting what calls are 

made.  A125 (3:46-56).  This information is used to train a model, and once the 

model has been trained it can be applied to inspect programs in an emulator.   Id. 

The ’115 and ’322 patents make clear that both “normal” and “attack” data 

may be used to build the models.  The independent claims of the ’115 and ’322 

patents (both as originally filed and as issued) generally require a “model of 

function calls,” while the dependent claims (also as originally filed and as issued) 

require that specific types of data must be used in the model.  Claim 7 of the ’115 

patent and claim 6 of the ’322 patent recite that “the model reflects normal activity 

of the at least a part of the program.”  A133; A158.  Claim 8 of the ’115 patent and 

claim 7 of the ’322 patent recite that “the model reflects attacks against the at least 

a part of the program.”  Id. 
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D. The ’084 and ’306 Patents 

The ’084 and ’306 patents are entitled “System and Methods for Detecting 

Intrusions in a Computer System by Monitoring Operating System Registry 

Accesses.”  Prior art designs of the inventors and other research groups involved 

the use of “anomaly detection algorithms [that] may build models of normal 

behavior in order to detect behavior that deviates from normal behavior and which 

may correspond to an attack.”  ’084 patent, A83 (2:34-37).  These prior art 

anomaly detection systems were lacking because they looked at computer activity 

that was too irregular or required intensive computational overhead to monitor.  

A83-84 (2:65-3:7).  The inventors realized that malicious software often tries to 

manipulate areas of the operating system known as the “registry” or “file system.”  

A85 (5:55-6:3); A91 (17:43-54).  The inventors discovered that a model that 

included in the training data records of normal processes that access the registry or 

file system resulted in improved anomaly detection.  A85 (5:61-6:15). 

The “Background of the Invention” section describes different ways to 

detect intrusions.  Some prior art systems looked for activity matching the 

signature of previous attacks.  A83 (2:28-32).  Because such systems only used 

data from known attacks, they were not effective in detecting new malicious 

programs not seen before.  Id.  Another approach involves the use of anomaly 

detection algorithms to “build models of normal behavior in order to detect 
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behavior that deviates from normal behavior and which may correspond to an 

attack.”  A83 (2:34-37).  By taking into account normal activity, a model can 

detect an anomaly even if the malicious program has never been encountered 

before.  A83 (2:37-39); A85 (6:20-24) (“[A] program which substantially deviates 

from this normal activity may be easily detected as anomalous.”). 

Anomaly detection models can be constructed with different types of 

ingredients.  For example, the anomaly detection model may be generated with 

only data on normal processes free of attacks.  A90 (15:38-46).  Columbia 

researchers, however, explained in papers cited in the patent specification that 

more robust models of normal behavior could be constructed for detecting 

anomalies if the data used to build the model was supplemented with data 

regarding attacks or malicious programs.  In other words, including data on attacks 

could enhance the ability to determine whether particular activity was anomalous.  

See, e.g., A83 (2:39-64) (citing paper from named inventor describing “training 

over clean data (normal data containing no anomalies),” but noting “several 

inherent drawbacks to this approach” and describing “a technique for detecting 

anomalies without clean data,” which used normal data supplemented with data 

regarding abnormal processes); A674; A398-402. 

The patents’ approach includes “gathering features from records of normal 

processes that access the operating system registry.”  A93 (cl. 1).  A “probabilistic 
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model of normal computer system usage” is generated based on the monitored 

data.  A84 (3:21-30); A86 (8:7-21).  Accesses are then analyzed to determine if 

they are anomalous and therefore indicative of attacks.  A84 (3:21-30); A85 (5:2-

10).  While “records of normal processes” must be included in the data used to 

generate the model, the claims do not exclude the use of other ingredients or 

require only data reflecting “attack free” processes be used in the model. 

III. THE DISTRICT COURT PROCEEDINGS 

A. The District Court’s Claim Construction 

After claim construction briefing, the District Court held a hearing on 

September 4, 2014.  A32-34 (Dkts. 106, 107, 109, 110, 121).  On October 7, 2014, 

the District Court issued a Claim Construction Order.  A9-10.   

With respect to the ’544 and ’907 patents, the District Court’s Claim 

Construction Order provides: 

1.  “Byte Sequence Feature”: Feature that is a representation of 
machine code instructions of the executable. “Feature” is a property or 
attribute of data which may take on a set of values. 

. . .  

3.  “Wherein [the step of] extracting said byte sequence features from 
said executable attachment comprises creat[ing/e] a byte string 
representative of resources referenced by said executable attachment”: 
Indefinite. The Court finds that the “resource information” feature 
extraction embodiment is separate and distinct from the “byte 
sequence feature” extraction embodiment. Because Claims 1 and 16 
of the ’544 patent conflate these terms, and thus are inconsistent with 
the specification, the Court holds that this term is indefinite.  See Allen 
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Eng’g Corp. v. Bartell Indus., Inc., 299 F.3d 1336, 1349 (Fed. Cir. 
2002). 

A9. 

With respect to the ’115 and ’322 patents, the Claim Construction Order 

provides: 

1.  “Anomalous”:  Deviation/deviating from a model of typical, 
attack-free computer system usage. 

A10. 

With respect to the ’084 and ’306 patents, the Court’s Claim Construction 

Order provides: 

2.  “Probabilistic Model of Normal Computer System Usage”:  Model 
of typical attack-free computer system usage that employs probability.  
“Probability” is the likelihood that an event will occur or a condition 
will be present. 

“Normal Computer System Usage”:  Typical attack-free computer 
system usage. 

3.  “Anomaly” / “Anomalous”:  Deviation/deviating from a model of 
typical, attack-free computer system usage. 

Id. 

B. Columbia’s Motion for Clarification 

On October 10, 2014, Columbia moved for clarification of the Claim 

Construction Order.  A2199-2201; A2204-08.  The constructions for both the ’115 

and ’322 family and the ’084 and ’306 family required a model of “typical, attack 

free computer system usage.”  But the constructions left unresolved “a dispute 
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between the parties as to what ingredients can be used to create the model.”  

A2204. 

On October 23, 2014, the District Court issued a Memorandum Order 

granting Columbia’s Motion for Clarification of Claim Construction Order and 

clarifying certain constructions.  A11-12.  The District Court quoted from claim 1 

of the ’084 patent, then wrote:  

Logically, if the anomaly detection systems detect deviations from 
normal activity, that normal activity must be “attack-free” activity.  
Applying this logic to the rest of claim 1, which gathers “features 
from records of normal processes” and then generates “a probabilistic 
model of normal computer system usage based on [those] features,” it 
follows that the model is generated with only attack-free data. 

A12 (emphasis added, other emphasis removed). 

C. The Stipulated Final Judgment 

On November 3, 2014, the parties filed a stipulation and joint motion for 

entry of final judgment of (a) non-infringement of all Asserted Patents and (b) 

invalidity of claims 1 and 16 of the ’544 patent based on indefiniteness.  A272-82; 

A283-93; A304-13.  The parties stipulated that, under the Court’s construction, the 

accused Symantec products did not practice the “byte sequence feature” limitation 

of the ’544 and ’907 patents, the “anomalous” limitation of the ’115 and ’322 

patents, or the “probabilistic model of normal computer system usage” and 

“anomaly/anomalous” limitations of the ’084 and ’306 patents.  A275-278.  
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Columbia noted its disagreement with the District Court’s constructions and 

reserved the right to appeal.  Id. 

On November 4, 2014, the District Court entered final judgment on 

Columbia’s patent infringement claims pursuant to Rule 54(b) of the Federal Rules 

of Civil Procedure.  A13-14; A1-8. 

Columbia timely filed a Notice of Appeal.  A314-16. 
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SUMMARY OF ARGUMENT 

The District Court improperly read into the claims limitations from specific 

embodiments and examples in the specification. 

The ’544 and ’907 patents recite a method including the steps of “extracting 

a byte sequence feature” from an executable email attachment, “wherein” the 

extracting “comprises creating a byte string representative of resources referenced” 

by the executable.  The District Court incorrectly construed “byte sequence 

feature” as being limited to only a particular kind of sequence of bytes—those 

representing “machine code instructions,” which are only a part of the content of 

an executable.  The District Court’s construction is contrary to the Summary and 

the remainder of the specification, which teach that byte sequence features may be 

extracted from any portion of the executable.  Examples of byte sequence features 

in the Summary and the specification are not limited to only machine code 

instructions, but include resource information, plain text strings, or instructions in 

the file.  ’544 patent, A49-51 (3:24-40, 6:23-8:2).  The specification and the 

prosecution history contain no clear definition or disclaimer justifying the District 

Court’s narrow construction.  The plain meaning of byte sequence feature is a 

property or attribute of a sequence of bytes which may take on a set of values.  

This is the construction that should have been adopted. 
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The District Court also erred in holding claims 1 and 16 of the ’544 patent 

indefinite under section 112 ¶ 2.  The court ruled that the “byte sequence feature” 

extraction embodiment is “separate and distinct” from the “resource information” 

extraction embodiment and that therefore the claims improperly covered two 

different embodiments.  The court’s ruling ignores the logic and language of the 

claim, is contrary to the specification, and depends entirely on the court’s incorrect 

claim construction of “byte sequence feature” discussed above.  The plain reading 

of claims 1 and 16 is that the “resource” information is a subset of the more 

general byte sequence feature, not a distinct and mutually exclusive embodiment.  

This is confirmed in the specification, which states expressly that “extracting the 

byte sequence features from the executable attachment may comprise creating a 

byte string representative of resources referenced by said executable attachment.”  

A49 (3:37-40).  The sequence of bytes representing resource information is thus a 

specific example of a byte sequence feature.  Claims 1 and 16 are directed to this 

embodiment, requiring the extraction of byte sequence features “wherein” the 

extracting the byte sequence feature “comprises creating a byte string 

representative of resources referenced by said executable.” 

The ’115 and ’322 patents are directed to “detecting anomalous program 

executions” using a “model of function calls.”  The District Court erred in 

construing the term “anomalous” in the ’115 and ’322 patents.  “Anomalous” 
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means “behavior that deviates from normal and may correspond to an attack.”  The 

District Court departed from this plain meaning and read in negative limitations 

requiring a deviation “from a model of typical, attack free computer system usage” 

in which the model must be created using only “attack free” data.  Nothing in these 

patents justifies these requirements.  The independent claims set out what must be 

present, such as a “model of function calls,” but impose no further constraints on 

the claimed model and do not exclude the use of data reflecting attacks.  Indeed, 

the District Court disregarded dependent claim 8, which depends from the claim 

the court interpreted and expressly requires that the model “reflects attacks 

against” the program, just what the court said could not be reflected.  ’115 patent, 

A133 (cl. 8).  Moreover, the only citations in the court’s order were to the 

unrelated third family in the case.  Construing one patent family solely by 

reference to another family is contrary to the well-settled principle that claims of 

unrelated patents must be construed separately. 

The ’084 and ’306 patents recite detecting intrusions in the operation of a 

computer system by “gathering features from records of normal processes that 

access the operating registry” (or “file system” for the ’306 patent) and analyzing 

the features using a “probabilistic model of normal computer system usage” to 

determine if a registry or file system access “is an anomaly.”  The District Court 

also wrongly read negative limitations into the ’084 and ’306 patent claims.  One 
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ingredient that must be included in the claimed “probabilistic model of normal 

computer system usage” is “records of normal processes that access the operating 

system registry” or the “file system.”  This model is used “to detect deviations 

from normal computer system usage to determine whether the access to the 

operating system registry [or file system] is an anomaly.”  ’084 patent, A93 (cl. 1); 

’306 patent, A110 (cl. 1).  The District Court improperly added a negative 

limitation requiring a deviation from a “model of typical, attack-free computer 

system usage” created using “only attack-free data.”  A12.  Nothing in the plain 

language of the claims limits the data that may be used to create the claimed 

model, and no principle of patent law excludes the use of additional ingredients 

beyond normal access to the registry or file system. 

The stipulated judgment of no infringement and indefiniteness is based on 

incorrect claim constructions.  The District Court’s claim constructions should be 

reversed, the judgment vacated, and the case remanded. 
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ARGUMENT 

I. STANDARD OF REVIEW 

The Supreme Court today in Teva Pharms. USA, Inc. v. Sandoz, Inc., 574 

U.S. __ (Jan. 20, 2015) clarified the standard of review of claim construction.  The 

Supreme Court confirmed that the District Court’s ultimate interpretation of patent 

claims remains a legal conclusion reviewed de novo.  Teva, slip op. at 9 (“[T]he 

Federal Circuit will continue to review de novo the district court’s ultimate 

interpretation of the patent claims.”).  As the Court explained, “when the district 

court reviews only evidence intrinsic to the patent (the patent claims and 

specifications, along with the patent’s prosecution history), the judge’s 

determination will amount solely to a determination of law, and the Court of 

Appeals will review that construction de novo.”  Id., slip op. at 11-12.  In the event 

the District Court makes “subsidiary factual findings” about extrinsic evidence, 

“the Federal Circuit must apply clear error review when reviewing subsidiary 

factfinding in patent claim construction.”  Id. 

The District Court’s claim constructions here are reviewed de novo.  The 

District Court did not make any factual findings in its Claim Construction Order 

and the Memorandum Order clarifying the claim construction.  These orders recite 

the District Court’s claim constructions as a conclusion of law.  When the District 

Court did provide a narrative explanation, the court relied entirely on the intrinsic 
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evidence.  Even if any of the District Court’s comments were treated as “subsidiary 

factual findings” under Teva (and they are not), such comments would constitute 

clear error because they directly contradict the intrinsic record. 

The District Court entered a stipulated final judgment of non-infringement 

that was based solely on the court’s claim constructions.  If the District Court’s 

claim constructions are incorrect, the judgment must be vacated.  Oatey Co. v. IPS 

Corp., 514 F.3d 1271, 1277-78 (Fed. Cir. 2008). 

The District Court’s ruling that claims 1 and 16 of the ’544 patent are 

“indefinite” as “inconsistent with the specification” also is reviewed de novo.  

Solomon v. Kimberly-Clark Corp., 216 F.3d 1372, 1377 (Fed. Cir. 2000) (“[A]s 

with claim construction, a determination under either portion of section 112, 

paragraph 2, is a question of law that we review de novo.”).  When the defendant 

challenges validity of a claim under this portion of section 112, the defendant must 

meet the heavy burden of 35 U.S.C. § 282.  Microsoft Corp. v. i4i Ltd. P’ship, 131 

S. Ct. 2238, 2242 (2011) (invalidity defenses must be proved by clear and 

convincing evidence). 

II. CLAIMS ARE GIVEN THEIR ORDINARY MEANING ABSENT 
LEXICOGRAPHY OR EXPRESS DISAVOWAL OF CLAIM SCOPE 

“It is a bedrock principle of patent law that the claims of a patent define the 

invention to which the patentee is entitled the right to exclude.”  Phillips v. AWH 

Corp., 415 F.3d 1303, 1312 (Fed. Cir. 2005) (en banc) (quotations omitted).  The 
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standards for construing claims are well-established.  “Claim terms are generally 

given their plain and ordinary meanings to one of skill in the art when read in the 

context of the specification and prosecution history.”  Hill-Rom Servs., Inc. v. 

Stryker Corp., 755 F.3d 1367, 1371 (Fed. Cir. 2014) (reversing stipulated judgment 

of non-infringement because of erroneous claim construction).  Indeed, there is a 

“heavy presumption that claim terms carry their accustomed meaning in the 

relevant community at the relevant time.” Azure Networks, LLC v. CSR PLC, 771 

F.3d 1336, 1347 (Fed. Cir. 2014) (adopting patentee’s construction and vacating 

stipulated judgment of non-infringement) (quotations omitted). 

This presumption can be overcome in only two circumstances:  the patentee 

has expressly defined a term or has expressly disavowed the full scope of the claim 

in the specification or the prosecution history.  See, e.g., Phillips, 415 F.3d at 1316 

(“[T]he specification may reveal a special definition given to a claim term” or “an 

intentional disclaimer, or disavowal, of claim scope by the inventor”); Azure 

Networks, 771 F.3d at 1348 (“Departure from the ordinary and customary meaning 

is permissible only when the patentee has acted as his own lexicographer or 

disavowed claim scope in the specification or during the prosecution history.”); 

Hill-Rom, 755 F.3d at 1371 (“We depart from the plain and ordinary meaning of 

claim terms based on the specification in only two instances:  lexicography and 

disavowal.”); Thorner v. Sony Computer Entm’t Am. LLC, 669 F.3d 1362, 1365 
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(Fed. Cir. 2012) (“There are only two exceptions to this general rule:  1) when a 

patentee sets out a definition and acts as his own lexicographer, or 2) when the 

patentee disavows the full scope of the claim term either in the specification or 

during prosecution.”). 

The standards for finding lexicography or disavowal “are exacting.”  

Thorner, 669 F.3d at 1366; Hill-Rom, 755 F.3d at 1371 (same); GE Lighting 

Solutions, LLC. v. Agilight, Inc., 750 F.3d 1304, 1309 (Fed. Cir. 2014) (same).  For 

a patentee to give a term something other than its well-established meaning, the 

patentee must “clearly set forth a definition of the disputed claim term” and 

“clearly express an intent to redefine the term.”  Thorner, 669 F.3d at 1365 

(quotations omitted); GE Lighting, 750 F.3d at 1309 (same); Azure Networks, 771 

F.3d at 1349 (same); Hill-Rom, 755 F.3d at 1371 (same).  “The lexicography must 

appear with ‘reasonable clarity, deliberateness, and precision sufficient to narrow 

the definition of the claim term in the manner urged.’” Azure Networks, 771 F.3d at 

1349 (quotation omitted).  “Disavowal requires that the specification [or 

prosecution history] make[ ] clear that the invention does not include a particular 

feature, or is clearly limited to a particular form of the invention.”   Hill-Rom, 755 

F.3d at 1372 (brackets original; internal quotations and citations omitted); SciMed 

Life Sys., Inc. v. Advanced Cardiovascular Sys., Inc., 242 F.3d 1337, 1341 (Fed. 

Cir. 2001) (same). 
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Phillips explains why courts are admonished against importing limitations 

into claims:  “if we once begin to include elements not mentioned in the claim, in 

order to limit such claim . . . we should never know where to stop.”  Phillips, 415 

F.3d at 1312 (internal quotation and citation omitted).  Courts therefore should not 

“at any time import limitations from the specification into the claims.”  

Innogenetics N.V. v. Abbott Labs., 512 F.3d 1363, 1370 (Fed. Cir. 2008) (quotation 

omitted).  This is the case even if a patent discloses only one embodiment.  

Phillips, 415 F.3d at 1323 (“[W]e have expressly rejected the contention that if a 

patent describes only a single embodiment, the claims of the patent must be 

construed as being limited to that embodiment.”); Liebel-Flarsheim Co. v. Medrad, 

Inc., 358 F.3d 898, 906 (Fed. Cir. 2004) (“Even when the specification describes 

only a single embodiment, the claims of the patent will not be read restrictively 

unless the patentee has demonstrated a clear intention to limit the claim scope 

using ‘words or expressions of manifest exclusion or restriction.’”).  “Absent a 

clear disavowal or contrary definition in the specification . . . the patentee is 

entitled to the full scope of its claim language.”  Home Diagnostics, Inc. v. 

LifeScan, Inc., 381 F.3d 1352, 1358 (Fed. Cir. 2004). 

For each of the terms at issue on this appeal, the District Court improperly 

restricted the claims to a particular embodiment and imposed limitations that do 

not square with the claim language and intrinsic record. 
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III. THE DISTRICT COURT ERRED IN CONSTRUING THE ’544 AND 
’907 PATENTS  

The District Court erred in two ways: (1) it limited the term “byte sequence 

feature” to a “representation of machine code instructions”; and as a result (2) it 

invalidated claims 1 and 16 of the ’544 patent as indefinite.  In both instances, the 

District Court reached an incorrect result that is not faithful to the claim language 

or the specification’s teachings. 

A. The District Court Incorrectly Limited “Byte Sequence Feature” 
to an Exemplary Embodiment 

The ’544 and ’907 patents disclose systems and methods for detecting 

malicious executables, such as harmful programs attached to emails.  All claims 

and disclosed embodiments center around the extraction of “byte sequence 

features” from the executable to determine maliciousness.  The byte sequence 

features are like a dossier on the executable.  Just as a dossier on a person can 

contain different types of information about that person, byte sequence features can 

contain different types of information about the executable.  In the specification, 

“byte sequence features” may represent the machine code instructions, resource 

information, and text strings in an executable.  ’544 patent, A49-50 (3:30-40, 5:57-

8:2).  The term “byte sequence feature” in the intrinsic record is an umbrella term 

for the properties or attributes of sequences of bytes that are extracted from any 

part of an executable. 
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“Byte sequence feature” is recited in all the claims of the ’544 and ’907 

patents, including the claims as originally filed.  A3874-81.  For example, claim 1 

reads: 

1. A method for classifying an executable attachment in an email 
received at an email processing application of a computer system 
comprising: 

a) filtering said executable attachment from said email; 

b) extracting a byte sequence feature from said executable 
attachment; and 

c) classifying said executable attachment by comparing said 
byte sequence feature of said executable attachment with a 
classification rule set derived from byte sequence features of a 
set of executables having a predetermined class in a set of 
classes to determine the probability whether said executable 
attachment is malicious, wherein extracting said byte sequence 
features from said executable attachment comprises creating a 
byte string representative of resources referenced by said 
executable attachment. 

A57 (cl. 1). 

The District Court should have adopted Columbia’s proposed construction:  

a “property or attribute of a sequence of bytes, which may take on a set of values.”  

A347-50.  Instead, the District Court construed “byte sequence feature” in two 

parts.  The District Court first construed “feature” as “a property or attribute of 

data which may take on a set of values.”  A9.  The specification is consistent with 

this aspect of the construction, stating that “a feature is a property or attribute of 

data (such as ‘byte sequence feature’) which may take on a set of values.”  A50 
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(5:63-64).  But the District Court incorrectly limited “byte sequence feature” to a 

“[f]eature that is a representation of machine code instructions of the executable.”  

A9.  There is no lexicography or disavowal that would redefine “byte sequence 

feature” or limit the term to “a representation of machine code instructions,” which 

is only one part of an executable. 

1. “Byte Sequence Features” Are Not Limited to “Machine 
Code Instructions” 

The starting point for any claim construction is of course the claim language.  

Phillips, 415 F.3d at 1312 (“claims of a patent define the invention”); Renishaw 

PLC v. Marposs Societa’ per Azioni, 158 F.3d 1243, 1248 (Fed. Cir. 1998) (“claim 

construction inquiry, therefore begins and ends in all cases with the actual words of 

the claim”).  The claim language “byte sequence feature” makes no reference to 

machine code instructions. 

The phrase “byte sequence” is composed of familiar words.  A “byte” is a 

collection of bits (commonly eight) and is a basic unit for representing information 

in computers.   A568.  A “byte sequence” is exactly that:  a sequence of bytes.  The 

intrinsic record does not artificially limit these concepts. 

Throughout the specification, the inventors emphasize that byte sequence 

features may represent any portion of the executable, not just machine code 

instructions.  The Summary states that one object of the invention is “a data mining 

technique which examines the entire file, rather than a portion of the file, such as a 
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header, to classify the executable as malicious or benign.”  A49 (3:7-10).  The 

Summary then explains in non-limiting terms how “extracting the byte sequence 

feature” can be accomplished in various ways.  It states that “[e]xtracting the byte 

sequence feature . . . may comprise converting the executable attachment from 

binary format to hexadecimal format” (which creates byte sequence features from 

all information in the executable, not just the machine code instructions).  A49 

(3:30-37); A1700-04.  The Summary then states how “[a]ccording to another 

embodiment, extracting the byte sequence features from the executable attachment 

may comprise creating a byte string representative of resources referenced by said 

executable attachment.”  A49 (3:37-40).  As discussed above, resources referenced 

by an executable (such as lists of DLLs that the program calls) are often in the 

program header, not in sections containing machine code instructions.  A50 (6:30-

58); A1702-03.  In other words, the specification describes examples that can be 

used to generate byte sequence features that are not limited to machine code 

instructions, including byte strings representative of resources.  A49-51 (3:30-40, 

5:57-8:2). 

The “Detailed Description of Exemplary Embodiments” describes several 

embodiments in which byte sequence features may be extracted from any part of 

an executable and not only from the machine code instructions.  In one “exemplary 

embodiment,” byte sequence features are extracted from the executable using a 
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software utility called “hexdump.”  Hexdump transforms the entire binary file into 

a hexadecimal file.  A50 (6:7-12) (“Hexdump . . . is an open source tool that 

transforms binary files into hexadecimal files.”).  In this hexdump embodiment, 

“each byte sequence in the program is used as a feature.”  A50 (6:21-22).  In other 

words, because hexdump acts on the entire executable, the byte sequence features 

that can be created in this embodiment are not just representations of the machine 

code instructions executed by the CPU, but any part of the program.  A391; 

A1700-04. 

The specification also describes how byte sequence features may be 

extracted using approaches other than hexdump.  The Detailed Description of 

Exemplary Embodiments section makes clear that “[m]any additional methods of 

feature extraction are also useful.”  A50 (6:23-24).  For example, tools may be 

used to extract “resource information from the binary that provides insight to its 

behavior.”  A50 (6:27-28).  This may include extracting sequences of bytes from 

the program header “in object format,” such as information about the “dynamically 

linked libraries” (or “DLLs”) that the program calls to accomplish various 

functions.  A50 (6:35-53).  “From the object format, it is possible to extract a set of 

features to compose a feature vector, or string, for each binary representative of 

resources referenced by the binary.”  A50 (6:56-58).  Another approach is to use 

tools to extract “strings” of “plain text” from headers of executables.  A51 (7:40-

Case: 15-1146      Document: 20     Page: 43     Filed: 01/20/2015

 
Exhibit Page 43

Columbia Ex. 2011-43 
Symantec v. Columbia 

IPR2015-00375



 

 - 34 -  

 

53).  As noted, the parties agree that resources and plain text include information 

that is not machine code instructions.  A1700-05; A1322-25.  All these approaches 

are examples of extracting byte sequence features from an executable that are not 

restricted to representations of machine code instructions. 

The Summary never uses the phrase “machine code instructions,” nor does it 

define or limit byte sequence features to that particular portion of the executable.  

It expressly teaches that the term is not so limited.  The District Court erred in 

disregarding this disclosure in the Summary and instead reading in limitations from 

one particular embodiment.  See PSN Illinois, LLC v. Ivoclar Vivadent, Inc., 525 

F.3d 1159, 1166 (Fed. Cir. 2008) (“[W]e find that the District Court was incorrect 

in holding that the description of a preferred embodiment had more bite than the 

description in the summary of the invention”); Rexnord Corp. v. Laitram Corp., 

274 F.3d 1336, 1345-48 (Fed. Cir. 2001) (error to import characteristic from 

preferred embodiment, particularly when summary contained broader disclosure). 

Given that the specification provides that “a feature is a property or attribute 

of data . . . which may take on a set of values,” A50 (5:57-6:6), the proper meaning 

of “byte sequence feature” based on the intrinsic record is “a property or attribute 

of a sequence of bytes which may take on a set of values.” 
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2. There Is No Lexicography or Disavowal of Claim Scope that 
Justifies Importing a “Machine Code Instructions” 
Limitation 

In narrowing byte sequence features to “a representation of machine code 

instructions,” the District Court interpreted the intrinsic record such that “byte 

sequence features” applied only to a part of the hexdump embodiment and not to 

sequences of bytes representing resource information or strings in the file.  

Limiting the claims to a characteristic of an exemplary embodiment violates the 

express directive from Phillips that claim construction should not be used to limit 

claim scope to one particular embodiment, even if the specification discloses only 

one embodiment.  Phillips, 415 F.3d at 1323.  The Hill-Rom case is illustrative.  In 

Hill-Rom, the patent claimed a “datalink” for conveying data.  755 F.3d at 1371-

72.  The specification disclosed a single embodiment, which used a cable to 

convey data, appeared to use the words “cable” and “datalink” interchangeably in 

describing the embodiment, and disclosed no alternative embodiment that used a 

wireless datalink.  See id. at 1373.  In reversing and setting aside the stipulated 

judgment of no infringement, this court declined to construe the term as requiring a 

wired connection, finding “no words of manifest exclusion or restriction” and 

“nothing in the language of the specification suggest[ing] that datalink should be 

limited to the cable used in the preferred embodiment.”  Id. at 1372-73. 
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At claim construction, Symantec primarily relied on one particular 

paragraph in the “Detailed Description of Exemplary Embodiments” stating: 

In the exemplary embodiment, hexdump was used in the feature 
extraction step. Hexdump, as is known in the art (Peter Miller, 
“Hexdump,” on line publication 2000, http://gd.tuwien.ac.at/softeng/ 
Aegis/hexdump.html which is incorporated by reference in its entirety 
herein), is an open source tool that transforms binary files into 
hexadecimal files. The byte sequence feature is informative because 
it represents the machine code in an executable. After the 
“hexdumps” are created, features are produced in the form illustrated 
in FIG. 2 in which each line represents a short sequence of machine 
code instructions. In the analysis, a guiding assumption is made that 
similar instructions were present in malicious executables that 
differentiated them from benign programs, and the class of benign 
programs had similar byte code that differentiated them from the 
malicious executables. Each byte sequence in the program is used as a 
feature. 

A50 (6:7-22) (emphasis added); see also A54 (13:24-26) (“This byte sequence is 

useful because it represents the machine code in an executable.”).  Symantec 

isolated the phrase “represents the machine code in an executable” from the 

passage and then changed the language to craft the “machine code instructions” 

construction the District Court adopted. 

The discussion of the hexdump embodiment is not a “clear definition” or 

“expression of manifest exclusion or restriction” needed to meet the “exacting” 

standards for finding a definition or disavowal.  The language on which Symantec 

relied is itself non-limiting, beginning with “[i]n the exemplary embodiment.”  

A50 (6:7).  The patent also states expressly that the “Detailed Description of 
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Exemplary Embodiments” describes “illustrative embodiments” and how the 

accompanying “Brief Description of the Drawings” is not intended to limit or 

modify the claims scope.  A49 (4:16, 4:46-50);  A57 (19:6-9).  The Summary 

similarly uses the words “may comprise” in describing examples of byte sequence 

features, not words of restriction or exclusion.  A49 (3:34-40). 

The sentence on which Symantec relied also lacks the clarity and precision 

that this Court looks for to justify limiting a claim.  The passage never defines byte 

sequence features or says that it is “informative” because it represents only 

“machine code instructions.”   The sentence also only uses the words “machine 

code instructions” when referring to Figure 2, which are part of the “figures 

showing illustrative embodiments.”  A49 (4:15-16).  “Under our claim 

construction law, a clear ordinary meaning is not properly overcome (and a 

relevant reader would not reasonably think it overcome) by a few passing 

references that do not amount to a redefinition or a disclaimer.”  Ancora Techs., 

Inc. v. Apple, Inc., 744 F.3d 732, 735 (Fed. Cir. 2014) (reversing construction 

when “nothing in the specification clearly narrows the term” “program”).   

There is no language anywhere that the claimed byte sequence feature “is” 

or “must be” limited to “machine code instructions.”  Rather, the specification 

makes plain that the byte sequence features are not limited to only the instructions 

portion of the file in the hexdump embodiment or any other.  As set out in column 
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6, “[e]ach byte sequence in the program is used as a feature.”  A50 (6:21-22).  

Again in column 13, the specification teaches that in the hexdump embodiment the 

entire executable is analyzed, not just machine code instructions:  “In addition, this 

[hexdump] approach involves analyzing the entire binary, rather than portions 

such as headers, an approach which consequently provides a great deal of 

information about the executable.”  A54 (13:24-29) (emphasis added). 

When a District Court’s construction limits claims to a particular 

embodiment or example in the specification without a clear definition or 

unmistakable restriction in scope, this Court reverses.  See, e.g., Williamson v. 

Citrix Online LLC, 770 F.3d 1371, 1377 (Fed. Cir. 2014) (“This court has 

repeatedly cautioned against limiting the claimed invention to preferred 

embodiments or specific examples in the specification.”) (internal quotations 

omitted); GE Lighting Solutions, 750 F.3d at 1310 (reversing stipulated judgment 

because “it was error to import the structural limitations of the preferred 

embodiment” into the claims); Azure Networks, 771 F.3d at 1350 (vacating 

stipulated judgment when “statements in the specification relied upon by the 

District Court neither define [the term] nor exclude” other examples); SunRace 

Roots Enters. Co., Ltd. v. SRAM Corp., 336 F.3d 1298, 1302-06 (Fed. Cir. 2003) 

(statements descriptive of preferred embodiment did not constitute definition or 

disavowal and would not limit claims).  Here, the lack of limiting language and the 
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disclosure of multiple embodiments not involving machine code instructions 

overcomes any possibility of disclaimer based on the exemplary embodiment. 

3. The Prosecution History Does Not Limit the Scope of Byte 
Sequence Features to “Machine Code Instructions”  

The prosecution history provides no support for limiting byte sequence 

features to machine code instructions.  To the contrary, during prosecution, the 

patentee and the examiner understood the term to encompass sequences of bytes in 

a file beyond machine code instructions, further demonstrating that the District 

Court erred in its construction. 

First, the patentee consistently used byte sequence feature as having its 

natural meaning not limited to any one embodiment in the specification.  All the 

originally filed independent claims were directed to the extraction of byte sequence 

features from executables.  A3874-81.  Dependent claims in the originally-filed 

claims were directed at more particular characteristics of the byte sequence 

features.  For example, one proposed dependent claim covered byte sequence 

features that included byte strings representative of resources, reciting “wherein the 

step of extracting said byte sequence features from said executable attachment 

comprises creating a byte string representative of resources referenced by said 

executable attachment.”  A3874.  Other proposed dependent claims were directed 

at byte sequence features representing the output of hexdump, reciting “wherein 

the step of extracting said byte sequence feature from said executable attachment 
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comprises converting said executable attachment from binary format to 

hexadecimal format.”  Id.  None of the original claims suggest that byte sequence 

features are limited to only the sequences of bytes representing the machine code 

instructions in the file. 

The examiner also gave byte sequence feature its natural meaning not 

limited to a particular embodiment in the specification.  In several office actions, 

the examiner consistently viewed the properties or attributes of any sequences of 

bytes in a program to be a byte sequence feature.  See A4614 (citing a Morikawa 

reference about extracting “file attributes information” from the file header or plain 

text in the file); A4665-66 (citing a Kephart reference regarding different types of 

“data strings,” including portions of computer programs, metadata about the 

programs, and strings representing text); U.S. Patent No. 6,016,546 to Kephart et 

al. at 2:9-42; A4575-76 (citing a Chen reference concerning virus signatures; “It is 

obvious that this technique is done by extracting byte sequences from the content 

of e-mail attachments to compare with known virus signature, because a signature 

is a sequence of byte.”).  The patentee’s response to this and several other office 

actions did not turn on the scope of byte sequence feature.  If neither the patentee 

nor the examiner believed that byte sequence features were limited to machine 

code instructions, the prosecution history certainly does not “make[] clear that the 

invention does not include a particular feature, or is clearly limited to a particular 
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form of the invention,” as is required to show disavowal.  See Hill-Rom, 755 F.3d 

at 1372. 

To support its narrow construction in the District Court, Symantec took out 

of context a snippet from the early research paper constituting the provisional 

application.  Symantec quoted from a section entitled “Byte Sequences Using 

Hexdump.”  A3586.  This described experiments involving outputting the entire 

file with the hexdump utility and stated “[t]he byte sequence feature is the most 

informative because it represents the machine code in an executable instead of 

resource information like libBFD features.”  Id.  When read in context, the 

provisional makes clear that the purpose of the hexdump embodiment is to capture 

information on the entire program, not just resource information or machine code 

instructions.  Id. (“analyzing the entire binary gives more information for non-PE 

format executables than the strings method”) (emphasis added).  In any event, this 

passage, which does not even appear in the final specification, is far too thin a reed 

to justify a narrowing construction.  The language and teaching in the final 

specification controls for claim construction.  Sun. Pharm. Indus., Ltd. v. Eli Lilly 

& Co., 611 F.3d 1381, 1388 (Fed. Cir. 2010) (“[T]he relevant specification for 

claim construction purposes is that of the issued patent, not an early version of the 

specification that may have been substantially altered . . . .”); Cordis Corp. v. 

Boston Sci. Corp., 561 F.3d 1319, 1328-29 (Fed. Cir. 2009) (finding no disclaimer 
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where new description and figures introduced in the non-provisional application 

supported the broader construction). 

B. The District Court Erred in Holding Claims 1 and 16 of the ’544 
Patent Invalid Under Section 112 ¶ 2 

The District Court’s incorrect construction of “byte sequence feature” led to 

an improper ruling that claims 1 and 16 of the ’544 patent covered two different 

embodiments and were therefore indefinite under section 112 ¶ 2.  Claims 1 and 16 

each require the extraction of byte sequence features but also contain a “wherein” 

clause requiring a certain kind of byte sequence feature, namely one including a 

“byte string representative of resources” referenced by the executable.  A57 

(19:23-26) (“wherein extracting said byte sequence features from said executable 

attachment comprises creating a byte string representative of resources referenced 

by said executable attachment”). 

The natural reading of the claims is the correct one:  a “byte string 

representative of resources” is a specific and more limited example of a “byte 

sequence feature.”  But because the District Court improperly narrowed “byte 

sequence features” to encompass only machine code instructions, the District Court 

consequently held that extracting “resource information” was not an example of a 

byte sequence feature as recited in the claims but a “separate and distinct” 

embodiment.  The court then held that the claims were “inconsistent with the 

specification” and indefinite.  A9 (citing Allen Eng’g Corp. v. Bartell Indus., Inc., 
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299 F.3d 1336, 1349 (Fed. Cir. 2002)).  The court’s ruling ignores the claim’s logic 

and language and the specification’s teaching and depends completely on the 

court’s incorrect claim construction of “byte sequence feature” as limited to 

machine code instructions. 

1. The District Court’s Incorrect Byte Sequence Feature 
Construction Led to the Incorrect Invalidity Ruling 

The District Court’s ruling that claims 1 and 16 were directed to separate 

and distinct embodiments stemmed entirely from the Court’s limitation of byte 

sequence features to machine code instructions.  In other words, because the 

District Court viewed “byte sequence features” as limited to “machine code 

instructions,” the District Court incorrectly concluded that byte sequence features 

could not include information about “resources referenced by the executable.” 

“Byte sequence feature” is used to refer generally to the properties or 

attributes of a sequence of bytes in the executable.  As set forth in the Summary 

and in the originally filed claims, a byte sequence feature may be derived from 

byte strings representative of resources or other portions of the executable.  A49 

(3:1-4:9); A3874-81.  Claims 1 and 16 cover this type of byte sequence feature 

“representative of resources.”  A57 (cls. 1, 16).  There is no inconsistency or 

indefiniteness in the claim. 

The District Court should have taken the claim language at face value.  As 

this Court has explained, “where claims can reasonably [be] interpreted to include 
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a specific embodiment, it is incorrect to construe the claims to exclude that 

embodiment, absent probative evidence on the contrary.”  GE Lighting, 750 F.3d at 

1311.  Similarly, “[a] construction that renders the claimed invention inoperable 

should be viewed with extreme skepticism.”  AIA Eng’g Ltd. V. Magotteaux Int’l 

S/A, 657 F. 3d 1264, 1278 (Fed. Cir. 2011) (quoting Talbert Fuel Sys. Patents Co. 

v. Unocal Corp., 275 F.3d 1371, 1376 (Fed. Cir. 2002), vacated and remanded on 

other grounds, 537 U.S. 802 (2002)).  A reversal of the construction of byte 

sequence feature requires reversal of the invalidity ruling. 

2. The Claims Are Not Directed to Mutually Exclusive 
Embodiments 

The only case cited in the District Court’s order to support the indefiniteness 

ruling is Allen Engineering.  In Allen, the court invalidated claims under 35 U.S.C. 

§ 112 ¶ 2, which requires that claims reflect what the inventor “regards as the 

invention”—a requirement separate from indefiniteness.  299 F.3d at 1348 (citing 

Solomon v. Kimberly-Clark Corp., 216 F.3d 1372, 1377 (Fed. Cir. 2000)).  The 

District Court erred in relying on Allen Engineering, which involves a different 

situation.  The specification at issue there described a gearbox that “cannot pivot 

in a plane perpendicular to the biaxial plane,” while the claims recited a gearbox 

that pivots “only in a plane perpendicular to said biaxial plane.”  Id. at 1349 

(emphasis added).  Based on this clear contradiction, the court found it “apparent 

from a simple comparison of the claims with the specification” that the inventor 
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did not regard the claimed gearbox to be his invention.  Id.  The patentee agreed, 

instead arguing that the claim suffered from a drafting error and that the term 

“perpendicular” should be read to mean “parallel.”  Id. 

There is no such logical inconsistency or contradiction in the claims at issue 

in this case.  It is clear from the specification that there are multiple ways to extract 

byte sequence features from an executable attachment.  The District Court’s 

holding that the intrinsic record discloses only one way to generate byte sequence 

features (extracting a representation of machine code instructions) cannot be 

squared with the express language of the Summary which states that “According to 

another embodiment, extracting the byte sequence feature may comprise creating a 

byte string representative of resources referenced by said executable attachment.”  

A49 (3:30-40); see Rexnord, 274 F.3d at 1344-45 (finding that the term “portion” 

could refer to either a two-piece structure or a unified structure where the 

Summary of the Invention section disclosed both embodiments).  The District 

Court’s holding also is inconsistent with the Detailed Description of Exemplary 

Embodiments which describe extracting byte sequences reflecting resource 

information.  E.g., A50 (6:26-28, 6:48-63) (“extract[ing] resource information 

from the binary that provides insight to its behavior,” such as DLLs and DLL 

function calls used by the binary).  An example of a string reflecting these byte 
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sequences is depicted in Figure 3.  A42 (Fig. 3).  This byte string representative of 

resource information is an example of a byte sequence feature. 

The prosecution history also confirms that neither the inventors nor the 

examiner ever considered resource information as anything other than a type of 

byte sequence feature.  For example, in the originally-filed application, Claim 1 did 

not include the “creating a byte string representative of resources” clause.  That 

limitation was originally in dependent Claim 4: 

4. The method as defined in claim 1, wherein the step of 
extracting said byte sequence features from said executable 
attachment comprises creating a byte string representative of 
resources referenced by said executable attachment. 

A3874.  Columbia distinguished the prior art not on the basis that they lacked byte 

sequence features, but rather on the basis that they did not describe byte sequence 

features comprising “a byte string representative of resources referenced by said 

executable attachment.”  A4681 (“neither Chen nor Kephart, whether considered 

separately or in combination, provides ‘creating a byte string representative of 

resources referenced by said executable attachment’”).  Claim 4 then was allowed 

on the basis of the “byte string representative of resources” limitation and rewritten 

as an independent claim.  This is stated directly in the Notice of Allowance: 

[T]he above arts, singularly or in combination, fail to anticipate or 
render the following unique limitations of the independent claims in 
the instant invention: 
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“Claims 4 and 29: wherein extracting said byte sequence features 
from said executable attachment comprises creating a byte string 
representative of resources referenced by said executable attachment.” 

A4750. 

The meaning of “byte sequence feature” is not mutually exclusive with a 

“byte string representative of resources.”  See Ancora Techs., Inc. v. Apple, Inc., 

744 F.3d 732, 739 (Fed. Cir. 2014) (distinguishing Allen as a case “where the 

patentee agreed that the claim language did not match what he regarded as his 

invention, as the intrinsic record unambiguously showed, and this court denied the 

patentee’s request to reject the claim language’s clear, ordinary meaning”).  The 

District Court’s construction of “byte sequence feature,” and the corresponding 

holding that the claims are “inconsistent with the specification” is incorrect and 

should be reversed. 

IV. THE DISTRICT COURT ERRED IN CONSTRUING THE ’115 AND 
’322 PATENTS  

The District Court’s construction of “anomalous” in the claims of the ’115 

and ’322 patents should be reversed.  The District Court should have construed 

“anomalous” according to its plain meaning in the intrinsic record as “behavior 

that deviates from normal and may correspond to an attack.”  The District Court 

instead construed the term as requiring “[deviation/deviating] from a model of 

typical, attack-free computer system usage” generated with only “typical, attack-

free” data.  A10-12.  There are no definitions or disclaimers that require limiting 
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the term to a model that is trained exclusively with “attack free” programs.  The 

specification and claims of the ’115 and ’322 patents teach that the patents cover 

models trained using both attack-free and attack data. 

A. The District Court Incorrectly Relied on an Unrelated Patent 
Family in Construing “Anomalous”  

In ruling that “anomalous” required a deviation from a model of “normal 

computer system usage” trained only on “attack-free” data, the District Court did 

not cite the ’115 and ’322 patents’ specification.  Instead, the District Court 

discussed only the unrelated ’084 and ’306 patents, which descend from a separate 

application.  Elkay Mfg. Co. v. Ebco Mfg. Co., 192 F.3d 973, 980 (Fed. Cir. 1999) 

(“related” patents must derive from a common application).  The District Court 

also drew language for its construction from the ’084 and ’306 patents which 

appears nowhere in the ’115 and ’322 patents.  The claims of the ’115 and ’322 

patents recite a “model of function calls,” a different concept from the “computer 

system usage” discussed in the ’084 and ’306 patents and the court’s construction. 

The District Court’s construction of terms in the ’115 and ’322 patents based 

on the Court’s construction of a different patent family is an independent ground 

for reversal.  e.Digital Corp. v. Futurewei Techs., Inc., 772 F.3d 723, 726-27 (Fed. 

Cir. 2014) (“[C]laims of unrelated patents must be construed separately.”); see also 

Abbott Labs. v. Dey, L.P., 287 F.3d 1097, 1104-05 (Fed. Cir. 2002) (finding the 

relationship between two unrelated patents, although having common subject 
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matter, a common inventor, and the same assignee, “insufficient to render 

particular arguments made during prosecution of [one of the patents] equally 

applicable to the claims of [the other patent]”). 

B. The Term “Anomalous” Does Not Include a Negative Limitation 
Preventing Analysis of Anything Other Than “Attack-Free” Data 

The term “anomalous” does not require a model of typical, attack free 

computer system usage in which only attack free data is used to build the model.  

“Anomalous” appears in all the claims of the ’115 and ’322 patents.  For example, 

claim 1 reads: 

1. A method for detecting anomalous program executions, 
comprising: 
 
executing at least a part of a program in an emulator; 
 
comparing a function call made in the emulator to a model of function 
calls for the at least a part of the program; 
 
identifying the function call as anomalous based on the comparison; 
and 
 
upon identifying the anomalous function call, notifying an application 
community that includes a plurality of computers of the anomalous 
function call. 

’115 patent, A133 (cl. 1). 

An anomaly is a deviation from normal.  A566 (“anomalous” means 

“Deviating from the normal; irregular.”); A407-08. 

The phrases “model of typical, attack-free computer system usage” or 

“employing only attack free data” appear nowhere in the ’115 and ’322 patents.  
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To be sure, other elements do require a model containing certain data— a “model 

of function calls.”  But there is nothing in the claims or specification that justify 

interpreting “anomalous” to employ a model or requiring that the model be created 

solely and exclusively with data reflecting only “typical, attack free” “computer 

system usage.”  The District Court should have adopted Columbia’s proposed 

construction and given “anomalous” its plain meaning in the specification as 

“behavior that deviates from normal and may correspond to an attack.” 

1. The Claims Confirm That the Model Need Not Be 
Generated Only With Attack-Free Data 

The structure of the claims themselves confirms that the District Court’s 

construction of “anomalous” cannot be correct.  The District Court excluded the 

use of attack data to create the claim 1 model of function calls, but this is exactly 

the type of data that claim 8 requires be in the model.  Dependent claim 8, an 

originally-filed claim, expressly specifies that “the model reflects attacks against 

the at least a part of the program.”  A133 (cl. 8).  Adopting and applying the 

District Court’s construction of “anomalous” creates an impossible result: a model 

restricted to exclusively attack-free data (claim 1, as construed) that must also 

include attack data (claim 8).  Claim 8’s requirement that attack data be used in the 

model logically requires that the model of claim 1 can include that attack data.  

Alcon Research, Ltd. v. Apotex Inc., 687 F.3d 1362, 1367 (Fed. Cir. 2012) (“It is 
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axiomatic that a dependent claim cannot be broader than the claim from which it 

depends.”). 

Other claims likewise refute the District Court’s construction.  In the claims 

as filed with the original parent application, the inventors made clear that “models 

of function calls” can be built using both normal and attack data.  A6381-85.  This 

concept remains in the claims as issued.  For example, independent claim 1 of the 

’115 patent refers to “a model of function calls for at least part of a program.”  

Claim 7 depends from claim 1 and specifies that “the model reflects normal 

activity of the at least a part of the program.”  A133 (cl. 7).  The reference to 

normal activity in claim 7 “creates a presumption that these dependent claim 

limitations are not included in the independent claim.”  GE Lighting Solutions, 

LLC v. Agilight, Inc., 750 F.3d 1304, 1310 (Fed. Cir. 2014). 

2. The Specification Does Not Require Models Built Only 
With Attack-Free Data 

Nothing in the specification meets the heavy standard for lexicography or 

disavowal required to limit the claim to attack free data.  The “Summary” section 

of the specification does not use the words “normal,” “typical,” or “attack-free” in 

describing the invention.  A124 (1:48-2:35).  It describes the data that must be 

considered—function calls—but does not say they can only be function calls in 

attack-free programs. 
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The rest of the specification similarly describes examples in which the data 

set contains both attack-free and attack data.  The “Detailed Description” section 

notes a purpose “to detect anomalous program executions that may be indicative of 

a malicious attack or program fault.”  A125 (3:13-15).  The section provides an 

“example” in which “the anomaly detector models normal program execution” and 

uses “normal data.”  A125 (3:45-4:26).  Another embodiment, called probabilistic 

anomaly detection (PAD), computes “consistency checks over the normal data.”  

A125 (4:9-17).  These passages do not state that a model built exclusively using 

attack-free behavior always must be used. 

To the contrary, the specification discusses using attack data to develop 

improved models and to repair software.  The specification describes a system to 

learn from prior attacks: “once a vulnerability is detected, the system may use the 

detected vulnerability (and patch) to learn about other (e.g., similar) vulnerabilities 

. . . .”  A127 (8:58-64).  The specification continues: 

A learning technique can be applied over multiple executions of a 
piece of code (e.g., a function or collection of functions) that may 
previously have been associated with a failure, or that is being 
proactively monitored.  By retaining knowledge on program behavior 
across multiple executions, certain invariants (or probable invariants) 
may be learned, whose violation in future executions indicates an 
attack or imminent software fault. 
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A128 (9:41-48) (emphasis added).  Data about previous attacks is used to build the 

model.  In other words, the model is not formed exclusively from “typical, attack-

free” data. 

The specification also describes as an example a one-class support vector 

machine (OCSVM) in which “all the training data lies in the first class” but does 

not state that the class must be solely normal data.  A126 (5:14-19).  In fact, the 

original claims filed with the parent application specify that the class could be 

attack data.  A6381-85. 

3. The Prosecution History Describes Models Built Using 
Attack Data 

During prosecution, neither the inventors nor the PTO examiner interpreted 

the term “anomalous” to require a deviation from a model of attack free computer 

system usage.  Again, the record is just the opposite. 

For example, the papers submitted as the provisional application reflect the 

inventors’ understanding that anomaly detection models are not limited to “attack 

free” data but could also include attack data.  A3649-50 (describing determining a 

threshold value for a model using data “of approximately 300,000 records of which 

approximately 2,000 are labeled attacks”); A3724 (describing code repair 

techniques that “can only fix already-known attacks, e.g., stack or heap-based 

buffer overflows”); A3739 (“[T]he normal data represents the regular flow of 

traffic through the network and, therefore, can include good data, potentially 

Case: 15-1146      Document: 20     Page: 63     Filed: 01/20/2015

 
Exhibit Page 63

Columbia Ex. 2011-63 
Symantec v. Columbia 

IPR2015-00375



 

 - 54 -  

 

harmful data, and noise.”); A3752 (“[T]he normal flow of data can conceivably 

include noise and/or malicious programs.”). 

The examiner’s office actions also expressly acknowledged that attack data 

could be used as an ingredient in the model recited in the claims.  In the first office 

action in the prosecution leading to the ’115 patent, the examiner rejected claim 8 

of the application under a combination of two references, Vu and Chan.  A6526.  

The examiner wrote:  “Per claim 8, Vu does not explicitly disclose [that] the model 

reflects attacks against the at least a part of the program.  Chan teaches using 

models that reflects [sic] attacks against a program during anomaly detection (see 

page I, section I, paragraphs 2-3).”  Id.  Thus, the examiner believed that the 

invention could encompass models trained using attack data.  The applicant’s 

response to this rejection did not concern whether attack data could be used in the 

models—this was explicit from the claims as originally filed.  Rather, Columbia 

amended independent claims to add an “application community” limitation without 

changing any claim language related to the composition of the model or arguing 

that the examiner’s citation of Chan in the context of claim 8 was improper.  

A6565; A6574. 

There is no basis in the intrinsic record to limit the independent claims of the 

’115 and ’322 patents to models created using only attack-free data.  The District 

Court’s construction for the ’115 and ’322 patent should be reversed. 

Case: 15-1146      Document: 20     Page: 64     Filed: 01/20/2015

 
Exhibit Page 64

Columbia Ex. 2011-64 
Symantec v. Columbia 

IPR2015-00375



 

 - 55 -  

 

V. THE DISTRICT COURT ERRED IN CONSTRUING THE ’084 AND 
’306 PATENTS  

The District Court’s constructions for terms of the ’084 and ’306 patents fail 

to apply well-established rules of claim interpretation.  The District Court 

incorrectly converted claim elements reciting what must be present into negative 

limitations excluding anything else.   

The ’084 and ’306 patent claims are directed to monitoring accesses to the 

operating system registry or file system, building a “probabilistic model of normal 

computer system usage” and then determining if a new access to these areas of the 

system “is an anomaly.”  ’084 patent, A93 (cl. 1).  The District Court construed 

“probability” as having its plain meaning as “a likelihood that an event will occur 

or a condition will be present.”  A10.  In construing “probabilistic model of normal 

computer system usage,” the District Court should have done the same and 

construed the phrase as “a model of normal computer usage that employs 

probability.”3  A359-65; A1468-79.  Similarly, the District Court should have 

given “anomaly / anomalous” its plain meaning in the intrinsic record as “behavior 

that deviates from normal and may correspond to an attack.”  A365-66; A1479-80.  

                                           

3 The District Court also construed the embedded phrase “normal computer 
system usage” to mean “typical, attack-free computer system usage.”  A10.  
Although not a basis on which a judgment of non-infringement was entered, 
Columbia contends that this construction is incorrect for the same reasons as the 
other terms.  “Normal” needed no separate construction.  A360. 
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Instead, the District Court erred in construing both terms to require a “model” in 

which only attack-free data can be used as ingredients to build the model.  The 

claims are not so limited and there is no lexicography or disclaimer that justifies 

reading such limitations into the claims. 

A. The District Court Incorrectly Narrowed the Claimed 
“Probabilistic Model of Normal Computer System Usage” 

1. The Claims Do Not Require a Model Generated With Only 
“Attack Free” Data  

The claims spell out what must be present in the claimed systems and 

methods and they do not contain the negative limitation the District Court imposed.  

For example, claim 1 of the ’084 patent specifies a “method for detecting 

intrusions” “comprising” —a term of inclusion, not exclusion—“gathering features 

from records of normal processes that access the operating system registry” and 

then “generating a probabilistic model of normal computer system usage based on 

the features.”  A93 (22:21-39).  The claims recite “gathering features from records 

of normal processes that access the operating system registry.”  They do not 

require that the only “features” which can be used consist of an “attack-free” 

dataset.     

Excluding anything in addition to what is set out in the claims is contrary to 

established precedent.  The Federal Circuit has consistently held that doing more 

than what is claimed does not take activity outside the scope of a claim.  Sun-Tiger, 

Case: 15-1146      Document: 20     Page: 66     Filed: 01/20/2015

 
Exhibit Page 66

Columbia Ex. 2011-66 
Symantec v. Columbia 

IPR2015-00375



 

 - 57 -  

 

Inc. v. Scientific Research Funding Group, 189 F.3d 1327, 1336 (Fed. Cir. 1999) 

(“It is fundamental that one cannot avoid infringement merely by adding elements 

if each element recited in the claims is found in the accused device.”) (quotation 

omitted).  Certainly the claims require “records of normal processes that access the 

operating system registry” in generating the model (claim 1) but nothing in the 

claims makes this the only type of data that may be used or prohibits the use of 

anything else. 

The inventors made a significant contribution in recognizing and explaining 

how normal registry and file system accesses could be used in an anomaly 

detection model.  It is inconsistent with Federal Circuit precedent to hold that this 

critical insight can be used with impunity simply by adding to the claimed 

intrusion detection system data on events other than registry accesses or data that is 

not only “attack free.”  This, however, is exactly what results under the District 

Court’s incorrect revision of the claims to require a model “based on only” normal 

processes that access the registry.   

2. The Specification Does Not Support the District Court’s 
Construction 

In order to depart from the claim language and import a negative limitation, 

there must be a “clear and unmistakable” disclaimer.  Teleflex, Inc. v. Ficosa N. 

Am. Corp., 299 F.3d 1313, 1325 (Fed. Cir. 2002); Omega Eng’g v. Raytek Corp., 

334 F.3d 1314, 1322-23 (Fed. Cir. 2003) (finding no disclaimer or lexicography 
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“that would justify adding that negative limitation”).  The District Court’s ruling 

limiting the model ingredients to only “attack free” data is contrary to materials 

incorporated into the specification and in the prosecution history. 

During claim construction briefing, Symantec argued that the model must be 

based on attack free data, relying on a remark in the specification referring to 

“generating a probabilistic model of normal computer system usage, e.g., free of 

attacks.”  A84 (3:25-27).  Symantec, however, conflated two questions:  (a) what 

the model must reflect (“normal computer system usage”); and (b) what 

ingredients are used to create the model.  The claims require the use of normal 

registry accesses as an ingredient but do not exclude supplemental data or specify 

that only “attack free” data can be used. 

Certainly there are examples in the intrinsic record describing experiments 

in which attack free data was used. See, e.g., A90 (15:5-16).  For example, 

Symantec’s briefing cited the provisional application for the ’084 and ’306 patents, 

where the inventors wrote that they “used only attack free data for training.”  

A776; A932.  But the inventors also emphasized that “a more sophisticated 

algorithm can be used” and how the one selected for the early experiments was 

“simple and efficient,” not the only option.  A929.  Neither the provisional 

application nor the specification state that using only an attack free dataset was a 

necessary part of the invention.  Of course, the term “only attack free data” does 
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not appear in the claims.  Nor does it appear in the specification.  To be sure, the 

specification describes the importance of using normal access to registries and file 

systems as part of anomaly detection, but never excludes the use of other types of 

data.  A85 (5:61-6:24). 

Indeed, suggesting that the claims are limited to the use of an attack free 

dataset would make no sense.  As set out in the Background of the Invention, the 

inventors had previously established that using attack free data supplemented by 

attack data in constructing an anomaly detection model makes for a more robust 

system.  A83 (2:39-64); A398-402.  The inventors explained in one of their papers 

referenced in the specification that “[t]ypical approaches to anomaly detection 

methods require training over clean data (normal data containing no anomalies) in 

order to build a model that detects anomalies.  There are several inherent 

drawbacks to this approach.”  A674.  The paper describes constructing an anomaly 

detection model based on mixed data that “outperforms” other methods: “[t]he data 

provides normal and intrusion traces of system calls for several processes.” A677 

(emphasis added); A394.  Further, the paper describes constructing a model of 

normal computer system usage where “the normal data can effectively be 

modeled” by training on mixed data.  A679. 

Patent applications from the inventors incorporated into the specification, 

U.S. Patent Application No. 10/352,342 (the ’342 application) and 10/208,432 (the 
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’432 application), further support this point.  A89 (14:1-10).  The ’084 and ’306 

patent specification says that the invention can use “the data stored in the database” 

described in the ’342 application.  A89 (14:3-5).  The ’342 application in turn 

gives examples of data sets that are compatible with the techniques in the ’084 and 

’306 patents.  The ’342 application critiques data sets that are attack-free: “[t]his 

data can be very expensive because the process of manually cleaning the data is 

quite timing consuming. Also, some algorithms require a very large amount of 

normal data which increases the cost.”  A959-60; see also A967 (describing use of 

“heterogeneous data”); A987 (database containing data “which is suspected to 

contain intrusions”). 

At the District Court, Symantec argued that the ’342 application supports its 

construction by distinguishing anomaly detection from “misuse detection.”  A773-

74.  Symantec relied on a sentence in the ’342 application that states “These 

algorithms need to train over data that contains no intrusions.”  A776; A997.  But 

Symantec ignored the context of that sentence.  The ’342 application introduces the 

“no intrusion” anomaly detection algorithm as just the “traditional” approach.  

A996.  Moreover, in a paragraph that immediately follows, the ’342 application 

discusses “unsupervised anomaly detection algorithms” which “examine unlabeled 

data and attempt to detect intrusions buried within the unlabeled data.”  A997-98.  

This unlabeled data contains both normal and abnormal (intrusion) data.  The 

Case: 15-1146      Document: 20     Page: 70     Filed: 01/20/2015

 
Exhibit Page 70

Columbia Ex. 2011-70 
Symantec v. Columbia 

IPR2015-00375



 

 - 61 -  

 

algorithm can discriminate between the two classes because “intrusions are very 

rare compared to the normal data and they are also quantitatively different.”  Id.  

Nothing in the claims of the ’084 and ’306 patents excludes the use of 

unsupervised anomaly detection, which encompasses building models which are 

supplemented with data regarding abnormal processes. 

Further, an exemplary embodiment described in the specification includes 

using attack data in building the model.  The inventors observed that malicious 

programs often install quietly without using the Windows install shield program.  

A86 (7:60-8:1).  The inventors teach adjusting the model to take this unique 

behavior into account.  A86 (7:63-8:1).  The model used to detect attacks in this 

situation thus incorporates insights about attacks.  The District Court’s construction 

excludes this embodiment. 

The specification also teaches that attack data is needed in determining when 

a program is sufficiently abnormal to trigger a prediction that the behavior is 

malicious.  This is called a “threshold.”  The specification gives an example of a 

training phase using “normal program executions interspersed with attacks among 

normal process executions.”  A90 (15:18-21) (emphasis added).  The number of 

false positives on the data is computed using different threshold scores.  A90 

(15:52-67).  A final threshold value to use in a working system is selected based on 
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the performance of the system in training as applied to attack data.  A91 (17:24-

42).  The District Court’s constructions exclude this embodiment. 

3. The Prosecution History Contains No Disclaimer and Does 
Not Support the District Court’s Construction 

Symantec also incorrectly argued to the District Court that statements during 

prosecution limit the claims to models created with only attack free data.  The 

prosecution history contains no such assertions or disclaimer.  Indeed, the 

statements Symantec relied on establish that the claims encompass models 

generated with normal data supplemented with attack data. 

The statements at issue concern the examiner’s rejection of claims in light of 

a reference to U.S. Patent Publication US2003/0070003 (“Chong”).  Columbia 

argued that Chong did not disclose the claimed invention in part because Chong 

disclosed only using attack data: “attacker type,” “attack objective,” “attack 

intent,” “attacker location,” “attack methods,” “target type,” and “probing 

activity.”  A1313.  Columbia therefore argued that “Chong provides no teaching 

relating to whether processes are ‘normal’ . . . .”  A5804. 

The examiner did not agree with Columbia’s reading and concluded that 

Chong disclosed using both normal and attack data.  The examiner wrote: “Chong 

states in paragraph 0014 that any information corresponding to events associated 

with the computer network may be collected.”  A5813 (emphasis added).  If the 

’084 and ’306 patents were limited to models using exclusively “attack free” data, 
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then the examiner could not have cited Chong as supplying the “records of normal 

processes” limitation.  Columbia then overcame the rejection under Chong by 

pointing to other elements dealing with monitoring accesses to “operating system 

registry” and “determining the likelihood of observing an event that was not 

observed during the gathering of features.”  A5837.  The PTO agreed these were 

not present and allowed the claims.  A6083-84. 

There is no disclaimer.  See Micro Chem., Inc. v. Great Plains Chem. Co., 

Inc., 194 F.3d 1250, 1260-1261 (Fed. Cir. 1999) (no disclaimer when argued 

distinction over prior art was not basis for allowance). 

B. The District Court Incorrectly Construed “Anomaly” and 
“Anomalous,” Which Should Have Received Their Plain Meaning 

The claims and the specification do not contain words of manifest exclusion 

or restriction that limit the terms “anomaly” and “anomalous” to deviations from a 

model generated only with “attack free” data.  The meaning of “anomaly” and 

“anomalous” is a divergence from normal.  A566 (defining “anomalous” as 

“Deviating from the normal; irregular.”); A407-08.  The specification similarly 

describes “anomalous” as “behavior that deviates from normal behavior and which 

may correspond to an attack.”  A83 (2:34-37).  This is the proper construction the 

District Court should have adopted. 
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CONCLUSION 

The District Court’s claim construction rulings should be reversed.  

Columbia stipulated to a final judgment of non-infringement and invalidity of 

claims 1 and 16 of the ’544 patent based solely on the District Court’s incorrect 

claim constructions.  This Court should vacate the final judgment and remand for 

further proceedings in view of the correct claim constructions. 

   

Dated:  January 20, 2015    Respectfully Submitted, 

      /s/ David I. Gindler 

       David I. Gindler 
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Case 3:13-cv-00808-JRS   Document 151   Filed 11/04/14   Page 1 of 8 PageID# 4133

A1

IN THE UNITED STATES DISTRICT COURT 
FOR THE EASTERN DISTRICT OF VIRGINIA 

RICHiviOND DIVISION 

THE TRUSTEES OF COLUlvffiiA Civil Action No. 3:13-cv-00808-JRS 
UNIVERSITY IN THE CITY OF NEW 
YORK, 

Plaintiff JURY TRIAL DEMANDED 

vs. 

SYMANTEC CORPORATION, 

Defendant 

. 
FINAL .JUDGMENT PURSUANT TO RULE 54(b) OF THE 

FEDERAL RULES OF CIVIL PROCEDURE 

THIS MATTER is before the Court on the Stipulation And Joint Motion For Entry Of 

Final Judgment On All Infringement Claims Based On The Court's Claim Construction And 

Indefiniteness Rulings, And For An Order Staying Remaining Decoy Claims Pending Appeal of 

plaintiff The Trustees of Columbia University in the City of New York ("Columbia") and 

defendant Symantec Corporation ("Symantec") (pkt. I 4 7) ("Stipulation"). Good cause 

appearing, it is ORDERED and ADJUDGED that: 

1. On December 5, 2013, Columbia filed its Complaint against Symantec alleging, 

among other things, that Symantec infringed United States Patent No. 7,487,544 (the '544 

patent), 7,979,907 (the '907 patent), 7,448,084 (the '084 patent), 7,913,306 (the '306 patent), and 

8,074, 115 (the 'I 15 patent). 
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Case 3:13-cv-00808-JRS   Document 151   Filed 11/04/14   Page 2 of 8 PageID# 4134

A2

2. Columbia also alleged a claim for Correction of Inventorship with respect to 

United States Patent No. 8,549,643 (the '643 patent), a patent presently assigned to Symantec. 

The '643 patent relates to "decoy" technology. 

3. On December 24, 2013, Columbia filed its First Amended Complaint against 

Symantec alleging in its First through Sixth Claims for Relief that Symantec infringed the '544 

patent, the '907 patent, the '084 patent, the '306 patent, the '115 patent, and United States Patent 

No. 8,601,322 (the '322 patent) (collectively, the "Asserted Patents"). Dkt. 12. 

4. Columbia also alleged in its Seventh through Eleventh Claims for Relief claims 

for Fraudulent Concealment, Unjust Enrichment, and Conversion relating to Columbia 

intellectual property in "decoy" technology along with claims for Correction of lnventorship 

with respect to the '643 patent. 

5. On January 14, 2014, Symantec answered Columbia's First Amended Complaint, 

denying the material allegations and asserting, among other things, affirmative defenses of non­

infringement, invalidity and unenforceability of the Asserted Patents. Dkt. 20. 

6. On October 7, 2014, following briefing and a hearing, the Court issued a Claim 

Construction Order construing certain claims of the Asserted Patents. Dkt. 123. 

7. With respect to the '544 and '907 patents, the Court's Claim Construction Order 

provided, among other things, the following constructions and rulings: 

a. "Byte Sequence Feature": Feature that is a representation of machine code 

instructions of the executable. "Feature" is a property or attribute of data which 

may take on a set of values. 

b. "Wherein [the step of] extracting said byte sequence features from said 

executable attachment comprises creat[ing/e] a byte string representative of 

- 2-
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resources referenced by said executable attachment": Indefinite. The Court finds 

that the "resource information" feature extraction embodiment is separate and 

distinct from the "byte sequence feature" extraction embodiment. Because Claims 

1 and 16 of the '544 patent conflate these terms, and thus are inconsistent with the 

specification, the Court holds that this term is indefinite. See Allen Eng'g Corp. v. 

Bartell Indus., Inc., 299 F.3d 1336, 1349 (Fed. Cir. 2002). 

8. With respect to the '084 and '306 patents, the Court's Claim Construction Order 

provided, among other things, the following constructions for the '084 and '306 patents: 

a. "Probabilistic Model of Normal Computer System Usage": Model of 

typical attack-free computer system usage that employs probability. 

"Probability" is the likelihood that an event will occur or a condition will 

be present. 

b. "Normal Computer System Usage": Typical, attack free computer system 

usage. 

c. "Anomaly" I "Anomalous": Deviation/deviating from a model of typical, 

attack-free computer system usage. 

9. With respect to the '115 and '322 patents, the Court's Claim Construction Order 

provided, among other things, the following constructions: "Anomalous": Deviation/deviating 

from a model of typical, attack-free computer system usage. 

10. On October 23, 2014, the Court issued a Memorandum Order granting 

Columbia's Motion for Clarification of Claim Construction Order. (Dkt. 146). Columbia sought 

clarification on whether the Court intended its construction of the terms "probabilistic model of 

normal computer system usage" in the '084 I '306 patents and "anomalous" in the '084 I '306 

-3-
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patents and '115 I '322 patents- both of which the Court construed as requiring a "model of 

typical, attack-free computer system usage" - meant that the model may be generated with 

normal data and also attack data or required that the model must be generated with only "typical, 

attack free" data. (Dkt. 128). The Court's Order on the clarification motion stated that the 

Court's construction for both the '084/'306 patents and the '115/'322 patents required that the 

model "is generated with only attack-free data." (Dkt. 146). 

11. Based on the Court's October 7, 2014 Claim Construction Order (Dkt. 123) with 

respect to the '544 patent and '907 patent, and based on the Stipulation of the Parties, this final 

judgment of non-infringement of claims 6, I 0-14, 28-34, 3 7-41, and 43 of the '544 patent and 

claims I 0-15 and 18-20 of the '907 patent is entered against Columbia on the grounds that the 

MalHeur, Insight, SONAR, and MutantX systems employed in or with Norton Internet Security, 

Norton AntiVirus, Norton 360, Symantec Endpoint Protections, Symantec Endpoint Protection 

Small Business Edition, and Symantec Mail Security through the date of this judgment (i.e., all 

the accused products) do not satisfy the "byte sequence feature" limitations of those claims under 

the Court's construction of the term "byte sequence feature" to mean a "Feature that is a 

representation of machine code instructions of the executable." 

12. Based on the Court's October 7, 2014 Claim Construction Order (Dkt. 123) with 

respect to the '544 patent, and based on the Stipulation of the Parties, this final judgment of 

invalidity of claims 1 and 16 of the '544 patent (and their dependent claims 2-5 and 17-27) is 

entered against Columbia on the ground that the Court has ruled that the following term recited 

in these claims is indefinite under 35 U.S.C. § 112 ~ 2: "Wherein [the step of] extracting said 

byte sequence features from said executable attachment comprises creat[ing/e] a byte string 

representative of resources referenced by said executable attachment." The final judgment in 

-4-
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Paragraphs 11 and 12 herein fully resolves Columbia's First and Second Claims for Relief in the 

District Court, making the Claims ripe for appellate review of the Claim Construction Orders. 

13. Based on the Court's October 7, 2014 and October 23, 2014 Claim Construction 

Orders (Dkt. 123 & 146), and based on the Stipulation of the parties, this final judgment of non­

infringement of claims 1, 3-10, 14, 16-26, and 28 of the '084 patent and claims 1-4 and 7-8 of 

the '306 patent is entered against Columbia on the grounds that the MalHeur, Insight, SONAR, 

and MutantX systems employed in or with Norton Internet Security, Norton AntiVirus, Norton 

360, Symantec Endpoint Protections, and Symantec Endpoint Protection Small Business Edition 

through the date of this judgment (i.e., all the accused products) do not satisfy the "probabilistic 

model of normal computer system usage" and "anomaly I anomalous" limitations of those 

patents under the Court's construction of these terms to require a "model" "generated with only 

attack-free data" (Dkt. 146). Columbia also has reserved the right to address on appeal the 

Court's construction of the subsidiary phrase "normal computer system usage" in all locations in 

which it appears in the relevant claims. This final judgment fully resolves Columbia's Third and 

Fourth Claims for Relief in the District Court, making the Claims ripe for appellate review of the 

Claim Construction Orders. 

14. Based on the Court's October 7, 2014 and October 23, 2014 Claim Construction 

Orders (Dkt. 123 & 146), and the Stipulation of the parties, this final judgment of non­

infringement of claims 1-42 of the '115 patent and claims 1-27 of the '322 patent is entered 

against Columbia on the grounds that the MalHeur, Insight, SONAR, and MutantX systems 

employed in or with Norton Internet Security, Norton AntiVirus, Norton 360, Symantec 

Endpoint Protections, and Symantec Endpoint Protection Small Business Edition through the 

date of judgment (i.e., all of the accused products) do not satisfy the "anomalous" limitation of 

- 5-
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those patents under the Court's construction of this term to require "a model" that is "generated 

with only attack-free data" (Dkt. 146). This final judgment fully resolves Columbia Fifth and 

Sixth Claims for Relief in the District Court, making the Claims ripe for appellate review of the 

Claim Construction Orders. 

15. The present action presents more than one claim for relief. The final judgments 

referenced above are only directed to the First through Sixth Claims for Relief and do not alter 

Columbia's and Symantec's respective rights in Columbia's Seventh through Eleventh Claims 

for Relief regarding the "decoy" technology. The decoy technology claims relate to a distinct 

patent presently assigned to Symantec, which is not part of the same family as the patents in the 

First through Sixth Claims for Relief, and is not related to the Symantec products at issue in 

Columbia's First through Sixth Claims for Relief. As a result, the United States Court of 

Appeals for the Federal Circuit would not have to consider the same issues more than once if and 

when the Seventh through Eleventh Claims for Relief are appealed. 

16. In light of the foregoing, there is no just reason to delay the entry of a final, 

appealable judgment on Columbia's First through Sixth Claims for Relief pursuant to Rule 54(b) 

of the Federal Rules of Civil Procedure. Therefore, this Court enters final judgment as to the 

First through Sixth Claims for Relief as set forth above in order to conserve judicial resources, to 

avoid the time and expense of further discovery, motion practice and other proceedings in this 

Court, and to allow Columbia to appeal this Court's claim construction and indefiniteness 

rulings. 

17. Columbia and Symantec reserve their rights to raise on appeal any and all issues 

concerning claim interpretation and/or claim definiteness raised by either Party in the District 

- 6-
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Court and/or by the Court's Claim Construction Orders (Dkt. 123 & 146) that are the basis for 

this Order. 

18. Columbia and Symantec agree that, in the event that the United States Court of 

Appeals for the Federal Circuit modifies or reverses any portion of the District Court's Claim 

Construction Orders, or remands to the District Court for further proceedings, nothing in the 

Stipulation or in this Order shall be considered as an admission that Symantec is entitled to 

judgment of non-infringement or invalidity, or to waive or foreclose entry of judgment of 

infringement of any accused product under any of the Asserted Patents. Columbia and Symantec 

further agree that in the event that the United States Court of Appeals for the Federal Circuit 

modifies or reverses any portion of the District Court's Claim Construction Orders, or remands 

to the District Court for further proceedings, the Stipulation and this Order shall not be offered or 

admitted into evidence in such further proceedings. 

19. Columbia and Symantec agree that, in the event the United States Court of 

Appeals for the Federal Circuit modifies or reverses any portion of the District Court's Claim 

Construction Orders, or remands to the District Court for further proceedings, nothing in the 

Stipulation or this Order shall restrict in any way Symantec 's ability to re-raise any and all 

affirmative defenses previously raised in this case. 

- 7 -
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20. Columbia and Symantec in this litigation each shall bear its own costs and fees, 

including attorneys' fees. 

Let the Clerk file this Order electronically, notifying all counsel of record accordingly. 

It is so ORDERED. 

Date: //- 1-f -ll+ 
Richmond, Virginia 

- 8 -

/s/ 
James R. Spencer 
Senior U.S. District Judge 
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UNITED STATES DISTRICT COURT 
EASTERN DISTRICT OF VIRGINIA 

RICHMOND DIVISION 
 

THE TRUSTEES OF COLUMBIA 
UNIVERSITY IN THE CITY OF NEW YORK, 

 
Plaintiff, 

 
v. 

 
SYMANTEC CORPORATION, 
 

Defendant. 

 
 
 
 

Action No. 3:13-CV-808 
 

 
CLAIM CONSTRUCTION ORDER 

Pursuant to the directions of Markman v. Westview Instruments, Inc., 517 U.S. 370 

(1996), the Court hereby construes the following disputed terms of the allegedly infringed 

patents in the above referenced case: 

I. First Family of Patents (‘544 and ‘907) 

1. “Byte Sequence Feature”: Feature that is a representation of machine code 
instructions of the executable. “Feature” is a property or attribute of data which may 
take on a set of values. 
 

2. “Email Interface”: The component that reintegrates filtered email back into normal 
email traffic and may send the model generator 240 each attachment to be analyzed 
further. 

 
3. “Wherein [the step of] extracting said byte sequence features from said executable 

attachment comprises creat[ing/e] a byte string representative of resources 
referenced by said executable attachment”: Indefinite.  The Court finds that the 
“resource information” feature extraction embodiment is separate and distinct from 
the “byte sequence feature” extraction embodiment. Because Claims 1 and 16 of the 
‘544 patent conflate these terms, and thus are inconsistent with the specification, 
the Court holds that this term is indefinite. See Allen Eng’g Corp. v. Bartell Indus., 
Inc., 299 F.3d 1336, 1349 (Fed. Cir. 2002).    

 
II. Second Family of Patents (‘084 and ‘306) 

 
1. “Operating System Registry”: A database of information about a computer’s 

configuration, utilized by an operating system, organized hierarchically as a tree, 
with entries consisting of keys and values. 
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2. “Probabilistic Model of Normal Computer System Usage”: Model of typical attack-
free computer system usage that employs probability. “Probability” is the likelihood 
that an event will occur or a condition will be present.  

 
“Normal Computer System Usage”: Typical, attack-free computer system usage. 
 

3. “Anomaly” / “Anomalous”: Deviation/deviating from a model of typical, attack-free 
computer system usage.  
 

III. Third Family of Patents (‘115 and ‘322) 
 
1. “Anomalous”: Deviation/deviating from a model of typical, attack-free computer 

system usage. 
 
2. “Emulator”: Software, alone or in combination with hardware, that permits the 

monitoring and selective execution of certain parts, or all, of a program. 
 
3. “Application Community”: Members of a community running the same program or a 

selected portion of the program.  
 
Let the Clerk send a copy of this Order to all counsel of record. 

It is SO ORDERED. 

 

 
 
 
 
ENTERED this   _7th_       day of October 2014. 
 

 

 
_____________________/s/_______________	
James	R.	Spencer	
Senior	U.	S.	District	Judge	
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IN THE UNITED STATES DISTRICT COURT 
FOR THE EASTERN DISTRICT OF VIRGINIA 

RICHMOND DIVISION 
 
 
THE TRUSTEES OF COLUMBIA 
UNIVERSITY IN THE CITY OF NEW 
YORK, 
 

Plaintiff, 
v. 

 
SYMANTEC CORPORATION, 
 

Defendant.

 
 

Civil Action No. 3:13-CV-808 
 
 
            JURY TRIAL DEMANDED 

 
 MEMORANDUM ORDER 

THIS MATTER is before the Court on Plaintiff’s Motion for Clarification of Claim 

Construction Order (“Motion”) (ECF No. 128). Defendant filed a brief opposition on October 10, 

2014. The parties have waived oral argument on this matter. Therefore, the issue is ripe for 

disposition. The Motion is hereby GRANTED and the Claim Construction Order issued on 

October 7, 2014 (“Order”) (ECF No. 123) is clarified below.  

On October 9, 2010, Columbia filed the instant Motion asking the Court to clarify its 

Order with respect to the terms “probabilistic model of normal compute system usage” in the 

‘084/‘306 patents and “anomalous” in the ‘115/‘322 patents. This Court’s Order defined 

“probabilistic model of normal computer system usage” as a “[m]odel of typical attack-free 

computer system usage that employs probability.” The Court defined “anomalous” as 

“[d]eviation/deviating from a model of typical, attack-free computer system usage.” Specifically, 

Columbia now seeks clarification on whether the Court intended its construction to mean that 

the claimed model may be generated with normal data and also attack data or whether the 

model must be generated with only “typical, attack free” data. In the claim construction briefs, 

Columbia argued the former interpretation, while Symantec argued the latter.  

As an initial matter, the Court notes that its Order construed the specific disputed terms 
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____________________/s/_________________	
James	R.	Spencer	
Senior	U.	S.	District	Judge	

that were originally presented in the parties’ claim construction briefs. Columbia now seeks a 

further interpretation of the disputed terms to answer the question Columbia posed at the claim 

construction hearing, that is, “What information is used to construct the model?” (See Tr. 

Markman Hr’g 75:13–14.)  Despite not originally requesting a construction of such issue, the 

Court chooses to now clarify its ruling with respect to this question. See U.S. Surgical Corp. v. 

Ethicon, Inc., 103 F.3d 1554, 1568 (Fed. Cir. 1997) (emphasis added) (“Claim construction is a 

matter of resolution of disputed meanings and technical scope, to clarify and when necessary to 

explain what the patentee covered by the claims, for use in the determination of infringement.”).  

“Anomaly detectors . . . do not operate by looking for malicious activity directly. Rather, 

they look for deviations from normal activity.” (‘084 patent at 7:47–49.) Claim 1 of the ‘084 

patent mirrors this concept: “[A]nalyzing features from a record of a process that accesses the 

operating system registry to detect deviations from normal computer system usage to 

determine whether the access to the operating system registry is an anomaly.” (Id. at 22:30–

34) (emphasis added). Logically, if the anomaly detection systems detect deviations from 

normal activity, that normal activity must be “attack-free” activity. Applying this logic to the rest 

of claim 1, which gathers “features from records of normal processes” and then generates “a 

probabilistic model of normal computer system usage based on [those] features,” it follows that 

the model is generated with only attack-free data.  

Let the Clerk send a copy of this Order to all counsel of record  

It is SO ORDERED.  

 

 

 

ENTERED this __23rd__ day of October 2014.  
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IN THE UNITED STATES DISTRICT COURT 
FOR THE EASTERN DISTRICT OF VIRGINIA 

RICHMOND DIVISION 

THE TRUSTEES OF COLUMBIA Civil Action No. 3:13-cv-00808-JRS 
UNIVERSITY IN THE CITY OF NEW 
YORK, 

Plaintiff JURY TRIAL DEMANDED 

vs. 

SYMANTEC CORPORATION, 

Defendant 

ORDER 

THIS MAITER is before the Court on the Joint Motion for Entry ofFinal Judgment On 

All Infringement Claims Based On The Court's Claim Construction And Indefiniteness Rulings 

And For An Order Staying Remaining Decoy Claims Pending Appeal brought by plaintiff The 

Trustees of Columbia University in the City of New York ("Columbia") and defendant Symantec 

Corporation ("Symantec"). Having considered the pleadings filed by the parties and being fully 

informed in the matter, and for other good cause, the Joint Motion is GRANTED. 

Based on the parties' stipulation and as set forth therein, the Court hereby finds that there 

is no just reason to delay the entry of a final, appealable judgment on Columbia's First through 

Sixth Claims for Relief pursuant to Rule 54(b) of the Federal Rules of Civil Procedure. The 

Court will separately enter a form of Final Judgment on Columbia's First through Sixth Claims 

for Relief under Rule 54(b) of the Federal Rules of Civil Procedure. The prosecution histories of 

the asserted patents are made of record. The Court further finds that due to their size, such 
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Case 3:13-cv-00808-JRS Document 148-1 Filed 11/03/14 Page 2 of 2 PageiD# 4112 

prosecution histories are not to be electronically filed, imaged or maintained in the ECF system, 

and shall be filed with the Clerk on DVD or other appropriate removable storage medium. 

Columbia's Seventh through Eleventh Claims for Relief are hereby ordered STAYED 

pending resolution of any appeal on Columbia's First through Sixth Claims for Relief or further 

order from this Court. 

Let the Clerk file this Order electronically, notifying all counsel of record accordingly. 

It is so ORDERED. 

Date: //~ if- I t 
Richmond, Virginia 

- 2-

Is/ 
James R. Spencer 
Senior U.S. District Judge 
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c12) United States Patent 
Schultz et al. 

(54) SYSTEM AND METHODS FOR DETECTION 
OF NEW MALICIOUS EXECUTABLES 

(75) Inventors: Matthew G. Schultz, Ithaca, NY (US); 
Eleazar Eskin, Santa Monica, CA (US); 
Erez Zadok, Middle Island, NY (US); 
Manasi Bhattacharyya, Flushing, NY 
(US); Stolfo J. Salvatore, Ridgewood, 
NJ (US) 

(73) Assignee: The Trustees of Columbia University 
in the city of New York, NY, NY (US) 

( *) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 1122 days. 

(21) Appl. No.: 10/208,432 

(22) Filed: Jul. 30, 2002 

(65) Prior Publication Data 

US 2003/0065926 AI Apr. 3, 2003 

Related U.S. Application Data 

(60) Provisional application No. 60/308,622, filed on Jul. 
30, 2001, provisional application No. 60/308,623, 
filed on Jul. 30, 2001. 
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G06F 21100 (2006.01) 
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SYSTEM AND METHODS FOR DETECTION 
OF NEW MALICIOUS EXECUTABLES 

CLAIM FOR PRIORITY TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Patent Application Ser. Nos. 60/308,622, filed on Jul. 30, 
2001, entitled "Data Mining Methods for Detection of New 
Malicious Executables" and 60/308,623, filed on Jul. 30, 
2001, entitled "Malicious Email Filter," which are hereby 
incorporated by reference in their entirety herein. 

STATEMENT OF GOVERNMENT RIGHT 

The present invention was made in part with support from 
the United States Defense Advanced Research Projects 
Agency (DARPA) grant nos. FAS-526617 and SRTSC­
CU019-7950-l. Accordingly, the United States Government 
may have certain rights to this invention. 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document con­
tains material which is subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc­
tion by any one of the patent disclosure, as it appears in the 
Patent and Trademark Office patent files or records, but oth­
erwise reserves all copyright rights whatsoever. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to systems and methods for detecting 

malicious executable programs, and more particularly to the 
use of data mining techniques to detect such malicious 
executables in email attachments. 

2. Background 

2 
anti-virus community. To solve this problem, different IBM 
researchers applied Artificial Neural Networks (ANNs) to the 
problem of detecting boot sector malicious binaries. (The 
method of detection is disclosed in G. Tesauro eta!., "Neural 
Networks for Computer Virus Recognition, lEE Expert, 
11( 4): 5-6, August 1996, which is incorporated by reference 
in its entirety herein.) An ANN is a classifier that models 
neural networks explored in hnman cognition. Because of the 
limitations of the implementation of their classifier, they were 

10 unable to analyze anything other than small boot sector 
viruses which comprise about 5% of all malicious binaries. 

Using an ANN classifier with all bytes from the boot sector 
malicious executables as input, IBM researchers were able to 
identify 80-85% of unknown boot sector malicious 

15 executables successfully with a low false positive rate ( <1 %). 
They were unable to find a way to apply ANNs to the other 
95% of computer malicious binaries. 

In similar work, Aruold and Tesauro applied the same 
techniques to Win32 binaries, but because of limitations of 

20 the ANN classifier they were unable to have the comparable 
accuracy over new Win32 binaries. (This technique is 
described in Arnold eta!., :Automatically Generated Win 32 
Heuristic Virus Detection," Proceedings of the 2000 Interna­
tional Virus Bulletin Conference, 2000, which is incorporated 

25 by reference in its entirety herein.) 

30 

The methods described above have the shortcoming that 
they are not applicable to the entire set of malicious 
executables, but rather only boot-sector viruses, or only 
Win32 binaries. 

The technique is similar to data mining techniques that 
have already been applied to Intrusion Detection Systems by 
Lee et a!. Their methods were applied to system calls and 
network data to learn how to detect new intrusions. They 

35 
reported good detection rates as a result of applying data 
mining to the problem ofiDS. A similar framework is applied 
to the problem of detecting new malicious executables. (The 
techniques are described in W. Lee eta!., "Learning Patterns 
From UNIX Processes Execution Traces for Intrusion Detec-A malicious executable is a program that performs a mali­

cious function, such as compromising a system's security, 40 

damaging a system or obtaining sensitive information with­
out the user's permission. One serious security risk is the 
propagation of these malicious executables through e-mail 
attachments. Malicious executables are used as attacks for 
many types of intrusions. For example, there have been some 45 

high profile incidents with malicious email attachments such 

tion, AAAI Workshop in AI Approaches to Fraud Detection 
and Risk Management, 1997, pages 50-56, and W. Lee eta!., 
"A Data Mining Framework for Building Intrusion Detection 
Models," IEEE Symposium on Security and Privacy, 1999, 
both of which are incorporated by reference in their entirety 
herein.) 

Procmail is a mail processing utility which runs under 
UNIX, and which filters email; and sorts incoming email 
according to sender, subject line, length of message, key­
words in the message, etc. Procmail's pre-existent filter pro-

as the ILOVEYOU virus and its clones. These malicious 
attachments are capable of causing significant damage in a 
short time. 

Current virus scanner technology has two parts: a signa- 50 

ture-based detector and a heuristic classifier that detects new 

vides the capability of detecting active-content HTML tags to 
protect users who read their mail from a web browser or 
HTML-enabled mail client. Also, if the attachment is labeled 
as malicious, the system "mangles" the attachment name to 
prevent the mail client from automatically executing the 

viruses. The classic signature-based detection algorithm 
relies on signatures (unique telltale strings) of known mali­
cious executables to generate detection models. Signature­
based methods create a unique tag for each malicious pro­
gram so that future examples of it can be correctly classified 
with a small error rate. These methods do not generalize well 

55 attachment. It also has built in security filters such as long 
filenames in attachments, and long MIME headers, which 
may crash or allow exploits of some clients. 

However, this filter lacks the ability to automatically 
update its list of known malicious executables, which may 

to detect new malicious binaries because they are created to 
give a false positive rate as close to zero as possible. \\>'hen­
ever a detection method generalizes to new instances, the 
tradeoff is for a higher false positive rate. 

60 leave the system vulnerable to attacks by new and unknown 
viruses. Furthermore, its evaluation of an attachment is based 
solely on the name of the executable and not the contents of 
the attachment itself. 

Unfortunately, traditional signature-based methods may 
not detect a new malicious executable. In an attempt to solve 
this problem, the anti-virus industry generates heuristic clas­
sifiers by hand. This process can be even more costly than 65 

generating signatures, so finding an automatic method to 
generate classifiers has been the subject of research in the 

Accordingly, there exists a need in the art for a technique 
which is not limited to particular types of files, such as boot­
sector viruses, or only Win32 binaries, and which provides 
the ability to detect new, previously unseen files. 
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SUMMARY 

An object of the present invention is to provide a technique 
for predicting a classification of an executable file as mali­
cious or benign which is not dependent upon the format of the 
executable. 

Another object of the present invention is to provide a data 
mining technique which examines the entire file, rather than 
a portion of the file, such as a header, to classify the executable 
as malicious or benign. 10 

4 
include incrementing a count of the executable attachments 
classified as borderline. If the count of executable attach­
ments classified as borderline exceeds a predetermined 
threshold, the system may provide a notification that the 
threshold has been exceeded. 

In accordance with the invention, the objects as described 
above have been met, and the need in the art for a technique 
which can analyze previously unseen malicious executables, 
without regard to the type of file, has been satisfied. 

BRIEF DESCRIPTION OF THE DRAWINGS A further object of the present invention is to provide an 
email filter which can detect executables that are borderline, 
i.e., executables having features indicative of both malicious 
and benign executables, which may be detrimental to the 
model if misclassified. 

Further objects, features and advantages of the invention 
will become apparent from the following detailed description 

15 taken in conjunction with the accompanying figures showing 
illustrative embodiments of the invention. in which: These and other objects of the invention, which will 

become apparent with reference to the disclosure herein, are 
accomplished by a system and methods for classifYing an 
executable attachment in an email received by an email pro­
cessing application or program, which includes filtering the 20 

executable attachment from said email. The email processing 
application may be executed at an email server or a client or 
host email application. A byte sequence feature is subse­
quently extracted from the executable attachment. The 
executable attachment is classified by comparing said byte 25 

sequence feature of the executable attachment with a classi­
fication rule set derived from byte sequence features of a set 
of executables having a predetermined class in a set of 
classes. 

FIG. 1 is a flow chart illustrating an overview of a method 
of detection model generation in accordance with the present 
invention. 

FIGS. 2-4 illustrate a several approaches to binary profil­
ing. 

FIG. 5 illustrates sample classification rules determined 
from the features represented in FIG. 3. 

FIG. 6 illustrates sample classification rules found by a 
RIPPER algorithm. 

FIG. 7 illustrates sample classification rules found by a 
Naive Bayes algorithm. 

FIG. 8 is a flow chart illustrating a method of detecting 
malicious executables in accordance with the present inven­
tion. 

FIG. 9 is a simplified diagram illustrating the architecture 
of the malicious email detector and model generator in accor­
dance with the present invention. 

FIG. 10 is a flow chart, similar to FIG. 8, illustrating 
another method of detecting malicious executables in accor­
dance with the present invention. 

FIG. 11 is a plot illustrating the interactive effect of false 
positive rate and detection rate on the performance of the 
detection model or classifier in accordance with the present 

According to a preferred embodiment, extracting the byte 30 

sequence feature from said executable attachment comprises 
extracting static properties of the executable attachment, 
which are properties that do not require the executable to be 
run in order to discern. Extracting the byte sequence feature 
from the executable attachment may comprise converting the 35 

executable attachment from binary format to hexadecimal 
format. According to another embodiment, extracting the 
byte sequence features from the executable attachment may 
comprise creating a byte string representative of resources 
referenced by said executable attachment. 40 invention. 

Advantageously, classifYing the executable attachment 
may comprise predicting the classification of the executable 
attachment as one class in a set of classes consisting of mali­
cious and benign. The set of classes may also include a bor­
derline class. ClassifYing the executable attachment may 45 

comprise determining a probability or likelihood that the 
executable attachment is a member of each class in said set of 
classes based on said byte sequence feature. In one embodi­
ment, this probability is determined by use of a Naive Bayes 
algorithm. In another embodiment, the probability may be 50 

determined by use of a Multi-Naive Bayes algorithm. The 
determination of the probability may be divided into a plu­
rality of processing steps. These processing steps may then be 
performed in parallel. The executable attachment is classified 
as malicious if the probability that the executable attachment 55 

is malicious is greater than said probability that the execut­
able attachment is benign. The executable attachment is clas­
sified as benign if the probability that the executable attach­
ment is benign is greater than said probability that said 
executable attachment is malicious. The executable attach- 60 

ment is classified as borderline if a difference between the 
probability the executable attachment is benign and the prob­
ability the executable attachment is malicious is within a 
predetermined threshold. 

Throughout the figures, the same reference numerals and 
characters, unless otherwise stated, are used to denote like 
features, elements, components or portions of the illustrated 
embodiments. Moreover, while the subject invention will 
now be described in detail with reference to the figures, it is 
done so in connection with the illustrative embodiments. It is 
intended that changes and modifications can be made to the 
described embodiments without departing from the true 
scope and spirit of the subject invention as defined by the 
appended claims. 

DETAILED DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

This invention will be further understood in view of the 
following detailed description. 

An exemplary system and methods for detecting malicious 
email attachments was implemented in UNIX with respect to 
Sendmail (a message transfer agent (MTA) which ensures 
messages get from source message servers to destination 
message servers for recipients to access their email, as pro-
duced by Sendmail, Inc. or Emeryville, Calif.), using Proc­
mail (a publicly available program that processes e-mail mes­
sages received by the server, as further described in Stephen 

A further step in accordance with the method may include 
logging the class of the executable attachment. The step of 
logging the class of the executable attachment may further 

65 R. van den Berg and Philip Guenther, "Procmail," online 
publication as viewed on http://www.procmail.org, 2001). 
This system and methods uses data mining methods in order 

COL00000028 

Case: 15-1146      Document: 20     Page: 106     Filed: 01/20/2015

 
Exhibit Page 106

Columbia Ex. 2011-106 
Symantec v. Columbia 

IPR2015-00375



A50

US 7,487,544 B2 
5 

to create the detection model. The data mining methods are 
used to create classifiers to detect the malicious executables. 
A classifier is a classification rule set, or detection model, 
generated by the data mining algorithm that was trained over, 
i.e., derived from. a given set of training data. 

In accordance with the exemplary embodiment, a data 
mining-based filter integrates with Procmail's pre-existent 
security filter to detect malicious executable attachments. The 
filter uses a scoring system based on a data mining classifier 
to determine whether or not an attachment may be malicious. 10 

If an attachment's score is above a certain threshold it is 

6 
invention, the presence of specific feature values is used by 
the learning algorithms to calculate a probability or likeli­
hood of classification of the data. The features which are 
extracted in the exemplary embodiment are static properties, 
which are properties that do not require executing the binary 
in order to be detected or extracted. 

In the exemplary embodiment, hexdump was used in the 
feature extraction step. Hexdump, as is known in the art (Peter 
Miller, "Hexdump," on line publication 2000, http://gd.tu­
wien.ac.at/softeng/ Aegis/hexdump.html which is incorpo­
rated by reference in its entirety herein), is an open source tool 
that transforms binary files into hexadecimal files. The byte 
sequence feature is informative because it represents the 
machine code in an executable. After the "hexdumps" are 

considered malicious. The data mining classifier provides the 
ability to detect both the set of known malicious executables 
and a set of previously unseen, but similar malicious 
executables. 

A flowchart illustrating the process 10 of creating of the 
classification rule set is illustrated in FIG. 1. An early stage in 
the process is to assemble the dataset (step 12) which will be 
used for training, and for optionally testing the detection 
model. In the exemplary embodiment, this step included gath­
ering a large set of executables 14 from public sources. In 
addition, each example program in the data set is a Windows 

15 created, features are produced in the form illustrated in FIG. 
2 in which each line represents a short sequence of machine 
code instructions. In the analysis, a guiding assumption is 
made that similar instructions were present in malicious 
executables that differentiated them from benign programs, 

20 and the class of benign programs had similar byte code that 
differentiated them from the malicious executables. Each 

or MS-DOS format executable, although the framework is 
applicable to other formats. In the exemplary embodiment, 
the programs were gathered either from FTP sites, or personal 25 

computers in the Data Mining Lab at Columbia University. A 
total of 4,031 programs were used. 

In a subsequent stage, each data item, or executable, is 
labeled by class (step 16). The learning problem in the exem­
plary embodiment is defined with two classes, e.g., malicious 30 

and benign. As discussed above, a malicious executable is 
defined to be a program that performs a malicious function, 
such as compromising a system's security, damaging a sys­
tem, or obtaining sensitive information without the user's 
permission. A benign program does not perforn1 such mali- 35 

cious functions. Thus, the data set was divided into two 
groups: (1) malicious and (2) benign executables. In order to 
train the classification rule set, the classes of the executables 
must be known in advance. Of the 4,031 programs used in the 
data set, 3,301 were malicious executables and 1,000 were 40 

benign executables. The malicious executables consisted of 
viruses, Trojans, and cracker/network tools. There were no 
duplicate programs in the data set To standardize the data-set, 
an updated MacAfee's virus scanner, produced by McAfee-
. com Corporation ofSuunyvale, Calif., was used to label the 45 

programs as either malicious or benign executables. All labels 
were assumed to be correct for purposes of the analysis. 

Another step, which may be performed concurrently with 
or subsequent to the above step, is to divide the dataset into 
two subsets which include a training set and a test set (step 50 

18). The data mining algorithms use the training set to gen­
erate the classification rule sets. After training, a test set may 
be used to test the accuracy of the classifiers on a set of unseen 
examples. It is understood that testing the detection model is 
an optional step to determine the accuracy of the detection 55 

model, and, as such, may be omitted from the process. 
The next step of the method is to extract features from each 

executable (Step 20). Features in a data mining framework are 
defined as properties extracted from each example program in 
the data set, e.g., byte sequences, that a classifier uses to 60 

generate detection models. (Signatures, as distinguished 
from features, typically refer to a specific feature value, while 
a feature is a property or attribute of data (such as "byte 
sequence feature") which may take on a set of values. Signa­
ture based methods are methods that inspect and test data to 65 

determine whether a specific feature value is present in that 
data, and then classifY or alarm accordingly.) In the present 

byte sequence in the program is used as a feature. 
Many additional methods of feature extraction are also 

useful to carry out step 20, above, and are described herein. 
For example, octale encoding may be used rather than hexa­
decimal encoding. According to another approach to feature 
extraction is to extract resource information from the binary 
that provides insight to its behavior, which is also referred to 
herein as "binary profiling." According to this approach, a 
subset of the data may be examined which is in Portable 
Executable (PE) format (which is described in "Portable 
Executable Format," online publication as viewed on, http:// 
support.microsoft.com/support/kb/ articles/Q 121/4/60 .asp, 
1999, which is incorporated by reference in its entirety 
herein.) For instance, an executable in a standard Windows 
user interface may normally call the User Interfaces Dynami­
cally Linked Library (USER32.DLL). This approach 
assumes that if an executable being evaluated does not call 
USER32.DLL, then the program does not have the standard 
Windows user interface. To extract resource information from 
Windows executables, GNU's Bin-Utils may be used (as 
described in "GNU Binutils Cygwin, online publication as 
viewed on http://sourceware.cygnus.com/cygwin, 1999, 
which is incorporated by reference in its entirety herein) . 
GNU's Bin-Utils suite of tools can analyze PE binaries within 
Windows. In PE, or Col11lllon Object File Format (COFF), 
program headers are composed of a C:OFF header, an 
Optional header, at MS-DOS stub, and a file signature. All of 
the information about the binary is obtained from the program 
header without executing the unknown program but by exam­
ining the static properties of the binary, using libBFD, which 
is a library within Bin-Utils, to extract information in object 
format. Object format for aPE binary gives the file size, the 
names ofDLLs, and the names offunction calls within those 
DLLs and Relocation Tables. From the object format, it is 
possible to extract a set of features to compose a feature 
vector, or string, for each binary representative of resources 
referenced by the binary. 

Three types of features may be analyzed to determine how 
resources affect a binary's behavior: 

1. The list of D LLs used by the binary 
2. The list ofDLL function calls made by the binary 
3. The number of different function calls within each DLL 
A first approach to binary profiling used the DLLs loaded 

by the binary as features. Data can be modeled by extracting 
a feature or a set of features, and each set of features may be 
represented as a vector of feature values. The feature vector 
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comprised of a number of boolean values, e.g., 30, represent­
ing whether or not a binary used a DLL. Typically, not every 
DLL was used in all of the binaries, but a majority of the 
binaries called the same resource. For example, almost every 
binary called GDI32.DLL, which is the Windows NT Graph-
ics Device Interface and is a core component ofWinNT. The 
example vector given in FIG. 3 is composed of at least two 
unused resources: ADVAP132.DLL, the Advanced Windows 
API, and WSOCK32.DLL, the Windows Sockets API. It also 
uses at least two resources: AVI-CAP32.DLL, the AVI cap- 10 

ture API, and WINNM.DLL, the Windows Multimedia API. 

A second approach to binary profiling uses DLLs and their 
function calls as features. This approach is similar to the first, 
described above, but with added function call information. 

15 
The feature vector is composed of a greater number, e.g., 
2,229, of boolean values. Because some of the DLL' shad the 
same function names it was important to record which DLL 
the function came from. The example vector given in FIG. 4 
is composed of at least four resources. Two functions were 

20 
called in AD-VAP132.DLL: AdjustTokenPrivileges( ) and 
GetFileSecurityA( ), and two functions were called in 
WSOCK32.DLL: rccv() and send ( ). 

8 
According to this technique, each string in the binary was 
used as a feature for the classifier. 

Once the features were extracted using hexdump, or any 
other feature extraction method, such as those described 
herein, a classifier was trained to label a program as malicious 
or benign (Step 22). The classifier computes the probability or 
likelihood that a program is a member of a certain classifica­
tion given the features or byte strings that are contained in that 
program. (Throughout the description herein, the term "prob­
ability" will generally refer to probability or likelihood, 
except where specified.) 

In the exemplary embodiment, the classifier was a Naive 
Bayes classifier that was incorporated into Procmail, as will 
be described in greater detail herein. A Naive Bayes classifier 
is one exemplary machine learning algorithm that computes a 
model of a set oflabeled training data and subsequently may 
use that model to predict the classification of other data. Its 

A third approach to binary profiling counts the number of 
different function calls used within each DLL, and uses such 
counts as features. The feature vector included several, e.g., 
30, integer values. This profile provides an approximate mea­
sure of how heavily a DLL is used within a specific binary. 
This is a macro-resource usage model because the number of 
calls to each resource is counted instead of detailing refer­
enced functions. For example, if a program only called the 
recv( ) and send( ) functions of WSOCK32.DLL, then the 
count would be 2. It should be noted that this third approach 
does not count the number of times those functions might 
have been called. The example vector given in FIG. 5 35 
describes an example that calls two functions in 
ADVAPI32.DLL, ten functions in AVICAP32.DLL, eight 
functions in WINNM.DLL, and two functions from 
WSOCK32.DLL. 

output is a likelihood (based on mathematical probability 
theory) associated with each classification possible for the 
other data. The Naive Bayes algorithm computes the likeli­
hood that a program is a member each classification, e.g., 
malicious and benign, given the features or byte strings that 
are contained in that program. For instance, if a program 

25 contained a significant number of malicious byte sequences 
and a few or no benign sequences, then it labels that binary as 
malicious. Likewise, a binary that was composed of many 
benign features and a smaller number of malicious features is 
labeled benign by the system. In accordance with the inven-

30 tion, the assumption was made that there were similar byte 
sequences in malicious executables that differentiated them 
from benign programs, and the class of benign programs had 
similar sequences that differentiated them from the malicious 

Another method useful for feature extraction (step 20) does 
not require PE format for the executables, and therefore is 
applicable to Non-PE executables. Headers in PE format are 
in plain text, which allows extraction of the same information 
from the PE executables by extracting the plain text headers. 
Non-PE executables also have strings encoded in them. This 
information is used to classify the entire data set, rather than 
being limited only to the subset of data including libRFD, 
described above. To extract features from the data set accord­
ing to this third method, the GNU strings program was used. 
The strings program extracts consecutive printable characters 
from any file. Typically there are many printable strings in 
binary files. Some common strings found in the dataset are 
illustrated in Table 1. 

TABLE 1 

kernel microsoft windows getrnodulehandlea 
getversion getstartupinfoa win getrnodulefilenamea 
messageboxa closehandle null dispatchrnessagea 
library getprocaddress advapi getlasterror 
loadlibrarya exitprocess heap getcommandlinea 
reloc createfilea write file setfilepointer 
application showwindow time regclosekey 

Through testing it was observed that similar strings were 
present in malicious executables that distinguished them 
from benign programs, and similar strings in benign pro­
grams that distinguished them from malicious executables. 

executables. 
In particular, the Naive Bayes algorithm first computes (a) 

the probability that a given feature is malicious and (b) the 
probability that the feature is benign, by computing statistics 
on the set of training data. Then to predict whether a binary, or 

40 
collection of hex strings, was malicious or benign, those 
probabilities were computed for each hex string in the binary, 
and then the Naive Bayes independence assumption was 
used. The independence assumption was applied in order to 
efficiently compute the probability that a binary was mali-

45 cious and the probability that the binary was benign. 

Specifically, the Naive Bayes algorithm computes the class 
C of a program, given that the program contains a set of 
features F. (The Naive Bayes algorithm is described, for 
example, in T. Mitchell, "Naive Bayes Classifier," Machine 

50 Learning, McGraw-Hill, 1997, pp. 177-180, which is incor­
porated by reference in its entirety herein.) The term C is 
defined as a random variable over the set of classes: benign 
and malicious executables. That is, the classifier computes 
P(CIF), the probability that a program is in a certain class C 

55 given the program contains the set of features F. According to 
the Bayes rule, the probability is expressed in equation (1): 

60 

P(F I C)* P(C) 
P(CI F)= P(F) 

(l) 

To use the Naive Bayes rule, it is assumed that the features 
occur independently from one another. If a program F include 

65 the features Fr. F2 , F3 , ... , Fm then equation (1) may be 
re-written as equation (2). (In this description, subscripted 
features F x refers to a set of code strings.) 
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n P(F; 1 C)*P(C) 

P(CIF) 
i=l 

(2) 

10 
More formally, the Multi-Naive Bayes promotes a vote of 

confidence between all of the underlying Naive Bayes clas­
sifiers. Each classifier determines a probability of a class C 
given a set of bytes F which the Multi-Naive Bayes uses to 
generate a probability for class C given features F over all the 
classifiers. n P(Fj) 

j=l 

Each P(F 1 IC) is the frequency that feature string F 1 occurs in 
a program of class C. P(C) is the proportion of the class C in 
the entire set of programs. 

The likelihood of a class C given feature F and the prob­
abilities learned by each classifier NaiveBayes, are deter­
mined. In equation (4) the likelihood LNB(CIF) of class C 

10 given a set of feature F was computed: 

The output of the classifier is the highest probability class 
for a given set of strings. Since the denominator of equation 
(1) is the same for all classes, the maximum class is taken over 15 
all classes C of the probability of each class computed in (2) 
to get equation (3 ): 

(3) 20 

In equation (3), the term maxc denotes the function that 
returns the class with the highest probability. "Most Likely 25 

Class" is the class inC with the highest probability and hence 
the most likely classification of the example with features F. 

INBI 

LNs(CI F)= n PNs;(CI F)/ PNs;(C) 
i=l 

(4) 

where NB, is a Naive Bayes classifier and NB is the set of all 
combined Naive Bayes classifiers (in this case 6). PNBi(CIF) 
(generated from equation (2)) is the probability for class C 
computed by the classifier NaiveBayes, given F divided by the 
probability of class C computed by NaiveBayes,. Each P NBi 

(CIF) was divided by PNBi(C) to remove the redundant prob­
abilities. All the terms were multiplied together to compute 
LNB(CIF), the final likelihood ofC given F. INBI is the size of 
the set NB such that NB,ENB. 

The output of the multi-classifier given a set of bytes F is 
the class of highest probability over the classes given LNB 

(CIF) and P NB(C) the prior probability of a given class, which 
is represented by equation (5), below. 

(5) 

To train the classifier, a record was made for how many 
programs in each class contained each unique feature. This 

30 
information was used to classifY a new program into an 
appropriate class. Feature extraction, as described above, was 
used to determine the features contained in the program. 
Then, equation (3) was applied to compute the most likely 
class for the program. 

Most Likely Class is the class inC with the highest probabil­
ity hence the most likely classification of the example with 

35 features F, and maxc returns the class with the highest likeli­
hood. The Naive Bayes method is a highly effective technique, 

but also requires significant amounts of main memory, such 
as RAM, e. g., greater than 1 gigabyte, to generate a detection 
model when the data or the set of features it analyzes is very 
large. To make the algorithm more efficient, the problem may 40 
be divided into smaller pieces that would fit in memory and 
generate a classifier for each of the subproblems. For 
example, the subproblem was to classify based on 16 subsets 

Additional embodiments of classifiers are described 
herein, which are also useful to classifY an executable as 
benign or malicious. Alternatively, inductive rule learners 
may be used as classifiers. Another algorithm, RIPPER, is an 
inductive rule learner (RIPPER is described in W. Cohen, 
"Learning Trees and Rules withSet-ValuedFeatures," Ameri­
can Association for Artificial Intelligence, 1996, which is 
incorporated by reference in its entirety herein). This algo­
rithm generates a detection model composed of resource rules 
that was built to detect future examples of malicious 
executables. RIPPER is a rule-based learner that builds a set 
of rules that identifY the classes while minimizing the amount 
of error. The error is defined by the number of training 

of the data organized according to the first letter of the hex 
string. This data mining algorithm is referred to as "Multi- 45 
Naive Bayes." This algorithm was essentially a collection of 
Naive Bayes algorithms that voted on an overall classification 
for an example. The Multi-Naive Bayes calculations are 
advantageously executed in a parallel and distributed com­
puting system for increased speed. 

According to this approach, several Naive Bayes classifiers 
may be trained so that all hex strings are trained on. For 
example, one classifier is trained on all hex strings starting 
with an "A", and another on all hex strings starting with an 
"0". This is done 16 times and then a voting algorithm is used 55 

to combine their outputs. Each Naive Bayes algorithm clas­
sified the examples in the test set as malicious or benign, and 
this counted as a vote. The votes are combined by the Multi­
Naive Bayes algorithm to output a final classification for all 
the Naive Bayes. 

50 examples misclassified by the rules. This algorithm may be 
used with libBFD information as features, which were 
described above. 

As is known in the art, an inductive algorithm learns what 
a malicious executable is, given a set of training examples. 
Another useful algorithm for building a set of rules is Find-S. 
Find-S finds the most specific hypothesis that is consistent 
with the training examples. For a positive training example 
the algorithm replaces any feature in the hypothesis that is 
inconsistent with the training example with a more general 

60 feature. For example, four features seen in Table 2 are: 
According to the exemplary embodiment, the data may be 

divided evenly into several sets, e.g. six sets, by putting each 
ith line in the binary into the (i mod n)th set where n is the 
number of sets. For each set, a Naive Bayes classifier is 
trained. The prediction for a binary is the product of the 65 

predictions of then classifiers. In the exemplary embodiment, 
6 classifiers (n=6) were used. 

1. 
2. 
3. 
4. 

TABLE2 

"Does it have a GUI?" 
"Does it perform a malicious function?" 
"Does it compromise system security?" 
"Does it delete files?" 
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TABLE 2-continued 

and finally the classification label "Is it malicious?" 

Has aGUI? 

yes 
no 
yes 
yes 

Malicious 
Function? 

yes 
yes 
no 
yes 

Compromise 
Security? 

yes 
yes 
no 
yes 

Deletes 
Files? 

no 
yes 
yes 
yes 

Is it 
malicious? 

yes 
yes 
no 
yes 

The defining property of any inductive learner is that no a 
priori assumptions have been made regarding the final con­
cept. The inductive learning algorithm makes as its primary 
assumption that the data trained over is similar in some way to 
the unseen data. 

A hypothesis generated by an inductive learning algorithm 
for this learning problem has four features. Each feature will 
have one of these values: 

12 
an executable, given the existence of certain features. The 
Naive Bayes rules take the form ofP(FIC), the probability of 
an feature F given a class C. The probability for a string 
occurring in a class is the total number of times it occurred in 
that class's training set divided by the total number of times 
that the string occurred over the entire training set. An 
example of such hypotheses are illustrated in FIG. 7. Here, the 
string "windows" was predicted to more likely occur in a 
benign program and string"* .COM" was more than likely in 

10 a malicious executable program. 
This approach compensates for those instances where a 

feature, e.g., a hex string, occurs in only one class in the 
training data. When this occurs, the probability is arbitrarily 
increased from 0/n, where n is the number of occurrences, to 

15 1/n. For example, a string (e.g. "AAAA") may occur in only 
one set, e.g., in the malicious executables. The probability of 
"AAAA" occurring in any future benign example is predicted 
to be 0, but this is an incorrect assumption. If a program was 

20 
1. T, truth, indicating any value is acceptable in this posi-

written to print out "AAAA" it will always be tagged a mali­
cious executable even if it has other strings in it that would 
have labeled it benign. In FIG. 6, the string"* .COM" does not 

tion, 
2. a value, either yes, or no, is needed in this position, or 

occur in any benign programs so the probability of"* .COM" 
occurring in class benign is approximated to be 1/12 instead 
of 0/11. This approximates real world probability that any 3. a _l, falsity, indicating that no value is acceptable for this 

position. 
For example, the hypothesis < T, T, T, T > and the 

hypothesis (yes, yes, yes, no) would make the first example in 
Table 2 true. < T, T, T, T >would make any feature set true 
and <yes, yes, yes, no> is the set of features for example one. 

25 string could occur in both classes even if during training it was 
only seen in one class. 

The rule sets generated by the Multi-Naive Bayes algo­
rithm are the collection of the rules generated by each of the 
component Naive Bayes classifiers. For each classifier, there 

Of all the hypotheses, values 1 is more general than 2, and 
2 is more general than 3. For a negative example, the algo­
rithm does nothing. Positive examples in this problem are 
defined to be the malicious executables and negative 
examples are the benign programs. 

The initial hypothesis that Find-S starts with is <_l, _l, _l, 
_l>. This hypothesis is the most specific because it is true over 
the fewest possible examples, none. Examining the first posi­
tive example in Table 2, <yes, yes, yes, no>, the algorithm 
chooses the next most specific hypothesis <yes, yes, yes, no>. 
The next positive example, <no, no, no, yes>, is inconsistent 
with the hypothesis in its first and fourth attribute ("Does it 
have a GUI?" and "Does it delete files?") and those attributes 

30 is a rule set such as the one in FIG. 6. The probabilities in the 
rules for the different classifiers may be different because the 
underlying data that each classifier is trained on is different. 
The prediction of the Multi-Naive Bayes algorithm is the 
product of the predictions of the underlying Naive Bayes 

35 classifiers. 
RIPPER's rules were built to generalize over unseen 

examples so the rule set was more compact than the signature­
based methods. For the data set that contained 3,301 mali­
cious executables the RIPPER rule set contained the five rules 

40 in FIG. 6. 

in the hypothesis get replaced with the next most general 
attribute, T 

Here, a malicious executable was consistent with one of 
four hypotheses: 

1. it did not call user32.EndDialog( ) but it did call 
kemel32.EnumCalendarinfoA() 

2. it did not call user32.LoadiconA( ), 
kemel32.GetTempPathA( ), or any function in advapi32.dll 

3. it called shei132.ExtractAssociatedlconA( ), 
4. it called any function in msvbbm.dll, the Microsoft 

Visual Basic Library 
A binary is labeled benign if it is inconsistent with all of the 

malicious binary hypotheses in FIG. 6. 

The resulting hypothesis after two positive examples is < 45 

, yes, yes, T>. The algorithm skips the third example, a 
J'gative example, and finds that this hypothesis is consistent 
with the final example in Table 2. The final rule for the 
training data listed in Table 2 is < T, yes, yes, T >. The rule 
states that the attributes of a malicious executable, based on 50 

training data, are that it has a malicious function and compro­
mises system security. This is consistent with the definition of Each data mining algorithm generated its own rule set 24 to 

evaluate new examples. The detection models are stored for 
subsequent application to classifY previously unseen 

55 examples, as will be described below. An optional next step is 
to test the classification rule set 24 against the test data (step 
26). This step is described in greater detail below. 

a malicious executable stated above. Thus, it does not matter 
in this example if a malicious executable deletes files, or if it 
has a GUI or not. 

RIPPER looks at both positive and negative examples to 
generate a set of hypotheses that more closely approximate 
the target concept while Find-S generates one hypothesis that 
approximates the target concept. 

Each of the data mining algorithms generated its own clas- 60 

sification rule set 24 to evaluate new examples. The classifi­
cation rule sets are incorporated in the filter to detect mali­
cious executables, as will be described below in the 
exemplary embodiment. For purposes herein, a classification 
rule set is considered to have the standard meaning in data 65 

mining terminology, i.e., a set of hypotheses that predict the 
classification, e.g., malicious or benign, of an example, i.e., 

The process 100 of detecting malicious emails in accor­
dance with the invention is illustrated in FIG. 8. A first step is 
to receive the emails at the server (step 102). In the exemplary 
embodiment, the mail server is Sendmail. Procmail is a pub-
licly available program that processes e-mail messages 
received by the server and looks for particular information in 
the headers or body of the message, and takes action on what 
it finds. 

Subsequently, the emails are filtered to extract attachments 
or other components from the email (step 104). The execut-
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able attachments may then be saved to a file. In the exemplary 
embodiment, html_trap.procmail, a commonly-available 
routine, has been modified to include a call to a novel routine, 
parser3, which performs the functions of filtering attach­
ments. The routine parser3 includes a call to the routine 
extractAttachments, for example, which extracts executable 
attachments and other items of the email and saves them to a 
file, e.g., $files_full_ref, and also provides a string containing 
a directory of where the executable attachments are saved, 
e.g., $dir, and a reference to an array containing a list of the 
file names, e.g., $files_ref. 

Features in the executable attachment are extracted (step 
106), and those features are subsequently analyzed and used 
to classifY the executable attachment as malicious or benign. 
In the exemplary embodiment, the routine parser3 also 
includes a call to the routine scanAttachments, which in turn 
calls the routine hexScan, which performs the feature extrac­
tion of step 106. In particular, hexScan includes a function 
call to hexdump, a commonly-available routine which trans­
forms the binary files in the attachment into a byte sequence 
of hexadecimal characters, as described above and illustrated 
in FIG. 2. The resulting hexadecimal string is saved as "/tmp/ 
$$.hex," These strings ofhexadecimal code are the "features" 
which are used in the classification, described below. This 
byte sequence is useful because it represents the machine 
code in an executable. In addition, this approach involves 
analyzing the entire binary, rather than portions such as head­
ers, an approach which consequently provides a great deal of 
information about the executable. It is understood that the 
feature extraction step described herein is alternatively per­
formed with a binary profiling method in another embodi­
ment, as described above and illustrated in FIGS. 3-4, and 
with a GNU strings method, also described above and illus­
trated in Table 1. In these embodiments, the step of calling the 
routine hexScan in scanAttachments is replaced by calls to 
routines that perform the binary profiling or GNU strings 
analysis. 

The features extracted from the attachment in step 106 are 
evaluated using the classification rule set as described above, 
and the attachment is classified as malicious or benign (step 
108). In the exemplary embodiment the routine hexScan 
subsequently calls the routine senb, which calculates 
"scores" associated with the attachments. (As will be 
described below, such scores are representative of whether a 
binary is malicious or benign.) The routine senb evaluates the 
features, e.g., the hexadecimal string "/tmp/$$.hex"produced 

14 
it is benign; 60% chance malicious and 40% chance benign; 
45% chance malicious and 55% chance benign, etc.). Due to 
the similar probabilities, borderline executables are likely to 
be mislabeled as either malicious or benign. Since borderline 
cases could potentially lower the detection and accuracy rates 
by being misclassified, it is desirable to identifY these border­
line cases, properly classifY them as malicious or benign, and 
update the classification rule set to provide increased accu­
racy to the detection of malicious executables. The larger the 

10 data set that is used to generate models, then the more accu­
rate the detection models will be. To execute this process, the 
system identifies programs as borderline using the criteria 
described below, and archives the borderline cases. At peri­
odic intervals, the system sends the collection of these bor-

15 derline cases to a central server, by the system administrator. 
Once at a central repository, such as data repository 244, these 
binaries can then be analyzed by experts to determine whether 
they are malicious or not, and subsequently included in the 
future versions of the detection models. Preferably, any 

20 binary that is determined to be a borderline case will be 
forwarded to the repository and wrapped with a warning as 
though it were a malicious attachment 

A exemplary metric to identifY borderline cases, which 
may be implemented in hexScan or a similar routine is to 

25 define a borderline case to be a case where the difference 
between the probability, or score, that the program is mali­
cious and the probability, or score, it is benign is below a 
threshold. This threshold may be set based on the policies of 
the host. For example, in a secure setting, the threshold could 

30 be set relatively high, e.g., 20%. In this case, all binaries that 
have a 60/40 split are labeled as borderline. In other words, 
binaries with a 40-60% chance (according to the model) of 
being malicious and 40-60% chance of being benign would 
be labeled borderline. This setting can be determined by the 

35 system administrator. An exemplary default setting of 51.25/ 
48.75 may be used with a threshold of 2.5%, which was 
derived from testing. 

The routine scanAttachments receives the output ofhexS­
can which is a determination of whether the program is mali-

40 cious or benign, and assigns the string a boolean "0" or "1." 
(Where the probabilities of being malicious and of being 
benign are similar, it may be labeled borderline, as discussed 
above.) Subsequently, scanAttachments invokes the routine 
md5log to associate a unique identifier for each attachment in 

45 by using the MD5 algorithm, (as described in R. Rivest, "The 
MD5 Message Digest Algorithm," Internet RFC1321, Pari! 
1 992, which is incorporated by reference in its entirety 
herein.) The input to MD5 is the hexadecimal representation 
of the binary. These identifiers are than kept in a log along 

by hexdump against the rules in the Classification Rule Set, 
e.g., "/etc/procmail/senb/aids_model.txt," and returns with a 
first score associated with the probability that the string is 
malicious and a second score associated with the probability 
that the string is benign. In order to obtain these scores, the 
routine senb invokes the routine check_file, which performs 
the Naive Bayes analysis on the features as described above in 
equation (1)-(5), and calculates scores associated with the 
probability that the program is malicious and benign. \\There 55 

the Multi-Naive Bayes algorithm is used, the data is parti­
tioned into components which are processed in parallel to 
increase processing speed. The routine hexScan then deter­
mines which of the scores is greater, e.g., malicious or benign. 

50 with other information such as whether the attachment was 
malicious, benign, or borderline and with what certainty the 
system made those predictions (Step 112). 

The results of this analysis are sent from parser3 to html­
trap.procmail, which inserts warnings that the file may be 
malicious and may quarantine the attachment. The routine 
html-trap.procmail reintegrates filtered email back into nor­
mal email traffic. 

An exemplary system 200 in accordance with the invention 
is illustrated in FIG. 9. The system 200 includes a malicious 
email detector 220 and model generator 240. The system may 
resides on the server of a computer or on a host or client of the 
computer system to receive emails before they are forwarded 
to users of the system. 

In other embodiments, a different classification algorithm 60 

may be implemented, such as a function call to the RIPPER 
algorithm which will evaluate the features extracted in step 
106 to determine whether they are malicious or benign. 

A further step may be to identifY the programs as border­
line (step 110). Borderline executables are defined herein as 65 

programs that have similar probabilities of being benign and 
malicious (e.g., 50% chance it is malicious, and 50% chance 

The malicious email detector may include an email filter 
222, a feature extractor 224, a rule repository 226, a rule 
evaluator 230, and an email interface 232. In the exemplary 
embodiment, the email filter 222 may include the routine 
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Parser3 which filters attachments from the emails as 
described above. Parser3 calls the routine extractAttach­
ments, for example, which extracts attachments and other 
items of the email. The email filter 222 may also filter out 
updated classification rules sent by the model generator 240, 
and forward them to the rule repository 226. 

16 
the function of the filter interface 242. The data repository 244 
receives copies of attachments from the filter interface 42, and 
stores the attachments. In the exemplary embodiment, the 
attachments may be stored as a datafile. 

The feature extractor 246 accesses attachments stored in 
the data repository 244, and then extracts features from the 
attachments. This function may be performed by invoking the 
hexdump routine, as described above. The learning algorithm 
executor 248 receives features from the feature extractor 246 
and executes learning algorithms on the features extracted 
from the attachments to generate an updated classification 
rule set. In the exemplary embodiment, the routine senb calls 
the routine test_table, which in turn invokes test_class. 
Test_ class invokes test_file, which performs the function of 
creating the updated classification rule set, including per­
forming the Naive Bayes calculations, described above in 
equations (1 )-(5). 

In an exemplary embodiment, the filter interface 242 
receives the classification model rule set from the learning 

The feature extractor 224 receives the executable attach­
ments and extracts those byte sequence features which will be 
analyzed and used to classifY the program as malicious or 
benign. In the exemplary embodiment, the routine scanAt- 10 

tachments calls the routine hexScan, which performs the 
function of the feature extractor 224. In particular, hexScan 
includes a function call to hexdump, which transforms the 
binary files into hexadecimal strings. The rule repository 226 
may be a database which contains the classification rule set 15 

generated by a data mining model in a process such as that 
illustrated in FIG. 1. The rule evaluator 23 0 evaluates the byte 
sequence features extracted from the attachments by the fea­
ture extractor 224 using the classification rule set provided by 
the rule repository 226. 

In the exemplary embodiment, the routine hexScan calls 
the routine senb, which performs the function of rule evalu­
ator 230. The routine senb evaluates the byte sequence fea­
tures, e.g., the hexadecimal string against the classification 
rule set in the rule repository 26, e.g., "/etc/procmail/senb/ 25 

aids_model.txt," and returns with a score that the string is 
malicious and a score that the string is benign. The rule 
evaluator 230 may also provide an indication that the string is 
borderline. 

20 algorithm executor 248 and transmits the classification model 
rule set to the malicious email detector 220, where it is used to 
update the classification rule set stored in the rule depository 
226. According to the exemplary embodiment, portions of the 

The results of this analysis may be sent to the email inter- 30 

face 232, which reintegrates filtered email back into normal 
email traffic 300, and which may send the model generator 
240 (described below) each attachment to be analyzed fur­
ther. If the program was considered malicious by the rule 
evaluator 230, the email interface 232 may add warnings to 35 

the email or quarantine the email. In the exemplary embodi­
ment, the routine html-trap.procmail performs this function. 

The classification rule set may require updates periodi­
cally. For example, after a nUlllber of borderline cases have 
been identified by the rule evaluator 230, it may be desirable 40 

to generate a new detection model, and subsequently distrib­
ute the updated models. This embodiment of the system300, 
which is illustrated in FIG. 10, is substantially identical to 
system100, with the differences noted herein. For example, 
the email filter 222 may maintain a running counter of the 45 

number ofborderline executables identified (step 150 of FIG. 
9). When a predetermined threshold is exceeded (propor­
tional to the overall traffic of email received) (step 152 of FIG. 
9), a notification may be sent that the threshold has been 
exceeded (step 154 of FIG. 9). Subsequently, the model gen- 50 

erator 240 may be invoked to generate an updated classifica­
tion rule set 

A new classification rule set is generated at the model 
generator 240 by running the data mining algorithm on the 
new data set that contains the borderline cases along with 55 

their correct classification (as determined by expert analysis), 
and the existing training data set. As described herein, the data 
mining algorithm may be a Naive Bayes or a Multi-Naive 
Bayes algorithm, or any other appropriate algorithm for cal­
culating the probability or likelihood that a feature is a mem- 60 

ber of a class. When the Multi-Naive Bayes analysis is used 
herein, the data is partitioned into several components and all 
the components may be processed in parallel to increase 
speed. This updated model may then be distributed to the 
malicious email detector 220. The filter interface 242 may 65 

receive copies of all attachments from the email interface 232. 
In the exemplary embodiment, the routine senb may perform 

classification model rule set that have changed may be dis­
tributed, rather than the entire classification model rule set, to 
improve efficiency. In order to avoid constantly sending a 
large model from the model generator 240 to the malicious 
email detector 220, the administrator is provided with the 
option of receiving this smaller file. Using the update algo­
rithm, the older model can then be updated. The full model 
will also be available to provide additional options for the 
system administrator. Efficient update of the model is pos­
sible because the underlying representation of the models is 
probabilistic. Thus, the model is a count of the number of 
times that each byte string appears in a malicious program 
versus the number of times that it appears in a benign pro-
gram. An update model can then be easily summed with the 
older model to create a new model. From these counts the 
algorithm computes the probability that an attachment is 
malicious in a method described above. In order to combine 
the models, the counts of the old model are sUlllllled with the 
new information. 

As shown in Table 3, in model A, the old detection model, 
a byte string occurred 99 times in the malicious class, and one 
time in the benign class. In model B, the update model, the 
same byte string was found three times in the malicious class 
and four times in the benign class. The combination of models 
A and B would state that the byte string occurred 102 times in 
the malicious class and five times in the benign class. The 
combination of A and B would be the new detection model 
after the update. 

TABLE3 

Model A (old) 

The byte string occurred in 99 malicious executables 
The byte string occurred in 1 benign executable 

Model B (new) 

The byte string occurred in 3 malicious executables 
The byte string occurred in 4 benign executables. 

Model C (update) 

The byte string occurred in 102 malicious executables 
The byte string occurred in 5 benign executables. 

To compare the results of the methods and system 
described herein with traditional methods, a prior art signa-
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ture-based method was implemented (step 26, of FIG. 1). 
First, the byte-sequences that were only found in the mali­
cious executable class were calculated. These byte-sequences 
were then concatenated together to make a unique signature 
for each malicious executable example. Thus each malicious 
executable signature contained only byte-sequences found in 
the malicious executable class. To make the signature unique, 
the byte-sequences found in each example were concatenated 
together to form one signature. This was done because a 
byte-sequence that was only found in one class during train- 10 

ing could possibly be found in the other class during testing, 
and lead to false positives when deployed. 

Profile Type 

Signatnre 
Method 
Data Mining 
Method 

TABLE4 

Detection Rate False Positive Rate 

33.96% 0% 

97.76% 6.01% 

Overall Accuracy 

49.31% 

96.88% 

FIG. 11 displays the plot 400 of the detection rate 402 vs. 
false positive rate 404 using Receiver Operation Characteris­
tic curves, as described in K. H. Zou et a!., "Smooth Non­
Parametric ROC Curves for Continuous Diagnostic Tests," 
Statistics in Medicine, 1997. Receiver Operating Character-The virus scanner that was used to label the data set (step 

16, above) contained signatures for every malicious example 
in the data set, so it was necessary to implement a similar 
signature-based method. This was done to compare the two 
algorithms' accuracy in detecting new malicious executables. 
In the tests, the signature-based algorithm was only allowed 
to generate signatures for the same set of training data that the 
data mining method used. This allowed the two methods to be 
fairly compared. The comparison was made by testing the two 
methods on a set of binaries not contained in the training set. 

To quantify the performance of the method described 
herein, statistics were computed on the performance of the 
data mining-based method, tables 4 and 5 are included herein 
which include counts for true positives, true negatives, false 
positives and false negatives. A true positive, TP, is a mali­
cious example that is correctly classified as malicious, and a 
true negative, TN, is a benign example that is correctly clas­
sified as benign. A false positive, FP, is a benign program that 
has been mislabeled by an algorithm as malicious, while a 
false negative, FN, is a malicious executable that has been 
mis-classified as a benign program. 

The overall accuracy of the algorithm is calculated as the 
number of programs the system classified correctly divided 
by the total number ofbinaries tested. The detection rate is the 
number of malicious binaries correctly classified divided by 
the total number of malicious programs tested. 

The results were estimated over new executables by using 
5-fold cross validation technique, as described in R. Kohavi, 

IS istic (ROC) curves are a way of visualizing the trade-offs 
betweendetectionandfalsepositiverates. In this instance, the 
ROC curve shows how the data mining method (illustrated in 
dashed line 405) can be configured for different environ­
ments. For a false positive rate less than or equal to 1% the 

20 detection rate would be greater than 70%, and for a false 
positive rate greater than 8% the detection rate would be 
greater than 99%. Thus, more secure settings would select a 
threshold setting associated with a point on the data mining 
line towards the right (indicated by arrow 408), and applica-

25 tions needing fewer false alarms should choose a point 
towards the left (indicated by arrow 406). 

The performance of the models in detecting known 
executables was also evaluated. For this task, the algorithms 
generated detection models for the entire set of data. Their 

30 perfom1ance was then evaluated by testing the models on the 
same training set. 

As shown in Table 5, both methods detected over 99% of 
known executables. The data mining algorithm detected 
99.87% of the malicious examples and misclassified 2% of 

35 the benign binaries as malicious. However, the signatures for 
the binaries that the data mining algorithm misclassified were 
identified, and the algorithm can include those signatures in 
the detection model without lowering accuracy of the algo­
rithm in detecting unknown binaries. After the signatures for 

40 the executables that were misclassified during training had 
been generated and included in the detection model, the data 
mining model had a 100% accuracy rate when tested on 
known executables. "A Study of Cross-Validation and Bootstrap for Accuracy 

Estimation and Model Selection," IJCAI, 1995. Cross-vali­
dation, as is known in the art, is the standard method to 

45 
estimate the performance of predictions over unseen data in 
Data Mining. For each set of binary profiles the data was 
partitioned into five equal size partitions. Four of the parti­
tions were used for training a model and then evaluating that 
model on the remaining partition. Then the process was 
repeated five times leaving out a different partition for testing 
each time. This provided a measure of the method's accuracy 

Profile Type 

Signatnre 
Method 

50 Data Mining 
Method. 

TABLES 

Detection Rate False Positive Rate 

100% 0% 

99.87% 2% 

Overall Accuracy 

100% 

99.44% 

on unseen data. The results of these five tests were averaged 
to obtain a measure of how the algorithm performs over the 
entire set. 

To evaluate the algorithms over new executables, the algo­
rithms generated their detection models over the set of train­
ing data and then tested their models over the set of test data. 
This was done five times in accordance with cross fold vali­
dation. 

Tables 4 displays the results. The data mining algorithm 
had the highest detection rate, 97.76%, compared with the 
signature-based method's detection rate of 33.96%. Along 
with the higher detection rate the data mining method had a 
higher overall accuracy, 96.88% vs. 49.31%. The false posi­
tive rate of 6.01% though was higher than the signature-based 
method, 0%. 

In order for the data mining algorithm to quickly generate 
the models, it is advantageous for all calculations to be done 

55 in memory. The algorithm consumed space in excess of a 
gigabyte of RAM. By splitting the data into smaller pieces, 
the algorithm was done in memory with no loss in accuracy. 
In addition, the calculations may be performed in parallel. 
The training of a classifier took 2 hours 59 minutes and 49 

60 seconds running on Pentium III 600 Linux machine with 1 
GB of RAM. The classifier took on average 2 minutes and 28 
seconds for each of the 4,301 binaries in the data set. The 
amount of system resources taken for using a model are 
equivalent to the requirements for training a model. So on a 

65 Pentium III 600 Linux box with 1 GB of RAM it would take 
on average 2 minutes 28 seconds per attachment. Another 
advantageous of splitting the data into smaller partitions (in 
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connection with the Multi-Naive Bayes analysis) is that the 
Naive Bayes algoritlnn is executed on each partition on par­
allel hardware, which reduces the total training time from 2 
hours and 59 minutes, to 2 minutes and 28 seconds if each 
piece is concurrently executed. 

It will be understood that the foregoing is only illustrative 
of the principles of the invention, and that various modifica­
tions can be made by those skilled in the art without departing 
from the scope and spirit of the invention. 

20 
10. The method as defined in claim 6, wherein classifying 

the executable attaclnnent comprises classifYing said execut­
able attaclnnent as malicious if said probability that said 
executable attaclnnent is malicious is greater than said prob­
ability that said executable attaclnnent is benign. 

11. The method as defined in claim 6, wherein classifying 
the executable attaclnnent comprises classifYing said execut­
able attaclnnent as benign if said probability that said execut­
able attaclnnent is benign is greater than said probability that 

What is claimed is: 10 said executable attachment is malicious. 
1. A method for classifying an executable attaclnnent in an 

email received at an email processing application of a com­
puter system comprising: 

a) filtering said executable attaclnnent from said email; 

12. The method as defined in claim 6, wherein classifying 
the executable attaclnnent comprises classifYing said execut­
able attaclnnent as borderline if a difference between said 
probability that said executable attaclnnent is benign and said 

b) extracting a byte sequence feature from said executable 
attaclnnent; and 

15 probability that said executable attaclnnent is malicious is 
within a predetermined threshold. 

c) classifYing said executable attaclnnent by comparing 
said byte sequence feature of said executable attaclnnent 
with a classification rule set derived from byte sequence 
features of a set of executables having a predetermined 20 

class in a set of classes to determine the probability 
whether said executable attaclnnent is malicious, 
wherein extracting said byte sequence features from said 
executable attaclnnent comprises creating a byte string 
representative of resources referenced by said execut- 25 

able attaclnnent. 
2. The method as defined in claim 1, wherein extracting 

said byte sequence feature from said executable attaclnnent 
comprises extracting static properties of said executable 
attaclnnent. 

3. The method as defined in claim 1, wherein extracting 
said byte sequence feature from said executable attaclnnent 
comprises converting said executable attaclnnent from binary 
format to hexadecimal format. 

30 

4. The method as defined in claim 1, wherein classifying 35 

said executable attaclnnent comprises determining a prob­
ability that said executable attaclnnent is a member of each 
class in a set of classes consisting of malicious and benign. 

5. The method as defined in claim 1, further comprising 
updating the classification rule set based on executable 40 

attaclnnents classified in said classifying. 
6. A method for classifying an executable attaclnnent in an 

email received at an email processing application of a com­
puter system comprising: 

a) filtering said executable attaclnnent from said email; 
b) extracting a byte sequence feature from said executable 

attachment; and 

45 

13. The method as defined in claim 6, which further com­
prises logging said class of said executable attaclnnent clas­
sified in said step c). 

14. The method as defined in claim 13, wherein logging 
said class of said executable attaclnnent further comprising 
incrementing a count of said executable attaclnnents classi­
fied as borderline. 

15. The method defined in claim 14, which further com­
prises, if said count of executable attaclnnents exceeds a 
predetermined threshold, providing a notification that said 
threshold has been exceeded. 

16. A method for classifYing an executable program com­
prising: 

a) training a classification rule set based on a predeter­
mined set of known executable programs having a pre­
determined class and one or more byte sequence features 
by recording the number of known executable programs 
in each said predetermined class that has each of said 
byte sequence features; 

b) extracting a byte sequence feature from said executable 
program comprising converting said executable pro­
gram from binary format to hexadecimal format, 
wherein extracting said byte sequence features from said 
executable attaclnnent comprises create a byte string 
representative of resources referenced by said execut-
able attaclnnent; and 

c) determining the probability that the executable program 
is within each said predetermined class, based on said 
one or more byte sequence features in said executable 
and said classification rule set to determine whether said 
executable program is malicious. 

17. The method as defined in claim 16, wherein extracting 
said byte sequence feature from said executable program 
comprises extracting static properties of said executable pro­
gram. 

c) classifYing said executable attaclnnent by comparing 
said byte sequence feature of said executable attaclnnent 
with a classification rule set derived from byte sequence 50 

features of a set of executables having a predetermined 
class in a set of classes to determine a probability that 
said executable attaclnnent is a member of each class in 18. The method as defined in claim 16, wherein determin­

ing the probability that the executable program is within each 

55 said predetermined class comprises determining the probabil­
ity that the executable program is within said predetermined 
class in a set of classes consisting of malicious and benign. 

19. The method as defined in claim 16, wherein determin­
ing said probability that the executable program is within 

60 each said predetermined class comprises determining said 
probability that the executable program is within each said 
predetermined class with a Naive Bayes algoritlnn. 

a set of classes consisting of malicious, benign, and 
borderline. 

7. The method as defined in claim 6, wherein classifying 
said executable attaclnnent comprises determining said prob­
ability that said executable attaclnnent is a member of each 
class in said set of classes with a Naive Bayes algoritlnn. 

8. The method as defined in claim 6, wherein classifying 
the executable attaclnnent comprises determining said prob­
ability that said executable attaclnnent is a member of a class 
in said set of classes with a Multi-Naive Bayes algoritlnn. 

9. The method as defined in claim 8, which further com­
prises dividing said determining said probability into a plu­
rality of processing steps and executing said processing steps 
in parallel. 

20. The method as defined in claim 16, wherein determin­
ing said probability that the executable program is within 

65 each said predetermined class comprises determining said 
probability that the executable program is within each said 
predetermined class with a multi-Naive Bayes algoritlnn. 
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21. The method as defined in claim 16, wherein determin­
ing said probability that the executable program is within 
each said predetermined class comprises classifying said 
executable program as malicious if said probability that said 
executable program is malicious is greater than said probabil­
ity that said executable program is benign. 

22. The method as defined in claim 16, wherein determin­
ing said probability that the executable program is within 
each said predetermined class comprises classifying said 
executable program as benign if said probability that said 10 

executable program is benign is greater than said probability 
that said executable program is malicious. 

23. The method as defined in claim 16, wherein determin­
ing said probability that the executable program is within 
each said predetermined class comprises classifying said 15 

executable program as borderline if a difference between said 
probability that said executable program is benign and said 
probability that said executable program is malicious is 
within a predetermined threshold. 

24. The method as defined in claim 16, which further 20 

comprises logging said class of said executable determined in 
said step c). 

25. The method as defined in claim 24, wherein logging 
said class of said executable further comprising incrementing 
a count of said executable classified as borderline. 25 

26. The method defined in claim 25, which further com­
prises, if said count of executable exceeds a predetermined 
threshold, providing a notification that said threshold has 
been exceeded. 

30 
27. The method as defined in claim 16, further comprising 

updating the classification rule set based on executable 
attachments classified in said determining. 

28. A system for classifying an executable attachment in an 
email received at a server of a computer system comprising: 35 

a) an email filter configured to filter said executable attach­
ment from said email; 

b) a feature extractor configured to extract a byte sequence 
feature from said executable attachment, wherein said 
feature extractor is further configured to create a byte 40 

string representative of resources referenced by said 
executable attachment; and 

c) a rule evaluator configured to classifY said executable 
attachment by comparing said byte sequence feature of 
said executable attachment to a classification rule set 45 

derived from byte sequence features of a set of 
executables having a predetermined class in a set of 
classes to determine the probability whether said execut­
able attachment is malicious. 

29. The system as defined in claim 28, wherein the feature 50 

extractor is configured to extract static properties of said 
executable attachment. 

30. The system as defined in claim 28, wherein the feature 
extractor is configured to convert said executable attachment 
from binary format to hexadecimal format. 55 

31. The system as defined in claim 28, wherein the rule 
evaluator is configured to predict the classification of said 
executable attachment as one class of a set of classes consist­
ing of malicious and benign. 

32. The system as defined in claim 28, which further com- 60 

prises an email interface configured to log said class of said 
executable attachment classified in said step c). 

33. The system as defined in claim 28, further comprising 
a model generator configured to update the classification rule 
set based on classified executable attachments. 

22 
34. A system for classifYing an executable attachment in an 

email received at a server of a computer system comprising: 
a) an email filter configured to filter said executable attach­

ment from said email; 
b) a feature extractor configured to extract a byte sequence 

feature from said executable attachment; and 
c) a rule evaluator is configured to predict the classification 

of said executable attachment as one class of a set of 
classes consisting of malicious, benign, and borderline 
by comparing said byte sequence feature of said execut­
able attachment to a classification rule set derived from 
byte sequence features of a set of executables having a 
predetermined class in a set of classes. 

35. The system as defined in claim 34, wherein the rule 
evaluator is configured to determine said probability that said 
executable attachment is a member of one class of said set of 
classes with a Naive Bayes algorithm. 

36. The system as defined in claim 34, wherein the rule 
evaluator is configured to determine said probability that said 
executable attachment is a member of a class of said set of 
classes with a multi-Naive Bayes algorithm. 

37. The system as defined in claim 34, wherein the rule 
evaluator is configured to divide a determination said prob­
ability into a plurality of processing steps and to execute said 
processing steps in parallel. 

38. The system as defined in claim 34, wherein the rule 
evaluator is configured to classifY said executable attachment 
as malicious if said probability that said executable attach­
ment is malicious is greater than said probability that said 
executable attachment is benign. 

39. The system as defined in claim 34, wherein the rule 
evaluator is configured to classifY said executable attachment 
as benign if said probability that said executable attachment is 
benign is greater than said probability that said executable 
attachment is malicious. 

40. The system as defined in claim 34, wherein the rule 
evaluator is configured to classifY said executable attachment 
as borderline if a difference between said probability that said 
executable attachment is benign and said probability that said 
executable attachment is malicious is within a predetermined 
threshold. 

41. The system as defined in claim 32, wherein said email 
interface is configured to increment a count of said executable 
attachments classified as borderline. 

42. The system defined in claim 41, wherein said email 
interface is configured to, if said count of executable attach­
ments exceeds a predetermined threshold, provide a notifica­
tion that said threshold has been exceeded. 

43. A method for classifYing an executable program com­
prising: 

a) training a classification rule set based on a predeter­
mined set of known executable programs having a pre­
determined class and one or more byte sequence features 
by recording the number of known executable programs 
in each said predetermined class that has each of said 
byte sequence features; 

b) extracting a byte sequence feature from said executable 
program comprising converting said executable pro­
gram from binary format to hexadecimal format 

c) determining the probability that the executable program 
is within each said predetermined class in a set of classes 
consisting of malicious, benign, and borderline, based 
on said one or more byte sequence features in said 
executable and said classification rule set. 

* * * * * 
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SYSTEMS AND METHODS FOR DETECTION 
OF NEW MALICIOUS EXECUTABLES 

CLAIM FOR PRIORITY TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Patent Application Ser. Nos. 60/308,622, filed Jul. 30, 2001, 
entitled "Data Mining Methods for Detection of New Mali­
cious Exccutablcs" and 60/308,623, filed on Jul. 30, 2001, 
entitled "Malicious Email Filter" which are incorporated by 
reference in their entirety herein. This application is a con­
tinuation of and claims the priority from U.S. patent applica­
tionSer. No.10/208,432, filed Jul. 30,2002, now U.S. Pat. No. 
7,487,544 which is incorporated by reference in its entirety 
herein. 

STATEMENT OF GOVERNMENT RIGHT 

The present invention was made in part with support from 
the United States Defense Advanced Research Projects 
Agency (DARPA) grant nos. FAS-526617 and SRTSC­
CU019-7950-1. Accordingly, the United States Government 
may have certain rights to this invention. 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document con­
tains material which is subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc­
tion by any one of the patent disclosure, as it appears in the 
Patent and Trademark Office patent files or records, but oth­
erwise reserves all copyright rights whatsoever. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to systems and methods for detecting 

malicious executable programs, and more particularly to the 
use of data mining techniques to detect such malicious 
executables in email attachments. 

2. Background 

2 
this problem, the anti-virus industry generates heuristic clas­
sifiers by hand. This process can be even more costly than 
generating signatures, so finding an automatic method to 
generate classifiers has been the subject of research in the 
anti-virus community. To solve this problem, different IBM 
researchers applied Artificial Neural Networks (ANNs) to the 
problem of detecting boot sector malicious binaries. (The 
method of detection is disclosed in G. Tesauro eta!., "Neural 
Networks for Computer Virus Recognition, lEE Expert, 

10 11( 4):5-6,August 1996, which is incorporated byreferencein 
its entirety herein.) An ANN is a classifier that models neural 
networks explored in human cognition. Because of the limi­
tations of the implementation of their classifier, they were 

15 
unable to analyze anything other than small boot sector 
viruses which comprise about 5% of all malicious binaries. 

Using an ANN classifier with all bytes from the boot sector 
malicious executables as input, IBM researchers were able to 
identify 80-85% of unknown boot sector malicious 

20 executables successfully with a low false positive rate ( <1 %). 
They were unable to find a way to apply ANNs to the other 
95% of computer malicious binaries. 

In similar work, Aruold and Tesauro applied the same 
techniques to Win32 binaries, but because of limitations of 

25 the ANN classifier they were unable to have the comparable 
accuracy over new Win32 binaries. (This technique is 
described inAruold eta!.,: Automatically Generated Win 32 
Heuristic Virus Detection," Proceedings of the 2000 Interna­
tional Virus Bulletin Conference, 2000, which is incorporated 

30 by reference in its entirety herein.) 

35 

The methods described above have the shortcoming that 
they are not applicable to the entire set of malicious 
executables, but rather only boot-sector viruses, or only 
Win32 binaries. 

The technique is similar to data mining techniques that 
have already been applied to Intrusion Detection Systems by 
Lee et a!. Their methods were applied to system calls and 
network data to learn how to detect new intrusions. They 
reported good detection rates as a result of applying data 

40 mining to the problem ofiDS. A similar framework is applied 
to the problem of detecting new malicious executables. (The 
techniques are described in W. Lee eta!., "Learning Patterns 
From UNIX Processes Execution Traces for Intrusion Detec-A malicious executable is a program that performs a mali­

cious function, such as compromising a system's security, 
damaging a system or obtaining sensitive information with- 45 

out the user's permission. One serious security risk is the 
propagation of these malicious executables through e-mail 
attachments. Malicious executables are used as attacks for 
many types of intrusions. For example, there have been some 
high profile incidents with malicious email attachments such 50 

as the ILOVEYOU virus and its clones. These malicious 

tion, AAAI Workshop in AI Approaches to Fraud Detection 
and Risk Management, 1997, pages 50-56, and W. Lee eta!., 
"A Data Mining Framework for Building Intrusion Detection 
Models," TFFF Symposium on Security and Privacy, 1999, 
both of which are incorporated by reference in their entirety 
herein.) 

Procmail is a mail processing utility which runs under 
UNIX, and which filters email; and sorts incoming email 
according to sender, subject line, length of message, key­
words in the message, etc. Procmail's pre-existent filter pro­
vides the capability of detecting active-content HTML tags to 
protect users who read their mail from a web browser or 
HTML-enabled mail client. Also, if the attachment is labeled 

attachments are capable of causing significant damage in a 
short time. 

Current virus scanner technology has two parts: a signa­
ture-based detector and a heuristic classifier that detects new 55 

viruses. The classic signature-based detection algorithm 
relies on signatures (unique telltale strings) of known mali­
cious executables to generate detection models. Signature­
based methods create a unique tag for each malicious pro­
gram so that future examples of it can be correctly classified 
with a small error rate. These methods do not generalize well 
to detect new malicious binaries because they are created to 
give a false positive rate as close to zero as possible. V.'hen­
ever a detection method generalizes to new instances, the 
tradeoff is for a higher false positive rate. 

Unfortunately, traditional signature-based methods may 
not detect a new malicious executable. In an attempt to solve 

as malicious, the system "mangles" the attachment name to 
prevent the mail client from automatically executing the 
attachment. It also has built in security filters such as long 

60 filenames in attachments, and long MIME headers, which 
may crash or allow exploits of some clients. 

However, this filter lacks the ability to automatically 
update its list of known malicious executables, which may 
leave the system vulnerable to attacks by new and unknown 

65 viruses. Furthermore, its evaluation of an attachment is based 
solely on the name of the executable and not the contents of 
the attachment itself. 
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Accordingly, there exists a need in the art for a technique 
which is not limited to particular types of files, such as boot­
sector viruses, or only Win32 binaries, and which provides 
the ability to detect new, previously unseen files. 

SUMMARY 

4 
probability the executable attachment is benign and the prob­
ability the executable attachment is malicious is within a 
predetermined threshold. 

A further step in accordance with the method may include 
logging the class of the executable attachment. The step of 
logging the class of the executable attachment may further 
include incrementing a count of the executable attachments 
classified as borderline. If the count of executable attach­
ments classified as borderline exceeds a predetermined 

An object of the present invention is to provide a technique 
for predicting a classification of an executable file as mali­
cious or benign which is not dependent upon the format of the 
executable. 

10 threshold, the system may provide a notification that the 
threshold has been exceeded. 

Another object of the present invention is to provide a data 
mining technique which examines the entire file, rather than 
a portion of the file, such as a header, to classify the executable 
as malicious or benign. 

In accordance with the invention, the objects as described 
above have been met, and the need in the art for a technique 
which can analyze previously unseen malicious executables, 

15 without regard to the type of file, has been satisfied. 

A further object of the present invention is to provide an 
email filter which can detect executables that are borderline, 
i.e., executables having features indicative of both malicious 
and benign executables, which may be detrimental to the 20 
model if misclassified. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Further objects, features and advantages of the invention 
will become apparent from the following detailed description 
taken in conjunction with the accompanying figures showing 
illustrative embodiments of the invention. in which: 

FIG. 1 is a flow chart illustrating an overview of a method 
of detection model generation in accordance with the present 
invention. 

FIG. 2-4 illustrate a several approaches to binary profiling. 
FIG. 5 illustrates sample classification rules determined 

from the features represented in FIG. 3. 
FIG. 6 illustrates sample classification rules iound by a 

RIPPER algorithm. 
FIG. 7 illustrates sample classification rules found by a 

Naive Bayes algorithm. 

These and other objects of the invention, which will 
become apparent with reference to the disclosure herein, are 
accomplished by a system and methods for classifYing an 
executable attachment in an email received by an email pro- 25 

cessing application or program, which includes filtering the 
executable attachment from said email. The email processing 
application may be executed at an email server or a client or 
host email application. A byte sequence feature is subse­
quently extracted from the executable attachment. The 30 

executable attachment is classified by comparing said byte 
sequence feature of the executable attachment with a classi­
fication rule set derived from byte sequence features of a set FIG. 8 is a flow chart illustrating a method of detecting 

malicious executables in accordance with the present inven-
35 tion. 

of executables having a predetermined class in a set of 
classes. 

According to a preferred embodiment, extracting the byte 
sequence feature from said executable attachment comprises 
extracting static properties of the executable attachment, 
which are properties that do not require the executable to be 
run in order to discern. Extracting the byte sequence feature 40 

from the executable attachment may comprise converting the 
executable attachment from binary format to hexadecimal 
format. According to another embodiment, extracting the 
byte sequence features from the executable attachment may 
comprise creating a byte string representative of resources 45 

referenced by said executable attachment. 

FIG. 9 is a simplified diagram illustrating the architecture 
of the malicious email detector and model generator in accor­
dance with the present invention. 

FIG. 10 is a flow chart, similar to FIG. 8, illustrating 
another method of detecting malicious executables in accor­
dance with the present invention. 

FIG. 11 is a plot illustrating the interactive effect of false 
positive rate and detection rate on the performance of the 
detection model or classifier in accordance with the present 
invention. 

Throughout the figures, the same reference numerals and 
characters, unless otherwise stated, are used to denote like 
features, elements, components or portions of the illustrated 
embodiments. Moreover, while the subject invention will 
now be described in detail with reference to the figures, it is 
done so in connection with the illustrative embodiments. It is 
intended that changes and modifications can be made to the 
described embodiments without departing from the true 
scope and spirit of the subject invention as defined by the 

Advantageously, classifYing the executable attachment 
may comprise predicting the classification of the executable 
attachment as one class in a set of classes consisting of mali­
cious and benign. The set of classes may also include a bor- 50 

derline class. ClassifYing the executable attachment may 
comprise determining a probability or likelihood that the 
executable attachment is a member of each class in said set of 
classes based on said byte sequence feature. In one embodi­
ment, this probability is determined by use of a Naive Bayes 
algorithm. In another embodiment, the probability may be 
determined by use of a Multi-Naive Bayes algorithm. The 
determination of the probability may be divided into a plu­
rality of processing steps. These processing steps may then be 
performed in parallel. The executable attachment is classified 60 

as malicious if the probability that the executable attachment 

55 appended claims. 

is malicious is greater than said probability that the execut­
able attachment is benign. The executable attachment is clas­
sified as benign if the probability that the executable attach­
ment is benign is greater than said probability that said 65 

executable attachment is malicious. The executable attach­
ment is classified as borderline if a difference between the 

DETAILED DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

This invention will be further understood in view of the 
following detailed description. 

An exemplary system and methods for detecting malicious 
email attachments was implemented in UNIX with respect to 
Sendmail (a message transfer agent (MTA) which ensures 
messages get from source message servers to destination 
message servers for recipients to access their email, as pro­
duced by Sendmail, Inc. or Emeryville, Calif.). using Proc-
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mail (a publicly available program that processes e-mail mes­
sages received by the server, as further described in Stephen 
R. van den Berg and Philip Guenther, "Procmail," online 
publication as viewed on http://www.procmail.org, 2001). 
This system and methods uses data mining methods in order 
to create the detection model. The data mining methods are 
used to create classifiers to detect the malicious executables. 

6 
a feature is a property or attribute of data (such as "byte 
sequence feature") which may take on a set of values. Signa­
ture based methods are methods that inspect and test data to 
determine whether a specific feature value is present in that 
data, and then classify or alarm accordingly.) In the present 
invention, the presence of specific feature values is used by 
the learning algorithms to calculate a probability or likeli­
hood of classification of the data. The features which are A classifier is a classification rule set, or detection model, 

generated by the data mining algorithm that was trained over, 
i.e., derived from a given set of training data. 

In accordance with the exemplary embodiment, a data 
mining-based filter integrates with Procmail's pre-existent 
security filter to detect malicious executable attachments. The 
filter uses a scoring system based on a data mining classifier 

extracted in the exemplary embodiment are static properties, 
10 which are properties that do not require executing the binary 

in order to be detected or extracted. 

to determine whether or not an attachment may be malicious. 15 

If an attachment's score is above a certain threshold it is 

In the exemplary embodiment, hexdump was used in the 
feature extraction step. Hexdump, as is known in the art (Peter 
Miller, "Hexdump," on line publication 2000, http://gd.tu­
wien.ac.at/softeng/ Aegis/hexdump.html which is incorpo­
rated by reference in its entirety herein), is an open source tool 
that transforms binary files into hexadecimal files. The byte 
sequence feature is informative because it represents the 

considered malicious. The data mining classifier provides the 
ability to detect both the set of known malicious executables 
and a set of previously unseen, but similar malicious 
executables. 

A flowchart illustrating the process 10 of creating of the 
classification rule set is illustrated in FIG. 1. An early stage in 
the process is to assemble the dataset (step 12) which will be 
used for training, and for optionally testing the detection 
model. In the exemplary embodiment, this step included gath­
ering a large set of executables 14 from public sources. In 
addition, each example program in the data set is a Windows 

20 machine code in an executable. After the "hexdumps" are 
created, features are produced in the form illustrated in FIG. 
2 in which each line represents a short sequence of machine 
code instructions. In the analysis, a guiding assumption is 
made that similar instructions were present in malicious 

25 executables that differentiated them from benign programs, 
and the class of benign programs had similar byte code that 
differentiated them from the malicious executables. Each 
byte sequence in the program is used as a feature. or MS-DOS format executable, although the framework is 

applicable to other formats. In the exemplary embodiment, 
the programs were gathered either from FTP sites, or personal 30 

computers in the Data Mining Lab at Columbia University. A 
total of 4,031 programs were used. 

In a subsequent stage, each data item, or executable, is 
labeled by class (step 16). The learning problem in the exem­
plary embodiment is defined with two classes, e.g., malicious 35 

and benign. As discussed above, a malicious executable is 
defined to be a program that performs a malicious function, 
such as compromising a system's security, damaging a sys­
tem, or obtaining sensitive information without the user's 
permission. A benign program does not perform such mali- 40 

cious functions. Thus, the data set was divided into two 
groups: (1) malicious and (2) benign executables. In order to 
train the classification rule set, the classes of the executables 
must be known in advance. Of the 4,031 programs used in the 
data set, 3,301 were malicious executables and 1,000 were 45 

benign executables. The malicious executables consisted of 
viruses, Trojans, and cracker/network tools. There were no 
duplicate programs in the data set To standardize the data-set, 
an updated MacAfee' s virus scanner, produced by McAfee­
.com Corporation ofSuunyvale, Calif., was used to label the 50 

programs as either malicious or benign executables. All labels 
were assumed to be correct for purposes of the analysis. 

Another step, which may be performed concurrently with 
or subsequent to the above step, is to divide the dataset into 
two subsets which include a training set and a test set (step 55 

18). The data mining algorithms use the training set to gen­
erate the classification rule sets. After training, a test set may 
be used to test the accuracy of the classifiers on a set of unseen 
examples. It is understood that testing the detection model is 
an optional step to determine the accuracy of the detection 60 

model, and, as such, may be omitted from the process. 
The next step of the method is to extractfeatures from each 

executable (Step 20). Features in a data mining framework are 
defined as properties extracted from each example program in 
the data set, e.g., byte sequences, that a classifier uses to 65 

generate detection models. (Signatures, as distinguished 
from features, typically refer to a specific feature value, while 

Many additional methods of feature extraction are also 
useful to carry out step 20, above, and are described herein. 
For example, octale encoding may be used rather than hexa­
decimal encoding. According to another approach to feature 
extraction is to extract resource information from the binary 
that provides insight to its behavior, which is also referred to 
herein as "binary profiling." According to this approach, a 
subset of the data may be examined which is in Portable 
Executable (PE) format (which is described in "Portable 
Executable Format," online publication as viewed on, http:// 
support.microsoft.com/support/kb/ articles/Q 121/4/60 .asp, 
1999, which is incorporated by reference in its entirety 
herein.) For instance, an executable in a standard Windows 
user interface may normally call the User Interfaces Dynami­
cally Linked Library (USER32.DLL). This approach 
assumes that if an executable being evaluated does not call 
USER32.DLL, then the program does not have the standard 
Windows user interface. To extract resource information from 
Windows executables, GNU's Bin-Utils may be used (as 
described in "GNU Rinutils C:ygwin, online publication as 
viewed on http://sourceware.cygnus.com/cygwin, 1999, 
which is incorporated by reference in its entirety herein). 
GNU's Bin-Utils suite of tools can analyze PE binaries within 
Windows. In PE, or Common Object File Format (COFF), 
program headers are composed of a COFF header, an 
Optional header, at MS-DOS stub, and a file signature. All of 
the information about the binary is obtained from the program 
header without executing the unknown program but by exam­
ining the static properties of the binary, using libBFD, which 
is a library within Bin-Utils, to extract information in object 
format. Object format for aPE binary gives the file size, the 
names ofDLLs, and the names offunction calls within those 
DLLs and Relocation Tables. From the object format, it is 
possible to extract a set of features to compose a feature 
vector, or string, for each binary representative of resources 
referenced by the binary. 

Three types of features may be analyzed to determine how 
resources affect a binary's behavior: 

1. The list of D LLs used by the binary 
2. The list ofDLL function calls made by the binary 
3. The number of different function calls within each DLL 
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A first approach to binary profiling used the DLLs loaded 
by the binary as features. Data can be modeled by extracting 
a feature or a set of features, and each set of features may be 
represented as a vector of feature values. The feature vector 
comprised of a number of boolean values, e.g., 30, represent­
ing whether or not a binary used a DLL. Typically, not every 
DLL was used in all of the binaries, but a majority of the 
binaries called the same resource. For example, almost every 
binary called GDI32.DLL, which is the Windows NT Graph-
ics Device Interface and is a core component ofWinNT. The 10 

example vector given in FIG. 3 is composed of at least two 
unused resources: ADVAP132.DLL, the Advanced Windows 
API, and WSOCK32.DLL, the Windows Sockets API. It also 
uses at least two resources: AVI-CAP32.DLL, the AVI cap-

15 
ture API, and WINNM.DLL, the Windows Multimedia API. 

A second approach to binary profiling uses DLLs and their 
function calls as features. This approach is similar to the first, 
described above, but with added function call information. 
The feature vector is composed of a greater number, e.g., 20 
2,229, of boolean values. Because some of the DLL's had the 
same function names it was important to record which DLL 
the function came from. The example vector given in FIG. 4 
is composed of at least four resources. Two functions were 
called in AD-VAP132.DLL: AdjustTokenPrivileges( ) and 25 
GetFileSecurityA( ), and two functions were called in 
WSOCK32.DLL: recv() and send(). 

A third approach to binary profiling counts the number of 
different function calls used within each DLL, and uses such 
counts as features. The feature vector included several, e.g., 30 
30, integer values. This profile provides an approximate mea­
sure of how heavily a DLL is used within a specific binary. 
This is a macro-resource usage model because the number of 
calls to each resource is counted instead of detailing refer­
enced functions. For example, if a program only called the 35 
recv( ) and send( ) functions of WSOCK32.DLL, then the 
count would be 2. It should be noted that this third approach 
does not count the number of times those functions might 
have been called. The example vector given in FIG. 5 
describes an example that calls two functions in 40 
ADVAPI32.DLL, ten functions in AVICAP32.DLL, eight 
functions in WINNM.DLL, and two functions from 
WSOCK32.DLL. 

8 
Through testing it was observed that similar strings were 

present in malicious executables that distinguished them 
from benign programs, and similar strings in benign pro­
grams that distinguished them from malicious executables. 
According to this technique, each string in the binary was 
used as a feature for the classifier. 

Once the features were extracted using hexdump, or any 
other feature extraction method, such as those described 
herein, a classifier was trained to label a program as malicious 
or benign (Step 22). The classifier computes the probability or 
likelihood that a program is a member of a certain classifica-
tion given the features or byte strings that are contained in that 
program. (Throughout the description herein, the term "prob­
ability" will generally refer to probability or likelihood, 
except where specified.) 

In the exemplary embodiment, the classifier was a Naive 
Bayes classifier that was incorporated into Procmail, as will 
be described in greater detail herein. A Naive Bayes classifier 
is one exemplary machine learning algorithm that computes a 
model of a set oflabeled training data and subsequently may 
use that model to predict the classification of other data. Its 
output is a likelihood (based on mathematical probability 
theory) associated with each classification possible for the 
other data. The Naive Bayes algorithm computes the likeli­
hood that a program is a member each classification, e.g., 
malicious and benign, given the features or byte strings that 
are contained in that program. For instance, if a program 
contained a significant number of malicious byte sequences 
and a few or no benign sequences, then it labels that binary as 
malicious. Likewise, a binary that was composed of many 
benign features and a smaller number of malicious features is 
labeled benign by the system. In accordance with the inven­
tion, the assumption was made that there were similar byte 
sequences in malicious executables that differentiated them 
from benign programs, and the class of benign programs had 
similar sequences that differentiated them from the malicious 
executables. 

In particular, the Naive Bayes algorithm first computes (a) 
the probability that a given feature is malicious and (b) the 
probability that the feature is benign, by computing statistics 
on the set of training data. Then to predict whether a binary, or 
collection of hex strings, was malicious or benign, those 
probabilities were computed for each hex string in the binary, Another method useful for feature extraction (step 20) does 

not require PE format for the executables, and therefore is 
applicable to Non-PE executables. Headers in PE format are 
in plain text, which allows extraction of the same information 
from the PE executables by extracting the plain text headers. 
Non-PE executables also have strings encoded in them. This 
information is used to classify the entire data set, rather than 
being limited only to the subset of data including libBFD, 
described above. To extract features from the data set accord­
ing to this third method, the GNU strings program was used. 
The strings program extracts consecutive printable characters 
from any file. Typically there are many printable strings in 
binary files. Some common strings found in the dataset are 
illustrated in Table 1. 

45 
and then the Naive Bayes independence assumption was 
used. The independence assumption was applied in order to 
efficiently compute the probability that a binary was mali­
cious and the probability that the binary was benign. 

TABLE 1 

kernel microsoft windows 
getversion getstartupinfoa win 
messageboxa closehandle null 
library getprocaddress advapi 
loadlibrarya exitprocess heap 
reloc createfilea writefile 
application showwindow time 

getrnodulehandlea 
getrnodulefilenamea 
dispatchrnessagea 
getlasterror 
getcommandlinea 
setfilepointer 
regclosekey 

Specifically, the Naive Bayes algorithm computes the class 

50 
C of a program, given that the program contains a set of 
features F. (The Naive Bayes algorithm is described, for 
example, in T. Mitchell, "Naive Bayes Classifier," Machine 
Learning, McGraw-Hill, 1997, pp. 177-180, which is incor­
porated by reference in its entirety herein.) The tenn C is 

55 
defined as a random variable over the set of classes: benign 
and malicious executables. That is, the classifier computes 
P(CIF), the probability that a program is in a certain class C 
given the program contains the set of features F. According to 
the Bayes rule, the probability is expressed in equation (1): 

60 

P(CIF)= P(FIC)*P(C) 
P(F) 

(l) 

65 To use the Naive Bayes rule, it is assumed that the features 
occur independently from one another. If a program F include 
the features Fu F2 , F3 , ... , Fm then equation (1) may be 
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re-written as equation (2). (In this description, subscripted 
features F x refers to a set of code strings.) 

(2) 5 

10 
More formally, the Multi-Naive Bayes promotes a vote of 

confidence between all of the underlying Naive Bayes clas­
sifiers. Each classifier determines a probability of a class C 
given a set of bytes F which the Multi-Naive Bayes uses to 
generate a probability for class C given features F over all the 
classifiers. 

n P(F, 1 C)*P(C) 

P(C I F)= -'--;~-'--1 -----:---­
n P(F1J 
j=l 

Each P(F,IC) is the frequency that feature string F, occurs in a 
program of class C. P(C) is the proportion of the class C in the 
entire set of programs. 

The likelihood of a class C given feature F and the prob­
abilities learned by each classifier NaiveBayes, are deter-

10 mined. In equation (4) the likelihood LNB(CIF) of class C 
given a set of feature F was computed: 

The output of the classifier is the highest probability class 
for a given set of strings. Since the denominator of equation 15 

(1) is the same for all classes, the maximum class is taken over 
all classes C of the probability of each class computed in (2) 

WB\ 

LNs(C\F) = n PNB;(C\F)/ PNB; (C) 
i=l 

(4) 

to get equation (3): 

Most Likely class ='C= (P(cJQ P(F; \cJ) 

where NB, is a Naive Bayes classifier and NB is the set of all 
combined Naive Bayes classifiers (in this case 6). PNBi(CIF) 

20 (generated from equation (2)) is the probability for class C 
(3) computed by the classifier NaiveBayes, given F divided by the 

probability of class C computed by NaiveBayes,. Each P NBi 
(CIF) was divided by PNBi(C) to remove the redundant prob­
abilities. All the terms were multiplied together to compute 

In equation (3), the term maxc denotes the function that 
returns the class with the highest probability. "Most Likely 
Class" is the class inC with the highest probability and hence 
the most likely classification of the example with features F. 

25 LNB(CIF), the final likelihood ofC given F. INBI is the size of 
the set NB such that DNB,ENB. 

To train the classifier, a record was made for how many 
programs in each class contained each unique feature. This 30 

information was used to classifY a new program into an 
appropriate class. Feature extraction, as described above, was 
used to determine the features contained in the program. 
Then, equation (3) was applied to compute the most likely 
class for the program. 35 

The Naive Bayes method is a highly effective technique, 
but also requires significant amounts of main memory, such 
as RAM, e. g., greater than 1 gigabyte, to generate a detection 
model when the data or the set of features it analyzes is very 
large. To make the algorithm more efficient, the problem may 40 

be divided into smaller pieces that would fit in memory and 
generate a classifier for each of the subproblems. For 
example, the subproblem was to classify based on 16 subsets 

The output of the multi-classifier given a set of bytes F is 
the class of highest probability over the classes given LNB 
(CIF) and P NB(C) the prior probability of a given class, which 
is represented by equation (5), below. 

Most Likely Class= c"x(PNs(C) * LNs(C\F)) (5) 

Most Likely Class is the class inC with the highest probabil­
ity hence the most likely classification of the example with 
features F, and maxc returns the class with the highest likeli­
hood. 

Additional embodiments of classifiers arc described 
herein, which are also useful to classifY an executable as 
benign or malicious. Alternatively, inductive rule learners 
may be used as classifiers. Another algorithm, RIPPER, is an 
inductive rule learner (RIPPER is described in W. Cohen, 
"Learning Trees and Rules withSet-ValuedFeatures," Ameri-
can Association for Artificial Intelligence, 1996, which is 
incorporated by reference in its entirety herein). This algo­
rithm generates a detection model composed of resource rules 

of the data organized according to the first letter of the hex 
string. This data mining algorithm is referred to as "Multi- 45 

Naive Bayes." This algorithm was essentially a collection of 
Naive Hayes algorithms that voted on an overall classification 
for an example. The Multi-Naive Bayes calculations are 
advantageously executed in a parallel and distributed com­
puting system for increased speed. 

According to this approach, several Naive Bayes classifiers 
may be trained so that all hex strings are trained on. For 
example, one classifier is trained on all hex strings starting 
with an "A", and another on all hex strings starting with an 
"0". This is done 16 times and then a voting algorithm is used 55 

to combine their outputs. Each Naive Bayes algorithm clas­
sified the examples in the test set as malicious or benign, and 
this counted as a vote. The votes are combined by the Multi­
Naive Bayes algorithm to output a final classification for all 
the Naive Bayes. 

50 that was built to detect future examples of malicious 
executables. RIPPER is a rule-based learner that builds a set 
of rules that identifY the classes while minimizing the amount 
of error. The error is defined by the number of training 
examples misclassified by the rules. This algorithm may be 
used with libBFD information as features, which were 
described above. 

According to the exemplary embodiment, the data may be 
divided evenly into several sets, e.g. six sets, by putting each 

As is known in the art, an inductive algorithm learns what 
a malicious executable is, given a set of training examples. 
Another usefi.J! algorithm for building a set of rules is Find-S. 

6° Find-S finds the most specific hypothesis that is consistent 
with the training examples. For a positive training example 
the algorithm replaces any feature in the hypothesis that is 
inconsistent with the training example with a more general ith line in the binary into the (i mod n)th set where n is the 

number of sets. For each set, a Naive Bayes classifier is 
trained. The prediction for a binary is the product of the 65 

predictions of then classifiers. In the exemplary embodiment, 

feature. For example, four features seen in Table 2 are: 

1. "Does it have a GUI?" 

6 classifiers (n=6) were used. 2. "Does it perform a malicious function?" 
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3. "Does it compromise system security?" 
4. "Does it delete files?" 
and finally the classification label "Is it malicious?" 

Has aGUI? 

yes 
no 
yes 

4 yes 

Malicious 
Function? 

yes 
yes 
no 
yes 

TABLE2 

Compromise 
Security? 

yes 
yes 
no 
yes 

Deletes Files? 

no 
yes 
yes 
yes 

Is it 
malicious? 

yes 
yes 
no 
yes 

The defining property of any inductive learner is that no a 
priori assumptions have been made regarding the final con­
cept. The inductive learning algorithm makes as its primary 
assumption that the data trained over is similar in some way to 
the unseen data. 

A hypothesis generated by an inductive learning algorithm 
for this learning problem has four features. Each feature will 
have one of these values: 

1. T, truth, indicating any value is acceptable in this posi-
tion, 

12 
cation rule sets are incorporated in the filter to detect mali­
cious executables, as will be described below in the 
exemplary embodiment. For purposes herein, a classification 
rule set is considered to have the standard meaning in data 
mining terminology, i.e., a set of hypotheses that predict the 
classification, e.g., malicious or benign, of an example, i.e., 
an executable, given the existence of certain features. The 
Naive Bayes rules take the form ofP(FIC), the probability of 
an feature F given a class C. The probability for a string 

10 occurring in a class is the total number of times it occurred in 
that class's training set divided by the total number of times 
that the string occurred over the entire training set. An 
example of such hypotheses are illustrated in FIG. 7. Here, the 
string "windows" was predicted to more likely occur in a 

15 benign program and string"* .COM" was more than likely in 
a malicious executable program. 

This approach compensates for those instances where a 
feature, e.g., a hex string, occurs in only one class in the 
training data. When this occurs, the probability is arbitrarily 

20 increased from 0/n, where n is the number of occurrences, to 
1/n. For example, a string (e.g. "AAAA") may occur in only 
one set, e.g., in the malicious executables. The probability of 
"AAAA" occurring in any future benign example is predicted 

2. a value, either yes, or no, is needed in this position, or 
25 

3. a _l, falsity, indicating that no value is acceptable for this 

to be 0, but this is an incorrect assumption. If a program was 
written to print out "AAAA" it will always be tagged a mali­
cious executable even if it has other strings in it that would 

position. 

For example, the hypothesis {I, T, T, T) and the hypothesis 
(yes, yes, yes, no) would make the first example in Table 2 

true. (r, T, T, T)would make any feature set true and ~es, yes, 30 

yes, no) is the set of features for example one. 

have labeled it benign. In FIG. 6, the string"* .COM" does not 
occur in any benign programs so the probability of"* .COM" 
occurring in class benign is approximated to be '112 instead of 
0/u. This approximates real world probability that any string 
could occur in both classes even if during training it was only 
seen in one class. 

The rule sets generated by the Multi-Naive Bayes algo­
rithm are the collection of the rules generated by each of the 

Of all the hypotheses, values 1 is more general than 2, and 
2 is more general than 3. For a negative example, the algo­
rithm does nothing. Positive examples in this problem are 
defined to be the malicious executables and negative 
examples are the benign programs. 

The initial hypothesis that Find-S starts with is (1_, _l, _l, 

35 component Naive Bayes classifiers. For each classifier, there 
is a rule set such as the one in FIG. 6. The probabilities in the 
rules for the different classifiers may be different because the 
underlying data that each classifier is trained on is different. 

_i). This hypothesis is the most specific because it is true over 
40 

the fewest possible examples, none. Examining the first posi-

The prediction of the Multi-Naive Bayes algorithm is the 
product of the predictions of the underlying Naive Bayes 
classifiers. 

tive example in Table 2, ~es, yes, yes, no), the algorithm 

chooses the next most specific hypothesis ~es, yes, yes, no). 

The next positive example, (no, no, no, yes), is inconsistent 
with the hypothesis in its first and fourth attribute ("Does it 
have a GUI?'' and "Does it delete files?") and those attributes 
in the hypothesis get replaced with the next most general 
attribute, T. 

RIPPER's rules were built to generalize over unseen 
examples so the rule set was more compact than the signature­
based methods. For the data set that contained 3,301 mali-

45 cious executables the RIPPER rule set contained the five rules 
in FIG. 6. 

The resulting hypothesis after two positive examples is (r, 50 

yes, yes, T). The algorithm skips the third example, a negative 
example, and finds that this hypothesis is consistent with the 
final example in Table 2. The final rule for the training data 

Here, a malicious executable was consistent with one of 
four hypotheses: 

1. it did not call user32.EndDialog() but it did call kernel 
32.EnumCalendarinfoA() 

2. it did not call user32.LoadiconA( ), 
kemel32.GetTempPathA( ), or any function in 
advapi32.dll 

3. it called shell32.ExtractAssociatediconA( ), 
4. it called any function in msvbbm.dll, the Microsoft 

Visual Basic Library 
A binary is labeled benign if it is inconsistent with all of the 

malicious binary hypotheses in FIG. 6. 
Each data mining algorithm generated its own rule set 24 to 

listed in Table 2 is (r, yes, yes, T(. The rule states that the 55 

attributes of a malicious executable, based on training data, 
are that it has a malicious function and compromises system 
security. This is consistent with the definition of a malicious 
executable stated above. Thus, it does not matter in this 
example if a malicious executable deletes files, or if it has a 
GUI or not. 

60 evaluate new examples. The detection models are stored for 
subsequent application to classifY previously unseen 
examples, as will be described below. An optional next step is 
to test the classification rule set 24 against the test data (step 

RIPPER looks at both positive and negative examples to 
generate a set of hypotheses that more closely approximate 
the target concept while Find-S generates one hypothesis that 
approximates the target concept. 

Each of the data mining algorithms generated its own clas­
sification rule set 24 to evaluate new examples. The classifi-

65 

26). This step is described in greater detail below. 
The process 100 of detecting malicious emails in accor­

dance with the invention is illustrated in FIG. 8. A first step is 
to receive the emails at the server (step 102). In the exemplary 
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embodiment, the mail server is Sendmail. Procmail is a pub­
licly available program that processes e-mail messages 
received by the server and looks for particular information in 
the headers or body of the message, and takes action on what 
it finds. 

Subsequently, the emails are filtered to extract attachments 
or other components from the email (step 104). The execut­
able attachments may then be saved to a file. In the exemplary 
embodiment, html_trap.procmail, a commonly-available 
routine, has been modified to include a call to a novel routine, 
parser3, which performs the functions of filtering attach­
ments. The routine parser3 includes a call to the routine 
extractAttachments, for example, which extracts executable 
attachments and other items of the email and saves them to a 
file, e.g., $files_full_ref, and also provides a string containing 
a directory of where the executable attachments are saved, 
e.g., $dir, and a reference to an array containing a list of the 
file names, e.g., $files_ref. 

Features in the executable attachment are extracted (step 
106), and those features are subsequently analyzed and used 
to classifY the executable attachment as malicious or benign. 
In the exemplary embodiment, the routine parser3 also 
includes a call to the routine scanAttachments, which in turn 
calls the routine hexScan, which performs the feature extrac­
tion of step 106. In particular, hexScan includes a function 
call to hexdump, a commonly-available routine which trans­
forms the binary files in the attachment into a byte sequence 
of hexadecimal characters, as described above and illustrated 

14 
may be implemented, such as a function call to the RIPPER 
algorithm which will evaluate the features extracted in step 
106 to determine whether they are malicious or benign. 

A further step may be to identifY the programs as border­
line (step 110). Borderline executables are defined herein as 
programs that have similar probabilities of being benign and 
malicious (e.g., 50% chance it is malicious, and 50% chance 
it is benign; 60% chance malicious and 40% chance benign; 
45% chance malicious and 55% chance benign, etc.). Due to 

10 the similar probabilities, borderline executables are likely to 
be mislabeled as either malicious or benign. Since borderline 
cases could potentially lower the detection and accuracy rates 
by being misclassified, it is desirable to identifY these border­
line cases, properly classifY them as malicious or benign, and 

15 update the classification rule set to provide increased accu­
racy to the detection of malicious executables. The larger the 
data set that is used to generate models, then the more accu­
rate the detection models will be. To execute this process, the 
system identifies programs as borderline using the criteria 

20 described below, and archives the borderline cases. At peri­
odic intervals, the system sends the collection of these bor­
derline cases to a central server, by the system administrator. 
Once at a central repository, such as data repository 244, these 
binaries can then be analyzed by experts to determine whether 

25 they are malicious or not, and subsequently included in the 
future versions of the detection models. Preferably, any 
binary that is determined to be a borderline case will be 
forwarded to the repository and wrapped with a warning as 

in FIG. 2. The resulting hexadecimal string is saved as "/tmp/ 
$$.hex," These strings ofhexadecimal code are the "features" 30 

which are used in the classification, described below. This 
byte sequence is useful because it represents the machine 
code in an executable. In addition, this approach involves 
analyzing the entire binary, rather than portions such as head­
ers, an approach which consequently provides a great deal of 35 

information about the executable. It is understood that the 

though it were a malicious attachment. 
A exemplary metric to identifY borderline cases, which 

may be implemented in hexScan or a similar routine is to 
define a borderline case to be a case where the difference 
between the probability, or score, that the program is mali­
cious and the probability, or score, it is benign is below a 
threshold. This threshold may be set based on the policies of 
the host. For example, in a secure setting, the threshold could 
be set relatively high, e.g., 20%. In this case, all binaries that 
have a 60/40 split are labeled as borderline. In other words, 
binaries with a 40-60% chance (according to the model) of 

feature extraction step described herein is alternatively per­
formed with a binary profiling method in another embodi­
ment, as described above and illustrated in FIGS. 3-4, and 
with a GNU strings method, also described above and illus­
trated in Table 1. In these embodiments, the step of calling the 
routine hexScan in scanAttachments is replaced by calls to 
routines that perform the binary profiling or GNU strings 
analysis. 

40 being malicious and 40-60% chance of being benign would 
be labeled borderline. This setting can be determined by the 
system administrator. An exemplary default setting of 51.25/ 
48.75 may be used with a threshold of 2.5%, which was 
derived from testing. 

The routine scanAttachments receives the output ofhexS-
can which is a determination of whether the program is mali­
cious or benign, and assigns the string a boolean "0" or "1." 
(Where the probabilities of being malicious and of being 
benign are similar, it may be labeled borderline, as discussed 

The features extracted from the attachment in step 106 are 45 

evaluated using the classification rule set as described above, 
and the attachment is classified as malicious or benign (step 
108). In the exemplary embodiment the routine hexScan 
subsequently calls the routine senb, which calculates 
"scores" associated with the attachments. (As will be 
described below, such scores are representative of whether a 
binary is malicious or benign.) The routine senb evaluates the 
features, e.g., the hexadecimal string "/tmp/$$.hex"produced 
by hexdump against the rules in the Classification Rule Set, 
e.g., "/etc/procmail/senb/aids_model. txt," and returns with a 
first score associated with the probability that the string is 
malicious and a second score associated with the probability 
that the string is benign. In order to obtain these scores, the 
routine senb invokes the routine check_file, which performs 
the Naive Bayes analysis on the features as described above in 60 

equation (1)-(5), and calculates scores associated with the 
probability that the program is malicious and benign. \\There 
the Multi-Naive Bayes algorithm is used, the data is parti­
tioned into components which are processed in parallel to 
increase processing speed. The routine hexScan then deter- 65 

mines which of the scores is greater, e.g., malicious or benign. 

50 above.) Subsequently, scanAttachments invokes the routine 
md5log to associate a unique identifier for each attachment in 
by using the MD5 algorithm, (as described in R. Rivest, "The 
MD5 Message Digest Algorithm," Internet RFC1321, Pari! 
1992, which is incorporated by reference in its entirety 

In other embodiments, a different classification algorithm 

55 herein.) The input to MD5 is the hexadecimal representation 
of the binary. These identifiers are than kept in a log along 
with other information such as whether the attachment was 
malicious, benign, or borderline and with what certainty the 
system made those predictions (Step 112). 

The results of this analysis are sent from parser3 to html-
trap.procmail, which inserts warnings that the file may be 
malicious and may quarantine the attachment. The routine 
html-trap.procmail reintegrates filtered email back into nor­
mal email traffic. 

An exemplary system 200 in accordance with the invention 
is illustrated in FIG. 9. The system 200 includes a malicious 
email detector 220 and model generator 240. The system may 
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resides on the server of a computer or on a host or client of the 
computer system to receive emails before they are forwarded 
to users of the system. 

16 

The malicious email detector may include an email filter 
222, a feature extractor 224, a rule repository 226, a rule 
evaluator 230, and an email interface 232. In the exemplary 
embodiment, the email filter 222 may include the routine 
Parser3 which filters attachments from the emails as 
described above. Parser3 calls the routine extractAttach­
ments, for example, which extracts attachments and other 
items of the email. The email filter 222 may also filter out 
updated classification rules sent by the model generator 240, 
and forward them to the rule repository 226. 

ber of a class. When the Multi-Naive Bayes analysis is used 
herein, the data is partitioned into several components and all 
the components may be processed in parallel to increase 
speed. This updated model may then be distributed to the 
malicious email detector 220. The filter interface 242 may 
receive copies of all attachments from the email interface 232. 
In the exemplary embodiment, the routine senb may perfonn 
the function of the filter interface 242. The data repository 244 
receives copies of attachments from the filter interface 42, and 

10 stores the attachments. In the exemplary embodiment, the 
attachments may be stored as a datafile. 

The feature extractor 246 accesses attachments stored in 
the data repository 244, and then extracts features from the 

15 
attachments. This function may be performed by invoking the 
hexdump routine, as described above. The learning algorithm 
executor 248 receives features from the feature extractor 246 
and executes learning algorithms on the features extracted 

The feature extractor 224 receives the executable attach­
ments and extracts those byte sequence features which will be 
analyzed and used to classifY the program as malicious or 
benign. In the exemplary embodiment, the routine scanAt­
tachments calls the routine hexScan, which performs the 
function of the feature extractor 224. In particular, hexScan 
includes a function call to hexdump, which transforms the 20 

binary files into hexadecimal strings. The rule repository 226 
may be a database which contains the classification rule set 
generated by a data mining model in a process such as that 
illustrated in FIG. 1. The rule evaluator 23 0 evaluates the byte 
sequence features extracted from the attachments by the fea- 25 

ture extractor 224 using the classification rule set provided by 
the rule repository 226. 

from the attachments to generate an updated classification 
rule set. In the exemplary embodiment, the routine senb calls 
the routine test_table, which in turn invokes test_class. 
Test_ class invokes test_file, which performs the function of 
creating the updated classification rule set, including per­
forming the Naive Bayes calculations, described above in 
equations (1 )-(5). 

In the exemplary embodiment, the routine hexScan calls 
the routine senb, which performs the function of rule evalu­
ator 230. The routine senb evaluates the byte sequence fea- 30 

tures, e.g., the hexadecimal string against the classification 
rule set in the rule repository 26, e.g., "/etc/procmail/senb/ 
aids_model.txt," and returns with a score that the string is 
malicious and a score that the string is benign. The rule 
evaluator 230 may also provide an indication that the string is 35 

borderline. 

In an exemplary embodiment, the filter interface 242 
receives the classification model rule set from the learning 
algorithm executor 248 and transmits the classification model 
rule set to the malicious email detector 220, where it is used to 
update the classification rule set stored in the rule depository 
226. According to the exemplary embodiment, portions ofthe 
classification model rule set that have changed may be dis­
tributed, rather than the entire classification model rule set, to 
improve efficiency. In order to avoid constantly sending a 
large model from the model generator 240 to the malicious 
email detector 220, the administrator is provided with the 
option of receiving this smaller file. Using the update algo­
rithm, the older model can then be updated. The full model 

The results of this analysis may be sent to the email inter­
face 232, which reintegrates filtered email back into normal 
email traffic 300, and which may send the model generator 
240 (described below) each attachment to be analyzed fur­
ther. If the program was considered malicious by the rule 
evaluator 230, the email interface 232 may add warnings to 
the email or quarantine the email. In the exemplary embodi­
ment, the routine html-trap.procmail performs this function. 

The classification rule set may require updates periodi­
cally. For example, after a number of borderline cases have 
been identified by the rule evaluator 230, it may be desirable 
to generate a new detection model, and subsequently distrib­
ute the updated models. This embodiment of the system 300, 
which is illustrated in FIG. 10, is substantially identical to 
system 100, with the differences noted herein. For example, 
the email filter 222 may maintain a running counter of the 
number ofborderline executables identified (step 150 of FIG. 
9). When a predetermined threshold is exceeded (propor­
tional to the overall traffic of email received) (step 152 of FIG. 
9), a notification may be sent that the threshold has been 
exceeded (step 154 of FIG. 9). Subsequently, the model gen­
erator 240 may be invoked to generate an updated classifica­
tion rule set 

40 will also be available to provide additional options for the 
system administrator. Efficient update of the model is pos­
sible because the underlying representation of the models is 
probabilistic. Thus, the model is a count of the number of 
times that each byte string appears in a malicious program 

45 versus the number of times that it appears in a benign pro­
gram. An update model can then be easily summed with the 
older model to create a new model. From these counts the 
algorithm computes the probability that an attachment is 
malicious in a method described above. In order to combine 

50 the models, the counts of the old model are sUlllllled with the 
new information. 

As shown in Table 3, in model A, the old detection model, 
a byte string occurred 99 times in the malicious class, and one 
time in the benign class. In model B, the update model, the 

55 same byte string was found three times in the malicious class 
and four times in the benign class. The combination of models 
A and B would state that the byte string occurred 102 times in 
the malicious class and five times in the benign class. The 
combination of A and B would be the new detection model 

60 after the update. A new classification rule set is generated at the model 
generator 240 by running the data mining algorithm on the 
new data set that contains the borderline cases along with 
their correct classification (as determined by expert analysis), 
and the existing training data set. As described herein, the data 
mining algorithm may be a Naive Bayes or a Multi-Naive 65 

Bayes algorithm, or any other appropriate algorithm for cal­
culating the probability or likelihood that a feature is a mem-

TABLE3 

Model A (old) 

The byte string occurred in 99 malicious executables 
The byte string occurred in 1 benign executable 
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TABLE 3-continued 

Model B (new) 

The byte string occurred in 3 malicious executables 
The byte string occurred in 4 benign executables. 
Model C (update) 

The byte string occurred in 102 malicious executables 
The byte string occurred in 5 benign executables. 

18 
ing data and then tested their models over the set of test data. 
This was done five times in accordance with cross fold vali­
dation. 

To compare the results of the methods and system 
described herein with traditional methods, a prior art signa­
ture-based method was implemented (step 26, of FIG. 1). 
First, the byte-sequences that were only found in the mali­
cious executable class were calculated. These byte-sequences 
were then concatenated together to make a unique signature 
for each malicious executable example. Thus each malicious 
executable signature contained only byte-sequences found in 
the malicious executable class. To make the signature unique, 
the byte-sequences found in each example were concatenated 20 

together to form one signature. This was done because a 
byte-sequence that was only found in one class during train­
ing could possibly be found in the other class during testing, 
and lead to false positives when deployed. 

Tables 4 displays the results. The data mining algorithm 
had the highest detection rate, 97.76%, compared with the 
signature-based method's detection rate of 33.96%. Along 
with the higher detection rate the data mining method had a 
higher overall accuracy, 96.88% vs. 49.31%. The false posi­
tive rate of 6.01% though was higher than the signature-based 

10 method, 0%. 

15 

The virus scanner that was used to label the data set (step 25 

16, above) contained signatures for every malicious example 
in the data set, so it was necessary to implement a similar 
signature-based method. This was done to compare the two 
algorithms' accuracy in detecting new malicious executables. 
In the tests, the signature-based algorithm was only allowed 30 

to generate signatures for the same set of training data that the 
data mining method used. This allowed the two methods to be 
fairly compared. The comparison was made by testing the two 
methods on a set of binaries not contained in the training set. 

TABLE4 

False Positive Overall 
Profile Type Detection Rate Rate Accuracy 

Signature Method 33.96% 0% 49.31% 
Data Mining Method 97.76% 6.01% 96.88% 

FIG. 11 displays the plot 400 of the detection rate 402 vs. 
false positive rate 404 using Receiver Operation Characteris­
tic curves, as described in K. H. Zou et a!., "Smooth Non­
Parametric ROC Curves for Continuous Diagnostic Tests," 
Statistics in Medicine, 1997. Receiver Operating Character­
istic (ROC) curves are a way of visualizing the trade-offs 
betweendetectionandfalsepositiverates. In this instance, the 
ROC curve shows how the data mining method (illustrated in 
dashed line 405) can be configured for different environ­
ments. Por a false positive rate less than or equal to 1% the 
detection rate would be greater than 70%, and for a false 
positive rate greater than 8% the detection rate would be 
greater than 99%. Thus, more secure settings would select a 
threshold setting associated with a point on the data mining 
line towards the right (indicated by arrow 408), and applica­
tions needing fewer false alarms should choose a point 
towards the left (indicated by arrow 406). 

The performance of the models in detecting known 
executables was also evaluated. For this task, the algorithms 
generated detection models for the entire set of data. Their 
perfom1ance was then evaluated by testing the models on the 
same training set. 

As shown in Table 5, both methods detected over 99% of 
known executables. The data mining algorithm detected 
99.87% of the malicious examples and misclassified 2% of 

To quantify the performance of the method described 35 

herein, statistics were computed on the performance of the 
data mining-based method, tables 4 and 5 are included herein 
which include counts for true positives, true negatives, false 
positives and false negatives. A true positive, TP, is a mali­
cious example that is correctly classified as malicious, and a 40 

true negative, TN, is a benign example that is correctly clas­
sified as benign. A false positive, FP, is a benign program that 
has been mislabeled by an algorithm as malicious, while a 
false negative, FN, is a malicious executable that has been 
mis-classified as a benign program. 45 the benign binaries as malicious. However, the signatures for 

the binaries that the data mining algorithm misclassified were 
identified, and the algorithm can include those signatures in 
the detection model without lowering accuracy of the algo­
rithm in detecting unknown binaries. After the signatures for 

The overall accuracy of the algorithm is calculated as the 
number of programs the system classified correctly divided 
by the total number ofbinaries tested. The detection rate is the 
number of malicious binaries correctly classified divided by 
the total number of malicious programs tested. 

The results were estimated over new executables by using 
5-fold cross validation technique, as described in R. Kohavi, 

50 the executables that were misclassified during training had 
been generated and included in the detection model, the data 
mining model had a 100% accuracy rate when tested on 
known executables. "A Study of Cross-Validation and Bootstrap for Accuracy 

Estimation and Model Selection," IJCAI, 1995. Cross-vali­
dation, as is known in the art, is the standard method to 55 

estimate the performance of predictions over unseen data in 
Data Mining. For each set of binary profiles the data was 
partitioned into five equal size partitions. Four of the parti­
tions were used for training a model and then evaluating that 
model on the remaining partition. Then the process was 
repeated five times leaving out a different partition for testing 
each time. This provided a measure of the method's accuracy 
on unseen data. The results of these five tests were averaged 
to obtain a measure of how the algorithm performs over the 
entire set. 

To evaluate the algorithms over new executables, the algo­
rithms generated their detection models over the set of train-

TABLES 

False Positive Overall 
Profile Type Detection Rate Rate Accuracy 

Signature Method 100% 0% 100% 

60 
Data Mining Method. 99.87% 2% 99.44% 

In order for the data mining algorithm to quickly generate 
the models, it is advantageous for all calculations to be done 
in memory. The algorithm consumed space in excess of a 

65 gigabyte of RAM. By splitting the data into smaller pieces, 
the algorithm was done in memory with no loss in accuracy. 
In addition, the calculations may be performed in parallel. 
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The training of a classifier took 2 hours 59 minutes and 49 
seconds running on Pentium III 600 Linux machine with 1 
GB of RAM. The classifier took on average 2 minutes and 28 
seconds for each of the 4,301 binaries in the data set. The 
amonnt of system resources taken for using a model are 
equivalent to the requirements for training a model. So on a 
Pentium III 600 Linux box with 1 GB of RAM it would take 

20 
9. The method as defined in claim 1, wherein the step of 

classifying the executable attachment comprises classifying 
said executable attachment as borderline if a difference 
between said probability that said executable attachment is 
benign and said probability that said executable attachment is 
malicious is within a predetermined threshold. 

on average 2 minutes 28 seconds per attachment. Another 
advantageous of splitting the data into smaller partitions (in 
connection with the Multi-Naive Bayes analysis) is that the 10 

Naive Bayes algorithm is executed on each partition on par­
allel hardware, which reduces the total training time from 2 
hours and 59 minutes, to 2 minutes and 28 seconds if each 
piece is concurrently executed. 

10. A system for classifYing an executable attachment in an 
email received at a computer system comprising: 

one or more computer processors executing instructions 
which implement: 

a) an email filter configured to filter said executable attach­
ment from said email; 

b) a feature extractor configured to extract a byte sequence 
feature from said executable attachment; and 

c) a rule evaluator configured to: classify said executable 
attachment by comparing said byte sequence feature of 
said executable attachment to a classification rule set 
derived from byte sequence features of a set of 
executables having a predetermined class in a set of 
classes, 

It will be understood that the foregoing is only illustrative 15 

of the principles of the invention, and that various modifica­
tions can be made by those skilled in the art without departing 
from the scope and spirit of the invention. 

What is claimed is 
1. A method for classifying an executable attachment in an 20 

email received at a computer system comprising: 
determine a probability that said executable attachment is a 

member of a class of said set of classes based on said 
byte sequence feature, and a) filtering said executable attachment from said email; 

b) extracting a byte sequence feature from said executable 
attachment; and 

divide the determination of said probability into a plurality 
of processing steps and to execute said processing steps 
in parallel. 

11. The system as defined in claim 10, wherein the feature 
extractor is configured to extract static properties of said 
executable attachment. 

c) classifYing said executable attachment by comparing 
said byte sequence feature of said executable attachment 25 

with a classification rule set derived from byte sequence 
features of a set of executables having a predetermined 
class in a set of classes, 12. The system as defined in claim 10, wherein the feature 

extractor is configured to convert said executable attachment 
30 from binary format to hexadecimal format. 

wherein said classifYing comprises determining using a 
computer processor, with a Multi-Naive Bayes algo­
rithm, a probability that said executable attachment is a 
member of each class in said set of classes based on said 
byte sequence feature and dividing said step of deter­
mining said probability into a plurality of processing 
steps and executing said processing steps in parallel. 

2. The method as defined in claim 1, wherein the step of 
extracting said byte sequence feature from said executable 
attachment comprises extracting static properties of said 
executable attachment. 

3. The method as defined in claim 1, wherein the step of 
extracting said byte sequence feature from said executable 
attachment comprises converting said executable attachment 
from binary format to hexadecimal format. 

13. The system as defined in claim 10, wherein the feature 
extractor is configured to create a byte string representative of 
resources referenced by said executable attachment. 

14. The system as defined in claim 10, wherein the rule 
35 evaluator is configured to predict the classification of said 

executable attachment as one class of a set of classes consist­
ing of malicious and benign. 

15. The system as defined in claim 10, wherein the rule 
evaluator is configured to predict the classification of said 
executable attachment as one class of a set of classes consist-

40 ing of malicious, benign, and borderline. 

4. The method as defined in claim 1, wherein the step of 
extracting said byte sequence features from said executable 
attachment comprises creating a byte string representative of 45 

resources referenced by said executable attachment. 

16. The system as defined in claim 10, wherein the rule 
evaluator is configured to determine said probability that said 
executable attachment is a member of one class of said set of 
classes with a Naive Bayes algorithm. 

17. The system as defined in claim 10, wherein the rule 
evaluator is configured to determine said probability that said 
executable attachment is a member of a class of said set of 
classes with a multi-Naive Bayes algorithm. 

5. The method as defined in claim 1, wherein the step of 
classifying said executable attachment comprises determin­
ing a probability that said executable attachment is a member 
of each class in a set of classes consisting of malicious and 
benign. 

6. The method as defined in claim 1, wherein the step of 
classifying said executable attachment comprises determin­
ing a probability that said executable attachment is a member 
of each class in a set of classes consisting of malicious, 
benign, and borderline. 

7. The method as defined in claim 1, wherein the step of 
classifying the executable attachment comprises classifying 
said executable attachment as malicious if said probability 
that said executable attachment is malicious is greater than 
said probability that said executable attachment is benign. 

8. The method as defined in claim 1, wherein the step of 
classifying the executable attachment comprises classifying 
said executable attachment as benign if said probability that 
said executable attachment is benign is greater than said 
probability that said executable attachment is malicious. 

18. The system as defined in claim 10, wherein the rule 
50 evaluator is configured to classifY said executable attachment 

as malicious if said probability that said executable attach­
ment is malicious is greater than said probability that said 
executable attachment is benign. 

19. The system as defined in claim 10, wherein the rule 

55 
evaluator is configured to classifY said executable attachment 
as benign if said probability that said executable attachment is 
benign is greater than said probability that said executable 
attachment is malicious. 

20. The system as defined in claim 10, wherein the rule 
evaluator is configured to classifY said executable attachment 

60 as borderline if a difference between said probability that said 
executable attachment is benign and said probability that said 
executable attachment is malicious is within a predetermined 
threshold. 

* * * * * 
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SYSTEM AND METHODS FOR DETECTING 
INTRUSIONS IN A COMPUTER SYSTEM BY 

MONITORING OPERATING SYSTEM 
REGISTRY ACCESSES 

CLAIM FOR PRIORITY TO RELATED 
APPLICATIONS 

This application claims the benefit of U.S. Provisional 
Patent Application Ser. No. 60/351,857, filed on Jan. 25, 
2002, entitled "Behavior Based Anomaly Detection for Host­
Based Systems for Detection of Intrusion in Computer Sys­
tems," which is hereby incorporated by reference in its 
entirety herein. 

STATEMENT OF GOVERNMENT RIGHT 

The present invention was made in part with support from 
United States Defense Advanced Research Projects Agency 
(DARPA), grant nos. FAS-526617, SRTSC-CU019-7950-1, 
and F30602-00-1-0603. Accordingly, the United States Gov­
ermnent may have certain rights to this invention. 

COMPUTER PROGRAM LISTING 

A computer program listing is submitted in duplicate on 
CD. Each CD contains a routines listed in the Appendix, 
which CD was created on Jan. 27, 2002, and which is 22MB 
in size. The files on this CD are incorporated by reference in 
their entirety herein. 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document con­
tains material which is subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc­
tion by any one of the patent disclosure, as it appears in the 
Patent and Trademark Office patent files or records, but oth­
erwise reserves all copyright rights whatsoever. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to systems and methods for detecting 

anomalies in a computer system, and more particularly to the 
use of probabilistic and statistical models to model the behav­
ior of processes which access the file system of the computer, 
such as the Windows™ registry. 

2. Background 
Windows™ is currently one of the most widely used oper­

ating systems, and consequently computer systems running 
the Windows™ operating system are frequently subject to 
attacks. Malicious software is often used to perpetrate these 
attacks. Two conventional approaches to respond to mali­
cious software include virus scanners, which attempt to detect 
the malicious software, and security patches that are created 
to repair the security "hole" in the operating system that the 
malicious software has been found to exploit. Both of these 
methods for protecting hosts against malicious software suf­
fer from drawbacks. While they may be effective against 
known attacks, they are unable to detect and prevent new and 
previously unseen types of malicious software. 

2 
protect against that malicious program. In general, virus scan­
ners require frequent updating of signature databases, other­
wise the scanners become useless to detect new attacks. Simi­
larly, security patches protect systems only when they have 
been written, distributed and applied to host systems in 
response to known attacks. Until then, systems remain vul­
nerable and attacks are potentially able to spread widely. 

Frequent updates of virus scanner signature databases and 
security patches are necessary to protect computer systems 

10 using these approaches to defend against attacks. If these 
updates do not occur on a timely basis, these systems remain 
vulnerable to very damaging attacks caused by malicious 
software. Even in environments where updates are frequent 
and timely, the systems are inherently vulnerable from the 

15 time new malicious software is created until the software is 
discovered, new signatures and patches are created, and ulti­
mately distributed to the vulnerable systems. Since malicious 
software may be propagated through email, the malicious 
software may reach the vulnerable systems long before the 

20 updates are in place. 
Another approach is the use of intrusion detection systems 

(IDS). Host-based IDS systems monitor a host system and 
attempt to detect an intrusion. In an ideal case, an IDS can 
detect the effects or behavior of malicious software rather 

25 than distinct signatures of that software. In practice, many of 
the commercial IDS systems that are in widespread use are 
signature-based algorithms, having the drawbacks discussed 
above. Typically, these algorithms match host activity to a 
database of signatures which correspond to known attacks. 

30 This approach, like virus detection algorithms, requires pre­
vious knowledge of an attack and is rarely effective on new 
attacks. However, recently there has been growing interest in 
the use of data mining techniques, such as anomaly detection, 
in IDS systems. Anomaly detection algorithms may build 

35 models of normal behavior in order to detect behavior that 
deviates from normal behavior and which may correspond to 
an attack. One important advantage of anomaly detection is 
that it may detect new attacks, and consequently may be an 
effective defense against new malicious software. Anomaly 

40 detection algorithms have been applied to network intrusion 
detection (see, e.g., D. E. Denning, "An Intrusion Detection 
Model, IEEE Transactions on Software Engineering, SE-13: 
222-232, 1987; H. S. Javitz and A. Valdes, "The NIDES 
Statistical Component: Description and Justification, Techni-

45 cal report, SRI International, 1993; and W. Lee, S. J. Stolfo, 
and K. Mok, "Data Mining in Work Flow Environments: 
Experiences in Intrusion Detection," Proceedings of the 1999 
Conference on Knowledge Discovery and Data Mining 
(KDD-99), 1999) and also to the analysis of system calls for 

50 hostbasedintrusiondetection(see, e.g., Stephanie Forrest, S. 
A. Hofmeyr, A. Somayaji, and T. A. Longstaff, "A Sense of 
Selffor UNIX Processes," IEEE Computer Society, pp. 120-
128, 1996; Christina Warrender, Stephanie Forrest, and Barak 
Pearlmutter, "Detecting Intrusions Using System Calls: 

55 Alternative Data Models," IEEE Computer Society, pp. 133-
145, 1999; S. A. Hofineyr, Stephanie Forrest, and A. 
Somayaji, "Intrusion Detect Using Sequences of System 
Calls," Journal of Computer Security, 6:151-180, 1998; W. 
Lee, S. J. Stolfo, and P. K. Chan, "Leaming Patterns from 

60 UNIX Processes Execution Traces for Intrusion Detection," 
AAAI Press, pp. 50-56, 1997; and Eleazar Eskin, "Anomaly 
Detection Over Noisy Data Using Learned Probability Dis­
tributions," Proceedings of the Seventeenth International Many virus scanners are signature-based, which generally 

means that they use byte sequences or embedded strings in 
software to identify certain programs as malicious. If a virus 65 

scanner's signature database does not contain a signature for 

Conference on Machine Learning (ICML-2000), 2000). 
There are drawbacks to the prior art approaches. For 

example, the system call approach to host-based intrusion 
detection has several disadvantages which inhibit its use in a malicious program, the virus scanner is unable to detect or 
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actual deployments. A first is that the computational overhead 
of monitoring all system calls is potentially very high, which 
may degrade the performance of a system. A second is that 
system calls themselves are typically irregular by nature. 
Consequently, it is difficult to differentiate between normal 
and malicious behavior, and such difficulty to differentiate 
behavior may result in a high false positive rate. 

4 
records regarding processes that access the Windows registry. 
A model generator is also provided which is configured to 
generate a probabilistic model of normal computer system 
usage based on records of a plurality of processes that access 
the Windows registry and that are indicative of normal com­
puter system usage, e.g., free of attacks. A model comparator, 
e.g., anomaly detector, is configured to receive said probabi­
listic model of normal computer system usage and to receive 
records regarding processes that access the Windows registry 

Accordingly, there is a need in the art for an intrusion 
detection system which overcomes these limitations of the 
prior art. 10 and to determine whether the access of the Windows registry 

is an anomaly. 
SUMMARY OF THE INVENTION 

It is an object of the invention to provide techniques which 
are effective in detecting attacks while maintaining a low rate 15 

of false alarms. 

The system may also comprise a database configured to 
receive records regarding processes that access the Windows 
registry from said registry auditing module. The model gen­
erator may be configured to receive the records regarding 
processes that access the Windows registry from the database. 

It is another object of the invention to generate a model of 
the normal access to the Windows registry, and to detect 
anomalous accesses to the registry that are indicative of 
attacks. 

The model generator may be configured to determine a 
conditional probability of observing a first feature in records 
regarding processes that access the Windows registry given 

20 an occurrence of a second feature is said record. The model 
These and other aspects of the invention are realized by a 

method for detecting intrusions in the operation of a computer 
system comprising the steps of gathering features from 
records of normal processes that access the Windows registry. 
Another step comprises generating a probabilistic model of 25 

nonnal computer system usage, e.g., free of attacks, based on 
occurrences of said features. The features of a record of a 
process that accesses the Windows registry are analyzed to 
determine whether said access to the Windows registry is an 
anomaly. 30 

According to an exemplary embodiment, the step of gath­
ering features from the records of normal processes that 
access the Windows registry may comprise gathering a fea­
ture corresponding to a name of a process that accesses the 
registry. Another feature may correspond to the type of query 35 

being sent to the registry. A fnrther feature may correspond to 
an outcome of a query being sent to the registry. A still further 
feature may correspond to a name of a key being accessed in 
the registry. Yet another feature may correspond to a value of 
said key being accessed. In addition, any other features may 40 

be combined to detect anomalous behavior that may not be 
identified by analyzing a single feature. 

comparator may be configured to determine a score based on 
the likelihood of observing a feature in a record regarding a 
process that accesses the Windows registry. The model com­
parator may also be configured to determine whether an 
access to the Windows registry is anomalous based on 
whether the score exceeds a predetermined threshold. 

In accordance with the invention, the objects as described 
above have been met, and the need in the art for detecting 
intrusions based on registry accesses has been satisfied. 

BRIEF DESCRIPTION OF THE DRAWINGS 

Further objects, features, and advantages of the invention 
will become apparent from the following detailed description 
taken in conjunction with the accompanying figures showing 
illustrative embodiments of the invention. in which: 

FIG.1 is a block diagram illustrating the architecture of the 
system in accordance with the present invention. 

FIG. 2 is an exemplary user interface in accordance with 
the present invention. 

FIG. 3 is a plot illustrating the result of an embodiment of 
the present invention. 

Throughout the figures, the same reference numerals and 
characters, unless otherwise stated, are used to denote like 
features, elements, components, or portions of the illustrated 
embodiments. Moreover, while the subject invention will 
now be described in detail with reference to the figures, it is 
done so in connection with the illustrative embodiments with-

The step of generating a probabilistic model of normal 
computer system usage may comprise determining a likeli­
hood of observing a feature in the records of processes that 45 

access the Windows registry. This may comprise performing 
consistency checks. For example, a first order consistency 
check may comprise determining the probability of observa­
tion of a given feature. The step of determining a likelihood of 
observing a feature may comprise a second order consistency 
check, e.g., determining a conditional probability of observ­
ing a first feature in said records of processes that access the 
Windows registry given an occurrence of a second feature is 
said records. 

out departing from the true scope and spirit of the invention as 
50 defined by the appended claims. 

In the preferred embodiment, the step of analyzing a record 55 

of a process that accesses the Windows registry may com­
prise, for each feature, determining if a value of the feature 
has been previously observed for the feature. If the value of 
the feature has not been observed, then a score may be deter­
mined based on a probability of observing said value of the 60 

feature. If the score is greater than a predetermined threshold, 
the method comprises labeling the access to the Windows 
registry as anomalous and labeling the process that accessed 
the Windows registry as malicious. 

A system for detecting intrusions in the operation of a 65 

computer system has an architecture which may comprise a 
registry auditing module, e.g., a sensor, configured to gather 

DETAILED DESCRIPTION OF THE 
EXEMPLARY EMBODIMENTS 

A novel intrusion detection system 10 is disclosed herein 
and illustrated in FIG. 1. System 10 monitors a program's 
access of the file system of the computer, e.g., Microsoft™ 
Windows™ registry (hereinafter referred to as the "Win­
dows™ registry" or the "registry") and determines whether 
the program is malicious. The system and methods described 
herein incorporate a novel technique referred to herein as 
"RAD" (Registry Anomaly Detection), which monitors the 
accesses to the registry, preferably in real time, and detects the 
actions of malicious software. 

As is known in the art, the registry is an important compo­
nent of the Windows™ operating system and is implemented 
very widely. Accordingly, a substantial amount of data 
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regarding activity associated with the registry is available. 
The novel technique includes building a sensor, e.g., registry 
auditing module, on the registry and applying the information 
gathered by this sensor to an anomaly detector. Consequently, 
registry activity that corresponds to malicious software may 
be detected. Several advantages of monitoring the registry 
include the fact that registry activity is regular by nature, that 
the registry can be monitored with low computational over­
head, and that almost all system activities query the registry. 

6 
the fact that any other program can likewise access data 
anywhere inside the registry. Consequently, some attacks tar­
get the registry to take advantage of this access. In order to 
address this concern, security permissions are included in 
some versions ofWindows™. However, such permissions are 
not included in all versions of Windows™, and even when 
they are included, many common applications do not make 
use of this security feature. 

"Normal" computer usage with respect to the registry is 
1 o described herein. Most typical Windows TM programs access a 

certain set of keys during execution. Furthermore, each user 
typically uses a certain set of programs routinely while run­
ning their machine. This set of programs may be a set of all 

An exemplary embodiment of the novel system, e.g., sys­
tem 10, comprises several components: a registry auditing 
module 12, a model generator 14, and an anomaly detector 
16. Generally, the sensor 12 serves to output data for each 
registry activity to a database 18 where it is stored for training. 
The model generator 14 reads data from the database 18, and 15 

creates a model of normal behavior. The model is then used by 
the anomaly detector 16 to decide whether each new registry 
access should be considered anomalous. The above compo­
nents can reside on the host system itself, or on a remote 
network connected to the host. 

programs installed on the machine, or a small subset of these 
programs. 

Another important characteristic of normal registry activ­
ity is that it has been found to be substantially regular over 
time. Most programs may either (1) access the registry only 
on startup and shutdown, or (2) access the registry at specific 

20 intervals. Since this access to the registry appears to be sub­
stantially regular, monitoring the registry for anomalous 
activity provides useful results because a program which 
substantially deviates from this normal activity may be easily 
detected as anomalous. 

A description of the Windows™ registry is provided 
herein. As is known in the art, the registry is a database of 
information about a computer's configuration. The registry 
contains information that is continually referenced by many 
different programs during the operation of the computer sys- 25 

tern. The registry may store information concerning the hard­
ware installed on the system, the ports that are being used, 
profiles for each user, configuration settings for programs, 
and many other parameters of the system. The registry is the 
main storage location for all configuration information for 30 

almost all programs. The registry is also the storage location 
for all security information such as security policies, user 
names, and passwords. The registry also stores much of the 
important configuration information that are needed by pro­
grams in order to run. 

Other normal registry activity occurs only when the oper­
ating system is installed by the manufacturer. Some attacks 
involve launching programs that have not been launched 
before and/or changing keys that have not been changed since 
the operating system was first installed by the manufacturer. 

If a model of the normal registry behavior is trained over 
clean data, then these kinds of registry operations will not 
appear in the model, and can be detected when they occur. 
Furthermore, malicious programs may need to query parts of 
the registry to get information about vulnerabilities. A mali-

The registry is organized hierarchically as a tree. Each 
entry in the registry is called a "key" and has an associated 
value. One example of a registry key is: 

35 cious program can also introduce new keys that will help 
create vulnerabilities in the machine. 

HKCU\Software\America Online\AOL Instant Messen-
ger™ \CurrentVersion\Users\aimuser\Login\Password 40 

This example represents a key used by the AOL™ Instant 
Messenger™ program. This key stores an encrypted version 
of the password for the user name "aimuser." Upon execution, 
theAOL™ Instant Messenger™ program access the registry. 45 
In particular, the program queries this key in the registry in 
order to retrieve the stored password for the local user. Infor­
mation is accessed from the registry by individual registry 
accesses or queries. The information associated with a regis-
try query may include the key, the type of query, the result, the 50 
process that generated the query, and whether the query was 
successful. One example of a query is a read for the key, 
shown above. For example, the record of the query is: 

Some examples of malicious programs and how they pro­
duce anomalous registry activity are as follows: 

Setup Trojan: This program, when launched, adds full 
read/write sharing access on the file system of the host 
machine. It makes use of the registry by creating a registry 
structure in the networking section of the Windows™ keys. 
The structure stems from HKLM\Software\Microsoft\ 
Windows\CurrentVersion\Network\LanMan. It then makes 
several, e.g., eight, new keys for its use. It also accesses 
HKLM\Security\Provider in order to find information about 
the security of the machine to help determine vulnerabilities. 
This key is not accessed by any normal programs during 
training or testing in our experiments, and therefore its use is 
clearly suspicious in nature. 

Back Oriffice 2000: This program opens a vulnerability on 
a host machine, which may grant anyone with the back orif­
fice client program complete control over the host machine. 
This program makes extensive use of the registry. In doing so, Process: aim.exe 

Query: QueryValue 55 it does access a key that is very rarely accessed on the Win-
Key: HKCU\Software\America Online\AOL Instant 

Messenger™\CurrentVersion\Users\aimuser\Login\ 
Password 

Response: SUCCESS 
ResultValue: "BCOFHIHBBAHF" 
The registry serves as an effective data source to monitor 

for attacks because it has been found that many attacks are 
manifested as anomalous registry behavior. For example, cer­
tain attacks have been found to take advantage of Win­
dows'™ reliance on the registry. Indeed, many attacks them­
selves rely on the registry in order to function properly. Many 
programs store important information in the registry, despite 

dows™ system. This key, 
HKLM\Software\Microsoft\ VBA \Monitors, was not 
accessed by any normal programs in either the training or test 
data. Accordingly, the detection algorithm was able to deter-

60 mine it as anomalous. This program also launches many other 
programs (e.g., LoadWC.exe, Patch.exe, runonce.exe, 
bo2k_i_o_intl.e) as part of the attack, in which all of these 
programs made anomalous accesses to the registry. 

Aimrecover: This program obtains passwords fromAOL™ 
65 users without authorization. It is a simple program that reads 

the keys from the registry where the AOL™ Instant Messen­
ger™ program stores the user names and passwords. These 
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accesses are considered anomalous because Aimrecover is 
accessing a key that usually is accessed and was created by a 
different program. 

Disable Norton: This is a simple exploitation of the registry 
that disables Norton™ Antivirus. This attack toggles one 
record in the registry, in particular, the key 
HKLM\SOFTWARE\INTEL \LANDesk\ VirusProtect6\ 
CurrentVersion \Storages\ Files\System\Rea!TimeScan\ 
OnOff. If this value is set to 0, then Norton™ Antivirus 
real-time system monitoring is turned off. Again, this is con­
sidered anomalous because of its access to a key that was 
created by a different program. 

8 
knowledge and permission). In another embodiment, the user 
is prompted when a detection occurs, which provides the user 
with the option of informing the algorithm that the detected 
program is not malicious and therefore grants permission for 
such program to be added to the training set of data to update 
the anomaly detector for permissible software. 

In order to detect anomalous registry accesses, model gen­
erator 14 of system 10 generates a model of normal registry 
activity. A set of five basic features are extracted from each 

10 registry access. (An additional five features may be added, 
which are combinations of the five basic features, as 
described below.) Statistics of the values of these features 
over normal data are used to create the probabilistic model of 
normal registry behavior. This model of normal registry 

LOphtCrack: This program is a widely used password 
cracking program for Windows™ machines. It obtains the 
hashed SAM file containing the passwords for all users, and 
then uses either a dictionary or a brute force approach to find 
the passwords. This program also uses flaws in the Win­
dows™ encryption scheme in order to try to find some of the 
characters in a password in order to obtain a password faster. 
This program uses the registry by creating its own section in 20 

the registry. This new section may include many create key 
and set value queries, all of which will be on keys that did not 
exist previously on the host machine and therefore have not 
been seen before. 

15 behavior may include a set of consistency checks applied to 
the features, as will be described below. When detecting 
anomalies, the model of normal behavior is used to determine 
whether the values of the features of the new registry accesses 
are consistent with the normal data. If such values are not 
consistent, the algorithm labels the registry access as anoma­
lous, and the processes that accessed the registry as malicious. 

In the exemplary embodiment, the data model consists of 
five basic features gathered by the registry auditing module 
12 from an audit stream. (It is contemplated that additional 
features may also provide significant results.) In the exem­
plary embodiment, the features are as follows: 

An additional aspect of normal computer usage of the 25 

registry is described herein. During testing (as will be 
described below) all of the programs observed in the data set 
cause Explorer™ to access a key specifically for that appli­
cation. This key has the following format: 

Process: The name of the process accessing the registry. 
This allows the tracking of new processes that did not appear 
in the training data. 

HKLM\Software\Microsoft\ WindowsNT 
\CurrentVersion\Image File Execution Options\[pro­
cessName] 

where "processName" is the name of the process being run. 

30 

(It is believed that all programs in general have this behavior.) 
35 

This key is accessed by Explorer™ each time an application 

Query: The type of query being sent to the registry, for 
example, QueryValue, CreateKey, and SetValue are valid 
query types. This allows the identification of query types that 
have not been seen before. There are many query types but 
only a few are used under normal circumstances. 

Key: The actual key being accessed. Including tllis feature 
allows the algorithm to locate keys that are never accessed in 
the training data. Many keys are used only once for special 
situations like system installation. Some of these keys can be 
used by attacks to create vulnerabilities. 

is run. Given this information, a detection system may be able 
to determine when new applications are run, which will be a 
starting point to determine malicious activity. In addition, 
many programs add themselves in the auto-run section of the 

40 
registry under the following key: 

Response: A feature which describes the outcome of the 
query, for example, success, not found, no more, buffer over­
flow, and access denied. 

HKLM\Software\Microsoft\Windows\CurrentVersion\Run. 

While this activity is not malicious in nature, it is nevertheless 
an uncommon event that may suggest that a system is being 
attacked. Trojans such as Back Orifice utilize this part of the 
registry to auto load themselves on each boot. 

Anomaly detectors, such as anomaly detector 16, do not 
operate by looking for malicious activity directly. Rather, 
they look for deviations from normal activity. Consequently, 
such deviations, which represent normal operation, may nev­
ertheless be declared an attack by the system. For example, 
the installation of a new program on a system may be viewed 
as anomalous activity by the anomaly detector, in which new 
sections of the registry and many new keys may be created. 
This activity may interpreted as malicious (since this activity 
was not in the training data) and a false alarm may be trig­
gered, much like the process of adding a new machine to a 
network may cause an alarm on an anomaly detector that 
analyzes network traffic. 

There are a few possible solutions to avoid this problem. 
Malicious programs often install quietly so that the user does 
not know the program is being installed. This is not the case 
with most installations. For example, in an exemplary 
embodiment, the algorithm is programmed to ignore alarms 
while the install shield program is running, because the user 
would be aware that a new program is being installed (as 
opposed to malicious activity occurring without the users 

Result Value: The value of the key being accessed. Includ­
ing this feature allows the algorithm to detect abnormal val-

45 ues being used to create abnormal behavior in the system. 
Composite features may also be used, which are a combi­

nation of two basic features, such as those discussed above. 
These composite features are useful in detecting anomalies 
since they allow the system to give more detail to its normal 

50 usage model where the existence of the basic features in 
isolation would not necessary be detected as anomalous. The 
following is a list of exemplary composite fields that may be 
used by system 10: 

Process/Query: This key is a combination of the process 
55 and query fields, and may provide information to determine if 

a particular process is executing queries that are not typically 
executed by this process. 

Key/Process: This key is a combination of the key and 
process fields, and may allow the algorithm to detect whether 

60 or not a process accesses portions of the registry it typically 
doesn't access. Also it detects when a key is being accessed by 
a process that normally doesn't access it. This analysis is very 
useful because many processes access keys belonging to 
other programs, and this field would allow the detection of 

65 such an event. 
Query/Key: This key is a combination of the query and key 

fields, and may determine if a key is being accessed in a 
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different way than usual. For example, there are many key 
values in the registry that are written once at the time of their 
creation, and then are subsequently read from the registry 
without change. Some of these keys store crucial information 
for the execution of certain programs. If a malicious process 
were to write to one of these keys, after the time of their 
creation, this field would enable the algorithm to detect such 
an event, and the record would appear anomalous. 

Response/Key: This key is a combination of the key and 
response fields. Many keys are found to be used in the same 10 

manner each time they are used. Consequently, they will 
always return the same response. Since a different response to 
a key may be indicative of abnormal or malicious system 
activity, the algorithm which utilizes this combination key 
would be able to detect such abnormal or malicious activity. 15 

Result Value/Key: This key is a combination of the key and 
result value. During operation of the computer system, many 
keys will always contain a value from a certain set or range of 
values. When the value is outside that range, that could be an 
indicator of a malicious program taking advantage of a vul-
nerability. 20 

As an illustration, an exemplary registry access is dis­
played in Table 1. The second colunm is normal access by the 
process aim.exe (which is used withAOL™ Instant Messen­
ger™) to access the key where passwords are stored. The third 
colunm of Table 1 is a malicious access by a process aimre- 25 

cover.exe to the same key. The final colunm ofTable 1 shows 
which fields register by the anomaly detector as anomalous. 
As seen in the table, all of the basic features, e.g., process, 
query, key, response, and result value, do not appear anoma­
lous for the normal process aim.exe, when compared with the 30 

malicious process aimrecover.exe. However, the composite 
keys are useful for detecting the anomalous behavior of aim­
recover.exe. For example, the fact that the process aimrecov­
er.exe is accessing a key that is usually associated with 
another process, i.e., aim.exe, is detected as an anomaly. This 35 
conclusion is made because nnder normal circumstances only 
aim.exe accesses the key that stores the AOL™ Instant Mes­
senger™ password. The occurrence of another process 
accessing this key is considered suspicious. By examining the 
combination of two basic features, the algorithm can detect 
this anomaly. 

TABLE 1 

Feature aim.exe aimreoover. exe 

Process aim.exe aimrecover.exe 
Query Query Value Query Value 
Key HKCU\Software\Arnerica HKCU\Software\Arnerica 

10 
Exemplary embodiments of intrusion detection algorithms 

which may be used by the system 10 will now be described, 
although it is understood that other anomaly detection algo­
rithms may also be used in connection with the present inven­
tion. Since a significant amonnt of data is monitored in real 
time, the algorithm that is selected must be very efficient. 
According to a first exemplary embodiment, the features that 
were monitored from each registry access are used to train a 
model over features extracted from normal data. That model 
allows for the classification of registry accesses as either 
normal or malicious, as will be described herein. 

In general, a principled probabilistic approach to anomaly 
detection can be reduced to density estimation. If a density 
function p(x) can be estimated over the normal data, anoma­
lies are defined as data elements that occur with low prob­
ability. In practice, estimating densities is a very complex, 
non-trivial problem. In detecting intrusions into the registry, a 
complication is that each of the features have many possible 
values. For example, the key feature, defined above, may have 
over30,000 values in the training set. Since there are so many 
possible feature values, it is relatively rare that the same exact 
record occurs more than once in the data. Data sets of this type 
are referred to as "sparse." 

Since probability density estimation is a very complex 
problem over sparse data, the method of the present invention 
defines a set of consistency checks over the normal data for 
determining which records from a sparse data set are anoma­
lous. Each consistency check is applied to an observed record 
by the anomaly detector. If the record fails any consistency 
check, the record is labeled as anomalous. 

In the exemplary embodiment, two kinds of consistency 
checks are applied. The first consistency check evaluates 
whether or not a feature value is consistent with observed 
values of that feature in the normal data set. This type of 
consistency check is referred to as a first order consistency 
check, e.g., each registry record may be viewed as the out­
come of five random variables, one for each feature, X 1 , X2 , 

X3 , X4 , X5 . The consistency checks compute the likelihood of 
an observation of a given feature denoted as P(X,). 

Anomalous 

no 
no 
no 

Online\AOL Instant Messenger Online\AOL Instant Messenger 
(TM)\CurrentVersion\Users\ (TM)\CurrentVersion\Users\ 
aimuser\Login \Password aimuser\Login\Password 

Response SUCCESS SUCCESS no 
Result Value "BCOFHIHBBAHF" "BCOFHIHBBAHF" no 
Process/Query aim.exe:QueryValue aimrecover:QueryValue no 
Query/Key QueryValue:HKCU\Software\ QueryValue:HKCU\Software\ 

America Online\ America Online\AOL Instant 
AOL Instant Messenger (TM)\ Messenger (TM)\ 
CurrentVersion\Users\ CurrentVersion\Users\ 
aimuser\Login \Password aimuser\Login\Password 

Response/Key SUCCESS :HKCU\Softvare\ SUCCESS:HKCU\Software\ no 
America Online\ America Online\ 
AOL Instant Messenger (TM)\ AOL Instant Messenger (TM)\ 
CurrentVersion\Users\ CurrentVersion\Users\ 
aimuser\Login \Password aimuser\Login\Password 

Process/Key aim.exe:HKCU\Software\ aimrecover.exe:HKCU\Software\ yes 
America Online\ America Online\ 
AOL Instant Messenger (TM)\ AOL Instant Messenger (TM)\ 
CurrentVersion\Users\ CurrentVersion\Users\ 
aimuser\Login \Password aimuser\Login\Password 
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The second consistency check handles pairs of features, as 
discussed in the example in Table 1. For each pair of features, 
the conditional probability of a feature value given another 
feature value is considered. These consistency checks are 
referred to as second order consistency checks. These likeli­
hoods are denoted as P(X,IX). For each value ofX1, there may 
be a different probability distribution over X,. 

In the exemplary embodiment, since there are five basic 
feature values, for each record, there are five first order con­
sistency checks and 20 second order consistency checks of 10 

which five examples are given above. If the likelihood of any 
of the consistency checks is below a threshold, the record is 
labeled as anomalous. The determination of the threshold is 
described in greater detail below. 

The manner in which the likelihoods for the first order 15 

(P(X,)) consistency checks and the second order (P(X,IX)) 
consistency checks are computed is described herein. From 
the normal data, there is a set of observed counts from a 
discrete alphabet, e.g., a finite number of distinct symbols or 
feature values, for each of the consistency checks. Computing 20 

the above likelihoods reduces to estimating a multinomial 
expression. In theory, the maximum likelihood estimate may 
be used, which computes the ratio of the counts of a particular 
element to the total counts. However, the maximum likeli­
hood estimate has been found to be biased when relatively 25 

small amounts of data, e.g., "sparse data," are available. The 
distribution may be smoothed by adding a virtual count to 
each possible element. For anomaly detection, it is often 
desirable to take into account how likely it is to observe a 
previously unobserved element. Thus, if many different ele- 30 

ments have been seen in the training data, it is therefore more 
likely to see additional, unobserved elements, as opposed to 
the case where very few elements have been seen, in which 
additional, unobserved elements would be unlikely. (The 
term "elernent" here refers to feature values, or a vector of 35 

feature values.) 
To estimate the likelihoods, an estimator is used, which 

gives the following prediction for element i: 

12 
likely it is to observe a previously observed element versus an 
unobserved element. C is computed by the following equa­
tion: 

(3) 

where 

and P(S=k) is a prior probability associated with the size of 
the subset of elements in the alphabet that have non-zero 
probability. Although the computation of C is expensive, it 
only needs to be done once for each consistency check at the 
end of training. Second order consistency checks are done in 
like fashion, except the particular values being measured are 
not distinct features values, but pairs of feature values, con­
sidering these pairs as a distinct element. 

The prediction of the probability estimator is derived using 
a mixture of Dirichlet estimators, as are known in the art, see, 
e.g., the estimator presented in N. Friedman andY. Singer, 
"Efficient Bayesian Parameter Estimation in Large Discrete 
Domains," Advances in Neural Information Processing Sys­
tems 11, MIT Press, which is incorporated by reference in its 
entirety herein.) The scores computed in the attached soft­
ware code correspond to the estimates provided by the con-
sistency checks in equations (1) and (2) above. 

This exemplary embodiment of the algorithm labels every 
registry access as either normal or anomalous. Programs can 
have anywhere from just a few registry accesses to several 
thousand. This means that many attacks will be represented 

a+N1 

P(X = i) = kOa:+NC 
(1) 

40 by large numbers of records where many of those records will 
be considered anomalous. 

if element i was observed in the training data. If element i was 45 

not previously observed, then the following prediction is 
used: 

A second exemplary embodiment of the algorithm is 
described herein. Using the features that are monitored from 
each registry access, a score is computed to classifY each 
access as either normal or malicious. A set of normal registry 
accesses are analyzed as a model of normal usage of the 
registry. Then using this model, new registry records are 
analyzed to determine whether or not they are malicious. 

1 
P(X=i)= L-k0 (1-C) 

(2) 50 

As the data is being collected, several important statistics 
are collected about each feature and the values that occur for 
each feature. For each feature, which values occurred for that 
feature and how many distinct values occurred for the feature, 
r, are recorded. Accordingly, r is a measure of how likely it is 
to see a new value for the feature. If many distinct values for In these equations, the term a is a prior count for each ele­

ment. The term N, is the number of times element i was 
observed; N is the total number of observations, k0 is the 
number of different elements observed, and L is the total 
number of possible elements or the alphabet size. The param­
eters are either observed or computed (e.g., N and k0 are 
determined by storing values and computing frequency 
counts) while L is defined by the particular system being 
modeled, i.e., the type of variables (e.g., 32 bit integers) 
defines a range of possible values. Thus, Lis predefined by the 
implementation details of the system. Here, the system is 
modeling the Windows™ registry, which has a predefined 
range of possible values (as defined by the programmers of 
the registry.) The scaling factor C takes into account how 

55 a feature have been previously observed, i.e., a high value for 
r, and subsequently a never-observed value is encountered, 
such new value would be expected and considered normal. In 
contrast, if only a few distinct values have been observed, i.e., 
a low value for r, the observation of a new value is unlikely 

60 and possibly anomalous. The total number of registry di±ler­
ent elements, e.g., training records, that are observed during 
training, n, is also recorded. 

During training, for each of the features, all of the distinct 
observed values of the feature are stored, as well as the num-

65 ber of distinct observed values r. The total number of training 
records n is computed. For each feature, the algorithm com­
putes p=r/n, which is an approximation of the probability of 
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observing an unseen value for that feature in the normal data. 
14 

usage. The model generator 14 uses one of the two exemplary 
algorithms discussed above (or other similar algorithm) to 
build a model that will represent normal usage. It utilizes the 
data stored in the database 18 which was generated by registry 
auditing module 12. The database 18 is described in greater 
detail is concurrently filed U.S. application Ser. No. 10/352, 
342, entitled "System and Methods for Adaptive Model Gen­
eration for Detecting Intrusion in Computer Systems," to 
Andrew Honig, eta!., which is incorporated by reference in its 

To minimize storage requirements, instead of storing all dis­
tinct values, the algorithm hashes all of the values and stores 
the hashes of the values in a bit vector. More details on this 
technique is described in the implementation of PHAD 
(Packet Header Anomaly Detection), an anomaly detection 
algorithm known in the art, which was developed to detect 
anomalies in packet headers (see, e.g., M. Mahoney and P. 
Chan, "Detecting Novel Attacks by IdentifYing Anomalous 
Network Packet Headers," Technical Report CS-2001-2, 
Florida Institute of Technology, Melbourne, Fla., 2001). 

Once the model has been trained, new registry accesses can 
be evaluated and a score computed to determine whether or 
not the registry accesses are abnormal. For a new registry 
access, we first extract the features for the registry access. For 
each of these features, a check is performed to see if the value 
of the feature has been observed for the feature. If the value 
has not been observed, a heuristic score is computed which 
determines the level of anomaly for that feature. The score is 
determined as 1/p for each feature. Intuitively this score will 
be higher for features where fewer distinct values have been 
observed. The final score for a registry access is the sum of the 
scores for each feature that observed a previously unobserved 
value. If this value is greater than a threshold, we label the 
registry access anomalous and declare the process that gen­
erated it as malicious. The results from this experiment are 
described below. 

10 entirety herein. (Arrow 28 indicates the flow of data from the 
data warehouse 18 to the model generator 14.) The model 
itself is comprised of serialized Java objects. This allows for 
a single model to be generated and to easily be distributed to 
additional machines. Having the model easily deployed to 

15 new machines is a desirable feature since in a typical network, 
many Windows™ machines have similar usage patterns 
which allow for the same model to be used for multiple 
machines. The GUI 30 for the model generator using the 
second embodiment of the algorithm is shown in FIG. 2. 

20 Column 32 indicates the feature name, column 34 indicates 
then-value, column 36 indicates the r-value, and column 38 
indicates the p-value. Additional details for generating a 
model are described in U.S. application Ser. No. 10/208,432 
filed Jul. 30, 2002 entitled "System and Methods for Detec-

25 tion of New Malicious Executables," to Matthew G. Schulz et 
a!., which is incorporated by reference in its entirety herein. 

The anomaly detector 16 will load the normal usage model 
created by the model generator 14 (as indicated by arrow 29) 
and begin reading each record from the output data stream of 

30 registry auditing module 12 (arrow 26). One of the algo­
rithms, as discussed above, is then applied against each record 
of registry activity. The score generated by the anomaly 
detection algorithm is then compared by a user configurable 
threshold to determine if the record should be considered 

The basic architecture of the system 10 will now be dis­
cussed in greater detail herein. With continued reference to 
FIG. 1, the registry auditing module 12 monitors accesses to 
the registry. In the exemplary embodiment, the registry audit­
ing module 12 is a "Basic Auditing Module" (BAM). In 
general, BAMs are known in the art, and implement an arc hi­
tecture and interface which provide a consistent data repre­
sentation for a sensor. As indicated by arrow 22, they include 35 

a "hook" into the audit stream (in this case the registry) and 
various communication and data-buffering components. 
BAMs use an XML data representation substantially identi-
cal to the IETF standard for IDS systems (See, e.g., Internet 
Engineering Task Force. Intrusion detection exchange for- 40 

mat. On-line publication, http://www.ietf.org/html.charters/ 
idwg-charter.html, 2000.), minor syntatical differences. The 
registry auditing module 12 runs in the background on a 
Windows™ machine, where it gathers information on regis-
try reads and writes, e.g., the 5 features discussed above. 45 

Registry auditing module 12 uses Win32 hooks to tap into the 
registry and log all reads and writes to the registry. The 
software uses an architecture substantially identical to Sys­
Internal's Regmon (See, e.g., Sysinternals. Regmon for Win­
dows™ NT/9x. Online publication, 2000. http://www.sysin- 50 

ternals.com/ntw2k/source/regmon.shtml), and extracts a 
subset of data available to Regmon. After gathering the reg­
istry data, registry auditing module 12 can be configured for 
two distinct uses. One use is to act as the data source for model 
generation. When registry auditing module 12 is used as the 55 

data source for model generation, its output is sent to a data­
base 18 (as indicated by arrow 24) where it is stored and later 
used by the model generator 16 described herein. The second 
use of registry auditing module 12 is to act as the data source 
for the real-time anomaly detector 14 described herein. While 60 

in this mode, the output of registry auditing module 12 is sent 
directly to the anomaly detector 14 (indicated by arrow 26) 
where it is processed in real time. 

The model generation infrastructure consists of two com­
ponents. A database 18 is used to store all of the collected 65 

registry accesses from the training data. A model generator 14 
then uses this collected data to create a model of normal 

anomalous. A list of anomalous registry accesses are stored 
and displayed as part of the detector. 

The system described herein is a statistical model of 
expected registry queries and results. If an attacker wanted to 
usurp a host-based detector, they can a) tum off the detector at 
the host (and hope no alarms go off elsewhere) orb) they can 
attack the host based detector by changing its rules or chang-
ing its statistical model so it won't alarm. 

Accordingly, in order to protect the statistical model of the 
system, from being attacked, it is put it in the registry. The 
registry is essentially a data base, and the statistical model 
comprises query values and probabilities. The evaluation of 
the model first accesses values and probability estimates. This 
information can be stored in the registry. Hence, any process 
that attempts to touch the model (for example, to change some 
values in the model) will be abnormal registry accesses and 
set off the alarm. Consequently, the system would be pro-
tected from having its own model being attacked since it will 
notice when it is under attack. 

In order to evaluate the system, data was gathered by run­
ning a registry auditing module 12 on a host machine. During 
training, several programs were run in order to generate nor­
mal background traffic. In order to generate normal data for 
building an accurate and complete training model, it was 
important to run various applications in various ways. By 
examining registry traffic, it was discovered that it is not just 
which programs that are run, but also how they are run that 
affect registry activity. For example, running ping.exe from 
the command prompt does not generate registry activity. 
However, running ping.exe directly from the run dialog box 
does generate registry activity: By understanding such details 
of the registry, a more complete training model was built. 
Beyond the normal execution of standard programs, such as 
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Microsoft™ Word, Internet Explorer, and Winzip, the train­
ing also included performing tasks such as emptying the 
Recycling Bin and using Control Panel. 

The training data collected for the experiment was col­
lected on Windows™ NT 4.0 over two days of normal usage. 
"Normal" usage is defined to mean what is believed to be 
typical use of a Windows™ platform in a home setting. For 
example, it was assumed that users would log in, check some 
internet sites, read some mail, use word processing, then log 

10 
off. This type of session was taken to be relatively typical of 
computer users. Normal programs are those which are 
bundled with the operating systems, or are in use by most 
Windows™ users. 

The simulated home use of Windows™ generated a clean 15 

(attack-free) dataset of approximately 500,000 records. The 
system was tested on a full day of test data with embedded 
attacks executed. This data was comprised of approximately 
300,000 records, most of which were normal program execu­
tions interspersed with attacks among normal process execu- 20 

tions. The normal programs run between attacks were 
intended to simulate an ordinary Windows™ session. The 
programs used were, for example, Microsoft™ Word, Out­
look Express™, Internet Explorer™, Netscape™, AOL™ 

25 
Instant Messenger™. 

The attacks run include publicly available attacks such as 
aimrecover, browslist, bok2ss (back orifice), install.exe xtxp 
and exe (both for backdoor.XTCP), lOphtcrack, runllack, 
whackmole, and setuptrojan. Attacks were only run during 30 

the one day of testing throughout the day. Among the twelve 
attacks that were run, four instances were repetitions of the 
same attack. Since some attacks generated multiple processes 
there are a total of seventeen distinct processes for each 
attack. All of the processes (either attack or normal) as well as 35 

the number of registry access records in the test data is shown 
in Table 3 and described in greater detail herein. 

The training and testing envirouments were set up to rep­
licate a simple yet realistic model of usage of Windows™ 

40 
systems. The system load and the applications that were run 
were meant to resemble what one may deem typical in normal 
private settings. 

The first exemplary anomaly detection algorithm dis­
cussed above in equations (1 )-(3) were trained over the nor- 45 
mal data. Each record in the testing set was evaluated against 
this training data. The results were evaluated by computing 
two statistics: the detection rate and the false positive rate. 
The performance of the system was evaluated by measuring 
detection performance over processes labeled as either nor- 50 
mal or malicious. 

The detection rate reported below is the percentage of 
records generated by the malicious programs which are 
labeled correctly as anomalous by the model. The false posi­
tive rate is the percentage of normal records which are mis- 55 

labeled anomalous. Each attack or normal process has many 
records associated with it. Therefore, it is possible that some 
records generated by a malicious program will be mislabeled 
even when some of the records generated by the attack are 
accurately detected. This will occur in the event that some of 60 

the records associated with one attack are labeled normal. 
Each record is given an anomaly score, S, that is compared to 
a user defined threshold. If the score is greater than the thresh­
old, then that particular record is considered malicious. FIG. 
3 shows how varying the threshold affects the output of detec- 65 

tor. The actual recorded scores plotted in the figure are dis­
played in Table 2. 

16 

TABLE2 

Threshold Score False Positive Rate Detection Rate 

6.847393 0.001192 0.005870 
6.165698 0.002826 0.027215 
5.971925 0.003159 0.030416 
5.432488 0.004294 0.064034 
4.828566 0.005613 0.099253 
4.565011 0.006506 0.177161 
3.812506 0.009343 0.288687 
3.774119 0.009738 0.314301 
3.502904 0.011392 0.533084 
3.231236 0.012790 0.535219 
3.158004 0.014740 0.577908 
2.915094 0.019998 0.578442 
2.899837 0.020087 0.627001 
2.753176 0.033658 0.629136 
2.584921 0.034744 0.808431 
2.531572 0.038042 0.869797 
2.384402 0.050454 1.000000 

Table 3 is sorted in order to show the results for classifying 
processes. Information about all processes in testing data 
including the number of registry accesses and the maximum 
and minimum score for each record as well as the classifica-
tion. The top part of the table shows this information for all of 
the attack processes and the bottom part of the table shows 
this information for the normal processes. The reference 
number (by the attack processes) give the source for the 
attack. Processes that have the same reference number are 
part of the same attack. [1] AIMCrack. [2] Back Orifice. [3] 
Backdoor.xtcp. [4] Browse List. [5] Happy 99. [6] IPCrack. 
[7] LOpht Crack. [8] Setup Trojan. 

TABLE3 

Maximwn Minimwn 
Number of Record Record 

Program Name Records Value Value Classification 

LOADWC.EXE[2] 8.497072 8.497072 ATTACK 
ipccrack.exe[6] 8.497072 8.497072 ATTACK 
mstinit.exe[2] 11 7.253687 6.705313 ATTACK 
bo2kss.exe[2] 12 7.253687 6.62527 ATTACK 
runonce.exe[2] 8 7.253384 6.992995 ATTACK 
browselist.exe[4] 32 6.807137 5.693712 ATTACK 
install.exe[3] 18 6.519455 6.24578 ATTACK 
SetupTrojan.exe[8] 30 6.444089 5.756232 ATTACK 
AimRecover.exe[1] 61 6.444089 5.063085 ATTACK 
happy99.exe[5] 29 5.918383 5.789022 ATTACK 
bo2k..l..O.intl.e[2] 78 5.432488 4.820771 ATTACK 
. .INS0432 ... MP[2] 443 5.284697 3.094395 ATTACK 
xtcp.exe[3] 240 5.265434 3.705422 ATTACK 
bo2kcfg.exe[2] 289 4.879232 3.520338 ATTACK 
1 Ophtcrack.exe[7] 100 4.688737 4.575099 ATTACK 
Patch.exe[2] 174 4.661701 4.025433 ATTACK 
bo2k.exe[2] 883 4.386504 2.405762 ATTACK 
systray.exe 17 7.253687 6.299848 NORMAL 
CSRSS.EXE 63 7.253687 5.031336 NORMAL 
SPOOLSS.EXE 72 7.070537 5.133161 NORMAL 
ttash.exe 12 6.62527 6.62527 NORMAL 
winmine.exe 21 6.56054 6.099177 NORMAL 
em .. exec.exe 29 6.337396 5.789022 NORMAL 
winarnpa.exe 547 6.11399 2.883944 NORMAL 
PINBALL.EXE 240 5.898464 3.705422 NORMAL 
LSASS.EXE 2299 5.432488 1.449555 NORMAL 
PING.EXE 50 5.345477 5.258394 NORMAL 
EXCEL.EXE 1782 5.284697 1.704167 NORMAL 
WINLOGON.EXE 399 5.191326 3.198755 NORMAL 
rundl132.exe 142 5.057795 4.227375 NORMAL 
explore.exe 108 4.960194 4.498871 NORMAL 
netscape.exe 11252 4.828566 -0.138171 NORMAL 
java.exe 42 4.828566 3.774119 NORMAL 
aim.exe 1702 4.828566 1.750073 NORMAL 
findfast.exe 176 4.679733 4.01407 NORMAL 
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TABLE 3-continued 

Maximwn Minimwn 
Number of Record Record 

Program Name Records Value Value Classification 

TASKMGR.EXE 99 4.650997 4.585049 NORMAL 
MSACCESS.EXE 2825 4.629494 1.243602 NORMAL 
IEXPLORE.EXE 194274 4.628190 -3.419214 NORMAL 
NTVDM.EXE 271 4.59155 3.584417 NORMAL 
CMD.EXE 116 4.579538 4.428045 NORMAL 
WINWORD.EXE 1541 4.457119 1.7081 NORMAL 
EXPLORER.EXE 53894 4.31774 -1.704574 NORMAL 
msmsgs.exe 7016 4.177509 0.334128 NORMAL 
OSA9.EXE 705 4.163361 2.584921 NORMAL 
MYCOME l.EXE 1193 4.035649 2.105155 NORMAL 
wscript.exe 527 3.883216 2.921123 NORMAL 
WINZIP32.EXE 3043 3.883216 0.593845 NORMAL 
notepad.exe 2673 3.883216 1.264339 NORMAL 
POWERPNT.EXE 617 3.501078 -0.145078 NORMAL 
AcroRd32.exe 1598 3.412895 0.393729 NORMAL 
MDM.EXE 1825 3.231236 1.680336 NORMAL 
ttermpro.exe 1639 2.899837 1.787768 NORMAL 
SERVICES.EXE 1070 2.576196 2.213871 NORMAL 
REGMON.EXE 259 2.556836 1.205416 NORMAL 
RPCSS.EXE 4349 2.250997 0.812288 NORMAL 

The process of setting the threshold is described herein. If 
the threshold is set at 8.497072, the processes LOAD­
WC.EXE and ipccrack.exe are labeled as malicious and 
would detect the Back Orifice and IPCrack attacks. Since 
none of the normal processes have scores that high, we would 
have no false positives. If we lower the threshold to 6.444089, 
we would have detected several more processes from Back 
Orifice and the BrowseList, BackDoor.xtcp, Setup Trojan and 
AimRecover attacks. However, at this level of threshold the 
following processes would be labeled as false positives: 
systray.exe, CSRSS.EXE, SPOOLSS.EXE, ttssh.exe, and 
winmine.exe. [ 

By varying the threshold for the inconsistency scores on 
records, we were able to demonstrate the variability of the 
detection rate and false positive rate. The false positive rate 
versus the detection rate was plotted in an ROC (Receiver 
Operator Characteristic) curve 52 shown in Table 2 and the 
plot 50 in FIG. 3, in which the false positive rate 54 is plotted 
against the detection rate 56. 

18 
right owner has no objection to the facsimile reproduction by 
any one of the patent disclosure, as it appears in the Patent and 
Trademark Office patent files or records, but otherwise 
reserves all copyright rights whatsoever. 

PAD (Probabilistic Anomaly Detection) is a package that 
detects anomalies in fixed length records of discrete values. 

The basic idea behind PAD is that it trains over a data set 
and then checks to see if new observed records are "consis­
tent" with the data set. There are two types of consistency 

10 checks. First order consistency checks evaluate whether or 
not a single feature is consistent with other features in the 
dataset. Second order consistency checks evaluate if a pair of 
features is consistent with the data set. All consistency checks 
are evaluated by computing a predictive probability. This is 

15 done by estimating a multinomial using counts observed from 
the data set and then estimating the probability of seeing the 
observation. 

Let us assume records oflength n are being observed. That 
is, each record can be written as a set of random variables 

20 (X_l, X_2, ... , X_n). Each first order consistency check can 
be denoted as computing P(X_i). This probability is trained 
over a data set, and then used to predict elements in another 
dataset. These two datasets can be in fact the same. To train 
the probability distribution, the counts of the observed sym-

25 bois in the data set are collected. The second order consis­
tency checks are P(X_i, Xj). In this case, the counts of X i 
are collected when Xj is observed. Note that there is -a 
separate set of counts for each Xj. Accordingly, second order 
consistency checks take a significant amount of memory rela-

30 tive to first order consistency checks. 
All of these probability estimates are obtained using the 

multinomial estimator presented in Friedman, Singer 1999 
(incorporated by reference, above). The basic idea of the 
estimator is that it explicitly takes into account the probability 

35 of seeing an unobserved symbol. 
The term c is the probability of observing an already 

observed symbol. Thus (1-C) is the probability of observing 
an unobserved symbol. For the observed symbols, a Dirichlet 
is used to estimate the probabilities for the counts. IfN is the 

40 total number of observations, and N_i is the observations of 
symbol i, if alpha is the "pseudo count" which is added to the 
count of each observed symbol, and k'O is the number of 
observed symbols and L is the total nnmber of symbols, the Another exemplary embodiment is described herein. The 

systems and method described above, uses Windows™ reg­
istry accesses, which is an example of a general means of 45 

detecting malicious uses of a host computer. However, other 
systems, such as Linux/Unix, do not use a registry. In those 
cases, a file system sensor would be used. Accesses to the file 
system provides an audit source of data (i.e., whenever an 
application is run, any and all things accessed are files, e.g., 
the main executable files are accessed, and the project files are 
accessed). This audit source can be observed, and a "normal 
baseline model" built, and then used for detecting abnormal 
file system accesses. 

probability is as follows: 
For an observed symbol i, the probability is: C ((N_i+ 

alpha)/(k'O*alpha+N)) For an unobserved symbol, the prob­
ability is: (1-C)*(I /(L-k'O)). See equations (I) and (2) 
above, and the routine "updateC" in Classifier.c. In the second 
case, the probability is spread among possible unobserved 

50 symbols. 
Since each feature in the record may have a different set of 

possible outcomes, ifP is the probability estimated from the 
consistency check, the following term is reported: log(P/(11 
L)). This normalizes the consistency check to take into 

55 account the nnmber of possible outcomes L. In general, c 
should be set as described in Friedman, Singer 1999. 

It will be understood that the foregoing is only illustrative 
of the principles of the invention, and that various modifica­
tions can be made by those skilled in the art without departing 
from the scope and spirit of the invention. 

APPENDIX 

The software listed herein is provided in an attached CD­
Rom. The contents of the CD-Rom are incorporated by ref­
erence in their entirety herein. 

A portion of the disclosure of this patent docnment contains 
material which is subject to copyright protection. The copy-

However, this causes some overflow/underflow problems 
in the general case. Instead, the current version of the algo­
rithm uses a heuristic to set c. This is done after observing the 

60 counts. This is called SIMPLE_MODE in the implementa­
tion. In SIMPLE_MODE, C is set to C=N/(N+L-k'O). In 
addition, in SIMPLE_MODE, there is a variable 
OBSERVED_BIAS which adjusts the value of c toward 
observed or unobserved symbols. When OBSERVED 

65 BL<\S=O.O, there is no bias. Positive values increase the prob-:: 
ab1hty mass of observed symbols while negative values 
decrease the probability mass of unobserved symbols. For 
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non-zero OBSERVED_BIAS, the value of cis adjusted so 
that the new value of c, c* is given as follows C*=C/ (C+((1-
C)*exp( -OBSERVED_BIAS))). 

Package Installation and Quick Start: To install the pack­
age, the following steps should be performed: 

1. Unpack the files. 

-s 
-wFILE 
-p FILE 

20 

-continued 

toggle use of second order predictors 
write classifier to file. 
predict files 

2. cd into the src/ subdirectory. 

3. type make 

Globals File Options: Below is the globals file included in 
the distribution. All lines starting with "#" are comments. 

To test the package, the following steps should be per-
10 

# Globals Definition 
formed: #The input Symbols. 

4. cd into data/ subdirectory NUM_COLUMNS 4 

5. type . ./src/pad -e -g globalsFile.txt -p sampleinput.txt 15 #Set Simple Mode 
sampleinput.txt 

Subsequently, the following output should be provided: SIMPLE_MODE TRUE 

a aa aaa zzzz: 0.031253 1.386294 0.490206 0.693147 #Set Use Second Order Consistency Checks 
0.000000 0.031253 0.000000 0.000000 0.000000 1.386294 USE_SECOND_ORDER TRUE 
0.980829 0.980829 0.000000 0.490206 0.693147 0.693147 20 

0.000000 0.693147 0.875469 0.875469: test #Set Verbose mode 

b aa fff dddd: 0.436718 1.386294 0.202524 0.000000 VERBOSE FALSE 
0.619039 0.436718 0.000000 0.000000 0.632523 1.386294 #Allow unknown symbols in testing 
0.632523 0.000000 0.000000 0.202524 0.470004 0.000000 25 
-0.000000 0.000000 -0.000000 0.000000: test! ALLOW _UNKNOWN_SYMBOLS TRUE 

c aa ffftttt: 0.031253 1.386294 0.202524 0.000000 0.000000 
0.031253 0.000000 0.000000 0.000000 1.386294 0.632523 
0.000000 0.000000 0.202524 0.470004 0.000000 0.000000 

#Set Initial Count for Predictors. This is the virtual count 

#that is added to all observed symbols. 

0.000000-0.000000 0.000000: test2 30 INITIAL_PREDICTION_COUNT 1 

g aa aaa zzzz: 0.031253 1.386294 0.490206 0.693147 
0.000000 0.031253 0.000000 0.000000 0.000000 1.386294 
0.980829 0.980829 0.000000 0.490206 0.693147 0.693147 
0.000000 0.693147 0.875469 0.875469: test3 

b aa aaa zzzz: 0.436718 1.386294 0.490206 0.693147 
0.619039 0.436718 0.000000 0.000000 0.632523 1.386294 
0.980829 0.980829 0.000000 0.490206 0.693147 0.693147 
-0.000000 0.693147 0.875469 0.875469: test4 

35 

#Set the bias to observed symbols 

OBSERVED_BIAS 0.0 

#Set the Colunm Symbol Files 

COLUMN_SYMBOL_FILENAME 1 :C1.txt 

COLUMN_SYMBOL_FILENAME 2:C2.txt 

COLUMN_SYMBOL_FILENAME 3:C3.txt 

The next steps are then performed: 40 COLUMN_SYMBOL_FILENAME 4:C4.txt 

6. Type . ./src/pad -e -g globalsFile.txt -w temp.cla samplein­
put.txt 

#Sets the number of symbols in a colunm 

COLUMN_NUM_SYMBOLS 1:40 

This should create a file called temp.cla which is the trained #Sets the classifier to ignore a colunm 
model (classifier) from the sample input. 

45 
IGNORE_ COLUMN 2 

7 · Type · ./src/pad -r -p sampleinput.txt temp.cla #Sets the symbol that represents an ignored symbol 

This should provide the same output as above. IGNORE_SYMBOL ** 
Usage Instructions: The executable has two modes: 

"examples" mode (using the -e option) which reads in 
examples from a file and trains the model using that data, and 
"read" mode (using the -r option) which reads in a model from 

50 #Sets the symbol to represent an unknown symbol 

a file. The executable requires one argument, which is either 
the file or examples. The globals file (specified with the -g 

55 
option) defines all of the global variables. These include the 
number of colunms, the file names containing the column 
symbol definitions. Note that when reading in a model, the 
colunm symbol files must be in the current directory. 

Options: Command line options: In addition to -r and -e 
60 

which set the mode, the following are options that can be used 
from the command line: 

-gFILE set globals file 65 

-v toggle verbose output 

UNKNOWN_SYMBOL UKS 
Input file description: Each line of the input file corre­

sponds to a record. Each record consists of the features in a 
record separated by a space. This is followed by a tab after 
which there is an optional comment. This comment is pre­
served in prediction and can be used in experiments to keep 
track of the type of a record and where it came from. Below is 
the sample input: 

aa aaa zzzz test 
aa fff dddd test! 
aa fff tttt test2 

g aa aaa zzzz test3 
b aa aaa zzzz test4 
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A symbol file defines all of the possible symbols. Each 
symbol is on a separate line in the file. A sample symbol file 
is below: 

aaa 

CCC 

fff 

ggg 

22 
3. type . ./src/pad -r -p registry.txt model.cla >predictions. txt 

This reads in the model and evaluates all of the records. The 
file predictions.txt contains the values for all of the consis­
tency checks. 

4. Type ./computeResults.pl predictions.txt >final-predic­
tions.txt 

This determines the minimum value for a consistency check 

10 
for each record and puts on each line this value and the 
comment. 

5. Typesort -n final-predictions.txt >sorted-final-predic­
tions.txt 

There are several options related to symbol files. The 
IGNORE_ COLUMN can set the classifier to ignore a column 
completely. In this case, each element of the colunm gets 
mapped to a special symbol which is ignored in the model. In 
a single record, some of the fields can be set to a special 

15 

symbol (by default"**") which tells the classifier to ignore its 
value. A special symbol (by default "UKS") denotes an 
unknown symbol. In training, unknown symbols are not 
allowed and will cause the program to exit. In testing, the 20 
unknown symbols are treated as if it is a symbol that has 
observed count of 0. The option ALLOW _UNKNOWN_ 
SYMBOLS toggles the automatic mapping of unseen sym­
bols to the special unknown symbol during testing. This 
makes running experiments easier because it is not necessary 25 

to have the symbol files contain the data in the test set. 

This sorts the records in order of least consistent. This is the 
final output of the experiments. 

6. Type ./computeROC.pl sorted-final-predictions.txt 
>roc.txt 

This computes ROC points for the experiments. 
We claim: 
1. A method for detecting intrusions in the operation of a 

computer system comprising: 
(a) gathering features from records of normal processes 

that access the operating system registry; 
(b) generating a probabilistic model of normal computer 

system usage based on the features and determining the 
likelihood of observing an event that was not observed 
during the gathering of features from the records of 
normal processes; and 

Package Description: The software package contains the 
following: 

/src/ 
/datal 
/registry/ 

/papers/ 

directory consisting of all of the source files 
directory consisting of a small sample input 
directory consisting of data and scripts to do the 
registry experiments. 
directory containing relevant papers to pad. 

In the /src/ directory there are the following files: 

Classifier.c 
Classifier.h 
Column.c 
Column.h 
Globals.c 
Globals.h 
HashTable.c 
HashTable.h 
includes.h 
Input.c 
Input.h 
Make file 
memwatch.c 
memwatch.h 
pad.c 
pad.h 
SymbolTable.c 

SymbolTable.h 

File that defines the Classifier (model) 
Header file for Classifier.c 
File that defines a single consistency check 
Header file for Column.c 
Defines the global variables 
Header file for Globals.c 
Hashtable implementation 
Header file for Hashtable.c 
Include file for all files 
Implementation ofl/0 
Header file for Input.c 
Make file 
Package to detect memory leaks 
Package to detect memory leaks 
Main executable file 
Header file for pad.c 
Symbol Table implementation for mapping Symbols to 
Integers 
Header file for SymbolTable.c 

Registry Experiments: The following steps should be per­
formed: 

1. cd registry I 

2. type . ./src/pad -e -g regGlobs.txt -w model.cla registry. txt 

30 

35 

(c) analyzing features from a record of a process that 
accesses the operating system registry to detect devia­
tions from normal computer system usage to determine 
whether the access to the operating system registry is an 
anomaly. 

2. The method according to claim 1, further comprising 
storing the probabilistic model of normal computer usage on 
the operating system registry. 

3. The method according to claim 1, wherein gathering 
features from records of normal processes that access the 

40 operating system comprises gathering a feature correspond­
ing to a name of a process accessing the operating system 
registry. 

4. The method according to claim 1, wherein gathering 
features from records of normal processes that access the 

45 operating system registry comprises gathering a feature cor­
responding to a type of query being sent to the operating 
system registry. 

5. The method according to claim 4, wherein gathering 
features from records of normal processes that access the 

50 operating system registry comprises gathering a feature cor­
responding to an outcome of a query being sent to the oper­
ating system registry. 

6. The method according to claim 1, wherein gathering 
features from records of normal processes that access the 

55 operating system registry comprises gathering a feature cor­
responding to a name of a key being accessed in the operating 
system registry. 

7. The method according to claim 6, wherein gathering 
features from records of normal processes that access the 

60 operating system registry comprises gathering a feature cor­
responding to a value of the key being accessed. 

8. The method according to claim 1, wherein gathering 

This creates a file called model.cla which is the model that is 65 

features from records of normal processes that access the 
operating system registry comprises gathering two features 
selected from the group of features consisting of a name of a 
process accessing the operating system registry, a type of trained on 800kregistry records. It should take about 190MB 

of memory to train the model. query being sent to the operating system registry, an outcome 
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of a query being sent to the operating system registry, a name 
of a key being accessed in the operating system registry, and 
a value of the key being accessed. 

9. The method according to claim 1, wherein generating a 
probabilistic model of normal computer system usage com­
prises determining a likelihood of observing a feature in the 
records of processes that access the operating system registry. 

10. The method according to claim 9, wherein determining 
a likelihood of observing a feature comprises determining a 10 
conditional probability of observing a first feature in the 
records of processes that access the operating system registry 
given an occurrence of a second feature in the records. 

11. The method according to claim 1, wherein analyzing a 
record of a process that accesses the operating system registry 15 

comprises, for each feature, performing a check to determine 
if a value of the feature has been previously observed for the 
feature. 

24 
16. The system according to claim 14, further comprising a 

database configured to receive records regarding processes 
that access the operating system registry from the registry 
auditing module. 

17. The system according to claim 14, wherein the model 
generator is configured to receive the records regarding pro­
cesses that access the operating system registry from the 
database. 

18. The system according to claim 14, wherein the records 
regarding processes that access the operating system registry 
comprise a feature of the access to the operating system 
registry. 

19. The system according to claim 18, wherein the feature 
corresponds to a name of a process accessing the operating 
system registry. 

20. The system according to claim 18, wherein the feature 
corresponds to a type of query being sent to the operating 
system registry. 

12. The method according to claim 11, further comprising, 
if the value of the feature has not been observed, computing a 
score based on a probability of observing the value of the 
feature. 

21. The system according to claim 18, wherein the feature 
20 corresponds to an outcome of a query being sent to the oper­

ating system registry. 

13. The method according to claim 12, further comprising, 
if the score is greater than a predetermined threshold, labeling 
the access to the operating system registry as anomalous and 25 

labeling the process that accessed the operating system reg­
istry as malicious. 

14. A system for detecting intrusions in the operation of a 

22. The system according to claim 18, wherein the feature 
corresponds to a name of a key being accessed in the operat­
ing system registry. 

23. The system according to claim 18, wherein the feature 
corresponds to a value of the key being accessed. 

24. The system according to claim 18, wherein the features 
corresponds to a combination of two features selected from 
the group offeatures consisting of a name of a process access-

computer system comprising: 

(a) an operting system registry; 

(b) a registry auditing module configured to gather records 
regarding processes that access the operating system 

30 ing the operating system registry, a type of query being sent to 
the operating system registry, an outcome of a query being 
sent to the operating system registry, a name of a key being 
accessed in the operating system registry, and a value of the 

registry; 
(c) a model generator configured to generate a probabilistic 35 

model of normal computer system usage based on 
records of a plurality of processes that access the oper­
ating system registry and that are indicative of normal 
computer system usage and to determine the likelihood 

key being accessed. 
25. The system according to claim 14, wherein the model 

generator is configured to determine a likelihood of observing 
a feature in the records regarding processes that access the 
operating system registry. 

26. The system according to claim 25, wherein the model 
of observing a process that was not observed in the 
records of the plurality of processes that access the oper­
ating system registry and that are indicative of normal 
computer usage; and 

40 generator is configured to determine a conditional probability 
of observing a first feature in records regarding processes that 
access the operating system registry given an occurrence of a 
second feature is the record. 

(d) a model comparator configured to receive the probabi­
listie model of normal computer system usage and to 45 

receive records regarding processes that access the oper­
ating system registry and to detect deviations from nor­
mal computer system usage to determine whether the 
access of the operating system registry is an anomaly. 

15. The system according to claim 14, wherein the proba-
50 

bilistic model of normal computer usage is stored in the 
operating system registry. 

27. The system according to claim 25, wherein the model 
comparator determines a score based on the likelihood of 
observing a feature in a record regarding a process that 
accesses the operating system registry. 

28. The system according to claim 25, wherein the model 
comparator is configured to determine an access to the oper­
ating system registry is anomalous based on whether the score 
exceeds a predetermined threshold. 

* * * * * 
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SYSTEM AND METHODS FOR DETECTING 
INTRUSIONS IN A COMPUTER SYSTEM BY 

MONITORING OPERATING SYSTEM 
REGISTRY ACCESSES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation of U.S. patent applica­
tion Ser. No. 10/352,343, filed on Jan. 27,2003, which is now 
U.S. Pat. No. 7,448,084, and which claims the benefit ofU.S. 
Provisional Patent Application Ser. No. 60/351,857, filed on 
Jan. 25, 2002, each of which is incorporated by reference in its 
entirety herein. 

STATEMENT REGARDING FEDERALLY 
SPONSORED RESEARCH OR DEVELOPMENT 

This invention was made with govermnent support under 
grant nos. FAS-526617, SRTSC-CU019-7950-1, and 
F30602-00-1-0603 awarded by the United States Defense 
Advanced Research Projects Agency (DARPA). The govern­
ment has certain rights in the invention. 

COMPUTER PROGRAM LISTING 

A computer program listing is submitted in duplicate on 
CD. Each CD contains a routines listed in the Appendix, 
which CD was created on May 20, 2008, and which is 22 MB 
in size. The files on this CD are incorporated by reference in 
their entirety herein. 

COPYRIGHT NOTICE 

A portion of the disclosure of this patent document con­
tains material which is subject to copyright protection. The 
copyright owner has no objection to the facsimile reproduc­
tion by any one of the patent disclosure, as it appears in the 
Patent and Trademark Office patent files or records, but oth­
erwise reserves all copyright rights whatsoever. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to systems and methods for detecting 

anomalies in a computer system, and more particularly to the 
use of probabilistic and statistical models to model the behav­
ior of processes which access the file system of the computer, 
such as the Windows™ registry. 

2. Background 
Windows™ is currently one of the most widely used oper­

ating systems, and consequently computer systems running 
the Windows™ operating system are frequently subject to 
attacks. Malicious software is often used to perpetrate these 
attacks. Two conventional approaches to respond to mali­
cious software include virus scanners, which attempt to detect 
the malicious software, and security patches that are created 
to repair the security "hole" in the operating system that the 
malicious software has been found to exploit. Both of these 
methods for protecting hosts against malicious software suf­
fer from drawbacks. While they may be effective against 
known attacks, they are unable to detect and prevent new and 
previously unseen types of malicious software. 

Many virus scanners are signature-based, which generally 
means that they use byte sequences or embedded strings in 
software to identify certain programs as malicious. If a virus 
scanner's signature database does not contain a signature for 

2 
a malicious program, the virus scanner is unable to detect or 
protect against that malicious program. In general, virus scan­
ners require frequent updating of signature databases, other­
wise the scanners become useless to detect new attacks. Simi­
larly, security patches protect systems only when they have 
been written, distributed and applied to host systems in 
response to known attacks. Until then, systems remain vul­
nerable and attacks are potentially able to spread widely. 

Frequent updates of virus scanner signature databases and 
10 security patches are necessary to protect computer systems 

using these approaches to defend against attacks. If these 
updates do not occur on a timely basis, these systems remain 
vulnerable to very damaging attacks caused by malicious 
software. Even in environments where updates are frequent 

15 and timely, the systems are inherently vulnerable from the 
time new malicious software is created until the software is 
discovered, new signatures and patches are created, and ulti­
mately distributed to the vulnerable systems. Since malicious 
software may be propagated through email, the malicious 

20 software may reach the vulnerable systems long before the 
updates are in place. 

Another approach is the use of intrusion detection systems 
(IDS). Host-based IDS systems monitor a host system and 
attempt to detect an intrusion. In an ideal case, an IDS can 

25 detect the effects or behavior of malicious software rather 
than distinct signatures of that software. In practice, many of 
the commercial IDS systems that are in widespread use are 
signature-based algorithms, having the drawbacks discussed 
above. Typically, these algorithms match host activity to a 

30 database of signatures which correspond to known attacks. 
This approach, like virus detection algorithms, requires pre­
vious knowledge of an attack and is rarely effective on new 
attacks. However, recently there has been growing interest in 
the use of data mining techniques, such as anomaly detection, 

35 in IDS systems. Anomaly detection algorithms may build 
models of normal behavior in order to detect behavior that 
deviates from normal behavior and which may correspond to 
an attack. One important advantage of anomaly detection is 
that it may detect new attacks, and consequently may be an 

40 effective defense against new malicious software. Anomaly 
detection algorithms have been applied to network intrusion 
detection (see, e.g., D. E. Denning, "An Intrusion Detection 
Model, IEEE Transactions on Software Engineering, SE-13: 
222-232, 1987; H. S. Javitz and A. Valdes, "The NIDES 

45 Statistical Component: Description and Justification, Techni­
cal report, SRI International, 1993; and W. Lee, S. J. Stolfo, 
and K. Mok, "Data Mining in Work Flow Environments: 
Experiences in Intrusion Detection," Proceedings of the 1999 
Conference on Knowledge Discovery and Data Mining 

50 (KDD-99), 1999) and also to the analysis of system calls for 
host based intrusion detection (see, e. g., Stephanie F arrest, S. 
A. Hofmeyr, A. Somayaji, and T. A. Longstaff, "A Sense of 
Selffor UNIX Processes," IEEE Computer Society, pp. 120-
128, 1996; Christina Warrender, Stephanie Forrest, and Barak 

55 Pearlmutter, "Detecting Intrusions Using System Calls: 
Alternative Data Models," IEEE Computer Society, pp. 133-
145, 1999; S. A. Hofmeyr, Stephanie Forrest, and A. 
Somayaji, "Intrusion Detect Using Sequences of System 
Calls," Journal of Computer Security, 6:151-180, 1998; W. 

60 Lee, S. J. Stolfo, and P. K. Chan, "Learning Patterns from 
UNIX Processes Execution Traces for Intrusion Detection," 
AAAI Press, pp. 50-56, 1997; and Eleazar Eskin, "Anomaly 
Detection Over Noisy Data Using Learned Probability Dis­
tributions," Proceedings of the Seventeenth International 

65 Conference on Machine Learning (ICML-2000), 2000). 
There are drawbacks to the prior art approaches. For 

example, the system call approach to host-based intrusion 
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detection has several disadvantages which inhibit its use in 
actual deployments. A first is that the computational overhead 
of monitoring all system calls is potentially very high, which 
may degrade the performance of a system. A second is that 
system calls themselves are typically irregular by nature. 
Consequently, it is difficult to differentiate between normal 
and malicious behavior, and such difficulty to differentiate 
behavior may result in a high false positive rate. 

4 
registry auditing module, e.g., a sensor, configured to gather 
records regarding processes that access the Windows registry. 
A model generator is also provided which is configured to 
generate a probabilistic model of normal computer system 
usage based on records of a plurality of processes that access 
the Windows registry and that are indicative of normal com­
puter system usage, e.g., free of attacks. A model comparator, 
e.g., anomaly detector, is configured to receive said probabi­
listic model of normal computer system usage and to receive Accordingly, there is a need in the art for an intrusion 

detection system which overcomes these limitations of the 
prior art. 

10 records regarding processes that access the Windows registry 
and to determine whether the access of the Windows registry 
is an anomaly. 

SUMMARY OF THE INVENTION 

It is an object of the invention to provide techniques which 15 

are effective in detecting attacks while maintaining a low rate 
of false alarms. 

The system may also comprise a database configured to 
receive records regarding processes that access the Windows 
registry from said registry auditing module. The model gen­
erator may be configured to receive the records regarding 
processes that access the Windows registry from the database. 

The model generator may be configured to determine a 
conditional probability of observing a first feature in records 

It is another object of the invention to generate a model of 
the normal access to the Windows registry, and to detect 
anomalous accesses to the registry that are indicative of 
attacks. 

These and other aspects of the invention are realized by a 
method for detecting intrusions in the operation of a computer 
system comprising the steps of gathering features from 
records of normal processes that access the Windows registry. 
Another step comprises generating a probabilistic model of 
nonnal computer system usage, e.g., free of attacks, based on 
occurrences of said features. The features of a record of a 
process that accesses the Windows registry are analyzed to 
determine whether said access to the Windows registry is an 
anomaly. 

20 regarding processes that access the Windows registry given 
an occurrence of a second feature is said record. The model 
comparator may be configured to determine a score based on 
the likelihood of observing a feature in a record regarding a 
process that accesses the Windows registry. The model com-

25 parator may also be configured to determine whether an 
access to the Windows registry is anomalous based on 
whether the score exceeds a predetermined threshold. 

In accordance with the invention, the objects as described 
above have been met, and the need in the art for detecting 

30 intrusions based on registry accesses has been satisfied. 

According to an exemplary embodiment, the step of gath­
ering features from the records of normal processes that 
access the Windows registry may comprise gathering a fea­
ture corresponding to a name of a process that accesses the 35 

registry. Another feature may correspond to the type of query 
being sent to the registry. A fnrther feature may correspond to 
an outcome of a query being sent to the registry. A still further 
feature may correspond to a name of a key being accessed in 
the registry. Yet another feature may correspond to a value of 40 

said key being accessed. In addition, any other features may 
be combined to detect anomalous behavior that may not be 
identified by analyzing a single feature. 

The step of generating a probabilistic model of normal 
computer system usage may comprise determining a likeli- 45 

hood of observing a feature in the records of processes that 
access the Windows registry. This may comprise performing 
consistency checks. For example, a first order consistency 
check may comprise determining the probability of observa­
tion of a given feature. The step of determining a likelihood of 50 

observing a feature may comprise a second order consistency 
check, e.g., determining a conditional probability of observ­
ing a first feature in said records of processes that access the 
Windows registry given an occurrence of a second feature is 
said records. 55 

In the preferred embodiment, the step of analyzing a record 

BRIEF DESCRIPTION OF THE DRAWINGS 

Further objects, features, and advantages of the invention 
will become apparent from the following detailed description 
taken in conjunction with the accompanying figures showing 
illustrative embodiments of the invention. in which: 

FIG.1 is a block diagram illustrating the architecture of the 
system in accordance with the present invention. 

FIG. 2 is an exemplary user interface in accordance with 
the present invention. 

FIG. 3 is a plot illustrating the result of an embodiment of 
the present invention. 

Throughout the figures, the same reference numerals and 
characters, nnless otherwise stated, are used to denote like 
features, elements, components, or portions of the illustrated 
embodiments. Moreover, while the subject invention will 
now be described in detail with reference to the figures, it is 
done so in connection with the illustrative embodiments with­
out departing from the true scope and spirit of the invention as 
defined by the appended claims. 

DETAILED DESCRIPTION OF THE 
EXEMPLARY EMBODIMENTS 

A novel intrusion detection system 10 is disclosed herein 
and illustrated in FIG. 1. System 10 monitors a program's 
access of the file system of the computer, e.g., Microsoft™ 
Windows™ registry (hereinafter referred to as the "Win­
dows™ registry" or the "registry") and determines whether 
the program is malicious. The system and methods described 
herein incorporate a novel technique referred to herein as 
"RAD" (Registry Anomaly Detection), which monitors the 
accesses to the registry, preferably in real time, and detects the 

of a process that accesses the Windows registry may com­
prise, for each feature, determining if a value of the feature 
has been previously observed for the feature. If the value of 
the feature has not been observed, then a score may be deter- 60 

mined based on a probability of observing said value of the 
feature. If the score is greater than a predetermined threshold, 
the method comprises labeling the access to the Windows 
registry as anomalous and labeling the process that accessed 
the Windows registry as malicious. 65 actions of malicious software. 

A system for detecting intrusions in the operation of a 
computer system has an architecture which may comprise a 

As is known in the art, the registry is an important compo­
nent of the Windows™ operating system and is implemented 
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very widely. Accordingly, a substantial amount of data 
regarding activity associated with the registry is available. 
The novel technique includes building a sensor, e.g., registry 
auditing module, on the registry and applying the information 
gathered by this sensor to an anomaly detector. Consequently, 
registry activity that corresponds to malicious software may 
be detected. Several advantages of monitoring the registry 
include the fact that registry activity is regular by nature, that 
the registry can be monitored with low computational over­
head, and that almost all system activities query the registry. 10 

An exemplary embodiment of the novel system, e.g., sys­
tem 10, comprises several components: a registry auditing 
module 12, a model generator 14, and an anomaly detector 
16. Generally, the sensor 12 serves to output data for each 
registry activity to a database 18 where it is stored for training. 15 

The model generator 14 reads data from the database 18, and 
creates a model of normal behavior. The model is then used by 
the anomaly detector 16 to decide whether each new registry 
access should be considered anomalous. The above compo­
nents can reside on the host system itself, or on a remote 20 

network connected to the host. 

6 
tain attacks have been found to take advantage of Win­
dows'TM reliance on the registry. Indeed, many attacks them­
selves rely on the registry in order to function properly. Many 
programs store important information in the registry, despite 
the fact that any other program can likewise access data 
anywhere inside the registry. Consequently, some attacks tar­
get the registry to take advantage of this access. In order to 
address this concern, security permissions are included in 
some versions ofWindows™. However, such permissions are 
not included in all versions of Windows™, and even when 
they are included, many common applications do not make 
use of this security feature. 

"Normal" computer usage with respect to the registry is 
described herein. Most typical Windows™programs access a 
certain set of keys during execution. Furthermore, each user 
typically uses a certain set of programs routinely while run-
ning their machine. This set of programs may be a set of all 
programs installed on the machine, or a small subset of these 
programs. 

Another important characteristic of normal registry activ-
ity is that it has been found to be substantially regular over 
time. Most programs may either (1) access the registry only 
on startup and shutdown, or (2) access the registry at specific 
intervals. Since this access to the registry appears to be sub-

A description of the Windows™ registry is provided 
herein. As is known in the art, the registry is a database of 
information about a computer's configuration. The registry 
contains information that is continually referenced by many 
different programs during the operation of the computer sys­
tem. The registry may store information concerning the hard­
ware installed on the system, the ports that are being used, 
profiles for each user, configuration settings for programs, 
and many other parameters of the system. The registry is the 
main storage location for all configuration information for 
almost all programs. The registry is also the storage location 
for all security information such as security policies, user 
names, and passwords. The registry also stores much of the 
important configuration information that are needed by pro­
grams in order to run. 

25 stantially regular, monitoring the registry for anomalous 
activity provides useful results because a program which 
substantially deviates from this normal activity may be easily 
detected as anomalous. 

Other normal registry activity occurs only when the oper-
30 ating system is installed by the manufacturer. Some attacks 

involve launching programs that have not been launched 
before and/or changing keys that have not been changed since 
the operating system was first installed by the manufacturer. 

If a model of the normal registry behavior is trained over 

The registry is organized hierarchically as a tree. Each 
entry in the registry is called a "key" and has an associated 
value. One example of a registry key is: 

35 clean data, then these kinds of registry operations will not 
appear in the model, and can be detected when they occur. 
Furthermore, malicious programs may need to query parts of 
the registry to get information about vulnerabilities. A mali­
cious program can also introduce new keys that will help 

40 create vulnerabilities in the machine. 

HKCU\Software\Arnerica Online\AOL Instant Messenger (TM)\ 
CurrentVersion\Users\aimuser\Login\Password 

Some examples of malicious programs and how they pro­
duce anomalous registry activity are as follows: 

Setup Trojan: This program, when launched, adds full 
read/write sharing access on the file system of the host 

This example represents a key used by the AOL™ Instant 
Messenger™ program. This key stores an encrypted version 
of the password for the user name "aimuser." Upon execution, 
theAOL™ Instant Messenger™ program access the registry. 

45 machine. It makes use of the registry by creating a registry 
structure in the networking section of the Windows™ keys. 
The structure stems from HKT ,M\Software\Microsoft\ Win­
dows\CurrentVersion\Network\LanMan. It then makes sev-

In particular, the program queries this key in the registry in 50 

order to retrieve the stored password for the local user. Infor­
mation is accessed from the registry by individual registry 
accesses or queries. The information associated with a regis-
try query may include the key, the type of query, the result, the 
process that generated the query, and whether the query was 55 

successful. One example of a query is a read for the key, 
shown above. For example, the record of the query is: 

Process: aim.exe 
Query: Queryvalue 
Key: HKCU\Software\America Online\AOL Instant Mes- 60 

senger(TM)\CurrentVersion\Users\aimuser\Login\Pass­
word 

Response: SUCCESS 
ResultValue: "BCOFHIHBBAHF" 
The registry serves as an effective data source to monitor 65 

for attacks because it has been found that many attacks are 
manifested as anomalous registry behavior. For example, cer-

eral, e.g., eight, new keys for its use. It also accesses 
HKLM\Security\Provider in order to find information about 
the security of the machine to help determine vulnerabilities. 
This key is not accessed by any normal programs during 
training or testing in our experiments, and therefore its use is 
clearly suspicious in nature. 

Back Oriffice 2000: This program opens a vulnerability on 
a host machine, which may grant anyone with the back orif­
fice client program complete control over the host machine. 
This program makes extensive use of the registry. In doing so, 
it does access a key that is very rarely accessed on the Win­
dows™ system. This key, HKLM\Software\Microsoft\ 
VBA\Monitors, was not accessed by any normal programs in 
either the training or test data. Accordingly, the detection 
algorithm was able to determine it as anomalous. This pro­
gram also launches many other programs (e.g., LoadWC.exe, 
Patch.exe, runonce.exe, bo2k_i_o_intl.e) as part of the attack, 
in which all of these programs made anomalous accesses to 
the registry. 
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Aimrecover: This program obtains passwords fromAOL™ 
users without authorization. It is a simple program that reads 
the keys from the registry where theAOL™ Instant Messen­
ger™ program stores the user names and passwords. These 
accesses are considered anomalous because Aimrecover is 
accessing a key that usually is accessed and was created by a 
different program. 

Disable Norton: This is a simple exploitation of the registry 
that disables Norton™ Antivirus. This attack toggles one 
record in the registry, in particular, the key HKLM\ 
SOFTWARE\INTEL\LANDesk\Virusprotect6\CurrentVer­
sion\Storages\Files\System\Rea!TimeScan\OnOff. If this 
value is set to 0, then Norton™ Antivirus real-time system 
monitoring is turned off. Again, this is considered anomalous 
because of its access to a key that was created by a different 
program. 

LOphtCrack: This program is a widely used password 
cracking program for Windows™ machines. It obtains the 
hashed SAM file containing the passwords for all users, and 
then uses either a dictionary or a brute force approach to find 
the passwords. This program also uses flaws in the Win­
dows™ encryption scheme in order to try to find some of the 
characters in a password in order to obtain a password faster. 
This program uses the registry by creating its own section in 
the registry. This new section may include many create key 
and set value queries, all of which will be on keys that did not 
exist previously on the host machine and therefore have not 
been seen before. 

8 
not know the program is being installed. This is not the case 
with most installations. For example, in an exemplary 
embodiment, the algorithm is programmed to ignore alarms 
while the install shield program is running, because the user 
would be aware that a new program is being installed (as 
opposed to malicious activity occurring without the users 
knowledge and permission). In another embodiment, the user 
is prompted when a detection occurs, which provides the user 
with the option of informing the algorithm that the detected 

10 program is not malicious and therefore grants permission for 
such program to be added to the training set of data to update 
the anomaly detector for permissible software. 

In order to detect anomalous registry accesses, model gen­
erator 14 of system 10 generates a model of normal registry 

15 activity. A set of five basic features are extracted from each 
registry access. (An additional five features may be added, 
which are combinations of the five basic features, as 
described below.) Statistics of the values of these features 
over normal data are used to create the probabilistic model of 

20 normal registry behavior. This model of normal registry 
behavior may include a set of consistency checks applied to 
the features, as will be described below. When detecting 
anomalies, the model of normal behavior is used to determine 
whether the values of the features of the new registry accesses 

25 are consistent with the normal data. If such values are not 
consistent, the algorithm labels the registry access as anoma­
lous, and the processes that accessed the registry as malicious. 

An additional aspect of normal computer usage of the 
registry is described herein. During testing (as will be 30 

described below) all of the programs observed in the data set 
cause Explorer™ to access a key specifically for that appli­
cation. This key has the following format: 

In the exemplary embodiment, the data model consists of 
five basic features gathered by the registry auditing module 
12 from an audit stream. (It is contemplated that additional 
features may also provide significant results.) In the exem-
plary embodiment, the features are as follows: 

Process: The name of the process accessing the registry. 

HKLM\Software\Microsoft\WindowsNT \CurrentVersion\Irnage File 
Execution Optionsl[processName] 

where "processName" is the name of the process being run. 
(It is believed that all programs in general have this behavior.) 
This key is accessed by Explorer™ each time an application 
is run. Given this information, a detection system may be able 
to determine when new applications are run, which will be a 
starting point to determine malicious activity. In addition, 
many programs add themselves in the auto-run section of the 
registry under the following key: 

HKLM\Software\Microsoft\Windows\CurrentVersion\Run. 

While this activity is not malicious in nature, it is nevertheless 
an uncommon event that may suggest that a system is being 
attacked. Trojans such as Back Orifice utilize this part of the 
registry to auto load themselves on each boot. 

Anomaly detectors, such as anomaly detector 16, do not 
operate by looking for malicious activity directly. Rather, 
they look for deviations from normal activity. Consequently, 
such deviations, which represent normal operation, may nev­
ertheless be declared an attack by the system. For example, 
the installation of a new program on a system may be viewed 

This allows the tracking of new processes that did not appear 
35 in the training data. 

Query: The type of query being sent to the registry, for 
example, QueryValue, CreateKey, and SetValue are valid 
query types. This allows the identification of query types that 
have not been seen before. There are many query types but 

40 only a few are used under normal circumstances. 
Key: The actual key being accessed. Including this feature 

allows the algorithm to locate keys that are never accessed in 
the training data. Many keys are used only once for special 
situations like system installation. Some of these keys can be 

45 used by attacks to create vulnerabilities. 
Response: A feature which describes the outcome of the 

query, for example, success, not found, no more, buffer over­
flow, and access denied. 

Result Value: The value of the key being accessed. Includ-
50 ing this feature allows the algorithm to detect abnormal val­

ues being used to create abnormal behavior in the system. 
Composite features may also be used, which are a combi­

nation of two basic features, such as those discussed above. 
These composite features are useful in detecting anomalies 

55 since they allow the system to give more detail to its normal 
usage model where the existence of the basic features in 
isolation would not necessary be detected as anomalous. The 
following is a list of exemplary composite fields that may be 
used by system 10: 

Process/Query: This key is a combination of the process 
and query fields, and may provide information to determine if 
a particular process is executing queries that are not typically 
executed by this process. 

as anomalous activity by the anomaly detector, in which new 
sections of the registry and many new keys may be created. 60 

This activity may interpreted as malicious (since this activity 
was not in the training data) and a false alarm may be trig­
gered, much like the process of adding a new machine to a 
network may cause an alarm on an anomaly detector that 
analyzes network traffic. 

Key/Process: This key is a combination of the key and 
65 process fields, and may allow the algorithm to detect whether 

or not a process accesses portions of the registry it typically 
doesn't access. Also it detects when a key is being accessed by 

There are a few possible solutions to avoid this problem. 
Malicious programs often install quietly so that the user does 
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a process that normally doesn't access it. This analysis is very 
useful because many processes access keys belonging to 
other programs, and this field would allow the detection of 
such an event. 

Query/Key: This key is a combination of the query and key 
fields, and may determine if a key is being accessed in a 
different way than usual. For example, there are many key 
values in the registry that are written once at the time of their 
creation, and then are subsequently read from the registry 
without change. Some of these keys store crucial information 10 
for the execution of certain programs. If a malicious process 
were to write to one of these keys, after the time of their 
creation, this field would enable the algorithm to detect such 
an event, and the record would appear anomalous. 

Response/Key: This key is a combination of the key and 
15 

response fields. Many keys are found to be used in the same 
manner each time they are used. Consequently, they will 
always return the same response. Since a different response to 
a key may be indicative of abnormal or malicious system 
activity, the algorithm which utilizes this combination key 

20 
would be able to detect such abnormal or malicious activity. 

Result Value/Key: This key is a combination of the key and 
result value. During operation of the computer system, many 
keys will always contain a value from a certain set or range of 
values. When the value is outside that range, that could be an 

25 
indicator of a malicious program taking advantage of a vul­
nerability. 

As an illustration, an exemplary registry access is dis­
played in Table 1. The second colunm is normal access by the 
process aim.exe (which is used withAOL™ Instant Messen-

30 
ger™) to access the key where passwords are stored. The third 
colunm of Table I is a malicious access by a process aimre­
cover.exe to the same key. The final colunm ofTable 1 shows 
which fields register by the anomaly detector as anomalous. 
As seen in the table, all of the basic features, e.g., process, 

35 
query, key, response, and result value, do not appear anoma­
lous for the normal process aim.exe, when compared with the 
malicious process aimrecover.exe. However, the composite 
keys are useful for detecting the anomalous behavior of aim­
recover.exe. For example, the fact that the process aimrecov-

40 
er.exe is accessing a key that is usually associated with 
another process, i.e., aim.exe, is detected as an anomaly. This 
conclusion is made because under normal circumstances only 
aim.exe accesses the key that stores the AOL™ Instant Mes­
senger™ password. The occurrence of another process 

45 
accessing this key is considered suspicious. By examining the 
combination of two basic features, the algorithm can detect 
this anomaly. 

10 
Exemplary embodiments of intrusion detection algorithms 

which may be used by the system 10 will now be described, 
although it is understood that other anomaly detection algo­
rithms may also be used in connection with the present inven­
tion. Since a significant amount of data is monitored in real 
time, the algorithm that is selected must be very efficient. 
According to a first exemplary embodiment, the features that 
were monitored from each registry access are used to train a 
model over features extracted from normal data. That model 
allows for the classification of registry accesses as either 
normal or malicious, as will be described herein. 

In general, a principled probabilistic approach to anomaly 
detection can be reduced to density estimation. If a density 
function p(x) can be estimated over the normal data, anoma­
lies are defined as data elements that occur with low prob­
ability. In practice, estimating densities is a very complex, 
non-trivial problem. In detecting intrusions into the registry, a 
complication is that each of the features have many possible 
values. For example, the key feature, defined above, may have 
over30,000 values in the training set. Since there are so many 
possible feature values, it is relatively rare that the same exact 
record occurs more than once in the data. Data sets of this type 
are referred to as "sparse." 

Since probability density estimation is a very complex 
problem over sparse data, the method of the present invention 
defines a set of consistency checks over the normal data for 
determining which records from a sparse data set are anoma­
lous. Each consistency check is applied to an observed record 
by the anomaly detector. If the record fails any consistency 
check, the record is labeled as anomalous. 

In the exemplary embodiment, two kinds of consistency 
checks are applied. The first consistency check evaluates 
whether or not a feature value is consistent with observed 
values of that feature in the normal data set. This type of 
consistency check is referred to as a first order consistency 
check, e.g., each registry record may be viewed as the out­
come of five random variables, one for each feature, X 1 , X2 , 

X3 , X4 , X5 . The consistency checks compute the likelihood of 
an observation of a given feature denoted as P(X,). 

The second consistency check handles pairs of features, as 
discussed in the example in Table 1. For each pair of features, 
the conditional probability of a feature value given another 
feature value is considered. These consistency checks are 
referred to as second order consistency checks. These likeli­
hoods are denoted as P(X, IX). For each value ofXi' there may 
be a different probability distribution over X,. 

TABLE 1 

Feature 

Process 
Quezy 
Key 

Response 
Result Value 
Process/Query 
Quezy/Key 

Response/Key 

Process/Key 

aim.exe 

aim.exe 
Query Value 
HKCU\Software\Arnerica Online\AOL Instant 
Messenger (TM) \CurrentVersion\Users\aimuser\ 
Login\Password 
SUCCESS 
"BCOFHIHBBAHF" 
aim.exe:QueryValue 
QueryValue:HKCU\Software\Arnerica Online\AOL Instant 
Messenger (TM)\CurrentVersion\Users\aimuser\ 
Login\Password 
SUCCESS:HKCU\Softvare\America Online\AOL Instant 
Messenger (TM)\CurrentVersion\Users\aimuser\ 
Login\Password 
aim.exe:HKCU\Software\Arnerica Online\AOL Instant 
Messenger (TM)\CurrentVersion\Users\aimuser\ 
Login\Password 

aimreoover.exe Anomalous 

aimrecover.exe no 
QueryValue no 
HKCU\Software\Arnerica Online IAOL Instant Messenger no 
(TM) \CurrentVersion \U sers\aimuser\Lo gin \Password 

SUCCESS no 
"BCOFHIHBBAHF" no 
aimrecover:QueryValue no 
QueryValue:HKCU\Software\Arnerica Online IAOL Instant no 
Messenger (TM)\CurrentVersion\Users\aimuser\ 
Login\Password 
SUCCESS :HKCU\Software\Arnerica Online\AOL Instant no 
Messenger (TM)\CurrentVersion\Users\aimuser\ 
Login\Password 
aimrecover.exe:HKCU\Software\Arnerica Online\AOL 
Instant Messenger (TM)\CurrentVersion\Users\aimuser\ 
Login\Password 

yes 
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In the exemplary embodiment, since there are five basic 
feature values, for each record, there are five first order con­
sistency checks and 20 second order consistency checks of 
which five examples are given above. If the likelihood of any 
of the consistency checks is below a threshold, the record is 
labeled as anomalous. The determination of the threshold is 
described in greater detail below. 

where 
12 

k! f(k!Y) 
m, =P(S=k)(k-kO)! f(ka+N) 

The manner in which the likelihoods for the first order 
(P(X,)) consistency checks and the second order (P(X,IX)) 
consistency checks are computed is described herein. From 10 

the normal data, there is a set of observed counts from a 
discrete alphabet, e.g., a finite number of distinct symbols or 
feature values, for each of the consistency checks. Computing 
the above likelihoods reduces to estimating a multinomial 
expression. In theory, the maximum likelihood estimate may 15 
be used, which computes the ratio of the counts of a particular 
dement lo the lola! counts. However, the maximum likeli­
hood estimate has been found to be biased when relatively 
small amounts of data, e.g., "sparse data," are available. The 
distribution may be smoothed by adding a virtual count to 
each possible element. For anomaly detection, it is often 20 

desirable to take into account how likely it is to observe a 
previously unobserved element. Thus, if many different ele­
ments have been seen in the training data, it is therefore more 
likely to see additional, unobserved elements, as opposed to 
the case where very few elements have been seen, in which 25 

additional, unobserved elements would be unlikely. (The 
term "element" here refers to feature values, or a vector of 
feature values.) 

and P(S=k) is a prior probability associated with the size of 
the subset of elements in the alphabet that have non-zero 
probability. Although the computation of C is expensive, it 
only needs to be done once for each consistency check at the 
end of training. Second order consistency checks are done in 
like fashion, except the particular values being measured are 
not distinct features values, but pairs of feature values, con­
sidering these pairs as a distinct element. 

The prediction of the probability estimator is derived using 
a mixture of Dirichlet estimators, as are known in the art, see, 
e.g., the estimator presented in N. Friedman andY. Singer, 
"Efficient Bayesian Parameter Estimation in Large Discrete 
Domains," Advances in Neural Information Processing Sys­
tems 11, MIT Press, which is incorporated by reference in its 
entirety herein.) The scores computed in the attached soft­
ware code correspond to the estimates provided by the con­
sistency checks in equations (1) and (2) above. 

This exemplary embodiment of the algorithm labels every 
registry access as either normal or anomalous. Programs can 
have anywhere from just a few registry accesses to several 
thousand. This means that many attacks will be represented 
by large numbers of records where many of those records will To estimate the likelihoods, an estimator is used, which 

gives the following prediction for element i: 

a+N 
P(X = i) = kOa+NC 

(1) 

if element i was observed in the training data. If element i was 
not previously observed, then the following prediction is 
used: 

1 
P(X = i) = L-k0 (1-C) 

(2) 

In these equations, the term a is a prior count for each ele­
ment. The term N, is the number of times element i was 
observed; N is the total number of observations, k0 is the 
number of different elements observed, and L is the total 
number of possible elements or the alphabet size. The param­
eters are either observed or computed (e.g., N and k0 are 
determined by storing values and computing frequency 
counts) while L is defined by the particular system being 
modeled, i.e., the type of variables (e.g., 32 bit integers) 
defines a range of possible values. Thus, Lis predefined by the 
implementation details of the system. Here, the system is 
modeling the Windows™ registry, which has a predefined 
range of possible values (as defined by the programmers of 
the registry.) The scaling factor C takes into account how 
likely it is to observe a previously observed element versus an 
unobserved element. C is computed by the following equa­
tion: 

30 be considered anomalous. 
A second exemplary embodiment of the algorithm is 

described herein. Using the features that are monitored from 
each registry access, a score is computed to classifY each 
access as either normal or malicious. A set of normal registry 

35 accesses are analyzed as a model of non11al usage of the 
registry. Then using this model, new registry records are 
analyzed to determine whether or not they are malicious. 

As the data is being collected, several important statistics 
are collected about each feature and the values that occur for 

40 each feature. For each feature, which values occurred for that 
feature and how many distinct values occurred for the feature, 
r, are recorded. Accordingly, r is a measure of how likely it is 
to see a new value for the feature. If many distinct values for 
a feature have been previously observed, i.e., a high value for 

45 r, and subsequently a never-observed value is encountered, 
such new value would be expected and considered normal. In 
contrast, if only a few distinct values have been observed, i.e., 
a low value for r, the observation of a new value is unlikely 
and possibly anomalous. The total number of registry differ-

50 ent elements, e.g., training records, that are observed during 
training, n, is also recorded. 

During training, for each of the features, all of the distinct 
observed values of the feature are stored, as well as the num­
ber of distinct observed values r. The total number of training 

55 records n is computed. For each feature, the algorithm com­
putes p=r/n, which is an approximation of the probability of 
observing an unseen value for that feature in the normal data. 
To minimize storage requirements, instead of storing all dis­
tinct values, the algorithm hashes all of the values and stores 

60 the hashes of the values in a bit vector. More details on this 
technique is described in the implementation of PHAD 
(Packet Header Anomaly Detection), an anomaly detection 

(3J algorithm known in the art, which was developed to detect 
anomalies in packet headers (see, e.g., M. Mahoney and P. 

65 Chan, "Detecting Novel Attacks by IdentifYing Anomalous 
Network Packet Headers," Technical Report CS-2001-2, 
Florida Institute of Technology, Melbourne, Fla., 2001). 
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Once the model has been trained, new registry accesses can 
be evaluated and a score computed to determine whether or 
not the registry accesses are abnormal. For a new registry 
access, we first extract the features for the registry access. For 
each of these features, a check is performed to see if the value 

14 
itself is comprised of serialized Java objects. This allows for 
a single model to be generated and to easily be distributed to 
additional machines. Having the model easily deployed to 
new machines is a desirable feature since in a typical network, 
many Windows™ machines have similar usage patterns 
which allow for the same model to be used for multiple 
machines. The GUI 30 for the model generator using the 
second embodiment of the algorithm is shown in FIG. 2. 
Column 32 indicates the feature name, column 34 indicates 

of the feature has been observed for the feature. If the value 
has not been observed, a heuristic score is computed which 
determines the level of anomaly for that feature. The score is 
determined as 1/p for each feature. Intuitively this score will 
be higher for features where fewer distinct values have been 
observed. The final score for a registry access is the sum of the 
scores for each feature that observed a previously unobserved 
value. If this value is greater than a threshold, we label the 
registry access anomalous and declare the process that gen­
erated it as malicious. The results from this experiment are 
described below. 

10 then-value, column 36 indicates the r-value, and column 38 
indicates the p-value. Additional details for generating a 
model are described in U.S. application Ser. No. 10/208,432 
filed Jul. 30, 2002 entitled "System and Methods for Detec-

15 tion of New Malicious Executables," to Matthew G. Schulz et 
a!., which is incorporated by reference in its entirety herein. 

The anomaly detector 16 will load the normal usage model 
created by the model generator 14 (as indicated by arrow 29) 
and begin reading each record from the output data stream of 

The basic architecture of the system 10 will now be dis­
cussed in greater detail herein. With continued reference to 
FIG. 1, the registry auditing module 12 monitors accesses to 
the registry. In the exemplary embodiment, the registry audit­
ing module 12 is a "Basic Auditing Module" (BAM). In 
general, BAMs are known in the art, and implement an arc hi­
tecture and interface which provide a consistent data repre­
sentation for a sensor. As indicated by arrow 22, they include 

20 registry auditing module 12 (arrow 26). One of the algo­
rithms, as discussed above, is then applied against each record 
of registry activity. The score generated by the anomaly 
detection algorithm is then compared by a user configurable 
threshold to determine if the record should be considered 

a "hook" into the audit stream (in this case the registry) and 25 

various communication and data-buffering components. 
BAMs use an XML data representation substantially identi-
cal to the IETF standard for IDS systems (See, e.g., Internet 
Engineering Task Force. Intrusion detection exchange for­
mat. On-line publication, http://www.ietf.org/html.charters/ 30 

idwg-charter.html, 2000.), minor syntatical differences. The 
registry auditing module 12 runs in the background on a 
Windows™ machine, where it gathers information on regis-
try reads and writes, e.g., the 5 features discussed above. 
Registry auditing module 12 uses Win32 hooks to tap into the 35 

registry and log all reads and writes to the registry. The 
software uses an architecture substantially identical to Sys­
Internal's Regmon (See, e.g., Sysinternals. Regmon for Win­
dows™ NT/9x. Online publication, 2000. http://www.sysin­
ternals.com/ntw2k/source/regmon.shtml), and extracts a 40 

subset of data available to Regmon. After gathering the reg­
istry data, registry auditing module 12 can be configured for 
two distinct uses. One use is to act as the data source for model 
generation. When registry auditing module 12 is used as the 
data source for model generation, its output is sent to a data- 45 

base 18 (as indicated by arrow 24) where it is stored and later 
used by the model generator 16 described herein. The second 
use of registry auditing module 12 is to act as the data source 
for the real-time anomaly detector 14 described herein. While 
in this mode, the output of registry auditing module 12 is sent 50 

directly to the anomaly detector 14 (indicated by arrow 26) 
where it is processed in real time. 

The model generation infrastructure consists of two com­
ponents. A database 18 is used to store all of the collected 
registry accesses from the training data. A model generator 14 55 

then uses this collected data to create a model of normal 

anomalous. A list of anomalous registry accesses are stored 
and displayed as part of the detector. 

The system described herein is a statistical model of 
expected registry queries and results. If an attacker wanted to 
usurp a host-based detector, they can a) tum off the detector at 
the host (and hope no alarms go off elsewhere) orb) they can 
attack the host based detector by changing its rules or chang-
ing its statistical model so it won't alarm. 

Accordingly, in order to protect the statistical model of the 
system, from being attacked, it is put it in the registry. The 
registry is essentially a data base, and the statistical model 
comprises query values and probabilities. The evaluation of 
the model first accesses values and probability estimates. This 
information can be stored in the registry. Hence, any process 
that attempts to touch the model (for example, to change some 
values in the model) will be abnormal registry accesses and 
set off the alarm. Consequently, the system would be pro-
tected from having its own model being attacked since it will 
notice when it is under attack 

In order to evaluate the system, data was gathered by run­
ning a registry auditing module 12 on a host machine. During 
training, several programs were run in order to generate nor­
mal background traffic. Tn order to generate normal data for 
building an accurate and complete training model, it was 
important to run various applications in various ways. By 
examining registry traffic, it was discovered that it is not just 
which programs that are run, but also how they are run that 
affect registry activity. For example, running ping.exe from 
the command prompt does not generate registry activity. 
However, running ping.exe directly from the run dialog box 
does generate registry activity: By understanding such details 
of the registry, a more complete training model was built. 
Beyond the normal execution of standard programs, such as 
Microsoft™ Word, Internet Explorer, and Winzip, the train­
ing also included performing tasks such as emptying the 

usage. The model generator 14 uses one of the two exemplary 
algorithms discussed above (or other similar algorithm) to 
build a model that will represent normal usage. It utilizes the 
data stored in the database 18 which was generated by registry 
auditing module 12. The database 18 is described in greater 
detail is concurrently filed U.S. Application serial No. [not yet 
known], entitled "System and Methods for Adaptive Model 
Generation for Detecting Intrusion in Computer Systems," to 
Andrew Honig, eta!., which is incorporated by reference in its 
entirety herein. (Arrow 28 indicates the flow of data from the 
data warehouse 18 to the model generator 14.) The model 

60 Recycling Bin and using Control Panel. 
The training data collected for the experiment was col­

lected on Windows™ NT 4.0 over two days of normal usage. 
"Normal" usage is defined to mean what is believed to be 
typical use of a Windows™ platform in a home setting. For 

65 example, it was assumed that users would log in, check some 
internet sites, read some mail, use word processing, then log 
off. This type of session was taken to be relatively typical of 
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computer users. Normal programs are those which are 
bundled with the operating systems, or are in use by most 
Windows™ users. 

The simulated home use of Windows™ generated a clean 
(attack-free) dataset of approximately 500,000 records. The 
system was tested on a full day of test data with embedded 
attacks executed. This data was comprised of approximately 
300,000 records, most of which were normal program execu­
tions interspersed with attacks among normal process execu­
tions. The normal programs run between attacks were 10 

intended to simulate an ordinary Windows™ session. The 
programs used were, for example, Microsoft™ Word™, Out­
look Express™, Internet Explorer™, Netscape™, AOL™ 
Instant Messenger™. 

The attacks run include publicly available attacks such as 15 

aimrecover, browslist, bok2ss (back orifice), install.exe xtxp 
and exe (both for backdoor.XTCP), 1 Ophtcrack, runttack, 
whackmole, and setuptrojan. Attacks were only run during 
the one day of testing throughout the day. Among the twelve 
attacks that were run, four instances were repetitions of the 20 

same attack. Since some attacks generated multiple processes 
there are a total of seventeen distinct processes for each 
attack. All of the processes (either attack or normal) as well as 
the number of registry access records in the test data is shown 
in Table 3 and described in greater detail herein. 25 

The training and testing envirouments were set up to rep­
licate a simple yet realistic model of usage of Windows™ 
systems. The system load and the applications that were run 
were meant to resemble what one may deem typical in normal 
private settings. 30 

The first exemplary anomaly detection algorithm dis­
cussed above in equations (1 )-(3) were trained over the nor­
mal data. Each record in the testing set was evaluated against 
this training data. The results were evaluated by computing 
two statistics: the detection rate and the false positive rate. 35 

The performance of the system was evaluated by measuring 
detection performance over processes labeled as either nor­
mal or malicious. 

The detection rate reported below is the percentage of 
records generated by the malicious programs which are 40 

labeled correctly as anomalous by the model. The false posi­
tive rate is the percentage of normal records which are mis­
labeled anomalous. Each attack or normal process has many 
records associated with it. Therefore, it is possible that some 

16 
records generated by a malicious program will be mislabeled 
even when some of the records generated by the attack are 
accurately detected. This will occur in the event that some of 
the records associated with one attack are labeled normal. 
Each record is given an anomaly score, S, that is compared to 
a user defined threshold. If the score is greater than the thresh­
old, then that particular record is considered malicious. FIG. 
3 shows how varying the threshold affects the output of detec­
tor. The actual recorded scores plotted in the figure are dis­
played in Table 2. 

TABLE2 

Threshold Score False Positive Rate Detection Rate 

6.847393 0.001192 0.005870 
6.165698 0.002826 0.027215 
5.971925 0.003159 0.030416 
5.432488 0.004294 0.064034 
4.828566 0.005613 0.099253 
4.565011 0.006506 0.177161 
3.812506 0.009343 0.288687 
3.774119 0.009738 0.314301 
3.502904 0.011392 0.533084 
3.231236 0.012790 0.535219 
3.158004 0.014740 0.577908 
2.915094 0.019998 0.578442 
2.899837 0.020087 0.627001 
2.753176 0.033658 0.629136 
2.584921 0.034744 0.808431 
2.531572 0.038042 0.869797 

2.384402 0.050454 1.000000 

Table 3 is sorted in order to show the results for classifying 
processes. Information about all processes in testing data 
including the number of registry accesses and the maximum 
and minimum score for each record as well as the classifica­
tion. The top part of the table shows this information for all of 
the attack processes and the bottom part of the table shows 
this information for the normal processes. The reference 
number (by the attack processes) give the source for the 
attack. Processes that have the same reference number are 
part of the same attack. [1] AIMCrack. [2] Back Orifice. [3] 
Backdoor.xtcp. [4] Browse List. [5] Happy 99. [6] IPCrack. 
[7] LOpht Crack. [8] Setup Trojan. 

TABLE3 

Program Name Number of Records Maximum Record Value Minimum Record Value Classification 

LOADWC.EXE[2] 8.497072 8.497072 ATTACK 
ipccrack.exe[ 6] 8.497072 8.497072 ATTACK 
mstinit.exe[2] 11 7.253687 6.705313 ATTACK 
bo2kss.exe[2] 12 7.253687 6.62527 ATTACK 
runonce.exe[2] 7.253384 6.992995 ATTACK 
browselist.exe[4] 32 6.807137 5.693712 ATTACK 
install.exel3 J 1~ 6.519455 6.245n A! JACK 
SetupTrojan.exe[8] 30 6.444089 5.756232 ATTACK 
AimRecover. exe [ 1] 61 6.444089 5.063085 ATTACK 
happy99.exe[5] 29 5.918383 5.789022 ATTACK 
bo2k_l_O_intl.e[2] 78 5.432488 4.820771 ATTACK 
_INS0432._MP[2] 443 5.284697 3.094395 ATTACK 
xtcp.exe[3] 240 5.265434 3.705422 ATTACK 
bo2kcfg.exer2l 289 4.879232 3.520338 ATTACK 
10phtcrack.exe[7] 100 4.688737 4.575099 ATTACK 
Patch.exe[2] 174 4.661701 4.025433 ATTACK 
bo2k.exe[2] 883 4.386504 2.405762 ATTACK 
systray.exe 17 7.253687 6.299848 NORMAL 
CSRSS.EXE 63 7.253687 5.031336 NORMAL 
SPOOLSS.EXE 72 7.070537 5.133161 NORMAL 
ttssh.exe 12 6.62527 6.62527 NORMAL 
winmine.exe 21 6.56054 6.099177 NORMAL 

COLOOOOOOSO 

Case: 15-1146      Document: 20     Page: 167     Filed: 01/20/2015

 
Exhibit Page 167

Columbia Ex. 2011-167 
Symantec v. Columbia 

IPR2015-00375



A108

US 7,913,306 B2 
17 18 

TABLE 3-continued 

Program Name Number of Records Maximwn Record Value Minimwn Record Value Classification 

em_exec.exe 
winampa.exe 
PINBALL.EXE 
LSASS.EXE 
PING.EXE 
EXCEL.EXE 
WINLOGON.EXE 
nmdll32.exe 
explore.exe 
netscape.exe 
java.exe 
aim.exe 
findfast.exe 
TASKMGR.EXE 
MSACCESS.EXE 
IEXPLORE.EXE 
NTVDM.EXE 
CMD.EXE 
WINWORD.EXE 
EXPLORER.EXE 
msmsgs.exe 
OSA9.EXE 
MYCOME l.EXE 
wscript.exe 
WINZIP32.EXE 
notepad.exe 
POWERPNT.EXE 
AcroRd32.exe 
MDM.EXE 
ttermpro.exe 
SERVICES.EXE 
REGMON.EXE 
RPCSS.EXE 

29 
547 
240 

2299 
50 

1782 
399 
142 
108 

11252 
42 

1702 
176 

99 
2825 

194274 
271 
116 

1541 
53894 

7016 
705 

1193 
527 

3043 
2673 

617 
1598 
1825 
1639 
1070 
259 

4349 

6.337396 
6.11399 
5.898464 
5.432488 
5.345477 
5.284697 
5.191326 
5.057795 
4.960194 
4.828566 
4.828566 
4.828566 
4.679733 
4.650997 
4.629494 
4.628190 
4.59155 
4.579538 
4.457119 
4.31774 
4.177509 
4.163361 
4.035649 
3.883216 
3.883216 
3.883216 
3.501078 
3.412895 
3.231236 
2.899837 
2.576196 
2.556836 
2.250997 

The process of setting the threshold is described herein. If 
the threshold is set at 8.497072, the processes LOAD­
WC.EXE and ipccrack.exe are labeled as malicious and 35 

would detect the Back Orifice and IPCrack attacks. Since 
none of the normal processes have scores that high, we would 
have no false positives. If we lower the threshold to 6.444089, 

5.789022 NORMAL 
2.883944 NORMAL 
3.705422 NORMAL 
1.449555 NORMAL 
5.258394 NORMAL 
1.704167 NORMAL 
3.198755 NORMAL 
4.227375 NORMAL 
4.498871 NORMAL 

-0.138171 NORMAL 
3.774119 NORMAL 
1.750073 NORMAL 
4.01407 NORMAL 
4.585049 NORMAL 
1.243602 NORMAL 

-3.419214 NORMAL 
3.584417 NORMAL 
4.428045 NORMAL 
1.7081 NORMAL 

-1.704574 NORMAL 
0.334128 NORMAL 
2.584921 NORMAL 
2.105155 NORMAL 
2.921123 NORMAL 
0.593845 NORMAL 
1.264339 NORMAL 

-0.145078 NORMAL 
0.393729 NORMAL 
1.680336 NORMAL 
1.787768 NORMAL 
2.213871 NORMAL 
1.205416 NORMAL 
0.812288 NORMAL 

APPENDIX 

The software listed herein is provided in an attached CD­
Rom. The contents of the CD-Rom are incorporated by ref­
erence in their entirety herein. 

A portion of the disclosure of this patent document con­
tains material which is subject to copyright protection. The we would have detected several more processes from Back 

Orifice and the BrowseList, BackDoor.xtcp, Setup Trojan and 
AimRecover attacks. However, at this level of threshold, the 
following processes would be labeled as false positives: 
systray.exe, CSRSS.EXE, SPOOLSS.EXE, ttssh.exe, and 
winmine.exe. 

40 copyright owner has no objection to the facsimile reproduc­
tion by any one of the patent disclosure, as it appears in the 
Patent and Trademark Office patent files or records, but oth­
erwise reserves all copyright rights whatsoever. 

PAD (Probabilistic Anomaly Detection) is a package that 
45 detects anomalies in fixed length records of discrete values. By varying the threshold for the inconsistency scores on 

records, we were able to demonstrate the variability of the 
detection rate and false positive rate. The false positive rate 
versus the detection rate was plotted in an ROC (Receiver 
Operator Characteristic) curve 52 shown in Table 2 and the 
plot 50 in FIG. 3, in which the false positive rate 54 is plotted 50 

against the detection rate 56. 
Another exemplary embodiment is described herein. The 

systems and method described above, uses Windows™ reg­
istry accesses, which is an example of a general means of 
detecting malicious uses of a host computer. However, other 55 

systems, such as Linux/Unix, do not use a registry. In those 
cases, a file system sensor would be used. Accesses to the file 
system provides an audit source of data (i.e., whenever an 
application is run, any and all things accessed are files, e.g., 
the main executable files are accessed, and the project files are 60 

accessed). This audit source can be observed, and a "normal 
baseline model" built, and then used for detecting abnormal 
file system accesses. 

It will be understood that the foregoing is only illustrative 
of the principles of the invention, and that various modifica- 65 

tions can be made by those skilled in the art without departing 
from the scope and spirit of the invention. 

The basic idea behind PAD is that it trains over a data set 
and then checks to see if new observed records are "consis­
tent" with the data set. There are two types of consistency 
checks. First order consistency checks evaluate whether or 
not a single feature is consistent with other features in the 
dataset. Second order consistency checks evaluate if a pair of 
features is consistent with the data set. All consistency checks 
are evaluated by computing a predictive probability. This is 
done by estimating a multinomial using counts observed from 
the data set and then estimating the probability of seeing the 
observation. 

Let us assume records oflength n are being observed. That 
is, each record can be written as a set of random variables 
(X_l, X_2, ... , X_n). Each first order consistency check can 
be denoted as computing P(X_i). This probability is trained 
over a data set, and then used to predict elements in another 
dataset. These two datasets can be in fact the same. To train 
the probability distribution, the counts of the observed sym­
bols in the data set are collected. The second order consis­
tency checks are P(X_i, Xj). In this case, the counts ofX_i 
are collected when Xj is observed. Note that there is a 
separate set of counts for each Xj. Accordingly, second order 
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consistency checks take a significant amount of memory rela­
tive to first order consistency checks. 

All of these probability estimates are obtained using the 
multinomial estimator presented in Friedman, Singer 1999 
(incorporated by reference, above). The basic idea of the 
estimator is that it explicitly takes into account the probability 
of seeing an unobserved symbol. 

The term C is the probability of observing an already 
observed symbol. Thus (1-C) is the probability of observing 

20 
The next steps are then performed: 

6. Type . ./src/pad -e -g globalsFile.txt -w temp.cla samplein-
put.txt 

This should create a file called temp.cla which is the trained 
model (classifier) from the sample input. 
7. Type . ./src/pad -r -p sampleinput.txt temp.cla 
This should provide the same output as above. 

an unobserved symbol. For the observed symbols, a Dirichlet 
10 

is used to estimate the probabilities for the counts. IfN is the 
total number of observations, and N_i is the observations of 
symbol i, if alpha is the "pseudo count" which is added to the 
count of each observed symbol, and k'O is the number of 
observed symbols and L is the total number of symbols, the 
probability is as follows: 

For an observed symbol i, the probability is: C((N_i+al­
pha)/(k'O*alpha+N)) For an unobserved symbol, the prob­
ability is: (1-C)*(1/(L-k'O)). See equations (1) and (2) 
above, and the routine "updateC" in Classifier.c. In the second 
case, the probability is spread among possible unobserved 20 

symbols. 

Usage Instructions The executable has two modes: 
"examples" mode (using the -e option) which reads in 
examples from a file and trains the model using that data, and 
"read" mode (using the -r option) which reads in a model from 
a file. The executable requires one argument, which is either 
the file or examples. The globals file (specified with the -g 
option) defines all of the global variables. These include the 

15 number of colunms, the file names containing the column 
symbol definitions. Note that when reading in a model, the 
column symbol files must be in the current directory. 

Since each feature in the record may have a different set of 
possible outcomes, ifP is the probability estimated from the 
consistency check, the following term is reported: log(P/(1/ 
L)). This normalizes the consistency check to take into 25 
account the number of possible outcomes L. In general, C 
should be set as described in Friedman, Singer 1999. 

However, this causes some overflow/underflow problems 

Options: Command line options: In addition to -r and -e 
which set the mode, the following are options that can be used 
from the command line: 

-gFILE 
-v 
-s 
-wFILE 
-p FILE 

set globals file 
toggle verbose output 
toggle use of second order predictors 
write classifier to file. 
predict files 

in the general case. Instead, the current version of the algo­
rithm uses a heuristic to set C. This is done after observing the 
counts. This is called SIMPLE_MODE in the implementa­
tion. In SIMPLE_MODE, C is set to C=N/(N+L-k'O). In 
addition, in SIMPLE_MODE, there is a variable 
OBSERVED_BIAS which adjusts the value of C toward 
observed or unobserved symbols. When OBSERVED_ 
BIAS=O.O, there is no bias. Positive values increase the prob- 35 

ability mass of observed symbols while negative values 
decrease the probability mass of unobserved symbols. For 
non-zero OBSERVED_BIAS, the value of Cis adjusted so 
that the new value ofC, C* is given as follows C*=C/(C+((1-
C)*exp( -OBSERVED_BIAS))). 

30 
Globals File Options: Below is the globals file included in 

the distribution. All lines starting with "#" are comments. 

Package Installation and Quick Start: To install the pack­
age, the following steps should be performed: 
1. Unpack the files. 
2. cd into the src/subdirectory. 
3. type make 

To test the package, the following steps should be per­
formed: 
4. cd into data/subdirectory 
5. type . ./src/pad -e -g globalsFile.txt -p sampleinput.txt 

sampleinput.txt 
Subsequently, the following output should be provided: 

40 

45 

a aa aaa zzzz: 0.031253 1.3~6294 0.490206 0.693147 0.000000 0.031253 
0.000000 0.000000 0.000000 1.386294 0.980829 0.980829 0.000000 0.490206 
0.693147 0.693147 0.000000 0.693147 0.875469 0.875469: test 
b aa fff dddd: 0.436718 1.386294 0.202524 0.000000 0.619039 0.436718 
0.000000 0.000000 0.632523 1.386294 0.632523 0.000000 0.000000 0.202524 
0.470004 0.000000 -0.000000 0.000000 -0.000000 0.000000: test! 
c aa ffftttt: 0.031253 1.386294 0.202524 0.000000 0.000000 0.031253 
0.000000 0.000000 0.000000 1.386294 0.632523 0.000000 0.000000 0.202524 
0.470004 0.000000 0.000000 0.000000 -0.000000 0.000000: test2 
g aa aaa zzzz: 0.031253 1.386294 0.490206 0.693147 0.000000 0.031253 
0.000000 0.000000 0.000000 1.386294 0.980829 0.980829 0.000000 0.490206 
0.693147 0.693147 0.000000 0.693147 0.875469 0.875469: test3 
baa aaa zzzz: 0.436718 1.386294 0.490206 0.693147 0.619039 0.436718 
0.000000 0.000000 0.632523 1.386294 0.980829 0.980829 0.000000 0.490206 
0.693147 0.693147-0.000000 0.693147 0.875469 0.875469: test4 

# Globals Definition 
f-IThe input Symbols. 
NUM COLUMNS 4 
#Set Simple Mode 
SIMPLE MODE TRUE 
#Set Use Second Order Consistency Checks 
USE_SECOND_ORDERTRUE 
#Set Verbose mode 
VERBOSE FALSE 
#Allow unknown symbols in testing 
ALLOW _UNKNOWN_SYMBOLS TRUE 
#Set Initial Count for Predictors. This is the virtual count 
#that is added to all observed symbols. 
INITIAL PREDICTION_ COUNT 1 
#Set the bias to observed symbols 
OBSERVED_BIAS 0.0 
#Set the Column Symbol Files 
COLUMN_SYMBOL_FILENAME 1:Cl.txt 
COLUMN_SYMBOL_FILENAME 2:C2.txt 
COLUMN_SYMBOL_FILENAME 3:C3.txt 
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-continued 

COLUMN_SYMBOL FILENAME 4:C4.txt 
#Sets the number of symbols in a column 
COLUMN_NUM SYMBOLS 1:40 
#Sets the classifier to ignore a colwnn 
IGNORE_ COLUMN 2 
#Sets the symbol that represents an ignored symbol 
IGNORE_SYMBOL ** 
#Sets the symbol to represent an unknown symbol 
UNKNOWN_SYMBOL UKS 

10 

Globals.h 
HashTable.c 
HashTable.h 
includes.h 
Input.c 
Input.h 
Make file 
memwatch.c 
memwatch.h 
pad.c 

22 
-continued 

Header file for Globals.c 
Hashtable implementation 
Header file for Hashtable.c 
Include file for all files 
Implementation ofl/0 
Header file for Input.c 
Make file 
Package to detect memory leaks 
Package to detect memory leaks 
Main executable file 
Header file for pad.c 

Input file description: Each line of the input file corre­
sponds to a record. Each record consists of the features in a 
record separated by a space. This is followed by a tab after 
which there is an optional comment. This comment is pre- 15 
served in prediction and can be used in experiments to keep 
track of the type of a record and where it came from. Below is 
the sample input: 

pad.h 
SymbolTable.c 

SymbolTable.h 

Symbol Table implementation for mapping 
Symbols to Integers 
Header file for SymbolTable.c 

Registry Experiments: The following steps should be per­
formed: 
1. cd registry/ 

a aa aaa zzzz test 
baa fffdddd test! 
c aa ffftttt test2 
g aa aaa zzzz test3 
baa aaa zzzz test4 

A symbol file defines all of the possible symbols. Each 
symbol is on a separate line in the file. A sample symbol file 
is below: 

aaa 
CCC 

fff 
ggg 

2. type . ./src/pad -e -g regGlobs.txt -w model.cla registry. txt 

20 This creates a file called model.cla which is the model that is 
trained on 800 kregistry records. It should take about 190MB 
of memory to train the model. 

25 

3. type .. /src/pad -r -p registry.txt model.cla>predictions.txt 
This reads in the model and evaluates all of the records. The 
file predictions.txt contains the values for all of the consis­
tency checks. 
4. Type . /computeResults.pl predictions.txt>final-predic-

tions.txt 
This determines the minimum value for a consistency check 

30 for each record and puts on each line this value and the 
comment. 
5. Type sort -n final-predictions.txt>sorted-final-predic­

tions.txt 
This sorts the records in order of least consistent. This is the 

35 final output of the experiments. 

There are several options related to symbol files. The 
IGNORE_ COLUMN can set the classifier to ignore a column 
completely. In this case, each element of the colunm gets 

40 
mapped to a special symbol which is ignored in the model. In 

6. Type ./computeROC.pl sorted-final-predictions.txt>roc.txt 
This computes ROC points for the experiments. 

We claim: 
1. A method for detecting intrusions in the operation of a 

computer system comprising: 
a single record, some of the fields can be set to a special 
symbol (by default"**") which tells the classifier to ignore its 
value. A special symbol (by default "UKS") denotes an 
unknown symbol. In training, unknown symbols are not 

45 
allowed and will cause the program to exit. In testing, the 
unknown symbols are treated as if it is a symbol that has 
observed count of 0. The option ALLOW _UNKNOWN_ 
SYMBOLS toggles the automatic mapping of unseen sym­
bols to the special unknown symbol during testing. This 

50 
makes running experiments easier because it is not necessary 

(a) gathering features from records of normal processes 
that access the file system of the computer; 

(b) generating a probabilistic model of normal computer 
system usage based on occurrences of the features and 
determining the likelihood of observing an event that 
was not observed during the gathering of features from 
the records of normal processes; and 

(c) analyzing features from a record of a process that 
accesses the file system to detect deviations from normal 
computer system usage to determine whether the access 
to the file system is an anomaly. to have the symbol files contain the data in the test set. 

Package Description The software package contains the 
following: 

/src/ 
/datal 
/registry/ 

/papers/ 

directory consisting of all of the source files 
directory consisting of a small sample input 
directory consisting of data and scripts to do 
the registry experiments. 
directory containing relevant papers to pad. 

In the/src/directory there are the following files: 

Classifier.c 
Classifier.h 
Column.c 
Column.h 
Globals.c 

File that defines the Classifier (model) 
Header file for Classifier.c 
File that defines a single consistency check 
Header file for Column.c 
Defines the global variables 

2. The method according to claim 1, wherein the step of 
gathering features from records of normal processes that 

55 access the file system of the computer comprises gathering a 
feature corresponding to a name of a process accessing the file 
system of the computer. 

3. The method according to claim 1, wherein gathering 
features from records of normal processes that access the file 

60 system of the computer comprises gathering a feature corre­
sponding to a type of query being sent to the file system of the 
computer. 

4. The method according to claim 3, wherein gathering 
features from records of normal processes that access the file 

65 system of the computer comprises gathering a feature corre­
sponding to an outcome of a query being sent to the file 
system of the computer. 
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5. The method according to claim 1, wherein gathering 
features from records of normal processes that access the file 
system of the computer comprises gathering a feature corre­
sponding to a name of a key being accessed in the file system 
of the computer. 

6. The method according to claim 5, wherein gathering 
features from records of normal processes that access the file 
system of the computer comprises gathering a feature corre­
sponding to a value of the key being accessed. 

24 
records of processes that access the file system of the com­
puter given an occurrence of a second feature is the records. 

9. The method according to claim 1, wherein analyzing a 
record of a process that accesses the file system of the com­
puter comprises, for each feature, performing a check to 
determine if a value of the feature has been previously 
observed for the feature. 

10. The method according to claim 9, further comprising, if 
the value of the feature has not been observed, computing a 
score based on a probability of observing the value of the 
feature. 

7. The method according to claim 1, wherein generating a 10 

probabilistic model of normal computer system usage com­
prises determining a likelihood of observing a feature in the 
records of processes that access the file system of the com­
puter. 

11. The method according to claim 9, further comprising, if 
the score is greater than a predetermined threshold, labeling 
the access to the file system of the computer as anomalous and 

15 labeling the process that accessed the file system of the com­
puter as malicious. 8. The method according to claim 7, wherein determining 

a likelihood of observing a feature comprises determining a 
conditional probability of observing a first feature in the * * * * * 
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METHODS, MEDIA AND SYSTEMS FOR 
DETECTING ANOMALOUS PROGRAM 

EXECUTIONS 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application is a U.S. National Phase Application 
Under35 U.S.C. §371 oflnternational PatentApplicationNo. 
PCT/US2006/041591, filed Oct. 25, 2006, which claims the 
benefit under 35 U.S.C. § 119( e) of United States Provisional 
Patent Application No. 60/730,289, filed Oct. 25, 2005, each 
of which is hereby incorporated by reference herein in its 
entirety. 

TEC:HNOT DGY AREA 

The disclosed subject matter relates to methods, media, 
and systems for detecting anomalous program executions. 

BACKGROUND 

Applications may terminate due to any number of threats, 
program errors, software faults, attacks, or any other suitable 
software failure. Computer viruses, worms, trojans, hackers, 
key recovery attacks, malicious executables, probes, etc. are a 
constant menace to users of computers connected to public 
computer networks (such as the Internet) and/or private net­
works (such as corporate computer networks). ln response to 
these threats, many computers are protected by antivirus soft­
ware and firewalls. However, these preventative measures are 
not always adequate. For example, many services must main­
tain a high availability when faced by remote attacks, high­
volume events (such as fast-spreading worms like Slammer 
and Blaster), or simple application-level denial of service 
(DoS) attacks. 

2 
emulator; compares a function call made in the emulator to a 
model of function calls for the at least a part of the program; 
and identifies the function call as anomalous based on the 
comparison. 

In some embodiments, methods for detecting anomalous 
program executions are provided, comprising: modifying a 
program to include indicators of program-level function calls 
being made during execution of the program; comparing at 
least one of the indicators of program-level function calls 

10 made in the emulator to a model of function calls for the at 
least a part of the program; and identifYing a function call 
corresponding to the at least one of the indicators as anoma­
lous based on the comparison. 

15 
In some embodiments, computer-readable media contain-

ing computer-executable instructions that. when executed by 
a processor, cause the processor to perform a method for 
detecting anomalous program executions are provide, the 
method comprising: modifying a program to include indica-

20 tors of program-level function calls being made during execu­
tion of the program; comparing at least one of the indicators 
of program-level function calls made in the emulator to a 
model of function calls for the at least a part of the program; 
and identifying a function call corresponding to the at least 

25 one of the indicators as anomalous based on the comparison. 
In some embodiments, systems for detecting anomalous 

program executions are provided, comprising: a digital pro­
cessing device that: modifies a program to include indicators 
of program-level function calls being made during execution 

30 of the program; compares at least one of the indicators of 
program-level function calls made in the emulator to a model 
of function calls for the at least a part of the program; and 
identifies a function call corresponding to the at least one of 

35 
the indicators as anomalous based on the comparison. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The Detailed Description, including the description of 
various embodiments of the disclosed subject matter, will be 
best understood when read in reference to the accompanying 
figures wherein: 

Aside from these threats, applications generally contain 
errors during operation, which typically result from program­
mer error. Regardless of whether an application is attacked by 
one of the above-mentioned threats or contains errors during 40 

operation, these software faults and failures result in illegal 
memory access errors, division by zero errors, buffer over­
flows attacks, etc. These errors cause an application to termi­
nate its execution or "crash." 

FIG. 1 is a schematic diagram of an illustrative system 
suitable for implementation of an application that monitors 

45 other applications and protects these applications against 
faults in accordance with some embodiments; SUMMARY 

Methods, media, and systems for detecting anomalous pro­
gram executions are provided. In some embodiments, meth­
ods for detecting anomalous program executions are pro- 50 

vided, comprising: executing at least a part of a program in an 
emulator; comparing a function call made in the emulator to 

FIG. 2 is a detailed example of the server and one of the 
workstations of FIG. 1 that may be used in accordance with 
some embodiments; 

FIG. 3 shows a simplified diagram illustrating repairing 
faults in an application and updating the application in accor­
dance with some embodiments; 

a model of function calls for the at least a part of the program; 
and identifYing the function call as anomalous based on the 
comparison. 

In some embodiments, computer-readable media contain­
ing computer-executable instructions that, when executed by 

FIG. 4 shows a simplified diagram illustrating detecting 
and repairing an application in response to a fault occurring in 

55 accordance with some embodiments; 

a processor, cause the processor to perform a method for 
detecting anomalous program executions are provide, the 
method comprising: executing at least a part of a program in 60 

an emulator; comparing a function call made in the emulator 
to a model of function calls for the at least a part of the 
program; and identifying the function call as anomalous 
based on the comparison. 

In some embodiments, systems for detecting anomalous 65 

program executions are provided, comprising: a digital pro­
cessing device that: executes at least a part of a program in an 

FIG. 5 shows an illustrative example of emulated code 
integrated into the code of an existing application in accor­
dance with some embodiments; 

FIG. 6 shows a simplified diagram illustrating detecting 
and repairing an application using an application community 
in accordance with some embodiments of the disclosed sub­
ject matter; 

FIG. 7 shows an illustrative example of a table that may be 
calculated by a member of the application community for 
distributed bidding in accordance with some embodiments of 
the disclosed subject matter; and 
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FIG. 8 shows a simplified diagram illustrating shows iden­
tifYing a function call as being anomalous in accordance with 
some embodiments. 

DETAILED DESCRIPTION 

Methods, media, and systems for detecting anomalous pro­
gram executions are provided. In some embodiments, sys­
tems and methods are provided that model application level 
computations and running programs, and that detect anoma­
lous executions by, for example, instrumenting, monitoring 
and analyzing application-level program function calls and/ 

10 

4 
using patch generation systems, or content filtering signature 
generation systems). Moreover, given precise identification 
of a vulnerable location, the performance impact may be 
reduced by using STEM for parts or all of a program's execu­
tion. 

As explained above, anomaly detection can involve the use 
of detection models. These models can be used in connection 
with automatic and unsupervised learning. 

A probabilistic anomaly detection (PAD) algorithm can be 
used to train a model for detecting anomalies. This model may 
be, in essence, a density estimation, where the estimation of a 
density function p(x) over normal data allows the definition of 
anomalies as data elements that occur with low probability. 

or arguments. Such an approach can be used to detect anoma­
lous program executions that may be indicative of a malicious 
attack or program fault. 

The anomaly detection algorithm being used may be, for 
example, a probabilistic anomaly detection (PAD) algorithm 

15 
The detection of low probability data (or events) are repre­
sented as consistency checks over the normal data, where a 
record is labeled anomalous if it fails any one of these tests. 

First and second order consistency checks can be applied. 
First order consistency checks verifY that a value is consistent 

or a one class support vector machine (OCSVM), which are 
described below, or any other suitable algorithm. 

Anomaly detection may be applied to process execution 
anomaly detection, file system access anomaly detection, 
and/or network packet header anomaly detection. Moreover, 

20 with observed values of that feature in the normal data set. 
These first order checks compute the likelihood of an obser­
vation of a given feature, P(Xi), where Xi are the feature 
variables. Second order consistency checks determine the 
conditional probability of a feature value given another fea-

as described herein, according to various embodiments, an 
anomaly detector may be applied to program execution state 
information. For example, as explained in greater detail 
below, an anomaly detector may model information on the 
program stack to detect anomalous program behavior. 

25 ture value, denoted by P(XiiXj), where Xi and Xj are the 
feature variables. 

In various embodiments, using PAD to model program 
stack information, such stack information may be extracted 
using, for example, Selective Transactional EMulation 30 

(STEM), which is described below and which permits the 
selective execution of certain parts, or all, of a program inside 
an instruction-level emulator, using the Val grind emulator, by 
modifYing a program's binary or source code to include indi­
cators of what functions calls are being m.ade (and any other 35 

suitable related information), or using any other suitable tech­
nique. In this manner, it is possible to determine dynamically 
(and transparently to the monitored program) the necessary 
information such as stack frames, function-call arguments, 
etc. For example, one or more of the following may be 40 

extracted from the program stack specific information: func­
tion name, the argument buffer name it may reference, and 
other features associated with the data sent to or returned from 
the called function (e.g., the length in bytes of the data, or the 
memory location of the data). 45 

One way to compute these probabilities is to estimate a 
multinomial that computes the ratio of the counts of a given 
element to the total counts. However, this results in a biased 
estimator when there is a sparse data set. Another approach is 
to use an estimator to determine these probability distribu­
tions. For example, let N be the total number of observations, 
Ni be the number of observations of svmbol i a be the 
"pseudo count" that is added to the cour{t of each observed 
symbol, k0 be the number of observed symbols, and L be the 
total number of possible symbols. Using these definitions, the 
probability for an observed element i can be given by: 

(1) 

and the probability for an unobserved element i can be: 

1 
P(X = i) = L-k0 (1-C) 

(2) 

50 
where C, the scaling factor, accounts for the likelihood of 
observing a previously observed element versus an unob­
served element. C can be computed as: 

For example, as illustrated in FIG. 8, an anomaly detector 
may be applied, for example, by extracting data pushed onto 
the stack (e.g., by using an emulator or by modifying a pro­
gram), and creating a data record provided to the anomaly 
detector for processing at 802. According to various embodi­
ments, in a first phase, an anomaly detector models normal 
program execution stack behavior. In the detection mode, 
after a model has been computed, the anomaly detector can 
detect stacked function references as anomalous at 806 by 
comparing those references to the model based on the training 55 

data at 804. 
Once an anomaly is detected, according to various embodi­

ments, selective transactional emulation (STEM) and error 
virtualization may be used to reverse (undo) the effects of 
processing the malicious input (e.g., changes to program 60 

variables or the file system) in order to allow the program to 
recover execution in a graceful manner. In this manner, the 
precise location of the failed (or attacked) program at which 
an anomaly was found may be identified. Also, the applica­
tion of an anomaly detector to function calls can enable rapid 65 

detection of malicious program executions, such that it is 
possible to mitigate against such faults or attacks (e.g., by 

(3) 

where 

k! f(k!Y) 
m,-P(S-k) I - - k = ko f(ka: + N) 

and P(s=k) is a prior probability associated with the size ofthe 
subset of elements in the alphabet that have non-zero prob­
ability. 

Because this computation of C can be time consuming, C 
can also be calculated by: 
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N 
C=--­

N +L-ko 

5 

(4) 

The consistency check can be normalized to account for the 
number of possible outcomes of L by log(P/(1/L))=log(P)+ 
log(L). 

Another approach that may be used instead of using PAD 
for model generation and anomaly detection is a one class 
SVM (OCSVM) algorithm. The OCSVM algorithm can be 
used to map input data into a high dimensional feature space 
(via a kernel) and iteratively find the maximal margin hyper­
plane which best separates the training data from the origin. 
The OCSVM may be viewed as a regular two-class SVM 
where all the training data lies in the first class, and the origin 
is taken as the only member of the second class. Thus, the 
hyperplane (or linear decision boundary) can correspond to 
the classification rule: 

6 
Linear kernel: K(x,y)=(x·y) 
Polynomial kernel: K(x,y)=(x·y+ 1 )d, where dis the degree of 

the polynomial 
Gaussian kernel: K(x,y)=e-llxyll';c2 o'J, where a 2 is the variance 
Kernels from binary feature vectors can be obtained by map­
ping a record into a feature space such that there is one 
dimension for every unique entry for each record value. A 
particular record can have the value 1 in the dimensions which 
correspond to each of its specific record entries, and the value 

10 0 for every other dimension in feature space. Linear kernels, 
second order polynomial kernels, and gaussian kernels can be 
calculated using these feature vectors for each record. Ker­
nels can also be calculated from frequency-based feature 
vectors such that, for any given record, each feature corre-

15 sponds to the number of occurrences of the corresponding 
record component in the training set. For example, if the 
second component of a record occurs three times in the train­
ing set, the second feature value for that record is three. These 

j(x)~(w,x)+b (5) 20 
frequency-based feature vectors can be used to compute lin­
ear and polynomial kernels. 

where w is the normal vector and b is a bias term. The 
OCSVM can be used to solve an optimization problem to find 
the rule f with maximal geometric margin. This classification 
rule can be used to assign a label to a test example x. Iff(x)<O, 
x can be labeled as an anomaly, otherwise it can be labeled as 
nonnal. In practice, there is a trade-off between maximizing 
the distance of the hyperplane from the origin and the number 
of training data points contained in the region separated from 
the origin by the hyperplane. 

Solving the OCSVM optimization problem can be equiva­
lent to solving the dual quadratic programming problem: 

subject to the constraints 

1 
0 <a:·<-

- 1 - vl 

and 

(6) 

(7) 

According to various embodiments, "mimicry attacks" 
which might otherwise thwart OS system call level anomaly 
detectors by using normal appearing sequences of system 
calls can be detected. For example, mimicry attacks are less 

25 likely to be detected when the system calls are only modeled 
as tokens from an alphabet, without any information about 
arguments. Therefore, according to various embodiments, the 
models used are enriched with information about the argu­
ments (data) such that it may be easier to detect mimicry 

30 attacks. 
According to various embodiments, models are shared 

among many members of a community running the same 
application (referred to as an "application community"). In 
particular, some embodiments can share models with each 

35 other and/or update each other's models such that the learning 
of anomaly detection models is relatively quick. For example, 
instead of running a particular application for days at a single 
site, according to various embodiments, thousands of repli­
cated applications can be run for a short period of time (e.g., 

40 one hour), and the models created based on the distributed 
data can be shared. While only a portion of each application 
instance may be monitored, for example, the entire software 
body can be monitored across the entire community. This can 

~0:;=1 (S) 45 
enable the rapid acquisition of statistics, and relatively fast 
learning of an application profile by sharing, for example, 
aggregate information (rather than the actual raw data used to 

where a, is a lagrange multiplier (or "weight" on example i 
such that vectors associated with non-zero weights are called 
"support vectors" and solely determine the optimal hyper­
plane), v is a parameter that controls the trade-off between 
maximizing the distance of the hyperplane from the origin 
and the number of data points contained by the hyperplane, I 
is the number of points in the training dataset, and K(x,, x) is 
the kernel function. By using the kernel function to project 
input vectors into a feature space, nonlinear decision bound­
aries can be allowed for. Given a feature map: 

<j>:x~JRN (9) 

construct the model). 
Model sharing can result in one standard model that an 

attacker could potentially access and use to craft a mimicry 
50 attack. Therefore, according to various embodiments, unique 

and diversified models can be created. For example, such 
unique and diversified models can be created by randomly 
choosing particular features from the application execution 
that is modeled, such that the various application instances 

55 compute distinct models. In this marmer, attacks may need to 
avoid detection by multiple models, rather than just a single 
model. Creating unique and diversified models not only has 
the advantage of being more resistant to mimicry attacks, but 

where <I> maps training vectors from input space X to a high- 60 

dimensional feature space, the kernel function can be defined 

also may be more efficient. For example, if only a portion of 
an application is modeled by each member of an application 
community, monitoring will generally be simpler (and 

as: 

K(x,y)~(<P(x),<j>(y)) (10) 

Feature vectors need not be computed explicitly, and compu- 65 

tational efficiency can be improved by directly computing 
kernel values K(x, y). Three common kernels can be used: 

cheaper) for each member of the community. In the event that 
one or more members of an application community are 
attacked, according to various embodiments, the attack (or 
fault) will be detected, and patches or a signature can be 
provided to those community members who are blind to the 
crafted attack (or fault). 
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Random (distinct) model building and random probing 
may be controlled by a software registration key provided by 

8 
first approach to solving (or at least reducing the effects of) 
the "concept drift" issue involves the use of "incremental 
leaming algorithms," which are algorithms that piecemeal 
update their models with new data, and that may also "expire" 
parts of the computed model created by older data. This 
piecemeal incremental approach is intended to result in con­
tinuous updating using relatively small amounts of data seen 
by the learning system. 

A second approach to solving (or at least reducing the 

a commercial off-the-shelf (COTS) software vendor or some 
other data providing "randomization." For example, for each 
member of an application community, some particular ran­
domly chosen function or functions and its associated data 
may be chosen for modeling, while others may simply be 
ignored. Moreover, because vendors can generate distinct 
keys and serial numbers when distributing their software, this 
feature can be used to create a distinct random subset of 
functions to be modeled. Also, according to various embodi­
ments, even community members who model the same func­
tion or functions may exchange models. 

10 effect of) the "concept drift" issue involves combining mul­
tiple models. For example, presuming that an older model has 
been computed from older data during some "training epoch," 
a new model may be computed concurrently with a new epoch 
in which the old model is used to detect anomalous behavior. According to various embodiments, when an application 

execution is being analyzed over many copies distributed 15 

among a number of application community members to pro­
file the entire code of an application, it can be determined 
whether there are any segments of code that are either rarely 
or never executed, and a map can be provided of the code 
layout identifying "suspect code segments" for deeper analy- 20 

sis and perhaps deeper monitoring. Those segments identified 
as rarely or never executed may harbor vulnerabilities not yet 
executed or exploited. Such segments of code may have been 
designed to execute only for very special purposes such as 
error handling, or perhaps even for triggering malicious code 25 

embedded in the application. Since they are rarely or never 
executed, one may presume that such code segments have had 
less regression testing, and may have a higher likelihood of 
harboring faulty code. 

Rarely or never executed code segments may be identified 30 

and may be monitored more thoroughly through, for 
example, emulation. This deep monitoring may have no dis­
cernible overhead since the code in question is rarely or never 
executed. But such monitoring performed in each community 
member may prevent future disasters by preventing such code 35 

(and its likely vulnerabilities) from being executed in a mali­
cious/faulty manner. IdentifYing such code may be performed 
by a sensor that monitors loaded modules into the running 
application (e.g., DLL loads) as well as addresses (PC values) 
during code execution and creates a "frequency" map of 40 

ranges of the application code. For example, a set of such 
distributed sensors may communicate with each other (or 
through some site that correlates their collective information) 
to create a central, global MAP of the application execution 
profile. This profile may then be used to identifY suspect code 45 

segments, and then subsequently, this information may be 
useful to assign different kinds of sensors/monitors to differ­
ent code segments. For example, an interrupt service routine 
(ISR) may be applied to these suspect sections of code. 

It is noted that a single application instance may have to be 50 

run many times (e. g., thousands of times) in order to compute 
an application profile or model. However, distributed sensors 
whose data is correlated among many (e.g., a thousand) appli­
cation community members can be used to compute a sub­
stantially accurate code profile in a relatively short amount of 55 

time. This time may be viewed as a "training period" to create 
the code map. 

According to various embodiments, models may be auto­
matically updated as time progresses. For example, although 
a single site may leam a particular model over some period of 60 

time, application behavior may change over time. In this case, 
the previously learned model may no longer accurately reflect 
the application characteristics, resulting in, for example, the 
generation of an excessive amount of false alarms (and thus 
an increase in the false positive rate over time). A possible 65 

solution to this "concept drift" issue entails at least two pos­
sible approaches, both intended to update models overtime. A 

Once a new model is computed, the old model may be retired 
or expunged, and replaced by the new model. Altematively, 
for example, multiple models such as described above may be 
combined. In this case, according to various embodiments, 
rather than expunging the old model, a newly created model 
can be algorithmically combined with the older model using 
any of a variety of suitable means. In the case of statistical 
models that are based upon frequency counts of individual 
data points, for example, an update may consist of an additive 
update of the frequency count table. For example, PAD may 
model data by computing the number of occurrences of a 
particular data item, "X." Two independently learned PAD 
models can thus have two different counts for the same value, 
and a new frequency table can be readily computed by sum­
ming the two counts, essentially merging two tables and 
updating common values with the sum of their respective 
counts. 

According to various embodiments, the concept of model 
updating that is readily achieved in the case of computed PAD 
models may be used in connection with model sharing. For 
example, rather than computing two models by the same 
device for a distinct application, two distinct models may be 
computed by two distinct instances of an application by two 
distinct devices, as described above. The sharing of models 
may thus be implemented by the model update process 
described herein. Hence, a device may continuously learn and 
update its models either by computing its own new model, or 
by downloading a model from another application commu­
nity member (e.g., using the same means involved in the 
combining of models). 

In the manners described above, an application community 
may be configured to continuously refresh and update all 
community members, thereby making mimicry attacks far 
more difficult to achieve. 

As mentioned above, it is possible to mitigate against faults 
or attacks by using patch generation systems. In accordance 
with various embodiments, when patches are generated, vali­
dated, and deployed, the patches and/or the set of all such 
patches may serve the following. 

First, according to various embodiments, each patch may 
be used as a "pattern" to be used in searching other code for 
other unknown vulnerabilities. An error (or design flaw) in 
programming that is made by a programmer and that creates 
a vulnerability may show up elsewhere in code. Therefore, 
once a vulnerability is detected, the system may use the 
detected vulnerability (and patch) to learn about other (e.g., 
similar) vulnerabilities, which may be patched in advance of 
those vulnerabilities being exploited. In this manner, over 
time, a system may automatically reduce (or eliminate) vul­
nerabilities. 

Second, according to various embodiments, previously 
generated patches may serve as exemplars for generating new 
patches. For example, over time, a taxonomy of patches may 
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be assembled that are related along various syntactic and 
semantic dimensions. In this case, the generation of new 
patches may be aided by prior examples of patch generation. 

Additionally, according to various embodiments, gener­
ated patches may themselves have direct economic value. For 
example, once generated, patches may be "sold" back to the 
vendors of the software that has been patched. 

As mentioned above, in order to alleviate monitoring costs, 
instead of running a particular application for days at a single 
site, many (e.g., thousands) replicated versions of the appli- 10 

cation may be run for a shorter period of time (e. g., an hour) 
to obtain the necessary models. In this case, only a portion of 
each replicated version of the application may be monitored, 
although the entire software body is monitored using the 
community of monitored software applications. Moreover, 15 

according to various embodiments, if a software module has 
been detected as faulty, and a patch has been generated to 
repair it, that portion of the software module, or the entire 
software module, may no longer need to be monitored. In this 
case, over time, patch generated systems may have fewer 20 

audit/monitoring points, and may thus improve in execution 
speed and performance. Therefore, according to various 
embodiments, software systems may be improved, where 
vulnerabilities are removed, and the need for monitoring is 
reduced (thereby reducing the costs and overheads involved 25 

with detecting faults). 
It is noted that, although described immediately above with 

regard to an application community, the notion of automati­
cally identifying faults of an application, improving the appli­
cation over time by repairing the faults, and eliminating moni- 30 

taring costs as repairs are deployed may also be applied to a 
single, standalone instance of an application (without requir­
ing placements as part of a set of monitored application 
instances). 

10 
is thus possibly malicious) and produces output that is stored 
in this memory location. If a control instruction (such as a 
JUMP or CALL) uses as an argument a value in a memory 
location in which the bit is set (i.e., the memory location is 
"tainted"), the program or the supervisory code that monitors 
program behavior can recognize an anomaly and raises an 
exception. 

Detecting corruption before it happens, rather than later 
(when the corrupted data is about to be used by a control 
instruction), makes it possible to stop an operation and to 
discard its results/output, without other collateral damage. 
Furthermore, in addition to simply retaining knowledge of 
what is control and what is non-control data, according to 
various embodiments, knowledge of which instructions in the 
monitored piece of code typically modifY specific memory 
locations can also be retained. Therefore, it is possible to 
detect attacks that compromise data that are used by the 
program computation itself, and not just for the program 
control flow management. 

According to various embodiments, the inputs to the 
instruction(s) that can fail (or that can be exploited in an 
attack) and the outputs (results) of such instructions can be 
correlated with the inputs to the program at large. Inputs to an 
instruction are registers or locations in memory that contain 
values that may have been derived (in full or partially) by the 
input to the program. By computing a probability distribution 
model on the program input, alternate inputs may be chosen 
to give to the instruction or the function ("input rewriting" or 
"input modification") when an imminent failure is detected, 
thereby allowing the program to "sidestep" the failure. How-
ever, because doing so may still cause the program to fail, 
according to various embodiments, micro-speculation (e.g., 
as implemented by STEM) can optionally be used to verifY 
the effect of taking this course of action. A recovery technique 
(with different input values or error virtualization, for 
example) can then be used. Alternatively, for example, the 
output of the instruction may be caused to be a value/result 

Selective transactional emulation (STEM) and error virtu- 35 

alization can be beneficial for reacting to detected failures/ 
attacks in software. According to various embodiments, 
STEM and error virtualization can be used to provide 
enhanced detection of some types of attacks, and enhanced 
reaction mechanisms to some types of attacks/failures. 

A learning technique can be applied over multiple execu­
tions of a piece of code (e.g., a function or collection of 
functions) that may previously have been associated with a 
failure, or that is being proactively monitored. By retaining 
knowledge on program behavior across multiple executions, 45 

certain invariants (or probable invariants) may be learned, 
whose violation in future executions indicates an attack or 
imminent software fault. 

40 that is typically seen when executing the program ("output 
overloading"). 

In both cases (input modification or output overloading), 
the values to use may be selected based on several different 
criteria, including but not limited to one or more of the fol­
lowing: the similarity of the program input that caused failure 
to other inputs that have not caused a failure; the most fre-
quently seen input or output value for that instruction, based 
on contextual information (e.g., when particular sequence of 
functions are in the program call stack); and most frequently 

50 seen input or output value for that instruction across all execu­
tions of the instruction (in all contexts seen). For example, if 
a particular DIVIDE instruction is detected in a function that 
uses a denominator value of zero, which would cause a pro­
cess exception, and subsequently program failure, the 

In the case of control hijacking attacks, certain control data 
that resides in memory is overwritten through some mecha­
nism by an attacker. That control data is then used by the 
program for an internal operation, allowing the attacker to 
subvert the program. Various forms ofbuffer overflow attacks 
(stack and heap smashing, jump into libc, etc.) operate in this 
fashion. Such attacks can be detected when the corrupted 
control data is about to be used by the program (i.e., after the 
attack has succeeded). In various embodiments, such control 
data (e.g., memory locations or registers that hold such data) 
that is about to be overwritten with "tainted" data, or data 
provided by the network (which is potentially malicious) can 60 

be detected. 
In accordance with various embodiments, how data modi­

fications propagate throughout program execution can be 
monitored by maintaining a memory bit for every byte or 
word in memory. This bit is set for a memory location when 
a machine instruction uses as input data that was provided as 
input to the program (e. g., was received over the network, and 

55 DIVIDE instruction can be executed with a different denomi-
nator (e.g., based on how similar the program input is to other 
program inputs seen in the past, and the denominator values 
that these executions used). Alternatively, the DIVIDE 
instruction may be treated as though it had given a particular 
division result. The program may then be allowed to continue 
executing, while its behavior is being monitored. Should a 
failure subsequently occur while still under monitoring, a 
different input or output value for the instruction can be used, 
for example, or a different repair technique can be used. 

65 According to various embodiments, if none of the above 
strategies is successful, the user or administrator may be 
notified, program execution may be terminated, a rollback to 
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a known good state (ignoring the current program execution) 
may take place, and/or some other corrective action may be 
taken. 

12 
Server 110 may include processor 220, display 222, input 

device 224, and memory 226, which may be interconnected. 
In some embodiments, memory 226 contains a storage device 
for storing data received through communication link 108 or 
through other links, and also receives commands and values 
transmitted by one or more users. The storage device can 
further contain a server program for controlling processor 
220. 

In accordance with some embodiments, a self-healing sys­
tem that allows an application to automatically recover from 
software failures and attacks is provided. By selectively emu­
lating at least a portion or all of the application's code when 
the system detects that a fault has occurred, the system sur-

According to various embodiments, the techniques used to 
learn typical data can be implemented as designer choice. For 
example, if it is assumed that the data modeled is 32-bit 
words, a probability distribution of this range of values can be 
estimated by sampling from multiple executions of the pro­
gram. Alternatively, various cluster-based analyses may par­
tition the space of typical data into clusters that represent 10 

groups of similar/related data by some criteria. Vector Quan­
tization techniques representing common and similar data 
based on some "similarity" measure or criteria may also be 
compiled and used to guide modeling. 15 rounds the detected fault to validate the operands to machine 

instructions, as appropriate for the type of fault. The system 
emulates that portion of the application's code with a fix and 
updates the application. This increases service availability in 
the presence of general software bugs, software failures, 

FIG. 1 is a schematic diagram of an illustrative system 100 
suitable for implementation of various embodiments. As 
illustrated in FIG. 1, system 100 may include one or more 
workstations 102. Workstations 102 can be local to each other 
or remote from each other, and can be connected by one or 
more communications links 104 to a communications net­
work 106 that is linked via a communications link 108 to a 
server 110. 

20 attacks. 
Turning to FIGS. 3 and 4, simplified flowcharts illustrating 

various steps performed in detecting faults in an application 
and fixing the application in accordance with some embodi­
ments are provided. These are generalized flow charts. It will 

25 be understood that the steps shown in FIGS. 3 and 4 may be 
perforn1ed in any suitable order, some may be deleted, and 
others added. 

In system 100, server 110 may be any suitable server for 
executing the application, such as a processor, a computer, a 
data processing device, or a combination of such devices. 
Communications network 106 may be any suitable computer 
network including the Internet, an intranet, a wide-area net­
work (WAN), a local-area network (LAN), a wireless net­
work, a digital subscriber line (DSL) network, a frame relay 30 

network, an asynchronous transfer mode (ATM) network, a 
virtual private network (VPN), or any combination of any of 
the same. Communications links 104 and 108 may be any 
communications links suitable for communicating data 
between workstations 102 and server 110, such as network 35 

links, dial-up links, wireless links, hard-wired links, etc. 
Workstations 102 may be personal computers, laptop com­
puters, mainframe computers, data displays, Internet brows­
ers, personal digital assistants (PDAs ), two-way pagers, wire­
less terminals, portable telephones, etc., or any combination 40 

of the same. Workstations 102 and server 110 may be located 
at any suitable location. In one embodiment, workstations 
102 and server 110 may be located within an organization. 
Alternatively, workstations 102 and server 110 may be dis­
tributed between multiple organizations. 

The server and one of the workstations, which are depicted 

Generally, process 300 begins by detecting various types of 
failures in one or more applications at 310. In some embodi­
ments, detecting for failures may include monitoring the one 
or more applications for failures, e.g., by using an anomaly 
detector as described herein. In some embodiments, the 
monitoring or detecting of failures may be performed using 
one or more sensors at 310. Failures include programming 
errors, exceptions, software faults (e.g., illegal memory 
accesses, division by zero, buffer overflow attacks, time-of-
check-to-time-of-use (TOCTTOU) violations, etc.), threats 
(e.g., computer viruses, worms, trojans, hackers, key recov­
ery attacks, malicious executables, probes, etc.), and any 
other suitable fault that may cause abnormal application ter­
mination or adversely affect the one or more applications. 

Any suitable sensors may be used to detect failures or 
monitor the one or more applications. For example, in some 
embodiments, anomaly detectors as described herein can be 

45 used. 

in FTG. 1, are illustrated in more detail in FTG. 2. Referring to 
FIG. 2, workstation 102 may include digital processing 
device (such as a processor) 202, display 204, input device 
206, and memory 208, which may be interconnected. In a 50 

preferred embodiment, memory 208 contains a storage 
device for storing a workstation program for controlling pro­
cessor 202. Memory 208 may also contain an application for 
detecting and repairing application from faults according to 
various embodiments. In some embodiments, the application 55 

may be resident in the memory of workstation 102 or server 
110. 

At 320, feedback from the sensors may be used to predict 
which parts of a given application's code may be vulnerable 
to a particular class of attack (e.g., remotely exploitable buffer 
overflows). In some embodiments, the sensors may also 
detect that a fault has occurred. Upon predicting that a fault 
may occur or detecting that a fault has occurred, the portion of 
the application's code having the faulty instruction or vulner­
able function can be isolated, thereby localizing predicted 
faults at 330. 

Alternatively, as shown and discussed in FIG. 4, the one or 
more sensor may monitor the application until it is caused to 
abnormally terminate. The system may detect that a fault has 
occurred, thereby causing the actual application to terminate. 
As shown in FIG. 4, at 410, the system forces a misbehaving 

Processor 202 may use the workstation program to present 
on display 204 the application and the data received through 
communication link 104 and commands and values transmit­
ted by a user of workstation 102. It should also be noted that 
data received through communication link 104 or any other 
communications links may be received from any suitable 
source, such as web services. Input device 206 may be a 
computer keyboard, a cursor-controller, a dial, a switchbank, 
lever, or any other suitable input device as would be used by 
a designer of input systems or process control systems. 

60 application to abort. In response to the application terminat­
ing, the system generates a core dump file or produces other 
failure-related information, at 420. The core dump file may 
include, for example, the type of failure and the stack trace 
when that failure occurred. Based at least in part on the core 

65 dump file, the system isolates the portion of the application's 
code that contains the faulty instruction at 430. Using the core 
dump file, the system may apply selective emulation to the 
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isolated portion or slice of the application. For example, the 
system may start with the top-most function in the stack trace. 

Referring back to FIG. 3, in some embodiments, the system 
may generate an instrumented version of the application 
(340). For example, an instrumented version of the applica­
tion may be a copy of a portion of the application's code or all 

14 
device processor registers. While registers are updated, 
memory updates are also applied through the execution of the 
emulation. The program, unaware of the instructions 
executed by the virtual processor, continues normal execution 
on the actual processor. 

of the application's code. The system may observe instru­
mented portions of the application. These portions of the 
application may be selected based on vulnerability to a par­
ticular class of attack. The instrumented application may be 10 

executed on the server that is currently running the one or 
more applications, a separate server, a workstation, or any 
other suitable device. 

In some embodiments, the instruction-level emulator may 
be linked with the application in advance. Alternatively, in 
response to a detected failure, the instruction-level emulator 
may be compiled in the code. In another suitable embodi­
ment, the instruction-level emulator may be invoked in a 
manner similar to a modem debugger when a particular pro-
gram instruction is executed. This can take advantage of 
breakpoint registers and/or other program debugging facili­
ties that the system processor and architecture possess, or it Isolating a portion of the application's code and using the 

emulator on the portion allows the system to reduce and/or 
minimize the performance impact on the immunized appli­
cation. However, while this embodiment isolates a portion or 
a slice of the application's code, the entire application may 
also be emulated. The emulator may be implemented com­
pletely in software, or may take advantage of hardware fea­
tures of the system processor or architecture, or other facili­
ties offered by the operating system to otherwise reduce and/ 
or minimize the performance impact of monitoring and 
emulation, and to improve accuracy and effectiveness in han­
dling failures. 

An attempt to exploit such a vulnerability exposes the 
attack or input vector and other related information (e.g., 
attacked buffer, vulnerable function, stack trace, etc.). The 
attack or input vector and other related information can then 
be used to construct an emulator-based vaccine or a fix that 
implements array bounds checking at the machine-instruc­
tion level at 350, or other fixes as appropriate for the detected 
type of failure. The vaccine can then be tested in the instru­
mented application using an instruction-level emulator (e.g., 
libtasvm x86 emulator, STEM x86 emulator, etc.) to deter­
mine whether the fault was fixed and whether any other func­
tionality (e.g., critical functionality) has been impacted by the 
fix. 

15 can be a pure-software approach. 
The use of an emulator allows the system to detect and/or 

monitor a wide array of software failures, such as illegal 
memory dereferences, buffer overflows, and buffer under­
flows, and more generic faults, such as divisions by zero. The 

20 emulator checks the operands of the instructions it is about to 
emulate using, at least partially, the vector and related infor­
mation provided by the one or more sensors that detected the 
fault. For example, in the case of a division by zero, the 
emulator checks the value of the operand to the div instruc-

25 tion. In another example, in the case of illegal memory deref­
erencing, the emulator verifies whether the source and desti­
nation address of any memory access (or the program counter 
for instruction fetches) points to a page that is mapped to the 
process address space using the min core() system call, or the 

30 appropriate facilities provided by the operating system. In yet 
another example, in the case of buffer overflow detection, the 
memory surrounding the vulnerable buffer, as identified by 
the one or more sensors, is padded by one byte. The emulator 
then watches for memory writes to these memory locations. 

35 This may require source code availability so as to insert 
particular variables (e.g., canary variables that launch them­
selves periodically and perform some typical user transaction 
to enable transaction-latency evaluation around the clock). 
The emulator can thus prevent the overflow before it over-By continuously testing various vaccines using the instruc­

tion-level emulator, the system can verify whether the spe­
cific fault has been repaired by running the instrumented 
application against the event sequence (e.g., input vectors) 
that caused the specific fault. For example, to verifY the effec­
tiveness of a fix, the application may be restarted in a test 
environment or a sandbox with the instrumentation enabled, 45 

and is supplied with the one or more input vectors that caused 
the failure. A sandbox generally creates an environment in 
which there are strict limitations on which system resources 
the instrumented application or a function of the application 
may request or access. 

40 writes the remaining locations in the memory stack and 
recovers the execution. Other approaches for detecting these 
failures may be incorporated in the system in a modular way, 
without impacting the high-level operation and characteris-
tics of the system. 

For example, the instruction-level emulator may be imple-
mented as a statically-linked C library that defines special 
tags (e.g., a combination of macros and function calls) that 
mark the beginning and the end of selective emulation. An 
example of the tags that are placed around a segment of the 

so application's code for emulation by the instruction-level 
emulator is shown in FIG. 5. As shown in FIG. 5, the C macro 
emulate_init( ) moves the program state (general, segment, 
eflags, and FPU registers) into an emulator-accessible global 
data structure to capture state immediately before the emula-

At 360, the instruction-level emulator can be selectively 
invoked for segments of the application's code, thereby 
allowing the system to mix emulated and non-emulated code 
within the same code execution. The emulator may be used to, 
for example, detect and/or monitor for a specific type of 
failure prior to executing the instruction, record memory 
modifications during the execution of the instruction (e.g., 
global variables, library-internal state, libc standard I/0 
structures, etc.) and the original values, revert the memory 
stack to its original state, and simulate an error return from a 
function of the application. That is, upon entering the vulner­
able section of the application's code, the instruction-level 
emulator can capture and store the program state and pro­
cesses all instructions, including function calls, inside the 
area designated for emulation. When the program counter 
references the first instruction outside the bounds of emula­
tion, the virtual processor copies its internal state back to the 

55 tor takes control. The data structure can be used to initialize 
the virtual registers. emulate_begin( ) obtains the memory 
location of the first instruction following the call to itself. The 
instruction address may be the same as the return address and 
can be found in the activation record of emulate_ begin(), four 

60 bytes above its base stack pointer. The fetch/decode/execute/ 
retire cycle of instructions can continue until either emula­
te_end() is reached or when the emulator detects that control 
is returning to the parent function. If the emulator does not 
encounter an error during its execution, the emulator's 

65 instruction pointer references the emulate_term( ) macro at 
completion. To enable the instrumented application to con­
tinue execution at this address, the return address of the emu-
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late_begin( ) activation record can be replaced with the cur­
rent value of the instruction pointer. By executing 
emulate_term(), the emulator's environment can be copied to 
the program registers and execution continues under normal 
conditions. 

16 

Although the emulator can be linked with the vulnerable 
application when the source code of the vulnerable applica­
tion is available, in some embodiments the processor's pro­
grammable breakpoint register can be used to invoke the 
emulator without the running process even being able to 
detect that it is now running under an emulator. 

In addition to monitoring for failures prior to executing 
instructions and reverting memory changes made by a par­
ticular function when a failure occurs (e.g., by having the 
emulator store memory modifications made during its execu­
tion), the emulator can also simulate an error return from the 
function. For example, some embodiments may generate a 
map between a set of errors that may occur during an appli­
cation's execution and a limited set of errors that are explicitly 
handled by the application's code (sometimes referred to 
herein as "error virtualization"). As described below, the error 
virtualization features may be based on heuristics. However, 
any suitable approach for determining the return values for a 
function may be used. For example, aggressive source code 
analysis techniques to determine the return values that are 
appropriate for a function may be used. In another example, 
portions of code of specific functions can be marked as fail­
safe and a specific value may be returned when an error return 

Based on the declared type of function, the system determines 
the appropriate error value and places it in the stack frame of 
the returning function. The appropriate error value may be 
determined based at least in part on heuristics. For example, if 
the return type is an int, a value of -1 is returned. If the return 
type is an unsigned int, the system returns a 0. If the function 
returns a pointer, the system determines whether the returned 
pointer is further dereferenced by the parent function. If the 
returned pointed is further dereferenced, the system expands 

10 the scope of the emulation to include the parent function. In 
another example, the return error code may be determined 
using information embedded in the source code of the appli­
cation, or through additional information provided to the 

15 
system by the application programmer, system administrator 
or third party. 

In some embodiments, the emulate_end( ) is located and 
the emulation terminates. Because the emulator saved the 
state of the application before starting and kept track of 

20 memory modification during the application's execution, the 
system is capable of reversing any memory changes made by 
the code function inside which the fault occurred by returning 
it to its original setting, thereby nullifYing the effect of the 
instructions processed through emulation. That is, the emu-

25 lated portion of the code is sliced off and the execution of the 
code along with its side effects in terms of changes to memory 
have been rolled back. 

is forced (e.g., for code that checks user permissions). In yet 
another example, the error value returned for a function that 30 

has failed can be determined using information provided by a 
programmer, system administrator, or any other suitable user. 

These error virtualization features allow an application to 
continue execution even though a boundary condition that 
was not originally predicted by a programmer allowed a fault 35 

to occur. In particular, error virtualization features allows for 
the application's code to be retrofitted with an exception 
catching mechanism, for faults that were unanticipated by the 
programmer. It should be noted that error virtualization is 
different from traditional exception handling as implemented 40 

by some programming languages, where the programmer 
must deliberately create exceptions in the program code and 
also add code to handle these exceptions. Under error virtu­
alization, failures and exceptions that were unanticipated by, 
for example, the programmer can be caught, and existing 45 

application code can be used to handle them. In some embodi­
ments, error virtualization can be implemented through the 
instruction-level emulator. Alternatively, error virtualization 
may be implemented through additional source code that is 
inserted in the application's source code directly. This inser- 50 

tion of such additional source code can be performed auto­
matically, following the detection of a failure or following the 
prediction of a failure as described above, or it may be done 
under the direction of a programmer, system operator, or 
other suitable user having access to the application's source 55 

code. 

For example, the emulator may not be able to perfonn 
system calls directly without kernel-level permissions. 
Therefore, when the emulator decodes an interruption with an 
intermediate value of Ox SO, the emulator releases control to 
the kernel. However, before the kernel executes the system 
call, the emulator can back-up the real registers and replace 
them with its own values. An INT Ox80 can be issued by the 
emulator and the kernel processes the system call. Once con­
trol returns to the emulator, the emulator can update its reg-
isters and restore the original values in the application's reg­
isters. 

If the instrumented application does not crash after the 
forced return, the system has successfully found a vaccine for 
the specific fault, which may be used on the actual application 
running on the server. At 370, the system can then update the 
application based at least in part on the emulation. 

In accordance with some embodiments, artificial diversity 
features may be provided to mitigate the security risks of 
software monoculture. 

FTG. 6 is a simplified flowchart illustrating the various 
steps performed in using an application community to moni­
tor an application for faults and repair the application in 
accordance with some embodiments. This is a generalized 
flow chart. It will be understood that the steps shown in FIG. 
6 may be performed in any suitable order, some may be 
deleted, and others added. 

Generally, the system may divide an application's code 
into portions of code at 610. Each portion or slice of the 
application's code may, for example, be assigned to one of the 
members of the application community (e.g., workstation, 
server, etc.). Each member of the application community may 
monitor the portion of the code for various types offailures at 

Using error virtualization, when an exception occurs dur­
ing the emulation or if the system detects that a fault has 
occurred, the system may return the program state to its 
original settings and force an error return from the currently 
executing function. To determine the appropriate error value, 
the system analyzes the declared type of function. In some 
embodiments, the system may analyze the declared type of 
function using, for example, a TXL script. Generally, TXL is 
a hybrid function and rule-based language that may be used 
for performing source-to-source transformation and for rap­
idly prototyping new languages and language processors. 

60 620. As described previously, failures include programming 
errors, exceptions, software faults (e.g., illegal memory 
accesses, division by zero, buffer overflow attacks, TOCT­
TOU violations, etc.), threats (e.g., computer viruses, worms, 
trojans, hackers, key recovery attacks, malicious executables, 

65 probes, etc.), and any other suitable fault that may cause 
abnormal application termination or adversely affect the one 
or more applications. 
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For example, the system may divide the portions of code 
based on the size of the application and the number of mem­
bers in the application community (i.e., size of the applica­
tion/members in the application community). Alternatively, 
the system may divide the portions of code based on the 
amount of available memory in each of the members of the 
application community. Any suitable approach for determin­
ing how to divide up the application's code may also be used. 
Some suitable approaches are described hereinafter. 

For example, the system may examine the total work in the 
application community, W, by examining the cost of execut­
ing discrete slices of the application's code. Assuming a set of 
functions, F, that comprise an application's callgraph, the i'h 
member ofF is denoted as f,. The cost of executing each f, is 

18 
domly selecting true or false. If true, the application commu­
nity member monitors the function of the application for a 
given time slice. Because heavily weighted functions have 
more entries in the list, a greater number of users may be 
assigned to cover the application. The member may stop 
when its total work reaches WIN. Such an approach offers 
statistical coverage of the application. 

In some embodiments, a distributed bidding approach may 
be used to distribute the workload of monitoring and repairing 

10 an application. Each node in the callgraph G has a weight 
v,*r,. Some subset of the nodes in F is assigned to each 
application community member such that each member does 
no more work than W /N work. The threshold can be relaxed 

a function of the amount of computation present in f, (i.e., x,) 15 

and the amount of risk in f, (i.e., v,). The calculation ofx, can 

to be within some range E ofW/N, where Eisa measure of 
system fairness. Upon calculating the globally fair amount of 
work WIN, each application community member may adjust 
its workload by bargaining with other members using a dis­
tributed bidding approach. 

be driven by at least two metrics: o,, the number of machine 
instructions executed as part off,, and t,, the amount of time 
spent executing f,. Both o, and t, may vary as a function of time 
or application workload according to the application's inter- 20 

nallogic. For example, an application may perform logging 
Two considerations impact the assignment of work units to 

application community members. First, the system can allo­
cate work units with higher weights, as these work units likely 
have a heavier weight due to a high v,. Even if the weight is 
derived solely from the performance cost, assigning more 
members to the work units with higher weights is beneficial 
because these members can round-robin the monitoring task 

or cleanup duties after the application passes a threshold 
number of requests. 

In some embodiments, a cost function may be provided in 
two phases. The first phase calculates the cost due to the 25 

amount of computation for each f,. The second phase normal­
izes this cost and applies the risk factor v, to determine the 
final cost of each f, and the total amount of work in the system. 
For example, let 

so that any one member does not have to assume the full cost. 
Second, in some situations, v, *r, may be greater than the 
average amount of work, WIN. Achieving fairness means that 

IfC(f,, x,)=x/T*l 00, each cost may be normalized by group­
ing a subset ofF to represent one unit of work. 

In some embodiments, the system may account for the 
measure of a function's vulnerability. For example, the sys­
tem treats v, as a discrete variable with a value of a, where a 
takes on a range of values according to the amount of risk such 
that: 

V; = { ~ (if f; is vulnerable) 

(if f; is not vulnerable) 

30 v, *r, defines the quantity of application community members 
that is assigned to it and the sum ofthese quantities defines the 
minimum number of members in the application community. 

In some embodiments, each application community mem-
35 ber calculates a table. An example of such a table is shown in 

FIG. 7. Upon generating the table, application community 
members may place bids to adjust each of their respective 
workloads. For example, the system may use tokens for bid­
ding. Tokens may map directly to the number of time quanta 

40 that an application community member is responsible for 
monitoring a work unit or a function of an application. The 
system ensures that each node does not accumulate more than 
the total number of tokens allowed by the choice of E. 

Given v ,for each function, the system may determine the total 45 

amount of work in the system and the total number of mem­
bers needed for monitoring: 

If an application community member monitors more than 
its share, then the system has increased coverage and can 
ensure that faults are detected as quickly as possible. As 
shown in 630 and 640, each application community member 
may predict that a fault may occur in the assigned portion of 
code or may detect that a fault has occurred causing the 

w = Nvuln = .L Vj * ri 
i=l 

50 application to abort, where the assigned portion of the code 
was the source of the fault. As faults are detected, applications 
members may each proactively monitor assigned portions of 
code containing the fault to prevent the application from 
further failures. As discussed previously, the application com-After the system (e.g., a controller) or after each applica­

tion community member has calculated the amount of work in 
the system, work units can be distributed. In one example, a 
central controller or one of the workstations may assign each 
node approximately W/N work units. In another suitable 
example, each member of the application community may 
determine its own work set. Each member may iterate through 60 

the list of work units flipping a coin that is weighted with the 
valuev, *r,. Therefore, if the result of the flip is "true," then the 
member adds that work unit to its work set. 

55 munity member may isolate the portion of the code that 
caused the fault and use the emulator to test vaccines or fixes. 
At 650, the application community member that detects or 
predicts the fault may notify the other application community 
members. Other application members that have succumbed to 
the fault may be restarted with the protection mechanisms or 
fixes generated by the application member that detected the 
fault. 

Assuming a uniform random distribution of new faults 
across the application community members, the probability 

65 of a fault happening at a member, k, is: P (fault)= liN. Thus, 
the probability ofk detecting a new fault is the probability that 
the fault happens at k and that k detects the fault: P (fault at 

Alternatively, the system may generate a list having n*W 
slots. Each function can be represented by a number of entries 
on the list (e.g., v,*r,). Every member of the application 
community can iterate through the list, for example, by ran-
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kAdetection)=1/N*k,, where k, is the percentage of coverage 
at k. The probability of the application connnunity detecting 
the fault is: 

N 1 
P(AC detect)=~ N *k; 

i=l 

20 
Although a single computer may be used, systems accord­

ing to one or more embodiments are optionally suitably 
equipped with a multitude or combination of processors or 
storage devices. For example, the computer may be replaced 
by, or combined with, any suitable processing system opera­
tive in accordance with the concepts of various embodiments, 
including sophisticated calculators, hand held, laptop/note­
book, mini, mainframe and super computers, as well as pro­
cessing system network combinations of the same. Further, 

As each k, goes to 100%, the above-equation becomes 

N 1 

10 portions of the system may be provided in any appropriate 
electronic format, including, for example, provided over a 
connnunication line as electronic signals, provided on CD 
and/or DVD, provided on optical disk memory, etc. 

Any presently available or future developed computer soft-~IV' 
i=l 

or N/N, a probability of 1 that the fault is detected when it first 
occurs. 

It will also be understood that various embodiments may be 
presented in terms of program procedures executed on a 
computer or network of computers. 

15 ware language and/or hardware components can be employed 
in such embodiments. For example, at least some of the 
functionality mentioned above could be implemented using 
Visual Basic, C, C++ or any assembly language appropriate in 
view of the processor being used. It could also be written in an 

20 object oriented and/or interpretive environment such as Java 
and transported to multiple destinations to various users. 

Other embodiments, extensions, and modifications of the 
ideas presented above are comprehended and within the reach 
of one skilled in the field upon reviewing the present disclo-

A procedure is here, and generally, conceived to be a self­
consistent sequence of steps leading to a desired result. These 
steps are those requiring physical manipulations of physical 
quantities. Usually, though not necessarily, these quantities 
take the form of electrical or magnetic signals capable of 
being stored, transferred, combined, compared and otherwise 
manipulated. It proves convenient at times, principally for 
reasons of connnon usage, to refer to these signals as bits, 
values, elements, symbols, characters, terms, numbers, or the 
like. However, all of these and similar terms are to be associ­
ated with the appropriate physical quantities and are merely 
convenient labels applied to these quantities. 

25 sure. Accordingly, the scope of the present invention in its 
various aspects is not to be limited by the examples and 
embodiments presented above. The individual aspects of the 
present invention, and the entirety of the invention are to be 
regarded so as to allow for modifications and future develop-

30 ments within the scope of the present disclosure. For 
example, the set of features, or a subset of the features, 
described above may be used in any suitable combination. 
The present invention is limited only by the claims that fol­
low. 

Further, the manipulations perforn1ed are often referred to 35 

in terms, such as adding or comparing, which are commonly 
associated with mental operations performed by a human 
operator. No such capability of a human operator is necessary, 
or desirable in many cases, in any of the operations described 
herein in connection with various embodiments; the opera- 40 

tions are machine operations. Useful machines for perform­
ing the operation of various embodiments include general 
purpose digital computers or similar devices. 

What is claimed is: 
1. A method for detecting anomalous program executions, 

comprising: 
executing at least a part of a program in an emulator; 
comparing a function call made in the emulator to a model 

of function calls for the at least a part of the program; 
identifYing the function call as anomalous based on the 

comparison; and 
upon identifYing the anomalous function call, notifying an 

application connnunity that includes a plurality of com­
puters of the anomalous function call. 

2. The method of claim 1, further comprising creating a 
combined model from at least two models created using dif­
ferent computers. 

3. The method of claim 1, further comprising creating a 
combined model from at least two models created at different 
times. 

4. The method of claim 1, further comprising modifying 
the function call so that the function call becomes non-

Some embodiments also provide apparatuses for perform­
ing these operations. These apparatuses may be specially 45 

constructed for the required purpose or it may comprise a 
general purpose computer as selectively activated or recon­
figured by a computer program stored in the computer. The 
procedures presented herein are not inherently related to a 
particular computer or other apparatus. Various general pur- 50 

pose machines may be used with programs written in accor­
dance with the teachings herein, or it may prove more conve­
nient to construct more specialized apparatus to perform the 
described method. The required structure for a variety of 
these machines will appear from the description given. 55 anomalous. 

Some embodiments may include a general purpose com­
puter, or a specially progrannned special purpose computer. 
The user may interact with the system via e.g., a personal 
computer or over PDA, e.g., the Internet an Intranet, etc. 
Either of these may be implemented as a distributed computer 60 

system rather than a single computer. Similarly, the connnu­
nications link may be a dedicated link, a modem over a POTS 
line, the Internet and/or any other method of connnunicating 
between computers and/or users. Moreover, the processing 
could be controlled by a software program on one or more 65 

computer systems or processors, or could even be partially or 
wholly implemented in hardware. 

5. The method of claim 1, further comprising generating a 
virtualized error in response to the function call being iden­
tified as being anomalous. 

6. The method of claim 1, wherein the comparing compares 
the function call name and arguments to the model. 

7. The method of claim 1, wherein the model reflects nor­
mal activity of the at least a part of the program. 

8. The method of claim 1, wherein the model reflects 
attacks against the at least a part of the program. 

9. The method of claim 1, further comprising randomly 
selecting the model as to be used in the comparison from a 
plurality of different models relating to the program. 
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10. The method of claim 1, further comprising randomly 
selecting a portion of the model to be used in the comparison. 

11. A non-transitory computer-readable medium contain­
ing computer-executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
detecting anomalous program executions, comprising: 

executing at least a part of a program in an emulator: 
comparing a function call made in the emulator to a model 

of function calls for the at least a part of the program; 
identifYing the ftmction call as anomalous based on the 10 

comparison; and . . . 
upon identifying the anomalous function call, notlfymg an 

application community that includes a plurality of com­
puters of the anomalous function call. 

12. The medium of claim 11, wherein the method further 15 

comprises creating a combined model from at least two mod-
els created using different computers. 

13. The medium of claim 11, wherein the method further 
comprises creating a combined model from at least two mod-
els created at different times. 

20 
14. The medium of claim 11, wherein the method further 

comprises modifYing the function call so that the function call 
becomes non-anomalous. 

15. The medium of claim 11, wherein the method further 
comprises generating a virtualized error in response to the 
function call being identified as being anomalous. 25 

16. The medium of claim 11, wherein the comparing com­
pares the function call name and arguments to the model. 

17. The medium of claim 11, wherein the model reflects 
nonnal activity of the at least a part of the program. 

18. The medium of claim 11, wherein the model reflects 30 

attacks against the at least a part of the program. 

22 
25. The method of claim 22, further comprising modifying 

the function call so that the function call becomes non-
anomalous. 

26. The method of claim 22, further comprising generating 
a virtualized error in response to the function call being iden­
tified as being anomalous. 

27. The method of claim 22, wherein the comparing com­
pares the function call name and arguments to the model. 

28. The method of claim 22, wherein the model reflects 
normal activity of the at least a part of the program. 

29. The method of claim 22, wherein the model reflects 
attacks against the at least a part of the program. 

30. The method of claim 22, further comprising randomly 
selecting the model as to be used in the comparison from a 
plurality of different models relating to the p~olifam. 

31. The method of claim 22, further compnsmg randomly 
selecting a portion of the model to be used in the.comparis~n. 

32. A non-transitory computer-readable medmm contam­
ing computer-executable instructions that when executed by 
a processor, cause the processor to perform a method for 
detecting anomalous program executions, comprising: 

modifying a program to include indicators of program­
level function calls being made during execution of the 
program; 

comparing at least one of the indicators ofprogram-le:'el 
function calls made in an emulator to a model offunct10n 
calls for at least a part of the program; and 

identifYing a function call corresponding to the at leas! one 
of the indicators as anomalous based on the companson. 

33. The medium of claim 32, wherein the method further 
comprises creating a combined model from at least two mod­
els created using different computers. 

34. The medium of claim 32, wherein the method further 
comprises creating a combined model from at least two mod­
els created at different times. 

19. The medium of claim 11, wherein the method further 
comprises randomly selecting the model as to be us.ed in the 
comparison from a plurality of different models relatmg to the 
program. 

20. The medium of claim 11, wherein the method further 
comprises randomly selecting a portion of the model to be 

35. The medium of claim 32, wherein the method further 
35 comprises modifying the function call so that the function call 

becomes non-anomalous. 

used in the comparison. . 
21. A system for detecting anomalous program executiOns, 

comprising: 
a digital processing device that: . 

executes at least a part of a program m an emulator; 
compares a function call made in the emulator to a model 

of function calls for the at least a part of the program; 
and 

40 

identifies the function call as anomalous based on the 45 

comparison; and 
upon identifying the anomalous ~unction call, noti~es an 

application community that mcludes a plurahty of 
computers of the anomalous function call. 

22. A method for detecting anomalous program execu- 50 

tions, comprising: 
modifying a program to include indicators of program­

level function calls being made during execution of the 
program; 

comparing at least one of the indicators of program-le:'el 55 
function calls made in an emulator to a model of function 
calls for at least a part of the program; and 

identifYing a function call corresponding to the at leas! one 
of the indicators as anomalous based on the companson. 

23. The method of claim 22, further comprising creating a 
60 combined model from at least two models created using dif-

ferent computers. . . . 
24. The method of claim 22, further compnsmg creatmg a 

combined model from at least two models created at different 
times. 

36. The medium of claim 32, wherein the method further 
comprises generating a virtualized error in response to the 
function call being identified as being anomalous. 

37. The medium of claim 32, wherein the comparing com­
pares the ftmction call name and arguments to the model. 

38. The medium of claim 32, wherein the model reflects 
normal activity of the at least a part of the program. 

39. The medium of claim 32, wherein the model reflects 
attacks against the at least a part of the program. 

40. The medium of claim 32, wherein the method further 
comprises randomly selecting the model as to be used in the 
comparison from a plurality of different models relatmg to the 
program. 

41. The medium of claim 32, wherein the method further 
comprises randomly selecting a portion of the model to be 
used in the comparison. 

42. A system for detecting anomalous program executions, 
comprising: 

a digital processing device that: 
modifies a program to include indicators of program­

level function calls being made during execution of 
the program; 

compares at least one of the indicators of program-level 
function calls made in an emulator to a model of 
±i.mction calls for at least a part ofthe program; and 

identifies a function call corresponding to the at least one 
of the indicators as anomalous based on the compari-
son. 

* * * * * 
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DETECfiNG THAT A FAULT HAS OCCURRED (E.G,, 410 
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OTHER INFORMATION IN RESPONSE TO DETECTING 
THAT THE FAULT HAS OCCURRED (E.G., TYPE OF 

FAILURE, STACK TRACE, ETC.) 

ISOLATING A PORTION OF THE APPLICATION'S CODE )
430 

BASED AT LEAST IN PART ON THE CORE DUMP AND 
THE OTHER GATHERED INFORMATION, WHERE 

THAT PORTION OF THE APPLICATION CODE WILL BE 
EXECUTED UNDER EMULATION TO DETECT AND 

RECOVER FROM FUTURE INSTANCES OF THE FAULT 
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METHODS, MEDIA, AND SYSTEMS FOR 
DETECTING ANOMALOUS PROGRAM 

EXECUTIONS 

CROSS REFERENCE TO RELATED 
APPLICATION 

This application is a continuation of U.S. patent applica­
tion Ser. No. 12/091,150, filed Jun. 15, 2009, which is the 
U.S. National Phase Application Under 35 U.S.C. §371 of 
International Application No. PCT/US2006/041591, filed 
Oct. 25, 2006, which claims the benefit under 35 U.S.C. 
§ 119( e) of U.S. Provisional Patent Application. No. 60/730, 
289, filed Oct. 25, 2005, which are hereby incorporated by 
reference herein in their entireties. 

TECHNOLOGY AREA 

The disclosed subject matter relates to methods, media, 
and systems for detecting anomalous program executions. 

BACKGROUND 

Applications may terminate due to any number of threats, 
program errors, software faults, attacks, or any other suitable 
software failure. Computer viruses, worms, trojans, hackers, 
key recovery attacks, malicious executables, probes, etc. are a 
constant menace to users of computers connected to public 
computer networks (such as the Internet) and/or private net­
works (such as corporate computer networks). In response to 
these threats, many computers are protected by antivirus soft­
ware and firewalls. However, these preventative measures are 
not always adequate. For example, many services must main­
tain a high availability when faced by remote attacks, high­
volume events (such as fast-spreading worms like Slammer 
and Blaster), or simple application-level denial of service 
(DoS) attacks. 

2 
cessing device that: executes at least a part of a program in an 
emulator; compares a function call made in the emulator to a 
model of function calls for the at least a part of the program; 
and identifies the function call as anomalous based on the 
comparison. 

In some embodiments, methods for detecting anomalous 
program executions are provided, comprising: modifying a 
program to include indicators of program-level function calls 
being made during execution of the program; comparing at 

10 least one of the indicators of program-level function calls 
made in the emulator to a model of function calls for the at 
least a part of the program; and identifYing a function call 
corresponding to the at least one of the indicators as anoma-

15 lous based on the comparison. 
In some embodiments, computer-readable media contain­

ing computer-executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
detecting anomalous program executions are provide, the 

20 method comprising: modifying a program to include indica­
tors of program-level function calls being made during execu­
tion of the program; comparing at least one of the indicators 
of program-level function calls made in the emulator to a 
model of function calls for the at least a part of the program; 

25 and identifying a function call corresponding to the at least 
one of the indicators as anomalous based on the comparison. 

In some embodiments, systems for detecting anomalous 
program executions are provided, comprising: a digital pro­
cessing device that: modifies a program to include indicators 

30 of program-level function calls being made during execution 
of the program; compares at least one of the indicators of 
program-level function calls made in the emulator to a model 
of function calls for the at least a part of the program; and 

35 
identifies a function call corresponding to the at least one of 
the indicators as anomalous based on the comparison. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The Detailed Description, including the description of 
various embodiments of the disclosed subject matter, will be 
best understood when read in reference to the accompanying 
figures wherein: 

Aside from these threats, applications generally contain 
errors during operation, which typically result from program­
mer error. Regardless of whether an application is attacked by 40 

one of the above-mentioned threats or contains errors during 
operation, these software faults and failures result in illegal 
memory access errors, division by zero errors, buffer over­
flows attacks, etc. These errors cause an application to termi­
nate its execution or "crash." 

FIG. 1 is a schematic diagram of an illustrative system 
45 suitable for implementation of an application that monitors 

other applications and protects these applications against 
faults in accordance with some embodiments; SUMMARY 

Methods, media, and systems for detecting anomalous pro­
gram executions are provided. In some embodiments, meth­
ods for detecting anomalous program executions are pro­
vided, comprising: executing at least a part of a program in an 
emulator; comparing a function call made in the emulator to 
a model of function calls for the at least a part of the program; 
and identifYing the function call as anomalous based on the 
comparison. 

In some embodiments, computer-readable media contain­
ing computer-executable instructions that, when executed by 

FIG. 2 is a detailed example of the server and one of the 
workstations of FIG. 1 that may be used in accordance with 

50 some embodiments; 
FIG. 3 shows a simplified diagram illustrating repairing 

faults in an application and updating the application in accor­
dance with some embodiments; 

FIG. 4 shows a simplified diagram illustrating detecting 
55 and repairing an application in response to a fault occurring in 

accordance with some embodiments; 

a processor, cause the processor to perform a method for 
detecting anomalous program executions are provide, the 60 

method comprising: executing at least a part of a program in 

FIG. 5 shows an illustrative example of emulated code 
integrated into the code of an existing application in accor­
dance with some embodiments; 

FIG. 6 shows a simplified diagram illustrating detecting 
and repairing an application using an application community 
in accordance with some embodiments of the disclosed sub­
ject matter; 

an emulator; comparing a function call made in the emulator 
to a model of function calls for the at least a part of the 
program; and identifying the function call as anomalous 
based on the comparison. 

In some embodiments, systems for detecting anomalous 
program executions are provided, comprising: a digital pro-

FIG. 7 shows an illustrative example of a table that may be 
65 calculated by a member of the application community for 

distributed bidding in accordance with some embodiments of 
the disclosed subject matter; and 
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FIG. 8 shows a simplified diagram illustrating shows iden­
tifYing a function call as being anomalous in accordance with 
some embodiments. 

DETAILED DESCRIPTION 

Methods, media, and systems for detecting anomalous pro­
gram executions are provided. In some embodiments, sys­
tems and methods are provided that model application level 
computations and running programs, and that detect anoma- 10 

lous executions by, for example, instrumenting, monitoring 
and analyzing application-level program function calls and/ 

4 
using patch generation systems, or content filtering signature 
generation systems). Moreover, given precise identification 
of a vulnerable location, the performance impact may be 
reduced by using STEM for parts or all of a program's execu­
tion. 

As explained above, anomaly detection can involve the use 
of detection models. These models can be used in connection 
with automatic and unsupervised learning. 

A probabilistic anomaly detection (PAD) algorithm can be 
used to train a model for detecting anomalies. This model may 
be, in essence, a density estimation, where the estimation of a 
density function p(x) over normal data allows the definition of 
anomalies as data elements that occur with low probability. 

or arguments. Such an approach can be used to detect anoma­
lous program executions that may be indicative of a malicious 
attack or program fault. 

The anomaly detection algorithm being used may be, for 
example, a probabilistic anomaly detection (PAD) algorithm 

15 The detection of low probability data (or events) are repre­
sented as consistency checks over the normal data, where a 
record is labeled anomalous if it fails any one of these tests. 

or a one class support vector machine (OCSVM), which are 
described below, or any other suitable algorithm. 

Anomaly detection may be applied to process execution 20 

anomaly detection, file system access anomaly detection, 
and/or network packet header anomaly detection. Moreover, 
as described herein, according to various embodiments, an 
anomaly detector may be applied to program execution state 
information. For example, as explained in greater detail 25 

below, an anomaly detector may model information on the 
program stack to detect anomalous program behavior. 

In various embodiments, using PAD to model program 
stack information, such stack information may be extracted 
using, for example, Selective Transactional EMulation 30 

(STEM), which is described below and which permits the 
selective execution of certain parts, or all, of a program inside 

First and second order consistency checks can be applied. 
First order consistency checks verifY that a value is consistent 
with observed values of that feature in the normal data set. 
These first order checks compute the likelihood of an obser­
vation of a given feature, P(Xi), where Xi are the feature 
variables. Second order consistency checks determine the 
conditional probability of a feature value given another fea­
ture value, denoted by P(XiiXj), where Xi and Xj are the 
feature variables. 

One way to compute these probabilities is to estimate a 
multinomial that computes the ratio of the counts of a given 
element to the total counts. However, this results in a biased 
estimator when there is a sparse data set. Another approach is 
to use an estimator to determine these probability distribu­
tions. For example, let N be the total number of observations, 
Ni be the number of observations of symbol i, a be the 
"pseudo count" that is added to the count of each observed 
symbol, k0 be the number of observed symbols, and L be the 
total number of possible symbols. Using these definitions, the 
probability for an observed element i can be given by: 

Ni +a 
P(X = i) = ---C 

k0 a+N 

(1) 

an instruction-level emulator, using the Val grind emulator, by 
modifYing a program's binary or source code to include indi­
cators of what functions calls are being made (and any other 35 

suitable related information), or using any other suitable tech­
nique. In this manner, it is possible to determine dynamically 
(and transparently to the monitored program) the necessary 
information such as stack frames, function-call arguments, 
etc. For example, one or more of the following may be 40 

extracted from the program stack specific information: func­
tion name, the argument buffer name it may reference, and 
other features associated with the data sent to or returned from 
the called function (e.g., the length in bytes of the data, or the 
memory location of the data). 45 

and the probability for an unobserved element i can be: 

For example, as illustrated in FIG. 8, an anomaly detector 
may be applied, for example, by extracting data pushed onto 
the stack (e.g., by using an emulator or by modifying a pro­
gram), and creating a data record provided to the anomaly 
detector for processing at 802. According to various embodi- 50 

ments, in a first phase, an anomaly detector models normal 
program execution stack behavior. In the detection mode, 
after a model has been computed, the anomaly detector can 
detect stacked function references as anomalous at 806 by 
comparing those references to the model based on the training 55 

data at 804. 
Once an anomaly is detected, according to various embodi­

ments, selective transactional emulation (STEM) and error 
virtualization may be used to reverse (undo) the effects of 
processing the malicious input (e.g., changes to program 60 

variables or the file system) in order to allow the program to 
recover execution in a graceful manner. In this manner, the 
precise location of the failed (or attacked) program at which 

1 
P(X=i)= L-k0 (1-C) 

(2) 

where C, the scaling factor, accounts for the likelihood of 
observing a previously observed element versus an unob­
served element. C can be computed as: 

(3) 

where 

m -PS-k -----k! f(ka) I 

k - ( - ) k = ko f(ka + N) 

an anomaly was found may be identified. Also, the applica­
tion of an anomaly detector to function calls can enable rapid 
detection of malicious program executions, such that it is 
possible to mitigate against such faults or attacks (e.g., by 

65 and P(s=k) is a prior probability associated with the size of the 
subset of elements in the alphabet that have non-zero prob­
ability. 
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Because this computation of C can be time consuming, C 
can also be calculated by: 

N 
C=--­

N +L-k0 

(4) 5 

6 
Fe~ture vect~rs need not be computed explicitly, and compu­
tatiOnal efficiency can be improved by directly computing 
kernel values K(x, y). Three common kernels can be used: 

Linear kernel: K(x,y)~(x-y) 

Polynomial kernel: K(x,y)~(x-y+1l,where dis the 
degree of the polynomial 

The consistency check can be normalized to account for the 
number of possible outcomes of L by log(P/(1/L))=log(P)+ 
log(L). 10 

Gaussian kernel: K{x,y)~e-llxyll21<2o'),where a" is the 
variance 

~ernels from bi.nary feature vectors can be obtained by map­
pmg a record mto a feature space such that there is one 
dimension for every unique entry for each record value. A 
particular record can have the value 1 in the dimensions which 
correspond to each of its specific record entries, and the value 
0 for every other dimension in feature space. Linear kernels, 

Another approach that may be used instead of using PAD 
for model generation and anomaly detection is a one class 
SVM (OCSVM) algorithm. The OCSVM algorithm can be 
used to map input data into a high dimensional feature space 
(via a kernel) and iteratively find the maximal margin hyper- 15 

plane which best separates the training data from the origin. 
The OCSVM may be viewed as a regular two-class SVM 
where all the training data lies in the first class, and the origin 

second order polynomial kernels, and gaussian kernels can be 
calculated using these feature vectors for each record. Ker­
nels can also be calculated from frequency-based feature 
vectors such that, for any given record, each feature corre­
sponds to the number of occurrences of the corresponding 

is taken as the only member of the second class. Thus, the 
hyperplane (or linear decision boundary) can correspond to 20 

the classification rule: 
record component in the training set. For example, if the 
second component of a record occurs three times in the train­
ing set, the second feature value for that record is three. These 

JCxHw,x)+b (5) 

where w is the normal vector and b is a bias term. The 
OCSVM can be used to solve an optimization problem to find 
the rule f with maximal geometric margin. This classification 
rule can be used to assign a label to a test example x. Iff(x)<O, 
x can be labeled as an anomaly, otherwise it can be labeled as 
no~al. In practice, there is a trade-off between maximizing 
the d1stance of the hyperplane from the origin and the number 
of training data points contained in the region separated from 
the origin by the hyperplane. 

Solving the OCSVM optimization problem can be equiva­
lent to solving the dual quadratic programming problem: 

subject to the constraints 

0 SO!i S ~ 
vl 

and 

~0:;=1 

(6) 

(7) 

(8) 

where a, is a lagrange multiplier (or "weight" on example i 
such that vectors associated with non-zero weights are called 
"support vectors" and solely determine the optimal hyper­
plane), v is a parameter that controls the trade-off between 
maximizing the distance of the hyperplane from the origin 
~nd the number of data points contained by the hyperplane, I 
1s the number of.points in t~e training dataset, and K(x,, x) is 
the kernel functiOn. By usmg the kernel function to project 
input vectors into a feature space, nonlinear decision bound­
aries can be allowed for. Given a feature map: 

(9) 

":here~ maps training vectors from input space X to a high­
dJmensJOnal feature space, the kernel function can be defined 
as: 

K(x,yH <j>(x),<j>(y)) (10) 

25 frequency-based feature vectors can be used to compute lin­
ear and polynomial kernels. 

According to various embodiments, "mimicry attacks" 
which might otherwise thwart OS system call level anomaly 
detectors by using normal appearing sequences of system 

30 calls can be detected. For example, mimicry attacks are less 
likely to be detected when the system calls are only modeled 
as tokens from an alphabet, without any information about 
arguments. Therefore, according to various embodiments, the 
models used are enriched with information about the argu-

35 ments (data) such that it may be easier to detect mimicry 
attacks. 

According to various embodiments, models are shared 
among many members of a community rumJing the same 
application (referred to as an "application community"). In 

40 particular, some embodiments can share models with each 
other and/or update each other's models such that the learning 
?f anomaly det~ction models is relatively quick. For example, 
!~stead of ~nmng a particular application for days at a single 
s1te, accor~m~ to various embodiments, thousands of repli-

45 cated apphcat10ns can be run for a short period of time (e.g., 
one hour), and the models created based on the distributed 
~ata can be shared. While only a portion of each application 
mstance may be monitored, for example, the entire software 
body can be monitored across the entire community. This can 

50 enable the rapid acquisition of statistics, and relatively fast 
learning of an application profile by sharing, for example, 
aggregate information (rather than the actual raw data used to 
construct the model). 

Model sharing can result in one standard model that an 
55 attacker could potentially access and use to craft a mimicry 

attack. Therefore, according to various embodiments, unique 
and diversified models can be created. For example, such 
uniqu~ and di_versified models can be created by randomly 
choosmg part1cular features from the application execution 

60 that is modeled, such that the various application instances 
compute distinct models. In this mam~er, attacks may need to 
avoid detection by multiple models, rather than just a single 
model. Creating unique and diversified models not only has 
the advantage of being more resistant to mimicry attacks, but 

65 also may be more efficient. For example, if only a portion of 
an application is modeled by each member of an application 
community, monitoring will generally be simpler (and 
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cheaper) for each member of the community. In the event that 
one or more members of an application community are 
attacked, according to various embodiments, the attack (or 
fault) will be detected, and patches or a signature can be 
provided to those community members who are blind to the 
crafted attack (or fault). 

Random (distinct) model building and random probing 
may be controlled by a software registration key provided by 

8 
the previously learned model may no longer accurately reflect 
the application characteristics, resulting in, for example, the 
generation of an excessive amount of false alarms (and thus 
an increase in the false positive rate over time). A possible 
solution to this "concept drift" issue entails at least two pos­
sible approaches, both intended to update models over time. A 
first approach to solving (or at least reducing the effects of) 
the "concept drift" issue involves the use of "incremental 
learning algorithms," which are algorithms that piecemeal 

1 o update their models with new data, and that may also "expire" 
parts of the computed model created by older data. This 
piecemeal incremental approach is intended to result in con­
tinuous updating using relatively small amounts of data seen 

a commercial off-the-shelf (COTS) software vendor or some 
other data providing "randomization." For example, for each 
member of an application community, some particular ran­
domly chosen function or functions and its associated data 
may be chosen for modeling, while others may simply be 
ignored. Moreover, because vendors can generate distinct 
keys and serial numbers when distributing their software, this 15 

feature can be used to create a distinct random subset of 
functions to be modeled. Also, according to various embodi­
ments, even community members who model the same func­
tion or functions may exchange models. 

by the learning system. 
A second approach to solving (or at least reducing the 

effect of) the "concept drift" issue involves combining mul­
tiple models. For example, presuming that an older model has 
been computed from older data during some "training epoch," 
a new model may be computed concurrently with a new epoch 

According to various embodiments, when an application 
execution is being analyzed over many copies distributed 
among a number of application community members to pro­
file the entire code of an application, it can be determined 
whether there are any segments of code that are either rarely 

20 in which the old model is used to detect anomalous behavior. 

or never executed, and a map can be provided of the code 25 

layout identifying "suspect code segments" for deeper analy-
sis and perhaps deeper monitoring. Those segments identified 

Once a new model is computed, the old model may be retired 
or expunged, and replaced by the new model. Alternatively, 
for example, multiple models such as described above may be 
combined. In this case, according to various embodiments, 
rather than expunging the old model, a newly created model 
can be algorithmically combined with the older model using 
any of a variety of suitable means. In the case of statistical 
models that are based upon frequency counts of individual 
data points, for example, an update may consist of an additive 
update of the frequency count table. For example, PAD may 
model data by computing the number of occurrences of a 
particular data item, "X." Two independently learned PAD 
models can thus have two different counts for the same value, 
and a new frequency table can be readily computed by sum-

as rarely or never executed may harbor vulnerabilities not yet 
executed or exploited. Such segments of code may have been 
designed to execute only for very special purposes such as 30 

error handling, or perhaps even for triggering malicious code 
embedded in the application. Since they are rarely or never 
executed, one may presume that such code segments have had 
less regression testing, and may have a higher likelihood of 
harboring faulty code. 

Rarely or never executed code segments may be identified 
and may be monitored more thoroughly through, for 
example, emulation. This deep monitoring may have no dis­
cernible overhead since the code in question is rarely or never 
executed. But such monitoring performed in each community 40 

member may prevent future disasters by preventing such code 
(and its likely vulnerabilities) from being executed in a mali­
cious/faulty manner. IdentifYing such code may be performed 

35 ming the two counts, essentially merging two tables and 
updating common values with the sum of their respective 

by a sensor that monitors loaded modules into the running 
application (e.g., DLL loads) as well as addresses (PC values) 45 

during code execution and creates a "frequency" map of 
ranges of the application code. For example, a set of such 
distributed sensors may communicate with each other (or 
through some site that correlates their collective information) 
to create a central, global MAP of the application execution 50 

profile. This profile may then be used to identifY suspect code 
segments, and then subsequently, this information may be 
useful to assign different kinds of sensors/monitors to differ­
ent code segments. For example, an interrupt service routine 
(ISR) may be applied to these suspect sections of code. 55 

It is noted that a single application instance may have to be 
run many times (e. g., thousands of times) in order to compute 
an application profile or model. However, distributed sensors 
whose data is correlated among many (e.g., a thousand) appli­
cation community members can be used to compute a sub- 60 

stantially accurate code profile in a relatively short amount of 
time. This time may be viewed as a "training period" to create 
the code map. 

According to various embodiments, models may be auto­
matically updated as time progresses. For example, although 65 

a single site may learn a particular model over some period of 
time, application behavior may change over time. In this case, 

counts. 
According to various embodiments, the concept of model 

updating that is readily achieved in the case of computed PAD 
models may be used in connection with model sharing. For 
example, rather than computing two models by the same 
device for a distinct application, two distinct models may be 
computed by two distinct instances of an application by two 
distinct devices, as described above. The sharing of models 
may thus be implemented by the model update process 
described herein. Hence, a device may continuously learn and 
update its models either by computing its own new model, or 
by downloading a model from another application commu­
nity member (e.g., using the same means involved in the 
combining of models). 

In the manners described above, an application community 
may be configured to continuously refresh and update all 
community members, thereby making mimicry attacks far 
more difficult to achieve. 

As mentioned above, it is possible to mitigate against faults 
or attacks by using patch generation systems. In accordance 
with various embodiments, when patches are generated, vali­
dated, and deployed, the patches and/or the set of all such 
patches may serve the following. 

First, according to various embodiments, each patch may 
be used as a "pattern" to be used in searching other code for 
other unknown vulnerabilities. An error (or design flaw) in 
programming that is made by a programmer and that creates 
a vulnerability may show up elsewhere in code. Therefore, 
once a vulnerability is detected, the system may use the 
detected vulnerability (and patch) to learn about other (e.g., 
similar) vulnerabilities, which may be patched in advance of 
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those vulnerabilities being exploited. In this manner, over 
time, a system may automatically reduce (or eliminate) vul­
nerabilities. 

Second, according to various embodiments, previously 
generated patches may serve as exemplars for generating new 
patches. For example, over time, a taxonomy of patches may 
be assembled that are related along various syntactic and 
semantic dimensions. In this case, the generation of new 
patches may be aided by prior examples of patch generation. 

Additionally, according to various embodiments, gener­
ated patches may themselves have direct economic value. For 
example, once generated, patches may be "sold" back to the 
vendors of the software that has been patched. 

As mentioned above, in order to alleviate monitoring costs, 
instead of running a particular application for days at a single 
site, many (e.g., thousands) replicated versions of the appli­
cation may be run for a shorter period of time (e. g., an hour) 
to obtain the necessary models. In this case, only a portion of 
each replicated version of the application may be monitored, 
although the entire software body is monitored using the 
community of monitored software applications. Moreover, 
according to various embodiments, if a software module has 
been detected as faulty, and a patch has been generated to 
repair it, that portion of the software module, or the entire 
software module, may no longer need to be monitored. In this 
case, over time, patch generated systems may have fewer 
audit/monitoring points, and may thus improve in execution 
speed and performance. Therefore, according to various 
embodiments, software systems may be improved, where 
vulnerabilities are removed, and the need for monitoring is 
reduced (thereby reducing the costs and overheads involved 
with detecting faults). 

It is noted that, although described immediately above with 
regard to an application community, the notion of automati­
cally identifying faults of an application, improving the appli­
cation over time by repairing the faults, and eliminating moni­
taring costs as repairs are deployed may also be applied to a 
single, standalone instance of an application (without requir­
ing placements as part of a set of monitored application 
instances). 

Selective transactional emulation (STEM) and error virtu­
alization can be beneficial for reacting to detected failures/ 
attacks in software. According to various embodiments, 
STEM and error virtualization can be used to provide 
enhanced detection of some types of attacks, and enhanced 
reaction mechanisms to some types of attacks/failures. 

A learning technique can be applied over multiple execu­
tions of a piece of code (e.g., a function or collection of 
functions) that may previously have been associated with a 
failure, or that is being proactively monitored. By retaining 
knowledge on program behavior across multiple executions, 
certain invariants (or probable invariants) may be learned, 
whose violation in future executions indicates an attack or 
imminent software fault. 

10 
In accordance with various embodiments, how data modi­

fications propagate throughout program execution can be 
monitored by maintaining a memory bit for every byte or 
word in memory. This bit is set for a memory location when 
a machine instruction uses as input data that was provided as 
input to the program (e.g., was received over the network, and 
is thus possibly malicious) and produces output that is stored 
in this memory location. If a control instruction (such as a 
JUMP or CALL) uses as an argument a value in a memory 

10 location in which the bit is set (i.e., the memory location is 
"tainted"), the program or the supervisory code that monitors 
program behavior can recognize an anomaly and raises an 
exception. 

Detecting corruption before it happens, rather than later 
15 (when the corrupted data is about to be used by a control 

instruction), makes it possible to stop an operation and to 
discard its results/output, without other collateral damage. 
Furthermore, in addition to simply retaining knowledge of 
what is control and what is non-control data, according to 

20 various embodiments, knowledge of which instructions in the 
monitored piece of code typically modifY specific memory 
locations can also be retained. Therefore, it is possible to 
detect attacks that compromise data that are used by the 
program computation itself, and not just for the program 

25 control flow management. 
According to various embodiments, the inputs to the 

instruction(s) that can fail (or that can be exploited in an 
attack) and the outputs (results) of such instructions can be 
correlated with the inputs to the program at large. Inputs to an 

30 instruction are registers or locations in memory that contain 
values that may have been derived (in full or partially) by the 
input to the program. By computing a probability distribution 
model on the program input, alternate inputs may be chosen 
to give to the instruction or the function ("input rewriting" or 

35 "input modification") when an imminent failure is detected, 
thereby allowing the program to "sidestep" the failure. How­
ever, because doing so may still cause the program to fail, 
according to various embodiments, micro-speculation (e.g., 
as implemented by STEM) can optionally be used to verifY 

40 the effect of taking this course of action. A recovery technique 
(with different input values or error virtualization, for 
example) can then be used. Alternatively, for example, the 
output of the instruction may be caused to be a value/result 
that is typically seen when executing the program ("output 

45 overloading"). 
In both cases (input modification or output overloading), 

the values to use may be selected based on several different 
criteria, including but not limited to one or more of the fol­
lowing: the similarity of the program input that caused failure 

50 to other inputs that have not caused a failure; the most fre­
quently seen input or output value for that instruction, based 
on contextual information (e.g., when particular sequence of 
functions are in the program call stack); and most frequently 
seen input or output value for that instruction across all execu-

55 tions of the instruction (in all contexts seen). For example, if 
a particular DIVIDE instruction is detected in a function that 
uses a denominator value of zero, which would cause a pro­
cess exception, and subsequently program failure, the 
DIVIDE instruction can be executed with a different denomi-

In the case of control hijacking attacks, certain control data 
that resides in memory is overwritten through some mecha­
nism by an attacker. That control data is then used by the 
program for an internal operation, allowing the attacker to 
subvert the program. Various forms ofbuffer overflow attacks 
(stack and heap smashing, jump into libc, etc.) operate in this 60 

fashion. Such attacks can be detected when the corrupted 
control data is about to be used by the program (i.e., after the 
attack has succeeded). In various embodiments, such control 
data (e.g., memory locations or registers that hold such data) 
that is about to be overwritten with "tainted" data, or data 65 

provided by the network (which is potentially malicious) can 

nator (e.g., based on how similar the program input is to other 
program inputs seen in the past, and the denominator values 
that these executions used). Alternatively, the DIVIDE 
instruction may be treated as though it had given a particular 
division result. The program may then be allowed to continue 
executing, while its behavior is being monitored. Should a 
failure subsequently occur while still under monitoring, a 

be detected. different input or output value for the instruction can be used, 
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for example, or a different repair technique can be used. 
According to various embodiments, if none of the above 
strategies is successful, the user or administrator may be 
notified, program execution may be terminated, a rollback to 
a known good state (ignoring the current program execution) 
may take place, and/or some other corrective action may be 
taken. 

12 
computer keyboard, a cursor-controller, a dial, a switchbank, 
lever, or any other suitable input device as would be used by 
a designer of input systems or process control systems. 

Server 110 may include processor 220, display 222, input 
device 224, and memory 226, which may be interconnected. 
In some embodiments, memory 226 contains a storage device 
for storing data received through communication link 108 or 
through other links, and also receives commands and values 
transmitted by one or more users. The storage device can 

10 further contain a server program for controlling processor 
220. 

According to various embodiments, the techniques used to 
learn typical data can be implemented as designer choice. For 
example, if it is assumed that the data modeled is 32-bit 
words, a probability distribution of this range of values can be 
estimated by sampling from multiple executions of the pro­
gram. Alternatively, various cluster-based analyses may par­
tition the space of typical data into clusters that represent 
groups of similar/related data by some criteria. Vector Quan- 15 

tization techniques representing common and similar data 
based on some "similarity" measure or criteria may also be 
compiled and used to guide modeling. 

FIG. 1 is a schematic diagram of an illustrative system 100 
suitable for implementation of various embodiments. As 20 

illustrated in FIG. 1, system 100 may include one or more 
workstations 102. Workstations 102 can be local to each other 

In accordance with some embodiments, a self-healing sys-
tem that allows an application to automatically recover from 
software failures and attacks is provided. By selectively emu­
lating at least a portion or all of the application's code when 
the system detects that a fault has occurred, the system sur-
rounds the detected fault to validate the operands to machine 
instructions, as appropriate for the type of fault. The system 
emulates that portion of the application's code with a fix and 
updates the application. This increases service availability in 
the presence of general software bugs, software failures, 
attacks. 

Turning to FIGS. 3 and 4, simplified flowcharts illustrating 
various steps performed in detecting faults in an application 

or remote from each other, and can be connected by one or 
more communications links 104 to a communications net­
work 106 that is linked via a communications link 108 to a 
server 110. 

25 and fixing the application in accordance with some embodi­
ments are provided. These are generalized flow charts. It will 
be understood that the steps shown in FIGS. 3 and 4 may be 
performed in any suitable order, some may be deleted, and 
others added. 

In system 100, server 110 may be any suitable server for 
executing the application, such as a processor, a computer, a 
data processing device, or a combination of such devices. 
Communications network 106 may be any suitable computer 30 

network including the Internet, an intranet, a wide-area net­
work (WAN), a local-area network (LAN), a wireless net­
work, a digital subscriber line (DSL) network, a frame relay 
network, an asynchronous transfer mode (ATM) network, a 
virtual private network (VPN), or any combination of any of 35 

the same. Communications links 104 and 108 may be any 
communications links suitable for communicating data 
between workstations 102 and server 110, such as network 
links, dial-up links, wireless links, hard-wired links, etc. 
Workstations 102 may be personal computers, laptop com- 40 

puters, mainframe computers, data displays, Internet brows­
ers, personal digital assistants (PDAs ), two-way pagers, wire­
less terminals, portable telephones, etc., or any combination 
of the same. Workstations 102 and server 110 may be located 
at any suitable location. In one embodiment, workstations 45 

102 and server 110 may be located within an organization. 
Alternatively, workstations 102 and server 110 may be dis­
tributed between multiple organizations. 

The server and one of the workstations, which are depicted 

Generally, process 300 begins by detecting various types of 
failures in one or more applications at 310. In some embodi­
ments, detecting for failures may include monitoring the one 
or more applications for failures, e.g., by using an anomaly 
detector as described herein. In some embodiments, the 
monitoring or detecting of failures may be performed using 
one or more sensors at 310. Failures include programming 
errors, exceptions, software faults (e.g., illegal memory 
accesses, division by zero, buffer overflow attacks, time-of­
check-to-time-of-use (TOCTTOU) violations, etc.), threats 
(e.g., computer viruses, worms, trojans, hackers, key recov­
ery attacks, malicious executables, probes, etc.), and any 
other suitable fault that may cause abnormal application ter­
mination or adversely affect the one or more applications. 

Any suitable sensors may be used to detect failures or 
monitor the one or more applications. For example, in some 
embodiments, anomaly detectors as described herein can be 
used. 

At 320, feedback from the sensors may be used to predict 
which parts of a given application's code may be vulnerable 
to a particular class of attack (e.g., remotely exploitable buffer 
overflows). In some embodiments, the sensors may also 
detect that a fault has occurred. Upon predicting that a fault 
may occur or detecting that a fault has occurred, the portion of 
the application's code having the faulty instruction or vulner­
able function can be isolated, thereby localizing predicted 
faults at 330. 

Alternatively, as shown and discussed in FIG. 4, the one or 
more sensor may monitor the application until it is caused to 
abnormally terminate. The system may detect that a fault has 

in FIG. 1, are illustrated in more detail in FIG. 2. Referring to 50 

FIG. 2, workstation 102 may include digital processing 
device (such as a processor) 202, display 204, input device 
206, and memory 208, which may be interconnected. In a 
preferred embodiment, memory 208 contains a storage 
device for storing a workstation program for controlling pro- 55 

cessor 202. Memory 208 may also contain an application for 
detecting and repairing application from faults according to 
various embodiments. In some embodiments, the application 
may be resident in the memory of workstation 102 or server 
110. 60 occurred, thereby causing the actual application to terminate. 

Processor 202 may use the workstation program to present 
on display 204 the application and the data received through 
communication link 104 and commands and values transmit­
ted by a user of workstation 102. It should also be noted that 
data received through communication link 104 or any other 
communications links may be received from any suitable 
source, such as web services. Input device 206 may be a 

As shown in FIG. 4, at 410, the system forces a misbehaving 
application to abort. In response to the application terminat­
ing, the system generates a core dump file or produces other 
failure-related information, at 420. The core dump file may 

65 include, for example, the type of failure and the stack trace 
when that failure occurred. Based at least in part on the core 
dump file, the system isolates the portion of the application's 
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code that contains the faulty instruction at 43 0. Using the core 
dump file, the system may apply selective emulation to the 
isolated portion or slice of the application. For example, the 
system may start with the top-most function in the stack trace. 

Referring back to FIG. 3, in some embodiments, the system 
may generate an instrumented version of the application 
(340). For example, an instrumented version of the applica­
tion may be a copy of a portion of the application's code or all 

14 
references the first instruction outside the bounds of emula­
tion, the virtual processor copies its internal state back to the 
device processor registers. While registers are updated, 
memory updates are also applied through the execution of the 
emulation. The program, unaware of the instructions 
executed by the virtual processor, continues normal execution 
on the actual processor. 

In some embodiments, the instruction-level emulator may 
be linked with the application in advance. Alternatively, in 
response to a detected failure, the instruction-level emulator 
may be compiled in the code. In another suitable embodi-
ment, the instruction-level emulator may be invoked in a 
manner similar to a modem debugger when a particular pro­
gram instruction is executed. This can take advantage of 

of the application's code. The system may observe instru­
mented portions of the application. These portions of the 10 

application may be selected based on vulnerability to a par­
ticular class of attack. The instrumented application may be 
executed on the server that is currently running the one or 
more applications, a separate server, a workstation, or any 
other suitable device. 15 breakpoint registers and/or other program debugging facili­

ties that the system processor and architecture possess, or it 
can be a pure-software approach. 

Isolating a portion of the application's code and using the 
emulator on the portion allows the system to reduce and/or 
minimize the performance impact on the immunized appli­
cation. However, while this embodiment isolates a portion or 
a slice of the application's code, the entire application may 
also be emulated. The emulator may be implemented com­
pletely in software, or may take advantage of hardware fea­
tures of the system processor or architecture, or other facili­
ties offered by the operating system to otherwise reduce and/ 
or minimize the performance impact of monitoring and 
emulation, and to improve accuracy and effectiveness in han­
dling failures. 

An attempt to exploit such a vulnerability exposes the 
attack or input vector and other related information (e.g., 
attacked buffer, vulnerable function, stack trace, etc.). The 
attack or input vector and other related information can then 
be used to construct an emulator-based vaccine or a fix that 
implements array bounds checking at the machine-instruc­
tion level at 350, or other fixes as appropriate for the detected 
type of failure. The vaccine can then be tested in the instru­
mented application using an instruction-level emulator (e.g., 
libtasvm x86 emulator, STEM x86 emulator, etc.) to deter­
mine whether the fault was fixed and whether any other func­
tionality (e.g., critical functionality) has been impacted by the 
fix. 

By continuously testing various vaccines using the instruc­
tion-level emulator, the system can verify whether the spe­
cific fault has been repaired by running the instrumented 
application against the event sequence (e.g., input vectors) 
that caused the specific fault. For example, to verifY the effec­
tiveness of a fix, the application may be restarted in a test 
environment or a sandbox with the instrumentation enabled, 
and is supplied with the one or more input vectors that caused 
the failure. A sandbox generally creates an environment in 
which there are strict limitations on which system resources 
the instrumented application or a function of the application 
may request or access. 

At 360, the instruction-level emulator can be selectively 
invoked for segments of the application's code, thereby 
allowing the system to mix emulated and non-emulated code 
within the same code execution. The emulator may be used to, 
for example, detect and/or monitor for a specific type of 
failure prior to executing the instruction, record memory 
modifications during the execution of the instruction (e.g., 
global variables, library-internal state, libc standard I/0 
structures, etc.) and the original values, revert the memory 
stack to its original state, and simulate an error return from a 
function of the application. That is, upon entering the vulner­
able section of the application's code, the instruction-level 
emulator can capture and store the program state and pro­
cesses all instructions, including function calls, inside the 
area designated for emulation. When the program counter 

The use of an emulator allows the system to detect and/or 
monitor a wide array of software failures, such as illegal 

20 memory dereferences, buffer overflows, and buffer under­
flows, and more generic faults, such as divisions by zero. The 
emulator checks the operands of the instructions it is about to 
emulate using, at least partially, the vector and related infor­
mation provided by the one or more sensors that detected the 

25 fault. For example, in the case of a division by zero, the 
emulator checks the value of the operand to the div instruc­
tion. In another example, in the case of illegal memory deref­
erencing, the emulator verifies whether the source and desti­
nation address of any memory access (or the program counter 

30 for instruction fetches) points to a page that is mapped to the 
process address space using the min core() system call, or the 
appropriate facilities provided by the operating system. In yet 
another example, in the case of buffer overflow detection, the 
memory surrounding the vulnerable buffer, as identified by 

35 the one or more sensors, is padded by one byte. The emulator 
then watches for memory writes to these memory locations. 
This may require source code availability so as to insert 
particular variables (e.g., canary variables that launch them­
selves periodically and perform some typical user transaction 

40 to enable transaction-latency evaluation around the clock). 
The emulator can thus prevent the overflow before it over­
writes the remaining locations in the memory stack and 
recovers the execution. Other approaches for detecting these 
failures may be incorporated in the system in a modular way, 

45 without impacting the high-level operation and characteris­
tics of the system. 

For example, the instruction-level emulator may be imple­
mented as a statically-linked C library that defines special 
tags (e.g., a combination of macros and function calls) that 

50 mark the beginning and the end of selective emulation. An 
example of the tags that are placed around a segment of the 
application's code for emulation by the instruction-level 
emulator is shown in FIG. 5. As shown in FIG. 5, the C macro 
emulate_init( ) moves the program state (general, segment, 

55 eflags, and FPU registers) into an emulator-accessible global 
data structure to capture state immediately before the emula­
tor takes control. The data structure can be used to initialize 
the virtual registers. emulate_begin( ) obtains the memory 
location of the first instruction following the call to itself. The 

60 instruction address may be the same as the return address and 
can be found in the activation record of emulate_ begin(), four 
bytes above its base stack pointer. The fetch/decode/execute/ 
retire cycle of instructions can continue until either emula­
te_end() is reached or when the emulator detects that control 

65 is returning to the parent function. If the emulator does not 
encounter an error during its execution, the emulator's 
instruction pointer references the emulate_term( ) macro at 
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completion. To enable the instrumented application to con­
tinue execution at this address, the return address of the emu­
late_begin( ) activation record can be replaced with the cur­
rent value of the instruction pointer. By executing 
emulate_term(), the emulator's environment can be copied to 
the program registers and execution continues under normal 
conditions. 

16 

Although the emulator can be linked with the vulnerable 
application when the source code of the vulnerable applica­
tion is available, in some embodiments the processor's pro­
grammable breakpoint register can be used to invoke the 
emulator without the running process even being able to 
detect that it is now running under an emulator. 

In addition to monitoring for failures prior to executing 
instructions and reverting memory changes made by a par­
ticular function when a failure occurs (e.g., by having the 
emulator store memory modifications made during its execu­
tion), the emulator can also simulate an error return from the 
function. For example, some embodiments may generate a 
map between a set of errors that may occur during an appli­
cation's execution and a limited set of errors that are explicitly 
handled by the application's code (sometimes referred to 
herein as "error virtualization"). As described below, the error 
virtualization features may be based on heuristics. However, 
any suitable approach for determining the return values for a 
function may be used. For example, aggressive source code 
analysis techniques to determine the return values that are 
appropriate for a function may be used. In another example, 
portions of code of specific functions can be marked as fail­
safe and a specific value may be returned when an error return 30 

is forced (e.g., for code that checks user permissions). In yet 
another example, the error value returned for a function that 
has failed can be determined using information provided by a 
programmer, system administrator, or any other suitable user. 

for performing source-to-source transformation and for rap­
idly prototyping new languages and language processors. 
Based on the declared type of function, the system determines 
the appropriate error value and places it in the stack frame of 
the returning function. The appropriate error value may be 
determined based at least in part on heuristics. For example, if 
the return type is an int, a value of -1 is returned. If the return 
type is an unsigned int, the system returns a 0. If the function 
returns a pointer, the system determines whether the returned 

10 pointer is further dereferenced by the parent function. If the 
returned pointed is further dereferenced, the system expands 
the scope of the emulation to include the parent function. In 
another example, the return error code may be determined 

15 
using information embedded in the source code of the appli­
cation, or through additional information provided to the 
system by the application programmer, system administrator 
or third party. 

In some embodiments, the emulate_end( ) is located and 
20 the emulation terminates. Because the emulator saved the 

state of the application before starting and kept track of 
memory modification during the application's execution, the 
system is capable of reversing any memory changes made by 
the code function inside which the fault occurred by returning 

25 it to its original setting, thereby nullifYing the effect of the 
instructions processed through emulation. That is, the emu­
lated portion of the code is sliced off and the execution of the 
code along with its side effects in terms of changes to memory 

These error virtualization features allow an application to 35 

continue execution even though a boundary condition that 
was not originally predicted by a programmer allowed a fault 
to occur. In particular, error virtualization features allows for 
the application's code to be retrofitted with an exception 
catching mechanism, for faults that were unanticipated by the 40 

programmer. It should be noted that error virtualization is 
different from traditional exception handling as implemented 
by some programming languages, where the programmer 
must deliberately create exceptions in the program code and 
also add code to handle these exceptions. Under error virtu- 45 

alization, failures and exceptions that were unanticipated by, 
for example, the programmer can be caught, and existing 
application code can be used to handle them. In some embodi­
ments, error virtualization can be implemented through the 
instruction-level emulator. Alternatively, error virtualization 50 

may be implemented through additional source code that is 
inserted in the application's source code directly. This inser­
tion of such additional source code can be performed auto­
matically, following the detection of a failure or following the 
prediction of a failure as described above, or it may be done 55 

under the direction of a programmer, system operator, or 
other suitable user having access to the application's source 
code. 

have been rolled back. 
For example, the emulator may not be able to perform 

system calls directly without kernel-level permissions. 
Therefore, when the emulator decodes an interruption with an 
intermediate value of Ox SO, the emulator releases control to 
the kernel. However, before the kernel executes the system 
call, the emulator can back-up the real registers and replace 
them with its own values. An TNT Ox80 can be issued by the 
emulator and the kernel processes the system call. Once con­
trol returns to the emulator, the emulator can update its reg-
isters and restore the original values in the application's reg­
isters. 

If the instrumented application does not crash after the 
forced return, the system has successfully found a vaccine for 
the specific fault, which may be used on the actual application 
running on the server. At 370, the system can then update the 
application based at least in part on the emulation. 

In accordance with some embodiments, artificial diversity 
features may be provided to mitigate the security risks of 
software monoculture. 

FIG. 6 is a simplified flowchart illustrating the various 
steps performed in using an application community to moni­
tor an application for faults and repair the application in 
accordance with some embodiments. This is a generalized 
flow chart. It will be understood that the steps shown in FIG. 
6 may be performed in any suitable order, some may be 
deleted, and others added. 

Generally, the system may divide an application's code 
into portions of code at 610. Each portion or slice of the 
application's code may, for example, be assigned to one of the Using error virtualization, when an exception occurs dur­

ing the emulation or if the system detects that a fault has 
occurred, the system may return the program state to its 
original settings and force an error return from the currently 
executing function. To determine the appropriate error value, 
the system analyzes the declared type of function. In some 
embodiments, the system may analyze the declared type of 
function using, for example, a TXL script. Generally, TXL is 
a hybrid function and rule-based language that may be used 

60 members of the application community (e.g., workstation, 
server, etc.). Each member of the application community may 
monitor the portion of the code for various types offailures at 
620. As described previously, failures include programming 
errors, exceptions, software faults (e.g., illegal memory 

65 accesses, division by zero, buffer overflow attacks, TOCT­
TOU violations, etc.), threats (e.g., computer viruses, worms, 
trojans, hackers, key recovery attacks, malicious executables, 
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probes, etc.), and any other suitable fault that may cause 
abnormal application termination or adversely affect the one 
or more applications. 

18 
Alternatively, the system may generate a list having n*W 

slots. Each function can be represented by a number of entries 
on the list (e.g., v, *r,). Every member of the application 
community can iterate through the list, for example, by ran­
domly selecting true or false. If true, the application commu­
nity member monitors the function of the application for a 
given time slice. Because heavily weighted functions have 
more entries in the list, a greater number of users may be 
assigned to cover the application. The member may stop 

For example, the system may divide the portions of code 
based on the size of the application and the number of mem­
bers in the application community (i.e., size of the applica­
tion/members in the application community). Alternatively, 
the system may divide the portions of code based on the 
amount of available memory in each of the members of the 
application community. Any suitable approach for determin­
ing how to divide up the application's code may also be used. 
Some suitable approaches are described hereinafter. 

10 when its total work reaches WIN. Such an approach offers 
statistical coverage of the application. 

In some embodiments, a distributed bidding approach may 
be used to distribute the workload of monitoring and repairing 
an application. Each node in the callgraph G has a weight For example, the system may examine the total work in the 

application community, W, by examining the cost of execut­
ing discrete slices ofthe application's code. Assuming a set of 
functions, F, that comprise an application's callgraph, the i'h 
member ofF is denoted as f,. The cost of executing each f, is 

15 v,*r,. Some subset of the nodes in F is assigned to each 
application community member such that each member does 
no more work than W/N work. The threshold can be relaxed 
to be within some range E ofW/N, where Eisa measure of 

a function of the amount of computation present in f, (i.e., x,) 
and the amount of risk in f, (i.e., v,). The calculation ofx, can 20 

be driven by at least two metrics: o,, the number of machine 
instructions executed as part off,, and t,, the amount of time 
spent executing f,. Both o, and t, may vary as a function of time 
or application workload according to the application's inter­
nal logic. For example, an application may perform logging 25 

or cleanup duties after the application passes a threshold 
number of requests. 

In some embodiments, a cost function may be provided in 
two phases. The first phase calculates the cost due to the 
amount of computation for each f,. The second phase normal- 30 

izes this cost and applies the risk factor v, to determine the 
final cost of each f, and the total amount of work in the system. 
For example, let 

system fairness. Upon calculating the globally fair amount of 
work WIN, each application community member may adjust 
its workload by bargaining with other members using a dis-
tributed bidding approach. 

Two considerations impact the assignment of work units to 
application community members. First, the system can allo­
cate work units with higher weights, as these work units likely 
have a heavier weight due to a high v,. Even if the weight is 
derived solely from the performance cost, assigning more 
members to the work units with higher weights is beneficial 
because these members can round-robin the monitoring task 
so that any one member does not have to assume the full cost. 
Second, in some situations, v, *r, may be greater than the 
average amount of work, WIN. Achieving fairness means that 
v, *r, defines the quantity of application community members 
that is assigned to it and the sum of these quantities defines the 

35 minimum number of members in the application community. 

IfC(f,, x,)=x/T*l 00, each cost may be normalized by group­
ing a subset ofF to represent one unit of work. 

In some embodiments, each application community mem­
ber calculates a table. An example of such a table is shown in 
FIG. 7. Upon generating the table, application community 
members may place bids to adjust each of their respective 

In some embodiments, the system may account for the 
measure of a function's vulnerability. For example, the sys­
tem treats v, as a discrete variable with a value of a, where a 
takes on a range of values according to the amount of risk such 
that: 

40 workloads. For example, the system may use tokens for bid­
ding. Tokens may map directly to the number of time quanta 
that an application community member is responsible for 
monitoring a work unit or a function of an application. The 
system ensures that each node does not accumulate more than 

V; = { 7 (if /; is vulnerable) 

(if /; is not vulnerable) 

45 the total number of tokens allowed by the choice of E. 

Given v, for each function, the system may determine the total 
amount of work in the system and the total number ofmem- 50 

bers needed for monitoring: 

If an application community member monitors more than 
its share, then the system has increased coverage and can 
ensure that faults are detected as quickly as possible. As 
shown in 630 and 640, each application community member 
may predict that a fault may occur in the assigned portion of 
code or may detect that a fault has occurred causing the 
application to abort, where the assigned portion of the code 
was the source of the fault. As faults are detected, applications 
members may each proactively monitor assigned portions of 

W = Nvuln = .L Vi *ri 
i=l 

55 code containing the fault to prevent the application from 
further failures. As discussed previously, the application com­
munity member may isolate the portion of the code that 
caused the fault and use the emulator to test vaccines or fixes. After the system (e.g., a controller) or after each applica­

tion community member has calculated the amount of work in 
the system, work units can be distributed. In one example, a 60 

central controller or one of the workstations may assign each 
node approximately W/N work units. In another suitable 
example, each member of the application community may 
determine its own work set. Each member may iterate through 
the list of work units flipping a coin that is weighted with the 65 

valuev, *r,. Therefore, if the result of the flip is "true," then the 
member adds that work unit to its work set. 

At 650, the application community member that detects or 
predicts the fault may notify the other application community 
members. Other application members that have succumbed to 
the fault may be restarted with the protection mechanisms or 
fixes generated by the application member that detected the 
fault. 

Assuming a uniform random distribution of new faults 
across the application community members, the probability 
of a fault happening at a member, k, is: P (fault)= liN. Thus, 
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the probability ofk detecting a new fault is the probability that 
the fault happens at k and that k detects the fault: P (fault at k 
A detection)=l/N*k,, where k, is the percentage of coverage 
at k. The probability of the application community detecting 
the fault is: 

20 
computer systems or processors, or could even be partially or 
wholly implemented in hardware. 

Although a single computer may be used, systems accord­
ing to one or more embodiments are optionally suitably 
equipped with a multitude or combination of processors or 
storage devices. For example, the computer may be replaced 
by, or combined with, any suitable processing system opera­
tive in accordance with the concepts of various embodiments, 
including sophisticated calculators, hand held, laptop/note-

N 1 
P(AC detect)=~ N *k; 

i=l 

As each k, goes to 100%, the above-equation becomes 

10 book, mini, mainframe and super computers, as well as pro­
cessing system network combinations of the same. Further, 
portions of the system may be provided in any appropriate 
electronic format, including, for example, provided over a 
communication line as electronic signals, provided on CD 

15 and/or DVD, provided on optical disk memory, etc. 

or N/N, a probability ofl that the fault is detected when it first 
20 

occurs. 
It will also be understood that various embodiments may be 

presented in terms of program procedures executed on a 
computer or network of computers. 

Any presently available or future developed computer soft­
ware language and/or hardware components can be employed 
in such embodiments. For example, at least some of the 
functionality mentioned above could be implemented using 
Visual Basic, C, C++ or any assembly language appropriate in 
view of the processor being used. It could also be written in an 
object oriented and/or interpretive environment such as Java 
and transported to multiple destinations to various users. 

Other embodiments, extensions, and modifications of the 
A procedure is here, and generally, conceived to be a self­

consistent sequence of steps leading to a desired result. These 
steps are those requiring physical manipulations of physical 
quantities. Usually, though not necessarily, these quantities 
take the form of electrical or magnetic signals capable of 
being stored, transferred, combined, compared and otherwise 
manipulated. It proves convenient at times, principally for 
reasons of common usage, to refer to these signals as bits, 
values, elements, symbols, characters, terms, numbers, or the 
like. However, all of these and similar terms are to be associ­
ated with the appropriate physical quantities and are merely 
convenient labels applied to these quantities. 

25 ideas presented above are comprehended and within the reach 
of one skilled in the field upon reviewing the present disclo­
sure. Accordingly, the scope of the present invention in its 
various aspects is not to be limited by the examples and 
embodiments presented above. The individual aspects of the 

30 present invention, and the entirety of the invention are to be 
regarded so as to allow for modifications and future develop­
ments within the scope of the present disclosure. For 
example, the set of features, or a subset of the features, 
described above may be used in any suitable combination. 

35 The present invention is limited only by the claims that fol­
low. 

Further, the manipulations performed are often referred to 
in terms, such as adding or comparing, which are commonly 
associated with mental operations performed by a human 
operator. No such capability of a human operator is necessary, 40 

or desirable in many cases, in any of the operations described 
herein in connection with various embodiments; the opera­
tions are machine operations. Useful machines for perform­
ing the operation of various embodiments include general 
purpose digital computers or similar devices. 45 

Some embodiments also provide apparatuses for perform­
ing these operations. These apparatuses may be specially 
constructed for the required purpose or it may comprise a 
general purpose computer as selectively activated or recon­
figured by a computer program stored in the computer. The 50 

procedures presented herein are not inherently related to a 
particular computer or other apparatus. Various general pur­
pose machines may be used with programs written in accor­
dance with the teachings herein, or it may prove more conve­
nient to construct more specialized apparatus to perform the 55 

described method. The required structure for a variety of 
these machines will appear from the description given. 

Some embodiments may include a general purpose com­
puter, or a specially programmed special purpose computer. 
The user may interact with the system via e.g., a personal 60 

computer or over PDA, e.g., the Internet an Intranet, etc. 
Either of these may be implemented as a distributed computer 
system rather than a single computer. Similarly, the commu­
nications link may be a dedicated link, a modem over a POTS 
line, the Internet and/or any other method of communicating 65 

between computers and/or users. Moreover, the processing 
could be controlled by a software program on one or more 

What is claimed is: 
1. A method for detecting anomalous program executions, 

comprising: 
executing at least a portion of a program in an emulator; 
comparing a function call made in the emulator to a model 

of function calls for the at least a portion of the program, 
wherein the model is a combined model created from at 
least two models created at different times; and 

identifYing the function call as anomalous based on the 
comparison. 

2. A method for detecting anomalous program executions, 
comprising: 

executing at least a portion of a program in an emulator; 
comparing a function call made in the emulator to a model 

of function calls for the at least a portion of the program, 
wherein the model is a combined model created from at 
least two models created using different computers; and 

identifYing the function call as anomalous based on the 
comparison. 

3. The method of claim 1, further comprising modifying 
the function call so that the function call becomes non­
anomalous. 

4. The method of claim 1, further comprising generating a 
virtualized error in response to the function call being iden­
tified as being anomalous. 

5. The method of claim 1, wherein the comparing compares 
the function call name and arguments to the model. 

6. The method of claim 1, wherein the model reflects nor­
mal activity of the at least a portion of the program. 

7. The method of claim 1, wherein the model reflects 
attacks against the at least a portion of the program. 
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8. The method of claim 1, further comprising randomly 
selecting at least a portion of the model to be used in the 
comparison from a plurality of different models relating to the 
program. 

9. The method of claim 1, further comprising notifying 
another computer of the anomalous function call upon the 
function call being identified as anomalous. 

10. A non-transitory computer-readable medium contain­
ing computer-executable instructions that, when executed by 
a processor, cause the processor to perform a method for 10 

detecting anomalous program executions, comprising: 
executing at least a portion of a program in an emulator; 
comparing a function call made in the emulator to a model 

of function calls for the at least a portion of the program, 
wherein the model is a combined model created from at 

15 

least two models created at different times; and 

22 
selecting at least a portion of the model to be used in the 
comparison from a plurality of different models relating to the 
program. 

18. The non-transitory computer-readable medium of 
claim 10, wherein the method further comprises notifying 
another computer of the anomalous function call upon the 
function call being identified as anomalous. 

19. A system for detecting anomalous program executions, 
comprising: 

a processor that: 
executes at least a portion of a program in an emulator; 
compares a function call made in the emulator to a model 

of function calls for the at least a portion of the pro­
gram, wherein the model is a combined model created 
from at least two models created at different times· 
and ' 

identifies the function call as anomalous based on the 
comparison. 

identifYing the function call as anomalous based on the 
comparison. 

11. A non-transitory computer-readable medium contain­
ing computer-executable instructions that, when executed by 
a processor, cause the processor to perform a method for 
detecting anomalous program executions, comprising: 

20. The system of claim 19, wherein the method further 
comprising modifying the function call so that the function 

20 call becomes non-anomalous. 

executing at least a portion of a program in an emulator; 
comparing a function call made in the emulator to a model 

of function calls for the at least a portion of the program, 
wherein the model is a combined model created from at 
least two models created using different computers; and 

identifYing the function call as anomalous based on the 
comparison. 

12. The non-transitory computer-readable medium of 
claim 10, wherein the method further comprises modifying 
the function call so that the function call becomes non­
anomalous. 

13. The non-transitory computer-readable medium of 
claim 10, wherein the method further comprises generating a 
virtualized error in response to the function call being iden­
tified as being anomalous. 

21. The system of claim 19, wherein the method further 
comprising generating a virtualized error in response to the 
function call being identified as being anomalous. 

22. The system of claim 19, wherein the comparing com-
25 pares the function call name and arguments to the model. 

23. The system of claim 19, wherein the model reflects 
normal activity of the at least a portion of the program. 

30 

24. The system of claim 19, wherein the model reflects 
attacks against the at least a portion of the program. 

25. The system of claim 19, wherein the method further 
comprises randomly selecting at least a portion of the model 
to be used in the comparison from a plurality of different 
models relating to the program. 

26. The system of claim 19, wherein the method further 
35 comprises notifying another computer of the anomalous 

function call upon the function call being identified as anoma­
lous. 

14. The non-transitory computer-readable medium of 
claim 10, wherein the comparing compares the function call 40 

name and arguments to the model. 

27. A system for detecting anomalous program executions, 
comprising: 

a processor that: 
executes at least a portion of a program in an emulator; 
compares a function call made in the emulator to a model 

of function calls for the at least a portion of the pro­
gram, wherein the model is a combined model created 
from at least two models created using different com­
puters; and 

15. The non-transitory computer-readable medium of 
claim 10, wherein the model reflects normal activity of the at 
least a portion of the program. 

16. The non-transitory computer-readable medium of 45 

claim 10, wherein the model reflects attacks against the at 
least a portion of the program. 

17. The non-transitory computer-readable medium of 
claim 10, wherein the method further comprises randomly 

identifies the function call as anomalous based on the 
comparison. 

* * * * * 
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