
1 SYMC 1007

TECHNOLOGY SERIES

NTRUSION
~

·. ETECTION·

""“‘-iii"

TECHNOiOGY SERIES 3;

INTRUSION

DETECTION ‘

Reborn! Curie}! Baa'

Columbia EX. 2007

Symantec V. Columbia

IPR2015-00375

[same as SYMC 1007 in

IPR2015-00372]

ZHON
Text Box
Columbia Ex. 2007
Symantec v. Columbia
IPR2015-00375
[same as SYMC 1007 in IPR2015-00372]

2 SYMC 1007SYMC 1007

Hm

L5mmH&
CET.

Hzgcaoz05.8107,2

3 SYMC 1007

What we're hearing from repiewers
about I ntrusiotJ Detection . ..
"People have been working on <:omputer intrusion detection systems for nearly 20 year:s. & a researcher,

I am bothered that other scientists aren't familiar with the good work dut has already been done, and as
a consumer I am disconcerted that I don't have better commercial products to defend my systems.

Becky Bau has been there, done that, read about it, thought about it a lot, and now written it all down.
Everyone who works in intrusion detection <:an gain something by reading this book. You can too."

E11gene H. SpRfforti, Professor Rnd Dinctor of the Purlifle University C.ElUAS

"This book serves as a fantastic reference: for the history of commercial and research intrusion detection

tools. Even for practitioners of intrusion detection, this book can be an eye-opener.

Becky's book grounds the intrusion detection discussion in a way that is readable, informative:,

and practical."

Gene Kim, ChiefTechnoloiJY Officer, Tripwire Sec11ri1y SysteMS, Inc.

"I cannot imagine a consulting expert in th.is field who will want robe without a copy ofBc:d:y's book.

Corporate: managers, ditt:<:tors, and legal counsel need to digest these: arguments as well."

Fred Chris Smith, Attor,ey, S4ntR Fe, New M~co

"There is plenty here to point the needful System Administrator in the direction of an intrusion detec­

tion system appropriate for his current envisioned needs. But this book does much more: It provides
solid perspective: in a field where empty claims often dominate, and it will provide insights needed to

cope with siruations where existing products fall short or f.Ul altogether to protect a system.

I am certain that this book will become an indnstry standard in intrusion detection as a discipline."

Marvin Schtufer, Chief Scientist, Vice-PresUient, Area Syste"'s

"This book bridges a critical gap in the reference: market. It encompasses both the principles of intrusion
detection and a wealth of specific examples, enabling the reader to furm a sound basis for understanding

and evaluating what is happening in the field.

This book demystifies intrusion detc:<:rion without oversimplifying the problem."

R.utiJ Nel.ron, President, Inform~~.tion. System Securi~

The Niju·bashi Bridge was built in 1888 as the main access to the: Imperial Palace in Tolcyo. The: famous
.. Double Bridge: (Niju bashi)" is a popular name: and should fOrmally be: called the: 04Stonc Bridge." The: real

Double Bridge is a steel bridge: that nands behind the Stone: Bridge: and wu built at the same time. These: bridgq

were: built to replace: the previous wooden bridge&, giving the: palace: nc:"N Western-style c:mbc:llisbmcnt.

,

I

4 SYMC 1007

_-- 4 L

INTRUSION
DETECTION

MA C MI U AIII
TtCMNICAl
.PU iliSMINCi

U•$•A

Rebecca Gurley Bace

5 SYMC 1007

·~ ~ -+Mt•• PWolt~..............,,,y,••~t_.r.~•--••••1-""""'..,"'''• ~ .. -.-...... .,._

!-

-1
~ . ' ..

•'

.: ..
< ••

• v. '·

I' .

,, , .. " "' J, .

Intrusion Detection
Rebecra Curley Bace

Published by:
Macmillan Technical Publishing
201 Wm. 103cd Street
Indianapolis, IN 46290 USA

Copyright C2000 by Macmillan Technlcal Publlihing

All rights reserved. No pan of this book may be reproduced or tranSmitted
in any form or by any mean.s, electronic or medw:ucal, including photo­
copying. recording, or by any information stor.Jge and retrieval system,
without written permission from the publisher, except for the inclusion of
brief quotations in a review.

International Standard Book Number: 1-57870-185-6

Library of Congress Catalog Uld Number: 99-63273

03 02 01 00 7 6 5 4 3 2

Interpreurion of the printing code: The rightmost double-digit number is
the year of the book's printing; the rightmost single-digit number is the
number of the book's printing. For example, the printing code 00-1 shows
thar the first printing of the book occurred in 2000.

Ccmposed in Gal/lard and MCPdigltal by Maani/lan Technical PublUhlng

Prlnud in the United StaUs of America

Trademark Acknowledgments
All terms mentioned in this book that ace known to be trademarlcs or
service 'marks have been appropriately capitali:z<:<l. Ma.cmillan Technical
Publishing cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
This book is designed to provide information about inrrusion detection.
Every effort has been made to make this book as complete and as accurate
as possible, but no wuranty or fitness is implied_

The information is provided on an as-is basis. The authors and Macmillan
Technical Publishing shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from th
infOrmation contained in this book or from the usc of the discs or

programs that may accompany it ..

Feedback Information
At Macmillan Technical Publishing, our goal is to create in-depth technical
books of the highest quality and value. Each book is crafted with care and
precision, undergoing rigorous development that involves the unique
expertise of members from the professional technical community.

Readen' feedback is a natural continuation of this process. If you have
any comments regarding how we could improve the quality of this book,
or otherwise alter it to better suit your needs, you can contact us at
networktech@mcp. com. Please make sure to include the book ride and
ISBN in your mes •.

We gready appreciate your assistance.

PuB USHER

David Dwyer

ExEcUTIVE EDITOR

Linda Ratts Engelman

MANAGING EDITOR

Gina Brown

PRODUCT MARKETING
MANAGER

Stephanie Layton

ACQUISITIONS EDITOR

Karen Wachs

DEVELOPMENT EDITOR

Katheri~ Pendergast

PROJECT EDITOR

·A/is:s:a Cayton

CoPY EDITOR

June Waldman

INDEXER

Larry Sweazy

ACQUISITIONS
COORDINATOR

Jennifer Garrett

MANuFACTURING
COORDINATOR

Chris Moos

BOOK DESIGNER

UJuisa Klucz1nlc

COVER DESIGNER

Aren Howell

COMPOSITORS

Scan Communications
Group, Inc.
Amy Parker

'

6 SYMC 1007

j.

About the Author
Rebecca Gurley Bace is the president of I~del, Inc., a consulting prac­
tice specializing in intrusion detection and -network security technology
and strategy.

Prior to founding Infidel. Ms. Bace spent 13 years in government. the first
12 as an employee of the National Security Agency (NSA}. She led the
Computer Misuse and Anomaly Detection (CMAD} Research program
from 1989 through ·1995, as a charter member of NSA's Office of
Information Security (Infosec) Research and Technology (R2).

As the leader of. CMAD research, Ms. Bace was responsible for champi­
oning much of the early research in intrusion detection, funding academic
research ~t Purdue University (COAST project): University of California,
Davis, {Security Lab); Untve~ity of New Mexico; and Tulane University.
She also served as the government's technical monitor for the Wisdom
and Sense and STAR anomaly detection research projects at Los Alamos
National Laboratory.

Ms. Bace's research collaborations with Dr. David !cove of the Federal
Bureau of Investigation led to the commercial publlcatlon of a manual for
computer crime investigation and a government study of convicted hack­
ers. She and the CMAD workshop series she founded and sponsored were
involved in the 1995 detection, traceback, and apprehension of Kevin
Mitnick, at the time the FBI's most wanted computer criminal. She
receives mention In Tsutomu Shimomura's book on the subject, Takedown

(Hyperion Press, 1995). Ms. Bace received the NSA's Distinguished
Leadership Award in 1995, in recognition of her work building the
national CMAD community.

Mer leaVing the NSA In 1996, Ms. Bace served as deputy security officer
for the Computing, Information, and Communications Division of the Los
Alamos National Laboratory. In this role, Ms. Bace was charged with deter­
mining protection strategies that allowed the Laboratory to balance neecls
for security with needs for availability and performance.

A native of Leeds, Alabama, Ms. Bace holds a bachelor of science degree
from the University of the State of New York and a master of engineering
science degree from Loyola College.

7 SYMC 1007

:~

I

-1
~

'

. '! .,

. ~

':
' l,

.., ..
·•·
, .
..
~ ..
! •.
. . i

1
1
.: .i

;·~·~r :~ ·~
. 1

.. r • •

• 'I, ... ~
'1 . . ~~ ,·-;; ··r

·~ ;)
'J T

f- '
'"(

About the Technical Reviewers
These reviewers contributed their considerable practical, hands-on exper­
tise to the entire development process for Intrusion Detection. As the book
was being written, these folks reviewed all the material for technical con­
tent, organization, and flow. Their feedback was critical to ensuring that
Intrusion Detection fits the reader's need for the highest quality technical
information.

David Neilan has been working in the computer/network industry for
more than eight years. the last five of which have been primarily devoted
to network and Internet security. From 1991 to 1995, he worked at
lntergraph, dealing with graphics systems and networking. David then
spent four years working with DEC firewalls and network security at
Digital Equipment. Since 1998, David has been working with Present
Online Business Systems, LAN/WAN, and Internet security where he Is

designing network infrastructures to support secure LAN/WAN connec­
tivity for various companies utilizing the Internet to create secure virtual
private networks.

Robin Roberts has been In the information security industry for more
than 10 years. Since 1997 she has been employed by BTG Inc., a technol­
ogy integrator and services provider. At BTG she serves as an information
security subject matter expert and manages an Information and network
security services group with particular focus on customers from the inte11i­
gence community. From 1986 to 1997, Robin worked for the Central
Intelligence Agency, managing the Information Security R&D Program
and providing subject matter expertise to a variety of agency projects.

Stephen E. Smaha was founder and CEO of Haystack Labs. Inc., which
designed, implemented, and fielded software-based intrusion and misuse
detection systems starting in 1989. Before launching their first commercial
product in 1993, Haystack Labs did research and development work on
intrusion detection systems for a variety of government agencies and their
contractors, including the FBI, National Security Agency, Department of
Energy, the U.S. Air Force, and some unmentionables. Haystack Labs,
Inc .. was acquired in October 1997 by Trusted Information Systems
(TIS) . At TIS, Smaha served as vice president for technology until}that
company's acquisition by Network Associates In April 1998. Since that

8 SYMC 1007

time, he has served on several computer cqmpany boards of directors and
technical advisory boards and is actively involved In mentorlng startup
companies. Prior to founding Haystack Labs, Smaha developed computer
security systems for military customers at Tracor Applied Sctences, man­
aged an artificial intelligence software group at Schlumberger, designed
office automation workstations at Syntrex Corp., and wrote biostatistics
software for Health Products Research. Smaha is a well-known speaker and
contributor to lnterop. COMDEX, Internet World, and a variety of security­
related forums. He has served on federal and state-level expert panels on
security and privacy. Smaha's undergraduate degree is from Princeton
University In math and philosophy. He has a master's degree from the
University of Pittsburgh in philosophy and a master's degree from Rutgers
University In computer science.

Fred Chris Smith p~ctices law in Santa Fe, New Mexico, where he has
lived since 1978. Since 1985 he has also consulted from time to time with
the Los Alamos National Laborntory about various digital evidence analysis
tools and other computer forensic technologies developed by the national
labs. He currently consults with the lab in an ongoing effort to make new
computer forensic tools and techniques available to public law enforce­
ment and to private computer security professionals. He served as the
director of special prosecutions and investigations for four consecutive
New Mexico attorneys g.eneral. Since 1989 he has worked with SEARCH
and recently helped to develop the advanced Internet investigation course
curriculum for state and local law enforcement officers, which he helps to
teach in Sacramento, California. He currently serves on the National
White Collar Crime Center Executive Director's Advisory Board in
Richmond, Virginia. Over the past 10 years, Fred has developed training
programs and spoken to numerous state and federal agencies about com­
puter crime and new developments in theories of legal liability resulting
from an increased use of networked software applications In commerce.
He works as a consultant for groups and companies from the private sector
on investigation and litigation strategies where electronic evidence is
involved. His most recent publication ts a manual for the National
Coalition for the Prevention of Economic Crime, Forming Partnerships for
the Prosecution of Computer Network Intrusions, which will be published
sometime after Y2K. Fred attended the University of Michigan as an
undergraduate and received his law degree from Stanford In 1972.

~ .
~ ·.

9 SYMC 1007

.,

I o_--· I

: ..
;,.

'·
I.

. ~-
.. .. ~ ,.,.

~ ..
:.f..~ I

,;; I
- ~:··~!
· .. (

.......... ,. ~ ., .

> ..
"c ·;

~ Intrusion Detection

Christopher Wee has been a researcher In ln~uslon detection and net­
work security since 1991. His research interests are in host-based audit
monitoring. the exploitation of vulnerabilities in network protocols, and
the specification of security policies. As a graduate student and postdoc­
toral researcher at University of California, Davis, he worked on the
DIDS, LAFS, GriDS, and IDIP intrusion detection systems. Cluis Is cur­
rently a senior Infosec analyst wtth Intel Online Services, Inc. He holds a
bachelor of science degree in electrical engineering and a master's degree
and doctorate in computer science from University of California, Davis.

10 SYMC 1007

,_..

ii ..

.l

Table of Contents ~

Dedication
To the "Graybeards" and "Nobeards" of computer security-may we
someday get It right.

In loving memory of Joey Bace,

(1985-1994)

who taught h1s mom what matters most.

Acknowledgments
During the writing of this book, as in the rest of my life, I've been
blessed with an abundance of extraordinary people who have spun 1}. web
of support around me.

I am deeply Indebted to Steve Smaha, who has been my intrusion detec­
tion muse for many years. He, Jessica, and Rebecca have been a source of
support and inspiration to me through the past decade. It was at Steve's
behest that I tackled writing this book, and he was the source of much
entertaining and informative discussion throughout the process.

Jennifer Garrett, Katie Pendergast, Alissa Cayton, and Linda Engelman
of Macmillan Te~hnical Publishing have been a joy to work with.
encouraging and guiding me through the totally alien landscape of
the publishing business.

My colleagues In network and information security make up a wise,
Intelligent. and Incredibly entertaining community. They have been
generous with Information and encouragement, responding to my
requests for opinions and explanations with unfailing good humor, funny
email, fresh gossip, and profound Insight. Sp~lal thanks go to]lm
Anderson, Dorothy Denning, Gene Spafford, Bob Abbott, Marv
Schaefer, Ruth Nelson, Marcus Ranum, Kevin Ziese. Adam Shostack,
Chris Wee, Fred Smith, Drew Gross, Carolyn Turbyfill, Robin Roberts,
Stephanie Fohn, Gene Kim, Ron Gula, and Dave lcove.

My former colleagues in the National Security Agency are brilliant and
dedicated professionals who perform a critical, though all too often thank­
less function in our society. I consider It an honor to have been part of
that organization, and I salute them for their support of the nation .

. ..
·~·

11 SYMC 1007

• ..
1'-·

• 1.

'
.)· . ·j ··.;,;.

~:: ~

I ·,.
I~ .
I --.ry ·"' , I.~

I • ..

~ Intrusion Detection

Finally, my famUy has been a source of lmmense joy and enlightenment to
me. Thls includes the family to which I was born as well as the family that
has gathered around me in the form of dose and steadfast friends. I'm
fortunate to have so many who have opened their hearts and lives to me.
I am especially indebted to Terri Gilbert and to Paul Bace for their love,
support, and patience as I wrote this book.

12 SYMC 1007

'
f

OVERVIEW

Introduction

The History of Intrusion Detection 7

2 Concepts and Defmitions 27

3 Information Sources 45

4 Analysis Schemes 79

5 Responses 121

6 Vulnerability Analysis: A Special Case 135

7 Technical Issues 155

8 Und.erstanding the Real-World Challenge 173

9 Legal Issues 195

10 For Users 217

11 For Strategists 235

12 For-Designers 255

13 Futuie Needs 275

Appendix A Glossary 289

AppendiX B Bibliography 297 .

Appendix C Resources· 315

Appendix D Checklist 321

Index 323

..

' ~-·

13 SYMC 1007

:::-:·

' '
'·.

-~; ... :l f

""'. •t

r-.. ·J
• v. ::; .
. -;:
',f 1

..
• • - 'l'

'<~ ,.._.t:
0 ·(:~.:~: ~,!
t ~

/ ! ':

I :·'.; !

. ~:~.!~.:

..
. <'[

.. -.·

i i1:··:-$
: 1...;..

~··~~

CONTENTS

Introduction

Defining Intrusion Detection

By Way of Introduction

I The History of Intrusion Detection

1.1 Audit: Setting the Stage for I ntrosion Detection
1.1.1 Differences between Financial and Security Audit
1.1.2 Audit as a Management Tool
1.1.3 EDP Audits and Early Computer Security
1.1. 4 Audit and Military Models of Computer Security

1.2 The Birth of Intrusion Detection
1.2.1 Anderson and the Audit Reduction Problem
1.2.2 Denning. Neumann, and IDES
1.2.3 A Flurry of Systems through the 1980s
1.2.4 Integrating Host and Network-Based

Intrusion Detection
1.2.5 The Advent of Commercial Products

1.3 Conclusion

Endnotes

2 Concepts and Dermitions

2.1 An Introduction to Intrusion Detection

2.2 Security Concepts
2.2.1 A Cultural View of Computer and Network Security
2.2.2 Practical Definition of Computer Securi'ty
2.2.3 Formal Definition of Computer Security
2.2.4 Trust
2.2.5 Threat
2.2.6 Vulnerability
2.2. 7 Security Policy
2.2.8 Other Elements of the System Security Infrastructure
2.2.9 How Security Problems Occur

2.3 Intrusion Detection Concepts
2.3.1 Architecture
2.3.2 Monitoring Strategy
2.3.3 Analysis Type
2.3.4 Timing
2.3.5 Goals of Detection
2.3.6 Control Issues

.~

I :
!

1

3

4

7

7
9
9

10
11

12
12
14
15

21
23

24
25

27
27
28
28
29
29
30
30
31
32
33
35

37
37
38
38
40
40
42

14 SYMC 1007

l

Table of Contents ~

2.3.7 Determining Strategies for Intrusion Detection 43
2.4 Conclusion 43

: :-

Endnotes 44
Information Sourca

,/ ~-3 45
3.1 The Organization of this Chapter 45 '

3.1.1 Which Source Is the Right Source? 46 >'
,. r 3.1.2 Enduring Questions 46

3.2 Host-Based Information Sources 47 ,,
::..;

3.2.1 Operating System Audit Trails 47
~j 3.2.2 Approaches to Structuring Audit Trails 48 ,

3.2.3 Problems with Commercial Audit Systems 48 }', I

3.2.4 Pros and Cons of Operating System Audit Trails 49 ~Jf
3.2.5 Content of Audit Trails 49 " . ·.
3.2.6 Audlt Reduction 57 ';._r

~;--.:

3.2.7 System -Logs 58 ~-

.:~
3.2.8 Applications Information 60 .-·
3.2.9 Target-Based Monitoring 65

'li

3.3
I

Network-Based Information Sources 67 ~

3.3.1 Why Network Sources? 67
~

3.3.2 Network Packets 67 ;~.
" 3.3.3 TCP / IP Networks 68 · -~

~ 3.3.4 Packet Capture 70
3.3.5 Network Devices 73

.
;j&

3.3.6 Out-of-Band Information Sources 73 ~-
3.4 Information from Other Security Products 74 ~·

3.4.1 An Example of a Security Product Data Source 74 ~
3.4.2 Organization of Information Prior to Analysis 75 7:i~ 3.4.3 Other System Components as Data Sources 76 ,.~

~- -
3. 5 Conclusion 76 ~ . .
Endnotes "'~ 77 ~~· rr-

4 Ana1yJis Schemes 79 :~

"it
4.1 Thinking About Intrusions 79 ~"::. ·,

~-~
4.1.1 Defining Analysis 79 ~ .. 1-

:¥.··
l".li!

4.1.2 Goals 80
.·.;

4.1.3 Supporting Goals 81
4.1.4 Detecting Intrusions 82

4.2 A Model for Intrusion Analysis 83
4.2.1 Constructing the Analyzer 84

L__

15 SYMC 1007

..
·I
~

t •

, .

,. · ..

.; ,:. l
; ~
'~ ..

~~~': 

.~(~~ 
~~"' ... 1 

~ . t 
I • 

:f I ., 
a .- ,.., 

~ Intrusion Detection 

4.2.2 Performing Analysis 88 
4.2.3 Feedback and Refinement 89 

4.3 Tedmlques 91 
4.3.1 Misuse Detection 91 
4.3.2 Anomaly Detection 100 
4.3.3 Alternative Detection Schemes 110 

4.4 Conclusion 117 

Endnotes 117 

5 Re.~ponsa 121 

5.1 Requirements for Responses 121 
5.1.1 Operational Environment 123 
5.1.2 System Purpose and Priorities 123 
5.1.3 Regulatory or Statutory Requirements 124 
5.1.4 Conveying Expertise to Users 124 

5.2 Types of Responses 125 
5.2.1 Active Responses 125 
5.2.2 Passive Responses 128 

5.3 Covering Tracks During Investigation 130 
5.3.1 Fail-Safe Considerations for Response Components 130 
5.3.2 Handling False Alarms 130 
5.3.3 Archive and Report 131 

5.4 Mapping Responses ttJ Policy 131 
5.4.1 Immediate 132 
5.4.2 Timely 132 
5.4 .3 Long-Term-Local 132 
5.4.4 Long-Term- Global 133 

5.5 Conduskm 133 

Endnotes 134 

6 Vulnerability Analysis: A Special Ca# 135 

6.1 Vulnerability Analysis 136 
6.1.1 Rationale for Vulnerability Analysis 136 
6.1.2 COPS-An Example of Vulnerability Analysis 136 
6.1.3 Issues and Considerations 140 

6.2 Credentialed Approaches 140 
6.2.1 Definition of Credentialed Approaches 141 
6.2.2 Determining Subjects for Credentialed Approaches 141 
6.2.3 Strategy and Optimization of Credentialed 

Approaches 142 



16 SYMC 1007

Table of Contents ~ 

6.3 Noncredentialed Approaches 144 
6.3.1 Definition of Noncredentialed Approaches 144 
6.3.2 Methods for NoncredentiaJed Vulnerability Analysis 144 
6.3.3 Testing by Exploit 144 
6.3.4 Inference Methods 145 
6.3.5 A Historical Note 145 
6.3.6 Architecture of SATAN 147 
6.3.7 Fail-Safe Features 149 
6.3.8 Issues Associated with SATAN 149 

6.4 Password-Cracking 150 
6.4.1 Concepts of Operation 150 
6.4.2 Password Crackers as Vulnerability Analysis Tools 151 

6.5 Strengths and Weaknesses of Vulnerability Analysis 151 
6.5.1 Strengths of Credentialed Analysis Techniques 151 
6.5.2 Strenghts of Noncredentialed Analysis Techniques 152 
6.5.3 Disadvantages 152 

6.6 Conclusion 153 
Endnotes 153 

7 Technical Issues 155 
7.1 Scalability 155 

7.1.1 Scaling over Time 155 
7.1.2 Scaling over Space 156 
7.1.3 Case Study-GriDS 157 

7.2 Management 157 
7.2.1 Network Management 158 
7.2.2 Sensor Control 159 
7.2.3 Investigative Support 159 
7.2.4 Performance Loads 160 

7.3 Reliability 160 
7.3.1 RelJabillty of Information Sources 161 
7.3.2 Reliability of Analysis Engines 162 
7.3.3 Reliabillty of Response Mechanisms 163 
7.3.4 Reliability of Communications Links 164 

7.4 Analpis Issues 165 
7.4.1 Training Sets for AI-Based Detectors 165 
7.4.2 False Positives/Negatives in Anomaly Detection 165 
7.4.3 Trends Analysis 166 
7.4.4 Composition of Policies 166 



17 SYMC 1007

:) 

' i 

. . 
' .. 

.. .. . 

• ! 

.... . . .. ., . 
. 

. l·'·t. ·; 
·~:'"! . . . ~ .~ .. 
r.· -~ 

• I 

-···. ... --: ~ 

~ Intrusion Detection 

7.5 Interoperabillty 
7.5.1 CIDF/CRISIS Effort 
7.5.2 Audit Trail Standards 

7.6 Integration 

7. 7 User Interfaces 

7.8 Conclusion 

Endnotes 

8 Undentandlng the Real-World Challenge 

8.1 The Roots of Security Problems 
8.1.1 Problems in Design and Development 
8.1.2 Problems in Management 
8.1.3 Problems in Trust 

8.2 Through a Hacker's Eyes 
8.2.1 Identifying a Victim 
8.2.2 Casing the Joint 
8.2.3 Gaining Access 
8.2.4 Executing the Attack 

8.3 Security Yersus Traditional Engineering 
8.3.1 Traditional Engineering 
8.3.2 Security Engineering 
8.3.3 Rules of Thumb 

8.4 Rules for Intrusion Detection Systems 

8.5 Conclusion 

Endnotes 

9 Legal Issues 

9.1 Law for GeeJcs 
9 .1.1 Legal Systems 
9 .1. 2 Legislation 
9.1.3 Civll Litigation/Tort Law 
9.1.4 Complications in Applying Law to Cyberspace 

9.2 Rules of Evidence 
9.2.1 Types of Evidence 
9.2.2 Admissibility of Evidence 
9.2.3 Restrictions and Exceptions 
9.2.4 Provisions for Handling Evidence 
9.2.5 Rules of Evidence as Applied to System Logs 

and Audit TraJJs 

9.3 La~ Relating to Monitoring Activity 
9.3.1 When a Svstem Administrator Monitors a System 

167 
169 
169 

171 

171 

172 

172 

173 

173 
174 
178 
181 

185 
185 
186 
186 
187 

191 
191 
191 
192 

192 

194 

194 

195 

196 
197 
198 
199 
201 

203 
203 
204 
205 
205 

~06 

207 
207 



18 SYMC 1007

v.· ... ~ 

Table of Contents ~ i :; 
),,( .. 
f ( 
.- -~ 

9.3.2 When Law Enforcement Agents Monitor a System 208 I ;· 
f'' 

9.3.3 Notification of Monitoring 208 
f ::. 

I, 

9.4 What Real Cases Have Taught Us 208 
9.4.1 The Mitnick Case 209 

\ 9.4.2 The Rome Lab Case 212 

l 9.4.3 Lessons Learned 214 

9.5 Conclusion 215 .. 
~ 

J 

Endnotes 
,. 216 

10 For Users 217 
10.1 Determining Your Requirements 217 

:v 
I 

f ;· 
10.1.1 Your System Environment 217 '. 

l' 

10.1.2 Goals and Objectives 218 ~ ·. 

10.1.3 Reviewing Your Policy 218 \ . 
~ .. 

10.1.4 Requirements and Constraints 219 i .. ~· 

I 10.2 Making Sense of Products 220 
_\ 

l~ .. ·.·· 
.1 10.2.1 Understanding the Problem Space 220 ! ·:. 

10.2.2 Is the Product Scalable? 221 li•' 

! 10.2.3 How Did You Test This? 221 
t ·. 

l 
p 

10.2.4 Is This Product a Tool or Is It an Application? 222 ~~-
10.2.5 Buzzwords versus Wisdom 223 \. 

Jt(. 
10.2.6 Anticipated Life of Product 224 :* 
10.2.7 Training Support 224 

r;. 

r '. 
10.2.8 Prioritized Goals of Product 224 ~. 10.2.9 Product Differentiation 225 . ' 

·~· - '</' 

10.3 Mapping Policy to Conflgurations 225 
!.';' 

~~::~ 
10.3.1 Converting Policy to Rules 225 

~i 10.3.2 Subject-Objects to Real World 226 
10.3.3 Monitoring Policy versus Security Polley 227 ~ !.\ 

10.3.4 Testing Assertions 227 if~ 
10.4 Show Time! Incident Handling and Investigation 227 ~ 

;~· 

10.4.1 Scout's Honor 228 V.f.' 
~·$. 

10.4.2 Best Practices 228 
., 
"'~.: 

10.4.3 When the Balloon Goes Up 229 
)'"\. 
(~ 

10.4.4 DeaUng with Law Enforcement 230 r~~:. 
10.4.5 Expectations 231 :~· .: 

rs; r 
10.4.6 Damage Control 231 ''ft '' 
10.4.7 Dealing with Witch Hunts 232 ?." 

i~' 10.5 Conclusion 232 ."Jil 
~ Endnotes 233 ~'t? . ·-~ 

! "· 



19 SYMC 1007

.1 
~ ,~ 

I , , 
! ·_s • 

.. . . 

" . 
"t. .. 
! 

'. . . 

~ .. 
~: .. 

#··:.' 
;f~1 I 

~ Intrusion Detection 

For Strategists 235 

11.1 Building a Case for Security 235 
11.1.1 Assembling Information 236 
11.1.2 What Is the Organization Trying to Accomplish? 236 
11.1.3 How Does Security Fit Into Overall Business Goals? 236 
11.1.4 Where Does Information Security Fit Into the 

Corporate Risk-Management Program? 237 
11.1.5 What Do We Need to Secure the System? 238 
11.1.6 Finding Allies 239 
11.1. 7 Overcoming Management Resistance 241 

11.2 Delming Requiremenu for IDS 242 
11.2.1 Revisiting Goals and Objectives 242 
11.2.2 What Are the Threats? 242 
11.2.3 What Are Our Limitations? 243 
11.2.4 Considerations in Adopting Intrusion Detection 

and System Monitoring 243 

11.3 Marketing Hype versus Real Solutions 244 
11.3.1 What Product Is Best Flttt)d to Us and Our Goals? 244 
11.3.2 How Painful Is This Product to Install? 245 
11.3.3 How Painful Is This Product to Run? 245 
11.,3.4 What Are the Expectations of the Personnel? 246 
11.3.5 Who Was the Dream Customer for 

Whom This Product Was Designed? 246 

11.4 Integrating Security Into a Legacy Environment 246 
11.4.1 Assessing the Existing Systems 247 
11.4.2 Leveraging Investments in Security 247 
11.4.3 Dealing with "Wetware" -the Humans 

in the System 248 
11.4.4 Handling Conflicts 249 

11.5 Dealing with the Effects of Corporate Transitions 250 
11.5.1 Mergers and Acquisitions 250 
11.5.2 Strategic Partners 250 
11.5.3 Globalization 251 
11.5.4 Expansion and Contraction 251 
11.5.5 Going from Private to Public 252 

11.6 Ccndusion 252 

Endnotes 253 



20 SYMC 1007

Table of Contents I xvii 
i i 
I' ,,,(. 
i ( 
f' l~ 

For Designers 255 k'· 
I r 

12.1 Requirements 256 
., 

12.1.1 Good versus Great Intrusion Detection 256 
~ J 

12.1.2 Different Approaches to Security 258 !. 
12.1.3 Policies-One Size Does Not Fit All 260 

) 

12.2 Security Design Principles - 262 
12.2.1 Economy of Mechanism 262 
12.2.2 Fall-Safe Defaults 263 
12.2.3 Complete Mediation 263 
12.2.4 Open Design 263 
12.2.5 Separation of Privilege 264 r ' 
12.2.6 Least Privilege 264 ~ .. .. : 

12.2.7 Least Common Mechanism 265 
1'. 

I 14.2.8 Psychological Acceptability 265 
I . .. 

I 12.3 Surviving-the Design Process 265 1.~ 

~ 12.3.1 EstabUshing Priorities 265 /~ 

.J 12.3.2 On Threat Curmudgeons 266 ::.~ 
12.3.3 Striking and Maintaining Balance 267 ; l~ 

12.4 Painting the Bull$ Eye 268 tr 
12.4.1 Gauging Success 268 t--
12.4.2 False Starts 269 ~)} 12.4.3 Testing Approaches 269 
12.4.4 Measuring Network-Based Performance 270 

; .. i 

hi 
12.5 Advice from the Trenches 271 ~~ 

12.5.1 Use Good Engineering Practices 271 tJ:, 
12.5.2 Secure Sensors 272 v.: .. 

~;"' 12.5.3 Pay Attention to Correct Reassembly 272 ~·'( 
12.5.4 Don't Underestimate Hardware Needs 272 ~ \ 12.5.5 Don't Expect Trusted Sources of Attack Data 272 ~ 
12.5.6 Think Through Countermeasures 273 ~1 :~1. 
12.5.7 No Support for Forensics 273 ~ ... , 
12.5.8 Support Modern Security Features 273 

. ·!" 

r:» 
12.6 Conclusion 273 t::~ 
Endnotes 274 

1: 
;~· 

Future Needs 275 
i·:/J. 
~~ 

13.1 Future Trends in Society 276 
(:. 
~~ 

13.1.1 Global Villages and Marketplaces 276 t~l 
13.1.2 Privacy as an Economic Driver 276 .. --:· 

t J ). .. 

13.1.3 A Different Kind of War 277 , .. ~ 
:~· 
i •J 



21 SYMC 1007

.j 
- ~ 

J 

• t .. 
' r ! ... 

.. 
: ' 
. ~ . 
". '! 
!~~.r. : ... . .1: .. 

,'fA a . 

... ... . 
. . : 

xviii I Intrusion Detection 

13.1. 4 Sovereignty 

13.2 Future Trends in Technology 
13.2.1 Changes in the Network Fabric 
13.2.2 Open Source Software 
13.2.3 Advances In Wireless Networking 
13.2.4 Ubiquitous Computing 

13.3 Future Trends in Security 
13.3.1 Management 
13.3.2 Privacy-Sparing Security 
13.3.3 Information Quallty versus Access Control 
13.3.4 Crypto, Crypto Everywhere ... 
13.3.5 The Erosion of Perimeters 
13.3.6 Liability Transfer versus Trust Management 

13.4 A Vision for Intrusion Detection 
13.4.1 Capabilities 
13.4.2 Highly Distributed Architectures 
13.4.3 911 for Security Management 
13.4.4 Ubiquitous Information Sources 
13.4.5 Silicon Guards 
13.4.6 Emphasis on Service. Not Product 

13.5 Conclusion 

Endnotes 

Appendix A Glossary 

Appendix B Bibliography 

Appendix C Resourw 
Boolq 

Intrusion Detection and Associated Technologies 
Security References and Textbooks 
Information Warfare, Critical Systems, and National Policy 
Introduction to Computer and Network Security 
Cryptography 
Firewalls 
War Stories 
Specific Application Venues 
Cybercrime and Law Enforcement 
For Fun 

277 
277 
277 
278 
278 
279 
279 
279 
281 
282 
282 
282 
283 
283 
283 
284 
285 
285 
285 
286 

286 

287 

289 

297 

315 

315 
315 
315 
316 
316 
316 
316 
317 
317 
317 
317 



22 SYMC 1007

WWW Resources 
Security Portals 
VulnerabilitY Information Sources 
Organizations 
Government Sites 
Academic Sites 
Commercial Products, Services, and-Research 
Miscellaneous Intrusion Detection References 

Appendix D Cbtdcllst 

Index 

·' 

Table of Contents ~ 

317 
318 
318 
318 
319 
319 
319 
320 

321 

323 

t 
r 
r: 
! 
! 



23 SYMC 1007

··-

'-

I N TR O D UCT I ON 

Computer and networking technologies dominate much of our lives today. Many of us rely 
on these technologies in our everyday llves: Our work, leisure, community, transportation, 
and communications are enabled by these systems. The widespread panic associated with 
Y2K problems and the subsequent threat to public infrastructures demonstrates how 
dependent we are on support structures ultimately controlled by computers. 

Even as we rely on these systems, we're painfully aware of the flaws and imperfections in 
them. System failures are blamed for catastrophes ranging from airliner crashes to medical 
equipment failures. Media coverage of hacker incidents and disastrous system failures cap­
ture our attention and elevate public concern about the dependence upon these all too 
fallible machines. However, this concern is tempered by the appeal of new technologies, 
which offer near-magical capabilities to us. Even commerce has been transformed by the 
vision of a society that purchases goods and services in a virtual marketplace, where store­
fronts are built of bytes and network packets, not brick and mortar. 

Over time, the wide-scale adoption of new consumer technologies follows a rather pre­
dictable pattern. First the technology is introduced. and early adopters of the technology 
utilize It, becoming the leading edge for the rest of the populace. Depending on the nature 
of the technology as well as the circumstances of the society. this phase Is followed by 
mainstream adoption of the technology. As access to the new technology increases, some 
users exploit its c_apabUlties to drive progress. Unfortunately. others utilize the technology 
to cause injury and to facilitate crlmlnal activity. Ultimately, In response to public concern, 
the legal and law enforcement communities institute statutory and enforcement measures 
to deal with these problems. 

Our experience with computers and networks have been no different. Initially, the lack of 
access to computers and the high cost of building and maintaining them limited the prob­
lems associated with security breaches. As the amount of critical information entrusted to 
the systems increased along with the remote access capabilities, the security problems 
became apparent. 

i . 
I 
i: 
! 
I 

I 

.~. 

!. 
t.: . ' ; ·: ... 

;· 



24 SYMC 1007

" J 

.. 
·! 
1 

;· · . .-·.;. 

~ Intrusion Detection 

The advent and rapid growth of the ARPANET. born of a partnership between govern­
ment and academia. served to accelerate this security exposure. ARPANET was designed 
to function in a small community in which members were trusted and information had lit­
tle perceived value. ·Handshake* agreements were the order of the day, the number of 
account holders was small, and many users of the network knew each other. 

From the figure below. which shows the growth of the Internet over the last few years, 
It is apparent that those days of the early Internet are long gone. Gone with them is the 
high-trust culture that defined the network community of that era. Many buslness organi­
zations use the Internet as a setting for their most critical business operations. Government 
organizations use the Internet as a means of providing public access to public records 
and information, with future plans to utllize the network as a staging ground for elections 
and referenda. 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
00 00 ~ ~ ~ ~ ~ ~ w w ~ ~ ~ 

Internet Domain Survey. January 1999. Number of Hosts Advertised in the DNS1 



25 SYMC 1007

. , 

_l_ __ . 

Introduction ~ 

In this network world, the needs for security and appropriate systems of control are appar­
ent. The marching orders for those who would secure computer systems and networks are 
ambitious indeed. The security achieved rpust be reasonable yet sufficient, balancing needs 
for accountability with equally Important needs for privacy. It must be flexible enough to 
accommodate a global range of statutes and regulations yet consistent enough to allow 
tracking of criminals across multiple jurisdictions. 

The blend of management and technical measures necessary to meet these security require­
ments Is rich and complex, a veritable smorgasbord of topics and issues for the interested 
researcher or developer. The area of security audit and Intrusion detection has become an 
important part of computer and network security. The functions provided by these tech­
nologies serve the goals of security both directly. by providing traceback and detection 
capabilities, and indirectly, by monitoring the health and trustworthiness of other security 
mechanisms in the system. 

Defining· Intrusion Detection 
Intrusion detection Is the process of monitoring the events occurring in a computer system 
or network, analyzing them for signs of security problems. You can probably think of analo­
gous monitoring systems in other areas, Including burglar aianns and video-monitoring 
systems found In convenience stores and banks. On a grander scale, civil defense and 
military early-warning systems fall into this functional category. Although the monitoring 
strategies and targets differ, the general idea remains the same-these systems all provide 
sentinel functions, alarming and alerting responsible parties when activities of interest occur. 

Intrusion detection Is a relatively young technology. as is noncryptologic computer security 
in general. The bulk of Intrusion detection research and development has occurred since 
1980. However, this research has produced a wide range of proposed solution strategies 
for accomplishing intrusion detection goals. 

The youth (and subsequent immaturity) of intrusion detection brings other complications 
to bear. A gulf still exists between theoretical and practical aspects of intrusion detection. 
This situation creates all sorts of temptations for those researching and developing products 

·~ .. 
,:"· 

.. 



26 SYMC 1007

. 
F 

··~· 

~ Intrusion Detection 

in the area. For example, there are temptations to define terms on the fly and to develop 
proprietary solutions that aren't interoperable with other parts of the system security or 
management infrastructure. Another strong temptation is to claim that a favorite solution or 
approach solves all problems regardless of the validity of the claim. 

These issues will eventually be resolved, driven by customer need and increased funding for 
research and development. The importance of intrusion detection in defensive information 
warfare is apparent, and the government has announced plans for additional expenditures 

in this area. 

By Way of Introduction 
I've spent the last 10 years immersed in the world of intrusion detection. In that time, I've 
seen a plethora of problem statements, proposed solution strategies, commercial products, 
and experts In the area come and go. I have directed government research for the area, 
attempting to marry research interests with operational needs. I've performed research 
of my own, exploring the techniques utilized by hackers to defeat security mechanisms. 
After years in the research community. I moved to a security management job and utilized 
some of the products in a challenging operational environment. And, coming full circle, 
I've devoted the last couple of years to working with security novices as they utilize 
existing commercial products and build new ones. Throughout this time, I've been 
delighted to see the successful transfer of many intrusion detection products to the 
commercial marketplace. 

That delight, however, has been tempered with frustration. I see a commercial product 
market that utilizes but a fraction of the insight the last 15 years of research have pro­
duced. I see practitioners and developers who prescribe and build systems without ever 
asking end users what they really need and how best to integrate intrusion detection 
capabilities with their existing systems and practices. I see research and development ini­
tiatives that demonstrate no apparent understanding of the problems users face or of the 
work that has been already done. Finally. I see continuing resistance to the free and open 
discussion of intrusions and vulnerabilities with those who desperately need that informa­
tion to protect their systems. 

Despite these problems, I still believe in the value and future of Intrusion detection as an 
integral part of computer security. Security. well done. can protect our privacy and the 
information that defines so much of who we are in this virtual universe. It also enables 



27 SYMC 1007

' J · 

l· 
I· • 
i' 
J, 
I 
l .. 
:· 

I 
.~ 

!4 

,-;-. . 

Introduction ~ 

the formation of new and transformative communities by the users of the Internet, allow­
ing us to collaborate in solving many of the pressing problems before us 
In the new millennium. 

It Is in this sprit that I wrote this book. It represents an opportunity to record the 
experiences of one blessed with the chance of a lifetime-to witness the growth of a 
technology from concept to commerdal product. I hope that the Information included 
enables you to include intrusion detection In your arsenal as you work toward achieving 
your system security goals. 

Endnote 
1. The survey data charted in the figure is provided by Network Wizard. The data is also 

available on the Internet at http: //WiN#. nw. com/. I •' 

'·· 
I''' ·'• 



28 SYMC 1007

i • J 
' t 
l 

·~ 

f 
! ,, 
i 
! 

CHAPTER 

The History of Intrusion Detection 
·Life was simple before World War II. After that, we had $]Stems. • 
- Admiral Grace Hopper 

When I explain intrusion detection to thos~ not familiar with network securtty, it's usuaUy 
easy to describe what intrusion detection systems do: "It's a burglar alarm for computers 
and networks," or "It looks for criminals breaking into a computer system and lets some­
one know about it. • Most people understand that when systems handle things that are · 
considered valuable, the systems themselves are natural targets of attack. 

Although the goals of intrusion detection systems may be intuitively obvious to both tech­
nical and nontechnical users, many people are not aware of the history of intrusion detec­
tion research and development. This lack of information results In repeating miStakes made 
In the past or needlessly settling for suboptimal approaches to critical functions. 

Intrusion detection has merged traditional electronic data processing (EDP) and security 
audit with optimized pattern-matching and statistical techniques. Intrusion detection has 
become an Integral part of modern network security technology. In this section, I describe 
the history of audit and intrusion detection from the perspective of the people who did the 
Initial research and development and their projects. 

1.1 Audit: Setting the Stage for Intrusion Detection 
Before intrusion detection, there was audit. ~s defined as the process of generating, 
recording, and reviewing a chronological record of system events. People audit systems to 
accomplish a variety of goals. These goals Include the foUowing: 

• To assign and maintain personal accountability for system activities 

• To reconstruct events 

..! To assess dama~e 

; ; 

.. ... 

. .: 



29 SYMC 1007

__!_j Intnision Detection 

• To monitor problem areas of the system 

• To allow efficient damage recovery 

To deter improper use of the system 

Figure 1.1 shows a simple diagram of an audit process. It .includes the audit trail generator, 
logger, analyzer, and a reporting mechanism. Note that this audit process can apply to 
both manual as well as computer processes. 

~ Basic Audit System 

--- ->- Aud~ events {discrete) 

--+- Aud~ trail (stream) 

....... ,... Archiwd audit trails 

~- Results of analysis 

..,. Configuration/Control 

A premise that underlies all audit processes is that a set of rules governs the audit. The 
exact form and substance of this rule set varies, depending on the context of the audit 
process. In financial audit, the rule set may comprise generally accepted accounting princi­
ples, procedures, and practices. In management audit, the rule set comprises management 
controls, procedures, and practices meant to assure certain goals for the business. These 
business goals include items such as judicious use of resources, maximization of profits, 
minimization of costs, compliance with applicable laws and regulations, and appropriate 
control of risk. 

In the special case of computer security audit, the rule set is usually articulated in a security 
policy. As you'll see in Chapter 3, "Information Sources," for intrusion detection to per­
form a complete and competent analysis of the audit data, additional rules that are not so 
clearly articulated in policy form are required. Note that the rules against which the system 
is checked affect the entire audit process. Consequently, we design the audit mechanism to 
collect the data elements necessary to detect noncompliance with the rules. In addition, 



30 SYMC 1007

CHAPTER 1 The History of Intrusion Detection L.!_~ ,\ .. r 

. . . .... 

the size and complexity of the rule set also drives decisions we make regarding th~ storage 

and analysis requirements of the audit analysis and archive systems. i·Ji:·.;.~ 

1.1.1 Differences between Financial and Security Audit :':~~f~~· 
Although the processes of traditional fmancial and management audit appear to be identi- ~.,.t'~·:~ 
cal to computer security audit at the highest levels of abstraction, slgnlftcant differences ·-?-~·"-· .. ~ 
exist between the problems addressed. Financial audit addresses tracking transactions from ~ _ :::._i! 
cradle to grave; in other words, financial audit involves tracing the trail of evidence that ::: { 

··~ • '·j' links a chain of transactions to the summary figures in a financial statement. Another f~'.:·.;. 
';\!-assumption for financial audit Is that it reviews a deterministic process; in other words, a 1,' . ~ 

process that allows transactions to be traced both forward and backward in the system ~if:'i;.:~ 
from any entry point within the chain of transactions that occurred within that system. '·t_ -i~ 

.·;(- ... 
The process Is also assumed to be chronologically ordered in some consistent fashion. ~~:~~t 

Where these properties may still apply to accounting systems, they do not apply to the 
processes of many modern computer systems! Furthermore, there Is no metric analogous 
to the summary balance in financial systems that can serve to confirm that the system is in 
a secure state at any given time. Finally, as the security audit is considered part of the pro­
tection envelope for the system it monitors, the security audit Is likely to be a target for 
attack. Therefore, additional requirements exist for the protection of the audit mechanism, 
the system on which it runs. and the audit trail generated by the mechanism. 

1.1.2 Audit as a Management Tool 
In early computing environments, computers were large, novel, and expensive to acquire, 
operate, and maintain. Therefore, access to computing time was precious. Audit mecha­
nisms in early operating systems were devoted to accounUng for every microsecond of 
computing time (and. of course, billing users for the use of this time!). 

As computers became more common and the number of business appUcaUons increased, 
someone noticed that the information collected in audit trails was useful for purposes 
other than billing. In particular, the information from audit trails could allow management 
to understand how the computer was being utilized. whether this use was appropriate to 
the organJzatlonal goals, and where resources might require modification. 

Close on the heels of this discovery came the realization that these audit trails also sup­
ported the investigation of problems involving misuse of the systems. This area was of 

Interest to organizations that used computers to conduct financial transactions. It was of 

.. 
'· :"' 
~ .. 

:··~ 
.... 



31 SYMC 1007

., . 

··;. 

t •. • 
'"'t·' 

·. 

., 

~ Intrusion Detection 

even more interest to organizations that used computers to handle sensitive information. 
Hence came the earliest requirements for manual audit trail review. These requirements 
gave rise to the two major camps In computer audit. EDP audit served the objectives of 
the business-computing community. Security audit initially focused on needs in the mili­
tary and government-computing world. 

1.1.3 EDP Audits and Early Computer Security 
Perhaps the first documented work defining a specialized EDP audit program was initi­
ated in the mid-1950s. One of the earliest major corporate users of computing technol­
ogy was the Bell Telephone System (which was the legally designated telephone 
monopoly for the United States at that time). A Bell Telephone Laboratory task force 
assembled in 1954 to analyze the future use of computers ln the telephone business. 
This task force established the need for EDP auditing, differentiated it from the primar­
lly paper-driven audit process~ that marked system audit up to that point, and, by 1959. 
had an audit staff that was integrally Involved in the design of the rtrst large-scale com­
puterized telephone-billing system. 

/ The objectives offDP aud!i)mirror those of the manual business audit process that came 
;? before it. These objectives were to curb losses associated with error and fraud. Bell 
~ . vb Telephone personnel noted, even ln the 1950s, that to perform meaningful audits, audl-
Dolc.\-1 tors had to be able to evaluate software for the set of controls implemented by the pro­

grammers. 

The concerns stated by the audit researchers were that auditors were attempting to audit 
"around the machine, " not "through the machine." Auditing around the machine meant 
that auditors limited their audit examinations to the input and output of computer sys­
tems. Auditing through the machine meant that auditors had to understand what the sys­
tem and its programs were doing and how they did it. Furthermore, the auditor needed to 
be able to use the computer itself to perform some of the audit checks, utUizing special­
ized audit programs to perform data sampling, seeding Input data with test cases, and fi,l­
tering transaction data for special cases. 1 

Many of the concerns articulated by EDP auditors are mirrored in the computer security 
world. Some computer security specialists have practiced within the EDP audit world for 
many years, with special interest communities that have functioned since the 1960s. An 
active software product market serves the specialized needs of EDP auditors, most of 
them facilitating searches and statistical checks of financial and other business process 
Information. 2 



32 SYMC 1007

' 1 

CHAPTER 1 The History of Intrusion Detection ~ 

1.1.4 Audit and Military Models of Computer Security 
The U.S. Department of Defense (DOD) backed an extensive research effort during the 
1970s, which explored securi J>Olicies, uidelines, and controls for operating "trustedsys­
terns, • culminating in th DOD Security Initiative of 1977. 

q~sted syste~were defined as "systems that employ sufficient hardware and software 
assurance measures to allow their use for simultaneous processing of a range of sensitive or 
classified information. "3 Thus, trusted systems were designed from the ground up In a way 
that allowed military and intelligence organizations to place information of different sensi­
tivity levels {typically corresponding to levels of classJfication) on the same computer sys­
tem. The Trusted Systems Initiative provided a venue in which the computer security 
experts of the era explored the features and protections that were necessary for trusted sys­
tems to function. (Trusted systems are discussed In more depth in Chapter 3.) 

During the initial explorations, researchers debated whether security audit mechanisms 
would contribute to the assurance level of a trusted system. Ultimately, the audit mecha­
nism was Indeed included as part of the Trusted Computer System Evaluation Criteria' 
("Orange Book") requirements for systems evaluated at trust levels C2 and above. The 
series of documents that outlined the DOD's Trusted Systems Initiative are often referred 
to as the "Rainbow series, M in a reference to the brightly colored covers of the documents. 

A document, which address the issue of audit In trusted systems, is included in the 
Rainbow series.' It is the "Tan Book," titled A Guide to Understanding Audit in Trusted 

Systems. ~A vdt'-1 (-res~ c :J) 

I 
The Tan Book outlines five security goals for audit mechanisms: 

• To allow the review of patterns of access (on a per-object and per-user bas~ and the 
use of protection mechanisms of the system 

• To allow the discovery of both insider and outsider attempts to bypass protection 
mechanisms 

• To allow the discovery of a transition of a user from a lesser to a greater privilege level; 
for example, when a user moves from clericaJ to system administrator roles 

• To serve as a deterrent to users' attempts to bypass system-protection mechanisms 

• To serve as yet another fonn of user assurance that attempts to bypass the protection will 
be recorded and discovered, with sufficient information recorded to allow damage control 

Although the Tan Book (as well as much of the Rainbow series) reflects a rather central­
ized mainframe view of computing, its principles of security audit still apply.5 

... 

,. .... 

!~~ 

,'.,~ 
;;.. 
111 
I : 
). ' 



33 SYMC 1007

I 

!' 

I· 

I. 

1: 

r 

~ Intrusion Detection 

1.2 The Birth of Intrusion Detection 
As the speed, size, and number of computers increased over the 1970s, the need for com­
puter security became increasingly apparent. The government. realizing that the tradi­
tional audit community had experience In dealing with tracking activities that took place 
on computers, made a decision to enlist its assistance. In 1977 and_1978, the National 
Bureau of Standards convened meetings of representatives of government and commercial 
EDP auditing organizations, which produced reports on the state of security, audit, and 
control at that time. 

At the same time, the DOD, increasingly concerned about security issues associated 
with the proliferation of computer usage In military systems, increased its scrutiny of 
computer audit as a security mechanism. This task fell into the able hands of 
James P. Anderson. 

1.2.1 Anderson and the A udit Reduction Problem 
James P. Anderson Is acknowledged as the first person to document the need for auto­
mated audit trail review to support security goals. Anderson, who published the 
Reference Monitor concept in a planning study for the U.S. Air Force, wrote a report In 

1980 that is considered to be the seminal work on intrusion detection.6 In this report. he 
proposed changes to computer audit mechanisms to provide information for use by com­
puter security personnel when tracking problems. The goal of audit reduction, the elimi­
nation of redundant or irrelevant records from security audit trails, was first articulated 
in this report. 

A major classified customer who handled sensitive data in mainframe environments fea­
turing stringent security-management controls motivated Anderson's work. This cus­
tomer had policies that required the auditing of all computer activity, supported by a 
security staff that manually reviewed audit trails and investigated problems uncovered in 
·the audit trail review. The task of performing this manual review and investigation was 
becoming onerous as computing volume increased. Furthermore, the customer's security 
staff was discovering that its ability to detect some security problems Jn its audit review 
was jeopardized by missing or superfluous information in the audit trails. 

Anderson proposes a taxonomy for classifying risks and threats to computer systems 
(see Figure 1.2) that differentiates between external and internal sources of problems on 

both a full system and per file/ object basts. This articulation of concerns was helpful in 
structuring requirements for audit trail content. 

' 



34 SYMC 1007

\ . , 
~ 

1 

CHAPTER 1 The History of Intrusion Detection ~ 

}.,!9]~¥. :1-J --:~ Anderson's Threat Matrix 

Penetrator not 
Authorized Use of 
Computer 

Penetrator Authorized 
Use of Computer 

Penetrator not 
Authorized to use 
Data/Program Resource 

CASE A: 

Extemal Penetration 

CASEB: 

Intemal Pwetration 

Penetrator 
Authorized to use 
Dala/Program Resource 

CASEC: 

Misfeasance 

Anderson's report articulates several goals for security audit mechanisms: 

/ · They should provide enough information for security personnel to be able to localize 
problems, but not so much that the audit trails themselves provide enough information 
to enable an attack. 

• To optimize audit trail content to allow detection of problems, one must be able to 
collect information on a variety of system resources. 

• To detect insider abuse of systems, the audit analysis mechanism should be able to 
discern some notion of "normal" activity for a given resource (where a user is consid­
ered to be a resource). 

• The design of an audit mechanism should take the strategy of a system attacker into 
account. 



35 SYMC 1007

t 

!: 

I' 

I 
i: 

" ·I 

'· 

~ Intrusion Detection 

Anderson points out that when a violation occurs in which the attacker attains the highest 
level of privilege. such as root or superusu in UNIX. there is no reliable remedy. For this 
worst-case scenario, one can instrument a system with embedded audit mechanisms that 
monltor CPU and other systems internals, but this defense is not particularly durable. 

He devotes some time to the problem associated with~uera~ those adversaries who 
access systems using purloined user IDs and passwords. To the system, masqueraders 
appear to be legitimate users. Anderson suggests that some sort of statistical analysis of 
user behavior. capable of determining unusual patterns of system use, might represent a 
way of detecting masqueraders.7 This suggestion was tested In the next milestone In intru­
sion detection, the IDES project. 

1.2.2 Denning, Neumann, and IDES 
From 1984 to 1986, Dorothy Denning and Peter Neumann researched and developed a 
model for a real-time intrusion detection system, named the Intrusion Detection Expert 
System (IDES). This research, funded by the U.S. Navy's Space and Naval Warfare 
Systems Command (SPAWARS), proposed a correlation between anomalous activlty and 
misuse. ~'"7;U])as defined in this project, meant "rare or unusual" In a statistical sense 
(in effect, outside of some statistical characterization of normal). 

This assumption served as the basis for many intrusion detection research and system 
prototypes of the 1980s. Denning's 1987 paper on the topic is considered to be another 
seminal work in intrusion detection.8 

The IDES model is based on erofiles, data structures that use statistical metrics and models 
to describe the behavior of system subjects (primarily users) with respect to system objects. 
Activity rules spedfy actions to be taken at a given time (either the generation of an event 
record or the end of a time interval). The statistical metrics and models allow the system 
to evaluate behaviors against both fixed and dynamic measures of normality. 

Denning and Neumann's model was instantiated in the landmark IDES prototype system, 
developed at SRI International from 1986 to 1992. 

The IDES prototype system used a hybrid architecture, comprising an anomaly detector 
and an e~t system. 

The anomaly detector used statistical techniques to characterize abnormal behavior. The 
expert system used a rule-based approach to detect known security violations. The 

expert system was included to mitigate the risk that a patient intruder might gradually 
change his or her behavior over a period of time to defeat the anomaly detector. This 

•• ! 

.; 

I•' 

: :: .. 

~
t:>> 

'·i~t 
.. ; 
. '•f ,' 

~-- ., 



36 SYMC 1007

L. 

CHAPTER 1 The History of Intrusion Detection L2.:._ 

situation was possible because the anomaly detector adapted to gradual changes in 
behavior to minimize false alarms. 

The IDES prototype system was developed on a TOPS-20 system. Principal investigators 
and researchers of the IDES prototype included Peter Neumann, Harold Javitz. Teresa 
Lunt, R. ·Jagganathan, and Fred Gilham.9 

1.2.3 A Flurry of Systems through the 1980s 
The Anderson report and the work on IDES launched a cluster of research prototype 
systems over the next few years. We wiU mention several of these efforts. outlining the 
general assumptions, approaches, architectures, and results of each. Some will be covered 
in greater detail as we explore details of various approaches to analysis. 

1.2.3.1 Audi t Analysis Project 
In 1984 to 1985, a research group at Sytek conducted a project fu nded by the U.S. 
Navy's SPA WARS Command. The Automated Audit Analysis project prototyped a sys­
tem that utilized data collected at the shell level of a UNIX machine running In a 
research environment. The data was then analyzed by using database tools. This research 
demonstrated the capability to distinguish normal from abnormal system usage. Principal 
researchers for this effort were Lawrence Halme, Teresa Lunt, and john Van Horne. 10 

Lunt went to SRI International, after the completion of this project, to lead the IDES 
project. 

1.2.3.2 Discovery 
Discovery is an expert system designed for detecting and deterring problems in TRW's 
online credit database. It was sponsored as an Internal research and development project at 
TRW. This system was a bit different from the monitoring environment of the other sys­
tems from this era in that the database application, not the operating system, was moni­
tored for intrusions and misuse. The goal for Discovery was to process daily inquiry 
activity in search of unauthorized Inquiries. The processing load for the database system 
monitored by Discovery was estimated at approximately 400.000 inquiries per day. repre­
senting approximately 120.000 ~ccess codes. Audit trails were collected and the system was 
run against the data in batch mode. 

Discovery used statistical inference to locate patterns in the input data. The system was 
designed to detect three types of abuse scenarios: unauthorized access, insider misuse, and 
invalid transactions. Discovery's statistical engine was written in COBOL. with an expert 



37 SYMC 1007

~ Intrusion Detection 

system written in an AI shell. Both parts of the system ran on an IBM 3090. The principal 
architect was William Tener.11 

1.2.3.3 Haystack 
Haystack is a system that was developed by Tracor Applied Sciences, Inc. (Initially, from 
1987 to 1989) and Haystack Labs (from 1989 to 1991) for the U.S. Air Force 
Cryptologic Support Center. Haystack was designed to help security officers detect insider 
abuse of Air Force Standard Base Level Computers (SBLC). These computers, Sperry 
1100/60 mainframes running early 1970s vintage operating systems, were used to do tra­
ditional mainframe data processing tasks. The tasks (accounting, finance, Inventory con­
trol, and personnel) handled data considered "unclassified but sensitive." The computers 
were running operating system software that was equivalent to a Ttusted Systems evaluated 
level of B 1, whkh included extensive audit mechanisms. The systems generated audit 
records reflecting more than a million events per week. 

Haystack was implemented on an Oracle database management system running on an 
IBM-AT clone. Haystack's analysis engine was written In ANSI C and SQL and performed 
anomaly detection in batch mode, which meant that it periodically downJoaded the audit 
trail file from the target SBLC system and then processed it. 

Haystack characterized the information from system audit trails as sets of "features." 
Examples of features Include session duration, number of files opened, number of pages 
printed, number of CPU resources consumed in the session, and number of sub­
processes created in the session. Because there was no notion at the time of which fea­
tures were most effective in detecting Intrusions. the system included more than 30 
features for each session. It used a two-stage statistical analysis to detect anomalies in 
system activity. The first stage, which checked each session for unusual activity, checked 
each feature against specified bounds and then performed a statistical test to determine 
whether the number of features that exceeded bounds was large enough to indicate 
unusual behavior. The second stage used a statistical test (the Wllcoxon-Mann-Whitney 
Ranks test) to detect trends in sessions. The combination of the two techniques was 
designed to allow detection of both "out-of-bounds" activities as well as activities that 
gradually deviated from normal over time. Haystack was fielded in 1992 and used on all 
U.S. Air Force SBLC systems for several years. The principal architect of Haystack was 
Steve Smaha.l2 

1.2.3.4 MIDAS 
Multlcs Intrusion Detection and Alerting System (MIDAS) was developed by the National 
Computer Security Center (NCSC) to monitor the NCSC's Dockmaster sys~m. a 
Honeywell DPS 8/70 running Multics, a highly secure operating system. 

J.. 
··."·; 

··~-



38 SYMC 1007

! 
·' 

CHAPTER 1 The History of Intrusion Detection L2.:._ 

MIDAS was designed to take data from Dockmaster's answering system audit log. (On 
Multics, the answering system handled the user logins and password challenges, spawning 
user sessions.) Multics augmented the audit log data by collecting other information from 
the system. This data was organized, used to construct session profiles. and then-compared 
to user profiles of normal behavior. MIDAS, like IDES and several other systems of the 
era, used a hybrid analysis strategy, combining statistical anomaly detection with expert 
system rule-based approaches. 

MIDAS's expert system used a forward-chaining algorithm featuring four levels of rules. 
Figure 1 .3 describes this heuristics structure in more detail. In addition to this rulebase, 
MIDAS kept user and system-wide statistical profiles in a statistical database, which was 
updated at the end of each user session. The statistical and rule-based analysis portion of 
MIDAS was coded in LISP and ran on a Symbolics workstation. MIDAS was placed online 
ln 1989 and monitored Dockmaster through the mid-1990s. t3 

MIDAS Expert System Architecture 

D D More oertain with regard to posslblll1y of anack 

@> 1- lmmed'aate Attack I 
© 1- User Anomaly 

0 1-System Anomaly I 



39 SYMC 1007

intrusion uetectton 

1.2.3.5 NADIR 
Network Audit Director and Intrusion Reporterl4 (NADIR} was developed by the 
Computing Division of Los Alamos National Laboratory to monitor user activities 
on the Integrated Computing Network (ICN} at Los Alamos. This network is 

Los Alamos:s main computer network and serves more than 9.000 users-connecting 
supercomputers, local and remote terminals, workstations, network services machines, 
and data communications interfaces. NADIR monitors the network by processing audit 
trails generated by specialized network service nodes. It was designed to run on Sun 
UNIX workstations and, like many other systems of the time, it performs a combina­

tion of expert rule-based analysis and statistical profiling. NADIR is written in SQL and 

• 

, 
r 

~ 



40 SYMC 1007

·:. 
·.~I 

,/: 

···: 

. .. : 

.. :·~ 

l . 

CHAPTER 1 The History of Intrusion Detection L2.:_ 

runs on a Sybase database management system, using some of Sybase's internal triggers 
and other features. 

NADIR remains one .. of the most successful and durable intrusion detection systems of. the 
1980s and has been extended to monitor systems beyond the ICN at Los Alamos. NADIR 
continues to monitor the ICN at the time of this publication, and the team continues to 
modify the system to accommodate new threats and target systems. The principal architect 
for NADIR is Kathleen Jackson. 

"1.2.3.6 NSM 
The Network System Monitor (NSM) was developed at the University of California at 
Davis to run on a Sun UNIX workstation. It represented the first foray into monitoring 
network traffic and using that traffic as the primary data source. Before this time, most 
Intrusion detection systems consumed information from operating system audit trails 
or keystroke monitors. The general architecture of the NSM is still reflected in many 
commercial intrusion detection products at the time of this publication. The NSM func­
tioned by doing the following: 

• Placing the system's Ethernet network interface card into promiscuous mode (in which 
each network frame generates an Interrupt. thereby allowing the monitoring system to 
listen to all traffic. not just those packets addressed to the system) 

• Capturing network packets 

• Parsing the protocol to allow extraction of pertinent features as shown in Figure 1.4 

• Using a matrix-based approach to archive and analyze the features, both for statistical 
variances from normal behavior and for violations of pre-established rules 

NSM was a significant milestone In Intrusion detection research because it was the first 
attempt to extend intrusion detection to heterogeneous network environments. It was also 

one of the first intrusion detection systems to run on an operational system (the computer 
science department local area network at UC Davis). In a widely cited, two-month test of 
NSM. it monitored more than 111,000 connections on the network segment, correctly 
identifying more than 300 of them as intrusions. The system administrators for the net­
work discovered less than one percent of these intrusions. This test emphasized the need 
for and the effectiveness of intrusion detection syste~ns as part of the protection suite. 
Principal architects for NSM were Karl Levitt, Todd Heberlein, and Biswanath Mukherjee 
of the University of California at Davis. 15 



41 SYMC 1007

·:- · .. ~ 
:".~:.. : 
. l; .. , ' •-t:. ~ 

~~- i. 

= • . :.~: .. 5 
... ~ 

~ Intrusion Detection 

NSM Architecture 

Host layer 

Connection layer 

Thread Layer 

1.2.3.7 Wisdom and Sense 

connected·networ1< 
vectors 

host vectors 
(net activity for host) 

bi-directional 
connection vectors 

unidirectional data streams 
(thread vectors) 

reassembled 
time-stamped packats 

Wisdom and Sense16 was an anomaly detection system developed by the Safeguards and 
Security Group at Los Alamos National Laboratory in partnership with Oak Ridge 
National Laboratory. Wisdom and Sense was the second pass at an intrusion detection sys­
tem for mainframes (the initial system, called ALAP. was fielded by the U.S. Department 
of Energy in several of the department'$ facilities). Wisdom and Sense operated on a 
UNIX platform and analyzed audit data from Digital Equipment Corporation VAX/VMS 
systems. Wisdom and Sense performed statistical, rule-based analyses that were quite dif­
ferent from other systems of the time. The system used (iQnpar:ametrTc teq§iq~(which 
are statistical techniques that make no assumptions about the distribution of the data) to 
derive its own rulebase from archival audit data. Wisdom and Sense then compared subse­
quent activity to this rulebase, looking for exceptions. The rulebase was structured into 



42 SYMC 1007

, ... 
r ~ ' 
.f'·)_; 
·'". 
~.: ~ I 
l('i · ... _, 
-: 

:. ~ 

" . .. ! 
I 

. ' -: ..l 
• J . ' 

. '~ ,-:.. 
.. j 

d 
' :~ 

·.""'''" 

\ 

I 
! 
l__ 

CHAPTER 1 The History of Intrusion Detection ~ 

arrays of tree structures (called "forests·). and because the rules were "human readable." 
they could be "pruned" and modified by humans. These rulebases defined normal behav­
ior as observed from the historical audit data. 

The approach used by Wisdom and Sense was originally developed for a process control 
environment to monitor the transfer of nuclear materials within a Department of Eneigy 
test facility. Problems observed in Wisdom and Sense were similar to those observed in 
many machine-learning approaches of this era: 

• Generating reliable learning sets of audit data that were known not to contain intrusions 
was extremely difficult. 

• False alarm rates were high. 

• The memory required to accommodate the huge rulebases was difficult to manage, 
making the prototype systems unstable. 

Principal investigators for Wisdom and Sense were Hank Vaccaro. of Los Alamos National 
Lab; and Gunar Liepins. of Oak Ridge National Lab . 

1.2.4 Integrating Host and Network-Based Intrusion Detection 
Until 1990. intrusion detection systems were largely host-based, confming their examina­
tion of actiVity to operating system audit trails or other host-centric information so~es. 
As noted in the preceding section, the NSM extended intrusion detection to the network 
environment. At the same time, drastic increases In the lnterconnectivity of systems (due 
to the growth of the Internet and the increase In computing and communications band­
width) resulted in equally drastic Increases in computer security concerns. The Internet 
worm of 1988 brought this concern to a fevered pitch,17 and funding increased for both 
commercial and academic research and development efforts. The first major Initiative to 
integrate host and network-based monitoring approaches was the Distributed Intrusion 
Detection System (D IDS) . 

The DIDS effort was a large-scale collaboration between the United States Air Force 
Cryptologic Support Center; Lawrence Livermore National Laboratory; University of 
California, Davis; and Haystack Laboratories. 18 The research was funded by the U.S. Air 
Force, the National Security Agency, and the Department of Energy. It was the first 
attempt to integrate host and network intrusion detection capabilities so that a centralized 
security management group could track security violations and intrusions across networks. 
The primary architect for DIDS was Steve Smaha. 



43 SYMC 1007

?'"'· ; : 

~ Intrusion Detection 

The initial concept of DID$ was to use techniques (previously demonstrated in Haystack 
and NSM at host and network level, respectively) that centralized control and reporting in 
a DIDS central controller. Figure 1.5 illustrates the DID$ architecture. 

{f.~mil~ DIDS Architecture 

Host Agent 

Host Event 
Generator 

Host Monitors 

Expert 
System 

OIOS Director 

User 
Interface 

Communications 
Manager 

0 
, ...... .c..-- ........ ,~ 
~ 

LANAgGilt 

LAN Monitor 

DID$ addressed several problems. One, a pressing issue in large network complexes, was 
tracking network users and files across the network environment. This function was espe­
dally critical, given two factors. First, network Intruders typically use the interconnecUvity 
of different computer systems to hide their true identity and location. Some intruders, in 
fact. mount distributed attacks, in which each stage of an attack is sent from a different 
system. Second, perhaps the most durable cure for a network attack is to discover the per­
son responsible for the attack, collect evidence of the pe.rson's responsibility for the attack, 
and then use law enforcement and the legal process to prosecute the person. DID$ was 
the fii'St system to allow customers to deal with this problem in this context by automating 
the tracking and correlation of user identities across the monitored network. 



44 SYMC 1007

CHAPTER 1 The History of Intrusion Detection ~ 

For example, suppose someone on my corporate system decides to "network hop" 
through my system, en route to attacking my payroll server. Fortunately, I'm running 
DIDS on my network. By trac.king the attacker's Identity as he assumes user identities or· 
Smith on hostl, Jones on host2, and Bace on host3 (at which point the intruder attacks 
the me server for the payroll system). DIDS allows investigators to see that the person they 
need to tcilk to is actually the person sitting at the terminal associated with Smith on hostl, 
not mel 

Another problem addressed in DIDS was how one could correlate data from events hap­
pening at various layers of abstraction in the system. Such information is required to "see" 
problems as they affect the entire network. DIDS correlates the data by using a six-layer 
intrusion detection model, with each layer representing the results of a transformation 
applied to the data. 

1.2.5 The Advent of Commercial Products 
In the late 1980s to 1990, several organizations built intrusion detection tools-some in 
an attempt to capture early interest in this new security technology, others to support 
higher levels of trusted systems evaluations by the NCSC. Three of the earliest of these 
systems are discussed here. Others are covered in more depth in chapters that discuss spe­
cific strategies and lessons learned. 

1.2.5.1 ComputerWatch 
ComputerWatch is an audit trail analysis tool that was developed by AT&T in the late 
1980s to provide audit trail analysis and limited intrusion detection capability. Data reduc­
tion was supported with an examination mechanism that provided different views of the 
audit data. These views were specified based on information relationships. For instance, 
one could see the sequence of events associated with a particular nser or group of users. 
Similarly, one could see all the events that occurred during a particular time interval. 
Finally, one could see all the events that involved a particular flle or part of the system. 

ComputerWatch supported a variety of queries and reporting features designed for a sys­
tem security officer. ~n expert system was used to summarize system security-relevant 
events. and a statistical analyzer and query mechanism allowed statistical characterization of 
system-wide events. The system was designed to consume operating system audit trails 
generated by UNIX System V /MLS. 19 

After a brief period of availability as a commercial tool, AT&T withdrew ComputerWatch 
as a turnkey tool, using it as an internal resource in Its consulting services group. Cherie 
Dowell was program lead for the ComputerWatch effort. 

1 

.I 



45 SYMC 1007

..... ..., 

.!.· t 

~ Intrusion Detection 

1.2.5.2 ISOA 
The Information Security Officer's Assistant (ISOA) was developed by PRC. Inc. as a real­
time security monitor. It was implemented on a UNIX workstation and supported auto­
mated as wen as interactive audit trail reduction and analysis. ISOA used a set of thresholds 
and indicators to spot deviations from normal or expected behaviors, using a hierarchical 
scheme for correlating the indicators with levels of concern or suspicion. Detection was 
done both In-stream, in real tlme with discrete audit event checks; and at the end of ses­
sions, with a threshold check of session statistics. The principal architect for ISOA was Vic 
Winkler.20 

1.2.5.3 Clyde VAX Audit 
Audit is a product that was developed by Clyde Digital (later RAXCO. and then Axent) to 
scan audit trails ge~erated by Digital Equipment Corporation's VAX/VMS operating sys­
tems. Audit filters audit trails against 14 indications of possible security problems, includ­
ing such things as dial-up sessions (indicating outsider access). sessions that occur after 
business hours, and sessions indicating file system browsing. Audit assigns weights and 
scores correlating to each of these indicators, and then provides summary reports that fea­
ture scores for each user on the system (where a high score indicates a high-risk user). 21 

1.3 Conclusion 
This chapter drew a timeline associated with audit, security audit, audit reduction, and 
Intrusion detection. We outlined the concepts and strategies that are relevant to intru-

"),. .. ' -- ,_,....,,,,~ ,_ ... I"'J 

~r· . 



46 SYMC 1007

CHAPTER 1 The History of Intrusion Detection l 25

Sion detection, and pointed out the seminal works for the area. It is important to ndte

that the requirements and functions for these systems have changed significantly over
the last 20 years as the nature of computing technologies and environments has
changed.

The need for intrusion detection is even greater today than it was in the early 1980s
when the seminal papers were written and initial research studies done. Developers of the
next generation of intrusion detection products should be cognizant of the exploration
done and the approaches tried in decades past. We'll revisit many of the systems cited in
this chapter as we discuss the features and strategies for intrusion detection throughout
this book.

Endnotes

1. Wasserman. Joseph 1. “The Vanishing Trail." Bell Telephone Magazine. 47. no. 4.

July/August 1958.

2. Abbott, Robert P. Personal communication. May 1999.

3. National Computer Security Center. Glossary of Computer Security Terms. Version 1.
Rainbow Series, October 1988.

4. National Computer Security Center. Department OfDefense Trusted Computer System
Evaluation Criteria. Orange Book, DOD 5200.28-std. December 1985.

5. National Computer Security Center. A Guide to Understanding Audit in Trusted
Systems. Version 2. June- 1988.

6. Anderson, James P. Computer Security Technology Planning Study 2. ESD—TR-73—51,
Bedford, MA: Electronic Systems Division. Air Force Systems Command. Hanscom
Field. October 1972.

7. Anderson, James P. Computer Security Threat Monitoring and Surveillance.
Washington. PA: James P. Anderson (30.. 1980.

8. Denning. Dorothy. “An intrusion Detection Model." Proceedings of the Seventh
IEEE Symposium on Security and Privacy, May 1986: 119431.

9. Lunt. Teresa F. et ai. " IDES: A Progress Report." Proceedings of the Sixth Annual
Computer Security Applications Conference. Tucson. AZ. December 1990.

10. Halme, Lawrence. T. Lunt. and J. Van Horne. “Automated Analysis of Computer

System Audit Trails for Security Purposes.” Proceedings of the National Camputer
Security Conference, Washington. D.C.. September 1986.

 
(q.
a.
2'-.1.;“;,-_-_  

46 SYMC 1007



47 SYMC 1007

~·': ~ 

: i 

~ Intrusion Detection 

11 . Tener. William T. • Discovery: An Expert System in the Commercial Data Security 
Environment. • Proceedings of the IFIP Security Conference, Monte Carlo, 1986. 

12. Smaha, Stephen E. "An Intrusion Detection System for the Air Force." Proceedin~ 9f 
the Fourth Aerospace Computer Security Applications Conference, Orlando, FL. 
December 1988. 

13. Sebring, Michael M .. E. Shellhouse, M. E. Hanna, and R. A. Whitehurst. "Expert 
Systems in Intrusion Detection: A Case Study." Proceedings of the Eleventh National 
Computer Security Conference. Washington, D.C .. October 1988. 

14. Hochberg. J. et al. "NADIR. An Automated System for Detecting Network Intrusion 
and Misuse." Computen and Security 12, no. 3, May 1993: 235-248. 

15. Heberlein, L. T. ·A Network Security Monitor." Proceedings of the 1990 IEEE 
Symposium on Research in Security and Privacy, Oakland. CA. May 1990: 296-304. 

16. Vaccaro, H. S. and G. E. Liepins. "Detection of Anomalous Computer Session 
Activity." Proceedings of the 1989 IEEE Symposium on Research in Security and 
Privacy. Oakland, CA. May 1989: 280-289. 

17. Spafford, Eugene H. The Internal Worm: Crisis and Aftermath. Communications of 
the ACM, 32(6). june 1989: 678-687. 

18. Snapp, S. R. et al. "DIDS (Distributed Intrusion Detection System)-Motivatlon, 
Architecture, and An Early Prototype. " Proceedings of the Fifteenth National 
Computer Security Conference, Baltimore. MD, October 1992. 

19. Dowell, Cheri and P. Ramstedt. "The ComputerWatch Data Reduction Tool." 
Proceedings of the 1birteenth National Computer Security Conference, Washington, 
DC, October 1990. 

20. Winkler, ]. R. "A UNIX Prototype for Intrusion and Anomaly Detection in Secure 
Networks." Proceedings of the Thirteenth National Computer Security Conference, 
Washington, DC, October 1990: 115-124. 

21. Clyde, Allan R. Insider Threat Identification Systems. Rockville, MD: A. R. Clyde 
Associates. September 1987. 

22. Clyde, Robert. Personal communication, June 1999. 

- .. -· _...,._ ,.__...~ ... 

:.;,:i ··;:'::;~t~;t~~;·~;· jt· ~j~~ ...... 
-· -- .. 

-··· ... ---·- --- ·--··-···----



48 SYMC 1007

,.,· 

C HAP TE R 

Concepts and Definitions 

2.1 An Introduction to Intrusion Detection 
Intrusion detection is the process of monitoring computer networks and systems for 
violations of security policy. In the simplest terms, intrusion detect~on systems consist of 
three functional components: 

• An information source that provides a stream of event records .. 
• An analysis engine that finds signs of intrusions 

• A response component that generates reactions based on the outcome of the 
analysis engine 

We'Ll flesh out this model as we proceed through this chapter. 

Intrusion detection ts an incarnation of the traditional practice of system audit.B 
defmed as "the official systematic examination of accounts to ascertain their -accuracy." 1 

Intrusion detection augments the traditional audit, which was designed to occur at 
infrequent intervals, thns making it a continuous process. 

To better und~rstand the core process of intrusion detection, let.._·s~,p ........ ......,'-' 
process from which it evolved. In computer security circles, auditings terns meant manu­
ally reviewing audit trails generated by computer operating systems and other system­
logging mechanisms. This security audit trail review was structured to allow responsible 
parties to ensure that the activities that occurred on the computer system were In com­
pliance with some set of security policies. Where the activities were found not to be in 

compliance, there were additional goals: 

• AccountabiUty-De~ermine who was responsible for the breach 

• Damage assessment-Determine what actions they took and what damage ensued 

.. -· -·--· ........ ... ·- .. . 

·.~ ., ·- .i.','.- ': !. c~i:t};o:;~t:kik.:~'i~ 

----·--- ---

.. ·~ ~ 

.... : ~~.:~. :~::~~t~::::#~:.·J~~; ~1 
··-- - .. - .. _ --· -· 



49 SYMC 1007
'f • 

. i 

~ Intrusion Detection 

• Damage recovery-Determine what steps are required to repair the damage and restore 
the system to secure operation 

These traditional audit principles and practices are discussed in more detail in Chap~r I. 
•The History of Intrusion Detection." 

As computer systems became faster. more complex, and more numerous. the size and 
complexity of audit trails increased as well. The task of reviewing the data grew much 
more onerous and then simply became impossible. Automating the process of audit review 
was a logical remedy for thJs problem. The requirement for an automated audit trail reduc­
tion and review function was included as part of the National Computer Security Center's 
Trusted Systems Security Criteria of the 1980s. Research done in the course of satisfying 
this automated audit requirement yielded much of what we know about modern security 
audit and intrusion detection technology. 

2.2 Security Concepts 
Intrusion detection was tnJUally proposed and is constantly evolving to meet a set of 
functional goals, all associated with improving the security of computers and networks. 
In this section. we'll define some of the fundamental tenns and concepts of computer and 
network securtty. This information will allow you to look at current and future intrusion 
detection strategies, and to ask yourself the following questions, which remain constant. 
even as the technology changes: 

What security goals do I need to support? 

What assumptions should I make about the security goals of the target system? 

Exactly what assets do I need to protect? 

Answering these questions (and more important , by noting which questions remain 
unanswered) will allow you to make intelligent judgments about the value of a proposed 
intrusion detection approach. 

2.2.1 A Cultural View of Computer and Network Security 
So what do we mean by security? Security can be viewed from two general vantage points: 
theoretical and engineering. Some practitioners of compu~r and network security 
approach the problem from an abjectly theoretical point of view. These security experts 
explore the theoretical foundations of computing and consider security in that context. 
They are interested in characterizing security properties mathematically by forming security 
models that are provably correct. The precision and clarity of view that these experts bring 
to the area can be quite valuable. 

I 

-··-- _ ... -···- ·--" --- ··----



50 SYMC 1007
" ... I 

CHAPTER 2 Concepts and Defmitions 

Another faction in the computer security world approaches security from a more prag­
matic, engiileerlng point of View. These security experts, although often interested in the 
etiology of security problems, are much more concerned with the questions of securing 
operational systems so that they can survive in the here and now. One might argue that 
all practitioners should be as technically rigorous as the theoreticians; one could also argue 
that all theoreticians should be able to administer operational systems! 

Both of these approaches to computer security are legitimate, although purists in each 
group profess disdain for the other. Let's consider the fundamentals from both vantage 
points because each has something to offer to those interested in securing systems. 

2.2.2 Practical Definition of Computer Security 
A practical deftnition of a ~ecure computer ~W is ·a system that can be depended upon 
to behave as it is expected to. "2 From this Intuitive view of security, we can infer the fWl­
damental concepts associated with security. For instance, the notion of depending on a sys­
tem implies that we trust that system. Is thfs trust quantifiable? If so, how .do we measure 
it? Do we trust the system to behave as it is expected to? Who determines the expectations 
for system behavior? How do we determine whether the actual behavior of the system in 
fact matches the expected behavior? 

2.2.3 Formal Deflnitlon of Computer Security 
A more precise defmltion of security Is given in terms of th~ • security triad": confidential­
ity, integrity, and availablllty. 

C ·. Confidentiality is the requirement that access to information be restricted to opl.y those 
users authorized for that access. Much of the work done by the government in computer 
security focuses on confldentiallty. 

An example of a system with goals of confidentiality is a banking system. As the customer 
of a bank, you expect the bank to protect your account information. Would you continue 
to do business with a bank If you discovered that your account records were accessible to 
other accoWlt holders or to the general public? 

--~ 
Integrity is the requirement that information be protected from alteration. Integrity is espe-
cially critical in systems handling data such as medical records (imagine the impact of some­
one altering doctors' orders on a patient record) .or financial accounts. Many publicized Web 
site attacks involve breaches of integrity, in which address tables or site content are modified. 

~ : ~ailabili!J' is the requirement that the information and system resources continue to 
work, and that authorized users be able to access resources when they need them; where 
they need them, and in the form in which they need them. Many ne£Work-based attacks, 

r 



51 SYMC 1007
..... ~ 
-~ .... 

~ Intrusion Detection 

such as "teardrop" and "ping of death," crash serve~ by sending them network traffic fash­

ioned to exploit vulnerabilities in the operating system software running on those servers. 
These intrusions. which violate availability requirements, are labeled denial of service attacks. 

A secure cOmputer system supports all three goals of the security triad. In other words, a 
secure system protects its information and computing resources from unauthorized access, 
tampering, and denial of service. 

2.2.4 Tr ust 
If any central concept is associated with security, that concept is trust. Trust is the confi-_. 
dence that what is expected of a system entity corresponds to actual behavior. The level of 
trust corresponds to the level of confidence Jn this association between expected and actual 
behavior. System elements that interopernte do so with some assumption about the trust 
with which the other element is imbued. In cases where these trust assumptions prove 
unwarranted, vulnerabilities exist, and threats often follow. 

In assessing trust relationships, you limit the area of concern by drawing a security bound­
ary or perimeter. This approach allows a systematic assessment of trUst relationships at each 
juncture, which yields considerable insight into the trustworthiness of the system. 

Note that the question of trust ariseS, regardless of where you draw the security boundary 
of the system. You must be able to trust the administrators and users of the system not to 
abuse their privileges. You must also trust the environment In which the system physically 

resides to protect the system from physical hazards. 

2.2.5 Threat 
What determines the content of a security policy? Most security programs are driven by a 
desire to address a threat. A ~is defined as any situation or event that has the potential 
to harm a system: This harm can be.in the form of disclosure, destruction, or modification 
of data; or denial of access to data or to the system-processing resources. Major categories 
of threat Include hackers, viruses, fire. flood, lightning strikes-the list goes on and on. 

From this list. you may have noticed that threats can be either internal or external to the 
system and can be Intentional or incidental. To achieve security goals, you must consider 
physical threats as weU as computer threats. You might also want to require background 
investigations of personnel serving in critical roles (such as system administrators) when 
they have significant control over computing and information resources. 

How are threats structured Jn the computer security world? There are several ways to clas­

sify threat, and some Involve the source of the threat. An early model specified the follow­
Ing three categorieS!: 

----·------ _,.- ------



52 SYMC 1007

CHAPTER 2 Concepts and Definitions 

/ ExtemaJ penetrators-Unauthorized users of the system 

/ Internal penetrators-Authorized users of the system who overstep their legitimate 
access rigl'lts. These internal threats are divided into the following: 

• Masqueraders-Those who appropriate the identlficatlon and authorization 
credentials of others 

• Clandestine users-Those who successfully evade audit and monitoring measures 

/ Misfeasors-Authorized users who exceed their privileges 

In intrusion detection, we build on this model of threat, using the term intrusion to mean --any intentional violation of the security policy of_a system. This definition encompasses all 
the threats covered in Anderson's model, plus other threaiS to system security not covered 
in his model. These threats include the following: 

• People who attempt to gain access to a system or data 

• Programmatic threats (software attacks such as viruses, trojan horses, and malicious Java 
or ActlveX applets) ~ 

• People who probe or scan systems in search of vulnerabilities they can exploit in 
a later attack 

2.2.6 Vulnerability 
Security problems In computer systems result from vulnerabilities. Vulnerabilities are 
weaknesses in systems that can be exploited in ways that violate security pollcy. 
Vulnerabilities occur in a multitude of ways. For example, weaknesses occur in the 
design and impiementation of the system software and hardware. These weaknesses are 
sometimes called technical vulnerabilities. Other weaknesses occur In security policy. 
procedures, controls, configuration, or other system management areas. These fall in the 
realm of p_rocedural or tnanaiement mlnerabtUHes. 

Several rules of thumb govern the likelihood of vulnerabilities occurring in systems. The 
larger the system, the greater the likelihood of vulnerabllltles. The more complex the 
system. the greater the likelihood of vulnerabilities. The more dynamic the system and its 
environment (for example, the more often a system Is updated or replaced with a new 
system) , the greater the likelihood of vulnerabilities. 

Although threat and vulnerabilities are intrinsically related, they are not the same. Threat is 

the result of exploiting one or more vulnerabilities. Intrusion detection is designed to 
identify and respond to both. 



53 SYMC 1007

Intrusion Detection 

2.2.7 Security Policy 
Security policy Is required in order to map the sometimes-arcane concepts of security to 
the real world. In our initial defmition of security, we pointed out that It is based on some 
notion of what constitutes expected behavior for a system. Security policy documents these 
expectations. 

2.2.7.1 Procedural 
Security policy has two conunon definitions. The term most often refers to the set of man­
agement statements that document an o.rganlzation's philosophy of protecting Its comput­
ing and information assets. This procedural or managerial security p<Jlicy outlines security 
goals and commits management resources to meeting these goals. It also assigns responsi­
bilities, defines roles, and establishes management and security controls. Finally, the policy 
sets up procedures and practices for securing information and computing assets. Figure 2.1 
outlines the structure for a procedural or managerial security policy. Note that while policy 
remains consistent, the procedures are more specific, but they rarely change, and the prac­
tices are quite dynamic, reflecting the particulars of the system at the current time. 

' 
An Example of Procedural System Policy, Procedures, and Practices 

Policy Procedure or Standard Practice or Guideline 

"We will protect corporate "Where applicable, virus "Norton Anti-Virus will be 
systems from unauthorized checkers shall be run on run on all Windows 95/98 
alteration of software." corporate systems." systems at least once a week. 

The software will be updated 
by MIS staff at least once 
a month." 

"Integrity-checking tools "Tripwire® will be run at least 
shall be used on critical once per quarter and upon 
system files and executables." any update or alteration on 

all UNIX server systems 
directories, Checksums will 
be saved on removable media 
stored in accordance with 
corporate policy. • 

........ _________ ._ ____ , __ 



54 SYMC 1007

. .... ~ ... 
~--·.;'" 

CHAPTER 2 Concepts and Defmitions 

The goal of security policy for a computer system is analogous to the goal of legal codes in 
a society. Both seek to protect legitimate users of system resources from ill effects due to 
the activities of miscreants. Procedural security policies are usually informal; that is, they . 
are written in ordinary language, not as mathematical expressions. 

2.2.7.2 Formal 
A formal security policy usually consists of a mathematical model of the system as a collec­
tion of all its possible states and operations. accompanied by a set of constraints on when 
and how the states and operations may exist. The government's Trusted Systems Initiative 
defmes the security policy of the system as the set of rules enforced by the system· s security 
featw-es.4 Writing security policies that formally and precisely defme which activities are not 
allowe;d is a difficult job. Note that according to this defmition, every system enforces an 
Implicit security policy! 

Formal security policies have certain advantages for those interested in performing intru­
sion detection. Such policies are structured and precise in a way that makes it easier to 
translate their intent into detection patterns. These poltcies can also provide guidance with 
regard to what information the system audit mechanism should collect for analysis. 

2.2.8 Other Elements of the System Securi ty Infrastructure 
It is important to understand that intrusion detection is not, nor was it ever meant to be. a 
silver bullet for computer security (an infallible and complete system security solution). 
Many are tempted to consider It as such. It is, however, an Integral part of a system secu­
rity suite that in totality protects a computer system from intrusion and internal abuse. 

Consider intrusion detection In the context of physical security. Suppose you have a valu­
able asset. you use physical security techniques and measures to protect it. For instance, 
you'd put the asset inside a building, under a well-sealed roof, and shielded from weather­
related damage. You'd make sure that the building walls were constructed of strong mate­
rials-say, concrete block, not cardboard. 1lle building would be designed with few 
windows and ·doors. Those openings would be located to minimize the possibility of a 
burglar using them as entry points. The asset might be placed inside a safe or vault, with a 
strong lock on the door. You might place fences. moats, or other barriers around the 
building. If you were particularly paranoid about protecting the asset, you might hire 
armed security guards and charge them with monitoring the premises, logging any entry 
to the building, and patrolling the building and grounds on a given schedule. Finally, you 
might install sophisticated burglar alarms and surveillance systems to provide additional 
assurance that the asset is protected. You see this sort of protection scheme implemented 
every day in banks, military bases, and art musew-ns . 

....._ ···--------·----



55 SYMC 1007

~ Intrusion Detection 

Although the burglar alarm and surveillance systems undoubtedly offer a great deal of pro­
tection to the asset, can they replace everything else in the protection suite? Of course not! 
The combination of protective measures function In concert to protect your asset. 
Together, they yield much more robust and cost-effective protection than pouring all your 
resources into any one of them alone. 

This applies to the computer and network world, as well. Many components and functions 
serve as part of a sound system protection strategy. Some of these protection mechanisms 
are discussed.tn the following sections. 

2.2.8.1 Access Control 
Access control mechanisms are responsible for restricting access to objects according to the 
access rights of the subject. Access control is divided Into Mandatory Access Control . 
(MAC), tn which decisions about access rights are embedded in the system; and 
Discretionary Access Contr<2! (DAC), In which the owner of an object sets up and controls 
access rights for that object. In systems offering MAC, the access rights are determined by 
security labels on the objects. Some cemmerclal products offer encryption-based solutions 
that allow customers to formulate and enforce DAC policies. 

2.2.8.2 Identification and Authentication 
Identification and authentication mechanisms (I&A) support the positive Identification of 
subjects and objects to the system. 

Authentication mechanisms can be divided into three categories, depending on what they 
require of you: what you know, what you have, and what you are. Each category involves 
the system challenging a user for a secret that is known only to the user and the system. If 
the secret presented by the user matches the secret held by the system, the system validates 
the user's Identity and allows access to the system. 

QWhat you know " Is the basis for the traditional I&A mechanism, found in most operating 
systems, in which a user login and password challenge identifies and authenticates users. 
Unfortunately, this approach has proven to be vulnerable to a variety of attacks, such as 
password-cracking and trojan horse password-grabbers. These attacks result In the expo­
sure of the secret (the password) to adversaries. This authentication technique is gradually 
being replaced by stronger, zero-knowledge techniques that avoid passing the secret itself. 

Examples of authentication systems based on ~what you have· include token-based sys­
tems, such as those in which the user is provided with a smart card, a key, or a special disk. 
Many of these tokens are designed to use cryptographic mechanisms and physical tat:nper­
resistance mechanisms to prevent attackers from counterfeiting or spoofing them. 

-----·-.. ----.... -· 

_, 



56 SYMC 1007

CHAPTER 2 Concepts and Definitions ~ 

Examples of systems based on "what you are" include biometric schemes, which use the 
voice, fingerprints, or retina of the user to identify and authenticate the user to the system. 
Some systems use hybrid approaches; for example, one commercial smart-card token 
includes a fingerprint scanner. 

The underlying challenge-response authentication process is sometimes used for security 
purposes other than commencing system access. The process can also be used in Intrusion 
detection as a means of establishing whether suspicious behavior is originating from an 
intruder or a legitimate user. This topic Is discussed further in Chapter 5. ~Responses," in 
which we discuss system responses to detected problems. 

2.2.8.3 Encryption 
Perhaps the oldest information security mechanism, encryption, safeguards Information by 
performing a variety of functions. It can effectively obscure the content of data files or 
transmissions, eliminating the possibility of surveillance by unauthorized parties. It can also 
detect accidental or intentional alterations in data. Encryption can provide verification that 
the author or originator of a document Is the person you expect. 

Encryption is the process of taking an unencrypted message (called plaintext) . applying a 
mathematical function to it (encryption algorithm) with a key. and producing an encrypted 
message (called ciphertext). Although encryption provides powerful protection of informa­
tion, it is not perfect. It cannot prevent Intentional deletion of encrypted data, for exam­
ple. It cannot protect data before it Is encrypted nor after It is decrypted. And the 
encryption Is dependent on the key being protected. Should the key be guessed or 
divulged, the value of the encryption is nullified. 

2.2.8.4 Firewalls 
Firewalls provide a security boundary between networks of differing trust or security levels 
by enforcing a network-level access control policy. The mechanisms used include proxy 
servers, network packet illters, and encrypted data tunnels (also called Virtual Private 
Networks). Ftrewalls fllter network packets, making decisions to a1low and disallow passage 
of packets according to a specified policy. Firewalls also allow an address translation for 
networks so that the configuration details of an internal network can be hidden from 
potential intruders. 

2.2.9 How Security Problems Occur 
When security problems occur, especially given the ramifications of the problems, you might 
wonder why they exist. Although the number of specific problems is huge. the etiologies 
of the vast majority of security problems fall into three categories: design/ development, 
management. and trust. 

. -"' 



57 SYMC 1007

-. 

~ Intrusion Detection 

2.2.9.1 Problems in Design/Development 
The first problem consists of errors, flaws, and omissions that occur in the design and 
development of systems. These result in vulnerabilities in both software and hardware .. For 
instance, researchers have discovered that cryptographic keys, burned into smart-card hard­
ware to protect them from disclosure, can be extracted by a process in which faults are 
injected into the cards by varying the operating voltages or clock cycle.s. Another 
classic example is the problem of race conditions in system software. Race conditions result 
when an interval occurs between the time a value is checked for validity and the time the 
value is actually used; in the. interval, an adversary can substitute an illicit value ·and dupe 
the software routine into performing a nonstandard operation. Yet another vulnerability, 
which accounts for many known UNIX attacks, is the failure to check the arguments that 
are passed to privileged programs from the command line. Attackers create problems by 
invoking these programs, passing them arguments that overflow the input buffers, and 
thereby crashing the program and allowing the attacker a privileged shell. 

Many problems in this category can be prevented by rigorous application of sound 
engineering practice. including quality assurance. 

2.2.9.2 Problems in Management 
The second problem area that leads to security problems is that of managing fielded sys­
tems. This problem encompasses errors made when configuring the system itself or secu­
rity systems that are meant to provide protections to the system. An example is using 
inappropriate privilege settings for system files (such as making password files for UNIX 
systems readable and writeable by "world"). This problem area also includes scenarios In 
which system administrators or users disable or circumvent security mechanisms. A prob­
lem that commonly occurs in large organizations is that of users who install unauthorized 
modems. on internal systems-desktop PCs, for example. Because the modems provide a 
path into the organizational internal networks, they allow adversaries to circumvent the 
protection afforded by the firewaU! 

2.2.9.3 Problems in Trust 
Perhaps the most pervasive problem is that of naivete concerning appropriate assumptions 
regarding trust. Many of these occur because of an unforeseen differential between the 
development environment and the operational environment. For example, UNIX was orig­
inally developed by programmers in a collegial environment. The information sharing was 
standard and threat levels were low. With the passage of time, however, UNIX was fielded 
in commercial settings, where the threat model is different. In this case, trust assumptions 
did not generalize to environments beyond the original development site. 



58 SYMC 1007

I 

1 
y 

l 

\ 
CHAPTER 2 Concepts and Definitions ~ 

In fact, some problems in design and development actually apply here, too. Designers 
and implementers of systems trust that the system will be used in a certain manner within a 
certain context. The designer trusts the customer to use a system In a particular fashion. 
The customer trusts the product to perform as promised. In extensive systems, the users 
trust all parts of the system to function as expected. This trust extends to the human por­
tions of the system as well. Users trust that someone Is adminiStering the system in a com­
petent, consistent fashion. 

So, what happens when this trust Is breached? This situation usually means that a security 
problem has occurred. In many cases, the problem is transparent to everyone but the per­
son responsible for the problem unless, of course, someone Is monitoring the operation of 
the system and notices this unusual system activity. This topic is covered In greater depth 
In Chapter 8, "Understanding the Real-World Challenge.· 

2.3 Intrusion Detection Concepts 
As intrusion detection evolved over the past 20 years, so did strategies for tackling the 
Issues associated with intelligently monitoring systems for problems. This section outlines 
these strategies and the respective rationale that underlies each one. In so doing, I hope to 
provide you with an understanding of key concepts. This information wi11 allow you to 
assess the strengths and weaknesses of future Intrusion detection approaches as they are 
proposed .. 

2.3.1 Architecture 
When audit was proposed as a protection for sensitive systems, it was apparent that for 
audit information to be trusted, it must be stored and processed in an environment sepa­
rate from the system that it protected. This requirement was inherited by most intrusion 
detection approaches. Separating audit Information from the system that the audit Is pro­
tecting is necessary for three reasons: 

• To keep a successful intruder from disabling the intrusion detection system by deleting 
audit records 

• To keep a successful intruder from modifying the results of the Intrusion detector to 
hide the presence of the Intrusion 

• To lessen the performance load associated with running Intrusion detection tasks on an 
operational system 

In this architecture, the system running the intrusion detection system is called the host, 
and the system or network being monitored is called the target. 



59 SYMC 1007

~ Intrusion Detection 

2.3.2 Monitoring Strategy 
The first requirement for intrusion detection is a data source. This element can also be 
considered an event generator. Data sources can be categorized In a variety of ways. For 
intrusion detection purposes, we first categorize them by location. This classification 
scheme divides system-monitoring views into four categories: host. network, application, 
and target. We will use the term monitoring to describe the action of collecting data from 
a data source and passing it to an a_ryalysis engine. 

• Host-based monitors collect data from sources internaJ to a computer, usually at the 
operating system level. These sources can include operating system audit trails and 
system logs. 

• Network-based moni tors collect network packets. This is usually done by using network 
devices that are set to promiscuous mode. (A network device operating In promiscuous 
mode captures all network traffic accessible to it. not just that addressed to It.) 

Application-based monitors collect data from running applications. The data sources 
include application event logs and other data stores internal to the application. 

• Target-based monitors function a bit differently from the other monitors listed in this 

section because target-based monitors generate their own data. Target-based monitors 
use cryptographic hash functions to detect alterations to system objects and then com­
pare these alterations to a policy. Because the state of the target object is monitored ver­
sus the activity taking place on the system housing the object, this monitoring strategy 
can be efficient for some systems that cannot be monitored using other approaches. 

2.3.3 Analysis Type 
In the Intrusion detection process, after information sources are defined and locations are 
established, the next requirement Is an analysis engine. This system component takes infor­
mation from the data source and examines the data for symptoms of attack or other policy 
violations. 

In Intrusion detection, most analysis approaches involve misuse detection, anomaly detec­
tion, or some mix of the two. 

• Misuse detection-Engines look for something defined to be • bad." To do this, they 
filter event streams, searching for activity patterns that match a known attack or other 
violation of security policy. Misuse detection uses pattern-matching techniques, match­
Ing against patterns of activity known to indicate problems. Most current, commercial 
intrusion detection systems utilize misuse detection techniques. 

_ .. .,.. . ._ 

I r ~./' · 
i . ' 
l, 

I 

I 
J 

I 
l 



60 SYMC 1007

' 

_L_ 

CHAPTER 2 Concepts and Defmitions ~ 

• Anomaly detection-Engines look for something rare or unusual. They analyze system 
event streams, using statistical techniques to fmd patterns of activity that appear to be 
abnormal. This approach reflects the view of some intrusion detection researchers that 
intrusions are some subset of anomalous activity. 

Significant advantages are associated with combining the two analysis schemes. The 
anomaly detection engine allows the system to detect new or unknown attacks, or other 
scenarios of concern. The misuse detection engine protects the integrity of the anomaly 
detection engine by ensuring that a patient adversary cannot gradually change behavior 
patterns to retrain the anomaly detector to accept attack behavior as normal. 

Figure 2.2 shows a diagram of a typical intrusion detection system that uses both anomaly 
detection and misuse detection analysis approaches. 

figuriz~2 ~ A Generic Intrusion Detection System 

Pattern 
Matcher 

Audit Data Sources 

Alarm/Report 
Generator 

Profile 
Engine 

Anomaly 
Detector 

. ·~ 



61 SYMC 1007

~ Intrusion Detection 

2.3.4 Timing 
Another differential in analysis is the timing of the analysis of the data. Analysis can be 
done in a batch mode (known by some as "interval based" mode) or in real time. 

2.3.4.1 Interval/Batch 
Batch mode analysis means that the information source is conveyed to the analyzer in a file 
and that the Information for a particular period of time is processed, with the results 
returned to the user after an intrusion takes place. Batch mode was the prevalent model for 
early Intrusion detection because the communications and processing bandwidth of early 
systems did not support real-time monitoring or detection. 

2.3.4.2 Real Time 
As system speed and communications bandwidth grew, more intrusion detectio~ systems 
moved to real-time analysis. In real-time analysis, the Information source is conveyed to 
the analysis engine as the event happens (or wlth miniscule delay), and the information Is 
processed immediately. We use the term real-time in the process control context, referring 
to a process that is fast enough to allow the results of the intrusion detection system to 
affect the progress or outcome of any intrusion It sees. 

Real-time analysis approaches have enabled automated responses to intrusions. This devel­
opment has considerable appeal to many customers. 

2. 3.5 Goals of Detection 
Another factor in intrusion detection analysis is the goal the detector supports. The two 
traditional goals driving intrusion detection are accountability and active response. 

The goals for intrusion detection affect a number of design and implementation 
decisions. For instance, if the goal is to establish user accountability for detected 
Intrusions, one might need to maintain raw audit data to support legal requirements 
for prosecution. Suppose, on the other hand, one doesn't care about the identity of 
the intruder but is more Interested in blocking the attack and then correcting the 

' 1' 

' 

I • 



62 SYMC 1007

\ .~-
y: 

L 

CHAPTER 2 Concepts and Definitions ~ 

vulnerability that allowed it. In this case, after the data is analyzed and the intrusion is 
detected, the audit data can be discarded. 

2.3.5.1 Accountability 
Accountability is the capability to map a given activity or event back to the responsible 
party. Because the ultimate goal of establishing accountability is to extract some compensa­
tion or pursue some legal remedy against that responsible party, it helps if that responsible 
party is a human (not a machine name). Furthermore it is even more helpful if a physical 
address or other link to the physical world can be associated with that party. 

Maintaining accountabillty on networks presents one of the major challenges in intrusion 
detection. Given current network schemes, when an attack utilizes programs and daemons 
running on separate machines, separate sets of identities are associated with each host 
involved. In general, the greater the number of hosts involved In a network attack path. 
the lower the probability of successfully detecting an attack and establishing accountability. 

One of the earliest attempts to Integrate host-based and network-based intrusion detection 
capabilities, the Distributed Intrusion Detection System (DIDS) was designed to enable a 
major customer to maintain user accountablllty on its large internal network complex. The 
customer also wanted DIDS to allow the tracking of related events across the network as a 
whole. The DIDS team approached this problem by creating a user network identifier 
(caUed a NID) the first time a user entered the environment monitored by DIDS and then 
mapping all subsequent activities of that user to that NID.4 

2.3.5.2 R esponse 
In intrusion detection, response occurs when analysis yields an actionable result. Response is 
not llrnited to taking action against a suspected attacker, although this option captures the 
imagination of many in the network security world. 

Perhaps the most common response is to record the results of the analysis in a Jog file, 
using that file to generate a report. This Information Is helpful to a variety of people in the 
corporate management structure. Some report features allow automatic report generation, 
with options for providing findings at different levels of detail for different reporting audi­
ences. For example, the report that goes to the CIO might list the numbers of intrusions 
detected and the severity of those intrusions. The report that goes to the system manager 
would have Information about the intrusion, the llies that the intruder touched, the 
vulnerability probably exploited, and whether any fixes are available for it. 

A more immediate response option is to trigger alarms of a variety of predetermined types. 
These might include an alarm flag on a network manager's console, a message to a security 
manager's pager, or, in certain instances, an email message sent to a system administrator. 



63 SYMC 1007

~ Intrusion Detection 

Another response is to modify the intrusion detection system or the target system. 
Modifying the intrusion detection system can involve changing the information collected 
by the monitors or changing the character of the analysis performed on the information 
stream. Modifying the target system can include changing configuration settings for critical 
flies to block the progress of a known attack. This ability to adapt the system in response 
to a suspicion level is quite valuable. 

The remaining response option receives a great deal of attention from the press, the mili­
tary, and the science fiCtion writing community. This is the strike-back response in which 
one blocks the intrusion, sometimes mirroring the attack back to its ostensible source. 
More benign active responses are also available, such as sending messages to firewalls or 
routers, which direct them to block subsequent network accesses from the source of the 
attack. 

2.3.6 Control Issues 
Another aspect of intrusion detection is controlling the system. There are two major 
approaches to controiUng intrusion detection systems when the system monitors multiple 
hosts or networks. 

2.3.6.1 Centralization 
The first approach is a centralized reporting and control architecture. In this approach, a 
central node controls all the intrusion detection elements of a system. Centralization car­
ries some requirements with it. For example, there must be a way to secure messages 
between system components. There must also be a way to deterrnine whether an element 
of the system has been tampered with or disabled at· a given time. In addition, centraliza­
tion requires a way to gracefully start and stop system components. Finally, the centralized 
approach requires a way of consoUdating status Information and presenting it to end users 
in a form that is meaningful to them. 

2.3.6.2 Integration with Network Management Tools 
One way of addressing some ·or the issues associated with the cE'ntrallzed control of Intru­
sion detection Is to simply regard intrusion detection as a function of network manage­
ment. Some system information streams collected by network management packages can 
be used as information sources for intrusion detection. In addition, some alarms raised by 
Intrusion detection systems affect network availabUlty and performance. Therefore, Inte­
grating the two functions can be of value to customer organizations. Many commercial 
Intrusion detection packages offer the option of spawning Simple Network Management 
Protocol (SNMP) messages for network management tool capture. 

..... 

l 



64 SYMC 1007

\ CHAPTER 2 Concepts and Definitions ~ 

2.3. 7 Determining Strategies for Intrusion Detection 
Given the multiple options associated with each process component, many possible 
stratE!gies are available for tackllng the problem of detecting attacks and other activities of 
Interest. The optimal strategy often depends on factors such as the followlng: · 

• The criticality or sensitivity of the system being protected 

The nature of the system (for example. the complexity of the system hardware and 
software platforms) 

• The nature of the organizational security poUcy 

• The threat level of the environment in which the system operates 

2. 4 Conclusion 
Intrusion detection systems have, from their outset, generated a great deal of attention in 
the security world. To many, they present a vision of an ever-vigilant system sentinel, 
equipped with the capability to assimilate great quantities of information generated by 
complex systems, infallibly finding security problems, tracing them back to the responsible 
parties, and then taking action to isolate and heal any damage that occurred. 

The current promise of intrusion detection is all this, and more. The growth of the 
Internet and the subsequent push to place more and more critical information on network­
connected systems creates a scenario in which security is of critical importance. 

Traditional approaches to computer security (such as the National Computer Security 
Center's Trusted Systems Evaluation program) espouse an approach to security based 
strictly on the mathematically rigorous secure design of systems. The alternative to the 
secure design approach is an approach called (often derisively) "penetrate and patch. · 

Intrusion detection systems allow users to optimize the penetrate-and-patch process by 
sharing penetration knowledge between sites. Many users readily acknowledge that pene­
trate and patch is not an optimal solution to system security problems. However, it is often 
the only available option to users who must depend on the operating systems and software 
developed by commercial entitles that have neither the capability nor the inclination to 
perform secure design. Given this state of affairs, intrusion detection systems. by augment­
ing the commercial exchange of attack information, may represent the only way of avoid­
ing a descent into security chaos. 

In addition, the event monitoring and attack recognition capabilities of intrusion detection 
systems enhance the security of a system in other ways. First, these capabilities have a sig­
nificant deterrent effect on attackers. who run a greater risk of discovery and subsequent 



65 SYMC 1007

~I 

... ~ 

~ Intrusion Detection 

prosecution for their attacks. Furthermore, intrusion detection systems can deal with 
insider threat, a significant problem in system security. Second, automated responses can 
disrupt some attacks at the outset, making subsequent attacks more difficult to stage. 
Third, monitoring the operation of the rest of the security infrastructure allows system 
security managers to see when security protections are not functioning properly and to rec­
tify the situation before an atracker exploits it. And fourth, the information gained by 
monitoring the system can sometimes make it easier to manage the system in other ways, 
resulting in greater system reliability. 

Endnotes 
1. Oxford English Dictionary. Second Edition. 

2. Garfinkel, S. and E. H. Spafford. Practical UNIX and Internet Security, Second 
Edition. O'Reilly and Associates, 1996. 

3. Anderson. "Computer Security Threat Monitoring and Surveillance." J.P. Anderson 
Co., 1980. 

4. Ko, C., D. Frincke, T. Goan, L. T. Heberlein, K. Levitt, B. Mukherjee, and C. Wee . 
.. Analysis of an Algoritham for Distributed Recognition and AccountabiJlty. • 
Proceedings of the First ACM Conference on Computer and Communication Security, 
Fairfax, VA. November 1993: 154-164 .. 

.\ 

1 
~· ~ I 



66 SYMC 1007

. ; 
! 

CHAPTER 

Information Sources 
·A computer. to print out a fact, 
Will divide, multiply, and subtract. 

But this output can be 

No more than debris, 
If the input was short of exact.· 

- Glgo 

The first requirement for intrusion detection or any such data-drtven processing task, is a 
set of input data. For intrusion detection, that input data comes from a variety of sources. 
In this chapter, I cover the data sources common1y used in intrusion detection and describe 
how they influence the capabilities of the intrusion detection system. I also discuss the 
issues associated with each of these data sources and identify possible strategies for dealing 
with them. 

3.1 Tl1e Organization of this Chapter 
This chapter covers three data categories: data derived from sources internal to indMduaJ 
systems (host-based sources) , data derived from sources associated with the network 
(network-based sources), and data derived from other sources (out-of-band sources, such as 
telephone switches or physical security systems). I cover these sources in this order for sev­
eral reasons. First, this sequence mirrors the path that computer technology ln general, and 
intrusion detection specifically. has traveled over time: host-based centralized architectures, 
then network-based distributed models, and fmally ubiquitous point products-each 
optimized to perform a particular function. Second, this approach moves from lower- to 
higher-level abstractions of the systems from which the data Is collected. 



67 SYMC 1007

'i 

r. 

~ Intrusion Detection 

.·~ate., ;~~··.t: ·.:~ ; .. ~}~.:~l· .~. ·.- · .. ·"· .. · · ·. _v ~~:~·~·· ;;,-~¢}~$:~.~1;~: 
·In this cryap~~r. the·.g~n~ril! tenT! tifp.nitoi refers to any inform~tion: eolfediQ.iJ n]~f)~Jsitt :-·~· 
·used bY.',a~·- in~$~?~:~e~~pf~:-The te~ P-r?tection d~~ain,r_~~:t~·~T.;?~~-~··"'"' 
the<systel!l that the •rntrusroo detection system IS meant to m,onator 'and protest: ~.,·"' ., ~ . 

. . ~ ;- r • ' i: ~ ::-. ~ ~; ~5' 

3.1.1 Which Source Is the Right Source? 
So. your next question might be the following: Which of these sources is the best source 
for Intrusion detection? The correct answer is that it depends on what you're interested in 
detecting. To detect an attack, the intrusion detection system must be able to "see" the 
evidence of that attack. Perhaps a subtler point is that to detect and then deal with the 
attack, the Intrusion detection system must also be able to see the right data about the 
atlack (for Instance, the outcome of the attack). 

For Instance, suppose that an intrusion detection system detects an attack carried out by 
sending malformed network packets to a particular host. (This type of Intrusion is a com­
mon form of network-based denial-of-service attack: a vulnerable target system responds to 
the attack by crashing.) A network-level monitor might capture the malformed packets and 
the fact that they were sent from a particular IP address to a particular host inside the pro­
tection domain. However, the addition of a host-level monitor can allow the intrusion 
detection system to see whether that malformed packet caused the system to crash. 
Furthermore, the addition of a network monitor on every network segment in the protec­
tion domain allows the intrusion detection system to see that 840 identical malformed 
packet attacks were launched against other hosts in the domain over the last six hours, and 
300 of the attacks appear to have been launched from a single dial-up connection. 

3.1.2 Enduring Questions 
Several questions have persisted over the course of intrusion detection history. These 
include the following: 

• How much information is enough to allow you to accurately diagnose security prob­
lems without crippling the systems you're trying to protect? 

• How do you select the right information to collect, and from where should you collect it? 

• How do you manage the information collected to support any legal remedies you might 
want to pursue against attackers? 

• How do you honor your responsibility to handle the information collected about users 
so that you stay within legal. regulatory. and ethical policy limits? 



68 SYMC 1007

l 

CHAPTER 3 Information Sources ~ 

• How can you format this data so that you can organize and make sense of a wide variety 
of system platforms? Being able to understand various platforms becomes the key to 
performing intrusion detection over complex systems of interest. 

Keep these questions in mind as we explore the nature of information sources. There is 
more discussion in Chapter 7. ~Technical Issues ... in which we explore current technical 
issues; and in Chapter 9, "Legal Issues. • in which we discuss the legal issues associated 
with intrusion detection. 

3.2 Host-Based Information Sources 
The intrusion detection product community is divided into several factions. Some define 
intrusion. detection systems as strictly network-based systems. Others defme intrusion 
detection systems as strictly host-based or as specific applications-based systems. Still 
others advocate integrated approaches to intrusion detection in which both host-based and 
network-based approaches are combined to improve detection performance. 

These approaches are based on the monitoring approach of the system, that is, the point at 
which information is collected. This section considers host-based information sources and 
looks at the mechanisms that produce the Information. 

Host-based information sources consist of operating system audit trail.s-that is, records of 
system events generated by a specialized operating system mechanism- and system logs­
rues of system and application events, which are usually text ftles written a line at a time by 
system programs. 

3.2.1 Operating System Audit Trails 
The first host-based Information source considered to be of security significance was the 
operating system audit trail. Operating system audit trails are generated by a specialized 
auditing subsystem Included as part of the operating system software. These audit trails are 
a collection of information about system activities, which are placed in chronological order 
and then organized Into one or more audit files. Each audit me is composed of audit 
records, each of which describes a single system event. These records are generated by user 
actions and by processes invoked on behalf of users, whenever either makes system calls or 
executes commands. The commands can be local or remote. Each audit record is com­
posed of a series of audit tokens, each of which describes the fields within the record. 

Many operating system audit tralls were originally designed and developed to meet the 
requirements of the Trusted Product Evaluation Program. This U. S. government initiative 
produced evaluation criteria-most notably the Trusted Computer System Evaluation 
Criteria (TCSEC)-also known as the "Orange Book"- that outlined the features and 



69 SYMC 1007

~ Intrusion Detection 

assurances required of commercial operating systems and applications software that was to 

contain and process classified information. The evaluation process was structured to rate 

the operating systems according to ~ trust levels" that corresponded to the perceived trust­

worthiness of the system. 

The audit requirements of the Orange Book represented a conundrum to the vendor and 
user community because there were extensive requirements for audit capabilities but no 

directions for actual audit utilization. The criteria outlined extensive lists of events that 
audit systems should be capable of monitoring, but offered no guidance for selecting those 

events. The requirements also neglected to define how to structure, store, and use the 

audit information that was generated. 1 

Consequently, vendors provided a crazy quilt of audit capabilities In an attempt to meet the 
letter of the C2 audit requirements. In extreme cases, intrusion detection developers who 

were adept at dealing wtth the audit trails generated by one operating system vendor would 
not be able to comprehend the audit tra1ls produced by another. Furthermore, some Imple­

mentations produced audit mechanisms that were not useful in operational environments, 

thanks to storage or performance costs. Indeed, some early intrusion detection research 

efforts in which I was Involved found massive flaws in several C2-evaluated audit mechanisms 

that suggested that the mechanisms had not been tested before they were fielded. 

3.2.2 Approaches to Structuring Audit Trails 
Operating system vendors use at least two design approaches in their audit systems. One 

approach creates self-contained audit records, which do not require other records for inter­

pretation. The other chooses to eliminate redundant information in audit trails by distribut­

Ing the information about an event over multiple records. The former is easier to process and 

comprehend. but the latter is helpful when conserving storage space allocated to audit trails. 

3.2.3 Problems with Commercial Audit Systems 
Despite the fact that the Intrusion detection community appears to be the major consumer of 
operating system audit trails, a recent study found that no major operating system vendor 

actually provides audit trails that support the needs of intrusion detection systems! Vendor 
documentation for audit subsystems is often missing. When the documentation exists, it rarely 

corresponds to thl' audit system, as built. Many audit trails generate irrelevant or insufficient 

information. These deficiencies have resulted in people suggesting significant amendments to 

audit systems. For Instance, some have proposed that effective host-based intrusion detection 

may require the developer to amend operating system kernel code to generate event informa­

tion. This approach extracts a cost In system performance, which might be unacceptable for 

customers rurming computationally greedy applications. Furthermore, appreciable costs are 
associated with the maintenance of these operating system software alterations.2 

I 
t 

l 

j 

I 



70 SYMC 1007

, ... 
"' 

CHAPTER 3 Information Sources ~ 

3.2.4 Pros and Cons of Operating System Audit Trails 
Despite the problems outlined here, many intrusion detection experts consider operating sys­
tem audit trails preferable to other conunon host-level infonnation soW'ces for intrusion-detec­
tion purposes. The primary reason is that the operating system ~ often structured to provide 
substantive protection for the audit subsystem and the audit trails that the subsystem gener­
ates. This protection is of obvious interest. given the security goals of Intrusion detection. 

Another motivation for prizing operating system audit traUs as a data source for Intrusion 
detection Is that they reveal system events at a finer-grained level of detail. This tnforma­
tion allows the intrusion detection system to spot subtle patterns of misuse that would not 
be visible from a higher level of abstraction. This finer-grained level of detail also makes it 
more difficult for an adversary to successfully corrupt the audit process by inserting false 
audit records. 

As one might expect, this finer level of detail comes at a price. Both the volume as well as 
the complexity of the audit data rise with greater detail. Ironically, as we already noted, 
although the level of detail makes it more difficult for an adversary to circwnvent the audit 
process entirely, the greater volume and complexity of the data make it easier In practice 
for intruders to hide their footprints. 

Collecting data at too coarse a level of detail presents problems, as well. In particular, this 
lack of detail makes It impossible to differentiate between system activity invoked directly 
by a user and activity invoked by a program that has taken on the user's identity. 

This deficiency is significant. The concept that a system program can act as a user's agent 
without that user's permission represents a case for the "on behalf of" semantics Imple­
mented in UNIX and Windows NT operating systems. An entire class of system attack 
exploits the capability of programs to assume the identity of a user or other subject pos­
sessing greater privilege than the actual user. This behavior applies particularly to attacks 
that target SUID root processes in UNIX systems. To detect this class of attack, the data 
source for an intrusion detection system must provide data at a fine enough level of granu­
larity to allow the intrusion detector to differentiate between user and process. 

Another advantage of monitoring activity at a greater level of detail is that It highlights 
abnormal patterns of process execution. This monitoring detail enables the intrusion 
detection system to recognize the execution of trojan horses and other malicious code. 

3.2.5 Content of Audit Trails 
Most commercial operating systems record events at kernel level (reflecting system calls) 
and at user level (reflecting application events). Audit records contain information about 
subjects responsible for the event and any objects involved in the event. Most records also 



71 SYMC 1007

'· 

~ Intrusion Detection 

include information about the process that initiated the event, the useriD associated with 
the event, which sometimes includes the current usedD as well as the original useriD (In 
case the user Identity changes). Kernel-level entries contain system call arguments and 
return values, whereas user-level entries contain high-level descriptions of the event or 
application-specific data. 

This section covers the audit trail structure and content of two major operating 
systems: Basic Security Module (BSM) from Sun and Windows NT from Microsoft. 

3.2.5.1 Operating System Example 1: Sun Solaris BSM 
Sun's BSM security package is provided to bring Sun's UNIX operating systems Into 
compliance with the TCSEC C2 trusted system rating. Although we focus on the auditing 
features of the package, It also provides device allocation mechanisms that meet C2 
requirements for object reuse. 

BSM Auditing Subsystem Structure 
The BSM auditing subsystem, pictured in Figure 3.1. consists of an audit log, audit files, 
audit records, and audit tokens . 

. Fig~e 3.1 ~. Structure of Sun BSM Audit Data 

Audit Reoold 

I ALJdit Token H Syst~ I Attribute 

Audit Token 
Audit File 

Audit Token 

I Audit Record 
Audit Token -Audit Record 

Audit Log 
Audrt Record 

Audit Fi e 

Audit Fie - Audit Record 

Audit File 

AudH File 

Audit File 

A BSM audit Jog consists of a sequence of audit files, which are in turn composed of audit 

records. Each audit record consists of a sequence of audit tokens, each of which describes a 
system attribute. Structures defining audit files have special flle tokens to mark the begin­
ning and end of flies; header and trailer tokens delineate each audit record. 

' I 



72 SYMC 1007

·_L 

CH APTER 3 Information Sources ~ 

Audit records are described as either kernel-level or user-level generated records, depend­
Log on the nature of the event described in the record. As you might guess, kernel-level 
audit records are generated by kernel-level system calls; user-level records are generated by 

all other system calls. 

BSM includes translation functions that help trace accountability for particular audit 
events. An event-to-system call translation translates each audit event to the kernel or user 
event that generated it, and an event-to-command translation translates each audit event to 
the application or com~and that generated it. These translations can be helpful in inter­
preting the contents of audit data. 

BSM audit records are generated and managed in binary form. Predetermined byte orders 
and data sizes facilitate cross-platform compatibility. 

Events are grouped into audit event classes for audit management purposes. Preselection 
(selecting the system events for which audit records are generated) and post:selection (select­
ing the audit records to extract from an audit log file) of audit events Is done by specifying 
the applicable audit event classes. 

BSM Audit Record Structure 
Figure 3.2 shows the structure of a typical BSM audit record. Each audttable event in the 
system produces a particular type of audit record. Each audit record beglns with a header 
token, which marks the beginning of the audit record In the audit trail. Most audit records 
contain a subject token, which refers to the process that caused the event. Finally, depend­
ing on audit policy, the record may end with a trailer token. For user-level and kernel 
events, the tokens describe the process that performed the event, the objects on which It 
was performed, and the objects' tokens, such as the owner or mode. 

fiHe3.2 · Structure of Typical Sun BSM Audit Record 

Audit Record 

Header Token 

Argument Token 

Data Token 

Subject Token 

Return Token 



73 SYMC 1007

~ Intrusion Detection 

Each user-level and kernel-level event has header, subject, and return tokens. In addition, 
many events also include a trailer token. but it is optional. Other optional tokens include 
the group and sequence tokens. Use of these tokens depends on current audit policy. 

Each token begins with a 1-byte token type, followed by one or more data elements. The 
order of these data elements is determined by the record type. Event type and tokens 
within the record characterize different audit records. Some tokens consist of a single data 
element. (The text token is such a case.) Other tokens contain several data elements, as in 

the case of the process token, which contains the audit useriD. the real useriD. and the 
effective useriD. For user-level and kernel-level events, tokens specify the process perform­
ing the event. any objects on which the event Is performed. and tokens associated with the 
objects (including owner or mode). 

BSM User-Level Audit Record Content 
As previously noted, user-level generated audit records are created by applications that 

operate outside the kernel. The records are sorted alphabetically by program. The descrip­
tion of each record includes the following items: 

• Name of the program 

• Manual page reference (if appropriate) 

Audit event number 

• Audit event name 

• Audit record structure 

BSM Kernel-Level Audit Record Content 
Kernel-level-generated audit records are created by system calls used by the kernel and are 
sorted alphabetically by system call. The description of each record includes: 

• Name of the system call 

• Manual page reference (if appropriate) 

• Audit event number 

• Audit event name 

• Audit event class 



74 SYMC 1007

I' 

· ~ 

·. 

L ... 

CH APTER 3 Information Sources ~ 

• Mask for the event class 

• Audit record structure 

System Audit Management Tools 
Solaris BSM provides integrated audit trail management commands that allow the auditor 

or system admlnlstrator to perform a variety of audit trail functions. Audit reduce allows 
the auditor to perform post-selection of events, keying on attributes such as time intervals, 

specific user identifiers, and specific event identifiers. Praudit translates the audit records 
from their native binary format into a user-selected format. H umans can read these for­

mats. but they are not otherwise interpreted and can serve as Input for very basic reporting 
mechanisms.3 

3.2.5.2 Operating System Example 2: Windows NT 
Microsoft Windows NT Server operating system provides data sources In the form of its 

event-logging mechanisms. These mechanisms consolidate the information gathered from 

operating system and other system sources. 

N T Event Logging Mechanism Structure 
Windows NT event-logging mechanisms collect three types of system events: operating 

systen;t events, security events, and application events. Each type of event is recorded In a 
separate log. 

The system log consi£ts of events generated by the Windows NT operating system compo­

nents. These events include such events as driver or other component failures, application 
software crashes, and errors associated with data loss. The event types recorded in the sys­

tem log are predetermined by the Windows NT operating system. 

The application log consists of events recorded by applications. For instance, a database 

program might send an information event to the application log when the program suc­

cessfully completes a backup operation. Event types recorded in the application log are 
determined by the application developers, and software toolkits are provided to help them 

use this logging feature. 

The security log consists of events that are defined as security-relevant. These events were 

derived from the TCSEC C2 definitions of auditable events. They include valid and Invalid 

logins and logoffs. and events related to system resource use, especially those having to do 



75 SYMC 1007

' 

~ Intrusion Detection 

with the creation, deletion. and alteration of system files and other objects. Unlike system 
and application logs, security logs are accessible only to system administrators. 

Although all events are of interest to those attempting to reconstruct system activities, 
the security log events are the primary focus of intrusion detection systems. 

Event Log and Record Formats 
Event logs are composed of sets of event records. Each event record is divided into three 
functional parts: the header, a description of the event, and an optional additional data 
field. Figure 3.3 shows the structure of an event record. Security log entries usually 
consist of the header and a description of the event. 

Format of Windows NT Event Record 

Header Date I Time I User Name I Computer Name 

EventiO I Source I type I Category 

Variable content, depending on event Can be text 
Description explanation of problem and recommendation of 

corrective measures. 

Optional field.lf used, contains binary dala which 

Additional Dala can be displayed In bytes or words. Information 
generated by source application for event record. 

The event record header consists of the following fields: 

• Date Identifies the date of the event. 

• Time Identifies the time of the event. 

• User Name Identifies on whose behalf the event occurred. This Identifier can be the 
primary useriD, a client ID, or both, depending on whether the Windows NT imper­
sonation function Is Invoked. Impersonation happens when the operating 
system allows one process to inherit the security attributes of another. The security­
event-logging mechanism reflects both the useriD and the impersonation ID when 
impersonation has occurred. 

• Computer name The name of the computer on which the event took place. This 
information simplifies the audit review when users centralize security administration 
functions across enterprises. 

• Event ID A numerical identifier for the event type. This field is usually mapped to a 
text identifier (event name) In the description field of the event record. 



76 SYMC 1007

CHAPTER 3 Information Sources l::_ 

Source The software responsible for generating the event record. The source can be an 
application, a system service, or a device driver . 

• Type An indicator of the event's severity. The available types depend on the type of 
Jog. In the system and application Jogs, the type can be error, warning, or information, 
in descending levels of severity. In the security log. the types can be success audit or 
failure audit. 

• Category The triggering event type, used primarily In the security log to indicate the 
event type for which success or failure auditing has been enabled. 

NT Event Log Management Features 
Windows NT provides numerous features to allow system administrators to manage the 
operating system event log mechanisms. For instance, administrators can limit the size of 
the event logs and sj>ecify how to deal With the files as they approach this upper limit. The 
options include overwriting the oldest log records with new. in effect creating a circular 
queue; overwriting the oldest log records only If they are of a certain age; and halting the 
system until the event log file is manually cleared. 

System and application event logging start automatically when the system is started. 
Logging stops when the log flles are full and the system configuration specifies that they 
must be manually cleared. Security event logging, on the other hand, must be enabled by 
someone acting in an administrator capacity. 

Security Logging and the Audit Policy 
Security logging Is governed by an audit policy, which is set up by using an auditing policy 
dialog box. The audit policy specifies the types of events to log and can be specified In 
terms of actions, users, and objects. The security event record shows the time and date of 
the action. the action performed, and the user responsible for performing it. Log entries 
can be generated for both successful and failed actions. recording evidence of actions that 
took place as well as attempts to perform actions that may have been prohibited by policy. 

To audit specific files or folders. two separate steps are required. First. the audit policy is 
set to enable ftle and object auditing for the entire system. In TCSEC terms, this step ren­
ders these access events auditable. Next, the file property settings are accessed for each me. 
in order to turn on auditing for that file. This step corresponds to the TCSEC concept of 
making these events audited. Figure 3.4 shows the types of directory and file-access 
actions that can be audited under Windows NT. specifying permission settings that corre­
spond to each event selection. 



77 SYMC 1007

~ Intrusion Detection 

Audit Event Settings for Files and Directories 

File Directory 

Changing ownership X X 

Changing permissions X X 

Changing Attributes X X 

Displaying owner and permissions X X X X X X 

Displaying Attributes 

Displaying names of files X X X X 

Displaying file data X 

Altering contents X 

Creating subdirectories and files 

Going to subdirectories X 

Running file X 

Delation X .. :! . ~ .2 
.~ a. .~ .e. 
E :;: e .c. 

~ I!! 
"' ! I a. c: 

j "' & ~ s 
I & ::l .., 

"' 1D c .. ., .. u c "' "' -l: Gl "' "" 
.. ·t: ., 

~ .¥ ., 
3: 

.s::: {! .. 
3: Ul {!. a: a u a: a u 

Tuning NT Audit 
Balancing the performance loss associated with NT me audit with the benefit of additional 
detection capabUitles still remains an art. Although you can simply set up audit for all sys­
tem directories and subdirectories with a few keystrokes, this approach has the undesirable 
effect of slowing down system performance. On the other hand, auditing selectively at fine 
grain allows you to detect significant security problems (such as the execution of macro 
viruses and trojan horses). Performing this balancing act may be intuitively obvious only to 
the most experienced security administrators. 

Audit-management features. which are provided as part of some commercial intrusion 
detection systems, can help system administrators fine-tune audit features. thus optimizing 
the audit to meet security and performance goals. This can be of great value to those 
charged with protecting an enterprise running Windows NT. 4 



78 SYMC 1007

CHAPTER 3 Information Sources ~ 

3.2.6 Audit Reduction 
Audit reduction is the process of flltering audit logs, identifYing and removing informa­
tion that is redundant or irrelevant. This process represents the classic problem of finding 
a needle in a haystack. Historically, there have been several significant impediments to 
designing and implementing a data reduction operation. Key to the reduction process is 

the capability to introduce some determinism to an inherently nondetermin.istlc process. 
In other words, given the capability to state facts such as "Event X will always trigger 
events Y, Z, and K under conditions A and B." we can reduce the event stream consisting 
of (X [under conditions A and 8] followed by Y, Z, K) to event X 

The problem with this approach is that {especially in multiprocessing, multitasking sys­
tems) this level of determinism Is simply not present. Furthermore, the complexity of mod­
em operating systems leads to scenarios in which a single high-level command triggers the 
generation of thousands of audit records. Worse yet, the order in which the records are 
recorded in the audit log is not consistent. For instance, a Sun OS UNIX ls command 

executed on a desktop workstation can generate more than 1,500 aud1t records. Repeating 
the command even seconds later often results in a different number of audit records, in a 
different order. 

Research from the mid- l990s suggests that significant audit reduction can be done on 
records generated by trllsted processes. 

In this work, the assertion is made that when a user command spawns a process that is 
trusted (and that generates only trusted subprocesses), it is sufficient to record only the 
audit record corresponding to the user command, and to discard all the subsequent audit 
records for that process. When the process generated by the user command Is untrusted. 
we record all the audit records for the untrusted processes and subprocesses spawned by 
the command. Again, if the untrusted process spawns trusted subprocesses, we can dis­

card the event records associated with the trusted subprocesses. An event that fails is 
assumed to be a potential attempt to violate security protections. Thus, all records for the 
transaction from the time of failure until the completion of the transaction are recorded 
in chronological order. 5 



79 SYMC 1007

'· 

~ Intrusion Detection 

3.2. 7 System Logs 
A system log Is a file that reflects various system events and settings. UNIX operating sys­
tems provide a rich assortment of system logs, along wJth a common service, syslog, 
which supports generating and updating event logs via the sysl ogd daemon. Although a 
rich lexicon of standard formats and definitions can be used in generating and Interpret­
ing syslog entries, the security of the logs so generated Is considered to be weaker than 
that of kernel-generated operating system audit trails. 

This perception of system logs as less trustworthy than operating system audit trails exists 
for several reasons. The log-generation software Is usually running as an application and is 
thereby easier to subvert or otherwise modify than Is the audit subsystem. Furthermore, 
the logs are usually stored In unprotected directories on the system. This convention 
makes it easy for an attacker to locate and destroy or alter the files. FinaUy, the logging 
operation is a simple text write, one line of Input per log entry. Operating system audit 
logs are usually more cryptic, with many providing schemes for detecting alteration. 

Several ways of mitigating some of the security problems associated with system logs have 
been suggested. For Instance, Spafford and Garfinkel6 propose that a secure logging host 
be established by connecting a dedicated microcomputer {perhaps one that has been 
retired from service due to obsolescence) to the host being monitored by using a serial 
connection. In thls scheme, all system logs would be periodically redirected to this system. 

3.2.7.1 Why Collect Data from System Logs? 
Despite their weaker protection levels. system logs are usually easier to review than oper­
ating system audit logs. If generating operating system audit trails is not feasible In a 
particular situation or if intrusion detection tools are not available to interpret those 
operating system audit trails. system logs are a valuable source of information for system 
security managers. Furthermore. as discussed later in this chapter as well as In Chapter 9, 
if you need to use system information sources for evidence in a court of law, multiple 
independent data sources, all indicating that the same chain of events occurred, are con­
sidered much stronger evidence than a single source. 

3.2. 7.2 Typical Content of Logs 
UNIX provides a rich variety of system logs that are suitable for security review. Table 3.1 
lists the Sun Solaris system logs that are sometimes used for intrusion detection, the files to 
which they are written. and the information they contain. 

.. 
•' 



80 SYMC 1007

; 
•' 

. ' 

L 

CHAPTER 3 Information Sources ~ 

: ra~!ii:r·F~· Sun Solaris System Logs 

log Name Content File Written/Used 

pacct Commands run by users plus /var I adml pacct 
resource usage 

last!og Most recent successful/ /var I adm/wtmp 
unsuccessful login for each user 

loginlog All login failures lvar I adml acctl sum/Joginlog 
sulog All use of su command /varl admlsulog 
utmp(x) Lists each user currently logged I var I adml utmp (x) 

in; utmpx is a more current 
extended version of log 

wtmp(x) Time-stamped list of aJJ /var/adm/wtmp(x) 
user logins/Jogouts and 
system startups and shutdowns; 
wtmpx is a more current 
extended version of Jog 

nis.trans List of all changes inNIS I var I nisi trans.log 
namespace 

In addition to these system Jogs, UNIX provides a syslogd daemon that logs system 
Information in a special log file. In situations that call for a great deal of custom software 
to run in a critical installation. this gives the software developer options. By including 
logging commands in the custom software that write event records using syslogd, the 
developer can extend intrusion detection capabilities to nonstandard system processes.3 

3.2. 7.3 Consolidation of Log Information 
For intrusion detection purposes, system Jogs can provide information that can be com­
bined with the other system information sources to more accurately determine the events 
occurring on a system at a given time. 

Multiple logging mechanisms can serve as a valuable "sanity check" to those interested 
in finding security problems on a system. Using information in system logs as addi­
tional views of the system activities increases the likelihood of discovering intruders . 
Discrepancies between events recorded from different vantage points help to identify 
situations in which an intruder was only partially successful in making the evidence of 
an attack. 



81 SYMC 1007

• 1 

~ Intrusion Detection 

One of the most widely publicized network security incidents of the 1980s occurred at 
Lawrence Berkeley Laboratories. A system administrator, Cliff Stoll, was assigned the task 

of resolving a $0.7 4 discrepancy between two accounting logs generated by separate log-_ 
ging mechanisms on the same computer system. Stoll's investigation led him to a foreign 
agent who had hacked LBL's sy.stems in an attempt to gain access to sensitive information 
about critical weapons systems. Stoll's account of the investigation, The Cuckoo's Egg. 
remains a classic in computer and network security Circles. 7 Several strategies are available 
for consolidating logs in a fashion suitable for use in intrusion detection. One that is still 
widely used Involves storing the raw logs in a database and then constructing queries that 
present the data from a variety of perspectives. In some cases, when external evidence indi­
cates that a problem took place during a particular time interval, it can be very helpful to 

simply isolate the logs that correspond to that interval. You can then sort them according 
to user, system object, and order of occurrence. Some commercial intrusion detection sys­
tems provide this capability. 

In other cases. an administrator or intrusion detection system may be able to tell from 

operating system audit trails or network traffic that something is amiss, but may not be 
able to confirm or dispel that suspicion. In this situation. synchronizing events reflected in 
low-level kernel audit records with coarser-grained log events can sometimes help deter­
mine whether further investigation and/or responses are required. In Chapter 4, "Analysis 
Schemes," the discussion of the consolidation of multiple data sources will continue. 

3.2.8 Applications Information 
So far, we have focused on collecting data for intrusion detection at the system level. This 
approach reflects a rather traditional belief of computer security: The only trustworthy data 
is data collected in the bowels of the system, out of reach of all but the most expert 
intruders. Although this perception can still be true, as systems and operating systems 
evolve, so do security threats and protection models. 

In a world in which the speed and complexity of systems seems to grow without bounds, 
those trying to protect their systems naturally look frrst for signs of trouble that are com­
prehensible to mere mortals. In modern systems, application logs often represent the only 
available user-level abstractions of system activity. As such, these logs may well be the only 
places in which administrative security policies can be traced and noncompliance with 

those policies shown. 

Many members of the intrusion detection community assert that In the future all event 
information of interest will be generated at the application level. This effect is likely due to 
multiple factors. Perhaps the most powerful force driving monitoring toward the applica­
tion level is the advent of object-oriented and distributed systems. We already note this 

. . 



82 SYMC 1007

l ( 

Ll CHAPTER 3 Information Sources ~ 

trend in current versions of Microsoft Windows NT. as many events formerly recorded at 
the operating system event log level have migrated to application data stores. 

Almost all commercial operating system audit mechanisms support the generation of 
application-level audit entries, but few include audit features in their own applications. 
Those that do compensate by automatically turning off operating system kernel audit for 
processes invoked by the application. This measure can be risky because it is difficult to 
guarantee that the application is completely trustworthy, but this feature makes audit logs 
somewhat easier to comprehend. 2 

3.2.8.1 Applications Data Sources Example 1: Database Systems 
One example of an application environment in whJch the need for audit trails and Intru­
sion detection is apparent is the database management system. In many large organiza­
tions, the most critical information resources are housed and accessed strictly via the 
database management system. For example, many health care institutions store patient 
records and other sensitive data on large database systems. Government agencies maintain 
large databases of tax and voter registration records. 

Early in the Trusted Systems Initiative, the U.S. Department of Defense chartered research 
to explore the issues associated with application-level auditing of trusted database manage­
ment systems. This research isolated several issues associated with audit and intrusion 
detection on these systems-some are similar to those challenges associated with operating 
system audit (for Instance, performance issues); some are not. 

Issues Associated with Data Volume 
One such issue concerns audit data volume. In databases, as in operating systems, giga­
bytes of audit data can be generated In a matter of hours. This factor suggests several con­
siderations when designing intrusion detection systems: suitable compression/ archival 
techniques for audit data, policies and techniques for performing audit data reduction, and 
granularity of audit control. Granularity of audit control refers to whether the audit mech­
anism can be directed to record audit records for each event type; or whether the audit 
records must be switched on or off for an entire group of events, not just one. The latter 
approach is more apt to lead to problems with audit data volume because it forces the 
audit mechanism to record an entire group of events just to capture the needed one. 

Temporal Issues 
Another issue involves the time of audit data generation. Depending on where a 
software developer places a call to the audit subroutine to generate an audit event, a 



83 SYMC 1007

~ Intrusion Detection 

discrepancy can develop between a system event and the recording of an audit record 
reporting that event. 

If you generate an audit record at the beginning of the execution of the transaction. you 
run the risk of having the time of execution off by fractions of a second to minutes or even 
hours. depending on the time it takes the execution of the transaction to complete. Worse 
yet, you also run the risk of the transaction crashing or aborting after the audit record is 
generated, resulting in a discrepancy between what the audit trail indicates happened and 
what actually happened. 

If. on the other hand, you generate an audit record at the end of the execution of the 
transaction, you eliminate the possibility of directing the operating system or application to 
take corrective action in response to a detected problem. (An example is blocking access or 
commands upon evidence that something Is amiss.) 

Issues Associated with Level of Abstraction 
Similar tradeoffs occur in both database systems and operating systems between the granu­
larity of audit records and the ability of the user to make sense of the audit data. The lower 
the level of abstraction reflected by the data, the subtler the attack that the system can 
reveal. The higher the level of abstraction, the more intuitively obvious the reported events 
are to the reviewer. For this reason, in database systems (as In UNIX systems) many advo­
cate the use of database transaction logs when performing intrusion detection. The use of 
these transaction logs and UNIX system logs present some of the same problems. For 
Instance, they are not as well-protected as system audit trails are. If the database software 
itself is corrupted by an adversary, the transaction log can lie to you about what really 
happened, showing that a transaction occurred when operating system audit trails indicate 
that another operation was substituted for the purported transaction. Because many of the 
critical information resources that customers want to protect reside In large databases. 
database management system audit mechanisms comprise an important Information source 
for intrusion detection systems. This remains an extremely important area of research.8 

3.2.8.2 Applications Data Sources Example 2: WWW Servers 
Because the current explosion in electronic commerce is built upon the World Wide Web, 
the Web server application is a common source of application-level information. Most Web 
servers support access log mechanisms that can be a rich source of information. 

Access Log Formats 
Current Web servers support at least two standard formats for log files. The first is the 
Common Log Format (CLF), derived from the early versions of the NCSA Web server. 



84 SYMC 1007

CHAPTER 3 Information Sources ~ 

(The National Center for Supercomputing Alliances was the source of the first widely 
deployed Web browser.) The second is an extended log format that depends on the spe­
cific Web server. 

CLF Jogs contain the information displayed in Table 3.2. 

~r.M)i~r,,2:::: CLF Log 
----------~----------------------------------

Field 

The host name of the visitor 
accessing the site 
rfc931 

The use rna me if a user ID 
was sent for authentication 
The date and time of the 
request plus time zone 
information 

Format 

"Host.subnet.domain.net" 

information returned by identd for this user; 
otherwise "-" 

useriD 

[DD/MMM/YYYY]:HH:MM:SS +TZOJ 

The name of the page ''GET xxx.host.subnet.domain.net" 
requested and the protocol 
used by the server to 
communicate the page 
The status code for the NNN. "-" if not available 
request (ZOO indicates success) 

The number of bytes NNNNN, "-" if not available 
retwned by the request 

A typical CLF access log entry would appear as follows: 

duh.infidel.net-bbace[5/May/1999:02:00:03 +0600]'GET/-sret1/HTTP/1.0" 200 18939 

An extended log file might include the data fields included in CLF plus additional infor­
mation. This extended format is displayed in Table 3.3. 

!f.t~.'-~ Extended Common Log File Format Description 

Field 

The host name of the 
computer accessing the site 
rfc931 

The username if a user ID was 
sent for authentication 

Format 

"Host.subnet.domain.net" 

information returned by identd for this user; 
otherwise "-" 

useriD 

continues 



85 SYMC 1007

~ Intrusion Detection 

Table 3.3 Continued 

Field 

The date and time of the 
request plus time zone 
information 
The name of the page 
requested and the protocol 
used by the server to 
communicate the page 
The status code for the 
request (200 indicates success) 

The number of bytes returned 
by the request 

The address of the referring 
URL to this page (if visitor 
utilized) a hot link to access site 

Format 
[DD/MMM/YYYY] :HH:MM:SS + TZO] 

~GET xxx.host.subnet.domain.net" 

NNN. •-" if not available 

NNNNN, "-" if not available 

http://www.refsite.com/pagedir/page 

The browser name and version ~browsername/versionnumber" (OS details) 
used by the visitor 

Therefore, the preceding access results in this log entry: 

duh.infidel.net·bbace[S/May/1999:02:00:03 +0600)'GET/-sret1/HTTP/1.0 ' 200 1893 
"http: //www.yahoo.con/security/anomalies• ' Mozilla/2.0(X11;I;SUNOS A 06.07.8000/725) 10 

On the Microsoft front, Internet Information Server offers logs in either the CLF or a cus­
tomized extended format. In addition, the server offers the administrator the option to log 
entries to a text file or to an open database connectivity (ODBC) database for later quertes. 

Because Web server Jogs are used as a basis for measuring Web site statistics that affect 
revenue generation in commerce sites, we can expect Web server vendors to continue to 
provide both embedded application log generators and some modicum of protection to 
these logs. 

3.2.8.3 Issues Associated with Application Audits 
The issues associated with application audits mirror many of the fundamental challenges of 
intrusion detection. The first of these is the temporal ordering of audit events. Any time 
you attempt to make sense of a chain of events based on information collected from more 
than one point of view, you need a way of organizing the information. In intrusion detec­
tion. information is usually organized by recording or assigning a time to each event and 



86 SYMC 1007

CHAPTER 3 Information Sources ~ 

then placing the event stream in order according to this time stamp. If the time stamp is 

missing, then you are limited to seeing things that occur In a particular Instant of time. 

The second class of issues concerning application audits involves combining the audit trails 
so that users can make sense of them. The term composition is sometimes used to describe 

the combining of data streams; when the event streams involve information at a higher 

level of abstraction, some people use the ·arttflcial intelligence term fusion for this process. 
Composition and fusion both present significant challenges for a number of reasons. 

We explore these reasons in more depth when we discuss current issues in Chapter 7. 

3.2.9 Target-Based Moni toring 
Target-based monitoring is a variation on standard host-based monitoring. The premise 
of target-based monitoring is that in systems in which resource constraints prevent com­
prehensive kernel-level auditing, the partial logging of system activities is still possible. To 
determine where to perform Jogging, we first assess the most critical or valuable objects 

within the system. and then construct monitoring mechanisms designed to collect stale 
information of the object. The state transitions of the object are compared to a security 

policy and any discrepancies recorded. 

3.2.9.1 Definition of Target-Based Monitorii1g Approaches 
The most common target-based monitoring approach uses cryptographic integrity checkers 

to monitor state changes in system objects, such as critical files. Although this approach to 

monitoring is static (unlike the dynamic approaches represented by audit and logglng 
mechanisms), it is still a powerful addition to the intrusion detection arsenal. The differ­

ence between the static target-based approach and dynamic approaches can be described as 

follows: Target-based monitoring is analogous to snapshots; dynamic approaches are analo­

gous to video images. Consider the difference between the two when they are used to 

record the security status of a file cabinet. Although the snapshot might not inform us 
immediately of a problem. if the camera is set to take snapshots at one-minute intervals, it 

can provide valuable Information at a very low cost. Video monitoring. on the other hand, 
displays a problem as It happens. However, a video camera costs more than a fllm camera, 

and if no one is present to react to the information, the speed of detection may be irrele­

vant to the organization. 

An integrity checker computes a cryptographic checksum for every guarded system object 
and stores the result in a protected location. The checker computes the checksum using a 

specialized algorithm called a message digest algorithm. (Such algorithms are also known as 



87 SYMC 1007

'· 

-

~ Intrusion Detection 

cryptographic hash codes or hash functions.) Message digest algorithms are designed with 
two goals in mind. The first goal is to make the algorithm "cryptographically strong." 
meaning that the possibility of the algorithm computing the same result for two different 
inputs is small enough to be considered nonexistent. The second goal is to have a small 
change in the input to the algorithm produce a large change in the output. Thus, even the 
tiniest change in the protected object will be apparent at the second stage of integrity 
checking, when the cryptographic checksum is recomputed and the result compared to the 
stored value. 

3.2.9.2 Rationale for Target-Based Approaches 
One justification for target-based monitoring approaches is the following: In UNIX-based 
operating systems, all items of interest to users-including network connections, devices, 
and processes-can be represented as rues. These items are represented by structures called 
inodes. Figure 3.5 shows the structure of an inode. 

~ Flg9fe 3.9 · · Contents of a UNIX File System lnode6 

E 
~ Location Type Size in Bytes 

., lnode Contents File 
E Modified Modified Accessed 
I= 

CTime Mtlme At/me 

Reference Location of Data 
Count (Disk Address) 

Integrity checkers were designed to augment a traditional feature in some file systems. The 
primary checksum mechanism provided in UNIX systems (sum) is a cyclic redundancy 
check (CRC). However, this checksum is generated by a well-known polynomial. 
Furthermore, because the original purpose of CRC polynomials was to detect errors in data 
communications over noisy channels, the polynomials were designed to detect random 
changes, not deliberate modification of file contents. Analysis of early hacker attacks discov­
ered a common use of tools that allowed you to nullify the CRC's capability to detect 
changes In a modified file. Therefore, stronger mechanisms were clearly required. 

The Tripwlre® integrity assurance tool was developed by Gene Spafford and Gene Kim of 
the COAST project at Purdue University. Tripwire®11 was written in the early 1990s to 
optimize the process of utilizing cryptographic hash codes to protect critical files and 
objects In UNIX systems. The strength of the cryptographic mechanisms and the numer­
ous options allowed security personnel to focus on critical files. generating information 
that constitutes a powerful data source for any detection mechanism. The system is now 
available as a commercial product, with versions for Solaris, Wind~ws NT, and Linux. 12 

l 
"l 
I 



88 SYMC 1007

;I 
~ 
•' r'· 

CHAPTER 3 Information Sources ~ 

3.3 Network-Based Information Sources 
Network traffic is the most common information source in current commercial intrusion­
detection products. In network-based approaches, information is collected from the net-· 
work traffic stream as it travels on the network segment. In this section we consider 
network data as an information source for intrusion detection. 

3.3.1 Why Network Sources? 
Network-based information sources are popular for many reasons. Primary among them is 
the fact that the information gained by network monitoring is considered to come at low 
or no performance cost because the monitor simply reads packets as they cross its network 
segment. Therefore, running the monitor does not affect the performance of other systems 
on the network. 

Another advantage offered by network-based information sources is that the monitor can 
be transparent to users on the network. thereby decreasing the likelihood that an adversary 
will be able to locate it and nullify its capabilities without significant effort. Because the 
primary resource required of the monitoring system is storage space, organizations can 
sometimes use older. slower systems to perform monitoring on a network segment. 

Finally. network monitors can see evidence of certain classes of attacks that are not easily 
visible to host-based systems. These attacks include network attacks based on malformed 
packets and various denial-of-service attacks, including packet storms. 

3.3.2 Network Packets 
A network-based ID system views packet traffic on its network segment as a data source. 
This is usually accomplished by placing the network interface card in promiscuous mode. 
Promiscuous mode is a network interface setting that generates interrupts for all network 
traffic that crosses the segment. Although simple and powerful, this approach does not 
always work on modern network systems. For instance, in the case of switched networks 
the network switch acts to Isolate network connections between hosts so that a host can 
see only the traffic that is addressed to it. Also, data that travels via other communications 
media (such as dial-up phone lines) cannot be monitored using this approach. 

An interesting approach to providing network-based monitoring and data collection is 
provided by Network Flight Recorder (NFR). Developed by Marcus Ranum, whose prior 
accomplishments included the design and development of several of the earliest network 
firewalls, NFR is not actually a network-based intrusion detection tool, but a generic net­
work monitor with APis suitable for supporting add-on intrusion analyzers. The packet 
capture and reassembly features of NFR are a real boon to customers who want to build 
customized, network-based, intrusion-detection systems. 



89 SYMC 1007

~ Intrusion Detection 

3.3.3 TCP/IP Networks 
The Internet and the Transmission Control Protocol/Internet Protocol (TCP /IP) proto­
col that enables it represent the staging area for much of the behavior that is of security 
interest today. As the protocol standards dictate the steps required to use network packet 
traffic as a data source, it is helpful to understand how TCP /IP works, and how It struc­
tures and packages data. 

3.3.3.1 A Brief History of TCPIIP 
TCP/IP was created In the 1960s under the ARPANET Initiative. Funded by the 
(Defense) Advanced Research Products Agency (ARPA), the goal ofTCP/IP was to 
enable the military to use computer networks that were robust enough to withstand any 
kind of disruption, up to and Including nuclear war. TCP /IP networks are packet-based, 
shared communications networks in which communications between systems on the 
network take place as sequences of discrete packets. The packets travel a series of seg­
ments, interconnected by devices called gateways and routers, which are designed to 
make intelligent decisions about the optimal paths that packets should take en route to 
their destinations. 

3.3.3.2 Structure of the Protocol Stack 
The TCP/IP stack contains four protocol layers, which are pictured in Figure 3.6. The 
four layers are stacked so that each one uses the services of the layer below it. They are 
organized this way: 

• Applications Applications such as mail, video server, login, and ftle transfer are on top. 

• Transport Next is a protocol layer, such as TCP, which supports the applications by 
providing a reliable "virtual circuit" between the endpoints of the network connection. 
The overhead associated with this function includes splitting the data flow into pack­
ets, performing error correction, and calculating sequence numbers in order to recon­
struct packets in proper order at the destination. 

• lntecnet Next is the IP protocol, which serves as a packet multiplexer. It affixes an 
IP header to each packet from the higher-level protocols, and then sends it to the 
appropriate device driver for transmission to the specified destination. The nature of 
IP layer service is that each packet stands alone; this is a datagram service, not a vir­
tual circuit. 

• Network interface Finally, the bottom layer consists of device drivers that manage the 
physical communications medium, such as an ethernet local area network or Fiber 
Distributed Data Interface (FDDI). 



90 SYMC 1007

l__ 

CHAPTER 3 Information Sources ~ 

Fjg~re 3.fL, Simplified TCP/IP Protocol Stack13 

APPLICATION RIP Ping 
r--L~----~~--~--~~~~~L-~--+-;--1---. 

TRANSPORT ICMP OSPF 

r-------------------------------~--------~~--~---+--~ 
INTERNET 

NElWORK 
INTERFACE 

Ethernet 

3.3.3.3 IP Address Structure 

ARP 

ppp 

In TCP /IP, IP addresses are constructed of a 32-bit number that Is divided into two parts: 
a network portion and a host portion. The host portion of the address is usually divided 
into a subnet and host address, where subnets are used to perform routing internal to an 
organization. 

The number of bits used for the network is variable; many environments divide a single 
Class B network into 254 subnets. IP addresses are also characterized as a set of four 
octets. In the address, each octet is delimited by a period, yielding an address that looks 
like this: 125.30.254.1. Another scheme for addressing hosts on the Internet Is to use a 
specialized distributed database called the Domain Name System (DNS). DNS translates 
the IP address into a textual address (for example, fw3. inf ide! . net). 

3.3.3.4 Packet Structures 
The TCP layer adds header information to packets, as shown in Figure 3.7. 

IP Packet (Datagram) Header Format13 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

Telnet I IHL I TOS Total Length 

Identification Rags I Fragment Offset 

TTL I Protocol Header Checksum 

Source Address 

Destination Address 

Options. . . . (Padding) 

Data ... I 



91 SYMC 1007

~ Intrusion Detection 

The packet with TCP header information is then forwarded to the Internet layer, where 
the IP datagram header is attached. The content of IP packet headers is shown in 
Figure 3.8. 

Figure 3.8 TCP Segment For.m13 

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

Source Port Destination Port 

Sequence Number 

Ad<nowledgement Number 

Offset I (reserved) I Flags Window 

Checksum Urgent Pointer 

Options. ... (Padding) 

Data .•• I 

Finally, the packet is passed to the network interface and sent on to the intended destina­
tion, where the TCP layer strips off the header information and reconstructs the data 
stream from the source machine. 

3.3.4 Packet Capture 
Given this background information about the protocol stack and packet structures, we 
next turn to the following question: How do you actually grab packets from the network? 
We consider the two prevailing environments in which this step is performed. UNIX and 
Windows, and attempt to highlight the options available in each. 

3.3.4.1 Windows/NT Packet Capture Options 
Prior to the release of Windows NT. many of the packet-capture options avaJlable for 
Microsoft platforms were in the form of tools that captured raw data from ethernet net­
work adapters. Examples of these tools Included Gobbler, Ethdump, and Ethload. 

Starting with early versions of Microsoft Systems Management Server (SMS), Microsoft 
provided the Microsoft Network Monitor, a packet sniffer designed to run under 
Windows NT. Effective with the release of Windows NT Server 4.0, Microsoft fielded 
the Network Monitor Tool as a standard feature in the operating system. It offered 
ethernet frame capture with a variety of protocol parsers, a filter language, and a 
Windows-standard user interface. 

l 



92 SYMC 1007

CHAPTER 3 Information Sources l.:.:_ 

Microsoft also provides an interface that allows a remote machine to connect and capture 
local data. This password-protected feature has generated some Interest within the security 
community because at least one hacker group has broken the authentication mechanism! 

3.3.4.2 UNIX Packet Capture Options 
The body of packet capture utilities in UNIX is far richer than in Windows environments. 
One reason is that most network technologies have evolved within the UNIX environ­
ment. and UNIX's popularity has In no small part been driven by this support of network­
ing. In general, Windows also appears to have been developed with the assumption that 
most administrators in Windows environments have little to no interest in tinkering with 
the low-level operating system code. 

That observation aside, let's take a look at the approaches to network packet capture 
under UNIX. This survey starts "in the olden days" to accommodate the fact that many 
users have not. for various reasons, chosen to run the most current operating system ver­
sions. This approach is also helpful for understanding how changes in the low-level 
packet-handling schemes have driven requirements for packet capture and analysis. 

Early Packet Capture Approaches 
The requirement for packet capture facilities in UNIX is rooted in the need for network 
managers and engineers to have diagnostic and analysis tools. As enterprises have become 
more reliant on networked systems. the importance of isolation and correction of network 
problems has grown. 

The earliest work in the packet capture and filtering area resulted In the Xerox Alto 
packet filter. This packet filter was adapted to UNIX by a team from CMU and Stanford 
in the late 1970s/ early 1980s. The CMU /Stanford Packet Filter (CSPF) was designed to 
run on a DEC PDP-11 computer. The CSPF design was carried forward into standard 
packet niter mechanisms that are Included in more modern UNIX operating systems: 
NIT (Sun OS), UPF (Ultrix), and Snoop (IRIX). 

The CSPF used a memory-stack-based filter mechanism, optimized to the older system 
architectures that were common at the time. It used an expression tree to perform filtering 
operations, which led to some redundant computations and subsequent losses in perfor­
mance. The package was restricted to parsing fuced-length packet headers and was further­
more restricted to 16-bit data types (a problem, considering that Internet addresses and 
TCP sequence numbers are 32-bit data!). Despite Its problems, CSPF had significant 
strengths as well, notably a packet-handling scheme that allowed CSPF to be protocol 
independent and an abstraction scheme that allowed users to more easily describe and 
implement the filtering mechanism. 



93 SYMC 1007

~ Intrusion Detection 

Berkeley Packet Filter 
Realizing that there was a mismatch between the CSPF design and more modern RISC­
based CPUs, researchers from Lawrence Berkeley Laboratory developed a new kernel 
architecture for packet capture in the early 1990s, called Berkeley Packet Filter (BPF). 
BPF Implemented two architectural improvements over CSPF. First. BPF switched from a 
memory-stack-based filter to a register-based filter (a better match with the register-based 
RISC processors prevalent in modern systems): second, it used the massive Increases ln 

memory address space by relying on a nonshared memory model. The performance 
improvement over CSPF-based mechanisms was impressive, showing up to 150 times 
greater performance tested against the same hardware and traffic combinations. 

BPF has two primary components: a network tap and a packet filter. The network tap rakes 
packet Information from network device drivers and carries It to listening applications. 
After the packet reaches the listening applications, the lliter grabs the data and, based on 
the flltering operation, decides whether the data should be delivered to the listening appli­
cation. If so, it decides how many bytes of data should be passed. (For instance, a return 
value of zero indicates that the packet should be completely dropped.) 

Two widely used network-monitoring applications use BPF, tcpdump, and arpwatch. 
Tcpdump is a network monitoring and data acquisition tool that performs filter translation, 
packet acquisition, and packet display. The filter translation function provides a high-level 
language for characterizing filters, along with a user-transparent compiler and optimizer 
that yields BPF programs. Tcpdump Is available In versions for SunOS, AIX, Ultrix, and 
BSD versions of UNIX. Arpwatch is a monitoring program that tracks ethernet to IP 
address mappings. and notifies administrators when new bindings are made or abnormal 
activity Is observed. 14 

3.3.4.3 Libpcap 
Some Intrusion detection vendors (notably Network Flight Recorder) use libpcap, the 
packet-capture library used by tcpdump. Libpcap is a system-independent interface that 
provides a portable framework for low-level network monitoring. The portability across 
system platforms provided by libpcap is of considerable value to those who function In 
heterogeneous system environments. Other advantages associated with the use of libpcap 
include the capability to download any first-cut packet filtering into kernel memory, 
which presents significant Improvement In performance. In addition, libpcap Is supported 
ln Linux. which is growing in popularity as a platform for network monitoring and 
intrusion detection applications. 15 



94 SYMC 1007

i 

• 

L 

CHAPTER 3 Information Sources ~ 

3.3.4.4 STREAMS-Based Packet Capture 
STREAMS is a system programming model for writing device drivers. Originating in 
AT&T versions of UNIX and supported In a variety of major UNIX operating systems 

(including Sun Solaris, HPUX, SCO UNIX, and IBM's AD(), STREAMS provides an 

extensive collection of system calls, kernel resources, and kernel utility routines that create, 

use, and dismantle a data stream. A stream Is defined as a full-duplex processing and data 
transfer path between a kernel-resident driver and a process in user space. A stream is 

designed as a pipe structure, with data passing between a driver and the stream head via 
messages ("upstream" or "downstream, • depending on whether the messages are traveling 
from the driver to the stream head or vice versa) . 

Packet capture and buffering is offered as part of the standard STREAMS libraries (pfmod 

and bufmod, respectively, in Solaris), although the architecture of STREAMS makes the 
performance suboptimal when compared to the BPF-based approaches. The data link 
provider Interface (DLPI) , a sniffing Interface, ts also widely used on systems that use 

STREAMS. 16 

3.3.5 Network Devices 
In addition to packet sniffers, various other network devices can yield information that 
affects the detection of problems. For example, a network management system can provide 

performance and utilization statistics that are extremely helpful for determining whether a 

detected problem is likely to be secuJity-related or due to other system factors. Because an 
Important design goal is to perform monitoring and detection in a fashion that optimizes 

the performance of the system being protected, investigating and using existing Information 

sources is always preferable to custom building or duplicating the data-collection process. 

3.3.6 Out-of-Band Information Sources 
A category of data sources that is often neglected by those researching or designing intru­

sion detection systems is "qut-of-band" sources. This category encompasses information 

that comes to the system by nonsystem, sometimes manual means. Although the notion of 

a human operator assisting and directing the system as it analyzes information for signs of 
problems is not as glamorous as a sophisticated artificial intelligence approach, relying on 

human assistance Is still an effective way to perform tltis function. 

Human Input can be in the form of information that ts manually generated, recorded, or 

reported. An example of this type of Input is the manual logging of events that occur in 

the system environment. These manual logs can include entries documenting hardware 

failures, power interruption, failures of systems not within site control (such as telephone 

service), or anomalous events (threats or natural disasters) that might affect the outcome 
of an event analysis. 



95 SYMC 1007

~ Intrusion Detection 

An additional human Input comes in the form of user interaction with intrusion detection 
control components. This type of input can consist of system configuration or policy entry 
at the time of system inStallation and setup. It can also take the form of active interaction. 
with the system console, responding to detected problems by directing the system to take 
additional action. Several generations of intrusion detection systems are likely to be 
required before detection schemes are mature and reliable enough to allow unsupervised 
operation. For some environments, the total automation of intrusion detection analysis 
functions may never be appropriate. In the meantime, you should consider intrusion detec­
tion systems as diagnostic tools that allow you to "see* system activity through a security­
savvy prism, using this higher-level view to ga1n additional expertise in recognizing and 
dealing with security problems. 

3. 4 Information from Other Security Products 
In general, the more event Information that is considered in perfonnlng intrusion detec­
tion analysis. the more accurate and sensitive the results. This relationship Is especially true 
In performing intrusion detection on networks, where stand-alone security products are 
common. 

Many firewalls, I&A systems, access control systems, and other security devices and subsys­
tems generate their own activity logs. These logs contain Information that Is, by definition, 
of security significance; they are therefore of particular value to the intrusion detection 
process. Including these logs as information sources is an obvious way to improve the 
quality of the intrusion detection process. 

The process of integrating and analyzing event logs from other components of the system 
security infrastructure represents a significant and enduring role that intrusion detection 
systems can play. This role continues to be relevant, even as strong encryption or other 
measures address those threats we consider of greatest concern today. Although technical 
environments change, the attack strategies of adversaries remain relatively stable. Because 
an elementary step in attacking a system is to locate, investigate, and then nullify the exist­
Ing system protectlous, monitoring security products wiU remain a stable requirement. 

3.4.1 An Example of a Security Product Data Source 
Table 3.4 presents a format diagram of the firewall log file generated by Flrewall-1, a 
CheckPoint Technologies product. It allows you to see the transactions processed by the 
firewall, including mappings of ostensible sources and destinations of connections, the 
names of system objects associated with the transactions. and other information that was 
selected for Inclusion. 



96 SYMC 1007

l 

CHAPTER 3 Information Sources L2i_ 

.raple~.,:4 .? Firewall-1 Log File17 

Fie ld No. Name of Field Contents 

1 Number Transaction identifier 
2 Date Date of event- D(D)MMMYY 
3 Time Time of event-HH:MM:SS 
4 Action Accept or deny 
5 Type 

6 Origination 
7 Alert 

8 Interface name MAC address of ethernet card 
9 Interface direction Inbound/outbound 
10 Protocol type TCP orUDP 
11 Src host IP address of source 
12 Dst host IP address of destination 

13 Type of service Network service type 

14 Port number Port number addressed by packet 
for the source 

15 ''Rule" Firewall. rule tripped 
16 Elapsed time Time since session started 
17 Packets for this Number of packets associated with 

session session 
18 Number of bytes 
19 Authenticated username 

20 Messages 

3.4.2 Organization of Information Prior to Analysis 
As we noted when we discussed application-level data sources, issues arise when Integrating 
data sources coming from different points In the network, especially when the sources are 
collected from different levels of abstraction. Security product data sources are no different 
In this regard. 

Perhaps the best rule of thumb to apply in this case is to first temporally order the data 
according to a standard time reference. Network Time Protocol can be helpful in this 
regard; so can other forms of trusted network time service. After the data is sorted in 
chronological order, correlate log events to threat scenarios of Interest. Alternatively, corre­
late Jog events to security policy noncompliance. Because security products are often the 
first heralds of attack, log events that correspond to attacks targeting the security products 
are usually reliable attack signatures in themselves. 



97 SYMC 1007

'· 

~ Intrusion Detection 

As before, this binding of events to a time source, followed by correlation to a threat 
model. can be done either manually or with the assistance of a system. No system currently 
performs this correlation with enough reliability to eliminate the "man in the loop." For 
certain systems and environments, a human will remain a part of the process for some time 
to come. 

3.4.3 Other System Components as Data Sources 
Other system components also provide Information that can be of value In intrusion 
detection. Many of these components are not often considered as legitimate data sources 
because they are not considered to be legitimate parts of the systems. Let's consider an 
example. 

Early intrusion detection systems relied on a great many rules and detection algorithms to 
detect masqueraders, Intruders who gained access to systems by using useriDs and pass­
words purloined from legitimate users. A variety of system audit trail approaches, ranging 
from statistical profiling of user activity (establishing patterns of "normal" behavior) to 
extensive rule trees (outlining the specific behaviors that a masquerader might exhibit) 
were proposed. 

These approaches had a high false-alarm rate, and the amount of time devoted to investi­
gating alleged masquerader attacks was appreciable. 

In this case, information from physical access control systems can help determine whether 
a questionable access to the computer system is an attack. In this situation, if the intrusio!l 
detection system detects a suspected masquerade on the internal network, it can then 
query the physical access control system. If the physical access system Indicates that the 
user in question is not on the premises, the implication is that the diagnosis of a masquer­
ader attack Is correct. 

In another example of an out-of-band information source, consider a case In which a 
hacker attacks the network from a dial-up cormection. After the specific modem used by 
the hacker Is identified, the telephone switch caller ID channel might provide information 
that is useful to investigators who hope to Identify the hacker. Telephone system traps and 
traces have also been used for this purpose. 

3.5 Conclusion 
In this chapter, we took a look at the plethora of data sources available for intrusion 
detection. We considered sources from different points within the system at different lev­
els of detail and different levels of abstraction. In the next chapter, we begin to analyze 
the information drawn from these sources. 



98 SYMC 1007

-.., 

~ 
·! 
·~ 
~ 
' 

CHAPTER 3 Information Sources L2?__ 

Endnotes 
National Computer Security Center. "Department of Defense Trusted Computer 
System Evaluation Criteria." Ornnge Book, DOD 5200.28-std, December 1985. 

Price, K. E. "Host-Based Misuse Detection and Conventional Operating Systems' 
Audit Data Collection." Master thesis, Purdue University, December 1997. 

Solaris Reference Manual Answerbook. Sun Microsystems. Inc. Mountain View. CA. 
1994-1998. 

VVindows NT Reference Manual. Microsoft Technet. Microsoft Corporation, 
Redmond, WA. 1999. 

Lichtman, Z. L. and ]. F. Kimmins. "An Audit Trail Reduction Paradigm Based on 
Trusted Processes." Proceedings of the National Computer Security Conference, 
October 1990. 

Garfinkel, S. and E. H. Spafford. Practical UNIX and Internet Security. Second 
Edition. O'Reilly and Associates, 1996: 290. 

Stoll, Clifford. The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer 
Espionage. New York, NY: Doubleday. 1989. 

Schaefer, M., B. Hubbard, D. Sterne, T. K. Haley, J. N. McAuliffe. and D. Woolcott. 
"Auditing A Relevant Contribution to Trusted Database Management Systems." 
Proceedings of the Fifth Annual Computer Security AppUcations Conference. Tucson. 
AZ. December 1989. 

9. World Wide Web Consortium. "Logging Control in W3C httpd. " in httpd documen­
tation: User's Guide http: //www.w3c. org/daemon/user/logging. html. 

10. Hallam-Baker, PhiJiip and B. Behlendorf. "Extended Log File Format." World Wide 
Web Consortium Working Draft, WD-logfile. 960523, WWW Journal. issue 3. 
March 1996. 

II. 

12. 

13. 

14. 

Tripwire® is a registered trademark of the Purdue Research Foundation. 

Kim, G. H. and E. H. Spafford. "Tripwire: A Case Study in Integrity Monitoring." 
Internet Besieged: Countering Cybenpace Scofflaws, edited by Dorothy and Peter 
Denning. Addison-Wesley. 1997. 

Kessler Hill Associates. Inc. C. Gary. "An Overview of TCP /IP Protocols and the 
Internet.'' April 23, 1999: http://www. hill. com/library /tcpip. html. 

McCanne, S. and V. Jacobson. The BSD Paclcet Filter: A New Architecture for User­
Level Packet Capture. 1993 Winter USENIX Conference, San Diego, CA, 
January 1993. 



99 SYMC 1007

___2!_j Intrusion Detection 

15. Ranum, M.J .. K. Landfield, M. Stolarchuk, M. SienkJewicz, A. Lambeth, and E. Wall. 

Implementing a Generalized Tool for Network Monitoring. Proceedings of the Eleventh 
Systems Administration Conference (LISA '97), San Diego, CA. October 1997. 

16. Streams Driver Overview. Driver Development for SCO Systems, The Santa Cruz 
Operation, Santa Cruz, CA. 1999. 

17. Sundstrom, Peter. "Firewalls-1 Report Summariser (fwlogsum version 3:6.0)." 
W~¥W. ginini. com. au/tools/fw1, August 1999. 

\ 



100 SYMC 1007

' 

CHAPTER 

Analysis Schemes 
• Is there any other point to which you would wish to draw my attention( 
·To the curious incident of the dog in the nighttime. • 

• The dog did nothing in the nighttime.· 
·That was the curious incident,· remarked Sherloclc Holmes. 

- Sir Arthur Conan Duyle 

Given a variety of rich information sources about the system activities you're charged with 
monitoring, the next stop on the intrusion detection drcuit is analysis. With analysis, 
you're faced with the core issue of intrusion detection: What is going on here, and should I 
be interested in or concerned about it? 

Within the analysis function, information is synchronized, classified, and subjected to 
scrutiny of various types to identify activity patterns of security significance. This chapter 
covers the vast area of analysis, considers the various goals of analysis, and discusses the 
issues you must take into account when devising an analysis scheme for a particular goal or 
system. It also explores the variables that affect the quality of the analysis. 

4.1 Thinking About Intrusions 
In considering the analysis functions of intrusion detection. let's start by articulating the 
detection process In intuitive terms. This definition will lend structure to the subsequent 
discussion of the fundamental issues and functions of analysis. 

4.1.1 Defining Analysis 
Analysis, in the context of intrusion detection, is organizing and characterizing data about 
user and system activity to identify activity of interest. This aCtivity can be isolated either as 



101 SYMC 1007

~ . 

~ Intrusion Detection 

It happens or after the fact. In some cases, further analysis is needed to establish account­
ability for the activity. Depending on the type of analysis. additional evaluation may be 
performed to tune or otherwise improve the outcome of subsequent analysis. 

Intrusion detection is the second step In a general system security managellfent process 
model, pictured in Figure 4.1. This model is helpful because certain analysis functions 
serve the needs of the investigative and resolution steps of the management process. 

. Figure. 4,1 

4.1.2 Goals 

A General Model of Security Management 

Recovery/ 
Resolution 

Prevention 

Investigation 

Monitor and 
analyze 

Problem 
detected 

Security managers hope to gain several benefits by performing Intrusion detection analysis. 
The overarching assumption is that people use intrusion detection systems to Improve the 
security of their Information systems. 

• Significant deterrence One benefit a security manager seeks is to deter problem 
behaviors. The knowledge that analysis is being performed and the credible threat of 
discovery and punishment serve as a deterrent to Intruders. 

Quality control for security design and administration Problems that are discov­
ered in the course of analysis can Indicate flaws In the design and management of 

\ . 
~.~ 

I .. 



102 SYMC 1007

.I/ 

'· 

CHAPTER 4 Analysis Schemes ~ 

security for the system. The security manager, so notlfled, can then correct these 
problems before an adversary utillzes them to damage or steal information. 

• Useful information on actual intrusions This information should be relevant, 
detailed, and trustworthy so that it can support criminal or civil legal remedies. It can 
also be used to identify needed corrections in tht> organization's security configuration, 
policy, or strategy. 

4.1.3 Supporting Goals 
Now that the goals of the analysis process are outlined, It's time to consider how each one 
drives specific functional requirements for an intrusion detection system. Structuring the 
requirements as sets of prioritized goals and subgoals helps to optimize the system. 

4.1.3.1 Requirements 
Intrusion detection analysis supports two basic requirements. One Is. as we've mentioned 
before, accountability, which refers to the ability to link an activity with the person or 
entity responsible for it. Accountability requires you to be able to consistently and reliably 
identify and authenticate each user of the system. Furthermore, you must also be able to 
reliably associate each user with the audit or other event records of her activities. 

Although the concepts of accountability are straightforward and common In business 
environments, they are difficult to implement in network environments. Unless you're in 
an environment featuring a single sign-on system, which centralizes identification and 
authentication for a large network, a user may have different user identities on different 
systems withtn the network. Because host-level audit trails reflect user activity In terms of 
the user's local identity, keeping track of user identity in activities that involve multiple 
hosts and user accounts requires additional processing. 

The second requirement for intrusion detection analysis is real-time detection and response. 
This requirement includes the ability to quickly recognize the chain of events associated 
with an attack. and the ability to then block the attack (for instance, by terminating the 
network connection used by the attacker) or to shield the system from the impact of the 
attack (for instance, by tracing the commands sent by the attacker and restoring any 
altered files or objects to their pre-attack state). 

4.1.3.2 Subgoals 
Analysis also has subgoals. For instance, you might need to retain information in a form 
that supports system and network forensic analysis. Another subgoal might Involve retain­
ing some knowledge about the system performance or identifying problems that affect 



103 SYMC 1007

~ Intrusion Detection 

system performance. Yet another might involve archiving and protecting the integrity of 
event logs required by regulators or law enforcement entitles. 

4.1.3.3 Prioritizing Goals 
After goals and requirements are articulated, they should be prioritized. Prioritization is 
necessary to determine the structure of the analysis subsystem. The priorities can be ranked 
by schedule (for Instance, "this requirement will be serviced before that one·), by system 
(for example, "all requirements associated with system X will be serviced before those 
associated with other systems·). or by other attributes. 

4.1.3.4 Trade-offs 
At times, the goals and requirements of analysis may conflict. For example. one goal of 
analysis is to minimize the impact of analysis on the performance and resource consumption 
of the target system. However, the requirement to maintain logs for legal purposes often 
conflicts with this goal. In another example. the system overhead required to maintain 
accountability may affect the analyzer's ability to identify Intrusions quickly enough to 
support active response. 

4.1.4 Detecting Intrusions 
To understand the nature of intrusion detection analysis. you should consider the full 
range of intrusion analysis available to customers, starting with those used in older systems. 
Although the focus here is on techniques suitable for automation, consider the full spec­
trum of discovery techniques for security intrusions and other violations of policy. 

4.1.4.1 The Human Detector 
Humans rwetware» or "carbon units") are the most obvious and traditionally the most 
common source of Intrusion information. A system manager may report that a machine is 

acting funny, or a user may report finding evidence of unauthorized activity on a system. 
Unfortunately, this approach is of extremely limited value because most incidents go 
unnoticed at sites where no lntrnsion detection systems are in place. For instance, one 
early study showed that over a period of time in which a prototype intrusion detection 
system detected several hundred intrusions, only 2% of those were detected by the humans 
charged with performing manual intrusion detection. 

4.1.4.2 External Events 
Events external to the computer system often trigger suspicion of potential intrusion. These 
events include hiring and fuing (especially of key personnel), reports of anomalies (such as 
sudden unexplained affluence of employees who work on critical systems}, results of security 



104 SYMC 1007

·' 

!· 

CH APTER 4 Analysis Schemes ~ 

penetration tests, and discovery of missing goods or information. These events are some­
times tracked as part of a traditional corporate fraud detection or loss control program. 

News coverage or warnings posted to the Internet about particular classes of attacks 
also trigger suspicion of potential intrusion. This information appears to encourage the 
Installation or use of antivirus tools. 

4.1.4.3 Precursors to Intrwion 
Next are the signs of intrusion that come from the victim systems. The rrrst sign Is 
evidence of an intruder having primed the system for future attack, which Includes signs 
of trojan horse placement (that is, tampered system files) and unauthorized account 
additions to password files or trusted host configuration files (such as I etc/ .rhosts In 
UNIX systems). These examples were the first symptoms of security problems targeted by 
early security tools such as COPS. 

4.1.4.4 Artifacts of Intrusion 
As precursors to intrusion alert customers to likely incidents, so do those indicators left in 
the wake of intrusions. These artifacts, evidence of past Intrusions, can be reliable indica­
tors of attack for both intrusion detection and vulnerability analysis. They can be 
discovered in real time (immediately upon the completion of the first step of an intrusion) 
or after the fact (during batch mode analysis of log ftles). Artifacts that are discovered 
Immediately can be used by intrusion detection systems functioning in real time. Examples 
of artifacts of intrusions include password sniffer log ftles. unexplained system failures, and 
damaged ftJes. Note that some artifacts are incidental to the intrusion (that is, they are not 
an Intended goal of the intrusion) but excellent indicators, nevertheless, for detection pur­
poses. Examples of such incidental outcomes include abnormal patterns of system resource 
use, discrepancies In accounting records (due to intruders deleting SOEJe. but not all, 
evidence of their activities), and unusual network traffic levels. 

4.1.4.5 Observing Attack in Real Time 
The final scenario for detecting misuse became possible with the advent and avallablllty of 
Intrusion detection systems-recognizing attacks by monitoring systems in real time. The 
ability to detect attacks by using these systems has opened the door to attack-blocking and 
other adaptive system responses to detected problems. 

4.2 A Model for Intrusion Analysis 
Analysis is the core function of intrusion detection. It can be as simple as an ad hoc deci­
sion table constructed by someone who has manually reviewed transaction logs, or as 
complex as a non parametric system trained with millions of transactions. 



105 SYMC 1007

~ Intrusion Detection 

We can look at the process of intrusion detection analysis from several pe~pectives. In this 
section, I define a model that covers all approaches to finding evidence of intrusions in 
system event records. It divides the process of intrusion detection analysis into three pha~: 
constructing the analyzer, actually performing analysis of live data, and feedback or refme­
ment of the process. Each of the first two phases has three functions: data preprocessing, 
data classification (classifying data as either indicative of intrusion, indicative of no intrusion, 
or "not sure"), and postprocessing. 

Flgw-e 4.2 depicts a view of the activity space, reflecting the view of misuse detectors, 
anomaly detectors, and possible gaps between the two. The fundamental debate between 
proponents of anomaly detection and proponents of misuse detection centers on the overlap 
of the regions representing "normal," "misuse," and "not normal" activities. Denning's 
lnltial assertion was that the region of "misuse" activity falls far enough outside the regton 
of "normal· activity to use normality measures as the basis for finding misuse. Therefore, 
her assertion is that the intersection between the two regions is minimal. Proponents of 
misuse detection assert that the Intersection is quite large, to the point that given observed 
errors in characterizing "normal " activity, it is pointless to use anomaly detection as any­
thing but a crude alarm flagging activities that require closer scrutiny. The debate will 
continue for awhile yet, and this remains an open research area. 

Misuse versus Anomaly Detection 

All System Activity 

4.2.1 Constructing the Analyzer 
In the analysis model, the firSt phase is the construction of the analysis engine. The analysis 
engine performs the core functions of preprocessing. classification, and postprocessing. For 
the engine to function properly, regardless of analysis approach, it must be tailored to the 
environment in which it is to operate; hence this phase is necessary even in rudimentary 
systems when It is performed solely as part of system development. 

' 



106 SYMC 1007

CHAPTER 4 Analysis Schemes ~ 

4.2.1.1 Collect and/or Generate Event Information 
The first step of constructing the analyzer is collecting event information. Depending on 
the analysis approach, this phase might Involve collecting event information generated by a 
system functioning in an operational environment, or collecting event information In a lab­
oratory environment. In some cases. the event information may be handcrafted by a 
developer working from a set of formal specifications. 

• Misuse detection For misuse detection. this part of the process Involves gathering 
information about intrusions, including information about vulnerabilities, attacks, 
threats, specific attack tools, and observed scenarios of interest. At this time, 
information is aLso gathered about typical discretionary policies, procedures. and prac­
tices so that the behavioral model can accommodate organization-specific policy 
violations as well as problems associated with external attack. 

• Anomaly detection For anomaly detection. event information is collected from the 

live system itself or from a system designated as similar. This information is needed to 
build baseline profiles indicating "normal" user behavior. 

4.2.1.2 Preprocess the Information 
After event information is collected, It goes through a variety of transformations in prepa­
ration for use in the analysis engine. It may be placed into a canonical or common format. 
This format is usually specified as part of the analyzer design. In some systems, the data is 
also structured (by placing it in a database or indexing it), some feature selection is per­
formed (that is, the most relevant pieces of the data are identified and set apart), or other 
processing is performed. 

• Misuse detection In misuse detection. the preprocessing of data usually involves 
transforming the event information collected into some sort of common form that cor­
responds to the data to be rutered when the intrusion detection system is placed into 
operation. For instance, the attack symptoms and policy violation information may be 

converted into state transition-based signatures or some sort of production system 
rules. In the case of a network-based intrusion detection system, the packets may be 
cached and Transmission Control Protocol (TCP) sessions reconstructed. 

• Anomaly detection In anomaly detection, event data may be translated into arrays or 
tables, with some categorical data (for instance a system name). converted to numeric 
form (such as an Internet Protocol [IP] address). As in misuse data. different informa­
tion may be converted Into some canonical format. 



107 SYMC 1007

~ Intrusion Detection 

·:·jt~t~· :-:-~::.\:''- ::.: . . :_ --~ :. . . . . . . . . . . . ·: . , .. · 
;---:¢~~~bi~Jtf&r~h~-~e~~:~\i9~-~~i)}ti4s~'cul~liow a singie;a·n~lysis·engin'~ to m·aiiitbr ~~-Jti- .' .. 
. :. pl~~ppertti~g- ~~ms/ eaCt1':9fwhich. usu'afly had its own native format for event-·aa~: . ' 
.. ~IntJ;u~ioh'..CI~t~c.tioo dev_elopers co~id then leverage a commoQ analysis engine to an~1§ze . . . . .,. \ ,;. ,..~ .. ;, . . .. ~·' ' , p'*' ·fro"l !llany d,iffer:,.~n-~ operati~g systems. Because this practic~ allowed the develop~rs - : 

;_tl'ftargef~ew operating systems _by translating the new event data to the canonic::tl for-
-: 'mat, significant eeanomic benefits were associated with this design approach. The utility 
' ~r.:ciinbnieal•fotmats 'still appiie~ to situations in which one wishes to perform comrt)Ori 

~ :.:·an~ly$is-~<;ro~.s a.heter9geneo'_qs.'operating·system environment .. ~Some intrusion detectio~­
.,_,:~p~rts ·asser;t that:epougf).ot9alliZa~iOOS have converged on -a common operating ~¥steri) ~ 

: .-,,:i:&?;itieir~el~tlr~ enterprfse so 'tfiat.carionical formats are nb longer warra~t'ed. . . .. :~: ·.:~.;: 
~~·~·~:~;(:··1~: _.::.·~,..:~ ... '~-.:' .:.~ .. tu' ·l ~ -~~ ~~;,~·~~; ~ . . .' . - . .. ~ . ~ ·(·l.

1
" .. <.~ ~j. 

At least one operational system accumulates user session data and then condenses it into 
numeric profile vectors. This reduces the event data to a form that takes up less space in 
memory and In storage. It aJso allows aggregation of certain data fields so that the analysis 

engine can easily recognize certaiJl,user activity patterns. 

4.2.1.3 Build a Behavior Classification Engine or Model 
The system developer, working from the design specification, then constructs a data classi­
fier. This classifier separates event data corresponding to intrusive behavior from event data 
that appears not to indicate intrusions. The composition of this engine depends on the 
analysis approach. 

Misuse Detection 
In misuse detection, the data classification engine is built on behaviors described in terms 
of rules or other pattern descriptors. These rules or descriptors can be divided into single 
part (sometimes called atomic) signatures or multipart (sometimes called composite) signa­
tures. An example of an atomic signature is one that detects a badly formed IP packet 
(with inconsistencies between the packet content and headers). An example of a composite 
signature is one that detects a UNIX sendmail attack (where the attack is a series of care­
fully timed steps). 

One structure for a misuse detector classification engine is a production or expert system. 
Expert systems consist of a knowledge base containing descriptions of suspicious behavior 
based on knowledge of past intrusions (for iustance, those gathered in the previous step of 
this process) and rules that allow matching to be done against the knowledge base. These 
rules are usually structured as if-then-else statements. 

Another structure for a misuse detector classiflcation engine is a pattern-matching engine 
that represents Intrusions as attack signatures (patterns) to be matched against audit data. 



108 SYMC 1007

I , . 

. ! 
CHAPTER 4 Analysis Schemes L!:_ 

Because many systems built on this model are extremely efficient and reliable, it represents 
the most common approach to intrusion detection in commercial products. 

Anomaly Detection 
In anomaly detection, the classification model usually consists of statistical profiles of user 
behavior over time. These profl.les can also be used to characterize the behavior of system 
processes. an Important consideration given the widespread use of automated attack 
scripts. These statistical profiles may be calculated with various algorithms. using schemes 
that make allowances for gradual change in user behavior patterns. The profiles may be 
amended on either a fiXed or variable schedule. 

An example of an anomaly detection-based classification model Is the Intrusion Detection 
Expert System (IDES) . an instantiation of Dorothy Denning's seminal intrusion detection 
system model. 

IDES defines its behavior classification model in terms of measures, single aspects of a user 
or subject's behavior on the monitored system. Figure 4.3 shows the classification of IDES 
measures (first distinguishing ordinal measures from categorical measures and then binary 
from linear). Ordinal or continuous measures are expressed in terms of a numeric count or 
quantification of the measure. Categorical or discrete measures are expressed in terms of 
identity and of frequency of occurrence. 

Categorical measures are divided into two additional classifications. binary and linear. 
Binary categorical measures are characterized in terms of whether the measure occurred or 
not (a true/false switch) , whereas linear categorical measures are characterized in terms of 
a score·indicatlng the number of Urnes a particular behavior occurs (a counter). The 
majority of measures utilized by IDES fall Into the linear categorical group.1 

F'igurej&: ~ IDES Measure Categories and Examples 

CPU time used 

Number of audit recordS produced 

Whether a directory was used 

Whether a file was accessed 

Whether audit records indicated 
use tor day/week/month 

#of times each command was used 

# of system-related errors 

# of login failures in last hour 

#of audit events recorded 

#of fifes modified 



109 SYMC 1007

~ In trusion Detection 

4.2.1.4 Populate It with Event Data 
After the model is built, it is populated with the collected and preprocessed event data. 

This instantiation of the model constitutes the analysis engine for the target system. 

• Misuse detection Misuse detectors are populated with the preprocessed event data or 
contents of an a~tack knowledge base, a collection of information about attacks 
expressed in terms meaningful to the analysis engme. 

• Anomaly detection Anomaly detectors are populated by running them against the 
collected reference event data (training sets) . allowing the system to calculate user pro­
files based on this data. The fact that the historical data used to populate the anomaly 
detector is devoid of intrusions is often assumed without any corroborating evidence. 
Finding ~clean" training sets for anomaly detectors remains a major issue. 

4.2.1.5 Store the Populated Model in a Knowledge Base 
Regardless of approach, the populated model is then stored in a predefined location, ready 
for operational use. At this point, the populated model contains aU of the criteria for analy­
sis, and In fact comprises the actual core of the analysis engine. 

4.2.2 Performing Analysis 
The second of the three phases in the analyzer is the operational analysis of a live event 
stream. In this phase, the analyzer is applied to live data to spot intrusions and other activ­
ity of interest. 

• Input new event record The first step of performing analysis is taking an event 
record as generated by one of the information sources. Such information sources might 
be network packet traces, operating system audit trails, or application log files. and it is 
assumed that they have not been compromised. 

• Preprocessing As in the construction of the analyzer, some preprocessing of the 
event data may be performed. The exact nature of this preprocessing depends on the 
nature of the analysis. Examples include threading together various TCP messages into 
a higher-level abstraction (a usesslon ") and structuring process identifiers from operat­
ing system audit trails into high-integrity process trees. 

• Misuse detection For misuse detectors, the event data is usually converted to 
some canonical form. This form corresponds to the structure of the attack signatures. 
In some approaches, the event data is aggregated (collected to make up some mini­
mum interval of interest, such as a user session. a network connection, or other 
high-level event) . In other approaches, the data is reduced by combining some attrib-

........ --------------
i 

\ 
I 

_L 



110 SYMC 1007

l 
I 

l 

CHAPTER 4 Analysis Schemes ~ 

utes, eliminating others entirely, and performing calculations on others to create new, 
more compact data records. 

• Anomaly detection In anomaly detection the event data is usually reduced to .a 
proftle vector with behavior attributes expressed as scores and flags. 

• Compare the event record to th e knowledge base The formatted event record is 
compared to the contents of the knowledge base. The next step of the process 
depends on the results of this comparison and on the analysis scheme in question. 
If the record indicates an intrusion, it may be logged. If the record does not indicate 
an Intrusion, the analyzer simply accepts the next event record and repeats the 
formatting and comparison. 

• Misuse detection In the misuse detector, the preprocessed event record is submitted 
to a pattern-matching engine. If the pattern matcher finds a match between an attack 
signature and the event data, it returns an alert. In some misuse detectors, if a partial 
match is found (if a pattern indicating a possible preamble to attack is matched), that 
fact may be recorded or the record cached in memory, awaiting further event informa­
tion that can be appended to it to make a more definitive decision. Detection engines 
that can Mremember" sequences of events are called stateful detectors. 

• Anomaly detection In anomaly detection, the contents of the user behavior 
profile for the session are compared to the historical profile for that user. 
Depending on the analysis scheme, a judgment is made as to whether the user 
behavior Is close enough to the historical proflle to be considered "normal" and 
therefore not indicative of attack. If the user behavior is determined to be abnor­
mal, an alert is returned. Many anomaly detection-based intrusion detection 
engines also perform misuse-detection ln parallel with this process, so some cross­
pollination may occur between these different analysis schemes. 

• Generate a response If the event record corresponds to an intrusion or other behav­
ior of interest, a response is returned. Again, the nature of the response depends on the 
specific nature of the analysis approach. The response can be an alarm, a log entry, an ~ 

automated response, or some other action specified by the operator of the intrusion 
detection system. 

4.2.3 Feedback and Refinement 
Certain anaiysis approaches have a third stage of analysis. one that runs in parallel with the 
main analysis function. The functions associated with this third phase are either mainte­
nance of the analysis engine or other adaptive functions (refmement of rule sets or other 
system attributes). 



111 SYMC 1007

~ Intrusion Detection 

4.2.3.1 Misuse Detection 
In misuse detection systems. the primary activity that occurs in this stage is the update 
of signature databases to reflect information regarding new attacks. Given the almost daily 
reports of new attacks, thiS function is important. Many optimized signature engines accom­
modate th1S update activity ~on the fly." (In other words, the system operator can update 
the signature database while the system is monitoring event data without interrupting the 

analysis process.) 

Some misuse detection engines use this phase to combine and otherwise optimize the 
state-retention portions of the system, periodically eliminating records that have not 
been resolved. 

Most misuse-detection-based analysis schemes have some notion of a maximum time Inter­
val over which matching of an attack signature occurs. This interval is known as an event 
horizon. For some, the event horizon might be from user login to logout (a session) . 
Other schemes make this determination in terms of elapsed time since login or the last 
recorded event for that user. 

In any event, because a significant amount of memory is necessary to re~ain this state 
information (especially when multiplied by the number of users, processes. and network 
connections active on busy systems) . aggressive management of this state information is 
critical to the stability of a system. You see this effect in network-based intrusion detection 
systems in which "up the stack" reassembly of TCP sessions is performed. 

In early misuse-detection efforts, the incomplete session records used to maintain state 
were labeled orphans. Performing the memory management was called (somewhat tongue­
in-cheek) running the orphanage and was a frequent topic of discussion in some research 
and development circles. 2 

4.2.3.2 Anomaly Detection 
Depending on the type of anomaly detection performed, the historical statistical profiles 
are updated periodically. For example, in IDES, the first statistical intrusion detection 
system, the profiles were updated dally. At that time, the summary statistics for each user 
were added to the knowledge base, and the oldest day's statistics (30 days old) were 
deleted. 

The rest of the statistics (for day 1 through day 29) were multiplied by an aging factor. In 
this way, more recent behaviors had more effect on the determination of normal activity 
than older ones had. This practice is motivated by the need to accommodate changes in 

user behaviors associated with work schedules (for instance, accounting duties that may 
change over the course of a month) and user learning curves. 1 



112 SYMC 1007

CHAPTER 4 Analysis Schemes L:2_ 

4.3 Techniques 
Now that I have explained t!'Je hows and whys of analysis and have outlined a general 
process for performing analysis, it's time to outline the specific approaches. As mention~d 

in Chapter 2, MConcepts and Defmitions, ~ analysis is divided into two parts. 

Intrusion detection is composed of misuse detection, which searches event data for prede­
fined patterns of misuse, and anomaly detectlon, which characterizes data in mathematical 
terms, searching event data for patterns of abnormality. 

4.3.1 Misuse Detection 
Misuse detection asks the following question about system events: Is this activity bad? 
Misuse detection involves encoding information about specific behaviors known to be indi­
cators of intrusion and then filtering event data for these indicators. 

To perform misuse detection, you need the following: 

• A good understanding of what constitutes a misuse behavior 

• A rellable record of user activity 

• A reliable techniqut> for analyzing that record of activity 

In a nutshell, misuse detection is best suited for reliably detecting known use patterns. It 
suffers the defidency that you can detect only what you know about, although if you're 
clever, you can leverage the knowledge you have (for instance, of outcomes of attacks) to 
spot new exploits of old problems. 

4.3.1.1 Production/Expert Systems 
One of the earliest schemes for performing misuse detection was the use of 
production/ expert systems. This approach was utilized in systems such as MIDAS, IDES, 
Next Generation IDES (NIDES), DIDS, and CMOS. In the case of MIDAS. IDES, and 
NIDES, the production system employed wasP-BEST. designed by Alan Whitehurst. For,, 
DIDS and CMOS, the CLIPS system, a public domain system developed by the National 

Aeronautics and Space Administration (NASA), was used. 

The advantage associated with using production systems is that the control reasoning of 

the systems is separated from the statement of the problem solution. This feature allows 
users to enter knowledge about attacks as if-then rules and then enter facts (in the form of 
audit events) ;-the-system evaluates those facts according to the knowledge entered. This 
process can occur without the user ever affecting (or understanding) the internal function 
of the production system; before production systems, users had to hard code the decision 
engine and rules in custom software, a difficult, time-consuming task. 



113 SYMC 1007

~ Intrusion Detection 

The attack knowledge is entered using an if-then syntax. Conditions indicative of an intru­
sion are specified on the left side {the "if" part) of the rule. When they are satisfied, the 
rule performs the actions on the right side {the "then" part) of the rule . . 

Some practical problems are associated with the use of production systems in intrusion 
detection. 

• They are ill-equipped to handle large volumes of data. This is true because the 
declarative representations used by production systems are generally implemented as 
interpreted systems and interpreters are slower than compiled engines. 

• They do not provide any natural handling of sequentially ordered data. 

• The expertise reflected by the production system is only as good as the person on 
whose skills the system is modeled {the standard "garbage in, garbage out" effect 
endemic to computer systems). 

• They can detect only known intrusions. 

• They cannot handle uncertainty. 

Maintaining the rule base can be problematic, as one must make changes to the rules con­
sidering the impact of the changes on the rest of the rules in the knowledge base. 3 

4.3.1.2 State Transition Approaches 
State transition approaches to performing misuse detection structure the problem of mis­
use detection in a way that allows the use of optimized pattern-matching techniques. Their 
speed and flexibility make them among the most powerful intrusion detection capabilities 
at this time. 

State transition approaches use expressions of system state and state transitions to describe 
and detect known intrusions. Severa) approaches are available for implementing state tran­
sition approaches to intrusion detection. The three major approaches are language or 
Application Programming Interface {API), characterization of state transitions, Colored 
Petri Nets (CP-Nets), and state transition analysis·. In this section, I explore these 
pr~esses, outlining the strategies each uses to characterize misuse patterns and then filter 
event data against them. 

State Transition Analysis 
State transition analysis is an approach to misuse detection using high-level state transition 
diagrams to represent and detect known penetration scenarios. This approach was first 
explored in the STAT system and its extension to UNIX network environments, USTAT. 

L__, __ 



114 SYMC 1007

.. 
~ 

··i 
'·i 1 " ,. 
D 
! 
I . 

L 

CHAPTER 4 Analysis Schemes ~ 

Both systems were developed at the University of California, Santa Barbara. Phillip Porras 
and Richard Kemmerer developed STAT; Koral Ilgun and Kemmerer developed USTAT. 

A state transition diagram is a graphical representation 'Of a penetration scenario. 
Figure 4.4 shows the components of a state transition diagram. as well as how they are 
used to represent a sequence. Nodes represent the states, and arcs represent the transitions. 
The concept of expressing intrusions in state transition form is rooted in the understand­
ing that all intruders start with limited privileges and exploit system vulnerabilities to gain 
some outcome. Both the limited privilege starting point and the successful intrusion 
outcome can be expressed as system states. 

In using state transition diagrams to characterize the intrusion sequences, the system can 
limit itself to expressing those key activities that result in a state change. The path between 
initial and intrusion state can be rather subjective; hence two persons can come up with 
different state transition diagrams that represent the same attack scenario. Each state con­
sists of one or more state assertions (also shown in Figure 4.4). 

~f!g6te~,4-~j State Transition Diagrams 

State transition analysis systems utilize finite state machine graphs (finite a\Jtomata) to model 
intrusions. The intrusion is composed of a sequence of actions that lead from some initial 
system state to an intrusion state. The initial state represents the state of the system before 
the intrusion is executed, and the intrusion state represents the state of the system upon the 
completion of the Intrusion. The system state is described in terms of system attributes 
and/ or user privileges. The transition is driv:en by a user action. The state transition engine 
maintains a set of state transition diagrams. each representing a penetration scenario. At a 
given time, it's assumed that some sequence of actions have driven the system to a particular 
state in each diagram. When a new action takes place, the engine checks it against each state 
transition diagram to see whether the action drives the scenario to the next state. If the 
action nullifies the assertions of the current state, the inference engine moves the state transi­
tion back to the nearest state for which the assertions still hold. If the action drives the 
scenario to the end state. indicating an intrusion, the previous transition information is sent 
to the decision engine, which alerts the security officer to the presence of the intrusion. 

....... ·----···- ·-----

·. 



115 SYMC 1007

. I 

'· 

~ Intrusion Detection 

The advantages of the STAT approach follow: 

• State transition diagrams provide an intuitive, high-level. and audit-record-independent 
representation of penetration scenarios. 

• The transitions allow one to represent partial order of signature actions constituting 
an attack scenario. 

• A state transition diagram uses the smallest possible subset of signature actions that 
must occur for the penetration to be successful. Thus, the detector can generallze over 
variants of the same penetration. 

• The hard-link information maintained by the system makes it easier to express penetra­
tion scenarios. 

• The system can detect coordinated and slow attacks.4 

Deficiencies of the STAT approach include the following: 

• The list of state assertions and signature actions are hand coded. 

• The state assertions and signatures may not be powerful enough for expressing more 
elaborate penetration scenarios. 

• The evaluation of certain state assertions may require the inference engine to get addi­
tional information from the target system. This process could cause performance 
degradation. 

• The system cannot detect many common attacks, so it must be combined with other 
detectors for operational use. 

• The prototyped system is slow compared to other state transition-based approaches.s 
'"" 

Colored Petri-Net and IDIOT 
Another state-transition-based approach to optimizing misuse detection is the Colored 
Petri (CP)-Net approach developed by Sandeep Kumar and Gene Spafford at Purdue 
University. This approach was implemented in the IDIOT system. 



116 SYMC 1007

~·· iF 
I 
I , 
~ I 

CHAPTER 4 Analysis Schemes ~ 

IDIOT uses a variation of CP-Nets to represent and detect intrusion patterns. Under this 
model, an intrusion Is represented as a CP-Net in which the color of tokens in each state 
serves to model the context of the event. The signature matching is driven by the audit trail 
and takes place by moving tokens progressively from initial states to the final state (indicat­
ing an intrusion or attack). Guards define the context in which signatures are considered 
matched, and post actions are performed when the pattern is successfully matched. 

At fust glance, this approach might appear to be almost identical to the state transition 
approach of STAT. However, there are significant differences between the approaches. 
First, in STAT the intrusion is detected by the effect it has on the system state, that is. the 
outcome of the intrusion. In IDIOT the intrusion is detected by pattern~matching the sig­
nature that constitutes the penetration. In STAT guards are placed in the state, whereas in 
IDIOT the guards are incorporated in the transitions. 

In IDIOT each intrusion signature is expressed as a pattern that represents the relationship 
among events and their context. This relationship pattern precisely represents a successful 
intrusion or its attempt. Vertices in the CP-Net graph represent system states. Intrusion 
patterns have preceding conditions and following actions associated with them. The 
scheme is independent of any underlying computational framework of matching and pro­
vides a model in which all categories in the classification are represented and matched. 

This pattern-matching model consists of the following: 

• A context representation that allows the matching to correlate various events that con­
stitute the intrusion signature 

• Semantics that accommodate the possibility of several Intrusion patterns (possibly 
belonging to multiple event sources) being intermixed in the same event stream 

• An action specification that provides for the execution of certain acti9ns when the pat­
tern is matched2 

Figure 4.5 shows the CP-Net pattern for a TCP /IP connection (for a network connection 
not involving retransmissions). 

CP-Net Pattern for TCP/IP Connection 

Initial State Final State 

(start) {after_syn) (after_syn_ack) {after_ack) 

! 
Token J+ J+ K) 

TCP1 TCP2 TCP3 
s syn D D syn+ack S s ack 0 

i 

1 



117 SYMC 1007

~ Intrusion Detection 

The following are significant and numerous advantages associated with this approach to 
misuse detection: 

• It ls extremely fast. In experiments involving a nonoptimized version of IDIOT, for. 
every hour of intense activity (generating C2 audit records). the detector required 
about 135 seconds to match about 100 intrusion patterns. This result represents a 
processing load of less than 5% for a Sun SPARCstation 5 generating about 6MB of 
audit data per hour. 

• The pattern-matching engine is independent of audit format. so you can apply it to IP 
packet streams and other detection problems. 

• The signatures are portable across audit trails so that they can be moved among 
different systems without having to rewrite them to accommodate vendor audit trail 
differences. 

• The patterns can be specified according to what needs to be matched, not how it is to 
be matched. 

• The sequencing and other ordering constraints on events can be represented directly. 

• The system provides a fine-grained specification of a successful pattern match (that is, it 
tells you why an intrusion was detected) . 

• IDIOT provides a front-end language for encoding the graphical representation of 
the net. 

• The system allows you to specify an action that is executed upon the matching of the 
signature. thereby supporting automated responses. 

The limitations of IDIOT are those of all misuse detection systems. Although the capabil­
~ 

ity to characterize intrusions in terms of outcomes allows you to generalize some detection 
signatures, the system stili cannot detect new attacks that it doesn't know about.6 

Language/ API-Based Approaches 
A common strategy for optimizing commercial misuse detection tools ls to devise a means 
for describing intrusions in a form that a detection engine can use. Although. as we dis­
cussed before, some production expert system languages (such asP-BEST and CLIPS) are 
available, they were designed for other uses. Three approaches to expressing intrusions for 
misuse detection purposes are the RUSSEL language developed by Mounji at Faculties 
Universitaires Notre-Dame de Ia Paix (in Namur, Belgium), the STALKER system. 
patented by Smaha and Snapp of Haystack Laboratories, and the N packet filtering 
language developed by Marcus Ranum and provided as part of the Network Flight 
Recorder. 



118 SYMC 1007

CHAPTER 4 Analysis Schemes l..::_ 

RUSSEL 

RUSSEL is a rule-based language that is designed to optimize the processing of unstruc­
tured data streams, specifically operating system audit trails. It is optimized for 
heterogeneous system environments. The goal of RUSSEL is to enable users to correlate 
events across multipl~ hosts and to support multiple levels of abstraction for events. 
RUSSEL is utilized in ASAX, a misuse detection system optimized for heterogeneous 
network systems. ASAX features the use of a common audit data format (called the 
Normalized Audit Data Format [NADF]) and provides a component that supports 
adaptive rules. 

Event patterns are expressed in RUSSEL as guarded actions of the form 
Condition - > Action. This action can be specified at a level of abstraction that allows 
the intrusion detection user to specify responses to a given detection scenario. 

The language is structured as bottom up. It starts by asserting audit records as basic facts 
and then, based on these facts, tries to find audit record patterns that can be viewed as 
derived facts. The bottom-up structure is utilized because the audit records are not known 
at the time analysis starts and because it is more efficient than top-down strategies when 

~ dealing with large audit trails. 7 

} 

.\ 

r 
f 

I 
l 

STALKER 

Another approach to characterizing intrusion for misuse detection purposes is the 
approach utiiized in the STALKER system, a commercial misuse detection product. 8 This 
patented approach utilizes a common audit data format (the SVR 4++ standard outlined in 
Chapter 7, "Technical Issues") and a state-based data structure for attack signatures. 

The detector is implemented as a fmite state machine (the underlying technology for com­
pilers). which is optimized to pattern-matching tasks such as misuse detection. 

The misuse detector operates by passing audit records to the misuse detection engine. The 
engine maintains a set of detection signatures in the form of state transitions. The signa- · 
ture expression consists of a data structure that contains an initial state, an end state, and 
one or more sets of transition functions for each misuse. Figure 4.6 shows the structure 
and operation of the STALKER misuse detector. 

This approach was successfully implemented and fielded in a series of commercial products, 
which supported a variety of operating systems and applications environments. The 
STALKER product was withdrawn from the market when Network Associates acquired 
Haystack Laboratories in 1997. but the design has recently been returned to the market in 
the Cybercop Monitor. 9 



119 SYMC 1007

~ Intrusion Detection 

Network Flight Recorder-N-Code 

A language-based optimization of network monitoring and analysis functions is provided 
by the Network Flight Recorder, a network monitoring system that serves as the basis for 
some commercial network-based intrusion detection products. The N programming lan­
guage is an interpreted language operating on a byte-code Instruction and implementing a 
simple stack machine. 

. F.igure 4,6 STALKER Misuse Detection Approach 

Index 

Initial Stale 

Transition Function #1 

Transition Function 112 

Transition Function #3 

Transition Function ... 

Transition Function #n 

State #1 
State/12 

State#2 

State#3 

Slate# . •• 

Slale#n 

End Slate (Misuse) 

Misuse Signature I Misuse Detection Process I 
The language includes flow control, procedures, and 64-bit integer counter data types. It 
is customized to support network packet filter construction. Although these packet filters 
can be programmed to recognize network attacks, they can also be programmed to recog­
nize other network activity. 

Filters are written in N-code, which is input to the network monitoring engine, compiled, 
and stored as byte-code instructions to optimize filtering performance. Network packet 
traffic is reassembled using a table structure, which preserves the state of each current net­
work session. This state preservation permits matching signatures against the entire lifetime 
of a connection or traffic stream. 



120 SYMC 1007

. /' 
I J 

CHAPTER 4 Analysis Schemes ~ 

The underlying engine also keeps statistics about the network performance, including tim­
ing statistics regarding packet arrival rate and network errors (as evidenced by broken 
packets or duplicate packet traffic). The engine also uses a statistical calculation to deter-. 
mine how long to retain state information about a connection before discarding it. In 
hybrid intrusion detection systems, this statistical information can be passed to an anomaly 
detection component. 

Under theN-code packet filtering mechanism, the language binds a filter to the reception of 
a network packet. It can also support other specified events. The Hlter collects information 
from the packet, exporting it through either an alert or record mechanism. Alert mechanisms 
send alert messages to an alert management system, whereas record mechanisms send a data 
structure to a recorder function for various types of additional back-end processing. 

The N language is included in the Network Flight Recorder product, which is available in 
source code form from the developers.1o 

4.3.1.3 Information Retrieval for Batch Mode Analysis 
Although most current intrusion detection is based on real-time collection and analysis of 
event data, some approaches involve working with audit data archives, searching for evi­
dence of interesting patterns of activity, or providing the ability to isolate the activities 
affecting a particular object or involving a particular user. This is of special interest to 
investigators and incident handlers. 

One such approach comes from Ross Anderson and Abida Khatt<ik of the University of 
Cambridge. They propose a functional separation between intrusion detection systems that 
discover new attacks and systems that allow security administrators to find instances of the 
attacks after they are identified. To handle the latter problem, Anderson and Khattak pro­
pose the use of information retrieval (IR) techniques. These techniques are currently 
widely utilized in the form of search engines (such a's Alta Vista) for the World Wide Web. 

IR systems utilize inverted files as indexes that allow efficient searching for keywords and 
combinations of keywords. These systems also utilize algorithms that learn a user's prefer­
ences and use Bayesian inference to help refine searches. These differ from data mining In 
that they rely on indexing, not machine learning, to discover patterns of data. 

This approach is limited to reviewing audit information after the fact (in batch mode). The 
researchers constructed a prototype utilizing the UNIX lastcomm system log and 
GLIMPSE, a search engine developed by the University of Arizona. They used a Perl 
script to sort the file into a selection of smaller files, one for each user. A GLIMPSE search 
was entered, searching for command-line sequences that matched the sequences associated 
with a particular attack. This process quickly and reliably located the attacks. 



121 SYMC 1007

~ Intrusion Detection 

This approach is simple, yet powerful, and significant efficiencies are associated with the 
use of the IR techniques to perform the detection activity. The index utilized by 
GLIMPSE is compact (about 2%-4% of the indexed material) and can serve as an effective 
data reduction mechanism for audit trails. The presence of the index can' ·also serve as a . 
fail-safe mechanism, revealing situations in which hackers alter audit information to cover 
their tracks. Because GLIMPSE and proposed audit data sources are either free or included 
with standard operating system packages, this approach is also inexpensive, an advantage 
for many organizations that cannot afford other solutions. 11 

4.3.2 Anomaly Detection 
Anomaly detection involves a process of establishing profiles of normal user behaviors, 
comparing actual user behavior to those profiles, and flagging deviations from the normal. 
The basis of anomaly detection is the assertion that abnormal behavior patterns indicate 
misuse of systems. Profiles are defmed as sets of me tries. Metrics are measures of particular 
aspects of user behavior. Each metric is associated with a threshold or range of values. 

Anomaly detection depends on an assumption that users exhibit predictable, consistent 
patterns of system usage. The approach also accommodates adaptations to changes in user 

? 

behavior over time. The completeness of anomaly detection has yet to be verified (no one 
knows whether any given set of metrics is rich enough to express ~ll anomalous behavior). 
Thus, additional research is required to know whether anomaly detection will ever be able 
to detect all scenarios of interest, representing a strong protection mechanism for systems. 

4.3.2.1 Denning's Original Model 
Dorothy Denning, in her landmark 1986 paper outlining the .IDES model for intrusion 
detectors, asserts that four statistical models may be included in the system. Each model is 

deemed suitable for a particular type of system metric. 

Operational !Vfodel 
First is the operational model. This model applies to metrics such as event counters for the 
number of password failures in a particular time interval. The model compares the metric 
to a set threshold, triggering an anomaly when the metric exceeds' the threshold value. 
This model, which applies to misuse detection as well as anomaly detection, corresponds to 
threshold detection, covered later in this section. 

Mean and Standard Deviation Model 
Denning's second detection model proposes a classic mean and standard deviation charac­
terization of data. The assumption is that all the analyzer knows about system behavior 



122 SYMC 1007

CHAPTER 4 Analysis Schemes ~ 

metrics are the mean and standard deviations as determined from the first 'two moments. 
A new behavior observation is defined to be abnormal if it falls outside a confidence 
interval. This confidence interval is defined as d standard deviations from the mean for 
some parameter d. Denning hypothesizes that this characterization is applicable to event 
counters, interval timers, and resource measures. She also alludes to the ability to assign 
weights to these computations, such that more recent data is assigned a greater weight. 

Multivariate Model 
The multivariate model, the third of Denning's detection models, Is an extension to the 
mean and standard deviation model. It is based on performing correlations among two or 
more metrics. Therefore, instead of basing the detection of an anomaly strictly on one 
measure, you might base it on the correlation of that measure with another measure. So 
instead of detecting an anomaly based solely on the observed length of a session, you 
might base it on the correlation of the length of the session with the number of CPU 

cycles utilized. <' 

Markov Process Model 
The final. most complex part of Denning's model is limited to event counters. Under this 
model, the detector considers each different type of audit event as a state variable and uses 
a state transition matrix to characterize the transition frequencies between states (not the 
frequencies of the individual states/ audit records). A new observation is defmed as anom­
alous if its probability, as determined by the previous state and value in the state transition 
matrix, is too low. This allows the detector to spot unusual command or event sequences, 
not just single events. This introduces the notion of performing stateful analysis of event 
streams.1Z 

4.3.2.2 Quantitative Analysis 
The most commonly used anomaly detection approach is quantitative analysis in which 
detection rules and attributes are expressed in numeric form. Denning includes this cate­
gory of measures In her operational model. This set of techniques often presumes some 
computation, which can range from simple addition to more complex cryptographic calcu­
lations. The results of these techniques can be the basis for misuse detection signatures and 
anomaly detection statistical models alike. This section describes several common quantita­
tive analyses and provides an example of an operational system that utilizes these 
techniques to accomplish data reduction and intrusion detection goals. 



123 SYMC 1007

r 
i 

~ Intrusion Detection 

Threshold Detection 
Probably the most common form of quantitative analysis is threshold detection (also known 
in some circles as thresholds and triggers). In threshold detection, certain attributes of user 
and system behaviors are characterized in terms of counts. with some level established as 
permissible. The classic example of a threshold is the number of permissible unsuccessful 
loglns to a system. Virtually every early intrusion detection system contained a detection 
rule defining an intrusion in terrns of this measure. 

Other thresholds include the number of network connections of a particular type, the 
number of attempted file accesses, the number of files or directories accessed, and the 
number of network systems accessed. An inherent assumption in threshold detection is 
that the mea~urement is made over a particular time interval. This interval can be ftxed in 
time (for instance, the threshold can be reset to zero at a particular time of oay) or func­
tion over a sliding window (for example, the measurement is made over the last eight 
hours). 

Heuristic Threshold Detection 
Heuristic threshold checks take simple threshold detection a step further by adapting It to 
observed levels. This process increases the accuracy of the detection, especially when per­
forming detection over a wide range of users or target environments. So. for instance, 
instead of having a threshold detection rule triggering an alert when the number of failed 
logins exceeds three in an eight-hour period, you can have a threshold detection rule that 
triggers an alert when an abnormal number of failed logins occur. "Abnormal" can be 
defined by various formulas. One that comes immediately to mind is a Gaussian function 
(such as chi-square) in which the mean number of failed logins is calculated and subse­
quent numbers of failed logins are compared to the mean plus some standard deviation. 

Target-Based Integrity Checks 
Another valuable quantitative analysis measure is a target-based integrity check. This is a 
check for a change in a system object that should not be subject to unpredictable change. 
The most common example of such an integrity check utilizes a message digest function to 
calculate a cryptographic checksum of the system object in question. After the checksum is 
calculated and stored in a safe place (for ~nstance, read-only media) the system periodically 
recalculates the checksum, comparing it to the stored reference value. If a differential is 

found, an alarm is raised. The Tripwiren.t product. found in both public domain and com­
mercially supported versions, provides this capability. 



124 SYMC 1007

CHAPTER 4 Analysis Schemes ~ 

Quantitative Analysis and Data Reduction 
One of the more interesting uses of quantitative analysis in early intrusion detection 
systems used quantitative measures iq perform data reduction. Data reduction is the 
process of eliminating superfluous or redund.ant Information from often-voluminous event 
information. This reduces system storage loads and optimizes detection processes based on 
the event Information. 

An example demonstrating the use of quantitative methods to support effective data 
reduction comes from the NADIR system, developed by the Computing and 
Communications Division of Los Alamos National Laboratory. The NADIR developers 
utilized data profiling, which transforms user activity from audit logs into ~ctors of quan­
titative measures (most of them linear categorical or a combination of linear categorical 
and ordinal data). The profiles are aggregated over time (with weekly summaries) as well as 
over systems (with aggregate views of user activity per system). The reduced data is sub­
jected to both statistical and expert system examination, with alarms and alerts handled by 
a staff investigator.l3 

4.3.2.3 Statistical Measures 
The first worked examples of anomaly detection systems were based on statistical measures. 
These included approaches such as those utilized in IDES. mentioned earlier, and the 
follow-on NIDES project, as well as the Haystack system. 

IDESINIDES 
IDES and NIDES. developed by researchers at SRI International, were two of the most 
prominent early intrusion detection research systems. They were both hybrid systems, includ­
ing misuse and anomaly detection features: however. I focus on the statistical analysis here. 

The statistical analysis techniques employed for IDES and NIDES support historical statis­
tical proflles established and maintained for each user and system subject. These proflles 
are updated pertodically, with older data aged so that the profiles adapt to reflect changes 
in user behavior over time. 

The systems maintain a statistical knowledge base consisting of prollles. Each profile 
expresses normal behaviors for a particular user in terms of a set of measures or metrics. 
Once a day, new audit data is incorporated into the knowledge base (after the old vectors 
are aged by an exponential decay factor), based on the activity of the user during that day. 

Let's take a look at how these statistics were calculated for IDES. Each time an audit 
record is generated, a summary test statistic is generated. This statistic, called the IDES 
score (IS). is calculated by the following formula: 

IS =- (S11 52 ,53 ••• 50 ) C·1 ( 511 52 ,53 ••• 50 ) t; 



125 SYMC 1007

~ Intrusion Detection 

where ( S .. ) C ·1 is the inverse of a correlation matrix or vector and ( s ... ) t is the trans­
pose of the vector. Each s" measures some aspect of behavior, such as file access, terminals 
used, and CPU time used. DUTerent S" values can also represent different views of the 
same aspect of behavior. 14 

Haystack 
Haystack, an anomaly detection system developed by Tracor Applied Sciences and 
Haystack Laboratories for the U.S. Air Force. employs a two-part statistical a'!omaly detec­
tion approach. The ftrSt measure determines to what degree a user session resembles an 
established intrusion type. This measure is calculated as follows: 

1. The system maintains a vector of user behavior measures. 

2. For each type of intrusion, the system associates a weight with each behavior measure, 
reflecting the relevance of the measure to the given intrusion type. 

3. For each session, the vector of user behavior measures is calculated and compared to 
the threshold vector. 

4. Those behavior measures for which threshold settings are exceeded are noted. 

5. The welgl)ts associated with the measures exceeding threshold are summed. 

6. The sum is used to assign a suspicion quotient to the session, based on the distribu­
tion of the weighted intrusion scores for all previous sessions. 

The second, complementary statistical method detects deviations in a user's session activi­
ties from the normal user session profile. This method looks for session statistics that 
significantly deviate from the normal historical statistical profile for that user. IS. 16 

Strengths of Statistical Analysis 
Statistical anomaly detection analysis originally targeted intruders masquerading as legitimate 
users. AJthough the assertion has been made that statistical analysis may also detect intruders 
who exploit previously unknown vulnerabilities who could not be detected by any other 
means. this assertion has yet to be proven in production use of a system. Early researchers 
also hypothesized that stati~tical anomaly detection could reveal interesting, sometimes suspi­
cious, activities that could lead to discoveries of security breaches. This assertion was 
confirmed on at least one system. NADIR (in operation at Los Alamos National Laboratory), 
where developers reported that some of the information gained by using NADIR led to the 
discovery of system and security process errors, as well as discoveries that allowed them to 
improve the general management of Los Alamos's system complex.17 



126 SYMC 1007

,,, 
/ 

·l l 
! CHAPTER 4 Analysis Schemes ~ 

Another advantage often claimed for statistical analysis is that statistical systems do not 
require the constant updates and maintenance that misuse detection systems do. This claim 
may be true, but it depends on several factors. Metrics must be well chosen, adequate for 
good discrimination, and well-adapted to changes in behavior (that is, changes in user 
behavior must produce a consistent, noticeable change in the corresponding metrics). 
If these conditions are met, chances are excellent that the statistical analyzer wilJ reliably 
detect behaviors of interest without requiring on-the-fly modifications to th'e system. 

Drawbacks of Statistical Analysis 
On the other hand, statistical analysis systems have significant drawbacks. First, most were 
designed to perform batch mode processing of audit records, which eliminated the capabil­
ity to perform automated responses to block damage. This omission was not a problem at 
the time the systems were proposed because early systems were designed to monitor audit 
tra.ils from centralized, mainframe target platforms. Although later systems attempted to 
perfonn real-time analysis of audit data. the memory and processing loads involved in 
using and maintaining the user profile knowledge base usually caused the system to lag 
behind audit record generation. 

A second drawback affects the range of events that statistical analysis can characterize. The 
nature of statistical analysis precludes the capability to take into account the sequential 
relationships between events. The exact order of the occurrence of events is not provided 
as an attribute in most of these systems. In other words, the event horizon for these sys­
tems is limited to one event. Because many anomalies indicating attack depend on such 
sequential event relationships, this situation represents a serious limitation to the approach. 

In caseS when quantitative methods {Denning's operational model) are utilized, it is also 
difficult to select appropriate values for thresholds and ranges. 

The false alarm rates associated with statistical analysis systems are high, which leads to 
users ignoring or disabling the systems. These false alarms Include both type l (false 
negative) and type 2 (false positive) errors. 

4.3.2.4 Nonparametric Statistical Measures 
Early statistical approaches were similar in that they utilized parametric approaches to char­
acterizing the behavioral patterns of users and other system entities. Parametric approaches 
refer to analytical approaches in which assumptions are made about the underlying distrib· 
ution of the data being analyzed. For instance, in early versions of IDES and MIDAS the 
distributions of user usage patterns were assumed to be Gaussian or normal. 

. ·. 



127 SYMC 1007

'· 

~ Intrusion Detection 

The problem with these assumptions Is that error rates are high when the assumptions are 
incorrect. When researchers began collecting information about system usage patterns that 
included attributes such as system resource usage, the distributions were discovered not to 
be normal, and including these measures led to high error rates. 

Linda Lankewicz and Mark Benard of Tulane University proposed that a way of overcom­
ing these problems was to utilize nonparametric techniques for performing anomaly 
detection. This approach provides the capability to accommodate users with less pre­
dictable usage patterns and allows the analyzer to take into account system measures that 
are not easily accommodated by parametric schemes. 

The approach Lankewicz and Benard utilized involved nonparametrlc data classification 
techniques, specifically clustering analysis. In clustering analysis. large quantities of histori­
cal data are collected (a sample set) and organized into clusten according to some 
evaluation criteria (also known as features). Preprocessing is performed in which features 
associated with a particular event stream (often mapped to a specific user) are converted 
into a vector representation (for example, Xi = [f1 , f 2 , ••• fnl In ann-dimensional 
state). A clustering algorithm is used to group vectors Into classes of behaviors, attempting 
to group them so that members of each class are as close as possible to each other while 
different classes are as far apart as they can be. 

In nonparametric statistical anomaly detection, the premise is that a user's activity data, as 
expressed in terms of the features. falls into two distinct clusters: one indicating anomalous 
activity and the other Indicating normal activity. 

Various clustering algorithms are available. These range from algorithms that use simple 
distance measures to determine whether an object falls into a cluster, to more complex 
concept-based measures (in which an object is "scored" according to a set of conditions 
and that score is used to determine membership in a particular cluster). Different cluster­
ing algorithms usually best serve different data sets and analysis goals. 

Researchers at Tulane found that the clustering algorithm that best accomplished this goal 
using resource usage figures as evaluation criteria was the k-nearest-neighbor algorithm. 
This groups each vector with k of Its nearest neighbors. k Is a function of the number of 
vectors in the sample set, not a fixed value. 

Experimental results using this analysis technique showed that clusters formed that reliably 
grouped similar system operations (such as compiling or editing files) and also grouped 
activity patterns according to user. 

The advantages of nonpararnetric approaches include the capability to perform reliable 
reduction of event data (in the transformation of raw event data to vectors). This reduc-



128 SYMC 1007

l 

CHAPTER 4 Analysis Schemes ~ 

tion effect was documented as more than two orders of magnitude. Other benefits are 
improvement in the speed of detection and improvement in accuracy over parametric sta­
tistical analysis. Disadvantages involve concerns that expanding features beyond resource 
usage would lessen the efficiency and accuracy of the analysis. IS "· · 

4.3.2.5 Rule-Based Approaches 
Another variation of anomaly detection is rule-based anomaly detection. The assumptions 
underlying this approach are the same as those associated with statistical anomaly detec­
tion. The main difference is that rule-based intrusion detection systems use sets of rules to 
represent and store usage patterns. Two such approaches are covered in this section: the 
Wisdom and Sense approach and the Time-Based Inductive Machine (TIM). 

Wisdom and Sense 
The first rule-based anomaly detection system was the Wisdom and Sense (yV &S) system, 
developed by researchers at Los Alamos National Laboratory and Oak Ridge National 
Laboratory. W&S can operate on a variety of system platforms and can characterize activity 
at both operating system and application levels. It provides two schemes for populating 
rule bases: entering them manually (to reflect ~policy statement) and generating them 
from historical audit data. The rules are derived from historical audit data by performing a 
categorical examination, expressing the patterns found in terms of rules. The rules reflect 
the past behavior of system subjects and objects and are stored in a tree structure, called a 
forest. Specific data values within the audit records are grouped into thread classes with 
which collections of operations or rules are associated. 

An example of a thread class is ·all the records containing the same. user-file field values. " 
Rules are applied to the data in a thread each time an activity associated with that thread 
occurs. Anomalies are detected this way: When transactions are processed, they are com­
pared to the events of the matching thread to determine whether the events match the 
historical patterns of activity or represent an anomaly. 19 

TIM 
The TIM system, proposed by_ Teng, Chen, and Lu, while they were associated with the 
Digital Equipment Corporation, utilizes an inductive approach to dynamically generate 
rules defining intrusion. The difference between TIM and other anomaly detection systems 
is that TIM looks for patterns in sequences of events, not ln individual events. It effectively 
implements a Markov transition probability model, as proposed by Denning in her seminal 
intrusion detection work. 



129 SYMC 1007

'. 

~ Intrusion Detection 

TIM observes historical event record sequence, characterizing the proba!>ility of particular 
sequt'lnces of events occurring. Other anomaly detector systems measure whether or not 
the occurrence of a single event represents a deviation from normal patterns of activity. 
TIM focuses on sequences of events, checking to see whether a chain of events corre­
sponds to what would be expected based on its observation of historical event sequences. 

For example, suppose events E1, E2, and E3 are listed sequentially in an audit trail. TIM 
characterizes the probability of the occurrence of E1 followed by E2 followed by E3 , based 
on the history of sequences it has observed in the past. TIM automatically gene~ates rules 
about the event sequences as it analyzes historical event data, and then stores the rules in a 
rule base. Because TIM groups event sequences, the amount of space required for the rule 
base is significantly smaller than that required for a single-event-oriented rule based system 
(such as Wisdom and Sense). 

If a sequence of events matches the head of a rule. then the next event is considered 
anomalous if it's not in the set of predicted events in the body of the rule. The system also 
refines its analysis by deleting less predictive rules from the rule base. (Rule I is more 
predictive than rule 2 if rule 1 successfully predicts more events than ru)e 2 predicts.) 

The advantages for TIM; especially when compared to statistical measures, are 
significant. This ·approach is well suited to environments where user patterns differ signifi­
cantly from user to user. but where each user exhibits consistent behavior over time. Such 
an environment might be. represented by a large corporation in which different users are 
responsible for accounting, administrative, programming, and personnel functions with 
very little crossover of user duties. This approach is also well suited for environments in 
which threat is associated with a few event types rather than the full complement of system 
events. Finally, this approach is not subject to problems associated with session creep, a 
defeat strategy associated with anomaly detection, in which an attacker gradually alters 
his/her behavior pattern over time to train the system to accept intrusive behavior as nor­
mal. This resistance to session creep attacks is due to the fact that the semantics are built 
into the detection rules. 

However, as with other systems, weaknesses are associated with the TIM approach. It 
suffers the problem associated with all learning-based approaches in that the effective­
ness of the approach depends on the quality of the training data. In learning-based 
systems the 'training data must reflect normal activity for the users of the system. 
Furthermore, the rules generated by this approach may not be comprehensive enough to 
re'flect all possible normal user behavior patterns. This weakness produces a large false 
positive (type 2) error rate, especially at the beginning of the operation of the system. 
The error rate is high because if an event does not match the head of any rule (that is, if 

-·-·····-- ______ ...:....__ ________________ ~_.-.. 



130 SYMC 1007

CHAPTER 4 Analysis Schemes ~ 

the system diti not encounter the event type in the training data set}, that event always 
triggers an anomaly. 

This approach served as the basis for the Digital Equipment Corporation Polycenter intru­
sion detection product and forms the foundation for much subsequent anomaly detection 
research. 20 

4.3.2.6 Neural Networks 
Neural networks use adaptive learning techniques to characterize anomalous behavior. 
This nonparametric analysis technique operates on historical sets of training data, which 
are presumably cleansed of any data indicating intrusions or other undesirable user 
behavior. 

Neural networks consist of numerous simple processing elements called units that 
interact by using weighted connections. The knowledge of a neural network is encoded 
in the structure of the net in terms of connections between units and their weights. 
The actual learning process takes place by changing weights and adding or removing 
connections. 

Neural network processing involves two stages. In ttie first stage (corresponding to the 
"building the detector" stage of the intrusion analysis model outlined earlier in this chap­
ter), the network is populated by a training set of historical or other sainple data that is 
representative of user behavior. In the second stage (corresponding to the second stage of 
the intrusion analysis model),· the network accepts event data and compares it to historical 
behavior references, determining similarities and differences. 

The network indicates that an event is abnormal by changing the state of the units, 
changing the weights of connections, adding connections, or removing them. The net­
work also modifies its defmition of what constitutes a normal event by performing 
stepwise corrections. 

Neural network approaches hold a great deal of promise for anomaly detection. Because 
they don't use a fixed set of features to define user behaviors, feature selection is irrelevant. 
Neural networks don't make prior assumptions on expected statistical distribution of met­
rics, so this method retains some of the advantages over classic statistical analysis associated 
with other nonparametric techniques. 

Among the problems associated with utilizing neural networks for intrusion detection is a 
tendency to form mysterious unstable configurations in which the network fails to learn 
certain things for no apparent reason. However, the major drawback to utilizing neural 
networks for intrusion detection is that neural networks don't provide any explanation for 



131 SYMC 1007

c . 

~ Intrusion Detection 

the anomalies they find. This practice impedes the ability of users to establish accountabil­
ity or otherwise address the roots of the security problems that allowed the detected · 
intrusion. This made it poorly suited to the needs of security managers. Although rome 
researchers have proposed hybrid approaches as a means of overcoming these disadvan­
tages. no published figures yet indicate the feasibility of neural network approaches.21 

4.3.3 Alternative Detection Schemes 
Some recent intrusion detection approaches fit neither misuse detection nor anomaly detec­
tion categories. These schemes may be applicable to either problem. perform precursor 
activity that can drive or refine either form of detection, or depart from the traditional 
monolithic view of intrusion detection in ways that affect detection strategies. 

4.3.3.1 Immune System Approaches 
In an innovative and promising research project, researchers at the University of New 
Mexico (Forrest. Hofmeyr, and Somayagi. among others) took a fresh look at the entire 
question of computer security. The question posed by the researchers was, "How does one 
equip computer systems with the means to protect themselvesr In answering this ques­
tion, they noted marked similarities between biological immune systems and system 
protection mechanisms. 

The key to both systems' functioning well is the capability to perform "self/nonself" 
determination-that is, the capability of an organism· s immune system to determine which 
materials are harmless entities {such as the organism's own) and which are pathogens and 
other dangerous factors. As the immune system performs this determination by using pep­
tides, short protein fragments, the researchers decided to focus on some computer 
attribute that could be considered analogous to peptides. The team hypothesized that 
sequences of UNIX system calls could satisfy those requirements. 

In deciding to consider system calls as a primary source of information, the researchers con­
sidered a variety of goals for the data, including data volume, capability to reliably detect 
misuse. and suitability for encoding in a fashion appropriate for advanced pattern-matching 
techniques. They chose to focus on short sequences of the system calls. furthermore ignor­
ing the parameters passed to the calls, looking only at their temporal orders. 

The system as first proposed performs anomaly detection. {It can also perform misuse 
detection.) The system complies with the two-phase intrusion detection analysis process, 
with the first phase building a knowledge base that profiles normal behavior. This profile is 
a bit different from others discussed in this chapter in that here the behavior characterized 
is not user-centric. but system-process centric. Deviations from this profile are defined as 



132 SYMC 1007

', 

::. 

CHAPTER 4 Analysis Schemes ~ 

anomalous. In the second phase of the detection system. the proflles are used to monitor 
subsequent system behavior for anomalies. 

Sequences of system calls that result from running privileged processes were collected over 
time. The profiles for the system consisted of unique sequences of length 10. Three mea­

sures were utilized to characterize deviations from normal process behaviors: successful 
exploits, unsuccessful exploits, and error conditions. 

The results were extremely promising because the three measures allowed the detection of 
several sorts of anomalous behavior spanning several historically problematic UNIX pro­
grams. The research also showed that the sets of execution sequences were remarkably 
compact.22 

Subsequent research compared different approaches for characterizing normal behavior. It 
explored whether more powerful data modeling methods significantly improved the per­
formance of this approach when monitoring more complex systems. Somewhat 

surprisingly. even powerful data modeling techniques (for example, hidden Markov mod­
els, which are extremely reliable, though computationally greedy) did not give significantly 
better results than the simpler time-sequence-based models. 

Although the self/nonself techniques appear to constitute an extremely powerful and 
promising approach, it is not a complete solution to the intrusion detection problem. 
Some attacks, including race conditions, masquerading, and policy violations, do not 
Involve the use of privileged processes. Therefore, these attacks are not subject to detection 
using this approach.23 

4.3.3.2 Genetic Algorithms 
Another more sophisticated approach to performing anomaly detection utilizes genetic 
algorithms to perform analysis of event data. 

A genetic algorithm is an instance of a class of algorithms called evolutionary algorithrm. 
Evolutionary algorithms incorporate concepts of Darwinian natural selection (survival of 
the fittest) to optimize solutions to problems. Genetic algorithms utilize encoded forms 
(known as chromosomes) with methods that allow combination or mutation of the chromo­
somes to form new individuals. These algorithms are recognized for their capability to deal 
with multidimensional optimization problems in which the chromosome is composed of 

encoded values for the variables being optimized. 24 

In the eyes of the researchers investigating genetic algorithm approaches to intrusion 

detection, the Intrusion detection process involves defming hypothesis vectors for event 
data, where the vector either indicates an intrusion or does not. The hypothesis is then 

'. 



133 SYMC 1007

~ Intrusion Detection 

tested to determine whether it is valid, and an improved hypothesis is devised and tried 
based on the results of the test. This process repeats until a solution is found. 

The role of genetic algorithms in this process is to devise the improved hypothesis. Genetic 
algorithm analysis involves two steps. The first step involves coding a solution to the prob­
lem with a string of bits. The second step is fmding a fitness function to test each 
individual of the population (for instance, all the possible solutions to the problem) against 
some evaluation criteria. 

In the system CASSATA. developed by Ludovic Me of Supelec, the French engineering 
university, genetic algorithms are applied to the problem of classifying system events by 
using a set of hypothesis vectors, H (one vector per event stream of interest) of n dimen­
sions (where n is the number of potential known attacks). H; is defined to be 1 if it 
represents an attack and 0 if it doesn't. 

The fitness function has two parts. First. the risk that a particular attack represents to the 
system is multiplied by the value of the hypothesis vector. The product is then adjusted by 
a quadratic penalty function to eliminate unrealistic hypotheses. This step improves the dis­
crimination among the possible attacks. The goal of the process is to optimize the results 
of this analysis so that the probability of a detected attack being real approaches 1 and the 
probability of a detected attack being false approaches 0. 

Experimental results for the genetic algorithm approach to anomaly detection are encour­
aging. In experimental runs, the mean probability of true positives (accurate detection of 
real attacks) was 0.996, and the mean probability of false positives {detection of nonat­
tacks) was 0.0044. The time required to construct the filters is also encouraging. For a 
sample set of 200 attacks. it took the system 10 minutes and 25 seconds to evaluate audit 
records generated by an average user over 30 minutes of intensive system use. 

The following drawbacks are noted in this approach to misuse detection: 

• The system can't take into account attacks characterized by event absence (for instance. 
rules in the form of "programmer does NOT use cc as compiler"). 

• Because of the binary expressional form for individual event stream~. the system can't 
detect multiple simultaneous attacks. The possibility exists that nonbinary genetic 
algorithm approaches could solve this problem. 

• If the same event or group of events is common to several attacks and an attacker uses 
this commonality to execute multiple simultaneous attacks, the system can't find an 
optimal hypothesis vector. 

• Perhaps the largest drawback is that the system doesn't precisely locate attacks in the 
audit trail. Therefore, no sense of temporality occurs in the results of the detector. 



134 SYMC 1007

CHAPTER 4 Analysis Schemes ~ 

(Note that this drawback is similar to problems noted in neural network approaches.) 
Therefore, genetic algorithm approaches must be backed up with post hoc search or 
other Investigative aids if such support is required. 25 

4.3.3.3 Agent-Based Detection 
Agent-based approaches to intrusion detection are based on software entities that perform 
certain security monitoring functions at a host. They function autonomously-that is, they 
are controlled only by the operating system, not by other processes. Agent-based 
approaches also run continuously with the understanding that this type of operation allows 
them to Jearn from experiences, as well as to communicate and cooperate with other 
agents of similar construction. 

Agent-based detection approaches can be very powerful due to the range of capabilities 
with which one can imbue an agent. An agent can be extremely simple (for example 
counting the number of times a particular command is invoked in a time interval) or com­
plex (looking for evidence of a set of attacks for a particular environment), depending on 
the whim of the developer. 

The range of agent capabilities can allow an agent-based intrusion detection system to 
provide a mixture of anomaly detection and misuse detection capabilities. For instance, an 
agent can be programmed to adapt its detection capabilities to changes in the local envi­
ronment. It can also monitor for very subtle patterns over a long time interval, thereby 
detecting slow attacks. Finally. an agent can enact extremely fine-grained responses to a 
detected problem {for instance, changing the priority level of a process, effectively slow­
ing it down) . 

Autonomous Agents for Intrusion Detection 
A prototype of an agent-based intrusion detection system, Autonomous Agents for 
Intrusion Detection (AAFID), was developed by researchers at Purdue University. It serves 
as the basis for this discussion of agent-based solutions. 

This architecture for agent-based intrusion detection systems calls for a hierarchically 
ordered control and reporting structure for agents, as pictured in Figure 4.7. Any number 
of agents can reside on a host. All agents on a particular host report their findings to a sin­
gle transceiver. Transceive~ monitor the operation of all the agents running in the host. 
with capabilities to issue start, stop, and reconfiguratlon commands to agents. Transceivers 
also perform data reduction on information reported by the agents and report results to 
one or more monitors, the next level of the hierarchy. 



135 SYMC 1007

... 

"· 

~ Intrusion Detection 

:·flg~W1:·7:· . ::i AAFID Architecture 

Legend: 

0 Monitor Transceiver \!.] 
Agent & H061 -

Monitors, which can be hierarchkally structured in multiple layers, control and consolidate 
information from several transceivers. The architecture of AAFID ~lows redundancy in 
reporting from transceivers to monitors so that the failure of a monitor doesn'tjeopardize 
the operation of the intrusion detection system. Monitors have the capability to access data 
from the entire network and therefore perform higher-level aggregation of results from 
transceivers. This feature enables the system to detect multihost attacks. Through a user 
interface, the user of the system enters commands to control the monitors. They, in turn, 
control the transceivers based on these user commands. 

APis exported by each component accomplish communications between agents, trans­
ceivers, monitors, and users. 

The advantages of AAFID and other such agent-based approaches include the following: 

• They appear to be more resistant to insertion and evasion attacks than other intrusion 
detection systems. 

• The architecture is more easily scaled, with provisions for adding new components or 
replacing old ones as needed. 

• Agents can be tested Independent of the full system before they are deployed. 

• Because they can intercommunicate, agents can be deployed in groups in which each 
performs a different, simple function but contributes to a complex result. 

.......... ---------------- i 

i 
·! 

j 
1 
I 
:I 



136 SYMC 1007

CHAPTER 4 Analysis Schemes ~ 

The following deficiencies are also associated with the AAFID architecture: 

• Monitors. are single points of failure. If a monitor ceases to work, all the transceivers 
under its control stop producing useful information. Possible solution strategies exist, 
but they are as yet untested. 

• If duplicated monitors are used to address the first problem. it is difficult to deal 
with the consistency and duplication of information. This situation requires additional 
mechanisms. 

• Access control mechanisms to allow different users to have different modes of access to 
the intrusion detection system are missing. This significant deficit must be addressed at 
each level of the architecture. 

• Problems occur because of the propagation time for evidence of attackers to reach the 
monitor level. This problem is common to all distributed intrusion detection systems. 

• As In the rest of intrusion detection, a significant need remains for more insight regard­
ing designing user interfaces for intrusion detection systems. This need extends from 
presentation schemes to policy structures and specification schemes. 26 

EMERALD 
A second architecture that utilizes distributed agent approaches to performing intrusion 
detection is the EMERALD system, researched and prototyped by Phillip Porras (whose 
previous intrusion detection work includes the STAT state transition analysis system) of 
SRI International. EMERALD includes numerous local monitors in a framework that 
supports distributing local results to a global array of detectors that, in turn, consolidate 
alarms and alerts. 

EMERALD, like IDES and NIDES, SRI's previous intrusion detection systems, is a 
hybrid intrusion detector. utilizing both signature analysis and statistical profiling to 
detect security problems. 

EMERALD is notable in that it separates the analysis semantics from the analysis and 
response logic, thereby enabling much easier integration throughout the network. 
EMERALD also supports analysis at different layers of abstraction, an important 
capability. Futhermore the design supports interoperability, another important issue i11 
modem intrusion detection systems. 

The central component of EMERALD is the EMERALD Service Monitor, which is similar 
.~ in form and function to the AAFID autonomous agent. Service monitors are programma­

ble to perform any function and are deployed to hosts. They can be layered, to support 

. i 

i 
. I 



137 SYMC 1007

~ Intrusion Detection 

hierarchical data reduction. with service monitors performing some local analysis and 
reporting I'E'sults and additional information to higher-level monitors. This approach yields 
some scalability not commonly found in network intrusion detection products. The system 
also supports a wide range of automated response, which is of great interest to customers 
responsible for critical large-scale networks. 

EMERALD, as it builds on considerable corporate insight gathered in the IDES and 
NIDES efforts, holds great promise for protecting large distributed networks. 27• 28 

4.3.3.2 Data Mining 
An approach that is similar to some of the rule-based anomaly detection efforts involves 
utilizing data mining techniques to build intrusion detection models. The objective of this 
approach is to discover consistent useful patterns of system features that can be used to 
describe program and user behaviors. These sets of system features, in turn, can then be 
processed by inductive methods to form classifiers (detection engines) that can recognize 
anomalies and misuse scenarios. 

Data mining refers to the process of extracting models from large bodies of data. These 
models often discover facts in the data that are not apparent through other means of 
inspection. Although many algorithms are available for data mining purposes, the three 
that are most useful for mining audit data are classification. link analysis, and sequence 
analysis. 

• Classification assigns a data item to one of several predefined categories. (This step is 
akin to sorting data into "bins," depending on some crl.teria.) Classification algorithms 
output classifiers, such as decision trees or rules. In intrusion detection, an optimal clas­
sifier can reliably identify audit data as falling into a normal or abnormal category. 

• Link analysis identifies relationships and correlations between fields in the body of data. 
In intrusion detection. an optimal link analysis algorithm identifies the set of system 
features best able to reliably reveal intrusions. 

• Sequence analysis models sequential patterns. These algorithms can reveal which audit 
events typically occur together and hold the key to expanding intrusion detection mod­
els to include temporal statistical measures. These measures can provide the capability to 
recognize denial-of-service attacks. 

Researchers have developed extensions to standard data mining algorithms to accommo­
date some of the special needs of audit and other system event logs. Initial results of 
experiments using live data are interesting, but the work. is not yet ready for transfer into 
commercial products. Additional research is planned to refine the approach. 29 



138 SYMC 1007

CHAPTER 4 Analysis Schemes ~ 

4.4 Conclusion 
In this chapter, you've seen the different approaches to the core function of intrusion 
detection: analysis. In analysis, which involves isolating patterns of behavior known to rep~ 
resent problems (misuse detection) and using mathematical approaches to characterize user 
behaviors that are abnormal (anomaly detection) , intrusion detection systems address sev­
eral system protection challenges. 

Although many approaches have been explored for doing both misuse and anomaly detec­
tion, most commercial products confine themselves to performing pattern matching and 
elementary statistical characterization of user activity and usage patterns. Refining 
advanced analysis techniques and transferring them to commercial products represent sig­
nificant challenges for the intrusion detection research and development community. 
However, this step Is necessary if intrusion detection products are to be effective in pro­
tecting real systems, both now and in the future. 

Endnotes 
1. Lunt, T., A. Tamaru, and F. Gilham. "IDES: A Progress Report." Proceedings of the 

Sixth Annual Computer Security Applications Conference, Tucson, AZ, December 1990. 

2. Ranum, M. personal communication, June 1999. 

3. Kumar, S. "Classification and Detection of Computer Intrusions. " Ph.D. thesis, 
Department of Computer Sciences, Purdue University, 1995. 

4. Ilgun, K. "USTAT: A Real-Time Intrusion Detection System for UNIX." Master 
thesis, Computer Science Department, University of California, Santa Barbara, CA. 
November 1992. 

5. Porras, P. "STAT, A State Transition Analysis Tool for Intrusion Detection." Master 
thesis, Computer Science Department, University of California, Santa Barbara, CA, 
july 1992. 

6. Kumar, S. and E. H. Spafford, "A Pattern Matching Model for Misuse Intrusion 
Detection.· Proceedings of the Seventeenth National Computer Security Conference, 
October 1994: 11- 21. 

7. Mounji, A. "Languages and Tools for Rule-Based Distributed Intrusion 
Detection. · Thesis, Faculte's Universitaires Notre-Dame de la Paix Namur, 
Belgium, September 1997. 

~., 

! 

.I 
I 

·l 



139 SYMC 1007

. I 
I 

~ Intrusion Detection 

8. Smaha, S. and S. Snapp. "Method and System for Detecting Intrusion into 
and Misuse of a Data Processing System." US5557 42, U.S. Patent Office, 
September 17. 1996. 

9. http://www.nai.com/asp_set/products/tns/ccmonitor~intro.asp. 

10. http://www.nfr.net. 

11. Anderson, R and A. Khattak. "The Use of Information Retrieval Techniques for 
Intrusion Detection." Presentation at the First International Workshop on the Recent 
Advances in Intrusion Detection, Louvain-Ja-Neuve, Belgium. September 1998. 

12. Denning, D. "An Intrusion Detection ModeL" Proceedings of the Seventh IEEE 
Symposium on Security and Privacy. May 1986: 119-131. 

13. Hochberg,]., K. Jackson, C. Stallings,]. McClary, D. DuBois, and J Ford. "NADIR: 
An Automated System for Detecting Network Intrusion and Misuse." Computers and 
Security. vel. 12, Elsevier Science Publishers. Ltd .• 1993: 235-248. 

14. Javitz, H. S. and A. Valdes. "The SRI IDES Statistical Anomaly Detector." 
Proceedings IEEE Symposium on Security and Privacy, Oakland, CA, May 1991. 

15. Smaha, S. E. "Haystack: An Intrusion Detection System." Proceedings of the Fourth 
IEEE Aerospace Computer Security Applications Conference, Orlando, FL. 
December 1988. 

16. Mukherjee, B .• L. T. Heberlein, and K. N. Levitt. "Network Intrusion Detection." 
IEEE Network. vel. 8. no. 3, May/June 1994: 26-41. 

17. Hochberg, J. et al., op cit. 

18. Lankewicz, L. and M. Benard. "Real Time Anomaly Detection Using a Nonparametric 
Pattern Recognition Approach." Proceedings of the Seventh Annual Computer 
Security Applications Conference, San. Antonio, TX. December 1991. 

19. Liepins. G. E. and H. S. Vaccaro. "Intrusion Detection: Its Role and Validation." 
Computers and Security, vol. 11, Elsevier Science Publishers, Ltd., 1992: 347-355. 

20. Teng, H. S., K. Chen, and S. Lu. "Adaptive Real-Time Anomaly Detection Using 
Inductively Generated Sequential Patterns." Proceedings of the IEEE Symposium on 
Security and Privacy, May 1990. 

21. Debar, H .. M. Becker, and D. Siboni. "A Neural Network Component for an 
Intrusion Detection System." Proceedings of the 1992 IEEE Symposium on Security 
and Privacy: 240-250. 



140 SYMC 1007

L 

CHAPTER 4 Analysis Schemes ~ 

22. Hofmeyr, S. A. S. Forrest. and A. Somayaji. "Intrusion Detection Using Sequences 
of System Calls. " Journal of Computer Security. voJ. 6, no. 3, 1996. 

23. Warrender, C., S. Forrest, and B. Pearlmutter. "Detecting Intrusions Using System 
Calls: Alternative Data Models." Proceedings of the Twenty-Fifth IEEE Symposium 
on Security and Privacy, Oakland. CA. May 1999. 

24. Howe, D. Free On-line Dictionary of Computing (FOLDOC), available at 
http://foldoc.doc.ic.ac.uk. 

25. Me, L. "GASSATA. A Genetic Algorithm as an Alternative Tool for Security Audit 
Trails Analysis." First International Workshop on the Recent Advances in Intrusion 
Detection, Louvain-la-Neuve, Belgium, September 1998. 

26. Balasubramaniyan, ]. S .. J. 0. Garda-Fernandez, D. Isacoff. E. H. Spafford. and . 
D. Zamboni. ·An Architecture for Intrusion Detection Using Autonomous Agents.~ 
COAST Technical Report 98/05, Purdue University, June 1998. 

27. Porras, P. A. and P. G. Neumann. "Emerald: Event Monitoring Enabling Responses to 
Anomalous Live Disturbances. " Proceedings of the Twentieth National Information 
System Security Conference, Baltimore, MD, 1997. 

28. Neumann, P. G. and P. A. Porras. "Experience with EMERALD to Date." First 
USENIX Workshop on Intrusion Detection and Network Monitoring. Santa Clara. 
CA, April 1999. 

29. Lee. W., S. ]. Stolfo, and K. W. Mok. ·A Data Mining Framework for Building 
Intrusion Detection Models." Proceedings of the Twentieth IEEE Symposium 
on Security and Privacy, Oakland, CA. 1999. 

,; 

I 
! 



141 SYMC 1007

J ,. • 

. I f 

'· 

C H APT ER 

Responses 
After the analysis is done, and the system has identified problems, it's time to let someone 
know about them (and in some cases, to take additional action). In the intrusion detection 
process model, this is handled by the response section. Ideally, this portion of the system is 
feature-rich and serves all the members of the security management team by tailoring 
responses to each of them. 

This chapter covers numerous ways in which intrusion detection systems can handle the 
results of analysis and outlines some options for responses to detected problems. These 
options Include passive responses, in which the system simply notes and reports the prob­
lem; and active responses, in which the system (automatically or in concert with the user) 
takes action in order to block or otherwise affect the progress of the attack). Finally, we 
discuss ways of tying the results back into the site securitY management process. 

5.1 Requirements for Responses 
Many considerations come into play when designing response features for an intrusion 
detection system. Some responses can be designed to reflect current standards for secu­
rity management or incident handling; others can reflect local management concerns and 
policies. When designing response features for commerdal products, vendors should 
provide end users with the capability to tailor response mechanisms to fit their particular 
environment. 

In the early days of intrusion detection system research and design, most designers focused 
on the monitoring and analysis sections of the system, leaving the crafting of the response 
component to the user. Although there was a great deal of discussion of what users really 
wanted in a response component, no one had a clear idea of the operational environment 
in which intrusion detection systems were likely to be fielded. In one of the first intrusion 
detection research conferences, an intrusion detection system researcher presented his 



142 SYMC 1007

~ Intrusion Detection 

tongue-in-cheek design for ~the perfect intrusion detection system" (pictured in Figure 5.1). 

It remains one of my favorite designs, because it so accurately captures my experience with 

early users of the technology! 

Fi~e s_l .-· The Perfect Intrusion Detection System' 



143 SYMC 1007

CHAPTER 5 Responses ~ 

Users rely on intrusion detection systems to perform complex and exacting analysis on 
huge volumes of system event data. Ultimately, they want the system to be reliable and 
accurate and to convey the results of the analysis to the right people at the right time in 
straightforward, easy to understand terms. Many considerations color these requirements. 
but the goal remains the same. 

5.1.1 Operational Environment 
When designing a response mechanismm. an obvious consideration is the nature of the 
operational environment in which the intrusion detection system is operating. The alarm 
and notification requirements of an intrusion detection system that has a number of 
attended control consoles lining the wall of a network operations center are likely to be 
quite different from the requirements of an intrusion detection system installed on a 
desktop system In a home-based business. 

The information provided by the intrusion detection system as part of the notification also 
depends on the environment. Network operations center staffers might prefer to use prod­
ucts that provide details about low-level network traffic (contents of fragmented packets, 
for instance). A graveyard-shift security manager might consider anything beyond a simple 
alarm with a message to contact the proper person to be worthless. 

Audible alarms are perfectly suitiible for Installations In which one person is responsible 
for monitoring the results of multiple intrusion detection systems. Such alarms can be a 
massive annoyance for those managing multiple operations on a complex network from a 
single console. 

Visual alarms and activity graphs may be of value to Installations that have a full-time 
operator who sits In front of the system console. They are especially helpful when moni­
toring other components of the security infrastructure (such as encryptors or firewalls) 
that might not be visible from the management area. 

Visual alarms are likely to be irrelevant to operators who are not present to view them. 
Color-coded alarm status displays are of little value to operators who are color-blind (as are a 
significant percentage of military system operators) or to those who are visually challenged. 

!·l ~ 5.1.2 System Purpose and Priorities 
Another factor driving response requirements is the monitored system's function. The 
need to provide active responses (for instance, termlnating the network connections of a 
user recognized as the source of an attack) is driven in part by systems that provide critical 
data and services to users. An example of this type of system is a medical record server for 
an emergency room. Another is a Web server for a high-traffic, high-revenue electronic 
commerce site. 

.\ 
i 
I 

.. --,, 
i 



144 SYMC 1007

~ Intrusion Detection 

In these cases, the impact of a successful denial-of-service attack (or a series of such 
attacks) can be devastating. In both cases. the value of preserving the availability of the 
systems far outweighs any additional overhead associated with providing active responses 
to detected intrusions. 

5.1.3 Regulatory or Statutory Requirements 
Other factors driving specific response capabilities include regulatory or statutory require­
ments for intrusion detection. ~n certain military computing environments, intrusion 
detection capabilities are required for certain types of processing to take place. For 
instance, a system might be accredited to handle classified information of a certain level of 
sensitivity only if an intrusion detection system is present. In these environments, regula­
tions govern the operation of the intrusion detection systems. and reporting requirements 
govern the format and delivery schedule for the results of the intrusion detection system's 
operation. If the intrusion detection system is not running. the regulations dictate that the 
classified information cannot be processed on the system. 

In online stock-trading environments, the Securities and Exchange Commission requires 
trading systems to be accessible to customers during trading hours. Any denial of access 
can result in fines and other penalties levied on the site. This situation requires both auto­
mated responses that can block attacks and well-targeted, concise explanations of detected 
problems-so that damage recovery can be completed as quickly as possible. 

5.1.4 Conveying Expertise to Users 
One need that intrusion detection products often neglect is providing guidance to users 
along with or as part of the detection responses. In other words, whenever possible, the sys­
tem should accompany the detection results with explanations and advice to the user that 
allow him to take appropriate action. This area is one in which an immense disparity exists 
among products. A well-designed set of response mechanisms can structure information and 
explanations so that users are guided through a series of decisions, in the proper order, that 
ultimately lead them to the appropriate resolution of the problem. 

Such a response mechanism also allows the tailoring of the presentation of results to users 
possessing different levels of expertise. As noted in the description of user constituencies in 

the author's note, different users of intrusion detection systems have different information 
needs. System administrators are probably able to make sense of sequences of. network ser­
vice requests or raw packet traces. Security specialists might be able to understand the dif­
ference between a "port scanner» and a "send mail buffer overflow." Investigators might 
require the capability to track the sequence of commands a particular user makes, along 
with the system objects that user affects. 

=· .. 

•·.• ·: , 
·, 

I 

l 



145 SYMC 1007

' · 

CHAPTER 5 Responses ~ 

Intrusion detection system developers should accommodate a wide range of user capabili­
ties and expertise levels. In this fast-growing market (that did not exist 10 "years ago) the 
expert user is likely to be rare for a few more years! 

5.2 Types of Responses 
Intrusion detection system responses can be classified as active or passive. In active 
responses, the system (automatically or in co':lcert with the user) blocks or otherwise 
affects the progress of the attack. In passive responses, the system simply reports and 
records the problem. 

Active and passive responses are not mutually exclusive. Intrusion detection systems 
should, as a matter of course, always log detection results, regardless of whether other 
responses are enabled. 

An essential part of including intrusion detection in a site security process is determining 
which intrusion detection responses to enable and deciding which actions should occur as 
a result of those responses. 

5.2.1 Active Responses 
As stated above, responses can be classified as active or passive. Active responses involve 
taking action based on the detection of an intrusion. Several options are available for active 
responses; most of these options fall into one of the following categories: 

• Take action against the intruder 

• Amend the environment 

• Collect more information 

Although the first option, taking action against the intruder, is extremely popular in some 
circles, it is not the only active response. Furthermore. because it has serious legal and 
practical implications, this response should not be the most common active response you 
use! 

There are two forms of active response: those that are user driven and those that are 
performed automatically by the system. 

5.2.1.1 Take Action Against the Intruder 
The first option in active response is to take action against intruders. The most aggres­
sive form of this option, tracing back the intruder to the source of the attack and then 
taking action to disable the intruder's machine or network connection, has captured the 



146 SYMC 1007

~ Intrusion Detection 

imagination of many an information warfare groupie. This approach is also of consider­
able appeal to the long-suffering security manager who has been the target of one too 
many hacker denial-of service-attacks! 

Unfortunately. this option can also represent one of the biggest briar patches of security. 
The hazards represented by striking back include the following: 

• Given the general modus operandi of network hackers, the system identified as the 
source of the attack on your system probably belongs to another victim of the hacker. 
Network hopping, in which a hacker successively hacks a system and then uses it as a 
platform for attacking another s}rstem, is a common practice. If you target the system 
from which the attack was launched, you are probably targeting an innocent party. 

• Even if the attacker is coming from a system over which she or he has legitimate 
control, spoofing the IP address of the source of attacks is common practice. Therefore, 
the IP address that appears to be the source of the attack on your system may actually 
be tiborrowed" from another (Innocent) victim. 

• You may find that striking back simply provokes an escalation of the attack. What 
might have begun as a routine surveillance or scan of your system could develop into a 
fulJ-scaled hostile attack, placing the availability of your system resources in jeopardy. 

• In many situations, by stri~ing back you expose yourself to a significant risk of criminal 
charges or civil legal action. If your actions attack an Innocent party, that party may sue 
you for damages. Furthermore, your reaction in itself may violate computer crime 
statutes, and you may be subject to charges. FinaUy, if you work for a government or 
military organization, you may be violating policy and may be subject to disciplinary 
action or dismissal. Law enforcement officials advise contacting authorities for assistance 
in dealing with attackers. 2 

Taking action against intruders can also occur in more benign forms. For instance, the 
intrusion detection system might simply terminate the network session by resetting TCP 
connections. The system might also direct a firewall or router to block packets coming 
from the IP address that appears to be the source of the intrusion. 

Another response is to automatically spawn email to the administrator of the system from 
which the intruder appears to be coming and request assistance in identifying and dealing 
with the problem. This can be productive when the hacker is connected to that system by 
a dial-up connection. As traceback capabilities improve for the communication infrastruc­
ture as a whole, it may become possible to utilize features in the telephone system (such as 

caller 10 or trap and trace) to assist in establishing accountability for intrusions. 



147 SYMC 1007

'· 

' 
-' 

CHAPTER 5 Responses ~ 

User-Driven Responses 
Many active response capabilities originated in the days when "super security geeks" per­
formed them manually. Although many of the responses can be automated to deal with 
attacks In real time, this doesn't mean you should. 

For instance, suppose an attacker discovers that your system's automated response to a 
deilial-of-service attack is to "shun" (that is, terminate the current connection and refuse 
subsequent TCP connections with the source IP address) the ostensible source of the 
attack. The attacker may use IP-spoofing tools to generate denial-of-service attacks that 
appear to come from a list of your most important customers, resulting in those customers 
being denied access to your critical resources. What is even worse iS that in strictest terms, 
this denial of service is being enabled by your own intrusion detection system! 

Automatic Responses 
On the other hand, automating at least some of the active responses is necessary because 
of the sheer speed with which attacks take place. Most of the attacks that come from the 
Internet utilize attack software and scripts. These attacks progress at a pace that prohibits 
manual intervention. Intrusion detection designers should consider whether a particular 
active response can be handled manually (with the intrusion detection system providing 
guidance and information to the user). If the Intervention must be automated, measures 
should be taken to minimize the risk of the automated response being used as a vehicle for 
attack. We will return to this topic in Chapter 12, "For Designers," when we cover design 
issues for intrusion detection. 

5.2.1.2 Amend the Environment 
The next option for active response is to amend the system environment. Although this 
type of response to intrusions is quieter and less glamorous than other approaches, it is 
often the optimal response scheme, especially in combination with responses that provide 
investigative support. The concept of amending the system environment to "heal" flaws 
that allow intrusions to occur is consistent with the vision for critical systems articulated by 
many researchers. "Self-healing" systems are equipped with' defenses analogous to the 
body's immune system In which problems can be recognized, the causative factors isolated, 
and a suitable response generated to address the problem. 

In some intrusion detection systems, this category of response could alter the operational 
characteristics of the analysis engine, perhaps increasing sensitivity levels. It could also alter 
expert systems by inserting rules that increase the suspicion level for certain attacks or 



148 SYMC 1007

~ Intrusion Detection 

increase the scope of the monitoring to collect information at a finer granularity than 
usual. This strategy is analogous to those used in real-time process control systems in 
which the outcome of the current system process is used to tune and refine subsequent 

processes. 

5.2.1.3 Collect Additional Information 
The third option in active response is to collect additional information. ThiS option is of 
special interest when the system being protected is critical and a system owner might want 
to pursue legal remedies. At times, this logging response is coupled with the use of a spe­
cialized server, established to serve as an environment into which intruders can be 
diverted. This server is known by a variety of names. Most common are "honey pots," 
"decoys." or "fishbowls." Such servers are equipped with file systems and other spoofed 
system attributes that are designed to mimic the appearance and content of critical systems. 

Decoy servers are of value to security managers who are collecting threat information on 
intruders or who are collecting evidence to support taking legal action against them. Using 
a decoy server allows the victim of an intrusion to determine the intent of the intruder. 
logging extensive Information about the activities of the intruder without placing the 
actual system contents at risk of damage or divulgence. This information can also be used 
to construct custom detection signatures. 

Information collected in this way is also of value to those performing trend analysis of net­
work security threats. This information is of particular interest in systems that must operate 
in hostile threat environments or that are subject to large numbers of attacks (such as gov­
ernment Web servers or high-profile electronic commerce sites). 

5.2.2 Passi ve Responses 
Passive responses are those that provide information to the user. relying on the user to take 
subsequent action. In early intrusion detection systems, all responses were passive. Passive 
responses are important, however, and in many cases represent the sole response form for 
the system. In this section passive responses are presented in order of criticality to the user. 
(This criticality is the primary difference between alarm mechanisms and problem reports.) 



149 SYMC 1007

. I ,. 

. ~ 

·.i 
l 

L 

CHAPTER 5 Responses ~ 

5.2.2.1 Alarms and Notification 
Most intrusion detection systems provide options for generating alarms in a variety of 
forms. This flexibility allows a user to tailor the alarms to fit the organization's system 
operating procedures. 

Alarm Display Screens 
The most common alarm and notification feature provided by intrusion detection systems 
Is an onscreen alert or window. This alarm and message appear on the intrusion detection 
system console or on other systems as specified by the user in the intrusion detection sys­
tem setup. Different systems provide different levels of detail in the alarm message. ranging 
from a simple "an intrusion has occurred" to extensive records outlining the ostensible 
source of the problem, the target of the attack, the apparent nature of the intrusion, and 
whether it was successful. In some systems the contents of the alarm message can also be 
customized. 

Remote Notification of Alarms and Alerts 
Organizations that run attended systems around the clock use another alarm/ alert option. 
In these situations, intrusion detection systems can issue alarms an~ alert messages by dial­
ing pagers or cellular telephones issued to system administrators and security personnel. 
Email messages are another means of notification, although this approach is not recom­
mended in cases of on-going or persistent attacks (the attacker is likely to read or, worse, 
block the email message). In some cases, the notification option allows users to configure 
additional information or alarm codes sent to these units. 

5.2.2.2 SNMP Traps and Plug-Ins 
Some intrusion detection systems are designed to function in concert with network man­
agement tools. These systems can utilize the network management infrastructure to send 
and display alarms and alerts on the network management console. Some products spawn 
Simple Network Management Protocol (SNMP) messages or traps as an alarm option. 

This option is currently provided in some commercial products, but many believe that 
intrusion detection and network management systems can be much more thoroughly inte­
grated. Several benefits are associated with this integration, including the ability to utilize 
common communications channels and the ability to provide active responses to security 
problems that take into consideration the network environment at that time. Furthermore, 
SNMP traps allow users to move the processing load associated with responding to a 
detected problem to the system receiving (and acting upon) the trap. 

l 

I· 
I 

l 



150 SYMC 1007

~ Intrusion Detection 

5.3 Covering Tracks During Investigation 
Part of the effectiveness of an intrusion detection system relies on its capability to provide 
silent, reliable monitoring of attackers. When a system is under attack, it is wise to handle· 
alarms and notification in a fashion that is invisible to the intruder. This approach allows 
Investigative activity to take place while the intruder's session is still unde~way, allowing 
accountability to be established. In these cases, alarms and notification may .be performed 
over encrypted channels. Other needs for encrypted channels are discussed in the follow­
ing section on fail-safe considerations. 

5.3.1 Fail-Safe Considerations for Response Components 
Several fail-safe measures should be taken In this component of intrusion detection systems. 

First. as in the rest of the system, the design of the response system and all of its compo­
nents should assume that an adversary will target them as part of the attack. The attack 
strategy is likely to involve either monitoring the response channels, searching for signs of 
detection, or else disrupting or intercepting the alarm and alert channels so that operators 
are not notified of the attack. 

Utilizing encrypted tunnels and other cryptographic means of hiding and authenticating 
intrusion detection communications is required for the reliable operation of the system. 
This measure precludes a variety of attacks targeting both the response components and 
the rest of the intrusion detection system. 

Alarms generated by intrusion detection systems should be redundant, utilizing multiple 
channels. For example, users might want to configure an intrusion detection system to 
trigger three alarms for a certain severity of attack on a critical system, sending one alarm 
to the notification unit via normal network communications, a second via encrypted 
channels, and a third via a dial-up channel. 

The logs generated by the response component that document all detection results 
should be protected from alteration or destruction. Because they are likely to be used in 
any investigation and to support any legal action, this protection is especially important. 
One way to protect these logs is to use write-once media (such as CD-ROMs) with an 

· optional hard copy backup to line printers. For especially critical 
systems, redundant logging mechanisms are recommended. 

5.3.2 Handling False Alarms 
One problem that exists in intrusion detection systems and that requires some embedded 
intelligence in the response component of the system involves false alarms. These alarms 
can be false positives, in which the system identifies attacks when there are none, and false 



151 SYMC 1007

• 1 r 
' 

CHAPTER 5 Responses ~ 

negatives, in which the system fails to identify attacks when they occur. False negatives are 
a problem of analysis and are best handled in that component. However. false positives can 
in themselves present problems to the response component. 

When a faulty network component corrupts packets, triggering a false indication of net­
work attack, the analysis system sends an alarm to the response component, which will in 
tum generate alarm messages. If the corrupted packets bigger false alarms at even two per 
second, the response component may be flooded with service requests and ultimately 
crash. Therefore, response components should give users the capability to limit the num­
ber of alarms triggered by the same source and signature during a time interval. This tech­
nique nol_ only serves to protect the integrity of the response component but also reduces 
the possibility that the user will ignore the alarms generated by the detector. 

5.3.3 Archive and Report 
The longer-range portion of passive response involves archiving detection results for later 
use. Some intrusion detection systems store the results in databases. This approach allows 
the user to genera.te a wide range of reports, targeting each to a particular audience. This 
feature of intrusion detection products is very popular because it allows security managers 
to regularly inform executive management about the state of system security, targeting 
details of problems to those best equipped to deal with them. 

Another task that is important to the security process is to maintain an intrusion detection 
result log, structured in much the same way as system logs and audit trails. This log should 
be written to write-once media to protect it from alteration or deletion. This log is impor­
tant because It provides a long-term sequential record of intrusions against the target sys­
tem. This material can be important as documentation of the progress of a long-term 
problem and can, even more importantly, serve as evidence should the organization decide 
to seek legal remedies for the problem. Such evidence is critical regardless of whether the 
remedies pursued are in criminal or civil venues. 

5.4 Mapping Responses to Policy 
A successful security management program effectively blends policy and supporting 
technology. To optimize the utility of intrusion detection systems, it should be included 
in organizational security policy and procedures. One way to do this is to include provi­
sions to specify which activities should correspond to detected intrusions or security 
violations. These activities are divided into the following four categories, ordered by the 
time and criticality of the activities: immediate or critical, timely. local long-term, and 
global long-term. 



152 SYMC 1007

~ Intrusion Detection 

5.4.1 Immediate 
Immediate or critical actions are those required of system management immediately fol­
lowing an· intrusion or attack. These include the following: 

• Initiating incident-handling procedures 

• Performing damage control and containment 

• Notifying law enforcement or other organizations 

• Restoring victim systems to service 

The time span associated with immediate or critical action can be determined by local pol­
icy and can be further refined to accommodate the severity of the attack. 

5. 4.2 Timely 
Timely actions are those required of system security management following detected 
attacks or security violations. The elapsed time can range from hours to days, and these 
actions usually follow those in the immediate/ critical category. Activities that should take 
place in a timely fashion include the following: 

o Manually investigating unusual patterns of system use 

o Investigating and isolating the root causes of the detected problems 

• Correcting these problems when possible (by applying vendor bug patches or 
reconfiguring systems) 

• Reporting the details of the incident to proper authorities (if they were not Involved in 
the incident-handling process) 

o Altering or amending detection signatures in the intrusion detection system 

o Instigating or pursuing legal action against the perpetrator 

• Dealing with publicity associated with the attack and notifying shareholders, regulators, 
and others for whom there may be statutory reporting requirements 

5. 4.3 Long-Term- Local 
Local long-term actions refer to system management activities that are less critical than 
actions that fall in the immediate or timely categories but are still important to the security 
management process. The impact of these activities is local to the organization. These 
activities might be scheduled as part of a regular review. 

.· 



153 SYMC 1007

CHAPTER 5 Responses ~ 

Activities that fall into this category include the following: 

• Compiling statistics and performing trend analysis 

• Tracking patterns of intrusion over time 

These patterns of intrusion and security violation should be evaluated to isolate areas 
requiring amendment or improvement. For instance, a large number of attacks targeting a 
vulnerability that has been corrected by a vendor might lead to a security policy require­
ment that systems software be patched on a regular schedule. A large number of false 
alarms might indicate a need to review the detection signatures or configuration of the 
intrusion detection system or else to look at an alternative intrusion detection product. 
Finally, large numbers of problems that are due to user error might indicate a need for 
additional training of personnel. 

5.4.4 Long-Term-Global 
Global long-term actions refer to system management activi.ties that are noncritical but 
nonetheless important to the state of security on a societal level. The impact of these activ­
ities is not confined to the organization. These activities are likely to be conducted in the 
context of an industry organization or consortium. 

Activities in this category include the following: 

• Notifying vendors of the problems the organization has suffered due to security 
problems in their products 

• Lobbying lawmakers and the government for additional legal remedies to system 
security threats 

• Reporting statistics regarding security incidents to law enforcement or other organiza­
tions that maintain statistics 

Many critical issues in system security simply can't be addressed at a local level. Thus 
community-level activity allows you and your organization to be part of the larger remedy. 

5.5 Conclusion 
In this chapter we covered the third and final component of the intrusion detection 
process model: response. This component handles the output of the analysis component, 
generating both active and passive responses to intrusions that are detected. 

We explored requirement definitions for this functional component and defined a classifica­
tion scheme for bin~ing the results of the intrusion detection process to the organizational 
security management process. 



154 SYMC 1007

~ Intrusion Detection 

Endnotes 
1. Smaha, Steve. Presentation, First Experts Conference on Future Directions in 

Computer Misuse and Anomaly Detection, Davis, CA. April 1992. 

2. Yasin. R. "Think Twice Before Becoming a Hacker Attacker." Internet Week, 
December 14, 1998. 

3. Cheswick, W. "An Evening with Berferd in Which a Cracker Is Lured, Endured, and 
Studied." Proceedings of the USENIX Security Conference, San Francisco, CA. 
Winter 1992: 163-174. 

4. Stoll, Clifford. The Cuckoo's Egg: Tracking A Spy Through the Maze of Computer 
Espionage. New York, NY: Doubleday, 1989. 

.. 
' 



155 SYMC 1007

RebeC:ca Gurley'Ba~ i~· the ~~~nt .~flnfii:lhl, In~ .• a . _ 
c~nsultiog practic~ spec~ jn intrusi9~ detectio~ . · 
and network se~rlty recb.nology·ari(J s~tegy. P~i~r- to 
founding Infidel, Ms. B~e. spent ~e~·p. ~n gil~em­
nient, the fll'St twelve as··an .emploree of the Natwnal 
Security Agency. Sh.e ledtthe Computer Misuse and 
AnonUly D~tection (CM:AD)',Re.s~ p_ro~from 1989 

~ough;t99._S,.2$ ~.(;Ita~ iri~be~:9fN:S~ O(fice.~f ·" 
-Inforniation Security 1\eseaiCMn(i .Ted:u1~ (R,2). & 
the leai:lor. of~ .researcl1i Ms. Bace champione<;l W..uch 
of the ~~earch in liitiusion Detectioff, spon5oritig · · 
~tadenii.c re5earch art>uldue ~~v.e~lfY- <9-?~sr proF<7>., 
the U.niveroty ofailiforrua. '.l)"a\ri,s (Securi,t;y Lab), 

, l}!live~ty,.o.(N~~~~o, ~n1t i\i~Pr. Univ~~tr,· ~- --" 
Bace's researCh oollal>oratjons With Dr. DaVid· fCove or" the 
f.ederal'iB.llr¢au of[nv~tigation;led to,t\!e comm,ercial'. 
publi~On ~a ~ual'for C~!Dl'u@coin~ mv~tigiti/:in. 
SJJ,e and'th~,~~w<tr~hopr~*s;she fo~nd~~,:an~ . . 
spon$0red were ~lved m. the 1995-iiet.ect!on, tr2eebaclc, 
and ~P,rehe~ion ofKeVm Mimick,_~t the~timelhe FBI's 
most -wanted com~1ter ctinlijial. Ms: Bace.received a NSA 
D.istingiushe~ Leadership Award in'19.95, if! t:~ogniqon of 
her work bP,ilding.the national_CMl\Ji) CO.J;!Ullunity. After 
leaving'lhe,ll-J:S..\ in 1996; Ms. Bace served·'.is the Deputy 
Secuzity,Offl:cer fur 'the Computing, lnformation, ·and 
Comniunicarlons Di'v:isi~n of the ~ Al.anios National 
Labora~ry. ,A native ofieeds;-Alabmla, Ms. Ba.Ce holds 
the BachelO'~ ;;f Science fi:om the U~sity of the St.-tte of 
New York. alui the_Master <)£Engineering Science from 
Loyola College. · . : 

~~. ,. ... 

The Ted11wk1gy Series is a comprehenSive and authoritative 
set of guides to the most important computing standards 
of today. Each title in this series is aimed at bringing 
computing professionals closer to the scientists and 
engineers behind the technological implement::ations dut 
will change tomorrow's innovations in computing. 

. ·:.• P~actical ~o~ide~tions._Jor selecting and 
implementing in~sioit detection systems 

• Meth"'ees for haruifi.ng tlie tes.ults.ot analysis, and 
the options fur re.~P<>n.ses 'tp .~tec;tecl'problems - . . - ·' 

• Data sources commo~ useq in intrusion 
detection and ho-W they. influence the capabilities 
of all jptrusion detection systems 

, • Legal issues surrounding detection and monitoring 
that~ ~t the-~t8n •.. ae~l.Q,Rment; and operation_ 
of'intruslon aetection .. ~ysteniS 

More,-thanjust ah overvie#o!th~ teel!,lilllo~. . 
Intrusion Detectlrm. presents r~a1.~.sii~bemes and 
res_ponses. as' well as a' aetaile-d dlscuslion of the . 
vufne~bilitie~ Wterent in·D¥J]y ~terns. -and approa9les 

· to testing sYstems for .. thes~ probl~ms.'·Ide~ for the -
1?-':t\y,O~k archi~ct ymo_has ~ make ·decis.ions on ~hat 
intr:usion detec~on system to -implement and ·how to 
dO'it, this book will help you: 

• Undep;tand the history of the technology, as well 
- ~ hew future changes may affect your systems 

• Guide· an or~~tion through a full acquisition 
likcycle, from Wtial requirements definition to 
product deploymen t 

• Choose your systems' responses to detected 
problems and tie the results back into the site 
Security management process 

• Assess the quality of a proposed or existing 
intrusion detection system design 

ISBN 1·57870-185-6 

~· 
Hiders \ 

CATEGORY: Necworking 
www.newriders.com 

$50.00 USA I $74.95 CAN .,. .... t 9472 70185 0 9 

I .. 


