
Petitioner Apple Inc. - Ex. 1025, p. 4001

ID

20

25

.60

EP 0 067 556 B1

second inputs oi Times 1 And Times 2 Multiply Shifter (MULTSHI-T12) 20366 and Times 4 And Times 8
Multiply Shifter (MULTSHFT48l 20368. Outputs of MULTSHI-T12 and MULTSHFTB are connected.
respectively, to first and second inputs of First Multiplier Arithmetic and Logic Unit (MULTALU1) 20370.
MULTALU1 20370’s output is connected to input of Multiplier Working Register (MWR) 20372. Output of
MWR 20372 is connected to a_ first input of Second Multiplier Arithmetic and Logic Unit (MULTALU2) 20374.
A second input of MULTALU2 20374 is connected from output of RFR 20336. Output of MULTALU2 is
connected to a second input of FRS 20362. As described above, first input of FR5 20362 is connected from
output of NIBSHF 20368. Output of FRS 20362 is connected to input of RFR 20336.

As described above, output of RFR 20338 is connected to second input of MULTALU2 20374. to iirst
input of MULTRF 20350, to first input of MULTRM 20334, and to second input of FROM 20324. Output of
RFR 20338 is also connected to input of Leading Zero Detector (LZD) 20376 of MULTCNTL 20318. and to
inputs of Exception Logic (ECPT) 20378, CONSIZE 20352, and TSTINT 20320.

4. Exponent Logic 20316
Referring to EXP 20316. as previously described EXP 20316 performs certain operations with respect to

exponent fields of single and double precision floating point number in EU 10122 floating point operations.
EXP 20316 includes a second portion of EU 10122's general "register file, shown herein as Exponent Register '
File (EXPRFl 20380. Although indicated as individual register files, MULTRF 20350 and EXPRF 20380
comprise, as in GRF 10354, a unitary register file structure with common, parallel addressing of
corresponding registers therein.

Output of EXPHF 20380 is connected to a second inpLt of INSELA 20330. Aflrst input of EXPRF 20380 is
connected from output of EXRM 20332. As previously described, a first input of EXRM 20332 is connected
from second output of OPB 20322 through EXPO Bus 20325. A second input of EXRM 20332 is connected
from output Sle Register (SCALER) 20338. A second input of EXPRF 203% is connected from output of
Sign Logic (SIGN) 20382. lnput of SIGN 20382 is connected from second output of SCALER 20338.

INSELA 20330. INSELB 20348, Exponent ALU (EXPALU) 20384 and SCALER 20338 comprise EXP
20316's arithmetic circuitry for manipulating exponent fields of floating point numbers. INSEU-\ 20330 and
INSELB 20348 select. respectively, first and second inputs to EXPALU 20384. As previously described. a first
input of |NSEl..A 20330 is connected from second output of OPB 203% through EXPO Bus 20325. Second
input of INSELA 20330 is connected from output of EXPRF 20380. Output of INSEIA 20330 is connected to
first input of EXPALU 20384. First input of INSELB 20348 is. as previously described, connected from a
second output of mCRD 20346. Second input of INSELB 20348 is connected from output of OPB 20322
through EXPO Bus 20325. Third input of INSELB 20348 is connected from output of SCALER 20338 and
fourth input of INSELB 20348 is connected from output of l.ZD 20376. Output of INSELB 20348 is connected
to second input of EXFALU 20348. Output of EXPALU 20348 is connected to input of SCALER 20338.

As previously described. second output of SCALER 20338 is connected with input of SIGN 20382 and
first output is connected to second input of EXRM 20332 and to third input of INSELB 20348. First output of
SCALER 20338 is also connected to EXPO Bus 20325, to first input of EXOM 20326, and to a second input of
MULTCNT 20364.

5. Multiplier Control 20318
As previously described, MULTCNTL 20318 provides certain control signals and information for

controlling and coordinating operation of EXP 20316 and MULT 20314 in performing arithmetic operations
on floating point numbers. MULTCNTL 20318 includes LZD 20376 and MULTCNT 20364. Input of LZD 20376
is connected from output of RFR 20336 through FR Bus 20337. Output of LZD 20376 are connected to a
second input of MULTCNT 20364 and to fourth input of INSELB 20348. A second input of MULTCNT 20364
is connected from output of SCALER 20338. As previously described, control output of MULTCNT 20364 is
connected to control inputs of N|BSHF 20358. »

6. Test and Interface Logic 20&0
Finally, TSTINT 20320 includes ECPT 20378, CONSIZE 20352, and Testing Condition Logic (TSTCON)

20386. input of ECPT 20378 and first input of CONSlZE 20352 are connected from output of RFR 20336
through FR Bus 20337. A second input of CONSIZE 20352 is connected from LENGTH Bus 20226. An output
of CONSIZE 20352 is connected, together with other inputs from EU 10122 (not shown for clarity of
presentation) to TSTCON 20386. Output of TSTCON 20386 (not shown for clarity of presentation) are
connected to NAG 20340. TSTCON 20388 {and ECPT 20378 have outputs to and inputs from FU 10120's
FUlNT 20298.

Having described the overall structure of EU 10122 above, operation of EU 10122 will be described next
below with aid of further diagrams which will be introduced as required. Finally, operation of TSTINT 20320
will be described, including a description of the detailed control signal interface between EU 10122 and FU
10120 through TSTlNT 20320 and FUINT 20298. In addition to defining the interface between EU 10122 and
FU 10120, certain features of EU 10122 operation will be described wherein those operations are executed

103

Petitioner Apple Inc. - Ex. 1025, p. 4001

Petitioner Apple Inc. - Ex. 1025, p. 4002

10

15

55

' EP oos75se 31‘

in cooperation with MEM 10112 and FU 10120. For example, EU 1o122's Stack Mechanisms, comprising in
part portions of MULTRF 20350 and EXPRF 20380, resides partly in MEM 10112 so that operation of EU
10122's Stack Mechanisms requires cooperative operations by EU 10122, MEM 10112 and FU 10120.

b. Execute Unit 10122 Operation (Fig. 255) -
1. Execute Unit Control Logic 20310 (Fig. 255) '

Referring to Fig. 255, a more detailed block diagram of EUCL 20310 is shown. As described above.
EUCL 20310 receives EU 10122 Dispatch Pointers through EUDIS Bus 20206 from EUSDT 20266 and FUCTL

_20214. EU 10122 Dispatch Pointers select certain EU 10122 micnoinstruction sequences for executing EU
10122 arithmetic operations as required to execute user's programs, that is SOPs, and to assist in handling
JP 10114 Events. As described above, major elements of EUCL 20310 include COMO 20342, EUSITT 20344,
mCRD 20346. and NAG 20340. '

a.a. Command Queue 20342

Inputs of COMO 20342 are connected from EUDlS Bus 20206 to receive and store EU 10122 Dispatch
pointers provided from EUSDT 20266. Each such EU 10122 Dispatch Poimer is comprised of two
information fields. A first information field contains a 10 bit starting address of a corresponding sequence
of microinstructions residing in EUSITT 20344. Second field of each EU 10122 Dispatch Pointer is a 6 bit
field containing certain control information. such as information identifying data format of corresponding
operands to be operated upon. In this case unit dispatch pointer control field bits specify whether operands
to be operated upon comprise signed or unsigned integer, packed or unpacked decimal, or single or double
precision floating point numbers.

COMO 20342 is comprised of two one word wide by two word deep register files. A first of these
register fields is comprised of SOP Command Oueue Control Store (COOS) 25510 and SOP Command
Queue Address Store (COASl 25512. Together, COCS 25510 and COAS 25512 comprise a one word wide by
two word deep register file for receiving and storing EU 10122 Dispatch Pointers corresponding to SOPs,
that is Dispatch Pointers for initiating EU 10122 operations direcfly concerned with executing a user's
program. Address fields of these SOPs are received in COAS 25512, while control fields are received and
stored in COCS 25510. COMO 20342 is thereby capable of receiving and storing up to two sequential EU
10122 Dispatch Pointers corresponding to user program SOPs Those SOP derived Dispatch Pointers are
executed in the order received from FU 10120. EU 10122 is thereby capable of receiving and storing one
currently executing SOP Dispatch Pointer and one pending SOP Dispatch Pointer. Further SOP Dispatch
Pointers may be read into COMO 20342 as previous SOPs are executed.

b.b. Command Queue Event Control Store 25514 and Command Queue Event Address Control
Store 2516

Command Queue Event Control Store lCOCE) 25514 and command Queue Event Address Control
Store (COAE) 25516 are similar in function and operation to, respectively, COCS 25510 ad COAS 25512.
COCE 25514 and COAE 25516 receive and store. however, EU 10122 Dispatch Pointers initiating EU 10122
operations requested by FU 10120 as required to handle JP 10114 Events. Again, COCE 25514 and COAE
25516 comprise a one word wide by two word deep register file. COAE 25516 receives and stores address
fields of Event Dispatch Pointers, while COCE 25514 receives and stores corresponding control fields of
Event Dispatch Pointers. Again, COMO 20342 is capable of receiving and storing up to two sequential Event
Dispatch Pointers at a time. ' '

As indicated in Fig. 255, outputs of COAS 25512 and COAE 25516, that is address fields of EU 10122
Dispatch Pointers are provided as inputs to Select Case Multiplexer (SCASE) 25518 and Starting Address
Select Multiplexer (SAS) 25520 and NAG 20340. which will be described further below. Control field
outputs of (2065 25510 and COCE 25514 are provided as inputs to OPB 20322, described further below.

c.c. Execute Unit $—lnterpreter Table 20344
Referring to EUSi'lT 20344, as described above EUSITT 20344 is a memory for storing sequences of

microinstructions for controlling operation of EU 10122 in response to EU 10122 Dispatch Pointers received
from FU 10120. These microinstruction sequences may, in general, direct operation of EU 1012210 execute
arithmetic operations in response to SOPs of users programs, or aid direct execution of EU 10122
operations required to service JP 10114 Events. EUSTTT 20344 may be, for example, a 60 bit wide by 1,280
word long memory structured as pages of 128 words per page. A portion of EUSITT 20344’s pages may be
contained in Read Only Memory, for example for storing sequence of microinstructions for handling JP
10114 Events. Remaining portions of EUSl‘lT 20344 may be constructed of Random Access Memory, for
example for storing sequences of microinstructions for executing EU 10122 operations in response to user
program SOPs. This structure allows EU 10122 microinstruction sequences concerned with operation of JP
10114's internal mechanisms, for example handling of JP 10114 Events. to be effectively permanently

104

Petitioner Apple Inc. - Ex. 1025, p. 4002

Petitioner Apple Inc. - Ex. 1025, p. 4003

15

20

25

an 0057 556 B1

stored in EUSITT 20344. That portion of EUSITT 20344 constructed of Random Access MemOl'V 018V P9
used to store sequences of micminstructions for executing SOPs. These Random Access Memories may be
used as writable control store to allow sequences of microinstructions for executing SOPs of one or more
S-Languages currently being utilized by CS 10110 to be written into EUSlTl' 20344 from MEM 10112 as
required.

As previously described, EUSITT 20344's second input is a Data (DATA) input connected from JPD Bus
10142. EUSITT 20344's data input is utilized to write sequences of microinstructions into EUSl‘iT 20344
from MEM 10112 through JPD Bus 10142. EUSITT 20344's first input is an address lADR) input connected
from output of Address Driver (ADRD) 25522 and NAG 20340. Address inputs provided by ADRD 2552
select word locations within EUSITT 20344 for writing of microinstructions into EUSl'lT 20344. or for
reading of microinetructlons from EUSITT 20344 to mCRD 20346 to control operation of EU 10122.
Generation of these address inputs to EUSITT 20344 by NAG 20340 will be described further below.

d.d. Microcode Control Decode Register 20346
Output of EUSl'iT 20344 is connected to input of mCRD 20346. As previously described, mCRD 20346 is

a register for receiving microinstructions from EUSITT 20344, and decoding logic for decoding those
mlcrolnstructions and providing corresponding control signals to EU 10122. As indicated in Fig. 255,
Diagnostic processor Micro-Program Register (DPmR) 25524 is a 60 bit register connected in par-allelwith
output of EUSITT 20344 to input of mCRD 20346. DPmR 25524 may be loaded with 60 bit microinstructions
by DP 10118. Diagnostic microinstructlons may thereby be provided directly to input of mCRD 20346 to
provide direct microinstruction by microinstruction control of EU 10122.

Outputs of mCRD 20346 are provided, in general, to all portions of EU 10122 to control detailed
operations of EU 10122. Certain outputs of mCRD 20345 are connected to inputs of Next Address Source
Select Multiplexer (NASSl 25526 and Long Branch Page Address Gate (LBPAGl 25528 and NAG 20340. As
will be described further below, these outputs of mCFiD 23046 are used in generating address inputs to
EUSI'lT 20344 when particular microinstructions sequences can for Jumps or Long Branches to other
microinstruction sequences. Outputs of mCRD 20346 are also connected in parallel to inputs of Execution
Unit Micro-lnstmction Parity Check Logic lEUmlPC) 25530. EUmlPC 25530 checks parity of all
mlcroinstruction outputs of mCFlD 20346 to detected errors in mCRD 2034625 outputs.

e.e. Next Addrew Generator 20340 —

As described above, read and write addresses to EUSITT 20344 provided by NAG 20340 through ADRD
25522. Address inputs to ADRD 255R are provided from either NASS 25526 or Diagnostic Processor
Address Register (DPAR) 25532. In normal operation. address inputs to EUSITT 20344 are provided from
NASS 25526 as will be described momentarily. DP 10118, however, may load EUSITT 20344 addresses into
DPAR 25532. These addresses may then be read from DPAR 25532 through ADRD 25522 to individually
select address locations within EUSl'iT 20344. DPAR 25532 may be utilized. in particular, to provide
addresses to allow stepping through of EU 10122 mlcroinstruction sequences microinstruction by
microinstructicn.

As described above, NASS 25526 is a multiplexer having inputs from three NAG 20340 address
sources. NASS 25526's first address input is from Jump (JMP) output of mCRD 20346 and LBPAG 25523.
These address inputs are utilized, in part, when a current microinstruction calls for a Jump or Long Branch
to another microinstruction or microinstruction sequence. Second address source is provided from SAS
25520 and. in general, is comprised of starting addresses of microinstruction sequences. SAS 25520 is a
multiplexer having a first input from CQAS 25512 and COAE 25516, that is starting addresses of
microinstruction sequences corresponding to SOPs or for servicing JP 10114 Events. A second SAS 25520
input is provided from Sub—routine Return Address Stack (SUBRA) 25534. in general, and as will be
described further below. SUBRA 25534 operates as a stack mechanism for storing current microinstruction
addresses of interrupted microinstruction sequences. These stored addresses may subsequently be
utilized to resume execution of those interrupted microinstructlon sequences. Third address source to
NASS 25526 is provided from Sequential and Case Address Generator (SCAG) 25536. In general, SCAG
25536 generates address to select sequential microinstructions within particular microinstruction
sequences. SCAG 25536 also generates microinstruction address for microinstruction Case operations. As
indicated in Fig. 255, outputs of SCAG 25536 and of SAS 25520 are bused together to comprise a single
NASS 25526 input. Selection between outputs of SCAG 25536 and SAS 25520 are provided by control
inputs (not shown for clarity of presentation) to SCAG 25536 and SAS 25520. Selection between NASS
25526's address inputs is controlled by Next Address Source Select Control Logic (NASSC) 25538, which
provides control inputs to NASS 25526. NASSC 25538 is effectively a multiplexer receiving control inputs
from TSTCON 20386 and TSTINT 20320. As will be described further below. TSTCON 20386 monitors
certain operating conditions or states within EU 10122 and provides corresponding inputs to NASSC 25533
NASSC 25538 effectively decodes these control inputs from TSTCON 20386 to provide selection control
input to NASS 25526.

Having described overall structure and operation of NAG 20340, operation at NAG 20340 will be

105

Petitioner Apple Inc. - Ex. 1025, p. 4003

Petitioner Apple Inc. - Ex. 1025, p. 4004

10

15

20

25

er 0 067 555 31
described in further detail next below.

Fiefening first to NASS 25526's address inputs provided from JMP output of mCRD 20346 and LBPAG
25528, this address source is provided to allow selection of a next microinstruction by a current
microinstruction. JMP output of mCRD 20346 allows a current microinstruction to direct a Jump to another
microinstruction within the same page of EUSITT 20344. NASS 25525's input through LBPAG 25528 is
provided from another portion of mCRD 20346’: output specifying pages within EUSITT 20344. This input
through LBPAG 25528 allows execution of Long Branch operations, that isjumps from a microinstruction in
one page of EUSITT 20344 to a microinstruction in another page. In addition, NASS 25526’s input from JMP
output of mCRD 20346 and through LBPAG 25528 is utilized to execute an idle, or Standby, routine when
EU 1012 is not currently executing a microinstruction sequence requested by FU 10120. In this case, idle
routine directs TSTCON 20386 to monitor EU 10122 Dispatch Pointer inputs to EU 10122 from FU 10120. If
no EU 10122 Dispatch Pointers are present in COMO 20342, or none are pending, TSTCON 20386 will direct
NASSC 25538 to provide control inputs to NASS 25526 to select NASS 25526's input from mCFiD 20346 and
LBPAG 25528. idle routine will continually test for EU 10122 Dispatch pointer inputs until such a Dispatch
Pointer is received into COMO 20342. At this time, TSTCON 20386 will detect the pending Dispatch Pointer
and direct NASS 25538 to provide control outputs to NASS 25526 to select NASS 25526's input from, in
general, SAS 25520. TSTCOND 20386 and NASSC 25538 will also direct NASS 25526 to select inputs from
SAS 25520 upon return from a called microinstmction to a previously interrupted microinstructionsequence.

As described above, SAS 25520 receives starting addresses from COMO 20342 and lrorn SUBRA
255%. SAS 25520 will select the output of COAS 25512 or of COAE 25516 as the input to NASS 25526 when
a new microinstruction sequence is to be initiated to execute a user's program SOP or to service a JP 10114
Event. SAS 25520 will select an address output of SUBRA 25534 upon return from a called sub-routine to a
previously executing but interrupted sub-routine. SUBRA 25534, as described above, is effectively a stack
mechanism for storing addresses of currently executing microinstructions when those microinstruction
sequences are interrupted. SUBRA 25534 is an 11 bit wide by 8 word deep register with certain registers
dedicated for use In stacking Event Handling microinstruction sequences. other portions of SUBRA 25534
are utilized for stacking of microinstruction sequences for executing SOPs. that is for stacking
microinstruction sequences wherein a first microinstruction sequence calls for a second microinstruction
sequence. SUBRA 25534 is not operated as a first-in-first out stack, but as a random access memory
wherein address inputs selecting registers and SUBRA 25534 are provided by microinstmction control
outputs of mCRD 20346. Operations of SUBRA 25534 as a stack mechanism is thereby controlled by the
microinstruction sequences stored in EUSl'iT 20344. As indicated in Fig. 255, addresses of current
rnicroinstructions of interruptedmicroinstruction sequences are provided to data input of SUBRA 25534
from output of SCAG 25536, which will be described next below.

As described above, SCAG 25536 generates sequential addresses to select sequential
microinstructions within microinstruction sequences and to generate microinstruction addresses for Case
operations. SCAG 25536 includes Next Address Register (NXTRD 25540, Next Address Arithmetic and Logic
Unit (NAALU) 25542, and SCASE 25518. NAALU25542 is a 12 hit arithmetic and logic unit. Aflrst eleven bit
input of NAALU 25542 is conneued from output of ADRD 255a and is thereby cunent address provided to
EUSITIT 20344. A second four bit input to NAALU 25542 is provided front output of SCASE 25518. During
sequential execution of a microinstruction sequence, output of SCASE 25518 is binary zeros and carry input
of NAALU is forced to 1. Output of NAALU 25542 will thereby be and address one greater than the current
microinstruction address provided to EUSITI’ 20344 and will thereby be the address of the next sequential
microinstruction. As indicated in Fig. 255, SCASE 25518 receives an input from output of SCALER 20338.
This input is utilized during Case operations and allows a data sensitive number to be selected as SCASE

25518's output into second input of NAALU 25542. SCASE 2551_8_'s input from SCALER 20338 thereby
allows NAG 20340 to perform microinstruction Case operations wherein Case Values are determined by the =contents of SCALER 20338.

Next address outputs of NAALU 25542 are loaded into NXTR 25540, which is comprised of tri-state
output registers. Next address outputs of NXTR 25540 are connected, in common with outputs of SAS
25520, to second input of NASS 25526 as described above. During normal execution of microinstruction
sequences, therefore, SCAG 25536 will, through NASS 25526 and ADRD 2552. select sequential
microinstructions from EUSl1'T 20344. SCAG 25536 may also, as just described, provide next
microinstruction addresses in microinstruction Case operations.

In summary, NAG 20340 is capable of performing all usual microinstruction sequence addressing
operations. For example, NAG 20340 allows selection of next microinstructions by current
microinstructions, either for Jump operations or Long Branch operations, through NASS 25526's input
from mCRD 20346's JMP or through LBPAG 25528. NAG 20340 may provide microinstruction sequence
starting addresses through COMO 20342 and SAS 25520, or may provide return addresses to interrupted
and stacked microinstruction sequences through SUBRA 25534 and SAS 25520. NAG 20340 may
sequentially address microinstiuctions of a particular microinstruction sequence through operation of
SCAG 25536, or may perform mciroinstruction Case operations through SCAG 25536.

108

Petitioner Apple Inc. - Ex. 1025, p. 4004

Petitioner Apple Inc. - Ex. 1025, p. 4005

20

35

50

.55

EP 0 067 556 B1

2. Operand Buffer 20322
Having described structure and operation of EUCL 20310, structure and operation of OPB 20322 will be

described next below. As previously described, OPB 20322 receives operands, that is data, from MEM
10112 and FU 10120 through MOD Bus 10144 and JFD Bus 10142. OPB 20322 may then perform certain
operand format translations to provide data to MULT 20314 and EXP 20316 in the formats most efficiently
utilized by MULT 20314 and EXP 20316. As previously described, EU 10122 may perform arithmetic
operations on integer, packed and unpacked decimal, and single or double precision floating point
numbers.

In summary, therefore, OPB 2032 is capable of accepting integer, single and double precision floating
point, and packed and unpacked decimal operands from MEM 10112 and FU 10120 and providing
appropriate fields of those operands to MULT 20314 and EXP 20316 in the formats most efficiently utilized
by MULT 20314 and EXP 20316. in doing so, OPB 20322 extracts exponent and rnantissa fields from single
and double precision floating point operands to provide exponent and mantissa fields of these operands to,
respectively, EXP 20316 and MULT 20314, and also unpacks, or converts. unpacked decimal operands to
packed decimal operands most afficiently utilized by MULT 20314.

Having described structure and operation of OPB 20322, structure and operation of MULT 20314 will be
described next below.

3. Multiplier 20314 (Figs. 257. 258)
MULT 20314, as previously described, performs addition, subtraction. multiplication, and division

operations on mantissa fields of single and double precision floating point operands, integer operands, and
decimal operands. As described above with reference to OPB 20322, OPB 20322 converts unpacked decimal
operands to packed decimal operands to be operated upon by MULT 20314. MULT 20314 is thereby
effectively capable of performing all arithmetic operations on unpacked decimal operands.

a.a. Multiplier 20314 Data Paths and Memory (Fig. 257)
Referring to Fig. 257, a more detailed block diagram of MULT 20314's data paths and memory is

shown. As previously described, major elements of MULT 20314 include memory elements comprised of
MULTRF 20350 and CONST 20360, operand input and result output multiplexing logic including MULTIM
20328 and MULTRM 20334, and arithmetic operation logic. MULT 20314's operand input and result output
multiplexing logic and memory elements will be dwcribed first, followed by description of MU LT 20314's
arithmetic operation logic. _

As previously described, input data, including operands, is provided to MULT 20314's arithmetic
operation logic through MUL‘l1N Bus 20354. MUL11N Bus 20354 may be provided with data from three
sources. A first source is CONST 20360 which is a 512 word by 32 bit wide Read Only Memory. CONST
20360 is utilized to store constants used in arithmetic operations. In particular, CONST 20360 stores zone
fields for unpacked decimal. that is ASCI character, operands. As previously described, unpacked decimal
"operands are received by OPB 20322 and converted to packed decimal operands for more efficient
utilization by MULT 20314. As such. final result outputs generated by MULT 20314 from such operands are
in packed decimal format. As will be described below, MU LT 20314 may be utilized to convert these packed
decimal results into unpacked decimal results by insertion of zone fields. As indicated in Fig. 257, address
inputs are provided to CONST 20360 from EXPO Bus 20325 and from output of mCRD 20346. Selection
between these address inputs is provided through CONST Address Multiplexer (CONSTAM) 291 0. CONST
20360 addresses will, in general, be provided from EUCL 20310 but alternately may be provided from EXPO
Bus 20325 for special operations.

Operand data is provided to MULTIN Bus 20354 through MUL1'lM 20328, which is a dual input, 64 bit
multiplexer. A first input of MULTIM 20328 is provided from OP0 Bus 20323 and is comprised of operand
information provided from OPB 20322. OPO Bus 20323 is a 56 bit wide bus and operand data appearing
thereon may be comprised of 32 bit integer operands; 32 bit packed decimal operands, either provided
directly from OPB 20322 or as a result of OPB 20322‘s conversion of an unpacked decimal to a packed
decimal operand; 24 bit single precision operand rnantissa fields; or 56 bit double precision floating point
operand mantissa fields. As previously described, certain OPO Bus 20323 may be zero or sign extension
filled, depending upon the particular operand.

Second input of MULTIM 20328 is provided from MULTRF 20350. MULTRF 20350 is a 16 word by 64 bit
wide random access memory. As indicated in Figs. 203 and 257, MULTFIF 20350 is connected between
output of RFR 20336. through FR Bus 20337, and to input of MULT 20314's arithmetic operation logic
through MULTIM 20328 and MULTIN Bus 20354. MULTRF 20350 may therefore be utilized as a scratch pad
memory for storing intennediate results of arithmetic operations, including reiterative arithmetic
operations. In addition, a portion of MULTRF 20350 is utilized. as in GHF 10354, as an EU 10122 Stack
Mechanism slmilarto MIS 10368 and M05 10370 in FU 10120. Operation of EU 10122 Stack Mechanism will
be described in a following descripion of EU 10122's interfaces to MEM 10112 and FU 10120. Address
inputs (ADR) of MULTRF 20350 are provided. ,fror_n_.l\‘liultlpller. Register File Address Multiplexer
(MULTRFAM) 25712. -

107

Petitioner Apple Inc. - Ex. 1025, p. 4005

Petitioner Apple Inc. - Ex. 1025, p. 4006

70

30

EP 0 067 556 B1

MULTRFAM 2912 is a dual four bit multiplexer comprised, for example, of SN74S258s. in addition to
address inputs to MULTRF 20350, MULTRFAM 25712 provides address inputs to EXPRF 20380. As
previously described. MULTRF 20350 and EXPRF 20380 together comprise an EU 10122 general register file
similar to GRF 10354 and FU 10120. As such. MULTRF 20350 and EXPRF 20380 are addressed in parallel to
read and write parallel entries from and to ‘MULTRF 20350 and EXPRF 20380. Address inputs to MULTRFAM
25712 are provided, first, from outputs of mCRD 20346, thus providing microinstrucflon control of
addressing of MULTRF 20350 and EXPRF 20380. Second address input to MULTRFAM 2912 is provided
from output of Multiplier Register File Address Counter (MULTRFAC) 25714.

MULTRFAC 26714 is a four bit counter and is used to generate sequential addresses to MULTRF 20350
and EXPRF 20380. initial addresses are loaded into MULTRFAC 2914 from Multiplier Register File Address
Counter Multiplexer (MULTRFACM) 2916. MULTRFACM 2916 is a dual four bit multiplexer. Inputs to
MULTRFACM 25716 are provided. first, from outputs of mCRD 20346. This input allows microinstruction
selection of an initial address to be loaded into MULTRFAC 2914 to be subsequently used and generating
sequential MULTRF 20350 and EXPRF 20380 addresses. Second address input to MULTRFACM 25716 is
provided from OPQ Bus 20323. MULTRFACM 2916's input from OPQ Bus 20323 allows a single address. or
a starting address of a sequence of addresses, to be selected through JPD Bus 10142 or MOD Bus 10144, for
example from MEM 10112 or FU 10120.

lntenhediate and final result outputs of MULT 20314 arithmetic logic are provided to data inputs of
MULTRF 20350 directly from FR Bus 20337 and from MULTRM 20334. inputs to MULTRM 20334, in turn. are
provided from FR Bus 20337 and from output of CONSIZE 20352 and TSTINT 20320.

FR Bus 20337 is a 64 bit bus connected from 64 bit output of RFR 20336 and carries final and
intermediate results of- MULT 20314 arithmetic operations. As will become apparent in a following
description of MULT 20314 arithmetic operation logic, RFR 20336 output. and thus FR Bus 20337, are 64 bits
wide. Sixty-four bits are provided to insure retention of all significant data bits of certain MULT 20314
arithmetic operation lntennediate results, in particular operations involving double precision floating point
64 bit mantissa fields. In addition, as will be described momentarily and has been previously stated, MULT
20314 may comrert a final result in packed decimal format into a final result in unpacked decimal format. in
this operation. a single 32 bit, or one word, packed decimal result is convened into a 64 bit. or two word.
unpacked decimal format by insertion of zone fields.

As described above, two parallel data paths are provided to transfer information from FR Bus 20337
into MULTRF 20350. First path is directly from FR Bus 20337 and second path is through Unpacked Decimal
Multiplexer (UPDM) 2918 of MULTRM 2034. Direct path is utilized for thirty-two bits of information
comprising bits 0 to 23 and bits 56 to 63 of FR Bus 20337. Data path through UPDM 2918 may comprise
either bits 24 to 55 of FR Bus 20337, which are connected into a first input of UPDM 25718, or bits 40
through 55 which are connected to a second input of UPDM 25718. Single precision floating point numbers
are 32 bit numbers plustwo or more guard bits and are thus written into MULTRF 20350 through bits 0 to 23
of the direct path into MULTRF 20350 and through first input (bits 24 to 55) of UPDM 2918. Double
precision floating point numbers are 5 bits wide, plus guard bits, and thus utilize the direct path into
MULTRF 20350 and the path through first input of UPDM 25718. Bits 56 to 63 of direct path are utilized for
guard bits of double precision floating point numbers. Both integer and packed decimal numbers utilize
bits 24 through 55 of FR Bus 20337, and are thus written into MULTRF 20350 through first Input of UPDM
25718. As previously described, bits 0 to 23 of these operands are filled by sign extension.

a.a.a. Container Size Check

As stated above, MULTRM 20334 has an input from CONSlZE 20357. As will be described below with
reference to TSTINT 20320, CONSIZE 20352 performs a "container size" check upon each store back of
results from EU 10122 to MEM 101 12. CONSIZE 20352 compares the number of significant bits in a result to
be stored back to the logical descriptor describing the MEM 10112 address space that result isto be written
into. Where reiterative write operations to MEM 10112 are required to transfer a result into MEM 10112, that
is a string transfer, container size information may read from CONSIZE 20352 through Comainer Size Driver
(CONSlZEDl 25720 and MULTRM 20334 and written into MULTRF 20350. This allows EU 10122, using
container size infon-nation stored in MULTRM 20350. to perform continuous container size checking during
a string transfer of result from EU 10122 to MEM 10112. In addition, as will be described momentarily,
container size information may be read front CONSIZE 20352 to JPD Bus 10144.

b.b.b. Final Result Output Multiplexer 20324
Referring finally to FROM 20324, as previously described FROM 20324 is utilized to transfer. in Qfinelal.

results of EU 10122 arithmetic operations onto JPD Bus 10142 for transfer to MEM 10112 or FU 10120. As
indicated in Fig. 29, FROM 20324 is comprised of 24 bit Final Result Bus Driver (FRBD) 25722 and Result
Bus Driver (RBR) 25724. Input of FRBD 25722 is connected from FR Bus 20137 and allows data appearing
thereon to be transferred onto JPD Bus 10142. In particular, FRBD 2922 is utilized to transfer 24 bit
mantissa fields of single precision floating point results onto JPD Bus 10142 in parallel with a
corresponding exponent_field from EXP 20316. RBR 25724 input is connected from RSLT Bus 20388 to allow

108

Petitioner Apple Inc. - Ex. 1025, p. 4006

Petitioner Apple Inc. - Ex. 1025, p. 4007

20

25

30

35

. ' EP M67 556 B1

output of UPDM 25718 to be transferred onto JPD Bus 10142. RBR 25724, RSLT Bus 20388, and UPDM
25718 are used, in general, to transfer final results of EU 10122 operations from output of MULT 20314 onto
JPD Bus 10142. Final results transferred by this data path include integer, packed and unpacked decimal
results, and mantissa fields of double precision floating poim results. Both unpacked decimal numbers and
mantissa fields of double precision floating point numbers are comprised of two 32 bit words and are thus
transferred onto JPD Bus 10142 in two sequential transfer operations.

Having described structure and operation of MULT 20314’s memory elements and input and output
circuitry, MULT 20314's arithmetic operation logic will be described next below.

4. Test and Interface Logic 20320 (Figs. 260-268)
As previously described, TSTINT 20320 includes CONSIZE 20352. ECPT 20328, TSTCOND 20384, and

lNTRPT 20388. CONSIZE 20352, as previously described, performs "container size" check operations when
results of EU 10122 operations are to be written into MEM 10112. That is, CONSIZE 20352 compares size or
number of significant bits, of an EU 10122 result to the capacity, or container size. of the MEM 10112
location that EU 1012 result is to be written into. As indicated, in Fig. 203, CONSiZE 20352 receives a first
input. that is the results of EU 10122 operations, from FR Bus 20337. A second input of CONSIZE 2035? is
connected to LENGTH Bus 20226 to receive length field of logical descriptors identifying MEM 10112
address space into which those EU 10122 results are to be written. CONSIZE 20352 includes logic circuitry,
for example a combination of Read Only Memory and Field Programmable Logic Arrays, for examining EU
10122 operation results appearing on FR Bus 20337 and determining the number of bits of data in those
results. CONSIZE 20352 compares EU 1012 result sizeto logical descriptor length field and, in particular, if
result size exceeds logical descriptor length, provides an alarm output to ECPT 20328. described below.

TSTCOND 20384, previously described and which will be described further below, is an interface circuit
between FU 10120 and EU 10122. TSTCOND 20334 allows FU 10120 to specify and examine results of
certain test operations performed by EU 10122 with respect to EU 10122 operations.

ECPT 20328 monitors certain EU 10122 operations and provides outputs indicating when certain
"exceptions" have occurred. These exceptions include attempted divisions by zero, floating poim exponent
underflow or overflow, and integer container size fault.

INTRPT 20388 is again an interface between EU 10122 and FU 10120 allowing FU 10120 to interrupt EU
10122 operations. INTRFT 20388 allows FU 10120 to direct EU 10122 to execute certain operations to aid in

A handling of certain FU 10120 events previously described.
Operation of CONSIZE 20352, ECPT 20328, TSTCOND 20384. INTRPT 20388, and other features of EU

10122's interface with FU 10120 will be described further below in the following description of operation of
that interface and of operation of certain EU 10122 internal mechanisms, such as FU 10120 Stock
Mechanisms.

a.a. FU 10120/EU 10122 interface
As previously described, EU 10122 and FU 10120 are asychronous processors, each operating under its

own microcode control. EU 10122 and FU 10120 operate simultaneously and independently of eech other
but are coupled, and their operations coordinated, by interface signals described below. Should EU 10122
not be able to respond immediately to a request from FU 10120. FU 10120 will idle until EU 1012 becomes
available; conversely, should EU 10122 not receive. or have present. operands or a request for operations
from FU 10120, EU 1012 will remain in idle state until operands and requests for operations are received
from FU 10120.

In normal operation, EU 10122 manipulates operands under control of FU 10120. which in turn is under
control of SOPs of a user's program. When FU 10120 requires arithmetic or logical manipulation of an
operand, FU 10120 dispatches a command, that is an Execute Unit Dispatch-Pointer (EUDP) to EU 1012. As
previously described, an EUDP is basically an initial address into EUSl'l'l' 20344. An EUDP identifies starting
location of a EU 10122 microinstruction sequence performing the required operation upon operands.
Operands are fetched from MEM 10112 under FU 10120 control, as previously described. and are
transferred Into OPB 20322. Those operands are then called from OPB 20322 by EU 10122 and transferred
into MULT 20314 and EXP 20316 as previously described. After the required operation is completed, FU
10120 is notified that a- result is ready. At this point, FU 10120 may check certain test conditions, for
example through TSTCOND 20384, such as whether an integer or decimal cany bit is set or whether a
mantissa sign bit is set or reset. ‘lhis test operation is utilized by FU 10120 for conditional branching and
synchronization of FU 10120 and EU 10122 operations. Exception checking. bv_ ECPT 20328, is also
performed at i:his time. Exception checking determines, for example, whether division by zero was
attempted orif a container size fault has occurred.in general, FU 10120 is not informed of exception errors
umil FU 10120 requests exception checking. After results are transferred Into FU 10120 or MEM 10112 by
EU 1012, EU 10122 goes to idle operation until a next operation is requested by FU 10120.

Having briefly described overall imerface operation between FU 10120 and EU 10122, operation of that
interface, referred to as handshaklng, will be described in greater detail below. in general.
handshaking operation between EU 10122 and FU 10120 during normal operation may be regardedas
following into six operations. These operations may include, for example, loading of COMO 20342, loading
of OPB 20322, storeback or transfer of results from EU 10122 to FU 10120 or MEM 10112, check of test

109

Petitionet‘ Apple Inc. - Ex. 1025, p. 4007

Petitioner Apple Inc. - Ex. 1025, p. 4008

15

20

30

35

EP 0 067 556 B1

conditions. exception checking, and EU 10122 idle operation. I-landshaking between FU 10120 and EU
1012 will be described below for each of these classes of operation, in the order just referred to.

a.a.a. Loading of Command Queue 20342 (Fig. 2130)
Referring to Fig. 260, a schematic representation of EU 10122's interface with FU 10120 for purposes of

loading COMO 20342 as shown. During normal SOP directed J‘P 10114 operation, 8 bit operation (OP) codes
are parsed from the instruction stream, as previously described, and concatenated with dialect information
to address EUSDT 20266 also as previously described. EUSDT 20266 provides corresponding addresses,
that is EUDPs, to EUSl‘lT 20344.

Dialect information specifies the S-Language currently being executed and, consequently, the group of
microinstruction sequences available in EUSl‘lT 20344 for that S-Language. As previously described, FU
10120 may specify four S-Language dialects with up to 256 EU 10122 microinstruction sequences per
dialect, or 8 dialects with up to 128 microinstructicn sequences per dialect.

EUDPs provided by EUSDT 20266 are comprised of a 9 bit address field, a 2 bit operand information
field, and a 1 bit flag field, as previously described. Address field is starting address of a microinstruction
sequence in EUSITT 20344 and EU 10122 will perform the operation directed by that microinstruction'
sequence. EUSFIT 20344 requires 11 bits of address field and the 9 bit address field of EUDPs are mapped
into an 11 bit address field by left justification and zero filling. -

FU 10120 may also dispatch, or select, any EU 10122 microinstruction controlled operation from JPD
Bus 10142. Such EUDPS are provided from JPD Bus 10142 to data input of EUSl'lT 20344 and passed
directly through to mCRD 20346. Before a EUDP may be provided from JPD Bus 10142, however. FU 10120
provides a check operation comparing that EUDP to a list of legal, or allowed, EUSITT 20344 addresses
stored in MEM 10112. A fault will be indicated if an EUDP provided through JPD Bus 10142 is not a legal
EUSITT 20344 address. Artemately, FU 10120 may effectively provide an EUDP. or EUSlTl' 20344’
addresses, from a literal field in a FU 10120 microinstruction word. Such a FU 10120 microinstruction word
literal field may be effectively utilized as an SOP into EUSDT 20266.

Handshaking between EU 10122 and FU 10120 during load COMO 20342 operations may proceed as
illustrated in Fig. 260. A twelve bit EUDP may be placed on EUDlS Bus 20206 and Control Signal Load
Command Queue (LDCMO) asserted. if COMO 20342 is full, EU 10122 raises control signal Command Hold
(CMDHOLD) which uses FU 10120 to remain in State M0 until there is room in COMO 20342. As_
previously described, COMO 20342 is comprised of two. two word buffers wherein one buffer is utilized for
nomiai SOP operation and the other utilized for control of FU 10120 and EU 10122 internal mechanism
operation.

EUDPs are loaded into COMO 20342when state timing signals M1CPT and M1 are asserted. if a EUDP
being transferred into COMO 20342 concerns a double precision floating point operation, control signal Set
Double Precision (Sl:'lDP) is asserted. SE'lDP is utilized to control OPB 20322. and because single precision
and precision floating point operations otherwise utilize the same SOP and thus would otherwise refer to
same EUSITT 20344 microinstruction sequence.

At this point. a EUDP has been loaded into COMO 20342 and will be decoded to control FU 10120
operation by EUCL 20310 as previously described. Each particular EUDP will be cleared by that EUDPs
EUSl'lT 20344 microinstmction sequence after the requested microinstruction sequence has been
executed. .

b.b.b. ‘Loading of Operand Buffer 20320 (Fig. 261)
Referring to Fig. 261. a diagramic representation of the interface and handshaking between EU 10122,

FU 10120 and MEM 10112 for loading OPB 20322 is shown. Control signal Clear Queue Full (CLOF) from EU
10122 must be asserted by EU 1012 before FU 10120 initiates a request to MEM10112 for an operand to be
transferred to EU 10122. CLOF clears and "EU 10122's OPB 20322 Full" condition in FU 10120. CLOF
indicates. thereby, that there is room in OPB 20322 to receive operands. if FU 10120 is in a "EU 10122's OPB
20322 Full" condition and further operand is required to be transferred to EU 10122. FU 10120 will remain in
State M1 until CLOF is asserted.

At the beginning ofexecutlon of a particular SOP, FU 10120 may transfer two operands to OPB 20322
without "EU 10122's OPB 20322 Full" condition occurring. This is because EU 10122 is idle atthe beginning
of an SOP execution and generally immediately unloads a first operand from OPB 2032 before a second
operand arrives.

Control signal Job Processor Operand (JPOP) provided from FU 10120 must be non-asserted for
operands to be transferred from MEM 10112 to OPB 20322 through MOD Bus 10144. This is the normal
condition of JPOP. if JPOP is asserted, OPB 20322 is loaded with data from JPD Bus 10142. Data is strobed
into OPB 20322 from JPD Bus 10142 by control signals M1CPT and JPOP. Operands read from MEM 10112,
however, are transferred into OPB 20322 through MOD Bus 10144 when MEM 10112 asserts DAVEB to
indicate that valid data from MEM 10112 is available on MOD Bus 10144. DAVEB is also utilized to strobe
data on MOD Bus 10144 into OPB 20322. if control signal ZFILL from MEM 10112 is asserted at this point,
ZFlLl. is interpreted during integer operand operations to indicate that those operands are unsigned and

110

Petitioner Apple Inc. - Ex. 1025, p. 4008

Petitioner Apple Inc. - Ex. 1025, p. 4009

I0

75

25

30

35

EP o 067 556 B1

should be left zero filled, rather than sign extended. lf data is being provided from JPD Bus 10142 rather
than from MEM 10112, that is if JPOP is asserted. bit 11 of current EUDP may be utilized to perform the
same function as ZFILL during loading of OPB 20322 from MOD Bus 10144.

Loading of OPB 20322 is controlled, in part, by bits9 and 10 of EUDPs provided from FU 10120 through
EUDIS Bus 20206. Bit 9 indicates length of a first operand while bit 10 indicates length of a second operand.
Operand length, together with operand type specified in address portion of a EUDP, determines how a
particular operand is unloaded from OPB 20322 and transferred into MULT 20314 and EXP 20316.

At this point, both COMO 20342 and OFB 20322 have been loaded with. respectively, EUDPs and
operands. It should be noted that operands are generally not transferred into OPB 2032 before a
corresponding EUDP is loaded into COMO 20342. Operands and EUDPs may, however, be simultaneously
transferred into EU 10122. If other operands are required for a particular operation, those operands are
loaded into OPB 20322 as described above.

c.c.c. Storeback (Fig. 262) '
Referring to Fig. 262, a diagrarnic representation of a storeback, or transfer, of results to MEM 10112

from EU 10122 and handshaking performed therein is shown. When a final result of a EU 10122 operation is
available. EU 10122_asser1;s control signal Data Heady (DRDY). FU10120 thereupon responds with control
signal Transfer to JPD Bus 10142 IXJPD), which gates EU 10122’s result onto JPD Bus 10142. in normal
operation, that is execution of SOPs, FU 10120 causes EU 10122’s result to be stored back into a destination
in MEM 10112, as selected by a physical descriptor provided from FU 10120. Alternately, a result may be
transferred into FU 10120, 32 bits, or one word. at a time. . g

_ FU 10120 may,'as described above and described further below, check EU 10122 test conditions during
storeback of results. FU 10120 generates control signal Transfer Complete (XFRC) once the storeback
operation is completed. XFRC also indites to EU 10122 that EU 10122’s results and test conditions have
been accepted by FU 10120. so that EU 1012 need no longer assert these results and test conditions.

d.d.d. Test Conditions (H9. 263) . -
Referring to Fig. 263, a diagramic representation of checking of EU10122 test conditions by FU 10120,

and handshaking therein. is shown. As previously described, test results lnditlng certain conditions and
operations of EU 10122 are sampled and stored in TSTCOND 20384 and may be examined by FU 10120.
When DRDY is asserted by EU 10122, FU 10120 may select. for example, one of 8 EU 10122 conditions to
test, as well as transferring results as described above. EU 10122 conditions which may be tested by FU
10120 are listed and described below. Such conditions. as whether a final result is positive, negative, or
zero, may be checked in order to facilitate conditional branching of FU 10120 operations as previously
described. FU 10120 specifies a condition to be tested through Test Condition Select signals (‘lEST(24)l. FU
10120 asserts control signal EU Test Enable (EUTESTEN) to EU 10122 to gate the selected test condition.
That selected test condition then appears as Data Signal Test Condition (TC) from EU 10122 to FU 10120. A
TC of logic 1 may, for example. indicate that the selected condition is faise while a TC of logic 0 may
indicate that the selected condition is true. FU 1 0120 indicates that FU 10120 has sensed the requested test
condition, and that the test condition need no longer be asserted by EU 10122. by asserting control signal
XFRC.

e.e.e. Exception Checking (Fig. 264)
Referring to Fig. 264, a diagramic representation of exception checking of EU 10122 exceptions by FU

10120, and-handshaldng therein, is shown. As previously described, any EU 10122 exception conditions
may be checked by FU 10120 as FU 10120 is initiating storeback_of EU 10122 results. Exception checking
may detect, for example, attempted division by zero, floating point exponent underflow or overflow. or a
container size fault. An attempted division by zero or floating point underflow or overflow may be checked
before storeback, that is without specific request by FU 10120. ’

As previously described, a container size fault is detected by CONSIZE 20352 by comparing length of
result with size of destination container in MEM 10112. Container size exception checking occurs during .
store back of EU 10122 results. that is while FU 10120 is in State SB. Container size is automatically
perfonned by EU 10122 hardware, that is by CONSIZE 20352, only on results of less than 33 bits length. Size
checking of larger results, that is larger integers and BCD results, is performed by a microcode routine.
using CDNSlZE 20352's output, as transfer of such larger results is executed as string transfer. It is
unnecessary to perform container size check for either single or double precision floating point results as
these data types always occupy either 32 or 64 bits. Destination container size is provided to CONSIZE
20352 through LENGTH Bus 20226.

. Control signal Length to Memory AON or Random Signals (LMAONRS) is generated by FU 10120 from
Type field of the logical descriptor corresponding to a particular EU 10122 result. LMAONRS indicates that
the results data type is an unsigned integer. LMAONRS determines the manner in which a required
container size of the EU 10122 result is determined. After receivng this information from LMAONRS, EU
10122 determines whether destination container size in MEM 10112 is sufficiently large to contain the EU

‘I11

Petitioner Apple Inc. - Ex. 1025, p. 4009

Petitioner Apple Inc. - Ex. 1025, p. 4010

I5

20

30

EP 0 new 555' 31

1012 result. If that destination container size is not sufficiently large, a container size fault is detected by
CONSIZE 20352, or through an EU 10122 microinstruction sequence.

Container size faults, as well as division by zero and exponent underflow and overflow faults, are
signaled to FU 10120 when FU 10120 asserts control signal Check Size (CKSIZE). At this time, EU 10122
asserts control signal Exception (EXCP‘1'l if any of the above faults has occuned. lf a fault has occurred. an
Event request to FU 10120 results. When an Event request is honored by FU 10120, FU 10120 may interrupt
EU 10122 and dispatch EU 10122 to a microinstruction routine that transfers those exception conditions
onto JPD Bus 10142. If a container size fault has mused that exception condition, EU 10122 may transfer to
FU 10120 the required container size through JPD Bus 10142.

f.f.f. Idle Routine

Finally, when a current EU 10122 operation is completed, EU 10122 goes into an Idle loop
microinstruction routine. If necessary, FU 10120 may assert control signal Excute Unit Abort (EUABORTl to
force EU 1012 into Idle loop microinstruction routine until EU 10122 is required for further operations.

g.g.g. EU 10122 Stack Mechanism (Figs. 265, 266, 267)
As previously described, EU 10122 may perform either of two classes of operations. First, EU 10122

may perform arithmetic operations in execution of SOPs of user's programs. Second, EU 10122 may
operate as an arithmetic calculator assisting operation of FU 1D120's intemal mechanisms and operations,
refernadto as kernel operations. ,

In kernel operation, EU 10122 acts as an arithmetic calculatorfor FU 10120 during address generation,
address translation, and other kernel functions. in kernel mode. EU 10122 is executing microinstruction
sequences at request of FU 10120 kernel microinstruction sequences, rather than at request of an SOP. In
general. these kernel operations are vital to operation of JP 10114. FU 10120 may interrupt EU 10122
operations with regard to SOPs and initiate EU 10122 microlnstruction sequences to perform kemel
operations.

When intenupted. EU 10122 saves EU 10122's current operating state in a one level deep stack. EU
1012 may then accept an EUDP from that portion of COMO 20342 utilized to receive and store EUDPs
regarding FU 10120's and EU 10122's internal, or kernel, operations. When requesting kernel operations by
EU 10122, FU 10120 generally transfers operands to OPB 20322 through JPD Bus 10142, and receives EU
10122 final results through JPD Bus 10142. Operands may also be provided to EU 10122 through MOD Bus
10144. After EU 10122 has completed a requested kernel operation, EU 10122 reloads operating state from
its internal stack and continues normal operation from the point nonnal operation was inten-upted.

Should another interrupt from FU 10120 occur while a prior interrupt is being executed, EU 10122
moves current state and data, that is of first interrupt, to MEM 10112. EU 10122 requests FU 10120 store
state and date of first interrupt in MEM 10112 by requesting an "EU 10122 Stack Overflow" Event. EU
10122's "nonnal" state, that is state and data pertaining to the operation EU 10122 is executing at time of
occurrence of first interrupt, is stored in an EU 1012 internal stack and remains there. EU 10122 then
begins executing second lntermpt. When EU 10122 has completed operations _for second interrupt. state
from first interrupt is reloaded from MEM 10112 by EU 10122 requesting a "EU 10122 Stack Underflow"
Event to FU 10120. EU 1012 then completes execution of first interrupt and reloads state and resumes
execution of normal operation. that is the operation being executed before the first interrupt.

EU 10122 is therefore capable of handling interrupts from FU 10120 during two circumstances. Frrst
interrupt circumstance is comprised of interrupts occurring during normal operation, that ls while
executing SOPs of user's programs. Second circumstance arises when intenupts occur during lremel
operations, that is during execution of microinstruction sequences for handling interrupts. EU 10122
operation will be described next below for each of these circumstances, and in the order referred to.

Referring to 1-19. 265, a diagramic representation of EU 10122's stack mechanisms, previously
described, is shown. Those portions of EU 10122's stack mechanisms residing wlthln EU 10122 are
comprised of EU 10122's Cunent State Registers (EUCSRs) 26510 and EU 10122's lntemal Stack (EUIS)
26512. EUCSR 26510 is comprised of EU 10122's internal registers which contain data and state of current
EU 10122 operation. EUCSR 26510 may be comprised, for example, of mCRD 20346, registers of TSTINT
20320, and the previously described registers within MULT 20314 and EXP 20316.

State and data contained in EUCSR 26510 is that of the operation currently being executed by EU
10122. This current state may, for example, be that of a SOP currently being executed by EU 101 22. or that
of an interrupt, for example a fourth interrupt of a nested sequence of interrupts, requested by FU 10120.

EUIS 26512 is comprised of certain registers of MULTRF 20350 and EXPRF 20380. EUIS 26512 is utilized
to store and save current state of an SOP operation currently being executed by EU 10122 and which has '
been interrupted. State and data of that SOP operation will remain stored in EUIS 26512 regardless of the
number of interrupts which may occur on a nested sequence of interrupts requested by FU 10120. State
and data of the interrupted SOP" operation will be returned from EUIS 26512 to EUCSR 26510 when all
intamrpts have been completed.

Final portion of EU 10122's stack mechanism is that portion of EU 10122's internal stack (EUES) 26514

112

Petitioner Apple Inc. - Ex. 1025, p. 4010

Petitioner Apple Inc. - Ex. 1025, p. 4011

20

25

60

EP 0 067 556 B1

residing in MEM 10112. EUES 26514 is comprised of certain MEM 10112 address locations used to store
state and data of successive interrupt operations of sequences of nested interrupts. That is. if a sequence of
four interrupts is requested by FU 10120, state and data of fourth interrupt will reside in EUCSR 26510 while
state and data of first, second, and third interrupts have been transferred. in sequence, into EUES 26514. In

' this respect, and as previously described operation of EU 10122's stack mechanisms is similar to that of, for
example, MIS 10368 and SS 10336 previously described with reference to Fig. 103.

As described above, an interrupt may be requested of EU 10122 by FU 10120 either during EU 10122
non-nal operation, that is during execution of SOPS by EU 10122, or while EU 10122 is executing a previous
interrupt ‘requested by FU 10120. Operation of EU 10122 and FU 10120 upon occurrence of an interrupt
during EU 10122 normal operation will be described next below.

Referring to Fig. 266, a diagramic representation of handshaking between EU 10122 and FU 10120
during an intermpt of EU 10122 while EU 10122-is operating in normal mode is shown and should be
referred to in conjunction with Fig. 265. For purposes of the following discussions. interrupts of EU 10122
operations by FU 10120 are referred to as nanointerrupts to distinguish from interrupts internal to FU
10120. -

FU 10120 interrupts normal operation of EU 10122 by assertion of control signal Nano-Interrupt
(NINTP) during State M0 of FU 10120 operation. NINTP may be masked by EU 10122 during certain critical
EU 10122 operations, such as arithmetic operations. It NINTP is masked by EU 10122, FU 10120 will remain
in State NW umil EU 10122 acknowledges the interrupt.

Upon receiving NINTP from FU 10120, EU 101225 transfers state and data of current SOP operation
from EUCSR 26510 to EUIS 26512. EU 10122 then asserts control signal Nano-Interrupt Acknowledge
(NIACK) to FU 10120 to acknowledge availability of EU 10122 to accept a nanointerrupt. FU 10120 will then
enter State M1 and place an EUDP on EUDIS Bus 20206. Loading of COMO 20342 then proceeds as
previously described, with EU 10122 loading nanointerrupt EUDP: into the appropriate registers of COMO
20342. COMO 20342 is loaded as previously described and, if JPOP is asserted, data transferred into'0PB
20322 from JPD Bus 10142. If JPOP is not asserted, data is taken into OPB 20322 from MOD Bus 10144. EU
10122 then proceeds to execute the required nanointerrupt operation and storing back of results and
checking of test conditions proceeds as previously described for EU 10122 normal operation. In general,
exception checking is not perfonned. When EU 10122 has completed execution of the nanoimerrupt
operation, EU 10122 transfers state and data of the interrupted SOP operation from EUIS 26512 to EUCSR
26510 and resumes execution of that SOP. At this point, EU 10122 asserts control signal Nano-Interrupt
Trap Enable (NI'I'El. NITE is received and tested by FU 10120 to indicate end of nanointerrupt processing.

Referring to Fig. 267, a diagramlc representation of interfaces between EU 10122, FU 10120, and MEM
10112 during nested, or sequential, EU 10122 interrupts for kernel operations. and handshaking therein, is
shown. During the following discussion, it is assumed that EU 10122 is already processing a nanointerrupt
for a kernel operation submitted to EU 10122 by FU 10120. FlJ 10120 may then submit a second, third, or
fourth, nanointerrupt to EU 10122 for a further kernel operation. FU 10120 will assert NINTP to request a
nanoimerrupt of EU 10122. EU 10122's normal mode state and data from a previously executing SOP
operation has been stored in, and remains in, EUIS 26512. Current state and data of currently executing
nanointerrupt operation in EUCSR 26510 will be transferred to EUES 26514 in MEM 101 12to allow initiation
of pending nanointerrupt. EU 1012 will at this time assert NIACK and control signal Execute Unit" Event
(EXEVT). EXEVT to FU 10120 infomts FU 10120 that an EU 1012 Event has occurred. specifically, and in
thiscase, EXEVT requests FU 10120 service of an EU 10122 Stack Overflow. FU 10120 is thereby trapped to
an "EU 10122 Stack Overflow" Event Handler microinstruction sequence. This handler transfers current
state and data of interrupted nanointerrupt previously executing in EU 10122 into EUES 26514. State and
data of interrupted nanointerrupt is transferred to EUES 26514, one 32 bit word at a time. FU 10120 asserts
control signals XJPD to gate each of these stats and data words onto JPD Bus 10142 and controls transfer
of these words into EUES 26514.

Processing of new nanointerrupt proceeds as described above with reference to intermpts occurring
during normal operation. if any subsequent nanointerrupts occur, they are handled in the same manner as
just described; FU 10120 signals a nanointerrupt to FU 10120, current EU 10122 state and data is saved by
FU 10120 in EUES 26514, and new nanointerrupt is processed. After a nested nanointerrupt, that is a
nanoimerrupt of a sequence of nanointerrupts. has been serviced, EU 10122 asserts control signal EU
10122 Trap (ETRAP) to FU 10120 to request a transfer of a previous nanointerrupfs state and data from
EUES 26514 to EUCSR 26510. FU 10120 wi11 retrieve that next previous nanointerrupt state and data from
EUES 26514 through MOD Bus 10144 and will transfer that data and state onto JPD Bus 10142. This state
and data is returned, one 32 bit word at a tlrne, and is strobed into EU 10122 by JPOP from FU 10120.
Processing of that prior nanointerrupt will then resume. The servicing of successively prior nanointerrupts
will continue until all previous nanointenupts have been serviced. Original state and data of EU 10122, that
is that of SOP operation which was initially interrupted, is then returned to EUCSR 26510 from EUIS 26512
and execution of that SOP resumed. At this time, EU 10122 asserts NITE to indicate end of EU 10122 kernel
operations in regard to nanointerrupts. _

Having described structure and operation of EU 10122, FU 10120 and MEM 10112, with respect to
servicing of kernel operation nanointarrupts by EU 10122, loading of EU 10122’s EUSl'lT 20344 with
microinstruction sequences will be described next below.

113

Petitioner Apple Inc. - Ex. 1025, p. 4011

Petitioner Apple Inc. - Ex. 1025, p. 4012

15

EP 0 067 556 B1

h.h.h.h Loading of Execute Unit S-Interpreter Table 20344 (Fig. 268)
Referring to Fig. 268, a diagramic representation of interface and handshaking between EU 10122, FU

10120, MEM 10112, and DP 10118 during loading of microinstructions into EUSITI’ 20344 is shown. As
previously described, EUSl'l'l' 20344 contains all microinstructions required for control of EU 10122 in
executing kernel nanointerrupt operations and in executing arithmetic operations in response to SOPs of
users programs. EUSITF 20344 may store microinstruction sequences for interpreting arithmetic SOPs of
user's programs for, for example, up to 4 different S-Language Dialects. In general, a capacity of storing
microinstruction sequences for arithmetic operations in up to 4 S-Language Dialects is sufficient for most
requirements. so that EUSITF 20344 need be loaded with microinstruction sequences only at initialization
of CS 10110 operation. Should microinstruction sequences for arithmetic operations of more than 4 5-
Language Dialects be required. those microinstruction sequences may be loaded into EUSHT 20344 in the
manner as will be described below. ‘

As previously described. a portion of the mlcroinstructiorrs stored in EUSITF 20344 is contained in
Read only Memories and is thus perrnanantly stored in EUSITT 20344. Microinstruction sequences
permanently stored in EUSI'lT 20344 are, in general, those required for execution of kernel operations.
Microinstruction sequences permanently stored in EUSl'lT 20344 include those used to assist in writing
other EU 10122 microinstmction sequences into EUSl1'l' 20344 as required. Certain microinstruction
sequences are stored in a Random Access Memory, referred to as the Writeable Control Store (WCS)
portion of EUSI'lT 20344, and include these for interpreting arithmetic operation SOPs of various S-
Language Dialects.

Writing of microinstruction sequences into EU 10122 is initialized by forcing EU 10122 into an idle state.
Initialization of EU 10122 is accomplished by FU 10120 asserting EUABORT or by DP 10118 asserting
control signal clear (CLEAR). Either EUABORT or CLEAR will clear a current operation of EU 10122 and force
EU 10122 into idle state. wherein EU 10122 waits for further EUDPs provided from FU 10120. FU 10120 then
dispatches a EUDP initinfing loading of EUSHT 20344to EU 10122 through EUDIS Bus 20206. Load EUSITF
20344 EUDP specifies starting address of a two step microinstruction sequence in the PROM portion of
EUSl'l'l' 20344. This two step microinstruction sequence first loads zeros into SCAG 25536, which as
previously described provides read and write addresses to EUSl'l'l' 20344. EUSl‘lT 20344 load
microinstruction sequence then reads a microinstruction from EUSITF 20344 to mC1-'lD 20346. This
microinstruction specitiesconditions for handshaking operations with FU 10120 so that loading of EUSITF
20344 may begin. At this time, and from this microinstruction word, EU 10122 asserts control signal DHDY
to FU 10120 to indicate that EU 10122 is ready to accept EUDPS from FU 10120 for directing loading of
EUSl'l'l' 20344. This initial microinstruction also generates a write enable control signal for the WCS portion
of EUSITT 20344. inhibits loading of mCFiD 20346 from EUSITI’ 20344. and inhibits normal loading
operations of NXTH 25540 and SCAG 25538. This first microinstruction also directs NASS 25526 to accept
address inputs from SCAG 25536 and, finally, causes Nl.‘l‘E to FU 10120 to be asserted to unmask
nanointerrupts from FU 10120.

FU 10120 then generates a read request to MEM 10112. and MEM10112 hansfers a first 32 bitword ofa
EU 10122 microinstruction word onto JPD Bus 10142. Each such 32 bit word from MEM 10112 comprises
one half of a 84 bit microinstruction word of EU 10122. When FlJ 10120 receives DRDY from EU 10122. FU

10120 generates control signal Load Writeable Control Store lLDWCS). LDWCS in turn transfers a 32 bit
word on JPD Bus 10142 imo a first address of the WCS portion of EUSITF 20344. A next 32 bit half word of a
EU 10122 microinstruction word is than read from MEM 10112 through JPD Bus 10142 and transferred into
the second half of that first address within the WCS portion of EUSITT 20344. The address in SCAG 25536 is
then incremented to seled a next address within EUSl‘l'i' 20344 and the process iust described repeated
automatically, including generation of DRDY and LDWCS. until loading of EUSITT 20344 is completed.

After loading of EUSlTT 20344 is completed, the loading process is terminated when FU 101 20 asserts
NINTP, or DP 10118 asserts Control Signal Load Complete lLOADCFll-. Either NINTP or LOADCR releases

control of operation of l\lAG 20340 to allow EU 10122 to resume nonnal operation. _
_The above descnptrons have described structure and operation of EU 101.22. including: execution of

venous arithmetic operations utilizing various operand formats; operation of EU 10122, FU 10120, and
MEM 10112 with regard to handslralzing; loading of EUDPs and operands; storeback of results; checking of
test conditions and exceptions; EU 10122 Stack Mechanisms during normal and kernel operations; and
loading of EU 10122 microinstruction sequences into EUSlTI' 20344. IOS 10116 and DP 10118 will be
described next below, in that order.

D. U0 System 10116 (Figs. 204, 206, 2139)
Referring to Fig. 204, a partial block diagram of I03 10116 is shown. As previously described, IDS 10116

operates as an interface between CS 10110 and the enema! world, for example, ED 10124. A primary
function of I05 10116 is the transfer of data between CS 10110, that is MEM 10112. and the external world.

In addition to performing transfers of data, I05 10116 controls access between various data sources and
sinks of ED 10124 and MEM 10112. As previously described, l0S 10116 directly addresses MEM 10112's
physical address space to write data into or read data from MEM 10112. As such, I05 1 0116 also performs
address translation, a mapping operation required in transferring data between MEM 10112's physical

114

Petitioner Apple Inc. - Ex. 1025, p. 4012

Petitioner Apple Inc. - Ex. 1025, p. 4013

10

20

25

EP 0 067 556 at

address space and address spaces of data sources and sinks in ED 10124.
As shown in Fig. 204, IDS 10116 includes Data Mover (DMOVR) 20410. l"P”‘/outlim (_30"tl’°' P'9°E-55°’

(lOCP) 20412. and one or more data channel devices. l0S 10116’s data channel devices may Include
EClJPSE° Burst Multiplexer Channel (EBMC) 20414, NOVA Data Channel (NDC) 20416. and Dihef data
channel devices as required for a particular configuration of a CS 10110 system. IOCP 20412 controls and
directs transfer of data between MEM 10112 and ED 10124, and controls and directs mapping of addresses
between ED 10124 and MEM 10112's physical address space. IOCP 20412 mav be compnsed. for example.
of a general purpose computer, such as an ECUPSE° M600 computer available from Data General
Corporation of Westboro, Massachusetts. _

EBMC 20414 and NDC 20416 comprise data channels through which data is transferred between ED
10124 and lOS 10116. EBMC 20414 and NDC 20416 perform actual transfers of data to and from ED 101.24,
under control of IOCP 20412, and perform mapping of ED 10124 addresses to MEM 10112 physical
addresses, also under control of IOCP 20412. EBMC 20414 and NDC 20416 may respectively be comprised,
for example, of an ECUPSE° Burst Multiplexer Data Channel and a NOVA” Data Channel, also available
from Data General Corporation of Westboro, Massachusetts. _

DMOVR 20410 comprises IOS 10116's interface to MEM 10112. DMOVR 2041045 the path through
which data and addresses are transferred between EBMC 20414 and NDC 20416 and MEM 10112.
Additionally. DMOVR 20410 controls access between EBMC 20414, NDC 20416. and other IOS 10116 data
channels. and MEM 10112.

ED 10124, as indicated in Fig. 204, may be comprised of one or more data sinks and sources. ED 10124
data sinks and sources may include commercially available disc drive units, line printers, communication
lengths, tape units. and other computer systems, including other CS 10110 systems. In general, ED 10124
may include all such data devices as are generally interfaced with a computer system.

a. U0 System 10116 Structure (Fig. 204)
' Referring first to the overall structure of l0$ 10116, data inputloutput of ECLlPSE° Burst Multiplexer

Channel Adapter and Control Circuitry (BMCAC) 20418 of EBMC 20414 is connected to bi-directional BMC
Address and Data lBMCADl Bus 20420. BMCAD Bus 20420 in turn is connected to data and address inputs
and outputs of data sinks and sources of ED 10124. .

Similarly, data and address inputs and outputs of NOVA° Data Channel Adapter Control Circuits
(NDCACI 20422 in NDC 20416 is connected to bi—directional NOVA” Data Channel Address and Data
(NDCAD) Bus 20424. NDCAD Bus 20424 in turn is connected to address and data inputs and outputs of data
sources and sinks of ED 10124. BMCAD Bus 20420 and NDCAD Bus 20424 are paths for transfer of data and
addresses between data sinks and sources of ED 10124 and IOS 10116's data channels and may be

expanded as required;to include other IOS 10116 data channel devices and other data sink and source
devices of ED 10124.

Within EBMC 20414, bi-directional data input and output of BMCAC 20418 is connected to bl-directional
input and output of BMC Date Buffer (BMCDBJ 20426. Data inputs and data outputs of BMCDB 20426 are
connected to, respectively, Data Mover Output Data (DMOD) Bus 20428 and Data Mover input Data lDMlD)
Bus 20430. Address outputs of BMCAC 20418 are connected to address inputs of Burst Multiplexer Channel
Address Translation Map (BMCATM) 20432 and address outputs of BMCATM 20432 are connected onto
DMID Bus 20430. A bidirectional control input and output of BMCATM 20432 is connected from bi-
directional I0 Control Processor Control llOCPC) Bus 20434.

Referring to NDC 20416, as indicated in Fig. 204 data inputs and outputs of NDCAC 20422 are
connected, respecxively, from DMOD Bus 20428 and to DMID Bus 20430. Address outputs of NDCAC 20422
are connected to address inputs of NOVA” Data Channel Address Translation Map (NDCATM) 20436.
Address outputs of NDCATM 20436 are, in turn, connected onto DMID Bus 20430. A bi-directional control
input and output of NDCATM 20436 is connected from IOCPC Bus 20434.

Referring to IOCP 20412. a bi-directional control input and output of IOCP 20412 is connected from
IOCPC Bus 20434. Address and data output of IOCP 20412 is connected to NDCAD Bus 20424. An address
output of IOCP Address Translation Map (IOCPATM) 20438 within IOCP 20412 is connected onto DMID Bus
20430. Data inputs and outputs of IOCP 20412 are connected, respectively, to DMOD Bus 20428 and DMID
Bus 20430. A bi-directional control input and output of ICC? 20412 is connected to a bi-directional control
input and output of DMOVR 20410.

Referring finally to DMOVR 20410, DMOVR 20410 includes Input Data Buffer (IDB) 20440, Output Data
Buffer (ODB) 20442, and Priority Resolution and Control (PRC) 20444. A data and address input of IDB 20440
is connected from DMID Bus 20430. A data and address output oflDB 20440 is connected to IOM Bus 10130
to MEM 10112. A data output of ODB 20442 is connected from MIO Bus 10129 from MEM10112, and a data
output of ODB 20442 is connected to DMOD Bus 20428. Bi-directional control inputs and outputs of IDB
20440 and ODB 20442 are connected from bi-directional control inputs and outputs of PRC 20444. A bl-
directianal control input and output of PRC 20444 is connected from a bi-directional control input and
output of l0CP 20412 as described above. Another bl-directional control input and output of PRC 20444 is
connected to and from IOMC Bus 10131 and thus from a control input and output of MEM 10112. Having
described overall structure of I08 10116, operation of IOS 10116 will be described next below.

115

Petitioner Apple Inc. - Ex. 1025,» p. 4013

Petitioner Apple Inc. - Ex. 1025, p. 4014

1o_

20

EP 0 067 556 B1

b. U0 System 10116 Operation (Fig. 269)
1. Data Channel Devices

Referring first to EBMC 20414, BMCAC 20418 receives data and addresses from ED 10124 through
BMCAD Bus 20420. BMCAC 20418 transfers data into BMCDB 20426, where that data is held for subsequent
transmission to MEM 10112 through DMOVR 20410, will be described below. BMCAC 20418 transfers
addresses received from ED 10124 to BMCATM 20432. BMCATM 20432 contains address mapping
information correlating ED 10124 addresses with MEM 10112 physical addresses. BMCATM 20432 thereby
provides MEM 10112 physical addresses corresponding to ED 10124 addresses provided through BMCAC
20418.

When, as will be described further below, EBMC 20414 is granted access to MEM 10112 to write data
into MEM 10112, data stored in BMCDB 20426 and corresponding addresses from BMCATM 20432 are
transferred onto DMlD Bus 20430 to DMOVR 20410. As will be described below, DMOVR 20410 then writes
that data into those MEM 10112 physical address locations. When data is to be read from MEM 10112 to ED
10124, data is provided by DMOVR 20410 on DMOD Bus 20428 and is transferred into BMCDB 20426.
BMCAC 20418 then reads that data from BMCDB 20426 and transfers that data onto BMCAD Bus 20420 to
ED 10124. During transfers of data from MEM 10112 to E0 10124, MEM 10112 does not provide addresses
to be translated into ED 10124 addresses to accompany that data. Instead, those addresses are generated
and provided by BMCAC 20418. ‘

NDC 20416 operates in a manner similar to that of EBMC 20414 except that data inputs and outputs of
NDCAC 20422 are not buffered through a BMCDB 20426. -

As previously described, MEM 10112 has capacity to perfonn block transfers. that is sequential
transfers of four 32 bit words at a time. in general, such transfers are performed through EBMC 20414 and
are buffered through BMCDB 20426. That is, BMCDB 20426 allows single 32 bit words to be received from
ED 10124 by EBMC 20414 and stored therein until a four word block has been received. That block may then
be transferred to MEM 10112. Similarly, a block may be received from MEM 10112, stored in BMCDB 20426,
and transferred one word at a time to ED 10124. in contrast, NDC 20416 may generally be utilized for single
word transfers. . '

As Indicated in Fig. 204, EBMC 20414, NDC 20416, and each data channel device of IOS 10116 each
contain an individual addrss translation map, for-example BMCATM 20432 in EBMC 20414 and NDCATM
20436 in NDC 20416. Address translation maps stored therein are effectively constructed and controlled by
lOCP 20412 for each data channel device. IOS 10116 may thereby provide an individual and separate
address translation map for each lOS 10116 data channel device. This allows IOS 10116 to insure that no
two data channel devices, nor two groups of data sinks and sources in ED 10124, will mutually interfere by
writing into and destroying data in a common area of MEM 10112 physil address space. Altemately, lOS
10116 may generate address translation maps for two or more data channel devices wherein those maps
share a common, or overI_apping, area of MEM 10112‘: physical address space. This allows data stored in
MEM 10112 to be transferred between IOS 10116 data channel devices through MEM 10112, and thus to be
transferred between various data sink and source devices of ED 10124. For example, a first ED 10124 data
source and a first IOS 10116 data channel may write data to be operated upon into a particular area of MEM
10112 address space. The results of CS 10110 operations upon that data may then be written into a
common area shared by that first data device and a second data device and read out of MEM 10112 to a
second ED 10124 data sink by that second data channel device. Individual mapping of IOS 10116's data
channel devices thereby provides total flexibility in partitioning or sharing of MEM 10112's address space
through IOS 10116.

2. V0 Control Processor 20412 -
As described above, IOCP 20412 is a general purpose computer whose primary function is overall

direction and control or data transfer between MEM 10112 and ED 10124. IOCP 20412 controls mapping of
addresses between IOS 10116's data channel devices and MEM 10112 address space. In this regard, IOCP
20412 generates address translation maps for IOS 10116's data channel devices, such EBMC 20414 and
NDC 20416. IOCP 20412 loads these address translation maps into and controls, for example, BMCATM
20432 of EBMC 20414 and NDCATM 20436 and NDC 20416 through IOCPC Bus 20434. IOCP 20412 also
provides certain control functions to DMOVR 20410, as indicated in Fig. 204. in addition to these functions,
IOCP 20412 is also provided with data and addraslng inputs and outputs. These data addressing inputs
and outputs may be utilized, for example, to obtain infomtation utilized by IOCP 20412 in generating and
controlling mapping of addresses between lOS 10116's data channel devices and MEM 10112. Also, these
data and address inputs and outputs allow IOCP 20412 to operate, in part. as a data channel device. As
previously described. IOCP 20412 has data and address inputs and outputs connected from and to DMlD
Bus 20430 and DMOD Bus 20428. IOCP 20412 thus has access to data being transferred between ED 10124
and MEM 10112, providing lOCP 20412 with direct access to MEM 10112 address space. In addition, IOCP
20412 is provided with control and address outputs to NDCAD Bus 20424, thus allowing IOCP 20412 partial
control of certain data source and sink devices in ED 10124.

116

Petitioner Apple Inc. - Ex. 1025, p. 4014

Petitioner Apple Inc. - Ex. 1025, p. 4015

20

- EP 0067 556 B1

3. Data Mover 20410 (Fig. 269)
a.a. Input Data Buffer 20440 and Output Data Buffer 20442

As described above. DMOVR 20410 comprises an interface between IOS 10116's data channels and
MEM 10112. DMOVR 20410 performs actual transfer of data between lOS 10116's data channel devices and
MEM 10112. and controls access between lOS 10116's data channel devices and MEM 10112. [DB 20440

and ODB 20442 are da_ta'and address buffers allowing asynchronous transfer of data between IOS 10116
and MEM 10112. That Is. ODB 20442 may accept data from MEM 10112 as that data becomes available and
then hold that data until an l0S 10116 data channel device, for example EBMC 20414, is ready to accept that
data. IDB 20440 accepts data and MEM 10112 physical addresses from IDS 10116's data channel devices.
IDB 20440 holds that data and addresses for subsequent transmission to MEM 10112 when MEM 10112 is

ready to accept data and addresses. lDB 20440 may. for example, accept a burst. or sequence, of data from
EBMC 20414 or single data words from NDC 20416 and subsequently provide that data to MEM 10112 in
block. or four word. transfers as previously described. Similarly, ODB 20442 may accept one or more black
transfers or data from ODB 20442 and subsequently provide that data to NDC 20416 as single words, or to
DMID 20430 as a data burst. ln addition, as previously described. a block transfer from MEM 10112 may not
appear as four sequential words. In such cases, ODB 20442 accepts the four words of a block transfer as
they appear on MIO Bus 10129 and assembles those words into a block comprising four sequential words
for subsequent transfer to ED 10124.

Transfer of through IDB 20440 and ODB 20442 is controlled by PRC 20444. which exchanges
réontr1%l1§gnals With lOCP 20412 and has an interface, previously described, to MEM 10112 through IOMCus .

b.b. Priority Resolution and Control 20444 (Fig. 269)
As previously described, PRC 20444 controls access between I05 1 0116 data channel devices and MEM

10112. This operation is performed by means of a Ring Grant Access Generator (RGAG) within PRC 20444.
Referring to Fig. 270, a diegramic representation of PRC 20444's RGAG is shown. In general, PRC

20444's RGAG is comprised of a Ring Grant Code Generator (RGCG) 26910 and one or more data channel
request comparators. in Fig. 269, PRC 20-144's RGAC is shown as including ECUP$E° Burst Multiplexer
Channel Request Comparator (EBMCRCl26912, NOVA" Data Channel Request Comparator lNDCRC) 26914,
Data Channel Device X Request Comparator (DCDXRC) 26516, and Data Channel Device 2 Request
Comparator lDCDZRC) 26918. PRC 20444's RGAG may include more or fewer request wmparators as
required by the number of data channel devices within a particular 10$ 10116.

As indicated in Fig. 269, Request Grant Code (RGO) outputs of RGCG 26910 are connected in parallel to
first inputs of EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and DCDZRC 26918. Second inputs of
EBMCRC 26912, NDCRC 26914, DGDXRC 26915, and DCDZRC 26918 are connected from other portions of
PRC 20444 and receive indications that, respectively, EBMC 20414, NDC 20416, DCDX, or DCDZ has
submitted a request for a read or write access to MEM 10112. _

Request Grant Outputs (GRANT) of EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and DCDZRC 26818
are in turn connected to other portions of PRC 20444 circuitry to indicate when read or write accessto MEM
10112 has been granted in response to a request by a particular l0S 10116 data charinel device. When
indication of such a grant is provided to those other portions of PRC 20444, PRC 20444 proceeds to generate
appropriate control signals to MEM 10112,through IOMC Bus 10131 as previously described, to IDB 20440
and ODB 20442. and to IOCP 20412. PRC 20444/s control signals initiate that read or write request to that
IOS 10116 data channel device. G_rant outputs of EBMCRC 26912, NDCRC 26914. DCDXRC 26916, and

' DCOZRC 26918 are also provided as inputsto RGCG 26910 to indicate, as described further below, when a
particular IDS 10116 has requested and been granted access to MEM 10112.

As indited in Fig. 269, a diagramic figure above RGCG 26910, RGCG generates a repeated sequence
of unique RGCs. Herein indicated as numeric digits 0 to 15. Each RGC identifies. or defines, a particular
time slot during which a IOS 10116 data channel device may be granted access to MEM 10112. Certain
RGCs are, effectively, assigned to particular IOS 10116 data channel devices. Each such data channel device
may request access to MEM 10112 during its assigned RGC identified access slots. For example, EBMC
20414 is shown as being allowed access to MEM 10112 during those access slots identified by RGCs 0, 2, 4.
6, 8, 10.12, and 14. NDC 20416 is indicated as being allowed access to MEM 10112 during RGC slots 3, 7, 1 1,
and 15. DCDX is allowed access during slots 1 and 9, and DCDZ is allowed access during RGC slots 5 and
13.

As described above. RGCG generates RGCs 0 to 15 in a repetitive sequence. During occurrence of a
particular RGC, each request comparator of PRC 20444’: RGAG examines that RGC to determine whether
its associated data channel device is allowed access during that RGC slot, and whether that associated data
channel device has requested access to MEM 10112. If that associated data channel device is allowed
access during that RGC slot, and has requested access, that data channel device is granted access as
indicated by that request comparator's GRANT output. The request comparators GRANT output is also
provided as an input to RGCG 26910 to indicate to RGCG 26910 that access has been granted during that
RGC slot.

-If a particular data channel device has not claimed and has not been granted access to. MEM 10112

117

Petitioner Apple Inc. - Ex. 1025, p. 4015

Petitioner Apple Inc. - Ex. 1025, p. 4016

1'0

15

20

60

EP 0 057 556 31

during that RGC slot, RGCG 26910 will go directly to next RGC slot. in next RGC slot, PRC 20444's RGAG
again determines whether the particular data channel device allowed access during that slot has submitted
a request, and will grant access if such a request has been made. if not, RGCG 26910 will again proceed
directly to next FIGC slot. and so on. in this manner, PRC 20444's RGAG insures that each data channel
device of lOS 10116 is allowed access to MEM 10112 without undue delay. in addition, PRC 20444's RGAG
prevents a single, or more than one, data channel device from monopolizing access to MEM 10112. As
described above, each data channel device is allowed access to MEM 10112 at least once during a particular
sequence of RGCs. At the same time, by not pausing within a particular RGC in which no request for access
to MEM 10112 has occurred, PRC 20444‘s RGAG effectively automatically skips over those data channel
devices which have not requested access to MEM 10112. PRC 20444's RGAG thereby effectively provides.
within a given time imerval, more frequent access to those data channel devices which are most busy. in
addition, the RGCs assigned to particular IDS 10116 data channel devices may be reassigned as required to
adapt a particular CS 10110 to the data input and output requirements of a particular CS 10110
configuration. That is, if EBMC 20414 is shown to require less access to MEM 10112 then NDC 20416,
certain RGCs may be reassigned from EBMC 20414 to NDC 20416. Access to MEM 10112 by 10S 10116's
data channel devices may thereby be optimized as required.

Having described structure and operation of IDS 10116, structure and operation of DP 10118 will be
described next below.

E. Diagnostic Processor 10118 (Bags. 101, 205)
Referring to Fig. 101, as previously described, DP 10118 is interconnected with IOS 10116. MEM 10112,

FU 10120, and EU 10122 through ‘DP Bus 10138. DP 10118 is also interconnected, through DPlO Bus 10136,
with the extemal world and in particular with DU 10134. in addition to performing diagnostic and fault
monitoring and correction operations, DP 10118 operates, in part, to provide control and display functions
allowing an operator to interlace with CS 10110. DU 10134 may be comprised, for example. of a CRT and
keyboard unit, or a teletype, and provides operators of CS 10110 with all control and display functions
which are conventionally provided by a hard console, that is a console containing svon‘tches and lights. For
example, DU 10134, through DP 10118. allows ‘an operator to exercise control of CS 10110 for such
purposes as system initialization and startup, execution of diagnostic processes, fault monitoring and
identification, and control of execution of programs. As will be described further below, these functions are
accomplished through DP 10118’s interfaces with IDS 10116, MEM 10112, FU 10120, and EU 1012.

DP 10118 is a general purpose computer system, for example a NOVAP 4 computer of Data General
Corporation of Westboro, Massachusetts. Interface of DP 10118 and DU 10134. and mutual operation of DP
10118 and DU 10134, will be readily apparentto one of ordinary skill in the art. DP 10118's interface and
operation. with IDS 10116,, MEM 10112, FU 10120, and EU 10122 will be described further next below.

DP 10118, operating as a general purpose computer programmed specificially to perform the functions
described above, has, as will be described below, read and write access to registers of I05 10116, MEM
10112, FU10120and EU 10122 through DP 8us10138. DP 10118 may read data directly from and write data
directly into those registers. As will be described below, these registers are data and instmction registers
and are integral parts ofCS 10110's circuitry during normal operation of CS 10110. Access to these registers
thereby allows DP 10118 to directly control or effect operation of CS 10110. In addition, and as also will be
described below, DP 10118 provides, in general, all clock signals to all portions of CS 10110 circuitry and
may control operation of that circuitry through control of these clock signals.

For purposes of DP 10118 functions, CS 10110 may be regarded as subdivided into groups of
functionally related elements, for example DESP 20210 in FU 10120. DP 10118 obtains access to the
registers of these groups, and control of clocks therein, through scan chain circuits, as will be described
next below. In general, DP 10118 is provided with one or more scan chain circuits for each maiorfunctional
sub-element of CS 10110.

Referring to Fig. 205, a diagramic representation of DP 10118 and a typical DP 10118 scan chain is
shown." As indicated therein, DP 10118 includes a general purpose Central Processor Unit, or computer,
(DPCPU) 27010. Afirst interface of DPCPU 27010 is with DU 10134 through DPIO Bus 10136. DPCPU 27010
and DU 10134 exchange data and control signals through DPlO Bus 10136 in the manner to direct
operations of DPCPU 27010, and to display the results of those operations through DU 10134.

Associated with DPCPU 27010 is Clock Generator (CLKG) 27012. CLKG 27012 generates, in general, all

clock signals used within (:5 10110.
DPCPU 27010 and CLKG 27012 are interfaced with the various scan chain circuits of CS 10110 through

DP Bus 10138. As described above, CS 10110 may include one or more scan chains for each major sub-
element of CS 10110. One such scan chain, for example DESP 20210 Scan Chain (DESPSC) 27014 is
illustrated in Fig. 205.

Interface between DPCPU 27010 and CLKG 27012 and, for example, DESPSC 27014 is provided through

DP Bus 10138. As indicated in Fig. 205, DESPSC 27014 includes Scan Chain Clock Gates (SCCG) 27016 and
one or more Scan Chain Registers lSCRs) 27018 to 27024. ~

SCCG 27016 receives clock signals from CLKG 27012 and control signals from DPCPU 27010 through
55 DP Bus10138.SCCG 27016 in turn provides appropriate clock signals to the various registers and circuits

118

Petitioner Apple Inc. - Ex. 14025, p. 4016

Petitioner Apple Inc. - Ex. 1025, p. 4017

10

15

20

25

EP-‘ 0 067 556 B1

of, for example, DESP 20210. Clock control signals provided by DPCPU 27010 to SCCG 27016 control, or
gate, the various clock signals to these registers and circuits of DESP 20210. thereby effectively allowing
DPCPU 27010 to control of DESP 20210.

scns 27018 to 27024 are comprised of various registers within DESP 20210. For example, SCRs 27018
to 27024 may include the output buffer registers of AONGRF 20232, OFFGRF 20234, LENGRF 20236, output
registers of OFFALU 20242 and LENALU 20252, and registers within OFFMUX 20240 and BIAS 20246. Such
registers are indicated in the present description, as previously described, by arrows appended to ends of
those registers, with a flrst arrow indicating an input and a second an output. In normal CS 10110
operations, as previously described, Sci’-is 27018 to 27024 operate as parallel in. parallel out buffer registers
through which data and Instructions are transferred. SCFls 27018 to 27024 are also capable of operating as
shift registers and, as indicated in Fig. 205, are connected together to comprise a single shift register circuit
having an input from DPCPU 27010 and an output to DPCPU 27010. Control inputs to SCFis 27018 to 27024
from DPCPU 27010 control operation of SCRs 27018 to 27024, that is whether these registers shall operate
as parallel in. parallel out registers, or as shift registers of DESPSC 27014’s scan chain. The shift register

' sn chain comprising SCH: 27018 to 27024 allows DPCPU 2701010 read the contents of SCRs 27018 to
27024 by shifting the content of these registers into DPCPU 27010. Conversely. DPCPU 27010 may write into
SCRs 27018 to 27024 by shifting information generated by DPCPU 27010 from DPCPU 27010 and through
the shift register scan chain to selected locations within 5015 27018 to 27024.

Scan chain clock generator circuits and scan chain registers of each scan chain circuit within CS 10110
thereby allow DP 10118 to control operation of each major sub—element of CS 10110. For example, to read
information from the scan chain registers therein, and to write information into those scan chain registers
as required for diagnostic, monitoring, and control functions.

Having described structure and operation of each major element of CS 10110, including MEM 10112,
FU 10120, EU 10122, IOS 10116, and DP 10118, certain operations of. in particular, FU 10120 will be
described further next below. The following descriptions will further disclose operational features of JP
10114. and in particular FU 10120, by describing in greater detail certain operations therein by further
describing microcode control of JP 10114. ‘

F. CS 10110 Micromadtlne Structure and Operation (Figs. 270-274)
a. introduction

The preceding descriptions have presented the hardware structures and operation of FU 10120 and EU
10122. The following description will describe how devices in FU 10120, and certain EU 10122 devices,
function together as a rnicroprogrammable computer, henceforth termed the PU micromachine. The FU
micromachine performs two tasks: it interprets SlNs, and it responds to certain signals generated by
devices in FU 10120. EU 10122, MEM 10112, and IOS 10116. The signals to which the FU micromachine
responds are tenned Event signals. in tenns of structure and operation, the FU micromachine is
characterized by the following:
-— Registers and ALUs "specialized for the handling of logical descriptors.
— Registers organized as stacks for invocations of microroutlnes lmicroinstructicn sequences).
— Mechanisms allowing microrourine invocations by means of event signals from hardware.
—- Mechanisms which allow an invoked microroutine to return either to the microinstructicn following the

one which resulted in the invocation or to the microinstruction which resulted in the invocation.
— Mechanisms which allow the contents of stack registers to be transferred to MEM 10112, thereby

creating a virtual microstack of limitless size. ' ' . ' .
- Mechanisms which guarantee response to an event signal within a predictable length of time.
— The division of the devices comprising the micromachine into two groups: those devices which may be

used by all microcode and those which may be used only by KOS (_l(eme| Operating System,
previously described) microcode.
These devices and mechanisms allow the FU micromachine to be used in two ways: as a virtual

micromachine and as a monitor micromachine. Both kinds of micromachine use the same devices in FU
10120, but perform different functions and have different logical properties. in the following discussion,
when the FU micromachine is being used as a virtual micromachine, it is said to be in virtual mode, and
when it is being used as a monitor micromachine, it is said to be in monitor mode. Both modes are
introduced here and explained in detail later.

When the FU micromachine is being used in virtual mode, it has the following properties:
it runs on an essentially Infinite micromachine stack belonging to a Process 610.
it can respond to any number of event signals in the M0 cycle (state) of a single microinstruction.
A page fault may occur on the invocation of any microroutine or on return from any microroutine.
When the PU micromachine is in virtual mode, any mlcroroutine may not run to completion, i.e.,
complete its execution in a predictable length of time, or complete it at all.

-- it is executing a Process 610. _ _ _
The last four properties are consequences ofthe first: Event signals result in invocations, and since the

micromachine stack is infinite, there is no limit to the number of invocations. The infinite micromachine
stack is realized by placing micromachine stack frames on Secure Stack 10336 belonging to e lfmcess 610,

119

Petitioner Apple Inc. - Ex. 1025, p. 4017

Petitioner Apple Inc. - Ex. 1025, p. 4018

10

15

20

55

EP 0 067' 556 31

and the virtual micromachine therefore always runs on a micromachine stack belonging to some Process
610. Furthermore, if the invocation of a microroutine or a return from a microroutine requires
micromachine frames to be transferred from Secure Stack 10335 to the FU micromachine, a page fault may
result, and Process 610 which is executing the microroutine may be removed from JP 10114. thereby
making the time required to execute the microroutine unpredictable. indeed, if process 610 is stopped or
killed, the execution of the microroutine may never finish. As will be seen in descriptions below, the Virtual
Processor 612 is the means by which the virtual micromachine gains access to a Process 610's
micromachine stack.

When in monitor mode, the FU micromachine has the following properties:
It has a micromachine stack of fixed size, the stack is always available to the FU micromachine, and it is
not associated with a Process 610.

It can respond to only a fixed number of events during the M0 cycle of a single microinstruction.
ln monitor mode, invocation of a microroutine or return from a microroutine will not cause a page
fault.

Microroutines executing on the FU micromachine when the micromachine is in monitor mode are
guaranteed to run to completion unless they themselves perform an action which causes them to give
up JP 10114.
Microroutines executing in monitor mode need not be performing functions for a Process 610.
Again, the remaining properties are consequences of the first: because the monitor micromachine’:

stack is of fixed size, the number of events to which the monitor micromachine can respond is limited;
furthermore, since the stack is always directly accessible to the micromachine, microroutine invocations
and returns will not cause page faults, and microroutines running in monitor mode will run to completion
unless they themselvesperiorm an action which causes them to give up JP 10114. Finally, the monitor
micromachine's stack is not associated with a Process 610's Secure Stack 10336,_and therefore, the monitor
micromachine can both execute functions for Processes 610 and execute functions (which are related to no
Process 610. for example.) the binding and removal of Virtual Processors 612 from JP 10114. '

The description which follows first gives an overview of the devices which make up the micromachine,
continues with descriptions of invocations on the micromachine and micromachine programming, and
concludes with detailed discussions of the virtual and monitor modes and an overview of the relationship
between the micromachine and CS 10110 subsystems. The manner in which the micromachine performs
specific operations such as SlN parsing, Name resolution, or address translation may be found in previous
descriptions of "CS 10110 components which the micromachine uses to perform the operations.

b. Overview of Device Comprising FU Micromachine (Fig. 270)
Fig. 270 presents an overview of the devices comprising the micromachine. Fig. 270 is based on Fig.

201, but has been simplified to improve the clarity of the discussion. Devices and subdivisions of the
micromachine which appear in Fig. 201 have the numbeis given them in that figure. When a device in Fig.
270 appears in two subdivisions, it is shared by those subdivisions.

Fig. 270 has four main subdivisions. Three of them are from Fig. 201: FUCTL 20214. which contains the
devices used to select the next microinstruction to be executed by the rnicrornachine. DESP 2021 O. which

contains stack and global registers and ALUs for descriptor processing: and MEMINT 20212, which
contains the devices which translate Names into logical descriptors and logical descriptors into physical
descriptors. The fourth subdivision, EU Interface 27007, represents those portions of EU 10122 which may
be manipulated by FU 10120 microcode. .

Fig. 270 further subdivides FUCTL 20214 and MEMINT 20212. FUCTL 20214 has four subdivisions:
l-Stream Reader 27001, which contains the devices used to obtain SlNs and parse them into SOPs and
Names. -

SOP Decoder 27003, which translates SOPs into locations in FU microcode (FUSITT 11012), and in
some cases EU microcode (EUSITT 20344), which contain the microcode that performs the
corresponding SlNs.
Microcode Addressing 27013, which determines the location of the next micminstruction to be
executed in FUSITT 1101?.

Register Addressing 27011. which contains devices which generate addresses for GRF 10354 registers.

MEMINT 20212 also has three subdivisions:
Name Translation Unit 27015. which contains devices which accelerate the translation of Names into
logical descriptors.
Memory Reference Unit 27017, which contains devices which accelerate the translation of logical
descriptors into physil descriptors.
Protection Unit 27019, which contains devices which accelerate primitive access checks on memory
references made with logical descriptors. ' <

. Fig. 270 also simplifies the bus structure of H9. 202 by combining l£NGTi-l Bus 20226, OFFSET Bus
20228. and AONR Bus 20230 into a single structure, Descriptor Bus (DB) 27021. in addition, internal bus

55 connections have been reduced to those necessary for explaining the logical operation of the

120

Petitioner Apple Inc. - Ex. 1025, p. 4018

Petitioner Apple Inc. - Ex. 1025, p. 4019

I0

20

25

55

EP 0 067 556 B1

micromachine. The following discussion first describes those devices used by most microcode executing
on FU 10120, and then describes devices used to perform special functions, such as Name translation or
protection checking.

1. Devices used by Most Microcode _ _ ,
The subdivisions of the micromachine which contain devices used by most microcode are Microcode

Addressing 27013, Register Addressing 27011, DESP 20210, and EU Interface 27007. in addition,’ most
microcode uses MOD Bus 10144. JPD Bus 10142. and DB Bus 27021. The discussion begins with the buses
and then describes the other devices in the above order.

a.a. MOD Bus 10144, JPD Bus 10142, and 08 Bus 27021
MOD Bus 10144 is the only path by which data may be obtained from MEM 10112. Data on MOD Bus

10144 may have as its destination instruction Stream Reader 27001, DESP 20210, or EU Interface 27007. In
the first case. the data on MOD Bus 10144 consists of SINs; in the second, it is data to be processed by FU
10120, and in the third, it is data to be processed by EU 10122. In the present embodiment, data to be
processed by FU 10120 is generally data which is destined for internal use in FU 10120. for example in
Name cache 1026. Data to be processed by EU 10122 is generally operands represented by Names in
SW3.

JPD Bus 10142 has two uses: it is the path by which data returns to MEM 10112 after it has been
processed by JP 10114, and it is the path by which data other than logical descriptors moves between the
subdivisions of the micromachine. For example, when CS 10110 is initialized, the microinstructions which
are loaded into FUSl'l"i' 11012 are transferred from MEM 10112 to DESP 20210 via MOD Bus 10144, and
from DESP 20210 to FUSITT 11012 via JPD Bus 10142.

DB 27021 is the path by which logical descriptors are transferred in the micromachine. DB 27021
_. connects Name Translation Unit 27015, DESP 20210, Protection Unit 27019, and Memory Reference Unit

27017. Typically. a logical descriptor is obtained from Name Translation Unit 27015, placed in a register in
DESP 20210, and then presented to Protection Unit 27019 and Memory Reference Unit 27017 whenever a
reference is made using a logical descriptor. However, DB 27021 is also used to transmit cache entries
fabricated in DESP 20210 to ATU 10228, Name cache 1026 and Protection Cache 10234. '

b.b. Microcode Addressing .
As discussed here, microcode addressing is comprised of the following devices: Timers 20296, Event

Logic 20284, RCWS 10358, BRCASE 20278, mPC 20276, MCWO 20292, MCW1 20290, SITTNAS 20286, and
FUSl'l"l' 11012. All of these devices have already been described in detail, and they are discussed here only
as they affect microcode addressing. Other devices contained in fig. 202, State Registers 20294, Repeat

Eoumer 20280, and FNREG 20282 are not directly relevant to microcode addressing. and are not discussedare.

As has already been described in detail. devices in Microcode Addressing 27013 are loaded from JPD
Bus 10142. The microcode addresses provided by these devices and by FUSDT 11010 are transmitted
among the devices and to FUSITI’ 11012 by CSADR Bus 20204. There are six ways in which the next
microcode address may be obtained:
— Most commonly, the value in mPC 20276 is incremented, by 1 by a special ALU in mPC 20276, thus

yielding the address of the microinstruction following the current microinstruction.
— if a microinstruction specifies a call to a microroutine or a branch, the microinstruction contains a literal

which an ALU in BFICASE 20278 adds to the value in mPC 20276 to obtain the location of the next
mlcroinstruction. -

—— If a microinstruction specifies the use of a case value to calculate the location of the next
microinstruction, BRCASE 20278 adds a value calculated by DESP 20210 to the value in mPC 20716.
The value calculated by DESP 20210 may be obtained from a field of a logical descriptor, thus allowing
the micromachine to branch to different locations in microcode on the basis of type information
contained in the logical descriptor. On return from an invocation of a microroutine, the location at
which execution of the microroutine in which the invocation occurred is to continue is obtained from
RONS 10358.

— At the beginning of the execution of an SIN, the location at which the microcode for the SIN begins is
obtained from the SlN's SOP by means of FUSDT 11010.

— Certain hardware signals cause invocations of microroutines. There are two classes of such signals:
Event signals, which Event Logic 20284 transforms into invocations of certain microroutines,_and JAM
signals, which are translated directly into locations in microcode-
The addresses obtained as described above are transmitted to SlTl'NAS 20286, which selects one of

the addresses as the location of the next mlcroinstructicn to be executed and transmits the location to
FUSl'i'l' 11012. As the location is transmitted to FUSl'iT 11012, it is also stored in mPC 20276. All addresses

except those for Jams are tranferred to SHTNAS 20286 via CSADR Bus 20204. Addresses obtained from

121

Petitioner Apple Inc. - Ex. 1025, p. 4019

Petitioner Apple Inc. - Ex. 1025, p. 4020

10

15

20

25

EP 0 067 556 B1

JAM signals are transferred by separate lines to SITTNAS 20286. ‘ y r
V As will be explained in detail below, microroutine calls and returns also involve pushing and popprn

micromachine stack frames and saving state contained in MCW1 20290.
Register Addressing 27011 controls access to micromachine registers contained in GRF 10354. As

explained in detail below, GRF 10354 contains both registers used for the micromachine stack and global
registers, that is, registers that are always accessible to all microroutines. The registers are grouped in
frames. and individual registers are addressed by frame number and register number. Register Addressing
27011 allows addressing of any frame and register in the GRs 10360 of GRF 10354, but allows addressing of
registers in only three frames of the SFl's 10362: the current (top) frame, the previous frame (i.e., the frame
preceding the top frame), and the bottom frame, that is, the lowest frame in a virtual micrornachine stack

. which is still contained in GRF 10354. The values provided by Register Addressing 27011 are stored in
MCWO 20292. As will be explained in the discussion of microroutine invocations which follows. wrrent and
previous are incremented on each invocation and decrernented on each return.

c.c. Description Processor 20210 (Fig. 271)
DESP 20210 is a set of.devices for storing and processing logical descriptors. The internal structure of

DESP 20210’s processing devices has already been explained in detail; here, the discussion deals primarily
with the structure and cements of GRF 10354. In a present embodiment of CS 10110, GRF 10354 contains
256 registers. Each register may contain a single logical descriptor. l-‘lg. 271 illustrates a Logical Descriptor
27116 in detail. in a present embodiment of CS 10110, a Logical Descriptor 27116 has four main fields:
— RS Field 27101, which contains various flags which are explained in detail below.
—- AON Field 27111. which contains the AON portion of the address of the data item represented by the

Logical Descriptor 27116.
—- OFF field 27113, which contains the offset portion of the address of the data item represented by

Logical Descriptor 27116.
—— LEN Field 27115. which contains the length of the data item represented by the Logical Descriptor

' 27116.
RS Field 27101 has subfields as follows:

-- R113 Field 27103 and Wm field 27105 may be set by microcode to disable certain Event signals
provided for debuggers by CS 10110. For details, see a following description of debugging aids in CS10110. .

— FIU Field 27107 contains two bits.The fields are set from information in the Name Table Entry used to
construct the Logical Descriptor 27116. The bits determine how the data specified by the Logical
Descriptor 27116 is to be justified and filled when it is fetched from MEM 10112.

— TYPE Field 27109's fou_r bits are also obtained from the Name Table Entry used to construct the Logical
' Descriptor 27116. The field's settings vary from S-Language to S-Language, and are used to

communicate S-Language—specific type information to the S-Language's S-Interpreter microcode.
The four fields of a Logical Descriptor 27116 are contained in three separately-accessible fields in a GRF

10354 register: one containing RS Field 27101 and AON Field 27111, one containing OFF Field 27113, and
one containing LEN Field 27115. In addition. each GRF 10354 register may be accessed as a whole. GRF
10354 is further subdivided into 32 frames of eight registers each. An individual GRF 10354 register is
addressed by’ means of its frame number and its register number within the frame. in a present
embodiment of CS 10110, half of the ‘frames in GRF 10354 belong to SR‘s 10362 and are used for
micromachine stacks, and half belong to G85 10360 for storing "global lnfonnetion". In SR’s 10362, each
GRF 10354 frame contains information belonging to a single invocation of a microroutine. ‘As previously
explained, Register Addressing 27011 allows addressing of only three GRF 10354 framesin SFl‘s tack 10362,
the current top frame in the stack, the previous frame, and the bottom frame. Registers are accessed by
specifying one of these three frames and a register number.

The global information contained in Gris 10360, Is information which is not connected with a single
invocation. There are three broad categories of global information:
— information belonging to Process 610 whose Virtual Processor 612 is currently bound to JP 10114.

Included in this information are the current values of Process 610's ABPs and the pointers which KOS
uses to manage Process 610's stacks. .

— information required for the operation of KOS. included in this information are such items as pointers
to KOS data bases which occupy fixed locations in MEM 10112.

-- Constants, that is, fixed values required for certain frequently performed operations in FU 10120.
Remaining registers are available to microprogrammers as temporary storage areas for data which

cannot be stored in a microroutine’s stack frame. For example, data which is shared by several
microroutines may best be placed in a GR 10360. Addressing of registers in the GRs 10360 of GRF 10354
requires two values: a value of 0 through 15 to specify the frame and a value of 0 through 7 to specify the
register in the frame. -

As previously discussed in detail, each of the three components AONP 20216. OFFP 20218, and LENP
20220 of DESP 20210 also contains ALUs. registers, and logic which allows operations to be performed on

individual fields of GRF 10354 registers. In particular. OFFP 20218 contains OFFALU 20242, which may be

122

Petitioner Apple Inc. - Ex. 1025, p. 4020

Petitioner Apple Inc. - Ex. 1025, p. 4021

15

20

25

50

55

EP 0 067 556 B1

used as a general purpose 32 bit arithmetic and logil unit. OFFALU 20242 may further serve as a source
and destination for JPD Bus 10142, the offset portion of DB 27021, and NAME Bus 20224, and as a
destination for MOD Bus 10144. Consequently, OFFALU 20242 may be used to perform operations on data
on these buses and to transfer data from one bus to another. For example, when an SIN contains a literal
value used in address calculation, the literal value is transferred via NAME Bus 20224 to OFFALU 20242,
operated on, and output via the offset portion of DB 27021. -

d.d. EU 10122 Interface

FU 10120 specifies what operation EU 10122 is to perform, what operands it is to perform It on. and
when It is finished, what is to be done with the operands. FU 10120 can use two devices in EU 10122 as
destinations for data, and one device as a source for data. The destinations are COMO 20342 and OPB
20322. COMO 20342 receives the location in EUSITT 20344 of the microcode which is to perform the

operation desired by the FU 10120. COMO 20342 may receive the location in microcode either from an FU
10120 mlcroroutlne or from an SlN's SOP. in the first case, the location is transferred via JPD Bus 10142,

-and in the second, it is obtained from EUSDT 20266 and transferred via EUDIS Bus 20206. OPB 20322

receives the operands upon which the operation is to be performed. If the operands come directty fr'om
MEM 10112. they are transferred to OPB 2032 via MOD Bus 10144; if they come from registers or devices
in FU 10120, they are transferred via JPD Bus 10142.

Result Register 27013 is a source for data. After EU 10122 has completed an operation, FU 10120
obtains the result from Result Register 27013. FU 10120 may then place the result in MEM 10112 or in any
device accessible from JPD Bus 10142. '

2. Specialized Micromachine Devices
Each of the groups of specialized devices serves one of CS 101 1 0's subsystems. I-Stream Reader 27001

is part of the S-Interpreter subsystem, Name Translation Unit 27015 is part of the Name Interpreter
subsystem, Memory Reference Unit 27017 is part of the Virtual Memory Management System, and
Protection Unit 27019 is part of the Access Control System. Here, these devices are expiained only in the
context of the micromachine; for a complete understanding of their functions within the subsystems to
which they belong, see previous descriptions of the subsystems.

-a.a. l-Stream Reader 27001

l-Stream Reader 27001 reads and parses a stream of SlNs (termed the I-Stream) from 8 Procedure
Object 604, 606, 608. The I-Stream consists of SOPs (operation cod), Names, and literals. M previously
mentioned. in a present embodiment of CS 10110, the l-Stream read from a given Procedure 602 has a fixed
format: the SOPs are 8 bits long and the Names and literals all have a single length. Depending on the
procedure, the length may be 8, 12. or 16 bits. l—Stream l-‘leader 27001 parses the I-Stream by breaking it up
into its constituent SOPs and Names and passing the SOPs and Names to appropriate pans of the
micromachine. l—Stream Reader 27001 contains two groups of devices:
—— PC Values 27006, which is made up of three registers which contain locations in the I-Stream. When

added to ABP PBP, the values contained in these registers specify locations in Procedure Object 901
containing the Procedure 602 being executed. CPC 20270 contains the location of the SOP or Name
currently being interpreted; IPC 20272 contains the location of the beginning of the SN currently being
executed; EPC 20274, finally. is of interest only at the beginning of the execution of an SIN; at that time,
it contains the location of the last SIN to be executed.

—- Parsing Unit 27005, which is made up of INSTB 20262, PARSER 20264, and PREP 20260. The
micrornachine uses PREP 20260 to create Logical Descriptors 27116 for the l-Stream, which are then
placed on DB Bus 27021 and used in logical memory references. The data returned from these
references is placed in lNS'l’B 20262, and parsed by PARSER 20264.
SOPs, Names, and literals obtained by PARSER 20264 are placed on NAME Bus 20224, which connects

PARSER 20264, SOP Decoder 27003, Name Translation Unit 27015, and OFFALU 20242.

b.b. SOP Decoder 27003
SOP Decoder 27003 decodes SOPs into locations in FU 10120 and EU 10122 microcode. SOP Decoder

27003 comprises FUSDT 11010, EUSDT 20266, Dialect Register (RDIAL) 24212. and LOPDCODE 24210.
FUSDT 11010 are further comprised of FUDISP 24218 and FALG 24220. The manner in which these devices
translate SOPs contained in SlNs into locations in FUSITT 11012 and EUSlTl' 20344 has been previously
described.

c.c. Name Translation Unit 27015 _
Name Translation Unit 27015 accelerates the translation of Names into Logical Descriptors 27116. This

operation is termed name resolution. it is comprised of two components: NC 10226 and Name Trap 20254.
NC 1026 contains copies of information from a Procedure Object 604's Name Table 10350, and thereby
makes it possible to translate Names into Logical Descriptors 27116 without referring to Name Table 10350.
When a Name is presented to Name Translation Unit 27015, it is latched into Name Trap 20254 for later use
by Name Translation Unit 27015 if required. As will be explained in detail later, in the present embodiment,

123

Petitioner Apple Inc. - Ex. 1025, p. 4021

Petitioner Apple Inc. - Ex. 1025, p. 4022

10

15

20

as

55

EP 0 067 '.i56 B1

Name translation always begins with the presentation of a Name to NC 10226. if the Name has already
been translated, the information required to construct its Logical Descriptor 27116 may be contained in NC
10226. lfthere is no information for the Name in NC 10226, Name Resolution Microcode obtains the Name
from Name Trap 20254, uses information from Name Table 10350 for the procedure being executed to
translate the Name, places the required information in NC 10226. and attempts the translation again. When
the translation succeeds, a Logical Descriptor 27116 corresponding to the Name is produced from the
information in Name Cache 10115, placed on DB Bus 27021, and loaded into a GRF 10354 register.

d.d. Memory Reference Unit 27017
Memory Reference Unit 27017 performs memory references using Logical Descriptors 27116. Memory

Reference Unit 27017 receives a command for MEM 10112 and a Logical Descriptor 27116 describing the
data upon which the command is to be performed. In the case of a write operation, Memory Reference Unit
27017 also~receives the data being mitten via JPD Bus 10142. Memory Reference Unit 27017 translates
Logical Descriptor 27116 to a physical descriptor and transfers the physical descriptor and the command to
MEM 10112 via PD Bus 10146. A Memory Reference Unit 27017 has four components: ATU 10228. which
contains copies of information from KOS virtual memory management system tables. and thereby
accelerates logical-to-physical descriptor translation; Descriptor Trap 20256, which traps Logical
Descriptors 27116, Command Trap 27018, which traps memory commands; and Data Trap 20258, which
traps data on write operations. When a logical memory reference is made, a Logical Descriptor 27116 is
presented via DB Bus 27021 to ATU 10228. and at the same time, Logical Descriptor 27116 and the memory
command are trapped in Descriptor Trap 20256 and Command Trap 27018. On write operations, the data to
.be written is trapped in Data Trap 20258. If the infonnation needed to form the physical descriptor is
present in ATU 10228. the physical descriptor is transferred to MEM 10112 via PD Bus 10146. If the
information needed to form the physical descriptor is not present in ATU 10228, an Event Signal from ATU
10228 invokes a microroutine which retrieves Logical Descriptor 27116 from Descriptor Trap 20256 and
uses information contained in K05 virtual memory management system tables to make an entry in ATU
10228 for Logical Descriptor 27116. When the microroutine returns, the logical memory reference is
repeated using Logical Descriptor 27116 from Descriptor Trap 20256. the memory command from
Command Trap 27018, and on write operations, the data in Data Trap 20258. As will be described in detail in
the discussion of virtual memory management, if the data referenced by a logical memory reference is not
present in MEM 10112, the logical memory reference causes a page fault.

e.e. The Protection Unit 27019

On eadi logical memory reference. Protection Unit 27019 checks whether the subject making the
reference has access rights which allow itto perfonn the action specified by the memory command on the
object being referenced. if the subject does not have the required access rights, a signal from Protection
Unit 27019 causes MEM 10112 to abort the logical memory reference. Protection Unit 27019 consists of
Protection Cache 10234, which contains copies of infonnation from KOS Access Control System tables, and
thereby speeds up protection checking, and shares Descriptor Trap 20256, Command Trap 27018. and Data
Trap 20258 with Memory Reference Unit 27017. When a logical memory reference is made, the" AON and
offset portions of the logical descriptor are presented to Protection Cache 10234. if Protection Cache 10234
contains protection infonnation for the object specified by the AON and offset and the subject performing
the memory reference has the required access, the memory reference may continue; if Protection Cache
10234 contains protection information and the subject does not have the required access. a signal from
Protection Cache 10234 aborts the memory reference. If Protection Cache 10234 does not contain the
required access information, a signal from Protection Cache 10234 aborts the memory reference and
invokes a microroutine which obtains the access information from KOS Access Control System tables and
places it in Protection Cache 10234. When Protection Cache 10234 is ready, the memory access is repeated,
using the logical descriptor from Descriptor Trap 20256, the memory command from Command Trap
27018. and in the case of write operations, the data in Data Trap 20258.

f.f. KOS Micromachine Devices

As mentioned in the above introduction to the micromachine, the devices making up the
micromachine may be divided into two classes: those which any microcode written for the micromachine
may manipulate, and those which may be manipulated exclusively by KOS microcode. The latter class
consists of certain registers in Gfis 10360 of GRF 10354, the bottom frame of the portion of the virtual
micromachine stack in the stack portion (Stackflegisters 10362) of GRF 10354, and the devices contained in
Protection Unit 27019 and Memory Reference Unit 27017. Because Protection Unit 27019 and Memory
Reference Unit 27017 may be manipulated only by K05 microcode, non-KOS microcode may not use
Descriptor Trap 20256 or Command Trap 27018 as a source or destination, may not load or invalidate

‘ registers in ATU 10228 or Protection Cache 10234, and may not perform physical memory references, i.e.,
memory references which place physical descriptors directly on PD Bus 10146. instead of presenting logical

124

Petitioner Apple Inc. - Ex. 1025, p. 4022

Petitioner Apple Inc. - Ex. 1025, p. 4023

50

EP 0 067 556 B1

descriptors to Memory Reference Unit 27017 and Protection Unit 27019. Similarly, non-KOS microcode
may not specify KOS registers in the Gfls 10360 of GRF 10354 or the bottom frame of the stack portion of
GRF 10354 when addressing GRF 10354 registers. Further, in embodiments allowing dynamic loading of
FUSI'l'T 11012, only K05 microcode may manipulate the devices provided for dynamic loading.

In a present embodiment of CS 10110. the distinction between KOS devices and registers and devices
and registers accessible to all microprograms is maintained by the microbinder. The microbinder checks all
microcode for microinstructions which manipulate devices in Protection Unit 27019, or Memory Reference
Unit 27017, or which address GRF 10354 registers reserved for KOS use. However, it is characteristic of the
micromachine that K05 devices are logically and physically separate from devices accessible to all
microprograms and, consequently, other embodiments of CS 10110 may use hardware devices to prevent
non-KOS microprograms from manipulating KOS devices.

c. Micromachine Stacks and Microroutine Cells and Returns (Figs. 272, 273)
1. Micromachine Stacks (Fig. 272)

As previously mentioned, the FU micromachine is a stack micromachine The properties of the FU
micromachine's stack depends on whether the FU micromachine is in virtual or monitor mode. in virtual
mode, the micromachine stack is of essentially unlimited size; if it contains more frames than allowed for
inside FU 10120, the top frames are in GRF 10354 and the remaining frames are in Secure Stack 10336
belonging to Process 610 being executed by the FU micromachine. In the following. the virtual mode
micromachine stack is termed the virtual micromachine stack. In monitor mode. the micromachine stack

consists of a fixed amount of storage; in a present embodiment of CS 10110, the monitor mode
micromachine stack is completely contained in the stack portion. SRs 10362. of GRF 10354; in other
embodiments of (:5 10110, part or all ofthe monitor mode micromachine stack may be contained in an area
of MEM 10112 which has a fixed size and a fixed location known to the monitor micromachine. in yet other
embodiments of CS 10110, monitor mode micromachine stack may be of flexible depth in a manner similar
to the virtual micromachine stack. In either mode, microroutines other than certain K05 microroutines
which execute state save and restore operations may access onlytwo frames of GRF 10354 stack: the frame
upon which the microroutine is executing, called the current frame, and the frame upon which the
microroutine that invoked that microroutine executed, called the previous frame. KOS microroutines which
execute state save and restore operations may in addition access the bottom frame of that portion of the
virtual micromachine stock which is contained In GRF 10354.

Fig. 272 illustrates stacks for the FU micromachine. Those portions of the micromachine stack which
are contained in the FU are contained_ in SR's 10362 (of GRF 10354) and in RCWS 10358. Each register of

RCWS 10358 is permanently associated with a GRF frame in SR3 10362 of GRF 10354, and the RCWS 10358
register and the GRF .frame together may contain one frame of a micromachine stack. As previously
describe, each register of GRF 10354 contains three fields: one for an AON and other information, one for
an offset, and one for a length. As illustrated in Fig. 251, each register in RCWS 10358 contains four fields:
-— A one bit field which retains the value of the Condition Code register in MCW1 20290 at the time that

the invocation which created the next frame occurred.

— A field indicating what Event Signals were pending at the time that the invocation to which the RCWS
register belongs invoked another microroutine. 1

— A flag indicating whether the microinstruction being executed when the invocation occurred was the
first microinstruction in an SIN.

— The address at which the execution of the invoking microroutine is to continue.
The uses of these fields will become apparent in the ensuing discussion.

The space available for micromachine stacks in SR5 10362 and RCWS 10358 is divided into two parts:
Frames 27205 reserved for MOS 10370 and Frames 27206 available for the MIS Z7203. Frames 27206 may
contain no MlS Frames 27203, or be partially or completely occupied by MlS Frames 27203. Space which
contains no MIS Frames is Free Frames 27207. The size of the space reserved for Monitor Micromachine
Stack Frames 27205 is fixed, and Spaces 27203, 27205, and 27207 always come in the specified order.
Register Addressing 27011 handles addressing in Stack Portion 27201 of GRF 10354 and RCWS 10358 in
such fashion that the values for the locations of current, previous, and bottom frames specifying registers
in RCWS 10358 or frames in Stack Portion 27201 automatically "wrap around" when they are incremented
beyond the largest index value allowed by the sizes of the registers, or decremented below the smallest
index value. Thus, though Spaces 27203, 27205, and 27207 always have the same relative order, their GRF
10354 frames and RCWS registers may be located anywhere in Stack Portion 27201 and RCWS 10358.-a

2. Microroutine invocations and Returns _
In CS 10110, microroutines may be invoked by other microroutines or by signals from CS.10110

hardware. The methods of invocation aside, microroutine invocations and returns resemble invocations of
and returns from procedures written in high-level languages. in the following, the general principles of
microroutine invocations and returns are discussed, and thereafter,’ the specific methods by which
microroutines may be invoked in cs 10110. The differences between invocations in monitor mode and

125

Petitioner Apple Inc. - Ex. 1025, p. 4023

Petitioner Apple Inc. - Ex. 1025, p. 4024

30

EP 0 067 555 31

invocations in virtual mode are explained in the detailed discussions of the two modes.
The microroutine which is currently being executed runs on _the frame specif'ied by Current Pointer

27215. When an invocation occurs, either because the executing microroutine performs a call, or because a

signal which causes invocations has occurred. JP 1011ll hardware does three things: _ _
— It stores state information forthe invoking microroutine in the RCWS 10358 register associatedwith the

current frame. The state information includes the location at which execution of the invoking

microroutine will resume, as well as other state information. _ '
-— lt increments Current Pointer 27215 and Previous Pointer 27213, thereby providing a frame for the new

invocation. .
— It begins executing the first instruction of the newly invoked microroutine. _ ’

Because the newly-invoked microroutine can access registers of the invoking microroutine s frame. the
invoking microroutine can pass "arguments" to the invoked microroutine by placing Valllfi "1 "e_9‘$‘°'5_ '"
its frame used by the invoked microroutine. However, the invoking microroutine cannot_specif_y which
registers contain "arguments" on an invocation, so the invoked microroutine must which f§9'5"?l'5 '31‘
the previous frame are used by _the invoking microroutine. ‘Since the only arguments which a
microroutine has access to are those in the previous frame. a microroutine can pass arguments which. it
received from its invoker to a microroutine which it invokes only by e0pvIn_9 the 8T9_Um9"t$ "Om "5
invoker’s frame to its own frame; which then becomes the newly-invoked routine's previous frame.

The return is the reverse of the above: Current Pointer 27215 and Previous Pointer 27213 are
decremented, thereby "popping off" the finished invocation’s frame and returning to the invoker's frame.
The invoker then resumes execution at the location specified in the RCWS 10358 register and using the
state saved in the RCWS 10358. The saved state includes the value ofthe Condition Code in MCW1 20290 at

the time of the invocation and flags indicating various pending Events. The Condition Code field in MC\N1
20290 is set to the saved value, and the pending event flags may cause Events to occur as described in
detalrbelow.

3. Means of invoking Microroutines
ln_the micromachine, invocations may be produced either by commands in microinstructions or by

hardware signals. in the following, invocations produced by commands in microinstructions are termed
Calls, while those produced by hardware signals are termed Evem invocations and Jams. invocations are
further distinguished from each other by 1119 loiztions to which they return. Calls and Jams return to the
microinstruction following the microinstructlon in which the invocation occurs; Event invomtions return to
that microinstruction, which is then repeated.

in terms of implementation, the different return locations are a consequence of the point in the
micromachine cycle atwhich Calls, Jams, and Event invocations save a return location and transfer control
to the called routine. With Calls and Jams, these operations are performed in the M1 qcle; with Event
invocations, on the other hand, the Event signal during the M0 cycle causes the M0 cycle to be followed by
a MA cycle instead of the M1 cycle. and the operations are performed in the MA cycle. in the M1 cycle. the
value in mm 20276 is incremented; in the MA wcle, it is not. Consequently, the return value saved in
RCWS 10358 on a Call or Jam isthe incremented value of mPC 20276, while the return value saved on an
Event invocation is the unincremented value of mPC 20278. The following discussion will deal first with
Calls and Jams. and then with Event invotions.

A Call command in a mlcroinstiuction contains a literal value which specifies the offset from the
microinstruction containing the Call at which execution is to continue after the Call. When the
microinstniction with the Call command is executed in micromachine wcle M1, BRCASE 20278 adds the
offset contained in the command to the current value of mPC 20276 in order to obtain the location of the

invoked microroutine and sets SITTNAS 20286 to select the location provided by BRCASE 20278 as the
location of the next microinstruction. Then the Call command increments mPC 20276 and stores the

incremented value of mPC 20276 in the RC\NS 10358 register associated with the current frame in SR5
10362 and increments Current Pointer 27215 and Previous Pointer 27213 to provide a new frame in SR5
10362. The Jam works exactly like the Call, except that a hardware signal during mlcromachine cycle M1
causes the actions associated with the invocation to occur and provides the location of the invoked
microroutine directly to SITTNAS 20286.

With Events. Event Logic 20284 causes an invocation to occur during cycle M0 and provides the
location of the invoked microroutine via CSADR 20299. Since the Evem occurs during cycle MD, the location
stored in RCWS 10358 is die unincremented value of mPC 20276. and SITTNAS 20286 selects the location
provided by Evem Logic 20284 as the location of the next microinstruction. Since the return from the Evem
causes the mlcrolnstructlon during which the Event occurred to be re-executed, the microinstmction and
the microroutine to which it belongs may be said to be "unaware" of the Event’s occurrence. The only
difference between the execution of a microinstruction during which an Event occurs and the execution of
the same microinstruction without the Event is the length of time required for the execution.

126

Petitioner Apple Inc. - Ex. 1025, p. 4024

Petitioner Apple Inc. - Ex. 1025, p. 4025

5"

15

20

65

A El’ 0067 556 B1

4. Occurrence of Event invocations (Fig. 273)
As described previously, Evem invocations are produced by Event Logic 20284. The location in

microcode to which Event Logic 20284 transfers control is determined by the following:
—- The operation being commenced by FU 10120. Certain Event invocations may occur only at the

beginning of certain FU 10120 operations.
— The state of Event signal lines from hardware and internal registers in Event Logic 20284.
— The state of certain registers visible via MCW1 20290. Some of these registers enable Events and

others mask Events. Of the registers which enable Events, some are set by Event signals and others by
the microprogram.

— On retums from invocations of microroutines, the settings of certain bits in the RCWS 10358 register
belonging to the micromachine frame for the invocation that is being returned to.
Microprograms may use these mechanisms to disable Event signals and to delay an Evem invocation

from an Event signal for a single microinstruction or an indefinite period, and FU 10120 uses them to
automatically delay Event invocations resulting from certain Event signals. Using traditional programming
tenninology, the mechanistns allow a diflerential masking of Event signals. An Event signal may be
explicitly masked for a single microinstruction, it may be masked for a sequence of microinstructions: it
may be automatically masked until a certain operation occurs, or it may be automatically masked for a
certain maximum length of time. Event signals which occur while they are masked are not lost. in some
cases. the Event signal continues until it is serviced; in others, a register is set to retain the fact that the
Event signal occurred. When the Event signal is unmasked, the set register causes the Event signal to
reoccur. in some cases, finally, the Event signal is not retained, but recurs when the microinstruction which
caused it is repeated.

in the following, the relationship between FU 10120 operations and Event signals is first presented, and
then a detailed discussion of the enabling registers in MC\N1 20290 and of the bits in RCWS 10358 registers
which control Event invocations. '

FU 10120 allows Event invocations resulting from Event signals to be inhibited for a single
microinstruction: it also delays certain Event invocations for certain Event signals until the first
microinstmction of an SIN. Other Event signals occur only at the beginning of an SIN, at the beginning of a
Namespace Resolve or Evaluate operation. or at the beginning of a logil memory reference.

Event invocations may be delayed for a single microinstruction by setting a field of the
microinstruction itself. Setting this field delays almost all Event invocations, and thereby guarantees that
an Event invocation will not occur during the microinstr-uction's MO cycle.

Event signals relating to debugging occur at the beginnings of certain micromachlne operations. Such
Event signals are called Trace Event signals. As will be explained in detail, in the discussion of the
debugger, Trace Event signals can occur on the first microinstruction of an SIN, at the beginning of an
Evaluate or Resolve operation, at me beginning of a logical memory reference, or at the beginning of a
microinstruction. IPM interrupt signals and interval Timer Overflow Event signals are automatically masked
until the beginning of the next SIN or until a maximum amount of time has elapsed. which ever occurs first.
The mechanisms involved here are explained in detail in the discussion of interrupt handling in the FU
10120 micromachine.

Turning now to the registers used to mask and enable Event signals, Fig. 273 is a representation of the
masking and enabling registers in MCW1 20290 and of the field in RCWS 10358 registers which controls
Event invocations. Beginning with the registers in MCW1 20290. there are three registers which control
Event invocations: Event Mask Register (EM) 27301, Events Pending Register (EP) 27309. and Trace Enable
Register (TE) 27319. Bits in EM 27301 mask certain Event signals as long as they are set; bits in EP Register
27309 record the occurrence of certain Event signals while they are masked; when bits in TE Register 27319
are set. Trace Event signals occur before certain FU 10120 operations.

EM 27301 contains three one bit fields: Asynchronous Mask Field 27303, Monitor Mask Field 27305,
and Trace Event Mask Field 27307. As explained in detail in the discussion of FU 10120 hardware. these bits
establish a hierarchy of Event masks. ii Asynchronous Mask Field 27303 is set, only two Event signals are
masked: that resulting from an overflow of EGGTMR 25412 and that resulting from ‘an overflow of EU
10122's stack. if Monitor Mask Field 27305 is set, those Events are masked, and additionally, the FU Stack
Overflow Event signal is masked. As will be explained in detail later, when the FU 10120 Stack Overflow
Event signal is masked, the FU micromachine is executing in monitor mode. if Trace Event Mask Field
27307 is set, Trace Trap Event signals are masked in addition to the above signals. Each of the fields in EM
27301 may be individually set and cleared by the microprogram.

Four Event signals set fields in EP 27309: the EGGTMR 25412 Runout signal sets ET Field 27311. the
lN‘lTMR 25410 Runout signal sets IT Field 27313, the Non-Fatal Memory Error signal sets ME Field 27315.
and the inter-Process Message signal sets IPM Field 27317. Event invocations for all of these Event signals

. but the Egg Timer Runout signal occur at the beginning of an SiN: in these cases the fields in EP 27309
retain the fact that the Event signal has occurred until that time; the Event invocation for the Eggflilmer
Runout signal occurs as soon after the signal as the settings of mask bits in EM 27301 allow. The brt_rn El‘
Field 27311 retains the fact of the Egg Timer Runout signal until the masking allows the Event Invocation to
occur. All of the fields in EP 27309 but ME Field 27315 may be reset by mrcrocode._The 4lTIlCl’OI'OUtll'IeS
invoked by the Events must reset the appropriate fields; otherwise, they will be rernvolced when they

127

Petitioner Apple Inc. - Ex. 1025,'p. 4025

Petitioner Apple Inc. - Ex. 1025, p. 4026

10

15

20

25

30

55.

65

EP 0 067 556 B1

return. ME Field 27315 is automatically reset when the memory error is serviced.
TE Register Field 27319 enables tracing. Each bit in the register enables a kind of Trace Event signal

when it is set. Depentfing on the kind of tracing, the Trace Event signal occurs atthe beginning of an SIN, at
the beginning of a Resolve or Evaluate operation, at the beginning of a logical memory reference. or at the
beginning of a rnicroinstruction. For details, see the following description of debugging.

Turning now to the registers contained in RCWS 10358, each RCWS Register 27322 contains eight
fields which control Event signals. The first field is FM Field 27323. FM Field 27323 reflects the value of a
register in Event Logic 20284 when the invocation to which RCWS Register 27322 belongs occurs. The
register in Event Logic 20284 is set only when the microinstruction currently being executed is the first
microinstruction of an SIN. Thus, FM Field 27323 is set only in RCWS Registers 27322 belonging to Event
invocations which occur in the M0 cycle of the first microinstruction in the SIN, i.e., at the beginning of the
SlN. The value of the register in Event Logic 20284 is saved in FM Field 27323 because several Event
invocations may occur at the beginning of a single SIN. The Event invocations occur in order of priority:
when the one with the highest priority returns, the fact that FM field 27323 is set causes the register in
Event Logic 20284 to again be set to the state which it has on the first mlcroinstruction of an SIN. The
register's state, thus set. causes the next Event invocation which must occur at the beginning of the SIN to_
take place. After all such invocations are finished, the first microinstruction enters its M1 cycle and resets
the register in Event Logic 20284. In its reset state. the register inhibits all Event invocations which may
occur only at the beginning of an SIN. It is again set at the beginning of the next SIN.

The remaining fields in RCWS Register 27322 which control Event invocations are the fields in Retum
Signals Field 2731. These fields allow the information that an Event signal has occurred to be retained
through Event invocations until the Event signal's Event invocation takes place. When an invocation occurs,
these fields are set by Event Logic 20284. On return from the invocation, the values of the fields are input
into Event Logic 20284, thereby producing Event signals. The Event signal with the highest priority results
in an Event invocation, and the remaining Event signals set fields in Return Signals Field 2731 belonging
to RCWS Register 2732 belonging to the invocation which is being executed when the Event signals occur.
Because the fields in Retum Signals Field 2730 are input into Event Logic 20284, microcode invoked as a
comequence of Event signals which sets one ofthese fields must resetthe field itself. Otherwise, the return
from the microcode will simply result in a reinvocation of the microcode. .

The seven fields in Return Signals Field 27330 have the following significance:
When EG field D333 is set. an EU 10122 dispatch operation produced an illegal location in EU 10122
microcode EUSITT 20344.

When NT Field 27335, ST Field 27341. mT Field 27343, or mB Held 27345 is set. a trace signal has
occuned. These are explained in detail in the discussion of debugging. ,
When ES Field 27337 is set. an_EU'10122 Storeback Exception has occurred, i.e., an error occurred
when EU 10122 attempted to store the result of an operation in MEM 10112.
When MRR Field 2739 is set. a condition such as an ATU 10228 miss or a Protection Cache 10234 miss
has occurred. and it is necessary to reattempt a memory reference.

(1. Virtual Micromachines and the Monitor Micromachine

As previously described, microcode being executed on FU 10120's micromachine can run in either
monitor mode or virtual mode. in this portion of the discussion. the" distinguishing features and
applications of the two modes are explained in detail.

1. Virtual Mode

As previously mentioned, the chief distinction between virtual mode and monitor mode is MIS 10368.
The fact that MIS 10368 is of essentially unlimited size has the following consequences for microroutines
which execute in virtual mode.

-— An invocation of a microroutine executing in virtual mode may have as its consequence further
invocations to any depth.

— Any invocation of or return from a microrautine executing in virtual mode may use a page fault.
The FU micromechine is in virtual mode when all bits in the Event Masks portion of MCW1 20290 are
cleared. In this state, no enabled Event signals are masked, and Event invocations may occur in any
microinstruction which does not itself mask them.

Because invotions may occur to any depth in virtual mode. microroutines executing in this mode
may be recursive. Such recursive microroutines are especially useful for the interpretation of Names.
Often, as previously described, the Name Table Entry for a Name will contain Names which resolve to other
Names, and the virtual micromachine‘s limitless stack allows the use of recursive Name Resolution

microroutines in such situations. Recursive microroutines may also be used for complex SlNs. such as
Calls. _

Because invocations can occur to any depth, any number of Events may occur while a microroutine is
executing in monitor mode. This in turn greatly simplifies Event handling. ii an Event signal occurs while an
Event with a given priority is being handled and the Event being signalled has a higher priority than the one

128

Petitioner Apple Inc. - Ex. 1025, p. 4026

Petitioner Apple Inc. - Ex. 1025, p. 4027

is

20

25

30

EP 0 067 556 B1

being handled, the result is simply the invocation of the new Event’s handler. Thus. the order in which the
Event handlers finish corresponds exactly to the priorities of their Events: those with the highestfinish first.

A page fault may occur on any microinvocation or retum executed in virtual mode because an
invocation in virtual mode which occurs when there are no more Free Frames 27207 on SR5 10362 causes

an Event signal which invokes a microroutine running in monitor mode. The microroutine transfers MIS
Frames 27203 from GRF 10354 to Secure Stack 10336 in MEM 10112, and the transfer may cause a page

fault. Similariy, when a microreturn takes place from the last frame on MS Frames 27203 on SR5 10362, on
- Event signal occurs which invokes a microroutine that transfers additional frames from Secure Stack 10336

to GRF 10354, and this transfer, too, may muse a page fault.
The fact that page faults may occur on rnicroinvocatlons or mlcroreturns in virtual mode has two

important consequences: microroutines which cannot tolerate page faults other than those explicitly
generated by the microroutine itserl cannot execute in virtual mode, and because unexpected page faults
cause execution to become indeterminate, microroutines which must run to completion cannot execute in
virtual'mode. For example, if the microroutine which handles page faults executed in virtual made, its
invocation could cause a page fault. which would cause the microroutine to be invoked again, which would
cause another page fault, and so on through an infinite series of recursions.

2. Monitor Micromachine .

As previously described, the essential feature of monitor mode is MOS 10370. in a present
embodiment of CS 10110, this stack has a fixed minimum size. and is always contained in GRF Registers
10354. ‘Hie nature of MOS 10370 has four consequences for microroutines which execut in monitor mode:
— When the rnicromachine is in monitor mode. the depth of invocations is limited; recursive

microroutines therefore cannot be executed in monitor mode, and Event invocations must be limited.
— invocations of microroutines or returns from microroutines in monitor mode never result in page

faults. ‘

—— Microroutines executing in monitor mode are guaranteed to run to completion if they do not suspend
the Process 610 which they are executing or perform a Call to software.

— When the rnicromachine is executing in monitor mode, it is guaranteed to return tovirtual mode within
a reasonable period of time, either because a microroutine executing in monitor mode has run to
completion, or because the microroutine has suspended the Process 610 which it is executing, or has
made a Call to software. The result in both cases is the execution of a new sequence of SOPs, and thus
a return to virtual mode.

In a present embodiment of CS 101 10,the FU rnicromachine is in monitor mode when a combination of
masking bits in MCW1 20290 is set which results in the masking of the FU Stack Overflow Event and the Egg
Timer Overflow Event._mv. previously described. these Events are masked if Fields 27303, 27305, or 27307 is
set. These Events and the consequences of masking them are explained in detail below.

The event signal for the FU Stack Overflow Event occurs on microinvocations for which there is no
frame available in MIS Frames 27203. if the Event signal is not masked, it causes the invocation of a
microroutine which moves MIS Frames from MIS Frames 27203 onto a Process 610's Secure Stack 10336.
When the FU Stack Overflow Event is masked, all frames in SRs 10362 of GRs 10360 are available for
microroutine invocations and microroutine invocations will not result in page faults. but if the capacity of
S115 10362 is exceeded, FU 10120 ceases operation.

The Egg Timer Overflow event signal occurs when Egg TMR 25412 runs out. As will be explained in
detail later, Egg TMR 25412 ensures that an Interval Timer Runout. an Inter-processor Message. or a Non-
fatal Memory Error will be serviced by JP 10114 within a reasonable amount of time. if an interval Timer
Runout Event signal or an Inter-processor Message Event signal occurs at a time when it is inefficient for
the FlJ micromachine to handle the Event, Egg TMR 25412 begins running. When Egg TMR 25412 runs out.
the Event is handled unless the rnicromachine is in monitor mode. If the Egg TMR 25412 Runout Event
signal occurs while the FU mlcromachlne is in monitor mode, i.e.. while the Event is masked, the Event
signal sets Field 27311 in MCW1 20290. When the FU rnicromachine reverts to virtual mode, i.e., when all
Event Mask bits in MCW1 20290 are cleared, the Egg TMR 25412 Runout Event occurs, and the interval
Timer Runout lnter-processor Message Event handlers are invoked by Event Logic 20284.

e. interrupt and Fault Handling
1. General Principles _ _

Any computer system must be able to deal with occurrences which disrupt the normal execution of a
program. Such occurrences are generally divided into two classes: faults and interrupts. A fault occurs as a
consequence of an attempt to execute a machine instruction, and its occurrence is therefore synchronous
with the machine instruction. Typical faults are floating point overflow faults and page faults. A_floatin_g
point overflow fault occurs when a machine instruction attempts to perfomt e floating point anthmetrc
operation and the result exceeds the capacity of the CS 10110's floating point hardware, that 15 EU 10122. A
page fault occurs when a machine instruction in a computer system with virtual memory attempts to
reference data which is not presently available in the computer system's primary memory. that is MEM

129

Petitioner Apple Inc. - Ex. 1025, p. 4027

Petitioner Apple Inc. - Ex. 1025, p. 4028

10

EP 0057555 er ‘

10112. Since faults are synchronous with the execution of machine instructions and in many cases the
result of the execution of specific machine instructions, their occurrence is to some extent predictable.

The occurrence of an intanupt is not predictable. An interrupt occurs as a consequence of some action
taken by the computer system which has no direct connection with the execution of a machine instruction
by the computer system. For example, an I/0 interrupt occurs when data transmitted by an I/O device (IOS
10116) reaches the central processing unit (FU 10120), regardless of the machine instruction the central
processing unit is currently executing.

In conventional systems, interrupts and faults have been handled as follows: if an interrupt or fault
occurs, the computer system recognizes the occurrence before it executes the next machine instruction and
executes an interrupt-handling mlcroroutine or Procedure 602 instead of the next machine instruction. If
the interrupt or fault cannot be handled by the Process 610 in which it occurs, the interrupt orfault results in
a process swap. When the intenupt handling routine is finished, Process 610 which faulted or was
interrupted can be returned to the CPU if it was removed and the next machine instmction executed.

While-the above method works well with faults, the fact that interrupts are asynchronous causes
several problems:
—- Machine instructions cannot require an indefinite amount of time to execute, since intenupts cannot be

handled until the machine instruction during which they occur is finished.
— It must be possible to remove a Process 610 from the CPU at any time, since the occurrence of an

interrupt is not predictable. This requirement greatly increases the difficulty of process management.
The method used for interrupt and fault handling in a present embodiment of CS 10110 is describedbelow.

2. Hardware Interrupt and Fault Handling in CS 10110
In CS 10110, there are two levels of interrupts: those which may created and dealt with completely by

software, and those which may created by hardware signals. The former class of interrupts is dealt with in
the discussion of Processes 610; the latter, termed hardware interrupts, is discussed below.

In CS 10110, hardware interrupts and faults begin as invocations of microroutines in FU 10120. The
invocations may be the result of Event signals or may be made by microprograms. For example, when I05
10116 places data in MEM 10112 for JP 10114, an lnter—processor Message Event signal results, and the
signal causes the invocation of Inter-processor Message Interrupt handler microcode. On the other hand, a
Page Fault begins as an invocation oi Page Fault microcode by LAT microcode. The actions taken by the
microcode which begins handling the fault or interrupt depend on whether the fault or interrupt is handled
by the Process 610 which was being executed when the fault or Event occurred or by a special KOS Process610.

In the first case, the Event microcode may perform a’ Microcode-to-Software Call to a high-level
language procedure which handles the Event. An example of an Event handled in this fashion is a floating
point overflow: when FU 10120 microcode determines that a floating point overflow has occurred, it
invokes microcode which may involte a floating point overflow procedure provided by the high-level
language whose S-Language was being executed when the overflow occurred. In alternate embodiments
of CS 10110, the overflow procedure may also be in microcode.

In the second case, the microcode handling the fault or interrupt puts information in tables used by a
K08 Process 610 which handles the fault or imerrupt and than causes the K05 Process 610 to run at some
later time by advancing an Event Counter awaited by the Process 610. Event Counters and the operations
on them are explained in detail in a following description of Processes 610. Since the tables and Event
Counters manipulated by microcode are always present in MEM 10112,these operations do not cause page
faults, and can be perfonned in monitor mode. For example, when IDS 10116 transmits an IPM Event signal
to JP 10114 after IOS 10116 has loaded data into MEM 10112, the Event resulting from the Event signal
invokes microcode which examines a queue containing messages from IOS 10116. The messages in the
queue contain Evengggynter locations, and the microcode which examines the queue advances those
Event counters, ‘thereby causing Processes 610 which were waiting for the data returned by the U0
operation to recommence execution.

3. The Monitor Mode, Differential Masking and Hardware Interrupt Handling
FU 10120 micromachine's monitor mode and differential masking facilities allow a method of

hardware interrupt handling which overcomes two problems associated with conventional hardware
interrupt handling: an interrupt can be handled in a predictable amount of time regardless of the amount of
time required to execute an SIN, and if the microcode which handles the interrupt executes in monitor
mode, the interrupt may be handled at any time without unpredictable consequences. There are two
sources of hardware Intenupts in CS 10110: an Inter-Processor Message llPMl and an Interval Timer 25410
Flunout. An IPM occurs when IOS 10116 completes an |IO task for JP 10114 and signals completion of the
task via IOJP Bus 10132. An Interval Timer Runout occurs when a preset time at which CS10110 must take
some action is reached. For example, a given Process 610 may have a limit placed on the amount of time it
may execute on JP 10114. As is explained in a following description of process synchronization, the virtual
processor management system sets Interval Timer 25412 to run out when Process 610 has’ used all of the
time available to it.

130

Petitioner Apple Inc. - Ex. 1025, p. 4028

Petitioner Apple Inc. - Ex. 1025, p. 4029

ID

60

EP 0 067 556 B1

Both lPMs and interval Timer Runouts begin as Event signals. The immediate effect of the Event signal
is to set a bit in EP Field 27309 of MCW1. In principle, the set bit can cause invocation of the event
microcode for the Event on the next M0 cycle in which the FU 10120 micromachine is in virtual mode. Since
microroutines mnning in monitor mode are guaranteed to return the micromachine to virtual mode within
a reasonable length of time, and the Event invocation will occur when this happens, the Event is
guaranteed to be serviced in a reasonable period of time. The microroutines invoked by the Events
themselves execute in monitor mode, thereby guaranteeing that no page faults will occur while they are
executing and that Process 610 which is executing on JP 10114 when the hardware interrupt occurs need
not be removed from JP 10114. -

While hardware interrupts are serviced in principle as described above, considerations of efficiency
require that as many hardware interrupts as possible be serviced when the size of the FU micromachine's
stack is at a minimum, i.e., at the beginning of an SlN's execution. This requirement is achieved by means _
of Egg TMR 25412 and ET Flag 27311 in MCW1 20290. As described above, when an IPM interrupt or an
interval Timer 25410 Runout interrupt occurs, Field 27317 or 27313 respectively is set in MCW1 20290. At
the same time, Egg TMR 25412 begins running. if the current SlN's execution ends before Egg TMR 25412
runs out, the set Field in MCW1 20290 causes the interval Timer Runout or lnter—processor Message Event
invocations to occur on the first microinstniction for the next SIN. if, on the other hand, the currem SlN's
execution does not end before Egg TMR 25412 runs out. the Egg Timer Runout causes an Event signal. The
immediate result of this signal is the setting of El‘ bit 27311 in MCW1 20290, and the setting of ET bit 27311
in turn causes the Interval Timer Runout Event invocation andlor IPM Event invocation to take place on the

next M0 cycle to occur while the micromachine is in virtual mode. The above mechanism thus guarantees
that most hardware interrupts will be handled at the beginning of an SlN, but that hardware intermpts will
always be handled within a certain amount of time regardless of the length of time required to execute an
SIN. ‘

g. FU Micromachine and CS 10110 Subsystems
The subsystems of C5 10110. such as the object subsystem, the process subsystem. the S-Interpreter

subsystem, and the Name interpreter subsystem, are implemented all or in part In the micromachine. The
description of the micromachine therefore closes with an overview of the relationship between these
subsystems and the micromachine. Detailed descriptions of the operation of the subsystems have been
presented previously.‘

The subsystems fall into three main groups: KOS subsystems, the Name interpreter subsystem. and
the S—lnterpreter subsystem. The relationship between the three is to some extent hierarchical: the K05
subsystems provide the environment required by the Name interpreter subsystem, and the Name
interpreter subsystem provides the environment required by the S-Interpreter subsystem. For example, the
S—lnterpreter subsystem interprets SlNs consisting of SOPs and Names: the Name Interpreter subsystem
translates Names into logical descriptors, using values called A8Ps to calculate the locations contained in
the logical descriptors. The KOS subsystems calculate the values of the ABPs, translate Logical Descriptors
27116 into physical MEM 10112 addresses, and check whether a Process 610 has access to an object which
it is referencing. .

In a present embodiment of CS 10110, the Name Interpreter subsystem and the S-interpreter
subsystem are implemented completely in the micromachine; in other embodiments, they could be
implemented in high-level languages or in hardware. The KOS subsystems are implemented in both the
micromachine and in high-level language routines. in alternate embodiments of CS 10110, KOS
subsystems may be embodied entirely in microcode, or in high-level language routines. Some high-level
language routines may execute in any Process 610, while others are executed only by special KOS
Processes 610. The KOS subsystems also differ from the others in the manner in which the user has access:
with the S-Interpreter subsystem and the Name interpreter subsystem, the subsystems come into play only
when SlNs are executed; the subsystems are not directly visible to users of the system. Portions of the K05
subsystems. on the other hand, may be explicitly invoked in high-level language programs. For example.
an invocation in a high-level language program may cause KOS to bind a Process 610 to a Virtual Processor
61 2. '

The following will first list the functions perfonned bythe subsystems, and then relate the subsystems
to the monitor and virtual micromachine modes and specific micromachine devices. KOS subsystems
perform the following functions:
— Virtual memory management;

. — Virtual processor management;
— Inter-processor communication;
— Access Control;
— Object management; and,
— Process management.
The Name interpreter‘ performs the following functions:
— Fetching and parsing SOPs, and
—- interpreting Names.
The S-interpreter, finally, dispatches SOPs, i.e., lomtes the PU 10120 and EU 10122 microcode which

131

Petitioner Apple Inc. - Ex. 1025, p. 4029

Petitioner Apple Inc. - Ex. 1025, p. 4030

10

15

20

25

EP 0 067 556 B1

executes the operation corresponding to a given SOP for a given S-Language.
Of these subsystems, the S-interpreter, the Name Interpreter, and the microcode components of the

K05 process and object manager subsystems execute on the virtual micromachine; the microcode
components of the remaining KOS subsystems execute on the monitor micromachine. As will be seen in
the discussions of these subsystems, subsystems which execute on the virtual micromachlne may cause
Page Faults, and may therefore reference data located anywhere in memory; subsystems which execute on
the monitor micromachine may not cause Page Faults, and the data bases which these subsystems
manipulate must therefore always be present at known locations in MEM 10112.

The relationship between subsystems and FU 10120 micromachine devices is the following:
Microcode for all subsystems uses DESP 20210, Microcode Addressing 27013. and Register Addressing .
27011, and may use EU Interface 27007. S—lnterpreter microcode uses SOP Decoder 27003, and Name
interpreter Microcode uses instruction Stream Reader 27001, Parsing Unit 27005, and Name Translation
Unit 27015. KOS virtual memory management microcode uses Memory Reference Unit 27017, and
Protection Microcode uses Protection Unit 27019.

Having described in detail the structure and operation of CS 10110’s major subsystems, MEM 10112,
FU 10120, EU 10122, IOS 10116, and DP 10118, and the CS10110 micromachine, CS 10110 operation will be
described in further detail next below. First. operation of CS 1011D's Namespace, S-interpreter, and Pointer
Systems will be described. Then, operation of CS 10110 will be described in further detail with respect to CS
10110’s Kernel Operating System.

3. Narnespace. S—lnterpreters, and Pointers lF'IgSt 301-307, 274)
The preceding chapters have presented an overview of CS 10110, examined its hardware in detail, and

explained how the FU 10120 hardware functions as a micromachine which controls the activities of other
CS 10110 components. In the remaining portions of the specification, the means are presented by which
certain key features of CS 10110 are implemented using the hardware, the rnicromachine, tables in
memory, and high-level language programs. The present chapter presents three of these features: the
Pointer Resolution System, Namespace, and the S-interpreters. -

The Pointer Resolution System translates pointers, i.e., data items which contain location information,
into UlD—ofiset addresses. Namespace has three main functions:
— It locates SlNs and fetches them from CS 10110's memory into FU 10120.
— It parses SlNs into SOPs and Names.

— It translates Names into Logical Descriptors 27116 or values.
The S-interpreters-decode S-operations received from namespace into locations in microcode contained in
FUSITI‘ 11012 and EUSTTT 20344 and then execute that microcode. lfthe S-operations require operands.
the S-interpreters use Namespace to translate the operands into Logical Descriptors 27116 or values as
required by the operations. ’

Since Namecpace depends on the Pointer Resolution System and the S-interpreters depend on
Namespace, the discussion of the systems begins with pointers and then deals with namespace and S-
interpreters.

A. Poirrters and Pointer Resolution (Figs. 301, 302)
A pointer is a data item which represents an address, i.e., in CS 10110, a UlDofiset address. CS 10110

has two large classes of pointers: resolved pointers and unresolved pointers. Resolved pointers are
pointers whose values may be immediately interpreted as UID-offset addresses; unresolved pointers are
pointers whose values must be interpreted by high level language routines or microcode routines to yield
UID-offset addresses. The ad of interpreting an unresolved pointer is called resolving it. Since the manner
in which an unresolved pointer is resolved may be detennined by a high-level language routine written by
a system user, unresolved pointers provide a means by which users of the system may define their own
pointer types. _

Both resolved and unresolved pointers have subclasses. The subclasses of resolved pointers are UID
pointers and object relative pointers. UID pointers contain a UlD and offset, and can thus represent any CS
10110 address; object-relative pointers contain only an offset; the address's UID is assumed to be the same
as that of the object containing the object-relative pointer. An object-relative pointer can therefore only
represent addresses in the object which contains the pointer.

The subclasses of unresolved pointers are ordinary unresolved pointers and associative pointers. The
difference between the two kinds of unresolved pointers is the manner in which they are resolved. Ordinary
unresolved pointers are always resolved by high-level language routines, while associative pointers are
resolved the first time they are used in a Process 610 and a domain by high-level language routines. but are
subsequently resolved by means of a table called the Associated Address Table lAAT). This table is

accessible to microcode, and associative pointers may therefore be more quickly resolved than ordinary ‘
unresolved pointers.

The following discussion will first explain the formats used by all CS 10110 pointers, and will then
explain how pointers are processed in FU 10120. 4 A

132

Petitioner Apple Inc. - Ex. 1025, p. 4030

Petitioner Apple Inc. - Ex. 1025, p. 4031

I0

20

25

EP 0 067 555 B1 '

a. Pointer Formats (Fig. 301)
Figure 301 represents a CS 10110 pointer. The figure has two parts: a representation of General Pointer .

Fonnat 30101. which gives an overview of the fields which appear in all CS 10110 pointers, and a detailed
presentation of Flags and Format Field 30105, which contains the information by which the kinds of CS
10110 pointers are distinguished.

Turning first to General Pointer Format 30101, all CS 10110 pointers contain 128 bits and are divided
into three main fields:

-— Offset field 30103 contains the offset portion of a UID-offset address in resolved pointers and in
associative pointers: in other unresolved pointers, it may contain an offset from some point in an
object or other information as defined by the user.

—— Flags and Format field 30105 contains flags and format codes which distinguish between kinds of
pointers. These flags and fonnat codes are explained in detail below.

— UID field 30115 contains a UlD in UID pointers and in some associative pointers; in objectrelative
pointers. and other associative pointers. its meaning is undefined, and in ordinary unresolved painters,
it may contain information as defined by the user.
Flags and Fomtat Field 30105 contains four subfields:
Fields 30107 and 30111 are reserved and must be set to 0.

NR Field 30109 indicates whether a pointer is resolved or unresolved. in resolved pointers. the field is
set to 0, and in unresolved pointers, it is set to 1.

— Format Code l-‘reld 30113 indicates the kind of resolved or unresolved pointers. Fon-net codes for the
present embodiment are explained below. .
The values of Format Code Field 30113 may range from 0 to 31. if Format Code Field 30113 has the

value 0, the pointer is a null pointer, i.e., a pointer which neither directly nor indirectly indicates an address.
The meanings of the other fonnat codes depend on the value of NR Field 30109:

 NR Field Value Fonnat Code Value Meaning _

0 1 UlD pointer

0 2 Obiect-relative pointer

0 all other codes illegal

1 1 UID associative pointer

1 2 Object-relative
associative pointer

1 all other codes Ordinary unresolved
poimer

As indicated by the above table. the present embodiment has two kinds of associative poimer, UID
associative pointers and object-relative associative pointers. Like a UID pointer, a UID associative pointer
contains a UID and an offset, and like an object-relative pointer, an object-relative associative pointer
contains an offset and takes the value of the UID from the object to which it belongs. However, as will be
explained in detail later, the UID and offset which the associative pointers contain or represent are not used
as addresses. instead, the UID and offset are used-as tags to locate entries in the AAT, which associet an
associative pointer with a resolved pointer.

b. Pointers in FU 10120 (Fig. 302)
when a pointer is used as an address in FU 10120, the address information in the pointer must be

translated into a Logical Descriptor 27116 consisting of an AON, an offset, and a length field of 0; when a
Logical Descriptor 27116 in FU 10120 is used to fonn a pointer value in memory, the AON must be
converted back to a UID. The first conversion is tanned pointer-to-descriptor conversion, and the second
descriptor-to—pointer conversion. Both conversions are accomplished by microcodes executing in FU10120. ' V

What is involved in the translation depends on the kind of pointer: if the pointer is a UlD pointer, the
UlD must be translated into an AON; if the pointer is an object-relative pointer, the AON required to fetch
the pointer is the pointer’s AON. so no translation is necessary. if the pointer is an unresolved pointer, it
must first be translated into a resolved pointer and then into a Logical Descriptor 27116. If the pointer is
associative, the translation to a resolved pointer may be performed by means of the ATT.

ln the present embodiment, when other FU 10120 microcode calls pointer-to-descriptor microcode. the
calling microcode passes Logical Descriptor 27116 for the location of the pointer which is to be translated
as an argument to the pointer-to-description translation microcode. The pointer-to-descriptor microcode
returns a Logical Descriptor 27116 produced from the value of the pointer at the location specified by

133

Petitioner Apple Inc. - Ex. 1025., p. 4031

Petitioner Apple Inc. - Ex. 1025, p. 4032

w_

15

40

55

EP 0067556 B1

Logical Descriptor 27116 which the pointer-to-descriptor microcode received as an argument.
The pointer-to—descriptor microcode first uses Logical Descriptor 27116 given it as an ‘argument to

fetch the value of the pointar's Offset Field 30103 from memory. It then saves Logical Descriptor 27116 5
offset in the output register belonging to OFFALU 20242 and places the value of the polnter's Offset Field
30103 in the offset field of Logical Descriptor 27116 which it received as an argument. The pointer-‘to-
descriptor microcode then saves Logical Descriptor 27116 indicating the pointers location by storing
Logical Desuiptor 27116‘s AON and offset (obtained from OFFALU 20242) in a register In the GI’-lF 10354
frame being used by the invocation of the pointer-to-descriptor microcode. Next. the microcode adds 40 to
the offset stored in OFFALU 20242, thereby obtaining the address of NR Field 30109, and uses the address
to fetch and read NR Field 30109 and Format Coda Held 30113. The course of further processing is
determined by the values of these fields. if NR Field 30109 indicates a resolved pointer, there are four cases.
as determined by the value of Format Code Field 30113:
-— Format code field -= 0: The pointer is a null pointer.
— Format code field = 1: The pointer is a UID pointer.
—. Format coda field = 2: The pointer is an intra-object pointer.
-— Any other value of the format code field: The pointer is invalid.

In the first case, the microcode sets all fields of the argument to 0: in the second, it fetches the value of
UID Field 30115 from memory and invokes IA!’-l microcode (explained in the discussion of objects), which
translates the UID to the AON associated with it. The AON is then loaded into the arguments AON field. in
the third case, the AON of Logical Descriptor 27116 for the pointer's location and the pointer’s AON are the
same. so the argument already contains the translated pointer. In the fourth case, the microcode performs
a call to a pointer fault—handling Procedure 602 which handles invalid pointer faults, passing saved Logical
Descriptor 27116 for the pointer as an argument. Procedure 602 which handla the fault must return a
resolved pointer to the microcode, which then converts it to a Logical Descriptor 271 16 as described above.

c. Descriptor to Pointer Conversion

Descriptor to pointer conversion is the reverse of pointer to descriptor conversion with resolved
pointers. The operation must be performed whenever a resolved pointer is moved from an FU 10120
register into MEM 10112. The operation takes two arguments: a Logical Descriptor 27116 which specifies
the address to which the pointer is to be written, and a Logical Descriptor 27116 whose AON and offset
fields specify the location contained in the pointer. There are two cases: intre-object pointers and UID
pointers. Both kinds of poimers have values in Offset Field 30103, so the descriptor-to-pointer microcode
first writes the second argument's offset to location specified by the first argument's Logical Descriptor
27116. The next step is to determine whether the pointer is an intra-object pointer or a UID pointer. To do
so, the microcode compares the arguments’ ADNs. If they are the same, the pointer points to a location in
the object which contains it, and is therefore an intra-object pointer. Since UID Field 30115 of an intra-object
pointer is meaningless, the only step remaining for intra-object pointers is to set Flags and Format Field
30105 to the binary representation of 2, which sets all bits but hit 46 to 0. and thereby identifies the pointer
as a resolved intra-object pointer.

W'rth UID pointers, the descriptor—to-pointer microcode sets Flags and Format i-"leld 30105 to 1, thereby
identifying the pointer as a resolved UID pointer. and calls a K05 LAR microroutine (explained in detail in
the discussion of objects) which converts the first argument's AON to a UID and places the result UID in the
current frame. when the K05 AON to UID conversion microroutine returns, the descriptor-to—pointer
microcode writes the UID to the converted pointers UlD Field 30115.

B. Namespace and the S-interpreters (figs. 303-307)
Namespace and the S-Interpreter both interpret information contained in Procedure Objects 608.

Consequently, the discussion of these components of CS 10110 begins with an overview of those parts of
Procedure Object 606 relevant to Nemespace and the S—lnterpreters, and then explains Namespace and the
S-interpreters in detail.

a. Procedure Object 606 Overview lFig. 303)
Figure 303 represents those portions of Procedure Object 608. Fig. 303 expands information comalned

in Fig. 103; Fields which appear in both figures have the number of Fig. 103. Portions of Procedure Obiect
608 which are not discussed here are dealt with later in the discussion of Calls and Returns. The most

important part of a Procedure Object 608 for these systems is Procedure Environment Descriptor (PED)
30303. A Procedure 602's PED 30303 contains the information required by Namespace and the S-interpreter
to locate and parse Procedure 602's code and interpret its Names. A number of Procedures 602 in a
Procedure Object 608 may share a PED 30303. As will be seen in the discussion of Calls, the fact that a
Procedure 602 shares a PED 30303 with the Procedure 602 that invokes it affects the manner in which the
Call is executed.

The fields of PED 30303 which are important to the present discussion are three fields in Header 30304:
K Field 30305, LN Field 30307, and SIP Field 30309, and three ofthe remaining fields: NTP Field 30311, SDPP
field 30313. and PBP Field 30315.

134

Petitioner Apple Inc. - Ex. 1025, p. 4032

Petitioner Apple Inc. - Ex. 1025, p. 4033

70

15

20

25

EP 0 067 55s 31
—- K Field 30305 indicates whether the Names in the SlNs of Procedures 602 which share PED 30303 have

8, 12, or 16 bits.
— LN Field 30307 contains the Name which has the largest index of any in Procedure 602's Name Table

10350. I

— SIP Field 30309 is a UlD pointer to the object which contains the S-interpreter for Procedure 602's S-
Language.
NTP Field 30311 is an object-relative pointer to the beginning of Procedure 602's Name Table 10350.
SDPP Field 30313 is a pointer which is resolved to the location of static data used by Procedures 602 to
which PED 30303 belongs when one of Procedures 602 is invoked by a given Process 610. The resolved
pointer corresponding to SDPP 30313 is the SDF ABP.

— PBP Field 30315 contains the PBP ABP for invocations of Procedures 602 to which PED 30303 belongs.
The PBP ABP is used to calculate locations inside Procedure Object 608.
Other areas of interest in Procedure Object 608 are Literals 30301 and Static Data Prototype (SDPR)

30317. Literals 30301 contains literal values, i.e., values in Procedure 602 which are known at compile time
and will not change during program execution. SDPR 30317 may contain any of the following: pointers to
external routines and to static data contained in other objects, infonnation required to create static data for
a Procedure 602, and in some cases, the static data itself. Pointers in SDPR 30317 may be either resolved ornon—resoived.

In the present embodiment, Binder Area 30323 is also important. Binder Area 30323 contains
information which allows unresolved pointers contained in Procedure Object 608 to be resolved.
Unresolved pointers other than SDPP 30313 in Procedure Object 608 all contain locations in Binder Area
30323, and the specified location contains the information required to resolve the pointer.

Fig. 303 contains arrows showing the locations in Procedure Object 608 pointed to by NTP Field 30311.
SDPP Field 30313, and PBP Field 30315. NTP Field 30311 points to the beginning of Name Tables 10350, and
thus a Name's Norrie Table Entry can be located by adding the Name's value to N'l'P Field 30311. PBP Field
30315 points to the beginning of Literals 30301, and consequently, the locations of Literals and the

ll

. locations ofS|Ns may be expressed as offsets from the value of PBP Field 30315. SDPP Field 30313 points to
the beginning of SDPR 30317. As will be explained in detail in the discussion of Calls, when a procedure 602
has static data. the SDP ABP is derived from SDPP Field 30313.

b. Namespace
The Namespace component of CS 10110 locates SlNs belonging to a procedure and fetches them from

memory to FU 10120, parses SlNs into SOPs and Names, and performs Resolve and Evaluation operations
on Names. The Resolve operation translates a Name into a Logical Descriptor 27116 for the data
represented by the Name, while the Evaluation operation obtains the data itself. The Evaluation operation
does so by performing-a Resolve operation and then using the resulting Logical Descriptor 271 16 to fetch
the data. Since the Evaluation and Resolve operations are the most compliimed, the discussion begins with
them.

1. Name Resolution and Evaluation

Name Resolution and Evaluation translate Names into Logical Descriptors 27116 by means of
information contained in the Names’ NTEs, and the NTEs define locations in terms of Architectural Base

Registers. Consequently, the following discussion will first describe Name Table Entries and Architectural
Base Pointers and then the means by which Namespace translates the information contained in the Name
Table Entries and Architectural Base Pointers into Logical Descriptors 27116.

2. The Name Table (Fig. 304)
As previously mentioned, Name Tables 10350 are contained in Procedure Objects 608. Name Tables

10350 contain the information required to translate Names imo Logical Descriptors 27116 for the operands
represented by the Names. Each Name has as its value the number of a Name Table Entry. A Name's Name
Table Entry is located by muifipiying the Name's value by the size of a short Name Table Entry and adding
the product to the value in NTP Field 30311 of PED 30303 belonging to Procedure 602 which contains theSIN.

The Name Table Entry contains length and type information for the data item specified by the Name.
and represents the data item's location as a displacement from a known location, termed the base. The
base may be a location specified by an ABP, a location specified by another Name, or a location specified
by a pointer. in the latter case, the pointers location may be specified in terms of an ABP or as a Name.

Fig. 304 is a detailed represematlon of a Name Tabla Entry (NTE) 30401. There are two kinds of NTEs
30401: Short NTEs 30403 and Long NTEs 30405. Short NTEs 30403 contain 64 bits; Long NTEs 30405
contain 128 bits. Names that represent scaler data items whose displacements may be expressed in 16 bits
have Short NTEs 30403; Names that represent scaier data items whose displacements require more than
16 bits and Names that represent array elements have Long NTEs 30405.

A Short NTE 30403 has four main fields, each 16 bits ln'length: _ . .
-— Flags and Format Field 30407 contains flags and format information which specify how Namespace is

to interpret NTE 30401.

135

Petitioner Apple Inc. - Ex. 1025, p. 4033

Petitioner Apple Inc. - Ex. 1025, p. 4034

ID

20

65

EP 0 057 556 e1

— Base Field 30425 indicates the base to which the displacement is to be added to obtain the location of
the data represented by the Name. Base Field 30425 may represent the location in four ways: by means
of an ABP by means of a Name, by means of a pointer located by means of an ABP, and by means of a
pointer located by means of a Name.

— Length Field 30435 represents the length of the data. The length may be a literal value or a Name. If it is
a Name, the Name resolves to a location which contains the data item's length.

—— Displacement Field 30437 contains the displacement of the beginning of the data from the base
specified in Field 30426. The displacemem is a signed integer value. -
Long NTES 30405 have four additional fields, each 16 bits long: Two of the fields, Index Name Field

30441 and IE5 Field 30445 are used only in NTEs 30401 for Names that represent arrays.
— Displacement Extension Field 30439 is used in all Long N'l'Es 30405. If the displacement value in Field

30437 has less than 16 bits. Displacement Extension field 30439 contains slgn bits, i.e., the bits in the
field are set to 0 when the displacement is positive and 1 when the displacement is negative. When the
displacement value has more than 16 bits. Displacement Extension Field 30439 contains the most
significant bitsof the displacement value as well as sign bits.

— Index Name Field 30441 contains a Name that represents a value used to index an element of an array.
— Field 30443 is reserved.

IES Field 30445 contains a Name or Literal that specifies the size of an element in an array. The value
represented by this field is used together with the value represented by Index Name Field 30441 to locate
an element of an array.

As may be seen from the above, the following fields may contain names: Base Field 30425. Length
Field 30435, Index Name Field 30441, and IE5 Field 30445. _

Two fields in N'l'E 30401 require further consideration: Flags and Format Field 30407 and Base Field"
30425. Flags and Fonnat Field 30407 has three subfields: Flags Field 30408, FM field 30421, and Type Field
30423. Turning first to Flags Field 30408, the six flags in the field indicate how Namespace is to interpret
NTE 30401. The flags have the following meanings when they are set:
— Long N'|'E Flag 30409: NTE 30401 is a Long NTE 30405.
— Length is a Name Flag 30411: Length Field 30435 contains a Name.
— Base is a Name Flag 30413: Base Field 30425 contains a Name instead of the number of an ABP.
— Base indirect Flag 30415: Base Field 30425 represents a pointer. and the location represented by NTE

30401 is to be calculated by obtaining the pointefs value and adding the value contained in
Displacement Field 30437 and Displacement Extension Field 30439 to the pointer's offset.

— An'ay Flag 30417: NTE 30401 represents an array.
-—- E5 is a Narne_Flag 30419: IES Field 30445 contains a Name that represents the IES value.

Several ofthese flags may be set in a given NTE 30401. For example, an entry for an array elemem that
was referenced via a pointer to the array which in turn was represented by a Name, and whose IES value
was represented by a Name, would have Flags 30409, 30413, 30415. 30417. and 30419 set.

FM Field 30421 indicates how the data represented by the Name is to be lormated when It is fetched
from memory. The value of FM Field 30421 is placed in FIU Field 27107 of Logical Descriptor 27116
produced from NTE 30401. The two bits allow for four possibilities:

Setting Meaning

00 right justify, zero fill

01 right justify, sign fill

10 left justify. zero fill

11 left justify. ASCII space fill

The four hits in Type Field 30423 are used by compilers for language-specific type information. The
value of Type Fleld 30423 is placed in Type Field 27109 of Logical Descriptor 27116 produced from NTE
30401.

Base Field 30425 may have either Base is en ABP Format 30427 or Base is a Name Format 30432. The
manner in which Base Field 30425 is interpreted depends on the setting of Base is a Name Flag 30413 and
Base Indirect Flag 30415. There are four possibilities:

‘I36

Petitioner Apple Inc. - Ex. 1025, p. 4034

Petitioner Apple Inc. - Ex. 1025, p. 4035

10

20

25

30

EP o as? 555 B1

Field Settings

Base is a Name Base indirect Meaning

0 0 ABP Format locates base
directly.

0 1 ABP Format locates a pointer
which is the base.

1 0 Base is Name Format locates
base when Name is resolved.

1 1 Base is Name Format locates

a pointer when Name is
resolve and the pointer is ‘-
the base.

As indicated by the above table. Base Field 30425 is interpreted as having Base is ABP Format 30427
when Base is a Name Flag 30411 is not set. in Base is ABP Format 30427, Base Field 30425 has two
subfields: ABP Field 30429 and Pointer Locator Field 30431. The latter field has meaning only when Base
lndirect Flag 30415 is set. ABP Field 30429 is a two-bit code which indicates the ABP. The settings and their
meanings are the following: . .

Setting APB.

O0 . FP

01 Unused

10 SDP

11 . PBP

The ABPs are discussed below. When Base Indirect Flag 30415 is set to 1 and Base is a Name Flag
30413 is set to 0, the remaining 14 bits ofthe Base Held in ABP Format are interpreted as Pointer Locator
Field 30413. When so interpreted, Pointer Locator Field 30413 contains a signed integer, which, when
multiplied by 128. gives the displacement of a pointer from the ABP specified in ABP Field 30429. The value
of this pointer is then the base to which the displacement is added. 1 ..

Base field 30425 is interpreted as having Base is a Name Format 30432 when Base is a Name Flag
30413 is set to 1. In Base is a Name Format 30432. Base Field 30425 contains a Name. if Base indirect Flag
30415 is not set, the Name is resolved to obtain the Base. if Base Indirect Flag 30415 is set, the name is
evaluated to obtain a pointer value, and that pointer value is the Base.

.3. Architectural ease Pointers (Figs. 305. 306)
If Base is a Name Flag 30413 belonging to a N‘l'E 30401 is not set, Base I-“meld 30425 specifies one of the

three ABPs in CS 10110:

— PBP specifies a location in Procedure Object 608 to which displacements may be added to obtain the
locations of Literals and SlNs.

- SDP specifies a location in a Static Data Block for an invocation of a Procedure 602 to which
displacements may be added to obtain the locations of static data and linkage pointers to Procedures
802 contained in other Procedure Objects 608 and static data.

— FP specifies a location in the MAS frame belonging to Procedure 602's current invocation to which
displacements may be added to obtain the location of local data and linkage pointers to arguments.
Each time a" Process 610 invokes a Procedure 602, Call microcode saves the current values of the ABPs

on Secure Stack 10336, calculates the values of the ABPs for the new invocation, and places the resulting
' Logical Descriptors 27116 in FU 10120 registers, where they are accessible to Namespace microcode.

Call microcode calculates the ABPs as follows: PBP is obtained directly from PBP Field 30315 in FED
30303 belonging to the Procedure 602 being executed. All that is required to make it into a Logical
Descriptor 27116 is the addition of the AON for Procedure Object 608's UlD. - ’

SDP is obtained by performing a pointer-to-descriptor translation on SDPP Field 30313. FP, finally, is
provided by the portion of Call microcode which creates the new MAS 502 frame for the invocation. As is
described in detail in the discussion of Call, the Cell microcode copies linkage pointers to the invocation's
actual arguments onto MAS 502, sets FP to point to the location following the last actual argument, and
then allocates storage for the invocation's local data. Positive displacements from FP thus specify locations

137

Petitioner Apple Inc. - Ex. 1025, p. 4035

Petitioner Apple Inc. - Ex. 1025, p. 4036

I0

15

20

‘-— Both Flags 0: the ABP specified in ABP Field 30429 is the Base.

EP 0 067 556 B1

in the local data, while negative offsets specify linkage pointers.
a.a. Resolving and Evaluating Names (Fig. 305) .

The primary operations performed by Namaspace are resolving names and evaluating them. A Name
has been resolved when Namespace has used the ABPs and information contained in the Name's NTE
30401 to produce a Logical Descriptor 27116 for the Name; a name has been evaluated when Namespace
has resolved the Name, presented the resulting Logical Descriptor 27116 for the Name to memory, and
obtained the value of the data represented by the Name from memory.

The resolve operation has three parts, which may be performed in any order:
— Obtaining the Base from Base l-‘ield 30425 of the Name's NTE 30401.
- Obtaining the displacement.
— Obtaining the length from Length l-‘reld 30435.

Obtaining the length is the simplest of the operations: ‘rf Length in a Name Flag 30411 is set. the length
is the value obtained by evaluating the Name contained in Length Field 30435: otherwise. Length field
30435 contains a literal value and the length is that llteral’s value. '

There are four ways in which the Base may be calculated. Which is used depends on the settings of
Base is a Name Flag 30413 and Base Indirect Flag 30415: _

— Base is a Name Flag 30413 O and Base lndirect Flag 30415 1: The Base is the location contained in the
pointer specified by ABP l-‘ield 30429 and pointer Locator l-‘raid 30431.

— Base is a Name Flag 30413 1 and Base Indirect Flag 30415 0: The Base is the location obtained by
resolving the Name in Bass Field 30425.

— Both Flags 1: The Base is the location obtained by evaluating the Name in Base Field 30425.
The manner in which Namespace calculates the displacement depends on whether NTE 30401

represents a scalar data item or an array data item. In the first case. Namespace adds the value contained in
Displacement Field 30437 and Displacement Extension l-‘ield 30439 to the location obtained for the Base: in
the second cwe. Namespace evaluates Index Name l-‘ield 30441 and IE5 Field 30445. multiplies the
resulting values together. and adds the product to the value in Displacement field 30437 in order to obtain
the displacement.

If any field of a NTE 30401 contains a Name, Namespace obtains the value or lotion represented by
the Name by performing a Resolve or Evaluation operation on it as required. As mentioned in the
discussion of NTEs 30401, flags in Flags Field 30408 indicate which fields of an NTE 30401 contain Names.
Since the NTE 30401 for a Name used in another NTE 30401 may itselt contain Names. Namespace
performs the Resolve and Evaluation operations recursively. -

b.b. lmplementation of Name Evaluation and Name Resolve in CS 10110
In the present embodiment, the Name Evaluation and Resolve operations are carried out by FU 10120

microcode Eve] and Resolve commands. Both commands require two piece of information: a register in
the current frame of SR portion 10362 of GRF 10354 for receiving Logical Descriptor 271 16 produced by the
operation. and the source of the Name which is to be resolved or evaluated. Both Resolve and Eval may
choose between three sources: Parser 20264. Name Trap 20254, and the low-order 16 bits of the output
register for OFFALU 20242. Resolve may specify current frameregisters O. 1. or 2 for Logical Descriptor
27116, and Eval may specify current frame registers D or 1. At the end of the Resolve operation, Logical
Descriptor 27116 for the data represented by the Name is in the specified SR 10362 register and at the end
of the Evaluation operation, Logical Descriptor 27116 is in the specified SR 10362 register and the data's
value has been transferred via MOD Bus 10114 to EU 1012's OPE 20322.

The execution of both Resolve and Eval commands always begin with the presentation ofthe Name to «
Name Cache 10226. The Name presented to Name cache 1026 is latched into Name Trap 20254. where it is
available for subsequent use.by Name Resolve microcode.

If there is an entry for the Name in Name Cache 10226, a name cache hit occurs. For Names with NTEs
30401 fulfilling three conditions. the Name Cache 10226 entry for the Name is a Logical Descriptor 27116 for
the data item" represented by the Name. The conditions are the following:
-— NTE 30401 contains no Names.

— Length Field of N'l'E 30401 specifies a length of less than 256 bits.
-— If Base is Indirect Flag 30415 is set, Pointer Displacement Field 30431 must have a negative value.

indicating that the base is a linkage pointer. ‘ ‘
Logical Descriptor 27116 can be encached in this case because neither the location nor the length ofthe

data represented by the Name can change during the life of an invocation of Procedure 602 to which the
Name belongs. lf the Name Cache 10226 entry for the Name is a Logical Descriptor 27116, the hit causes
Name cache 1026 to place Logical Descriptor 27116 in the specified SR 10362 register. In all other cases.
the Name Cache 10226 entry for the Name does not contain a Logical Descriptor 27116, and a hit uses
Name Cache 10226 to emit a JAM signal. The JAM signal invokes microcode which uses information stored
in Name cache 1026 to construct Logical Descriptor 27116 for the data item represented by the Name.
JAMS are explained in detail below. -

If there is no entry for the Name in Name cache 1026, a Name Cache Miss occurs, and Name Cache
10226 emits a cache miss JAM signal. The Name Resolve microroutine invoked by the cache miss JAM

138

Petitioner Apple Inc. - Ex. 1025, p. 4036

Petitioner Apple Inc. - Ex. 1025, p. 4037

n

15

EP 0 067 556 81

signal constructs an entry in Name Cache 10226 from the Name's NTE 30401. using FU 10120's DESP 20210
to perform the necessary calculations. When it is finished, the cache miss microcode leaves a Logical
Descriptor 27116 for the Name in the specified SR 10362 register and returns.

The Resolve operation is over when Logical Descriptor 27116 has been pieced in the specified GRF
10354 regimer; the Evaluation operation continues by presenting Logical Descriptor 27116 to Memory
Reference Unit 27017, which reads the-date represented by Logical Descriptor 27116 from memory and
places it on OPB 20322. The memory reference may result in Protection Cache 10234 misses and ATU 10228
misses, as well as protection faults and page faults, but these are handled by means of event signals and
are therefore invisible to the Evaluation operation.

Name Cache 10226 produces 15 different JAM signals. The signal produced by a JAM depends on the
following: whether the operation is a Resolve or an Eval. which register Logical Descriptor 27116 is to be
placed in, whether a miss occurred, and in the case of a hit, which register in the Name Cache 10226 entry
for the Name was loaded last. From the point of view of the behavior of the microcode invoked by the JAM,
the last two factors are the most important. Their relation to the microcode is explained in detail below.

in the present embodiment, all entries in Name Cache 10226 are invalidated when a Procedure 602
calls another Procedure 602. The invalidation is required because Calls always change the value of FF and
may also change the values of SDP and PBP, thereby changing the meaning of NTEs 30401 using
displacements front ABPs. Entries for Names in invoked Procedure 602 are created and loaded into Name
Cache 10226 when the Names are evaluated or resolved and a cache miss occurs.

The following discussion will first present Name Cache 10226 as it appears to the microprogrammer
and then explain in detail how Name Cache 10226 is used to evaluate and resolve Names. how it is loaded,
and how it is flushed.

c.c. Name Cache 1026 Entries (Fig. 306)
The structure and the physical behavior of Name Cache 10226 was presented in the discussion of FU

10120 hardware; here, the. logical structure of Name Cache 10226 entries as they appear to the
. microprogrammer is presented. To the microprogrammer, Name Cache 10226 appears as a device which,

when presented a Name on NAME Bus 20224,_always provides the microprogrammer with a Name Cache
10226 entry for the Name consisting of four registers. The microprogrammer may read from or write to any
one of the four registers. When the microprogrammer writes to the four registers, the action taken by Name
Cache 10226 when a hit occurs on the Name associated with the four registers depends on which of the
registers has most recently been loaded. The means by which Name cache 1026 associates 8 Name with
the four registers, and the means by which Name Cache 10226 provides registers when it is full are invisible‘
to the microprogrammer.

Fig. 306 illustrates Name Cache Entry 30601 for a Name. The four Registers 30602 in Name Cache Entry
30w1 are numbered 0-through 3, and each Register 30602 has an AON, offset, and length field like those in
GRF 10354 registers, except that some flag bits in GRF 10354 register AON fields are not included in
Register 30602 fields, and the length field in Register 30602 is 8 bits long. As is the case with GRF 10354
registers, the microprogrammer can read or write individual fields of Register 30602 or entire Register
30602. Name Cache Entry 30601 is connected via DB 27021 to DESP 20210, and consequently, the contents
of e GRF 10354 register may be obtained from or transferred to a Register 30602 or viceversa. When the
contents of a Register 30602 have been transfered to a GRF 10354 register, the contents may be processed
using OFFALU 20242 and other arithmetic-logical devices in DESP 20210.

d.d. Name Cache 10226 Hits

When a Name is presented to Name Cache 10226 and Name Cache 10226 has a Name Cache Entry
30601 containing information about_the Name, a name cache hit occurs. On a hit, Name Cache 10226
hardware always loads the contents of Register 30602 0 of the Name's Name Cache Entry 30601 into the
GRF 10354 register specified in the Resolve or Eval microcommand. in addition, a hit may result in the
invocation of microcode via a JAM:

- The JAM may invoke special microcode for resolving Names of array elements whose NTEs 30401
allow certain hardware accelerations of index calculations. 1

- The JAM may invoke general name resolution microcode which produces a Logical Descriptor 27116
from the contents of Name Cache Entry 30601.
Whether the hit produces a JAM, and the kind of JAM it produces, are determined by the last Register

30602 to be loaded when Name Cache Entry 30601 was created by Name Cache Miss microcode. If Register
30602 0 was the last to be loaded, no JAM occurs; if Register 30602 1 was loaded last, the JAM for special
array Name resolution occurs; if Register 30602 2 or 3 was loaded last, the JAM for general Name
resolution occurs.

As may be inferred from the above, Name Cache 10226 hardware defines the manner in which Name
Cache Entries 30601 are loaded for the first two cases. In the first case, Name Cache Register 30602 0 must
contain Logical Descriptor 27116 for the Name's data. As already mentioned, the Name's N'l'E 30401 must
therefore describe data whose location and length does not change during an invocation and whose length
is less than 256 bits. Name Cache 10226 hardware also determines the form of Name Cache Entries 30601
for encachable arrays. An encachable array NTE 30401 is an array NTE 30401 which fills the following

139

Petitioner Apple Inc. - Ex. 1025, p. 4037

Petitioner Apple Inc. - Ex. 1025, p. 4038

EP 0 067 556 B1

conditions: _

- The only Name contained in any NTE 30401 is in Index Name i-‘raid 30441. _ .
— NTE 30401 for the index Name fills the conditions for scalar NTE: 30401 for which Logical Descriptors

27116 may be encached.

5 - The value in IE3 Field 30445 is no greater than 128 and a power of 2. _
— Array NTE 30401 otherwise fills the conditions for sealer MB 30401 for which Logical Descriptors

27118 may be encached. -
In the present embodiment, the encachable array entry uses registers 0. Land 2 of Name Cache Entry

30601 for the name: -
10

R9939’ Contents

AON ‘ ,' or=rsrs‘r LENGTH15 ~

0 Logical Descriptor 27116 for the index Name

1 0 IES power of 2 unused

20 . -3 ‘ ' I Logical Descriptor 27116 for the array

when a hit for this type of entry occurs. the resulting JAM signal does two things: it invokes
encachable anay resolve microcode and it causes the index Name's Logical Descriptor 27116 to be

- 25 presented to Memory Reference Unit 27017 for a read operation which returns the value of the data
represented by the index Name to an accumulator in OFFALU 20242. The encachable array resolve
microroutine then uses the Name that caused the JAM, latched into Name Trap 20254, to locate Register

' 30602 2 of Name Cache Entry 30601 for the Name, writes the contents of Register 30602 2 into the GRF
register specified by the Resolve or Eval microcommand. obtains the product of the IES value and the index

30 value by shifting the index value left the number of times specified by the IES exponent in Register 30602 1,
adds the result to the offset field of the GRF 1(B54 register containing the array's Logical Descriptor 27118,
thus obtaining Logical Descriptor 27116 for the desired array element. and returns. _

_For the other cases, the manner in which Name Cache Entries 30601 are loaded and processed to
obtain Logical Descriptors I11 16 is determined by the microprogrammer. The JAM signal which results if a

35 Name Cache Entry 30601 is neither 3 Logical Descriptor 27116 nor an encachable array entry merely
invokes a microroutine. The microroutine uses the Name latched into Name Trap 20254 to locate the
Name's Name Cache Entry 30601 and then reads tag values in Name Cache Entry 30601 to detennine how
the infonnation in Name Cache Entry 30601 is to be translated into a Logiwl Descriptor 27116. The contents
of Name Cache Entries 30601 for the other cases have two.general forms: one for NTEs 30401 with Base is

40 Indirect Flag 30415 set. and one for MB in which it is not set. The first general form looks like this:

Register Contents

AON OFFSET LENGTH
45 .

0 ABP AON tagllength unused

1 0 index _nameJlES unused

50 2 0 unused unused

3 0 data dlsplacemerrt unused
from loc. specified

by pointer
55

Register 30602 0 contains the AON of the ABP. Register 30602 0's offset field contains two items: the
tag, which contains Flags Field 30408 of NTE 30401 along with other infonnation. and which determines
how Name Resolve microcode interprets the contents of Name Cache Entry 30601, and a value or Name for

50 the length of the data item. Register 30602 1 is used only if the Name represents a data item in an array. It
then contains the Name from Index Field 30441 and the Name or value from IES Field 30445. The offsetfield

of Register -30602 3 contains the sum of the offset indicated by NTE 30401’s ABP and of the displacement
indicated by NTE 30401.

The second format, used for NTES 30401 whose bases are obtained from pointers or by resolving a
55 Name, looks like this: » —

140

Petitioner Apple Inc. - Ex. 1025, p. 4038

Petitioner Apple Inc. - Ex. 1025, p. 4039

ll

10

20

25

EP o 067 556 B1

Registers Contents

AON OFFSET LENGTH

0 _ 0 tag/length unused

1 0 ' index namdlES unused

2 0 FM and type bits! unused
base field

3 0 data displacement unused
from loc. specified
by pointer or name

In this form, the location of the Base must be obtained either by evaluating a pointer or resolving a
Name. Hence, there is no field specifying the Base's AON. Otherwise, Registers 30602 0 and 1 have the
same contents as in the previous format. in Register 30602 2, the offset field contains Name Table Entry
30401’s FM field 30421 and Type field 30423 and Base Field 30425. The Offset Field of Register 30602 2
contains the value of Name Table Entry 30401 Displacement Fields 30437 and 30439.

As in Name Table Entn' 30401. the index must be represented by a Name, and length, IE8. and Base
may be represented by Names. If a field of Name Cache Entry 30601 contains a Name. a flag in the tag
indicates that fact, and Name Resolve microcode perfonns an Eval or Resolve operation on it as required to
obtain the value or iocation represented by the name. ‘

The microcode which resolves Name Cache Entries 30601 of the types just described uses the general
algorithms described in the discussion of Name Table Entries 30401. and is therefore not discussed further
here.

e.e. Name Cache 10226 Misses

When a Name is presented to Name Cache 10226 and there is no Name Cache Entry 30601 for the
Name, a name cache miss occurs. On a miss Name Cache 10226 hardware emits a JAM signal which
invokes name cache miss microcode. The microcode obtains the Name which caused the miss from Name
Trap 20254 and locates the Name's NTE 30401 by adding the Name to the value of NTP 30311 from PED
30303 for Procedure 602 being executed. As will be explained in detail later, when a Procedure 602 is called,
the Call microwde places the AON and offset specifying the NTP’-a location in a register in GR’s 10360.
Using the infonnation contained in the Name's N'l'E 30401, the Cache Miss microcode resolves the Name
and constructs a Name Cache Entry 30601 for it. As described above, the microcode determines the method
by which it resolva the Name and the form ofthe Name's Name Cache Entry 30801 by reading Flags Field
30408 in the Name's NTE 30401. Since the descriptions ofthe Resolve operation, the micromachine, Name
Cache 10226, and the formats of Name Cache Entries 30601 are sufficient to allow those skilled in the art to
understand t:he operations performed by Cache Miss microcode. no further description of the microcode is
provided.

f.f. Flushing Name Cache 10226
As described in the discussion of Name Cache 10226 hardware, hardware means. namely VALS 24068.

exist which allow Name Cache Entries 30601 to be invalidated. Name 'Ceche Entries 30601 may be
invalidated singly, or all entries in Name cache 1026 may be invalidated by means of a single
microoommand. The latter operation is termed name cache flushing. in the present embodiment, Name
Cache 10226 must be flushed when Process 610 whose Virtual Processor 612 is bound to JP 10114 executes
a Call or a Return and whenever Virtual Processor 612 NO is unbound from JP 10114. Flushing is required
on Call and Retum because Calls and Returns change the values of the ABPs and other pointers needed to
resolve Names. At a minimum, a Call produces a new MAS Frame 10412, and a Retum returns to a previous
Frame 10412, thereby changing the value of FF. If the called Procedure 602 has a different PED 30303 from
that of the calling Procedure 602, the Call or Retum may also change PBP, SDP, and NTP. Flushing is
required when a Virtual Processor 612 is unbound from JP 10114 because Virtual Processor 612 which is
next bound to JP 10114 is bound to a different Process 610, and therefore cannot use any information

belonging to Process 610 bound to the Previous Virtual Processor 612.

g.g. Fetching the I-Stream
As explained in the discussion of FU 10120 hardware, SlNs are fetched from memory by Prefetcher

20260. PREF 20260 contains a Logical Descriptor 27116 for a location in Code 10344 belonging to Procedure
602 which is currently being executed. On any MO cycle, PREF 20260 can place Logical Descriptor 27116 on
DB 27021, cause Memory Reference Unit 27017 to fetch 32 hits at the location specified by Logical

141

Petitioner Apple Inc. - Ex. 1025, p. 4039

Petitioner Apple Inc. - Ex. 1025, p. 4040

15

_20

25

55

EP 0 067 556 B1

Descriptor 27116, and write them into INSTB 20262. When INSTB 20262 is full, PREF 20260 stops fetching
SiNs until Namespace parsing operations. described below, have processed part of the cements of INSTB
20262, thereby creating space for more SiNs.

The fetching operation is automatic, and requires intervention from Namespace only when a SIN
causes a branch, i.e., causes the next SIN to be executed to be some other SlN than the one immediately
following the current SIN. On a branch, Namespace must load PREF 20260 with the location of the next SIN
to be executed and cause PREF 20260 to begin fetching SiNs at that location. The operation which does this
is specified by the load1Jrefetci1~for-branch microcomrnand. The microoommand specifies a source for a
Logical Descriptor 27116 and transfers that Logical Descriptor 27116 via DB 27021 to PREF 20260. After
PREF 20260 has thus been loaded, it begins fetching SlNs at the specified location. Since any SlNs still in
INSTB 20262 have been rendered meaningless by the branch operation, the first SlNs loaded into INSTB
20262 are simply written over INSTB 20262's prior contents. Fig. 274 contains an example ofthe use of the
load-prefetch-for-branch microoommand.

h.h. Parsing the l-Stream
‘ The I-stream es fetched from MEM 10112 and stored in INSTB 20262 is a sequence of SOPs and Names.

As already mentioned. the I-stream has a fixed format: in the present embodiment, SOPs are always 8 bits
long. and Names may be 8, 12, or 16 bits long. The length of Names used in a given procedure is fixed. and
is indicated by the value in K Field 30305 in the Procedure 602's PED 30303. The Namespace parsing
operations obtain the SOPs and Names from the l-stream and place them on NAME Bus 20224. The SOPs
are transferred via this bus to the devices in SOP Decoder 27003, while the Names are transferred to Name
Trap 20254 and Name Cache 10226 for Resolve and Evaluation operations as described above. M the
parsing operations obtain SOPs and Names, they also update the three program counters CPC 20270, EPC
20274, and IPC 20272. The values in these three counters are offsets from PBP which point to locations in
Code 10344 belonging to Procedure 602 being executed. CPC 20270 poinu: to the l-stream syllable currently
being parsed, it is updated on every parsing operation. EPC 20274 points to the beginning of the last SIN
executed by JP 10114, and IPC 20272 points to the beginning ofthe current SIN, so these program counters
are changed only at the beginning of the execution of an SIN, i.e., when a SOP is parsed.

As described in the discussion of FU 10120 hardware, in the current implementation, parsing consists
physically of reading 8 or 16 bits of data from a location in INSTB 20262 identified by a pointer for INSTB
20262 which is accessible only to the hardware. As data is read. the hardware increments the pointer by the
number of bits read, wrapping around and returning to the beginning of INSTB 20282 if it reaches the end.
At the same time thatthe hardware increments the pointer, it increments CPC 20270 bythe same number of
bits. As previously mentioned, CPC 20270 contains the ofisetfrom PBP of the SOP or Name being currently
parsed. thus coordinating the reading of INSTB 20262 with the reading of Procedure 602's Code 10344.

The number of bits read depends on whether Parser 20264 is reading an SOP or a Name, and in the
latter case. by the syllable size specified for the Name. The syllable size is contained in CSSR 24112. On a
Call to a Procedure 602 which has a different FED 30303 from that of the calling procedure, the Call
microcode loads the value contained in K Field 30305 into CSSR 24112.

Namespace’s parsing operations are performed by separate microcommands for parsing SOPs’ and
Names. There is a single microoommand for parsing S-operations: parse-op-stage. The microoommand
obtains the next eight bits from INSTB 20262, places the bits onto NAME Bus 20224, and latches them into
LOPCODE Register 24212. it also updates EPC 20274 and IPC 20272 as required at the beginning of an SIN:
EPC 20274 is set to IPC 20272's former value, and IPC 20272 is set to CPC 20270's value. At the end of the
operation, CPC 20270 is incrememed by 8. Since the parsing of an SOP always occurs as the first operation
in the interpretation of an SIN, the parse-op-stage command is generally combined with a dispatch fetch
command. As will be explained below, the latter command interprets the S-operation as an address in
FDISP 24218, and FDISP 24218 in turn produces an address in FUSl'lT 11012. The latter address is the
location of the beginning of the SIN microcode for the SIN. ‘

There are two microcommands for parsing Names: '
parse_k_ioad__epc and parse_k_dispatch_ebox. Both commands obtain a number of bits from INSTB 20262
and place them on NAME Bus 20214. With both microcommands, the syllable size, K, stored in CSSR 24112,
detemiines the number of bits obtained from INSTB 20262. Both commands also increment CPC by the
value stored in CSSR 24112. in addition, parse_k_load_epc sets EPC to lPC‘s value, while‘ I
parse_k_dispatch_ebox also dispatches EU 10122. i.e., interprets the SOP saved in LOPCODE 24210 as an
address in EDISP 24222, which in turn contains an address in EU EUSITT 20344. The EU EUSITT 20344
address is passed via EUDIS Bus 20206 to COMO 20342 in EU 10122.

c. The S-interpreters (Fig. 307)
CS 10110 does not assign fixed meanings to SOPs. While all SOPs are 8 bits long. a given 8 bit SOP

may have one meaning in one S-Language and a completely different meaning in another S—Language. The
semantics of an S-Language's S-operations are determined completely by the S—interpreter for the 5-
Language. Thus, in order to correctly interpret an S-operation, CS 10110 must know what S-interpreter it is
to use. The S-interpreter is identified by a UID pointer with offset 0 in SIP field 30309 of FED 30303 for

142

Petitioner Apple Inc. - Ex. 1025, p. 4040

Petitioner Apple Inc. - Ex. 1025, p. 4041

I9

15

20

25

EP 0 067 556 B1

Procedure 602 that CS 10110 is currently executing. In the present embodiment, the UID is the UID of a
microcode object which contains FU 10120 microcode. When loaded into FUSlTl” 11012, the microcode
interprets SOPs as defined by the S-Language to which the SOP belongs. in other embodiments, the UID
may be the UID of a Procedure Object 608 containing Procedures 602 which interpret the S-Language's
SOPs, and in still others, the S-interpreter may be contained in a PROM and the S-interpreter UID may not
specify an object, but may serve solely to identify the S-interpreter.

When a Procedure 602 executes an SIN on JP 10114, CS 10110 must translate the value of SIP Pointer
30309 for Procedure 602 and the S-instruction's SOP into a location in the microcode or high-level language
code which malces up the S-interpreter. The location obtained by the translation is the beginning of the
microcode or high~level language code which implements the SIN. The translation of an SOP together with
SlP Pointer 30309 into a location in the S-interpreter is termed dispatching. Dispatching in the present
embodiment involves two primary components: a table in memory which translates the value of SIP
Pointer 30309 into a small integer called the Dialect Number, and S-operation Decoder Portion 27003 of the
FU 10120 micromachlne. The following discussion will first present the table and explain how an SIP
Pointer 30309 is translated into a Dialect Number, and then explain how the Dialect Number and the SOP
together are translated into locations in FUSITT 11012 and EUSITT 20344.

1. Translating SIP into a Dialect Number (Fig. 307)
in the present embodiment. all S-interpreters in CS10110 are loaded into FUSl'lT 11012 when CS 10110

begins operation and each S—interpreter is always placed in the same location. Which S-interpreter is used
to interpret an S-Language is determined by a value stored in dialect register RDIAL 24212. Consequently,
in the present embodiment, a Call to a Procedure 602 whose S—interpreter differs from that of the calling
Procedure 602 must translate the UID pointer contained in SlP Field 30309 into a Dialect Number.

Fig. 307 represents the table and microcode which performs this translation in the present
embodiment. S-interpreter Translation Tabla (STl'l 30701 is a table which is indexed by small AONs. Each
STT Entry (STTE) 30703 has two fields: an AON Field 30705 and a Dialect Number Field 30709. Dialect
Number Field 30709 contains the Dialect Number for the S—interpreter object whose AON is in AON field
30705.

When CS 10110 begins operation. each S-interpreter object is wired active and assigned an AON small
enough to serve as an index in 811' 30701. By convention, a given S-interpreter object is always assigned
the same AON and the same Dialect Number.The AON is placed in AON Field 30705 of S'lTE 30703 indexed
by the AON. and the Dialect Number is placed In Dialect Number field 30709. Since the S-interpreter
objects are wired active. these AONs will never be reassigned to other objects. _

On a Call which requires a new S¢interpreter. Call microcode obtains the new SIP from SIP Field 30309,
calls KOS LAR microcode to translate its UlD to its AON, uses the AON to locate the S-interpreter’s S‘l'l'E
30703, and places the value of Dialect Number Field 30709 into RDIAL 21242.

Other embodiments may allow S-interpreters to be loaded into FUSl‘l'l' 11012 at times other than
system initialization, and allow S-interpreters to occupy different locations in FUSITT 11012 at different
times. In these embodiments, STT 30701 may be implemented in a manner milar to the implementations
of AST 10914 or MHT 10716 in the present embodiment.

2. Dispatching
Dispatching is accomplished by Dispatch Files 27004. These files translate the values provided by

RDlAL 24212 and the SOP of the S-instruction being executed into the location of microcode for the SIN
specified by the S-operation in the S-interpreter specified by the value of RDIAL 24212. The present
embodiment has three dispatch files: FDISP 24218, FALG 24220, and EDISP 24222. FDISP 24218 and FALG

24220 translate S-operations into locations of microcode which executes on FU 10120; EDISP 24222
translates S-operations into locations of microcode which executes on EU 10122. The difference between
FDlSP 24218 and FALG 24220 is one of speed: FDISP 24218 can translate an SOP in the same
microinstruction which performs a parse_op_stage command to load the SOP into LOPCODE 24210. FALG
24220 must perform the translation on a cycle following the one in which the SOP is loaded into LOPCODE
24210. Typically, the location of the first portion of the microcode to execute an S-operation is contained in
an FDISP 24218 register, the location of portions executed later is contained in an FALG 24220 register, and
the location of microcode for the S-operation which executes on EU 10122 is contained in EDISP 24222.

in the present embodiment. the registers accomplish the translation from S-operation to microcode
location as follows: As mentioned in the discussion of FU 10120 hardware, each Dispatch File contains 1024
registers. Each register may contain an address in an S-interpreter. As will be seen in detail later, the
address may be an address in an S-interpreter’s object, or it may bethe address in FUSITT 11012 or EUSITI‘
20344 of a copy of microcode stored at an S-interpreter address. The registers in the Dispatch Files may be
divided into sets of 128 or 256 registers. Each set of registers translates the SOPs for a single S-Language
lnto locations in microcode. Which set of registers is used to interpret a given S-operation is decided by the
value of RDIAL 24212; which register in the set is used is determined by the value of the S-operation. The
value contained in the specified register is then the location of microcode which executes the S-instruction
specified by the S-operation in the S-Language specified by RDIAL 24212.

Logically, the register addressed by the concatenated value in turn contains a 15 bit address which is

143

Petitioner Apple Inc. - Ex. 1025, p. 4041

Petitioner Apple Inc. - Ex. 1025, p. 4042

I0

15

20

45

50

EP‘ 0 067 556 B1

the location in the S-interpreter of the first microinstruction of microcode used to execute the S-instruction
specified by the S-operation in the S—Language specified by the contents of RDIAL 24212. in the present
embodiment. the microcode referred to by the address may have been loaded into FUSlTl' 11012 and
EUSl'lT 20344 or it may be available only in memory. Addresses of microcode located in FlJSlTT11012 and
EUSl'lT 20344 are only eight bits long. Consequently, if a Dispatch File 27004 contains an address which
requires more bits than that, the microcode specified by the addres is in memory. As described in the
discussion of FU 10112 hardware, addresses larger than 8 bits produce an Event Signal, and microcode
invoked by the event signal fetches the microinstruction at the specified address in the S—lnterpreter from
memory and loads it into location 0 of FUSITT 11012. The event microcode then returns, and the
microinstruction at location 0 is executed. lithe next microinstruction also has an address larger than 8 hits.
the event signal occurs again and the process described above is repeated. ‘

As previously mentioned, FDISP 24218 is faster than FALG 24220. The reason tor the difference in
speed is that FDISP registers contain only 6 bits for addressing the S-interpreter. The present embodiment
assumes that all microcode addressed via FDlSP 24218 is contained in FUSlTl' 11012. it concatenates 2 zero
bits with the six bits in the FDlSP 24218 register to produce an 8 bit address for FUSITF 11012. FDISP 24218
registers can thus contain the location of every fourth FUSI'lT 11012 register between FUSl1T register 256
and FUSITT register 448. The microcode loaded into these locations in FUSlTl' 11012 is microcode for
operations which are performed at the start of the SIN by many different SlNs. For example, all SlNs which
perform operations on 2 operands and assign the result to a location specified by a third operand must
parse and evaluate the first two operands and parse and resolve the third operand. Only after these
operations are done are 5lNs-specific operations perfomtad. in the present embodiment, the microcode
which parses, resolves, and evaluates the operands is contained in a part of FUSITT 11012 which is
addressable by FDISP 24218. ' . ~

As previously mentioned, in the present embodiment. FUSl'lT 11012 and EUSl'iT 20344 may be loaded
only when CS 10110 is initialized. The microcode loaded into FUSITT 11012 and EUSl‘l'l' 20344 is produced
by the microbinder from the microcode for the various SiNs. To achieve efficient use of FUSl'lT 11012 and
EUSITT 20344, microcode for operations shared by various S-interpreters appears only once in FUSl1T
11012 and EUSITI’ 20344. While the SlNs in different S-Languages which share the microcode have

different registers in FDISP 24218, FALG 24220. or EDISP 24222 as the case may be, the registers for each of
the S-instructions contain the same location in FUSITT 11012 or EUSl'lT 20344.

4. The Kernel Operating System
A. introduction

Many of the unique properties of CS 10110 are produced by the manipulation of tables in MEM 10112
and Secondary Storage 10124 by programs executing on JP 10114. These programs and tables together
make up the Kernel Operating System (KOS). Having described CS 10110's components and the means by
which they cooperate to execute computer programs, this specification now presents a detailed account of
K05 and of the properties of CS 101 10 which it produces. The discussion begins with a general introduction
to operating systems, than presents an overview of CS 10110's operating systems, an overview ofthe K05.
and detailed discussions of the implementation of objects, access control. and Processes 610.

a. Operating Systems (Fig. 401)
In CS 10110, as in other computer systems, the operating system has two functions:

— It controls the use of CS 10110 resources such as JP 10114, MEM 10112, and devices in los 10116 by
. programs being executed on CS 10110. _ -

-— It defines how CS 10110 resources appear to users of CS 10110.
The second function is a consequence of the first: By controlling the manner in which executing

programs use system resources, the operating system in fact determines how the system appears to its
users. Figure 401 is a schematic representation of the relationship between User 40101, Operating System
40102, and System Resources 40103. When User 40101 wishes to use a System Resource 40103, User
40101 requests the use of System Resource 40103 from Operating System 40102, and Operating System
40102 in turn commands CS 10110 to provide the requested Resources 40103. For example, when a user
program wishes to use a peripheral device. it does not deal with the device directly. but instead calls the
Operating System 40102 procedure 602 that controls the device. While Operating System 40102 must take
into accountthe device's complicated physical properties, the user program that requested the device need
know nothing about the physical properties, but must only know what information the Operating System
40102 Procedure 602 requires to perform the operation requested by the user program. For example, while
the peripheral device may require that a precise pattern of data be presented to It, the Operating‘ System
40102 procedure 602 may only require the data itself from the user program, and may format the data as
required by the peripheral device. The Operating System 40102 Procedure 602 that controls the peripheral
device thus transforms a complicated physical interface to the device into a much simpler logical interface.

1. Resources Controlled by Operating Systems (Fig. 402) _
Operating Systems 40102 control two kinds of resources: physical resources and virtuafresources. The

physical resources in the present embodiment of CS 10110 are JP 10114, lOS 10116 and the peripheral

144

Petitioner Apple Inc. - Ex. 1025, p. 4042

Petitioner Apple Inc. - Ex. 1025, p. 4043

rt

U

1:

20

25

50

65

EP 0 067 556 B1

devices associated with IOS 10116, MEM 10112, and Secondary Storage 10124. "Virtual resources are
resources that the operating system itself defines for users of CS 10110. As was expiaifled above. in
controlling how CS 10110's resources are used. Operating System 40102 defines how CS 10110 appears to
the users. Instead of the pirysil resources controlled by Operating System 40102. the User 5635 a far
simpler set of virtual resources. The logical V0 device interface that Operating System 40102 gives the user
of a physical I/O device is such a virtual resource. Often, an Operating System 40102 will define sets of
virtual resources and multiplex the physical resources.among these virtual resources. For instance.
Operating System 40102 may define a set of Virtual Processors 612 that correspond to a smaller group of
physical processors, and a set of virtual memories that correspond to a smaller group of physical
resources. When a user executes a program, it runs on a Virtual Processor 612 and uses virtual memory. it
seems to the user of the virtual processor and the virtual memory that he has sole access to a physical
processor and physical memory, but in fact, Operating System 40102 is multiplexing the physical
processors and memories among the Virtual Processors 612 and virtual memories.

Operating System 40102, too, uses virtual resources. For instance, the memory management portion
of an Operating System 40102 may use I/O devices; when it does so, it uses the virtual llO devices defined
by the portion of the Operating System 40102 that manages the V0 devices. One part of Operating System
40102 may also redefine virtual resources defined by other parts of Operating System 40102. For instance,
one part of Operating System 40102 may define a set of primitive virtual llO devices and another part may
use these primitive virtual I/O devices to define a set of high-level user-oriented l/O devices. Operating
System 40102 thus turns the physical CS 10110 into a hierarchy of virtual resources. How a user of CS
10110 perceives CS 10110 depends entirely on the level at which he is dealing with the virtual resources.

The entity that uses the resources defined by Operating System 40102 is the process. A Process 610
may be defined as the activity resulting from the execution of a program with its data by a sequential
processor. Whenever a user requests the execution of a program on CS 10110, Operating System 40102
creates a Process 610 which then executes the Procedures 602 making up the user's program. in physical
terms, a process 610 is a set of data bases in memory that contain the current state of the program
execution that the process represents. Operating System 40102 causes Process 610 to execute the program
by giving Process 610 access to the virtual resources which it requires to execute the program. by giving
the virtual resources access to those parts of Process 610's state which they require to perforrrt their
operations, and by giving these virtual resources access to the physical resources. The temporary
relationship ofone resource to another or of a Process 610 to a resource is called a binding. When a Process
610 has access to a given Virtual Processor 612 and Virtual processor 612 has access to process 610's state.
proc 610 is bound to Wrtual Processor 612, and when Virtual Processor 612 has access to JP 10114 and
Virtual Processor 612's state is loaded into JP 10114 registers. Virtual processor 612 is bound to JP 10114,
and JP 10114 can execute SlNs contained in Procedures 602 in the program being executed by Process 610
bound to Virtual Processor 612. Binding and unbinding may occur many times in the course of the
execution of a program by a Process 610. For instance, if a Process 610 executes a reference to data and the
data is not present in MEM 10112, then Operating System 40102 unbinds Process 610's Virtual Processor
612 from‘JP 10114 until the data is available in MEM 10112. if the data is not available for an extended
period of time. or if the user for whom Process 61 0 is executing the program wishes to stop the execution of
the program for a while, Operating System 40102 may unbind process 610 from its Virtual Processor 612.
Virtual Processor 612 is then available for use by other Processes 61 0.

As mentioned above, the binding process involves giving a first resource access to a second resource,
and using the first resource's state in the second resource. To permit binding and unbinding, Operating
System 40102 maintains data bases that contain the current state of each resource and each Process 610.
State may be defined as the information that the operating system must have to use the resource or
execute the Process 610. The state of a line printer, for instance, may be variables that indicate whether the
line printer is busy, free, off line, or out of order. A Process 6105 state is more involved, since it must
contain enough information to allow Operating System 40102 to bind Process 610 to a Virtual Processor
612, execute Process 610 for a while, unbind Process 610, and than rebind it and continue execution where
it was halted. A process 610's state thus includes all of the data used by Process 610 up to the time that it
was unbound from a lfirtual Processor 612. along with information indicating whether Process 610 is ready
to begin executing again.

Figure 402 shows the relationship between Processes 610, virtual, and physical resources in an
operating system. The figure shows a multi-process Operating System 40102. that is, one that can
multiplex CS 10110 resources among several Processes 610. The Processes 610 thus appear to be
executing concurrently. The solid arrows in Figure 402 indicate bindings between virtual resources or
between virtual and physical resources. Each Process 610 is created by Operating System 40102 to execute
a user program. The program consists of Procedures 602. and Process 610 executes Procedures 602 in the
order prescribed by the program. Processes 610 are created and managed by a component of Operating
System 40102 called the Process Manager. Process Manager 40203 executes a Process 610 by binding it to
a Virtual Processor 612. There may be more Processes 610 than there are Virtual Processors 612. In this
case, Operating System 40102 multiplexes Virtual Processors 612 among Processes 610.

- Virtual Processors 612 are created and made available by another component of Operating System
40102, Virtual Processor Manager 40205. Virtual Processor Manager 40205 also multiplexes JP 10114

145

Petitioner Apple Inc. - Ex. 1025, p. 4043

Petitioner Apple Inc. - Ex. 1025, p. 4044

70

I5

20

40

EP 0 057 556 ‘B1

among Virtual Processors 612. if a Virtual Processor 612 is ready to run, Virtual Processor Manager 40205
binds it to JP 10114. When Virtual Processor 612 can run no longer. or when another Virtual Processor 612
requires JP 10114, Virtual Processor Manager 40205 unbinds running Virtual Procesor 612 from JP 10114
and binds another Virtual Processor 612 to it.

Virtual Processors 612 use virtual memory and U0 resources to perform memory access and input—
output. Virtual Memory 40206 is created and managed by Virtual Memory Manager 40207, and Virtual IIO
Devices 40208 are created and managed by Virtual 1/0 Manager 40209. Like Virtual Processor Manager
40205, Components 40207 and 40209 of Operating System 40102 multiplex physical resources among the
virtual resources. As described above, one set of virtual resources may use another set. One way in which
this can happen is indicated by the broken arrows in Figure 402. These arrows show a binding between
Virtual Memory 40206 and Virtual llO Device 40208. This binding occurs when Virtual Memory 40206 must
handle a reference to data contained on a peripheral device such as a disk drive. To the user of Wrtual
Memory 40208, all data appears to be available in MEM 10110. In fact. however, the data is stored on
peripheral devices such as disk drives, and copied into MEM 10112 when required. When a Process 610
references data that has not been copied into MEM 10112, Virtual Memory 40206 must use I05 10116 to
copy the data into MEM 10112. in order to do this, it uses a Virtual l/O Device 40208 provided by \firtual IIO
Manager 40209.

b. 111e Operating System in CS 10110
' For the sake of clarity. Operating System 40102 has been described as though it existed outside of CS
10110. in fact, however, Operating System 40102 itself uses the resources it controls. in the present
embodiment, parts of Operating System 40102 are embodied in JP 10114 hardware devices. parts are
embodied in microcode which executes on JP 10114, and parts are embodied in Procedures 602. These
Procedures 602 are sometimes called by Processes 610 executing user programs. and sometimes by
special Operating System Processes 610 which do nothing but execute operations for Operating System
40102. _

The manner in which the components of Operating System 40102 interact may be illustrated by the
way in which CS 10110 handles a page fault, i.e., a reference to data which is not available in MEM 10110.
The first indication that there may be a page fault is an ATU Miss Event Signal. This Event Signal is
generated by ATU 10228 in FU 10120 when there is no entry in ATU 10228 for a Logical Descriptor Z7116
used in a read or write operation. The Event Signal invokes Operating System 40102 microcode, which
examines a table in MEM 10112 in orderto find whether the data described by Logical Descriptor 271 16 has
a copy in MEM 10112. If the table indicates that there is no copy, Operating System 40102 microcode
communicates the fact of the page fault-to an Operating System 40102 Virtual Memory Manager process
610 and removes Virtual Processor 612 bound to the Process 610 which was exewting when the page fault
occurred from JP 10114. Some time later, Virtual _Memory Manager Process 610 is bound to JP 10114.
Procedures 002 executed by Virtual Memory Manager Process 610 then initiate the IIO operations required
to locate the desired data in Secondary Storage 10124 and copy it into MEM 10112. When the data is
available in MEM 10112. Operating System 40102 allows Virtual Processor 612 bound to Process 610 which
was executing when the page fault occurred to return to JP 10114. \Iirtual Processor 612 repeats the
memory reference which caused the page fault. and since the data is now in MEM 10112, the reference
succeeds and execution of Process 610 continues.

c. Extended Operating System and the Kernel Operating System (Fig. 403)
- In CS 10110, Operating System 40102 is made up of two component operating systems, the Extended

Operating System (E03) and the Kernel Operating System (KOS). The KOS has direct access to the physical
resources. it defines a set of primitive virtual resources and multiplexes the physical resources among the
primitive virtual resources. The EOS has access to the primitive virtual resources defined by KOS, but not to
the physical resources. The EOS defines a set of user-level virtual resources and multiplexes the primitive
virtual resources defined by KOS among the user level virtual resources. For example. KOS provides E05
with Processes 610 and Virtual processors 612 and binds Virtual Processors 612 to JP 10114, but EOS
decides when a Process 610 is to be created and when a process 610 is to be bound to a Virtual processor

.612.

Figure 403 shows the relationship between a user Process 610, E05, K08, and the physical resources

in CS 10110. Figure 403 shows three levels of interface between executing user Process 610 and JP 10114.
The highest level of interface is Procedure Level 40302. At this level, Process 610 interacts with CS 10110 by
calling Procedures 602 as specified by the program Process 610 is executing. The calls may be either calls
to User Procedures 40306 or calls to EOS Procedures 40307. When Process 610 is executing a procedure
602, Process 610 produces a stream of SlNs. The stream contains two kinds of SlNs, $—language SlNs 40310
and KOS SlNs 40311. Both kinds of SlNs interact with CS 10110 at the next level of interface. SIN-level

Interface 40309. SlNs 40310 and 40311 are interpreted by Microcode 40312 and 40313, and
Microinstmctions 4031 5 interact with CS 10110 at the lowest level of interface. JP 10114 Interface 40316. As

55 already explained in the diswssion of the PU 10120 micromachine. certain conditions in JP 10114 result in

148

Petitioner Apple Inc. - Ex. 1025, p. 4044

Petitioner Apple Inc. - Ex. 1025, p. 4045

15

20

30

35

60

65

EP 0 067 556 B1

Event Signals 40314 which invoke microroutines in S-interpreter Microcode 40312 or KOS Microcode
40313. Only Procedure-Level Interface 40302 and SIN-level Interface 40309 are visible to users. Procedure-
level Interface 40309 appears as cells in user Procedures 602 or as statements in user Procedures 602 which
compilers translate Into calls to EOS procedures 802. SIN-level Interface 40309 appears as the Name Tables
10335 and SlNs in Procedure Objects 608 generated by compilers.

As Figure 403 indicates. EOS exists only at Procedural Level 40302, while KOS exists at Procedural
Level 40302, and SIN Level 40304. and within the microcode beneath SIN Level 40309. The only portion of
the operating system that is directly available to user Processes 610 is EOS Procedures 40307. EOS
Procedures 40307 may in turn call KOS procedures 40308. In many cases, an EOS Procedure 40307 will
contain nothing more than the call to a KOS Procedure 40308.

. User Procedures 40306, EOS Procedures 40307, and KOS Procedures 40308 all contain S-language
Slhls 40310. In addition. KOS Procedures 40308 only may contain special KOS SlNs 40311. Special KOS
SlNs 40311 control functions that are not available to EDS Procedures 40307 or User Procedures 40306, and
KOS S|Ns 40311 may therelore not appear in Procedures 40306 or 40307. S-language SlNs 40310 are

‘ interpreted by S—interpreter Microcode 40312,'whiIe KOS SINs 40311 are interpreted by KOS Microcode
40313. KOS Microcode 40313 may also be called by S-interpreter Microcode 40313. Depending on the
hardware conditions that cause Event Signals 40314, Signals 40314 may cause the execution of either 8-
interpreter Microcode 40312 or KOS Microcode 40313.

Figure 403 shows the system as it is executing a user Process 610. There are in addition special
Processes 610 reserved for KOS and EOS use. These Processes 610 work like user Processes 610, but carry
out operating system functions such as process management and virtual memory management. With one
exception, EOS Processes 610 call EOS Procedures 40307 and KOS Procedures 40308, while KOS Processes
610 call only KOS Procedures 40308. The exception is the beginning of Process 610 execution: KOS
perfomts the KOS-level functions required to begin executing a Process 610 and then calls EOS. EOS
perfomts the required EOS level functions and then calls the first User Procedure 40306 in the program
Process 610 is executing.

A description of how KOS handles page faults can serve to show how the parts of the system at the JP
10114»-—, SIN-. and procedure Levels work together. A page fault occurs when a Process 610 references a
data item that has no copy in MEM 10112. The page fault begins as an Event Signal from ATU 10228. The
Event Signal invokes a microroutine in KOS Microcode 40313. If the microroutine confirms that the
referenced data item is not in MEM 10112, it records the fact of the page fault in aortic KOS tables in MEM
10112 and calls another KOS microroutine that unbinds Virtual Processor 612 bound to Process 610 that
caused the page fault from JP 10114 and allows another Process 610's Virtual Processor 612 to run. Some
time after the page fault, a special operating system Process 610, the Virtual Memory Manager Process 610.
runs and executes KOS Procedures 40303. Virtual Memory Manager Process 610 initiates the 1/0 operation
that reads the data from Secondary Storage 10124 into MEM 10112. When IOS 10116 has finished the
operation, Process 610 that caused the page fault can run again and Virtual Memory Manager Process 610
performs an operation which causes Process 610's Virtual Processor 612 to again be bound to JP 10114.
When Process 610 resumes execution. it again attempts to reference the data. The data is now in MEM
10112 and consequently, the page fault does not recur.

The division of Operating System 40102 into two hierarchically-related operating systems is
characteristic for CS 10110. Several advantages are gained by such a division:
- Each of the two operating systems is simpler than a single operating system would be. EOS can

concern itself mainly with resource allocation policy and high-level virtual resources, while KOS can
ooncem itself with low-level virtual resources and hardware control.

— Because each operating system is simpler, it is easier to verify that each system's components are
performing correctly, and the two systems are therefore more dependable than a single system.

— Dividing Operating System 40102 makes it easier to implement different embodiments of CS 10110.
Only the interface provided by EOS is visible to the user, and consequently, the user interface to the
system can be changed without altering KOS. In fact, a single CS 10110 may have a number of EOSs.
and thereby present different interfaces to different users. Similarly, changes in the hardware affect the
implementation of the K03. but not the interface that KOS provides EOS. A given EOS can therefore
run on more than one embodiment of CS 10110. , .

--’ A divided operating system is more secure than a single operating system. Physical access to JP 10114
is provided solely by K05. and consequently, KOS can ensure that users manipulate only those
resources to which they have access rights.
All Css 10110 will have the virtual resources defined by KOS, while the resources defined by EDS will

vary from one CS 10110 to another and even within a single CS 10110. Consequently, the remainder of the
discussion will concern itself with KOS.

The relationship between the K05 and the rest of CS 10110 is governed by four principles:
—— Only the K08 has access to the resources it controls. User calls to EOS may result in EOS calls to K05,

and S-language SlNs may result in invocations of KOS microcode routines, but neither EOS nor user
programs may directly manipulate resources controlled ‘by KOS. A

’— The KOS is passive. it responds to calls from the EOS. l0 '“i°"°°°d° l"V°°3fi0ns. and to Event Signals.
but it initiates no action on its own.

147

Petlitioner Apple Inc. - Ex. 1025, p. 4045

Petitioner Apple Inc. - Ex. 1025, p. 4046

10

20

50

6'0

EP 0 067 556 B1

—- The KOS is invisible to all system users but the EOS. KOS does not affect the logical behavior of a _
Process 610 and is noticeable to users only with regard to the speed with which a Process 610 executes
on C8 10110. ‘

As discussed above, KOS manages both physical and virtual resources. The physical resources and
‘some of the virtual resources are visible only within KOS; others of the virtual resources are provided to
EOS. Each virtual resource has two main parts: a set of data bases that contain the virtual resource’s state.
and a set of routines that manipulate the virtual resource. The set of routines for a virtual resource are
termed the resource's manager. The routines may be KOS Procedures 40308, or they may be KOS
Microcode 40313. As mentioned, in some cases, KOS uses separate Processes 610 to manage the
resources.

For the purposes of this specification. the resources managed by K03 fall into two main groups: those
associated with objects, and those associated with_Processes 610. In the foilowing, first those resources
associated with objects, and then those associated with Processes 610 are discussed.

6. Objects and Object Management (Fig. 404)
The virtual resources ten-ned objects are defined by K05 and manipulated by E03 _and KOS. Objects as

seen by EOS have five properties: '
— A single UID that identifies the object throughout the object's life and specifies what Logical Allocation

Unit (LAU) the object belongs to.
— A set of attributes that describe the object and limit access to it.
- Bit—addressable cements. l the present embodiment, the contents may range from 0 to l2‘"*32l --1 bits

in length. Any bit in the contents may be addressed by an offset. »
— Objects may be created. ‘
— Objects may be destroyed. '

All of the data and Procedures 602 in a CS 10110 are contained in objects. Any process 610 executing
on a CS 10110 may use a UID-off set address to attempt to access data or Procedures 602 in certain objects
on any CS 10110 accessible to the CS 10110 on which Process 610 is executing. The objects which may be
thus accessed by any Process 610 are those having UlDs which are guaranteed unique for all present and
future CS 10110. Objects with such unique UlDs thus fomt a single address space which is at least
potentially accessible to any process 610 exewting on any CS 10110. As will be explained in detail later,
whether a Process 610 can in fact access an object in this single address space depends on whether Process
610 has access rights to the object. Other objects, whose UlDs are not unique. may be accessed only by
Processes 610 executing on Css 10110 or groups of CS5 10110'for which the non-unique UID is in fact
unique. No two objects accessible to a (:8 10110 at a given time may have identical UlDs.

The following discussion of objects will first deal with objects as they are seen directly by E05 and
indirectly by user programs, and than deal with objects as they appear to K05.

Figure 404 illustrates how objects appear to EOS. The object has three parts: the UlD 40401. the
' Attribut 40404, and the Conterrts, 40406. The object's contentsreside in a Logical Allocation Unit (LAU),

40405. UID 40401 has two pars: a LAU Identifier (LAUIDI 40402 that indimtes what LAU 40405the object is
on. and the Object Serial Number (OSN) 40403, which specifies the object in LAU 40405.

The EOS can create an object on a LAU 40405, and given the object's UlD 40401 , can destroy the object.
In addition. E05 can read and change an object's Attributes 40404. Any Procms 610 executing on a CS
10110 may reference information in an object by specifying the object's UID 40401 and the bit in the object
at which the information begins. At the highest level, addresses in CS 10110 thus consist of a UID 40401
specifying an object and an offset specifying the number of bits into the object at which the information
begins. As will be explained in detail below, K05 translates such UlD-offset addresses into lntemtediate
fonns called AON-offset addresses for use in JP 10114 and imo page number-displacement addresses for
use in referencing information which has been copied into MEM 10112. -

The physical implementation and manipulation of objects is restricted solely to KOS. For instance
objects and their attributes are in fact stored in Secondary Storage 10124. When a program references a
portion of an object, KOS copies that portion of the object from Secondary Storage 10124 into MEM 10112,
and if the portion in MEM 10112 is changed. updates the copy ofthe object in Secondary Storage 10124.
E08 and user programs cannot control the location of an object in Secondary Storage 10124 orthe location
of the copy of a portion of an object in MEM 10112, and therefore n access the object only by means of
KOS. .

While EOS cannot control the physical implementation of an object. it can provide KOS with
information that allows K05 to manage objects more effectively. Such information is tenned hints. For
instance, KOS generally copies a portion of an object into MEM 10112 only if a Process 610 references
information in the object. However, EOS schedules Process 610 execution, and therefore can predict that
certain objects will be required in the near future. EOS can pass this information on to K05. and KOS n
use the information to decide what portions of objects to copy into MEM 10112.

a. Object and User Programs (fig. 405)
As stated above, user programs manipulate objects, but the objects are generally not directly visible to

user programs. Instead, user programs use symbols such as variable names or other references to referto

1143

Petitioner Apple Inc. - Ex. 1025, p. 4046

Petitioner Apple Inc. - Ex. 1025, p. 4047

‘V

II

10

20

25

30

0, EP 005? 556 B1
data stored in objects or file names to refer to the objects themselves. The discussion of Namespace has
already illustrated how CS 10110 compilers translate variable names appearing in statements in
Procedures 602 into Names, i.e., indexes of NTEs 30401, how Name Resolve microcode resolves NTE 30401
into Logical Descriptors 27116, and how ATU 10228 translates Logical Descriptors 27116 into locations in
MEM 10112 containing copies of the portions of the objects in which the data represented by the variables
resides. ’

The translation of filenames to UlDs 40401 is accomplished by EOS. EOS maintains a filename
translation table which establishes a relationship between a system filename called a pathname and the
UID 40401 of the object containing the file's data, and thereby associates the pathname with the object. A
Pathname is a sequence of ASCII characters which identifies a file to a user of CS 10110. Each pathname in
a given CS 10110 must be unique. Figure 405 shows the filename translation table. Referring to that figure,
when a user gives pathname 40501 to the E05, E05 uses Filename Translation Table 40503 to translate
pathna_me 40501 into UID 40401 for object 40504 containing the file. An object in CS 10110 may thus be
identified in two ways: by means of its UID 40401 or by means of a Pathname 40501. While an object has
only a single UID 40401 throughout its life, the object may have many Pathnames 40501 . All that is required
to change an object's pathname 40501 is the substitution of one Pathname 40501 for another in the objects
Entry 40502 in Filename Translation Table 40503. One consequence of the fact that an object may have
different Pathnames 40501 during its life is that when a program uses a Pathname 40501 to identify an
object, a user of CS 10110 may make the program process a different object simply by giving the object
which formerly had Pathname 40501 which appears in the program a new Pathname 40501 and giving the
next object to be processed the Pathname 40501 which appears in the program.

in the present embodiment, an object may contain only a single file, and consequently, a Pathname
40501 always refers to an entire object. in other embodiments, a Pathname 40501 may refer to a portion of
an object, and in such embodiments. Filename Translation Table 40503 will associate a Pathname 40501
with a UID-offset address specifying the beginning of the file.

-. b. UlDs 40401 (Fig. 406)
UlDs 40401 may identify objects and other entities in CS 10110. Any entity identified by a UID 40401 has

only a single UID throughout its life. Figure 406 is a daailed representation of a CS 10110 UlD 40401. UiD
40401 is 80 bits long, and has two fields. Field 40402. 32 bits long, is the Logical Allocation Unit identifier
(LAUID). it specifies LAU 40405 containing the object. LAUID 40402 is further subdivided into two subfields:
LAU Group Number (LAUGN) 40607 and LAU Serial Number (LAUSN) 40605. LAUGN 40607 specifies a
group of LAUs 40405, and LAUSN 40605 specifies a LAU 40405 in that group. Purchasers of CS 10110 may
obtain LAUGNs 40607 from the manufacturer. The manufacturer guarantees that he will assign LAUGN
4060'] given the purchaser to no other CS 10110, and thus these LAUGNs 40607 may be used to form UlDs
40401 which will be unique for all CS3 10110. Field 40604, 48 bits long, is the Object Serial Number (OSN). it
specifies the object in LAU 40405.

UlDs 40401 are generated by K05 Procedures 602.
There are two such procedures 602, one which generates UlDs 40401 which identify objects, and

another which generates UlDs 40401 which identify other entities in CS 10110. The fonner Procedure 602 is
called Generate Object UlD, and the latter Generate Non-object UID. The Generate Object UID Procedure
602 is called only by the KOS Create Object Procedure 602. Create Object Procedure 602 provides Generate
Object UID Procedure 602 with a LAUlD 40402. and Generate Object UID Procedure 602 returns a UID 40401
for the object. in the present embodiment, UID 40401 is formed by taking the current value of the
architectural clock. contained in a location in ME_M 10112, forming an OSN 40403 from the architectural
clock's cun'ent value, and concatenating OSN 40403 to LAUID 40402.

Generate Non-object UID Procedure 602 may be invoked by EOS to provide a UID 40401 which does
notspecify an object. Non—object UiDs 40401 may be used in CS 10110 wherever a unique label is required.
For example. as will be explained in detail later, all Virtual processors 612 which are available to CS 10110
have non-object UiDs 40401. All such non-object UlDs 40401 have a single LAUSN 40607, and thus, EOS
need only provide a LAUGN 40605 as an argument. Generate Non-object UID Procedure 602 concatenates
LAUGN 40605 with the special LAUSN 40607, and LAUID 40402 thus produced with an OSN 40403 obtained
from the architectural clock. In other embodiments, OSNs 40403 for both object and non-object UlDs 40401
may be generated by other means, such as counters.

CS 10110 also has a_special UID 40401 called the Null UID 40401. The Null UID 40401 contains nothing
buto bits, and is used in situationswhich require a UlD value which cannot represent an entity in CS 10110.

c. Object Attributes . '
What a program can do with an object is detennined by the object's Attributes 40404. There are two

kinds of Attributes 40404: Object Attributes and Control Attributes. Object Attributes describe the object's
contents; Control Attributes control access to the object. Objects may have Attributes 40404 even though
they have no Contents 40406, and in some cases, objects may even exist solely for their Attributes 40404.

For the purposes of this discussion. there are two kinds of Object Attributes: the Size Attribute and the
Type Attributes.

An object's Size Atnibute indicates the number of bits that the object currently corttains. On each

149

Petitionet‘ Apple Inc. - Ex. 1025, p. 4047

Petitioner Apple Inc. - Ex. 1025, p. 4048

15

EP 0 057 556 31

reference to an object's Contents 40406, KOS checks to make sure that the data accessed does not extend‘
beyond the end of the object. if it does, the reference is aborted. .

The Type Attributesindicate what kind of information the object contains and how that infonnation
may be used. There are three categories of Type Attributes: the Primitive Type Attributes, the Extended
Type Attfibute, and the Domain of Execution attribute. An object’s Primitive Type Attribute indicates
whether the object is a data object. a Procedure Object 608, an Extended Type Manager, or an S-interpreter.

"As their names imply. data objects contain data and Procedure Objects 608 contain Procedures 602.
Extended Type Managers (ETMsl are a special type of Procedure Object 608 whose Procedures 608 may
perform operations solely on objects called Extended Type Objects. Extended Type Objects lETOsl are
objects which have an Extended Type Attribute in addition to their Primitive Type Attribute; for details, see
the discussion of the Extended Type Anribute below. S-interpreters are objects that contain interpreters for
S-languages. In the present embodiment, the interpreters consist of dispatch tables and microcode, but in
other embodiments, the interpreters may themselves be written in high-level languages. Like the Length
Attribute, the Primitive Type Attributes allow KOS to ensure that a program is using an object correctly. For
instance, when the K05 executes a call for a Procedure 602 it checks whether the object specified bytha call
is a Procedure Object 608. If it is not. the call fails.

d. Attributes and Access Control .

The remaining Object Attributes and the Contra! Attributes are all part of CS 10110's Access Control
System. The Access Control System is discussed in detail later; here, it is dealt with only to the extent
required for the discussion of objects. in CS 10110, an access of an object occurs when a Process 610
fetches S|Ns contained in a Procedure Object 608, reads data from an object. writes data to an object, or in
some cases. when Process 610 transfers control to a Procedure 602. The Access Control System checks
whether a Process 610 has the right to perform the access it is attempting. There are two kinds of access in
CS 10110, Primitive Access and Extended Access. Primitive Access is access which the Access Control
System checks on every reference to an object by a Process 610; Extended Access is access that is checked
only on user request. Primitive access checks are performed on every object; extended access checks may
be performed only on H05, and may be performed only by Procedures 602 contained in EI’Ms.

The means by which the Access Control System checks a Process 610's access to an object are Process
610's subject and the object's Access Control Lists (ACLsl. Each Process 610 has a subject made up of four
UlDs 40401. These UlDs 40401 specify the following:
— The userfor whom Process 610 was created. This UID 40401 is termed the principal component of the

subject. -
— Process 610 itself. This UID 40401 is termed the process component.
- The domain in which Process 610 is currently executing. This UID 40401 is termed the domain

component. .-
— A user-defined subgroup of subjects. This UID 40401 is termed the tag component.

A domain is a group of objects which may potentially be accessed by any Process 610 which is
executing a Procedure 602 in one of a group of Procedure Objects 608 or l':‘l'Ms. Each Procedure Object 608
or ETM has a Domain offixecution (DOE) Attribute. This attribute is a UID 40401, and whilea Process 610 is

executing a Procedure 602 in that Procedure Object 608 or ETM, the DOE attribute UID 40401 is the domain
component in Process 610's subject. The DOE attribute thus defines a group of objects which may be
accessed by a Process 610 executing Procedures 602 from Procedure Object 608. The group of objects is
called Procedure Object 608's domain. As may be seen from the above definition, a subject's domain
component may change on any call to or return from a Procedure 602. The tag componem may change
whenever the user desires. The principal component and the process component, on the other hand, do not
change for the life of Process 610. -

The ACLs which make up the other half of the Access Control System are attributes of objects. Each
ACL consists of a series of Entries (ACLE), and each ACl.E has two parts: a Subject Template and a set of
Access Privileges. The Subject Template defines a group of subjects, and the set of Access Privileges define
the kinds of access that subjects belonging to the group have to the object. To check whether an access to
an object is legal, the KOS examines the ACLs. it allows access only if it finds an ACLE whose Subject
Template matches the current subject of Process 610 which wishes to make the access and whose set of

. Access Privileg includes the kind of access desired by Process 610. For example, a Procedure Object 608
may have an ACL with two entries: one whose Subject Template allows any subject access, and whose set
of Access Privileges allows only Execute Access, and another whose Subject Template allows only a single
subject access and whose set of Access Privileges allows Read, Write, and Execute Access. Such an ACL
allows any user of CS 10110 to execute the Procedures 602 in Procedure Object 608. but only a specified
Process 610 belonging to a specified user and executing a specified group of Procedures 602 may examine
or modify the Procedures 602 in the Procedure Object 608. _ ‘

There are two kinds of ACLs. All objects have Primitive Access Control Lists (PACLSI: Eros may in
addition have Extended Access Control Lists (EACLS). The subject portion of the ACLE is the same in all
ACLs; the two kinds of list differ in the kinds of access they control. The access controlled by the PACL is
defined by K08 and is checked by KOS on every attempt to gain such access; the access controlled by the
EACL is defined by the user and is checked only when the user requests K05 to do so.

150

Petitioner Apple Inc. - Ex. 1025, p. 4048

Petitioner Apple Inc. - Ex. 1025, p. 4049

20

25

30

EP 0 057 556 B1

e. implementation of Objects
1. Introduction "-19. 407, 408)

The user of a CS 10110 need only concern himself with objects as they have just been described. In
order for a Process 610 to reference an object, the object's LAU 40405 must be accessible from CS 10110
upon which Process 610 is running, Process 610 must know the object's UID 40401, and Process 610's
current subject must have the right to access the object in the desired manner. Process 610 need know
neither how the object's Contents 40406 and Attributes 40404 are stored on C8 10110’s physical devices not
the methods CS 10110 uses to make the object's Contents 40406 and Attributes 40404 available to Process
610.

“The K03, on the other hand. must implement objects on the physical devices that make up (:8 10110. In
so doing, it must take into account two sets of physical limitations:
— In logical terms, all CSs 10110 have a single logical memory, but the physical implementation of

memory in the system is hierarchical: a given CS 10110 has rapid access to a relatively small MEM
10112, much slower access to a relatively large amount of slow Secondary Storage 10124, and very
slow access to LAUs 40405 on other accessible CS5 10110.

—- UlDs 40401, and even more, subjects, are too large to be handled efficiently on JP 10114’s imernal data
paths and in JP 10114's registers.
The means by which the K05 overcomes these physical limitations will vary from embodiment to

embodiment. Here. there are presented first an overview and then a detailed discussion of the means used
In the present embodiment.

The physical limitations of the memory are overcome by means of a Virtual Memory system. The
Virtual Memory System creates a one-level logical memory by automatically bringing copies of those
portions of objects required by executing Processes 610 into MEM 10112 and automatically copying altered
portions of objects from MEM 10112 back to Secondary Storage 10124. Objects thus reside primarily in
Secondary Storage10124, but copies of portions of them are made available in MEM 10112 when a Process
610 makes a reference to them. Besides bringing portions of objects into MEM 10112, when required, the
Virtual Memory System keeps track of where in MEM 10112 the portions are located, and when a Process
610 references a portion of an object that is in MEM 10112, the Virtual Memory System translates the
reference into a physical Ioration in MEM 10112.

‘ JP 10114's need for smaller object identifiers and subject Identifiers is satisfied by the use of internal
identifiers called Active Object Numbers (AONs) and Active Subject Numbers (ASNS) inside JP 10114. Each
time a UID 40401 is moved from MEM 10112 into JP 10114's registers,.it is translated into an AON, and the
reverse translation takes place each time an AON is moved from a JP 10114's registers to MEM 10112.
Similarly, the current subjects of Processes 610 which are bound to Virtual Processors 612 are translated
from four UlDs 40401 into small integer ASNs, and when Virtual Processor 612 is bound to JP 10114, the
ASN for the subject belonging to Virtual Processor 612's process 610 is placed in a JP 10114 register. The
translations from UID 40401 to AON and viceversa, and front subject to ASN are performed by KOS.

When KOS translates UlDs 40401 to AONs and vice-versa, it uses AOT 10712. An AOT 10712 Entry
(AOTE) for an object contains the objects UID 40401, and the AOTE’s index in ACT 10712 is that object's
AON. Thus, given an object's AON, KOS can use AOT10712 to determine the object's UID 40401, and given
an obect's UID 40401, K08 can use AOT 10712 to determine the object's AON. If the object has not been
referenced recently, there may be no AOTE for the object. and thus no AON for the object's UID 40401.
Objects that have no AONs are called inactive objects. If an attempt to convert a UID 40401 to an AON
reveals diet the object is inactive, an inactive Object Fault results and KOS must activate the object, that is,
it must assign the object an AON and make an AOTE for it.

K08 uses AST 10914 to translate subjects into ASN's. When a Process 610's subject changes, AST
10914 provides Process 610 with the new subject's ASN. A subject may presently have no ASN associated
with it. Such subjects are termed inactive subjects. if a subject is inactive, an attempt to translate the subject
to an ASN causes KOS to activate the subject. that is, to assign the subject an ASN and make an entry for
the subject in AST 10914.

In order to achieve efficient execution of programs by Processes 610, K05 accelerates information that
is frequently used by executing prowsses 610. There are two stages of acceleration:
— Tables that contain the information are wired into MEM 10112, that is, the Virtual Memory System

never uses MEM 10112 space reserved for the tables for other purposes. -
— Special hardware devices in JP 10114 contain portions of the information in the tables.

MHT 10716, AOT 10712, and AST 10914 are examples of the first stage of acceleration. As previously
mentioned, these tables are always present in MEM 10112. Address Translation Unit (ATU) 10228 is an
example of the second stage. As previously explained, ATU 10228 is a hardware cache that contains copies
of the most recently used MHT 10716 entries. Like MHT 10716, it translates AON offset addresses into the
MEM 10112 locations that contain copies of the data that the UID-offset address corresponding to the AGN-
offset address refers to ATU 10228 is maintained by KOS Logical Address Translation (LAT) microcode.

Figure 407 shows the relationship between ATU 10228, MEM 10112, MHT 10716, and KOS, LAT
microcode 40704. When JP 10114 makes a memory reference, it passes A0 N-offset Address 40705 to ATU
10228. If ATU 10228 contains a copy of MHT 10716's entry for Address 40705, it immediately produces the
conesponding MEM 10112 Address 40706 and transmits the address to MEM 10112. If there is no copy,

151

Petitioner Apple Inc. - Ex. 1025, p. 4049

Petitioner Apple Inc. - Ex. 1025, p. 4050

10

15

20

25

30

' EP 0067 556 B1

ATU 10228 produces an ATU Miss Event Signal which invokes LAT microcode 40704 in JP 10114. LAT
microcode 40704 obtains the MHT entry that corresponds to the AON-offset address from MHT 10716,
places the entry in ATU 10228, and returns. JP 10114 than repeats the reference. This time, there is an entry
for the reference, and ATU 10228 translates the AON address into the address of the copy of the data
contained in MEM 10112. '

The relationship between KOS table, hardware cache, and microcode just described is typical for the
presem embodiment of CS 10110. The table (in this case, MHT 10716), is the primary source of information
and is maintained by the Virtual Memory Manager Process, while the cache accelerates portions of the
table and is maintained by KOS microcode that is invoked by event signals from the cache.

AOT 10712, AST 10914, and MHT 10716 share another characteristic that is typical of the present
embodiment of CS 10110: the tables are constructed in such a fashion that the table entry that performs the
desired translation is loted by means of a hash function and a hash table. The hash function translates
the large UID 40401, subject, or AON into a small integer. This integer is the index of an entry in the hash
table. The cements of the hash table entry is an index into AOT 10712, AST 10914, or MHT 10716, as the
case may be, and these tables are maintained in such a fashion that the entry corresponding to the index
provided by the hash table is either the entry that can perform the desired translation or contains
information that allows KOS to find the desired entry. The entries in the tables furthermore contain the
values they translate. Consequently, KOS can hash the value, find the emry, and then check whether the
entry is the one for the hashed value. If it is not. KOS can quickly go from the entry located by the hash table
to the correct entry.

Figure 408 shows how hashing worlcs in AST 10914 in the present embodiment. In the present
embodiment, Subject 40801, Le, the principal. process, and domain components of the current subject, are
input into Hash Function 40802. Hash Function 40802 produces l:he index of an entry in ASTHT 10710.
ASTHT Entry 40504 in turn contains the index of an Entry (ASTE) 40806 in AST 10914 These ASTE 40806
indexes are ASNs. ASTE 40806 contains the principal, process, and domain components of some subject
and a link field pointing to ASTE 40806’. ASTE 40806‘ has 0 in its link field, which indicates that it is the last
link in the chain of ASTES begining with ASTE 40806. If the hashing of. a subject yields ASTE 40806, KOS
compares t.he subject in ASTE 40806 with the hashed subject; if they are identical, ASTE 40806's index in
AST 10914 is the subject’s ASN. If they are not identical, KOS uses the link in ASTE 40808 to find ASTE
40806’. It compares the subject in ASTE 40806‘ with the hashed subject; ifthey are identical, ASTE 40806"s
AST index is the subject's ASN: otherwise, ASTE 40806’ is the last entry in the chain. and consequently,
there is no ASTE 40K)6 and no ASN for the hashed subject.

In the following, we will discuss the implementation of objects in the present embodiment in detail,
beginning with the implementation of objects in Secondary Storage 10124 and proceeding l:hen to CS
10110’s Active Object Management System, the Access Control System, and the Virtual Memory System.

2. Objects in Secondary Storage 10124 (Figs. 409, 410)
Asdescribed above, objects are collected into LAUs 40405. The objects belonging to a LAU 40405 are

stored in Secondary Storage 10124. Each LAU 40405 contains an object whose contents are a table called
the Logical Allocation Unit Directory (LAUD). As its name implies, the LAUD is a directory of the objects in
LAU 40405. Each object in LAU 40405, including the object containing the LAUD, has an entry in the LAUD.
Figure 409 shows the relationship between Secondary Storage 10124, LAU 40405, the LAUD, and objects.
LAU 40405 resides on a number of Storage Devices 40904. LAUD Object 40902’ in LAU 40405 contains
LAUD 40903. Two LAUDEs 40906 are shown. One contains the attributes of LAUD Object 40902 and the
location of its contents, and the other contains the attributes of LAUD Object 40902’ containing LAUD 40903
and the location of its contents.

KOS uses a table called the Active LAU Table (ALAUT) to locate the LAUD belonging to LAU 40405.
figure 410 illustrates the relationship between ALAUT41001, ALAUT Entries 41 002. LAUs 40405, and LAUD
Objects 40902’. Each LAU 40405 accessible to CS 10110 has an Entry (ALAUTE) 41002 in ALAUT 41001.
ALAU'l'E 41002 for LAU 40405 includes LAU 40405's LAUID 40402 and UID 40401 of LAU 40705's LAUD

Object 40902’. Hence, given an object's. UID 40401, KOS can use UID 40401's LAUID 40402 to locate
I ALAUTE 41002 for the object's LAU 40405, and can use ALAUTE 41002 to locate LAU 40405's LAUD 40903.
Once LAUD 40903 has been found, OSN portion 40402 of the object's UID 40401 provides the proper
LAUDE 40906, and LAUDE 40906 contains object’: attributes and the location of its contents.

LAUD 40903 and the Procedures 602 that manipulate it belong to a part of KOS termed the inactive
Object Manager. The following discussion of the Inactive Object Manager will begin with the manner in
which an object's contents are represented on Secondary Storage 10124, will then discuss LAUD 40903 in
detail, and conclude by discussing the operations perlonned by Inactive Object Manager Procedures 602.

a.a. Representation of an Objects Contents on Secondary Storage 10124
In general, the manner in which an object's contents are represented on Secondary Storage 10124

depends completely on the Secondary Storage 10124. If a LAU 40405 is made up of disks, then the object's
contents will be stored in disk blocks. As long as KOS can locate the object's contents, it makes no
difference whether the storage is contiguous or non-contiguous. '

In the present embodiment, the objects’ cements are stored in files created by the Data General

152

Petitioner Apple Inc. - Ex. 1025, p. 4050

Petitioner Apple Inc. - Ex. 1025, p. 4051

10

45

EP 0 067 556 B1

Advance Operating System (AOS) procedures executing on IOS 10116 These procedures manage files that
contain objects’ contents for KOS. in future CSs 10110, the representation of an object's contents on
Secondary Storage 10124 will be managed by a portion of KOS.

b.b. LAUD 40903 (fig. 411, 412)
Figure 411 is a conceptual illustration of LAUD 40903. LAUD 40903 has three pans: LAUD Header

41102, Master Directory 41105, and LAUD Entries (LAUDES) 40905. LAUD Header 41102 and Master
Directory 41105 occupy fixed locations in LAUD 40903, and can therefore always be located from the UlD
40401 of LAUD 40903 given in Al.AUT 41001. The locations of LAUDEs 40908 are notfixed, but the entry for
an individual object can be located from Master Directory 41 105.

Turning first to LAUD Header 41102, LAUD Header 41102 contains LAUID 40402 belonging to LAU
40405 to which LAUD 40903 belongs and OSN 40403 of LAUD 40903. As will be explained in greater detail
below. KOS can use OSN 40403 to find LAUDE 40906 for LAUD 40903.

Turning now to Master Directory 41105, Master Directory 41105 translates an object's OSN 40403 into
the location of the object’s LAUDE 40906. Master Directory 41105 contains one Entry 41108 for each object
in LAU 40505. Each Entry has two fields: OSN Field 41106 and Offset Field 41107. OSN field 41108 contains
OSN 40403 for the object to which Entry 41108 belongs; Offset Field 41107 contains the offset of the
object's LAUDE 40906 in LAUD 40903. K03 orders Entries 41108 by increasing OSN 40403, and can
thereforeuse binary search means to find Entry 41108 containing a given OSN 40403. Once Entry 41108 has
been located, Entry 41108's Offset Field 41107, combined with LAUD 40903's OSN 40403, yields the UlD
oflset address of the object's LAUDE 40906.

Once K08 knows the location of LAUDE 40906 it can determine an object's Attributes 40404 and the
- location of its Contents 40406. Figure 411 gives only an overview of LAUDE 40906’s general structure.

LAUDE 40906 has three components: a group of fields of fixed size 41109 that are present in every LAUDE
40906, and two variable sized components. one, 41139, containing entries belonging to the object's PACL,
and another, 41141, containing the object's EACL

As the preceding descriptions of the LAUD's components imply, the number of LAUDEs 40906 and
Master Directory Entries 41108 varies with the number ofobjects in LAU 40405. Furthermore, the amount of
space required for an object's EACL and PACL varies from object to object. KOS deals with this problem by
including Free Space 41123 in each LAUD 40903. When an object is created, or when an object's Acts are
expanded, the Inactive Object Manager expands LAUD 40903 only ifthere is no available Free Space 41123;
if there is Free Space 41123, the inactive Object Manager takes the necexary space from Free Space 41 123;
when an object is deleted or an object's ACl..s shortened, the inactive Object Manager returns the unneeded
space to Free Space 41123.

Figure 412 is a detailed representation of a single LAUDE 40906. Figure 412 presents those fields of
LAUDE 40906 which are common to all embodiments of CS 10110; fields whid1 may vary from
embodiment to embodiment are ignored. Starting at the top of Figure 412, Structure Version Fleid 41209
contains information by which KOS can detennine which version of LAUDE 40906 it is dealing with. Size
Field 41211 contains the Size Attribute of the object to which LAUDE 40906 belongs. The Size Attribute
specifies the number of bits currently comained in the object. Lock Field 41213 is a K05 lock. As will be
explained in detail in the discussion of Processes 610, Loci: Field 41213 allows only one Process 610 to read
or write LAUDE 40906 at a time, and therefore keeps one Process 610 from altering LAUDE 40906 while
another Process 610 is reading LAUDE 40906‘. File identifier 41215 contains a system identifier for the file

. which contains the Contents 40406 oithe object to which LAUDE 40906 belongs. The form of‘Fiie identifier
41215 may vary from embodiment to embodiment; in the present embodiment, it is an AOS system file
identifier. UID Field 41217 contains UID 40401 belonging to LAUDE 40906’s object. Primitive Type Field
41219 contains a value which specifies the object's Primitive Type. The object may be a data object, a
Procedure Object 608, an ETM, or an S-interpreter object. AON Field 41221 contains a valid value only when
LAUDE 40906‘s object is active. i.e., has an entry in AOT 10712. AON Field 4121 then contains the object’:
AON. if the object is an ETO. Extended Type Attribute Field 41223 contains the UlD 40401 ofthe ETO's ETM.
Otherwise, it contains a Null UID 40401. Similarly, ifthe object is a Procedure Object 608 or an ETM, Domain
of Execution Attribute Field 41225 contains the objects Domain of Execution Attribute.

The remaining parts of LAUDE 40906 belong to the Access Control System and will be explained in
detail in that discussion. Attribute Version Number Field 41227 contains a value indicating which version of
ACLES this LAUDE 40906 contains, PACL Size Field 41229 and EACL Size Field 41231 contain the sizes ofthe
respective ACLs. PACL Offset l-‘ield 41233 and EACL Ofiset.Field 41235 contain the offsets in LAUD 40903 of
additional PACLEs 41139 and EACLEs 41141, and fixed PACLEs 41237 contains the portion of the PACL
which is always included in LAUDE 40906. ’

3. Active Objects (fig. 413)
An active object is an object whose UlD 40401 has an AON associated with it. in the present

embodiment, each CS 10110 has a set of AONs' KOS associates these AONs with UlDs 40401 in such
fashion that at any given moment, an AON in a CS 10110 represents a single UlD 40401. inside FU 10120,
AONs are used to represent UlDs CS 10110. In the present embodiment. the AON is represented by 14 bits.
A 112-bit UiD~offset address (80 bits for UID 40401 and 32 for the offset) is thus represented inside FU 10120

153

Petitioner Apple Inc. - Ex. 1025, p. 4051

Petitioner Apple Inc. - Ex. 1025, p. 4052

10

15

20

EP 0 067 556 B1

by a 46-bit AON-offset address (14 bits for the AON and 32 bits for the offset).
A CS 10110 has far fewer AONs than there are UlDs 40401. K05 multiplexes a CS 10110's AONs among

those objects that are being referenced by CS 10110 and therefore require AONs as well as UiDs 40401.
While a given AON represents only a single UID 40401 at any given time, at different times. a UID 40401
may have different AONS associated with it.

Figure 413 provides a conceptual representation of the relationship between AONs and UlDs 40401.
Each CS 10110 has potential access to 2“80 U|Ds 40401. Some of these UlDs, however, represent entities
other than objects, and others are never associated with any entity. Each CS 10110 also has a set of AONs
41303 available to it. in the present embodiment, this set may have up to 2*'14 values. Since the AONS are
only used internally, each CS 10110 may have the same set of AONs 41303. Any AON 41304 in set of AONs
41303 may be associated with a single UID 40401 in set of object UlDs 41301. At different times, an AON
41304 may be associated with different UlDs 40401.

As mentioned above. KOS associates AONS 41304 with UlDs 40401. It does so by means of AOT 10712.
Each AOT entry (AOTE) 41306 in ACT 10712 associates a UID 40401 with an AON 41304. AON 41304 is the
index of AOTE 41306 which contains UID 40401. Until AOTE 41306 is changed, the AON 41304 which is the

index of AOTE 41306 containing UID 40401 represents UID 40401. AOT 10712 also allows UiDs 40401 to be_
translated into AONs 41303 and vice-versa. Figure 413 illustrates the process for UID-offset Address 41308
and AON-offset Address 41309. AOTE 41306 associates AON 41304 in AON-offset Address 41309 with UID
40401 in UID-offset Address 41308, and Addresses 41308 and 41309 have the same Offset 41307.
Consequently, AON-offset Address 41309 represents UID-offset Address 41308 inside JP 10114. Since both
addresses use the same Offset, Address 41309 can be translated into address 41308 by translating Address
41309's AON 41304 into Address 41308's UID 40401. and Address 41308 can be translated into Address

41309 by the reverse process. In both see, the translation is perfonned by finding the proper AOTE 41306.
The process by which an object becomes active is called object activation. A UID-offset Address 41308

nnot be translated into an AON-offset_Address 41309 unless the object to whidt UID 40401 of UID-offset
Address 41308 belongs is active. lfa Process 610 attempts to perform such a translation using a UID 40401

I

belonging to an inactive object, an Inactive Object Fault occurs. K05 handles the fault by removing Process -
610 that attempted the translation from JP 10114 until a special KOS Process called the Object Manager
Process has activated the object. After the object has been activated, Process 610 may retum to JP 10114
and complete the UID 40401 to AON 41304 translation. '

The portion of K05 that manages active objects is called the Active Object Manager (AOM). Parts of the
AOM are Procedures 602, and parts of it are microcode routines. The high-level language components of
the ADM may be invoked only by KOS processes 610. K05 Active Object Manager Process 610 performs
most of the functions involved in active object management.

a.a. UID 40401 to AON 41304 Translation

Generally speaking, in'CS 10110, addresses stored in MEM 10112 and Secondary Memory 10124 are
stored as UID offset addresses. The onlyform of address that FU 10120n translate into a location in MEM
10112 is the AON-offset form. Consequently, each time an address is loaded from MEM 10112 into a FU
10120 register. the address must be translated from a UID-offset address to an AON-offset address. The
reverse translation must be performed each time an address is moved from a FU 10120 register back into
memory.

Such translations may occur at any time. For example, a running Virtual Processor 612 performs such a
translation when the Process 610 being executed by Virtual Processor 612 rries out an indirect memory
reference. An indirect memory reference is a reference which first fetches a pointer, that is, a data item
whose value is the address of another data item, and then uses the address contained in the pointer to fetch
the data itself. In CS 10110, pointers represent UID-offset-addresses. Virtual Processor 612 performs the
indirect memory reference by fetching the pointer from MEM 10112, placing it in FU 10120 registers,
translating UiD 40401 represented by the pointer into AON 41304 associated with it. and using the resulting
AON-offset address to access the data at the location specified by the address.

Most such translations, however, occur when Virtual Processor 612 state is saved or restored. For
instance, when one Process 610's Virtual Processor 612 is removed from JP 10114 and another Process
610's Virtual Processor 612 is bound to JP 10114, the state of Virtual Processor 612 being removed from JP
1011.4 is stored in memory, and the state of Virtual Processor 612 being bound to JP 101 14 is moved into JP
10114’s registers. Because only UID-offset addresses may be stored in memory, all of the AON-offset
addresses in the state of Virtual Processor 612 which is being removed from JP 10114 must be translated
into UID-offset addresses. Similarly, all of the UID-offset addresses in the state of Vinual Processor 612
being bound to JP 10114 must be translated into AON-offset addresses before they can be loaded into FU
10120 registers.

C. The Access Control System _ _
As mentioned in the introduction to objects, each time a process 610 accesses data or SlNs in an object.

the K05 Access Control System checks whether Process 610's current subject has the right to perform the
kind of access that Process 610 is attempting. if Process 610's current subject does not have the proper

access, the Access Control System aborts the memory operation which Process 610 was attempting to

154

Petitioner Apple Inc. - Ex. 1025, p. 4052

Petitioner Apple Inc. - Ex. 1025, p. 4053

10

15

20

30

EP 0 067 556 B1

carry out. The following discussion presents details of the implementation of the.Access Control System,
beginning with subjects, then proceeding to subject templates, and finally to the means used by KOS to
accelerate access checking.

a. Subjects .
A Process 610's subject is part of process 610's state and is contained along with other state belonging

to Process 610 in an object called a Process Object. Process Objects are dealt with at length in the detailed
discussion of Processes 610 which follows the discussion of objects. While a subject has. as memioned
above, four components, the principal component, the process component, the domain component, and
the tag component, the Access Control System in the present embodiment of CS 10110 assigns values to
only the first three components and ignores the tag component when checking access.

In the present embodiment, the UlDs 40401 which make up the components of a Process 610’s subject
are the UlDs 40401 of objects containing infonnation about the entities represented by the UlDs 40401. The
principal component's UID 40401 represents an object called the Principal Object. The Principal Object

- contains information about the user for whom Process 610 was created. For example, the information
might concern what access rights the user had to the resources of CS 10110, or it might contain records of
his use of CS 10110. The process component's UID 40401 represents the Process Object. while the domain
componenfs UID 40401 represents an object called the Domain Object. The Domain Object contains
information which must be accessible to any Process 610 whose subject has the Domain Object's UlD
40401 as its domain component. Other embodiments of CS 10110 will use the tag component of the
subject. In these embodiments, the tag component's UlD 40401 is the UlD 40401 of a Tag Object containing
at least such information as a list of the subjects which make up the group of subjects represented by the
tag component's UID._

b. Domains

As stated above, the subject's domain component is the domain of execution attribute belonging to the
Procedure Object 608 or ETM whose code is being executed when the access request is made. The domain
component of the subject thus gives Process 610 to which the subject belongs potential access to the group
of objects whose ACLs have AcLEs with subject templates containing domain components that match the
DOE attribute. This group of objects is the domain defined by the Procedure Object 608 or E'l'M's DOE
attribute. When a Process 610 executes a Procedure 602 from a Procedure Object 608 or ETM with a given
DOE attribute, Process 610 is said to be executing in the domain defined by that DOE attribute. As may be
inferred from the above, different Procedure Objects 608 or ETMs may have the same DOE attribute. and
objects may have ACl.Es which make them members of many different domains.

In establishing a relationship between a group of Procedure Objects 608 and another group of objects,
a domain allows a programmer using CS 10110 to ensure that a given object is read. executed. or modified
only by a certain set of Procedures 602. Domains may thus be used to construct protected subsysterns in
CS 10110. One example of such a protected subsystem is K05 itself: the objects in CS10110which contain
KOS tables all have ACLs whose domain tempiate components match only the DOE which represents the
K05 domain. The only Procedure Objects 608 and ETMs which have this DOE are those which contain KOS
Procedures 602, and consequently. only KOS Procedures 602 may manipulate KOS tables.

Since an object may belong to more than one domain, a programmer may use domains to establish
hierarchies of access. For example, if some of the objects in a first domain belong both to the first domain
and a second domain, and the second domain's objects all also belong to the first domain, then Procedures
602 contained in Procedure Objects 608 whose DOES define the first domain may access any object in the
first domain, including those which also belong to the second domain, while those from Procedure Objects
608 whose DOES define the second domain may access only those objects in the second domain.

c. Access Control Lists

As previously mentioned, the Access Control System compares the subject belonging to Process 610
making an access to an object and the kind of access Process 610 desires to make with the object’5 ACLs to
determine whether the access is legal. The following discussion of the ACLs will first deal with Subject
Templates, since they are common to all ACLs, and than with PACLs and EACLs.

1. Subject Templates (Fig. 416)
Figure 416 shows Subject Templates, PACL Entries (PACLES), and EACL Entries (EACLEsl. Turning first

to the Subject Tern plates, Subject Template 41601 consists of four components, Principal Template 41606,
-Process Template 41607, Domain Template 41609, and Tag Template 41611. Each template has two fields.
Flavor Field 41603, and UlD Field 41605. Flavor Field 41603 indicates the way in which the templateto which
it belongs is to match the corresponding component of the subject for Process 610 attempting the access.
Flavor Field 41603 may have one of three values: match any, match one. match group. If Flavor Field 41603
has the value match any, any subject component UlD 40401 matches the template, and the Access Control
System does not examine UlD Field 41605. if Flavor Field 41603 has the value match one, then the
corresponding subject component must have the same UlD 40401 as the one contained in UlD Field 41605.
if Flavor Field 41603 has the value match group, finally. then UID Field 41605 contains a UID 40401 of an

155

Petitioner Apple Inc. - Ex. 1025, p. 4053

Petitioner Apple Inc. - Ex. 1025, p. 4054

35

40

45

55

EP O 067 556 B1

object containing information about the group of subject components which the given subject component
may match.

2. Hlrnitive Access Control Lists (PACl_s)

- PACLs are made up of PACLEs 41613 as illustrated in Figure 416. Each PACLE 41613 has two parts: a
subject template 41601 and an Access Mode Bits Field 41615. The values in Access Mode Bits Field 41615
define 1 1 kinds of access. The eleven kinds fall into two groups: Primitive Data Access and Primitive Non-
data Access. Primitive Data Access controls what the subject may do with the object's Contents 40406:
Primitive Non-data Access controls what the subject may do with the objeds Attributes 40404.

There are three kinds of Primitive Data Access: Read Access, Write Access, and Execute Access. If _a
subject has Read Access, it can mine the data contained in the object; if the subject has Write Access, :1
can alter the data contained in the object; if it has _Execute Access, it can treat the data in the object as a
Procedure 602 and attempt to execute it. A subject may have none of these kinds of access. Of 801/
combination of the kinds. On every reference to an object, the K03 checle whether the subject performing
the reference has the required Primitive Data Access.

Primitive Non—data Access to an object is required only to set or read an object's Attributes 40404. and
is checked only when these operations are performed. The kinds of Non-data Access correspond to the

' ' kinds of Attributes 40404:

Attributes Kind of Access

Object Attributes get object attributes
setobject attributes

Primitive Control get primitive control
attributes

Attributes sat primitive control
attributes

Extended Control get extended control
Attributes attributes

set extended control
attributes

‘ETM Access use as ETM
' create ETO

The access rights for object attributes allow a subject to get and set the object attributes described
previously. The access rights for primitive and extended control attributes allow a subject to get and set an
object's FAQ. and EACL respectively.

An object may have any number of PACLEs 41613 in its PACL The first five PACLEs 41613 in an object's
PACL are contained in fixed PACLE Field 4123? of LAUDE 40906 for the object: the remainder are stored in
LAUD 40903 at the location specified in PACL Offset Field 41233 of LAUDE 40805.

3. APAM 10918 and Protection Cache 102.34 (Fig. 421) .
Primitive non-data access rights are checked only when users invoke KOS routines that require such

access rights. and extended access rights are checked only when users request such checks. Primitive data
access rights, on the other hand, are checked every time a Virtual Processor 612 makes a memory reference
while executing a Process 610. The KOS implementation of primitive data access right checking therefore
emphasizes speed and efficiency. There are two parts to the implementation: APAM 10918 in MEM 10112.
and Protection Cache 10234 in JP 10114. APAM 10918 is in a location in MEM 10112 known to K05

microcode. APAM 10918 contains primitive data access information copied from PACLEs 41613 which
belong to active objects and whose Subject Template 41601 matches an active subject. Protection Cache
10234. in turn, contain copies of the information in APAM 10918 forthe active subject of Process 610 whose
Virtual Processor 612 is currently bound to JP 10114 and active objects referenced by Process 610. A
primitive data access check in CS 10110 begins with Protection Cache 10234, and if the information is not
contained in Protection Cache 10234, proceeds to APAM 10918. and if it is not there, finally, to the object's
PACL The discussion which follows begins with APAM 10918.

Figure 421 shows APAM 10918. APAM 10918 is organized as a two—dimensional array. The array's row
indexes are AONs 41304, and its column indexes are ASNs. There is a row for each AON 41304 in CS 10110.
and a column for each ASN. in figure 421, only a single row and column are shown. Any primitive data
access information in APAM 10918 for the object represented by AON 41304 j is contained in Row 42104,
while Column 42105 contains any primitive data access information in APAM 10918 for the subject

156

Petitioner Apple Inc. - Ex. 1025, p. 4054

Petitioner Apple Inc. - Ex. 1025, p. 4055

N

45

EP 0 067 556 B1

represented by ASN k. APAM Entry (APAME) 42106 is at the intersection of Row 42104 and Column 42105,
and thus contains the primitive data awess information from that PACLE 41613 belonging to the object
represented by AON 41304j whose Subjerx Template 41601 matches the subject represented by ASN k.

An expanded view of APAME 42106 is presented beneath the epresentation of APAM 10918. APAME
42106 contains four 1-bit fields. The bits represent the kinds of primitive data access that the subject
represented by APAME 42106's column index has to the object represented by APAME 42106’s row index.
— Field 42107 is the Valid Bit. If the Valid Bit is set, APAME 42106 contains whatever primitive data access

information is available for the subject represented by the column and the object represented by the
row. The remaining fields in APAME 42106 are meaningful only if Valid Bit 42107 is set.

I — Field 42109 is the Execute Bit. ll it is set, APAME 42106’s subject has Execute Access to APAME 42106's
object. '

— Field 42111 is the Read Bit. If it is set, APAME 42106‘s subject has Read Access to APAME 42106's
object.

— Field 42113 is the Write Bit. If it is set, APAME 42106‘s subject has Write Access to APAME 42106's
object.
Any combination of bits in Fields 42109 through 42113 may be set. If all of these fields are set to 0.

APAME 42106 indicates that the subject it represents has no access to the object it represents.
KOS sets APAME 42106 for an ASN and an AON 41304 the first time the subject represented by the

ASN references the object represented by AON 41304. Until APAME 42106 is set. Valid Bit 42107 is set to 0.
When APAME 42106 is set, Valid Bit 42107 is set to 1 and Fields 42109 through 42113 are set according to
the primitive data access information in the object's PACLE 41613 whose Subject Template 41601 matches
the subject. When an object is deactivated, Valid Bits 42107 in all APAMES 42106 in the row belonging to the
object's AON 41304 are set to 0: similarly, when a subject is deactivated, Valid Bits 42107 in all APAMEs
42106 in the column belonging to the subject's ASN are set to 0. ‘

4. Protemian Cache 10234 and Protection Checking (Fig. 422)
The final stage in the acceleration of protection information is Proteaion Cache 10234 in—JP 1011 4. The

‘ details of the way in which Protection Cache 10234 functions are presented in the discussion of the
hardware; here, there are discussed the manner in which Protection Cache 10234 performs access checks.
the relationship between protection Cache10234, APAM 10918, and AOT10712. and the manner in which
KOS protection cache microcode maintains Protection Cache 10234. '

Figure 422 is a block diagram of Protection Cache 10234, AOTE 10712, APAM 10918, and KOS
Microcode 42207 which maintains Protection Cache 10234. Each time JP 101 14 makes a memory reference
using a Logiwl Descriptor 27116, it simultaneously presents Logical Descriptor 27116 and a Signal 42208
indicating the kind of memory operation to Protection Cache 10234 and ATU 10228. Entries 42215 in
Protection Cache 10234 contain primitive data access and length information for objects previously
referenced by the current subject of Process 610 whose Virtual Processor 612 is currently bound to JP
10114. On every memory reference, Protection Cache 10234 emits a Validlinvalid Signal 42205 to MEM
10112. if Protection Cache 10234 contains no Entry 42215 for AON 41304 comalned in Logical Descriptor
27116's AON field 27111, ifEn1J'y 42215 indicates that the subject does not have the type of access required
by process 610, or if the sum of Logical Descriptor 27116's OFF field 27113 and LEN field 27115 exceed‘ the
object's current size, Protection Cache 10234 emits an invalid Signal 42205. This signal causes MEM 10112
to abort the memory reference. Otherwise, Protection Cache 10234 emits a Valid Signal 4205 and MEM ~
10112 executes the memory reference.

When Protection Cache 10234 emits an Invalid Signal 4205, it latches Logical Descriptor 27116 used to
make the reference into Descriptor Trap 20256, the memory command into Command Trap 27018, and if it
was a write operation, the data into Data Trap 20258. and at the same time emits one of two Event Signals
to K05 microcode. illegal Access Event Signal 4208 occurs when Process 610 making the reference does
not have the proper access rights or the data referenced extends beyond the end of the object. illegal
Access Event Signal 42208 invok KOS microcode 42215 which performs a Microcode to Software Call
42217 (described In the discussion of Calls) to KOS Access Comrol System Procedures 602 and passes the
contents of Descriptor Trap 20256. Command Trap 27018, the ASN of Process 610 (contained in a register
MGR's 10360), and if necessary, Data Trap 20258 to these Procedures 602. These procedures 602 inform
EOS of the protection violation, and EOS can then remedy it.

Cache Miss Event Signal 42206 occurs when there is no Entry 42215for AON 41304 in protection Cache
10234. Cache Miss Event Signal 4206 invokes KOS Protection cache Mis Microcode 42207, which
constnrcts missing Protection Cache Entry 42215 from information obtained from AOT 10712 and APAM
10918. If APAM 10918 contains no entry for the current subject's ASN and the AON of the object being
referenced, protection Cache Miss Microcode 42207 performs a Microcode-to-software Call to K05 Access
Control System Procedures 602 which go to LAUDE 40906 for the object and copy the required primitive
data access lnforrnation from the PACLE 41613 belonging to the object whose Subject Template 41601
matches the subject attempting the reference into APAM 10918. The KOS Access Control System
Procedures 602 then return to Cache Miss Microcode 42207, which itself returns. Since Cache Miss

Microcode 41107 was invoked by an Event Signal, the return causes JP 10114 to reexecute the memory
reference which caused the protection cadre miss. lf protection Cache 10234 was loaded as a result of the

157

Petitioner Apple Inc. - Ex. 1025, p_. 4055

Petitioner Apple Inc. - Ex. 1025, p. 4056

10

55

EP 0 057 556 B1

last protection cache miss, the miss does not recur; if Protection Cache 10234 was not loaded because the
required information was not in APAM 10918, the miss recurs. but since the information was placed in
APAM 10918 as a result of the previous miss, Cache Miss Microcode 42207 can now construct an Entry
42215 in Protection Cache 10234. When Cache Miss Microcode 42207 returns, the memory reference is

again attempted, but this time Protection Cache 10234 contains the information and the miss does notrecur. .

Cache Miss Microcode 42207 creates a new Protection Cache Entry 42215 and loads it into Protection
Cache 10234 as follows: Using AON 41304 from Logical Descriptor 27116 latched into Descriptor Trap
20256 when the memory reference which caused the miss was executed and the current subject's ASN,
contained in GFl's 10360. Cache Miss Microcode locates APAME 42106 for the subject represented by the
ASN and the object represemed by AON 41304 and copies the contents of APAME 42106 into a JP 10114
register which may serve as a source for JPD Bus 10142. It also uses AON 41304 to locate AOTE 41306 for
the obiect and copies the contents of Size Field 41519 into another JP 10114 register which is a source for
JPD Bus 10142. it then uses three special rnicrocommands, executed in successive microinstructions, to
load Protection Cache Entry 42215. The first microcommand loads Protection Cache Entry 42215's TS 24010
with AON 41304 of Logiwl Descriptor 27116 latched into Descriptor Trap 20256; the second loads the
object's size into Protection Cache 10234's EXTENT field, and the third loads the contents of APAME 42106
in the same fashion. ,

Another microcommand invalidates all Entries 42215 in Protection Cache 10234. This operation, called
flushing, is performed when an object is deactivated or when the current subject changes. The current
subject changes whenever a Virtual Processor 612 is unbound from JP 101 14, and whenever a Process 610
performs a II to or a return from a Procedure 602 executing in a domain different from that in which the
calling Procedure 602 or the Procedure 602 being rammed to exewtes in. in the cases of the Call and the
unbindlng of Virtual Processor 612, the cache flush is performed by K08 Call and dispatching microcode: in
the case of object deactivation, it is performed by a K08 procedure using a special K05 SIN which invokes
Cache Flush Microcode.

D. Processes

1. . Synchronization of Processes 610 and Virtual Processors 612
Since Processes 610 and the Virtual Processors 612 to which they are bound may execute concurrently

on C8 10110, KOS must provide means for synchronizing Processes 610 which depend on each other. For
example, if process 610 A cannot proceed until Process 610 B has performed some operation, there must
be a mechanism for suspending A's execution until B is finished. Generally speaking, four kinds of
synchronization are necessary:
— One Process 610 must be able to hall and wait for another Process 610 to finish a task before it

proceeds. .
-— One Process 610 must be able to send another Process 610 a message and wait for a reply before it

proceeds. ‘
-— when processes 610 share a data base. one Process 610 must be able to exclude 0fl1Bl' Processes 610

from the data base until the first Process 610 is flnised using the data base. _y
— One Process 610 must be able to interrupt another Process 610, i.e., asynchronously cause the second

Process 610 to perform some action. ’
. KOS has internal mechanisms for each kind of synchronization, and in addition supplies

synchronization mechanisms to EOS. KOS uses the internal mechanisms to synchronize Virtual Processors
612 and KOS Processes 610. while EOS uses the mechanisms supplied by KOS to synchronize all other
Processes 610. The internal mechanisms are the following:
— Event counters, Await Entries, and Await Tables. As will be explained in detail below, Event Counters

and Await Entries allow one Process 610 to halt and wait for another Process 610 to complete an
operation. Event counters and Await Entries are also used to implement procem interrupts. Await
Entries are organized into Await Tables.

-— Message Queues. Message Queues allow one Process 610 to send a message to another and wait for a
reply. Message Queues are implemented with Event Counters and queue data structures. _

- Locks. Locks allow one Process 610 to exclude other Processes 610 from a data base or a segment of
code. Locks are implemented with Event Counters and devices called Sequencers.
K05 makes Event Counters, Await Entries, and Message Queues available to EOS. It does not provide

Locks, but it does provide Sequencers, so that EOS can construct its own Locks. The following discussion
will define and explain the logical properties of Evem Counters, Await Entries, Message Queues,
sequencers, and Locks. Their implementation in the present embodiment will be described along with the
implementation of Processes 610 and Virtual Processors 612.

a. Event Counters 44801, Await Entries 44804, and Await Tables (Fig. 446. 449)
Event Counters, Await Entries, and Await Tables are the fundamental components of the K03

Synchronization System. Figure 448 illustrates Evem Counters and Await Entries in the present
embodiment. Figure 449 gives a simplified representation of Process Event Table 44705, the present
embodiment's Await Tables. Turning first to Figure 448, Event Counter 44801 is an area of memory which

158

Petitioner Apple Inc. - Ex. 1025, p. 4056

Petitioner Apple Inc. - Ex. 1025, p. 4057

20

25

EP 0 067 556 31

contains a value that may only be increased. In one of the present embodiment. Event Counters 44801 for
KOS systems which may not page fault are always present in MEM 10112; other Event Counters 44801 are
stored in Secondary Storage 10124 unless a Process 610 has referenced them and thereby caused the VMM
System to load them into MEM 10112. The value contained in an Event Counter 44801 is termed an Event
Counter Value 44802. in the present embodiment, Eventcounter 44801 contains 64 bits of data. of which 60
make up Event Counter Value 44802. Event Counter 44801 may be referred to either as a variable or by
means of a 128-bit UID pointer which comains Event Counter44801’s location. The UID pointer is termed an
Event Counter Name 44803.

Await Entry 44804 is a component of entries in Await Tables. ln the present embodiment. there are two
Await Tables: Process Event Table 44705 and Virtual Processor Await Table (VPAT) 45401. VPAT 45401 is

always present in MEM 10112. As already mentioned, Figure 449 illustrates PET 44705. Both PET 44705 and
UPAT 45401 will be described in detail later. Each Await Entry 44804 contains an Event Counter Name
44803, an Event Counter Value 44802, and a Back Link 44805 which identifies a Process 610 or a Virtual
Processor 612. Awalt Entry 44804 thus establishes a relationship between an Event Counter 44801, an Event
Counter Value 44802. and a Process 610 or Virtual processor 612.

- Turning now to Figure 449, in the present embodiment, all Await Entries 44804 for user Processes 610
are contained in PET 44705. PET 44705 also contains other information. Figure 449 presents only those
pans of PET 44705 which illustrate Await Entries 44804. PET 44705 is structured to allow rapid location of
Await Entries 44804 belonging to a specific Event Counter 44801. PEI’ entries (PETEs) 44909 contain links
which allow them to be combined into lists in PETE 44705. There are four kinds of lists in PET 44705:

Event counter lists: these lists link all PETEs 44909 for Event Counters 44801 whose Event Counter
Names 44803 hash to a single value.

-— Await lists: These lists link all PETEs 44909 for Event Counters 44801 which a given Process 610 is
awaiting.

— interrupt lists: These lists link all PETEs 44909for Event Counters 44801 which will cause an interrupt to
occur for a given Process 610.

— The Free list: PEl'Es 44909 which are not being used in one of the above lists are on a free list.
Each PETE 44909 which is on an await list or an intenupt List is also on an event counter list.
Turning first to the event counter lists, all PETEs 44909 on a given event counter list contain Event

‘ Counter Names 44803 which hash to a single value. The value is produced by Hash Function 44901, and
then used as an index in PET l-lash Table (PETHT) 44903. That entry in PETHT 44903 contains the index in
PET 44705 of that PETE 44909 which is the head of the event counter list. PETE List 44904 represents one
such event counter list. Thus, given an Event Counter Name 44803, KOS can quickly find all Await Entries
44804 belonging to Event Counter 44801.

In the present embodiment, the implementation of Event counters 44801 and tables with Await Entries
44804 involves both Processes 61 0 and Virtual Processors 612 to which Processes 61 0 are bound. As will be
explained later, a large number of Event Counters 44801 and Await Entries 44804 belonging to Processes
610 are multiplexed onto a small number of Event Counters 44801 and Await Entries 44804 belonging to the
Processes‘ Virtual Processors 612. Await entries 44804 for Event Counters 44801 belonging to Virtual
Processors 612 are contained in VPAT 45401.

b. Synchronization with Event Counters 44801 and Await Entries 44804
_ The simplest form of Process 610 synchronization provided by KOS uses only Event Counters 44801

and Await Entries 44804. Coordination takes place like this: A Process 610 A requests KOS to perform an
Await Operation, i.e., to establish one or more Await Entries 44804 and to suspend Process 610 A until one
of the Await Entries is satisfied. ln requesting the Await Operation, Process 610 A defines what Event
Counters 44801 it is awaiting and what Event Counter Values 44802 these Event Counters 44801 must have
for their Await Entries 44804 to be satisfied. After KOS establishes Await Entries 44804, it suspends Process
610 A. While process 610 A is suspended, other Processes 610 request KOS to perform Advance Operations
on the Evem Counters 44801 specified in Process 610 A's Await Entries 44804. Each time a Process 610
requests an Advance Operation on an Event Counter 44801, KOS increments Event Counter 44801 and
checks Event Counter 44801's Await Entries 44804. Eventually, one Event Counter 44801 satisfies one of
Process 610 A's Await Entries 44804, Le., reaches a value equal to or greater than the Event Counter Value
44802 specified in its Await Entry 44804 for process 610 A. At this point. KOS allows process 610 A to
resume execution. As process 610 A resumes execution, lt deletes all of its Await Entries 44804.

E. Virtual Processors 612 (fig. 453) _
As previously stated, a Virtual processor 612 may be logically defined as the means by which a Process

610 gains access to JP 10114. In physical terms. a Virtual Processor is an area of MEM 10112 which contains
the information that the K05 microcode which binds Wrtual Processors 612 to JP 10114 and unbinds them

from JP 10114 requires to perfonn the binding and unbinding operations. Frgure 453 shows a Virtual
Processor 612. The area of MEM 10112 belonging to a Virtual Processor 612 is Virtual processor 612's
Virtual Processor State Block lVPSBl 614. Each Virtual Processor 612 in a CS 10110 has a VPSB 614.
Together, the VPSBs 614 make up VPSB Array 45301. VVlthll"l the Virtual Processor management system,
each Virtual Processor 612 is known by its VP Number 45304. which is the index of the Virtual Processor

159

Petitioner Apple Inc. - Ex. 1025, p. 4057

Petitioner Apple Inc. - Ex. 1025, p. 4058

I0

20

25

60

EP 0 067 556 B1

6125 VPSB 614 in VPSB Array 45301. Virtual Processors 612 are managed by means of lists contained in
Micro VP Lists (MVPL) 45309. Each Virtual processor 612 has an Entry (MVPLE) 45321 in MVPL 45309. and
as Virtual Processor 612 changes state, virtual processor management microcode moves it from one list to
another in MVPL 45309.

VPSB 614 contains two kinds of information:

infonnatlon from Process Object 901 belonging to Process 610 which is bound to VPSB 614's Virtual
Processor 612, and information used by the Virtual Processor Management System to manage Virtual
Processor 612. The most important information from Process Object 901 is the following:
— Process 610's principal and process UlDs 40401. '
- AONs 41304 for Process 610's Stack Objects 44703. (VPSB 614 uses AONs 41304 because KO_S

guarantees that AONs 41304 belonging to Stack Objects 44703 will not change as long as a Process 610
is bound to a Virtual Processor 612.)

Given AON 41304 of Process 610's SS object 10336, the Virtual Processor Management System can
locate that-portion of Process 610's state which is moved into registers belonging to JP 101 14 when process
610's Virtual Processor 612 is bound to JP 10114. Similarly, when Virtual Processor 612 is unbound from JP
10114, the virtual processor management system can move the contents of JP 10114 registers into the
proper location in SS Object 10336.

a. Virtual Processor Managment (Fig. 453)
E05 can perform six operations on Virtual Processors 612:
Request VP allows EOS to request a Virtual Processor 612 from KOS.
Release VP allows EOS to natum a Virtual Processor 612 to KOS.
Bind binds a Process 610 to a Virtual Processor 612.
Unbind unbinds aprocess 610 from a Virtual Processor 612.
Run allows KOS to bind Process 610's Virtual Processor 612 to JP 10114.. \
Stop prevents KOS from binding process 610's Virtual Processor 612 to JP 10114.
As can be seen from the above list of operations, EOS has no direct influence over the actual binding of

a Virtual Processor612to JP 10114. This operation is performed by a component of KOS microcode called
the Dispatcher. Dispatcher microcode is executed whenever one of four things happens:
-- Process 610 whose Wrtual Processor 612 is currently bound to JP 10114 executes an Await Operation.
-— Process 610 whose Virtual Processor 612 is currently bound to JP 10114 executes an Advance

Operation which satisfies an Await Entry 44801 for some other Process 610.
-— Either Interval 1'imer 25410 or Egg Timer 25412 overflows, causing an Event Signal which invokes

Dispatcher microcode.
— IOJP Bus 10132 is activated, causingan Event Signal which invokes Dispatcher microcode. IOS 10116

activates lOJP bus 10132 when it loads data into MEM 10112 for JP 10114.
When Diwatcher microcode is invoked by one of these events, it examines lists in MVPL 45309 to

determine which Virtual Processor 612 is to run next. For the purposes ofthe present discussion, only two
lists are important: the mnning list and the eligible list. In the present embodiment, the running list, headed
by Running List Head 45321, contains only a single MVPLE 45321, that representing Virtual Processor 612
cunently bound to JP 10114. In embodiments with multiple JPs 10114, the ninning list may have more than
one MVPLE 45321. The eligible list, headed by Eligible List Head 45313, contains MVPLEs 45321
representing those Virtual Processors 612 which may be bound to JP_10114. MVPLES 45321 on the eligible
list are ordered by priorities assigned Processes 610 by E05. Whenever KOS Dispatcher microcode is
invoked. it compares the priority of Process 610 whose Virtual Processor 612's MVPLE 45321 is on the
running list with the priority of Process 610 whose Virtual Processor 612's MVPLE 45321 is at the head of
the eligible list. if the latter Process 610 has a higher priority, K08 Dispatcher microcode places MVPLE
45321 belonging to the former Process 610's Wrtual Processor 612 on the eligible list and MVPIE 45321
belonging to the latter Process 610's Virtual Processor 612 onto the running list. Dispatcher microcode then
swaps Processes 610 by moving state in JP 10114 belonging to the former Process 610 onto the former
Process 610's SS object 10336 and moving JP 10114 state belonging to the latter Process 610 from the latter
Process 610's SS ol_:i}ect10336 into JP 10114.

b. Virtual Processors 612 and Synchronization (Fig. 454)
When a synchronization operation is performed on a Process 610, one of the consequences of the

operation is a synchronization operation on a Virtual Processor 612. For example. an Advance Operation
which satisfies an Await Entry 44804 for a Process 610 causes an Advance Operation which satisfies a
second Await Entry 44804 for Process 610's Virtual Processor 612. Similarly. a synchronization operation
perionned on a Virtual Processor 612 may have a synchronization operation on Virtual Processor 612's
Process 610 as a consequence. For example, if a Virtual Processor 612 performs an operation involving file
l/O. Virtual Processor 612's Process 610 must await the completion of the U0 operation.

Figure 454 illustrates the means by which process level synchronization operations result in virtual
processor-level synchronization operations and vice-versa. The discussion first describes the components
which transmit process-level synchronization operations to Virtual Processors 612 and the manner in which
these components operate. Then it describes the components which transmit virtual processor-level

160

Petitioner Apple Inc. - Ex. 1025, p. 4058

Petitioner Apple Inc. - Ex. 1025, p. 4059

«I

60

E

EP 0067 556 B1

synchronization operations to Processes 610 and the operation of these components‘.
The flrst set of components is made up of VPSBA 45301 and VPAT 45401. VPSBA 45301 is shown here

with two VPSBS 614: one belonging to a Virtual Processor 612 bound to a user Process 610 and one
belonging to a Virtual Processor 612 bound to the K08 Process Manager process 510. VPAT 45401 is a
virtual processor-level table of Await Entries 44804. Each Await Entry 44804 is contained in a _\/PAT Entry
(VPATEi 45403. Each Virtual Processor 612 bound to a Process 610 has a VPAT Chunk 45402 of fourVPATEs
45403 in VPAT45401, and can thus await up to four Event Counters 44801 at any given time. The location of
a Virtual processor 612's VPAT Chunk 45402 is kept in Virtual Processor 612's VPSB 614. When an Advance
Operation satisfi any of the Await Entries 44804 belonging to a Virtual Processor 612, all in Virtual
Processor 612's VAT Chunk 45402's Await Entries 44804 are deleted. As in PET 44705, VPATES 45403

containing Await Entries 44804 which are awaiting a given Event Counter 44801 are linked together in a list.
VPATEs 45403 for Virtual Processors 612 bound to user Processes 610 may contain Await Entries 44804

for user Process 610's Private Evem Counter 45405. Private Event Counter 45405 is contained in Process

6105 Process Object 901. it is advanced each time an Await Entry 44804 in a PETE 44909 on a PET List
belonging to Process 610 is satisfied. '

The components operate as follows: When KOS performs an Await Operation on Process 610, it makes
Await Entries 44804 in both PET 44705 and VPAT45401 and puts Process 610'sVP 612 on the suspended list
in MVPL 45309. As previously described, an Await Entry 44804 in PET 44705 awaits an Event Counter 44801

. specified in the Await Operation which created Await Entry 44804. Await Entry 44804 in VPAT 45401 awaits
Process 510's Private Event Counter 45405. Each time an Await Entry 44804 belonging to Process 610 in PET
44705 is satisfied, Process 610's Private Event Counter 45405 is advanced. The advance of Private Event

Counter 45405 satisfies Await Entry 44801 for Process 610's Wtual processor 612 in VPAT 45401, and
consequently, KOS deletes Virtual Processor 612's VPATEs 45403 and moves Virtual Processor 612's
MVPLE 45321 in MVPL 45309 from the suspended list to the eligible list. _

The components which allow a Virtual Processor 612 to transmit a synchronization operation to a
‘ process 610 are the following: Outward Signals Object (050) 45409. Multiplexed Outward Signals Event

Counter 45407, and PET 44705. OSO 45409 contains Event Counters 44801 which KOS FU 10120 microcode
‘ advances when it perfoms operations which user Processes 61 0 are awaiting. Event Counters 44801 in 050
45409 are awaited by Await Entries 44804 in PET 44705. Each time KOS FU 10120 microcode advances an
Event Counter 44801 in 050 45409, it also advances Multiplexed Outward Signals Event Counter 45407. It
is awaited by an Await Entry 44804 in VPAT 45401 belonging to Virtual Processor 612 bound to KOS
Process Manager Process 610. When Wrtual Processor 62 bound to KOS Process Manager Process 610 is
again bound to JP 10114, KOS Process Manager Process 610 examines all PETEs 44909 belonging to the
Event Counters 44801 in 050 45423. if an advance of an Event Counter-14801 in OSO 44801 satisfied a PETE
44909 Process 610. that Process 610's Private Event Counter 45405 is advanced as previously described,
and Process 610 may again execute.

A user I/0 operation illustrates how the components work together. Each user 00 channel has an Event
Counter 44801 in OSO 45409. When a Process 610 performs a user IIO operation on a channel. the EOS IIO
routine establish an Await Entry 44804 in the PET 44705 list belonging to Process 810 for the channel's
Event Coumer 44801 in 050 45409. When the I10 operation is complete, lOS 10116 places a message to JP
10114in an area of MEM 10112 and activates lOJP Bus 10132. The activation of IOJP Bus 10132 causes an _
Event Signal which invokes KOS microcode. The microcode examines the message from IOS 10116 to
detennine which channel is involved, and than advances Event Counter 44801 for that channel in OSO
45409 and Multiplexed Outward Signals Event Counter 45407. The latter advance satisfies an Await Entry
44804 for Process Manager Process 610's Virtual Processor 612 in VPAT 45401, and Process Manager
Process 610 begins executing. Process Manager Process 610 examines OSO 45409 to detemtine which
Event Counters 44801 in OSO 45409 have been advanced since the last time process manager Process 610
executed, and when it finds such an Event Counter 44801, it examines the Event Counter Chain in PET
44705 for that Event Counter 44801. if it finds that the advance satisfied any Await Entries 44804 in the Event ’
Counter Chain, lt advances Private Event Coumer 45405 belonging to Process 610 ‘specified in Await Entry
44804. thereby causing that Process 610 to resume execution as previously described. 4

F. Process 610 Stack Manipulation
This section of the specification for CS 10110 describes the manner in which Process 610's MAS 502

and SS 504 are manipulated. As previously mentioned, in (:5 10110, a Process 610's MAS 502 and SS 504
are contained in several objects. In the present embodiment, there are live objects. one for each domain’s
portion of the Macro Stack (MAS) (MAS Objects 10328 through 10324) and one for the Secure Stack (SS)
(SS Object 10336). In other embodiments, a Process 610's MAS 502 may contain objects for user-defined
domains as well. Though a Process 610's MAS S02 and SS 504 are contained in many objects, they function
as a single logical stack. The division into several objects is a consequence of two things: the domain
component of the protection system, which requires that an object referenced by a Procedure 602 have
Procedure 602's domain of execution, and the need for a location inaccessible to user programs for
micromachine state and state which may be manipulated only by KOS.

Stack manipulation takes place under the following circumstances:
—— When a procedure 602 is invoked or a Return SIN is executed. Procedure 602 invocations are

161

Petitioner Apple Inc. - Ex. 1025, p. 4059

Petitioner Apple Inc. - Ex. 1025, p. 4060

10

15

20

50

EP .0 067 556 31
performed by means of a Call SIN. Call causes a transfer of control to the first SIN in the invoked
Procedure 602 and the Return SIN causes a transfer of control back to the SIN in the invoking Procedure
602 which follows the Call SIN.
When a non-local Go To SIN is executed. The non-local Go To causes a transfer of control to an

arbitrary position in some Procedure 602 which was previously invoked by Process 610 and whose
invocation has not yet ended.
When a conditionarises, i.e., an execution of a statement_in a program puts the executive Process 610
into a state which requires the execution of a previously established Handler Procedure 602.
When a Process 610 is interrupted. i.e., when an Interrupt Entry 45718 for Process 610 is satisfied.
Most of the mechanisms involved in stack manipulation are used in Call and Return: these operations

are therefore dealt with in detail and the other operations only as they differ from Call and Return. The
discussion first introduces Call and Return, than explains the stacks in detail, and finally analyzes Call and
Return and the other operations in detail.

1..lntroduction to Call and Return
As a Process 610 executes a program. it executes Call and Return SINs. A Call SIN begins an invocation

of a procedure 602, and a Return SIN ends the invocation. Generally speaking, a Call SIN does the
following:

It saves the state of Process 610's execution of Procedure 602 which contains the Call SIN. Included in

this state is the infonnation required to continue Procedure 602's execution alter the Call SIN is
finished. This portion of the state is termed calling Procedure 602's Macrostate.

— It creates the state which Process 610 requires to begin execution called Procedure 602.
—- it transfers control to the first SIN in the called Procedure 602's code.

The Return SIN does the opposite: it releases the state of called Procedure 602, restores the saved state
of calling Procedure 602. and transfers control to the SIN in the calling Procedure 602 following the Call SIN.
An invocation of a Procedure 602 lasts from the execution of the Call SIN which transfers control to the
Procedure 602 to the execution of the Return SIN which transfers control back to Procedure 802 which
contained the Call SIN. The state‘ belonging to a given invocation of a Procedure 602 by a Process 610 is
called Procedure 602's invocation state.

While Calls and Returns may be implemented in many different fashions, it is advantageous to
implement them using steels. When a Call creates invocation state for a Procedure 602, that invocation
state is added to the top of Process 610's stack. The area of a stack which contains the invocation state of a

Procedure 602 is called a frame. Since a called Procedure 332 may call another procedure 602, and that
another. a stack may have any number of frames, each frame containing the invocation state resulting from
the invocation of a Procedure 602 by Process 610. and each frame lasting as long as the invocation it
represents. When called Procedure 602 returns to Its caller. the frame upon which It executes is released
and the caller resumes execution on its frame. Procedure 602 being currently executed by a Process 610
thus always runs on the top frame of Process 610's MAS 502.

Calls and Returns in CS 10110 behave logically like those in other computer systems using stacks to
preserve process 610 state. When a Process 610 executes a Call SIN, the SIN saves as Macrostate the
current values of the ABPs, the location of the SIN at which the execution of lling Procedure 602 is to
continue, and information such as a pointer to calling Procedure 602's Name Table 10350 and,UlD 40401
belonging to the S-interpreter object which contains the S-interpreter for Procedure 602's S-language. The
Call SIN then creates a stack frame for called Procedure 602, obtains the proper ABP values, the location of
called Procedure 602's Name Table 10350 and UID 40401 belonging to its S-interpreter object, and begins
executing newly-invoked Procedure 602 on the newly-created stack frame. The Return SIN deletes the stack
frame obtains the ABP values and name interpreter information from the Macrostate saved during the Call
SIN and then transfers control to the SIN at which execution of calling Procedure 602 is to continue.

However the manner in which Call and Return are implemented is deeply affected by CS 10110's
Access Control System Broadly speaking there are two classes of Calls and Returns in CS 0110: those
which are mediated by K05 and those which are not. In the following discussion, the former class of Calls
and Returns are termed Mediated Calls and Returns, and the latter are called Neighborhood Calls and
Returns. Most Calls and Returns executed by CS 10110 are Nelg hborhood Calls and Returns; Mediated
Calls and Returns are typically executed when a user procedure 602 calls EOS Procedures 602 and these in
turn call KOS Procedures 602. The Mediated Call makes CS 10110 facilities available to user Processes 610

while protecting these CS 10110 facilities from misuse and therefore generally serves the same purpose as
system calls in the present art. As will be seen in the ensuing discussion, Mediated Call requires more CS
10110 overhead than Neighborhood Call but the extra overhead is less than that generally required by
system calls in the present art.

Mediated Calls and Returns involve S-interpreter. Namespace. and KOS microcode. S-interpreter and
Namespace microcode interpret the Names involved in the call and only modifies those portions of
Macrostate accessible to the S-interpreter. The remaining Macrostate is modified by KOS microroutines
invoked in the course of the Call SIN. A Mediated Call may be made to any Procedure 602 contained in an
object to which Process 610's subject has Execute Access at the time the invocation occurs. Mediated Calls
and Returns must be made in the following situations:

162

Petitioner Apple Inc. - Ex. 1025, p. 4060

Petitioner Apple Inc. - Ex. 1025, p. 4061

EP 0 067 556 B1
-' When called Procedure 602 has a different Procedure Environment Descriptor (FED) 30303 from ‘hat

‘ used by calling Procedure 602. Such Calls are termed Cross~PED Calls.
-— When called Procedure 602 is in a cfifferent Procedure Object 608 from calling Procedure 602. Such

Calls are termed Cross-Procedure Object Calls.
5 — When called Procedure 602's Procedure Object 608 has a different Domain of Execution (DOE) Attribute

from that of calling Procedure 602's Procedure Object 608, and therefore must place its Invocation
State on a different MAS object from that used by calling Procedure 602. Such Calls are termed Cross-
Domain Calls.

In all of the above Calls, the infomtation required to complete the Call is not available to the S-
70 interpreter and consequently. KOS mediation is required to complete the Call. Neighborhood Calls and

Returns only modify two components of Macrostate: the pointer to the current SIN and the FP ABP. Both of
these components are available to the S-interpreter as long as called Procedure 602 has the same PED
30303 i.e., uses the same Name Tabe 10350 and S-interpreter or the calling Procedure 602 and h Names
with the same syllable size as calling Procedure 602. The Call and Return SlNs are specific to each $-

75 language, but they resemble each other in their general behavior. The following discussion will deal
exclusively with this general behavior and will concentrate on Mediated Calls and Returns. The discussion
first describes MAS 502 and SS 504 belonging to a Process 610 and those parts of Procedure Object 608
involved in Calls and Returns, and then describes the implementation of Calls and Returns.

20 2. Macro Stacks (MAS) 502 (Fig. 467) ‘

figure 467 gives an overview of an object belonging to a Process 610's MAS 502. The description of
this figure will be followed by descriptions of other Figures containing detailed representations of portions
of MAS objects. .,

~ At a minimum MAS Object 46703 comprises KOS MAS Header 10410 together with Unused Storage
25 46727 reserved for the other elements comprising MAS Object 46703. If Process 610 has not yet returned

from an invocation of a Procedure 602 contained in a Procedure Object 608 whose DOE is that required for
access to MAS Object 46703. MAS object 46703 further comprises a Stack Base 46703 and at least one MAS
Frame 46709.

Each MAS Frame 46709 represents one mediated invocation of a procedure 602 contained in a
so Procedure Objece 608 with the DOE attribute required by MAS 46703. and may in addition represent

neighborhood invocations of Procedures 602 which share that Procedure 6025 Procedure Object 608. The
topmost MAS Frame 46709 represents the most recent group of invocations of Procedures 602 with the
DOE attribute required by MAS Object 46703 and the bottom MAS Frame 46709 the earliest group of
invocations from which Process 610 has not yet returned. Frames for invocations of Procedures 602 with

I 35 other domains of execution are contained in other MAS Objects 46703. As will be explained in detail below
MAS Frames 46709 in different MAS objects 46703 are linked by pointers.

MAS Domain Stack Base 46703 has two main parts: KOS MAS Header 10410 which contains
irrforrnetion used by KOS microcode which manipulates MAS Object 46703, and Perdomain lnfomtation
46707, which contains information about 46703's domain and static information, i.e., information which

40 lasts longer than an invocation used by Procedures 602 with MAS Frames 46709 on MAS Object 46703.
MAS Frame 46709 also has two main parts, a KOS Frame Header 10414 which contains information used by
KOS to manipulate Frame 46709 and S-interpreter Portion 46713 which contains information available to
the S-interpreter when it executes the group of Procedures 602 whose invocations are represented by
Frame 46709.

45 When making Calls and Returns, the S-interpreter and KOS microcode use a group of pointers to
locations in MAS Object 46703. These pointers comprise the following:
— MAS Object UID 46715 the UID 40401 of AS Object 46703.
— First Frame Offset (FFO) 46719 which locates the beginning of KOS Frame Header 10414 belonging to

the first MAS Frame 46709 in MAS Object 46703.
so ’ — Frame Header Pointer iFHPl 46702 which lotes the beginning of the topmost KOS Frame Header

10414 in MAS Object 46703.
— Stack Top Offset (STO) 46704 a 32-bit offset from Stack UlD 46715 which marks the first bit in Unused

Storage 46727.
As will be seen presently all of these pointers are contained in fields in KOS MAS Header 46705.

a.a. MAS Base 10410 (Fig. 468)
Figure 468 is a detailed representation of MAS Domain Stack Base 10410 Turning flrst to the detailed

representation of KOS MAS Header 46705 contained therein, there are the following fields:
— Format information Field 46801 containing infomtation about the format of KOS MAS Header 46705.

59 —- Flags Field 46303. of these flags, only one is of interest to the present discussion: Domain Active Flag
46804. This flag is set to TRUE when Process 610 to which MAS Object 46703 belongs is executing the
invocation of Procedure 602 whose invocation record makes up the topmost MAS Frame 46709
contained in MAS Object 46703 to which KOS MAS Header 46705 belongs.

— PFO Field 46805: All MAS Headers 46705 and Frame Headers 46709 have fields containing offsets

55 locating the previous and following headers in MAS Object 46703. In a Stack Header 46705 there is no

163

Petitioner Apple Inc. - Ex. 1025, p. 4061

Petitioner Apple Inc. - Ex. 1025, p. 4062

EP 0 067 556 B1

previous header and this field is set to 0. -

— _FFO Field 46805: The field locating the following header in a Stack Header 46705 this field contains FFO
46719 since the next header is the first Frame Header in MAS Object 46703.

— STO Field 46807: the field containing STO offset 46704. '
5 — Process lD Field 46809: UID 40401 belonging to Process Object 901 for Process 610 to which MAS

Object 46703 belongs. . '
— Domain Environment lnfonnation pointer Field 46811: The pointer contained in the field locates an A

area which contains domain-specific information. In the present embodiment. the area is part of MAS
Stack Base 10410; however, in other embodiments, it may be contained in a separate object.

70 —- Signaller Pointer field 46813: The pointer contained in the field locates a Procedure 602 which KOS
invokes when a Process 610’_s execution causes a condition to arise while it is executing in the domain
to which MAS object 46703 belongs.

— AAT Pointer Field 30211: The pointer in Field 30211 locates AAT 30201 for MAS Object 46703. AAT
30201 is described in detail in Chapter 3.

75 — Frame Label Sequencer Field 46819: This field contains a Sequencer 45102. Sequencer 45102 is used to
generate labels used to locate MAS Frames 46709 when a non-local GOTO is executed. _
Tuming now to the detailed representation of Domain Environment Information 46821 located by

Domain Environment information Pointer Field 46811. there are the following fields:
— KOS Format Information Field 46823.

20 —- Flags Field 46825 containing the following flags:
— Pending Interrupt Flag 46827, set to TRUE when Process 610 has an interrupt pending for the

domain to which MAS Object 46703 belongs.
— Domain Dead Flag 46829, set to TRUE when Process 610 can no longer execute Procedures 602

with domains of execution equal to that to which MAS Object 46703 belongs.
25 — Invoke Verify an Entry Flag 46833 and invoke Verify on Exit Flag 46835. The fonner flag is set to

TRUE when KOS is to invoke a Procedure 602 which checks the domain's data bases before a
Procedure 602 is allowed to execute on the domain's MAS Object 46703; the latter is set to TRUE
when KOS is to invoke such a Procedure 602 on exit from a Procedure 602 with the domain as its
DOE.

30 — Default Handler Non-null Flag 46835 is set to TRUE when there is a default clean-up handler for the
domain. Clean-up handlers are described later.

— Interrupt Mask Field 46839 determines what interrupts set for Process 610 in MAS object 46703’sdomain will be honored.

— Domain UID Field 46841 contains UID 40401 for the domain to which MAS Object 46703 belongs.
35 —- Fields 46843 through 46849 are pointers to Procedures 602 or tables of pointers to Procedures 602.

The Procedures 602 so located handle situations which arise as MASS 502 are manipulated. The
use of these‘ fields will become clear as the operations which require their use are explained.

b.b. Per-domain-Data Area 46853 (Fig. 468i
411 Per-domain Data Area 46853 contains data which cannot be kept in MAS Frames 46709 belonging to

invocations of Procedures 602 executing in MAS Object 46703's domain, but which must be available to
these invocations Per-Domain Data Area 46853 has two components: Storage Area 46854 and AAT 30201.
Storage Area 46854 contains static data used by Procedures 602 with invocations on MAS Object 46703 and
data used bi/S-interpreters which are used by such procedures 602. Associated Address Tabla (AAT) 30201

45 is used to lote data in Storage Area 46854. A detailed discussion of AAT 30201 is contained in Chapter 3.
Two lcinds of data is stonedjn Storage Area 46854: static data and S-interpreter data.
Static data is stored in Static Data Block 46863. Static Data Block 46863 comprises two parts: Linkage

Pointers 46865 and Static Data Storage 46867 Linkage Pointers 46865 are pointers to static data not
contained in Static Data Storage 46867 for example, data which lasts longer than Process 610 and pointers

50 to External Procedures 602 which the Procedure 602 to which Static Data Storage 46867 belongs invokes.
Static Data Storage 46867 contains storage for static data used by the Procedure 602 which does not last
longer than Process 610 executing the Procedure 602.

S-interpreter data is data required by S-interpreters used by Procedures 602 executing on MAS object46703.

55 The S-interpreter data is stored in S—interpreter Environment Block lSEBl 46864 which, like Static Data
Block 46864 is located via AAT 30201: The contents of SE8 46864 depend on the S-interpreter.

c.c. MAS Frame 46709 Detail (fig. 469) ' ' ‘
Figure 468 represents a typical frame in MAS Object 46703. Each MAS Frame 46709 contains a

so Mediated Frame 46947 produced by a Mediated Call of a Procedure 602 contained in a Procedure Object
608 whose DOE attribute is the one required for execution on MAS object 46703. Mediated Frame 46947
may be followed by Neighborhood Frames 46945 produced by Neighborhood Cells of Procedures 602.
Mediated Frame 46947 has two parts,a KOS Frame Header 10414 which is manipulated by KOS microcode,
and an S-interpreter portion which is manipulated by S-interpreter and Namespace microcode.

55 Neighborhood Frames 46945 have no KOS Frame Headers 10414. As will become clear upon closer

164

Petitioner Apple Inc. - Ex. 1025, p. 4062

Petitioner Apple Inc. - Ex. 1025, p. 4063

10

20

25

EP 0 067556 31

examination of Figure 469. Mediated Frames 46947 in the present embodiment contain no Macrostate. in
the present embodiment. Macrostata for these frames is kept on SS Object 10336: however in other
embodiments, Macrostate may be stored in Mediated Frames 46947. Neighborhood Frames 46945 contain
those portions of the macrostate which may be manipulated by Neighborhood Call; the location of this
macrostate depends on the Neighborhood Call SIN.

Turning now to KOS Frame Header 10414. there are the following fields:
-— KOS Format lnfonnation Field 46901 containing infonnation about MAS Frame 46709's format.
— Flags Field 46902. This field contains the following flags:

— Result of Cross-domain Call Flag 46903. This Flag is TRUE if MAS Frame 46709 which precedesthls
MAS Frame 46709 is in another MAS Obiect 46703.

—— is Signaller Flag 46905. This flag is TRUE if this MAS Frame 46709 was created by the invocation of
a Signailer Procedure 602. 1

—- Do Not Fletum Flag 46907: This flag is TRUE if Process 610 is not to return to the invocation for
‘which this MAS Frame 46709 was created.

-— Flags 46909 through 46915 indicate whether various lists used in condition handling and non-local
GOTOs are present in the MAS Frame 46709.

-- Previous Frame Offset field 46917. Next Frame Offset-Field 46919. and Frame Top-Offset Field 46921
are offsets which give the location where Header 10414 for the previous MAS Frame 46709 in MAS
Object 46703 begins. the location where the header for the next MAS Frame 46709 in MAS Object
46703 begins. and the location of the first bit beyond the top of MAS Frame 46709 respectively.

—— Fields 46923 through 46927 are offsets which locate lists in S-interpreter portion 46713 of Frame 46709.
KOS establishes such lists to handle conditions and non-local GOTOS. Their use will be explained in
detail under those headings. .

— Fields 46929 and 46933 comain information about Procedure 602 whose invocation is represented by
MAS Frame 46709. Field 46929 contains the number of arguments required by procedure 602 and Field
4contains a resolvable pointer to Procedure 6025 PED 30303. Both these fields are used primarily
for debugging.

— Dynamic Back Pointer Field 46931 contains a resolvable pointer to the preceding MAS Frame 46709
belonging to Process 610's MAS 502 when that MAS Frame 46709 is contained in a different MAS
Object 46703. In this case, Flag Field 48903 is set to TRUE. When the preceding MAS Frame 46709 is
contained in the same MAS object 46703 field 46931 contains a pointer with a null UID 40401 and Flag
Field 46903 is set to FALSE.

— Frame Label Field 46935 is for a Frame Label produced when a non-local GOTO is established which
transfers control to the invocation represented by MAS Frame 46709. The label is generated by Frame
Label Sequencer 46819 in KOS MAS Header 10410.
S-interpreter Portion 46713 of MAS Frame 46709 comprises those portions of MAS Frame 46709 which

are under control ofthe S-interpreter. S-interpreter Portion 46713 in turn comprises two main subdivisions:
those parts belonging to Mediated Frame 46947 and those belonging to Neighborhood Frames 46945.

The exact form of S-interpreter portion 46949 of K05 Frame 46947 and of S-interpreter Frames 46945
depends on the Call SIN which created the frame in question. However all Neighborhood Frames 46945 and
S-interpreter portions 46949 of Mediated Frames 46947 have the same arrangements for storing Linkage
Pointers 10416 and local data in the frame. Linkage Pointers 10416 are pointers to the locations of actual
arguments used in the invocation and Local Storage 10420 contains data which exists only during the
invocation. In all Mediated Frames 46947 and Neighborhood Frames 46945. Linkage pointers 10416
precede Local Storage 10420. Furthermore, when a Mediated Frame 46947 or a Neighborhood Frame 46945
is the topmost frame of Process 610's MAS. i.e, when Process 610 is executing on that frame, the FP always
points to the beginning of Local Storage 10420. and the beginning of Linkage Pointers 10416 lsalwaysat a
known displacement from FP. References to Linkage Pointers 10416 may therefore be expressed as
negative offsets from FP, and references to Local Storage 10420 as positive offsets.

In addition. S—interpreter Portion 46713 may contain lists of information used by KOS to execute non-
local GOTOs and conditions, as well as S-interpreter frames for non-mediated calls. The lists of information
used by KOS are contained in List Area 46943. The exact location of List Area 46943 is determined by the
compiler which generates the SlNs and Name Table for the Procedure 602 whose invocation is represented
by Mediated Frame 46947. When Procedure 602's source text contains statements requiring storage in Ust
Area 46943, the compiler generates SlNs which place the required amount of storage in Local Storage
10420. KOS routines then build lists in Area 46943. and place the offsets of the heads of the lists in Fields
46923. 46925 or 46927, depending on the kind of list. The lists and their uses are described in detail later.

3. SS 504 (Fig. 470) .
Figure 470 presents an overview of SS 504 belonging to a Process 610. SS 504 is contained in SS Object

10336. SS Object 10336 is manipulated only by KOS microcode routines. Neither Procedures 602 being
executed by Process 610 nor S—interpreter or Namespace microcode may access information contained in
SS Object 10336.

SS Object 10336 comprises two main components. SS Base 47001 and 53 Frames 47003. Turning first
55 to the general structure of SS Frames 47003. each time a Process 610 executes a Mediated Call KOS

165

Petitioner Apple Inc. - Ex. 1025, p. 4063

Petitioner Apple Inc. - Ex. 1025, p. 4064

10

20

25

EP 0 067 556 B1

microcode creates a new SS Frame 47003 on SS Object 10336 belonging to Process 610 and each time a
Process 610 executes a Mediated Return. KOS microcode removes the current top SS Frame 47003 from SS
Object 10336. There is thus one SS Frame 47003 on SS Object 10336 belonging to a process 610 for each

Mfllilillllli illllllfi ifiiifii lill Fllililiii ilii lllfli i‘-’2'
55 Frames 47003 comprise two kinds of frames:
Ordinary Frames 10510 and Cross-domain Frames 47039. Cross-domain Frames 47039 are created

whenever Process 610 executes a Cross-domain Call; for all other Mediated Calls. Ordinary Frames 10510
are created. Cross-domain Frames 47039 divide SS Frames 47003 imo Groups 47037 of SS Frames 47003
belonging to sequences of invocations in a single domain. The first SS Frame 47003 in a Group 47037 is a
Cross-domain Frame 47039 for the invocation which entered the domain, and the remainder of the SS
Frames 47003 are Ordinary Frames 10510 for a sequence of invocations in that domain. These groups of SS
Frames 47003 correspond to groups of Mediated Frames 46947 in a single MAS Object 46703.

a.a.. SS Base 47001 (Fig. 471) ’
SS Base 47001 comprises four main parts: SS Header 10512 Process Microstate 47017. Storage Area

47033 for JP 10114 register cements, and initialization Frame Header 47035. Secure Stack Header 10512
contains the following information: . '
-- Fields 47001 and 47009 contain flag and format information; the exact contents of these fields are

unimportant to the present discussion.
Previous Frame Offset Value Field 47011 is a standard field in headers in SS Object 1036: here it is set
to 0. since there is no previous frame.
Secure Stack First Frame Offset l-‘ield 47013 contains the offset of the first SS Frame 47039 in SS object
10336, i.e., initialization Frame Header 47035. . _
Process UID field 47015 contains UID 40401 of Process 610 to which SS Object 10336 belongs.

_ Number of Cross Domain Frames Field 47016 contains the number of Cross—domain Frames 47039 in
SS Object 1036.
Process Microstate 47017 contains information used by KOS microcode when it executes Process 610

to which SS Object 10336 belongs Fields 47019, 47021 and 47022 contain the offsets of locations in SS
Object 10336. Field 47019 contains the value of SSTO the location of the first free hit in SS Object 1036;
Field 47021 contains the value of SSFO, the location of the topmost frame in SS obiect_10336; field 47022
finally contains the value of XDFO, the location of the topmost Cross-domain Frame 47039 in SS Object
10336. All of these lowtions are marked in Figure 470. '

Other fields of interest in Process Microstate 47017 comprise the following: Offsets in Storage Area
Field 47023 contains offsets of locations in Storage Area 47033 of SS Object 10336; Domain Number Field
47025 contains the domain number for the DOE of Procedure 602 currently being executed by Process 610.
The relationship between domain UlDs and domain numbers is explained in the discussion of domains.
VPAT Offset Field 47027 contains the offset in VPAT 45401 of VPAT Chunk 45402 belonging torvirtual
Processor 612 to which Process 610 is bound. Signal Pointer Field 47029 contains a resolved pointer to the
Signaller la Procedure 602 used in condition handling) belonging to the domain specified by Domain
Number Field 47025 and Trace lnfonnation Field 47031 contains a resolved pointer to that domain‘s Trace
Table. described later.

Storage Area for JP 10114 register Contents 47033 is used when a Virtual Processor 612 must be
removed from JP 10114. when this occurs. either because Virtual Processor 612 is unbound from JP 10114,
because CS 10110 is being halted, or because CS 10110 has failed, the contents of JP 10114 registers which
contain information specific to Virtual Processor 612 are copied into Storage Area 47033. When Virtual
Processor 612 is returned to JP 10114, these register contents are loaded back into the JP 10114 registers
from whence they came. Initialization Frame Header 47035, finally, is a dummy frame header which is used
in the creation of SS Object 10336.

b.b. SS Frames 47003 (Fig. 471) ‘
Commencing the discussion of SS Frames 47039 and 10510. Figure 471 illustrates these structures in

detail. Ordinary SS Frame 10510 comprises three main divisions: Ordinary SS Frame Header 10514,
Macrostate 10516 and Microstate 10520. Ordinary SS Frame Header 10514 comains information used by
KOS microcode to manipulate Ordinary SS Frame 10510 to which Header 10514 belongs. Macrostate 1051 6
contains the values of the ABPs for the frame's mediated invocation and other information required to
resume execution of the invocation. Microstate 10520 contains micromachine state from FU 10120 and EU
10122 registers. The amount of micromachine state depends on the circumstances; In the present
embodiment, some micromachine state is saved on all Mediated Calls; furthermore, if a Process 610
executes a microcode-tirsoftware Call, the micromachine state that existed at the time of the call is saved;
finally. Microstate 10520 belonging to the topmost SS Frame 47003 may contain information which was
transferred from FU 10120 GRF registers 10354 or EU 10122 register and stack mechanism 10216 when
their capacity was exceeded. For details about this portion of Microstate 10520 see the discussion of the FU
10120 micromachi_ne in Chapter 2. The discussion of SS Object 1036 continues with details concerning SS
Header 10514 and Macrostate 05163. -

166

Petitioner Apple Inc. - Ex. 1025, p. 4064

Petitioner Apple Inc. - Ex. 1025, p. 4065

10

20

25

50

60

ea 0 057 555 31

a.a.a. Ordinary SS Frame Headers 10514 (Fig. 741)
Fields of interest in Ordinary Secure Stack Frame Header 10514 are the following:

—— Format information 47103 which identifies the lonnat of Header 10514.

— Flags field 47105 which contains one flag of interest in this discussion: Frame Type Flag 47107: in
Ordinary SS Frames 10510 this field is set to FALSE.

—- Offset Fields 47109 through 47113: Field 47109 contains the offset of the previous SS Frame 47039 or
10510. l-Teld 47111 contains the offset of the following SS Frame 47039 or 10510. and Field 47113
contains the offset of the last SS Frame 47039 or 10510 preceding the next Crossdomain Frame 47039

—- Field 47117 contains the current domain number for the domain in which the mediated invocation
represent 88 Frame 47039 or 10510 is executing. ” 1
Field 47119 contains the offset of the preceding Cross-domain Frame 47039.
Field 47121 contains offsets for important locations in Microstate 10520.

- b.b.b. Detailed Structure of Macrostate 10516 (Fig. 471)
These fields are of interest in Macrostate 10516:

— Syllable Size Field 47125 contains the value of K, i.e., the size of the Names in the SlNs belonging to
Procedure 602 which the invocation is executing.

— End of Name Table Field 47127 contains the location of the last Name in Name Table 10350 belonging
to Procedure 602 which the invocation is executing. '

— Fields 47129 through 47143 are resolved pointers to locations in Procedure Object 901 containing
Procedure 602 being executed by the invocation and resolved pointers to locations containing data
being used by Procedure 602. Field 47129 contains a pointer to Procedure 602's PED 30303; if
Procedure 602 is an External Procedure 602. Field 47131 contains a pointer to Procedure 602's entry in
Gates 10340; Field 47135 contains the UID-offset value of FF for the invocation; Field 47135 contains a
pointer to SEB 46864 used by Procedure 602's S-interpreter. Field 47137 contains the UID-offset value
of SDP and Field 47139 contains that of P8P. SIP Field 47141 contains a pointer to Procedure 602's S-
interpreter object. and NTP, finally, is a pointer to Procedure 602's Name Table 10350. .

— Field 47145 contains the PC for the SIN which is to be executed on return from the mediated invocation
to which SS Frame 47003 belongs.

c.c.c. Cross domain 58 Frames 47039 (Fig. 471)
Cross-domain SS Frames 47039 differ from Ordinary 55 Frames 10510 in two respects: they have an

additionai component. Cross-domain State 10513, and fields in Cross domain Frame Header 47157 have
different meanings from those in Ordinary Frame Header 10514.

Cross-domain State 10513 contains infcnnation which KOS Call microcode uses to verify that a return
to a Procedure 602 whose DOE differs from that of Procedure 602 whose invocation has ended is returning
to the proper domain. Fields ofinterest in Crow-domain State 10513 include GOTO Tag 47155 used for non-
iocal GOTOs which cross domains, Staci: Top Pointer Value 47153, which gives the location ofthe first free
bit in the new domain's MAS Object 46703 and Frame Header Pointer Value 47151, which contains the
location of the topmost Mediated Frame Header 46709 in new MAS Object 46703.

There are three fields in Cross-domain Frame Header 47157 which differ from those in Ordinary SS
Frame Header 47101. These fields are Flag Field 47107 which in Cross-domain Frame Header 471 57 always
has the value TRUE, preceding Cross-domain Frame Offset Field 47161. which contains the offset of
preceding Cross-domain Frame 47039 in SS Object 10335 and Next Cross domain Frame Offset Field 47159,
which contains the location of the next Cross-domain Frame 47039. These last two fields occupy the some
locations as Fields 47111 and 47109 respectively in Ordinary SS Frame Header 10514.

As will be noted from the above description of SS Frames 47003. Secure'Stacl(Object 10336 in the
present embodiment contains three kinds of information: macrostate cross-domain state and microstate.
In other embodiments, the information in SS object 10336 may be stored in separate stack structures, for
example. separate microstate and cross-domain stacks. or information presently stored in MAS Objects
46703 may be stored in SS Object 10335, and vice-versa.

4. Portion of Procedure Object 608 Relevant to Call and Return (Fig. 472)
The information which Process 610 requires to construct new frames on its MAS Objects 46703 and SS

Object 10336 and to transfer control to invoked Procedure 602 is contained in invoked Procedure 602's
Procedure Object 608. Figure 472 is an overview of Procedure Object 608 showing the infon-nation used in a
Call. figure 472 expands infonnation contained in Figures 103 and 303; fields that appear in those.Figures
have the names and numbers used there.

. Beginning with Procedure Object Header 10336, this area contains two items of information used in
cells: an offset in Field 47201 giving the location of Argument lnforrnation Array 10352 in Procedure Object

' 608 and a value in Field 47203 specifying the number of gates in Procedure Object 608. Gates allow the

invocation ‘of External Procedures 602 that is, Procedures 602 which may be invoked by Procedures 602
contained in other Procedure Objects 608. Procedure Object 608's gates are contained in External Entry
Descriptor Area 10340. There are two kinds of gates: those for Procedures 602 contained in Procedure
oblefi 503. 800 those f0I' procedures 602 contained in other Procedure Objects 608, but callable via

167

Petitioner Apple Inc. - Ex. 1025, p. 4065

Petitioner Apple Inc. - Ex. 1025, p. 4066

10

)5

20

65

EP O 067 556 31

Procedure Object 608. Gates for Procedures 602 contained in Procedure Object 608 are termed Local Gates
47205. Local Gates 47205 contain lntemal Entry Offset (IEO) Field 47207 which contains the offset in
Procedure Object 608 of Entry Descriptor 47227 for Procedure 602. if Procedure 602 is not contained in
Procedure Object 472 its gate is a Link Gate 47206. Link Gates 47206 contain Binder Area Pointer (BAP)
Fields 47208. A BAP Field 47,208 contains the locations of an area in Binder Area 30323 which in turn
contains a pointer to a Gate in another Procedure Object 608. The pointer in Binder Area 30323 may be
either resolved or unresolved. if Procedure 602 is contained in that Procedure Object 608, the Gate is a Local
Gate 47205; othenrvise, it Is another Link Gate 47206.

Procedure Environment Descriptors (PEDS) 10348 contains PEDs 30303 for Procedures 602 contained
in Procedure Object 608. Most of the macrostate information for a Procedure 602 may be found in its PED
30303. PED 30303 has already been described, but for ease of understanding, its contents are reviewed
here.
— K Field 30305 contains the size of Procedure 602's Names.

—- Largest Name (LN) Field 30307 contains the i
Beginning with Procedure Object Header 10336, this area contains two items of information used in

Calls: an Offset in Field 47201 giving the location of Argument information Array 10352 in Procedure Object
608 and a value in Field 47203 specifying the number of gates in Procedure Object 608. Gates allow the
invocation of External Procedures 602. that is, Procedures 602 which may be invoked by Procedures 602
contained in other Procedure Objects 6nter to Static Data Block 46863. Thus, for that invocation of
Procedure 602 on invocation, the SDP ABP is derived via SDPP field 30313.
-— PBP Field 30315 is the pointer from which the current PC is calculated. When Procedure 602 is invoked.

this value becomes the PBP ABP.

— S-interpreter Environment Prototype Pointer (SEPP) Field 30316 contains the location of SEVB Prototype
Field 30317. When Procedure 602 is invoked, i-"reld 30316 locatas SEB 46864 via AAT 30201 in the same
manner as SDPP field 30313 locates the invocation's static data.

A Procedure 602's PH) 30303 may be located from its lmemal Entry Descriptor 47227. A PED 30303
may be shared by several Procedures 602. Of course in this case, the values contained in shared PED 30303
are the same for all Procedures 602 sharing it. As will be explained in detail later in the present
embodiment. if a calling Procedure 602 does not share a PED 30303 with called Procedure 602 the Call must
be mediated. A lling Procedure 602 may make a Neighborhood Call only to Procedures 602 with which it
shares a PED 30303.

The next portion of Procedure Object 608 which is of interest is lmemal Entry Descriptors 10342. Each
Procedure 602 contained in Procedure Object 608 has an Entry Descriptor 4727. Entry Descriptor 47227
contains four fields of interest: _
— PBP Offset Field 4728 contains the offset from PBP at which the first SIN in Procedure 602's code is

located. '

— Flags Field 47230 contains flags which are checked when Procedure 602 is invoked. Four flags are of
interest:

— ' Argument Information Array Present Flag 47235 which is set to TRUE if Procedure 602 has entries
in Argument Information Array 10352.

—— SEB Flag 47237 is set to TRUE if SEPP 47225 is non-null, i.e-, if Procedure 602 has a SEB 46864 for
its S-interpreter. '

—— Do Not Check Access Flag 47239 is set to TRUE if KOS Call microcode is not to perform protection
A checking on the actual arguments used to invoke Procedure 602.

-- PED Offset Freld 47231 contains the offset of Procedure 602's PED 30303 from the beginning of
Procedure Object 608. ’

— Frame Size Field 47233 contains the initial size of the Local Storage Portion 10420 of MAS Frame
46709 for an invocation of procedure 602.

, Other areas of interest for Calls are SEB Prototype Area 47241, Static Data Area Prototype 30317,
Binder Area 30323 and Argument Information Array 10352. SEB Prototype type Area 47241 and Static Data
Area Prototype 30315 contain information used to create an SEB 46864 and Static Data Block 46863
respectively for Procedure 602. These areas are created on a par-MAS Object 46703 basis. The first time
that a Process 610 executes a Procedure 602 in a domain, SE8 46864 and Static Data Block 46863 required
for Procedure 602 are created either in MAS Object 46703 belonging to the domain or in another object
accessible from MAS Object 46703. SE8 46864 and Static Data Block 46863 then remain as long as MAS

‘ Object 46703 exists.
Static Data Prototype 30317 contains two kinds of infonnation: Static Data Links 30319 and Static Data

Initialization lnforrnation 30321 Static Data Links 30319 contain locations in Binder Area 30323, which in
turn contains pointers which may be resolved to yield the locations of data or External Procedures 602.
when a Static Data Block 46863 is created for a Procedure 602, the information in Binder Area 30323 is used
to create Linkage Pointers 46865. Static Data initialization Information 30321 contains information required
to create and initialize static data in Static Data Storage 46867.

As mentioned in the discussions of Link Gates 47206 and Static Data Links 30319 Binder Area 30323
contains pointers which may be resolved as described in Chapter 3 to yield locations of data and Extamal
Procedures 602.

‘I68

\

Petitioner Apple Inc. - Ex. 1025, 4066

Petitioner Apple Inc. - Ex. 1025, p. 4067

10

20'

25

45

EP ooe755s 31':

Argument information Array (AIA) 10352 contains information used by KOS Call microcode to check
whether the subject which is invoking Procedure 602 has access to the actual arguments used in the
invocation which allows the uses made of the arguments in Procedure 602. This so-called ‘Trojan horse
check" is necessary because a Call may change the domain component of a subject. Thus, a subject which
is lacking access of a specific kind to a data item could gain that access by passing the data item as an
argument to a Procedure 602 whose DOE gives it access rights that the calling subject itself lacks.

Each Local Gate 47205 in Procedure Object 608 has an element in NA 10352. Each of these Argument
lnfomtation Array Elements (AIAES) 60845 has fields indicating the following: ’
-— The minimum number of arguments required to invoke Procedure 602 to which Local Gate 47205

belongs, in Field 47247.
— The maximum number of arguments which may be used to invoke Procedure 602 in Field 47249.
— The access rights that the invoking subject must have to the actual arguments in order to invoke

Procedure 602 in Field 47251.

Fieid47251 is itself an array which specifies the kinds of access that the invoking subject must have to
‘ the actual arguments it uses to invoke Procedure 602. Each formal argument for Procedure 602 has an

Access Mode Array Entry (AMAE) 47265. The order of the AMAEs 47255 corresponds to the order of
Procedure 602's formal arguments. The first fomial argument has the first AMAE 47255, the second the
second, and so forth. An AMAE 47253 is four hits long. There are two forms of AMAE 47253: Primitive
Access Form 47255 and Extended Access Form 47257. In the former form. the leftmost bit is set to 0. The

three remaining bits specify read, write, and execute access. if a bit is on, the subject performing the
invocation must have that kind of primitive access to the object containing the data item used as an actual
for the formal argument corresponding to that AMAE 47253. In the Extended Access Form 47257, the
leftmost bit is set to 1 and the remaining bits are defined to represent extended access required for
Procedure 602. The definition of these bits varies from Procedure 602 to Procedure 602.

5. Btecution of Mediated Calls

Having described the portions of MAS Object 46703, 55 Object 10336. and Procedure Object 608 which
are involved in Calls, the discussion turns to the description of the Mediated Call Operation. First, there is
presented an overview of the Mediated Call SN and then the implementation of Mediated Calls in the
present embodiment is discussed, beginning with a simple Mediated Call and continuing with Cross-
Procedure Object Calls and Crow Domain Calls. The discussion closes with a description of software-to-
microcode Calls.

a.a. Mediated Call slNs

While the exact form of a Mediated Call SIN is S-language specific, all Mediated Call SINS must contain
four items of information:

The SOP for the operation.
A Name that evaluates to a pointer to the Procedure 602 to be invoked by the $lN.
A literal (constant) specifying the number of actual arguments used in the invocation. .
A list of Names which evaluate to pointers to the actual arguments used in the invocation.
lf Procedure 602 requires no arguments, the literal will be 0 and the list of Names representing the

actual arguments will be empty.
in the present embodiment, Mediated Call and Return SlNs are used whenever called Procedure 602

has a different PED 30303 from calling Procedure 602. In this case, the Call must save and recalculate
macrostale other than FF and PC, and mediation by KOS Call microcodejs required. The manner in which
KOS Call microcode mediates the Call depends on whether the Call is a simple Mediated Call a Cross-
procedure Object Call, or a Cross-Domain Call.

b.b. Simple Mediated Calls (Fig. 270, 468, 469, 470. 471, 472)
When the Mediated Call SIN is executed, S-interpreter microcode first evaluates the Name which

represents the location of the called Procedure 602. The Name may evaluate to a pointer to a Gate 47205 or
4707 in another Procedure Object 608 or to a pointer to an Entry Descriptor 47227 in the present Procedure
Object 608. When the Name has been evaluated, S-interpreter Cali microcode invokes KOS Call microcode,
using the evaluated Name as an argument. This microcode first fills in Macrostate Fields 10516, left empty
until now, in the current invocation's 85 Frame 47003. The microcode obtains the values for these fields
from registers in FU 10120 where they are maintained while Virtual Processor 612 of Process 610 which is
executing the Mediated Call is bound to JP 10114.

The next step to determine whether the pointer which KOS Call microcode received from S-interpreter
Call microcode is a pointer to an External Procedure. To make this determination, KOS Call microcode
compares the pointer's AON 41304 with that of Procedure Object 608 for Procedure 602 making the Call; If
they are different, the Call is a Cross-Procedure Object Call, described below. in the case of the Simple
Mediated Call, the format field indicates that thelocation is an Entry Descriptor 47227. KOS Call microcode
continues by saving the location of Entry Descriptor 47227 and creating a new Mediated Frame 46947 on
current MAS Object 46703 and a new Ordinary SS Frame 10510 on SS Object 10336 for called Procedure
602. As KOS Call microcode does so, it sets Fields 46917 and 46919 in Mediated Frame Header 10414 and

169

Petitioner Apple Inc. - Ex. 1025, p. 4067

Petitioner Apple Inc. - Ex. 1025, p. 4068

10

15

20

55

:55

EP 0 067 556 B1

Fields 47109 and 47111 in Ordinary 85 Frame Header 10514to the values required bythe addition offrames
,to MAS Object 46703 and SS Object 10336.

New Mediated Frame 46947 is now ready for Linkage Pointers 10416 to the actual arguments used in
the Call, so KOS Call microcode returns to S—interprater Call microcode, which parses the SlN to obtain the
literal specifying the number of arguments and saves the literal value. 5—interpreter Call microcode then
parses each argument Name, evaluates it, and places the resulting value in Unkage Pointers Section 10416.
when Linkage Pointers Section 10416 is complete, S-Interpreter Call Microcode calculates the new location
of FP from the location of the top of Linkage Pointers Section 10416 and places a pointer for the location in
the FU 10120 register reserved for FP. At this time, S-interpreter Call microcode also places the new
location of the top of the stack in Stack Top Offset Field 46807.

S-interpreter Call microcode then invokes KOS Call microcode to place the value of the literal
specifying the number of arguments in MAS Frame Field 46929, to calculate the new value of FHP 46702
and place it in the FU 10120 register reserved for that value, and finally to obtain the state necessary to
execute called Procedure 602 from called Procedure 602's Entry Descriptor 47227 and PED 30303. As
previously stated, S-interpreter Call microcode saved the location of Entry Descriptor 47227. Using this
location, K05 Call Microcode obtains the size of the storage required for local data from Field 47233 and '
adds that amount of storage to the new MAS Frame 46709. Then KOS Call Microcode uses Field 47231 to
locate PED 30303 for Procedure 602. PED 30303 contains the remainder of the necessary information about
Procedure 602 and K05 Call microcode copies the location of PED 30303 into PED Pointer; Field 46933 and
then copies the values of K Field 30305. Last Name Field 30307, NTP Field 30311 and PBP Field 30315 into
the relevant registers in FU 10120. K05 Call microcode next translates the pointer in SIP Field 303 into a
dialect number as explained in Chapter 3, and places it in register RDIAL 24212 of FU 10220 and thereupon
derives SDP by resolving the pointer in SDPP Field 30313 and a pointer to SE8 46864 by resolving the

‘ pointer in SEPP Field 30316. Having performed these operations, KOS Call microcode returns to S-
interpreter Call microcode, which finishes the Call by obtaining a new PC, that is, resetting registers in l-
stream Reader 27001 in FU 10120 so that the next SIN to be fetched will be the first SIN of called procedure
602 S-interpreter Call microcode obtains the information required to change PC from Field 47229 in Entry
Descriptor 47227 which contains the offset of the lirst SlN of called Procedure 802 from PBP.

In the present embodiment. some FU 10120 state produced by the Mediated Call SIN is retained on $5
504 throughout the duration of Procedure 602's invocation. The saved state allows Process 610 to
reattempt the Mediated Call if the Call fails before the called Procedure 602 begins executing. When a
Mediated Retum SIN is executed, it resumes execution on the retained state from the CALL SlNT. The
Mediated Return is much simplerthan the Call. Since all of the information required to resume execution of
the invocation which perfomed the Call is contained in Macrostate 10516 in the calling invocation's SS
Frame 47003, Fletum need only pop the called invocation's frames from current MAS Object 46703 and SS
Object 1036, copy Macrostate 10516 47123 from the calling invocation's SS Frame 47003 into the proper
FU 10120 registers, translate SIP Value 47141 into a dialect number, and resume executing the calling
invocation. The pop operation involves nothing more than updating those pointers in MAS Object 46703
and SS Object 10336 which pointed to locations in the oid topmost frame so that they now point to
equivalent locations in the new topmost frame.

c.c. invocations of Procedures 602 Requiring SEBs 46864 (Fig. 270, 468, 469, 470. 471, 472)
. if a Procedure 602 requires a SEB 46864, this fact is indicated by Flag Field 47237 in Procedure 602's
Entry Descriptor 47227. PED 30303 for such a Procedure 602 contains SEPP Field 4725, whose value is a
non-resolvable pointer. The manner in which a SEE 46864 is created for Procedure 602 and SEPP field
47225 is translated into SEP, a pointer which contains the location of SEB 46864 and is saved as part of the
invocation's macrostate on $5 10336, is similar to the manner in which a Static Data Block 46863 is created
and the non-resolvable pointer contained in SDPP field 47225 is translated into SDP. The first time that a
Procedure 602 requiring a SEB 46864 is invoked on a MAS Object 46703, a SEB 46864 is created for the
Procedure 602 and an AATE 46857 is created which associates the nonresolvable pointer in SEPP field
47226 and the location of SEB 46864. That location is the value of SEP when the procedure is executing on
MAS object 46703. On subsequent invocations of Procedure 602. AATE 468$ serves to translate the value
in SEPP field 47225 into SEP.

d.d. Cross-Procedure Object cells (Fig. 270, 468, 469, 470, 471, 472)
A Mediated Call which invokes an Bcternal Procedure 602 is lied a Cross-Procedure Object Call. As

previously mentioned. KOS Call microcode assumes that any time the -Name representing the called
Procedure 602 in a Mediated Call SIN resolves to the location of a Gate that the Call is to an External

Procedure 602. As long as newly-called External procedure 602 has the same DOE as calling Procedure 602.
Cross-Procedure Object Calls differ from the Simple Mediated Call only in the manner in_which called
Procedure 602's Entry Descriptor 47227 is located. Once KOS Call microcode has determined as described
above that a Mediated Call is a Cross-Procedure Object Call it must next daterrnine whether it is a Cross-
Domain Call. To do so, KOS Call microcode compares the DOE Attribute of called Procedure 602's

Procedure Object 608 with the domain component of the current subject. KOS Call microcode uses
Procedure Object 608's AON 41304 to obtain Procedure Object 608's DOE from Field 41521 of its AOTE;

170

Petitioner Apple Inc. - Ex. 1025, p. 4068

Petitioner Apple Inc. - Ex. 1025, p. 4069

I0

15

20

EP 0 067 556 ‘B1

41306 and it uses the ASN for the current subject, stored in an FU 10120 register, to obtain the current
subject's domain component from AST 10914. if the DOE and the current subject's domain component
differ, the Call is a Cross-domain Call, described below; otherwise, the Call locates the Gate 47205 or 47206

specified by the evaluated Name for called Procedure 602 in its Procedure Object 608. if the Gate is a Local
Gate 47205, the Call uses Entry Descriptor Offset Field 47207 to locate Entry Descriptor 47227 belonging to
Called Procedure 602 and then proceeds as described in the discussion of a Simple Mediated Call.

it the Gate is a Link Gate 47206, KOS Call microcode obtains the pointer corresponding to Link Gate
47206 from Binder Area 47245 and resolves it to obtain a pointer to another Gate 47205 or 47206, which
KOS Call microcode uses to repeat the External Procedure 602 call described above. The repetitions
continue until the newly-located gate is a Local Gate 47205, whereupon Call proceeds as described for

.. Simple Mediated Calls.

e.e. Cross-domain Calls (Fig. 270, 408', 418, 468, 469, 470, 471, 472)
if a called Procedure 602's Procedure Object 608 has a DOE attribute differing from that of calling

Procedure 602's Procedure Object 608, the Call is a Cross-domain Call. The means by which KOS Call
microcode determines that a Mediated Call is a Cross-Domain Call have previously been described; lf the
Call is a Cross-Domain Call, KOS Call microcode must inactivate MAS Object 46703 for the domain from
which the Call is made, perform trojan horse argument checks, switch subjects. place a Cross-domain
Frame 47039 on SS object 10336. and locate and activate MAS Object 46703 for the new domain before it
can make a Mediated Frame 46947 on new MAS Object 46703 and continue as described in the discussion
of a Simple Mediated Call.

Cross-domain Call microcode first inactivates the current MAS Object 46703 by setting Domain Active

Flag 46804 to FALSE. The next step is the trojan horse argument checks. in order to perform trojan horse
argument checks, Cross-domain Call must have pointers to the actual arguments used in the cross-domain
invocation. Consequently, Cross-domain Call first continues like a non-cross-domain Call: it creates a
Mediated Frame Header 10414 on old MAS Object 46703 and returns to S-interpretermicrocode, which

‘ evaluates the Names of the actual arguments. and places the pointers in Linkage Pointers 10416 above
Mediated Frame Header 10414. However, the macrostate forthe invocation performing the call was placed
on SS Object 10336 before Mediated Frame Header 10414 and Linkage Pointers 10416 were placed on old
MAS Object 46703. Consequently, when calling Procedure 602 resumes execution after a Return, it will
resume on MAS Frame 46709 preceding the one built by Cross-domain Call microcode.

Once the pointers to the actual arguments are available, Cross-domain Call Microcode performs the
trojan horse check. As described in the discussion of Procedure Object 608 and illustrated in Figure 472, the
information required to perform the check is contained in AIA 10352. Each Local Gate 47205 in Procedure
Object 608 has an AlAE 47245, each fomral argument in Local Gate 47205's procedure has an entry in AIAE
47245’s AMA 47251, and the formal argument‘: AMAE 47253 indicates what kind of access to the formal
argument's actual argument is required in called Procedure 602.

Field AIA OFF 47201 contains the location of AM 10352 in Procedure Object 608, and using this
information and Local Gate 47205's offset in Procedure Object 608, Cross-domain Call microcode locates
AJAE 47245 for Local Gate 47205. The first two fields in AIAE 47245 contain the minimum number of

arguments in the invocation and the maximum number of arguments. Cross-domain Call microcode
checks whether the number of actual arguments falls between these values. If it does, Cross-domain Call
microcode begins checking the access allowed individual arguments. For each argument pointer. Cross-
domain Call microcode calls LAR microcode to obtain the current AON 41 304 for the pointer's UlD and uses
AON 41304 and the ASN for Process 610's current subject (i.e., the caller's subject) to locate an entry in
either APAM 10918 or AN PAT 10920, depending on whetherthe argument's AlAE specifies primitive access
(47255) or extended access (47257) respectively. if the information from APAM 10918 or ANPAT 10920
confirms that Process 610's current subject has the right to access the argument in the manner required in
lled Procedure 602, the Trojan Horse microcode goes on to the next argument. If the current subject has
the required access to all arguments, the trojan horse check succeeds and the Cross-domain Call continues.
Otherwise. it fails and Cross-domain Call performs a microcode-to-software Call as explained below.

Next. Cross-domain Call microcode places Cross domain State 10513 on SS Object 10336. As explained
in the discussion of SS object 10336, Cross-domain State 10513 contains the information required to return
to the caller's frame on former MAS Object 46703. Having done this, Cross-domain Call microcode changes
subjects. Using the current subject's ASN, Cross~Domaln Call microcode obtains the current subject from
AST 10914 replaces the subject's domain component with DOE Attribute 41225 for called Procedure 602's
Procedure Object 608 and uses AST 10914 to translate the new subject thus obtained into a new ASN. That
ASN then is placed in the appropriate FU 10120 register.

After the subject has been changed, Cross-domain Call microcode uses Domain Table 41801 to
translate the DOE of called Procedure 602 into a domain number. Cross-domain Call microcode then uses
the domain number as an index into Array of MAS AONs 46211 in VPSB 614 for Virtual Processor 612
belonging to Process 610 making the cross-domain call. The entry corresponding to the domain number
contains AON 41304 of MAS Object 46703 for that domain.

Having located the proper MAS Object 46703, Cross-domain Call microcode uses STO field 46807 in
MAS Header 10410 belonging to the new domains MAS Object 46703 to locate the top of the last MAS

171

Petitioner Apple Inc. 4 Ex. 1025, p. 4069

Petitioner Apple Inc. - Ex. 1025, p. 4070

20

25

30

50

EP 0 067 556 B1

Frame 46709. It then saves the value of FHP 46702 used in the preceding invocation in a FU 10120 register,
adds a Mediated Frame Header 10414 to the top of MAS Object 46703, and alculates a new FHP 46702
which points to new Mediated Frame Header 10414. KOS Cross-Domain Call microcode then places the old
value of FHP 46702 in FHP Value Field 47151 of SS Object 10336 and the old value of STO 46704 (pointing to
the top of the last complete MAS Frame 46709 on previous MAS Object 46703) in Field 47153 of Cross-
Domain State 10513 and fills in Mediated Frame Header 10414 fields as follows: Result of Cross-domain
Call field 46903 is set to TRUE. Previous Frame Offset Field 46917 is set to 0, and Dynamic Back Pointer
Field 46931 is set to the saved value of FHP 46702. Dynamic Back Poimer Field 46931 thus points to the
header of the topmost Mediated Frame 46947 on the previous MAS Object 46703. The values of the
remaining fields re copied from Mediated Frame Header 10414 which Cross-Domain Call created on
previous MAS Object 46703.

Cross-domain Call microcode next copies the argument pointers forthe formal arguments from the top
of previous MAS Object 46703 to new Mediated Frame 46947 and calculates FP. Cross-domain Call
Microcode finishes by returning to S-interpreter Call microcode. which completes the Call as described for
Simple Mediated Calls.

Except for the work involved in transferring to a new MAS Object 46703, Cross-domain Return is like
other Returns from Mediated Calls. Old FHP 46701 from Field 47151 of Cross~Domain State 10513 and old
STO 46704, from Field 47153 of Cross-domain State are placed in FU 10120 registers. Then the frames
belonging to the invocation that is ending are popped off of SS Object 10336 and off of MAS Object 46703 -
belonging to the domain of called Procedure 602 and MAS Object 46703 is inactivated by setting Domain-
Active Flag 48804 to FALSE. Then KOS Cross-domain Return microcode uses old FHP 46701 and old ST0
46704 to locate MAS Object 46703 being returned to and the topmost Mediated Frame 46947 on that MAS
Object 46703. MAS Object 46703 being returned to is activated, and finally, the contents of Macrostate
10516 belonging to the invocation being returned to are placed in the appropriate registers of FU 10120 and
execution of the invocation resumes.

f.f. Failed Cross-Doamin Calls (Fig. 270, 468. 469, 470, 471, 472)
A Cross-Domain Call as described above may fail at several points between the time that the calling

invocation begins the call and called Procedure 602 begins executing. On failure. Cross-Domain Call
microcode performs a microcode-to—software Call. KOS Procedures 602 invoked by this Call may remedy
the reason for the Cross Domain Call's failure and reattempt the Cross-domain Call. This is possible
buse the implementation of Cross Domain Call in cs 10110 saves sufficient FU 10120 state to allow
Process 610 executing the Cross-Domain Call to return to the invocation and the Mediated Call SIN from
which the Cross-Domain Call began. On failure. the invocation's MAS Frame 46709 may be located from
the values of STD field 47153 and FHP Field 47151 in Cross-Domain State 10513, and the Mediated Call SIN
may be located by using lnforrnation saved in FU 10120 state.

6. Neighborhood Calls (Fig. 458. 479, 472)
As previously mentioned, Procedures 602 called via Neighborhood Calls must have the same PED

30303 as calling Procedure 602. The only macrostate values which are not part of PED 30303 are PC and FP;
consequently Neighborhood Call need only save PC and FF of the invocation performing the call and
calculate these values for the new invocation. In addition, Neighborhood Call saves ST0 46704 in order to
make it easier to locate the top of the previous invocation's Neighborhood Frame 46947. Neighborhood
Retum simply restores the saved values. Since the macrostate values copied from or obtained via FED
30303 do not change during the sequence of invocations, and therefore need not be saved on SS Object
10336. Neighborhood Callsdo not have SS Frames 47003.

The invention may be embodied in yet other specific fonns without departing from the spirit or
essential characteristics thereof. Thus. the present embodiments are to be considered in all respects as’
illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather
than by the foregoing description.

Claims

1. A digital computer system (CS 101) including processor means (JP 114) for performing operations
upon operands. memory means (MEM 112) for storing said operands and procedures. said procedures
including instructions for controlling said operations and names referring to certain of said operands to be
operated upon. ALU means (2034, 2074) for performing said operations, bus means (MOD 140, JPB 142) for
conducting said instructions, names and operands between said memory means and said processor
means, and 1/0 means (I05 116) for conducting at least said operands between said memory means and
devices external to said digital computer system. characterised in that said processor means (JP 114)
comprises means for addressing said operands, including name table means (10350) for storing name
table entries, each name table entry corresponding to one of said names included in each one of said
procedures and each name table entry comprising first data from which may be determined an address of a
location in said memory means of the operand referred to by one of said names and second data
identifying a format of that operand, and translation means (NAME TRANS UNIT 27015) connected to said

172

Petitioner Apple Inc. - Ex. 1025, p. 4070

Petitioner Apple Inc. - Ex. 1025, p. 4071

10

20

35

EP 0 067 556 B1

bus means and responsive to said name table entries for providing outputs to said memory means
representing said addresses, and further characterised in that said instructions are intemtediate level S-
language instructions from a plurality of sets of such instructions, each set corresponding to a particular
higher level user programming language, and further characterised by receiving means (INSTB 20262)
connected to said bus means for receiving said instructions from said memory means. and microcode
control means (10240. 27003, 27013) connected between said receiving means and said ALU means for
providing sequences of microinstructions for controlling said ALU means, said sequences being selected
from a plurality of sequences of microinstructions corresponding to said 5-language instructions
respectively.

2. A digital computer system according to claim 1, characterised in that the S-language instructions
have a uniform, fixed format.

3. A digital computer system according to claim 1 or 2, characterised in that the names are of uniform
length and format.

4. A digital computer system according to any of claims 1 to 3, characterised in that each procedure
-further includes a name table pointer (NTP 30311) representing a base location in said memory means
(MEM 112), and said first data of each name table entry contains information from which may ‘be
determined an address offset of a memory location relative to the base location. and in that said translation
means (NAME TRANS UNIT 27015) further comprises base register means (NCR, MCR 10366) connected to
said bus means for receiving and storing said name table painter of the procedure currently controlling the
operations perlorrned by said ALU means.

5. A digital computer system according to any of claims 1 to 4, characterised by name cache means
(1026) connected to outputs of said translation means (NAME TRANS UNl'l' 27015) and having outputs to
said memory means (MEM 112) for storing said addresses, and further connected to said receiving means
(INSTB 20262) and responsive to said names to provide name cache outputs to said memory means
representing said addresses of certain operands for which said name cache means has stored said
addresses.

6. A digital computer system according to any of claims 1 to 5, characterised in that each of said 8-
Language instructions is a member of an S-Language dialect of a plurality of S-Language dialects, and in
that said receiving means (iNSTB 20262) further comprises dialect code means (RDIAL 24212) for storing a
dialect code specifying the dialect of which the received S—Language instructions are members. and in that
said sequences of microinstructions include a set of sequences of microinstnictions, corresponding to each_
said S-Language dialect, each set of sequences of microinstructions including at least one sequence of
microinstrucfions corresponding to each S-Language instruction in a corresponding S-Language dialect,
and in that said microcode control means (10240, 27003, 27013) is responsive to the dialect code and to
eadr received S—Language instruction to provide to said ALU means (2034, 2074) a sequence of
rnicroinstructions corresponding to that S-Language instruction. _

7. A digital computer system according to claim 1 or 2, characterised in that each procedure includes a
dialect code denoting an S-Language dialect of which the S-Language instructions of the procedure are
members, and in that said microcode control means (10240, 27003. 27013) further comprises control store
means ($l'lT 11012) for storing said sequences of microinstruclions for controlling said ALU means (2034,
2074), and dispatch table means (SIDT 11010) for storing addresses corresponding to locations in said
control store means of each sequence of microinstructions, and in that said dispatch table means is
responsive to said dialed code and to each instruction to provide to said control store means each address .
corresponding to said at least one microinstruction sequence corresponding to each said instruction. and
said control store means is responsive to each address to provide to said ALU means said sequence of
microinstructions corresponding to each instruction. _

8. A digital computer system according to claim 1, 6 or 7, characterised in that said microcode control
means (10240, 27003, 27013) comprises writable control store means (11012) connected to said bus means
for storing said sequences of microinstructions. and control store addressing means (SFITNAS 20286)
responsive to each S-Language instruction and to operation of said processor means for generating control
store read addresses and write addresses (CSADFI 20204). and in that said writable control store means is

responsive to said read addresses to provide said sequences of microinstmctions to said ALU means (2034,
2074) and is responsive to said write addresses to store said sequences of microinstructions.

9. A digital computer system according to claim 7, cheraaerised in that said control store means (Sl1T
11012) comprises writable control store means connected to said bus means for storing said" sequences of
microinstructions. and in that said dispatch table means comprises write address means responsive to
operation of said processor means for generating write addresses, and in that said writable controlstore
means is responsive to said-write addresses for storing said sequences of mlcroinstructions.

Patentansprriche

1. Digitales Datenverarbeitungssystem (CS 101). enthaltend: Prozessormittel (MEM 114) zur
Durchffihrung von Operationen an Operanden, Speicherrnittel (MEM 112) zum Speichern der Operanden
und von Prozeduren, die Befehle zur Steuerung der Operationen und Namen enthalten, die auf gewisse der

55 Operanden Bezug nehmen, an denen Operationen durchgefuhrt werden soiien, eein Rechenwerk (2034,

173

Petitioner Apple Inc. - Ex. 1025, p. 4071

Petitioner Apple Inc. - Ex. 1025, p. 4072

m_

15

20

50

EP 0 "057 556 B1

2074) zur Durchffihrung der Operationen, Bus-Mittel (MOD_ 140, JPE 118) fflr den Verkehr der Befehie,
Namen und Operanden zwischen den Spelchermitteln und den Prozessonnitteln, und Eingabe/Ausgabe-
Mittel (I08 116) ffir den Verkehr wenig'stens der Operanden zwischen den Speichermitteln und Geréten
auflerhalb des digitalen Datenvera rbeitungs-systems, gekennzeichnet durch Prozessormittel (JP 114), die
Mlttel zur Adressierung der Operanden einschliefslich Namenstabellenmittel (10350) zur Speicherung Von
NamenstabelIen-Einsprungpunkten enthalten, wobei jeder Narnenstabellen-Einsprungpunkt einem der
Namen entsprieht, die in jeder der Prozeduren enthalten sind, und erste Daten, aus denen eine Adresse
eines Platzes derjenigen Operanden in den Speichermitteln batimmt werden kann, auf die durch einen der
Namen Bezug genommen wird, und zweite Daten enthanen die ein Format dieses Operanden ident’rfi-
ziemn, und durch Clbersetzungsmittel (NAME TRANS UNIT 27015). die mit den Bus-Mitteln verbunden sind
und auf die Namenstabellen-Einspmngpunkte unter Bereitsteliung von diese Adressen reprfisentierenden
Ausgaben ffur die Speichermittel ansprechen, ferner dadurch gekennzeichnet. daB die Befehle minlere S-
Sprache-Befehle von einer Vielzahl von Sitzen solcher Befehle sind. von denen jeder Satz einer
besonderen héheren Benutzerprogrammiersprache entspricht, und ferner gekennzeichnet durch ein mit
den Bus-Mitteln verbundenes Empfangsmittel (INST? 20262) zum Empfang der Befehle von den Speicher-
mltteln, und durch mit dem Empfangsmittel und dem Rechenwetk verbundene Mik1'ocode-Steuerrnittel
(10240, 27003, 27013) zur Bereitstellung von Mikrobefehlssequenzen zur Steuerung des Rechenwerks,
wobei diese Sequenzen aus einer Vlelzahl von Mlkrobefehlssequenzen ausgewéhlt sind, die den ieweiligen
S~Sprache-Befehlen entsprechen.

2. Digitales Datenverarbeitungsystem nach Anspruch 1, dadurch gekennzeichnet, dais die S—Sprache—
Befehle ein gleichférmigas, festes Format haben. V

3. Digitales Datenverarbeitungssystem nach Anspruch 1 oder 2. dadurch gekennzeichnet, da!S die
Namen eine gleichférrnige Lénge und ein gleichférmiges Fonnat haben.

4. Digitales Datenverarbeitungssystem nach einern der Ansprfldae 1 bis 3, dadurch gekennzeichnet.
dafl jede Prozedur weiter einen Namenstabellenzeiger (NTP 30311) enthélt. der einen Basisplatz in den
Speichermitteln (MEM 112) représentiert, daB die ersten Daten Jedes Namenstabellen-Einsprungpunktes
lnformationen enthalten, aus denen die gdresse eines vom Basisspeicherplatz versetzten Speicherplatzes
bestimmt werden kfinnen, und dafl die Ubersetzungsmittel (NAME TRANS UNIT 27015) weiter Bas1sregl-
sterrnittel (NCR, MCR 10366) enthalmn, die mit den Bus-Mitteln verbunden Sind, um den Namenstabellam
zeiger derjenigen Prozedur zuempfangen und zu speichem, die gerade die vom Rechenwerk durch-
geffihrten Operafionen steuert. -

5. Digitales Datenverarbeitungssystem nach einem der Ansprfighe 1 bis 4, gekennzeichnet durch
Namens-Cache-Speichermittal (10226), die mit den Ausgéngen der Ubersetzungsmitlel (NAME TRANS
UNIT 27015) verbunden sind und zu den Speichermitteln (MEM 112) ffihrend Ausgénge zum Speichem der
Adressen haben, und die weiter mit dem Empfangsmittel (INSTB 20262) verbunden sind und auf die
Namen unter Bereltstellung Von Namens-Cache-Ausgaben ffir die Speichermittel ansprechen, die die
Adressen van gewissen Operanden reprisentieren, ffir die die Namens-Cache—Speichermitte| die Adressen
gespeichert haben.

6. Digitales Datenverarbeitungssystem nach einem der Ansprfiche 1 bis 5, dadurch gekennzeichnet,
daB jeder der S-Sprache-Befehle ein, Mitglied eines $Sprache-Dialekts einer Vielzahi van S-Sprache-
Dialekten ist, daB das Empfangsmittel (INSTB 20262) weiher ein Dialekt—Code-Mittel (RDIAL 24212) zur .'
Speicherung eines Dialekt-Codes enthélt. der den Dialekt bestimrnt, von dem die empfangenen S-Sprache-
Befehie Mitglieder sind, dall die Mikrobefehlssequenzen einen Sat: von Mikrobefehlssequenzen ent-
sprechend jedem S-Sprache—DiaIekt enthalten, wobei jade Mikrobefehlssequenz wenigs1ens eine iedem S-
Spracl1&Befehl In einem entsprechenden S-Sprache-Diatelct entsprechenden Mikrobefehlssequenz enthéft,
und daB die Mikrocode-Steuermittel (10240. 27003, 27013) auf den Dialekt-Code und jeden empfangenen S-
Sprache-Befehl unter Bereitstellung einer diesern S-Sprache—Befeh| entsprechenden Mikrobefehlssequenz
ffir das Rechenwerk ensprechen. ' .

7. Digitales Datenverarbeitungswstem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dalz jede
Prozedur einen Dialekteode enthéit, der einen S-Sprache-Dialelct bezeichnet, von dem die S-Sprache
Befehle der Prozedur Mitglieder. sind, da1'5 die Mikrocode-Steuermittel (10240. 27003. 27013) ferner Steuer-
speichermittei (SHT 11012) zur Speicherung der Mikrobefehlssequenzen ffir die Sleuerung des Hechen-
werlcs (2034, 2074) und Verteilertabellenmittel (SIDT 11010) zur Speicherung von Adressen enthalten. die
Plitzen jeder Mikrobefehlssequenz in den Steuerspeichennittein entsprechen, und daB die Ver1eiler-
tabellenmirlel auf den Dialektcode und ieden Befehl unter Bereitstellung jeder Adresse, die derwenigstens

einen.- zu jedem Befehl gehérenden Mikmbefehlssequenz entspricht. fflr die Steuerspeichermittel
ansprechen, wéhrend die Steuerspeichennimal auf iede Adresse unter Bereitstellung der jedem Befehl ent-
sprechenden Mikrobefehlssequenz fflr das Rechenwerk ansprechen.

8. Digitales Datenverarbeltungssystem nach Anspruch 1. 6 oder 7, dadurch gekennzeichnet, dais die
Mikrocode-Steuermittei (10240, 27003. 27013) ein mit den Bus-Mitteln verbundenes Schreibsteuerspeicher-
mittel (11012) zur Spelcherung der Mikrobefehlssequenzen und Steuerspeicheradressiermittel (SITTNAS
20286) enthailen. die auf ieden S-Sprache-Befehl und auf Operationen des Pmzessormittels unter '
Erzeugung von SteuerspeicherIese- und —schreibadressen (CSADR 20204) ansprechen, und das die
Schreibsteuerspeichennittel auf die Leseadressen unter Bereitstellung der Mikrobefehlssequenzen ffir das
Rechenwerk und auf die Schreibadressen unter Speicherung dieser Mikrobefehlssequenzen ansprechen.

174

Petitioner Apple Inc. - Ex. 1025, p. 4072 v

Petitioner Apple Inc. - Ex. 1025, p. 4073

20

25

EP 0 067 556 B1

9. Digitales Datenverarbeitungssystem nach Anspruch 7, dadurch gekennzeichnet, daB die $teuer-
speichermlttel (SFIT 11012) mlt den Bus-Mitteln verbundene Schreibsteuerspeichermittel zur Speicherung
der Mikrobefehlssequenzen enthalten, daB die Verteilertabellenmittel Schreibadressenmittel enthalten, die
auf Operationen des Prozessorrnittels unter Erzeugung von Schreibadressen ansprechen, und daB die
Schreibsteuerspeichermittel auf die Schreibadressen unter Speicherung der Mikrobefehlssequenzen
ansprechen. -

Revendications

1. Un systéme d'ordinateur numérique (CS 101), comprenant un processeur (JP 114) pour effectuer des
opérations sur des opérandes. une mémoire (MEM 112) pour mémoriser lesdits opérandes et des
procedures. Iesdites procédures contenant des instructions pour commander lesdites opérations et des
désignations se rapportant 3 cenains desdits opérandes pour Ies traiter, une unité arithmétique et logique
ALU (2034, 2074) pour eflectuer lesdites operations, des bus (MOD 140, JPB 142) pourtransmettre lesdites
instructions, Iesdites désignations et Iesdits opérandes entre Iadite mémoire at ledit processeur, et des
moyens d'entréeIsortie I10 (I05 116) pour transmettre au moins lesdits opérandes entre Iadite mémoire et
des dispositifs extérieurs audit systems d'ordinateur numérique, caractérisé en ce que ledit processeur (JP
114) comprend des moyens pour Vadressage desdits opérandes, comportant une table de désignations
(10350) pour mémoriser des entrées de table de designations. chaque entree de table de désignations
correspondant 3 une desdites désignatlons incluses dans chacune desdites procédures et chaque entrée de
table de designations comprenant une premiere donnée 3 partir de Iaquelie peut étre déterminée une
adresse d'un emplacement de Iadite mémoire contenant |'opérande auquel se refléte |'une desdites
désignations et une seconde donnée identifiant un format de cet opérande, et des moyens de transcodage
(NAME TRANS UNIT 27015) reliés auxdits bus et réagissant auxdites entrees de tables de designations de
facon 3 transmettre 3 ladite mémoire des signaux de sortie représentant lesdites adresses, et en outre
caracterisé en ce que lesdites instructions sont des instructions en langage-S de niveau interrnédiaire
provenant d'une pluraiité d'ensembles de teiles instructions, chaque ensemble correspondent in un
Iangage de programmation par utilisateur de niyeau supérieur particulier, et en outre caractérisé en ce que
des moyens do reception (INSTB 20262) sont reliés auxdits bus pour recevoir Iesdites instructions 3 partir
de Iadite mémoire, et des moyens de commande de microcode (10240, 27003, 27013) connectés entre
lesdits moyens de reception et Iadite ALU pour foumir des séquences de microinstructions servant a
commander Iadite ALU, les dites séquenoes étant sélectionnées parrni une pluralité de sequences de
micro-instructions correspondent respectivement auxdites instructions en langage-S.

2. Un systeme d'ordinateur numérique selon la revendication 1, caractérisé en ce que les instructions
on Iangage—S ont un format fixe et uniforme.

3. Un systéme d'ordinateur numérique selon une des revendications 1 ou 2, caractérisé en ce que Ies
designations orrt une longueur et un format uniformes.

4. Un systéme d'ordinateur numérique selon une quelconque des nevendications 1 ii 3, caractérisé en
oe que cheque pmcédure oomprend en outre un pointeur de table de designations (NTF 30311)
représentant un emplacement de base dans Iadite mémoire (MEM 112) et Iadite premiere donnée de
chaque enlrée de la table de désignations contient une infonnation 3 partir de Iaquelle peut étre déterminé
un décalage d'adresse d'un emplacement de mémoire par rapport 3 Vemplacement de base, et en ce que
lesdits moyens de transcodage (NAME TRANS UNIT 27015) oomprennent en outre un moyen formant
registre de base (NCR. MCR 10366). qui est relié auxdits bus de facon 3 recevoir at mémoriser Iedit pointeur
de table de designations dans la procédure qui est en train de commander les opérations effectuées par
Iadite ALU.

5. Un systeme d'ordinateur numérique selon une quelconque des revendications 1 3 4, caractérisé par
un moyen formant antémémoire de désignations (10226), relié aux sorties desdits moyens de transcodage
(NAME TRANS UNIT 27015) et comportant des sorties reliées 3 Iadite rnémoire (MEM 112) pour mémoriser
lesdites adresses, et en outre relié auxdits moyens de réception (INSTB 20262) at réagissant auxdites
désignations pour foumir 3 Iadite mémoire des sorties de‘l't-mtémémoire de désignations représentant
lesdites adresses de certains opérandes pour lesquels Iadite amémémoire de désignations a mémorisé
Iesdites adresses. v _

6. Un systéme d'ordinateur numérique selon une quelconque des revendications 1 3 5, caractérisé en
ce que chacune desdites instructions en langage-S est un élément d'un dialecte en Iangage-S faisant partie
d'une pluralité de dialectes en langage-S et en ce que lesdits moyens de réception (INSTB 20262)
comprennent en outre un moyen d_e codage de dialecte (RDIAL 24212) pour mémoriser un code de dialecte
spécifiant le dialecte dont les instructions en Iangage-s recues sont des éléments. et en ce que lesdites
sequences de micro-instructions contiennent un ensemble de séquences de micro-instructions
correspondant 3 chacun desdits dialectes en iangage-S, chaque ensemble de séquences de micro-
instructions comprenant au moins une sequence de micro-instructions correspondent 3 chaque instruction
en langage-S dans un dialecte en Iangage-S correspondent, et en ce que lesdits moyens de commande de
microcode (10240, 27003, 27013) réagissent audit code de dialecte et 3 chaque Instruction en langage-S
recue pour foumir 3 Iadite ALU (2034, 2074) une séquence de microvinstructions correspondant 3 cette
instruction en langage-S.

175

Petitioner Apple Inc. - Ex. 1025, p. 4073

Petitioner Apple Inc. - Ex. 1025, p. 4074

15

EP 0067 556 B1

7. Un systéme d'ordinateur numérique selon une des revendications 1 et 2, caractérisé en ce que ‘
chaque procédure oomprend un code de diaiecte définissant un dialecte en langage-S dont les instructions
en langage-S de la prooédure sont des éléments et en ce que iasdits moyens de commande de microcode
(1020, 27003, 27013 eomprennent en outre une mémoire de commande (SFIT 11012) pour mémoriser
Iesdites séquenoes de micro-instructions pour commander ladite ALU (2034, 2074). et un rnoyen 5 table de
distribution (SIDT 11010) pour mémoriser des adresses cornespondant aux omplacements de chaque
séquence de micro-instructions dans ladite mémoire da commande, et en ce que iedit moyen Ea tabie de
distribution réagit audit code de dialecte ct é chaque instruction pour foumir E Iadite mémoire de
commande chaque adresse correspondam é ladite séquence de micro—instructions au moins prévue
correspondant 3 chacune desdites instructions, et ladite mémoire de commande réagit 5 chaque adresse
pour foumir é ladite ALU ladite séquence de micro-instructions correspondent a cheque instruction.

8. Un systéme 3 ordinateur numérique selon une des revendications 1, 6 et 7, caractérisé en oe que
lesdirs moyens de commande de microcode (10240, 27003. 27013) eomprennent une mémoire de
commande inscriptible (11012) reliée atmdits bus pour mémoriser lesdltes séquences de micro-instructions
et un moyen d'adressage de mémoire de commande (SITFNAS 20286) réagissant 3 chaque instruction en
langage-S at au fonctionnement dudit processeur pour produire des adresses de lecture et des adresses
d'écriture dans la mémoire de commande (CSADR 20204) et en oe que Iadite mémoire de commande

inscriptible ré_agit auxdltes adresses de lecture pour foumir iesdites séquences de micro-instructions 5
ladite ALU (2034. 2074) at réagit auxdites adresses d‘écriture pour mérnoriser lesdites séquences de micro-
instructions. ‘ ’“

9. Un systéme d’ordinateur numérlque selon la revencfrcation 7, carectérisé en oe que Iadite mémoire
de commande 1811')’ 11012) oomprend une mémoire de commande inscriptible qui est reliée auxdits_ bus de
mémoriser lesdites séquences de micro~instr-urztions et en ce que ledit moyan 3 table de distribution
comprend un moyen d'adressage d'écriture réagissant au fonctionnement dudit processeur pour produire
des adresses d'écriture. et en ce que la mémoire.de commande inscriptible réagit auxdites adresses
d'écriture pour mémoriser lesdites séquenoes de micro-instructions.

176

Petitioner Apple Inc. - Ex. 1025, p. 4074

Petitioner Apple Inc. - Ex. 1025, p. 4075

r.._.__..._..__....___...
EP 0 057 556 31

nos us/MEM112 Jp 1'14

128 32 14 32
I

Ww°~=ss ;?=.°:.:°:.,“:.:;s,
128 32 32 . I 14 32 32

m°”Es°"'”°" : (L0GlCAA°“(:E::SmC:|1T::0R)

<—— unomou

FIG2

SN 5}"
1 2

/--'-1-'—'-\/-—?--"--—-*\
NAME

B

INSTRUCTION STRE All

FIG 3

Petitioner Apple Inc. - Ex. 1025, p. 4075

Petitioner Apple Inc. - Ex. 1025, p. 4076

EP 0 067 556 31

«avmxuavmNOOUOEQE

uzo..—u_::.mz.uzo__.u:..5z.uoooozui_uauuozui10.2201...._Ou8-sawazo:u:.=n:_uu<:uz<..cum:

V0.1muziuas4<zo_._.zm>zou
2: mzo.pu:.:az_uoouozuimzozuazfiz.uo<=oz5uziuazuzo=u:E.mz.uu<:az«..Em:

Petitioner Apple Inc. - Ex. 1025, p. 4076

Petitioner Apple Inc. - Ex. 1025, p. 4077

EP 0 067 556 B1

.fi|lJ|l|lflfl§fl
N——‘W:

_III

Petitioner Apple Inc. - Ex. 1025, p. 4077

Petitioner Apple Inc. - Ex. 1025, p. 4078

«EP 0 057 556 31

uzanuuoua

.L

uzaouuozn

QGE

aumooca

.O¢0<E.
_

F3».

..Hn._m

PUNBOmzanuoosnFEW»...

hUw—.BONESOWOOEL

Petitioner Apple Inc. - Ex. 1025, p. 4078

Petitioner Apple Inc. - Ex. 1025, p. 4079

EP 0067 556 B1

C5 101 LEVELS

a

 '

ussn
EITERFACE 709 HIGH LEVEL LANGUAGES. UTILITIES. FILES, PROCESSORS

702 703

V ' E05
amnen (mes, cu.

pnocsssons)

ARCKTTECTUAL
INTERFRCE 708 S-LANGUAGES , UIO-OFFSET ADDRESSING. OBJECTS. ACCESS CONTROL

705 713

 $rlN'l'EflPRETER vr%DE “Os 3° ‘RE715

 710
 - K05 IHGDOE

Fl! I20 INTERFACE 7n

Fl] I20 DEVICES SPECMUZED DEVICES723 7 I B

DESUIPTOR
P

1 I5

713 see 723 71:

F" In Wes Dfvxrcn PROTECTION

mama lN'l'ERPRETER ”5 "9
..- _— __ —_ 5503555

TRA§
um

nos «neon: -

717

RAIIETRANS

H

3

FIG 7

Petitioner Apple Ine. - Ex. 1025, p. 4079

Petitioner Apple Inc. - Ex. 1025, p. 4080

EP 0057 555 B1

 EXECUTING PROCESES STOPPED PROCESSES
l—:‘—"“‘—:‘_—_’1

 610 610

PROCESS PROCESS
STflTE STAYE

N

PROCESS A
HOME TO VP »

uuzuomr svsrau ‘
vannm mocesson u aounn to :91 14

JP 114

FIG 8

Petitioner Apple Inc. - Ex. 1025, p. 4080 I

Petitioner Apple Inc. - Ex. 1025, p. 4081

EP 0 067 556 B1

can.645mxauum..ma<u:mo:3»..

mot.«S.xufiu0:03-
soc»...«um:5:32M08

..u<»mno:8055wonEofiz3..umncus3....-29.52.3..

-8Bo

.n25:

 D5xU<._.w«sun03104.5mum:. puusnoounces... 0.:xocbmuzaumm
II..._.2.:2

mu

7

Petitioner Apple Inc. - Ex. 1025, p. 4081

Petitioner Apple Inc. - Ex. 1025, p. 4082

EP o 067 555 31

FROM
S-ENTEFIPHETER

I002

ENTRIES

NEW
PEA

OLD OLD
PC PEA

INVOKER EXAMPLE
CODE CODE

OLD NEW
' NTP

EXAMPLE
NT

 nsscsup-non

nnoqessoa

REGISTERS I006

PROCESS OBJECT lam

I008

E1AMPLE'S
FRAME

INVOKEWS
FRAME

(OTHER IIACROSTATE)

OESCRIPTOR son zxnunz

' _ nsscnmon FOR-C

NEW FF

DU) FP

mvdxaws

SECURE STACK
OBJECT

MACROSYACK
OBJECT

I010

EXAMPLES

FRAME _

I

I

MEMDRV SYSTEM

FIG 10

Petitioner Apple Inc. - Ex. 1025, p. 4082

Petitioner Apple Inc. - Ex. 1025, p. 4083

EP 0 067 556 B1

STORAGE FOR 8

sronaca son 4

 EXAMPLES

"‘“"‘ "°’

FRAME HEADER uoa
HM

INVDKEWS
FMME um

FIG 11

Petitionel‘ Apple Inc. - Ex. 1025, p. 4083

Petitioner Apple Inc. - Ex. 1025, p. 4084

EP 0 067 556 B1

\
LOGICAL DESCRIPTOR 1204

LOG on=sEr
PAGE NO. ms?

PHYSICAL PAGE
NO. '

PHYSICAL DESCRIPTOH 1202

FIG 12

SECONDARY MEMORY

EXAMFLFS FRAME

STORAGE FOR 3

'L_..____-_=-~_"=_~.___i"°_""‘_“°‘_“_‘"’._'___________;

FIG 13

10

Petitioner Apple Inc. - Ex. 1025, p. 4084

Petitioner Apple Inc. - Ex. 1025, p. 4085

EP o_os7 555 B1

ACCESS CONTROL OVERVIEW

PRINCIPAL U10 PROCESS IIID DOMAIN ll!!!
"94 I405 1408

SUBJECT I408
SUBJECI TEMPLATE um
MODES I413

FIG 14

Petitioner Applé Inc. - Ex. 1025, p. 4085

Petitioner Apple Inc. - Ex. 1025, p. 4086

EP 0 067 556 B1

UD Ll$T5

FU 10120 REGISTERS

unsa son a 5“

UPS ARRAY
1512

SECURE STACK
FOR A'5 PROCESS

9%

REGISTERS RESERVED
FOR VP SWAPHNG

U-CODE EXECUTION

VP IIUMBER _I5I3

‘ DESCHIPTOR
TO POINTER

TRANSLATION

SECURE STACK

FOR US PROCESS
9%

LINE FROM 10$

INTERRUPT
UNES

FIG 15

12

Petitioner Apple Inc. - Ex. 1025, p. 4086

Petitioner Apple Inc. - Ex. 1025, p. 4087

ER 0 067 555 B1

13

Petitioner Apple Inc. - Ex. 1025, p. 4087

Petitioner Apple Inc. - Ex. 1025, p. 4088

EP O 067 556 B1

025..9.9:.Q05

.3orN:9.

050.0.5

2GE

Petitioner Apple Inc. - Ex. 1025, p. 4088

Petitioner Apple Inc. - Ex. 1025, p. 4089

EP 0 067 556 B1

u«.=mOh«spamor

Petitioner Apple Inc. - Ex. 1025,‘ p. 4089

Petitioner Apple Inc. - Ex. 1025, p. 4090

EP 0 067 556 B1

16

Petitioner Apple Inc. - Ex. 1025, p. 4090

Petitioner Apple Inc. - Ex. 1025, p. 4091

EP 0 067 556 B1

ESSQ

Petitioner Apple Inc. - Ex. 1025, p. 4091

Petitioner Apple Inc. - Ex. 1025, p. 4092

EP 0 067 556 B1

«E93uzapuaupumaou...an:o_z<zuu:nut...az<¢u._.a8u¢E

0593".u.5._.u=¢._.muaooeP.
ms_m_z<:ou:

u:o<oZOFO50....:o=.<..mz<E.uamxan<.§z<:oux20552:curflomzan

Na:GE«:9SW:

mac;moon...

2::

zo.5=Emz..ozu__:L.22mfluc...zo..§:.o..Eau._n§=.us_uu<z<:Eoauz

:3.23.3::mzflzqzumzuzammzon<|_
I..4.uuuuuuuuuuuu...._.2

pounceuuuuocu.2«mucosa._<:k¢_>

€339uzaouuos.

'-_‘‘l

920Snw.—Sb...>

2.00.50ucaouuocs

|..__....._.._.mhouwmo_«ILnuuuoea23.5..».1w.._.._.sn.cFImw2wu..&.E...r._»__H2...newIInIR.M=ww:m..Iu.almuwm..M_
Ill|Ill|I.lc|nIIIlI|u

18

Petitioner Apple Inc. - Ex. 1025,. p. 4092

Petitioner Apple Inc. - Ex. 1025, p. 4093

EP 0 061 556 B1

.8...63

Ema.no...32:2:«onewm¢w...m.om¢

. 22.52.3—ucauun
n§5_B¢.2no.5

v_.m_.._.m_.mmm._H..T.Eaauoofi
r

IIIIIIIL2.323

l.u...ouIA...1Iu..uu_.uo>52»Soc3.._E.5.39...30IIIIInf1.rIuzanuuoxnEaauooxauzanmuocoan2..cu..:=_u:ican2.2.52..05.::u_z<:um:23.5:2.:2:.92MAEzm.5_om:.5.bananauzanuoocnnotmu..uo.JMHDNHDOEKDDWOOCG
«:0.SW:

19

Petitioner Apple Inc. - Ex. 1025, p. 4093

Petitioner Apple Inc. - Ex. 1025, p. 4094

EP 0 067 556 31

mo..03casein2......59$::04.‘an

Ino.fiat:mS<¢L

9.no.300.;¢u»z.o..mzanuuozn

-:2

O..nOw.uzéuuz..=.o...o._u_:
w!<¢u£05..»o2..o:_u

Nu:<E...z:=o¢.ozo=..

88p.545u:.5o...o¢u_a

2us_.::uzE_o:..o¢o.:

2:at

a.vo.Sat:54:.0433..

«.2:xuuqwxwas...

.m.-mu2.3.2.0;H0112...

«33e2.45..u§.=uo....mam"L2.4.:uuzaouoafi.

u..o_n¢u._.:_o..300..

«mum»_<.—<nu=<:o.S<—qucoaqooa

mavenScum:was:

0.10.u¢u._.:_o¢uo<..z... 3......aE..z_o...203 .ou.o..<._.¢a25.59.55.:3.293once...nn<uzu:<¢u

a.~e.uptow9_u.—z_2$5.2...was::uzsnuuacs.33..
m..u»:.os..¢uo._mu-o._(._.<G0.._.<IOhD<~(hidinc;|-llIII'Al!I

..

95

Petitioner Apple Inc..- Ex. 1025, p. 4094

Petitioner Apple Inc. - Ex. 1025, p. 4095

EP 0 067 556 B1

FIG. 106A .

NAII E REKOLVB

FIG. 1053

”°°'°‘”°°"“

FIG. 106C

Petitioner Apple Inc. - Ex. 1025, p. 4095

Petitioner Apple Inc. - Ex. 1025, p. 4096

EP 0 067 556 B1‘

2.9Ezo:.5mz<E.mmmzofi.

«:9Sure
uSzo<.2._>.o\zo<.z§

3.GE

ILr|IIIIIIIIIIIIIIIIIIIIIIL|..:I...I.....InI....I|.....|..I..nf|....ms.l.I.......|.|l..a|_lréuuao.mm.55=x»moz_mmu._an¢ mm..a<._2335

22

Petitioner Apple Inc. - Ex. 1025, p. 4096

Petitioner Apple Inc. - Ex. 1025, p. 4097

- EP 0 067 556 3'1

WORD A NTE

WORD B

WORD C

WORD D

FIG; 1 as

Petitioner Apple Inc. - Ex. 1025, p. 4097

Petitioner Apple Inc. - Ex. 1025, p. 4098

EP 0 067 556 B1»

9.._o5...

OOOZ\DG<29mzu<ozo=ou...o.E

Q3.GE

23.ENE38.

an__mu._u<.—_.9...zo.»um_.o§_
_I|IIIIIlI..I.lLa||...

24

Petitioner Apple Inc. - Ex. 1025, p. 4098

Petitioner Apple Inc. - Ex. 1025, p. 4099

EP 0 067 556 B1

0:GE

«:9ENE22:msezcxumaZOC.O=¢._.m=..O¢95llillllllli
25

Petitioner Apple Inc. - Ex. 1025, p. 4099

Petitioner Apple Inc. - Ex. 1025, p. 4100

EP 0 067 556 B1

EN.0?‘~15.015-.3::O&3::can

?nu.-4mmim.....I..m.I._ln_.
:3.8...I_‘_-_‘»!‘I_I_U2.:

_|.

_e

¢W4._0¢._.200mu.E¢w.==>¢OIu—¢

zo:<..oa.ad:

 '.E9.2:222
2.3

.330:0.2::0.:33.‘O-

2::am:

26

Petitioner Apple Inc. - Ex. 1025, p. 4100

Petitioner Apple Inc. - Ex. 1025, p. 4101

EP 0 067 556 B1

InI|..'|-.|.l|.a||In1lI‘1|..||ul|Ill|II'Il||l||I.lIIlIIIllIllI|I||lIIulIlllI|||II'IIIlllIIlIIl
..l.

9..S....25
nuuou

:._<z.m4

953fldwfl

2.22...$6..iIi»|»%u _I_I_|.u_'»I_J
scanuo.E:.ummo

D

27

Petiti0ne1<App1e Inc. - Ex. 1025, p. 4101

Petitioner Apple Inc. - Ex. 1025, p. 4102

EP 0 067 556 ‘B1

L<~3...wEllllllllllllllll.....5IIIIIIIIIIIIIl...I.Il1|t.l.l.i1.lI|I|:..1D5onuon20¢
Snowuuuuao

oafl.a.__Hom._
9..Sn5&2”-Ilnl

JMUDL . .cone.

«:3

3:

Boone.jcanon:8.
$22

EQQZxouqcuzuuamazon:55.3:

55.30

E.u».n_a-¢31¢

 __._________________._

 ¢2%.:2:2.u—.Km__.2DOUO~N§n.r.I.|.1:Inl.I.+...n....|Iu....I..I...Il|....|.I.I...lI...|...~lI.....:l|I.l|...|.I.«lo.9:.012cc:

FlllulIIIluI|.1IaI|II|I|lIII‘u'lII-|IllIIIlUl|II.|II|nIIIIoI|IIII.lllIIlI|I||uIIl.I|.l.II.lIII|l|I
28

Petitioner Apple Inc. - Ex. 1025, p. 4102

Petitioner Apple Inc. - Ex. 1025, p. 4103

EP 0 067 556 B1

8Ndt_l...»._u.IalllllllIl.u.:H..WH.h:h.hsJJ
__

_..I.ulIIul:11..IIL.Es 3::
anonD200-hr2

e__

__

_

L -._ EE_r._.:3223.259: r~m..2_“awn!I.mm~I_IIIIII.....m.h2.|._§:_
«:0.man005

Petitioner Apple Inc. - Ex. 1025, p. 4103

Petitioner Apple Inc. - Ex. 1025, p. 4104

EP 0 067 556 B1

.0242200
xm..._oE.zoD3.23auusm:2:

VQN
.¢u._._O¢._.ZOU¢P;=zLuz:

GE

¢3._oEzoun2o_Su_z=::oo

E6.on

30

Petitioner Apple Inc. - Ex. 1025, p. 4104

Petitioner Apple Inc. - Ex. 1025, p. 4105

EP 0 067 556 B1

5.3GE

56::

015¢._OKh200:81

3::

anu..$anz¢:

zc..:...ouu¢.:.EoE..E53
. Emaouc

.._ouo_.o....mmcomouoofiO:u3.
mniiaoo.6.

9az<::oum
.u=.ao¢.52..2:3

.3.¢Eu_.=_E2.

GOO¢u&=n(M1092:09:40

0<0aZ050333..
Bofizou2...Erin:dz2<:o33<>Ol

con.U.lIOIb

._m>o:<5:

 2won..mzz<zo<._.<O<3:

010-3OJOEIDDn:<.__ur=a<0!:.amazon

..uzz<:uX22Scanamazon

31

Petitioner Apple Inc. - Ex. 1025, p. 4105

Petitioner Apple Inc. - Ex. 1025, p. 4106

'EP 0067 556 B1

new.9...IlIIInllIIIIII|.|.um..|.:._I.P_
Petitioner Apple Inc. - Ex. 1025, p. 4106

Petitioner Apple Inc. - Ex. 1025, p. 4107

an nos? 556 31

com.0_n_lnllllllllllllllllllII''IIlI|Ill|I||..|.|...........ll....|.Il.lllIll|J2:2.3eIIII.II.I. /jooaénu.mo_...em.u.2..«.moE:2.994.3._

3a...

Salon60...~29Em:«ON.95——ON.03..—CON.9...
Petitioner Apple Inc. - Ex. 1025, p. 4107

Petitioner Apple Inc. - Ex. 1025, p. 4108

EP 0 067 556 B1

3m.032.9

2::92....

nV—O—DI .

¢u._._o5zou.JwuE¢E.z_.=2_>:O:w5.:...o¢Eou._m:EsE¢u.__
am<n>n

:umxu.z_._.S:j_Susan:_.Eon,13:...25.¢:_In.I!:_|......llLE:_
eutzon

_23_5952:_fin Swans.—ii._O¢_.200_8.:—£820!.E02
.22-3.2on»JPZUS

Petitioner Apple Inc. - Ex. 1025, p. 4108

Petitioner Apple Inc. - Ex. 1025, p. 4109

EP 0 067 556 B1

D9u.nEDIwuzzpmz.an

FFNGE
zoxsw:3.a_<><«.2::7825San..=<><E9..3=3:D104_3.&nnmxaoc

L.___sL....__J
OVBOI Cd ff10| OOH

ltlfll 3114!‘

0-0:Eonaz<EEo3..

cEGEJ_<><EDASuaaux30..22:3cu-a..=<>¢«.2:39.2<5393..J_¢>4<_—¢O35.3<5:use:.73:o=<:=cun3.3:o:<¢u..o:6.E....12:53.c«.o.Sauna:

1__....J l___l
use: our nun con nun our.WIDE dd

32::3.55»:0.

man.03
..=¢>¢2.3coccuG10;znxcu<._.<D:=«><(>40:733339.:73S53Uri;30.32zo=<:uno-0.O.xnzua.36.nausea:

6! IOI OII It l0| ONO!OC lfll ROI

Petitioner Apple Inc. - Ex. 1025, p. 4109

Petitioner Apple Inc. - Ex. 1025, p. 4110

EP 0 067 556 B1

.320Chad

 coaauc.::..z....3....26'.2..a:¢

J5.23;
.%5.3...ELIE—ocean

—ND
.__

"I
I

I

I

I

I
I

I
I

I

I

I
I

I

¢z>¢20_.—<.pOln._nn_:.m.=a

omsusma

__--I

I

I

H I
I
I

I

I

I
I

I
___.__...._I

__

‘:onus».oust...cuss:.....__mm_
O

—.32 >Iona1_as...S92..._
.33_

_E2.._ano_::L.rIIII.lIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.H.8«9:no:so....__.IIIIIIIII.L
36

Petitioner Apple Inc. - Ex. 1025, p. 4110

Petitioner Apple Inc. - Ex. 1025, p. 4111

EP 0 067 556 B1

lIIIIIII.IIn..|I'III..I.IIIII1.|.l..II'IIr...l«.8u<2..~.9...I'II..|.all—.|O_.=&OxkII1|gnuADIIII‘IIIéj-_..iIII.....IIIIIIIIIIIIIIIIIIIIh..__—daze»<3(IjlI...IlI|II|IIII||IIIIIIfluIlnuoO.n|u.vopl<u.3I——__Exu_51.3._ _T__G_fl5;!5%.:__.___.::a:....<3.<2___.32_FIII!III‘III'IIIIIIIIIIL__fl“_.IIIIIIIIIIIIIIIIII__
.1.82:_93.._<3._3..2..______E5II____23o:4S3:8n..:.<4S3:4a___

1D_T...m..E_uo<3<2n5..___.8:_r.IIIII‘IiIIIIlI'I¢[I'‘..|-.I..II'IIlIII|nlu..|..l.|lllu..oa..unIu|.8..N..J__Qaunuou_91¢:55.__<9.ncT_____EE.___“Suinone:23:.____u.___~.::::L:::u::unfiuuuuu:uur:__E:r|II.....Halll|l.IIII|II|IIIIIIlI!l|L_;3:83:.._nzu..m..F::2:3._
c.IO0flODO_n.....”_.“.I..s_....

LI__comma...“.30.._ruuzoataxes_I_
_L

37

Petitioner Apple Inc. - Ex. 1025, p. 4111

Petitioner Apple Inc. - Ex. 1025, p. 4112

EP 0 067 556 ‘B1

mamaOi!l':llnli|l.‘l‘d‘|'lilllll'l‘lll|l'!Ill,—|c. !onuu:.._o..aJ
___________________._____

..

one...can!,033..ow:¢<a

0.5>u>10cmxzu.

9:3.>609a»u<>¢a22.=.u>5

O=..>BDao:>..o

O0!>8>80DO!(0>29DO!.32.309258¢>¢G

:aé.I01:

ainnn

=n.Sx2:._I9...lll|ll|'I4:dn‘Nfl‘|'|l|llilIllllllllllillllllllllllllllillllillllu.

Petitioner Apple Inc. - Ex. 1025, p. 4112

Petitioner Apple Inc. - Ex. 1025, p. 4113

EP.0O67556 B1

Ru<m=J

___.00000OOOOOOOOOOOOOOOOOOOOOOO
.m_.u.

AD.cox.u.zozx.m.cox.<.¢ozx

_MN.03OOOOOOOOOOOOOOOOOOOO..._________
O

_

o

_.__ooooooooo.ooooooo._.__________oooooooooooo
%u|uu.<n4

WW

gas:xm:4Jnzmxm:Jnzuxm:

Petitioner Apple Inc. - Ex. 1025, p. 4113

Petitioner Apple Inc. - Ex. 1025, p. 4114

EP 0 067 556 B1

mmwGE
3.8ause

ozuw!

.32

__n.a.xaafintc
amxazto

.22

auazu
uzunu..._.o

3.2..73use
u:unuc>IlO

:75.3539<

1.2:73no:
man.9...oeuauuaspwmuuo:90;~14:

.28H312

«:9.9:.

Petitioner Apple Inc. - Ex. 1025, p. 4114

Petitioner Apple Inc. - Ex. 1025, p. 4115

EP 0 067 556 B1

3:.95or<ov.«.9...9..SS.02

E3.29:.

2.:IIInw......flaHInfilUmllg22.ll!
an

EL5....
one:

_»:1

Petitioner Apple Inc. - Ex. 1025, p. 4115

Petitioner Apple Inc. - Ex. 1025, p. 4116

EP 0 067 556 B1

A1084

uoovn

-32

.=.u¢..Omi...
gum2Uzofiqcmaoxzorxuxuuxu=.u__.xu

E5

91”.9.IDS:

S:&.0328.oz

5.D10;Ban
3.GE302$

42

Petitioner Apple Inc. - Ex. 1025, p. 4116

Petitioner Apple Inc. - Ex. 1025, p. 4117

EP 0 067 556 B1

 _VN.0?‘

2.néuau

82:

luau0.3mama?
50¢;_au._a<zu.:<2233...cu:M00080D84cm».a..uu¢OS0vunaucanu-=2O...Ocognac.an.

02385H
2S.on..nu.¢u_u¢ux.zuzqcnwewzno

3«ASUAU

0

vouoa.::=.<..G0

032.02.

-I

.B-

._<n0

.‘.o3E.cu3a_

4_5.3.0..»".2.:o..u.

«:99:.. “:8.co:

Petitioner Apple Inc. - Ex. 1025, p. 4117

Petitioner Apple Inc. - Ex. 1025, p. 4118

EP 0 067 556 B1

JPDIO-31) JPD HUS 10142

EUSDT 20265
JPQKZD-I1’

1 1 TO EUMS
_ :92:-an

EU USFITDH
FILE

EUNSF

JPOHG-31)

TO LEI '
20102

H! DISPATCH
I-TL!

FD FUDISF
11343! .

1°

at-cums!

bpcooense 20266

NAME BUS 20226

FIG. 2412

Petitioner Apple Inc. - Ex. 1025, p. 4118

Petitioner Apple Inc. - Ex. 1025, p. 4119

EP 0 067 556 B1

¢_=.:&o

0:101

 n«=0»9:.

ME.03

45

Petitioner Apple Inc. - Ex. 1025, p. 4119

Petitioner Apple Inc. - Ex. 1025, p. 4120

:9 o 067 556 31

flflflfl flflflflfl ENDED EDEN
E E HE E E H E
E H HE E E D E E

B

.e°
3!

 ef
DITA WRITTEN IIITO

l OFFIIUIR 23311

DAIAFROI
MEN 10112

 E GRF 1035! 0!
<— QFFIIUKR AREIttrcnaccso

0
EIEIORYREFEREIICI

<—-Is IEADTOOFFIUII
nuaoaoar loud

Fl_G. 244

Petitioner Apple Inc. - Ex. 1025, p. 4120

Petitioner Apple Inc. - Ex. 1025, p. 4121

- EP 0067 556 B1

E EHanEU

l:ll.':IlEll:I
In E

E E OIlLVlf
O :l“E§§R$:EAD S

m w - mum manna ee II II E! N W
la , E! In H

DA'|’ARt'l'URIl
. TODFFIUlR23B12

In nnunn
mun e a II a I

an In --~--A
~ V W

DATARETURICE .
TOBJ10122

nu» «ma manna.
I: In la 1: an
an X In an

_ Y
D.l‘|’AR€l'l.R0lED
FROHUEIIOIII

mama
. .

m E
2

FIG. 244A

47

Petitioner Apple Inc. - 1025, p. 4121

Petitioner Apple Inc. - Ex. 1025, p. 4122

EP 0 067 556 B1

A D EB C

FIG. 245

Petitioner Apple Inc. - Ex. 1025, p. 4122

Petitioner Apple Inc. - Ex. 1025, p. 4123

..

0In
-<

EP 0 057 556 B1

PRIORITY MASKED

LEVEL EVENT
E-UNIT STACK OVERFLOW
FATAL IIEIJORY ERROR
POWER FAIL .
F-BOX STACK OVEHFLOW
ILLEGAL E-UNIT DISPATCH (GATE FAULT)
STOREBACK EICEPTION
NAIIETHACETRAF
LOGICAL READ TRACE TRAP
LOGICAL WRITE TRACE TRAP
DID READ DEREEHENCE TRAP
UID WRITEDEREFERENCE TRAP
PROTECTION CACHE MISS
PROTECTIONVIOLATION
PAGE CROSSING INTEHRUPT

II.T.l

7.! AND D$
TJ AND D

IAEIIORY REFERENCE REPEAT
EGG TIMER OVERFLOW
E-BOX STACK UNDEHFLOW
NON-FATAL MEMORY ERROR
INTERVAL TIMER DVEREFLOW
IPII EITEHRIIPT
S-OP TRACE TRAP

A.|l.'|'.!
A.M.T.|

HICROINSTRUCTION TRACE TRAP
NON-PRESDIT MICROINSTRUCTION
INSTRUCTION PREFETCH IS HUNG
F-BOX STACK UNDERFLOW
IAlCflOINSTRUC‘IIOfl
EREAKPOINT TJ AND
TRACETRAP MCWD
MISS ON NAME CACHE
LOAD OR READ REGISTQ

FIG. 24 7

Petitioner Apple Inc. - Ex. 1025, p. 4123

Petitioner Apple Inc. - Ex. 1025, p. 4124

EP 0 057 556 31

awnat

0:3!mm:

o.a«u»o»z>uOh

ans.

uuncn¢¢o<

mzwpumgmmmm4az<:»z>u

IEon
»mo»z>u

Petitioner Apple Inc. - Ex. 1025, p. 4124

Petitioner Apple Inc. - Ex. 1025, p. 4125

EP 0 057 556 B1

on3......U...nUnia23::Ohon:==uDrT

2.:3:3.»405.200zo=u:¢§z.o5.:can

a3mat
a

uzuox3

:3.D
JO‘¢

.—

..on2".50..Ouoouuouom¢u..___=.o
Iu.5q0.

UB3:G

xuzuuxu.:..¢<..

.5:0.00.uaouuo._.uuEa

2.:

3.3

Zn;2534A23-
ENEKOcan.391..u__:¢otrio

1.:

2.:3

women¢b<m910.::3.B5.EOE

51

Petitioner Apple Inc. - Ex. 1025,«p. 4125

Petitioner Apple Inc. - Ex. 1025, p. 4126

V

EP 0 067 556 B1

1 I I

DDDDDDOll
CODE
FIG. 251

MCWO

MCW1

FIG. 252

'52

Petitioner Apple Inc. - Ex. 1025, p. 4126

Petitioner Apple Inc. - Ex. 1025, p. 4127

EP 0 067 556 B1

«mm..O—k

uzomuo

$30201

Petitioner Apple Inc. - Ex. 1025, p. 4127

Petitioner Apple Inc. - Ex. 1025, p. 4128

EP 0 06? 556 B1

5....NGE

5..

cause»:zoE=.:$n

uxu..5:as55.95856»
3.2:

SOUL2...oE.zou52:0;1u<—n

¢n<u<cN115.znfimozo:<:=uuo

.u=o_>u¢.=»zu..n9_

5.220199

=n¢u§

n.o...539.:95.Saxon3.........zu>u0%

canon01¢

.8—..utmau:9:2.

«<3.05..

Petitioner Apple Inc. - Ex. 1025, p. 4128

Petitioner Apple Inc. - Ex. 1025, p. 4129

EP 0 067 556 B1

z._onzo=o¢~a..

..uzuu::.x._u
3..

EuGED»z>m>u<

«Sou

.526Oh3..u¢>o «:0.05.

55

Petitioner Apple Inc. - Ex. 1025, p. 4129

Petitioner Apple Inc. - Ex. 1025, p. 4130

EP 0 067 556 B1

.2:040m

223II.
nos.

02¢:d2.0.W
>ZK¢

:2:

.223.mzo=_nzoucu5£.o:¢z

Oct33..

CO‘ad:zuz¢¢m}2.3.$2.:

30.6.

uz¢6u:3onmuq2.3:

:251.5»$0‘II .lI'j.n.D_..wonowm_DDw370.N30..
9:.

55

Petitioner Apple Inc. - Ex. 1025, p. 4130

Petitioner Apple Inc. - Ex. 1025, p. 4131

EP 0067556 B1

CGHDN

:52: .

elm»canon. «Inn:3.
m2...:

canamen

Bzou.
.16.

.VEmat
an

.12

2:6.

uamu

$3.2.:m.ecu...20.:

23“

\|0&0EOKKvnun 5.6“:Eu...:2:
c.=..cnucaxu0....::r.u

DAG

\...n.no.

9:3

:2:2.5::.29P...:;

Petitioner Apple Inc. - Ex. 1025, p. 4131

Petitioner Apple Inc. - Ex. 1025, p. 4132

PHYSICAL
DESCRIPTOR ‘

EP 0 067 555 B1

Petitioner Apple Inc. - Ex. 1025, p. 4132

Petitioner Apple Inc. - Ex. 1025, p. 4133

ls

EP 0 067 556 B1

LED“? -1)
e

CKSIZE

15? INTERHUPY

MEM 10112
FIG. 265

FIG. 266

59

Petitioner Apple Inc. - Ex. 1025, p. 4133

Petitioner Apple Inc. - Ex. 1025, p. 4134

EP 0 067 556 B1

PHVSICAL DESCRIPTORS

PHVSSCAL OESCHIPTORS

. FIG. 268

Petitioner Apple Inc. - Ex. 1025, p. 4134

Petitioner Apple Inc. - Ex. 1025, p. 4135

NDUO.Emaouz.545.

EP' 0 057_ 556 B1

#000

mewOI
uuuouq33...on:.533Susan:.=.<¢D

2..Edtunazokaumzuommuuu<...2<¢U02:.Sean¢>ozn

Emaau...

Susan:unuuuq1::DION

Suaouc

Z.“fin..n.n.v.n.o

900: ._z<¢o

61

Petitioner Apple Inc. - Ex. 1025, p. 4135

Petitioner Apple Inc. - Ex. 1025, p. 4136

EP 0 067 556 B1

ENGE

 305 .l.NI WBN

.3:.22:um:>¢O5w$".lIIlIll.IIlaI

302

uu<_=a»z_3. 9H2ammo
2:

9.nvmA2O<

903um:anus;qnnau_Nana"Eu:356«nouuu20¢

:35.39;W542ED:.52:nz<E.uzaz

fZZOZ SFIBENVN

l:'o:t an

3.8.uEDnic.mac9:.

5DRazamuaooqmoon...

.8;

MEWDGWKs.<u¢..w..éouou¢CD<mO
E.

u<z»tm-$8....

um<uEuScan
52:2.

N39 800V
83] SIDSU

«ion95:.

VIIDI OOH

IKOH ,|_I.ISn$

ccin3:3mu>._<>on:2:oz_m:u..
=3.2.39:.

.3<zc_m£3.#442655!;
wz.xu<:omo_:2.29.

Petitioner Apple Inc. - Ex. 1025, p. 4136

Petitioner Apple Inc. - Ex. 1025, p. 4137

EP 0 067 556 B1

LOGICAL DESCRIPTOR DETAIL

13 14 27 28 -59 60 91

L _ . _ . _..—..——-—--————--——-----—-----g'

'//.'f/////.
2 3 4 5 6 13o 7 1o 11

o

I 1
] l LOGICAL oescmpron 27116
I

I

I

I

RS FIELD

FIG. 271

Petitioner Apple Inc. - Ex. 1025, p. 4137

Petitioner Apple Inc. - Ex. 1025, p. 4138

EP 0 067 556 B1

SEN
E.._....:

250.
ucqaopmtiazooum:0N..9>¢O1m5_xofimmxauum2.muss:xofimJ<:.—z.>

NRGIOn...’:1

vnno.uzuuO.22202.10%xufm

__

.Sufi*mu.2<xuIn:_ tau.2050:
III...

_M“MUNW

...mmu.Sufi1..n.M.muz<E._mwzofim_54¢=.—E>
wn_~R_xa:o.>u¢._:ma:.

pzwzznu

moansmo:KOL3>5uu¢muss:

_mm

_mmSufi_zmsmmzczumuxu
nv.

W:3.1!..._snms:was:
un._3.

.

.33.win...
0ms_<¢uROE30¢3u:<E_:9.30¢..

Petitioner Apple Inc. - Ex. 1025, p. 4138

Petitioner Apple Inc. - Ex. 1025, p. 4139

EP 0 067 556 B1

STHUCYURES CONTROLLING EVENT INVOCATION

V////,EE%
MCW1 20290

§ § :5 : ‘J '3 '= 5 :3 2 z: 2 3H 9 G H 6 PI 0 0 P3
: z E a 2 a a - a .2 : z: : ::

EM 2730! E!’ 27309 TE REGISTER 27319

FM RETURN ADDRESS
21324 27326

ncws REGISTER 213:2 V////J

2 2 3 ° : S‘ 2H n n 3 0 I’: HI~ - 5 s is is n.an an at N N In as

REYIJRN SIGNALS 2133!

FIG. 273

Petitioner Apple Inc. - Ex. 1025, p. 4139

Petitioner Apple Inc. - Ex. 1025, p. 4140

EP 0 067 556 B1

' POINTER FORMATS

GENERAL POINTER FORMAT 3010!

orrsrr muss AN!) ‘um um nomrans: um
sow: roman 30115

BITS D-31 BITS 32-47 BITS 68-‘I27

l""""T"""
._——.—.—.—_-—.-_....—-..._—_..__——.—--——-

FIJGS AND FORMAT 31105

RESERVED NR RESERVED For-‘«MA'r CODE
10107 30109 30111 301 :3

32 33 34 35 35 37 38 39 40 4 I 42 43 44 45 ' 46 41

.-._.—__.J

FIG. 301

Petitibnel‘ Apple Inc. - Ex. 1025, p. 4140

Petitioner Apple Inc. - Ex. 1025, p. 4141

EP 0 067 556 B1

ASSOCIATED ADDRESS TABLE

an PTR vsnsmu V cunnzm “M555an: 1 1 36204 30,05

AAT HEADER
aazoa

UID-OFFSET‘!-1El.D POINTER FIELD ' " '
30207 39199

AA? SD20!

MAS OBJECT FOR A PROCESS

AATE ARRAY
3020!

FIG. 302

Petitioner Apple Inc. - Ex. 1025, p. 4141

Petitioner Apple Inc. - Ex. 1025, p. 4142

EP 0 06? 556 B1

NAMESPACE OVERVIEW OF A PROCEDURE OBJECT

PEP

LITERALS 303-3!
3035 30507

ll L"
WW 3031: SDPP 36:13

W =c=-=
PEO 36303

PE!) 3033

 FEDS wsaa

INTERNAL ENTRY

DESCRIPTORS 10342 .

CODE 10344

STATIC
SUPP - — -— — - DAT‘

STATIC DATA INITIATION PROTOTYPE
INFORMATION 30321 30317

NTP

NAME TABLES "H2350

ENDEII ARER
3032!

FIG. 303

Petitioner Apple Inc. - Ex. 1025, p. 4142

Petitioner Apple Inc. - Ex. 1025, p. 4143

EP 0 067 556 B1

LONG NTE 301$

st-com’ NTE 30:03ji-1

FORMAT ans: LENGTH ms» 'E’,'f," nesenvso
30407 ‘$425 30435 30¢? 30439 30443

0 15 ‘I6 31 :12 47 as 63 6a 9596 111 112 127

FLAGS ST

NTE 30401
Fl.AGS some

r---"——7

flflfl/////fl .22:7 B 3 I4 15

FLAGS AND FORMAT 30107

3;“; Poamen LOCATION 3043- _ “$5 '5 ”‘APB 30497
15 11 15 31

BASE 30425

E F ' BASEISA“AME $432
15 - 31

FIG. 304

69

Petitioner Apple Inc. - Ex-. 1025, p. 4143

Petitioner Apple Inc. - Ex. 1025, p. 4144

EP 0 067 556 B1

mom.0_..._

E":on:E<azozfin.33“.H3:;Eonmax
can.._m.a£52333::

Eu.8._n<:5.“>(¢:<m.can»uu5az_2mm:Seanup:0204cummafia»N335km...:9.mt..$25.9.33::o.msodamumus¢z..uaz_5:..38use._m.n.E..<35a.33saves:..-on..n.onmavenEcon
70

mien

5.3»:min:

2..

km...can.1»...uo$.2.._.¢OLu..:=.o...man.230“.moqaopm<0azupKOKuc<¢o»u3 Swanmas:xofimEonan

u.E2s.u2o:.:._oau..E22.5..

Petitioner Apple Inc. - Ex. 1025, p. 4144

Petitioner Apple Inc. - Ex. 1025, p. 4145

EP 0 06? 556 B1

NAME CACHE REGISTERS

E BIT OF LENGTH
non arr _

NAME CACHE REGISTER 30602

NAME CACHE ENTRY 30601

FIG. 306

THANSLATINO S-JNTERFRETER UIDS TO DIALECT NUMBERS

S-MTERPRETEK UID

LAR MICROCODE

S-INTEHPRETER ADN DIALECT No.
30705 some

5-INTERPRETER TRANSLATION TABLE 30701

FIG. 307

71

Petitioner Apple Inc. - Ex. 1025, p. 4145

Petitioner Apple Inc. - Ex. 1025, p. 4146

EP 0 067 556 B1

REQUEST F OR

SYSTEM RESOURCES

A OPERATING SYSTEM
40102

OPERATING SYSTEM

COMMANDS TO RESOURCES

SYSTEM RESOURCES
40103

FIG 401

Petitioner Apple Inc. - Ex. 1025, p. 4146

Petitioner Apple Inc. - Ex. 1025, p. 4147

EP 0 067 556 B1

IIULIIPROCESS OPERATING SYSTEM

USER
PROCEDURE

USER
PROCEDURE

USER
PROCEDURE

507 502

602

PROCESS PROCESS

610

610

PROCESS MANAGER 102%

VIRTUAL

PROCESSGI
VIRTUAL

PROCESSOR

VIRTUAL
PROCESSOR

612 51;

402*

VIRTUAL MEMORY

MANAGER 40207

VIRTUAL
DE VICE
40208

VIRTUAL I O
MANAGER 40109

FIG 402

Petitioner Apple Inc. - Ex. 1025, p. 4147

Petitioner Apple Inc. - Ex. 1025, p. 4148

EP o 067 555 B1

E05 AND ROS

E XECUTING USER PROCE SS

610

CALLS TO
USE}? PROCEDURES

CALLS TO
EOS PROCEDURES

PROCEDURE 4°35: 4°30‘
|,EvEL _ _____ ________ ____INTERFACE — — ""
453a? E05 CALLS TO R05«no:

uszn PROCEDURES E05 xos
40306 vaocaounas pnoceounss

10307 4:36!

S-LANGUAGE K05
SIN ' sms SW5
LEVEL _ 403:0 aoan
INTERFACE- '..._..___..__.._ __.........
40309 Tmcausro

s-uucunca mcoos K05 M3095
403::

S!GNALs s|cuA|_5
FROM FROM
HARDWARE HARDWARE

4031: IIIINSTRUCTION urn‘403-5

JP ‘-' : :* Z * —-——ii—— -—-—:——i.—:-—.——:q _
INTERFACE JP mu

FIG. 403

74

Petitioner Apple Inc. - Ex. 1025, p. 4148

Petitioner Apple Inc. - Ex. 1025, p. 4149

n

‘J

EP 0 O5? 556 B1

EOS VIEW OF OBJFCTS

OBJECT UID 40-10 1

ATTRIBUTES

oaaecr seam N0. ‘ or meoaaec-r

40403 40404

LOGICAL ALLOCATION UNIT 40405

OBJECT
CONTENTS

FIG 404

75

Petitioner Apple Inc. - Ex. 1025, p. 4149

Petitioner Apple Inc. - Ex. 1025, p. 4150

tl

EP 0 067 556 B1

PATHNAME TO UID-OFFSET TRANSLATION

PATHNAME

1
TRANSLATION TABLE A0503

FIG 405

OBJECT UlD'5
UNIVERSAL IDENTIFIER O1

ouecw sebum. NUMBER

(43 3:15) 4:502

FIG 406

76

Petitioner Apple Inc. - Ex. 1025, p. 4150

Petitioner Apple Inc. - Ex. 1025, p. 4151

EP 0 067 556 B1

nu. um. nub Msmonv

ENTRY IN
CACHE-

PRIMARY
MEMORY -
ADDRESS

MEM 10112

ADH-

OF-FSET
ADDRESS

40705

ENTRY NOT IN
CIICHE: INVOKE

IIICODE

40710

AON OFFSET

ADDRESS
T0 MHT

JOTOS

MHT ENTRY
FOR AON-
OFFSET

ADDRESS

FIG 407

Petitioner Apple Inc. - Ex. 1025, p. 4151

Petitioner Apple Inc. - Ex. 1025, p. 4152

., nasnsuucnou

EP 0 067 556 B1

SUBJECT AST I091:4050‘
F

PMWAL m REE cuamnaao com!DOMAIN

A
PROCESS

STE ‘D808

@

FIG 408

Petitioner Apple Inc. - Ex. 1025, p. 4152

Petitioner Apple Inc. - Ex. 1025, p. 4153

EP 0 067 556 B1

S»at .2;oz-89uusua

-—nan—nun.nnu.—j:j—..:

:59waswe

 w:«a4__

neoc-humane.53

79

232panama9:5rllrlllgonce.:1.-

_88.Ppzuuzou
_5

name_wII.4,..«.nma.oI._§III
_

38-:nnwovOD<.-
_

_..

3w.asun

331:5

.8:._.:<J<.W.3<.._O21u._a<._.D<.—U>..—0<

m...ou_.noD-._<«:1.

Petitioner Apple Inc. - Ex. 1025, p. 4153

Petitioner Apple Inc. - Ex. 1025, p. 4154

EP 0 067 556 B1

CVOE_|IIIIII.|.Iu..l.....|.-.IIIIIIIIII.I.u.I+Il.|l.uI:_ g_.13.65.

a<zoEaa<an._.
uufimmmzu

S..Q«Sm:NOD:awn:83-3.2..

__________.____

25323..ucapuafim22..._<_=..uozoo

80

Petitioner Apple Inc. - Ex. 1025, p. 4154

Petitioner Apple Inc. - Ex. 1025, p. 4155

M

‘ EP 0 067 556 B1

LAUDE DETAIL

STRUCTURE VERSION
11209

FILE lDEN‘I1FIER
41215

DOMAIN OF EXECUTION
ATTRIBUTE

A1235

AWN. VER5. NO. 41227 ;Az:L 41229
Pact. OFFSET 4:23: EACL OFFSET £1235

CONTROL
ATTRIBUTE
INFORMATION
412:9

FIXED PACLE5

11237
LAUDE 40905

FIG. 412

81

Petitioner Apple Inc. - Ex. 1025, p. 4155

Petitioner Apple Inc. - Ex. 1025, p. 4156

0"

EP 0 067 556 B1

 UIDS AND AONS
SET 41301 OF

UIDS FOR OBJECTS
ACCESSIBLE TO A

COMPUTER SVSTEM 10110

SET 41303 OF
AONS IN A GWEN

COMPUTER SYSTEM 10110

]<—14 arrs—--|

£1304

UID 40601 FOR OBJECT X 41302

40401

(up TO 20° mos 40401) (up 10 2“ nous)

§L

AOT 10712

um ron cute! :1 uaoz _
nor; u as

cu us ouscr rs AON)

UID-IONTRANSLATION AON-UIDTRANSLATION U|D~AONTRANSLATION RON-UIDTRANSLATION
 . um roa o.|sEc'r x 41302 @

UID-OFFSET ADDRESS 41308
T
AON-OFFSET ADDRESS 41309

FIG 4 13

Petitioner Apple Inc. - Ex. 1025, p. 4156

Petitioner Apple Inc. - Ex. 1025, p. 4157

cu

U‘

EP 0067 556 31

SUBJECT TEMPLATES. PACLES. AND EACLES

FLAVOR FIELD um FIELD
41553 41605 '

_ pnxucwuconswousur nsoa

‘ nnocesscomponem usm

- oomm component 41609
- us couponem 41611

SUBJECT TEMPLATE A160!

, SUBJECT TEMPLATE
nan!

ACCESS MODE B75 1 I615

FACLE 41613

SUBJECT TEMPLATE
IIBDI

ACCESS MODE ARMY new

EACLE 4 I815

FIG. 4 16

Petitioner Apple Inc. - Ex. 1025, p. 4157

Petitioner Apple Inc. - Ex. 1025, p. 4158

AONINDEXES42103 .—.—:..—-1-—.——————..—_j———:.——.

42 107: VALID
42109: EXECUTE

X
ZIn
<

COLUMNFORASNK42105

EP 0 067 556 B1

APAM

ASN INDEXES 42102

APAME 42105
FOR AON J. ASN K

—-—:—.:.:——__—.———j..¢-————————-

-__.._._......_;..-.jj--——.¢..j.j-—_-—-—

APAH 10913

APAME 62005
42111: READ

flflflfl

FIG. 42 1

84

Petitioner Apple Inc. - Ex. 1025, p. 4158

Petitioner Apple Inc. - Ex. 1025, p. 4159

EP 0 067 556 B1

PRIMITIVE DATA ACCESS CHECKWG

LOGICAL
ufiscmpwon VALIDIINVALIDSIGNAL 53205 TO HEM 1D1I2

17116

E Pam. ACCESS

Manon
OPERATION

‘:20: A01’ ID712

PROTECTION CAQIE 10124

ILLEGAL
ACCESS
EVENT 42208

APAII IOQIB

GILL TO K05
WOTECTW VIOLITIOII

PROCEDURES P|ula_ pun
-2177 access use

4221!

ABA!!!
:2 nos Ion
susJ.- 0&1.

PAIR

FIG. 422

Petitioner Apple Inc. - Ex. 1025, p. 4159

Petitioner Apple Inc. - Ex. 1025, p. 4160

EP 0 067 556 B1

EVENT COUNTERS AND AWAIT ENTRIES

EVENT COUNTER NAIJE I480!

0 4 EVENT COUNTER 04601 54

EVENT COUNTER NAE “B03

% EVENT couwran vnut new
I BACK um um; | 192I-——.———._._—._-._—————_ -—.—1zl

AWAIT ENTRY 44801

128

FIG. 448

AWAIT TABLE OVEBVIEW

 PETN1’INDEX

ARRAY

U51’ PETE 09A

. AWAIT ENTRY 344804

us: PEYE 093

#4804

FIG- 449 um

PET M105 wmo
PE! EC LIST «DI

Petitioner Apple Inc. - Ex. 1025, p. 4160

Petitioner Apple Inc. - Ex. 1025, p. 4161

in

vv

VP
NO

£5304

NO
45304

EP 0 067 556 B1

_ PROCESS OBJECT
901

UlD'5 FOR PROCESS OBJECT 901 _

UID'S FOR PROCESS STACK: ,
' 10323-10335

USER MAS
10328

DBMS MAS
10330 . --

VPSB614 FOR VPA 45303

VPS SA 45301

K05 MAS
‘|033d

RUNNING LIST HEAD 45311

ELIGIBLE LIST HEAD 45313

' SUSPENDED LIST HEAD 45315

STOPPED LIST HEAD 45317

KILLED U51’ HEAD 45319

SECURE STAG‘
i0336

MVPLE 45309

FIG. 453

Petitioner Apple Inc. - Ex. 1025, 4161

Petitioner Apple Inc. - Ex. 1025, p. 4162

EP 0 067 556 B1

VIRTUAL PROCESSOR SYNCHRONIZATION .

PROCESS
OEJECT 901

FOR PROCESS A

PRIVATE EC 45405

VPSB 614
FOR NON-KOS FROCESS

NS VIRTUAL PROCESSOR

hxwnn ENTRY sou Ecal
MULTIFLEXED

VP-S9 51‘ FOR ou1'wAno sncuus EC
nos Pnocfis MANAGER .540,vnoc£ss's VP.

vvs an 45:01

— m “’°‘van cuuux 45402 Wm‘ 95“
was FOE was EC nsaov ‘°“ ”"°‘3E53 “'5 "57 W"
 vurruu. PROCESSOII an °"°°£55 ‘

__ VPAT CDQJIIK 45602
FOR PROC MANAGER

PHOCESS‘S
vnsvrmu. Pnocssson

 6'2
OUTWANU s'GNlL5
oaaacr «:42:

vprr 45401

FIG. 454

88

Petitibnel‘ Apple Inc. - Ex. 1025, p. 4162

Petitioner Apple Inc. - Ex. 1025, p. 4163

EP 0 067 556 B1

MAS OBJECT OVERWEW

UNUSED STORAGE
46727

ftSTO 4E7DE
5-INTERPRETEH

PORTION Of FRAME

ms

,_< 4311: ram:
3_3§ 45109:Q91
2:21.14"! PM?‘D
353: 45702gang
c3245
3 go LOCALLINK

=22

in =§§§2
BACK To I-‘RAI-CE
N ANUHIER
MAS OBJECT

FFO
46719

FER-DOMAIN
mvoklwnou

45101

HA3
BASE
10410

HAS OBJECT UID
A6715

MAS OEEC? 06703

FIG. 467

Petitioner Apple Inc. - Ex. 1025, p. 4163

Petitioner Apple Inc. - Ex. 1025, p. 4164

.;

. EP 0 067 556 B1

MAS BOSE DETAIL

‘D

"0 STORAGE AREA _ 3 '3, STATIC DATA
45119 .5354 S ; 3 STORAGE 56561U >

U 3 _§_ son» x LINKAGE POINTE R5
46855

STATIC DATA
BLOCK 46853

SEE 46364

T
t----:

T“

£01.97VZHV NDILVIIHOam- NIVKOO-llid

_ ,, ,

MAGS 16325 E g 2
‘ a E N%~RE$. PTH B6859

. FORMAT Mo 46823 . ' 8 §- 3 ,, as; 911:. 453512-I

AATE 30205

D: “,m,,,
FRAME LABEL SEQ. 4661!!

an nomrea son I

SIGNALLE FTH. nsan

2> I -2 >

Don. :wv.mro wrmnssu _ ca 0:
Q oO

PROCESSUID ‘anon 5 ‘,3~I n
3 -I

FIRST FRAME OFFSET 46306

IIREVIOUS FRAME OFFSET 46805

FORMAT INFO? 46401

STACK BASE 10410

FLAGS 25 FLAGS 46803: 46854: DOMAIN ACTIVE

A6827. PENDING INTERUPI
46329: DOMAIN DEAD
fl6B:I1:INVOKE vzmn on ENIRV
56331: INVOIE VERIYY DH Ell‘!
468:5: DEFAULT HANDLER «ON-NULL

FIG. 468

so

Petitioner Apple Inc. - Ex. 1025, p. 4164

Petitioner Apple Inc. - Ex. 1025, p. 4165

-‘~.'

,. LOCAL 510mm: mun _ 3 g
FF 2 2TH

umuxcs romrsns sons 3 g g E
g 6 In 3
“ 3 3 §

3 o
0 3

n

EP 0 067 556 B1

MAS FRAME DETML

1T‘?

V

Clll?HWY!!!:10 IIOILUOJHILIHJHILNI-6 n

.—.——-——¢-—————_¢—.—.——ju

U51’ AREA 45943

Olbfll BDVUOJS 1130'!

LINKAGE POINTERS Ions

MAS FRAME 467$

LVBSD INVUJ OBLVIOBII

‘II

3.’ II

-1}:
5;"MD8

 @“"5FLAGS £5902 ‘

46903: RESULT OF cnass-oouum NOTE: IN A FRAME
45090:: IN stGNAu.2n _ RESULTING FROM
16301: Do NOT RETURN ' A cnoss-DOMAIN
46909-15: U51’ PR.E5EN1 $1.165 CALL. UFO 17-0;In A smut:

IAXNG A CROSS-
DOIIAIN CALL.
NFO - 0

FIG. 469

91

Petiti0ne1(App1e Inc. - Ex. 1025, p. 4165

Petitioner Apple Inc. - Ex. 1025, p. 4166

,~.

‘I

(v

-1

1;,

EP 0 067 556 B1

$5 10336 OVERVIEW

$570
47043

TOP ORDINARY FRAME 105103

 SSFO

47045
TOP C3055 DOMAIN

nu‘° FRAME d7039C47047

TRACE INFO PTR £7011

cnoss-nowuu ram:470393

ORDINARY FRAME 10510!

START SIGNALLER FTH 47029

VPAT OFFSET 41027

DOMAIN NUMBER 47023
I001!SSVIVIHIOVASEUIIOHS

 V OFFSETS INSTORAGE AREA 47023

IDFO VAL 47022

$5570 VAL 17021

ICDID331030033NOILVOOANINV80$SHIV!!!
SSTO VAL I101?

SSFO
PROCE 55 UICROST ATE. £7017£7034

‘. STORAGE AREA FOR
4910114 REGISTER
CONTEINS 4703.’!

macsss
‘ moment: now

secune sucx
usmaa 10512

SECIME STACK OBJECT 10336 SECUHESTACK HEADER 10512

HO I-DOM F35 Q7015

FROCESS BID 47015noonBSVOIOIIBIHIIDBS

SSFO VALUE 41013

PREV FE OFF 47011

FL§GS £1009

FORMAT INFO 47001

FIG. 470

Petitioner Applexlnc. - Ex. 1025, p. 4166

Petitioner Apple Inc. - Ex. 1025, p. 4167

‘V:

l'..

EP 0 067 556 B1

SECURE STACK 10336 FRAME DETAIL

Eff/:3

PC ‘ ONF ORMATION 47 M5

Sm VALUE 41141

SDP VALUE 47131

S~IN'!EnP ENV P11-I 41135

ENTRV DESC PH! 47111

SVLLABLE SIZE 41125

MACROSTATE 10516

IHCHOSTATE INFO I712!

PSEC X-DOMAIN FR OFF 41119

DOMAIN NO 471 I7

FORMAT INFO 47103

OROINARV $5 FRAIIE HEADER 105"

MICNOBTATE10520

MACROSTATE H3515

ORDINARY 55 10336 FRAME
HEADER 10514

MICROBTATEIOIRO
MACROSTATE V0516

CROSS-DOMAIN
FRAME READER

GOTO TAG 41155 CROSS-DOMAINSTATEIOSII
C3055-DOMAIN FRAME 47039 NEXT X-DOM FF 47159

CROSS-DOIIAIN FRAHE
HEAOEE I1 157

FIG. 471 T .

-» .-4—_.~\,‘

Petitioner Apple Inc. - Ex. 1025, p. 4167

Petitioner Apple Inc. - Ex. 1025, p. 4168

»--x

EP 0 067 556 B1

PROCEDURE OBJECT OVERVIEW

LIA OFF ATE! GATELINE

ENTRY DEC. OFF 17207

LOCAL GATE 47205

BINDER AREA OFF
. 47208

LINK GATE 47206

SUPP 3031!

PO? 30315 $1‘? 30816

STATIC DATA LINKS S0319

STATE: DATA

IDTIALIZATIJH INFO
30$I

41235: AIA PREVENT
47237: SE3 PRESENT
472.33: 00 NOT UGO‘ ACCESS

nudes m,K1335

NAHE TABLES
10350

GATES
(EXT. ENTRY
DESC.)
10340

ARGIIIIENT
IIFORIIATION

ARRAY

INTERNAL
ENTRY
DEEPTOTIS
(ENE) 1032

an. somurs
nu. Anus 41247 ‘

cone "‘°
1°34‘ wees moo: uuuv

CT251

MAE 47245

am 131?
AMA! PBIMFIIVEACCESSCTZSS
47253 .

I-
an amen ACCESS ans: '

sum:
nun
Motown:
303:1

FIG. 472

Petitioner Apple Inc. - Ex. 1025, p. 4168

Petitioner Apple Inc. - Ex. 1025, p. 4169

 WORLD INTELLECTUAL PROPERTY ORGANIZATIONlntemational Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6 :

H04L 9/08

 (11) International Publication Number: WO 99/34553

 (43) International Publication Date: 8 July 1999 (08.07.99)

(21) International Application Number: PC1‘/US98/27531 (81) Designated Strata: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,
KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW),
Eurasian patent (AM, AZ, BY, K , KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, C , DE, DK, ES, Fl, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
TD, TG).

 (22) International Filing Date: 30 December 1998 (3012.98)

(30) Priority Data:
09/001,463 31 December 1997 (31.12.97) US

(71) Applimnt: V-ONE CORPORATION [US/US]; Suite 300,
20250 Century Boulevard, Gennantown, MD 20874 (US).

(72) Inventors: WRIGHT, Steven, R.; Apartment 21, 12010 Wa-

terside View Drive, Reston, VA 20194 (US). BROOK,
Christopher, T.; 7308 Pomander Lane, Chevy Chase, MD
20815 (US).

Published

With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt ofamendments.

(74) Agents: URCIA, Benjamin, E. et al.; Bacon & Thomas, PLLC,
4th floor, 625 Slaters Lane, Alexandria, VA 22314 (US).

 (54) Title: KEY ENCRYPTION SYSTEM AND METHOD, PAGER UNIT, AND PAGER PROXY FOR A TWO—WAY ALPHANU-MERIC PAGER NETWORK

(57) Abstract

 A method and system allows encryption services to be added to an existing wireless two—way alphanumeric pager (4) network by
providing a pager proxy (7) which is arranged to receive an encrypted message from a sending pager (1) and re—packages it for retransmission
to the destination pager (2). The sending pager encrypts the message using a session key. and encrypts the session key so that it can only
be recovered by a secret key of the pager proxy. Authentication (13) of the sending pager and proxy server is provided by encryption of
the session keys together with identifying data, and authentication of the message is provided by a message authentication code generated
by computing a message authentication code based on the session key, identifying data, and the message.

Petitioner‘ Apple Inc. - Ex. 1025, p. 4169

Petitioner Apple Inc. - Ex. 1025, p. 4170

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCI‘ on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain L9 Lesotho SI Slovenia
Armenia Fl Finland LT Lithuania SK Slovakia
Austria . FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad
Bosnia and Her-negovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav TM 'I\rrltmenistan
Burlrina Faso GR Greece Republic of Macedonia TR ‘Turkey
Bulgaria HU Hungary ML Mali '1'!‘ Trinidad and Tobago
Benin . ra Ireland MN Mongolia UA Ukraine ‘
Brazil [L Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi US United Sraies of America
Canada 11‘ llaly MX Mexico UZ Uzbekistan
Central African Republic JP Japan _ NE Niger VN Viet Nam
Congo KE Kenya NL Netherlarrds YU Yugoslavia
Switzerland KG Kyrgyzstan N0 Norway ZW Zimbabwe
Cote d'lvoire KP Democratic People's NZ New Zcaland
Cameroon Republic of Korea PL Poland
China KR Republic of Korea Fl‘ Porrugal
Cuba KZ Kazakstan R0 Romania
Czech Republic LC Saint Lucia RU Russian Federation
Germany LI Liechtenstein SD Sudan
Denmark LK Sri Lanka SE Sweden
Estonia LR Liberia SG Singapore

Petitioner Apple Inc. - Ex. 1025, p. 4170

Petitioner Apple Inc. - Ex. 1025, p. 4171

wo 99/34553 ' PCT/US98/2753]

KEY ENCRYPTION SYSTEM AND METHOD,

PAGER UNIT, AND PAGER PROXY FOR

A TWO-WAY ALPHANUMERIC PAGER NETWORK

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to a system and method of encrypting messages for

transmission and/or receipt by a pager, and in particular to a system and method for

which uses a standard two-way wireless pager protocol to send encrypted messages over

an existing paging infrastructure. The invention also relates to a pager unit capable of

sending and receiving encrypted alphanumeric messages over a wireless pager network,

and to a pager proxy server which provides key management ftmctions for enabling

transmission of encrypted alphantuneric messages over the wireless pager network.

2. Description of Related Art

Paging systems capable of transmitting simple alphanumeric messages and

displaying the messages on a miniature .two-way pager are becoming increasingly

popular. Such two-way paging systems enable messages like "Meet me at the gym at

6:00" or "I love you" to be both transmitted and received by equipment that is smaller,

less complex, and less intrusive than a wireless telephone. The messages are transmitted

as packets containing source and destination address data formatted for transmission over

Petitioner Apple Inc. - Ex. 1025, p. 4171

Petitioner Apple Inc. - Ex. 1025, p. 4172

WO 99/34553

l0

15

20

25

PCT/US98/27531

the response channel of a wireless paging network, using a protocol that allows users to

respond to messages directly from their pager units without having to use a telephone.

Two-way pagers are currently offered by Motorola and Wireless Access, with

national paging services being provided by MTEL, which uses Motorola's Re-FLEXT”

paging protocol. The Re-FLEXT” paging protocol allows users to respond to messages

using a selection ofpre-prograrnmed responses or by formatting a free-form text reply,

and in addition includes a TCP/IP protocol stack that allows the user to initiate messages

to subscribers on wired networks, "including e-mail and fax machine addresses.

The present invention concerns a method and system for encrypting and

authenticating messages transmitted over the existing pager system, using the Re~

FLEXW protocol, or over other yet-to-be~implemented paging systems in the U.S. and

elsewhere which may or may not use the Re-FLEXT” protocol. Unlike previously

proposed arrangements, which either rely on complex encoding schemes and

sophisticated hardware at the sending and destination ends of a transmission, over

transfer of keys and authentication of keys using a telephone rather than the wireless

network, the present invention offers the advantages of (i) providing authenticable key

encryption of messages at the source of the transmission and key decryption at the

destination, with protection ofthe communication by keys that are unique to each pager,

rather than shared, and yet with no need for a key exchange between the sending and

destination pagers, (ii) using existing two-way pager designs and paging system

infrastructure, and (iii) providing the encryption capabilities without adding to carrier

overhead. The addition of full key encryption and authentication capabilities to an

existing pager system without adding to carrier overhead or capital costs distinguishes

the system and method of the -invention from all previously proposed pager encryption
schemes.

An example of a previously proposed pager encryption scheme is described in

Petitioner Apple Inc. - Ex. 1025, p. 4172

Petitioner Apple Inc. - Ex. 1025, p. 4173

WO 99/34553

10

15

20

25

PCT/US98/27531

U.S. Patent Nos. 5,452,356 and 5,481,255, assigned to Data Critical Corp. Although the

term "encryption" is used in these patents, the patents are directed primarily to a data

compression and encoding protocol for enabling transmission of large volumes of data

over a wireless pager network using modified transmitting and receiving hardware,

including separate computers at each end of the transmission. The only discussion of

encryption in these patents is a cursory reference to "encryption" as an added security

layer provided by utilizing a "commercially available algorithm" (see, e.g. , col. 11, lines

15-32 of U.S. Patent No. 5,452,356) during encoding of the files by a computer

connected to the pager. Because all encryption and decryption in the Data Critical

patents is disclosed as being carried out by software on computers connected directly to

the sending and receiving pagers, the only possible ways that true key encryption could

be provided for would be to use encryption keys corresponding to decryption keys

common to all possible recipients of the message, to use unique keys for each potential

recipient but to store the conesponding encryption keys in the sender's computer, or to

exchange keys prior to a transmission. While these alternatives might be reasonable in

the context of, for example, a medical paging system in which all transmissions are

between doctors or trusted medical personnel, none of them are suitable for use in

connection with a paging system designed to transmit simple text messages using

miniature handheld paging units and which is open to the general public, both because

of the hardware intensive nature of the encoding scheme and the problem of key
management.

In addition to the wireless pager protocol described in the Data Critical patents

the prior art includes a number of patents describing authentication or encryption

schemes that are used in connection with wireless paging, but are carried out over a

telephone line. The systems described in these patents are more suited to traditional one-

way paging environments than with tvvo-way protocols, even though one of the patents

issued only recently, and none disclose systems that can be practically applied to the

current two-way paging networks.

Petitioner Apple Inc. - Ex. 1025, p. 4173 ‘

Petitioner Apple Inc. - Ex. 1025, p. 4174

WO 99/34553

10

15

20

25

PCT/US98/27531

U.S. Patent No. 5,668,876, for example, discloses a modified pager which

provides authentication ofa caller. The modified pager calculates a unique response code

based on a transmitted challenge code, an input personal identification number, and an
internal key. The resultingresponse code is converted into DTMF tones and transmitted

by telephone to a central computer which authenticates the caller. This system does not

provide for encryption of messages, or authentication by the receiving party of

communications forwarded by the central computer, and yet requires a challenge

response form ofauthentication which requires simultaneous two-way communications,

which is currently neither possible nor required by existing two-way wireless pager

protocols.

U.S. Patent No. 5,285,496 describes a paging system with two options: the first

is to send and receive encrypted messages using private key encryption by transmitting

a clear text message over a private communications line to a local client of the pager

network where the message is encrypted using a private key, and broadcast over a pager

network, and the second is to send the message in clear text by telephone directly to the

central control system of the pager network, where the message is encrypted. However,

neither of the two options provides for encryption of the original pager transmission,

which must be sent in clear text form over a telephone line, and which, in the case where

a local client ‘computer is used, provides no way to maintain centralized control. In

addition, for the local client computer option, in which the address is encrypted together

with the message, the destination pager must decrypt every message sent over the system

in order to determine whether a. message is addressed to it, which is only possible in

pager networks with a very limited number ofparticipants.

In the system described in U.S. Patent No. 5,638,450, on the other hand, reception

by a pager ofencrypted messages over a radio frequency pager network is made possible

by having the pager transmit an encryption key via DTMF tones over a telephone line to

a central office, the central office then encrypting the messages before forwarding them

Petitioner Apple Inc. - Ex. 1025, p. 4174

Petitioner Apple Inc. - Ex. 1025, p. 4175

WO 99/34553

10

15

20

25

PCT/US98/27531

to the recipient. This system does not permit outgoing messages to be encrypted, and

provides no way ofkey encrypting messages between two pagers on the network, and

again is not applicable in the context of the present invention.

It will be appreciated that none ofthe above patents, representing the known pager

message protection proposals, describes a system that enables true key encryption and

authentication capabilities to be added to a conventional two-way wireless alphanumeric

paging system ofthe type with which the present invention is concerned, using existing

pager protocols and ‘equipment,’ and in which any individual can send a simply
alphanumeric message by keying the message into a miniature two-way pager (or

choosing from a menu of pre-stored messages), entering a destination address, and

pressing a send button, the message then being reuievable by the intended recipient by

a simple keystroke on the recipient's pager, with the message being encrypted by a key

unique to the sending pager and decrypted by a key unique to the destination pager. In

contrast, the present invention not only provides these capabilities, but adds further levels

ofsecurity by using strong secret or private key based encryption algorithms, with multi-

tier authentication of a transmitted packet, while permitting central registration and

billing for encryption services and recovery of messages by legal authorities without

adding to carrier overhead or increasing the costs of the paging service for users who do

not require encryption.

All of the above advantages of the system and method ofthe invention are made

possible through the use of a proxy server to intercept an encrypted message and

repackage it for delivery to the intended recipient in a form that the intended recipient is

capable of reading, thus eliminating the need for shared keys or key exchange between

the sender and ultimate recipient of the message or complex, hardware-intensive

encoding schemes, and allowing encrypted messages to be transmitted using existing

two-way alphanumeric pager protocols. Because the invention involves key encryption

and not encoding of the message, and requires knowledge by the sending and receiving

Petitioner Apple Inc. - Ex. 1025, p. 4175

Petitioner Apple Inc. - Ex. 1025, p. 4176

WO 99/34553

10

15

20

25

PCT/US98/27531

units of only one or two keys (for example, a private key unique to the pager and a

server's public key), encryption being simpler to implement than encoding since it merely

involves performing arithmetically combining the message with the key, the present

invention can be used with existing pager hardware and protocols, and by avoiding the

need for challenge/response authentication, the present invention can be used with

existing charmels and therefore with the existing pager infrastructure. None of the

previously proposed systems and methods has these capabilities.

Not only does the use of a proxy server relieve the sending and receiving pagers
of key management functions, but the manner in which the invention utilizes strong

encryption capabilities, by separately encrypting the session key, further minimizes the

processing resources required by the sending and receiving pagers. Essentially,

encryption of the message itself can be carried out with a relatively short session key to

usage of the processor, while the relatively short session key can be protected

by a strong encryption algorithm. Because the session key is not re-used, key integrity

can easily be maintained.

SUMMARY OF THE INVENTION

It is accordingly a first objective of the invention to provide a system of adding

full key encryption services to a pager network, allowing key encrypted alphanumeric

messages to be sent by any pager unit registered with the encryption service provider to

any other registered pager unit via the network, as well as to e-mail addresses, fax

machines and other destinations capable of receiving text messages.

It is a second objective of the invention to provide a method of adding full key

encryption services to a pager network, allowing key encrypted messages to be sent by

any pager unit registered with the encryption service provider to any other registered

pager unit via the network, as well as e-mail addresses, fax machines and other

Petitioner Apple Inc. - Ex. 1025, p. 4176

Petitioner Apple Inc. - Ex. 1025, p. 4177

WO 99/34553

10

20

PCT/US98/2753]

destinations capable of receiving text messages.

It is a third objective ofthe invention to provide a system which allows encryption

of alphanumeric messages by a paging unit for wireless uansmission over a paging

network in a manner which is transparent to the person sending the message, and which

allows decryption and display of the messages by a receiving pager in a manner which

is transparent to the person receiving the message.

It is a fourth objective of the invention to provide a method which allows

encryption ofmessages by a paging unit for wireless transmission over a paging network

in a manner which is transparent to the person sending the message, and which allows

decryption and display of the messages by a receiving pager in a manner which is

transparent to the person receiving the message.

It is a fifih objective of the invention to provide a system and method of adding

encryption capabilities with centralized key management and unique secret keys for each

user, without modification of existing pager network infrastructure or paging
transmission protocols.

It is a sixth objective of the invention to provide a system and method of

encrypting text messages capable ofbeing transmitted over a pager network, which can

be provided as an add-on or option to the services provided by the pager network,

and which can be centrally managed using a proxy server connected to the network to

provide the encryption services to subscribers who select the encryption option.

It is a seventh objective of the invention to provide a system and method of

authenticating messages transmitted in encrypted form over a pager network, without the

need for an authentication channel or challenge/response protocol.

Petitioner Apple Inc. - Ex. 1025, p. 4177

Petitioner Apple Inc. - Ex. 1025, p. 4178

WO 99/34553

10

15

20

25

PCT/US98/2753]

It is an eighth objective of the invention to providing a standard alphanumeric

pager unit with the ‘capability of encrypting, decrypting, and authenticating messages

transmitted using a two-way alphanumeric pager protocol, with minimal or no hardware
modification.

It is a ninth objective of the invention to provide a proxy server arrangement

which can be connected to the network operations center of a pager network in order to

manage transmission ofkey encrypted messages over the network.

These objectives are achieved, in accordance with the principles of a preferred

embodiment of the invention, by using a pager proxy server to carry out decryption of a

message encrypted by a session key and received fiom the sending pager, and to have the

pager proxy generate a new session key for re-encryption of the message transmitted to

the receiving pager, with the original session key being encrypted at least by a secret key

shared by the sending pager and the pager proxy server or by a public key corresponding

to a private key ofthe pager proxy server, and the new session key being encrypted either

by a secret key shared by the pager proxy server and the destination pager or a public key ' .

corresponding to a private key held by the destination pager, thereby freeing the sending
and destination pagers fi‘om having to store more than one secret key or of having to

carry out a direct exchange of keys, and allowing each pager on the network to be

provided with a unique key.

In accordance with the principles of an especially preferred embodiment of the
invention, in order to encrypt a message, the sending pager must have hard-coded into

memory a unique identification number and a secret key associated with the identification

number. When a user is ready to send an encrypted message, he or she begins by

entering the message to be sent, afier which the user is prompted for an access code to

gain access to the encrypted shared key, the encrypted shared is decrypted, and a session

key is generated. The message that was entered by the user is then encrypted with the

Petitioner Apple Inc. - Ex. 1025, p. 4178

Petitioner Apple Inc. - Ex. 1025, p. 4179

W0 99/34553

10

15

20

25

PCT/U598/27531

session key, and the session key is encrypted with the public key of the pager proxy

server, or a shared secret key of the sending pager, and appended to the encrypted

message for transmission via the network operations center to the pager proxy server.

Pager messages are formatted in accordance with standard pager protocols to

include a destination header, which is generally the address or telephone number of the

receiving pager, and with a.n additional space in the header to indicate that the message

is encrypted, as will be explained in more detail below. When the network operations

center receives a message that is in encrypted form, it forwards it to the encryption

service center, which must at least include a pager proxy server, using an appropriate

protocol, examples of which include but are not limited to TMLE-X and TNPP. In the

illustrated embodiment, the pager proxy server is included in a gateway server in order

to enable the system to package e-mail messages for transmission in encrypted fonn to

pagers on the pager network, or to package pager messages according to an e-mail

protocol for transmission over a wired network such as the Internet to an e-mail address,

but it will be understood by those skilled in the art that the pager proxy may be operated
as a separate unit.

In the illustrated embodiment of the invention, the pager proxy server has the role

ofverifying the authenticity ofthe message sent by the sending pager, decrypting the data

with its private key or alternatively with a secret key shared with the sending pager to

obtain the session key that was generated by the sending pager, and decrypting the

message with the session key generated by the sending pager. Once this is accomplished,

the server generates a new session key to encrypt the message with, and then encrypts the

session key with a secret key shared with the destination pager or with a public key

corresponding to the private key of the destination pager, or alternatively with a secret

key shared with the destination pager, the two entities being appended together and sent
to the recipient pager. The destination pager, after receiving the encrypted message,

alerts the user and, when the user is ready to read the encrypted page, prompts him or her

Petitioner Apple Inc. - Ex. 1025, p. 4179

Petitioner Apple Inc. - Ex. 1025, p. 4180

WO 99/34553 PCT/US98/27531

l 0

for the access code to begin decryption of the appropriate shared secret key or private

key, which is then used to decrypt the session key used to decrypt the message.

BRIEF DESCRIPTION OF THE DRAWINGSr

Fig. 1 is a schematic diagram showing the principal elements of a pager

5 encryption system constructed according to the principles ofa preferred embodiment of
the invention.

Fig. 2 is a schematic illustration sun_1ma.rizing the operation ofthe two-way pager

for sending a.n encrypted message over a wireless network in accordance with the

principles of a preferred embodiment of the invention.

\

10 Fig. 3 is a fimctional block diagram of a module used by a two-way pager to

encrypt a message and package it for wireless transmission over a pager network to a

network operations center.

Fig. 4 is a functional block diagram of a module used by a pager proxy server to

authenticate the sender of an encrypted message, authenticate the message, and extract

15 information from the message which can be used to re-package the message for
transmission a destination address.

Fig. 5 is a functional block diagram of a module used by the pager proxy server

to repackage a message and send it to the network operations center’ for transmission for

re-tra.nsn1ission over the wireless pager network to a destination pager.

20 Fig. 6 is a functional block diagram showing the principal elements of a module

used by a destination pager to decrypt and display a message received in encrypted form

from the network operations center over the wireless paging network.

Petitioner Apple Inc. - Ex. 1025, p. 4180

Petitioner Apple Inc. - Ex. 1025, p. 4181

WO 99/34553

10

20

PCT/US98/2753]

l 1

Fig. 7 is a flowchart ofa preferred process corresponding to the functional block

diagram ofFig. 3.

Fig. 8 is a flowcha.rt of a preferred process corresponding to the functional block

diagram ofFig. 4.

Fig. 9 is a flowchart ofa preferred process corresponding to the functional block

diagram of Fig. 5.

Fig. 1 0 is a flowchart ofa preferred process corresponding to theufunctional block

diagram of Fig. 6.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As illustrated in Fig. 1, the system of the preferred embodiment of the invention

allows encrypted communications between a sending pager and a receiving pager via a

two-way wireless paging system such as M-TEL's system, using two-way alphanumeric

pagers such as, but not limited to, the Motorola and Wireless Access pagers. The basic

elements of the system are a sending pager 1, a receiving pager 2 which may be identical

to the sending pager, and a network operations center (NOC) 3 which provides basic

message forwarding and subscription management services for all communications

carried by the system.

As is conventional, the sending and receiving or destination pagers (or pager

units) 1 and 2 include function and data entry keys 4, and/or a stylus 5 or other data entry

device, for allowing a user to. input and send alphanumeric messages, and an LCD or

otherdevice 6 which allows received alphanumeric messages to be displayed. The pagers

can also provide other functions such an alarm fimction to alert the user that a message

has been received, and includes a microprocessor and circuitry capable of fonnatting an

Petitioner Apple Inc. - Ex. 1025, p. 4181

Petitioner Apple Inc. - Ex. 1025, p. 4182

WO 99/34553

10

20

25

PCT/US98/2753]

12

input message and transmitting it to the network operations center according to an

appropriate protocols, including but not limited to the ReFLEXT” protocol. The sending

and receiving or destination pagers also include a memory for storing a unique user

identification number (UID) that identifies a particular pager for addressing purposes, and

other information such as a password that can be used to prevent unauthorized users fi'om

accessing the transmission or message display functions of the pager, as well as an

addressing mode (AM) generator that is used in the pager protocol to indicate the type

of addressing used by the paging system, and a timer that can be used to generate a

message number.

In order to be used with the system and method of the illustrated embodiment of

the invention, the pager memory must also have stored therein at least a private key of

the pager unit, a corresponding public key of the pager unit, and a public key

corresponding to a private key of the server, for encrypting either the message itself or

a session key used to encrypt the message, and sofiware capable of running on the

included processor for performing an encryption algorithm and a decryption algorithm.

In addition, according to the preferred embodiment of the invention illustrated in Figs.

2-10, the pager must be capable of generating a session key for each message to be

transmitted, storing a private key unique to the pager which is used to authenticate the

pager, and computing a message authentication code which is used to authenticate the

message being transmitted or received.

It will be appreciated by "those skilled in the art, however, that whenever a public

A key or private key is required, a shared secret key could be substituted using an

appropriate algorithm, and that while the use of session keys is highly advantageous, the

session key could also be eliminated in favor of public—private key encryption. In

addition, while the illustrated system provides both encryption and decryption

capabilities in at least two pagers, so that each pager can send or receive messages, the

system and method ofthe invention could also be applied to systems in which some or\

Petitioner Apple Inc. - Ex. 1025, p. 4182

Petitioner Apple Inc. - Ex. 1025, p. 4183

WO 99/34553

10

15

20

25

PCT/US98/27531

13

all of the pagers have reception capabilities only, i. e., in which some or all of the pagers

are designed to allow the pagers to receive encrypted messages originating from e-mail

addresses and/or two—way pagers, but not to originate messages. Conceivably, the system

and method ofthe invention could even be applied to systems in which at least some of

the pagers are capable of sending encrypted messages, but not receiving and decrypting

them, although such a system would seem to make little commercial sense. In any case,

it will be appreciated that the system and method illustrated in Figs. 2-10 are intended as

being illustrative in nature only, and should not be interpreted as being limitative of the
scope of the invention.

As indicated above, the number ofkeys required ofa pager to encrypt and decrypt

messages is at most two, so that the key storage requirements are minimal. The

encryption algorithms themselves simply involve a series ofmathematical steps, and are

well within the capabilities ofthe microprocessors used in the conventional pagers, as are

message authentication code generating techniques such as CRC or SHA1. The session

key used in the preferred embodiment to encrypt the message itselfconsists, in a practical

implementation, of just sixteen characters (128 bits), and thus encryption of the

alphanumeric message using RC4 or a similar stream cipher or other algorithm which

makes use of a shared secret key can be accomplished without a large amount of
processing resources, while strong overall protection ofthe transmission is still provided

because the more processor intensive encryption algorithms are reserved for encryption

of the relatively small session key rather than the alphanumeric message itself. Of

course, the session key is not limited to a particular bit size, and it is possible for example

to use 256 bit session keys, or longer or shorter session keys as desired.

In the preferred embodiment, encryption ofthe session key is carried out by RSA

(1024 bits) but other stronger private key algorithms such as ECC PK1 (~2500 bits) can

also be used, as well as shared secret key-based encryption methods such as RC4. The

public-private key encryption algorithms are preferred not only because of the strong

Petitioner Apple Inc. - Ex. 1025, p. 4183

Petitioner Apple Inc. - Ex. 1025, p. 4184

WO 99/34553

10

15

20

25

PCT/US98/27531

14

encryption provided, but also because the permit authentication of the sender, as

explained below, but legal or other considerations may also affect the choice of

encryption algorithm, and thus the system ofthe invention is designed to pennit the use

of different mutually exclusive encryption algorithms by the sending and destination
pagers.

The sending pager 1 illustrated in Fig. 1 transmits messages to the network

operations center 3 in the form of a packet that includes a clear text applications header

that tells the center to forward the text to the pager proxy server 7, which is conveniently

though not essentially included in a gateway 8 capable of network communications as

well as the pager encryption and decryption fimctions required by the present invention.

Forwarding ofthe packet to the pager proxy or gateway server preferably involves use

of a network data transfer protocol such as TME-X, although the manner in which the

packet is forwarded to the proxy will depend on the wireless protocol used by the pager

network and the capabilities of the network operations center. TME-X is a preferred

transfer protocol for use with Re-FLEX encoded packets because of the presence of a

TCP/IP stack in the standard format packets that allows the Re-FLEXT“ protocol to

communicate directly with computer networks.

The gateway 8 may include a general purpose proxy server 10 such as the one

described in U.S. Patent No. 5,602,918, entitled "Application Level Security System And

Method," and also in U.S. Patent Application Ser. No. 08/917,341, filed August 26, 1997,

entitled "Multi-Access Virtual Private Network," both ofwhich are incorporated herein

by reference. The two patent documents describe a system currently available from V-

One Corporation of Germantown, Maryland under the name SmartGateTM (SG in the

figures) which is especially suitable for use with the pager proxy ofthe present invention,

although the pager proxy server of the invention could also be used with other gateway

servers, or without any network connection capabilities.

Petitioner Apple Inc. - Ex. 1025, p. 4184

Petitioner Apple Inc. - Ex. 1025, p. 4185

WO 99/34553

10

15

20

25

Pcr/US98/27531

15

As illustrated, gateway 8 also includes a dedicated e-mail server or gateway 11,

and e-mail protocol message transfer agent (MTA) 12 for transferring messages fiom the

gateway server 10 to the e-mail gateway. Both the e-mail gateway 11 and pager proxy

7 maybe physically incorporated in the gateway server or provided on independent or

separate computers, and are connected to a pager authentication module 13 which may

be physically incorporated into a general purpose gateway authentication module 14 of

a separate authentication server 15, combined with the gateway server, or may be

provided as an independent unit.

Computers on the network with capabilities of communicating with the general

purpose proxy server are represented in Fig. 1- by computer 16, and include gateway

client software that permits the computer to establish a secured communications path to

the gateway server, as well as an e-mail program which packages messages in an

appropriate format such as that provided by the SMTP protocol for transmission over the

secured communications path established by the gateway client software. An example

of an e-mail program is "EudoraT”," although the use of standard protocols such as

SMTP and Re-FLEXT” allows any e-mail program to communicate with the gateway and

thence with the pager network, so that the system of the invention is not limited to use

in connection with any particular e-mail program, the conventional pager network already

being equipped to handle e-mail transmissions to or from the wireless network. The

invention may be considered to apply equally to pager-to—pager communications, pager-

to-email communications, and email-to-pager communications. In addition, it is possible

' that the invention could be adapted to communications originating fiom a fax machine,

in which case the clear packet transmitted by the fax machine over a telephone line would

be processed by a facsimile proxy for packaging and encryption by the pager proxy, and

messages addressed to the fax machine would be decrypted by the pager proxy and

forwarded to the facsimile proxy for transmission as clear text over a telephone line, the

principles of the invention still being applicable to the encryption and decryption of the

messages by the pager proxy and sending or receiving pagers.

Petitioner Apple Inc. - Ex. 1025, p. 4185

Petitioner Apple Inc. - Ex. 1025, p. 4186

WO 99/3455}

20

25

PCT/US98f2753l

16

Turning to the specific embodiment illustrated in Figs. 2-10, the system and

method "of the invention take the form ofmodifications to the header of the transmission

packet sent by the sending pager 1 and/or the pager proxy 7. Essentially in order to send
messages over the paging system, the sending pager and pager proxy, (or pager proxy

alone in the case of a message originating from computer 16 or a source of clear text

messages such as a facsimile machine) generates a header which includes the

information necessary to enable processing by the recipient ofthe packet, and in the case

of the pager proxy, for forwarding of a repackaged packet to a destination address. The

header should at least include the session key encrypted message, the encrypted session

key, a sender identification number, and a destination header or address, but because the

header format will vary if a protocol other than Re-FLEXT” is used, it should be

appreciated that the other information contained in the illustrated header, and the position

of the information, can be varied without departing fiom the scope ofthe invention, and

the invention is intended to encompass headers formatted for other alphanumeric wireless

paging protocols, as well as for encryption algorithms and authentication protocols other

than the specific algorithms and protocols indicated.

Fig. 2 illustrates the format of the preferred header, which is divided into three

fields. It is to be understood that while the illustration refers to the communication

between the sending pager and the pager proxy, the same header will be used for the

communication between the pager proxy and the destination pager, with appropriate

substitutions ofaddresses and keys as explained in more detail below. As shown in Fig.

2, the first field is a clear text field that contains the encryption method indicator EM,

pager addressing mode (AM), and user identification number (UID) (sometimes referred

to as a PIN, but not to be confused with the password entered by the user to access pager

functions), while the second field contains the encrypted session key (SESKeyl) and

various data referred to as "header data" (HdrData) including the destination header or

address (DH) and a message authentication code (MAC), the information in the second

field being encrypted by the unique private key ofthe sending pager (pv.sender) in order

Petitioner Apple Inc. - Ex. 1025, p. 4186

Petitioner Apple Inc. - Ex. 1025, p. 4187

WO 99/34553

10

15

20

25

PCT/US98/27531

17

to authenticate the sender, and by a public key corresponding to a private key held by the

server (pb.server) in order to protect the contents of this field. The third field contains

the message encrypted by the session key.

The various fields illustrated in Fig. 2 may be formatted in any convenient manner

permitted or required by the protocol used to package the data in the fields for

transmission, but in the illustrated example most or all of the data in at least fields one

and two can conveniently be in hexadecimal format. Whenever the drawings illustrate

. a hexadecimal number, the number ## will be preceded by a "Ox" to form 0x##.

The encryption method indicator EM indicates which of the possible encryption

methods handled by the server is being used to encrypt the session key and other

information in field 2, so that the session key can be recovered and used to decrypt the

encrypted message in field 3. As indicated above, possible encryption methods include

the RC4 secret key encryption method, which requires the parties to the communication

to have a shared secret key that is used for both encryption or decryption, and the RSA

public key encryption method, which is the method illustrated in Fig. 2. The indicator

itselfis simply a number assigned to the encryption method. While any given pager will

generally have only a single encryption method stored in memory, it is possible for the

pager proxy toibe arranged to handle multiple different methods and thus need to have
an indication ofthe type ofencryption method, to accommodate different pager systems

or legal requirements, particularly if international pager traflic is involved.

The addressing mode (AM) indicates the type ofaddress involved. For example,

in the U.S., pager addressing modes are assigned one application header, while e-mail

addressing modes are assigned another application header. This indicator may not be

necessary in all protocols since the destination header may be unique to a specific type

ofaddress, but is included in field 1 as part of the Re-FLEXT” protocol.

Petitioner Apple Inc. - Ex. 1025, p. 4187

Petitioner Apple Inc. - Ex. 1025, p. 4188

WO 99/34553

'10

15

20

25

PCT/US98/27531

18

The user identification number (UID) included in clear text in field 1 and in

encrypted form in field 2, is the unique address assigned to the pager, and is used to

indicate the source of the message so as to enable the pager proxy to retrieve the

appropriate public decryption key (pb.sender), and for use in authentication ofthe sender

and for display by a receiving pager. Preferably, this number is hard~coded into memory

so that it carmot easily be altered, and in current U.S. paging systems is in the form of a

ten digit number.

The header data (HdrData) of the second field includes an application header

(AH), which included in a field having variable length and string value, the address mode

and destination header (AM/DH), the user identification number (UID), which is the

same as the one included in field l, and a message number (MSGNO) and message

authentication code (MAC). In addition, e—mail address protocols require a byte

indicative of address length to be added where the address mode indicates an e—mail

address.

For purposes of the present invention, the message number can be any arbitrary

number, although the use of a time-related reference, as allowed by the Re-FLEX

protocol, is useful for account tracking or billing purposes, and in addition can be used

to ensure that received message is not a recording of a message sent earlier and

intercepted by an unauthorized party. For example, the message number has previously

been defined as the number of seconds since January 1, 1970.

The message authentication code is a checksum used to verify that the recovered

message is identical to the original message, and may be computed using an error

correction code function such the cyclic recovery code (CRC) function, with CRCs being

used in the illustrated embodiment or, alternatively, by computing a hash or one-way

combination ofthe header data with the message and the session key, using an algorithm

such as SHAI. By combining the message with other data to obtain the message

Petitioner Apple Inc. - Ex. 1025, p. 4188

Petitioner Apple Inc. - Ex. 1025, p. 4189

WO 99/34553

10

15

20

25

PCT/US98/27531

19

authentication code in a way that can only recreated if the data used to recreate the code

is the same as the data originally used to generate the code, the code can be used to

authenticate the message, i. e., to verify that the message has not been altered since the

time when the code was first generated, as will be described in more detail below. It will

be appreciated that the exact form ofthe message authentication code is not a part ofthe

present invention, and that any message authentication code may be used so long as it can
be used to authenticate the message in the manner described below.

The three blocks above the header data in Fig. 2 indicate the source ofthe data for

the various fields. The manner in which the data is combined to form the fields is

described in more detail in connection with Figs. 3-10, but the sources of the data may

be summarized as (i) information entered by the user, which consists of the message

(MSG) and the recipient address which forms the destination header, (ii) information

stored in memory, including private and public keys of the pager, a public key of the

pager proxy server, an access code which is to be compared with an access code input by

the user, the encryption method indicator (EM), the user identification number (UID), and

the application header, and (iii) information generated at runtime, i. e., during assembly

of the packet header, including the session key (SESKey), the message number

(MSGNO), the addressing mode (AM), and the message authentication code (MAC).

The details of the manner in which the data shown in Fig. 2 is assembled by

sending pager 1 to form the header shown in Fig. 2 is illustrated in the fimctional block

diagram of Fig. 3, as well as the flowchart ofFig. 7. As illustrated in Fig. 3, the pager

1 includes a user input 20 connected to keys 4 or stylus 5, which supplies the destination

header (DH) to a fimctional block 21 which assembles the header data (HdrData), and to

a functional block 22 which computes "the message authentication code (MAC). In

addition, the user input 20 supplies the message to fimctional block 28, the output of
which is field 3 of the header.

Petitioner Apple Inc. - Ex. 1025, p. 4189

Petitioner Apple Inc. - Ex. 1025, p. 4190

10

15

20

25

WO 99/34553 PCT/US98/27531

20

Pager 1 also includes a memory 24 which stores the encryption method (EM), the

application header (AH), the user identification number (UID) and the encryption method

identifier (EM), which are supplied directly to functional block 23 for inclusion in field

' 1 , the user identification number and application header being also supplied to functional

block 21 for inclusion in the header data, which in turn is supplied to functional block 22

for inclusion in the message authentication code. The address mode (AM), which is

associated with the destination header (DH) in the header data is generated by an address

mode generator 25 which can be in the form of a look-up table, device that reads a

particulariidentifying bit in the destination header, or other device, and the message

number can be generated by a counter, timer, or other device 26 depending on the nature

ofthe message number. Finally, the session key (SESKeyl) for this embodiment of the

invention is an eight character string generated by a random or pseudorandom number

generator 27, which supplies the session key to functional block 28 for use in encrypting

the message (MSG), to fimctional block 22 for inclusion in the message authentication

code, and to fimctional block 29 for encryption together with the header data by the

private key of the sender. The output of functional block 29 is supplied to functional

block 30 for encryption by the public key ofthe server, the output ofblock 30 serving as

field 2 of the header for the packet transmitted by the sending pager. _

It will be appreciated by those skilled in the art that any of the functional blocks

and data or number generators illustrated in Fig. 3, or in Figs 4-6, may be implemented

either by hardware or sofiware, and that while distinguishable by function, the functions b

may be carried out using common subroutines, hardware, or sofiware.

Turning to Fig. 4, the pager proxy 7 includes a database of public keys

corresponding to the unique public keys ofpagers registered with the encryption service

provider that operates the proxy server. The database is accessed by functional block 31

according to the clear text user identification number (UID) present in the header of a

packet forwarded to the pager proxy by the network operations center. Field 2 is

Petitioner Apple Inc. - Ex. 1025, p. 4190

Petitioner Apple Inc. - Ex. 1025, p. 4191

10

15

20

25

WO 99/34553 PCT/US98/27531

21

decrypted by functional block 32 using the private key of the server (pv.server) and by

functional block 33 using the public key of the sender (pb.sender) to recover the session

key, and the user identification number (UID) recovered from field 2 is compared by

functional block 34 with the user identification number of field 1 to verify the

authenticity of field 2 and recover the session key (SESKeyl). A functional block 35

then uses the session key to decrypt the message (MSG).

The message recovered by the pager proxy is authenticated in functional block

37, by comparing the message authentication code recovered from field 2 with the output

of a functional block 36 that computes the message authentication code based on the

destination header (DH), application header (AH), user identification number (UID),

message number (MSGNO), and session key (SESKeyl) recovered from field 2, and the

message recovered from field 3. The message, session key, and header data (HdrData)

are then made available by functional block 38 to an encryption or repackaging module,

illustrated in Fig. 5, for repackaging in a way that will enable decryption by a destination

pager.

As-shown in Fig. 5, the application header (AH) and message number (MSGNO)

received from fimctional block 38 is provided to functional blocks 41 and 42 for

inclusion in the header data and message authentication code, while the address mode

(AM) and encryption method (EM) obtained from field 1 ofthe packet received fiom the

sender is passed to functional block 43 or regenerated for inclusion as clear text in the

packet header. In order to permit decryption and authentication ofthe repackaged header

by the receiving pager, however, the destination header (DH) and user identification

number (UID) are swapped, so that the original destination header is supplied by the

pager proxy to functional blocks 41, 42, and 43 as the user identification number (UID),

and the original user identification number are supplied to functional blocks 41 and 42

as the destination header (DH). Functional block 42 generates a message authentication

code based on the new destination header (DH), application header (AH), user

Petitioner Apple Inc. -1 Ex. 1025, p. 4191

Petitioner Apple Inc. - Ex. 1025, p. 4192

10'

15

20

25

WO 99134553 PCT/US98/27531

22

identification number (UID), message number (MSGNO), while a new session key

(SESKey2) is generated by fimctional block 44 in the same manner as functional block

27 shown in Fig. 3, and the resulting message authentication code (MAC) together with

the new session key and header data from functional block 41 are encrypted by functional

block 45 using the private key ofthe server (pv.server) before being sealed by fimctional

block 46 using the public key of the destination pager (pb.recipient) and included in the

header as field 2. Functional block 47 receives the message and new session key and re-

encrypts the message using the new session key and an algorithm such as RC4 to

generate field 3, fields l-3 being assembled into a packet 50 for transmission to the

destination pager 2 via the network operations center 3.

Again, those skilled in the art will appreciate that all of the fimctional blocks

illustrated as being present in the proxy server and/or proxy authentication module may

be implemented as sofiware, hardware, or a combination of sofiware and hardware, and

may be varied depending on the encryption method and requirements of the pager

"protocol.

In addition, those skilled in the art will appreciate that the illustrated embodiment

could be modified by eliminating the session key and instead using public key encryption

ofthe message. Alternatively, instead ofhaving the pager proxy perform any decryption

ofthe message, the original session key could simply be re-encrypted by the pager proxy

using at least the public key ofthe destination pager as described above, or a secret key

shared with the destination pager, in which the encrypted message would simply be

forwarded to the destination pager unit with the session key re-encrypted so that it can

be recovered by the destination pager. While neither of theseoptions is currently

preferred because elimination of the session key leaves transmissions vulnerable to V

recording, and elimination of message decryption by the pager proxy makes message

authentication more difficult, they should nevertheless be considered to be within the

scope of the invention.

Petitioner Apple Inc. - Ex. 1025, p. 4192

Petitioner Apple Inc. - Ex. 1025, p. 4193

WO 99/3455?)

10

15

20

25

PCT/US98/27531

23

Turning to Fig. 6, the destination pager 2 includes functional blocks mirroring

those ofthe server for decrypting messages and authenticating packets received from the

pager proxy 7 via the network operations center 3. These include functional block 51 for

retrieving the server public key (pb.server) from memory, functional blocks 52 and 53

for decrypting the field 2 using the recipient private key (pv.recipient) and the server

public key, functional block 54 for comparing the user identification number recovered

from field 2 with the user identification number in field 1, functional block 56 for

decrypting the message (MSG) using the session key (SESKey2) recovered from field

2, and functional blocks 57 and 58 for generating a message authentication code and

comparing it with the message authentication code recovered from field 2. It will be

noted that functional block 57 may also be used to generate a message authentication

code for an outgoing message, avoiding duplication of the hardware or software which

performs this fimction.

Finally, destination pager 2 includes a functional block 59 for displaying the

message (MSG) and destination header (DH) corresponding to the user identification

number of the sending pager, and for alerting the user as necessary that a message has

been received. The display is identical to that used for an unencrypted message, and thus

the decryption operation is entirely transparent to the user,

The method steps that implement the functions illustrated in Figs. 3-6 are as

follows:

First, as shown in Fig. 7, upon input of a message and destination address by the

user ofa pager (step l 00), which may follow the input and verification ofa password (not

shown), a message number, address mode, and session key are generated (step 110) and

the encryption method identifier, application header, user identification number, server

public key, and sender private key are retrieved fiom memory (step 120). The encryption

method identifier, address mode, and user identification number are included in field 1

(step 130), a message authentication code based on the destination header, application

Petitioner Apple Inc. - Ex. 1025, p. 4193

Petitioner Apple Inc. - Ex. 1025, p. 4194

l0

l5

20

25

WO 99/34553 PCT/US98/2753]

24

header, user identification number, message number, message, and session key is

computed (step 140), and the application header, user identification number, destination

header, message number, message authentication code, and session key are encrypted by

the private key of the sending pager (step 150) and then by the public key of the pager

proxy (step 160) to obtain field 2 of the packet header. Finally, the message is encrypted

by the session key (step 170) to obtain field 3, and the packet header is transmitted via

the network operations center to the pager proxy (step 180).

Upon receipt by the pager proxy, as shown in Fig. 8, the public key ofthe sending

pager is retrieved based on the user identification number in field 1 (step 200), and field

2 of the packet is decrypted by the private key of the server (step 210) and then by the

public key of the sending pager (step 220) based on the encryption method identified by

the identifier in field 1. Authentication of the sender is provided by comparing the user

identification number recovered from field 2 with the user identification number in field

1 (step 230), the message included in field 3 is decrypted using the session key recovered

from field 2 (step 240), and authentication of the message is provided by generating a

message authentication code based on the destination header, application header, user

identification number, message number, and session key recovered from field 2 together

with the decrypted message (step 250), and by then comparing the computed message

authentication code with the message authentication code recovered from field 2 (step

260).

As illustrated in Fig. 9, afier authenticating the information contained in field 2,

the proxy server generates a new session key (step 300), encrypts the message using the

new session key (step 310), assigns the original user identification as the new destination

header and the original destination header as the new user identification number,

computes a new message authentication code (step 330), encrypts the address header,

message number, new user identification number, new destination header, new session

key, and new message authentication code using the private key of the server (step 340),

Petitioner Apple Inc. - Ex. 1025, p. 4194

Petitioner Apple Inc. - Ex. 1025, p. 4195

10

15

20

25

WO 99/34553 PCT/US98/27531

25

encrypts the result of step 340 using the public key of the destination pager (step 350),

and assembles the header and packet for RF transmission to the destination pager via the

network operations center (step 360).

As illustrated in Fig. 10, upon receipt by the destination pager, as shown in Fig.

8, the public key of the pager proxy sewer is retrieved based on the user identification

number in field 1 (step'400), and field 2 of the packet is decrypted by the private key of

the destination pager (step 410) and then by the public key ofthe pager proxy sewer (step

420) based on the encryption method identified by the identifier in field 1.

Authentication of the sender is provided by comparing the user identification number

recovered from field 2 with the user identification number in field 1 (step 430), the

message included in field 3 is decrypted using the session key recovered from field 2

(step 440), and authentication of the message is provided by computing a message

authentication code based on the destination header, application header, user

identification number, message number, and session key recovered from field 2 together

with the decrypted message (step 450), and by then comparing the computed message

authentication code with the message authentication code recovered from field 2 (step

460). Finally, afier authentication ofthe user identification number and message, the user

is alerted that a message has been received and the decrypted message and information

contained in the destination header are displayed at the request of the user (step 470).

Having thus described apreferred embodiment ofthe invention in sufficient detail

to enable those skilled in the art to practice the invention, it is nevertheless anticipated

that numerous variations and modifications of the invention will occur to those skilled

in the art, and it is intended that all such variations and modifications be included within

the scope of the invention. For example, although the preferred embodiment of the

invention has the pager proxy re-package the message by first decrypting it, and then re-

encrypting it using a new session key, it is also within the scope ofthe invention to have

the pager proxy decrypt only the session key and re-encrypt the same session key using

Petitioner Apple Inc. - Ex. 1025, p. 4195

Petitioner Apple Inc. - Ex. 1025, p. 4196

WO 99/34553 PCT/US98/27531

26

the public key or shared secret key of the destination pager. Accordingly, it is intended

that the above description not be taken as limiting, but rather that it be defined solely by

the appended claims.

Petitioner Apple Inc. - Ex. 1025, p. 4196

Petitioner Apple Inc. - Ex. 1025, p. 4197

10

15

20

25

WO 99/34553 PCT/US98/27531

27

I claim:

1. A system for adding encryption services to an existing pager network, the pager

network including a network operations center which provides a means _for receiving an

alphanumeric message from any ofa plurality ofhandheld pager units and forwarding the
alphanumeric message to another of the plurality ofhandheld pager units, at least two of

said pager units comprising:

means for inputting an. alphanumeric message and a destination
address;

means for including the alphanumeric message in a packet for

transmission to the destination address by wireless transmission via the

network operations center;

means for receiving an alphanumeric message from the network

operations center; and

means for displaying the alphanumeric message received from the

network operations center,

wherein the system for adding encryption services comprises:

means in at least one ofsaid pager units for encrypting a message and transmitting

the encrypted message via the network operations center to another of said pager units;

means in said another one of said pager units for decrypting and displaying the

encrypted message; and

a pager proxy server including means for receiving a packet containing the

encrypted message that has been sent to the network operations center, decrypting at least

a portion of the packet, and re-encrypting said portion of the packet for delivery to said

another of said pager units via said network operations center.

2. A system as claimed in claim 1, wherein said means for encrypting the message

comprises means for encrypting the message by a secret key.

Petitioner Apple Inc. - Ex. 1025, p. 4197

Petitioner Apple Inc. - Ex. 1025, p. 4198

10

.15

20

25

WO 99/34553 PCTlUS98/27531

28

3. A system as claimed in claim 2, wherein said secret key is a first session key

generated by a sending pager unit, said sending pager unit further comprising means for

encrypting said first session key by a public key corresponding to a private key held by

the pager proxy server so that the session key can be recovered only by the paging proxy
SCFVCI.

4. A system as claimed in claim 3, wherein said sending pager unit further comprises

means for encrypting at least.the first session key by a private key of the sending pager

unit, and wherein said pager proxy server includes means for retrieving a public key

corresponding to the private key of the sending pager unit for use as a first level

authentication ofthe sending pager unit.

5. A system as claimed in claim 4, further comprising means for appending a unique

user identification number ofthe sending pager unit to the header in clear text form, said

user identification number being hard-coded into the sending pager unit.

6. A system as claimed in claim 5, wherein said means for encrypting at least the

session key by a private key ofthe sending pager unit also encrypts the user identification

number of the sending pager unit, and said paging proxy server includes means for

decrypting the encrypted user identification number together with the first session key

and comparing it with the clear text user identification number in order to authenticate

the contents of the field containing the encrypted user identification number and first

session key.

7. A system as claimed in claim 4, wherein the sending pager unit further comprises

means for generating a first message authentication code based on various header data

and the message and encrypting the various information together with the session key and

the first message authentication code using the private key ofthe sending pager unit, and

wherein the pagerproxy server fi.u'ther comprises means for decrypting the various header

Petitioner Apple Inc. - Ex. 1025, p. 4198

Petitioner Apple Inc. - Ex. 1025, p. 4199

10

I5

20

WO 99/34553 PCT/US98/2753 I

29

data, first message authentication code, and session key using a public key corresponding

to the private key of the sending pager unit, decrypting the message using the session

key, generating a second message authentication code based on the message and various

header data, and comparing the first message authentication code with the second

message authentication code in order to authenticate the message.

8. A system as claimed in claim 7, wherein said message authentication code is an

error correction code fimction.

9. A system as claimed in claim 7, wherein said various header data includes at least

a user identification number ofthe sending pager and a destination header corresponding
to the input address of the destination pager.

10. A system as claimed in claim 9, wherein said various header data fiirther includes

a message number and application header.

11. A system as claimed in claim 4, wherein the sending pager further comprises

means for adding an encryption method identifier in clear text to the packet header.

12. A system as claimed in claim 4, wherein an encryption algorithm used to encrypt

the first "session key is a public-private key encryption algorithm.

13. A system as claimed in claim 4, wherein said secret key is a first session key

generated by a sending pager unit and said first session key is encrypted by a stream

cipher that uses a shared secret key.

14. A system as claimed in claim 2, wherein said sending pager unit further comprises

means for generating an address mode and appending the address mode in clear text to

the packet header.

Petitioner Apple Inc. - Ex. 1025, p. 4199

Petitioner Apple Inc. - Ex. 1025, p. 4200

5

10

15

20

W0 99/34553 PCT/U598/27531

30

15. A system as claimed in claim 14, wherein said address mode indicates an address

type selected fiom the group consisting ofpager address types and e-mail address types,

and wherein the pager proxy server is connected to a computer network gateway server

and includes means for re—packaging said message in an e-mail packet and transmitting

the e-mail packet via said computer network server to an e-mail address.

16. A system as claimed in claim 15, further comprising means for receiving e-mail

packets from said computer network gateway server, and re—packaging said e-mail

packets for transmission to the destination pager unit via said network operation center,

and means for repackaging packets received from the network operations center for

forwarding to an e-mail server.

17. A system as claimed in claim 1, wherein said means included in the pager proxy

server for decrypting at least a portion ofthe packet includes means for decrypting, using

a secret key, a portion ofthe packet containing a first session key used by a sending pager

unit to encrypt said portion of the packet.

1 8. A system as claimed in claim 17, wherein said pagerproxy server further includes

means for decrypting said message using said first session key, means for generating a

second session key, and means for re-encrypting the message using the second session

key.

19. A system as claimed in claim 18, wherein said means for re-encrypting said

portion of the packet includes means for encrypting the second session key by a secret

key.

20. A system as claimed in claim 19, wherein said means for encrypting said portion

of the packet by a secret key includes means for re-encrypting the second session key by

a public key corresponding to a private key of a destination pager unit.

Petitioner Apple Inc. - Ex. 1025, p. 4200

Petitioner Apple Inc. - Ex. 1025, p. 4201

10

15

20

25

WO 99/34553 PCT/US98/27531

31

21. A system as claimed in claim 20, wherein said means for encrypting said portion
ofthe packet by a secret key further includes means for, before re-encrypting the second

session key by the public key corresponding to a private key of the destination pager,

encrypting the second session key and various additional data by a private key of the
pager proxy server.

22. A system as claimed in claim 21, wherein said additional data includes a second

user identification number, said second user identification number corresponding to a

first destination header included in said decrypted portion ofthe packet received from the

sending pager unit, and wherein said destination paging unit includes means for

comparing said second user identification number encrypted with said second session key

to a clear text version of the second user identification number received from the pager

_ proxy server in order to authenticate the pager proxy server.

23. A system as claimed in claim 22, wherein said additional data includes a second

destination header corresponding to the first user identification number, and wherein said

second pager unit includes means for displaying information included in said second

destination header in order to indicate an address of the sending pager unit.

24. A system as claimed in claim 22, wherein said additional data includes a second

destination header corresponding to the first user identification number, a message

number‘ recovered from said decrypted portion of the packet received from the sending
pager unit, and an application number.

25. A system as claimed in claim 22, wherein said pager proxy server further

comprises means for generating a message authentication code based on said message,

said second session key, and said additional data, and said destination pager unit includes

means for recovering said additional data and computing a message authentication code

based on the additional data, said second session key, and said message in order to

authenticate said message.

A Petitioner Apple Inc. - Ex. 1025, p. 4201

Petitioner Apple Inc. - Ex. 1025, p. 4202

10

15

20

25

WO 99/34553 PCT/US98/27531

32

26. An encryption method according to which encryption services may be added to

an existing two-way wireless pager network, the pager network including a network

operations center which provides a means for receiving an alphanumeric message from

any of a plurality of handheld pager units and forwarding the alphanumeric message to

another of the plurality of handheld pager units, comprising the steps of:

causing one of said pager units to perform the steps ofencrypting

a message, including the encrypted message in a wireless transmission

packet, and transmitting the encrypted message from said one of said

pager units to a pager proxy" server via the network operations center;

causing the pager proxy server to perform the steps of receiving

the encrypted message and repackaging it for transmission to another of

said pager units via the network operations center; and

causing said another of said pager units to perform the steps of

decrypting and displaying the encrypted message.

27. A method as claimed in claim 26, wherein the step of encrypting the message

comprises the step ofencrypting the message by a secret key corresponding to a secret

key of the pager proxy server so that the session key can only be recovered by the paging

proxy server.

28. A method as claimed in claim 26, wherein said secret key is a first session key

generated by a sending pager unit, and wherein said sending pager unit fI.u‘ther performs

the step of encrypting said first session key by a public key corresponding to a private

key held by the pager proxy server. A

29. A method as claimed in claim 27, wherein said sending pager unit further

performs the step of encrypting at least the first session key by a private key of the

sending pager unit, and wherein said pager proxy server performs the step of retrieving

a public key corresponding to the private key of the sending pager unit for use as a first

Petitioner Apple Inc. - Ex. 1025, p. 4202

Petitioner Apple Inc. - Ex. 1025, p. 4203

10

20

WO 99/34553
PCT/US98I275_3l

33

level authentication of the sending pager unit.

30. A method as claimed in claim 29, further comprising of the step of appending a

unique user identification number of the sending pager unit to the header of the

transmission to the paging proxy server in clear text form, said user identification number

being hard-coded into the sending pager unit.

31. A method as claimed in claim 30, wherein said step of encrypting at least the

session key by a private key of the sending pager unit includes the step ofencrypting the

user identification number ofthe sending pager unit,‘ and said paging proxy server further

performs the steps of decrypting the encrypted user identification number together with

the first session key and comparing it with the clear text user identification number in

order to authenticate the contents ofthe field containing the encrypted user identification

number and first session key.

32. A method as claimed in claim 29; wherein the sending pager unit further performs
the step of computing a first message authentication code based on various header data

and the message and encrypting the various information togetherwith the session key and

the first message authentication code using the private key ofthe sending pager unit, and

wherein the pager proxy server fmther performs the steps of decrypting the various

header data, first message authentication code, and session key using a public key

corresponding to the private key ofthe sending pager unit, decrypting the message using

the session key, generating a second message authentication code based on the message

and various header data, and comparing the first message authentication code with the

second message authentication code in order to authenticate the message.

33. 4 A method as claimed in claim 32, wherein said message authentication code is an

error correction code function.

Petitioner Apple Inc. - Ex. 1025, p. 4203

Petitioner Apple Inc. - Ex. 1025, p. 4204

10

15

20

WO 99/34553 4 PCT/US98/27531

34

34. A method as claimed in claim 32, wherein said various header data includes at

least the user identification number of the sending pager and a destination header

corresponding to the input address of the destination pager.

35. A method as claimed in claim 34, wherein said various header data, further

includes a message number and application header.

36. A method as claimed in claim 34, wherein the sending pager further perfonns the

step of adding an encryption method identifier in clear text to the packet header.

37. A method as claimed in claim 29, wherein an encryption algorithm used to

encrypt the first session key is a public-private key encryption algorithm.

38. A method as claimed in claim 27, wherein said secret key is a first session key

generated by a sending pager unit and said first session key is encrypted by a stream

cipher that uses a shared secret key.

39. A method as claimed in claim 37, wherein said sending pager unit further

. performs the step ofgenerating an address mode and appending the address mode in clear

text to the packet header.

40. A method as claimed in claim 39, wherein said address mode indicates an address

type selected from the group consisting ofpager address types and e-mail address types,

and wherein the pager proxy server is connected to a computer network gateway server

and further performs the step of re-packaging said message in e-mail packet and
transmitting the e-mail packet via said computer network server to an e-mail address.

41. A method as claimed in claim 40, further performs the steps of receiving e-mail

packets from said computer network gateway server, and re-packaging said e-mail

Petitioner Apple Inc. - Ex. 1025, p. 4204

Petitioner Apple Inc. - Ex. 1025, p. 4205

10

15

20

WO 99/34553 PCT/US98/27531

35

packets for transmission to the destination pager unit via said network operation center.

42. A method as claimed in claim 26, wherein said step ofrepackaging the encrypted

message for transmission includes the step of causing the pager proxy server to encrypt,

using a secret key, a portion ofthe packet containing a first session key used by a sending

pager unit to encrypt said portion of the packet.

43. A method as claimed in claim 42, wherein said pager proxy server further

performs the steps ofdecrypting said message using said first session key, generating a .

second session key, and re-encrypting the message using the second session key.

44. A method as claimed in claim 43, wherein said pager proxy server further

performs the step of encrypting the second session key by a secret key.

45. A method as claimed in claim 44, wherein said step ofencrypting said portion of

the packet by a secret key includes the step of re-encrypting the second session key by

a public key corresponding to a private key of a destination pager unit.

46. A method as claimed in claim 45, wherein said step ofencrypting said portion of

the packet by a secret key further includes the step of, before re-encrypting the second

session key by the public key corresponding to a private key of the destination pager,

encrypting the second session key and various additional data by a private key of the

pager proxy server.

47. A method as claimed in claim 46, wherein said additional data includes a second

user identification number, said second user identification number corresponding to a

first destination header included in said decrypted portion ofthe packet received from the

sending pager unit, and wherein said destination paging unit perform the step of

comparing said second user identification number encrypted with said second session key

Petitioner Apple Inc; - Ex. 1025, p. 4205

Petitioner Apple Inc. - Ex. 1025, p. 4206

. _WO 99/34553

10

15

20

25

36

to a clear text version of the second user identification number received from the pager

proxy server in order to authenticate the pager proxy server.

48. A method as claimed in claim 47, wherein said additional data includes a second

destination header corresponding to the first user identification number, and wherein said

second pager unit performs the step of displaying information included in said second

destination header in order to indicate an address of the sending pager unit.

49. A method as claimed in claim 47, wherein said additional data includes a second

destination header corresponding to the first user identification number, a message

number recovered from said decrypted portion of the packet received from the sending

pager unit, and an application number.

50. A method as claimed in claim 47, wherein said pager proxy server fiirther

performs the step of computing a message authentication code based on said message,

said second session key, and said additional data, and said destination pager unit further
performs the step of recovering said additional data and computing a message

authentication code based on the additional data, said second session key, and said

message in order to authenticate said message.

51. A two—way alphanumeric pager unit, comprising:

means for inputting a message and a destination address;

means for generating a session key;

means for encrypting the message using the session key;

means for protecting the session key so that it can only be recovered by a pager

proxy server;

means for transmitting.the message via a wireless pager network to the pager

proxy server;

means for receiving an encrypted message transmitted via the wireless pager

network from the pager proxy server;

Petitioner Apple Inc. - Ex. 1025, p. 4206

PCT/US98/27531

Petitioner Apple Inc. - Ex. 1025, p. 4207

5

10

20

WO 99/34553 PCT/US98/2753]

37

means for decrypting an encrypted session key appended to the message;

means for decrypting the encrypted message transmitted from the pager proxy

server using the decrypted session key; and

means for displaying the message.

52. A pager unit as claimed in claim 5 1, wherein said means for protecting the session

key comprises means for encrypting the session key by a secret key.

53. A pager unit as claimed in claim 52, wherein said secret key is a first session key

generated by the pager unit, said sending pager unit further comprising means for

encrypting said first session key by a public key corresponding to a private key held by

the pager proxy server.

54. A pager unit as claimed in claim 53, further comprising means for appending a

unique user identification number of the pager unit to the header in clear text form, said

user identification number being hard-coded into the pager unit.

55. A pager unit as claimed in claim 54, wherein said means for encrypting at least I

the session key by a secret key also encrypts the user identification number ofthe sending

pager unit, said encrypted user identification number being compared by the pager proxy

server with a clear text version ofthe user identification number transmitted with a packet

header in order to authenticate the pager unit.

56. A pager unit as claimed in claim 55, wherein the pager unit further comprises

means for computing a message authentication code based on various header data and the

message, and means for encrypting the various information together with the session key

and the message authentication code using a private key ofthe sending pager unit in order

to provide a means for authentication by the pager proxy of the message.

Petitioner Apple Inc. - Ex. 1025, p. 4207

Petitioner Apple Inc. - Ex. 1025, p. 4208

10

15

20

WO 99/34553 PCT/US98/27531

38

57. A pager unit as claimed in claim 56, wherein said message authentication code

is an error correction code function.

58. A pager unit as claimed in claim 57, wherein said various header data includes at

least the user identification number of the pager unit and a destination header

corresponding to the input address of a destination pager.

59. A pager unit as claimed in claim 58, wherein said various header data further

includes a message number and application header.

60. A pager unit as claimed in claim 52, wherein the pager unit further comprises

means for adding an encryption method identifier in clear text to a packet header.

61. A pager unit as claimed in claim 60, wherein an encryption algorithm used to

encrypt the first session key is a public-private key encryption algorithm.

62. A pager unit as claimed in claim 60, wherein said secret key is a first session key

generated by a sending pager unit and said first session key is encrypted by a stream

cipher that uses a shared secret key.

63. A pager unit as claimed in claim 62, wherein said pager unit further comprises

means for generating an address mode and appending the address mode in clear text to

the packet header.

64. pager unit as claimed in claim 62, wherein said address mode is selected from

the group consisting of pager address types and e-mail address types, and wherein- the

pager proxy server is connected to a computer network server and includes means for re-

packaging said message in an e-mail packet and transmitting the e-mail packet via said

computer network server to an e-mail address.

Petitioner Apple Inc. - Ex. 1025, p. 4208

Petitioner Apple Inc. - Ex. 1025, p. 4209

10

20

WO 99/34553 PCT/US98/27531

39

65. A pager proxy server, comprising:

means for receiving a message encrypted by a session key, the session key being

encrypted and appended to the encrypted message, from a network operations center of

a pager network;

means for recovering the session key using a secret key of the server;

means for authenticating the sender of the message; and

mea.ns for re-transmitting the message encrypted by a session key in a manner

which enables decryption of the message only by a holder of a second secret key.

66. A server as claimed in claim 65, wherein said mea.ns for re-transmitting the

message comprises means for decrypting the message using the first session key, re-

encrypting the message using a second session key, and encrypting the second session

key.

67. A server as claimed in claim 66, wherein said first secret key is a private key held

by the pager proxy server.

68. A server as claimed in claim 67, further comprising means for retrieving apublic

key corresponding to a private key of a sending pager unit for use as a first level

authentication of the sending pager unit.

69. A server as claimed in claim 68, further comprising means for decrypting the a

user identification number of the sending pager unit together with the session key and

comparing it with a clear text user identification number in order to authenticate the

contents ofthe field containing the encrypted user identification number and session key.

70. A server as claimed in claim 69, further comprising means for decrypting various

header data, a first message authentication code, and a session key using a public key

corresponding to the private key ofthe sending pager unit, decrypting the message using

Petitioner Apple Inc. - Ex. 1025, p. 4209‘

Petitioner Apple Inc. - Ex. 1025, p. 4210

WO 99/34553

10

15

20

PCT/US98/27531

40

the session key, generating a second message authentication code based on the message

and various header data, and comparing the first message authentication code with the

second message authentication code in order to authenticate the message.

71. A server as claimed in claim 70, wherein said message authentication code is an’

error correction code function.

72. A server as claimed in claim 70, wherein said various header data includes at least _
the user identification number of the sending pager and a destination header

corresponding to the input address of the destination pager.

73. A server as claimed in claim 72, wherein said various header data further includes

a message number and application header.

74. A server as claimed in claim 73, wherein said encryption method is a public-

private key encryption algorithm.

75. A server as claimed in claim 73, wherein said encryption method is RC4 secret

key encryption.

76. A server as claimed in claim 72, further comprising means for receiving e-mail

packets from said computer network server,’ and re-packaging said e-mail packets for

transmission to the destination pager unit via said network operation center.

77. A system for adding encryption services to an existing pager network, the pager

network including a network operations center which provides a means for receiving an

alphanumeric message fi'om any ofa pluralityofhandheld pager units and forwarding the

alphanumeric message to another of the plurality ofhandheld pager units, at least one of

said pager units comprising:

Petitioner‘ Apple Inc. - Ex. 1025, p. 4210

Petitioner Apple Inc. - Ex. 1025, p. 4211

wo 99/34553 PCI‘/US98/2753]

41

means for inputting an alphanumeric message and a destination

address;

means for including the alphanumeric message in a packet for

transmission to the destination address by wireless transmission via the

5 network operations center;

means for receiving an alphanumeric message from the network

operations center; and

means for displaying the alphanumeric message received from the

network operations center, '

10 wherein the system for adding encryption services comprises:

means in at least one of said pager units for decrypting and displaying an

encrypted message; and

a pager proxy server including means for receiving a packet containing the

encrypted message, decrypting at least a portion of the packet, and re—encrypting said

15 portion of the packet for delivery to said at least one ofsaid pager units via said network

operations center.

78. An alphanumeric pager unit, comprising:

means for receiving an encrypted message transmitted via a wireless pager

network from a pager proxy server;

20 means for decrypting an encrypted session key appended to the message;

1 means for decrypting the encrypted message transmitted fi'om the pager proxy
server using the decrypted session key; and

means for displaying the message.

Petitioner Apple Inc. - Ex. 1025, p. 4211

Petitioner Apple Inc. - Ex. 1025, p. 4212

PCT/US98/27531WO 99/34553

2.3

£:<.ouou_._S<om

_.—

..o=E.:_..x.cozeoeoo
SUBSTITUTE SHEET (RULE 26)

' Petitioner Apple Inc. - Ex. 1025, p. 4212

Petitioner Apple Inc. - Ex. 1025, p. 4213

wo 99/34553 PC!‘/US98/27531

2 / l 0

information Stored in Memory

Encryption Method(s)
User Identification (UID
Application Header (AH

Sender Private and Public Keys
Proxy Server Public Key

Access Code

lnfonnation Generated At Runtime

 Information Entered By User session Key (SESKEY1)
Message Number (MSGNO)

Addressing Mode AM)
(Message Auth. Code MAC

Message (MSG)

Recipient Address (DH)

 Header Fonnat

Field 1

EM. AM, UID

Field 2

EM1 (pb.server)[EM2(pv.sender)[Hdrdata+SESKey1)]

S Field 3

RC4-(SESKey1)[MSG]

Fonnat Of Packet To Send

Pgr(UlD).PACKEl'=Field 1+field 24-Field :5
F/G2

SUBSTITUTE SHEET (RULE 25)

Petitionel‘ Apple Inc. - Ex. 1025, p. 4213

Petitioner Apple Inc. - Ex. 1025, p. 4214

wo 99/34553 PCT/US98l2753l
3 /I O

F/G3

 Pager Memory

Encryption Method
Application Header
User Identification

("703-555-3668")
Server Public Key

Sender Private Key

AH,UlD MSGNO

User Input
 HdrData =

Destination Address

(' 301 -555-8663')

Message
('This is a Test’)

UlD+AH+AM/DH
+MsGNo+MAc

 MAC

e.g., CRC
[UlD+AH+AM/DH+MSGNO

+MSG+SE_SKey]

E(pv.sender)[HdrData
+SESKey1] '

 HdrData

 Sender-to—Server

Packet

Field 1 y A
EM,AM,UlD

Field 2_

_ E(pb.server)[...] -

Field 3

I E(seskey)[MSG] I
SUBSTITUTE SHEET (RULE 26)

[...]

Petitioner Apple Inc. - Ex. 1025, p. 4214

Petitioner Apple Inc. - Ex. 1025, p. 4215

wo 99/34553 PCTIUS98/27531
4 / IO _

 Sender-To-Server

Packet

UID

Retrieve Sender

Public Key

Dpb.server

View 3 D b. 'd)5(5e?“°Y‘5W5°]_ = UI(I§+AuI:+IE4S(];No

°(p""“”°')["'] +AM/DH+MAC+SESKey1

Compare UID
From HdrData

D(seskey1)[E[MSG]] W/ Flglfij F1romno

 MAC =

e.g., CRC
[UlD+AH+AM/DH+MSGNO

+MSG+SESKey 1]

Compare MAC From HdrDoto

W/ MAC From D[E[MSG]

Information Parsed

By Proxy Server
(59 5)

SUBSTITUTE SHEET (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4215

Petitioner Apple Inc. - Ex. 1025, p. 4216

WO 99/3455?» /27 3]
5 PCT/U598 5

38
 lnforrnation Parsed

By Server Protocol

Encggtion Method
Message Number

 HdrData =

Application Header UlD+AH+AM/DH
User Identification +MSGNO+MAC

(”:5o1—555—86s3")

Destination Address

(" 703-555-3668")
Message

("This is a Test”)

+SESKey2

 MAC

e.g., CRC
[UlD+AH+AM/DH+MSGNO

-I-MSG+SESKey2]

 Generate

SESKey2
("abcdefgh")

Server Authentication =

E(pv.server)[...]

Sender—to—Server

Packet

Field 1

EM,AM, ID

Held 2

E(pb.recipient)[...] ’

Field 3

E(seskey2)[MSG] _

[...]

FIG. 5

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4216

Petitioner Apple Inc. - Ex. 1025, p. 4217

wo 99/34553 PCT/US98/27531

6 / IO

 Server-To—Recipient
Pocket

Held 1

EM,AM, ID

Field 2

E(pb. erver)[...]

Retrieve Recipient

Private Key UID

Dpb.server I

Field 3 D(pb.server)[...]

E<SeS*ey2>l“SG1 D<pv~recipient>t~».1 +A.7)’$?i1’2iA’e“fi§EE‘Se,2

 Compare UID

From HdrDoto

W/ UID From
Field 1

 D(seskey2)[E[MSG]]

54

MAC =

e.g., CRC
[UlD+AH+AM/DH+MSGNO

+MSG+SESKey2]

 Compare MAC From HdrDato

W/ MAC From D[E[MSG]

58

/59
 Display

MSG and DH

("This is 0 Test"
and "703—555—3668")

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4217

Petitioner Apple Inc. - Ex. 1025, p. 4218

WO 99/34553
7/! O PCT/US98/2753]

I Input Message and 10°
Destination Address

Generate Message Number. Address 1",
Mode. and Session Key ’

Retrieve Encryption Method Identifier, Application

Header. User identification Number. Server Public Key, 12°

and Sender Private Key from Memory

Include Encryption Method Identifier. Address Mode.
and User Identification Number in Field 1

130

Compute Message Identification Code 114°

Encrypt Session Key and 150
Additional Information by Private Key of Sender

 Encrypt Private Key Encrypted Information by 130

Public Key of Server to Obtain Field 2

170
Encrypt Message by Ses A ion Key to Obtain Field 3

Assemble Packet and A
Transmit to Not:

SUBSTITUTE SHEET (nous 25)

180F/G.7

Petitinoner Apple Inc. - Ex. 1025, p. 4218

Petitioner Apple Inc. - Ex. 1025, p. 4219

W0 99/34553 PCT/US98/27531

8/ IO

FlG.8

Retrieve Public Key of Sender Based On User 200
Identification Number

Decrypt Field 2 Based On Private Key of Server ‘ 210

Decrypt Header Data. Message Authentication Code and 220
Session Key Using Public Key of Sender

Compare Decrypted UID with Clear Text UID 230

" Decrypt Message Using Session Key 240

Compute Message Authentication Code 250

260
Compare Computed MAC with Decrypted MAC

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4219

Petitioner Apple Inc. - Ex. 1025, p. 4220

wo 99/34553 PCT/US98/27531

9/ I O

Encrypt Message Using New Session Key 310

Swap Destination Header and User Identification 320
Number

I

Compute Message Identification Code 330

' Encrypt Session Key and 340
Additional Information by Private Key of Server

Encrypt Private Key Encrypted Information by Public

Key of Destination Pager .

Assemble Packet and Transmit to NOC

F/G9

SUBSTITUTE SHEET (RULE 26)

350

350

Petitioner Apple Inc. - Ex. 1025, p. 4220

Petitioner Apple Inc. - Ex. 1025, p. 4221

wo 99/34553 PCT/US98/27531
I O / I O

F/G./O

Retrieve Public Key of Server 400

Decrypt Field 2 Based On Private Key of Destination 410

Decrypt Header Data. Message Authentication Code and 429

Session Key Using Public Key of Server

Compare Decrypted UID with Clear Text UlD 430

Decrypt Message Using Session Key 440

Compute Message Authentication Code 450

Compare Computed MAC with Decrypted MAC 45°

Display Decrypted Message and Sender Address 47°

suasmure sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025,‘ p. 4221

Petitioner Apple Inc. - Ex. 1025, p. 4222

 INTERNATIONAL SEARCH REPORT lntemational application No.
PCT/US98/27531

 A. CLASSIFICATION OF SUBJECT MATTER

lPC(6) :H04L 9/08
US CL 2380/2|

According to lntemational Patent Classification (lPC) or to both national classification and lPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 380/21,4-3.45.49

 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

 Electronic data base consulted during the intemational search (name of data base and, where practicable. search tenns used)
Please See Extra Sheet.

 C. DOCUMENTS CONSIDERED TO BE RELEVANT

 Relevant to claim No.

1- 31, 3 6 - 5 6 ,

58,60-68,74-78

Citation of document, with indication. where appropriate, of the relevant passages

US 5,285,496 A (FRANK et al) 08 February 1994 (08.02.94),
column 2. lines 28-44, column 4, lines 12-68, column 6, lines 11-
49.

 US 5,604,801 A (DOLAN et al) 18 February 1997 (18.02.97),

abstract, column 3, lines 2-38, 50-60, column 4, lines 19-24, 40-55.
1-31 .36-56

58,60-68 ,
74-78

US 5,602,918 A (CHEN et al) 11 February 1997 (11.02.97),
abstract, column 2, lines 36-41,57-60, column 4, lines 43-63.

3-4,6,17-18,27-

2 8 , 3 1 -

32,40,42,53,65,6

8-70,77

US 5,452,356 A (ALBERT et al) 19 September 1995 (19.09.95),
column 1, lines 60-68, column 2, lines 1-42, column 11, lines 15-
55.

1-78

Further documents are listed in the continuation of Box C. U See patent family annex.
later document published after the intemational filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

Special categories of cited documents:

‘A’ document defining the general state of the an which is not considered
to be of particular relevance

'8' earlier document published on or after the international filing date Ix. ::::::ee:'a:£::P:‘£:m:l::T::i:fi°:lLhnh:f°::a;fi;:°c::::;'L' document which may throw doubts on priority clairn(s) or which is ‘"5"’ 31° d°¢“""““ 5' -I-‘km 5l°“°
cited to establish the publication date of another citation or other _ _ . _
.p.¢i.| “nan (u gpgcifigd) ‘Y’ document of particular relevance; the claimed rrrvzrruodn cannot beV considered to involve an inventive step when a ocument is

'0' document referring to an oral disclosure. use. exhibition or other combined with one or more other such documents. such combination
Itlvlnl being obvious to a person skilled in the art

document published prior to the international filing date but later than -5‘-the priority date claimed

document member of the same patent family

 Date of the actual completion of the intcmntionnl search Date of mailing of the international search report

0 GMAY 1999

l7 FEBRUARY I999

Name and mailing address of the ISA/US
Commissioner of Patents and Tradcntarks
Box PCT
Washington. D.C. 20231

Facsimile No. (703) 305-3230

Fonn PCT/ISADIO (second sheet)(July l992)t

Authorized ofliccr

GAIL HAYES ’H
Telephone No. (703) 305-97 I1

Petitioner Apple Inc. - Ex. 1025, p. 4222

Petitioner Apple Inc. - Ex. 1025, p. 4223

INTERNATIONAL SEARCH REPORT lntemational application No.
PCT/US98/27531

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category‘ Citation of document. with indication. where appropriate. of the relevant passages Relevant to claim No.

US 5,495,533 A (LINEI-IAN et al) 27 February 1996 (27.02.96),
column 9, lines 42-58, column 10, lines 22-32.

 7,9,35,59,69-

70,72-73

Form PCT/ISA/210 (continuation of second she:-.l)(July 1992)»:

Petitioner Apple Inc. - Ex. 1025, p. 4223

Petitioner Apple Inc. - Ex. 1025, p. 4224

INTERNATIONAL SEARCH REPORT

lntemational application No.
PCT/US98/27531

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS

search tenns: cypher. cipher, encode,encrypt. decrypt. key. keys. pager. wireless. proxy server. authenticate,
authentication. transmission. transmitting. key management. public key. two-way communication. re-encrypt. messages,data. information

Form PCT/lSA/2l0 (extra sheet)(July l992)t

Petitioner Apple Inc. - Ex. 1025, p. 4224

Petitioner Apple Inc. - Ex. 1025, p. 4225

PCT
WORLD INTELIJECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Clasification 5 :

H04L 9/30
(43) International Publication Date:

(21) International Application Number: PCT/US98/27896

(22) International mung Date: 31 December 1998 (31.r2.93)

(30) Priority Data:
60/070,344
60/089,529

US
US

2 January 1998 (0201.98)
15 June 1998 (l5.06.98)

(71) Applicant: CRYPTOGRAPHY RESEARCH, INC. [US/US];
Suite 1088, 870 Market Street, San Francisco, CA 94102
(US).

(72) Inventors: KOCI-IER, Paul, C.; 143 Fillmore Street, San
Francisco, CA 94117 (US). JAFFE, Joshua, M.; 21B Bird
Street, San Francisco, CA 94110 (US).

(74) Agents: LAURIE, Ronald, S. et a1.; Skadden, Arps, Slate,
Meagher & Flom LLP, 525 University Avenue, Palo Alto,
CA 94301 (US).

(11) International Publication Number: wo _99l35782

15 July 1999 (r5.o7.99)

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl. GE, GE,
GH, GM, HR, HU. ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
TM, TR, Tl‘, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG. KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI parent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). '

Published

With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: I..EAK—RESISTANT CRYPTOGRAPHIC METHOD AND APPARATUS

(57) Abstract

The present invention provides a method and apparatus for se-
curing cryptographic devices against attacks involving external moni-
toring and analysis. A "self-healing" property is introduced, enabling
security to be continually re—established following partial compro-
mises. In addition to producing useful cryptographic results, a typi-
cal leak-resistant cryptographic operation modifies or updates (330)
secret key material in a manner designed to render useless any infor-
mation about the secrets that may have previously leaked from the
system. Exemplary leak-proof and leak—resistant implementations of
the invention are shown for symmetric authentication (350), certi-
fied Diffie—Hellman (when either one or both users have certificates),
RSA, ElGamal public key decryption (303).

Petitioner Apple Inc. - Ex. 1025, p. 4225

Petitioner Apple Inc. - Ex. 1025, p. 4226

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
Albania
Armenia
Austria
Ausu-alia
Azerbaijan
Bosnia and Herzegovina
Barbados

Belgium
Burkina Faao
Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic

Czech Republic
Germany
Denmark
Estonia

ES
Fl
FR
GA
GB
GE
GH
GN
GR
HU
[E
[L
IS
[T
JP
KE
KG
KP

KR
KZ
[L3
L1
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Fn-Aland
France
Gabon
United Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
Italy
Japan
Kenya
Kyrgyzstan
Democratic People‘s
Republic of Korea
Republic of Korea
Kazakazan
Saint Lucia
Liechtenstein
Sri Lanka

4 Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
R0
RU
SD
SE
SG

Lesotho
Lithuania
Luxembourg
Larvia
Monaco

Republic of Moldova
Madagascar
The fonner Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zcaland
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

SI
SK
SN
SZ
TD
TC
1'1
TM
TR
TT
UA
UG
US
UZ
VN
YU
ZW

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajilcistan
'I‘ur|n-nenislan
'D.u'key
Trinidad and Tobago
Ukraine
Uganda
United States of America
Uzbekistan
Vie: Nam
Yugoslavia
Zimbabwe

Petitioner Apple Inc. - Ex. 1025, p. 4226

Petitioner Apple Inc. - Ex. 1025, p. 4227

U!

10

15

20

25

30

wo‘99/35782 PCT/US98/27896

LEAK-RESISTANT CRYPTOGRAPI-IIC METHOD AND APPARATUS

This application claims the benefit ofUS Provisional Application No. 60/070,344

filed January 2, 1998, and US Provisional Application No. 60/089,529 filed June 15, 1998.

TECHNICAL FIELD

The method and apparatus of the present invention relate generally to cryptographic

systems and, more specifically, to securing cryptographic tokens that must maintain the

security of secret infomration in hostile environments.

BACKGROUND OF THE INVENTION

Most cryptosystems require secure key management. In public-key based security

systems, private keys must be protected so that attackers cannot use the keys to forge digital

signatures, modify data. or decrypt sensitive information. Systems employing symmetric

cryptography similarly require that keys be kept secret. Well-designed cryptographic

algorithms and protocols should prevent attackers who eavesdrop on communications from

breaking systems. However, cryptographic algorithms and protocols traditionally require that

tamper-resistant hardware or other implementation-specific measures prevent attackers from

accessing or finding the keys.

If the cryptosystem designer can safely assume that the key management system is

completely tamper-proof and will not reveal any information relating to the keys except via

the messages and operations defined in the protocol, then previously known cryptographic

techniques are often sufficient for good security. It is currently extremely difficult, however,

to make hardware key management systems that provide good security, particularly in low-

cost unshielded cryptographic devices for use in applications where attackers will have

physical control over the device. For example, cryptographic tokens (such as smartcards used

in electronic cash and copy protection schemes) must protect their keys even in potentially

hostile environments. (A token is a device that contains or manipulates cryptographic keys

that need to be protected from attackers. Forms in which tokens may be manufactured

include, without limitation, smartcards, specialized encryption and key management devices,

secure telephones, secure picture phones, secure web sewers, consumer electronics devices

using cryptography. secure microprocessors, and other tamper-resistant cryptographic

systems.)

Petitioner Apple Inc. - Ex. 1025, p. 4227

Petitioner Apple Inc. - Ex. 1025, p. 4228

10

15

20

25

30

wo §9l35782 PCT/US98/278962

A variety of physical techniques for protecting cryptographic devices are known,

including enclosing key management systems in physically durable enclosures, coating

integrated circuits with special coatings that destroy the chip when removed, and wrapping

devices with fine wires that detect tampering. However, these approaches are expensive,

difficult to use in single-chip solutions (such as smartcards), and difficult to evaluate since

there is no mathematical basis for their security. Physical tamper resistance techniques are

also ineffective against some attacks. For example, recent work by Cryptography Research

has shown that attackers can non-invasively extract secret keys using carefitl measurement

and analysis of many devices’ power consumption. Analysis of tinting measurements or

electromagnetic radiation can also be used to find secret keys.

Some techniques for hindering external monitoring of cryptographic secrets are

known, such as using power supplies with large capacitors to mask fluctuations in power

consumption, enclosing devices in well-shielded cases to prevent electromagnetic radiation,

message blinding to prevent timing attacks, and buffering of inputs/outputs to prevent signals

from lea.king out on 1/0 lines. Shielding, introduction of noise, and other such

countermeasures are often, however, of limited value, since skilled attackers can still find

keys by amplifying signals and filtering out noise by averaging data collected from many

operations. Further, in smartcards and other tarnper-resistant chips, these countermeasures

are often inapplicable or insufficient due to reliance on external power sources, impracticality

of shielding, and other physical constraints. The use of blinding and constant-time

mathematical algorithms to prevent timing attacks is also known, but does not prevent more

complex attacks such as power consumption analysis (particularly if the system designer

cannot perfectly predict what information will be available to an attacker, as is often the case

before a device has been physically manufactured and characterized).

The present invention makes use of previously-known cryptographic primitives and

operations. For example: U.S. patent 5,136,646 to Haber et al. and the pseudorandom

number generator used in the RSAREF cryptographic library use repeated application of hash

functions; anonymous digital cash schemes use blinding techniques; zero knowledge

protocols use hash functions to mask information; and key splitting and threshold schemes

store secrets in multiple parts.

Petitioner Apple Inc. - Ex. 1025, p. 4228

Petitioner Apple Inc. - Ex. 1025, p. 4229

10

15

20

25

30

W0 99,35-,3; PCT/US98/27896

SUMMARY OF THE INVENTION

The present invention introduces leak-proof and leak-resistant cryptography,

mathematical approaches to tamper resistance that support many existing cryptographic

primitives, are inexpensive, can be implemented on existing hardware (whether by itself or

via software capable of running on such hardware), and can solve problems involving secrets

leaking out of cryptographic devices. Rather than assuming that physical devices will

provide perfect security, leak-proof and leak-resistant cryptographic systems may be designed

to remain secure even if attackers are able to gather some information about the system and

its secrets. This invention describes leak-proof and leak-resistant systems that implement

symmetric authentication, Diffie-Hellrnan exponential key agreement, ElGamal public key

encryption, ElGamal signatures, the Digital Signature Standard, RSA, and other algorithms.

One of the characteristic attributes of a typical leak-proof or leak-resistant

cryptosystem is that it is "self-healing" such that the value of information leaked to an

attacker decreases or vanishes with time. Leak-proof cryptosystems are able to withstand

leaks of up to Lmx bits of information per transaction, where LMAX is a security factor chosen

by the system designer to exceed to the maximum anticipated leak rate. The more general

class of leak-resistant cryptosystems includes leak-proof cryptosystems, and others that can

withstand leaks but are not necessarily defined to withstand any defined maximum

information leakage rate. Therefore, any leak-proof system shall also be understood to be

leak-resistant. The leak-resistant systems of the present invention can survive a variety of

monitoring and eavesdropping attacks that would break traditional (non-leak-resistant)

cryptosystems.

A typical leak-resistant cryptosystem of the present invention consists of three general

parts. The initialization or key generation step produces secure keying material appropriate

for the scheme. The update process cryptographically modifies the secret key material in a

manner designed to render useless any information about the secrets that may have previously

leaked from the system, thus providing security advantages over systems of the background

art. The final process performs cryptographic operations. such as producing digital signatures

or decrypting messages.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows an exemplary leak-resistant symmetric authentication method.

Petitioner Apple Inc. - Ex. 1025, p. 4229

Petitioner Apple Inc. - Ex. 1025, p. 4230

10

15

20

25

30

W039/35782 PCT/US98/27896
4

Figure 2 shows an exemplary leak-resistant Diffie-Hellman exponential key exchange

operation.

Figure 3 shows an exemplary leak-resistant RSA private key operation.

Figure 4 shows an exemplary leak-resistant ElGamal signing operation.

DETAILED DESCRIPTION OF THE INVEN'I'ION

The sections following will describe an introduction to leak-proof/leak-resistant

cryptography, followed by various embodiments of the general techniques of the invention as .

applied to improve the security of common cryptographic protocols.

I. Introduction and Terminology

The leakage rate L is defined as the number of bits of usefiil infonnation about a

cryptosystem’s secrets that are revealed per operation, where an operation is a cryptographic

transaction. Although an attacker may be able to collect more than L bits worth of

measurement data, by definition this data yields no more than L bits of useful information

about the system’s secrets.

The implementer of a leak-proof system chooses a design parameter LMAX, the

maximum amount of leakage per operation the system may allow if it is to remain

uncompromised. LMAX should be chosen conservatively, and normally should significantly

exceed the amount of useful information known to be leaked to attackers about the system’s

secrets during each transaction. Designers do not necessarily need to know accurately or

completely the quantity and type of information that may leak from their systems; the choice

ofLMAX may be made using estimates and models for the system’s behavior. General factors

affecting the choice of LMAX include the types of monitoring potentially available to attackers,

the amount of error in attackers’ measurements, and engineering constraints that limit LMAX.

(Larger values of LMAX increase memory and performance requirements of the device, and in

some cases may increase L.) To estimate the amount of usefiil information an attacker could

collect by monitoring a device’s power consumption, for example, a designer might consider

the amount of noise in the device’s power usage, the power line capacitance, the useful time

resolution for power consumption measurements, as well as the strength of the signals being

monitored. Similarly, the designer knows that timing measurements can rarely yield more

than a few bits of information per operation, since timing information is normally quantized

to an integral number of clock cycles. In choosing LMAX, the designer should assume that

Petitioner Apple Inc. - Ex. 1025, p. 4230

Petitioner Apple Inc. - Ex. 1025, p. 4231

10

15

20

25

30

wo.99/35782 PCT/US98/27896
5

attackers will be able to combine information gleaned from multiple types of attacks. If the

leakage rate is too large (as in the extreme case where L equals the key size because the entire

key can_be extracted during a single transaction), additional design features should be added

to reduce L and reduce the value needed for LMAX. Such additional measures can include

known methods, such as filtering the device’s power inputs, adding shielding, introducing

noise into the timing or power consumption, implementing constant-time and constant

execution path algorithms, and changing the device layout. Again, note that the designer of a

leak-resistant system does not actually need to know what information is being revealed or

how it is leaked; all he or she need do is choose an upper bound for the rate at which attackers

might learn information about the keys. In contrast, the designer of a traditional system faces

the_much harder task of ensuring that no information about the secrets will leak out.

There are many ways information about secrets can leak from cryptosystems. For

example, an attacker can use a high-speed analog-to-digital converter to record a smartcard’s

power consumption during a cryptographic operation. The amount of useful information that

can be gained from such a measurement varies, but it would be fairly typical to gain enough

information to guess each of 128 key bits correctly with a probability of 0.7. This

information can reduce the amount of effort required for a brute force attack. For example, a

brute force attack with one message against a key containing k bits where each bit’s value is

known with probability p can be completed in

M»=:[£':J«»>rl£;(:JJ~at:Jl~el
operations. The reduction in the effort for a brute force attack is equivalent to shortening the

key by L = log2(E(k,Vz) / E(k,p)) = log2(k — E(k,p) — 1) bits. (For example, in the case of k =

l28 and p = 0.7, 1. is estimated to be about 11 bits for the first measurement. With a multiple

message attack, the attacker’s effort can fall to as low as E(k, p) = —lk- .) Attackers can gain
P

additional information about the keys by measuring additional operations; unless leak-

resistance is used, finding the key becomes easy after just a few dozen operations.

When choosing LMAX, a system designer should consider the signal-to-noise ratio of an

attacker's measurements. For example, if the signal and noise are of roughly equivalent

magnitude, the designer knows that an attacker’s measurements should be incorrect about 25

percent of the time (e.g., p = 0.75 if only one ‘observation per key bit is possible). Many

Petitioner Apple Inc. - Ex. 1025, p. 4231

Petitioner Apple Inc. - Ex. 1025, p. 4232

10

I5

20

25

30

WO .99/35782 PCT/US98/27896

6

measurement techniques, such as those involving timing, may have signal-to-noise ratios of

1:100 or worse. With such systems, L is generally quite small, but attackers who can make a

large number of measurements can use averaging or other statistical techniques to recover the

entire key. In extreme cases, attackers may be able to obtain all key bits with virtually perfect

accuracy from a single transaction (i.e., L = k), necessitating the addition of shielding, noise

in the power consumption (or elsewhere), and other measures to reduce p and L. Of course,

LMAX should be chosen conservatively; in the example above where less than 4 useful bits are

obtained per operation for the given attack, the designer might select LMAX = 64 for a leak-

proof design.

Leak-proof (and, more generally, leak—resistant) cryptosystems provide system

designers with important advantages. When designing a traditional (i.e., non-leak-resistant

and non-leak-proof) cryptosystem, a careful cryptosystem designer should study all possible

information available to attackers if he or she is to ensure that no analytical techniques could

be used to compromise the keys. In practice, many insecure systems are developed and

deployed because such analysis is incomplete, too difiicult even to attempt, or because the

cryptographers working on the system do not understand or cannot completely control the

physical characteristics of the device they are designing. Unexpected manufacturing defects

or process changes, alterations made to the product by attackers, or modifications made to the

product in the field can also introduce problems. Even a system designed and analyzed with

great care can be broken ifnew or improved data collection and analysis techniques are found

later. In contrast, with leak-proof cryptography, the system designer only needs to define an

upper bound on the maximum rate at which attackers can extract information about the keys.

A detailed understanding of the information available to attackers is not required, since leak-

proof (and leak-resistant) cryptosystem designs allow for secret information in the device to

leak out in (virtually) any way, yet remain secure despite this because leaked information is

only of momentary value.

In a typical leak-proof design, with each new cryptographic operation 1’, the attacker is

assumed to be able to choose any function‘F,- and determine the LMAx~bit result of computing

F,' on the device's secrets, inputs, intermediates, and outputs over the course of the operation.

The attacker is even allowed to choose a new function F; with each new operation. The

system may be considered leak-proof with a security factor n and leak rate LMAX if, afler

observing a large number of operations, an attacker cannot forge signatures. decrypt data, or

Petitioner Apple Inc. - Ex. 1025, p. 4232

Petitioner Apple Inc. - Ex. 1025, p. 4233

10

15

20

25

30

W0 99,3578; PCTlUS98/27896

7

perform other sensitive operations without performing an exhaustive search to find an n-bit

key or performing a comparable O(2") operation. In addition to choosing LMAX, designers

also choose n, and should select a value large enough to make exhaustive search infeasible. In

the sections that follow, various embodiments of the invention, as applied to improve the

security of common cryptographic operations and protocols, will be described in more detail.

II. Symmetric Cryptographic Protocols

A. Symmetric Authentication

An exemplary cryptographic protocol that can be secured using the techniques of the

present invention is symmetric authentication.

1. Conventional Symmetric Authentication

Assume a user wishes to authenticate herself to a server using an n-bit secret key, K,

known to both the server and the user's cryptographic token, but not known to attackers. The

cryptographic token should be able to resist tampering to prevent, for example, attackers from

being able to extract secrets from a stolen token. If the user's token has perfect tamper

resistance (i.e., L=0), authentication protocols of the background art can be used. Typically

the server sends a unique, unpredictable challenge value R to the usefs token, which

computes the value A = H(R H K), where "|]" denotes concatenation and H is a one-way

cryptographic hash function such as SHA. The user sends A to the server, which

independently computes A (using its copy of K) and compares its result with the received

value. The user authentication succeeds only if the comparison operation indicates a match.

If the function H is secure and if K is sufficiently large to prevent brute force attacks,

attackers should not be able to obtain any useful information from the (R, A) values of old

authentication sessions. To ensure that attackers cannot impersonate users by replaying old

values ofA, the server generates values ofR that are effectively (with sufficiently high

probability) unique. In most cases, the server should also make R unpredictable to ensure that

an attacker with temporary possession of a token cannot compute future values ofA. For

example, R might be a 128-bit number produced using a secure random number generator (or

pseudorandom number generator) in the server. The properties of cryptographic hash

fimctions such as H have been the subject of considerable discussion in the literature, and

need not be described in detail here. Hash functions typically provide functionality modeled

after a random oracle, deterministically producing a particular output from any input. Ideally,

such functions should be collision-resistant, non-invertable, should not leak partial

Petitioner Apple Inc. - Ex. 1025, p. 4233

Petitioner Apple Inc. - Ex. 1025, p. 4234

10

15

20

25

30

W0 9935782 PCT/US98/27896

8

information about the input from the output, and should not leak information about the output

unless the entire input is known. Hash ftmctions can have any output size. For example,

MD5 produces 128-bit outputs and SHA produces 160-bit outputs. Hash functions may be

constructed from other cryptographic primitives or other hash fimctions.

While the cryptographic security of the protocol using technology of the background

art may be good, it is not leak-proofi even a one—bit leak function (with L=l) can reveal the

key. For example, if the leak function F equals bit (R mod n) of K, an attacker can break the

system quickly since a new key bit is revealed with every transaction where (R mod n) has a .

new value. Therefore, there is a need for a leak-prooflleak-resistant symmetric authentication

protocol.

2. Leak-Resistant Symmetric Authentication

The following is one embodiment of a leak-resistant (and, in fact, also leak~proof)

symmetric authentication protocol, described in the context of a maximum leakage rate of

LMAX bits per transaction from the token and a security factor n, meaning that attacks of

complexity O(2”), such as brute-force attacks against an n-bit key, are acceptable, but there

should not be significantly easier attacks. The users token maintains a counter t, which is

initialized to zero, and an (n+2LMAx)-bit shared secret K,, which is initialized with a secret K0.

Note that against adversaries performing precomputation attacks based on Hellman’s

time/memory trade-off, larger values of n may be in order. Note also that some useful

protocol security features, such as user and/or server identifiers in the hash operation inputs,

have been omitted for simplicity in the protocol description. It is also assumed that no

leaking will occur from the server. For simplicity in the protocol description, some possible

security features (such as user and/or server identifiers in the hash operation inputs) have

been omitted, and it is assumed that the server is in a physically secure environment.

However, those skilled in the art will appreciate that the invention is not limited to such

assumptions, which have been made as a matter of convenience rather than necessity.

As in the traditional protocol, the server begins the authentication process by

generating a unique and unpredictable value R at step 105. For example, R might be a 128-bit

output from a secure random number generator. At step 110, the server sends R to the user's

token. At step 112, the token receives R. At step 1 15, the token increments its counter t by

computing t <— 1+ 1. At step 120, the token updates K, by computing K, <-— HK(t || Kt), where

HK is a cryptographic hash function that produces an (n+2LMAx) bit output from the old value

Petitioner Apple Inc. - Ex. 1025, p. 4234

Petitioner Apple Inc. - Ex. 1025, p. 4235

10

I5

20

25

30

WO 99/35782 PCT/US98/27896
9

of K, and the (newly incremented) value oft. Note that in the replacement operations

(denoted “<—”), the token deletes the old values of I and K,, replacing them with the new

values. By deleting the old K,, the token ensures that future leak functions cannot reveal

information about the old (deleted) value. At step 122, the token uses the new values oft and

K, to compute an authenticatorA = HA(K, || t || R). At step 125, the token sends both I and the

authenticator A to the server, which receives them at step 130. At step 135, the server verifies

that t is acceptable (e.g., not too large but larger than the value received in the last successful

authentication). If t is invalid, the server proceeds to step 175. Otherwise, at step 140, the

server initializes its loop counter i to zero and its key register K,’ to K,,. At step 145, the

server compares i with the received value oft, proceeding to step 160 if they are equal.

Otherwise, at step 150, the server increments i by computing i <— i + 1. At step 155, the

server computes K, ' <— HK(i || K, '), then proceeds back to step 145. At step 160, the server

computes A ’= I-lA(K,’ II I H R). Finally, at step 165, the server compares A and A ’, where the

authentication succeeds at step 170 if they match, or fails at 175 if they do not match.

This design assumes that at the beginning of any transaction the attacker may have

LMAX bits of useful infonnation about the state of the token (e.g., K,) that were obtained using

the leak function F in a previous operation. During the transaction, the attacker can gain an

additional LMAX bits of useful information from the token. If, at any time, any ZLMAX (or

fewer) bits of useful information about the secret are known to the attacker, there are still

(n+2LMAx)—2L,,,A,, = n or more unknown bits. These n bits of unknown infonnation ensure

that attacks will require O(2") effort, corresponding to the desired security factor. However,

the attacker should have no more than LMAX bits of useful information about K, at the end of

the transaction. The property that attackers lose useful information during normal operation

of the system is a characteristic of the leak-proof or leak-resistant cryptosystem. In general,

this information loss is achieved when the cryptosystem performs operations that convert

attackers’ useful partial infonnation about the secret into useless information. (Information is

considered useless if it gives an attacker nothing better than the ability to test candidate

values in an O(2”) exhaustive search or other “hard” operation. For example, if exhaustive

search ofX is hard and H is a good hash function, H(X) is useless information to an attacker

trying to find X.) I

Thus, the attacker is assumed to begin with LMAX bits of useful information about K,

before the token’s K, <— HK(t H K,) computation. (Initial information about anything other

Petitioner Apple Inc. - Ex. 1025, p. 4235

Petitioner Apple Inc. - Ex. 1025, p. 4236

10

15

20

25

30

W0_99/35782 PCT/US98/27896
1 0

than K, is of no value to an attacker because K, is the only secret value in the token. The

function HK and the value of I are not assumed to be secret.) The attackefs information can be

any function of K, produced from the previous operation’s leaks.

3. Security Characteristics of Leak-Proof Systems

The following section provides a technical discussion of the security characteristics of

the exemplary leak-proof system described above. The following analysis is provided as an

example of how the design can be analyzed, and how a system may be designed using general.

assumptions about attackers’ capabilities. The discussion and assumptions do not necessarily

apply to other embodiments of the invention and should not be construed as limiting the

scope or applicability of the invention in any way.

During the course of a transaction, the leak fimction F might reveal up to LMAX
information about the system and its secrets. The design assumes that any information

contained in the system may be leaked by F, provided that F does not reveal useful new

information about values of K, that were deleted before the operation started, and F does not

reveal useful information about values of K, that will be computed in future operations.

These constraints are completely reasonable, since real-world leaks would not reveal

information about deleted or not-yet-existent data. (The only way information about future

K, values could be leaked would be the bizarre case where the leak function itself included, or

was somehow derived from, the fimction HK.) In practice, these constraints on F are

academic and of little concern, but they are relevant when constructing proofs to demonstrate

the security of a leak-proof system.

If the leak occurs at the beginning of the HK computation, it could give the attacker up

to ZLMAX bits of useful information about the input value of K,. Because K, contains

(2LMAx+n) bits of secret information and the attacker may have up to ZLMAX bits of useful

information about the initial value of K,, there remain at least (2LMAx+n)-—2LMAx = n bits of

information in K, that are secret. The hash function HK effectively mixes up these n bits to

produce a secure new K, during each transaction such that the attacker’s information about

the old K, is no longer useful.

If the leak occurs at the end of the HK computation, it could give an attacker up to

LMAX bits of information about the final value of HR, yielding LMAX bits of information about

Petitioner Apple Inc. - Ex. 1025, p. 4236

Petitioner Apple Inc. - Ex. 1025, p. 4237

10

15

20

25

30

99/35782 PCT/US98/27896
11

the input to the subsequent transaction. This is not a problem, since the design assumes that

attackers have up to LMAX bits of information about K, at the beginning of each transaction. ‘

_A third possibility is that the attacker’s LMAX bits of information might describe

intermediates computed during the operation HK. However, even if the attacker could obtain

LMAX new bits of information about the input to HK and also LMAX bits of information about

the output from HK, the system would be secure, since the attacker would never have more

than ZLMAX bits of information about the input K; or more than LMAX bits of information about

the output Kt. Provided that LMAX bits of information from within HK carmot reveal more than.

LMAX bits of information about the input, or more than LMAX bits of information about the

output, the system will be secure.’ This will be true unless HK somehow compresses the input

to form a short intermediate which is expanded to form the output. While hash fimctions

whose internal states are smaller than their outputs should not be used, most cryptographic
hash fimctions are fine.

A fourth possibility is that part or all of the leak could occur during the A = HA(K, I] I II

R) calculation. The attacker’s total “budget” for observations is LMAX bits. If L. bits of leak

occur during the HR computation, an additional L2 bits of information can leak during the A =

HA(K, H t [| R) operation, where L, S LMAX — I... If the second leak provides information about

Kt, this is no different from leaking information about the result of the HK computation; the

attacker will still conclude the transaction with no more than LMAX bits of information about

K, because L, + L; S LMAX. However, the second leak could reveal infomiation about A. To

keep A secure against leaks (to prevent, for example, an attacker from using a leak to capture

A and using A before the legitimate user can), the size ofA should include an extra Lmx bits

(to provide security even if L2=LMAx). Like HK, HA should not leak information about deleted

or future values of K; that are not used in or produced by the given operation. As with the

similar assumptions on leaks from HK, this limitation is primarily academic and of little

practical concern, since real-world leak fimctions do not reveal information about deleted or

not-yet-computed data. However, designers might be cautious when using unusual designs

for HA that are based on or derived from HK, particularly if the operation HA(K, [I III R) could

reveal useful information about the result of computing HK(t l] K,).

B. Other Leak-Resistant Symmetric Schemes

The same basic technique of updating a key (K) with each transaction, such that

leakage about a key during one transaction does not reveal useful information about a key in a

Petitioner Apple Inc. - Ex. 1025, p. 4237

Petitioner Apple Inc. - Ex. 1025, p. 4238

10

15

20

25

30

PCT/US98/27896
WO _99/35782

12

subsequent (or past) transaction, can be easily extended to other applications besides
authentication.

1. Symmetric Data Verification

For example and without limitation, leak-resistant symmetric data verification is often

useful where a device needs to support symmetrically-signed code, data, content, or

parameter updates (all of which will, as a matter of convenience, be denoted as "data" herein).

In existing systems, a hash or MAC of the data is typically computed using a secret key and

the data is rejected if computed hash or MAC does not match a value received with the data.

For example, a MAC may be computed as HMAC(K, data), where I-IMAC is defined in “RFC

2104, HMAC: Keyed-Hashing for Message Authentication” by H. Krawczyk, M. Bellare,

and R. Canetti, 1997. Traditional (non-leak-resistant) designs are ofien vulnerable to attacks

including power consumption analysis of MAC functions and timing analysis of comparison
operations.

In an exemplary leak-resistant verification protocol, a verifying device (the "verifier")

maintains a counter I and a key Kt, which are initialized (for example at the factory) with I (—- '

O and K, (—- K0. Before the transaction, the verifier provides Ito the device providing the

signed data (the “signer”), which also knows K0. The signer uses I to compute K,+1 ‘(the

prime indicating a quantity derived by the signer, rather than at the verifier) from K0 (or K; '

or any other available value of K; ’). using the relation K,-’ = HK(i I] K~_, ’), computes signature

S’ = HMAC(K,+1 ', data), and sends S’ plus any other needed information (such as data or I)
to the verifier. The verifier confirms that the received value of I (if any) matches its value of

I, and rejects the signature if it does not. If I matches, the verifier. increments I and updates K,

in its nonvolatile memory by computing I (—- I + 1 and K, 4- HK(I H K,). In an alternative

embodiment, if the received value of I is larger than the internal value but the difference is not

unreasonably large, it may be more appropriate to accept the signature and perform multiple

updates to K, (to catch up with the signer) instead of rejecting the signature outright. Finally,

the verifier computes S = HMAC(K;, data) and verifies that S = S’, rejecting the signature ifS

does not equal the value of S ’ received with the data.

2. Symmetric Encryption

Besides authentication and verification, leak-resistant symmetric cryptography can

also be tailored to a wide variety of applications and environments. For example, if data

Petitioner Apple Inc. - Ex. 1025, p. 4238

Petitioner Apple Inc. - Ex. 1025, p. 4239

10

15

20

25

30

WO 99/35782 PCT/US98/27896

13

encryption is desired instead of authentication, the same techniques as were disclosed above

may be used to generate a key K; used for encryption rather than verification.

3. Variations in Computational Implementation

In the foregoing, various applications were disclosed for the basic technique of

updating a key K; in accordance with a counter and deleting old key values to ensure that

future leakage cannot reveal information about the now—deleted lcey._ Those skilled in the art

will realize, however, that the exemplary techniques described above may be modified in

various ways without departing from the spirit and scope of the invention. For example, if

communications between the device and the server are unreliable (for example ifthe server

uses voice recognition or manual input to receive I and A), then small errors in the signature

may be ignored. (One skilled in the art will appreciate that many functions may be used to

determine whether a signature corresponds — sufficiently closely -- to its expected value.) In

another variation of the basic technique, the order of operations and of data values may be

adjusted, or additional steps and parameters may be added, without significantly changing the

invention. In another variation, to save on communication bandwidth or memory, the high

order bits or digits of I may not need to be communicated or remembered. In another

variation, as a performance optimization, devices need not recompute K, from K0 with each

new transaction. For example, when a transaction succeeds, the server can discard K0 and

maintain the validated version of K,. In another variation, if bi-directional authentication is

required, the protocol can include a step whereby the server can authenticates itself to the user

(or user’s token) after the user’s authentication is complete. In another variation, if the server

needs to be secured against leaks as well (as in the case where the role of “server” is played

by an ordinary user),'it can maintain its own counter I. In each transaction, the parties agree

to use the larger of their two I values, where the device with the smaller I value performs extra

updates to K, to synchronize I. In an alternate embodiment for devices that contain a clock

and a reliable power source (e.g., battery), the update operation may be performed

periodically, for example by computing K, <—— HK(I || K,) once per second. The token uses the

current K, to compute A = H,._(K, H I [| R) or, if the token does not have any means for

receiving R, it can output A = HA(K,). The server can use its clock and local copy of the

secret to maintain its own version of Kt, which it can use to determine whether received

values ofA are recent and correct. All of the foregoing show that the method and apparatus
of the present invention can be implemented using numerous variations and modifications to

Petitioner Apple Inc. - Ex. 1025, p. 4239

Petitioner Apple Inc. - Ex. 1025, p. 4240

10

15

20

25

30

WO_99f35782 PCT/US98/27896
14

the exemplary embodiments described herein, as would be understood by one skilled in the
art.

III. Asymmetric Cryptographic Protocols

The foregoing illustrates various embodiments of the invention that may be used with

symmetric cryptographic protocols. As will be seen below, still other techniques of the

present invention may be used in connection with asymmetric cryptographic operations and

protocols. While symmetric cryptosystems are sufficient for some applications, asymmetric

cryptography is required for many applications. There are several ways leak resistance can be .

incorporated into public key cryptosystems, but it is oflen preferable to have as little impact

as possible on the overall system architecture. Most of the exemplary designs have thus been

chosen to incorporate leak resistance into widely used cryptosystems in a way that only alters

the key management device, and does not affect the certification process, certificate fomiat,

public key format, or processes for using the public key.

A. Certified Diffie-Hellman

Diffie-Hellman exponential key exchange is a widely used asymmetric protocol

whereby two parties who do not share a secret key can negotiate a shared secret key.

Implementations ofDiffie-Hellman can leak information about the secret exponents, enabling

attackers to determine the secret keys produced by those implementations. Consequently, a

leak-resistant implementation of Diffie-Hellman would be useful. To understand such a leak-

resistant implementation, it will be useful to first review a conventional Diffie-Hellman

implementation.

1. Conventional Certified Diffie-Hellman

Typical protocols in the background art for performing certified Diffie-Hellman

exponential key agreement involve two communicating users (or devices) and a certifying

authority (CA). The CA uses an asymmetric signature algorithm (such as DSA) to sign

certificates that specify a user’s public Diffie-Hellman parameters (the primep and generator

g), public key (p" mod g, where x is the user’s secret exponent), and auxiliary infomiation

(such as the user’s identity, a description of privileges granted to the certificate holder, a

serial number, expiration date, etc.). Certificates may be verified by anyone with the CA’s

public signature verification key. To obtain a certificate, user U typically generates a secret

exponent (xu), computes his or her own public key M. = 8 "' mod p , presents yu along with

any required auxiliary identifying or authenticating information (e.g., a passport) to the CA,

Petitioner Apple Inc. - Ex. 1025, p. 4240

Petitioner Apple Inc. - Ex. 1025, p. 4241

10

15

20

25

IWQ 99/35732 PCT/US98/2 7896

15

who issues the user a certificate Cu_ Depending on the system, p and g may be unique for

each user, or they may be system-wide constants (as will be assumed in the following

description of Diffie—Hellman using the background art).

Using techniques of the background art, Alice and Bob can use their certificates to

establish a secure communication channel. They first exchange certificates (CM,-,, and Cm).

Each verifies that the other’s certificate is acceptable (e.g., properly formatted, properly

signed by a trusted CA, not expired, not revoked, etc.). Because this protocol will assume

that p and g are constants, they also check that the certificate’s p and g match the expected

values. Alice extracts Bob’s public key (ym) from C3,, and uses her secret exponent (xme) to

compute zN,“ = (yaw)""°‘ mod p. Bob uses his secret exponent and Alice’s public key to

compute znob = (yA,m)"‘°° mod p. If everything works correctly, zm, = 230,, since:

2A.... = (yam, mod!’

= (g ’“°°)""“ mod p

= (g ’*"")'”"" mod p

= (Yuan)"‘°° mod!’

=zBob'

Thus, Alice and Bob have a shared key 2 = 2%, = 230,. An attacker who pretends to be

Alice but does not know her secret exponent (xmm) will not be able to compute

2,5,, = (yaw)""““ mod p correctly. Alice and Bob can positively identify themselves by

showing that they correctly found 2. For example, each can compute and send the other the

hash ofz concatenated with their own certificate. Once Alice and Bob have verified each

other, they can use a symmetric key derived from 2 to secure their communications. (For an

example of a protocol in the background art that uses authenticated Difiie-Hellman, see “The

SSL Protocol Version 3.0” by A. Freier, P. Karlton, and P. Kocher, March 1996.)

2. Leak-Resistant Certified Diffie-Hellman ‘

A satisfactory leak-resistant public key cryptographic scheme should overcome the

problem that, while certification requires the public key be constant, information about the

corresponding private key should not leak out of the token that contains it. In the symmetric

protocol described above, the design assumes that the leak fiinction reveals no useful

information about old deleted values of K, or about future values of K, that_have not yet been

Petitioner Apple Inc. - Ex. 1025, p. 4241

Petitioner Apple Inc. - Ex. 1025, p. 4242

l0

I5

20

25

30

~WO 99/35782 PCT/US98/27896

16

computed. Existing public key schemes, however, require that implementations repeatedly

perform a consistent, usually deterministic, operation using the private key. For example, in

the case of Diffie-Hellman, a leak-resistant token that is compatible with existing protocols

and implementations should be able to perform the secret key operation y" mod p, while

ensuring that the exponent 1: remains secret. The radical reshufiling of the secret provided by

the hash function HK in the symmetric approach cannot be used because the device should be

able to perform the same operation consistently.

The operations used by the token to perform the private key operation are modified to _
add leak resistance using the following variables:

Re ister Comment

x, First part of the secret key (in nonvolatile updateable memory)
xz Second part of the secret key (in nonvolatile updateable memory)
g The generator (not secret).

p The public prime, preferably a strong prime (not secret).

The prime p and generator g may be global parameters, or may be specific to individual users

or groups of users (or tokens). In either case, the certificate recipient should be able to obtain

p and g securely, usually as built-in constants or by extracting them from the certificate.

To generate a new secret key, the key generation device (ofien but not always the

cryptographic token that will contain the key) first obtains or generates p and g, where p is the

prime and g is a generator mod p. Ifp and g are not system-wide parameters, algorithms

known in the background art for selecting large prime numbers and generators may be used.

It is recommended thatp be chosen with i’2'—' also prime, or at least that ¢(p) not be smooth.

(When—’23'— is not prime, information about x, and x2 modulo small factors of ¢(p) may be

leaked, which is why it is preferable that ¢ (p) not be smooth. Note that ¢denotes Euler’s

totient function.) Once p and g have been chosen, the device generates two random exponents

x, and x,. The lowest-order bit ofx, and ofx2 is not considered secret, and may be set to 1.

Using p, g, x,, and x2, the device can then compute its public key as g""’ mod p and submit

it, along with any required identifying information or parameters needed (e.g., p and g), to the
CA for certification.

Figure 2 illustrates the process followed by the token to perform private key

operations. At step 205, the token obtains the input message y, its own (non-secret) prime p,

and its own secret key halves (x, and x,). Ifx,, x2, and p are stored in encrypted and/or

Petitioner Apple Inc. - Ex. 1025, p. 4242

Petitioner Apple Inc. - Ex. 1025, p. 4243

W0 99,-35782 PCTlUS98/27896

’ 17

authenticated form, they would be decrypted or verified at this point. At this step, the token

should verify that I < y <p—l. At step 210, the token uses a random number generator (or

pseudorandom number generator) to select a random integer b,,, where 0 < bo < p. At step

215, the token computes b, = b,,"' mod p. The inverse computation mod p may be performed

5 using the extended Euclidean algorithm or the formula b, = b,,"(")" mod p. At step 220, the

token computes b._, = b, " mod p. At this point, b, is no longer needed; its storage space may

be used to store bl. Efficient algorithms for computing modular exponentiation, widely

known in the art, may be used to complete step 220. Alternatively, when a fast modular

exponentiator is available, the computation b._, may be performed using the relationship

10 b, = b,,"(")"" mod p. At step 225, the token computes b, = b,''’ mod p. At this point, b2 is no

longer needed; its storage space may be used to store b,. At step 230, the token computes 2,, =

b,,y mod p. At this point, y and b,, are no longer needed; their space may be used to store r,

(computed at step 235) and 20. At step 235 , the token uses a random number generator to

select a random integer r,, where O < r, < ¢(p) and gcd(r,, ¢(p)) = 1. (If -’-’,'—' is known to be

15 prime, it is sufficient to verify that r, is odd.) At step 240, the token updates x, by computing

x, <— x, r, mod ¢(p). The old value ofx, is deleted and replaced with the updated value. At

step 245, the token computes r, = (r,") mod ¢(p). If £24 is prime, then r2 can be found using

a modular exponentiator and the Chinese Remainder Theorem. Note that r, is not needed

after this step, so its space may be used to store r2. At step 250, the token updates x, by

20 computing x, '<— xz rz mod ¢(p). The old value ofx, should be deleted and replaced with the

updated value. At step 255, the token computes 2, = (2,,)" mod p. Note that 2,, is not needed

after this step, so its space may be used to store 2,. At step 260, the token computes

2, = (2,)" mod p. Note that z, is not needed after this step, so its space may be used to store

22. At step 265. the token finds the exponential key exchange result by computing

25 z = zzb, mod p. Finally, at step 270, the token erases and frees any remaining temporary

variables.

The process shown in Figure 2 correctly computes 2 = y’‘ mod p, where x = x, x, mod

¢(p), since:

Petitioner Apple Inc. - Ex. 1025, p. 4243

Petitioner Apple Inc. - Ex. 1025, p. 4244

10

15

20

25

_wO’99/35782 PCT/U898/27896
18

z = 2,173 mod p

= 2,” mod p)(b2"’ mod p)rnod p

. = (z,," mod p)")((b," mod p)")mod p
= (buy mod p)”” (b,," modp)“ mod p
= y""" mod p

= y’ mod p.

The invention is useful for private key owners communicating with other users (or

devices) who have certificates, and also when communicating with users who do not.

If Alice has a certificate and wishes to communicate with Bob who does not have a

certificate, the protocol proceeds as follows. Alice sends her certificate (CAM) to Bob, who

receives it and verifies that it is acceptable. Bob extracts ywcc (along with pNi‘, and gmc,

unless they are system-wide parameters) from C,,,,c,. Next, Bob generates a random exponent

x,,,,, where 0 < x,,,, < ¢(pM,¢,). Bob then uses his exponent x”, and Alice’s parameters to

calculate ya, = (gA,,u’”")modpM,“ and the session key 2 = (yme "”‘)mod pM“. Bob sends
ya, to Alice, who performs the operation illustrated in Figure 2 to update her internal

parameters and derive z from y,,A. Alice then proves that she computed z correctly, for

example by sending Bob H(z || CAM). (Alice cannot authenticate Bob because he does not

have a certificate. Consequently, she does not necessarily need to verify that he computed z

successfully.) Finally, Alice and Bob can use 2 (or, more commonly, a key derived from z) to
secure their communications.

If both Alice and Bob have certificates, the protocol works as follows. First, Alice

and Bob exchange certificates (CAm, and C30,), and each verifies that other’s certificate is

valid. Alice then extracts the parameters pm, gm, and y,,,,,, from C50,, and Bob extracts pA,,w

gum, and ymic, from CMm. Alice then generates a random exponent x,,_,, where 0 < x,(,, <

¢(p,,°,,), computes y“, = (gm)"‘” mod pm , and computes zw - (yaw)"‘” mod pm. Bob

generates a random x“ where 0 < x,,, < ¢(p,,,,c,), computes ya, = (gA,,“)’“‘ mod pM,“ , and

computes ZBA — (ymiu)"“ mod pm‘. Bob sends ya, to Alice, and Alice sends ya to Bob.

Alice and Bob each perform the operation shown in Figure 2, where each uses the prime p

from their own certificate and their own secret exponent halves (x, and x3). For the message y

in Figure 2, Alice uses ya, (received from Bob). and Bob uses yAB (received from Alice).

Using the process shown in Figure 2, Alice computes 2. Using 2 and 2,“, (computed

Petitioner Apple Inc. - Ex. 1025, p. 4244

Petitioner Apple Inc. - Ex. 1025, p. 4245

10

15

20

25

30

WO 99/35732 PCT/U598/27896

19

previously), she can find a session key K. This may be done, for example, by using a hash

function H to compute K = H(z]| 2”). The value of 2 Bob obtains using the process shown in

Figure 2_should equal Alice’s 2A,, and Bob’s z,,A (computed previously) should equal Alice’s

2. If there were no errors or attacks, Bob should thus be able to find K, e.g., by computing K

= H(z,,A I] z). Alice and Bob now share K. Alice can prove her identity by showing that she

computed K correctly, for example by sending Bob H(K || CAM). Bob can prove his identity

by sending Alice H(K H Cm). Alice and Bob can then secure their communications by

encrypting and authenticating using K or a key derived from K.

Note that this protocol, like the others, is provided as an example only; many

variations and enhancements of the present invention are possible and will be evident to one

skilled in the art. For example, certificates may come from a directory, more than two parties

can participate in the key agreement, key escrow functionality may be added, the prime

modulus p may be replaced with a composite number, etc. Note also that Alice and Bob as

they are called in the protocol are not necessarily people; they would normally be computers,
cryptographic devices, etc.

For leak resistance to be effective, attackers should not be able to gain new useful

information about the secret variables with each additional operation unless a comparable

amount of old useful information is made useless. While the symmetric design is based on

the assumption that leaked information will not survive the hash operation HK, this design

uses multiplication operations mod ¢(p) to update x, and x,. The most common variety of

leaked information, statistical information about exponent bits, is not of use to attackers in

this design, as the exponent update process (x, <- x, r, mod ¢(p) and x, 4- x2 rz mod ¢(p))

destroys the utility of this information. The only relevant characteristic that survives the

update process is that x,x, mod ¢(p) remains constant, so the system designer should be

carefiil to ensure that the leak function does not reveal information allowing the attacker to

find new useful information about x,x, mod ¢(p).

There is a modest performance penalty, approximately a factor of four, for the leak-

resistant design as described. One way to improve performance is to remove the blinding and

unblinding operations, which are often unnecessary. (The blinding operations prevent

attackers from correlating input values ofy with the numbers processed by the modular

exponentiation operation.) Alternatively or additionally, it is possible to update and reuse

Petitioner Apple Inc. - Ex. 1025, p. 4245

Petitioner Apple Inc. - Ex. 1025, p. 4246

10

15

20

25

30

‘WO 99/35782 PCT/US98/27896

20

values of b0, b3, r,, and r2 by computing bo <—- (bo)‘ mod p, bl <— (b,)" mod p, r, <— (r,)" mod

¢(p), and r2 4- (rz)" mod ¢(p), where v and w are fairly short random exponents. Note that the

relationship b, <— bo""’ mod p remains true when b0 and b, are both raised to the power v

(mod p). The relationship r2 = (r,") mod ¢(p) also remains true when r, and r2 are

exponentiated (mod ¢(p)). Other parameter update operations may also be used, such as

exponentiation with fixed exponents (e.g., v = w = 3), or multiplication with random values

and their inverses, mod p and ¢(p). The time per transaction with this update process is about

half that of the unoptirnized leak-resistant implementation, but additional storage is required
and care should be taken to ensure that b0, b,, r,, and r2 will not be leaked or otherwise

compromised.

It should also be noted that with this particular type of certified Diflie-Hellman, the

negotiated key is the same every time any given pair of users communicate. Consequently,

though the blinding operation performed using b0 and b, does serve to protect the exponents,
the result K can be leaked in the final step or by the system after the process is complete. If

storage is available, parties could keep track of the values ofy they have received (or their

hashes) and reject duplicates. Alternatively, to ensure that a different result is obtained from

each negotiation, Alice and Bob can generate and exchange additional exponents, WW, and

wm, for example with 0 < w < 2”’ (where 2”‘ << p). Alice sets y = (ya,)"“"“”'°°’ mod p

instead ofjust y = y,,A, and Bob sets y = (ya)"°°°""“‘ modp instead ofy = y“, before

performing the operation shown in Figure 2.

B. Leak-Resistant RSA

Another asymmetric cryptographic protocol is RSA, which is widely used for digital

signatures and public key encryption. RSA private key operations rely on secret exponents.

If information about these secret exponents leaks from an implementation, its security can be
compromised. Consequently, a leak-resistant implementation of RSA would be useful.

To give RSA private key operations resistance to leaks, it is possible to divide the

secret exponent into two halves such that information about either half is destroyed with each

operation. These are two kinds of RSA private key operations. The first, private key signing,

involves signing a message with one’s own private key to produce a digital signature

verifiable by anyone with one’s corresponding public key. RSA signing operations involve

computing S = Md mod n, where M is the message, S is the signature (verifiable using M = S9

Petitioner Apple Inc. - Ex. 1025, p. 4246

Petitioner Apple Inc. - Ex. 1025, p. 4247

10

15

20

25

30

WO 99/35782 PCT/US98/27896

21

mod n), d is the secret exponent and equals e" mod ¢(n), and n is the modulus and equals pq,

where n and e are public and p and q are secret primes, and (15 is Euler’s phi fimction. An

RSA public key consists of e and n, while an RSA private key consists of d and n (or other

representations of them). For RSA to be secure, a’, ¢(n), p, and q should all be secret.

The other RSA operation is decryption, which is used to recover messages encrypted

using one’s public key. RSA decryption is virtually identical to signing, since the decrypted

message M is recovered from the ciphertext C by computing M = Cd mod n, where the

ciphertext C was produced by computing C=Me mod n. Although the following discussion

uses variable names from the RSA signing operation, the same techniques may be applied

similarly to decryption.

An exemplary leak-resistant scheme for RSA implementations may be constructed as

illustrated in Figure 3. At step 300, prior to the commencement of any signing or decryption

operations, the device is initialized with (or creates) the public and private keys. The device

contains the public modulus n and the secret key components d,, dz, and z, and k, where k is a

prime number of medium-size (e.g., 0 < k < 2'”) chosen at random, 2 = k¢(n), d, is a random

number such that 0 < d, < z and gcd(d,, z) = 1, and dz = (e" mod ¢(n))(d," mod 2) mod 2. In

this invention, d, and dz replace the usual RSA secret exponent d. Techniques for generating

the initial RSA primes (e.g., p and q) and modulus (n) are well known in the background art.

At step 305, the device computes a random prime k’ of medium size (e.g., 0 < k’ < 2'").

(Algorithins for efficiently generating prime numbers are known in the art.)

At step 303, the device (token) receives a message M to sign (or to decrypt). At step

310, the device updates 2 by computing z <— k '2. At step 315, the device updates 2 again by

computing z <— 2] k. (There should be no remainder from this operation, since k divides 2.)

At step 320, k is replaced with k ' by performing k 4- k’. Because k’ will not be used in

subsequent operations, its storage space may be used to hold R (produced at step 325). At

step 325, the device selects a random R where 0 < R < z and gcd(R, z) = 1. At step 330, the

device updates d, by computing d, <— d,R mod 2. At step 335, the device finds the inverse of

R by computing R’ <— R" mod 2 using, for example, the extended Euclidean algorithm. Note

that R is no longer needed after this step, so its storage space may be erased and used to hold

R ’. At step 340, the device updates dz by computing dz <-— dzR ’ mod 2. At step 345, the

device computes S0 = M "’ modn , where M is the input message to be signed (or the message

Petitioner Apple Inc. - Ex. 1025, p. 4247

Petitioner Apple Inc. - Ex. 1025, p. 4248

10

15

20

25

30

W0>99/35782 PCT/US98/27896
22

to be decrypted). Note that M is no longer needed after this step, so its storage space may be

used for S0. At step 350, the device computes S = Sod‘ modn , yielding the final signature (or

plajntext if decrypting a message). Leak-resistant RSA has similar security characteristics as

normal RSA; standard message padding, post-processing, and key sizes may be used. Public

key operations are also performed normally (e.g., M = S3 mod n).

A simpler RSA leak resistance scheme may be implemented by splitting the exponent

d into two halves d, and dz such that d, + dz = d. This can be achieved during key generation

by choosing d, to be a random integer where O S d, S d, and choosing dz (-— d — d,. To

perform private key operations, the device needs d, and dz, but it does not need to contain d.

Prior to each private key operation, the cryptographic device identifies which of d, and dz is

larger. If d, > dz, then the device computes a random integer r where O S r S d,, adds r to dz

(i.e., dz 4- dz + r), and subtracts r from a’, (i.e., d, (-— d, - r). Otherwise, if d, 5 dz, then the

device chooses a random integer r where 0 S r S dz, adds r to d, (i.e., d, <-— d, + r), and

subtracts r from dz (i.e., dz <-— dz — r). Then, to perform the private key operation on a

message M, the device computes s, = M"' mod n, sz = M"’ mod n, and computes the

signature S = s,sz mod n. While this approach of splitting the exponent into two halves whose

sum equals the exponent can also be used with Diflie-Hellman and other cryptosystems,

dividing the exponent into the product of two numbers mod ¢(p) is usually preferable since

the assumption that information about d,+dz will not leak is less conservative than the

assumption that information about x,xz mod ¢(p) will not leak. In the case of RSA, updates

mod ¢(n) cannot be done safely, since ¢(n) must be kept secret.

When the Chinese Remainder Theorem is required for performance, it is possible to

use similar techniques to add leak resistance by maintaining multiples of the secret primes (p

and q) that are updated every time (e.g., multiplying by the new multiple then dividing by the

old multiple). These techniques also protect the exponents (dp and dq) as multiples of their
normal values. At the end of the operation, the result S is corrected to compensate for the

adjustments to dp, dq, p, and q.

An exemplary embodiment maintains state information consisting of the values n, Bi,

B,, 1:, pk, qk, dpk, dq/,, p1,,,,, andf To convert a traditional RSA CRT private key (consisting of

p, q, dp, and dq withp < q) into the new representation, a random value for k is chosen, where

O < k < 2“. The value Bi is chosen at random where O < Bi < n, and R 1 and R2 are chosen at

Petitioner Apple Inc. - Ex. 1025, p. 4248

Petitioner Apple Inc. - Ex. 1025, p. 4249

10

15

20

25

WO 99/35782 PCT/U598/27896

23

random where 0 < R; < 2“ and 0 < R; < 2“. (Of course, constants such as 2°‘ are chosen as

example values. It is possible, but not necessary, to place constraints on random numbers, ’

such as requiring that they be prime.) The leak-resistant private key state is then initialized by

setting n <—pq, B;<— B,--d mod n, Pk <— <k><p>, ilk <— <k><q>, dpk <— dp + <1m<p>— R1, dqk «-
dq + (R2)(q)-R2,p1..v <— k(p" mod 4), andf4- 0-

To update the system state, first a random value amay be produced where 0 < cr< 2“.

Then Compute Pk 4- ((0')(Pk)) / k, qk 4- ((a)(qk)) / k. Plnv 4- ((a)(p1nv)) / k, k 4- 6?. The

exponents dp/, and dq/, may be updated by computing dp/, (— dpk : (R3p/¢ — R3k) and dqk (-

dqk :(R4q/, — R4k), where R3 and R4 can be random or constant values (even 1). The blinding

factors B; and Bfmay be updated by computing B,=Bf mod n and B_,4=Bf mod n, by

computing new blinding factors, by exponentiating with a value other than 2, etc. Update

processes should be performed as often as practical, for example before or after each modular 3

exponentiation process. Before the update begins, a failure counterfis incremented, and

when the update completesfis set to zero. Iffever exceeds a threshold value indicating too

many consecutive failures, the device should temporarily or permanently disable itself. Note

that if the update process is interrupted, memory values should not be left in intermediate

states. This can be done by using complete reliable memory updates. If the total set of

variable changes is too large for a single complete update, it is possible to store a first then do

each variable update reliably which keeping track ofhow many have been completed.

To perform a private key operation (such as decryption or signing), the input message

C is received by the modular exponentiator. Next, the value is blinded by computing C’ «-

(C')(B,-) mod n. The blinded input message is then used to compute modified CRT

intermediates by computing mp, <— (C’)""* mod pk and my, <— (C’)"”" mod q,,. Next in the

exemplary embodiment, the CRT intermediates are multiplied by k, e.g. mp/, <—(k)(mp;,) mod

pk and mqk <—(k)(mqk) mod qk. The CRT difference is then computed as mm}, = (mp/, [+ qk] -
m k) [mod qk], where the addition of qk and/or reduction mod qk are optional. (The addition‘I

of qk ensures that the result is non-negative.) The blinded result can be computed as

[team
M'=

k2

, then the final result M is computed as M = (M’)Bf

mod n.

Petitioner Apple Inc. - Ex. 1025, p. 4249

Petitioner Apple Inc. - Ex. 1025, p. 4250

10

15

20

25

30

WO_99/35782 PCT/US98/27896
24

As one of ordinary skill in the art will appreciate, variant forms of the invention are

possible. For example, the computational processes can be re-ordered or modified without "

significantly changing the invention. Some portions (such as the initial and blinding steps)

can be skipped. In another example, it is also possible to use multiple blinding factors (for
example, instead of or in addition to the value k).

In some cases, other techniques may also be appropriate. For example, exponent

vector codings may be rechosen frequently using, for example, a random number generator.

Also, Montgomery arithmetic may be performed modj wherej is a value that is changed with _

each operation (as opposed to traditional Montgomery implementations wherej is constant

withj = 2/‘). The foregoing shows that the method and apparatus of the present invention can

be implemented using numerous variations and modifications to the exemplary embodiments

described herein, as would be known by one skilled in the art.

C. Leak-Resistant ElGamal Public Key Encryption and Digital Signatures

Still other asymmetric cryptographic protocols that may be improved using the

techniques of the invention. For example, ElGamal and related cryptosystems are widely used

for digital signatures and public key encryption. If information about the secret exponents

and parameters leaks from an ElGamal implementation, security can be compromised.

Consequently, leak-resistant implementations of ElGamal would be useful.

The private key in the ElGamal public key encryption scheme is a randomly selected

secret a where 1 S a S p—2. The non-secret parameters are a prime p, a generator at, and a“

mod p. To encrypt a message m, one selects a random k (where l S k S p—2) and computes

the ciphertext (7, ® where 7= ak mod p and 5= m(aa mod p)/‘ mod p. Decryption is

perfonned by computing m = 5(}P"'a) mod p. (See the Handbook of Applied Cgyptography

by A. Menezes, P. van Oorschot, and S. Vanstone, 1997, pages 294-298, for a description
of ElGamal public-key encryption).

To make the ElGamal public-key decryption process leak-resistant, the secret

exponent (p — l — a) is stored in two halves a, and a2, such that a,a2 = (¢(p)—a) mod ¢(p).

When generating ElGamal parameters for this leak-resistant implementation, it is

recommended, but not required, that p be chosen with 121' prime so that ¢(p)/2 is prime. The

variables a, and a, are normally chosen initially as random integers between 0 and ¢(p).

Petitioner Apple Inc. - Ex. 1025, p. 4250

Petitioner Apple Inc. - Ex. 1025, p. 4251

l0

15

20

25

.wo_99/35732
25

Alternatively, it is possible to generate a first, then choose a, and a,, as by selecting a,

relatively prime to ¢(p) and computing a, = (a" mod ¢(p))(a," mod ¢(p)) mod ¢(p).

Figure 4 illustrates an exemplary leak-resistant ElGamal decryption process. At step

405, the decryption device receives an encrypted message pair (7, Q. At step 410, the device

selects a random r, where 1 S r, < ¢(p) and gcd(r,, ¢(p)) = 1. At step 415, the device updates

a, by computing a, (— a,r, "mod ¢(p), over-writing the old value ofa, with the new value. At

step 420, the device computes the inverse of r, by computing r, = (r,)" mod ¢(p). Because r,

is not used after this step, its storage space may be used to hold r2. Note that if "7" is prime,

then r, may also be found by finding r2 ’ = r,‘P‘”’” mod 121' , and using the CRT to find r2

(mod p — 1). At step 425, the device updates a, by computing a, <— azrz mod ¢(p). At step

430, the device begins the private key (decryption) process by computing m‘: 7”‘ mod p. At

step 435, the device computes m = §(m')"‘ mod p and returns the message m. If verification

is successful, the result equals the original message because:

(é‘Xm')"’ mod p = (m(a"r If" mod pr’ mod p
= (ma“" X/"""“°'”"’)mod p

= (ma“" X(a" mod p)_m°d“P))mod p
= (ma“" Xar“"‘)mod p
= m

As with the ElGamal public key encryption scheme, the private key for the ElGamal

digital signature scheme is a randomly-selected secret a, where 1 S a s_p—2. The public key

is also similar, consisting of a prime p, a generator or, and public parameter y where y = a“

mod p. To sign a message m, the private key holder chooses or precomputes a random secret

integer k (where 1 5 k sp—2 and k is relatively prime to p—l) and its inverse, k" mod ¢(p).

Next, the signer computes the signature (r, s), where r = ak mod p,

s = ((k" mod¢(p)Il-l(m) — ar])mod¢(p), and H(m) is the hash of the message. Signature

verification is performed using the public key (p, a, y) by verifying that 1 S r < p and by

verifying that y’r~" mod p = a"‘"" mod p.

To make the ElGamal digital signing process leak—resistant, the token containing the

private key maintains three persistent variables, ak, w, and r. Initially, ak = a (the private

exponent), w = l, and r = a. When a message m is to be signed (or during the

Petitioner Apple Inc. - Ex. 1025, p. 4251

PCT/US98/27896 _

Petitioner Apple Inc. - Ex. 1025, p. 4252

10

15

20

25

30

.w() 99/35732 PCT/US98/27896

26

precomputation before signing), the token generates a random number b and its inverse b"

mod ¢(p), where b is relatively prime to ¢(p) and 0 < b < ¢(p). The token then updates ak, W,

and r by computing ak 4- (ak)(b") mod ¢(p), w 4- (w)(b") mod ¢(p), and r 4- (rb) mod p.

The signature (r, 5) is formed from the updated value of r and s, where

s = (w(H(m)— a,r))mod¢(p) Note that ak, w, and r are not randomized prior to the first

operation, but should be randomized before exposure to possible attack, since otherwise the

first operation may leak more information than subsequent ones. It is thus recommended that

a dummy signature or parameter update with ak 4- (ak)(b") mod ¢(p), w 4- (w)(b") mod

¢(p), and r 4- (rb) mod p be performed immediately after key generation. Valid signatures

produced using the exemplary tamper-resistant ElGamal process may be checked using the

normal ElGamal signature verification procedure.

It is also possible to split all or some the ElGamal variables into two halves as part of

the leak resistance scheme. In such a variant, a is replaced with a, and a,, w with w, and w,,

and r with r, and r2. It is also possible to reorder the operations by performing, for example,

the parameter updates as a precomputation step prior to receipt of the enciphered message.

Other variations and modifications to the exemplary embodiments described herein will be

evident to one skilled in the art.

D. Leak-Resistant DSA

Another commonly used asymmetric cryptographic protocol is the Digital Signature

Algorithm (DSA, also known as the Digital Signature Standard, or DSS), which is defined in

“Digital Signature Standard (DSS),” Federal Information Processing Standards Publication

186, National Institute of Standards and Technology, May 19, 1994 and described in detail in

the Handbook ofApplied Crxptography, pages 452 to 454. DSA is widely used for digital

signatures. If information about the secret key leaks from a DSA implementation, security

can be compromised. Consequently, leak-resistant implementations of DSA would be usefiil.

In non-leak-proof systems, the private key consists of a secret parameter a, and the

public key consists of (p, q, a, y), where p is a large (usually 512 to 1024 bit) prime, q is a

160-bit prime, a is a generator of the cyclic group of order q mod p, and y = a“ mod p. To

sign a message whose hash is H(m), the signer first generates (or precomputes) a random

integer k and its inverse lc" mod q, where 0 < k < q. The signer then computes the signature

(r, s), where r = (ak mod p) mod q, and 5 = (k" mod q)(H(m),+ ar) mod q.

Petitioner Apple Inc. - Ex. 1025, p. 4252

Petitioner Apple Inc. - Ex. 1025, p. 4253

10

15

20

25

30

w0>99/35782 PCT/US98/27896
27

In an exemplary embodiment of a leak-resistant DSA signing process, the token

containing the private key maintains two variables in nonvolatile memory, ak and k, which "

are initialized with ak = a and k = 1. When a message m is to be signed (or during the

precomputation before signing), the token generates a random integer b and its inverse b"

mod q, where 0 < b < q. The token then updates ak and k by computing ak <-— (akb" mod

q)(k) mod q, followed by k <— b. The signature (r, s) is formed from the updated values ofak

and k by computing r = ak mod p (which may be reduced mod q), and s = [(b"H(m) mod q) +

(akr) mod q] mod q. As indicated, when computing s, b"H(m) mod q and (akr) mod q are

computed first, then combined mod q. Note that ak and k should be randomized prior to the

first operation, since the first update may leak more information than subsequent updates. It

is thus recommended that a dummy signature (or parameter update) be performed

immediately after key generation. Valid signatures produced using the leak-resistant DSA

process may be checked using the normal DSA signature verification procedure.

IV. Other Algorithms and Applications

Still other cryptographic processes can be made leak-proof or leak-resistant, or may be

incorporated into leak-resistant cryptosystems. For example, cryptosystems such as those

based on elliptic curves (including elliptic curve analogs of other cryptosystems), secret

sharing schemes, anonymous electronic cash protocols, threshold signatures schemes, etc. be

made leak resistant using the techniques of the present invention.

Implementation details of the schemes described may be adjusted without materially

changing the invention, for example by re-ordering operations, inserting steps, substituting

equivalent or similar operations, etc. Also, while new keys are normally generated when a

new system is produced, it is ofien possible to add leak resistance retroactively while

maintaining or converting existing private keys.

Leak-resistant designs avoid performing repeated mathematical operations using non-

changing (static) secret values, since they are likely to leak out. However, in environments

where it is possible to implement a simple function (such as an exclusive OR) that does not

leak information, it is possible use this function to implement more complex cryptographic
operations.

While the exemplary implementations assume that the leak functions can reveal any

information present in the system, designers may often safely use the (weaker) assumption

Petitioner Apple Inc. - Ex. 1025, p. 4253

Petitioner Apple Inc. - Ex. 1025, p. 4254

10

15

20

25

30

WO_99/35782 PCT/US98f27896
28

that information not used in a given operation will not be leaked by that operation. Schemes

using this weaker assumption may contain a large table of precomputed subkey values, from‘

which a unique or random subset are selected and/or updated for each operation. For

example, DES implementations may use indexed permutation lookup tables in which a few

table elements are exchanged with each operation.

While leak resistance provides many advantages, the use of leak resistance by itself

cannot guarantee good security. For example, leak-resistant cryptosystems are not inherently

secure against error attacks, so operations should be verified. (Changes can even be made to

the cryptosystem and/or leak resistance operations to detect errors.) Similarly, leak resistance

by itself does not prevent attacks that extract the entire state out of a device (e.g., L=LM,,x).

For example, traditional tamper resistance techniques may be required to prevent attackers

from staining ROM or EEPROM memory cells and reading the contents under a microscope.

Implementers should also be aware of interruption attacks, such as those that involve

disconnecting the power or resetting a device during an operation, to ensure that secrets will

not be compromised or that a single leaky operation will not be performed repeatedly. (As a

countermeasure, devices can increment a counter in nonvolatile memory prior to each

operation, and reset or reduce the counter value when the operation completes successfully.

If the number of interrupted operations since the last successful update exceeds a threshold

value, the device can disable itself.) Other tamper resistance mechanisms and techniques,

such as the use of fixed-time and fixed-execution path code or implementations for critical

operations, may need to be used in conjunction with leak resistance, particularly for systems

with a relatively low self-healing rate (e.g., LMAX is small).

Leak-resistant algorithms, protocols, and devices may be used in virtually any

application requiring cryptographic security and secure key management, including without

limitation: smartcards, electronic cash, electronic payments, fimds transfer, remote access,

timestamping, certification, certificate validation, secure e-mail, secure facsimile,

telecommunications security (voice and data), computer networks, radio and satellite

communications, infrared communications, access control, door locks, wireless keys,

biometric devices, automobile ignition locks, copy protection devices, payment systems,

systems for controlling the use and payment of copyrighted information, and point of sale
terminals.

Petitioner Apple Inc. - Ex. 1025, p. 4254

Petitioner Apple Inc. - Ex. 1025, p. 4255

wo 99/35732 PCT/US98/27896

29

The foregoing shows that the method and apparatus of the present invention can be

implemented using numerous variations and modifications to the exemplary embodiments

described herein, as would be known by one skilled in the art. Thus, it is intended that the

scope of the present invention be limited only with regard to the claims below.

Petitioner Apple Inc. - Ex. 1025, p. 4255

Petitioner Apple Inc. - Ex. 1025, p. 4256

‘O®\lO\bulk)
10

ll

12

I3

l4

l5

l6

l7

l8

l9

20

21

22

‘O0O\lO«LIIJ>b-Its)

,wo_ 99/35732 PCT/US98/27896
30

WHAT IS CLAIMED IS:

1. A method for implementing RSA with the Chinese Remainder Theorem for use in a

cryptographic system, with resistance to leakage attacks against said cryptographic

system, comprising the steps of:

(8)

(b)

(C)

(d)

(e)

(0

(g)

(h)

(i)

(i)

(k)

(i)

(ii)

(iii)

(iv)

(V)

obtaining a representation of an RSA private key corresponding to an RSA

public key, said private key characterized by secret factors p and q;

storing said representation of said private key in a memory;

obtaining a message for use in an RSA cryptographic operation;

computing a first modulus, corresponding to a multiple of p, where the value

of said multiple ofp and the value of said multiple ofp divided by p are both

unknown to an attacker of said cryptographic system;

reducing said message modulo said first modulus;

performing modular exponentiation on the result of step (e);

computing a second modulus, corresponding to a multiple of q, where the

value of said multiple of q and the value of said multiple of q divided by q are

both unknown to an attacker of said cryptographic system;

reducing said message modulo said second modulus;

performing modular exponentiation on the result of step (h);

combining the results of said steps (e) and (h) to produce a result which, if

operated on with an RSA public key operation using said RSA public key,

yields said message; and

repeating steps (c) through (j) a plurality of times using different values for

said multiple of p and for said multiple of q.

The method of claim 1 where:

said step (b) includes storing an exponent dp of said RSA private key in said

memory as a plurality of parameters;

an arithmetic function of at least one of said plurality ofparameters is

congruent to d,,, modulo (p-l);

none of said parameters comprising said stored d,, is equal to dp;

an exponent used in said step (i) is at least one of said parameters;

at least one of said parameters in said memory changes with said repetitions of

said steps (c) through (j).

Petitioner Apple Inc. - Ex. 1025, p. 4256

Petitioner Apple Inc. - Ex. 1025, p. 4257

10

ll

12

13

I4

15

I6

l7

l8

I9

WO_99/35782
PCT/US98/27896

31

The method of claim 2 where said plurality of parameters includes a first parameter

equal to said d,, plus a multiple of phi(p), and also includes a second parameter equal-

to a multiple of phi(p), where phi denotes Euler’s totient function.

The method of claim 1 where the value of said multiple of p divided by p is equal to

the value of said multiple of q divided by q.

The method of claim 1 where said multiple of p and said multiple of q used in said

steps (c) through (i) are updated and modified in said memory after said step (b).

The method of claim 1 performed in a smart card.

The method of claim 1 where at least two of said steps are performed in an order other

than (a) through (k)

A method for implementing RSA for use in a cryptographic system, with resistance to

leakage attacks against said cryptographic system, comprising the steps of:

(a) obtaining an RSA private key corresponding to an RSA public key, said RSA

public key having an RSA modulus n;

(b) storing said private key in a memory in a form whereby a secret parameter of

said key is stored as an arithmetic combination of phi(x) and a first at least one
key masking parameter, where

(i) an operand x in said phi(x) is an exact multiple of at least one factor of

said modulus n of said RSA public key; and

(ii) said first key masking parameter is unknown to an attacker of said

cryptosystem;

(iii) a representation of said first key masking parameter is stored in said

memory;.

(iv) phi denotes Euler's totient function;

(c) receiving a message;

(d) deriving an RSA input from said message;

(e) performing modular exponentiation to raise said RSA input to a power

dependent on said secret parameter, modulo an RSA modulus stored in said

memory, to produce an RSA result such that said RSA result raised to the

Petitioner Apple Inc. - Ex. 1025, p. 4257

Petitioner Apple Inc. - Ex. 1025, p. 4258

20

21

22

23

24

25

26

27

28

29

30

3 l

Ln-bL.)N

\O®\lO\
10

ll

12

I5

10.

11.

.W0_ 99/35782 PCT/US98/27896
32 --

power of the public exponent of said RSA public key, modulo the modulus of

said RSA public key, equals said RSA input;

updating said secret parameter in said memory by:

(i)

(0

' modifying said first key masking parameter to produce a new key

masking parameter, where said modification is performed in a manner

such that an attacker with partial useful information about said first key

masking parameter has less useful information about said new key

masking parameter; and

(ii) using said new key masking parameter to update said secret parameter

in said memory;

(g) repeating steps (d) through (0 a plurality of times, where the power used for

each of said modular exponentiation steps (e) is different.

The method of claim 8 where said operand x in said phi(x) corresponds to said RSA

modulus n of said RSA public key.

The method of claim 8 where said operand x in said phi(x) corresponds to a prime

factor of said RSA modulus n of said RSA public key, and where said modular

exponentiation of said step (e) is performed using the Chinese Remainder Theorem.

A method for implementing exponential key exchange for use in a cryptographic

system, with resistance to leakage attacks against said cryptographic system,

comprising the steps of:

(a) obtaining, and storing in a memory, exponential key exchange parameters g

and p, and a plurality of secret exponent parameters on which an arithmetic

relationship may be computed to produce an exponent x;

(b) using a key update transformation to produce a plurality of updated secret

exponent parameters while maintaining said arithmetic relationship

thereamong;

(c) receiving a public value y from a party with whom said key exchange is

desired;

(d) using said updated secret exponent parameters to perform a cryptographic

computation yielding an exponential key exchange result 2 = y"x mod p;

(e) using said result 2 to secure an electronic communication with said party; and

(f) performing said steps (b), (c), (d), and (e) in a plurality of transactions.

Petitioner Apple Inc. - Ex. 1025, p. 4258

Petitioner Apple Inc. - Ex. 1025, p. 4259

Ab-Its)&IIAb-ltd
UIADJIQ

10

12.

13.

14.

15.

16.

17.

.wo_ 99/35732
PCT/US98/27896

33

The method of claim 11 where each of said transactions involves a different said

P311)’-

The method of claim 11 where said arithmetic relationship is such that said

exponential key exchange result is a product of certain of said secret exponent

parameters, both before and afier said step (b).

The method of claim 11 where said key update nansforrnation includes choosing a

random key update value r; and where said step (b) includes multiplying one of said

secret exponent parameters by r and another of said secret exponent parameters by an

inverse of r, said multiplication being performed modulo phi(p), where phi is Euler's

totient function.

The method of claim 11 where said key update transformation includes choosing a

random key update value r; and where said step (b) includes adding r to one of said

secret exponent parameters and subnacting r from another of said secret exponent

parameters.

The method of claim 15 where said secret exponent parameters include two values x1

and x; such that x1+x2 is congruent to x, modulo phi(p), where phi is Euler's totient

function, and where said step of performing said cryptographic computation yielding

said exponential key exchange result includes computing z; = y"x. mod p, 22 = y"x2

mod p, and F212; mod p.

A cryptographic token configured to perform cryptographic operations using a secret

key in a secure manner, comprising:

(a) an interface configured to receive power from a source external to.said token;

(b) a memory containing said secret key;

(c) a processor:

(i) configured to receive said power delivered via said interface;

(ii) configured to perform said processing using said secret key from said

memory;

(d) said token having a power consumption characteristic:

(i) that is externally measurable; and

Petitioner Apple Inc. - Ex. 1025, p. 4259

Petitioner Apple Inc. - Ex. 1025, p. 4260

ll

l2

l3

I4

l5

l8.

l9.

20.

21.

22.

23.

24.

25.

26.

27.

w0_99/35732 PCT/US98/27896
34

(ii) that varies over time in a manner measurably correlated with said

cryptographic operations; and

(e) a source of unpredictable information usable in said cryptographic operations

to make determination of said secret key infeasible from external

measurements of said power consumption characteristic.

The cryptographic token of claim 17, in the form of a secure microprocessor.

The cryptographic token of claim 17, in the fonn of a smart card.

The cryptographic token of claim 19, wherein said cryptographic operations

performed by said smart card enable a holder thereof to decrypt an encrypted

communication received via a computer network.

The cryptographic token of claim 19, wherein said smart card is configured to store
value in an electronic cash scheme.

The cryptographic token of claim 21, wherein said cryptographic operations include

authenticating that a balance of said stored value has been decreased.

The cryptographic token of claim 17, wherein said cryptographic operations include

asymmetric private key operations.

The cryptographic token of claim 23 wherein said cryptographic operations include

exponential key agreement operations.

The cryptographic token of claim 23, wherein said cryptographic operations include

DSA signing operations.

The cryptographic token of claim 23, wherein said cryptographic operations include

ElGamal private key operations.

The cryptographic token of claim 23, wherein said asymmetric private key operations

include RSA private key operations.

Petitioner Apple Inc. - Ex. 1025, p. 4260

Petitioner Apple Inc. - Ex. 1025, p. 4261

l0

ll

l2

l3

w0-99/35732 PCT/US98/27896
35

28. The cryptographic token of claim 27 wherein said private key operations include

Chinese Remainder Theorem operations.

29. ‘The cryptographic token of claim 17, wherein said cryptographic operations include

symmetric encryption operations.

30. The cryptographic token of claim 17, wherein said cryptographic operations include

symmetric decryption operations.

31. The cryptographic token of claim 17, wherein said cryptographic operations include

symmetric authentication operations using said secret key.

32. The cryptographic token of claim 17, wherein said cryptographic operations include

authenticating a payment.

33. The cryptographic token of claim 17, wherein said cryptographic operations include

securing a broadcast communications signal.

34. The cryptographic token of claim 33, wherein said cryptographic operations include

decrypting a satellite broadcast.

35. A method for securely managing and using a private key in a computing environment

where information about said private key may leak to attackers, comprising the steps
of:

(a) using a first private key, complementary to a public key, to perform first

asymmetric cryptographic operation;

(b) reading at least a portion of said first private key from a memory;

(c) transforming said read portion of said first private key to produce a second

private key:

(i) said second private key usable to perform a subsequent asymmetric

cryptographic operation in a manner that remains complementary to

said public key, and

(ii) said transformation enabling said asymmetric cryptographic operations

to be performed in a manner such that information leaked during said

Petitioner Apple Inc. - Ex. 1025, p. 4261

Petitioner Apple Inc. - Ex. 1025, p. 4262

l4

l5

l6

l7

I8

AWN

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

WO_99/3§782
PCT/US98/27896

36

first asymmetric cryptographic operation does not provide

incrementally useful information about said second private key;

(d) obtaining a datum;

.(e) using said second private key to perform said subsequent asymmetric

cryptographic operation on said datum.

The method of claim 35 where said asymmetric cryptographic operation includes a

digital signing operation.

The method of claim 36 where said signing operation is an RSA operation.

The method of claim 36 where said signing operation is an DSA operation.

The method of claim 36 where said signing operation is an ElGamal operation.

The method of claim 35 where said asymmetric cryptographic operation includes a

decryption operation.

The method of claim 40 where said decryption operation is an RSA operation.

The method of claim 40 where said decryption operation is an ElGamal operation.

The method of claim 35 where at least two of said steps are performed in an order

different than (a), (b), (c), (d), (e).

The method of claim 35 further comprising the step, after at least said step (c), of

replacing said private key in said memory with said second private key.

The method of claim 35, performed in a smart card.

The method of claim 35, further comprising the steps of: prior to at least said step (c),

incrementing a counter stored in a nonvolatile memory and verifying that said counter

has not exceeded a threshold value; and after at least said step (c) has completed

successfully, decreasing a value of said counter.

Petitioner Apple Inc. - Ex. 1025, p. 4262

Petitioner Apple Inc. - Ex. 1025, p. 4263

I

I0

ll

l2

l3

WO_ 99/35782

47.

48.

49.

50.

51.

52.

53.

54.

PCT/US98/27896

37

A method for perfonning cryptographic transactions while protecting a stored

cryptogiaphic key against compromise due to leakage attacks, comprising the steps -

of:

(a) retrieving a stored private cryptographic key stored in a memory, said stored

key having been used in a previous cryptographic transaction;

(b) using a first cryptographic function to derive from said stored key an updated

key, about which useful information about said stored key obtained through

monitoring of leaked information is effectively uncorrelated to said updated

key;

(c) replacing said stored key in said memory with said updated key;v

(d) using anasymmetric cryptographic function, cryptographically processing a

datum with said updated key; and

(e) sending said cryptographically processed datum to an external device having a

public key corresponding to said stored key.

The method of claim 47 where said stored key includes a first plurality of parameters,

and where said updated key includes a second plurality of parameters.

The method of claim 48 where no secret value within said first plurality of parameters

is included within said second plurality of parameters.

The method of claim 49 where said first plurality of parameters is different than said

second plurality of parameters, yet a predetermined relationship among said first

plurality of parameters is also maintained among said second plurality of parameters.

The method of claim 50 where said relationship among said plurality of parameters is

an arithmetic function involving at least two of said plurality of parameters.

The method of claim 51 where said arithmetic function is the sum of said parameters.

The method of claim 51 where said relationship includes a bitwise combination of

said parameters.

The method of claim 53 where said bitwise combination is an exclusive OR.

Petitioner Apple Inc. - Ex. 1025, p. 4263

Petitioner Apple Inc. - Ex. 1025, p. 4264

1

2

10

ll

12

l3

I4

15

55.

56.

57.

58.

59.

60.

61.

WO _99/35782 PCT/US98/27896

38

The method of claim 47 where said step (b) includes using pseudorandomness to

derive said updated key.

A method for implementing a private key operation for an asymmetric cryptographic

system with resistance to leakage attacks against said cryptographic system,

comprising the steps of:

(a) encoding a portion of a private key as at least two component parts, such that

an arithmetic function of said parts yields said portion;

(b) modifying said component parts to produce updated component parts, but

where said arithmetic frmction of said updated parts still yields said private

key portion;

(c) obtaining a message for use in an asymmetric private key cryptographic

operation;

(d) separately applying said component parts to said message to produce an

intermediate result;

(e) deriving a final result from said intermediate result such that said final result is

a valid result of applying said private key to said message; and

(t) repeating steps (b) through (e) a plurality of times.

The method of claim 56 where said private key portion includes an exponent, and

where said intermediate result represents the result of raising said message to the

power of said exponent, modulo a second key portion.

The method of claim 57 where said private key operation is configured for use with

an RSA cryptosystem.

The method of claim 57 where said private key operation is configured for use with

an E1Garnal cryptosystem.

The method of claim 56 where said private key operation is configured for use with a

DSA cryptosystem.

The method of claim 60 where said private key is represented by secret parameters ak

and k whose product, modulo a predetermined DSA prime q for said private key,

yields said private key portion.

Petitioner‘ Apple Inc. - Ex. 1025, p. 4264

Petitioner Apple Inc. - Ex. 1025, p. 4265

l

U3

0O\lO\UI&
10

ll

l2

I3

62.

63.

64.

65.

66.

67.

wo 99/3s_7s2
PCT/US98/27896

3 9

The method of claim 56 implemented in a smart card.

The method of claim 56 where said private key is configured for use with an elliptic

curve cryptosystem.

A method for performing cryptographic transactions in a cryptographic token while

protecting a stored cryptographic key against compromise due to leakage attacks,

including the steps of:

(a) retrieving said stored key from a memory;

(b) cryptographically processing said key, to derive an updated key, by executing

a cryptographic update function that:

(i) prevents partial information about said stored key from revealing

useful information about said updated key, and

(ii) also prevents partial information about said updated key from

revealing useful information about said stored key;

(c) replacing said stored key in said memory with said updated key;

(d) performing a cryptographic operation using said updated key; and

(e) repeating steps (a) through (d) a plurality of times.

The method of claim 64 where said cryptographic update function of said step (b)

includes a one-way hash operation.

The method of claim 64 where said cryptographic operation of said step (d) is a

symmetric cryptographic operation; and comprising the further step of sending a

result of said cryptographic operation to a party capable of rederiving said updated

key.

The method of claim 64 further comprising the step, prior to said step (a), of receiving

from a second party a symmetric authentication code and a parameter; and said where

said step (b) includes iterating a cryptographic transformation a number of times

determined from said parameter; and where said step (d) includes performing a

symmetric message authentication code verification operation.

Petitioner Apple Inc. - Ex. 1025, p. 4265

Petitioner Apple Inc. - Ex. 1025, p. 4266

WQ99/35732 ' PCT/US98/27896

40 A

68. he method of claim 66 where said step (d) of performing said cryptographic operation

includes using said updated key to encrypt a datum.

69. The method of claim 66 where said updated key contains unpredictable information

such that said updated key is not stored in its entirety anywhere outside of said

cryptographic token; and where the result of said step (d) is independent of said

unpredictable information.

70. The method of claim 64 where said step (c) of replacing said stored key includes:

(i) explicitly erasing a region of said memory containing said stored key; and

(ii) storing said updated key in said region of memory.

71. The method of claim 64 performed within a smart card.

Petitioner Apple Inc. - Ex. 1025, p. 4266

Petitioner Apple Inc. - Ex. 1025, p. 4267

WO_99/35782 PCT/US98/27896

FIG. 1

Token Server

105

Generate random R

Send R to token 1 10

Receive (t,A)

130

Send (LA) to
server

A'=HA(K.' II t II R)

165

‘YES no

Authentication 1 70
Sucessful

175

Authentication

Failed

1/4

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4267

Petitioner Apple Inc. - Ex. 1025, p. 4268

WO _99/35782 PCT/US98/27896

FIG. 2

| - / 215
 __'?

' Compute
F b,=(bo)"mod p

l 220

! b2=(b,)"'rnod p I
?___ZJ

Select random r,
such that 1 < r, < ¢(p)

and gcd(r1, ¢(p))=1

Erase any remaining

intermediate/ternporary
variables

2/4

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4268

Petitioner Apple Inc. - Ex. 1025, p. 4269

WO _99/35782 PCT/US98/278‘96

FIG. 3

300

Initialize Keys

(n,z.d,,d2,k)

303

I Receive Message M

3

Generate random prime k’

31

345

50

s = (

' 3

0 dz ~— (d2R')mod z

I--1..-In.--..———.o¢uu-—:J

II

3/4

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4269

Petitioner Apple Inc. - Ex. 1025, p. 4270

W0 _99/35731 I PCT/US98f27896

FIG. 4

 405

Receive encrypted

message pair (y,6)

Select random r,

415
410

420

425

430

435

m=((6)(m')°=)mod p

4/4

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4270

Petitioner Apple Inc. - Ex. 1025, p. 4271

-\

lnternational application No.INTERNATIONAL SEARCH REPORT

' PCI‘/US98/27896

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :HO4 L 9/30
US CL 2380/30,49

According to International Patent Classification (IPC) or to both national classification and IPC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 380I30,49

Documentation searched other than minimum documentation to the, extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable. search terms used)
Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Citation of doctnncnt, with indication. where appropriate. of the relevant passages Relevam to claim No.
17-23,25- 45

 US 4,799,258 A (DAVIES ct al) 17 January 1989, abstract, col.4,

lines 43-50, col.7,lines 15-33, col.8,lines 12-19

 17-23 .25-
45

US 5,546,463 A (CAPUTO et al) 13 August 1996, abstract, col.2,

lines, 60-65, col.5, lines 39-50,53-58, col.6, lines 7-12

Y

A,P US 5,848,159 A (COLLINS et a1.) 08 December 1998, abstract, 1-16,46-71
col.1, lines 56-67, col.4, lines 33-44, col.5, lines 52-67, co1.6, lines
24-30

 D Purtherdoc1nnerlsa.relistedinthecot1i1mationofBoxC. D Seepatentfamilyannex.
"l" hter¢acunentpItbl.iaheddfiu'fl:ehternatianalElingdaunrprinritySpecialcategurieeotc-iteddoetnnum:

dateandnetincenflictwithlheapplieatienbuteiledlnimderatand

'A' document defining lhegeneral one ofthe artwhié is netcunaidered .1” ',,.,'m' 1 ‘hum, w,d,,gy' 4,, ' ,,,_u‘,n
In be of particular relevance ‘P I 0' mg m‘

. . - ~ - ~ . ‘X’ doe-inner-it of particular relevance; the claimed invention cannot beB “mu damn” Puhmb“ an m In" an mwmmnu mm‘ uh comidend novel or cannot be considered to involve an inventive ate}:
'L' document which may throw doubt: on priority claim(I) or which in '75“ ‘h‘ d°‘“““1“ I‘ "k°" ‘kn’itedto hl'hth bl" deof oth “ tlt . . .

rm. .:::.. 2.. ...::z.:;=“°" '° " °' °' ° °' a--=,.°;»-:' e“::.:'::°°: ='~::. °—°Xfll IIIVD I an IIIV V0 I B DCIIIII ll
'0' document refe ' In an oral diaclorure. uee. exhibition at other combined till: one ennura other each doannenta. Iueh combinationmna

means being obvious In a penon akilled in the an

‘P’ document published print to the international filing date but later than 1- down,” mm“, of an ,m, Fun, [way
the priority date claimed

Date of the actual completion of the international search

Date of mailing of the international search report

- 0 6MAY199930 MARCH 1999

Name and - ' address of the ISA/US Authorized officer I

gmtgtgerioner of etenta and Trademarksx

Washington. D.C. 20231 GAIL HAYES
Facsimile No. (703) 305-0040 Telephone No. (703) 305-9711

Form PCTIISAIZIO (second sheet)(July 1992) 1.

Petitioner Apple Inc. - Ex. 1025, p. 4271

Petitioner Apple Inc. - Ex. 1025, p. 4272

INTERNATIONAL SEARCH REPORT International application No.
PC!‘/US98/27896

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where pmcticable terms used):

APS

search lerméztokemsmart card.tampcr proof. tamper resistanuleak-resistam.RSA, public key. private key. chincse
remainder theorem. diffie he1hnan.dsa.dcs

Form PC!‘/ISA/210 (extra sI1eet)(July 1992):

Petitioner Apple Inc. - Ex. 1025, p. 4272

Petitioner Apple Inc. - Ex. 1025, p. 4273

 WORLD INTELLECI‘UAL_ PROPERTY ORGANIZATIONInternational Bureau

INTERNATIONAI.'APPI.ICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) I"t‘°"“3fi°"3' Paiem Cla55ifl°3“°" 6 3 (11) International Publication Number: W0 99/48296
H04N 7/167, G06F 1/00

(43) International Publication Date: 23 September I999 (23.09.99)

(21) International Application Number: PCT/US99/05734 (81) Designated States: CA, CN, JP, KR, European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR. GB, GR, IE, IT, LU, MC,

(22) International Filing Date: 16 March I999 (l6.03.99) NL. PT, SE).

(30) Priority Data: Published

60/078,053 16 March 1998 (l6.03.98) US With international search report.
Before the expiration of the time limit for amending the
claim: and to be republished in the event of the receipt of

(71) Applicant: INTERTRUST TECHNOLOGIES CORPORA- ' amendments.
TION [US/US]; 460 Oakrnead Parkway, Sunnyvale, CA
94086 (US).

(72) Inventors: SHAMOON, Talal, G.; 533 Bryant Street #5, Palo
Alto, CA 9430]’ (US). HILL, Ralph, D.; 224 Dover Street,
Los Gatos. CA 94032 (US). RADCLIFFE, Chris, D.;
3654 Farm Hill Boulevard, Redwood City, CA 94061 (US).
HWA, John, P.; 503 Lower Vinters Circle, Fremont, CA
94539 (US).

(74) Agents: GARRETT, Arthur, S. et al.; Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P., 1300 I Street, Wash-
ington, DC 20005—33l5 (US).

(54) Title: METHODS AND APPARATUS FOR CONTINUOUS CONTROL AND PROTECTION OF MEDIA CONTENT

(57) Abstract

A novel method and apparatus for protection of streamed media content is disclosed. The apparatus includes control means for
governance of content streams or objects, decryption means for decrypting content streams or objects under control of the control means,
and feedback means for tracking actual use of content streams or objects. The control means may operate in accordance with rules received
as part of the streamed content, or through a side-band channel. The rules may specify allowed uses of the content, including whether or
not the content can be copied or transferred, and whether and under what circumstances received content may be "checked out" of one
device and used in a second device. The rules may also include or specify budgets, and a requirement that audit infonnation be collected
and/or transmitted to an external server. The apparatus may include a media player designed to call plugins to assist in rendering content.
A "trust plugin" and its use are disclosed so that a media player designed for use with unprotected content may render protected content
without the necessity of requiring any changes to the media player. The streamed content may be in a number of different formats, includingMPEG-4, MP3, and the RMFF format.

Petitioner Apple Inc. - Ex. 1025, p. 4273

Petitioner Apple Inc. - Ex. 1025, p. 4274

Codes used to identify States party to the PCI‘ on the front pages of pamphlets publishing international applications under the PCT‘.
Albania
An-nenia
Austria
Ausualia
Azerbaijan
Bosnia and Herzegovina
Barbados

Belgium
Burkina Faso
Bulgaria
Benin
Brazil
Belarus
Canada
Central African Republic
Congo
Switzerland
Cole d‘lvoire
Cameroon
China
Cuba

Czech Republic
Gennany
Denmark
Estonia

ES
1'‘I
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI
LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain
Finland
France
Gabon

Unital Kingdom
Georgia
Ghana
Guinea
Greece
Hungary
Ireland
Israel
Iceland
Italy
Japan
Kenya
Kyrgyzstan
Democratic People's
Republic of Korea
Republic of Korea
Kamkstan
Saint Lucia
Liechtenstein
Sri Lanlra
Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho
Lithuania
Luxembourg
Latvia
Monaco
Republic of Moldova
Madagascar
The fon-ner Yugoslav
Republic of Macedonia
Mali
Mongolia
Mauritania
Malawi
Mexico
Niger
Netherlands
Norway
New Zealand
Poland
Portugal
Romania
Russian Federation
Sudan
Sweden
Singapore

Petitioner Apple Inc. - Ex. 1025, p. 4274

SI
SK
SN
SZ
TD
TG
TJ
TM
TR
TI‘
UA
UG
US
UZ
VN
YU
ZW

Slovenia
Slovakia
Senegal
Swaziland
Chad
Togo
Tajikistan
'l\ukmenisum
Turkey
Trinidad and TobagoUkraine

Uganda
United States of America
Uzbekistan
Viet Nam
Yugoslavia
Zimbabwe

Petitioner Apple Inc. - Ex. 1025, p. 4275

10

15

20

25

30

WO 99/43295 PCT/US99/05734

METHODS AND APPARATUS FOR CONTINUOUS CONTROL AND PROTECTION OF‘ MEDIA CONTENT

FIELD OF THE INVENTION

This invention relates generally to computer and/or electronic security. More

particularly, this invention relates to systems and methods for protection of information in
streamed format.

BACKGROUND

Streaming digital media consists generally of sequences of digital information

received in a “stream” ofpackets, and designed to be displayed or rendered. Examples
include streamed audio content, streamed video, etc.

Digital media streams are becoming an increasingly significant means ofcontent

delivery, and form the basis for several adopted, proposed or de facto standards. The

acceptance of this format, however, has been retarded by the ease with which digital media
streams can be copied and improperly disseminated, and the consequent reluctance of

content owners to allow significant properties to be distributed through streaming digital
means. For this reason, there is a need for a methodology by which digital media streams
can be protected.

SUMMARY OF THE INVENTION

Consistent with the invention, this specification describes a new architecture for

protection of information provided in streamed format. This architecture is described in the

context of a generic system which resembles a system to render content encoded pursuant
to the MPEG-4 specification (ISO/IEC 14496.1), though with certain modifications, and
with the proviso that the described system may differ fi'om the MPEG-4 standard in certain

respects. A variety of different embodiments is described, including an MPEG-4

embodiment and a system designed to render content encoded pursuant to the MP3
specification (ISO/IEC TR 11172).

According to aspects of the invention, this architecture involves system design
aspects and information format aspects. System design aspects include the incorporation of

content protection functionality, control functionality, and feedback enablingcontrol

fimctionality to monitor the activities of the system. Information format aspects include
the incorporation of rule/control information into information streams, and the protection of
content through mechanisms such as encryption and watermarking.

SUBSTITUTE SHEET (RULE 26)

Petitione1‘sApp1e Inc. - Ex. 1025, p. 4275

Petitioner Apple Inc. - Ex. 1025, p. 4276

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-2-

Systems and methods consistent with the present invention perform content

protection and digital rights management. A streaming media player consistent with the

present invention includes a port designed to accept a digital bit stream. The digital bit
stream includes content, which is encrypted at least in part, and a secure container

including control information designed to control use of the content, including at least one
key suitable for decryption of at least a portion of the content. The media player also
includes a control arrangement including a means for opening secure containers and

extracting cryptographic keys, and means for decrypting the encrypted portion of the
content.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this
specification, illustrate an embodiment of the invention and, together with the description,
serve to explain the advantages and principles of the invention. In the drawings,

FIG. 1 shows a generic system consistent with the present invention;

FIG. 2 shows an exemplary Header 201 consistent with the present invention;

FIG. 3 shows a general encoding format consistent with the present invention;
FIG. 4 illustrates one manner for storing a representation of a work consistent with

the present invention;

FIG. 5 shows an example of a control message format;

FIG. 6 is a flow diagram illustrating one embodiment of the steps which take place
using the frmctional blocks ofFIG. 1;

FIG. 7 illustrates a form wherein the control messages may be stored in Control
Block 13;

FIG. 8 shows MPEG-4 System 801 consistent with the present invention;
FIG. 9 shows an example of a message format;

FIG. 10 illustrates an IPMP table consistent with the present invention;
FIG. 11 illustrates a system consistent with the present invention;

FIG. 12 illustrates one embodiment of the DigiBox format;

FIG. 13 shows an example of a Real Networks file format (RMFF);

FIG. 14 shows an RNPFF format consistent with the present invention;

FIG. 15 illustrates the flow ofchanges to data in the Real Networks file format in

an architecture consistent with the present invention;

FIG. 16 illustrates a standard Real Networks architecture;

FIG. 17 shows an exemplary architecture in which a trust plugin operates within the
overall Real Networks architecture;

K...

suesrlrure sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4276

Petitioner Apple Inc. - Ex. 1025, p. 4277

10

15

20

25

30

35

WO 99/48296 PCT/U599/05734

-3-

FIG. 18 shows a bit stream format consistent with the principles of the present
invention;

FIG. 19 shows one embodiment ofprotection applied to the MP3 format;

FIG. 20 illustrates one embodiment of an MP3 player designed to process and
I render protected content;

FIG. 21 illustrates the flow of data in one embodiment in which a protected MPEG-
4 file may be created consistent with the present invnetion;

FIG. 25 shows an example of an aggregate stream consistent with the present
invention;

FIG. 26 illustrates a Header CMPO 2601 consistent with the present invention;
FIG. 27 shows exemplary Content Management Protection Objects consistent with

the principles of the present invention; and

FIG. 28 shows an example of a CMPO Data Structure 2801 consistent with the
present invention.

DETAILED DESCRIPTION

Reference will now be made in detail to implementations consistent with the

principles of the present invention as illustrated in the accompanying drawings.
The following U.S. patents and applications, each ofwhich is assigned to the

assignee of the current application, are hereby incorporated in their entirety by reference:
Ginter, et al., “Systems and Methods for Secure Transaction Management and Electronic

Rights Protection,” U.S. Patent Application Serial No. 08/964,333, filed on November 4,
1997 (“Ginter ‘333”); Ginter, et al., “Trusted Infrastructure Support Systems, Methods and
Techniques for Secure electronic commerce, Electronic Transactions, Commerce Process

Control Automation, Distributed Computing, and Rights Management, ” U.S. Patent

Application Serial No. 08/699,712, filed on August 12, 1996 (“Ginter ‘712”) ; Van Wie, et
al, “Steganographic Techniques for Securely Delivering Electronic Digital Rights
Management Information Over Insecure Communications Charmels, U.S. Patent

Application Serial No. 08/689,606, filed on August 12, 1996 (“Van Wie”) ; Ginter, et. al
“Sofiware Tamper Resistance and Secure Communication,” U.S. Patent Application Serial
No. 08/706,206, filed on August 30, 1996 (“Ginter, ‘206"); Shear, et al, “Cryptographic
Methods, Apparatus & Systems for Storage Media Electronic Rights Management in

suasnrure SHEET (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4277

Petitioner Apple Inc. - Ex. 1025, p. 4278

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-4-

Closed & Connected Appliances, ” U.S. Patent Application Serial No. 08/848,077, filed on

May 15, 1997 (“Shear”); Collberg et al, “Obfuscation Techniques for Enhancing Sofiware
Security, ” U.S. Patent Application Serial No. 09/095,346, filed on June 9, 1998

(“Collberg”); Shear, “Database Usage Metering and Protection System and Method,” U.S.
‘ Patent No. 4,827,508, issued on May 2, 1989 (“Shear Patent”).

FIG. 1 illustrates Media System 1, which is capable of accepting, decoding, and
rendering streamed multimedia content. This is a generic system, though it includes

elements based on the MPEG-4 specification. Media System 1 may include software

modules, hardware (including integrated circuits) or a combination. In one embodiment,
Media System 1 may include a Protected Processing Environment (PPE) as described in
the Ginter '333 application.

In FIG. 1, Bit Stream 2 represents input information received by System 1. Bit

Stream 2 may be received through a connection to an external network (e.g., an Intemet

connection, a cable hookup, radio transmission from asatellite broadcaster, etc.), or may be
received from a portable memory device, such as a DVD player.

Bit Stream 2 is made up of a group of related streams of information, including
Organization Stream 3, Audio Stream 4, Video Stream 5, Control Stream 6, and Info

Stream 31. Each of these streams is encoded into the overall Bit Stream 2. Each of these

represents a category of streams, so that, for example, Video Stream 5 may be made up of a
number of separate Video Streams.

These streams correspond generally to streams described in the MPEG-4 format as
follows:

Organization Stream 3 con‘esponds generally to the B117S stream and the OD
("Object Descriptor") stream.

Audio Stream 4 and Video Stream 5 correspond generally to the Audio and Video
streams.

Control Stream 6 corresponds generally to the IPMP stream.

Audio Stream 4 includes compressed (and possibly encrypted) digital audio
information. This infonnation is used to create the sound rendered and output by Media -
System 1. Audio Stream 1 may represent multiple audio streams. These multiple streams

may act together to make up the audio output, or may represent alternative audio outputs.
Video Stream 5 includes compressed (and possibly encrypted) digital video

information. This information is used to create the images and video rendered and output
by Media System 1. Video Stream 5 may represent multiple video streams. These

multiple streams may act together to make up the video output, or may represent alternative

suas'rrru11=. SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4278

Petitioner Apple Inc. - Ex. 1025, p. 4279

10

15

20

25

30

35

WO 99/48296 PC1-/US99/05734

-5-

video outputs.

Organization Stream 3 includes organizational information and metadata related to

the work to be rendered. This information may include a tree or other organizational
device which groups audio and video streams into objects. This information may also
include metadata associated with the entire work, the objects, or the individual streams.

Control Stream 6 includes control information, divided generally into header
information and messages. The header information includes an identifier for each discrete

message. The content of the messages, which will be described further below, may include
cryptographic keys and rules governing the use of content.

Info Stream 31 carries additional information associated with the content in other

components of Bit Stream 2, including but not limited to graphics representing cover art,
text for lyrics, coded sheet music or other notation, independent advertising content,
concert information, fan club information, and so forth. Info Stream 31 can also carry
system management and control information and/or components, such as updates to
software or firmware in Media System 1, algorithm implementations for content-specific
functions such as watermarking, etc.

Each ofthese streams is made up ofpackets of information. In one exemplary
embodiment, each packet is 32 bytes in length. Since a single communications channel
(e.g., a cable, a bus, an infrared or radio connection) contains packets from each of the

streams, packets need to be identified as belonging to a particular stream. In a preferred
embodiment, this is done by including a header which identifies a particular stream and
specifies the number of following packets which are part of that stream. In another
embodiment, each packet may include individual stream information.

Exemplary Header 201 is shown in FIG. 2. This header may generally be used for
the Organization, Audio and Video Streams. A header for the Control Stream is described

below. Header 201 includes Field 202, which includes a bit pattern identifying Header 201
as a header. Field 203 identifies the particular type of stream (e.g., Audio Stream,
Organization Stream, Control Stream, etc.) Field 204 contains an Elementary Stream
Identifier (ES_lD), which is used to identify the particular stream, and may be used in cases
where multiple streams of a particular stream type may be encountered at the same time.
Field 207 contains a time stamp, which is used by the system to synchronize the various

streams, "including rendering of the streams. Composite Block 11 may, for example, keep
track of the elapsed time from the commencement of rendering. Time Stamp 207 may be
used by Composite Block 11 to determine when each object is supposed to be rendered.

Time Stamp 207 may therefore specify an elapsed time fiom commencement of rendering,

suasrnurs SHEET (RULE 26)

Petiti-onei‘ Apple Inc. - Ex. 1025, p. 4279

Petitioner Apple Inc. - Ex. 1025, p. 4280

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-5-

and Composite Block 11 may use that elapsed time to determine when to render the
associated object.

Field 205 contains a Governance Indicator. Field 206 identifies the number of

following packets which are pan of the identified stream. In each case, the relevant

information is encoded in a binary format. For example, Field 202 might include an

arbitrary sequence ofbits which is recognized as indicating a header, and Field 203 might
include two bits, thereby allowing encoding of four different stream types. _

Rettuning to FIG. 1, System 1 includes Demux 7, which accepts as input Bit Stream

2 and routes individual streams (sometimes referred to as Elementary Streams or "ESs") to
appropriate fimctional blocks of the system.

' Bit Stream 2 may be encoded in the format illustrated in FIG. 3. In this figure,

Header 301 is encountered in the bit stream, with Packet 302 following, and so on through
Packet 308.

When Demux 7 encounters Header 301, Demux 7 identifies Header 301 as a header

and uses the header information to identify Packets 302-305 as organization stream
packets. Demux 7 uses this information to route these packets to Organization Block 8.

Demux 7 handles Header 306 in a similar manner, using the contained infonnation to route

Packets 307 and 308 to AV ("Audio Video") Block 9.

AV Block 9 includes Decompressor 10, which accepts Elementary Streams fiom

Audio Stream 4 and Video Stream 5 and decompresses those streams. As decompressed,

the stream information is placed in a format which allows it to be manipulated and output
(through a video display, speakers, etc.). If multiple streams exist (e.g., two video streams

each describing an aspect of a video sequence), AV Block 9 uses the ES_ID to assign each
packet to the appropriate stream.

Organization Block 8 stores pointer information identifying particular audio

streams and video streams contained in a particular object, as well as metadata information

describing, for example, where the object is located, when it is to be displayed (e.g., the
time stamp associated with the object), and its relationship to other objects (e.g., is one

video object in front of or behind another video object). This organization may be

maintained hierarchically, with individual streams represented at the lowest level,

groupings of streams into objects at a higher level, complete scenes at a still higher level,
and the entire work at the highest level.

Branch 402 represents a high-level organization of the work. This may include, for

suasnrure SHEET (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4280

Petitioner Apple Inc. - Ex. 1025, p. 4281

10

15

20

25

30

35

WO 99/48295 PCT/US99/05734

-7-

example, all of the video or possibly the audio and video associated with a particular scene.

Sub-Branch 403 represents a group of related video objects. Each such object may
include an entire screen, or an individual entity within the screen. For example, Sub-
Branch 403 may represent a background which does not change significantly from one shot

to the next. If the video is moving between two points of reference (e.g., a conversation,
with the camera point ofview changing from one face to the other), Sub-Branch 404 could
represent a second background, used in the second point of view.

Nodes 405 and 406 may represent particular video objects contained within the

related group. Node 405 could, for example, represent a distant mountain range, while
Node 406 represents a tree immediately behind one of the characters.

Each of the nodes specifies or contains a particular ES_ID, representing the stream

containing the information used by that node. Node 405, for example, contains ES_ID 407,
which identifies a particular video stream which contains compressed (and possibly
encrypted) digital information representing the mountain range. .

Composite Block 11 accepts input from Organization Block 8 and from AV Block

9. Composite Block 11 uses the input from Organization Block 8 to determine which

specific audiovisual elements will be needed at any given time, and to determine the

organization and relationship of those elements. Composite Block 11 accepts
decompressed audiovisual objects from AV Block 9, and organizesithose objects as
specified by information from Organization Block 8. Composite Block 11 then passes the
organized information to Rendering Device 12, which might be a television screen, stereo
speakers, etc.

Control Block 13 stores control messages which may be received through Control

Stream 6 and/or may be watermarked into or steganographically encoded in other streams,
including Audio Stream 4 and Video Stream 5. One control message format is illustrated

by FIG. 5, which shows Control Message 501. Control Message 501 is made up ofHeader
502 and Message 503. Header 502 consists ofField 508, which includes a bit pattem
identifying the following information as a header; Stream Type Field 509, which identifies

this as a header for the organization stream; ID Field 504, which identifies this particular
control message; Pointer Field 505, which identifies those ESs which are controlled by this
message; Time Stamp Field 507, which identifies the particular portion of thevstream which

is controlled by this control message (this may indicate that the entirety of the stream is

controlled); and Length Field 506, which specifies the length (in bytes) ofMessage 503.
Message 503 may include packets following Header 502, using the general format shown

in FIG. 3. In the example shown, Control Message 501 carries the unique ID 111000,

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4281

Petitioner Apple Inc. - Ex. 1025, p. 4282

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-3-

encoded in 1]) Field 504. This control message controls ESs 14 and 95, as indicated by
Pointer Field 505. The associated Message contains 1,024 bytes, as indicated by Length
Field 506.

In an alternate embodiment, the association ofcontrol to content may be made in

Organization Block 8, which may store a pointer to particular control messages along with
the metadata associated with streams, objects, etc. This may be disadvantageous, however,
in that it may be desirable to protect this association fiom discovery or tampering by users.
Since Control Block 13 will generally have to be protected in any event, storing the
association in this block may make protection of Organization Block 8 less necessary.

Control Block 13 implements control over System 1 through Control Lines 14, 15

and 16, which control aspects of Organization Block 8, AV Block 9 and Composite Block
11, respectively. Each of these Control Lines may allow two-way communication.

Control Lines 14 and 15 are shown as communicating with AV Block Stream Flow

Controller 18 and with Organization Block Stream Flow Controller 17. These Stream

Flow Controllers contain functionality controlled by Control Block 13. In the embodiment

illustrated, the Stream Flow Controllers are shown as the first stage in a two-stage pipeline,
with information being processed by the Stream Flow Controller and then passed on to the
associated functional block. This allows isolation of the control fimctionality from the
content manipulation and display functionality of the system, and allows control to be

added in without altering the underlying fimctionality of the blocks. In an alternate

embodiment, the Stream Flow Controllers might be integrated directly into the associated
functional blocks. '

Stream Flow Controllers 17 and 18 contain Cryptographic Engines 19 and 20,
respectively. These Cryptographic Engines operate under control of Control Block 13 to

decrypt and/or cryptographically validate (e.g., perform secure hashing, message
authentication code, and/or digital signature functions) the encrypted packet streams

received from Demux 7. Decryption and validation may be selective or optional according
to the protection requirements for the stream.

Cryptographic Engines 19 and 20 may be relatively complex, and may, for

example, include a validation calculator that performs cryptographic hashing, message
authentication code calculation, and/or other cryptographic validation processes. In

addition, as is described further below, additional types ofgovemance-related processing
may also be used. In one alternative embodiment, a single Stream Flow Controller may be
used for both Organization Stream 3 and AudioNideo Streams 4-5. This may reduce the

cost of and space used by System 1. These reductions may be significant, since System 1

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4282

Petitioner Apple Inc. - Ex. 1025, p. 4283

10

15

20

25

30

35

WO 99/48296 PCT/U599/05734

-9-

may contain multiple AV Blocks, each handling a separate Audio or Video Stream in

parallel. This alternative may, however, impose a latency overhead which may be
unacceptable in a real-time system.

If the Stream Flow Controllers are concentrated in a single block, they may be
' incorporated directly into Demux 7, which may handle governance processing prior to
routing streams to the functional blocks. Such an embodiment would allow for governed
decryption or validation of the entirety of Bit Stream 2, which could occur prior to the
routing of streams to individual fimctional blocks. Encryption of the entirety ofBit Stream

without incorporating stream controller fimctionality into Demux 7, since Demux 7 might
otherwise have no ability to detect or read the header information necessary to route
streams to functional blocks (that header information presumably being encrypted).

As is noted above, each of the individual streams contained in Bit Stream 2 may be
individually encrypted. An encrypted stream may be identified by a particular indicator in
the header of the stream, shown in FIG. 2 as Governance Indicator 205.

_ , When a header is passed by Demux 7 to the appropriate functional block, the stream
flow controller associated with that block reads the header and determines whether the
following packets are encrypted or otherwise subject to governance. If the header indicates
that no governance is used, the stream flow controller passes the header and the packets
through to the frmctional blocks with no alteration. Governance Indicator 205 may be
designed so that conventionally encoded content (e.g., unprotected MPEG-4 content) is
recognized as having no Governance Indicator and therefore passed through for normal
processing.

If a stream flow controller detects a set governance indicator, it passes the ES_ID
associated with that stream and the time stamp associated with the current packets to
Control Block 13 along Control Line 14 or 15. Control Block 13 then uses the ES_ID and
time stamp information to identify which control message(s) are associated with that ES.
Associated messages are then invoked and possibly processed, as may be used for
governance purposes.

A simple governance case is illustrated by FIG. 6, which shows steps which take
place using the fimctional blocks ofFIG. 1. In Step 601, Demux 7 encounters a header,
and detemrines that the header is part of the AV stream. In Step 602, Demux 7 passes the
header to AV Stream Controller 18. In Step 603, AV Stream Controller 18 reads the

header and determines that the governance indicator is set, thereby triggering firrther
processing along Path 604. In Step 605, AV Stream Controller 18 obtains the ES_ID and

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4283

Petitioner Apple Inc. - Ex. 1025, p. 4284

10

15

20

25

30

35

WO 99/48295 PCT/US99/05734

-10-

time stamp from the header and transmits these to Control Block 13, along Control Line

15. In Step 606, Control Block 13 looks up the ES_ID and determines that the ES_fl) is
associated with a particular control message. In Step 611, Control Block 13 uses the time

validation. In Step 608, Control Block 13 passes the cryptographic key(s) along Control
Line 15 to AV Stream Controller 18. In Step 609, AV Stream Controller 18 uses the

cryptographic key as an input to Cryptographic Engine 20, which decrypts and/or validates

the packets following the header as those packets are received from Demux 7. In Step 610,
the decrypted packets are then passed to AV Block 9, which decompresses and processes
them in a conventional maimer.

Time stamp information may be useful when it is desirable to change the control
message applicable to a particular ES. For example, it may be usefiil to encode different

portions of a stream with different keys, so that an attacker breaking one key (or even a
number ofkeys) will not be able to use the content. This can be done by associating a
number ofcontrol messages with the same stream, with each control message being valid
for a particular period. The time stamp information would then be used to choose which

control message (and key) to use at a particular time. Alternatively, one control message
may be used, but with updated information being passed in through the Control Stream, the
updates consisting of a new time stamp and a new key.

In an alternative embodiment, Control Block 13 may proactively send the

appropriate keys to the appropriate stream flow controller by using time stamp information
to determine when a key will be will be needed. This may reduce overall latency.

Control Line 16 from FIG. 1 comes into play once information has been passed
from Organization Block 8 and AV Block 9 to Composite Block 11, and the finished work

is prepared for rendering through Rendering Device 12. When Composite Blockll sends
an object to Rendering Device 11, Composite Block 11 sends a start message to Control
Block 13. This message identifies the object (including any associated ES_H)s), and
specifies the start time of the display (or other rendering) of that object. When an object is
no longer being rendered, Composite Block 11 sends an end message to Control Block 13,
specifying that rendering of the object has ended, and the time at which the ending
occurred. Multiple copies of a particular object may be rendered at the same time. For this

reason, start and stop messages sent by Composite Block 11 may include an assigned
instance H), which specifies which instance ofan object is being rendered.

suasrrrure SHEET (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4284

Petitioner Apple Inc. - Ex. 1025, p. 4285

10

15

20

25

30

35

wo 99/43296 PCT/US99/05734

-11-

Control Block 13 may store information relating to start and stop times ofparticular
objects, and/or may pass this information to external devices (e.g., External Server 30)

' through Port 21. This information allows Control Block 13 to keep track not only of which
objects have been decrypted, but ofwhich objects have actually been used. This may be
used, since System 1 may decrypt, validate, and/or decompress many more objects than are
actually used. Control Block 13 can also determine the length of use ofobjects, and can

determine which objects have been used together. Information of this type may be used for
sophisticated billing and auditing systems, which are described further below.

Control Line 16 may also be used to control the operation ofComposite Block 1 1.

In particular, Control Block 13 may store information specifying when rendering of a
particular object is valid, and may keep track of the number of times an object has been
rendered. If Control Block 13 determines that an object is being rendered illegally (i.e., in
violation of rules controlling rendering), Control Block 13 may terminate operation of
Composite Block 1 1, or may force erasure of the illegal object.

In an alternate embodiment, the level of control provided by Control Line 16 may at
least in part be provided without requiring the presence of that line. Instead, Control Block

13 may store a hash of the organization information currently valid for Organization Block

8. This hash may be received through Control Stream 6, or, alternatively, may be
generated by Control Block 13 based on the information contained in Organization Block
8.

Control Block 13 may periodically create a hash of the infonnation currently
resident in Organization Block 8, and compare that to the stored hash. A difference may
indicate that an unauthorized alteration has been made to the information in Organization

organization information, Control Block 13 may be able to control renderingof
information through verifying that the current Organization Block contents match the hash

which has been received by Control Block 13, thereby eliminating at least one reason for
the presence of Control Line 16.

Control Block 13 may also be responsible for securely validating the origin,
I integrity, authenticity, or other properties of received content, through cryptographic

suasrmrre SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4285

Petitioner Apple Inc. - Ex. 1025, p. 4286

10

15

20

25

30

35

wo 99/43295 PCT/US99/05734

-12-

validation means such as secure hashing, message authentication codes, and/or digital
signatures.

System 1 may also include an Inter-Rights Point, indicated as IRP 22. IRP 22 is a

protected processing environment (e.g., a PPE) in which rules/conuols may be processed,
and which may store sensitive information, such as cryptographic keys. IRP 22 may be
incorporated within Control Block 13, or may be a separate module. As is illustrated, IRP
22 may include CPU 23 (which can be any type ofprocessing unit), Cryptographic Engine
24, Random Number Generator 25, Real Time Clock 26, and Secure Memory 27. In
particular embodiments, some of these elements may be omitted, and additional
functionality may be included.

Governance Rules

Control messages stored by Control Block 13 may be very complex. FIG. 7

illustrates the form in which the control messages may be stored in Control Block 13,
consisting of Array 717. Column 701 consists of the address at which the control messages
are stored. Column 702 consists of the identifier for each control message. This firnction
may be combined with that of Column 701, by using the location information of Column

701 as the identifier, or by storing the message in a location which corresponds to the
identifier. Column 703 consists of the ES_lDs for each stream controlled by the control
message. Column 704 consists of the message itself. Thus, the control message stored at
location 1 has the ID 15, and controls stream 903.

In a simple case, the message may include a cryptographic key, used to decrypt the
content associated with the strearn(s) controlled by the message. This is illustrated by
Cryptographic Key 705 from FIG. 7. Cryptographic keys and/or validation values may
also be included to permit cryptographic validation of the integrity or origin of the stream.

In a more complex case, the message may include one or more rules designed to
govern access to or use of governed content. Rules may fall into a number of categories.

Rules may require that a particular aspect ofSystem 1, or a user of System 1, be

verified prior to decryption or use of the governed content. For example, System 1 may
include System ID 28, which stores a unique identifier for the system. A particular rule
contained in a control message may specify that a particular stream can only be decrypted
on a system in which System ID 28 contains a particular value. This is illustrated at row 2

in FIG. 7, in which the message is shown as consisting of a rule and commands. The rule

store only the rule, the rule - specific fimctions (commands) invoked by the rule, or only
the functions).

suasrrrura SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4286

Petitioner Apple Inc. - Ex. 1025, p. 4287

I0

15

20

25

30

WO 99/48296 PCT/US99/05734

-13-

In this case, when Stream Controller 18 encounters a Header for stream 2031

containing a set governance indicator, Stream Controller 18 passes the associated ES_ID
(2031) to Control Block 13. Control Block 13 then uses the ES_ID to identify Control
Message 20 which governs stream 2031. Control Message 20 includes Rule 706, which
includes (or invokes) Commands 707, and an Authorized System ID 708. Authorized

System ID 708 may have been received by System 1, either as part of Control Message 20,
or as part of another control message (e.g., Control Message 9), which Control Message 20
could then reference in order to obtain access to the Authorized System ID. Such a case

might exist, for example, if a cable subscriber had pre-registered for a premium show. The

cable system might recognize that registration, and authorize the user to view the show, by
sending to the user an ID corresponding to the System ID.

When Rule 706 is invoked, corresponding Commands 707 access System ID 28 and
obtain the system ID number. The commands then compare that number to Authorized
System ID 708, specified by Rule 706. If the two numbers match, Commands 707 release
Cryptographic Key 709 to Stream Controller 18, which uses Cryptographic Key 709 to
decrypt the stream corresponding to ES__ID 2031. If the two numbers do not match,
Commands 707 fail to release Cryptographic Key 709, so that Stream Controller 18 is
unable to decrypt the stream.

In order to carry out these fimctions, in one embodiment, Control Block 13

includes, or has access to, a processing unit and memory. The processing unit is preferably
capable of executing any of the commands which may be included or invoked by any of the
rules. The memory will store the rules and association information (ID of the control
message and IDs of any governed ESs).

Since the fimctions being carried out by Control Block 13 are sensitive, and involve
governance of content which may be valuable, Control Block 13 may be partially or
completely protected by a barrier which resists tampering and observation. As is described

above, the processing unit, secure memory, and various other govemance-related elements
may be contained in IRP 22, which may be included in or separate from Control Block 13.

Control Block 13 may also carry out somewhat more complex operations. In one
example, a control message may require that information from System 1 not only be
accessed and compared to expected infonnation, but stored for fiiture use. For example, a
control message might allow decryption of a Stream, but only afier System ID 28 has been

downloaded to and stored in Control Block 13. This would allow a control message to
check the stored System ID against System ID 28 on a regular basis, or perhaps on every

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4287

Petitioner Apple Inc. - Ex. 1025, p. 4288

l0

15

20

25

30

35

W0 99/43295 PCT/US99/05734

-14-

attempted re-viewing of a particular Stream, thereby allowing the control message to insure
that the Stream is only played on a single System.

Control Block 13 may also obtain information dynamically. For example, System 1
may include User Interface 29, which can include any type ofuser input functionality (e.g.,
hardware buttons, information displayed on a video screen, etc.) A particular rule from a

control message may require that the user enter information prior to allowing decryption or
use of a stream. That information may, for example, be a password, which the Rule can

then check against a stored password to insure that the particular user is authorized to
render the stream.

Information obtained fi'om the user might be more complicated. For example, a
rule might require that the user input payment or personal information prior to allowing
release of a cryptographic key. Payment information could, for example, constitute a credit

card or debit card number. Personal information could include the user's name, age,
address, email address, phone number, etc. Entered information could then be sent through
Port 21 to External Server 30 for verification. Following receipt of a verification message
from External Server 30, the Rule could then authorize release of a cryptographic key.
Alternatively, Control Block 13 may be designed to operate in an "off-line" mode, storing
the information pending later hookup to an external device (or network). In such a case,

Control Block 13 might require that a connection be made at periodic intervals, or might
limit the number of authorizations which may be obtained pending the establishment of an
external connection.

In a somewhat more complex scenario, a control message may include conditional

rules. One particular example is illustrated by row 4 of the table shown in FIG. 7, in which

Control Message 700 is shown as controlling streams 49-53. Control Message 700 further
consists ofRule 710, Commands 711 and Cryptographic Keys 712-716. There could, of
course, be a number of additional cryptographic keys stored with the message.

In this case, Rule 710 specifies that a user who agrees to pay a certain amount (or
provide a certain amount of information) may view Stream 49, but all other users are

required to view Stream 50, or a combination of Streams 49 and 50. In this case, Stream

49 may represent a movie or television program, while Stream 50 represents

advertisements. In one embodiment, different portions of Stream 49 may be decrypted
with different keys so that, for example, a first portion is decrypted with Key 712, a second
portion is decrypted with Key 713, a third portion is decrypted with Key 714, and so on.
Rule 710 may include all keys used to decrypt the entirety of Stream 49. When the user

initially attempts to access the video encoded in Stream 49, Rule 710 could put up a

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4288

Petitioner Apple Inc. - Ex. 1025, p. 4289

10

15

20

25

30

35

W0 99,4329‘; PCT/US99/05734

-15-

message asking if the user would prefer to use pay for view mode or advertising mode. If
the user selects pay for view mode, Rule 710 could store (or tra.nsmit) the payment
information, and pass Cryptographic Key 712 to Stream Controller 18. Stream Controller
18 could use Cryptographic Key 712 to decrypt the first stream until receipt of a header
indicating that a different key is needed to decrypt the following set of packets. Upon
request by Stream Controller 18, Control Block 13 would then check to determine that '

payment had been made, and then release Cryptographic Key 713, which would be used to
decrypt the following packets, and so on. Rule 710 could additionally release
Cryptographic Key 716, corresponding to Organization Stream 52, which corresponds to
video without advertisements. '

If, on the other hand, the user had chosen the advertising mode, Rule 710 could
release Cryptographic Key 712 to Stream Controller 18 to allow decryption of Stream 49.
Rule 710 could also authorize decryption ofStream 50 which contains the advertisements.
Rule 710 could further release Cryptographic Key 715 to Organization Block 8.
Cryptographic Key 715 matches Organization Stream 51. Organization Stream 51
references the video from Stream 49, but also references advertisements from Stream 50.
Rule 710 would refuse to release Cryptographic Key 716, which corresponds to
Organization Stream 52, which corresponds to the video without advertisements.

11 over Control Line 16. That information could include the identity of each object
actually rendered, as well as a start and stop time for the rendering. Control Block 13

could use this information to determine that an advertisement had actually been rendered,
prior to releasing Cryptographic Key 713 for decryption of the second portion of video
from Stream 49. This feedback loop allows Control Block 13 to be certain that the

advertisements are not only being decrypted, but are also being displayed. This may be
necessary because Composite Block 11 may be relatively unprotected, thereby allowing an
unscrupulous user to remove advertisements before viewing.

A variety of additional relatively complex scenarios are possible. For example,
rules from Control Block 13 could customize the prograrruning for a particular geographic
location or a particular type of viewer, by using information on the location or the viewer

to control conditional decryption or use. This information could be stored in System 1 or
entered by the user. ‘ _

In another example, shown at row 5 ofArray 717, Rule 719 may specify Budget
718, which may include information relating to the number of uses available to the user,
the amount ofmoney the user has to spend, etc. In operation, Rule 719 may require that

suasrrrurs SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4289

Petitioner Apple Inc. - Ex. 1025, p. 4290

10

15

20

25

30

W0 99/43295 PCT/US99/05734

-16-

Budget 718 be securely stored and decremented each time a budgeted activity occurs (e.g.,
each time the associated work is played). Once the budget reaches zero, Rule 719 may
specify that the work may no longer be played, or may display a message to the user

indicating that the user may obtain additional budget by, for example, entering a credit card
number or password, or contacting an external server.

In another example, a rule may control the ability of a user to copy a work to
another device. The rule may, for example, specify that the user is authorized to use the

governed work on more than one device, but with only one use being valid at any time.
The rule may specify that an indication be securely stored regarding whether the user has

“checked out” the work. If the user copies the work to another device (e.g., through Port
21), the rule may require that the work only be transmitted in encrypted form, and that the
relevant control messages be transmitted along with it. The rule can fiirther require that an
indicator be securely set, and that the indicator be checked each time the user attempts to
use or copy the work. If the indicator is set, the rule might require that the work not be

decrypted or used, since the user only has the right to use the work on one device at a time,
and the indicator establishes that the work is currently “checked out” to another device and
has not been checked back in. 4

The receiving device may include the same type of indicator, and may allow the
user to use the work only as long as the indicator is not set. If the user desires to use the

work on the original device, the two devices may communicate, with the indicator being set
in the second and reset in the first. This allows the work to be stored in two locations, but
only used in one.

In another embodiment, the sa.me result may be reached by copying the relevant

control message fiom one device to the other, then erasing it fiom the original device.
Because the control message includes keys used for decryption, this would insure that the
work could only be used in one device at a time.

more sophisticated device (e.g., a personal computer), could download a file, then "check

out" the file to a portable device lacking certain functions present in the personal computer
(e.g., a hand-held music player).

I Rules may also be used to specify that an initial user may transfer the file to another
user, but only by giving up control over the file. Such rules could operate similarly to the

suasrrrure sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4290

Petitioner Apple Inc. - Ex. 1025, p. 4291

10

15

20

25

30

35

W0 99/48296 PCT/US99/05734

-17-

technique described above for transferring a file from one device to another, or could
require that the original file be entirely erased from the original device after the transfer.

control message (including contained rules) may overwrite the original control message. A
new rule may, for example, be identical to an existing rule, but with a new time stamp and
new keys, thereby allowing decryption of a stream which had been encrypted with multiple
keys. System 1 may be designed so that certain rules may not be overwritable. This may
be enforced by designating certain positions in Array 717 as non—overwritable, or by
providing a flag or other indicator to show that a particular rule cannot be overwritten or

altered. This would allow for certain types of superdisuibution models, including allowing .
a downstream distributor to add rules without allowing the downstream distributor to
remove or alter the rules added by upstream distributors.

In addition, new rules may be encoded into Organization Stream 3, Audio Stream 4,
V or Video Stream 5, in the form of a watermark or steganographic encoding.

New rules may also be obtained through Port 21. Port 21 may connect to an
external device (e.g., a smart card, portable memory, etc.) or may connect to an external

network (e.g., External Server 30). Rules may be obtained through Port 21 either in an ad
hoc manner, or as a result of requests sent by Control Block 13. For example, Control
Message 14 (FIG. 7, row 6) may include a rule specifying that a new rule be downloaded
from a particular URL, and used to govern Stream 1201.

Control messages, including rules", may be encoded using secure transmission

formats such as DigiBoxes. A DigiBox is a secure container means for delivering a set of
business rules, content description information, content decryption information and/or
content validation information. One or more DigiBoxes can be placed into the headers of
the media content or into data streams within the media.

FIG. 12 illustrates one embodiment of the DigiBox format and the manner in which

that format is incorporated into a control message. Control Message 1201 is made up of
Control Message Header 1202 and Control Message Contents 1203. As is described

elsewhere, Control Message Header 1202 may include information used by Demux 7 (FIG.
1) to appropriately route the message to Control Block 13.

Control Message Contents 1203 of Control Message 1201 consists ofDigiBox
1204, and may also include additional information. DigiBox 1204 consists of DigiBox
Header 1205, Rules 1206 and Data 1207. Rules 1206 may include one or more rules. Data

suasmure sneer (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4291

Petitioner Apple Inc. - Ex. 1025, p. 4292

10

15

20

25

30

wo 99/43295 PCT/US99/05734

-13-

1207 may include various types ofdata, including ES__ID 1208, Cryptographic Key 1209,
and Validation Data 1210. Data 1207 may also include cryptographic information such as

a specification of the encryption algorithm, chaining modes used with the algorithm, keys
and initialization vectors used by the decryption and chaining.

Initialization vectors contained within Data 1207 are similar to cryptographic keys,
in that they constitute input to the original encryption process and therefore are necessary
for decryption. In one well—known prior art embodiment, the initialization vectors may be

I generated by starting with a base initialization vector (a 64 bit random number) and xor’ing
in the frame number or start time for the content item.

Validation Data 1210 contained within Data 1207 may include cryptographic has or

authentication values, cryptographic keys for calculating keyed authentication values (e.g.,
message authentication codes), digital signatures, and/or public key certificates used in
validating digital certificates.

In an alternative embodiment, DigiBox Header 1205 may be designed so that it can

be read by Demux 7 and routed to Control Block 13. In such an embodiment, DigiBox
1204 would itself constitute the entirety of the control message, thus obviating the need to
nest DigiBox 1204 within Control Message 1201.

Some or all of the contents ofDigiBox 1204 will generally be encrypted. This may

include Rules 1206, Data 1207, and possibly some or all ofHeader 1205. System 1 may be
designed so that a DigiBox may only be decrypted (opened) in a protected environment

such as IRP 22. In an alternate embodiment, Control Block 13 may directly incorporate the
fimctionality of IRP 22, so that the DigiBox may be opened in Control Block 13 without

the necessity of routing the DigiBox to IRP 22 for processing. In one embodiment, the

cryptographic key used to decrypt DigiBox 1204 may be stored in IRP 22 (or Control

Block 13), so that the DigiBox can only be opened in that protected environment.

Rules 1206 are rules governing access to or use ofDigiBox Data 1207. In one

embodiment, these rules do not directly control the governed streams. Since Cryptographic
Key 1209 can only be accessed and used through compliance with Rules 1206, however,

Rules 1206 in fact indirectly control the governed streams, since those streams can only be
decrypted through use of the key, which can only be obtained in compliance with the rules.

In another embodiment, Data 1207 may include additional rules, which may be extracted
from the DigiBox and stored in a table such as Array 717 of FIG. 7.

suasrmrre sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4292

Petitioner Apple Inc. - Ex. 1025, p. 4293

10

15

20

25

30

35

W0 99,482“ PCT/US99/05734

The rules governing access to or use of a DigiBox may accompany the DigiBox, (as
shown in FIG. 12) or may be separately transmitted, in which event Rules 1206 would

contain a pointer or reference to the mles used to access Data 1207. Upon receipt of a
DigiBox, Control Block 13 may receive rules separately through Control Stream 6, or may
request and receive rules through Port 21.

Pipelined Implementation

One potential drawback to the system illustrated in FIG.1 consists of the fact that

the system introduces complexity and feedback into a pipelined system designed to render
content in real time. The rendering pipeline generally consists of Demux 7, Organization
Block 8 and AV Block 9, Composite Block 11 and Rendering Device 12. Because content

some portion of the incoming data.

An alternative embodiment ofSystem 1 is designed to address these problems,
although at a possible cost in the ability to use standard system components and a possible
cost in overall system security. This alternative embodiment is illustrated in FIG. 11,
which shows System 1101.

System 1101 is similar to System 1 from FIG. 1 in many respects. It receives Bit -

Stream 1102, which consists of Organization Stream 1103, Audio Stream 1104, Video

Stream 1105 and Control Stream 1106. These streams are received by Demux 1107, which
passes Organization Stream 1103 to Organization Block and passes Audio Stream 1104

and Video Stream 1105 to AV Block 1109. Organization Block 1108 and AV Block 1109

operate similarly to their counterparts in FIG. 1, and pass information to Composite Block
1110, which organizes the information into a coherent whole and passes it to Rendering
Device 11 11. Streams sent to Organization Block 1108 are decrypted and/or validated by
Stream Flow Controller 1112, and streams sent to AV Block 1109 are decrypted and/or
validated by Stream Flow Controller 1113.

System 1101 differs from System 1, however, in that control and feedback are

distributed, and integrated directly into the processing and rendering pipeline. System
1101 thus lacks a separate control block, and also lacks a feedback path back from the
Composite Block 1110.

In System 1101, control is exercised directly at Organization Block 1108 and AV

Block 1109. As in System 1, cryptographic keys are received through Control Stream 1106

suasrnrurs sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4293

Petitioner Apple Inc. - Ex. 1025, p. 4294

10

15

20

25

30

35

wo 99/48296 PCT/US99/05734

-20-

(in an alternative embodiment, the keys could be incorporated directly into header or other

information in Organization Stream 1103 or AudioNideo Streams 1104 and 1105). Those
keys are included in a data fomiat which includes information regarding the stream type of
the encrypted content and, ifmultiple stream types are possible, an identifier for the
particular controlled stream.

When Demux 1107 encounters a key in Control Stream 1106, it reads the

information relating to the stream type, and routes the key to the appropriate stream flow
controller. IfDemux 1107 encounters a key designated for decryption or validation of

Organization Stream 1103, for example, it routes that key to Stream Flow Controller 1 1 12.

Stream Flow Controller 1112 stores received keys in Storage Location 1114.

Storage Location 1114 stores the keys and also stores an indicator of the controlled stream
ID.

Stream Flow Controller 1112 includes Cryptographic Engine 1115, which uses the

received keys to decrypt and/or validate encrypted and/or protected portions of

Organization Stream 1 103. The keys may themselves be received in an encrypted manner,
in order to provide some degree of security. In such a case, Stream Flow Controller may
use a variety of techniques to decrypt the key, including using stored information as a key,
or as a key seed. That stored information could, for example, constitute a "meta-key"
provided earlier through Bit Stream 1 102 or through a separate port. I

Stream Flow Controller 1113, associated with AV Block 1109, contains a

corresponding Storage Location 1116 and Cryptographic Engine 1117, and operates in a
manner similar to the operation described for Stream Flow Controller 1112.

This implementation avoids the latency penalty which may be inherent in the

necessity for communication between stream flow controllers and a separate control block.
This alternate implementation may also eliminate the feedback chaimel from the

composite block (FIG.l , Control Line 16). This feedback channel may be used in order to

insure that the content being passed from Composite Block 11 to Rendering Device 12 is
content that has been authorized for rendering. In the alternate embodiment shown in

FIG.11, this feedback channel does not exist. Instead, this implementation relies on the

fact that Composite Block 1110 depends upon information from Organization Block 1108

organization dictated by Organization Block 1108.

In one embodiment, this control by Organization Block 1108 may be sufficient to

obviate the need for any feedback, since Organization Block 1108 may be designed so that

suasrlrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4294

Petitioner Apple Inc. - Ex. 1025, p. 4295

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-21-

it accepts information only through Stream Controller 1112, and Stream Controller 1112

may be designed so that it only decrypts or validates information under the control of rules
stored in Storage Location 1114.

In such an embodiment, security may be further increased by incorporating Secure

Memory 1118 into Organization Block 1108. Secure Memory 1118 may store a copy or
hash of the organization tree validly decrypted by Stream Controller 1112, and in current

use in Main Organization Block Memory 1119. Organization Block 1108 may be used to

periodically compare the organization tree stored in Main Organization Block Memory
1 119 to the tree stored in Secure Memory 1118. If a discrepancy is spotted, this may
indicate that an attacker has altered the organization tree stored in Main Organization Block
1119, thereby possibly allowing for the rendering of content in violation of applicable
rules. Under such circumstances, Organization Block 1108 may be used to take protective
measures, including replacing the contents ofMain Organization Block Memory 1119 with
the contents of Secure Memory 1118.

MPEG-4 Implementation

The generic system described above may be embodied in an MPEG-4 system, as
illustrated in FIG. 8, which shows MPEG-4 System 801.

MPEG-4 System 801 accepts MPEG-4 Bit Stream 802 as input. MPEG-4 Bit

Stream 802 includes BIFS Stream 803, OD Stream 804, Audio Stream 805, Video Stream
806 and IPMP Stream 807. These streams are passed to Demux 808, which examines

header information and routes packets as appropriate, to BIFS 809, AVO 810, OD 81 1 or
IPMP System 812.

IPMP System 812 receives IPMP messages through IPMP Stream 807. Those

messages may include header information identifying the particular message, as well as an

associated IPMP message. The IPMP message may include control information, which

may include a cryptographic key, validation information, and/or may include complex
governance rules, as are described above.

"OD 811 holds object descriptors, which contain metadata describing particular
objects. This metadata includes an identifier of the particular Elementary Stream or
streams which include the object, and may also include a pointer to a particular IPMP
message which governs the object. Alternatively, the relationship between IPMP messages
and particular objects or streams may be stored in a table or other form within IPMP
System 8 1 2.

suasrrrure SHEET (RULE 26)

Petitioner‘ Apple Inc. - Ex. 1025, p. 4295

Petitioner Apple Inc. - Ex. 1025, p. 4296

10

15

20

25

30

35

wo 99/43295 PCT/US99/05734

- 22 -

IPMP System 812 may exercise control over other functional blocks through
Control Lines 816, 817, 818 and 819, each of which may transmit control/govemance
signals from IPMP System 812 and information or requests fi-om other functional blocks to

IPMP System 812. The information requests may include an ES_ID and a time stamp,
which IPMP System 812 may use to determine which particular message (e.g., key) should
be used and when. '

In an alternative embodiment, IPMP System 812 may exercise control over

Composite and Render 821 by receiving a hash of the currently valid BIFS tree (possibly
through IPMP stream 807), and periodically checking the hash against the BIFS tree stored
in BIFS 809. Because BIFS 809 controls the manner in which Composite and Render 821
renders information, if IPMP System 812 confirms that the current BIFS tree is the same as
the authorized tree received through BIFS Stream 803, IPMP System 812 can confirm that

the proper content is being rendered, even without receiving feedback directly from
Composite and Render 821. This may be necessary, since BIFS 809 may communicate

with Port 822, which may allow a user to insert information into BIFS 809, thereby
creating a possibility that a user could insert an unauthorized BIFS tree and thereby gain
unauthorized access to content.

When a stream controller receives encrypted or otherwise governed information, it

may send the ES_ID and time stamp directly to IPMP System 812. Alternatively, it may
send this information to OD 811, which may reply with the ID ofthe IPMP message which
governs that object or stream. The stream controller can then use that IPMP message ID to
request decryption, validation, and/or governance from IPMP System 812. Alternatively,
OD 811 can pass the IPMP ID to IPMP System 812, which can initiate contact with the
appropriate stream controller.

IPMP System 812 may obtain IPMP information through two charmels other than

IPMP Stream 807. The first of these channels is Port 820, which may be directly
connected to a device or memory (e.g., a smart card, a DVD disk, etc.) or to an external

network (e.g., the Internet). An IPMP message may contain a pointer to information

obtainable through Port 812, such as a URL, address on a DVD disk, etc. That URL may.
contain specific controls needed by the IPMP message, or may contain ancillary required
information, such as, for example, information relating to the budget of a particular user.

IPMP System 812 may also obtain IPMP information through OD updates

contained in OD Stream 804. OD Stream 804 contains metadata identifying particular
objects. A particular OD Message may take the format shown in FIG. 9. In this figure, OD
Message 901 includes Header 902, which identifies the following packets as part of the OD

SUBSTITUTE sneer (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4296

Petitioner Apple Inc. - Ex. 1025, p. 4297

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-23-

stream, and indicates the number ofpackets. OD Message 901 further consists of Message
903, which includes a series of Pointers 904 and associated Metadata 905. Each Pointer

904 identifies a particular Elementary Stream, and the associated metadata is applicable to
that stream. Finally, OD Message 901 may contain an IPMP Pointer 906, which identifies
a particular IPMP message.

In aggregate, the information contained in OD Message 901 constitutes an object

descriptor, since it identifies and describes each elementary stream which makes up the

object, and identifies the EMP message whichgovems the object. OD Message 901 may
be stored in OD 811, along with other messages, each constituting an object descriptor.

Object descriptors stored in OD 811 may be updated through OD Stream 804,

which may pass through a new object descriptor corresponding to the same object. The

new object descriptor then overwrites the existing object descriptor. This mechanism may
be used to change the IPMP message which controls a particularobject, by using a new

object descriptor which is identical to the existing object descriptor, with the exception of
the IPMP pointer.

OD Stream 804 can also carry IPMP_DescriptorUpdate messages. Each such

message may have the same format as IPMP messages carried on the IPMP stream,
including an IPMP ID and an IPMP message.

IPMP_DescriptorUpdate messages may be stored in a table or array in OD 811, or

may be passed to IPMP System 812, where they may overwrite existing stored IPMP 1

messages, or may add to the stored messages.

Since IPMP information may be separately conveyed through the OD stream or the

IPMP stream, MPEG-4 System 801 may be designed so that it only accepts information
through one or the other of these channels.

In another embodiment, the existence of the two channels may be used to allow

multi-stage distribution, with governance added at later stages, but with no risk that later
alterations may override governance added at an earlier stage. 1

Such a system is illustrated in FIG. 10. In this‘Figure, IPMP System 812 includes

IPMP Table 1002, which has slots for 256 IPMP messages. This table stores the IPMP_ID
implicitly, as the location at which the information is stored, shown in Colurrm 1003. The

IPMP message associated with H’MP_D) 4, for example, is stored at slot 4 of IPMP Table
1002.

Each location in IPMP Table 1002 includes Valid Indicator 1004 and Source

Indicator 1005. Valid Indicator 1004 is set for a particular location when an IPMP message
is stored at that location. This allows IPMP System 812 to identify slots which are

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4297

Petitioner Apple Inc. - Ex. 1025, p. 4298

10

15

20

25

30

WO 99/48296 PCT/US99/05734

-24-

unfilled, which otherwise might be difficult, since at start-up the slots may be filled with

random information. This also allows IPMP System 812 to identify messages which are no

longer valid and which may be replaced. Valid Indicator 1004 may store time stamp
information for the period during which the message is valid with IPMP System 812

determining validity by checking the stored time stamp information against the currently
valid time.

Source Indicator 1005 is set based on whether the associated IPMP message was
received fiom IPMP Strea.m 807 or from OD Stream 804.

These indicators allow IPMP System 812 to establish a hierarchy ofmessages, and

to control the manner in which messages are added and updated. IPMP System 812 may
be designed to evaluate the indicators for a particular location once a message is received
corresponding to that location. If the valid indicator is set to invalid, IPMP System 812
may be designed to automatically write the IPMP message into that slot. If the valid

indicator is set to valid, IPMP System 812 may then be designed to check the source

indicator. If the source indicator indicates that the associated message was received

through OD Stream 804, IPMP System 1812 may be designed to overwrite the existing
message with the new message. If, however, the source indicator indicates that the

associated message was received through IPMP Stream 807, IPMP System 812 may be
designed to check the source of the new message. That check may be accomplished by
examining the header associated with the new message, to determine if the new message
was part of OD Stream 804 or part of IPMP Stream 807. Altematively, IPMP System 812

may derive this information by determining whether the message was received directly
from Demux 808 or through OD 811.

If the new message came through IPMP Stream 807, IPMP System 812 may be
designed to store the new message in Table 1002, overwriting the existing message. If the
new message came through OD Stream 804, on the other hand, IPMP System 812 may be
designed to reject the new message.

This message hierarchy can be used to allow for a hierarchy ofcontrol. A studio,
for example, may encode a movie in MPEG-4 format. The studio may store IPMP

messages in the IPMP stream. Those messages may include a requirement that IPMP

System 812 require that a trailer for another movie fiom the same studio be displayed prior
to the display ofthe feature movie. IPMP System 812 could be used to monitor the

beginning and end of rendering of the trailer (using feedback through Control Line 819) to
ensure that the entire trailer plays, and that the user does not fast~forward through it.

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4298

Petitioner Apple Inc. - Ex. 1025, p. 4299

10

15

20

25

30

35.

WO 99/48296 PCT/US99/05734

-25..

The movie studio could encrypt the various elementary streams, including the _
IPMP stream. The movie studio could then provide the movie to a distributor, such as a

cable channel. The movie studio could provide the distributor with a key enabling the
distributor to decrypt the OD stream (or could leave the OD stream unencrypted), and the
ability to insert new messages in that stream. The cable channel could, for example,
include a rule in the OD stream specifying that the IPMP system check to determine if a

user has paid for premium viewing, decrypt the movie ifpremium viewing has been paid
for, but insert advertisements (and require that they be rendered) if premium viewing has
not been paid for).

The cable channel would therefore have the ability to add its own rules into the

MPEG-4 Bit Stream, but with no risk that the cable channel would eliminate or alter the

' rules used by the movie studio (e.g., by changing the trailer fiom a movie being promoted
by the studio to a rival movie being promoted by the cable channel). The studio's rules

could specify the types ofnew rules which would be allowed through the OD stream,
thereby providing the studio a high degree of control.

This same mechanism could be used to allow superdistribution of content, possibly
from one user to another. A user could be provided with a programming interface enabling
the insertion of messages into the OD stream. A user might, for example, insert a message
requiring that a payment of $1.00 be made to the user's account before the movie can be

viewed. The user could then provide the movie to another user (or distribute it through a
medimn whereby copying is uncontrolled, such as the Internet), and still receive payment.
Because the user's rules could not overrule the studio's rules, however, the studio could be

MPEG-4 System 801 may also be designed to include a particular type of IPMP
system, which may be incompatible with IPMP systems that may be designed into other

MPEG-4 systems. This may be possible because the MPEG-4 standard does not specify
the format of the information contained in the IPMP stream, thereby allowing different
content providers to encode information in differing manners.

IPMP System 812 in MPEG-4 System 801 may be designed for an environment in

which differing IPMP formats exist. That system may scan the IPMP stream for headers

that are compatible with IPMP System 812. All other headers (and associated packets)
may be discarded. Such a mechanism would allow content providers to incorporate the

same IPMP message in multiple formats, without any concern that encountering an
unfamiliar format would cause an IPMP system to fail. In pa.rticular, IPMP headers can

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4299

Petitioner Apple Inc. - Ex. 1025, p. 4300

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-26-

incorporate an IPMP System Type Identifier. Those identifiers couldbe assigned by a
central authority, to avoid the possibility that two incompatible systems might choose the
same identifier.

IPMP System 801 might be designed to be compatible with multiple formats. In

such a case, IPMP System 801 might scan headers to locate the first header containing an
IPMP System Identifier compatible with IPMP System 801. IPMP System 801 could then

select only headers corresponding to that IPMP System Identifier, discarding all other

headers, including headers incorporating alternate IPMP System Identifiers also recognized
by the IPIVIP system.

Such a design would allow a content provider to provide multiple formats, and to

order them from most to least preferred, by including the most preferred format first, the
second most preferred format second, and so on. Since IPMP System 801 locks onto the

first compatible format it finds, this ordering in IPMP Stream 801 would insure that the

IPMP system chose the format most desired by the content provider.

Even if different IPMP formats are used, content will probably be encoded (and
encrypted) using a single algorithm, since sending multiple versions of content would

impose a significant bandwidth burden. Thus, ordinarily it will be necessary for content to

be encrypted using a recognized and common encryption scheme. One such scheme could

use the DES algorithm in output feedback mode.

particular IVIPEG-4 system. Systems capable ofrendering MPEG-4 content may span a
considerable range of functionality, from high-end home theaters to handheld devices.

Governance options suitable for one type of system may be irrelevant to other systems.
For example, MPEG-4 System 801 may include a connectionto the Internet

through Port 820, whereas a second MPEG-4 system (for example a handheld Walkman-

like device) may lack such a connection. A content provider might want to provide an

option to a viewer, allowing the viewer to see content for free in return for providing
infonnation about the viewer. The content provider could insert a rule asking the user
whether the user wants to view the content at a cost, or enter identification information.

The rule could then send the information through a port to the Internet, to a URL specified '
in the rule. A site at that URL could then evaluate the user information, and download

advertisements targeted to the particular user.

Although this might be a valuable option for a content provider, it obviously makes

no sense for a device which is not necessarily connected to the Internet. It would make no

su3s1'I1'u'rE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4300

Petitioner Apple Inc. - Ex. 1025, p. 4301

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-27-

sense to present this option to the user of a non—connected device, since even if that user

entered the infonnation, the rule would have no way to provide the information to an

information could include MPEG-4 System Types. These could include 8 or 16-bit values,
with particular features represented by bit maps. Thus, the presence of a bit at position 2,
for example, could indicate that a device includes a persistent connection to the Internet.

An IPMP system could then evaluate the headers, and lock on to the first header
describing fimctionality less than or equal to the fimctionality contained in the MPEG-4

device in which the IPMP system is embedded. If the header constituted a complete match
for the fimctionality of the MPEG-4 device, the IPMP system could then cease looking. If
the header constitutes less than a complete match (e.g., a header for a system which has an

on to a closer match if and when one is found.

The IPMP messages identified by a particular header would be those suited for the

particular functionality of the MPEG-4 device, and would allow for customization of the

MPEG-4 bit stream for that functionality. In the context of the example given above, the
IPMP system for an MPEGJ-4 device containing an Internet connection would lock on to a

particular header, and would download the IPMP messages characterized by that header.
Those messages would prompt the user for information, would provide that information to

the URL, and would authorize decryption and rendering of the movie, with the
advertisements inserted at the appropriate spot.

In the case of an MPEG-4 device without an Internet connection, on the other hand,
the IPMP system would lock onto a set of headers lacking the bit indicating an Internet

connection, and would download the rules associated with that header. Those rules might
not provide any option to the user. The rules might allow decryption of the content, but
would also specify decryption of an additional BS from the MPEG-4 stream. That

additional ES would contain the advertisements, and the IPMP system would require
decryption and rendering of the advertisements, checking Control Line 819 to make certain

that this had occurred. In the case of the system with the Internet connection, however, the
rules allowing decryption and requiring rendering of the ES containing the advertisements

suasrrrure SHEET (nuus 25)

Petitioner Apple Inc. - Ex. 1025, p. 4301

Petitioner Apple Inc. - Ex. 1025, p. 4302

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

' would never be loaded, since those rules would be contained within messages identified by
the wrong type ofheader. The advertisement ES would therefore never be decrypted and
would be ignored by the MPEG-4 device.

FIG. 21 illustrates one manner in which a protected MPEG-4 file may be created.

In this figure, CreateBox 2101 represents a DigiBox creation utility, which accepts keys
and rules. In one embodiment, CreateBox 2101 may pass these keys and rules to [RP 2102

and receive DigiBox 2103 from IRP 2102. In another embodiment, IRP 2102 may be
incorporated into CreateBox 2101, which accepts keys and mles and outputs DigiBox
2103.

DigiBox 2103 contains governance rules, initialization vectors and keys. DigiBox
2103 is passed from CreateBox 2101 to Bif Encoder 2104. Bif Encoder 2104 may be

initial object descriptor commands.

Bif Encoder 2104 outputs a .bif file, containing the scene graph steam (in

compressed binary form) and a .od file, containing the initial object descriptor commands,
the object descriptor stneam, and DigiBox 2103.

Bif Encoder 2104 passes the .bif file and the .od file to Mux 2105. Mux 2105 also
accepts compressed audio and video files, as well as a .scr file that contains the stream

description. Mux 2105‘ creates IPMP streams, descriptors and messages, encrypts the
content streams, interleaves the received streams, and outputs Protected MPEG-4 Content .

File 2106, consisting of Initial Object Descriptor 2107 and Encrypted Content 2108. Initial

Object Descriptor 2107 contains DigiBox 2103, as well as other information. Encrypted
Content 2108 may include a scene graph steam (i.e., a BIFS stream), an object descriptor
stream, IPMP steams, and encrypted content streams.

IfDigiBox 2103 contains all keys and rules necessary to render all of the content, it
may be unnecessary for Mux 2105 to create any IPMP streams. If additional keys or rules
may be necessary for at least a portion of the content, 2105 may incorporate those
mles and keys into one or more additional DigiBoxes, and incorporate those DigiBoxes
either in the IPMP steam or in the OD update steam.

FIG. 22 illustates one manner in which control may be incorporated into an

existing MPEG-4 steam. In this figure, Unprotected MPEG-4 Content File 2201 includes
Initial Object Descriptor 2202 and Content 2203. The content may include a scene
description steam (or BIF steam), an object descriptor stream, a video steam, an audio
steam, and possibly additional content steams.

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4302

Petitioner Apple Inc. - Ex. 1025, p. 4303

10

15

20

25

30

W0 99/48295 PCT/U599/05734

-29-

Unprotected MPEG—4 Content File 2201 is passed to Repackager 2204, which also

accepts keys and rules. Repackager 2204 passes the keys and rules to IRP 2205, and

receives DigiBox 2206 in return, containing keys, rules and initialization vectors. In an

alternate embodiment, [RP 2205 may be incorporated directly into Repackager 2204.
Repackager 2204 demuxes Unprotected MPEG-4 Content File 2201 . It inserts

DigiBox 2206 into the Initial Object Descriptor and encrypts the va.rious content streams.

Repackager 2204 also adds the IPMP stream, if this is necessary (including if additional
DigiBoxes are necessary).

Repackager 2204 outputs Protected MPEG-4 Content File 2207, consisting of
Initial Object Descriptor 2208 (including DigiBox 2206) and Encrypted Content 2209
(consisting of va.rious streams, including the IPMP streams, ifnecessary).

Real Networks Implementation

In one embodiment, the elements described above may be used in connection with

infonnation encoded in compliance with formats established by Real Networks, Inc.
The Real Networks file format (RMFF) is illustrated in FIG. 13. This format

includes a block ofheaders at the beginning (Header 1301), followed by a collection of

content packets (Content 1302), followed by an index used for seek and goto operations

(Index 1303). Each file can contain several streams ofdifferent types. For each stream,

there is a “Media Properties Header” (1304) used to describe the format of the media
content (e.g., compression format) and provide stream specific information (e.g.,
parameters for the decompressor).

Real Networks streams can be protected by inserting a DigiBox into Header 1301

and encrypting the data packets contained in Content 1302. The altered format is

illustrated in FIG.14, which shows Header 1401, including Media Properties Headers 1402
and 1403, which in turn contain DigiBoxes 1404 and 1405, respectively. The format also
includes encrypted Content 1406 and Index 1407.

In one embodiment, the declared type of the data is changed from the standard Real

Networks format to a new type (e.g., RNWK_Protected.) The old type is then saved.

Changing the type forces the Real Networks player to load a “Trust Plugin,” since this

Plugin is registered as the only decoder module that can process streams of type “RNWK—
Protected.” The Trust Plugin opens the DigiBox, gets approval from the user, if it is

needed, determines the original content type, loads a decoder plugin for the original
content, and then decrypts and/or validates the content, passing it to the content decoder

plugin to be decompressed and presented to the user.

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4303

Petitioner Apple Inc. - Ex. 1025, p. 4304

10’

15

20

25

30

wo 99/43295 PCT/US99/05734

-30-

In one embodiment, the specific alterations made to the Real Networks file format

are the following: _

0 Increase the preroll time to force larger buffers on playback. In a current embodiment,

an increase of 3 seconds is used. Larger buffers are needed because of the extra steps
needed to decrypt the content.

0 Modify each stream-specific header by changing the mime type to “RNWK-Protected",

saving the old mime type in the decoder specific information and adding a content

identifier and DigiBox to the decoder specific information. The DigiBo_x contains the
key, initialization vector (IV), version information, and watennarking instructions. The

key, IV and content identifier are generated automatically, or can be provided as

command-line parameters. The same key, IV and content identifier are used for every
suemn. 4

0 Content packets are selectively encrypted. In one embodiment, content packets whose

start time in milliseconds is in the first half-second of each 5 seconds (i.e., sta.rttime %

5000 < 500) are encrypted. This encrypts approximately one-tenth of the content
reducing encryption and decryption costs, and damages the content, sufficiently to

prevent resale. The encryption algorithm can be DES using output—feedback mode or

any similar algorithm. The initialization vector is computed for each packet by xoring

the stream’s IV with the packet’s start time in milliseconds. Some infonnation unique
to the stream should also be xored into the IV. In one embodiment, the same IV is used

for multiple packets whenever two or more streams have packets with the same start

time. This usually happens for the first packet in each stream since they usually have

start time 0. Other than the first packet, it is rare to have two packets have the same
start time.

In one embodiment, these changes to the Real Networks file format are

accomplished as is shown in FIG. 15. As is illustrated, RMFF file 1501 is formatted in the

standard Real Networks RMFF format. This file is passed to Packager 1502. Also passed
to Packager 1502 is File 1503. Packager 1503 generates Protected RMFF File

1504, which includes various alterations as described above and as listed in FIG. 15,

including the incorporation of one or_ more DigiBoxes in the header, encryption of the
content, modification of the mime type, etc.

I In one embodiment, the trust plugin described above is illustrated in FIGS. 16 and

17. FIG. 16 illustrates the standard Real Networks architecture. File 1601 (e.g., a

streaming audio file in Real Networks format) is provided to Real Networks G2 Client

suasrmm: sneer (nun: 25)

Petitioner Apple Inc. - Ex. 1025, p. 4304

Petitioner Apple Inc. - Ex. 1025, p. 4305

10

15

20

25

30

35

W0 99/43295 PCT/US99/05734

-31-

Core 1602. File 1601 may be provided to RealNetworks G2 Client Core 1602 from Server
1603, or through Direct Connection 1604.

Upon receipt ofFile 1601, Real Networks G2 Client Core 1602 accesses a

rendering plugin appropriate to File 1601, based on information which is obtained from the

header associated with File 1601. Rendering Plugins 1605 and 1606 are shown. IfFile

1601 is of a type which cannot be rendered by either Rendering Plugin 1605 or Rendering
Plugin 1606, Real Networks G2 Client Core 1602 may attempt to access an appropriate
plugin, e.g., by asking for the user’s assistance or by accessing a site associated with the
particular file type.

Rendering Plug—In 1605 or 1606 processes File 1601 in a conventional manner.

This processing most likely includes decompression ofFile 1601, and may include other

types ofprocessing useful for rendering the content. Once this processing is complete
(keeping in mind that the content is streamed, so that processing may be occurring on one
set of packets at the same time that another set ofpackets is being rendered), File 1601 is

passed back to Real Networks G2 Client Core 1602, which then passes the information to

Rendering Device 1607. Rendering Device 1607 may, for example, be a set of stereo
speakers, a television receiver, etc.

FIG. 17 illustrates the manner in which a trust plugin operates within the overall

Real Networks architecture. Much of the architecture illustrated in FIG. 17 is the same as

that illustrated in FIG. 16. Thus, File 1701 is provided to Real Networks G2 Client Core

1702 through Server 1703 or through Direct Connection 1704. The file is processed by
Real Networks G2 Client Core 1702, using plugins, including Rendering Plugins 1705 and
1706, and is then passed to Rendering Device 1707.

FIG. 17 differs ‘from FIG. 16 in its incorporation of Trust Plugins 1708 and 1709,
and IRP 1710. When initially registered with Real Networks G2 Client Core 1702, Trust

Plugins 1708 and 1709 inform Real Networks G2 Client Core 1702 that they can process
content of type RNWK-Protected. Whenever Real Networks G2 Client Core 1702

encounters astream of this type, it is then enabled to create an instance of the trust plugin

to process the stream, e.g., Trust Plugin 1708. It then passes the stream to the trust plugin.
The stream passed to Trust Plugin 1708 may be in the format shown in FIG. 14. In

such a case, Trust Plugin 1708 extracts DigiBox 1404 from Media Properties Header 1402.

It also extracts the content id and original mime type from Media Properties Header 1402.

The Trust Plugin first checks to see if any other stream with the same content identifier has

been opened. If so, then DigiBox 1404 is not processed further. Instead, the key and IV

from the box for this other stream are used. This avoids the time cost of opening a second

suasrrrtrrs SHEET (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4305

Petitioner Apple Inc. - Ex. 1025, p. 4306

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-32-

box. Also, this ensures that a user is only asked to pay once even if there are multiple

protected streams. By sharing content ids, keys, and IVs, several files can be played with

the user only paying once. This is useful when SMIL is used to play several RMFF files as
a single presentation.

In an alternate and possibly more secure embodiment, this check is not performed,
and the key and IV fi_'om the current DigiBox are used even if another stream with the ‘

content identifier has already been opened.

Ifno other stream has been identified with the same content identifier, Trust Plugin
1708 passes DigiBox 1404 to IRP 1710. IRP 1710 may be a sofiware process running on
the same computer as Real Networks G2 Client Core and Trust Plugin 1708. [RP 1710

may run in a protected environment or may incorporate tamper resistance techniques
designed to render IRP 1710 resistant to attack.

IRP 1708 may process DigiBox 1404 and extract a cryptographic key and an IV,

which may then be passed to Trust Plugin 1708. Trust Plugin 1708 may then use this
information to decrypt Encrypted Contents 1406.

Trust Plugin 1708 uses the original mime type information extracted from Media

Properties Header 1402 to create an instance ofthe rendering plugin to be used for the

content (e.g., Rendering Plugin 1705). Once this is done, Trust Plugin 1708 behaves like

an ordinary rendering plugin to the Real Networks G2 Client Core 1702, in that Real

Networks G2 Client Core 1702 passes streamed information to Trust Plugin 1708, which

decrypts that information and passes it to Rendering Plugin 1705. From the perspective of
Real Networks G2 Client Core 1702, Trust Plugin 1708 constitutes the appropriate '

rendering pluin, and the core is not aware that the information is being passed by Trust
Plugin 1708 to a second p1ugin(e.g., Rendering Plugin 1705).

Similarly, fi*om the point of view ofRendering Plugin 1705, Trust Plugin 1708

behaves like Real Networks G2 Client Core 1702. Thus although Rendering Plugin 1705
receives decrypted stream information from Trust Plugin 1708, Rendering Plugin 1705

I operates exactly as if the information had been received directly from Real Networks G2

Client Core 1702. In this manner, content formatted for Rendering Plugin 1705 may
instead be first processed by Trust Plugin 1708, without requiring any alteration to Real

Networks G2 Client Core 1702 or Rendering Plugin 1705. _

Trust Plugin 1708 may also perform other processing that may be helpful for

security purposes. For example, Trust Plugin 1708 may watermark the decrypted file prior
to passing it to Rendering Plugin 1705, keeping in mind that the watermark algorithm must

be such that it will survive decompression of the file by Rendering Plugin 1705.

suasrrrure sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4306

Petitioner Apple Inc. - Ex. 1025, p. 4307

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-33.

MP3 Embodiment

The techniques described above can also be applied to MP3 streaming content.
The MP-3 specification does not_ define a standard file format, but does define a bit

stream, which is illustrated in FIG.l8. In FIG. 18, MP’-3 Bit Stream 1801 includes Content

1802. Content 1302 is divided into frames,shown as Frame 1803, Frame 1804 and Frame
1805. The dots between Frame 1804 and 1805 symbolize the fact that Content 1802 may
include a large number of frames. in

Each frame includes its own small header, shown in FIG. 18 as Headers 1806, 1807
and 1808.

Many MP3 players support a small trailer defined by the ID3 Vl specification,
shown as Trailer 1809. This is a 128 byte trailer for carrying fields like artist, title and

year, shown as Fields 1810, 181 1 and 1812. The ID3 V1 trailer is ignored by players not
designed to read such trailers, since it does not appear to be valid MP3 data. _

FIG. 19 shows one embodiment ofprotection applied to the MP3 format. This

protected format constitutes File 1908 and includes the following items:

- Unencrypted MP3 Content 1912. This is the first information encountered by a
player, and will be rendered by any standard MP3 player. It can include a message to the
user indicating that the content is protected and providing instructions as to how the

content can be accessed (e.g., a URL for a trust plugin, instructions on payment V
mechanisms, etc.) Unencrypted MP3 Content 1912 may include a “teaser,” consisting of
an initial portion of the content (e.g., 30 seconds), whichis rendered at no cost, thereby
allowing a user to sample the content prior to making a decision to purchase it.

- Encrypted MP-3 Content 1901, which may include thousands ofMP-3 flames.

In one embodiment, the first eight frames out of every 32 frames are encrypted. Thus, one-
quareter of the frames are rendered unuseable unless a player is able to decrypt them. In
practice, this may render the content un-sellable or unuseable, without imposing excessive
encryption or decryption costs. To finther reduce encryption and decryption costs, only 32
bytes in each frame are encrypted. In a current embodiment, these are the first 32 bytes
after the header and CRC information. In a different embodiment, a different 32 bytes may
be encrypted in every frame. In a current embodiment, the content is encrypted with the
DES using algorithm output-feedbaclr mode. The initial IV for the file is randomly
generated and then xored with the frame number to generate a unique IV for each frame.

Many alternate embodiments may exist, including encrypting more or less
information, and using different encryption algorithms.

- ID3 V1 Trailer 1902, including 128 bytes.

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4307

Petitioner Apple Inc. - Ex. 1025, p. 4308

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-34-

- Content ID 1903, including 16 bytes. This is used by the player application to
avoid opening DigiBoxes which it has already opened.

- DigiBox 1904, which may comprise approximately 18K bytes. It includes Key

1909, IV 1910 and Watermarking Instructions 1911. Watermarking Instructions 1911 may
be used in a process ofwatermarking the associated content.

- Address 1905, which contains the address in the file of Content ID 1903 and

consists of4 bytes.

- Trust ID 1906, which identifies this trusted MP-3 file and consists of 16 bytes.
- 1133 v1 Trailer 1907, which is a copy ofTrailer 1902. I

A conventional MP3 player encountering File 1908 would be unable to render

Content 1901, since at least a portion of that content is encrypted. Such a player would

most likely read through to Trailer 1902 and cease processing at that point. A conventional
player looking for the ID3 trailer information will seek to the end and find it.

FIG. 20 illustrates one embodiment of an MP3 player designed to process and

render protected content. This figure shows MP3 Player 2001, which includes Buffer 2006

and Decompressor 2007, and renders content to Rendering Device 2008. In one

embodiment, this is a modified version ofa player distributed by Sonique.

Player 2001 obtains Protected MP3 File 2002 through any standard interface.

Protected MP3 File 2002 may have the format illustrated in FIG. 19.

When Player 2001 is asked to play Protected MP3 File 2002, Player 2001 first calls

Trust Plug—In 2003, which includes Approval Function 2009 and Decrypt Function 2005.

Trust Plugin 2003 calls Approval Function 2009 to determine ifProtected MP3 File 2002

is protected and whether authorization exists to play the file. Approval Function 2009 is

first given a pointer to Protected MP3 File 2002. It then checks Protected MP3 File 2002

for the presence ofTrust 1]) 1906. If Trust ID 1906 is not found, Approval Function 2009

returns an indicator that the file is not protected. Player 2001 then proceeds to render the
file as a normal MP3 file.

IfTrust ID 1906 is found, Approval Function 2009 checks Content ID 1903 to see

if it matches the Content ID of a file that has already been opened.

IfProtected MP3 File 2002 has not been previously opened, DigiBox 1904 is

retrieved by Approval Function 2009, and is passed to [RP 2004, which may include
software running in a protected enviromnent, or incorporating tamper resistance. IRP 2004
attempts to open DigiBox 1904 in compliance with the rules associated with that DigiBox.
One such rule may require, for example, that the user indicate assent to pay for use of the

content. IfDigiBox 1904 cannot be opened (e.g., the user refuses to pay) a value is

suasrurure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4308

Petitioner Apple Inc. - Ex. 1025, p. 4309

10

15

20

25

30

35

W0 99,432” PCTIUS99/05734

-35-

returned to Approval Function 2009 indicating that the file is protected and may not be
played.

IfDigiBox 1904 is opened in compliance with applicable rules, the key and IV are
retrieved and passed to Decrypt Function 2005. The key and IV are stored with the content

id for later re-use and Decrypt Function 2005 is initialized. This may improve overall
system performance, since it reduces the number of times a DigiBox must be opened. Each
such action may introduce significant latency.

On the other hand, storing this information in unprotected memory may reduce
overall system security. Security may be enhanced either by not storing this information

or in a secure location.

The stored key, IV and content id are referenced when Approval Function 2009 first

checks Content ID 1903 to determine if it matches the Content ID of an already opened
file._ If the new Content ID matches a stored Content ID, Decrypt Function 2005 is

reinitialized using the stored key and IV corresponding to the matching content id am
value indicating that this is a protected file for which play is authorized is returned to
Approval Function 2009.

Once Protected MP3 File 2002 has been opened, each time Player 2001 needs a

packet, Player 2001 reads it into Butler 2006, strips off the header and CRC and passes the
remaining data and a frame number to Decrypt Function 2005, which decrypts the frame if
necessary, and returns it to Player 2001.

In a current embodiment, although audio content is encrypted, headers or trailers

Commerce Appliance Embodiment

This section will describe an embodiment, comprising a Commerce Appliance

architecture designed to allow persistent control of digital works in consumer electronics .
devices. Although this is described as a separate embodiment, it should be understood that

the features of this embodiment may be combined with, or supplant, the features ofany of
the embodiments provided elsewhere in this description.

In one embodiment, this section will describe modifications to the MPEG-4

standard designed to support the association ofpersistent rules and controls with MPEG-4

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4309

Petitioner Apple Inc. - Ex. 1025, p. 4310

10

1.5

20

25

30

35

“W0 99,43,295 PCT/US99/05734

-36-

content, as well as elements necessary for a Commerce Appliance to use such"content.

This is intended, however, merely as an example.

In one embodiment, shown in FIG. 23, each Commerce Appliance 2301 includes a

CMPS ("Content Management and Protection System") 2302. Each CMPS is responsible

for governing the use of controlled content, including decrypting the content and ensuring
that the content is only used as permitted by associated rules. I

Each governed digital work is associated with one or more CMPOs (Content

Management Protection Object), e.g., CMPOs 2303. Each CMPO may specify rules
governing the use of the digital work, and may include keys used to decrypt the work.

CMPOs may be organized in an hierarchical fashion. In one embodiment, a content
aggregator (e.g., a cable channel, a web site, etc.) may specify a Charmel CMPO

("CCMPO") used to associate certain global rules with all content present on that channel.
Each independent work may in turn have an associated Master CMPO ("MCMPO") used to
associate rules applicable to the work as a whole. Each object (or Elementary Stream, in

MPEG-4) may have associated with it a CMPO containing rules governing the particular
object. I

In one exemplary application, Commerce Appliance 2301 may be an MPEG-4

player containing CMPS 2302. Upon receipt of a user command to play a particular work,
CIVIPS 2302 may download a MCMPO associated with the work and obtain rules, which
may include conditions required for decryption and viewing ofthe work. If the rules are

satisfied, CMPS 2302 may use keys from the MCMPO to decrypt any Elementary Streams
("ES"), and may pass the decrypted ESs into the buffers. Composition and rendering ofthe
MPEG-4 work may thereafter proceeds according to the MPEG-4 standard, except that any
storage location or bus which may contain the work in the clear must be secure, and CMPS
2302 may have the ability to govern downstream processing, as well as to obtain

information regarding which AVOs were actually released for viewing.

In a variation, the process of obtaining and governing the work may include

downloading a CCMPO which applies rules governing this and other works. If rules

contained in the CCMPO are satisfied, CMPS 2302 may obtain a key used to decrypt the
MCMPO associated with the particular work to be viewed.

In another variation, a CMPO may be associated with each ES. In this variation,
the MCMPO supplies one or more keys for decryption of each CMPO, and each CMPO
may in turn supply a key for decryption of the associated ES.

Commerce Appliance 2301 is a content-rendering device which includes the

capability of supporting distributed, peer management ofcontent related rights by securely

suasrrru-re SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4310

Petitioner Apple Inc. - Ex. 1025, p. 4311

10

15

20

25

30

35

WO 99/43296 PCT,"/US99/05734

applying rules and controls to govern the use of content. Commerce Appliance 2301 may
include general-purpose fimctions devoted to acquisition and managed rendering of content
(e.g., a DVD (and/or any other optical disk format) player is able to play a DVD (and/or
any other optical disk format) disk and output content to a television.) Commerce

Appliance 2301 may make use of any of the means for protecting and using digital content
on high capacity optical disk, in one non—limiting example, a DVD disk, as described in the
aforementioned Shear patent application.

Commerce Appliance 2301 also includes special-purpose functions relating to other
management and protection ofcontent fimctions. These special-purpose functions may be
supported by one or more embedded or otherwise included CMPS 23 02 in the form of a

single CMPS or a cooperative CMPS arrangement, and may include a user interface (e.g.,
User Interface 2304) designed to display control-related information to the user and/or to
receive control-related information and directions fiom the user. Commerce Appliance
2301 may also be designed so that it is networkable with other Commerce Appliances (e.g.,
a set-top box connected to a DVD player and a digital television) and/or with other devices,
such as a computer arrangement, which may also include one or more CMPSS.

An important form of Commerce Appliance specifically anticipates secure coupling
on a periodic or continual fashion with a computer managed docking environment (e.g., a
standalone computer or other computer managed device which itself may be a Commerce
Appliance) where the one or more CMPSs of the Commerce Appliance interoperate with
the docking environment to form a single user arrangement whose performance ofcertain

functions and/or certain content usage events i§enabled by such inter-operation through, at
least in part, cooperation between CMPSs and content usage management information of

the Commerce Appliance and the trust environment capabilities of the docking
environment, (e.g., further one or more ClV[PSs and content usage management
information, such as, for example, information provided by use of CI).

An exemplary Commerce Appliance may be designed to comply with the emerging
MPEG-4 standard for the formatting, multiplexing, transmission, compositing, and
‘rendering of video and other types of information.

Commerce Appliance 2301 may be any computing device, one non-limiting
example ofwhich is a Personal Computer (PC) that includes MPEG-4 sofiware (and/or
hardware) for rendering content. In accordance with the present invention, the PC may
also use one or more CMP_Ss as described herein.

The commerce appliance fimction is not restricted to streamed channel content but

may include various browser—type applications consisting ofaggregated composite content

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4311

Petitioner Apple Inc. - Ex. 1025, p. 4312

10

15

20

25

30

WO 99/48296 PCT/US99/05734

-33-

such as still imagery, text, synthetic and natural video and audio and fimctional content

such as applets, animation models and so on. these devices include browsers, set-top
boxes, etc.

Content Management and Protection System (CMPS)

Each commerce appliance includes one or more CMPS (e.g., CMPS 2302). The

CMPS is responsible for invocation and application of rules and controls, including the use
ofrules and controls to govern the manner in which controlled content is used.

Particular functions ofCMPS 2302 include the following:

(a) Identification and interpretation of rules.

CMPS 2302 must determine which rules are to be applied, and must determine how

those rules are to be interpreted in light of existing state information. In one embodiment,
this requires that CMPS 2302 obtain and decrypt one or more CMPOS 2303 associated
with a work.

(b), Identification of content associated with particular rules.

CMPS 2302 must determine which content is governed by particular one or more

rules. This may be accomplished by obtaining infomiation from one or more CMPOs 2303

and/or other CI. In one embodiment, a CCMPO may identify a set of works, a MCMPO

may identify a particular work and a CMPO may identify a particular ES or Audio Visual
Object ("AVO").

(c) Decryption of content as allowed by the rules.

CMPS 2302 may be designed so that all content is routed through CMPS 23 02 for

decryption, prior to reinsertion into the data flow required by the relevant standard. In the

case ofMPEG-4, for example, the output from Demux 2305 may be fed into CMPS 2302.

CMPS 23 02 may then decrypt the content and, if relevant rules and controls are satisfied,
feed the content into the MPEG-4 buffers. From that point, the data flow associated with

the content may be as described by MPEG-4.

((1) Control of content based on rules.

CMPS 2302 may be used to control usage ofcontent afier the initial decryption, for ’

example, through the use of secure event management as described in the incorporated

Ginter '333 patent application. In the case ofMPEG-4 systems, this may require that

CMPS 2302 exercise control over hardware and/or sofiware which performs the following
fimctions: demuxing (performed by Demux 2305), decompression/buffering/decode into

AVOs (performed by Scene Descriptor Graph 2306, AVO Decode 2307 and Object

Descriptors 2308), scene rendering (performed in Composite and Render 2309).

suasrurure sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4312

Petitioner Apple Inc. - Ex. 1025, p. 4313

10

15

20

25

30

WO 99/48296 PCT/US99/05734

-39-

CMPS 2302 may also be used to control use and consequences according to: (1)
generational copy protection rules such as the CGMS and/or SGMS standards; (2) various
Conditional Access control methods, such as those proposed and/or implemented by NDS
as described in MPEG-4 document M2959, DAVIC “Copyright Control Framework”

document, and in other publications; (3) a Rights Management Language, such as those
proposed in the Ginter '333 patent application and/or as described by U.S. Patent No.
5,638, 443 to Stefik, et al.; (4) use policies described in accordance with AT&T’s Policy
Maker, as described by Blaze, Feigenbaum, and Lacy; (5) the CCI layer bits for IEEE 1394
serial bus transmission as specified by the DTDG subgroup of the DVD Copy Protection
Technical Working Group and/or as implemented by the Hitachi, Intel, Matsushita, Sony
and Toshiba proposed standard (hereafter “the five company proposal”); (6) controls
transmitted using any secure container technology such as, for example, IBM Cryptolope;
(7) any other means for specifying use rules and consequences.

(e) Monitoring use of content.

CMPS 2302 may be used to monitor content to: (i) ensure that rules are being
complied with; (ii) ensure that no attempts are being made to tamper with the system or
protected content; and (iii) record infonnation used by rules, including usage information
needed for payment purposes.

(f) Updating user budgets.

CIVIPS 2302 may be used to update user or other budgets to reflect usage.
(g) Exhaust information. .

CMPS 2302 may be used to output payment and usage information (“exhaust
information") to external processes, including one or more Commence Utility Systems.

(h) Hardware identification and configuration.

(i) Obtaining new, additional, and/or augmented rules from an external

process, one non-limiting example ofwhich is a Rights and Permission Clearinghouse as
described in the incorporated Shear patent application.

(j) Receiving keys, digital credentials, such as certificates, and/or

administrative information, from certifying authorities, deployment managers,
clearinghouses, and/or other trusted infrastructure services.

(k) Securely sending and/or receiving user and/or appliance profiling and/or
attribute information. i

(1) Securely identifying a user or a member of a class of users who requests
content and/or CMPO and/or CMPS usage.

SUBSTITUTE SHEET (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4313

Petitioner Apple Inc. - Ex. 1025, p. 4314

10

15

20

25

30

35

wo 99/43295 PCT/USH99/05734

.40.

(m) Secru'ely certifying or otherwise guaranteeing the authenticity of
application code, for example certifying within CMPO 2301 and/or CMPS 2302 that

application code containing rules and/or other application information, such as information

written in Java code for conditional execution within a Commerce Appliance, and/or that

executes at least in part outside ofCMPO 2301 and/or CMPS 2302, has not been altered

and/or has been delivered by a guaranteed (e.g., trusted) party. i

. (n) Securely processing independently delivered CI, such as described in the

incorporated Ginter '333 patent application, to perform content usage control that protects
the rights ofplural, independent parties in a commerce value chain.

(0) Securely performing watermarking (including, for example fingerprinting)
fimctions, for example as described in the Ginter '333 patent application and as

incorporated herein, for example including interpreting watennarking information to

control content usage and/or—to issue an event message, wherein such event message may
be reported back to a remote authority, such as, for example, a MCMPO rights
clearinghouse management location.

CMPS 2302 may be used to identify and record the current hardware configuration

of the Commerce Appliance and any connected devices (e.g., which loudspeakers are
available, identification of attached monitors, including whether particular monitors have
digital output ports, etc.) If attached devices (such as loudspeakers) also include CMPSs,
the CMPSs may be used to communicate for purposes of coordination (e.g., a CMPS in a
set-top box and/or loudspeaker arrangement may communicate with a CMPS in a

downstream digital television or other display device to establish which CMPS will be

responsible for governance or the nature of cooperative governance through a virtual rights

process, said process optionally involving a rights authority server that may find, locate,
provide, aggregate, distribute, and/or manage rights processes, such as described in the

aforementioned Shear patent application, for employing plural CMPSs, for example, for a
single user content processing and usage arrangement).

The present invention includes arrangements comprising plural Commerce

Appliances and/or CMPSS in one or more user locations, non-lirniting examples ofwhich

include a home, apartment, loft, office, and/or vehicle, such as a car, truck, sports utility
vehicle, boat, ship, or airplane, that may communicate among themselves at least

occasionally and may comprise a virtual network that operates in a logically cooperative
manner, through at least in part the use of such CMPSs, to ensure optimal commercial

flexibility and efficiency and the enforcement of rights of commerce value chain

participants, including financial and copyright rights ofproviders, infrastructure rights of

SUBSTITUTE sneer (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4314

Petitioner Apple Inc. - Ex. 1025, p. 4315

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

network of value chain participants, including content usage auditing, content usage
consequence, and CI specification, can be securely, variably reported to parties having right
to such infonnation, through, at least in part, use of such CMPSs, for example, as described
in the aforementioned Ginter ‘712 patent application regarding the information reporting
functioning of VDE nodes. A’

In one embodiment, shown in FIG. 24, CMPS 2401 consists of special-purpose
hardware and resident software or firmware. These include the following:

(a) One or more processors or microcontrollers e.g. CPU 2402. CPU 2402
controls the overall processing of CMPS 2401, including execution of any necessary
sofiware.

, (b) One or more external communications ports, e.g., Port 2403. Port 2403

communicates with External Network 2404, which may include LANs, WANs or

distributed networks such as the Internet. External communications ports may also include
one or more IEEE 1394 serial bus interfaces.

(c) Memory 2405. Types ofmemories which may be included in Memory
240S-- and examples of the information they may store —- are the following:

i. ROM 2406. ROM 2406 may include any information which_ is

permanently stored in CMPS 2401, such as (1) CMPS Operating System 2407 and/or

CMPS BIOS 2408, (2) Rules/Controls 2409 which are permanently stored in the CMPS;
(3) Control Primitives 2410 which may be used to build rules or controls; (4) Keys 2411
associated with the CMPS, including a Public/Private Key Pair; (5) one or more

Certificates 2412 designed to identify CMPS 2401 and/or the device, including version
information; (6) Hardware Signature Information 2413 used to check for tampering (e.g., a
hashed signature reflecting the expected‘ hardware state of the device).

ii. RAM 2414. RAM 2414 may hold current state information

needed by CMPS 2401, as well as information temporarily stored by CMPS 2401 for later
use. Infonnation stored in RAM 2414 may include the following: (1) Software 2415

currently executing in CPU 2402; (2) CMI’Os 2416 which are currently active; (3) Content
_ Object Identification 2417 ofthose content objects which are currently active (in an MPEG
4 system this would constitute, for example, an identification of active AVOs); (4) Rules
2418 which are currently active; (5) State Information 2419 regarding the current state of

SUBSTITUTE SHEET (nuus 25)

Petitioner Apple Inc. - Ex. 1025, p. 4315

Petitioner Apple Inc. - Ex. 1025, p. 4316

10

15

20

25

30

35

WO 99/43295 PCT/US99/05734

-42-

state of composition and rendering); (6) Stored Exhaust Information 2420 relating to use
and/or the user, designed for external transmission; (7) Updated Budget Information 2421;
(8) Content 2422; (9) Active Content Class Information 2423; and (10) Active User
Identification 2424, including identification characteristic information.

iii. NVRAM 2425 (e.g., flash memory). This type ofmemory may

hold information which is persistent but changeable, including at least some: (1) Budget
Information 2426; (2) User Information 2427, such as identification, credit card numbers;
preferred clearinghouses and other Commerce Utility Systems; (3) User Preferences 2428,
such as preferences, profiles, and/or attribute information; and (4) Appliance Information
2429, such as attribution and/or state information.

The types of information described above and stored in CMPS Memory 2405 may
be stored in alternative of the above memory types, for example, certain budget information

may be located in ROM, information regarding specific one or more clearinghouses may be
stored in ROM, certain active information may be moved into NVRAM, etc.

Budget information may include stored budgets made up of, for example:
(1) electronic cash;

(2) pre-authorized uses (e.g., based on a prepayment, the user has the right

to watch 12 hours ofprogramming). d
(3) Security budgets related to patterns reflecting abnormal and/or

unauthorized usage, for example, as described in the incorporated Shear

patent, wherein such budgets restrict and/or report certain cumulative
usage conduct.

(4) electronic credit, including credit resulting from usage events such as

attention to promotional material and/or the playing ofmultiple works

from one or more classes_of works (e.g., certain publisher’s works)
triggering a credit or cash refund event and/or a discount on future

playing ofone or more of such publisher’s works, such as other works

provided by such publisher.

User information may include the following types of information for one or more

authorized users of the Commerce Appliance: I

(1) Name, address, telephone number, social security number or other
identifier

(2) Information used to authenticate the user, which may include a user

selected password and/or biometric data, such as fingerprints, retinal data, etc.

(3) User public/private key pair

suasrrrure SHEET (RULE 26)-

Petitioner Apple Inc. - Ex. 1025, p. 4316 ,

Petitioner Apple Inc. - Ex. 1025, p. 4317

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-43-

(4) User attribute and/or profiling information.

iv. Removable Memory 2430. This may include any type of

removable memory storage device, such as smart cards,

floppy disks or DVD disks. If the commerce appliance is

designed to play content received on removable memory

devices (e.g., a DVD player), that capability may be used for
purposes of the CMPS.

Memory 2405 may include a protected database, in which certain control, budget,
audit, security, and/or cryptographic information is stored in secure memory, with complete
information stored in an encrypted fashion in unsecure memory.

(d) Encryption/Decryption Engine 2431. CMPS 2401 must include a

facility for decrypting received information, including content and CMPOs and/or other.

CMPS 2401 may also include a facility for encrypting information if such information is to

be transmitted outside the secure boundaries of CMPS 2401. This may include exhaust
sent to clearinghouses or other external repositories; and content sent across unsecured

buses for usage, such as content sent across IEEE 1394 Serial Bus 2432 to a computer
central processing arrangement or to a viewing device such as a monitor, wherein a

receiving CMPS may be employed to control such content’s usage, including, for example,
decrypting such content, as appropriate. Encryption/Decryption Engine 2431 may include
a Random Number Generator 2433 used for the creation ofkeys or key pairs that can be

used to identify and assure the uniqueness of CMPSs and support the opening of secure

communication channels between such secure content control secure encryption/decryption
arrangements. V

(e) Secure Clock/Calendar 2434. CMPS 2401 may include Secure

Clock/Calendar 2434 designed to provide absolute information regarding the date and time

of day, information regarding elapsed absolute time, and/or relative timing information
used to determine the elapsed time of operations performed by the system. Secure

Clock/Calendar 2434 may include Battery Back Up 2435. It may further include Sync
Mechanism 2436 for synchronization with outside timing information, used to recover the

correct time in the event of a power loss, and/or to check for tampering.

(f) Interface 2437 to blocks used for content rendering and display. This

interface is used for controlling rendering and display, based on rules, and for obtaining
feedback information, which may be used for budgeting purposes or for providing
information to outside servers (e.g., information on which content was actually displayed,

which choices the user invoked, etc.) In the case of an MPEG-4 player such as is shown in

suasrrrurs SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4317

Petitioner Apple Inc. - Ex. 1025, p. 4318

10

15

20

25

30

35

wo 9.9/48296 PCT/US99/05734

-44-

FIG. 23, this may include control over Commerce Appliance circuitry which handles, for
example, buffering, the scene descriptor graph, AVO decode, object descriptors and
composite and rendering (e.g., Control Lines 2310, 2311 and 2312).

Feedback Path 2313 from Composite and Render block 2309 may allow CMPS

2302 to determine whether and when content has actually been released to the viewer. For

example, Composite and Render block 2309 can issue a start event to CMPS 2302 when an

AVO object is released for viewing, and can issue a stop event to CMPS 2302 when the
AVO object is no longer being viewed. I

‘Feedback from Composite and Render block 2309 may also be used to detect
tampering, by allowing CMPS 2302 to match the identification of the objects actually
released for viewing with the identification of the objects authorized for release. Start and

end time may also be compared with the expected elapsed time, with a mismatch possibly
indicative of the occurrence of an unauthorized event.

In one embodiment, the following protocol may be used for feedback data:

start <id>, T, <instance number><clock time><rendering options>

Sent if elementary stream <id> is reachable in the SD-graph at time T, but not at
time T-1 .

end <id>, T, <instance number><clock time-><rendering options>

T constitutes presentation time, clock time constitutes the wall clock time, including day
and date information, and rendering options may include such information as QoS and rate
ofplay (e.g., fast forward). 1

Sent if elementary stream <id> is reachable in the SD-graph at time T-1 but not at

time T. A SD-graph stream is reachable if, during traversal of the SD-graph for display
update, the renderer encounters a node that the SD-graph update stream <id> created or

will be watching for stream, ifnot labeled it will not record them. An AV elementary
stream is reachable if the strearn’s content was rendered.

For SD-graph update streams, the object instance number is ignored. For AV

streams, the instance number can be used to disambiguate the case where the display shows
two or more instances of the same data stream simultaneously. Instance numbers do not

have to count up. In this case, they are simply a unique id that allows the CMPS to match a
start event with an end event.

In a second embodiment, CMPS 2302 may include some special purpose hardware
, in combination with general purpose hardware which is also used for other functions of the

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4318

Petitioner Apple Inc. - Ex. 1025, p. 4319

10

15

20

25

30

35

W0 M48295 _PCT/US99/05734

-45-

device. In this embodiment, care must be taken to ensure that commercially trusted CMPS

functions are performed in a secure and tamper-resistant manner, despite the use of general

purpose hardware. Each of the elements recited above may include dedicated CMPS
functions and general piupose device functions:

(a) CPU/microcontroller. This may include one or more devices. Ifmore

than one device is included (e.g., a CPU and a DSP, a math coprocessor or a commerce

coprocessor), these devices may be included within the same package, which may be

rendered tamper-resistant, or the devices may communicate on a secure bus. The CPU may
include two modes: a secure CNIPS mode, and an unsecure general purpose mode. The

secure CMPS mode may allow addressing of secure memory locations unavailable to the

processor in general purpose mode. This may be accomplished, for example, by circuitry
which remaps some of the available memory space, so that, in unsecure mode, the CPU
carmot address secure memory locations. A

(b) External communications ports. If the device, for example, a Commerce

Appliance, is capable of receiving content or other information through a communications

port (e.g., a cable connection, an Internet connection), this communications port can be
used for CMPS purposes. In such a case, CMPS accesses to the external communications

port is preferably designed to avoid or minimize interference with the use of such port for
receipt of content.

(c) Memory. In some applications and embodiments, it is possible to

operate a Commerce Appliance without NVRAM, wherein information that may be needed

for CMPS operation that would employ NVRAM would be loaded into RAM, as required.
ROM, RAM and NVRAM may be shared between CMPS uses and general uses. This can

be accomplished in any of the following ways, or in a combination of these ways: (1)

Some memory space may be rendered off-limits to general purpose uses, for example by
remapping; (2) the entirety of the memory may be rendered secure, so that evenportions of

the memory being used for non-secure purposes cannot be observed or changed except in a
secure and authorized manner; (3) CMPS infonnation may be stored in an encrypted ~

fashion, though this requires at least some RAM to be secure, since the CMPS will require
direct access to unencrypted infonnation stored in RAM.

(d)l Encryption/decryption engine. Encryption and decryption functions,
including key generation, may be handled by special purpose sofiware nmning on a general
purpose processor arrangement, particularly, for example, a floating point processor or

DSP arrangement. That processor arrangement may also be used for purposes of

decompressing and displaying content and/or for handling watermarking/fingerprinting

suasrrrurs SHEET (RULE 26)

Petitioner‘ Apple Inc. - Ex. 1025, p. 4319

Petitioner Apple Inc. - Ex. 1025, p. 4320

10

15

20

25

30

35

WO 99/48296 PCT/US99l05734

-46-

insertion and/or reading. Alternatively, the device may include native encryption and

decryption functions. For example, various emerging standards may require at least some

degree of encryption and decryption of content designed to be passed across unsecure buses

within and among devices such as DVD players, such as the “five company proposal" and

other IEEE 1394 related initiatives. Circuitry designed to perform such encryption and
decryption may also be usable for CMPS applications.

(e) Secure clock/calendar. The underlying device may already require at

least some clock information. MPEG-4, for example, requires the use ofclock information

for synchronization ofElementary Streams. A secure CMPS clock can also be used for

such purposes. _.

In a third embodiment, ‘CMPS 2302 can be primarily software designed to nm on a
general purpose device which may include certain minimal security-related features. In
such a case, CMPS 2302 may be received in the same channel as the content, or in a side-

band charmel. An I-CMPO and/or other CI may specify a particular type ofCMPS, which

Commerce Appliance 2301 must either have or acquire (e.g., download from a location

specified by the I-CMPO), or CMPS 2302 may be included, for example, with an I~CMPO.

A soflware CMPS runs on the CPU of the Commerce Appliance. This approach

may be inherently less secure than the use ofdedicated hardware. Ifthe Commerce

Appliance includes secure hardware, the sofiware CMPS may constitute a downloadable

OS and/or BIOS which customizes the hardware for a particular type of commerce
application.

In one embodiment, a software CMPS may make use ofone or more soflware

tamper resistance means that can materially “harden” software. These means include

sofiware obfuscation techniques that use algorithmic means to make it very difficult to

reverse engineer some or all of a_ CMPS, and timber make it difficult to generalize from a

reverse engineering ofa given one or more CMPS. Such obfiiscation is preferably

independent of source code and object code can be different for different CMPSS and

different platforms, adding fiirther complexity and separation of roles. Such obfuscation

can be employed “independently” to both CI, such as an CMPO, as_well as to some or all

of the CMPS itself, thus obscuring both the processing environment and executable code

for a process. The approach is also applicable for integrated soflware and hardware

implementation CMPS implementations described above. Other tamper resistance means

can also be employed, including using “hiding places” for storing certain state information

in obscure and unexpected locations, such as locations in NV memory used for other

purposes, and data hiding techniques such as watermarking/fingerprinting.

SUBS11TUTE sneer (nuu: 26)

Petitioner Apple Inc. - Ex. 1025, p. 4320

Petitioner Apple Inc. - Ex. 1025, p. 4321

10

15

20

25

30

35

Iwo 99/48296 PCT/US99/05734

-47-

Association of CMPS With a Commerce Appliance

A CMPS may be permanently attached to a particular device, or may be partially or
fully removable. A removable CMPS may include software which is securely loaded into a

Commerce Appliance, and/or removable hardware. A removable CMPS may be

personalized to one or more particular users, including user keys, budget information,

preferences, etc., thereby allowing different users to use the same Commerce Appliance
without commingling budgets and/or other rights, etc.

A CMPS may be designed for operation with certain types of content and/or for

operation with certain types ofbusiness models. A Commerce Appliance may include

more than one type of CMPS. For example, a Commerce Appliance designed to accept
and display content pursuant to different standards may include one CIVH’S for each type of
format. In addition, a Commerce Appliance may include a CMPS provided by a particular
provider, designed to preferentially display certain types of content and to preferentially
bill for such content through a particular channel (e.g., billing to one or more particular
credit cards and/or using a particular one or more clearinghouses).

Source of Rules

The CMPS must recognize those rules which are to be applied to particular content.

Such rules may be received by the CIvfl’S from a variety of sources, depending on the
particular embodiment used:

(a) CMPO. The rules may be included within a CMPO (e.g., CMPO 2303)

and/or other CI. The CMPO and/or other CI may be incorporated within a content object
or stream (as, e.g., a header on an MPEG-4 ES), and/or may be contained within a

dedicated content object or stream encoded and received as per the underlying standard

(e.g., an l\/IPEG-4 CMPO ES), and/or may be received outside the normal content stream,
in which event it may not be encoded as per the underlying standard (e.g., a CMPS
received as an encrypted object through a sideband charmel).

(b) CMPS. Rules may be permanently and/or persistently stored within a

CMPS, e.g., Rules 2409. A CMPS may include default rules designed to handle certain

situations, for example, where no CMPO and/or other necessary CI is received (e.g.,
content encoded under an earlier version of the standard which did not incorporate CMPOS,

including l\/IPEG-4 version 1). Complete rules which are stored within the CMPS may be
directly or indirectly invoked by a CMPO and/or other CI. This may occur through the CI
identifying particular rules through a pointer, and/or it may occur through the CI

identifying itself and the general class of control it requires, with the CMPS then applying
particular rules specific to that CMPS.

SUBSTITUTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4321

Petitioner Apple Inc. - Ex. 1025, p. 4322

10

15

20

25

30

35

wo 99/48296 PCTIUS99/05734

-48-

Rule "primitives" may also be stored within the CMPS (e.g., Control Primitives

2410). The CMPO and/or other CI may invoke these primitives by including a sequence of
macro-type commands, each ofwhich triggers a sequence of CMPS primitives.

(c) User. The user may be given the ability to create rules relating to the
particular users preferences. Such rules will generally be allowed to further restrict the use

of content, but not to expand the use of content beyond that which would otherwise be

allowed. Examples include: (a) rules designed to require that certain types ofcontent
(e.g., adult movies) only be accessible after entry of a password and/or only to certain

CMPS users (e.g. adults, not children, as, for example, specified by parents and/or a

societal body such as a government agency); (b) rules designed to require that only
particular users be allowed to invoke operations requiring payment beyond a certain limit
and/or aggregate payment over a certain amount.

The user may be allowed to create templates of rules such as described in the

aforementioned Ginter '333 patent application (and incorporated herein). In addition, a
CMPS arrangement, and/or a particular CMPO and/or other CI, may restrict the rules the

user is allowed to specify. For example, a CI may specify that a user can copy a work, but

carmot add rules to the work restricting the ability of a recipient to make additional copies
(or to be able to view, but only afier a payment to the first user). User supplied one or

more rules may govern the use of— including privacy restrictions related to -- payment,
audit, profiling, preference, and/or any other kind of information (e.g., information result as

a consequence of the use of a CMPS arrangement, including, for example, use of secured

content). Such user supplied one or more rules can be associated with the user and/or one

or more Commerce Appliances in a user arrangement, whether or not the information is

aggregated according to one or more criteria, and whether or not user and/or appliance

identification information is removed during aggregation and/or subsequent reporting,
distribution, or any other kind of use. '

The ability to allow the user to specify rules allows the CMPS to subsume (and

thereby replace) V-chips, since a parent can use content rating information to specify
precisely what types of information each viewer will be allowed to watch (e.g., violent -

content can only be displayed afier entry of a certain password and/or other identifier,

including, for example, insertion of a removable hardware card (smart or rights card)
possessed by a user). i

(d) External network source. The rules may be stored on an external server.

Rules may be addressed and downloaded by the CMPS ifnecessary (e.g., either the CMPO

and/or other CI and/or the CMPS contains a pointer to certain rules location(s), such as one

suasrrrure SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4322

Petitioner Apple Inc. - Ex. 1025, p. 4323

I0

15

20

25

30

35

WO 99/48296 PCT/US99/05734

—49- '

or more URLs). In addition, content providers and/or clearinghouses may broadcast rules
designed for general applicability. For example, a content provider might broadcast a set

of rules providing a discount to any user participating in a promotional event (e.g., by
providing certain user information). Such rules could be received by all connected devices,
could be received by certain devices identified as of interest by the content provider (e.g.,
all recent viewers of a particular program, as identified by exhaust information provided by
the CMPS to a clearinghouse and/or all members having certain identity characteristics
such as being members of one or more classes) and/or could be posted in central locations.

Example Embodiment

The Elementary Streams may be encrypted and multiplexed together to form an Aggregate
Strea.rn. One or more CMPOs may be present in such stream, or may otherwise be
associated with the stream. Options are as follows:

1. Content may be streamed or may be received as static data structures.

2. A Work may be made up of a single stream or data structure, or ofmany
separately addressable streams or data structures, each ofwhich may constitute an Object.

3. If a Work is made up of separately addressable streams or data structures, those

streams or data structures may be multiplexed together into an Aggregate Stream, or may
be received separately. ’

4. If streams or data structures are multiplexed together into an Aggregate Stream,

the streams or data structures may be encrypted prior to such multiplexing. The Aggregate
Stream itself may be encrypted, whether or not the underlying streams or data structures are

encrypted. The following possibilities therefore exist: (a) individual streams/data

structures are unencrypted (in the clear), the Aggregate Stream is unencrypted; (b)

individual streams/data structures are unencrypted prior to multiplexing, the Aggregate
Strea.rn is encrypted following multiplexing; (c) individual streams/data structures are

encrypted prior to multiplexing, the Aggregate Stream is not encrypted following
multiplexing; or (d) individual streams/data structures are encrypted prior to multiplexing,
the Aggregate Stream is encrypted following multiplexing.

5. A CMPO may be associated with a channel (CCMPO), a work (MCMPO) or an
individual Object (CMPO).

6. A CMPO may be received prior to the controlled data, may be received

contemporaneously with the data, or may be received after the data (in which event use of

the data must wait until the CMPO has been received).

7. A CMPO may be received as part of an Aggregate Stream or separately.

suasrrrurs sneer (nuua 26)

Petitioner Apple Inc. - Ex. 1025, p. 4323

Petitioner Apple Inc. - Ex. 1025, p. 4324

10

15

20A

25

30

wo 99/43295 PCT/US99/05734

-50-

8. If a CMPO is received as part of the Aggregate Stream, it may be multiplexed

together with the individual streams or data structures, or may constitute a separate stream
or data structure. .

9. If a CMPO is multiplexed within the Aggregate Stream, it may be encrypted or

nonencrypted. If encrypted, it may be encrypted prior to multiplexing, and/or encrypted
afier multiplexing, if the entire Aggregate Stream is encrypted. I

10. If a CMPO is received as part of the Aggregate Stream, it may be (a) a part of
the stream or data structure which holds the content (e.g., a header); (b) a separate stream
or data structure encoded pursuant to the same format as the streams or data structures

which hold the content (e.g., an MPEG-4 ES) or (c) a separate stream or data structure

encoded under a different format designed for CMPOS.

11. If a CMPO is a part of the stream or data structure which holds the content, it

may be (a) a header which is received once and then persistently maintained for control of

the content; (b) a header which is received at regular intervals within the stream or data
' structure; or (c) data distributed throughout the stream or data structure.

These various scenarios give rise to difi'erent requirements for demultiplexing and
decryption of the CMPOs. FIG. 25 illustrates the following embodiment:

1. Aggregate Stream 2501 is made up ofmultiplexed ESs (e.g., ES 2502 and 2503).
A combination of such ESs makes up a single work. Aggregateistream 2501 is generated
by a cable aggregator and received by a user's set—top box as one of a number of channels.

2. CCMPOS 2504 corresponding to each channel are sent along the cable in Header

2505 at regular intervals (e.g., once per second). When the set-top box is turned on, it polls

each channel, and downloads all current CCMPOS. These are storedpersistently, and are
changed only if a new CCMPO is received which difl°ers from prior CCMPOs.

3. When the user selects a charmel, the set-top box addresses the associated

CCMPO. The CCMPO may specify, for example, that content in this particular channel

may only be accessed by subscribers to the channel._ A CMPS within the set-top box
accesses a user profile persistently stored in NVRAM and determines that the user is a

subscriber. The CMPS deems the CCMPO rule to have been satisfied.

4. The CMPS obtains an identifier for the MCMPO associated with the work
(video) currently streaming on the charmel and a key for the MCMPO. Ifworks are

received serially on the charmel (e.g., a television charmel in which one work is provided at
a time), the received MCMLPO identifier may include don't care bits so that it can address

any MCMPO currently on the channel.

suas1'rruTE SHEET (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4324

Petitioner Apple Inc. - Ex. 1025, p. 4325

'10

15

20

25

30

35

wo 99/48296 PCT/US99/05734

-51-

5. The CMPS begins dernuxing of Aggregate Stream 2501 (this may occur in

parallel with the preceding step), and obtains the MCMPO, which is encoded into an ES

multiplexed within the Aggregate Stream (e.g., MCMPO 2506). Although each ES within

Aggregate Stream 2501 has been encrypted, Aggregate Stream 2501 was not encrypted
following multiplexing. This allows the CMPS to demultiplex Aggregate Stream 2501
without decrypting the entire Aggregate Stream. I

6. The CMPS identifies the ES which constitutes the MCMPO (e.g., ES 2503).

The CMPS downloads one complete instance ofMCMPO 2506 into an internal buffer, and
uses the key received fi'om CCMPO 2504 to decrypt MCMPO 2506.

7. The CMPS determines which rules are applied by MCMPO 2506. MCMPO

2506 might, for example, include a rule stating that the user can view the associated work

with advertisements at a low fee, but must pay a higher fee for viewing the work without
advertisements.

8. The CMPS generates an options menu, and displays that menu on the screen for

the user. The menu specifies the options, including the cost for each option. Additional

options may be specified, including payment types.

9. The user uses a remote control pointing device to choose to view the work at a

lower cost but with advertisements. The user specifies that payment can be made from an
electronic cash budget stored in the CMPS. '

10. The CMPS subtracts the specified amount fiom the budget persistently stored
in NVRAM, and generates and encrypts a message to a server associated with the cable.

The message transfers the required budget to the server, either by transferring electronic
cash, or by authorizing a financial clearinghouse to transfer the amount fi'om the user's

account to the cable providers. This message may be sent immediately, or may be

buffered to be sent later (e.g., when the user connects the device to the Internet). This step
may be taken in parallel with decryption of the content.)

1 1. The CMPS obtains fiom MCMPO 2506 a set ofkeys used to decrypt the

Elementary Streams associated with the work (e.g., ES 2502). The CMPS also obtains

identifiers for the specific ESs to be used. Since the user has indicated that advertisements

are to be included, the MCMPO identifies ESs associated with the advertisements, and
identifies a Scene Descriptor Graph which includes advertisements. A Scene Descriptor

Graph which does not include advertisements is not identified, and is not passed through by
the CMPS.

12. The CMPS passes the decrypted PS5 to the MPEG-4 buffers. The nonnal

process of MPEG-4 decoding, compositing and rendering then takes place. The Composite

suasrrrure sneer (RULE 26)

Petitioner Apple Inc. - Ex. 1025, p. 4325

Petitioner Apple Inc. - Ex. 1025, p. 4326

10

15

20

25

30

35

WO 99/43295 PCT/US99/05734

.52-

and Render block outputs Start and Stop events for each object released for viewing. The
CMPS monitors this information and compares it to the expected events. In particular, the
CIVIPS confirms that the advertisements have been released for viewing, and that each
operation has occupied approximately the expected amount of time.

In another embodiment, a set-top box containing a CMPS (e.g., CMPS 2302 from

FIG. 23) may have a cable input (e.g., carrying M4 Bit Streams 2314 and CMPOs 2303).
The cable may carry multiple charmels, each made up of two sub-channels, with one sub-

channel carrying MPEG-4 ESs (e.g., M4 Bit Streams 2314), and the other sub-channel

carrying CMPOs (e.g., ClVIPOs 2303). The sub-charmel carrying CMPOs 2303 could be

routed directly to CMPS 2302, with the ES channel being routed to a decryption block
(operating under control of the CMPS, e.g., CR&D 2315), and then to the MPEG-4 buffers

(e.g., buffers associated with Scene Descriptor Graph 2306, AVO Decode 2307 and Object
Descriptors 2308). In this case, if the ESs are not encrypted, they proceed unchanged
through the decryption block and into the buffers. This may occur, for example, if the ESs

are being broadcast for free, with no restrictions, and/or if they are public domain

information, and/or they were created prior to inclusion of ClVIPOs in the MPEG-4
standard. 0

Such an embodiment might include timing synchronization information in the

CMPO sub-channel, so that CMPOs can be synchronized with the associated ESs.

The concept of incorporating two separate streams, one consisting ofcontrol

information and connected directly to the CMPS, and the other consisting ofESs, may
support a high degree ofmodularization, such that the formats of CMPOs, and particular

types ofCMPS‘s, may be changed without alteration to the underlying ES format. For

example, it may be possible to change the CMPO format without the necessity for

reformatting content ESs. To take another example, it may be possible to upgrade a

Commerce Appliance by including a new or different CMPS, without the necessity for any
changes to any of the circuitry designed to demultiplex, composite and render the content

ESs. A user might obtain a CMPS on a smart card or other removable device, and plug that
device into a Commerce Appliance. This could be done to customize a Commerce

Appliance for a particular application or for particular content.

CMPS Interface to a CE Device .

A CMPS may be designed to present a standardized interface between the general-
purpose functionality of a consumer electronics device and any relevant CMPOs and/or

other CI and protected content. For example, a CMPS could be designed to accept CI and
encrypted‘ESs, and output decrypted ESs into the device's buffers. In such a case, the

SUBSTITUTE SHEET (nuua 26)

Petitioner Apple Inc. - Ex. 1025, p. 4326

Petitioner Apple Inc. - Ex. 1025, p. 4327

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

’ -53-

manufacturer of the device would be able to design the device in compliance with the

specification (e.g., MPEG-4), without concern about commerce-related extensions to the

standard, which extensions might differ from provider to provider. All such extensions

would be handled by the CMPS.

Initialization

1. Initialization of the CMPS.

A CMPS may be used to identify the capabilities of the Commerce

Appliance in which a CMPS is installed. A CMPS permanently associated with a

particular Commerce Appliance may have such information designed-in when the CMPS is

initially installed (e.g., stored in ROM 2406 shown in FlG.24). A CMPS which is

removable may be used to run an initialization operation in order to obtain information

about the device's capabilities. Such infonnation may be stored in a data structure stored in

NVRAM 2425. Alternatively, some or all of such information may be gathered each time
the device is turned on, and stored ir1 RAM 2414.

For example, a DVD player may or may not contain a connection to an external

server and/or process. A CMPO and/or other CI stored on a DVD (and/or any other format

optical disk) inserted into a DVD (or any other format optical disk) player may include

rules predicated on the possibility of outputting infomlation to a server (e.g., content is free

if user identification information is output), or may require a direct connection in order, for

example, to download keys used to decrypt content. In such a case, the CMPS arrangement

may determine the hardware functionality which is expected by or required by the CMPO,

and compare that to the hardware actually present. If the CMPS determines that the CMPO

and/or other CI requires a network connection , and that the DVD player does not include

such a connection, the CMPS may take a variety of steps, including: (1) if the network

connection is required for sorrle options but not others, causing only those options which

are possible to be displayed to the user; (2) informing the user that necessary hardware is

missing; or (3) causing a graceful rejection of the disk, including infonning the user of the
reason for the rejection. I

To take another example, a CMPO and/or other CI may include a business model

which allows the user to choose among quality levels (or other fomis of variations of a

given work, for example, longer length and/or greater options), with a higher price being
charged if the user selects a higher level ofquality (e.g., music may be played at low
resolution for fi'ee, but requires a payment in order to be played at a higher resolution). In
such a case, the Commerce Appliance may not include loudspeakers which are capable of
outputting sound at the higher resolution. The CMPS arrangement preferably identifies

this situation, and either eliminates the higher resolution output as an option for the user, or

suasrrrure SHEET (RULE 25)

Petitioner Apple Inc. - Ex. 1025, p. 4327

Petitioner Apple Inc. - Ex. 1025, p. 4328

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-54-I

informs the user that this option costs more but provides no additional benefit given the

Commerce Appliance's current functionality or given the Commerce Appliance not being

docked in a user arrangement that provides higher quality loudspeakers.

If the Commerce Appliance may be hooked up to external devices (e.g.,

loudspeakers, display, etc.), the CMPS will require some mechanism for identifying and

registering such devices. Each device may be used to make standard ID and capability .

information available at all times, thereby allowing the CMPS to poll all connected devices

at regular intervals, including, for example, authenticating CMPS arrangements within one

or more of each such connected devices. Using another approach, all devices could be used

to output CMPS identification information upon power-on, with later connected devices

being used to output such information upon establishment of the connection. Such

identification information may take the form, for example, of authentication information

provided under the “five company arrangement”, such authentication methods are herein

incorporated by reference.

As discussed earlier, a Commerce Appliance may be connected to multiple devices

each containing its own CMPS arrangement (e.g., a DVD player may be connected to a

digital TV) In such cases, the CMPSs must be able to initiate secure communication (e. g.,

using a scheme, for example, like the “five company proposal” for IEEE 1394 serial bus)

and determine how the CMPSs will interact with respect to content communication

between CMPSs and, in certain embodiments, regarding cooperative governance of such

content such as describing in the incorporated Shear patent application. In one

embodiment, the first CMPS arrangement to receive content might govern the control

process by downloading an initial CMPO and/or other Cl, and display one or more of the

rules to the user, etc. The second CMPS arrangement might recognize that it has no further

role to play, either as a result of a communication between the two CMPS arrangements, or

as a result of changes to the content stream created by the first CMPS arrangement (which

decrypted the content, and may have allowed demuxing, composition and rendering, etc.)

The relationship between upstream and downstream CMPSs arrangements may be

complicated if one device handles certain aspects of MPEG-4 rendering, and the other

handles other aspects. _For example, a DVD player might handle demuxing and buffering,

transfening raw ESs to a digital TV, which then handles compositionand rendering, as

well as display. In such a case, there might be no back-charmel from the composition and

rendering block to the upstream CMPS arrangement. CMPS arrangements are preferably

designed to handle stand-alone cases (a DVD (or any other optical disk) player with a

CMPS arrangement attached to a dumb TV with no CMPS), multiple CMPS arrangement

Petitioner Apple Inc. - Ex. 1025, p. 4328

Petitioner Apple Inc. - Ex. 1025, p. 4329

10

15

20

.25

30

35

WO 99/43295 PCT/US99/05734

-55-

cases in which o_ne CMPS arrangement handles all of the processing (a DVD (or other

optical disk) player which handles everything through composition and rendering, with a

video stream output to the digital TV (in one non-limiting example, via an IEEE 1349

serial bus) (that output stream would be encrypted as per the “five company proposal” for

copy protection using IEEE 1394 serial bus transmission)) and/or shared processing

between two or more CMPSS arrangements regarding some, or in certain cases, all, of such
processing.

2. Initialization of a particular content stream.

The CMPS may be designed so that it can accept initialization information I

which initializes the CMPS for a particular content stream or channel. This header, which
may be a CMPO and/or other CI, may contain information used by the CMPS to locate

and/or interpret a particular content stream as well as CI associated with that stream. This

initial header may be received through a Sideband charmel, or may be received as a CI ES
such as a CMPO ES.

In one example, shown in FIG. 26, Header CMPO 2601 may include the following
information: i

(a) Stream/Object/CMPO ID 2602, which identifies the content

streams/objects governed by Header CMPO 2601 and/or identification of CMPOs

associated with each such content stream or object.

In one embodiment, Header CMPO 2601 identifies other CMPOs which contain

rules and keys associated with particular content streams. In another embodiment, Header

CMPO 2601 directly controls all content streams, by incorporating the keys and rules

associated with such streams. In the latter case, no other CMPOs may be used.

In one embodiment, Header CMPO 2601 may be one or more CMPOs, CCMPOs,
MCMPOS, and/or other CI.

(b) One or CMPO Keys 2603 for decrypting each identified CMPO.

(c) Work-Level Control 2604, consisting of basic control information

associated with the work as a whole, and therefore potentially applicable to all of the

content streams which makeup the work. This basic control information may include rules

governing the work as a whole, including options to be presented to the user.

((1) In one embodiment of this embodiment, a header CMPO may be

updatable to contain UserlSite Information 2605 regarding a particular user or site currently
authorized to use certain content, as well as one or more rule sets under which the user has

gained such authorization. A header CMPO associated with a work currently being viewed
may be stored in RAM or NVRAM. This may include updated information. In one

Petitioner Apple Inc. - Ex. 1025, p. 4329

Petitioner Apple Inc. - Ex. 1025, p. 4330

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-56-

embodiment, the CMPO may also store header CMPOS for certain works viewed in the

past: In one embodiment, header CMPOS may be stored in non-secure memory, with
information sufficient to identify and authenticate that each header CMPO had not been
changed.

In one such header CMPO embodiment of this embodiment, the header CMPO

operates as follows:

(a) The header CMPO is received by a CMPS arrangement. In the case of

previously unreceived content which has now become available, the header CMPO may be
received at an input port. In the case of content which is already available, but is not

currently being used (e.g., a set-top box with 500 channels, ofwhich either 0 or 1 are being
displayed at any given time), CCMPOS for each channel may be buffered by the CMPS

arrangement for possible use if the user invokes particular content (e.g., switches to a

particular channel).

In either case, the header CMPO must include infonnation which allows a CMPS

arrangement to identify it as a header CMPO.

(b) The CMPS arrangement obtains business-model information held in the

clear in the header CMPO. Business—model information may include, for example, a

statement that content can be viewed for free if advertisements are included, or if the user

authorizes Nielson-type information, user and/or audience measurement information, for

example, content may be output to a server or otherwise copied once, but only at a price.

(c) The CMPS arrangement either accepts the business model, if the user

has authorized it to accept certain types of models (e.g., the user has programmed the
CMPS arrangement to always accept play with advertisements for free), rejects the

business model, if the user has instructed that the particular model always be rejected, or

displays the business model to the user (e.g., by presenting options on the screen).

(d) If a business model has been accepted, the CMPS arrangement then

decrypts the remainder of the header CMPO. If the Commerce Appliance contains a live

output connection to an external server (e.g., Internet connection, back-channel on a set-top

box, etc.), and if latency problems are handled, decryption ofthese keys can be handled by
communicating with the external server, each side authenticating the other, establishment

of a secure channel, and receipt of a key from the server. If the Commerce Appliance is not

at least occasionally connected to an external server, decryption may have to be based on

one or more keys securely stored in the Commerce Appliance.

(e) Once a header CMPO has been decrypted, the CMPS arrangement

acquires information used to identify and locate the streams containing the content, and

Petitioner Apple Inc. - Ex. 1025, p. 4330

Petitioner Apple Inc. - Ex. 1025, p. 4331

10

15

20

25

30

35

WO 99/48296 PCT_/US99/05734

-57-

keys which are used to decrypt either the CMPOS associated with the content, or to directly
decrypt the content itself.

(0 In one embodiment of this header embodiment, the header CMPO may

contain a data structure for the storage of information added by the CMPS arrangement.
Such information may include the following:

(1) Identification of user and/or Commerce Appliance and/or CMPS

arrangement. In this embodiment, such information may be stored in a header CMPO in

order to provide an audit trail in the event the work (including the header CMPO) is

transferred (this only works if the header CMPO is transferred in a writable form). Such
information may be used to allow a user to transfer the work to other Commerce

Appliances owned by the user without the payment of additional cost, if such transfers are

allowed by rule information associated with the header CMPO. For example, a user may
have a subscription to a particular cable service, paid for in advance by the user. When a

CMPS arrangement downloads a header CMPO from that cable service, the CMPS

arrangement may store the user's identification in the header CMPO. The CMPS

arrangement may then require that the updated header CMPO be included if the content is

copied or transferred. The header CMPO could include a rule stating that, once the user

information has been filled in, the associated content can only be viewed by that user,
and/or by Commerce Appliances associated with that user. This would allow the user to

make multiple copies of the work, and to display the work on multiple Commerce

Appliances, but those copies could not be displayed or used by non-authorized users and/or
on non-authorized Commerce Appliances. The header CMPO might also include a rule

stating that the user information can only be changed by an authorized user (e.g., if user 1

transfers the work to user 2, user 2's CMPS arrangement can update the user information in

the header CMPO, thereby allowing user 2 to view the work, but only if user 2 is also a
subscriber to the cable channel).

(2) Identification of particular rules options governing use. "Rule
"A sets included in header CMPOs may include options. In certain cases, exercise of a
particular option might preclude later exercise of a different option. For example, a user
might be given the choice to view an unchanged work for one price, or to change a work

and view the changed work for a higher price. Once the user decides to change the work

and view the changed work, this choice is preferably stored in the header CMPO, since the

option of viewing the original unchanged work at the lower price is no longer available.

The user might have further acquired the right, or may now be presented with the option for

the right, to further distribute the changed work at a mark-up in cost resulting in third party

Petitioner Apple Inc. - Ex. 1025, p. 4331

Petitioner Apple Inc. - Ex. 1025, p. 4332

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-53-

derived revenue and usage information flowing to both the user and the original work
stakeholder(s). _

(3) Historical usage information. The header CMPO may include

information relating to the number and types of usages. For example, if the underlying
work is copied, the header CMPO may be updated to reflect the fact that a copy has been

made, since a rule associated with the work might allow only a single copy (e.g., for

backup and/or timeshifiing purposes). To take another example, a user might obtain the

right to view a work one time, or for a certain number of times. The header CMPO would
then be updated to reflect each such use.

Usage information may be used to determine if additional uses are authorized by
rules associated with the header CMPO. Such infonnation may also be used for audit

purposes. Such information may also be provided as usage information exhaust, reported

to an external server. For example, a rule may specify that a work may be viewed for free,
but only if historical usage information is downloaded to a server.

Content Management Protection Objects (CMPO)

The Content Management and Protection Object ("CMPO") is a data structure

which includes information used by the CMPS to govern use of certain content. A CMPO

may be formatted as a data structure specified by a particular standard (e.g., an MPEG-4

BS), or may be formatted as a data structure not defined by the standard. If the CMPO is

formatted as a data structure specified by the standard, it may be received in the channel

utilized by the standard (e.g., as part of a composite MPEG-4 stream) or may be received

through some other, side-band method. If the CMPO is formatted as a data structure not

specified by the relevant standard, it is provided and decoded using some side-band

method, which may include receipt through the same port as formatted content and/or may
include receipt through a separate port.

Content may be controlled at virtually any level of granularity. Three exemplary

levels will be discussed herein: "channel," "work," and "object."

A "channel" represents an.aggregation of works. The works may be available for

selection by the user (e.g., a web site, or a video library) or may be received serially (e.g., a
cable television channel).

A "work" represents a single ‘audio-visual, textual or other work, intended to be

consumed (viewed, read, etc.) by a user as an integrated whole. A work may, for example,
be a movie, a song, a magazine article, a multimedia product such, for example, as

sophisticated videogame. A work may incorporate other works, as, for example, in a

multimedia work which incorporates songs, video, text, etc. In such a case, rights may be

Petitioner Apple Inc. -‘Ex. 1025, p. 4332

Petitioner Apple Inc. - Ex. 1025, p. 4333

10

15

20

25

30

35

wo 99/43295 PCT/US99/05734

-59-

associated

An "object" represents a separately addressable portion of a work. An object may

be, for example, an individual MPEG-4 AVO, a scene descriptor graph, an object

descriptor, the soundtrack for a movie, a weapon in a videogame, or any other logically
definable portion.

Content may be controlled at any of these levels (as well as intermediate levels not

discussed herein). The preferred embodiment mechanism for such control is a CMPO or

CMPO arrangement (which comprises one or more CMPOs, and if plural, then plural,

cooperating CMPOs). CMPOs and CMPO arrangements may be organized hierarchically,
with a Channel CMPO arrangement imposing rules applicable to all contained works, a

MCMPO or an SGCMPO imposing rules applicable to all objects within a work, and a

CMPO arrangement imposing rules applicable to a particular object.

In one embodiment, illustrated in FIG. 27, a CMPS may download CCMPO 2701.

CCMPO 2701 may include one or more Rules 2702 applicable to all content in the

channel, as well as one or more Keys 2703 used for decryption of one or more MCMPOS

and/or SGC'MPOs. MCMPO 2704 may include Rules 2705 applicable to a single work
and/or works, one or more classes and/or more users and/or user classes, and may also

include Keys 2706 used to decrypt CMPOs. CMPO 2707 may include Rules 2708

applicable to an individual object, as well as Key 2709 used to decrypt the object.

As long as all objects are subject to control at some level, there is no requirement

that each object be individually controlled. For example, CCMPO 2701 could specify a _
single rule for viewing content contained in its channel (e.g., content can only be viewed by

a subscriber, who is then might be free to redistribute the content with no fiirther obligation

to the content provider). In such a case, rules would not necessarily be used for MCMPOS

(e.g. Rules 2705), SGCMPOS, or CMPOs (e.g., Rules 2708). In one embodiment, _

MCMPOS, SGCMPOS, and CMPOs could be dispensed with, and CCMPO 2701 could

include all keys used to decrypt all content, or could specify a location where such keys

could be located. In another embodiment, CCMPO 2701 would supply Key 2703 used to

A decrypt MCMPO 2704. MCMPO 2704 might include keys used to decrypt CMPOs (e.g.,

Keys 2706), but might include no additional Rules 2705. CMPO 2707 might include Key _

2709 used to decrypt an object, but might include no additional Rules 2708. In certain

embodiments, there may be no SGCMPOS. .

A CMPO may be contained within a content data structure specified by a relevant

standard (e.g., the CMPO may be part of a header in an MPEG-4 ES.) A CMPO may be

contained within its own, dedicated data structure specified by a relevant standard (e.g., a

Petitioner Apple Inc. - Ex. 1025, p. 4333

Petitioner Apple Inc. - Ex. 1025, p. 4334

20

25

30

wo 99/43295 PCI‘/US99/0512734

-60 -

CMPO ES). A CMPO may be contained within a data structure not specified by any
content standard (e.g., a CMPO contained within a DigiBox).

A CCMPO may include the following elements:

(a) ID 2710. This may take the following form: <charmel ID>< CMPO

type><CMPO ID><version number>. In the case of hierarchical CMPO organization (e.g.,
CCMPOs controlling MCMPOs controlling CMPOS), CMPO ID 2711 can include one-

field for each level of the hierarchy, thereby allowing CMPO ID 2711 to specify the

location of any particular CMPO in the organization. ID 2710 for a CCMPO may, for

example, be 123-000-000. ID 2712 for a MCMPO of a work within that channel may, for
example, be 123-456-000, thereby allowing the specification of 1,000 MCMPOs as

controlled by the CCMPO identified as "123." CMPO ID 2711 for a CMPO associated

with an object within the particular work may, for example, be 123-456-789, thereby
allowing the specification of 1,000 CMPOs as associated with each MCMPO.

This method of specifying CMPO IDs thereby conveys the exact location of any
CMPO within a hierarchy of CMPOs. For cases in which higher levels of the hierarchy do
not exist (e.‘g., a MCMPO with no associated CCMPO), the digits associated with that level

of the hierarchy may be specified as zeroes.

A (b) Rules 2702 applicable to all content in the channel. These may be self-
contained rules, or may be pointers to rules obtainable elsewhere. Rules are optional at this
level.

(c) Information 2713 designed for display in the event the user is unable to

comply with the rules (e.g., an advertisement screen informing the user that a subscription

is available at a certain cost, and including a list of content available on the channel).

(d) Keys 2703 for the decryption of each MClvfl’O controlled by this

CCMPO. In one embodiment, the CCMPO includes one or more keys which decrypt all

MCMPOs. In an alternate embodiment, the CCMPO includes one or more specific keys
for each MCMPO.

(e) A specification of a CMPS Type (2714), or ofhardware/software

necessary or desirable to use the content associated with this channel.

The contents of a MCMPO may be similar to those of a CCMPO, except that the

MCMPO may include rules applicable to a single work, and may identify CMPOs
associated with each object.

The contents of each CMPO may be similar to those of the MCMPO, except that

the CMPO may include rules and keys applicable to a single object.

Petitioner Apple Inc. - Ex. 1025, p. 4334

Petitioner Apple Inc. - Ex. 1025, p. 4335

10

15

20

25

30

35

wo 99/43296 PCT/US99/05734

-51-

The contents of an SGCMPO may be similar to those of the CCMPO, except that

the MCMPO may include rules applicable to only certain one or more classes of rights,
certain one or more classes of works, and/or to one or more certain classes of users and/or

user arrangements (e.g. CMPO arrangements and/or their devices). A

In another embodiment, shown in FIG. 28, CMPO Data Structure 2801 may be
defined as follows;

CMPO Data Structure 2801 is made up of elements. Each element includes a self-

contained item of information. The CMPS parses CMPO Data Structure, one element at a
time.

Type Element 2802 identifies the data structure as a CMPO, thereby allowing the

CMPS to distinguish it from a content ES. In an exemplary embodiment, this element may
include 4 bits, each of which may be set to "1" to indicate that the data structure is a
CMPO.

The second element is CMPO Identifier 2803, which is used to identify this ~

particular CMPO and to convey whether the CMPO is part of a hierarchical organization of
CMPOs and, if so, where this CMPO fits into that organization.

CMPO Identifier 2803 is divided into four-sub-elements, each of three bits. These

are shown as sub-elements A, B, C and D. The first sub-element (2 803 A) identifies the

CMPO type, and indicates whether the CMPO is governed or controlled by any other
CMPO:

- 100: this is a top-level CMPO (associated with a c_harmel or an aggregation of
works) and is not controlled by any other CMPO.

I 010: this is a mid-level CMPO (associated with a particular work) and is not
controlled by any other CMPO.

110: this isa mid-level CMPO, and is controlled by a top-level CMPO.

001: this is a low-level CMPO (associated with an object within a work) and is not
controlled by any other CMPO. This case will be rare, since a low-level CMPO will

ordinarily be controlled by at least one higher-level CMPO, I

011: this is a low-level CMPO, and is controlled by a mid-level CMPO, but not by
a top-level CMPO.

111: this is a low-level CMPO, and is controlled by a top-level CMPO and by a
mid-level CMPO.

The second sub-element of CMPO ID 2803 (sub-element B) identifies a top-level

CMPO. In the case of a top-level CMPO, this identifier is assigned ‘by the creator of the

CMPO. In the case of a mid-level or low-level CMPO which is controlled by a top-level

Petitioner Apple Inc. - Ex. 1025, p. 4335

Petitioner Apple Inc. - Ex. 1025, p. 4336

10

15

20

25

30

35

WO 99/48296 . PCT/US99/05734

-52-

CMPO, this sub-element contains the identification of the top-level CMPO which performs
such control. In the case of a mid-level or low-level CMPO which is not controlled by a
top-level CMPO, this sub-element contains zeroes.

The third sub-element of CMPO ID 2803 (sub-element C) identifies a mid-level

CMPO. In the case of a top-level CMPO, this sub-element contains zeroes. In the case of

a mid-level CMPO, this sub-element contains the identification of the particular CMPO. In

- the case ofa low-level CMPO which is controlled by a mid-level CMPO, this sub-element

contains the identification of the mid-level CMPO which performs such control. In the

case of a low-level CMPO which is not controlled by a mid-level CMPO, this sub-element

contains zeroes. ,

The fourth sub-element of CMPO ID 2803 (sub-element D) identifies a low-level

CMPO. In the case of a top-level or mid-level CMPO, this sub-element contains zeroes.
In the case of a low-level CMPO, this sub-element contains the identification of the

' particular CMPO.

Following the identifier element is Size Element 2804 indicating the size of the

CMPO data snucture. This element contains the number ofelements (or bytes) to the final
element in the data structure. This element may be rewritten if alterations are made to the

CMPO. The CMPS may use this size information to determine whether the element has

been altered without permission, since such an alteration might result in a different size.

For such purposes, the CMPS may store the information contained in this element in a

protected database. This information can also be used to establish that the entire CMPO

has been received and is available, prior to any attempt to proceed with processing.
Following Size Element 2804 are one or more Ownership/Control Elements

containing ownership and chain of control information (e.g., Ownership/Control Elements

2805, 2806 and 2807). In the first such element (2805), the creator of the CMPO may

include a specific identifier associated with that creator. Additional participants may also
be identified in following elements (e.g., 2806, 2807). For example, Element 2805 could

identify the creator of the CMPO, Element 2806'could identify the publisher of the
associated work and Element 2807’ could identify the author of the work.

A specific End Element 2808 sequence (e.g., 0000) indicates the end of the chain of

ownership elements. If this sequence is encountered in the first element, this indicates that

no chain of ownership information is present.

Chain of ownership information can be added, if rules associated with CMPO 2801

permit such additions. If, for example, a user purchases the work associated with CMPO

2801, the user's identification may be added as a new element in the chain of ownership

Petitioner Apple Inc. - Ex. 1025, 4336

Petitioner Apple Inc. - Ex. 1025, p. 4337

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-63-

elements (e.g., a new element following 2807, but before 2808). This may be done at the

point of purchase, or may be accomplished by the CMPS once CMPO 2801 is encountered

and the CMPS determines that the user has purchased the associated work. In such a case,

the CMPS may obtain the user identifier from a data structure stored by the CMPS in

NVRAM. V

Following the ownership element chain are one or more Handling Elements (e.g.,
2809, 2810) indicating chain of handling. These elements may contain the identification of

any CMPS which has downloaded and decoded CMPO 2801, and/or may contain the

identification of any user associated with any such CMPS. Such information may be used
for audit purposes, to allow a trail of handling in the event a work is "determined to have

been circulated improperly. Such information may also be reported as exhaust to a

clearinghouse or central server. Chain of handling information preferably remains
persistent until reported. If the number of elements required for such information exceeds a

specified amount (e.g., twenty separate user identifiers), a CMPS may refuse to allow any
further processing of CMPO 2801 or the associated work until the CMPS has been

connected to an external server and has reported the chain of handling information.

The last element in the chain of handling elements (e.g., 2811) indicates the end of

this group ofelements. The contents of this element may, for example, be all zeroes.

Following the chain of handling elements may be one or more Certificate Elements

(e.g., 2812, 2813) containing or pointing to a digital certificate associated with this CMPO.

Such a digital certificate may be used by the CMPS to authenticate the CMPO. The final

element in the digital certificate chain is all zeroes (2814). If no digital certificate is

present, a single element of all zeroes exists in this location.

Following the Certificate Elements may be a set of Governed Object Elements (e.g.,

2815, 2816, 2817, 2818) specifying one or more content objects and/or CMPOs which may
be governed by or associated with CMPO 2801. Each such governed object or CMPO is

identified by a specific identifier and/or by a location where such object or CMPO may be

found (e.g., these may be stored in locations 2815 and 2817). Following each such

identifier may be one or more keys used to decrypt such CMPO or object (e.g., stored in

locations 2816 and 2818). The set of identifiers/keys ends with a termination element

made up of all zeroes (2819).

Following the set of elements specifying identifiers and/or keys may be a set of

Rules Elements (e.g., 2820, 2821, 2822) specifying rules/controls and conditions associated

with use of the content objects and/or CMPOs identified in the Governed Objects chain

(e.g., locations 2815 and 2817). Exemplary rules are described below. Elements may

Petitioner Apple Inc. - Ex. 1025, p. 4337

Petitioner Apple Inc. - Ex. 1025, p. 4338

10

15

20

25

30

35

wo 99/48296 PCTIUS99/05734

-64-

contain explicit rules or may contain pointers to rules stored elsewhere. Conditions may
include particular hardware resources necessary to use associated content objects or to
satisfy certain rules, or particular types of CMPS's which are necessary or preferred for use
of the associated content objects.

Following the rules/controls and conditions elements may be a set of Information

‘ Elements 2823 containing information specified by the creator of the CMPO. Among other
contents, such information may include content, or pointers to content, programming, or
pointers to programming.

The CMPO ends with Final Termination Element 2824.

In one embodiment, the rules contained in Rules Elements 2820-2822 of CMPO

2801 may include, for example, the following operations: V _ _
I (1) Play. This operation allows the user to play the content (though not to
copy it) without restriction.

(2) Navigate. This allows the user to perform certain types of navigation
functions, including fast forward/rewind, stop and search. Search may be indexed or
unindexed.

(3) Copy. Copy may be allowed once (e.g., time-shifting, archiving), may
be allowed for a specified number of times and/or may be allowed for limited period‘ of

time, or may be allowed for an unlimited period of time, so long as other rules, including
relevant budgets, are not violated or exceeded. A CMPS arrangement may be designed so
that a Copy operation may cause an update to an associated CMPO (e.g., including an
indication that the associated content has been copied, identifying the date of copying and
the site responsible for making the copy), without causing any change to any applicable
content object, and in particular without requiring that associated content objects be

demuxed, decrypted or decompressed. In the case of MPEG-4, for example, this may
require the following multi-stage demux process:

(i) the CMPS arrangement receives a Copy instruction from the
user, or from a header CMPO.

‘ (ii) CMPO ESs associated with the MPEG-4 stream which is to be
copied are separated from the content stream in a first demux stage.

(iii) CMPOS are decrypted and updated by the CMPS arrangement.
The CMPOs are then remuxed with the content ESs (which have never been demuxed from

each other), and the entire stream is routed to the output port without further alteration.

This process allows a copy operation to take place without requiring that the

content streams be demuxed and decrypted. It requires that the CMPS arrangement include

Petitioner Apple Inc. - Ex. 1025, p. 4338

Petitioner Apple Inc. - Ex. 1025, p. 4339

10

15

20

25

30

35

wo 99/43295 PCT/US99/05734

._-65-

two outputs: one output connected to the digital output port (e.g., FIG. 23 line 2316,
connecting to Digital Output Port 2317), and one output connected to the MPEG-4 buffers
(e.g., FIG. 23, lines 2310, 2311, 2312), with a switch designed to send content to one

output or the other (or to both, if content is to be viewed and copied simultaneously) (e.g.,
Switch 2319). Switch 2319 can be the only path to Digital Output Port 2317, thereby
allowing CMPS 2302 to exercise direct control over that port, and to ensure that content is

never sent to that port unless authorized by a control. If Digital Output Port 2317 is also
the connector to a digital display device, CMPS 2302 will also have to authorize content to
be sent to that port even if no copy operation has been authorized.

In one example embodiment, the receiving device receiving the information

through Digital Output Port 2317 may have to authenticate with the sending device (e.g.,
CMPS 2302). Authentication may be for any characteristic of the device and/or one or

more CMPSs used in conjunction with that device. Thus, for example, a sending appliance
may not transmit content to a storage device lacking a compatible CMPS.

In another non—1imiting example, CMPS 2302 can incorporate session encryption
functionality (e.g., the “five company arrangement”) which establishes a secure channel

from a sending interface to one or more external device interfaces (e.g., a digital monitor),
and provided that the receiving interface has authenticated with the sending interface,
encrypts the content so that it can only be decrypted by one or more authenticated 1394

device interfaces. In that case, CMPS 2302 would check for a suitable IEEE 1394 serial

bus interface , and would allow content to flow to Digital Output Port 2317 only if (a) an
authorized Play operation has been invoked, a secure channel has been established with the

device and the content has been session-encrypted, or (b) an authorized Copy or Retransmit

decrypted or demuxed).

This is only possible if CMPOs are separately identifiable at an early demux stage,
which most likely requires that they be stored in separate CMPO ESs. If the CMPOs are
stored as headers in content ESs, it may be impossible to identify the CMPOs prior to a full
demux and decrypt operation on the entirety of the stream.

(4) Change. The user may be authorized to change the content.

(5) Delete. This command allows the user to delete content which is stored

in the memory of the Consumer Appliance. This operation operates on the entire work. If

the user wishes to delete a portion of a work, the Change operation must be used.

(6) Transfer. A user may be authorized to transfer a work to a third party.

Petitioner Apple Inc. - Ex. 1025, p. 4339

Petitioner Apple Inc. - Ex. 1025, p. 4340

l0

15

20

25

30

35

WO 99/48296 PCT/U599/05734

-55-

This differs from the Copy operation in that the user does not retain the content or any
rights to the content. The Transfer operation may be carried out by combining a Copy
operation and a Delete operation. Transfer may require alteration of the header CMPO

associated with the work (e.g., adding or altering an Ownership/Control Element, such as
Elements 2805-2807 of FIG. 28), so as to associate rights to the work with the third party.

i. Payment. Operations may be conditioned on some type of user
payment. Payment can take the form of cash payment to a provider (e.g., credit card,
subtraction from a budget), or sending specified information to an external site (e.g.,
Nielson-type information). '

ii. Quality of Service. Operations may specify particular quality of
service parameters (e.g., by specifying a requested QoS in MPEG-4), including: requested
level ofdecompression, requested/required types ofdisplay, rendering devices (e.g., higher
quality loudspeakers, a particular type of game controller). V

iii. Time. Operations may be conditioned such that the operation is
only allowed after a particular time, or such that the price for the operation is tied to the

time (e.g., real-time information at a price, delayed information at a lower price or free,
e.g., allowing controlled copies but only after a particular date).

iv. Display of particular types ofcontent. Operations may be

conditioned on the user authorizing display of certain content (e.g., the play operation may
be free if the user agrees to allow advertisements to be displayed).

In all of these cases, a rule may be modified by one or more other rules. A rule may
specify that it can be modified by other rules or may specify that it is unmodifiable. If a

rule is modifiable, it may be modified by rules sent from other sources. Those rules may
be received separately by the user or may be aggregated and received together by the user.

Data types which may be used in an exemplary MPEG-4 embodiment may include
the following: 0

a. CMP Data Stream.

The CMP-ds is a new elementary stream type that has all of the properties of an
elementary stream including its own CMPO and a reference in the object descriptors. Each
CMP-ds stream has a series of one or more CMP Messages. A CMP_Message has four
parts:

1. Count: ll...n] CMPS types supported by this IP ES. Multiple CMPS
systems may be supported, each identified by a unique type. (There may have

Petitioner Apple Inc. - Ex. 1025, p. 4340

Petitioner Apple Inc. - Ex. 1025, p. 4341

10

15

20

.25

30

35

wo 99/48296 PCT/US99/05734

-57-

to be a central registry of types.)

2. CMPS_type_identifiers: [1 ...n] identifiers, each with an. offset in the

stream and a length. The offset points to the byte in the CMPO where the data

for that CMPS type is found. The length is the length in bytes of this data.

3. Data segments: One segment for each of the n CMPS types encoded in a
format that is proprietary to the CMPS supplier.

4. CMP_Message__URL: That references another CMP_Message. (This is in

keeping with the standard of using URLs to point to streams.)
b. CMPO.

The CMPO is a data structure used to attach detailed CMP control to individual
elementary streams. Each CMPO contains:

1. CMPO__ID: An identifier for the content under control. This identifier must

uniquely identify an elementary stream.

2. CMPO_count: [1...n] CMPS types supported by this CMPO.

3. CMPS_type_identifiers: [1 . . .n] identifiers, each with an offset in the

stream and a length. The offset points to the byte in the CMPO where the data

for that CMPS type is found. The length is the length in bytes of this data.

4. Data segments: n data segments. Each data segment is in a format that is

proprietary to the CMPS supplier.

5. CMPO_URL: An optional URL that references an additional CMPO that

adds information to the information in this CMPO. (This is a way of
dynamically adding support for new CMPSs.)

c. Feedback Event

The feedback events come in two forms: start and end. Each feedback event
contains three pieces of information:

1. Elementary_stream_ID

2. Time: in presentation time

3. Object_instance_number
User Interface.

Commerce Appliance 230] may include User Interface 2304 designed to convey
control-related information to the user and to receive commands and information from the

user. This interface may include special purpose displays (e.g., a light which comes on if a

current action requires payment), special purpose buttons (e.g., a button which accepts the

payment or other terms required for display of content), and/or visual information presented
OI1 SCICCD.

Petitioner Apple Inc. - Ex. 1025, p. 4341

Petitioner Apple Inc. - Ex. 1025, p. 4342

10

15

20

25

30

35

WO 99/48296 PC!‘/US99/05734

-53-

Example of Operation in an MPEG-4 Context

1. User selects a particular work or channel. The user may, for example, use a
remote control device to tune a digital TV to a particular channel.

2. Selection of the channel is communicated to a CMPS arrangement, which uses
the information to either download a CCMPO or to identify a previously downloaded
CCMPO (e.g., if the CMPS arrangement is contained in a set-top box, the set-top box may
automatically download CCMPOs for every channel potentially reachable by the box).

3. The CMPS arrangement uses the CCMPO to identify rules associated with all

content found on the charmel. For example, the CCMPO may specify that content may
only be viewed by subscribers, and may specify that, if the user is not a subscriber, an
advertisement screen should be put up inviting the user to subscribe.

4. Once rules specified by the CCMPO have been satisfied, the CCMPO specifies
the location of a MCMPO associated with a particular work which is available on the I

channel. The channel CMPO may also supply one or more keys used for decryption of the
MCMPO.

5. The CMPS arrangement downloads the MCMPO. In the case of an MPEG-4

embodiment, the MCMPO may be an Elementary Stream. This Elementary Stream must be
identifiable at a relatively early stage in the MPEG-4 decoding process. ‘

6. The CMPS arrangement decrypts the MCMPO, and determines the rules used to

7. The user selects view for free with advertisements, e.g., by highlighting and
selecting an option on the screen using a remote control device.

8. The CMPS arrangement acquires one or more keys from the MCMPO and uses

those keys to decrypt the ESs associated with the video. The CMPS arrangement identifies
two possible scene descriptor graphs, one with and one without advertisements. The CMPS
arrangement passes the scene descriptor graph with advertisements through, and blocks the

other scene descriptor graph. V
9. The CMPS arrangement monitors the composite and render block, and checks to

determine that the advertisement AVOs have actually been released for viewing. If the
CMPS arrangement determines that those AVOs have not been released for viewing, it puts
up an error or warning message, and terminates further decryption.

CMPS Rights Management In Provider And Distribution Chains

In addition to consumer arrangements, in other embodiments one or more CMPSs

Petitioner Apple Inc. - Ex. 1025, p. 4342

Petitioner Apple Inc. - Ex. 1025, p. 4343

10

15

20

25

30

WO 99/48296 PCT/US99/05734

-59-

may be used in creating, capturing, modifying, augmenting, animating, editing, excerpting,
extracting, embedding, enhancing, correcting, fingerprinting, watermarking, and/or
rendering digital information to associate rules with digital information and to enforce those

rules throughout creation, production, distribution, display and/or performance processes.
In one non-limiting example, a CMPS, a non-exhaustive example of which may

include a least a secure portion ofa VDE node as described in the aforementioned Ginter et

al., patent specification, is incorporated in video and digital cameras, audio microphones,
recording, playback, editing, and/or noise reduction devices and/or any other digital device.
Images, video, and/or audio, or any other relevant digital information may be captured,
recorded, and persistently protected using at least one CMPS and/or at least one CMPO.

CMPSs may interact with compression/decompression, encryption/decryption, DSP, digital
to analog, analog to digital, and communications hardware and/or software components of
these devices as well.

In another non-exhaustive example, computer animation, special effects, digital
editing, color correcting, noise reduction, and any other applications that create and/or use

digital information may protect and/or manage rights associatedgwith digital information
using at least one CMPS and/or at least one CMPO.

Another ‘example includes the use of CMPSs and/or CMPOs to manage digital
assets in at least one digital library, asset store, film and/or audio libraries, digital vaults,
and/or any other digital content storage and management means.

In accordance with the present applications, CMPSs and/or CMPOs may be used to
manage rights in conjunction with the public display and/or performance of digital works.
In one non-exhaustive example, flat panel screens, displays, monitors, TV projectors, LCD
projectors, and/or any other means of displaying digital information, may incorporate at
least one hardware and/or sofiware CMPS instance that controls the use of digital works. A
CMPS may allow use only in conjunction with one or more digital credentials, one example
of which is a digital certificate, that warrant that use of the digital information will occur in

a setting, location, and/or other context for public display and/or performance. Non-limiting
examples of said contexts include theaters, bars, clubs, electronic billboards, electronic

displays in public areas, or TVs in airplanes, ships, trains and/or other public conveyances.
These credentials may be issued by trusted third parties such as certifying authorities, non-
exhaustive examples of which are disclosed in the aforementioned Ginter '7l2 patent
application.

Petitioner Apple Inc. - Ex. 1025, p. 4343

Petitioner Apple Inc. - Ex. 1025, p. 4344

10

15

20

25

30

WO 99/48296 PCT/US99/05734

-70-

Additional MPEG-4 Embodiment Information

This work is based on the MPEG-4 description in the version 1 Systems Committee

Draft (CD), currently the most complete description of the evolving MPEG-4 standard.

This section presents the structural modifications to the MPEG-4 player architecture

and discusses the data lines and the concomitant functional changes. Figure 23 shows the
functional components of the original MPEG-4 player. Content arrives at Player 230] '
packaged into a serial stream (e.g., MPEG-4 Bit Stream 2314). It is demultiplexed via a

sequence of three demultiplexing stages (e.g., Demux 2305) into elementary streams.
There are three principle types of elementary streams: AV Objects (AVO), Scene
Descriptor Graph (SDG), and Object Descriptor (OD). These streams are fed into

respective processing elements (e.g., AVO Decode 2307, Scene Descriptor Graph 2306,
Object Descriptors 2308). The AVOs are the multimedia content streams such as audio,
video, synthetic graphics and so on. They are processed by the player’s
compression/coding subsystems. The scene descriptor graph stream is used to build the

scene descriptor graph. This tells Composite and Render 2309 how to construct the scene

and can be thought of as the “script.” The object descriptors contain description information
about the AVOs and the SD-graph updates.

To accommodate a CMPS (e.g., CMPS 2302) and to protect content effectively, the
player structure must be modified in several ways:

0’ Certain data paths must be rerouted to and from the CMPS

0 Certain buffers in the SDG, AVO decode and Object descriptor modules must
be secured

- Feedback paths from the user and the composite and render units to the CMPS

_ must be added '

In order for CMPS 2302 to communicate with the MPEG-4 unit, and for it to

effectively manage content we must specify the CMPO structure and association protocols
and we must define the communication protocols over the feedback systems (from the
compositor and the user.)

The structural modifications to the player are shown in Figure 23. The principal
changes are: '

0 All elementary streams are now routed through CMPS 2302.

0 Direct communication path between Demux 2305 and CMPS 2302.

0 A required “Content Release and Decrypt” Module 2315 in CMPS 23 02.

Petitioner Apple Inc. - Ex. 1025, p. 4344

Petitioner Apple Inc. - Ex. 1025, p. 4345

10

15

20

25

30

35

wo 99/48296 PCT/US99/05734

-71-

0 The addition of a feedback loop (e.g., Line 2313) from Composite and Render
2309 to CMPS 2302.

0 Bi-directional user interaction directly with the CMPS 2302, through Line 2316.

Furthermore, for M4v2P, CMP—objects are preferably associated with a_ll_elementary
streams. Elementary streams that the author chooses not to protect are still marked by an
“unprotected content” CMPO. The CMPOs are the primary means of attaching rules
information to the content. Content here not only refers to AVOs, but also to the scene

descriptor graph. Scene Descriptor Graph may have great value and will thus need to be
protected and managed by CMPS 2302.

The direct path from Demux 2305 to CMPS 2302 is used to pass a CMPS specific
header, that potentially contains business model information, that communicates business

model information at the beginning of user session. This header can be used to initiate user

identification and authentication, communicate rules and consequences, and initiate up-
front interaction with the rules (selection of quality-of-service (QoS), billing, etc.) The
user’s communication with CMPS 2302 is conducted through a non-standardized channel

(e.g., Line 2316). The CMPS designer may provide an independent API for framing these
interactions.

Feedback Path 2313 from Composite and Render block 2309 serves an important
purpose. The path is used to cross check that the system actually presented the user with a

given scene. Elementary streams that are processed by their respective modules may not
necessarily be presented to the user. Furthermore, there are several fraud scenarios wherein

an attacker could pay once and view multiple times. The feedback path here allows CMPS

2302 to cross check the rendering and thereby perform a more accurate accounting. This
feedback is implemented by forcing the Composite and Render block 2309 to issue a start

event that signals the initiation ofa given object’s rendering that is complemented by a stop
event upon termination. The feedback signaling process may be made optional by
providing a CMP-notification flag that may be toggled‘ to indicate whether or not CMPS

2302 should be notified. All CMPOs would be required to carry this flag. _
The final modification to the structure is to require that the clear text buffers in the

AVO, SDG and Object Descriptor processors and in the Composite-and~Render block be

secured. This is to prevent a pirate from stealing content in these buffers. As a practical

matter, this may be difficult, since tampering with these structures may well destroy
synchronization of the streams. However, a higher state of security would come from
placing these buffers into a protected processing environment.

CMPS 2302 governs the functioning ofPlayer 2301, consistent with the following:

Petitioner Apple Inc. - Ex. 1025, p. 4345

Petitioner Apple Inc. - Ex. 1025, p. 4346

10

15

20

25

30

35

WO 99/48296 PCT/US99/05734

-72-

0 Communication mechanism between CMPS 2302 and the MPEG-4 player (via
CMPOs)

0 A content release and decryption subsystem

0 Version authentication subsystem

o Sufiicient performance so as not to interfere with the stream processing in the
MPEG-4 components

CMPS 23 02 may have a bi-directional side-channel that is external to the MPEG-4

player that may also be used for the exchange of CMP information. Furthermore, the
CMPS designer may choose to provide a user interface API that provides the user with the

ability to communicate with the content and rights management side of the stream

management (e.g., through Line 2316).

Encrypted content is decrypted and released by CMPS 23 02 as a fimction of the

rules associated with the protected content and the results of user interaction with CMPS

2302. Unencrypted content is passed through CMPS 2302 and is governed by associated
rules and user interaction with CMPS 23 02. As a consequence of these rules and user

interaction, CMPS 2302 may need to transact with the SDG and AVO coding modules
(e.g., 2310, 2311) to change scene structure and/or the QoS grade.

Ultimately, the CMPS designer may choose to have CMPS 2302 generate audit trail

information that may be sent to a clearinghouse authority via CMPS Side Charmel Port

2318 or as encrypted content that is packaged in the MPEG-4 bit stream.

The MPEG-4 vl Systems CD uses the term “object” loosely. In this document,
“object” is used to specifically mean a data structure that flows from one or more of the
data paths in Figure 23.

Using multiple SD-graph update streams, each with its own CMPO, allows an

author to apply arbitrarily specific controls to the SD-graph. For example, each node in the

SD-graph can be created or modified by a separate SD-graph update stream. Each of these

streams will have a distinct CMPO and ID. Thus, the CMPS can release and decrypt the
creation and modification of each node and receive feedback information for each node

individually. The practical implications for controlling release and implementing
consequences should be comparable to having a CMPO on each node of the SD-graph,
without the costs of having a CMPO on each SD-graph node.

Principles consistent with the present invention may be illustrated using the
following examples:

In the first example, there is a bilingual video with either an English or French

soundtrack. The user can choose during playback to hear either the English or French. The

Petitioner Apple Inc. - Ex. 1025, p. 4346

Petitioner Apple Inc. - Ex. 1025, p. 4347

10

15

20

25

30

WO 99/48296 PCT/US99/05734

-73-

basic presentation costs $1. If the French soundtrack is presented there is a $0.50 surcharge.
If the user switches back and forth between French and English, during a single viewing of
the presentation, the $0.50 surcharge will occur only once.

In this example, there will be four elementary streams: .

The Scene Description Graph Updatestream will have a CMPO. The CMPO will

imply a $1.00 fee associated with the use of the content. The scene description graph -
displays the video, English audio and puts up a button that allows the user to switch to

French. If the user clicks that button, the English stops, the French picks up from that point
and the button changes to a switch-to-English button. (Optionally, there may be a little

dialog at the beginning to allow the user to select the initial language. This is all easy to do
in the SD graph.)

The Video Stream with the CMPO will say that it can only be released if the scene
description graph update stream above is released.

nie English Audio Stream will be similar to the Video stream.

The French Audio Stream will be similar to the Video stream but there is a $.50

charge it if is seen in the feedback channel. (The CMPS must to not count twice if the user

switches between the two in a single play of the presentation.)

An important requirement is that the ID for the SD-graph update stream appears in
the feedback path (e.g., Feedback Path 2313). This is so CMPS 2302 knows when the

presentation stops and ends so that CMPS 2302 can correctly bill for the French audio.

The rules goveming the release of the video and audio streams may include some

variations. The rules for these streams, for example, may state something like "if you don't

see the id for the scene description graph update stream X in the feedback charmel, halt

release of this stream." If the main presentation is not on the display, thenithe video should

not be. This ties the video to this one presentation. Using the video in some other A I

presentation would require access to the original video, not just this protected version of it.

In a second example, an author wants to have a presentation with a free attract

sequence or "trailer". If the user clicks the correct button the system moves into the for-fee

presentation, which is organized as a set of "acts".

5 Multiple SD-graph update streams may update a scene description graph. Multiple
SD-graph update streams may be open in parallel. The time stamps on the‘ALUs in the
streams are used to synchronize and coordinate.

The trailer and each act are represented by a separate SD-graph update stream with a

separate CMPO. There is likely an additional SD-graph update stream that creates a simple

Petitioner Apple Inc. - Ex. 1025, p. 4347

Petitioner Apple Inc. - Ex. 1025, p. 4348

10

wo 99/48296 PCT/US99/05734

.74-

root node that is invisible and silent. This node brings in the other components of the
presentation as needed.

The foregoing description of implementations of the invention has been presented
for purposes of illustration anddescription. It is not exhaustive and does not limit the

invention to the precise form disclosed. Modifications and variations are possible in light
of the above teachings or may be acquired from practicing of the invention. For example,
the described implementation includes software but the present invention may be
implemented as a combination of hardware and software or in hardware alone. The

invention may be implemented with both object—oriented and non-object-oriented

programming systems. The scope of the invention is defined by the claims and their
equivalents.

Petitioner Apple Inc. - Ex. 1025, p. 4348

Petitioner Apple Inc. - Ex. 1025, p. 4349

WO 99/418296 . PCT/US99/05734

_ 75 _

We claim:

1. A streaming media player providing content protection and digital rights
management, including: .

a port configured to receive a digital bit stream, the digital bit stream including:
content which is encrypted at least in part, and

a secure container including control information for controlling use of the

content, including at least one key suitable for decryption of at least a portion of the
content; a.nd

a control arrangement including:

10 means for opening secure containers and extracting cryptographic keys, and
means for decrypting the encrypted portion of the content.

2. The player of Claim 1 in which the digital bit stream includes at least two

sub-streams which have been muxed together, "at least one of the sub-

compressed information, and

streams including

wherein the player further includes:

a demux designed to separate and route the sub-streams;

a decompression unit configured to decompress at least one of the sub-streams, the
decompression unit and the demux being connected by a pathway for the transmission of
information; and

a rendering unit designed to process decompressed content information for

rendering.

3. The player of Claim 2, further including:

a stream controller operatively connected to the decompression unit, the stream

controller including decryption fimctionality configured to decrypt at least a portion of a
sub-stream and pass the decrypted sub-stream to the decompression unit.

4. The player of Claim 3, further including:

a path between the control arrangement and the stream controller to enable the

control arrangement to pass at least one key to thevstream controller for use with the stream

controller’s decryption functionality.

5." The player of Claim 4, further including:

a feedback path from the rendering unit to the control arrangement to allow the

control arrangement to receive information from the rendering unit regarding the
identification of objects which are to be rendered or have been rendered.

6. The player of Claim 1, wherein the digital bit stream is encoded in MPEG-4
format.

Petitioner Apple Inc. - Ex. 1025, p. 4349

Petitioner Apple Inc. - Ex. 1025, p. 4350

wo 99/48296 PCT/US99/05734

_ -

7. The player of Claim 1, wherein the digital bit stream is encoded in MP3
format.

8. The player of Claim 4, wherein the control arrangement contains a rule or

rule set associated with governance of at least one sub-stream or object.
5 9. The player of Claim 8, wherein the rule or rule set is delivered from an

external source. V

10. The player of Claim 9, wherein the rule or rule set is delivered as part of the
digital bit stream.

11. The player of Claim 8, wherein the rule or rule set specifies conditions

under which the govemed sub-stream or object may be decrypted.

12. The player of Claim 8, wherein the rule or rule set governs at least one

aspectuof access to or use of the governed sub-stream or object.

13. The player of Claim 12, wherein the governed aspect includes making copies
of the governed sub-stream or object.

14. The player of Claim 12, wherein the governed aspect includes transmitting

the ’governed sub-stream or object through a digital output port.

15. The player of Claim 14, wherein the rule or rule set specifies that the

governed sub-stream or object can be transferred to a second device, but rendering of the

governed sub-stream or object must be disabled in the first device prior to or during the
transfer.

16. The player of Claim 15, wherein the second device includes rendering

capability, lacks at least one feature present in the streaming media player, and is at least

somewhat more portable than the streaming media player.

17. The player of Claim 11, wherein the control arrangement contains at least

two rules governing access to or use of the same governed sub-stream or object.

18. The player of Claim 17, wherein a first of the two rules was supplied by a

first entity, and thesecond of the two rules was supplied by a second entity.

19. . The player of Claim 18, wherein the first rule controls at least one aspect of
operation of the second rule.

20. ' The player of Claim 12, wherein the governed aspect includes use of at least

one budget. 8

21. The player of Claim 12, wherein the governed aspect includes a requirement

that audit information be provided.

22. The player of Claim 1, wherein the control arrangement includes tamper
resistance.

Petitioner Apple Inc. - Ex. 1025, p. 4350

Petitioner Apple Inc. - Ex. 1025, p. 4351

WO 99/48296 PCT/US99/05734

- 77 _

23. A digital bit stream including:

content information that is compressed and at least in part encrypted; and
a secure container including

governance information for the governance of at least one aspect of

access to or use of at least a portion of the content information; and

a key for decryption of at least a portion of the encrypted content
infonnation.

24. The digital bit stream of Claim 23, wherein the content information is
encoded in MPEG-4 format.

25. The digital bit stream of Claim 23, wherein the content information is
encoded in MP3 fonnat. '

26. A method of rendering a protected digital bit stream including:
receiving the protected digital bit stream,

passing the protected digital bit stream to a media player,

the media player reading first header information identifying a plugin used
to process the protected digital bit stream, theifirst header information

indicating that a first plugin is required;

the media player calling the first plugin;

the media player passing the protected digital bit stream to the first plugin;
the first plugin decrypting at least a portion of the protected digital bit stream;

the first plugin reading second header information identifying a second plugin
necessary in order to render the decrypted digital bit stream;

the first plugin calling the second plugin;

the first plugin passing the decrypted digital bit stream to the second plugin;

the second plugin processing the decrypted digital bit stream, the processing
including decompressing at least a portion of the decrypted digital bit stream;

the second plugin passing the decrypted and processed digital bit stream to the
media player; and

the media player enabling rendering of the decrypted and processed digital bit
stream,

whereby the first plugin may be used in an architecture not designed for
multiple stages ofplugin processing:

Petitioner Apple Inc. 5 Ex. 1025, p. 4351

Petitioner Apple Inc. - Ex. 1025, p. 4352

Petitioner Apple Inc. - Ex. 1025, p. 4353

Petitioner Apple Inc. - Ex. 1025, p. 4354

Petitioner Apple Inc. - Ex. 1025, p. 4355

Petitioner Apple Inc. - Ex. 1025, p. 4356

Petitioner Apple Inc. - Ex. 1025, p. 4357

Petitioner Apple Inc. - Ex. 1025, p. 4358

Petitioner Apple Inc. - Ex. 1025, p. 4359

Petitioner Apple Inc. - Ex. 1025, p. 4360

Petitioner Apple Inc. - Ex. 1025, p. 4361

Petitioner Apple Inc. - Ex. 1025, p. 4362

Petitioner Apple Inc. - Ex. 1025, p. 4363

Petitioner Apple Inc. - Ex. 1025, p. 4364

Petitioner Apple Inc. - Ex. 1025, p. 4365

Petitioner Apple Inc. - Ex. 1025, p. 4366

Petitioner Apple Inc. - Ex. 1025, p. 4367

Petitioner Apple Inc. - Ex. 1025, p. 4368

Petitioner Apple Inc. - Ex. 1025, p. 4369

Petitioner Apple Inc. - Ex. 1025, p. 4370

Petitioner Apple Inc. - Ex. 1025, p. 4371

Petitioner Apple Inc. - Ex. 1025, p. 4372

Petitioner Apple Inc. - Ex. 1025, p. 4373

Petitioner Apple Inc. - Ex. 1025, p. 4374

Petitioner Apple Inc. - Ex. 1025, p. 4375

Petitioner Apple Inc. - Ex. 1025, p. 4376

Petitioner Apple Inc. - Ex. 1025, p. 4377

Petitioner Apple Inc. - Ex. 1025, p. 4378

Petitioner Apple Inc. - Ex. 1025, p. 4379

Petitioner Apple Inc. - Ex. 1025, p. 4380

Petitioner Apple Inc. - Ex. 1025, p. 4381

Petitioner Apple Inc. - Ex. 1025, p. 4382

Petitioner Apple Inc. - Ex. 1025, p. 4383

Petitioner Apple Inc. - Ex. 1025, p. 4384

Petitioner Apple Inc. - Ex. 1025, p. 4385

Petitioner Apple Inc. - Ex. 1025, p. 4386

Petitioner Apple Inc. - Ex. 1025, p. 4387

Petitioner Apple Inc. - Ex. 1025, p. 4388

Petitioner Apple Inc. - Ex. 1025, p. 4389

Petitioner Apple Inc. - Ex. 1025, p. 4390

Petitioner Apple Inc. - Ex. 1025, p. 4391

Petitioner Apple Inc. - Ex. 1025, p. 4392

Petitioner Apple Inc. - Ex. 1025, p. 4393

Petitioner Apple Inc. - Ex. 1025, p. 4394

Petitioner Apple Inc. - Ex. 1025, p. 4395

Petitioner Apple Inc. - Ex. 1025, p. 4396

Petitioner Apple Inc. - Ex. 1025, p. 4397

Petitioner Apple Inc. - Ex. 1025, p. 4398

Petitioner Apple Inc. - Ex. 1025, p. 4399

Petitioner Apple Inc. - Ex. 1025, p. 4400

Petitioner Apple Inc. - Ex. 1025, p. 4401

Petitioner Apple Inc. - Ex. 1025, p. 4402

Petitioner Apple Inc. - Ex. 1025, p. 4403

Petitioner Apple Inc. - Ex. 1025, p. 4404

Petitioner Apple Inc. - Ex. 1025, p. 4405

Petitioner Apple Inc. - Ex. 1025, p. 4406

Petitioner Apple Inc. - Ex. 1025, p. 4407

Petitioner Apple Inc. - Ex. 1025, p. 4408

Petitioner Apple Inc. - Ex. 1025, p. 4409

Petitioner Apple Inc. - Ex. 1025, p. 4410

Petitioner Apple Inc. - Ex. 1025, p. 4411

Petitioner Apple Inc. - Ex. 1025, p. 4412

Petitioner Apple Inc. - Ex. 1025, p. 4413

Petitioner Apple Inc. - Ex. 1025, p. 4414

Petitioner Apple Inc. - Ex. 1025, p. 4415

Petitioner Apple Inc. - Ex. 1025, p. 4416

Petitioner Apple Inc. - Ex. 1025, p. 4417

Petitioner Apple Inc. - Ex. 1025, p. 4418

Petitioner Apple Inc. - Ex. 1025, p. 4419

Petitioner Apple Inc. - Ex. 1025, p. 4420

Petitioner Apple Inc. - Ex. 1025, p. 4421

Petitioner Apple Inc. - Ex. 1025, p. 4422

Petitioner Apple Inc. - Ex. 1025, p. 4423

Petitioner Apple Inc. - Ex. 1025, p. 4424

Petitioner Apple Inc. - Ex. 1025, p. 4425

Petitioner Apple Inc. - Ex. 1025, p. 4426

Petitioner Apple Inc. - Ex. 1025, p. 4427

Petitioner Apple Inc. - Ex. 1025, p. 4428

Petitioner Apple Inc. - Ex. 1025, p. 4429

Petitioner Apple Inc. - Ex. 1025, p. 4430

Petitioner Apple Inc. - Ex. 1025, p. 4431

Petitioner Apple Inc. - Ex. 1025, p. 4432

Petitioner Apple Inc. - Ex. 1025, p. 4433

Petitioner Apple Inc. - Ex. 1025, p. 4434

Petitioner Apple Inc. - Ex. 1025, p. 4435

Petitioner Apple Inc. - Ex. 1025, p. 4436

Petitioner Apple Inc. - Ex. 1025, p. 4437

Petitioner Apple Inc. - Ex. 1025, p. 4438

Petitioner Apple Inc. - Ex. 1025, p. 4439

Petitioner Apple Inc. - Ex. 1025, p. 4440

Petitioner Apple Inc. - Ex. 1025, p. 4441

Petitioner Apple Inc. - Ex. 1025, p. 4442

Petitioner Apple Inc. - Ex. 1025, p. 4443

Petitioner Apple Inc. - Ex. 1025, p. 4444

Petitioner Apple Inc. - Ex. 1025, p. 4445

Petitioner Apple Inc. - Ex. 1025, p. 4446

Petitioner Apple Inc. - Ex. 1025, p. 4447

Petitioner Apple Inc. - Ex. 1025, p. 4448

Petitioner Apple Inc. - Ex. 1025, p. 4449

Petitioner Apple Inc. - Ex. 1025, p. 4450

Petitioner Apple Inc. - Ex. 1025, p. 4451

Petitioner Apple Inc. - Ex. 1025, p. 4452

Petitioner Apple Inc. - Ex. 1025, p. 4453

Petitioner Apple Inc. - Ex. 1025, p. 4454

Petitioner Apple Inc. - Ex. 1025, p. 4455

Petitioner Apple Inc. - Ex. 1025, p. 4456

Petitioner Apple Inc. - Ex. 1025, p. 4457

Petitioner Apple Inc. - Ex. 1025, p. 4458

Petitioner Apple Inc. - Ex. 1025, p. 4459

Petitioner Apple Inc. - Ex. 1025, p. 4460

Petitioner Apple Inc. - Ex. 1025, p. 4461

Petitioner Apple Inc. - Ex. 1025, p. 4462

Petitioner Apple Inc. - Ex. 1025, p. 4463

Petitioner Apple Inc. - Ex. 1025, p. 4464

Petitioner Apple Inc. - Ex. 1025, p. 4465

Petitioner Apple Inc. - Ex. 1025, p. 4466

Petitioner Apple Inc. - Ex. 1025, p. 4467

Petitioner Apple Inc. - Ex. 1025, p. 4468

Petitioner Apple Inc. - Ex. 1025, p. 4469

Petitioner Apple Inc. - Ex. 1025, p. 4470

Petitioner Apple Inc. - Ex. 1025, p. 4471

Petitioner Apple Inc. - Ex. 1025, p. 4472

Petitioner Apple Inc. - Ex. 1025, p. 4473

Petitioner Apple Inc. - Ex. 1025, p. 4474

Petitioner Apple Inc. - Ex. 1025, p. 4475

Petitioner Apple Inc. - Ex. 1025, p. 4476

Petitioner Apple Inc. - Ex. 1025, p. 4477

Petitioner Apple Inc. - Ex. 1025, p. 4478

Petitioner Apple Inc. - Ex. 1025, p. 4479

Petitioner Apple Inc. - Ex. 1025, p. 4480

Petitioner Apple Inc. - Ex. 1025, p. 4481

Petitioner Apple Inc. - Ex. 1025, p. 4482

Petitioner Apple Inc. - Ex. 1025, p. 4483

Petitioner Apple Inc. - Ex. 1025, p. 4484

Petitioner Apple Inc. - Ex. 1025, p. 4485

Petitioner Apple Inc. - Ex. 1025, p. 4486

Petitioner Apple Inc. - Ex. 1025, p. 4487

Petitioner Apple Inc. - Ex. 1025, p. 4488

Petitioner Apple Inc. - Ex. 1025, p. 4489

Petitioner Apple Inc. - Ex. 1025, p. 4490

Petitioner Apple Inc. - Ex. 1025, p. 4491

Petitioner Apple Inc. - Ex. 1025, p. 4492

Petitioner Apple Inc. - Ex. 1025, p. 4493

Petitioner Apple Inc. - Ex. 1025, p. 4494

Petitioner Apple Inc. - Ex. 1025, p. 4495

Petitioner Apple Inc. - Ex. 1025, p. 4496

Petitioner Apple Inc. - Ex. 1025, p. 4497

Petitioner Apple Inc. - Ex. 1025, p. 4498

Petitioner Apple Inc. - Ex. 1025, p. 4499

Petitioner Apple Inc. - Ex. 1025, p. 4500

Petitioner Apple Inc. - Ex. 1025, p. 4501

Petitioner Apple Inc. - Ex. 1025, p. 4502

Petitioner Apple Inc. - Ex. 1025, p. 4503

Petitioner Apple Inc. - Ex. 1025, p. 4504

Petitioner Apple Inc. - Ex. 1025, p. 4505

Petitioner Apple Inc. - Ex. 1025, p. 4506

Petitioner Apple Inc. - Ex. 1025, p. 4507

Petitioner Apple Inc. - Ex. 1025, p. 4508

Petitioner Apple Inc. - Ex. 1025, p. 4509

Petitioner Apple Inc. - Ex. 1025, p. 4510

Petitioner Apple Inc. - Ex. 1025, p. 4511

Petitioner Apple Inc. - Ex. 1025, p. 4512

Petitioner Apple Inc. - Ex. 1025, p. 4513

Petitioner Apple Inc. - Ex. 1025, p. 4514

Petitioner Apple Inc. - Ex. 1025, p. 4515

Petitioner Apple Inc. - Ex. 1025, p. 4516

Petitioner Apple Inc. - Ex. 1025, p. 4517

Petitioner Apple Inc. - Ex. 1025, p. 4518

Petitioner Apple Inc. - Ex. 1025, p. 4519

Petitioner Apple Inc. - Ex. 1025, p. 4520

Petitioner Apple Inc. - Ex. 1025, p. 4521

Petitioner Apple Inc. - Ex. 1025, p. 4522

Petitioner Apple Inc. - Ex. 1025, p. 4523

Petitioner Apple Inc. - Ex. 1025, p. 4524

Petitioner Apple Inc. - Ex. 1025, p. 4525

Petitioner Apple Inc. - Ex. 1025, p. 4526

Petitioner Apple Inc. - Ex. 1025, p. 4527

Petitioner Apple Inc. - Ex. 1025, p. 4528

Petitioner Apple Inc. - Ex. 1025, p. 4529

Petitioner Apple Inc. - Ex. 1025, p. 4530

Petitioner Apple Inc. - Ex. 1025, p. 4531

Petitioner Apple Inc. - Ex. 1025, p. 4532

Petitioner Apple Inc. - Ex. 1025, p. 4533

Petitioner Apple Inc. - Ex. 1025, p. 4534

Petitioner Apple Inc. - Ex. 1025, p. 4535

Petitioner Apple Inc. - Ex. 1025, p. 4536

Petitioner Apple Inc. - Ex. 1025, p. 4537

Petitioner Apple Inc. - Ex. 1025, p. 4538

Petitioner Apple Inc. - Ex. 1025, p. 4539

Petitioner Apple Inc. - Ex. 1025, p. 4540

Petitioner Apple Inc. - Ex. 1025, p. 4541

Petitioner Apple Inc. - Ex. 1025, p. 4542

Petitioner Apple Inc. - Ex. 1025, p. 4543

Petitioner Apple Inc. - Ex. 1025, p. 4544

Petitioner Apple Inc. - Ex. 1025, p. 4545

Petitioner Apple Inc. - Ex. 1025, p. 4546

Petitioner Apple Inc. - Ex. 1025, p. 4547

Petitioner Apple Inc. - Ex. 1025, p. 4548

Petitioner Apple Inc. - Ex. 1025, p. 4549

Petitioner Apple Inc. - Ex. 1025, p. 4550

Petitioner Apple Inc. - Ex. 1025, p. 4551

Petitioner Apple Inc. - Ex. 1025, p. 4552

Petitioner Apple Inc. - Ex. 1025, p. 4553

Petitioner Apple Inc. - Ex. 1025, p. 4554

Petitioner Apple Inc. - Ex. 1025, p. 4555

Petitioner Apple Inc. - Ex. 1025, p. 4556

Petitioner Apple Inc. - Ex. 1025, p. 4557

Petitioner Apple Inc. - Ex. 1025, p. 4558

Petitioner Apple Inc. - Ex. 1025, p. 4559

Petitioner Apple Inc. - Ex. 1025, p. 4560

Petitioner Apple Inc. - Ex. 1025, p. 4561

Petitioner Apple Inc. - Ex. 1025, p. 4562

Petitioner Apple Inc. - Ex. 1025, p. 4563

Petitioner Apple Inc. - Ex. 1025, p. 4564

Petitioner Apple Inc. - Ex. 1025, p. 4565

Petitioner Apple Inc. - Ex. 1025, p. 4566

Petitioner Apple Inc. - Ex. 1025, p. 4567

Petitioner Apple Inc. - Ex. 1025, p. 4568

Petitioner Apple Inc. - Ex. 1025, p. 4569

Petitioner Apple Inc. - Ex. 1025, p. 4570

Petitioner Apple Inc. - Ex. 1025, p. 4571

Petitioner Apple Inc. - Ex. 1025, p. 4572

Petitioner Apple Inc. - Ex. 1025, p. 4573

Petitioner Apple Inc. - Ex. 1025, p. 4574

Petitioner Apple Inc. - Ex. 1025, p. 4575

Petitioner Apple Inc. - Ex. 1025, p. 4576

Petitioner Apple Inc. - Ex. 1025, p. 4577

Petitioner Apple Inc. - Ex. 1025, p. 4578

Petitioner Apple Inc. - Ex. 1025, p. 4579

Petitioner Apple Inc. - Ex. 1025, p. 4580

Petitioner Apple Inc. - Ex. 1025, p. 4581

Petitioner Apple Inc. - Ex. 1025, p. 4582

Petitioner Apple Inc. - Ex. 1025, p. 4583

Petitioner Apple Inc. - Ex. 1025, p. 4584

Petitioner Apple Inc. - Ex. 1025, p. 4585

Petitioner Apple Inc. - Ex. 1025, p. 4586

Petitioner Apple Inc. - Ex. 1025, p. 4587

Petitioner Apple Inc. - Ex. 1025, p. 4588

Petitioner Apple Inc. - Ex. 1025, p. 4589

Petitioner Apple Inc. - Ex. 1025, p. 4590

Petitioner Apple Inc. - Ex. 1025, p. 4591

Petitioner Apple Inc. - Ex. 1025, p. 4592

Petitioner Apple Inc. - Ex. 1025, p. 4593

Petitioner Apple Inc. - Ex. 1025, p. 4594

Petitioner Apple Inc. - Ex. 1025, p. 4595

Petitioner Apple Inc. - Ex. 1025, p. 4596

Petitioner Apple Inc. - Ex. 1025, p. 4597

Petitioner Apple Inc. - Ex. 1025, p. 4598

Petitioner Apple Inc. - Ex. 1025, p. 4599

Petitioner Apple Inc. - Ex. 1025, p. 4600

Petitioner Apple Inc. - Ex. 1025, p. 4601

Petitioner Apple Inc. - Ex. 1025, p. 4602

Petitioner Apple Inc. - Ex. 1025, p. 4603

Petitioner Apple Inc. - Ex. 1025, p. 4604

Petitioner Apple Inc. - Ex. 1025, p. 4605

Petitioner Apple Inc. - Ex. 1025, p. 4606

Petitioner Apple Inc. - Ex. 1025, p. 4607

Petitioner Apple Inc. - Ex. 1025, p. 4608

Petitioner Apple Inc. - Ex. 1025, p. 4609

Petitioner Apple Inc. - Ex. 1025, p. 4610

Petitioner Apple Inc. - Ex. 1025, p. 4611

Petitioner Apple Inc. - Ex. 1025, p. 4612

Petitioner Apple Inc. - Ex. 1025, p. 4613

Petitioner Apple Inc. - Ex. 1025, p. 4614

Petitioner Apple Inc. - Ex. 1025, p. 4615

Petitioner Apple Inc. - Ex. 1025, p. 4616

Petitioner Apple Inc. - Ex. 1025, p. 4617

Petitioner Apple Inc. - Ex. 1025, p. 4618

Petitioner Apple Inc. - Ex. 1025, p. 4619

Petitioner Apple Inc. - Ex. 1025, p. 4620

Petitioner Apple Inc. - Ex. 1025, p. 4621

Petitioner Apple Inc. - Ex. 1025, p. 4622

Petitioner Apple Inc. - Ex. 1025, p. 4623

Petitioner Apple Inc. - Ex. 1025, p. 4624

Petitioner Apple Inc. - Ex. 1025, p. 4625

Petitioner Apple Inc. - Ex. 1025, p. 4626

Petitioner Apple Inc. - Ex. 1025, p. 4627

Petitioner Apple Inc. - Ex. 1025, p. 4628

Petitioner Apple Inc. - Ex. 1025, p. 4629

Petitioner Apple Inc. - Ex. 1025, p. 4630

Petitioner Apple Inc. - Ex. 1025, p. 4631

Petitioner Apple Inc. - Ex. 1025, p. 4632

Petitioner Apple Inc. - Ex. 1025, p. 4633

Petitioner Apple Inc. - Ex. 1025, p. 4634

Petitioner Apple Inc. - Ex. 1025, p. 4635

Petitioner Apple Inc. - Ex. 1025, p. 4636

Petitioner Apple Inc. - Ex. 1025, p. 4637

Petitioner Apple Inc. - Ex. 1025, p. 4638

Petitioner Apple Inc. - Ex. 1025, p. 4639

Petitioner Apple Inc. - Ex. 1025, p. 4640

Petitioner Apple Inc. - Ex. 1025, p. 4641

Petitioner Apple Inc. - Ex. 1025, p. 4642

Petitioner Apple Inc. - Ex. 1025, p. 4643

Petitioner Apple Inc. - Ex. 1025, p. 4644

Petitioner Apple Inc. - Ex. 1025, p. 4645

Petitioner Apple Inc. - Ex. 1025, p. 4646

Petitioner Apple Inc. - Ex. 1025, p. 4647

Petitioner Apple Inc. - Ex. 1025, p. 4648

Petitioner Apple Inc. - Ex. 1025, p. 4649

Petitioner Apple Inc. - Ex. 1025, p. 4650

Petitioner Apple Inc. - Ex. 1025, p. 4651

Petitioner Apple Inc. - Ex. 1025, p. 4652

Petitioner Apple Inc. - Ex. 1025, p. 4653

Petitioner Apple Inc. - Ex. 1025, p. 4654

Petitioner Apple Inc. - Ex. 1025, p. 4655

Petitioner Apple Inc. - Ex. 1025, p. 4656

Petitioner Apple Inc. - Ex. 1025, p. 4657

Petitioner Apple Inc. - Ex. 1025, p. 4658

Petitioner Apple Inc. - Ex. 1025, p. 4659

Petitioner Apple Inc. - Ex. 1025, p. 4660

Petitioner Apple Inc. - Ex. 1025, p. 4661

Petitioner Apple Inc. - Ex. 1025, p. 4662

Petitioner Apple Inc. - Ex. 1025, p. 4663

Petitioner Apple Inc. - Ex. 1025, p. 4664

Petitioner Apple Inc. - Ex. 1025, p. 4665

Petitioner Apple Inc. - Ex. 1025, p. 4666

Petitioner Apple Inc. - Ex. 1025, p. 4667

Petitioner Apple Inc. - Ex. 1025, p. 4668

Petitioner Apple Inc. - Ex. 1025, p. 4669

Petitioner Apple Inc. - Ex. 1025, p. 4670

Petitioner Apple Inc. - Ex. 1025, p. 4671

Petitioner Apple Inc. - Ex. 1025, p. 4672

Petitioner Apple Inc. - Ex. 1025, p. 4673

Petitioner Apple Inc. - Ex. 1025, p. 4674

Petitioner Apple Inc. - Ex. 1025, p. 4675

Petitioner Apple Inc. - Ex. 1025, p. 4676

Petitioner Apple Inc. - Ex. 1025, p. 4677

Petitioner Apple Inc. - Ex. 1025, p. 4678

Petitioner Apple Inc. - Ex. 1025, p. 4679

Petitioner Apple Inc. - Ex. 1025, p. 4680

Petitioner Apple Inc. - Ex. 1025, p. 4681

Petitioner Apple Inc. - Ex. 1025, p. 4682

Petitioner Apple Inc. - Ex. 1025, p. 4683

Petitioner Apple Inc. - Ex. 1025, p. 4684

Petitioner Apple Inc. - Ex. 1025, p. 4685

Petitioner Apple Inc. - Ex. 1025, p. 4686

Petitioner Apple Inc. - Ex. 1025, p. 4687

Petitioner Apple Inc. - Ex. 1025, p. 4688

Petitioner Apple Inc. - Ex. 1025, p. 4689

Petitioner Apple Inc. - Ex. 1025, p. 4690

Petitioner Apple Inc. - Ex. 1025, p. 4691

Petitioner Apple Inc. - Ex. 1025, p. 4692

Petitioner Apple Inc. - Ex. 1025, p. 4693

Petitioner Apple Inc. - Ex. 1025, p. 4694

Petitioner Apple Inc. - Ex. 1025, p. 4695

Petitioner Apple Inc. - Ex. 1025, p. 4696

Petitioner Apple Inc. - Ex. 1025, p. 4697

Petitioner Apple Inc. - Ex. 1025, p. 4698

Petitioner Apple Inc. - Ex. 1025, p. 4699

Petitioner Apple Inc. - Ex. 1025, p. 4700

Petitioner Apple Inc. - Ex. 1025, p. 4701

Petitioner Apple Inc. - Ex. 1025, p. 4702

Petitioner Apple Inc. - Ex. 1025, p. 4703

Petitioner Apple Inc. - Ex. 1025, p. 4704

Petitioner Apple Inc. - Ex. 1025, p. 4705

Petitioner Apple Inc. - Ex. 1025, p. 4706

Petitioner Apple Inc. - Ex. 1025, p. 4707

Petitioner Apple Inc. - Ex. 1025, p. 4708

Petitioner Apple Inc. - Ex. 1025, p. 4709

Petitioner Apple Inc. - Ex. 1025, p. 4710

Petitioner Apple Inc. - Ex. 1025, p. 4711

Petitioner Apple Inc. - Ex. 1025, p. 4712

Petitioner Apple Inc. - Ex. 1025, p. 4713

Petitioner Apple Inc. - Ex. 1025, p. 4714

Petitioner Apple Inc. - Ex. 1025, p. 4715

Petitioner Apple Inc. - Ex. 1025, p. 4716

Petitioner Apple Inc. - Ex. 1025, p. 4717

Petitioner Apple Inc. - Ex. 1025, p. 4718

Petitioner Apple Inc. - Ex. 1025, p. 4719

Petitioner Apple Inc. - Ex. 1025, p. 4720

Petitioner Apple Inc. - Ex. 1025, p. 4721

Petitioner Apple Inc. - Ex. 1025, p. 4722

Petitioner Apple Inc. - Ex. 1025, p. 4723

Petitioner Apple Inc. - Ex. 1025, p. 4724

Petitioner Apple Inc. - Ex. 1025, p. 4725

Petitioner Apple Inc. - Ex. 1025, p. 4726

Petitioner Apple Inc. - Ex. 1025, p. 4727

Petitioner Apple Inc. - Ex. 1025, p. 4728

Petitioner Apple Inc. - Ex. 1025, p. 4729

Petitioner Apple Inc. - Ex. 1025, p. 4730

Petitioner Apple Inc. - Ex. 1025, p. 4731

Petitioner Apple Inc. - Ex. 1025, p. 4732

Petitioner Apple Inc. - Ex. 1025, p. 4733

Petitioner Apple Inc. - Ex. 1025, p. 4734

Petitioner Apple Inc. - Ex. 1025, p. 4735

Petitioner Apple Inc. - Ex. 1025, p. 4736

Petitioner Apple Inc. - Ex. 1025, p. 4737

Petitioner Apple Inc. - Ex. 1025, p. 4738

Petitioner Apple Inc. - Ex. 1025, p. 4739

Petitioner Apple Inc. - Ex. 1025, p. 4740

Petitioner Apple Inc. - Ex. 1025, p. 4741

Petitioner Apple Inc. - Ex. 1025, p. 4742

Petitioner Apple Inc. - Ex. 1025, p. 4743

Petitioner Apple Inc. - Ex. 1025, p. 4744

Petitioner Apple Inc. - Ex. 1025, p. 4745

Petitioner Apple Inc. - Ex. 1025, p. 4746

Petitioner Apple Inc. - Ex. 1025, p. 4747

Petitioner Apple Inc. - Ex. 1025, p. 4748

Petitioner Apple Inc. - Ex. 1025, p. 4749

Petitioner Apple Inc. - Ex. 1025, p. 4750

Petitioner Apple Inc. - Ex. 1025, p. 4751

Petitioner Apple Inc. - Ex. 1025, p. 4752

Petitioner Apple Inc. - Ex. 1025, p. 4753

Petitioner Apple Inc. - Ex. 1025, p. 4754

Petitioner Apple Inc. - Ex. 1025, p. 4755

Petitioner Apple Inc. - Ex. 1025, p. 4756

Petitioner Apple Inc. - Ex. 1025, p. 4757

Petitioner Apple Inc. - Ex. 1025, p. 4758

Petitioner Apple Inc. - Ex. 1025, p. 4759

Petitioner Apple Inc. - Ex. 1025, p. 4760

Petitioner Apple Inc. - Ex. 1025, p. 4761

Petitioner Apple Inc. - Ex. 1025, p. 4762

Petitioner Apple Inc. - Ex. 1025, p. 4763

Petitioner Apple Inc. - Ex. 1025, p. 4764

Petitioner Apple Inc. - Ex. 1025, p. 4765

Petitioner Apple Inc. - Ex. 1025, p. 4766

Petitioner Apple Inc. - Ex. 1025, p. 4767

Petitioner Apple Inc. - Ex. 1025, p. 4768

Petitioner Apple Inc. - Ex. 1025, p. 4769

Petitioner Apple Inc. - Ex. 1025, p. 4770

Petitioner Apple Inc. - Ex. 1025, p. 4771

Petitioner Apple Inc. - Ex. 1025, p. 4772

Petitioner Apple Inc. - Ex. 1025, p. 4773

Petitioner Apple Inc. - Ex. 1025, p. 4774

Petitioner Apple Inc. - Ex. 1025, p. 4775

Petitioner Apple Inc. - Ex. 1025, p. 4776

Petitioner Apple Inc. - Ex. 1025, p. 4777

Petitioner Apple Inc. - Ex. 1025, p. 4778

Petitioner Apple Inc. - Ex. 1025, p. 4779

Petitioner Apple Inc. - Ex. 1025, p. 4780

Petitioner Apple Inc. - Ex. 1025, p. 4781

Petitioner Apple Inc. - Ex. 1025, p. 4782

Petitioner Apple Inc. - Ex. 1025, p. 4783

Petitioner Apple Inc. - Ex. 1025, p. 4784

Petitioner Apple Inc. - Ex. 1025, p. 4785

Petitioner Apple Inc. - Ex. 1025, p. 4786

Petitioner Apple Inc. - Ex. 1025, p. 4787

Petitioner Apple Inc. - Ex. 1025, p. 4788

Petitioner Apple Inc. - Ex. 1025, p. 4789

Petitioner Apple Inc. - Ex. 1025, p. 4790

Petitioner Apple Inc. - Ex. 1025, p. 4791

Petitioner Apple Inc. - Ex. 1025, p. 4792

Petitioner Apple Inc. - Ex. 1025, p. 4793

Petitioner Apple Inc. - Ex. 1025, p. 4794

Petitioner Apple Inc. - Ex. 1025, p. 4795

Petitioner Apple Inc. - Ex. 1025, p. 4796

Petitioner Apple Inc. - Ex. 1025, p. 4797

Petitioner Apple Inc. - Ex. 1025, p. 4798

Petitioner Apple Inc. - Ex. 1025, p. 4799

Petitioner Apple Inc. - Ex. 1025, p. 4800

Petitioner Apple Inc. - Ex. 1025, p. 4801

Petitioner Apple Inc. - Ex. 1025, p. 4802

Petitioner Apple Inc. - Ex. 1025, p. 4803

Petitioner Apple Inc. - Ex. 1025, p. 4804

Petitioner Apple Inc. - Ex. 1025, p. 4805

Petitioner Apple Inc. - Ex. 1025, p. 4806

Petitioner Apple Inc. - Ex. 1025, p. 4807

Petitioner Apple Inc. - Ex. 1025, p. 4808

Petitioner Apple Inc. - Ex. 1025, p. 4809

Petitioner Apple Inc. - Ex. 1025, p. 4810

Petitioner Apple Inc. - Ex. 1025, p. 4811

Petitioner Apple Inc. - Ex. 1025, p. 4812

Petitioner Apple Inc. - Ex. 1025, p. 4813

Petitioner Apple Inc. - Ex. 1025, p. 4814

Petitioner Apple Inc. - Ex. 1025, p. 4815

Petitioner Apple Inc. - Ex. 1025, p. 4816

Petitioner Apple Inc. - Ex. 1025, p. 4817

Petitioner Apple Inc. - Ex. 1025, p. 4818

Petitioner Apple Inc. - Ex. 1025, p. 4819

Petitioner Apple Inc. - Ex. 1025, p. 4820

Petitioner Apple Inc. - Ex. 1025, p. 4821

Petitioner Apple Inc. - Ex. 1025, p. 4822

Petitioner Apple Inc. - Ex. 1025, p. 4823

Petitioner Apple Inc. - Ex. 1025, p. 4824

Petitioner Apple Inc. - Ex. 1025, p. 4825

Petitioner Apple Inc. - Ex. 1025, p. 4826

Petitioner Apple Inc. - Ex. 1025, p. 4827

Petitioner Apple Inc. - Ex. 1025, p. 4828

Petitioner Apple Inc. - Ex. 1025, p. 4829

Petitioner Apple Inc. - Ex. 1025, p. 4830

Petitioner Apple Inc. - Ex. 1025, p. 4831

Petitioner Apple Inc. - Ex. 1025, p. 4832

Petitioner Apple Inc. - Ex. 1025, p. 4833

Petitioner Apple Inc. - Ex. 1025, p. 4834

Petitioner Apple Inc. - Ex. 1025, p. 4835

Petitioner Apple Inc. - Ex. 1025, p. 4836

Petitioner Apple Inc. - Ex. 1025, p. 4837

Petitioner Apple Inc. - Ex. 1025, p. 4838

Petitioner Apple Inc. - Ex. 1025, p. 4839

Petitioner Apple Inc. - Ex. 1025, p. 4840

Petitioner Apple Inc. - Ex. 1025, p. 4841

Petitioner Apple Inc. - Ex. 1025, p. 4842

Petitioner Apple Inc. - Ex. 1025, p. 4843

Petitioner Apple Inc. - Ex. 1025, p. 4844

Petitioner Apple Inc. - Ex. 1025, p. 4845

Petitioner Apple Inc. - Ex. 1025, p. 4846

Petitioner Apple Inc. - Ex. 1025, p. 4847

Petitioner Apple Inc. - Ex. 1025, p. 4848

Petitioner Apple Inc. - Ex. 1025, p. 4849

Petitioner Apple Inc. - Ex. 1025, p. 4850

Petitioner Apple Inc. - Ex. 1025, p. 4851

Petitioner Apple Inc. - Ex. 1025, p. 4852

Petitioner Apple Inc. - Ex. 1025, p. 4853

Petitioner Apple Inc. - Ex. 1025, p. 4854

Petitioner Apple Inc. - Ex. 1025, p. 4855

Petitioner Apple Inc. - Ex. 1025, p. 4856

Petitioner Apple Inc. - Ex. 1025, p. 4857

Petitioner Apple Inc. - Ex. 1025, p. 4858

Petitioner Apple Inc. - Ex. 1025, p. 4859

Petitioner Apple Inc. - Ex. 1025, p. 4860

Petitioner Apple Inc. - Ex. 1025, p. 4861

Petitioner Apple Inc. - Ex. 1025, p. 4862

Petitioner Apple Inc. - Ex. 1025, p. 4863

Petitioner Apple Inc. - Ex. 1025, p. 4864

Petitioner Apple Inc. - Ex. 1025, p. 4865

Petitioner Apple Inc. - Ex. 1025, p. 4866

Petitioner Apple Inc. - Ex. 1025, p. 4867

Petitioner Apple Inc. - Ex. 1025, p. 4868

Petitioner Apple Inc. - Ex. 1025, p. 4869

Petitioner Apple Inc. - Ex. 1025, p. 4870

Petitioner Apple Inc. - Ex. 1025, p. 4871

Petitioner Apple Inc. - Ex. 1025, p. 4872

Petitioner Apple Inc. - Ex. 1025, p. 4873

Petitioner Apple Inc. - Ex. 1025, p. 4874

Petitioner Apple Inc. - Ex. 1025, p. 4875

Petitioner Apple Inc. - Ex. 1025, p. 4876

Petitioner Apple Inc. - Ex. 1025, p. 4877

Petitioner Apple Inc. - Ex. 1025, p. 4878

Petitioner Apple Inc. - Ex. 1025, p. 4879

Petitioner Apple Inc. - Ex. 1025, p. 4880

Petitioner Apple Inc. - Ex. 1025, p. 4881

Petitioner Apple Inc. - Ex. 1025, p. 4882

Petitioner Apple Inc. - Ex. 1025, p. 4883

Petitioner Apple Inc. - Ex. 1025, p. 4884

Petitioner Apple Inc. - Ex. 1025, p. 4885

Petitioner Apple Inc. - Ex. 1025, p. 4886

Petitioner Apple Inc. - Ex. 1025, p. 4887

Petitioner Apple Inc. - Ex. 1025, p. 4888

Petitioner Apple Inc. - Ex. 1025, p. 4889

Petitioner Apple Inc. - Ex. 1025, p. 4890

Petitioner Apple Inc. - Ex. 1025, p. 4891

Petitioner Apple Inc. - Ex. 1025, p. 4892

Petitioner Apple Inc. - Ex. 1025, p. 4893

Petitioner Apple Inc. - Ex. 1025, p. 4894

Petitioner Apple Inc. - Ex. 1025, p. 4895

Petitioner Apple Inc. - Ex. 1025, p. 4896

Petitioner Apple Inc. - Ex. 1025, p. 4897

Petitioner Apple Inc. - Ex. 1025, p. 4898

Petitioner Apple Inc. - Ex. 1025, p. 4899

Petitioner Apple Inc. - Ex. 1025, p. 4900

Petitioner Apple Inc. - Ex. 1025, p. 4901

Petitioner Apple Inc. - Ex. 1025, p. 4902

Petitioner Apple Inc. - Ex. 1025, p. 4903

Petitioner Apple Inc. - Ex. 1025, p. 4904

Petitioner Apple Inc. - Ex. 1025, p. 4905

Petitioner Apple Inc. - Ex. 1025, p. 4906

Petitioner Apple Inc. - Ex. 1025, p. 4907

Petitioner Apple Inc. - Ex. 1025, p. 4908

Petitioner Apple Inc. - Ex. 1025, p. 4909

Petitioner Apple Inc. - Ex. 1025, p. 4910

Petitioner Apple Inc. - Ex. 1025, p. 4911

Petitioner Apple Inc. - Ex. 1025, p. 4912

Petitioner Apple Inc. - Ex. 1025, p. 4913

Petitioner Apple Inc. - Ex. 1025, p. 4914

Petitioner Apple Inc. - Ex. 1025, p. 4915

Petitioner Apple Inc. - Ex. 1025, p. 4916

Petitioner Apple Inc. - Ex. 1025, p. 4917

Petitioner Apple Inc. - Ex. 1025, p. 4918

Petitioner Apple Inc. - Ex. 1025, p. 4919

Petitioner Apple Inc. - Ex. 1025, p. 4920

Petitioner Apple Inc. - Ex. 1025, p. 4921

Petitioner Apple Inc. - Ex. 1025, p. 4922

Petitioner Apple Inc. - Ex. 1025, p. 4923

Petitioner Apple Inc. - Ex. 1025, p. 4924

Petitioner Apple Inc. - Ex. 1025, p. 4925

Petitioner Apple Inc. - Ex. 1025, p. 4926

Petitioner Apple Inc. - Ex. 1025, p. 4927

Petitioner Apple Inc. - Ex. 1025, p. 4928

Petitioner Apple Inc. - Ex. 1025, p. 4929

Petitioner Apple Inc. - Ex. 1025, p. 4930

Petitioner Apple Inc. - Ex. 1025, p. 4931

Petitioner Apple Inc. - Ex. 1025, p. 4932

Petitioner Apple Inc. - Ex. 1025, p. 4933

Petitioner Apple Inc. - Ex. 1025, p. 4934

Petitioner Apple Inc. - Ex. 1025, p. 4935

Petitioner Apple Inc. - Ex. 1025, p. 4936

Petitioner Apple Inc. - Ex. 1025, p. 4937

Petitioner Apple Inc. - Ex. 1025, p. 4938

Petitioner Apple Inc. - Ex. 1025, p. 4939

Petitioner Apple Inc. - Ex. 1025, p. 4940

Petitioner Apple Inc. - Ex. 1025, p. 4941

Petitioner Apple Inc. - Ex. 1025, p. 4942

Petitioner Apple Inc. - Ex. 1025, p. 4943

Petitioner Apple Inc. - Ex. 1025, p. 4944

Petitioner Apple Inc. - Ex. 1025, p. 4945

Petitioner Apple Inc. - Ex. 1025, p. 4946

Petitioner Apple Inc. - Ex. 1025, p. 4947

Petitioner Apple Inc. - Ex. 1025, p. 4948

Petitioner Apple Inc. - Ex. 1025, p. 4949

Petitioner Apple Inc. - Ex. 1025, p. 4950

Petitioner Apple Inc. - Ex. 1025, p. 4951

Petitioner Apple Inc. - Ex. 1025, p. 4952

Petitioner Apple Inc. - Ex. 1025, p. 4953

Petitioner Apple Inc. - Ex. 1025, p. 4954

Petitioner Apple Inc. - Ex. 1025, p. 4955

Petitioner Apple Inc. - Ex. 1025, p. 4956

Petitioner Apple Inc. - Ex. 1025, p. 4957

Petitioner Apple Inc. - Ex. 1025, p. 4958

Petitioner Apple Inc. - Ex. 1025, p. 4959

Petitioner Apple Inc. - Ex. 1025, p. 4960

Petitioner Apple Inc. - Ex. 1025, p. 4961

Petitioner Apple Inc. - Ex. 1025, p. 4962

Petitioner Apple Inc. - Ex. 1025, p. 4963

Petitioner Apple Inc. - Ex. 1025, p. 4964

Petitioner Apple Inc. - Ex. 1025, p. 4965

Petitioner Apple Inc. - Ex. 1025, p. 4966

Petitioner Apple Inc. - Ex. 1025, p. 4967

Petitioner Apple Inc. - Ex. 1025, p. 4968

Petitioner Apple Inc. - Ex. 1025, p. 4969

Petitioner Apple Inc. - Ex. 1025, p. 4970

Petitioner Apple Inc. - Ex. 1025, p. 4971

Petitioner Apple Inc. - Ex. 1025, p. 4972

Petitioner Apple Inc. - Ex. 1025, p. 4973

Petitioner Apple Inc. - Ex. 1025, p. 4974

Petitioner Apple Inc. - Ex. 1025, p. 4975

Petitioner Apple Inc. - Ex. 1025, p. 4976

Petitioner Apple Inc. - Ex. 1025, p. 4977

Petitioner Apple Inc. - Ex. 1025, p. 4978

Petitioner Apple Inc. - Ex. 1025, p. 4979

Petitioner Apple Inc. - Ex. 1025, p. 4980

Petitioner Apple Inc. - Ex. 1025, p. 4981

Petitioner Apple Inc. - Ex. 1025, p. 4982

Petitioner Apple Inc. - Ex. 1025, p. 4983

Petitioner Apple Inc. - Ex. 1025, p. 4984

Petitioner Apple Inc. - Ex. 1025, p. 4985

Petitioner Apple Inc. - Ex. 1025, p. 4986

Petitioner Apple Inc. - Ex. 1025, p. 4987

Petitioner Apple Inc. - Ex. 1025, p. 4988

Petitioner Apple Inc. - Ex. 1025, p. 4989

Petitioner Apple Inc. - Ex. 1025, p. 4990

Petitioner Apple Inc. - Ex. 1025, p. 4991

Petitioner Apple Inc. - Ex. 1025, p. 4992

Petitioner Apple Inc. - Ex. 1025, p. 4993

Petitioner Apple Inc. - Ex. 1025, p. 4994

Petitioner Apple Inc. - Ex. 1025, p. 4995

Petitioner Apple Inc. - Ex. 1025, p. 4996

Petitioner Apple Inc. - Ex. 1025, p. 4997

Petitioner Apple Inc. - Ex. 1025, p. 4998

Petitioner Apple Inc. - Ex. 1025, p. 4999

Petitioner Apple Inc. - Ex. 1025, p. 5000

