
Petitioner Apple Inc. - Exhibit 1024, p. 4001

l0

15

20

25'

30

W0 0]/37209 PCT/US00/30825

-17-

However, in yet other alternate embodiments, each image file could be organized in “quality
level support order” with the data for each analysis array being arranged so that each

successive data structure 172 stores the image information needed to increase image quality by

one predefined image quality level. Thus, the information in some data structures 172 might
represent two, three or more bit planes» of information. In this embodiment, an image can be

reduced by one quality level by deleting the last data structure 172 from every analysis array
data structure 172 in the image file.

Digital Camera State Machines

For the purposes of this explanation, it will be assumed that the digital camera 100 has four

predefined image quality levels: High, Very Good +, Very Good -, and Good. It will be further

assumed that image files stored at High quality typically occupy about twice as much space as

image files stored at Good quality. In other embodiments, more or fewer image quality levels

could be used, and the ratio ofimage file sizes from highest to lowest quality could be larger or

smaller than 2:1. For instance, ifthe camera is capable oftaking very high resolution images,

such as 2000 x 2000 pixels or even 4000 x 4000 pixels, and at very high fidelity, then it would

make sense to provide a large number of quality levels with a ratio ofimage file sizes from

highest to lowest quality of perhaps as high as 6421.

It is noted that an image file’s quality cannot be increased once it has been lowered, unless the
original image file or an alternate source thereof remains available, because the information

needed to restore the image’s quality has been lost.

Referring back to Fig. 1, the digital camera 100 preferably includes data processing circuitry

106 for performing a predefined set of primitive operations, such as performing the multiply
and addition operations required to apply a transform to a certain amount ofimage data, as

well as a set of state machines 200-212 for controlling the data processingcircuitry so as to
perform a set of predefined image handling operations. In one embodiment, the state machines
in the digital camera are as follows.

° One or morestate machines 200 for transforming, compressing and storing an image
received from the camera’s image capture mechanism. This image is sometimes called the

“viewfinder” image, since the image being processed is generally the one seen on the camera's

Petitioner Apple Inc. — Exhibit 1024, p. 4001

Petitioner Apple Inc. - Exhibit 1024, p. 4002

10

15

20

30

wo 01/37209 PCT/US00/30825

_ 13 -

image viewer 114. This set of state machines 200 are the ones that initially generate each

image file stored in the nonvolatile image memory 108. Prior to taking the picture. the user

specifies the quality level ofthe image to be stored, using the camera’s buttons 112. It should

noted that in most digital cameras the viewfinder is capable ofdisplaying only a very small and

low fidelity version of the captured image, and thus the image displayed in the camera’s

viewfinder is typically a much lower quality rendition ofthe captured image than the quality of

the “viewfinder” image stored in the image file.

- One or more state machines 202 for decompressing, inverse transfonning and

displaying a stored image file on the camera’s image viewer. The reconstructed image

generated by decompressing, inverse transforming and dequantizing the image data is stored in

camera’s framebuffer 1 18 so that it can be viewed on the image viewer 114.

- One or more state machines 204 for updating and displaying a count of the number of

images stored in the nonvolatile image memory 108. The image count is preferably displayed

on the user interface display 1 16. This set of state machines 204 will also typically indicate

what percentage of the nonvolatile image memory 108 remains unoccupied by image files. or

some other indication of the camera’s ability to store additional images. If the camera does not

have a separate interface display 116, this memory status information maybe shown on the

image viewer 1 14, for instance superimposed on the image shown in the image viewer 1 14 or

shown in a region ofthe viewer 114 separate from the main viewer image.

° One or more state machines 206 for implementing a “viewfinder" mode for the camera

in which the image currently “seen" by the image capture mechanism 102 is displayed on the

image viewer 1 14 to that the user can see the image that would be stored if the image capture

button is pressed. These state machines transfer the image received from the image capture

device 102, possibly after appropriate remedial processing steps are pcrformed to improve the

raw image data, to the camera’s framebuffer 1 18.

- One or more state machines 208 for downloading images from the nonvolatile image

memory 108 to an external device, such as a general purpose computer.

- One or more state machines 210 for uploading images from an extemal device, such as

a general purpose computer, into the nonvolatile image memory 108. This enables the camera

to be used as an image viewing device, and also as a mechanism for transferring image files on

memory cards.

° One or more state machines 212 for reducing the size of image files in the nonvolatile

image memory 108. This will be described in more detail next.

Petitioner Apple Inc. — Exhibit 1024, p. 4002

Petitioner Apple Inc. - Exhibit 1024, p. 4003

10

15

20

25

30

wo 01/37209 PCT/US00/30825

-]4-

In the context of the present invention, an image file’s quality level can be reduced in one of

two ways: 1) by deleting from the image file all the analysis arrays associated with one or more

transform layers, or 2) by deleting from the image file one or more bit planes of data. In either

method, the state machines 212 extract the data structures of the image file that corTespond to

the new, lower image quality level selected by the user. and then replaces the original image

file with one that stores the extracted data structures. Altemately, the original image file is

updated by deleting a portion of its contents, therebyfreeing some of the memory previously

‘ occupied by the file. A feature of the present invention is that the image quality level of an

image file can be lowered without having to reconstruct the image and then re-encode it, which

would be costly in terms of the computational resources used. Rather, the data structures

within the image file are pre-arranged so that the image data in the file does not need to be

read, analyzed or reconstructed. The image quality level of an image file is lowered simply by

keeping an easily determined subset of the data in the image file and deleting the remainder of

the data in the image file, or equivalently by extracting and storing in a new image file a

determined subset ofthe data in the image file and deleting the original image file._

For the purposes of this document, it should be noted that the term “deleting” when applied to

a data structure in an image file does not necessarily mean that the information in the data

structure is replaced with null values. Rather, what this means is that the image file is replaced
with another image filepthat does not contain the “deleted" data structure. Thus, various data

structures in an image file may be deleted simply by copying all the other data structures in the

image file into a new image file, and updating all required bookkeeping information in the

image file and the image directory for the modified file. The “deleted” data structures may

actually remain in memory unchanged until they are overwritten with new information.

Altemately, data in an image file may in some implementations be deleted solely by updating
the bookkeeping information for the file, without moving any ofthe image data.

In one embodiment of the present invention, the digital camera lowers the image quality of an

image fi'om High quality to “Very Good +" by deleting the two lowest bit planes ofthe image.

Similarly, lowering the image’s quality to “Very Good -" is accomplished by deleting two I

more bit planes of the image, and then lowering the image’s quality to Good is accomplished

by deleting yet another two bit planes of the image. More generally, each quality level

Petitioner Apple Inc. — Exhibit 1024, p. 4003

Petitioner Apple Inc. - Exhibit 1024, p. 4004

UI

10

15

20

25

30

W0 0]/37209 PCT/US00/30825

-15-

transition is represented by deleting a certain percentage of the bit planes of the highest quality

_ level representation of the image.

In an alternate embodiment, the transition from High quality to the next highest quality level is

accomplished by deleting the analysis arrays for a first transform layer (e.g., the analysis arrays

for the HL1, HH1 and LH1 regions ofthe transfonned image in Fig. 3). Subsequent quality

level transitions to lower quality levels are accomplished by deleting appropriate numbers of

bit planes.

In one embodiment of the present invention the digital camera provides two image file size

reduction modes. In a first size reduction mode, the user selects one image (or a specified

group of images), uses the camera’s buttons to indicate what lower quality level the image is to

be stored at, and then the state machine 212 generates a smaller image file and stores the

resulting image file in the camera’s nonvolatile image memory 108. In the second size

reduction mode, the user commands the camera to reduce the size of all image files that are

currently stored at quality level A to quality level B. For instance, in this second size reduction

mode the user might command the camera to convert all “High" quality image files to “Very

Good +" image quality files. This latter size reduction mode is particularly useful for “clearing

space” in memory 108 to enable additional pictures to be stored in the memory 108.

In another embodiment, the camera or other device may include one or more automatic image

file size reduction modes. For instance, in one such mode the camera could be set to record all

pictures at a particular quality level. When the camera’s memory is sufficiently filed with

images files so that there is insufficient room to store one more image at the current quality

level setting, the camera automatically reduces the size of enough of the stored image files so

as to create room for one more image at the current qualitylevel. In some embodiments, the

quality level setting of the device for future images might be automatically reduced to match

the quality level of the highest quality image stored in the camera’s memory. In this way, the

camera takes and stores the maximum quality images for the space available, and this

maximization will occur flexibly and “on-the—fly.”

Petitioner Apple Inc. — Exhibit 1024, p. 4004

Petitioner Apple Inc. - Exhibit 1024, p. 4005

10

15

25

30

wo 01/37209 PCT/US00/30825

_ 16 -

Camera Operation and

Image File Size Reduction

Referring to Fig. 5, the status of a digital camera is represented by status information displayed

on the camera’s user interface display 1 16. For example, before the camera’s image memory

108 is filled, the camera might indicate to the user thatit is currently storing twenty-one

pictures at High quality and has enough memory to store three more pictures. The indication

ofhow many more pictures can be stored in the camera’s image memory 108 (Fig. 1) depends

on the camera's current picture quality setting, which determines the quality of the next picture
to be taken.

After the camera has stored three more pictures, the camera’s image memory 108 is full (i.e., it

has insufficient room to store another picture at the camera’s current picture quality setting),

and the camera indicates to the user that it is currently storing twenty-four pictures at High

quality and has enough memory to store zero more pictures. For the purposes of this example,

we will assume that the user wants to take at least ten more pictures, despite the fact that he/she

has no more memory cards. To make this possible, the user utilizes the image size reduction

feature of the camera.

In this example, the user commands the camera to reduce all “High“ quality image files down

one quality level to the “Very Good +" quality level. The camera accomplishes this by running

the size reduction state machine 212 and then updating the status information displayed on the

camera’s user interface display 1 16. In this example, the twenty-four images are now shown to

be stored in image files having the “Very Good -‘r" quality level, and the camera has room for

seven new images at the High quality image level.

In this example. the user next commands the camera to perform a second size reduction so as

to compress all “Very Good +” quality image files down one quality level to the “Very

Good -” quality level. The camera accomplishes this by running the size reduction state

machine 212 and then updating the status information displayed on the camera’s user interface

display 116. In thisexample, the twenty-four images are now shown to be stored in image

files having the “Very Good -" quality level, and the camera has room for twelve new images
at the High quality image level.

Petitioner Apple Inc. — Exhibit 1024, p. 4005

Petitioner Apple Inc. - Exhibit 1024, p. 4006

10

15

20

25

30

WO 01/37209 PCT/US00/30825

_ 17 -

Altemately, if the user had, before capturing the images. switched the quality level for new

images to “Very Good +” quality. a single image size reduction step might have been sufficient

to create room for at least ten additional pictures.

In another example, the digital camera may be configured to have an automatic image file size

reduction mode that is activated only when the camera’s memory is full and the user

nevertheless presses the image capture button on the camera. In this mode of operation. the

camera’s image processing circuitry reduces the size of previously stored image files as little as

possible so as to make room for an additional image file. Ifthe user continues to take more

pictures in this mode, the quality of the stored images will eventually degradeto some user

defined or predefined setting for the lowest allowed quality level, at which point the camera

will not store any additional image files until the permitted quality level is lowered further or at

least some of the previously stored image files are transferred to another device or otherwise

deleted.

The image management system and method of the present invention can also be implemented

in computer systems and computer controlled systems, using a data processor that executes

procedures for carrying of the image processing steps discussed above. The present invention

can also be implemented as a computer program product (e.g., a CD-ROM or data signal

conveyed on a carrier signal) containing image processing procedures suitable for use by a

computer system.

Video Image Management System

Referring to Fig. 6, there isshown a conceptual data flow diagram for a video image

management system for storing video images at a plurality of image quality levels. The basic

structure ofthe video image management system is the same as shown in Fig. 1. However,

when the camera is a digital video camera, successive images F, are automatically generated at

a predefined rate, such as eight, sixteen, twenty—four or thirty frames per second. In a preferred

embodiment, the sequence of video images is processed N frames at a time, where N is an

integer greater than three, and is preferably equal to four, eight or sixteen; generally N will be

determined by the availability ofmemory and computational resources in the particular system

in which the invention is being implemented. That is, each set ofN (e.g., sixteen) successive

Petitioner Apple Inc. — Exhibit 1024, p. 4006

Petitioner Apple Inc. - Exhibit 1024, p. 4007

IO

15

20

25

30

wo 0]/37209 PCT/US00/30825

-18-

images (i.e., frames) are processed as a set, as follows. For each set of sixteen frames Fm to

F,,,,,,,, all the frames except the first one are replaced with differential frames. Thus. when

N=l6, fifteen differential frames FM-Fl. are generated. Then, following the data processing

method shown in Fig. 3 and discussed above, the first frame and the fifteen differential frames

are each divided into analysis arrays, a wavelet-like or other transform is applied to the

analysis arrays, and then the resulting transform coefficients are encoded.

In alternate embodiments, other methodologies could be used for initially transforming and

encoding each set of success frames. For instance, a frame by frame decision might be made.

based on a measurement of frame similarity or dissimilarity, as to whether or not to replace the

frame with a differential frame before applying the transform and encoding steps.

In all embodiments, the image file (or files) representing the set of frames is stored so as to

facilitate the generation of smaller image files with minimal computational resources. In

particular, the data in the image file(s) is preferably stored using distinct data structures for

each bit plane (see Fig. 4B). Furthennore, as explained above with reference to Fig. 4A. the

analysis arrays may be adjusted prior to the transform step so that the boundaries between

analysis arrays correspond to the boundaries between transfomi layer coefficients. By so

arranging the data stored in the video image files, the generation of smaller, lower quality level

video image files is made much easier.

Continuing to refer to Fig.6, after the video image files for a video frame sequence have been

generated at a particular initial quality level, the user ofthe device (or the device operating in a

particular automatic mode) may decide to reduce the size ofthe video image files while

retaining as much image quality as possible. By way of example, in a first video image file

size reduction step, the HH1 transform coefficients for the last eight frames of each sixteen

frame sequence are deleted. In a second reduction step, the HI-Il transfonn coefficients are

deleted for all frames other than the first frame of each sixteen frame sequence. In a third

reduction step, the Z (e.g., four) least significant bit planes ofthe video image files are deleted.

In a fourth reduction step, the HLI and LH1 coefficients are deleted for the last eight frames of

each sixteen frame sequence. In a fifth reduction step, the HLI and LHI coefficients are

deleted for all frames other than the first frame of each sixteen frame sequence. These

reduction steps are only examples of the type of file size reduction steps that could be

Petitioner Apple Inc. — Exhibit 1024, p. 4007

Petitioner Apple Inc. - Exhibit 1024, p. 4008

10

15

20

25

30

WO 01/37209 PCT/U500/30825

- 19 _

perfomied. For instance, in other embodiments, bit planes might be deleted in earlier reduction

steps and transform layers (or portions of transform layers) deleted only in later reduction

steps. In general, each video image size reduction causes a corresponding decrease in image
quality.

Referring to Figs. 7, 8 and 9, in another embodiment, video image sequences are compressed

and encoded by performing a time domain, one dimensional wavelet transfomiation on a set of

video frames. In particular, the video frames are divided into groups of N frames. where N is

an integer greater than 3, and for every x,y pixel position in the video image, a one dimensional

K level wavelet transform is performed on the pixels for a sequence of N+l frames. For

instance, the K level wavelet transform is performed on the 1,1 pixels for the last frame of the

previous group and the current group ofN frames, as well as the 1, 2 pixels, the 1,3 pixels and
$0 on.

In order to avoid artifacts from the separate encoding of each group of N frames, the frame

immediately preceding the current group is included in K level wavelet transfomi. The

wavelet transform uses a short transform filter that extends only one position to the left

(backwards in time) of the position for which a coefficient is being generated and extends in

the right hand (forward in time) direction only to the right hand edge of the set of N frames.

Furthermore, as shown in Fig. 8, the “right edge" coefficients are saved for each of the first

through K-1 level wavelet transforms for use when processing the next group of N frames. In

a preferred embodiment, only the rightmost edge coefficient is saved for each of the first

through K-1 level transforms; in other embodiments two or more right edge coefficients may
be saved and used when processing the next block of N frames. When the second level

transform is performed on a block of N frames, the saved layer 1 right edge coefficients for the

previous set ofN frames are used (i.e., included in the computation ofthe leftmost computed

coefficient(s) for layer 2). By saving the rightmost edge coefficients for each of the] through

K-1 layers, artifacts that would caused (during regeneration of the video image sequence) by

the discontinuities between the last frame of one block and the first frame of the nextiblock are

avoided,_ resulting in a smoother and more visually pleasing reconstructed video image

sequence. The wavelet-like transformation and data compression of a video sequence is shown

in pseudocode fomi in Table 1.

Petitioner Apple Inc. — Exhibit 1024, p. 4008

Petitioner Apple Inc. - Exhibit 1024, p. 4009

10

.15

20

25

'30

35

40

45

wo 01/37209 PCT/US00/30825

- -

Table i

Pseudocode for Wavelet-Like Transform and

Compression of One Block of Video Frames

Repeat for each block of video frames:

{

For each row y (of the images)
{

For each column x (of the images)
{

Save rightmost edge value for use when processing next block of video frames;

Apply level 1 wavelet-like transform to time-ordered sequence of pixel values
at position x,y. including saved edge value from prior block to generate level 1
L and H coefficients; '

Save rightmost edge L coefficient for use when processing next block of video
frames;

Apply level 2 wavelet-like transform to level 1 L coefficients for position x,y,
including saved level 1 edge value from prior block to generate level 2 L and H
coefficients;

Save rightmost edge level 2 L coefficient for use when processing next block of
video frames;

Apply level k-l wavelet-liketransfonn to level k-2 L coefficients for position
x,y, including saved level k-2 edge value from prior block to generate level k—1
L and_H coefficients; '

. Save rightmost edge level k-l L coefficient for use when processing next block
ofvideo frames;

Apply level k wavelet-like transfonn to level k—1 L coefficients for position x,y,
including saved level k-1 edge value from prior block to generate level k L and
H coefficients;

}

}

Quantize coefficients

Encode coefficients

Store coefficients in image data structure(s), creating image file for current block of video
frames

} .

Petitioner Apple Inc. — Exhibit 1024, p; 4009

Petitioner Apple Inc. - Exhibit 1024, p. 4010

10

15

20

30

W0 01/37209 PCT/US00/30825

-2]-

A more detailed explanation of saving edge coefficient from one block ofimage data for use

while performing a wavelet or wavelet like transforms on a neighboring block ofimage data is

provided in U.S. patent application serial no. 09/358,876, filed 07-22-99, “Memory Saving

Wavelet-Like Image Transfomi System and Method for Digital Camera And Other Memory

Conservative Applications,” which is hereby incorporated by reference as background
infomiation.

Once the wavelet-like transform of each block of video data has been completed, all other

aspects of processing the transformed video data are as described above. That is, the

transformed data is quantized, stored in image data structures and subject to reductions in

image quality, using the same techniques as those applied to still images and video image
sequences as described above.

The video image management system and method of the present invention can also be

implemented in computer systems and computer controlled systems, using a data processor

that executes procedures for carrying of the video frame processing steps discussed above. The

present invention can also be implemented as a computer program product (e.g., a CD-ROM or

data signal conveyed on a carrier signal) containing image and/or video frame processing

procedures suitable for use by a computer system.

Alternate Embodiments

The state machines of the embodiments described above can be replaced by software

procedures that are executed by a general purpose (programmable) data processor or a

programmable image data processor, especially if speed of operation is not a concern.

Numerous other aspects of the described embodiments may change over time as technology

improvements are used to upgrade various parts of the digital camera. For instance, the

memory technology used to store image files might change from flash memory to another type

of memory, or a camera might respond to voice commands, enabling the use of fewer buttons.

Referring to Fig. 10, the present invention can also be used in a variety of image processing

systems other than digital cameras and digital video cameras, including cable television set top

Petitioner Apple Inc. — Exhibit 1024, p. 4010

Petitioner Apple Inc. - Exhibit 1024, p. 4011

IO

15

20

25

30

W0 0] /37209 PCT/US00/30825

-22-

boxes, computer systems and devices used to warehouse libraries of images. computer systems

and devices used to store and distribute image files, and so on. For example. an Internet server

300 can store images and/or video sequences in the wavelet transform compressed data

structures of the present invention. Copies of those compressed data structures are transferred

to the memory 306 ofclient computers or other client devices 302, using HTTP or any other

suitable protocol via the Internet 304 or other communications network. When appropriate. an

image or video sequence is reduced in size so as to fit in the memory available in the client

computer or other device (client device). Furthermore, once an image or video sequence has

been stored in the memory 306 of a client device, the techniques of the present invention can

be used to manage the storage of the image, for instance through gradual reduction of image

quality so as to make room for the storage of additional images or video sequences. In the

embodiment shown in Fig. 10, the memory 306 ofthe client computer will have stored therein:

- an.operating system 3 l0;

- a browser or other image viewer application 312 for viewing documents and images;
- image files 314; I

- image transform procedures 316, such as wavelet or wavelet—like transform procedures

for converting a raw image array into wavelet transfonn coefficients, procedures for

compressing and encoding the wavelet transform coefficients, as well as other transfomt

procedures for handling images received in other image formats, such IPEG transform

procedures for converting JPEG files into reconstructed image data that is then used as the raw

— image data by a wavelet or wavelet-like transform procedure;

- an image compression, quality reduction procedure 318 for implementing the image
data structure size and quality reduction features of the present invention; and

- image reconstruction procedures 320 for decompressing and reverse transforming

image files so as to generate reconstructed image data arrays that are suitable for viewing on
the monitor of the client workstation, or for printing or otheruse.

The client workstation memory 306 will typically include both high speed random access

memory and slower non-volatile memory such as a hard disk and/or read—only memory. The
client workstation’s central processing unit(s) 308 execute operating system procedures and

image handling procedures, as well as other applications, thereby performing image processing
functions similar to those performed by dedicated circuitry in other embodiments of the present
invention.

Petitioner Apple Inc. — Exhibit 1024, p. 4011

Petitioner Apple Inc. - Exhibit 1024, p. 4012

10

wo 01/37209 PCT/US00/30825

_ 23 _

As indicated above, when the present invention is used in conjunction with. or as part of, a

browser application, for management of image storage, some images may be initially received

in formats other than “raw” image arrays. For instance, some images may be initially received

as JPEG files, or in other proprietary or industry standard formats. To make full use of the

capabilities of the present invention, such images are preferably decoded so as to generate

reconstructed “raw” image arrays, and then those raw image arrays are wavelet or wavelet-like

transformed so as to put the images in a form that enables use of the image quality level

management features of the present invention.

While the present invention has been described with reference to a few specific embodiments,

the description is illustrative of the invention and is not to be construed as limiting the

invention. Various modifications may occur to those skilled in the art without departing from

the true spirit and scope of the invention as defined by the appended claims.

Petitioner Apple Inc. — Exhibit 1024, p. 4012

Petitioner Apple Inc. - Exhibit 1024, p. 4013

©\DOO\)O'\LII-bl.»JI\J
ll

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

IO

U.)

PCT/US00/30825W0 01/37209

- 24 _

WHAT IS CLAIMED IS:

1. Image processing apparatus, for use in conjunction with an image capture mechanism.

the image processing apparatus comprising:

a memory device for storing a plurality of image data structures that each represent a

respective image, each image data structure having an associated image quality level

corresponding to a quality level at which the corresponding image has been encoded in the

image data structure; the image quality level of each image data structure being a member of

predefined range of image quality levels that range from a highest quality level to a lowest

quality level and that include at least two distinct quality levels;

image management logic, including data processing circuitry and state machines for

storing and processing image data received from the image capture mechanism, the data

processing circuitry and state machines including:

image processing circuitry for applying a predefined transfonn to image data

received from the image capture mechanism to generate transfonn image data and for applying '

a data compression method to the transform image data so as to generate a new image data

structure having an associated image quality level selected from the predefined range of image

quality levels; the new image data structure being stored in the memory device;

image size reduction circuitry for extracting a subset of the data in a first

specified one of the image data structures stored in the memory device, and fonning a lower

quality version ofthe first specified image data structure that occupies less space in the

memory device than was previously occupied by the first specified image data structure; and

image reconstruction circuitry for successively applying a data decompression

method and an inverse transform to any specified one of the image data structures so as to

generate a reconstructed image suitable for display on an image viewer;

wherein the amount of space occupied by images stored in the form ofimage data

structures in the memory device can be reduced so as to make room for the storage of

additional image data structures in the memory device.

2. The image processing apparatus of claim 1, wherein

each image data structure contains image transfonn data organized on a bit plane basis

such that image transform data for at least one bit plane is stored in distinct portions of the

image data structure from image transform data for other bit planes; and

Petitioner Apple Inc. — Exhibit 1024, p. 4013

Petitioner Apple Inc. - Exhibit 1024, p. 4014

"-‘OO\lO'\U1
l\)

D-—l

©\OOO\)O\UIJ>-La)
._.

5\OOO\lO\LII-D-LaJI\J
r—A r—A

p-4 K)

—- DJ

E

p-4 LII

3

u—l \)

W0 0|/37209 PCT/US00/30825

- 25 -

the image size reduction circuitry and one or more state machines includes logic for

extracting a portion of an image data structure that excludes the image transfonn data for at

least one bit plane and for replacing the image data structure with an image data structure

containing the extracted portion.

3. The image processing apparatus of claim 1, wherein

each of a subset of the image data structures contains image transfomi data organized

on a transform layer basis such that image transform data for at least one transfomi layer is

stored in distinct portions of the image data structure from image transform data for other

transform layers; and

the image size reduction circuitry and one or more state machines includes logic,

operative when the first specified data structure is a member of the subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

image transfomi data for at least one transfomi layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

4. Image processing apparatus, for use in conjunction with an image capture mechanism,

the image processing apparatus comprising:

a memory device for storing a plurality of image data structures that each represent a

respective image, each image data structure having an associated image quality level

corresponding to a quality level at which the corresponding image has been encoded in the

image data structure; the image quality level of each image data structure being a member of

predefined range of image quality levels that range from a highest quality level to a lowest

quality level and that include at least two distinct quality levels;

image management logic for storing and processing image data received from the

image capture mechanism, including:

a data processor coupled to the memory device;

image management procedures, executable by the data processor, including instructions

for storing and processing image data received from the image capture mechanism, the

instructions including:

an initial image processing procedure for applying a predefined transfonn to

image data received from the image capture mechanism to generate transform image data and

for applying a data compression procedure to the transform image data so as to generate an

Petitioner Apple Inc. — Exhibit 1024, p. 4014

Petitioner Apple Inc. - Exhibit 1024, p. 4015

18

19

20

21

22

23

24

25

26

27'

28

29

30

V31

OO\lO’\l.II-I)-U-Dix)

_OO\lO’\UI-It-U-Dtx)

W0 0]/37209 PCT/U500/30825

- 26 -

image data structure having an associated image quality level selected from the predefined

range ofimage quality levels;

an image size reduction procedure for lowering the quality level of a first

specified one of the image data structures, including instructions for extracting a subset of the

data in the first specified image data structure and forming a lower quality version of the first

specified image data structure that occupies less space in the memory device than was

previously occupied by the first specified image data structure; and

at least one image reconstruction procedure for successively applying a data

decompression method and an inverse transfonn to any specified one of the image data

structures stored in the memory device so as to generate a reconstructed image suitable for

display on an image viewer;

wherein the amount of space occupied by images stored in the fonn of image data

structures in the memory device can be reduced so as to make room for the storage of

additional image data structures in the memory device.

5. The image processing apparatus of claim 4, wherein

each of the image data structures contains image transfonn data organized on a bit

plane basis such that image transfonn data for at least one bit plane is stored in distinct

portions of the image data structure from image transform data for other bit planes; and

the image size reduction instructions include instructions for extracting a portion of an

image data structure that excludes the image transform data for at least one bit plane and for

replacing the image data structure with an image data structure containing the extracted

portion.

6. The image processing apparatus of claim 4, wherein

each of a subset of the image data structures contains image transfonn data organized

on a transfonn layer basis such that image transform data for at least one transfonn layer is

stored in distinct portions of the image data structure from image transform data for other

transfonn layers; and I

the image size reduction instructions include instructions, operative when the first

specified data structure is a member of the subset of image data structures, for extracting a

portion of the first specified image data structure that excludes the image transform data for at

Petitioner Apple Inc. — Exhibit 1024, p. 4015

Petitioner Apple Inc. - Exhibit 1024, p. 4016

10

I0

W0 01/37209 PCT/U500/30825

-37-

least one transform layer and for replacing the first specified image data structure with an

image data structure containing the extracted portion.

7. Image processing apparatus, comprising:

image management logic, including:

image processing circuitry for applying a predefined transform to an array of

image data so as to generate transform image data and for applying a data compression method

to the transform image data so as to generate an image data structure having an associated

image quality level selected from a predefined range ofimage quality levels that range from a

highest quality level to a lowest quality level and that include at least two distinct quality
levels;

a memory device for storing the image data structure and other image data structures

representing a set ofimages;

the image management logic further including:

image size reduction circuitry for extracting a subset of the data in a first

specified one of the image data structures stored in the memory device. and forming a reduced

size version of the first specified image data structure that occupies less space in the memory

device than was previously occupied by the first specified image data structure and that has a

lower associated image quality level than the image quality level associated with the first

specified image data structurej and

image reconstruction circuitry for successively applying a data decompression

method and an inverse transform to any specified one of the image data structures stored in the

memory device so as to generate a reconstructed image suitable for display on an image
viewer;

wherein the amount of space occupied by the image data structures in the memory

device can be reduced so as to make room for the storage of additional image data structures in
the memory device.

8. The image processing apparatus of claim 7, further including a communications

interface for receiving the image data from another apparatus.

9. The image processing apparatus of claim 8, wherein

Petitioner Apple Inc. — Exhibit 1024, p. 4016

Petitioner Apple Inc. - Exhibit 1024, p. 4017

®\OOO\lO’\llI-Kin!»-)l\)©\DOO\lO\UI-K:-l¢JI\)©\ooo\jo\u._;;.L,J'\)
11

W0 0]/37209 PCT/US00/30825

- 23 -

each of a subset of the image data structures contains image transfomi data organized

on a transform layer basis such that image transform data for at least one transform layer is

stored in distinct portions of the image data structure from image transform data for other

transfonn layers; and

the image size reduction circuitry and one or more state machines includes logic,

operative when the first specified data structure is a member of the subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

10. The image processing apparatus of claim 8, wherein

each of a subset of the image data structures contains image transfomi data organized

on a transform layer basis such that image transform data for at least one transform layer is

stored in distinct portions of the image data structure from image transform data for other

transform layers; and

the image size reduction circuitry and one or more state machines includes logic,

operative when the first specified data structure is a member of the subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

1 1. Image processing apparatus, comprising:

a communications interface for receiving an image data structure having an associated

image quality level selected from a predefined range ofimage quality levels that range from :1
highest quality level to a lowest ‘quality level and that include at least two distinct quality
levels; I

a memory device for storing the image data structure and other image data structures

representing a set of images; 4

image management logic, including:

image size ‘reduction circuitry for extracting a subset of the data in a first

specified one of the image data structures to form a reduced size image data structure that

occupies less space in the memory device than was previously occupied by the first specified

Petitioner Apple Inc. — Exhibit 1024, p. 4017

Petitioner Apple Inc. - Exhibit 1024, p. 4018

13

14

15

16

17

18

19

20

DJ

©\DOO\lO\UI-lb-L;Jl\)OO\lO\(.II-l>-
11

.12’

13

W0 0ll37209 PCT/US00/30825

_ 39 _

image data structure and that has a lower associated image quality level than the quality level

associated with the first specified image data structure; and

image reconstruction circuitry for successively applying a data decompression

method and an inverse transform to any specified one of the image data structures and the

reduced size image data structure so as to generate a reconstructed image suitable for display
on a display device; 1

wherein the amount of space occupied by the image data structure in the memory

device can be reduced so as to make room for the storage of additional image data structures in

the memory device.

12. The image processing apparatus ofclaim 1 1, wherein

each image data structure contains image transform data organized on a bit plane basis

such that image transform data for at least one bit plane is stored in distinct portions ofthe

image data structure from image transform data for other bit planes;

the image size reduction circuitry and one or more state machines including logic for

extracting a portion of the first specified image data structure that excludes the image

transform data for at least one bit plane and for replacing the first specified image data

structure with an image data structure containing the extracted portion.

13. The image processing apparatus of claim 8, wherein

each of a subset of the image data structures contains image transfomi data organized

on a transform layer basis such that image transform data for at least one transfomi layer is

stored in distinct portions of the image data structure from image transform data for other

transform layers; and

the image size reduction circuitry and one or more state machines includes logic,

operative when the first specified data structure is amember of the subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

14. Image processing apparatus, the image processing apparatus comprising:

a communications interface for receiving an image data structure having an associated

image quality level selected from a predefined range of image quality levels that range from a

Petitioner Apple Inc. — Exhibit 1024, p. 4018

Petitioner Apple Inc. - Exhibit 1024, p. 4019

14

15

16

17

18

19

20

21

22

23

24

25

26

_27

28

29

30

31

32

OO\lO\LII-J>bJI\)

W0 9]/37209 PCT/US00/30825

-30-

highest quality level to a lowest quality level and that include at least two distinct quality
levels;

a memory device for storing the image data structure and other image data structures

representing a set of images;

a data processor coupled to the memory device;

image management procedures, executable by the data processor. including instructions

for storing and processing image data, the instructions including:

an image size reduction procedure for lowering the quality level of a first

specified one of the image data structures, including instructions for extracting a subset of the

data in the first specified image data structure and forming a lower quality version of the first

specified image data structure that occupies less space in the memory device than was

previously occupied by the first specified image data structure; and

at least one image reconstruction procedure for successively applying a data

decompression method and an inverse transform to any specified one of the image data

structures stored in the memory device so as to generate a reconstructed image suitable for
display on an image viewer;

wherein the amount of space occupied by images stored in the form of image data

structures in the memory device can be reduced so as to make room for the storage of

additional image data structures in the memory device.

15. The image processing apparatus ofclaim 14, wherein

each of the image data structures contains image transform data organized on a bit

plane basis such that image transform data for at least one bit plane is stored in distinct

portions of the image data structure from image transform data for other bit planes; and

the image size reduction instructions include instructions for extracting a portion of an

image data structure that excludes the image transform data for at least one bit plane and for

replacing the image data structure with an image data structure containing the extracted
portion.

16. The image processing apparatus of claim 14, wherein

each of a subset of the image data structures contains image transform data organized

on a transform layer basis such that image transform data for at least one transform layer is

Petitioner Apple Inc. — Exhibit 1024, p. 4019

Petitioner Apple Inc. - Exhibit 1024, p. 4020

W0 0137209 PCT/US00/30825

- -

4:-
stored in distinct portions of the image data structure from image transform data for other

transform layers; and

the image size reduction instructions include instructions. operative when the first

specified data structure is a member of the subset of image data structures, for extracting a

portion of the first specified image data structure that excludes the image transform data for at

least one transform layer and for replacing the first specified image data structure with an
O\O00\l0UI

image data structure containing the extracted portion.

1 l 17. A computer program product, for use in conjunction with a computer system having a

12 memory in which image data structures can be stored, the computer program product

13 comprising a computer readable storage medium and a computer program mechanism

14 embedded therein, the computer program mechanism comprising:

15 an image handling procedure, including instructions for storing in the memory of the

16 computer system a plurality of image data structures,

17 an image size reduction procedure for accessing image data structures in the memory of

18 the computer system, each of the image data structures containing image transfom1 data,

19 lowering the quality level of a first specified one of the image data structures, including

20 instructions for extracting a subset of the data in a first specified image data structure and

21 forming a lower quality version of the first specified image data structure that occupies less

22 space in the memory device than was previously occupied by the first specified image data
23 structure; and

24 at least one image reconstruction procedure for successively applying a data

25 decompression procedure and an inverse transform to any specified one of the image data

26 structures stored in the memory device so as to generate a reconstructed image suitable for

27 display on an image viewer;

28 wherein the amount of space occupied by images stored in the form of image data
29 structures in the memory device canbe reduced so as to make room for the storage of

30 additional image data structures in the memory device.

1 18. The computer program product of claim 17, wherein

2 each of the image data structures contains image transform data organized on a bit

3 plane basis such that image transform data for at least one bit plane is stored in distinct
4

portions of the image data structure from image transform data for other bit planes; and

Petitioner Apple Inc. — Exhibit 1024, p. 4020

Petitioner Apple Inc. - Exhibit 1024, p. 4021

C>\0Oo\lO~UIJ>-bJ’t\)»—mpmwO\OOO\lO\LI1-btulx)ooqosu.
W0 0]/37209 PCT/US00/30825

_ 32 -

the image size reduction procedure includes instructions for extracting a portion of the
first specified image data structure that excludes the image transform data for at least one bit

plane and for replacing the first specified image data structure with an image data structure

containing the extracted portion.

19. The computer program product of claim 17, wherein

each of a subset of the image data structures contains image transform data organized

on a transfonn layer basis such that image transform data for at least one transform layer is

stored in distinct portions of the image data structure from image transform data for other

transform layers; and

the image size reduction procedure includes instructions, operative when the first

specified data structure is a member of the subset of image data structures, for extracting a

portion of the first specified image data structure that excludes the image transform data for at

least one transfonn layer and for replacing the first specified image data structure with an

image data structure containing the extracted portion.

20. The computer program product of claim 17, wherein the image handling procedure

includes one or more image processing procedures for applying a predefined transform to raw

image data to generate transform image data and for applying a data compression procedure to

the transform image data so as to generate an image data structure having an associated image

quality level selected from the predefined range of image quality levels.

21. A method of processing images, comprising:

storing in a memory device a plurality of image data structures that each represent a

respective image, each image data structure having an associated image quality level

corresponding to a quality level at which the corresponding image has been encoded in the

image data structure; the image quality level of each image data structure being a member of

predefined range of image quality levels that range from a highest quality level to a lowest

quality level and that include at least two distinct quality levels;

reducing the size of a specified one of the image data structures stored in the

nonvolatile memory device, including extracting a subset of the data in the specified image
data structure and forming a lower quality version of the specified image data structure that

Petitioner Apple Inc. — Exhibit 1024, p. 4021

Petitioner Apple Inc. - Exhibit 1024, p. 4022

ll

l3

14

15

16

17

18

U13}-bJl\JO\UIJ>-UJl\J

W0 01/37209 PCT/US00/30825

- 33 _

occupies less space in the nonvolatile memory device than was previously occupied by the
specified image data structure; and

successively applying a data decompression method and an inverse transform to a

specified one of the image data structures stored in the nonvolatile memory device so as to

generate a reconstructed image suitable for display on an image viewer;

wherein the amount of space occupied by images stored in the form of image data

structures in the nonvolatile memory device can be reduced so as to make room for the storage

of additional image data structures in the nonvolatile memory device.

22. The method of claim 21, wherein the method is performed by a digital camera and the

method includes applying a predefined transform to image data received from an image capture

mechanism in the digital camera to generate transform image data, applying a data

compression method to the transfonn image data so as to generate an image data structure

having an associated image quality level selected from the predefined range of image quality

levels, and storing the image data structure in the memory device.

23. The method ofclaim 21, wherein the method includes applying a predefined transfonn

to raw image data to generate transform image data, applying a data compression method to the

transform image data so as to generate an image data structure having an associated image

quality level selected.from the predefined range of image quality levels, and storing the image
data structure in the memory device.

24. The method of claim 21, wherein

each image data structure contains image transfonn data organized on a bit plane basis

such that image transfonn data for at least one bit plane is stored in distinct portions of the

image data structure from image transform data for other bit planes;

the size reduction step includes extracting a portion of an image data structure that

excludes the image transform data for at least one bit plane and for replacing the image data

structure in the nonvolatile memory device with an image data structure containing the
extracted portion.

25. i The method ofclaim 21, wherein

Petitioner Apple Inc. — Exhibit 1024, p. 4022

Petitioner Apple Inc. - Exhibit 1024, p. 4023

IQ

DJ

*‘\DO0\lO\UIh

S\OOO\lO\l/I-BUJNJ

OUIALHK)

wo 01/37209 pcr/usoo/30325

-34-

each of a subset of the image data structures contains image transfonn data organized

on a transform layer basis such that image transform data for at least one transfomi layer is

stored in distinct portions of the image data structure from image transfomi data for other

transfonn layers; and

the size reduction step includes extracting a portion of the first specified image data

structure that excludes the image transform data for at least one transform layer and replacing

the first specified image data structure with an image data structure containing the extracted

portion.

26. Video image processing apparatus, comprising:

a memory device for storing a set of image data structures representing a sequence of

video frames, the set of image data structures having an associated image quality level selected

from a predefined range of image quality levels that range from a highest quality level to a

lowest quality level and that include at least two distinct quality levels; and

image management logic including:

image size reduction circuitry for extracting a subset of the data in the set of

image data structures and forming a lower quality version of the set of image data structures

that occupies less space in the memory device than was previously occupied by the set of

image data structures; and

image reconstruction circuitry for successively applying a data decompression

method and an inverse transform to at least a subset of the image data structures so as to

generate a reconstructed sequence of video frames suitable for display on a display device;

whereby the amount of space occupied by the set of image data structures in the

memory device can be reduced so as to make room for the storage of additional image data

structures in the memory device.

27. The video image processing apparatus of claim 26, wherein

each image data structure contains image transform data organized on a bit plane basis

such that image transform data for at least one bit plane is stored in distinct portions of the

image data structure from image transform data for other hit planes;

the image size reduction circuitry and one or more state machines including logic for

extracting a portion of an image data structure that excludes the image transform data for at

Petitioner Apple Inc. — Exhibit 1024, p. 4023

Petitioner Apple Inc. - Exhibit 1024, p. 4024

IQ

IQ\D00\lO\UIALo-I
-lib-I

I0

-51!»

Ix)

-Ill.»-I

Uu.£>l.>Jl\J

W0 0]/37209 PCT/US00/30825

-35-

least one bit plane and for replacing the image data structurewith an image data structure

containing the extracted portion.

_28. The video image processing apparatus ofclaim 26, wherein

the image data structures contains image transform data organized on a transform layer

basis such that image transform data for at least one transform layer is stored in distinct

portions of the image data structure from image transform data for other transform layers: and

the image size reduction circuitry and one or more state machines includes logic,

operative when the first specified data structure is a member of the subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

29. The video image processing apparatus of claim 26. wherein the video frames are

divided into sub-sequences of N frames, where N is an integer greater than three, and the

predefined transform applied to the sequence of video images is a wavelet—like transform that

is applied to at least one video frame in each said sub-sequence of N frames.

30. The video image processing apparatus of claim 29, wherein the wavelet-like transfonn

is applied to at least one difference frame for each said sub-sequence of N frames, the

difference frame representing differences between one frame and a next frame in said sub-

sequence ofN frames.

31. The video image processing apparatus of claim 26, wherein the video frames are

divided into sub-sequences ofN frames, where N is an integer greater than three, and the

predefined transform applied to the sequence of video images is a wavelet-like transform that

is applied to separately and in time order to data at each x,y position in the video frames.

32. Video image processing apparatus, comprising:

image management logic, including:

image processing circuitry for applying a predefined transform to a sequence of

video fra.rnes to generate transform image data and for applying a data compression method to

the transform image data so as to generate a set of image data structures having an associated

Petitioner Apple Inc. — Exhibit 1024, p. 4024

Petitioner Apple Inc. - Exhibit 1024, p. 4025

C\O0O\lO\
l2

13

14

15

16

17

18

19

20

\lO\UI-tatntx)oo\iosm4s'uN

W0 0] /37209 PCT/US00/30825

-35-

image quality level selected from a predefined range of image quality levels that range from a

highest quality level to a lowest quality level and that include at least two distinct quality
levels;

a memory device for storing the set of image data structures;

the image management logic further including:

image size reduction circuitry for extracting a subset of the data in the set of

image data structures and fonning a lower quality version of the set of image datastructures

that occupies less space in the memory device than was previously occupied by the set of

image data structures; and

image reconstruction circuitry for successively applying a data decompression

method and an inverse transform to at least a subset of the image data structures so as to

generate a reconstructed sequence of video frames suitable for display on a display device;

whereby the amount of space occupied by the set of image data structures in the

memory device can be reduced so as to make room for the storage of additional image data

structures in the memory device.

33. The video image processing apparatus of claim 32, wherein

each image data structure contains image transfonn data organized on a bit plane basis

such that image transform data for at least one bit plane is stored in distinct portions of the

image data structure from image transform data for other bit planes;

the image size reduction circuitry and one or more state machines including logic _for

extracting a portion of an image data structure that excludes the image transfonn data for at

least one bit plane and for replacing the image data structure with an image data structure
containing the extracted portion.

34. 3 The video image processing apparatus of claim 32, wherein

the image data structures contains image transform data organized on a transfomi layer

basis such that image transfomi data for at least one transfomi layer is stored in distinct

portions of the image data structure from image transform data for other transfomi layers; and

the image size reduction circuitry and one or more state machines includes logic,

operative when the first specified data structure is a member of the subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

Petitioner Apple Inc. — Exhibit 1024, p. 4025

Petitioner Apple Inc. - Exhibit 1024, p. 4026

-bLaJl\)

-bLaJI\J

Lu

.g

3\OOO\lO\lJI-bbJI\)
.._. .._.

-# IQ

>- La)

pa -5

pa LII

W0 0]/37209 PCT/US00/30825

_ 37 _

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

35. The video image processing apparatus of claim 32, wherein the video frames are

divided into sub-sequences of N frames, where N is an integer greater than three, and the

predefined transform applied to the sequence of video images is a wavelet-like transform that

is applied to at least one video frame in each said sub-sequence ofN frames.

36. The video image processing apparatus of claim 35, wherein the wavelet-like transfonn

is applied to at least one difference frame for each said sub-sequence of N frames, the

difference frame representing differences between one frame and a next frame in.said sub-

sequence ofN frames.

37. The video image processing apparatus of claim 32, wherein the video frames are

divided into sub-sequences of N frames, where N is an integer greater than three, and the

predefined transform applied to the sequence of video images is a wavelet-like transfomi that

is applied to separately and in time order to data at each x,y position in the_video frames.

38. Video image processing apparatus, comprising:

a memory device for storing a set of image data structures representing a sequence of

video frames, the set of image data structures having an associated image quality level selected

from a predefined range ofimage quality levels that range from a highest quality level to a

lowest quality level and that include at least two distinct quality levels;

a data processor coupled to the memory device;

image management procedures, executable by the data processor, including

an image size reduction procedure for extracting a subset ofthe data in the set

ofimage data structures and fonning a lower quality version ofthe set of image data structures

that occupies less space in the memory device than was previously occupied by the set of

image data structures; and

at least one image reconstruction procedure for successively applying a data

decompression method and an inverse transfonn to at least a subset of the image data

structures so as to generate a reconstructed sequence of video frames suitable for display on a

display device;

Petitioner Apple Inc. — Exhibit 1024, p. 4026

Petitioner Apple Inc. - Exhibit 1024, p. 4027

16

17

18

-BUJIQ\OOO\lO’\UI-bLoJl\)
Ix)

-BL»)

wo 01/37209 PCT/US00/30825

-33-

whereby the amount of space occupied by the set of image data structures in the

memory device can be reduced so as to make room for the storage of additional image data

structures in the memory device.

39. The video image processing apparatus of claim 38, wherein

each image data structure contains image transfomi data organized on a bit plane basis

such that image transform data for at least one bit plane is stored in distinct portions of the

image data structure from image transform data for other bit planes;

the at least one image size reduction procedure includes instructions for extracting a
portion of an image data structure that excludes the image transform data for at least one bit

plane and for replacing the image data structure with an image data structure containing the

extracted portion.

40. The video image processing apparatus of claim 38, wherein

the image data structures contains image transform data organized on a transfomi layer

basis such that image transform data for at least one transform layer is stored in distinct -

portions of the image data structure from image transform data for other transfomi layers; and

the at least one image size reduction procedure and one or more state machines include

logic, operative when the first specified data structure is a member ofthe subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

41. The video image processing apparatus of claim 38, wherein the video frames are

divided into sub-sequences of N frames, where N is an integer greater than three, and the

predefined transform applied to the sequence of video images is a wavelet-like transform that

is applied to at least one video frame in each said sub-sequence ofN frames.

42. The video image processing apparatus of claim 4] , wherein the wavelet-like transfomi

is applied to at least one difference frame for each said sub-sequence ofN frames, the

difference frame representing differences between one frame and a next frame in said sub-

sequence ofN frames.

Petitioner Apple Inc. — Exhibit 1024, p. 4027

Petitioner Apple Inc. - Exhibit 1024, p. 4028

'—Jswm

_‘. O\O0'.)\l‘O'\U’:AL»)Ix)
ll

12

13

14

15

16

17

18

19

20

21

22

W0 0. 37109 PCT/US00/30825

- 39 _

43. The video image processing apparatus of claim 38. wherein the video frames are

divided into sub-sequences ofN frames, where N is an integer greater than three, and the

predefined transform applied to the sequence of video images is a wavelet-like transfomi that

is applied to separately and in time order to data at each x,y position in the video frames.

44. Video image processing apparatus, comprising:

a memory device for storing image data structures;

a data processor coupled to the memory device;

image management procedures, executable by the data processor, including:

at least one image processing procedure for applying a predefined transfomi to a

sequence of video frames to generate transfonn image data and for applying a data

compression method to the transform image data so as to generate a set of image data

structures having an associated image quality level selected from a predefined range of image

quality levels that range from a highest quality level to a lowest quality level and that include

at least two distinct quality levels, and for storing the set of image data structures in the

memory device;

an image size reduction procedure for extracting a subset of the data in the set

of image data structures and fonning a lower quality version of the set of image data structures

that occupies less space in the memory device than was previously occupied by the set of

image data structures; and I

at least one image reconstruction procedure for successively applying a data

decompression method and an inverse transform to at least a subset of the image data

structures so as to generate a reconstructed sequence of video frames suitable for display on a

display device;

whereby the amount of space occupied by the set of image data structures in the

memory device can be reduced so as to make room for the storage of additional image data

structures in the memory device.

Petitioner Apple Inc. — Exhibit 1024, p. 4028

Petitioner Apple Inc. - Exhibit 1024, p. 4029

I\)

I000\lQU!J>DJ
DJ

\OOO\l@Lh.h
11

12

13

J>UJI\)

wo on/37209 PCT/US00/30825

-40-

45. The video image processing apparatus of claim 44, wherein

each image data structure contains image transfonn data organized on a bit plane basis

such that image transfonn data for at least one bit plane is stored in distinct portions ofthe

image data structure from image transfonn data for other bit planes;

the at least one image size reduction procedure includes instructions for extracting a

ponion of an image data structure that excludes the image transform data for at least one bit

plane and for replacing the image data structure with an image data structure containing the

extracted portion.

46. The video image processing apparatus of claim 44, wherein

the image data structures contains image transform data organized on a transform layer

basis such that image transform data for at least one transfonn layer is stored in distinct

portions of the image data structure from image transform data for other transfonn layers; and

the at least one image size reduction procedure and one or more state machines include

logic, operative when the first specified data structure is a member ofthe subset ofimage data

structures, for extracting a portion of the first specified image data structure that excludes the

~-image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

47. The video image processing apparatus of claim 44, wherein the video frames are

divided into sub-sequences of N frames, where N is an integer greater than three, and the

predefined transform applied to the sequence of video images is a wavelet-like transfomi that

is applied to at least onevideo frame in each said sub-sequence ofN frames.

48. The video image processing apparatus of claim 47, wherein the wavelet-like transfomi

is applied to at least one difference frame for each said sub-sequence of N frames, the

difference frame representing differences between one frame and a next frame in said sub-

sequence of N frames.

Petitioner Apple Inc. — Exhibit 1024, p. 4029

Petitioner Apple Inc. - Exhibit 1024, p. 4030

IQ

-BU.)

O\LII.$:-bJI\)

wo 01/37209 PCT/US00/30825

- 4] _

49. The video image processing apparatus of claim 44, wherein the video frames are

divided into sub-sequences of N frames, where N is an integer greater than three. and the

predefined transform applied to the sequence of video images is a wavelet-like transfomt that

is applied to separately and in time order to data at each x,y position in the video frames.

50. A computer program product, for use in conjunction with a computer system having a

memory in which image data structures can be stored, the computer program product

comprising a computer readable storage medium and a computer program mechanism

embedded therein, the computer program mechanism comprising:

an image handling procedure, including instructions for storing in the memory of the

computer system a set of image data structures representing a sequence of video frames. the set

of image data structures having an associated image quality level selected from a predefined

range of image quality levels that range from a highest quality level to a lowest quality level

and that include at least two distinct quality levels;

a data processor coupled to the memory device;

an image size reduction procedure for extracting a subset of the data in the set of image

data structures and forming a lower quality version of the set of image data structures that

occupies less space in the memory device than was previously occupied by the set ofimage
data structures; and

at least one image reconstruction procedure for successively applying a data

decompression method and an inverse transform to at least a subset of the image data

structures so as to generate a reconstructed sequence of video frames suitable for display on a

display device;

whereby the amount of space occupied by the set of image data structures in the

memory device can be reduced so as to make room for the storage of additional image data
structures in the memory device.

51. The computer program product of claim 50, wherein

each image data structure contains image transform data organized on a bit plane basis

such that image transform data for at least one bit plane is stored in distinct portions of the

image data structure from image transform data for other bit planes;

the at least one image size reduction procedure includes instructions for extracting a
portion of an image data structure that excludes the image transform data for at least one bit

Petitioner Apple Inc. — Exhibit 1024, p. 4030

Petitioner Apple Inc. - Exhibit 1024, p. 4031

I\)

N\Doo\io\u-Aw
AL»

AUJN

U1-bL+JI\)

W0 0] /37209 PCT/US00/30825

- 42 -

plane and for replacing the image data structure with an image data structure containing the
extracted portion.

52. The computer program product of claim 50, wherein

the image data structures contains image transfonn data organized on a transfomi layer

basis such that image transfonn data for at least one transform layer is stored in distinct

portions of the image data structure from image transform data for other transform layers: and

the at least one image size reduction procedure and one or more state machines include

logic, operative when the first specified data structure is a member of the subset of image data

stmctures, for extracting a portion of the first specified image data structure that excludes the

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

53. The computer program product of claim 50, wherein the video frames are divided into

sub-sequences of N frames, where N is an integer greater than three, and the predefined

transform applied to the sequence of video images is a wavelet-like transform that is applied to

at least one video frame in each said sub-sequence of N frames.

54. The computer program product of claim 53, wherein the wavelet-like transform is

applied to at least one difference frame for each said sub-sequence of N frames, the difference

"frame representing differences between one frame and a next frame in said sub-sequence of N
frames.

55. The computer program product of claim 50, wherein the video frames are divided into

sub-sequences of N frames, where N is an integer greater than three, and the predefined

transform applied to the sequence of video images is a wavelet-like transfonn that is applied to

separately and in time order to data at each x,y position in the video frames.

56. The computer program product of claim 50, including:

at least one image processing procedure for applying a predefined transfonn to a

sequence of video frames to generate transform image data and for applying a data

compression method to the transform image data so as to generate the set of image data
structures stored in the memory.

Petitioner Apple Inc. — Exhibit 1024, p. 4031

Petitioner Apple Inc. - Exhibit 1024, p. 4032

Ix)

DJ00\lO\LII-32-DJ
to\O00\lO\LIIJi-
-D-b)

-D-UJI\J

W0 W37209 PCT/US00/30825

57. The computer program product of claim 56, wherein

each image data structure contains image transform data organized on a bit plane basis

such that image transform data for at least one bit plane is stored in distinct portions of the

image data structure from image transfonn data for other bit planes;

the at least one image size reduction procedure includes instructions for extracting a

portion of an image data structure that excludes the image transfonn data for at least one bit

plane and for replacing the image data structure with an image data structure containing the

extracted portion.

58. The computer program product of claim 56, wherein

the image data structures contains image transform data organized on a transfomi layer

basis such that image transform data for at least one transform layer is stored in distinct

portions of the image data structure from image transform data for other transform layers; and

the at least one image size reduction procedure and one or more state machines include

logic, operative when the first specified data structure is a member of the subset of image data

structures, for extracting a portion of the first specified image data structure that excludes the

image transform data for at least one transform layer and for replacing the first specified image

data structure with an image data structure containing the extracted portion.

59. The computer program product of claim 56, wherein the video frames are divided into

sub—sequences of N frames, where N is an integer greater than three, and the predefined

transfonn applied to the sequence of video images is a wavelet-like transform that is applied to

at least one video frame in each said sub—sequence of N frames.

60. The computer program product of claim 59, wherein the wavelet-like transform is
applied to at least one difference frame for each said sub-sequence of N frames, the difference

frame representing differences between one frame and a next frame in said sub-sequence of N
frames.

Petitioner Apple Inc. — Exhibit 1024, p. 4032

Petitioner Apple Inc. - Exhibit 1024, p. 4033

-BUJIQ

Ix)

\DO0\lO\kII-bu.)
10

11

12

13

14

-KLAJIQ\lC\UI-buck)

W0 0137209 PCT/US00/30825

- 44 -

61. The computer program product of claim 56. wherein the video frames are divided into

sub-sequences of N frames, where N is an integer greater than three, and the predefined

transform applied to the sequence of video images is a wavelet-like transform that is applied to

separately and in time order to data at each x,y position in the video frames.

62. A method ofprocessing video images, comprising:

storing in a memory device a set of image data structures representing a sequence of

video frames, the set of image data structures having an associated image quality level selected

from a predefined range of image quality levels that range from a highest quality level to a

lowest quality level and that include at least two distinct quality levels;

extracting a subset of the data in the set of image data structures and fonning a lower

quality version of the set of image data structures that occupies less space in the memory
device than was previously occupied by the set of image data structures; and

successively applying a data decompression method and an inverse transform to the

specified set of image data structures so as to generate a reconstructed sequence of video

images suitable for display on a display device;

whereby the amount of space occupied by the set of image data structures in the

memory device can be reduced so as to make room for the storage of additional image data

structures in the memory device.

63. The method ofclaim 62, wherein

each of the image data structures contains image transform data organized on a bit

plane basis such that image transfonn data for at least one bit plane is stored in distinct

portions of the image data structure from image transfonn data for other bit planes;
the extracting step includes extracting a portion of an image data structure that excludes

the image transfonn data for at least one bit plane, and the forming step includes replacing the

image data structure with animage data structure containing the extracted portion.

64. The method of claim 62, wherein

the of the image data structures contains image transform data organized on a transfonn

layer basis such that image transfonn data for at least one transform layer is stored in distinct

portions of the image data structure from image transform data for other transfonn layers; and

Petitioner Apple Inc. — Exhibit 1024, p. 4033

Petitioner Apple Inc. - Exhibit 1024, p. 4034

-I:-UJl\)U1-I:-bJI\)oo\|o\u.
-I}-UJIQ

Ix)

-I:-la)

W0 01/37209 PCT/US00/30825

- 45 _

the extracting step includes extracting a portion of the first specified image data

structure that excludes the image transfonn data for at least one transfonn layer. and the

forming step includes replacing the first specified image data structure with an image data
structure containing the extracted portion.

65. The method of claim 62, after performing the extracting and fonning steps, applying

the predefined transform to a sequence of additional video images to generate transform image

data and applying the data compression method to the transform image data so as to generate

an additional set of image data structures having an associated image quality, and storing the

additional set of image data structures in the memory device.

66. The method of claim 62, wherein the video frames are divided into sub-sequences of N

frames, where N is an integer greater than three, and the predefined transform applied to the

sequence of video images is a wavelet-like transfonn that is applied to at least one video frame

in each said sub-sequence of N frames.

67. The method of claim 66, wherein the wavelet—like transform is applied to at least one

difference frame for each said sub-sequence of N frames, the difference frame representing

differences between one frame and a next frame in said sub-sequence of N frames.

68. The method of claim 62, wherein the video frames are divided into sub-sequences of N

frames, where N is an integer greater than three, and the predefined transfonn applied to the

sequence of video images is a wavelet—like transfonn that is applied to separately and in time

order to data at each x,y position in the video frames.

69. The method of claim 62, including applying a predefined transform to a sequence of

video images to generate transform image data and applying a data compression method to the

transform image data so as to generate the set of image data structures stored in the memory
device.

70. The method ofclaim 69, wherein

Petitioner Apple Inc. — Exhibit 1024, p. 4034

Petitioner Apple Inc. - Exhibit 1024, p. 4035

-46-

I\)
each of the image data structures contains image transform data organized on a bit

plane basis such that image transform data for at least one bit plane is stored in distinct

portions of the image data structure from image transform data for other bit planes;

the extracting step includes extracting a portion of an image data structure that excludes

the image transform data for at least one bit plane, and the forming step includes replacing the\lO\UI.bL»J
image data structure with an image data structure containing the extracted portion.

1 71. The method of claim 69, wherein

the of the image data structures contains image transform data organized on a transfomi

layer basis such that image transform data for at least one transform layer is stored in distinct

portions of the image data structure from image transform data for othertransfomi layers; and

2

3

4

5 the extracting step includes extracting a portion of the first specified image data

6 structure that excludes the image transform data for at least one transform layer, and the

7 forming step includes replacing the first specified image data structure with an image data
8

structure containing the extracted portion.

1 72. The method of claim 69, after performing the extracting and forming steps, applying

the predefined transform to a sequence of additional video images to generatc transfomi image

data and applying the data compression method to the transform image data so as to generate

an additional set of image data structures having an associated image quality, and storing theUI-bbJI\J
additional set of image data structures in the memory device.

1 73. The method of claim 69, wherein the video frames are divided into sub-sequences of N
IQ

frames, where N is an integer greater than three, and the predefined transform applied to the

sequence of video images is a wavelet-like transform that is applied to at least one video frame-ht;-J
in each said sub-sequence of N frames.

1 74. The method of claim 73, wherein the wavelet-like transform is applied to at least one

2 difference frame for each said sub-sequence of N frames, the difference frame representing

3 differences between one frame and a next frame in said sub-seq uence of N frames.

Petitioner Apple Inc. — Exhibit 1024, p. 4035

Petitioner Apple Inc. - Exhibit 1024, p. 4036

-bl)-llx)

W0 0137209 PCT/US00/30825

-47-

75. The method of claim 69, wherein the video frames are divided into sub-sequences of N

frames, where N is an integer greater than three, and the predefined transform applied to the

sequence of video images is a wavelet-like transform that is applied to separately and in time

order to data at each x,y position in the video frames.

Petitioner Apple Inc. — Exhibit 1024, p. 4036

Petitioner Apple Inc. - Exhibit 1024, p. 4037

wo 0 1 /37109 PCT/US00/30825

1/7

100

V‘ User Interface Display
Buttons “2 106 C 116

© © © © © Data Processing Circuitry
104

 working State Machines:

. Store Viewfinder Image

and Display Stored Image

Imae Count

Image Storage '

Memory Device Download Compressedlmage 203
Data to External Device -

Upload images from External 210
Device

Date/Time Reduce size of stored images 212
Circuit _

1_?Q

114

Framebuffer

E
FIG. 1

Petitioner Apple Inc. — Exhibit 1024, p. 4037

Petitioner Apple Inc. - Exhibit 1024, p. 4038

WO 01/37209 PCT/US00/30825

2/7

108 Nonvolatile Image Memory

FIG. 2

130

132-1

132-2

132~3

132-4

140

Analysis Arrays 142

 Compress

and Encode

Analysis

1.44 Transformed

Image Array

FIG. 3

Petitioner Apple Inc. — Exhibit 1024, p. 4038

Petitioner Apple Inc. - Exhibit 1024, p. 4039

W0 0]/37209 PCT/U500/30825

3/7

Image File (Compressed Encoded Image Data Structure)
132

\,‘

Header Data Indicating Size of Image
File, image quality level, sizes of

analysis arrays, etc.

Data Representing Analysis Array at
position (0,0)

Data Representing Analysis Array at
position (O,64)

Data Representing Analysis Array at
position (0,128)

Data Representing Analysis Array at
position (64,0)

Data Representing Analysis Array at
position (64,64)

Data Representing Analysis Array at
position (64,128) .

FIG; 4A

 160

162-1

1 62-2

162-3

Data Representing One Analysis Array
162

W

Header Data Indicating MSB (y) of encoded data

Data representing y bit plane of encoded data

170

1 72-1

1 Data representing y-1 bit plane of encoded data 172.2
- Data representing y-2 bit plane of encoded data

 1 FIG. 4B

Petitioner Apple Inc. — Exhibit 1024, p. 4039

Petitioner Apple Inc. - Exhibit 1024, p. 4040

W0 01/37209 PCT/US00/30825

4/7

_ Status Before

Filling Memory

of Stored Pictures: 21

Storage Remaining: 3 pictures

Quality of Stored Images:

High: 21 VG+: O
VG-: O G: O

Status Upon

Filling Memory

of Stored Pictures: 24

Storage Remaining: 0 pictures

Quality of Stored Images:
High: 24 VG+: O
VG-: O G: 0

First Reduction of Images J

Take 3 More Pictures

Status After 1st

Reduction

of Stored Pictures: 24

Storage Remaining: 7 pictures

. Quality of Stored Images:

High: 0 VG+: 24 '

VG-: O G: O

Second Reduction of

’ Images
Status After 2nd

Reduction

of Stored Pictures: 24

Storage Remaining: 12 pictures

Quality of Stored images:

High: 0 VG+: O
VG-: 24 G: O

FIG. 5

Petitioner Apple Inc. — Exhibit 1024, p. 4040

Petitioner Apple Inc. - Exhibit 1024, p. 4041

wo 0]/37209 _ PCT/US00/30325

5/7

Video Sequence
W

F0 F 1 F2 ' F1 5 F16

 First Reduction: Delete HH1 for last 8
frames of each 16 frame sequence '

Second Reduction: Delete HH1 for all frames other

than the first frame of each 16 frame sequence

Third Reduction: Delete lowestZ bit planes

Fourth Reduction: Delete HL1, LH1 for last :
frames of each 16 frame sequence

Fifth Reduction: Delete HL1, LH1 for all frames

other than the first frame of each 16 frame sequence

FIG’. 6

Petitioner Apple Inc. — Exhibit 1024, p. 4041

Petitioner Apple Inc. - Exhibit 1024, p. 4042

W0 0137209 PCT/US00/30825

6/7

Video Sequence

17 Frames 17 Frames

17 Frames i——"’—"| 17 Frames ':":‘—’|
i————>i i——:>i
i‘—___’____"""il'_‘_—_..':-_._:._—‘li‘-—'___j||j6

16 Frames ‘ 16 Frames 16 Frames 16 Frames

FIG. 8

Stored Coefficients for Time Dimension Wavelet Transform

\’x

Layer 2 Layer K-1

right edge . . . right edge
coefs

Petitioner Apple Inc. — Exhibit 1024, p. 4042

Petitioner Apple Inc. - Exhibit 1024, p. 4043

W0 0]/37209 PCT‘./U500/30825

7/7

 30Internet/Web Server

Memory

Image / Video Files

Comm Interface

Internet

(Comm Network)

1.3.03

Comm Interface

Client Device

Client Device

3_02

308

CPU /

Data

Processing

circuitry . 31°
'.312
I.314
I]315
Image Compression / Quality 318

Reduction Procedures 320

Image Reconstruction Procedures

FIG. 10

Petitioner Apple Inc. — Exhibit 1024, p. 4043

Petitioner Apple Inc. - Exhibit 1024, p. 4044

lnterna .1211 application No.
INTERNATIONAL SEARCH REPORT

PCTIUS00/30825

A. CLASSIFICATION OF SUBJECT MATTER

lPC(7) : G06K 9/36. 9/46
US CL : 382/232

Accordin to international Patent Classification [PC or to both national classification and [PC

Minimum documentation searched (classification system followed by classification symbols)
U.S. : Please See Continuation Sheet

Documentation searched other than minimum documentation to the extem that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and. where practicable, search tetms used)
WEST .

C. DOCUMENTS CONSIDERED TO BE RELEVANT A '

US 5.867.602 A (ZANDI ET AL.) 02 Febntary 1999 (0202.99).
US 5,881,176 A (KEITH ET AL.) 09 March 1999 (09.03.1999).

US 5,966,465 A (KEITH ET AL.) 12 October, 1999 (12.10.1999).

[3 Further documents are listed in the continuation of Box C. I: See patent family annex.
Special cuteguies of cited dbcutnems: later dnunnentpuhlished site: the httetnuknal filing date or triotity

date endnot incatniet withtlte Iwlicatim but cited to untknund the
ti3cunnnthfmingthegenenlsIueoftheu1whieh'nntIct:tsith'edIobe p'incipletrth:u'ynnthIyingtheinvemicn
ofpartintl.|rte|evnnce_

‘X’ document of penimter relevance; the claimed invention cannot be
eulit:-unlicatimor paluttpublisitedm ceefierthe internatianlftlingdlte ctusidetednovel tn-eatmothe eutxideredtoinvolve eninvuttivestep
A when the meunlmt is Inlet lime
tbctnr:mwhichmnylhtowtiItlIstntritIitychin(s)u'whichiscitedIo
establish the publicntim date of another eiutitn at aha special reasut (es "Y' thcnmetn of particular relevance: the claimed inventim cannot be
specified) etmidered to involve an inventive step when the doumtent ‘5etxnbinedwiIhcneu'mtrecIher:t1chthcunntts.su:hetxnbinatim

‘O’ doctnnentreruvhxgtouna-eImsclome.use.exhihitiutot'oIhermenn: heingabvioustoepenmekinedintheart

‘P’ dttmnentpublishedpriatotheimemuimnlfdingdatehuthterthmthe docttmentm:tnbero{theeann:patemfenti.ly
txiwiry date claintd

Date of the actual completion of the international search Date of mailing of the ' ‘ temational search report

04Janua 2001 04.01.2001 " 0 M '«
Name and mailing address of the ISAIUS AUlh0I'i7-Cd OfficerCamnisslmer of Patents and Tnatmrks

aux pcr Jose L. Couso
W:slting1tII.D.C. 20731

Facsimile No. (703)305-3230 Telephone No. (7

Form PCT/ISA/210 (second sheet) (July 1998)

Petitioner Apple Inc. — Exhibit 1024, p. 4044

Petitioner Apple Inc. - Exhibit 1024, p. 4045

INTERNATIONAL SEARCH NEPORT "“°‘ W‘ “PP“°'“‘°" ”°-
' PCTIUSOO/30825

Continuation of B. FIELDS SEARCHED Item 1: 382/232, 233, 234. 240, 244, 246. 247. 248, 260. 263. 264, 276;
341/51, 63, 65, 67, 107; 364/724.011. 724.04, 724.05. 724.13, 724.14. 725.01, 73.02.

Form PCT/ISAIZIO (extra sheet) (July 1998)

Petitioner Apple Inc. — Exhibit 1024, p. 4045

Petitioner Apple Inc. - Exhibit 1024, p. 4046

\ Européisches-Patentamt ’

. European Pgtent office ® Publication number: 0
Office européen dos brevets

(3 EUROPEAN PATENT sPEclFlciii'loN

@ Date of publication of patent specification: 18.04.90

® Application number: 02596.0

® Date ofiiling: 21.05.32

® um. CL‘: G 06 F 9/46

® Divisional applications 88200917, 88200916,
88200921 flied on 09.05.88.

® Digital data processing system.

Proprietor: DATA GENERALOORPOBATIDNPriority: 22.05.81 Us 266413® Route 922.05.81 US ZSGES 22.05.81 US 286414
, 22.05.81 us 266521 4 22,0531 us 25532 Westboro Massachusetts 01581 (US)

' 2.05.81 us 266415 2.0531 uszsscos
22-05-31 U5 255409 n.05.81 US 265408
22.05.81 us 266424 , 22,0531 us 255401 ® Inventor: Ahlstrom, John K.
22.05.81 us 256421 22.05.81 US 26524 1399 58" 001115!’
22.05.81 us 256404 Mountain View Cefifomia 94043 (US)

Inventor: Bedtman. Brett L
214 W. Canton Street Suite 4
Boston Massachusetts 02116 (US)
inventor: Belgard, Richard A.

© Date of publication of application:22.12.82 Bulletin Q/51

® Publication of the grant of the patent: -
111.0430 Bulletin 90115 (Us,

- _ , Inventor: Bernstein. David H.
@ Designated Contracting States: 41 any cdonv Drive

AT 35 °" 95 F“ G3 '7 U W "L 55 Ashlend Massachusetts 01721 (us)
inventor: Brett. Richard Glenn
9 Brook Trail Road
Wayland Massachusetts 01778 (US)
Inventor: Clancy, Gerald F.
13069 Jaecerenda center
Saratoga California 95070 (US)
Inventor: Ferher, David A.
1700 Lakewood Avenue
Durham North Carolina 27707 (US)
Inventor: Gavrin, Edward 5.
Beaver Pond Road RH) 4
Lincoln Massachusetts 01773 (Us)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may
give notice to the European Patem Office of opposition to the European patent granted. Notice of opposition shall
be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been
paid (Art. 99(1) European patent convention).

® References cited:
Hesselrneier, Spruth: "Rechnerstruktu1-en",
1974. pp 75-103 .

Klar. Wichmann: "Mikroprogremmierung', June
1975, pp 15$153, 176-179, 185-187, 195-205,
214-215

EP0067556B1

Courier Press, Leamington Spa, England.

Petitioner Apple Inc. — Exhibit 1024, p. 4046

Petitioner Apple Inc. - Exhibit 1024, p. 4047

EP 0 067 556 B1

Inventor: Gruner, Ronald Hans
1 12 Dublin Wood Drive

Cary North Carolina 27514 (US)
Inventor: Houseman. David L
1213 Seiwyn Lane '

® References cited:
IBM TECHNICAL DISCLOSURE BULLETIN. vol.
3, no. 3, august 1979, pay 1 285-1289, New
York, US D.B. LOMET: ‘Regions for controlling

the propagation oi addressability in capability can No”. Carolina 2751 1 ‘Us,
systems, Inventor: Jones, Thomas M. Jones
IBM TECHNICAL DISCLOSURE BULLE'I1N, voL 300 Reade R0841
15, no. 9, February 1973, pages 2721-2722 W.L Chapel Hill North Carolina 27614 (Us)
DUNNE: ‘Common Compiierllnterpreter tor a |nV8ntOI'2 K312. Lawrence H.
programming language’ ' 10543 S. Forest Ridge Road

Oregon City Oregon 91045 (US)
ADVANCES IN COMPUTERS, vol, 14, 1976, Inventor: Mundie, Craig James
Academic Press, New York. US pages 231-272 136 casflewood Drive
D.I(. HSIAO et al.:"|nformation Secure Sy5tems' Cary North Carolina (US)

Inventor: Pilat, John F.
IEEJJIGEST OF PAPERS HIOM OOMPGON 1303 Rgvenhu.-gg Drive
FALL MEEHNG, September 10-12. 1974. 51.1959}. Nora. Catolina 27599 (us)
Washington, Micros and Minis. pages 15-17 invemor; md.mond_ Midjae] s_
Long Beach, US C.J. NEUHAUSER et aI.: peanangu, post 30,; 51
"Description of an emulation laboratory’

nu Annual Symposium on oomrurai

Pfltsbom North Carolina 27312 (US)
Inventor: Schleimer, Stephen I.
1208 Ellen Place

ARCHITECTURE. May 6-8, ‘I980, Conference

Prooeedings.pa9_es245-252I\|ewYork,USV. "W _ w "ah Stevenl
BERS'l1S:‘Seounty and protection of data in the 124;r:E:eenaMead'cw Lane
"““sV“°""3‘ Saratoga California 95010 (us)

VERYLARGE DATA BASES. voL9, no. zc. '1';.'3‘;“§‘;;‘,fi":Ifl"°“'R l‘“""°' f"""October 1977, Third International Conference .

Proceedin9s.pages50‘l-514ToI:yo.JP o. ""‘’‘9'‘ "°'”‘ °"°""°z75°7‘”s’
DOWNSetal.:'A kernel designforasecure data "“’°"‘°‘”° “’°“" °°“9'“‘ M‘. 106 Robin Road

"°‘° '"""°°°"‘°"""“""' Chapeiflill North Carolina 21514 (us)

Chapel Hill North Carolina 21514 (us)

‘p
® Representative: Pears, David Ashley et alREDDlE& GROSE 16Theoba|ds Road

London wc1x an (G39

Petitioner Apple Inc. — Exhibit 1024, p. 4047

Petitioner Apple Inc. - Exhibit 1024, p. 4048

V.

20

.25

50

EP 0 067 556 B1 ‘ r

Description

The presem invention relates to a digital data processing system and, more particularly, to a
multiprocessor digital data processing system suitable for use in a data processing network and having a
simplified, flexible user interface and flexible, multileveled internal mechanism.

A general trend in the development of data processing systems has been towards systems suitable for
use in interconnected data processing networks. Another trend has been towards data processing systems
wherein the internal structure of the system is flexible, protected from users, and effectively invisible to the
user and wherein the user is presented with a flexible and simplified interface to the system. ’

Certain problems and shortcomings affecting the realization of such a data processing system have
appeared repeatedly in the prior art and must be overcome to create a data processing system having the
above attributes. These prior art problems and limitations include the following topics.

First. the data processing systems of the prior art have not provided a system wide addressing system
suitable for use in common by a large number of data processing systems interconnected into a network.
Addressing systems of the prior art have not provided sufficiently large address spaces and have not
allowed information to be permanently and uniquely identified. Prior addressing systems have not made
provisions for lnfonnation to be located and identified as to type or fonnat, and have not provided
sufficient granularity. In addition, prior addressing systems have reflected the physical structure of
particular data processing systems. That is. the addressing systems have been dependent upon whether a
particular computer was, for example, an 8, 16. 32. 64 or 128 bit machine. Since prior data processing
systems have incorporated addressing mechanisms wherein the actual physical structure of the processing
system is apparem to the user, the operations a user could perform have been limited by the addressing
mechanisms. In addition, prior processor systems have operated as fixed word length machines, further
limiting user operations.

Prior data processing systems have not provided effective protection mechanisms preventing one user
from effecting another user's data and programs without permission. Such protection mechanisms have
not allowed unique, positive identification of users requesting access to information, or of information, nor
have such mechanisms been sufficiently flexible in operation. In addition, access rights have pertained to
the users rather than to the information, so that control of access rights has been difficult. Finally, prior art
protection mechanisms have allowed the use of "Trojan Horse arguments". That is, users not having
access rights to certain information have been able to gain access to that information through another user
or procedure having such access rights.

Yet another problem ofthe prior art is that of providing a simple and flexible user's interface to a data
processing system. The character of user's interface to a data processing system is determined, in part, by
the means by which a user refers to and identifies operands and procedures of the user's programs and by
the instruction structure‘ of the system. Operands and procedures are customarily referred to and identified
by some form of logical address having points of reference, and validity, only within a user’s program.
These addresses must be translated into logical and physical addresses within a data processing system
each time a program is executed, and must then be frequently retranslated or generated during execution
of a program. In addition, a user must provide specific instnictlons as to data format and handling. As such
reference to operands or procedures typically comprise a major portion of the instruction stream of the
user's program and requires numerous machine translations and operations to implement. A user's
interface to a conventional system is thereby complicated, and the speed of execution cf programs
reduced, because of the complexity of the program references to operands and procedures.

A data processing system's instruction structure includes both the instructions for controlling system
operations and the means by which these instructions are executed. Conventional data processing systems
are designed to efficiently execute instructions in one or two user languages, for example, FORTRAN or
COBOL Programs written in any other language are not efficienfly executable. ln addition, a user is often
faced with difficult programming problems when using any high level language other than the particular
one or two languages that a particular conventional system is designed to utilize.

Yet another problem in conventional data processing systems is that of protecting the system’:
intemal mechanisms, for example, stack mechanisms and internal-control mechanisms. from accidental or
malicious interference by a user.

Finally, the lntemal structure and operation of prior art data processing systems have not been flexible,
or adaptive, in structure and operation. That is, the internal structure and operation of prior systems have
not allowed the systems to be easily modified or adapted to meet particular data processing requirements.
Such modifications may include changes in internal memory capacity, such as the addition or deletion of
special purpose subsystems, for example, floating point or array processors. In addition, such
modifications have significantly effected the users interface with the system. Ideally, the actual physical
structure and operation of the data processing system should not be apparent at the user interface.

It has already been proposed (IBM Technical Disclosure Bulletin Vol. 22 No. 3 Aug. 1979 pp
1286-1289) to maintain such a large address space that every obiect which is ever created can have a
unique identifier. This requires a very large identifier field, e.g. 40 to 50 bits.

The object of the present invention is to implement such a concept so that it may be applied across
many computers geographically distributed and without requiring all computers to use the same

Petitioner Apple Inc. — Exhibit 1024, p. 4048

Petitioner Apple Inc. - Exhibit 1024, p. 4049

10

15

20

25

30

65

EP 0 067 556 B1

programming language.
The system according to the invention is defined in the appended claims.
it is lcnown in virtual address machines to use name tables to provide logical addresses for translation

to physical addresses ll(lar, Wichmann, "Mikroprogrammierung" June 1975, especially pp. 159-163,
175-179, 185-187, 195-205, 214——215i and this reference also discusses the emulation in software of
different target machines.

More specifically, the embodiment of the invention described in detail below provides a data
processing system suitable for use in interconnected data processing networis, which internal structure is
flexible, protected from users, effectively invisible to users, and provides a flexible and simplified interface

.to users. The data processing system provides an addressing mechanism allowing permanent and unique
identification of all information generated for use in or by operation of the system, and an extremely large
address space which is accessible to and common to all such data processing systems. The addressing
mechanism provides addresses which are independent of the physical configuration of the system and
allow information to be completely identified, with a single address, to the bit granular level and with
regard to information type or format. The present invention further provides a protection mechanism
wherein variable access rights are associated with individual bodies of information. information, and users
requesting access to information, are uniquely identified through the‘ system addressing mechanism. The
protection mechanism also prevents use of Trojan Horse arguments. And, the present invention provides
an instruction structure wherein high level user language instructions are transfonned into dialect coded,
unifonn, intermediate level instructions to provide equal facility of execution for a plurality of user
languaga. Another feature is the provision of an operand reference mechanism wherein operands are
referred to in user's programs by uniform format names which are transformed, by an internal mechanism
transparent to the user, into addresses. The present invention additionally provides multilevel control and
stack mechanisms protecting the system's internal mechanism from interference by users. Yet another
feature is a data processing system having a flexible internal structure capable of performing multiple,
concurrent operations and comprised of a plurality of separate, independent processors. Each such
independent processor has a separate microinstruction control and at least one separate and independent
port to a central communications and memory node. The communications and memory node is also an
independent processor having separate and independent microinstruction control. The memory processor
is intemally comprised of a plurality of independently operating, microinstruction controlled processors
capable of performing multiple, concurrent memory and communications operations. The present
invention also provides further data processing system structural and operational features for
implementing the above features.

it is thus advantageous to incorporatethe present invention into a data processing system because the
present invention provides addressing mechanisms suitable for use in large interconnected data
processing networks. Additionally, the present invention is advantageous in that it provides an infomtation
protection mechanism suitable for use in large, interconnected data processing networks. The present
invention is further advantageous in that it provides a simplified, flexible, and more efficient interface to a
data processing system. The present invention is yet further advantageous in that it provides a data
processing system which is equally efficient with any user level language by providing a mechanism for
referring to operands in user programs by unifonn format names and instruction structure incorporating
dialect coded, uniform format intermediate level instructions. Additionally, the present invention protects
data processing system internal mechanisms from user interference by providing multilevel control and
stack mechanisms. The present invention is yet further advantageous in providing a flexible internal
system structure capable of performing multiple, concurrent operations, comprising a plurality of separate,
independent processors, each having a separate microinstruction control and at least one separate and
independent port to a central, independent communications and memory processor comprised of a_
plurality of independent processors capable of perfonning multiple, concurrent memory and
communitions operations. .

Other advantages and features of the present invention will be understood by those of ordinary skill in
the art, after referring to the following detailed description of the preferred embodiments and drawings
wherein.

BRIEF DESCRIPTION OF DRAWINGS

Fig. 1 is a partial block diagram of a computer system incorporating the present invention;
Fig. 2 is a diagram illustrating computer system addressing structure of the present invention;
Fig. 3 is a diagram illustrating the computer system instruction stream of the present invention;
Fig. 4 is a diagram illustrating the control structure of a conventional computer system:
Fig. 4A is a diagram illustrating the control structure of a computer system incorporating the present

invention;
Fig. 5 — Fig. A1 inclusive are diagrams all relating to the presem invention;
Fig. 5 is a diagram illustrating a stack mechanism;
Fig. 6 is a diagram illustrating procedures, procedure objects, processes, and virtual processors;
Fig. 7 is a diagram illustrating operating levels and mechanisms of the present computer;

Fig. 8 is a diagram i_|lustrating a physical implementation of processes and virtual processors; _

Petitioner Apple Inc. — Exhibit 1024, p. 4049

Petitioner Apple Inc. - Exhibit 1024, p. 4050

15

EP 0 067 556 B1 ‘ "‘

Fig. 9 is a diagram illustrating a process and process stack objects;
Fig. 10 is a diagram illustrating operation of macrostacks and secure stacks;
Hg. 11 is a diagram illustrating detailed structure of a stack:
Fig. 12 is a diagram illustrating a physical descriptor:
Fig. 13 is a diagram illustrating the relationship between logical pages and frames in a memory storage

space;

Hg. 14 is a diagram illustrating access control to objects;
Fig. 15 is a diagram illustrating virtual processors and virtual processor swapping;
Fig. 16 is a partial block diagram of an IIO system of the present computer system;
Fig. 17 is a diagram illustrating operation of a ring grant generator}
Hg. 18 is a partial block diagram of a memory system;
Fig. 19 is a partial block diagram of a fetch unit of the present computer system;
Fig. 20 is a partial block diagram of an execute unit of the present computer system;
Fig.‘ 101 is a more detailed partial block diagram of the present computer system;
Fig. 102 is a diagram illustrating certain information structures and mechanisms of the present

computer system;
Fig. 103 is a diagram illustrating process structures;
fig. 104 is a diagram illustrating a macnostack structure:
Fig. 105 is a diagram illustrating a secure stack structure:
Figs. 106 A. B, and C are diagrams illustrating the addressing structure of the present computer

system;

fig. 107 is a diagram illustrating addressing mechanisms of the present computer system;
Fig. 108 is a diagram illustrating a name table entry;

' Fig. 109 is a diagram illustrating protection mechanisms of the present computer system;
Fig. 110 is a diagram illusuating instruction and microinstruction mechanism of the present computer

system:
Fig. 201 is a detailed block diagram of a memory system;
Fig. 202 is a detailed block diagram of a fetch unit;
Fig. 203 is a detailed block diagram of an execute unit;
H9. 204 is a detailed block diagram of an l/0 system;

‘ Fig. 205 is a partial block diagram of a diagnostic processor system;
Fig. 206 is a diagram illustrating assembly of Figs. 201-205 to form a detailed block diagram of the

present computer system;
Fig. 207 is a detailed block diagram of a memory interface controller;
Fig. 209 is a diagram of a memory to IIO system port interface;
Fig. 210 is a diagram of a memory operand port interface;
Fig. 211 is a diagram of a memory instruction port interface;
Fig. 230 is a detailed block diagram of memory field interface unit logic:
Fig. 231 is a diagram illustrating memory format manipulation operations;
Fig. 238 is a detailed block diagram of fetch unit offset multiplexer;
H9. 239 is a detailed block diagram of fetch unit bias logic;
Fig. 240 is a detailed block diagram of a generalized four way, set associative cache representing name

cache, protection cache, and address translation unit;
Fig. 241 is a detailed block diagram of portions of computer system instruction and microinstruction

control logic:
Fig. 242 is a detailed block diagram of portions of computer system microinstruction control logic;

. 243 is a detailed block diagram of further portions of computer system microinstruction control

. 244 is a diagram illustrating computer system states of operation;
246 is a diagram illustrating computer system states of operation for a trace trap request;

. 246 is a diagram illustrating computer system states of operation for a memory repeat interrupt;

. 247 is a diagram illustrating priority level and masking of computer system events:

. 248 is a detailed block diagram of event logic.

. 249 is a detailed block diagram of microinstruction control store logic;

. 251 is a diagram illustrating a return control word stack word; V

. 252 is a diagram illustrating machine control words;
253 is a detailed block diagram of a register address generator;

. 254 is a block diagram of interval and egg timers;
Fig. 255 is a detailed block diagram of execute unit control logic;
Fig. 257 is a detailed block diagram of execute unit multiplier data paths and memory;
Hg. 260 is a diagram il|usl:rating operation of an execute unit command queue load and interface to a

fetch unit;

Fig. 261 is a diagram illustrating operation of an execute unit operand buffer load and interface to a
fetch unit;

Fig. 262 is a diagram illustrating operation of an execute unit storeback or transfer of results and

5

Petitioner Apple Inc. — Exhibit 1024, p. 4050

Petitioner Apple Inc. - Exhibit 1024, p. 4051

I0

15

50

EPVOOG7 556 31

interface to a fetch unit;

Fig. 263 is a diagram illustrating operation of an execute unit check test condition and interface to a
fetch unit;

_ Fig. 264 is a diagram illustrating operation of an execute unit exception test and interface to a fetch
unit;

Fig. 265 is a block diagram of an execute unit arithmetic operation stack medranism;
Fig. 266 is a diagram illustrating execute unit and fetch unit interrupt handshaking and interface;
Fig. 287 is a diagram illustrating execute unit and fetch unit interface and operation for nested

interrupts; ~ ‘
Fig. 268 is a diagram illustrating execute unit and fetch unit interface and operation for loading an

execute unit control store;

Fig. 269 is a detailed block diagram and illustration of operation of an l/O system ring grant generator;
Fig. 27_() is a detailed block diagram of a fetch unit micromachine of the present computer system;
Fig. 271 is a diagram illustrating a logical descriptor;
Fig. 272 is a diagram illustrating use of fetch unit stack registers;
Fig. 273 is a diagram iiustrating structures controlling event invocations;
Fig. 301 is a diagram illustrating pointer fomrats;
Fig. 302 is a diagram illustrating an associated address tabla;
Fig. 303 is a diagram illustrating a namespace overview of a procedure objed;
Fig. 304 is a diagram illustrating name table entries;
Fig. 305 is a diagram illustrating an example of name resolution:
fig. 306 is a diagram illustrating name cache entries;
Fig. 307 is a diagram illustrating translation of S-interpreter universal identifiers to dialect numbers;
fig. 401 is a diagram illustrating operating systems and system resources:
Fig. 402 is a diagram illustrating multiprocess operating systems;
fig. 403 is a diagram illustrating an extended operating system and a kernel operating system;
Fig. 404 is a diagram illustrating an EOS view of objects;
H9. 405 is a diagram illustrating pathnames to universal identifier translation;
Fig. 406 is a diagram illustrating universal identifier detail;
Fig. 407 is a diagram illustrating address translation with an address translation unit, a memory hash

table, and a memory;
Fig. 408 is a cfiagram illustrating hashing in an active subject table;
Fig. 409 is a diagram illustrating logical allocation units and objects:
Fig. 410 is a diagram illustrating an active logical allocation unit table and active allocation units;
Fig. 411 is a diagram illustrating a conceptual logical allocation unit directory structure:
Fig. 412 is a diagram illustrating detail of a logical allocation unit directory entry;
H9. 413 is a diagram illustrating universal identifiers and active object numbers:
Fig. 416 is a diagram illustrating subject templates, primitive access control list entries, and extended

access control list entries:

Fig. 421 is a diagram illustrating an active primitive access matrix and an active primitive access matrix
entry:

Fig. 422 is a diagram illustrating primitive data access checking;
. 448 is a diagram illustrating event counters and await entries;
. 449 is a diagram illustrating an await table overview;
. 453 is a diagram illustrating an overview of a virtual processor;
. 454 is a diagram illustrating virtual processor synchronization;
. 467 is a diagram illustrating an overview of a macrostack object;
. 468 is a diagram illustrating details of a macrostack object base;
. 469 is a diagram illustrating details of a macrostack frame;
. 470 is a diagram illustrating an overview of a secure stack:
. 471 is a diagram illustrating details of a secure stack frame; and,

Fig. 472 is a diagram illustrating an overview of procedure object.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description presents the structure and operation of a computer system incorporating a
presently preferred embodiment of the present invention. As indicated in the following Table of Contents,
certain features of computer system structure and operation will first be described in an introductory
Ovenriew. Next, these and other features will be described in further detail in a more detailed Introduction
to the detailed descriptions of the computer system. _Following the introduction, the structure and

_ operation of the computer system will be described in detail. The detailed descriptions will present
descriptions of the structure and operation of each of the major subsystems, or elements, ofthe computer
system, of the interfaces between these major subsystems, and of overall computer system operation.
Next, certain features of the operation of the individual subsystems will be presented in further detail.

Certain conventions are used throughout the following descriptions to enhance clarity of presentation.
First, and with exception of the Introductory Overview, each figure referred to in the following descriptions

Petitioner Apple Inc. — Exhibit 1024, p. 4051

Petitioner Apple Inc. - Exhibit 1024, p. 4052

15

EP 0 067 556 B1

will be referred to by a three digit number. The most significant digit represents the number of the chapter
in the following descriptions in which a particular figure is first referred to. The two least significant digits
represent the sequential number of appearance of a figure in a particular chapter. For example, Figure 319
would be the nineteenth figure appearing in the third chapter. figures appearing in the introductory
Overview are referred to by a one or two digit number representing the order in which they are referred to
in the Introductory Overview. it should be noted that certain figure numbers, for example, Figure 208, do
not appear in the following figures and descriptions; the subject matter of these figures has been
incorporated into other figures and these figures deleted, during drafting of the following descriptions, to
enhance clarity of presentation.

Second, reference numerals comprise a two digit number (00——99) preceded by the number of the
figure in which the corresponding elements first appear. For example, reference numerals 31901 to 31999
would refer to elements 1 through 99 appearing in Fig. 319.

finally, interconnections between related circuitry is represented in two ways. First, to enhance clarity
of presentation, interconnections between circuitry may be represented by common signal names or
‘references, rather than by drawn representations of wires or buses. Second, where related circuitry is
shown in two or more figures, the figures may share a common figure number and will be distinguished by
a letter designation, for example, Figs. 319, 319A, and 3193. Common electrical points between such
circuitry may be indicated by a bracket enclosing a lead to such a point and a designation of the form
"A—b". “A" indicates other figures having the same common point for example, 319A, and "b" designates
the particular common electrical polm. In cases of related circuitry shown in this manner in two or more
figures, reference numerals to elements will be assigned in sequence through the group of figures; the
figure number portion of such reference numerals will be that of the first figure of the group of figures.

INTRODUCTORY OVERVIEW

A. Hardware Overview (Fig. 1)
8. Individual Operating Features (Bugs. 2, 3, 4, 5, 6)

1. Addressing (Hg. 2)
2. S—Language Instructions and Namespace Addressing (Fig. 3)
3. Architectural Base Pointer Addressing ' '
4. Stock Mechanisms (Figs. 4-5)

C. Procedure Processes and Virtual Processors (Fig. 6)
D. CS 101 Overall Structure and Operation (Figs. 7, 8, 9,10,11,12, 13, 14. 15)

Introduction (Fig. 7)
Compilers 702 (Fig. 7)
Binder 703 (Hg. 7)
E08 704 (Hg. 7)" -
K03 and Architectural Interface 708 (Fig. 7)
Processes 610 and Virtual Processors 612 (Fig. 8)
Processes 610 and Stacks (Hg. 9)
Processes 610 and Calls (Figs. 10, 11)

. Memory References and the Virtual Memory Management System (Fig. 12, 13)
10. Access Control (Fig. 14)
11. Virtual Processors and Virtual Processor Swapping (Fig. 15)

E. CS 101 Structural Implementation (l-“rgs. 16, 17, 18, 19, 20)
1. (lOS) 116 (Figs. 16, 17)
2. Memory (MEM) 112 (Fig. 18)
3. Fetch Unit (FU) 120 (Fig. 19)
4. Execute Unit (EU) 12 (Fig. 20)

‘°.°°."F’l-"PE-’l°."

1. Introduction (figs. 101-110)
A. General Structure and Operation (Fig. 101)

a. General Structure

b. General Operation
c. Definition of Certain Terms

d. Multi-program Operation
e. Multi-Language Operation
f. Addressing Structure
9. Protection Mechanism

B. Computer System 10110 information Structure and Mechanisms (Figs. 102, 103, 104, 105)
a. lntroduction (Fig. 102)
b. Process Structures 10210 (Figs. 103, 104, 105)

1. Procedure Objects (Fig. 103)
2. Stack Mechanisms (Figs. 104, 105)
3. FURSM 10214 (Fig. 103)

C. Virtual Processor State Blocks and Virtual Process Creation (Fig. 102)

Petitioner Apple Inc. — Exhibit 1024, p. 4052

Petitioner Apple Inc. - Exhibit 1024, p. 4053

EP 0 067 556 B1

D. Addressing Structures 10220 (Figs. 103, 106, 107, 108)
1. Objects, UlD's, AON's, Names, and Physical Addresses (Fig. 106)
2. Addressing Mechanisms 1020 (Fig. 107)
3. Name Resolution (Figs. 103. 108)

5 4. Evaluation of AON Addresses to Physical Addresses (Fig. 107)
E. CS 10110 Protection Mechanisms (Fig. 109)
F. CS 10110 Micro-Instruction Mechanisms (Fig. 110)
G. Summary of Certain CS 10110 Features and Alternate Embodiments.

7”. 2. Detailed Description of CS 10110 Major Subsystems Figs. 201-206, 207—274
A. MEM 10110 (Figs. 201, 206, 207-237)

a. Terminology
b. MEM 10112 physical Structure (Fig. 201)
c. MEM 10112 General Operation

15 ' d. MEM 10112 Port Stmcture
1. IO Port Characteristics
2. J0 Port Characteristics
3. J1 Port Characteristics

9. MEM 10112 Control Structureand Operation (Fig. 207)
20 1. MEM 10112 Control Structure

2. MEM 10112 Control Operation
f. MEM 10112 Operations
9. MEM 10112 Interfaces to JP 10114 and IOS 10116 (figs. 209, 210, 211, 204)

1. 10 Port 20910 Operating Characteristics (Figs 209, 204)
25 2. J0 Port 21010 Operating Characteristics (Fig. 210)

3. Jl Port 21110 Operating Characterisfits (Fig. 211)
h. FIU 20120 (Figs. 201, 230, 231)

B. Fetch Unit 10120 (figs. 202, 206, 101, 103, 104, 238)
1. Descriptor Processor 20210 (Figs. 202, 101, 103, 104, 238, 239).

30 a. Offset Processor 20218 Structure
b. AON Processor 20216 Structure

c. Length Processor 20220 Structure
cl. Descriptor Processor 20218 Operation

a.a. Offset Selector 20238

35 b.b. Offset Multiplexer 20240 Detailed Structure (Fig. 238)
cc. Offset Multiplexer 20240 Detailed Operation

aaa. internal Operation
bbb. Operation Relative to DESP 20210

e. Length Processor 2020 (Fig. 239)
4a a.a. Length ALU 20252

b.b. BIAS 20246 (Fig. 239)
f. AON Processor 20216

a.a. AONGRF 20232
b.b. AON Selector 20248

cs 2. Memory Interface 20212 (Figs 106, 240)
a.a. Descriptor Trap 20256 and Data Trap 20258
b.b. Name Cache 10226, Address Translation Unit 10228, and Protection Cache 10234 (Fig. 106)
cc. Structure and Operation of Generalized Cache and NC 1026 (Fig. 240)
d.d. ATU 10228 and PC 10234

so 3. Fetch Unit Control Logic 20214 (Fig. 202)
a.a. Fetch Unit Control Logic 20214 Overall Structure
b.b. Fetch Unit Control Logic 20214 Operation

a.a.a. Prefetcher 20264, Instruction Buffer 20262, Parser 20264, Operation Code
Register 20268, CFC 20270, IPC 20272. and EPC 20274 (Fig. 241)

55. b.b.b. Fetch Unit Dispatch Table 11010, Execute Unit Dispatch Table 20266, and
Operation Code Register 20268 (Fig. 242)

c.c.c. Next Address Generator 24310 (fig. 243)
cc. FUCTL 20214 Circuitry for CS 10110 Internal Mechanisms (Figs. 244-250)

a.a.a. State Logic 20294 (Figs. 244A——244Z)
so b.b.b. Event Logic 20284 (Figs. 245. 246, 247, 248)

c.c.c. Fetch Unit S-interpreter Table 11012 (Fig. 249)
d.d. CS 10110 internal Mechanism Control

a.a.a. Return Control Word Stack 10358 (Fig. 251)
b.b.b. Machine Control Block (Fig. 252)

55 c.c.c. Register Addres Generator 20288 (Fig. 253)

8

Petitioner Apple Inc. — Exhibit 1024, p. 4053

Petitioner Apple Inc. - Exhibit 1024, p. 4054

EP 0 067 556 B1

d.d.d. Timers 20296 (Fig. 254)
e.e.e. Fetch Unit 10120 Interface to Execute Unit 10122

C. Execute Unit 1012 (Figs. 203, 255268)
a. General Structure of Execute Unit 10122

5 1. Execute Unit V0 20312
2 Execute Unit Control Logic 20310
3. Multiplier Logic 20314
4 Exponent Logic 20316
5. Multiplier Control 20318

10 6. Test and Interface Logic 20320
b. Execute Unit 1012 Operation (Fig. 255)

1. Execute Unit Control Logic 20310 (Fig. 255)
a.a. Command Queue 20342
b.b. Command Queue Event Control Store 25514 and Command Queue Event Address

is Control Store 25516
c.c. Execute Unit S-interpreter Table 20344
d.d. Microcode Control Decode Register 20346
e.e. Next Address Generator 20340

2. Operand Buffer 2032 (Fig. 256)
2a 3. Multiplier 20314 (Figs. 257, 258)

a.a. Multiplier 20314 IID "Data Paths and Memory (Fig. 257)
a.a.a. Container Size Check

b.b.b. Final Result Output Multiplexer 20324
4. Test and Interface Logic 20320 (Figs. 260-268)

25 a.a. FU 10120IEU 10122 Interface
a.a.a. Loading of Command Queue 20342 (Fig. 260)
b.b.b. Loading of Operand Buffer 20320 (Fig. 261)
c.c.c. Storeback (Fig. 262)

. d.d.d. Test Conditions (Fig. 263)
30 e.e.e. Exception Checking (Fig. 264)

f.f.f. idle Routine

g.g.g. EU 10122 Stack Mechanisms (Figs. 265. 266, 267)
h.hJ'1. Loading of Execute Unit S-interpreter Table 20344 (Fig. 268).

D. vo System 10116 (Figs. 204, 206,2) '
35 a. V0 System 10116 Structure (Fig. 204)

b. vo System 10116 Operation «-19.2691
1. Data Channel Devices
2. V0 Control Processor 20412
3. Data Mover 20410 (Fig. 269)

40 a.a. Input Data Buffer 20440 and Output Data Buffer 20442
b.b. Priority Resolution and Control 20444 (Fig. 269)

E. Diagnostic Processor 10118 (l-"lg. 101, 205)
F. CS 10110 Micromachine Structure and Operation ll-‘igs. 270-274)

a. Introduction

45 b. Overview of Devices Comprising FU Micromachine (Fig. 270)
1. Devices Used By Most Microcode

a.a. MOD Bus 10144, JPD Bus 10142, and DB Bus 27021
b.b. Microcode Addressing
c.c. Descriptor Processor 20218 (Fig. 271)

so d.d. EU 10122 interface

2. Specialized Micromachine Devices
a.a. Instruction Stream Fleader 27001
b.b. SOP Decoder 27003
c.c. Name Translation Unit 27015

55 d.d. Memory Reference Unit 27017
e.e. Protection Unit 27019
f.f. KOS Micromachine Devices .

c. Micromachine Stacks and Microroutine Calls and Returns (Figs. 272, 273)
1. Micromachine Stacks (Fig. 272)

so 2. Micromachine invocations and Returns
3. Means of invoking Micronoutines
4. Occurrence of Event invocations (Fig. 273)

cl. Virtual Micromachines and Monitor Micromachine
1. Virtual Mode

55 2. Monitor Micromachine

Petitioner Apple Inc. — Exhibit 1024, p. 4054

Petitioner Apple Inc. - Exhibit 1024, p. 4055

I0

15

20

25

30

A55

65

EP 0 067 556 B1

e. Interrupt and Fault Handling
1. General Principles
2. Hardware Interrupt and Fault Handling in CS 10110
3. Monitor Mode: Differential Masking and Hardware Interrupt Handling

9. FU Micromachine and CS 10110 Subsystems

3. Namespace, S-Interpreters and Pointers (F95. 30'|—307.‘274)
A. Pointers and Pointer Resolution (Figs. 301. 302)

a. Pointer Formats (Fig. 301)
b. Pointers in FU 10120 (Fig. 302)
c. Descriptor to Pointer Conversion

B. Namespaoe and the S-lnterpreters (Figs. 303—307)
a. Procedure Object 606 Overview (Fig. 103)
b. Namespace

1. Name Resolution and Evaluation

2. The Name Table (Fig. 304)
3. Architectural Base Poimers (Figs. 305, 306)

a.a. Resolving and Evaluating Names (Fig. 305)
b.b. Implementation of Name Evaluation and Name Resolve in CS 10110
c.c. Name Cache 10226 Entries (Fig. 306)
d.d. Name Cache 10226 Hits
e.e. Name Cache 10226 Misses

f.f. Flushing Name cache 1026 .
g.g. Fetching the Instruction Stream
h.h. Parsing the instruction Stream

c. The S-Interpreters (fig. 307)
1. Translating SIP into a Dialect Number (Fig. 307)
2. Dispatching

4. The Kernel Operation System
A. Introduction

a. Operating Systems (Fig. 401)
1. Resources Controlled by Operating Systems (Fig. 402)

b- The Operating System in CS 10110
c. Extended Operating System and the Kernel Operating System (Fig. 403)

B. Objects and Object Management (Fig. 404)
a. Objects and User Programs (Fig. 405)
b. UlDs 40401 (Fig. 406)
c. Object Attributes
d. Attributes and Access Control

a. Implementation of Objects
1. Introduction (Figs 407, 408)
2. Objects in Secondary Storage 10124 (Figs. 409. 410).

a.a. Representation of an Objects Contents on Secondary Storage 10124
b.b. LAUD 40903 (Figs. 411, 412)

3. Active Objects (fig. 413)
aa. UID 40401 to AON 41304 Translation

C. The Access Control System
a. Subjects
b. Domains
c. Access Control Lists

1. Subject Templates (Fig. 416)
2. Primitive Access Control Lists (PACLs)

3. APAM 10918, and Protection Cache 10234 (Fig. 421)
4. Protection Cache 10234 and Protection Checking (Fig. 422)

D. Processes

1. Synchronization of Processes 610 and Virtual Processors 612
a. Event Counters 44801, Await Entries 44804, and Await Tables (Fig. 448, 449)
b. Synchronization with Event Counters 44801 and Await Entries 44804

E. Virtual processors 612 (Fig. 453)
a. Virtual Processor Management (Fig. 453)
b. Virtual Processors 612 and Synchronization (Fig. 454)

F. Process 610 Stack Manipulation
1. Introduction to Call and Return

2. Macrostacks (MAS) 502 (Fig. 467)

10

Petitioner Apple Inc. — Exhibit 1024, p. 4055

Petitioner Apple Inc. - Exhibit 1024, p. 4056

.0

20

25

A EP 0 067 556 B1

a.a. MAS Base 10410 (Fig. 468)
b.b. Perdomain Data Area 46853 (Fig. 468)

cc. MAS Frame 467 Detail (Fig. 469)
3. ss 5Q4_(FlQ. 470)

a.a. 55 Base 47001 (Fig. 471)
b.b. 55 Frames 47003 (Fig. 471 l

a.a.a. Ordinary SS Frame Headers 10514 (Fig. 471)
b.b.b. Detailed Structure of Macrostate 10516 (Fig. 471)
c.c.c. Cross-domain SS Frames 47039 (Fig. 471)

4. Portions of Procedure Object 608 Relevant to Call and Return (Fig. 472)
5. Execution of Mediated Calls

a.a. Mediated Call SlNs

b.b. Simple Mediated Calls (Figs. 270, 468, 469, 470, 471, 472)
c.c. invocations of Procedures 602 Requiring SEBs 46864 (H93. 270, 468, 469, 470, 471, 472)
"d.d. Cross-Procedure Object Calls (Figs. 270, 468, 469, 470, 471, 472)
e.e. Cross-Domain Calls (Figs. 270. 408, 418, 468, 469. 470, 471, 472) '

f.f. Failed Cross-Domain Calls (Figs. 270, 468. 469, 470, 471, 472)
6. Neighborhood Calls (Figs. 468.. 469, 472)

INTRODUCTORY OVERVIEW

The following overview will first briefly describe the overall physical structure and operation of a
presently preferred embodiment of a digital computer system incorporating the present invention. Then
‘certain operating features of that computer system will be individually described. Next, overall operation of
the computer system will be described in tenns of those individual features.

A. Hardware Overview (Fig. 1)
Referring to H9. 1, a block diagram of Computer System (CS) 101 incorporating the present invention is

shown. Major elements of CS 101 are 1/0 System (I05) 116, Memory (MEM) 112, and Job Processor (JP)
114. JP 1141s comprised of a Fetch Unit (FU) 120 and an Execute Unit (EU) 122. CS 101 may also include a
Diagnostic Processor (DP), not shown or described in the instant description.

Referring first to I05 116. a primary function of I05 116 is control of transfer of information between
MEM 112 and the outside worid. lnfonnation is transferred from MEM 112 to I05 116 through IOM Bus 130,
and from IOS 116 to MEM 112 through MIO Bus 129. IOMC Bus 131 is comprised of bi-directional control
signals coordinating operation of MEM 112 and I05 116. lOS116 also has an interface to FU 120 through
IOJP Bus 132. IOJP Bus 132 is-a bi-dl_rectlonal control bus comprised essentially of two interrupt lines.
These interrupt lines allow FU 120 to indicate to IOS 116 that a request for information by FU 120 has been
placed in MEM 112, and allows lOS 116 to inform FU 120 that information requested by FU 120 has been
transferred into a location in MEM 112. MEM 112 is CS 101's main memory and serves as the path for
information transfer between the outside world and JP 114. MEM 112 provides instructions and data to FU
120 and EU 122 through Memory Output Data (MOD) Bus 140 and receives information from FU 120 and EU
122 through Job Processor Data (JPD) Bus 142. FU 120 submits read and write requests to MEM 112
through Physical Descriptor (PD) Bus 146.

JP 114 is CS 101's CPU and, as described above, is comprised of FU120 and EU 122. A primary function
of FU 120 is executing operations of user's programs. As part of this function, FU 120 controls transfer of
instructions and data from MEM 112 and transfer of results of JP 114 operations back to MEM 112. FU 120
also performs operating system type functions, and is capable of operating as a complete, general purpose
CPU. EU 122 is primarily an arithmetic and logic unit provided to relieve FU 120 of certain arithmetic
operations. FU 120, however. is capable of performing EU 122 operations. In alternate embodiments of CS
101, EU 122 may be provided only as an option for users having particular arithmetic requirements.
Coordination of FU 120 and EU 122 operations is accomplished through FUIEU (FUEU) Bus 148, which
includes bi-directional control signals and mutual interrupt lines. As described further below, both FU 120
and EU 12 contain register file arrays referred to respectively as CRF and ERF, in addition to registers
associated wit:h, for example, ALUs.

A primary feature of CS 101 is that IOS 116, MEM 112. FU 120 and EU 12 each contain separate and
independent microinstruction control, so that lOS 116, MEM 112, and EU 12 operate asynchronously
under the general control of FU 120. EU 122, for ‘example, may execute a complex arithmetic operation
upon receipt of data and a single, initial command from FU 120.

Having briefly described the overall structure and operation of CS 101, certain features of CS 101 will
be individually further described next below.

B. Individual Operating Features (Figs. 2, 3, 4. 5, 6)
1. Addressing (Fig. 2)

Referring to H9. 2, a diagramic representation of portions of CS 101's addressing structure is shown.
CS 101's addressing structure is based upon the concept of Objects. An Object may be regarded as a

11

' Petitioner Apple Inc. — Exhibit 1024, p. 4056

Petitioner Apple Inc. - Exhibit 1024, p. 4057

I0

55

60

EIP 0 067 556 Bil

container for holding a particular type of information. For example, one type of Object may contain data
while another type of Object may contain instructions or procedures, such as a user program. Still another
type of Object may contain microcode. in general, a particular Object may contain only one type or class of
information. An Object may, for example, contain up to 232 bits of infonnation, but the actual size of a
particular Object is flexible. That is, the actual size of a particular Object will increase as information is
written into that Object and will decrease as information is taken from that Object. in general, information
in Objects is stored sequentially, that is without gaps.

Each Object which can ever exist in_ any CS 101 system is uniquely identified by a serial number
referred to as a Unique Identifier (UID). A UID is a 128 bit value comprised of a serial number dependent
upon, for example. the particular CS 101 system and user, and a time code indicating time of creation of
that Object. UlDs are pennanently assigned to Objects, no two Objects may have the same UID, and UlDs
may not be reused. UiDs provide an addressing base common to all CS 101 systems which may ever exist,
through which any Object ever created may be permanently and uniquely identified.

As described above, UiDs are 128 bit values and are thus larger than may be conveniently handled in
present embodiments of CS 101. in each CS 101, therefore, those Objects which are active (currently being
used) in that system are assigned 14 bit Active Object Numbers (AONs). Each Object active in that system‘
will have a unique AON. Unlike UlDs, AONs are only temporarily assigned to particular Objects. AONs are
valid only within a particular CS 101 and are not unique between systems. An Object need not physically
reside in a system to be assigned an AON, but can be active in that system only if it has been assigned an
AON.

A particular bit within a particular Object may be identified by means of a UlD address or an AON
address. in CS 101, AONs and AON addresses are valid only within JP 114 while UlDs and UID addresses
are used in MEM 112 and elsewhere. UID and AON addresses are formed by appending a 32 bit Offset (0)
field to that Object's UID or AON. O fields indicate offset, or location, of a particular bit reiativetothe start of
a particular Object. »

Segments of information (sequences of information bits) within particular Objects may be identified by
means of descriptors. A UlD descriptor is formed by appending a 32 bit Length (L) field of a UID address. An
AON. or logical descriptor is fom1ed by appending a 32 bit L field to an AON address. Lfields identify length
of a segment of information bits within an Object, starting from the information bit idemified by the UID or
AON addres. in addition to length inforrnetion, UID and logical descriptors also contain Type‘ fields
containing information regarding certain characteristics of the information in the infonnation segment.
Again, AON based descriptors are used within JP 114, while UID based descriptors are used in MEM 112.

Referring to Figs. 1 and 2 together, translation between UID addresses and descriptors and AON
addresses and descriptors is performed at the interface between MEM 112 and JP 114. That is, addresses
and descriptors within JP 114 are in AON form while addresses and descriptors in MEM 112, I05 116, and
the acternal world are in UID form. in other embodiments of CS 101 using AONs, transformation from UID
to AON addressing may occur at other interfaces, for example atthelOS116 to MEM 112 interface, or at the
I05 116 to external world interface. Other embodiments ofCS 101 may use U|Ds throughout, that is not use
AONs even in JP 114.

Finally, information within MEM 112 is located through MEM 112 Physical Addresses identifying
particular physical locations within MEM 112's memory space. Both IOS 118 and JP 114 address
information within MEM 112 by providing physical addresses to MEM 112. In the case of physical
addresses provided by JP 114, these addresses are referred to as Physical Descriptors lPDs). As described
below, JP 114 contains circuitry to translate logical descriptors into physical descriptors.

2. S-Language instructions and Namespace Addressing (Fig. 3)
CS 101 is both an 5-Language machine and a Namespace machine. That is, operations to be executed

by CS 101 are expressed as S-Language Operations (SOPs) while operands are identified by Names. SOPs
are of a lower, more detailed, level than user language instructions, for example FORTRAN and COBOL. but
of a higher level than conventional machine language instructions. SOPs are specific to particular user
languages rather than a particular embodiment of CS 101, while conventional machine language
instructions are specific to particular machines. SOPs are in turn interpreted and executed by microcode.
There will be an S-Language Dialect, a set of SOPs, for each user languages. CS 101, for example, may have
SOP Dialects for COBOL, FORTRAN, and SPL. A particular distinction of CS 101 is that all SOPs are of a
uniform, fixed length, for example 16 bits. CS 101 may generally contain one or more sets of microcode for
each S-Language Dialect. These microcode Dialect Sets may be completely distinct, or may overlap where
more than one SOP utilizes the same microcode.

As stated above, in CS 101 all operands are identified by Names, which are 8.12, or 16 bit numbers. CS
101 includes one or more “Name Tables" containing an Entry for each operand Name appearing in
programs currently being executed. Each Name Table Emry contains information describing the operand
referred to by a particular Name, and the directions necessary for CS 101 to translate that information into a
corresponding logical descriptor. As previously described, logical descriptors may then be transformed‘
into physical descriptors to read and write operands from or to MEM 112. As described above. UlDs are
unique for all CS 101 systems and AONs are unique within individual CS 101 systems. Names, however, are
unique only within the context of a user's program. That is, a particular Name may appear in two different

12

Petitioner Apple Inc. — Exhibit 1024, p. 4057

Petitioner Apple Inc. - Exhibit 1024, p. 4058

10

15

20

EP 0 067 556 B1

user's programs and, within each program, will have different Name Table Entries and will refer to different
operands.

CS 101 may thereby be considered as utillzlng two sets of instructions. Afirst set is comprised of SOPS.
that is instructions selecting algorithms to be executed. The second set of instructions are comprised of
Names, which may be regarded as entry points into tables of instructions for making references regarding
operands. -

Referring to Hg. 3. a diagramic representation of CS 101 instruction stream is shown. A typical SIN is
comprised of an SOP and may include one or more Names referring to operands. SOPs and Names allow
user's programs to be expressed in very compact code. Fewer SOPs than machine language instructions
are required to express a user's program. Also, use of SOPs allows easier and simpler construction of
compilers, and facilitates adaption of CS 101 systems to new user languages. In addition, use of Names to
refer to operands means that SOPs are independent of the form of the operands upon which they operate.
This in turn allows for more compact code in expressing user programs in that SOPs specifying operations
dependent upon operand form are not required.

3. Architectural Base Pointer Addressing
As will be described further below, a user's program residing in CS 101 will include one or more

Objects. First, a Procedure Object contains at last the SlNs of the user's programs and a Name Table
containing entries for operand Names of the program. The S|Ns may include references, or calls, to other
Procedure Objects containing, for example, procedures available in common to many users. Second. a
Static Data Area may contain static data. that is data having an existence for at least a single execution of
the program. And third, a Macro—stacl<, described below. may contain local data, that is data generated
during execution of a program. Each Procedure Object, the Static Data Area and the Macro-stack are
individual Objects identified by UlDs and AONs and addressable through UlD and AON addresses an
descriptors. '

Locations of information within a user's Procedure Objects, Static Data Area, and Macro-stack are
. expressed as offsets from one ofthree values, or base addresses, referred to as Architectural Base Pointers
(ABPs). For example. location information in Name Tables is expressed as offsets from one of the ABPs.
ABPs may be expressed as previously described.

The three ABPs are the Frame Pointer (FP), the Procedure Base Pointer (PBP), and the Static Data
' Pointer lSDP). Locations of data local to a procedure, for example in the procedure’s Macrostack, are
described as offsets from FP. Lowtions of non-local data, that is Static Data, are described as offsets from
SDP. Locations of SlNs in Procedure Objects are expressed as offsets from PBP; these offsets are
determined as a Program Counter (PC) value. Values of the ABPs vary during program execution and are
therefore not provided by the compiler converting a user's high level language program into a program to
be executed in a CS 101' system: When the program is executed, CS 101 provides the proper values for the
ABPs. When a program is actually being executed, the ABP‘s values are stored in FU 120's GRF.

Other pointers are used, for example, to identify the top frame of CS 101's Secure Stack la microcode
level stack described below) one identify the microcode Dialect currently being used in execute the $lNs of
a procedure. These pointers are similar to FF, SDP, and PBP.

4. Stock Mechanisms (Fig. 4-5)
Referring to H9. 4 and 4A. diagramic representations of various control levels and stack mechanisms

of, respectively. conventional machines and CS 101, are shown. Referring first to Fig. 4, top level of control
is provided by User Language Instructions 402, for example in FORTRAN or COBOL. User Language
instructions 402 are converted into a greater number of more detailed Machine Language Instructions 404,
used within a machine to execute user's programs. Within the machine. Machine Language Instructions
404 are interpreted and executed by Microcode Instructions 406. that is sequences of microinstructions
which in turn directly control Machine Hardware 408. Some conventional machines may include a Stack
Mechanism 410 used to save current machine state, that is current microinstruction and contents of various
machine registers, if a current Machine Language Instruction 404 cannot be executed or is interrupted. In
general, machine state on the microcode and hardware level is not saved. Execution of a current Machine
Language instruction 404 is later resumed at start of the microinstruction sequence for executing that
Machine Language instruction 404.

Referring to Fig. 4A, top level control in CS 101 is by User Language Instructions 412 as in a
conventional machine. in CS 101, however, User Language Instructions 412 are translated into SOPs 414
which are of a higher level than conventional machine language instructions. in general, a single User
Language instruction 412 is transformed into at most two or three SOPs 414, as opposed to an entire
sequence of conventional Machine Language Instructions 404. SOPs 414 are interpreted and executed by
Microcode instructions 416 (sequences of microinstructions) which directly control CS 101 Hardware 418.
CS 101 includes a Macro-stack Mechanism (MAS) 420, at SOPs 414 level, which is comparable to but
different in construction and operation from a conventional Machine Language Stack Mechanism 410. CS
101 also includes Micro-code Stack Mechanisms 422 operating at Microcode 416 level. so that execution of
an interrupted microinstruction of a microinstruction sequence may be later resumed with the particular
rnicroinstruction which was active at the time of the interrupt. cs 101 is therefore more efficient in handling

13

Petitioner Apple Inc. — Exhibit 1024, p. 4058

Petitioner Apple Inc. - Exhibit 1024, p. 4059

15

20

tee in us? ass Bil

interrupts in that execution of microinstruction sequences is resumed from the particular point that a
microinstruction sequence was interrupted, rather from the beginning of that sequence. As will be
described further below, CS 101's Micro-code Stack Mechanisms 422 on microcode level is effectively
comprised of two stack mechanisms. The firs-t stack is Micro-instruction Stack (MIS) 424 while the second
stack is referred to as Monitor Stack (MOS) 426. CS 101 SIN Microcode 428 and MIS 424 are primarily
concerned with execution of SOPs of user's programs. Monitor Microcode 430 and MOS 426 are concerned
with operation of certain CS 101 internal functions.

Division of CS 101's microcode stacks into an MIS 424 and a MOS 426 illustrates a further feature of CS
101. In conventional machines, monitor functions may be performed by a separate CPU operating in
conjunction with the machine's primary CPU. In CS 101, a single hardware CPU is used to perform both
functions with actual execution of both functions performed by separate groups of microcode. Monitor
microcode operations may be initiated either by certain SlNs 414 or by control signals generated directly by
CS 101's Hardware 418. invocation of Monitor Microcode 430 by Hardware 418 generated signals insures
that CS 101's monitor functions may always be invoked.

Referring to Fig. 5, a diagramic representation of CS 101,s stack mechanisms for a single use/s
program, orprocedure, is shown. Basically, and with exception of M05 426, CS 101's stacks reside in MEM
112 with certain portions of those stacks accelerated into FU 120 and EU 12 to enhance speed of operation.
_ Certain areas of MEM 112 storage space are set aside to contain Macro-Stacks (MASS) 502, stack
mechanisms operating on the SiNs level, as described above. Other areas of MEM 112 are set aside to
contain Secure Stack (SS) 504, operating on the microcode level, as described above and of which MIS 424
is a part. ‘

As described further below, both FU 120 and EU 122 contain register file arrays. referred to respectively
as GRF and ERF, in addition to registers associated with, for example, ALUs. Referring to FU 120, shown
therein is FU 120's GRF 506. GRF 506 is horizontally divided into three areas. A first area, referred to as
General Registers (GRs) 508 may in general be used in the same manner as registers in a conventional
machine. A second area of GRF 506 is Micro-Stack (MIS) 424, end is set aside to contain a portion of a
Process's SS 504. Athird portion of GRF 506 is set aside to contain MOS 426. Also indicated in FU 120 is a
block referred to as Microcode Control State (mCS) 510. mCS 510 represents registers and other FU 120
hardware containing current operating state of FU 120 on the microinstruction and hardware level. mCS
510 may include, for example, the cunent microinstruction controlling operation of FU 120.

Referring to EU122, indicated therein is a first block referred to as Execute Unit State (EUS) 512 and a
second block referred to as SOP Stack 514. EUS 512 is similar to mCS 510 in FU 120 and includes all
registers and other EU 122 hardware containing information reflecting EU 122's current operating state.
SOP Stack 518 is a portion of EU 122‘s ERF 516 which has been set aside as a stack mechanism to contain a
portion of a procass's SS 504 pertaining to EU 122 operations.

Considering first MASs 502. as stated above MASs 502 operate generally upon the SlNs level. MASs
502 are used in general to store current state of a orocess’s (defined below) execution of a user’s program.

Referring next to MIS 424, in a present embodimem of CS 101 that portion of GRF 506 set aside to
contain MIS 424 may have a capacity of eight stack frames. That is, up to 8 microinstruction level interrupts
or calls pertaining to execution of a user's program may be stacked within MlS 424. lnfonnation stored in
MIS 424 stack frames is generally infonnation from GR 508 and MCS 510. MIS 424 stack frames are
transferred between MIS 424 and SS 504 such that at least one frame, and no more than 8 frames, of SS 504
reside in GRF 506. This insures that at least the top-most frames ofa process’s SS 504 are present in FU 120,
thereby enhancing speed of operation of FU 120 byrproviding rapid access to those top frames. SS 504,
residing in MEM 112, may contain, for all practical purposes, an unlimited number of frames so that MIS
424 and SS 504 appear to a user to be effectively an infinitely deep stack. '

M08 426 resides entirely in FU 120 and, in a present embodimem or-cs 101, may have a capacity of 8
stack frames. A feature of CS 101 operation is that CS 101 mechanisms for handling certain events or
interrupts should not rely in its operation upon those portions of CS 101 whose operation has resulted in
those faults or interrupts. Among events handled by CS 101 monitor microcode, for example, are MEM ‘l 12
page faults. An MEM 112 page fault occurs whenever FU 120 makes a reference to data in MEM 112 and
that data is not in MEM 112. Due to this and similar operations, MOS 426 resides entirely in FU 120 and thus
does not rely upon information in MEM 112. '

As described above. GRs 508, MIS 424. and MOS 426 each reside in certain assigned portions of GRF
506. This allows flexibility in modifying the capacity of GFls 508, MIS 424, and MOS 426 as indicated by
experience, or to modify an individual (25 101 for particular purposes.

Referring finally to EU 122, EUS 512 is functionally a part of a process's SS 504. Also as previously
described, EU 122 performs arithmetic operations in responseto SlNs and may be interrupted by FU 120 to
aid certain FU 120 operations. EUS 512 allows stacking of interrupts. For example, FU 120 may first
intermpt an arithmetic SOP to request EU 122 to aid in evaluation of a Name Table Entry. Before that first
interrupt is completed, FU 120 may interrupt again, and so on.

SOP Stack 514, is a single frame stack for storing current state of EU 12 when an interrupt interrupts
exewtion of an arithmetic SOP. An interrupted SOP's state is transferred into SOP Stack 514 and the
interrupt begins execution in EUS 512. Upon occurrence of a second interrupt (before the first imerrupt is
completed) EU’s first interrupt state is transferred from EUS 512 to a stack frame in SS 504, and execution

14

Petitioner Apple Inc. — Exhibit 1024,‘p. 4059

Petitioner Apple Inc. - Exhibit 1024, p. 4060

1,!

10

75

20

55

65

EP 0 067 556 B1

of the second interrupt begins in EUS 512. if a third interrupt occurs before completion of second interrupt.
EU's second interrupt state is transferred from EUS 512 to another stack frame in SS 504 and execution of
the third interrupt is begun in EUS 512; and so on. EUS 512 and SS 504 thus provide an apparently infinitely
deep microstack for EU 12. Assuming that the third interrupt is completed, state of second interrupt is

' transferred from S5 504 to EUS 512 and execution of second interrupt resumed. Upon completion of
second interrupt. state of first interrupt is transferred from $5 504 to EUS S12 and completed. After
completion of first interrupt, state of the original SOP is transferred from SOP Stack 514 to EUS 512 and
execution of that SOP resumed. . . .

C. Procedure Processes, and \frrtual Processors (Fig. 6)
Referring to Hg. 6, a diagramic representation of procedures, processes, and virtual processes is

shown. As described above, a user's program to be executed is compiled to result in a Procedure 602. A
Procedure 602 includes a User's Procedure Object 604 containing the SOPs of the user's program and a
Name Table containing Entries for operand Names of the user's program. and a Static Data Area 606. A
Procedure 602 may also include other Procedure Objects 608. for example utility programs available in
common to many users. in effect, a Procedure 602 contains the instructions (procedures) and data of a
user's program.

A Process 610 includes, as described above, a Macro Stack (MAS) 502 storing state of execution of a
user's Procedure 602 at the SOP level, and a Secure Stack (SS) 504 storing state of execution of a user's
Procedure 602 at the microcode level. A Process 610 is associated with a user's Procedure 602 through the
ABPs described above and which are stored in the MAS 502 of the Process 610. Similarly, the MAS 502 and
SS 504 of a Prowss 610 are associated through non-architectural pointers, described above. A Process 602
is effectively a body of information linking the resources, hardware, microcode. and software, of CS 101 to
a user's Procedure 602. in effect, a Process 610 makes the resources of CS 101 available to a user's
Procedure 602 for executing of that Procedure 602. CS 101 is a multi-program machine capable of
accommodating up to, for example, 128 processes 610 concurrently. The number of Processes 610 which
may be executed concurrently is determined by the number of Virtual Processors 612 of CS 101. There may
be, for example. up to 16 Virtual Processors 612.

As indicated in Fig. 6, a Virtual Processor 612 is comprised of a Virtual Processor State Block (VPSB) 614
associated with the SS 504 of a Process 612. AVPSB 614 is, in effect, a body of infomtation accessible to CS
101's operating system and through which CS 101's operating system is informed of, and provided with
access to, a Process 610 through that process 610's SS 504. A VPSB 614 is associated with a particular
Process 610 by writing information regarding that Process 610 into that VPSB 614. CS 101's operating
system may, by gaining access to a Process 610 through an associated PSB 614. read information, such as
ABP's, from that Process 610 to FU 120, thereby swapping that Process 610 onto FU 120 for execution. It is
said that a Virtual Processor 61 2- thereby executes a process 610; a Virtual Processor 612 may be regarded
therefor, as a processor having "Virtual", or potential, existence which becomes ‘‘real" when its associated
Process 610 is swapped into FU 120. in (23101, as indicated in Hg. 6, only one Wrtual Procesor 612 may
execute on FU 120 at a time and the operating system selects which Virtual Processor 612 will excecute on
FU 120 at any given time. in addition. CS 101's operating system selects which Processes 610 will be
associated with the available Virtual Processors 612.

Having ‘briefly described certain individual structural and operating features of CS 101, the overall
operation of CS 101 will be described in further detail next below in terms of these individual features.

D. CS 101 Overall Structure and Operation (Figs. 7, 8, 9, 10, 11, 12, 13, 14. 15)
1. introduction (Fig. 7)

As indicated in Hg. 7, CS 101 is a multiple level system wherein operations in one level are generally
transparent to higher levels. User 701 does not see the S-Language, addressing, and protection
mechanisms defined at Architectural Level 708. instead, he sees User Interface 709, which is defined by
Compilers 702, Binder 703, and Extended (high leve1) Operating System (E05) 704. Compilers 702 translate
high-level language code into SlNs and Binder 703 translates symbolic Names in programs into UlD-offsetaddresses.

As Fig. 7 shows, Architectural Level 708 is not defined by FU 120 interface 711. Instead, the
architectural resources level are created by S-Language interpreted SlNs when a program is executed;
Name interpreter 715 operates under control of S-Language interpreters 705 and translates Names into
logical descriptors. in CS 101, both S-Language interpreters 705 and Name lnterpreter715 are implemented
as microcode which executes on FU 120. S-Language interpreters 705 may also use EU 122 to perform
calculations. A Kernel Operating System (K05) provides CS 101 with UID-offset addressing, objects, access
checking, processes, and virtual processors, described further below. KOS has three kinds of components:
KOS Microcode 710, K05 Software 706, and KOS Tables in MEM 112. K05 710 components are microcode
routines which assist FU 120 in performing certain required operations. Like other high-level language
routines, KOS 706 components contain SiNs which are interpreted by S-interpreter Microcode 705. Many
KOS High-Level Language Routines 706 are executed by special KOS processes; others may be executed
by any process. Both K05 Hlgh-Level Language Routines 706 and K05 Microcode 710 manipulate KOS
Tables in MEM 112. .

15

Petitioner Apple Inc. — Exhibit 1024, p. 4060

Petitioner Apple Inc. - Exhibit 1024, p. 4061

70

15

20

25

30

35

235

EP 0 067 556 B1

FU 120 interface 711 is visible only to K05 and to S-Interpreter Microcode 705. For the purposes of this
discussion, FU 120 may be seen as a processor which contains the following main elements:

. A Control Mechanism 725 which executes microcode stored in Writable Control Store 713 and

manipulates FU 120 devices as directed by this microcode.
A GRF 506 containing registers in which data may be stored.
A Processing Unit 715.

All microcode which executes on FU 120 uses these devices; there is in addition a group of devices for
performing special functions; these devices are used only by microcode connected with those functions.
The microcode, the specialized devices, and sometimes tables in MEM 112 make up logical machines for
performing certain functions. ‘These machines will be described in detail below.

In the following, each ofthe levels illustrated in Fig. 7 will be discussed in turn. First, the components at
User interface 709 will be examined to see how they translate user programs and requests into forms
usable by CS 101. Then the components below the User interface 709'will be examined to see how they
create logical machines for performing CS 101 operations.

2. Compilers 702 (Fig. 7)
Compilers 702 translate files containing thehighlevel language code written by User 701 into

Procedure Objects 608. Two component: of a Procedure Object 608 are code (SOPs) and Names, previously
described. 50Ps represent operations, and the Names represent data. A single SIN thus specifies an
operation to be performed on the data represented by the Names.

3. Binder 703 (Hg. 7)
in some cases, Compiler 702 cannot define locations as offsets from an ABP. For example, if a

.procedure calls a procedure contained in another procedure object. the location to which the call transfers
control cannot be defined as an offset from the PBP used by the calling procedure. In these ses, the
compiler uses symbolic Names to define the locations. Binder 703 is a utility which translates symbolic
Names into UlD<:ffset addresses. It does so in two ways: by combining separate Procedure Objects 608
into a single large Procedure Object 608, and then redefining symbolic Names as offsets from that
Procedure Obiect 608's ABPs, or by translating symbolic Names when the program is executed. In the
second case, Binder 703 requires assistance from E05 704. .

4. E08 704 (Fig. 7) ‘-
E03 704 manages the resources that User 701 requires to execute his programs. From User 701's point

of view, the most important of these resources are files and processes. E05 704 creates files by requesting
K05 to create an object and then mapping the tile onto the object. When a User 701 performs an operation
on a file, E05 704 translates the file operation into an operation on an object. KOS creates them at EOS
704's request and makes them available to E05 704, which in turn makes them available to User 701. E08

704 causes a process to execute by associating it a Virtual Processor 612. In logical terms, a Virtual
Processor 612 is the means which K05 provides EOS 704 for executing processes 610. As many Processes
610 may apparently execute simultaneously in CS 101 as there are Virtual Processors 612. The illusion of
simultaneous execution is created by multiplexing JP 114 among the Virtual processors: the manner in
which Processes 610 and Virtual Processors 610 are implemented will be explained in detail below.

5. K08 and Architectural Interface 708 (Fig. 7)
S-interpreter Microcode 710 and Name interpreter Microcode 715 require an environment provided by

KOS Microcode 710 and KOS Software 706 to execute SlNs. For example, as previously explained, Names
and program locations are defined in tenns of ABPs whose values vary during execution of the program.
The KOS environment provides values for the ABPs, and therefore makes it possible to interpret Names
and program locations as locations in MEM 112. Similarly, KOS help is required to transform logiml
descriptors into references to MEM 112 and to perform protection checks. '

The environment provided by KOS has the following elements:
A Process 610 which contains the state of an execution of the program for a given User 701.
A Wrtual Processor 612 which gives the Process 610 access to JP 114.
An Object Management System which translates U|Ds into values that are usable inside JP 114.
A Protection System which checks whether a Process 610 has the right to perform an operation on an

Object.
A Virtual Memory Management System which moves those portions of Objects which a Process 610

actually references from the outside worid into MEM 112 and translates logical descriptors into physical
descriptors.

In the following, the logical properties of this environment and the manner in which a program is
executed in it will be explained.

6. Processes 610 and Virtual Processors 612 (Hg. 8)
Processes 610 and Virtual Processors 612 have already been described in logical terms; Fig. 8 gives a

high-level view of their physical implememalion.

16

Petitioner Apple Inc. — Exhibit 1024, p. 4061

Petitioner Apple Inc. - Exhibit 1024, p. 4062

15

20

35

EP 0 067 556 B1

Fig. 8 illustrates the relationship between Processes 610, Virtual Processors 612, and JP 114. In physical
terms, a Process 610 is an area of MEM 112 which contains the current state of a usefs execution of a
program. One example of such state is the current values of the ABPs and a program Counter (PC). Given
the current value of the PBP and the PC, the next SOP in the program can be executed: similarly, given the
current values of SDP and FF. the program's Names can be correctly resolved. Since the Process 610
contains the currem state of a program's execution, the program's physical execution can be stopped and
resumed at any point. It is thus possible to control program execution by means of the Process 610.

As already mentioned, a process 610's execution proceeds only when KOS has bound it to a Virtual
Processor 612, that is, an area of MEM 112 containing the state required to execute microinstructions on JP
114 hardware. The operation of binding is simply a transfer of Process 610 state from the Process 610's area
of MEM 112 to a Witual Processor 612's area of MEM 112. Since binding and unbinding may take place at
any time. EOS 704 may multiplex Processes 610 among Virtual Processors 612. In Fig. 8, there are more
Processes 610 than there are Virtual Processors 612. The physical execution of a Process 610 on JP 114
takes place only while the Process 610's Virtual Processor 612 is bound to JP 114, i.e., when state is
transferred from Virtual Processor 612's area of MEM 112 to JP 114's registers. Just as EOS 704 multiplexes
Virtual Processors 612 among Processes 610, K08 multiplexes JP 114 among Virtual Processors 612. in Fig.
8, only one Process 610 is being physically executed. The means by which JP 114 is multiplexed among
Virtual Processors 612 will be described in further detail below.

7. Processes 610 and Stacks (Hg. 9)
In CS 101 systems, a Process 610 is made up of six Objects: one Process Object 901 and Five Stack

Objects 902 to 906. Fig. 9 illustrates a Process 610. Process Object 901 contains the information which EOS
704 requires to manage the Process 610. EOS 704 has no direct access to Process Object 901, but instead
obtains the information it needs by means of functions provided to it by KOS 706. 710. included in the
information are the UlDs of Stock Objects 902 through 906. Stock Objects 902 to 906 contain the Process610's state.

Stack Objects 902 through 905, are required by CS 101's domain protection method and comprise
Process 610's MAS 502. Briefly, a domain is determined in part by operations performed when a system is
operating in that domain. For example, the system is in E05 704 domain when executing E05 704
operations and in K08 706, 710 domain when executing KOS 706. 710 operations. A Process 610 must have
one stack for each domain it enters. In the present embodiment. the number of domains is fixed at four, but
alternate embodiments may allow any number of domains, and correspondingly, any number of Stack
Objects. Stack Object 906 comprises Process 610's Secure Stack 504 and is required to store state which
may be manipulated only by K05 706, 710.

Each invocation made by a Process 610 results in the addition of frames to Secure Stack 504 and to
Macro-Stack 502. The state stored in the Secure Stack 504frame includes the macrostate for the invocation,
the state required to bind Process 610 to a Wrtual Processor 612. The frame added to Macro-Stack 502 is
placed in one of Stack Objects 902 through 905. Which Stack Objects 902 to 905 gets the frame is
determined by the invoked procedure's domain of execution.

Fig. 9 shows the condition of a Process 610's MAS 502 and Secure Stack 504 after the Process 610 has
executed four invotions. Secure Stack 504 has one frame for each invocation; the frames of Process 610's
MAS 502 are found in Stack Objects 902, 904, and 905. As revealed by their locations. Frame 1 is for an
invocation of a routine with KOS 706, 710 domain of execution, Frame 2 for an invocation of a routine with
the E05 704 domain of execution, and Frames 3 and 4 for invocations of routines with the User domain of
execution. Process 610 has not yet invoked a routine with the Data Base Management System (DBMS)
domain of execution. The frames in Stack Objetxs 902 through 905 are linked together, and a frame is
added to or removed from Secure Stack 504 every time a frame is added to Stack Objects 902 through 905.
MAS 502 and Secure Stack 504 thereby function as a single logical stack even though logically contained in
five separate Objects.

8. Processes 610 and Calls (Figs. 10, 11)

In the CS 101, calls and returns are executed by KOS 706,710. When KOS 706, 710 performsa call for a
process, it does the following:

it saves the calling invocation's macrostate in the top frame of Secure Stock 504 (Fig. 9).
It locates the procedure whose Name is contained in the call. The location of the first SIN in the

procedure becomes the new PBP.

Using information contained in the called procedure, KOS 706, 710 creates a new MAS 502 frame in
the proper Stack Object 902 through 905 and a new Secure Stack 504 frame in Secure Stack 504. PP is
updated to point to the new MAS 502. if necessary, SDP is also updated.

Once the values of the ABPs have been updated, the PC is defined, Names can be resolved, and
execution of the invoked routine can commence. On a return from the Invocation to the invoking routine,
the stack frames are deleted and the ABPs are set to the values saved in the invoking routine’s macrostate.
The invoking routine then continues execution at the point following the invocation.

A Process 610 may be illustrated in detail by putting the FORTRAN statement A + B into a FORTRAN
routine called EXAMPLE and invoking it from another FORTRAN routine named CALLER. To simplify the

17

Petitioner Apple Inc. — Exhibit 1024, p. 4062

Petitioner Apple Inc. - Exhibit 1024, p. 4063

15

20

50

EP 0 067 556 B1

example, it is assumed that CALLER and EXAMPLE both have the same domain of execution. The pans of
EXAMPLE which are of interest look like this: '

SUBROUTINE EXAMPLE (Ci

INTEGER X.C

INTEGER A,B

A=B

FIEFURN

END

The new elements are a formal argument, C, and a new local variable, X. A formal argument is a data
item which receives its value from adata item used in the invoking routine. The formal argument's value
thus varies from invocation to invocation. The portions of INVOKER which are of interest look like this:

SUBROUHNE INVOKER

INTEGER Z

QALL EXAMPLE (Z)

END

The CALL statement in lNVOl(ER specifies the Name of the subroutine being invoked and the actual
arguments for the subroutine’s formal arguments. During t.he invocation, the subroutine's formal
arguments take on the values of the actual arguments. Thus, during the invocation specified by this CALL
statement, the formal argument C will have the value represented by the variable 2 in INVOKER.

When INVOKER is compiled, the compiler produces a CALL SIN corresponding to the CALL statement.
The CALL SIN contains a Name representing a pointer to the beginning of the called routine's location in a
procedure object and a list of Names representing the call's actual arguments. When CALL is executed, the
Names are interpreted to resolve the SlN's Names as previously described, and KOS 710 microcode to
perform MAS 502 and Secure Stack 504 operations. .

Fig. 10 illustrates the manner in which the K08 710 call microcode manipulates MAS 502 and Secure
Stack 504.

Fig. 10 includes the following elements:
Call Microcode 1001, contained in FU 120 Writable Control Store 1014.
PC Device 1002. which contains part of macrostate belonging to the invocation of INVOKER which is

executing the CALL statement.
Registers in FU Registers 1014. Registers 1004 contents include the remainder of macrostate and the

descriptors corresponding to Names for EXAMPLE's location and the actual argument Z.
Procedure Object 1006 contains the entries for INVOKER and EXAMPLE, their Name Tables, and their

code. ‘

Macro-Stack Object 1008 (MAS 502) and Secure Stack Object 1010 (Secure Stack 504) contain the
stack frames for the invocations of INVOKER and EXAMPLE being discussed here. EXAMPLE's frame is in
the same Macro—$tacl< object as |NVOl<.ER’s frame because both routines are contained in the same
Procedure Object 1006, and therefore have the same domain of execution.

KOS Call Microcode 1001 first saves the macrostate of INVOKER’s invocation on Secure Stack 504. As

will be discussed later, when the state is saved, KOS 706 Call Microcode 1001 uses other KOS 706
microcode to translate the location information contained in the macrostate into the kind of pointers used
in MEM 112. Then Microcode 1001 uses the descriptor for the routine Name to locate the pointer to
EXAMPLE’s entry in Procedure Object 1006. From the entry, it locates pointers to EXAMPLE's Name Table
and the beginning of EXAMPLE‘s code. Microcode 1001 takes these pointers, uses other KOS 706
microcode to translate them into descriptors, and places the descriptors in the locations in Registers 1004
reserved for the values of the PEP and NTP. It then updates the values contained in PC Device 1002 so that

18

Petitioner Apple Inc. — Exhibit 1024, p. 4063

Petitioner Apple Inc. - Exhibit 1024, p. 4064

r<\ 10

'20

25

45

50

EP 0 067 556 B1

when the call is finished, the next SIN to be executed will be the flrst SIN in EXAMPLE.
CALL Microcode 1001 next constructs the frames for EXAMPIE on Secure Stack 504 and Macro-Stack

502. This discussion concerns itself only with Frame 1102 on Macro-Stack 502. Fig. 11 illustrates
EXAMPLE’s Frame 1102. The size of Frame 1102 is determined by EXAMPLE’s local variables (X, A, and B)
and formal arguments (C). At the bottom of Frame 1102 is Header 1104. Header 1104 contains information
used by KOS 706, 710 to manage the stack. Next comes Pointer 1106 to the location which contains the
value represented by the argument C. In the invocation, the actual for C is the local variable 2 in lNVOKER.
As is the case with all local variables, the storage represented by Z is contained in the stack frame
belonging to lNVOKER's invocation. When a name interpreter resolved C's name, it placed the descriptor in
a register. Call Microcode 1001 takes this descriptor, converts it to a pointer, and stores the pointer aboveHeader 1104.

Since the FP ABP points to the location following the last pointer to an actual argument, Call Microcode
1001 can now calculate that location, convert it into a descriptor, and place it in a FU Register 1004 reserved
for FF. The next step is providing storage for EXAMPLE’s local variables. EXAMPLE’s procedure Object
1006 contains the size of the storage required for the local variables, so Call Microcode 1001 obtains this
information from procedure Object 1006 and adds that much storage to Frame 1102. Using the new value
of FF and the information contained in the Name Table Entries for the local data, Name Interpreter 715 can
now construct descriptors for the local data. For example, A's entry in Name Table specified that it was
offset 32 bits from FP, and was 32 bits long. Thus, its storage falls between the storage forX and B in Figurell.

9. Memory References and the Virtual Memory Managment System (Hg. 12, 13)
As already explained, a logical descriptor contains an AON field, an offset field, and a length field. Fig.

12 illustrates a Physical Descriptor. Physical Descriptor 1202 contains a Frame Number (FN) field, a
Displacement (D) field, and a Length (L) field. Together, the Frame Number field and the Displacement field
specify the location in MEM 112 comainlng the data, and the Length field specifies the length of the data.

As is clear from the above, the virtual memory management system must translate the AON-offset
location contained in a logical descriptor 1204 into a Frame Number—Displacement location. It does so by
associating logical pages with MEM 112 frames. (N.B: MEM 112 frames are not to be confused with stack

frames). Fig. 13, illustrates how Macrostack 502 Object 1302 is divided into Logical Pages 1304 in secondary
memory and how Logical Pages 1304 are moved onto Frames 1306 in MEM 112. A Frame 1306 is a fixed-
size. contiguous area of MEM 112. When the virtual memory management system brings data into MEM
112, it does so in frame-sized chunks called Logical Pages 1308. Thus, from the virtual memory system's
point of view, each object is divided into Logical Pages 1308 and the address of data on a page consists of
the AON of the data’s Object, the number of pages in the object, and its displacement on the page. in Fig.
13, the lowtion afthe local variable B of EXAMPLE is shown as it is deflned by the virtual memory system.
B's location is a UID and an offset,.or, inside JP 114. an AON and an offset. As defined by the virtual
memory system, B's location is the AON, the page number 1308, and a displacement within the page.
When a process references the variable B, the virtual memory management system moves all of Logical
Page 1308 into a MEM 112 Frame 1306. B's displacemem remains the same, and the virtual memory system
translates its Logical Page Number 1308 into the number of Frame 1306 in MEM 112 which contains the
page.

The virtual memory management system must therefore perform two kinds of translations: (1) AON-

offsattupddresses into AON-page number-displacement addresses, and (2) AON-page number into a frameDLIITI I‘.

10. Access Control (Hg. 14)

Each time a reference is made to an Object, KOS 706, 710 checks whether the reference is legal. The
following discusson will first present the logical structure of access control in CS 101, and then discuss the
microcode and devices which implement it.

CS_101 defines access in tenns of subjects, modes of access, and Object size. A process may reference
a data Item located in an Object if three conditions hold:

1) If the process's subject has access to the Object.
2) if the modes of access specified for the subject include those required to parfonn the intendedoperation. '

3) if the data item is completely contained in the Object, i.e., if the data item's length added to the data
item's offset do not exceed the number of bits in the Object.

The subjects which have access to an Object and the kinds of access they have to the Object are
specified by a data structure associated with the Object called the Access Control List (ACL). An 0bject’s
size is one of its attributes. Neither an Object’s size nor its ACL is contained in the Object. Both are
contained in system tables, and are accessible by means of the Object's UlD.

_ Fig. 14 shows the logical structure of access control in CS 101. Subject 1408 has four components:
Principal 1404. Process 1405, Domain 1406, and Tag 1407. Tag 1407 is not implemented in a present
embodiment of CS 101, so the following description will deal only with principal 1404. Process 1405, andDomain 1406.

19

Petitioner Apple Inc. — Exhibit 1024, p. 4064

Petitioner Apple Inc. - Exhibit 1024, p. 4065

I0

15

20.

EIP 0 067 556 B1!

Principal 1404 specifies a user tor which the process which is making the reference was created;
Process 1405 specifies the process which is making the reference; and,
Domain 1406 specifies the domain of execution of the procedure which the process is executing

when it makes the reference.

Each component ofthe Subject 1408 is represented by a UlD. if the UID is a null UID, that component of
the subject does not affect access checking. Non-null UlDs are the UiDs of Objects that contain information
about the subject components. Principal Object 1404 contains identification and accounting irifonnation
regarding system users, Process Object 1405 contains process management information, and Domain
Object 1406 contains information about per-domain error handlers.

There may be three modes of accessing an Object 1410: read, write, and execute. Read and write are
self-explanatory; execute is access which allows a subject to execute instructions contained in the Object.

Access Control Lists iACLs) 1412 are made up of Entries 1414. Each entry two components: Subject
Template 1_416 and Mode Specifier 1418. Subject Template 1416 specifies a group of subjects that may
reference the Object and Mode Specifier 1418 specifies the kinds of access these subjects may have to the
Object. Logicaiiy speaking, ACL 1412 is checked each time a process references an Object 1410. The
reference may succeed only if the process's current Subject 1408 is one of those on Object 1410's ACL1412
and it the modes in the ACL Entry 1414 for the Subject 1408 allow the kind of access the process wishes to
make.

11. Virtual Processors and Virtual Processor Swapping (Fig. 15)
As previously mentioned, the execution of a program by a Process 610 cannot take place unless E08

704 has bound the Process 610 to a Virtual Processor 612. Physical execution of the Process 610 takes place
only while the process's Virtual Processor 612 is bound to JP 114. The following discussion deals with the
data bases belonging to a Virtual Processor 612 and the means by which a Virtual Processor 612 is bound to
and removed from JP 114.

Fig. 15 illustrates the devices and tables which KOS 706, 710 uses to implement Virtual Processors 612.
FU 120 WCS contains KOS Microcode 706 for binding Virtual Processors 612 to JP 114 and removing them
from JP 114. Timers 1502 and interrupt Line 1504 are hardware devices which produce signals that cause
the invocation of K05 Microcode 706. 1'imers 1502 contains two timing devices: lmerval Timer 1506. which
may be set by KOS 706, 710 to signal when a certain time is reached, and Egg Timer 1508, which
guarantees that there is a maximum time interval for which a Virtual processor 612 can be bound to JP 114
before it invokes KOS Microcode 706. interrupt Line 1504 becomes active when JP 114 receives a message
from IOS 116, for example when IOS 116 has finished loading a logical page into MEM 112.

FU 120 Registers 508 contain state belonging to the Virtual Processor 612 currently bound to JP 114.
Here, this Virtual Processor 612 is called Virtual Processor A. in addition, Registers 508 contain registers
reserved for the execution of VP Swapping Microcode 1510. ALU 1842 (part of FU 120) is used for the
descriptor-to«pointer and painter-to-descriptor transfonnations required when one Virtual Processor 612 is
unbound from JP 114 and another bound to JP 114. MEM 112 contains data bases for Virtual Prowssors

612 and data bases used by KOS 706. 710 to manage Virtual Processors 612. K05 706, 710 provides a fixed
number of Virtual Processors 612 for CS 101. Each Virtual Processor 612 is represented by a Virtual
Processor State Block (VPSB) 614. Each VPSB 614 contains infomiation used by KOS 706, 710 to manage
the Virtual Processor 612, and in addition contains information associating the Virtual Processor 612 with a
process. Hg. 15 shows two VPSBs 614, one belonging to Virtual Processor 612A, and another belonging to
Virtual Processor 6123, which will replace Virtual Processor 612A on JP 114. The VPSBs 614 are contained
in VPSB Array 1512. The index of a VPSB 614 in VPSB Array 1512 is Virtual Processor Number 1514
belonging to the Virtual Processor 612 represented by a VPSB 614. Virtual Processor Lists 1516 are lists
which KOS 706, 710 uses to manage Virtual Processors 612. if a Virtual Processor 612 is able to execute. its
Virtual Processor Number 1514 is on a list called the Runnable List; Virtual Processors 612 which cannot
run are on other lists, depending on the reason why they cannot run. it is assumed that Virtual Processor
61-2B’s Virtual Processor Number 1514 is the first one on the Runnable List.

When a process is bound to a Virtual Procesor 612, the Virtual Processor Number 1514 is copied into
the process's Process Object 901 and the AONs of the process's Process Object 901 and stacks are copied
into the Virtual Processor 612's VPSB 614. (AONs are used because a process’s stacks are wired active as
long as the process is bound to a Virtual Processor 612). Binding is carried out by K05 706. 710 at the
request of E05 704. in Fig. 15, two Secure Stack Objects 906 are shown, one belonging to the process to
which Virtual Processor 612A is bound. and one belonging to that to which Virtual Processor 612B is bound.

Having described certain overall operating features of CS 101. a present implementation of CS 101's
structure will be described further next below.

E. CS 101 Structural Implementation (Figs. 16, 17. 18, 19, 20)
1. (I05) 116 (Figs. 16,17)

Referring to Fig. 16. a partial block diagram of IOS 116 is shown. Major elements of lOS 116 include an
ECUPSEP Burst Multiplexer Channel (BMC) 1614 and a NOVA” Data Channel (NDC) 1616, an i0 Controller
U00) 1618 and a Data Mover (DM) 1610. IOS 116's data channel devices, for example BMC 1614 and NDC

1616, comprise I05 ,116's interface to the outside world. information and addresses are received from

20

Petitioner Apple Inc. — Exhibit 1024, p. 4065

Petitioner Apple Inc. - Exhibit 1024, p. 4066

l‘l

IU

1'

I‘!

10

20

EP 0 067 556 B1

external devices, such as disk drives, communications modes, or other computer systems, by IOS 116's
data channel devices and are transferred to DM 1610 ldegcribed below) to be written into MEM 112.
Similarly, information read from MEM 112 is provided through DM 1610 to I08 116's data channel devices
and thus to the above described external devices. These external devices are a part of CS 101's addressable
memory space and may be addressed through UlD addresses.

IOC 1618 is a general purpose CPU, for example an ECLIPSE” computer available from Data _General
Corporation. A primary function of IOC 1618 is control of data transfer through IOS116. in addition, ‘IOC
1618 generates individual Maps for each data channel device for translating external device addresses into
physical addresses within MEM 112. As indicated in Fig. 16, each data channel device contains an
individual Address Translation Map (MAP) 1632 and 1636. This allows IOS 116 to assign individual areas of
MEM 112's physical address space to each data channel device. This feature provides protection against
one data channel device writing into or reading from information belonging to another data channel

device. in addition, IOC 1618 may generate overlapping address translation Maps for two or more data
channeldevices to allow these data channel devices to share a common area of MEM 112 physical address
space.

Data transfer between IOS 116's data channel devices and MEM 112 is through DM 1610, which
includes a Buffer memory (BUF) 1641. BUF 1641 allows MEM 112 and I03 116 to operate asychronously.

-DM 1610 also includes a Ring Grant Generator (RG6) 1644 which controls access of various data channel
devices to MEM 112. RGG 1644 is designed to be flexible in apportioning access to MEM 112 among IOS
116's data channel devices as loads carried by various data channel devices varies. In addition, RGG 1644
insures that no one, or group, of data channel devices may monopolize access to MEM 112.

Referring to Fig. 17, a diagramic representation of RGG 1644's operation is shown. As described further
in a following description, RGG 1644 may be regarded as a commutator scanning a number of ports which
are assigned to various channel devices. For example, ports A, C, E, and G may be assigned to a BMC 1614,
parts B and Fto a NDC 1616, and ports D and H to another data channel device. EGG 1644 will scan each of

these ports in turn and, if the data channel device associated with a particular port is requesting access to
MEM 112, will grant access to MEM 112 to that data channel device. if no request is present at a given port,
RGG 1644 will continue immediately to the next port. Each data channel device assigned one or more ports
is thereby insured opportunity of access to MEM 112. Unused ports, for example inditing data channel
devices which are not presently engaged in information transfer. are effectively skipped over so that access
to MEM 112 is dynamimlly modified according to the information transfer loads ofthe various data channel
devices. HGG 1644's parts may be reassigned among IOS 116's various data channel devices as required to
suit the needs of a particular CS 101 system. if, for example, a particular CS 101 utilizes NDC 1616 more
than a BMC 1614, that CS 101's NDC1616 may be assigned more ports while that CS 101 's BMC 1614 is
assigned fewer ports.

2. Memory (MEM) 112 (Fig. 18)
Referring to Fig. 18, a partial block diagram of MEM 112 is shown. Major elements of MEM 112 are

Main Store Bank (MSB) 1810, a Bani: Control|er(BC) 1814, a Memory Cache (MC) 1816, a Field Interface Unit
(FIU) 1820, and Memory interface Controller (MIC) 1822. interconnections of these elements with input and
output buses of MEM 112 to lOS 116 and JP 114 are indicated.

MEM 112 is an intelligent, prioritizing memory having a single port to IOS 116. comprised of i0M Bus
130, MIO Bus 129, and IOMC Bus 131, and dual ports to JP 114. Afirst JP 114 port is comprised of MOD Bus
140 and PD Bus 146, and a second port is comprised of JPD Bus 142 and PD Bus 146. In general, all data
transfers from and to MEM 112 by (OS 116 and JP 114 are of single, 32 bit words: IOM Bus 130, M10 Bus
129, MOD Bus 140, and JPD Bus 142 are each 32 bits wide. (:8 101, however, is a variable word length
machine wherein the actual physical width of data buses are not apparent to a user. For example, a Name
in a user's program may refer to an operand containing 97 bits of data. To the user, that 97 bit data item will
appear to be read from MEM 112 to JP 114 in a single operation. In actuality, JP 114 will read that operand
from MEM 112 in a series of read operations referred to as a string transfer. in this example, the string
transfer will comprise three 32 bit read transfers and one single bit read transfer. The final single bit
transfer, containing a single data bit, will be of a 32 bit word wherein one bit is data and 31 bits are fill. Write
operations to MEM 112 may be performed in the same manner. if a single read or write request to MEM 112
specifies a data item of less than 32 bits of data, that transfer will be accomplished in the same manner as
the final transfer described above. That is, a single 32 bit word will be transferred wherein non-data bits arefill bits.

Bulk data storage in MEM 112 is provided in M38 1810, which is comprised of one or more Memory
Array cards (MAs) 1812. The data path into and out of MA 1812 is through BC 1814, which performs all
control and timing functions for MAs 1812. BC 1814's functions include addressing, transfer of data,
controlling whether a read or write operation is performed, refresh, sniffing, and error correction code
operations. All read and write operations from and to MAs 1812 through BC 1814 are in blocks of four 32 bitwords.

The various MAs 1812 comprising MSB 1810 need not be of the same data storage capacity. For
example, certain MM 1812 may have a capacity of 256 kilobytes while other MAs1812 may have a capacity
of 512 kilobytes. Addressing of the MAs 1812 in M58 1810 is automatically adapted to various MA 1812

21

Petitioner Apple Inc. — Exhibit 1024, p. 4066

Petitioner Apple Inc. - Exhibit 1024, p. 4067

10

15

20

‘25

35

40

60

EP 0 067 556 B1

configurations. As indicated in Hg. 18, each MA 1812 comains an address circuit (A) which receives an
input from the next lower MA 1812 indicating the highest address in that next lower MA 1812. The A circuit
on an MA 1812 also receives an input from that MA 1812 indicating the total address space of that MA 1812.
The A circuit of that MA 1812 adds the highest address input from next lower MA 1812 to its own input
representing its own capacity and generates an output to the next MA 1812 indicating its own highest
address. All MAs 1812 of MSB 1810 are addressed in parallel by BC 1814. Each MA 1812 compares such
addresses to its input from the next lower MA 1812. representing highest address of that next lower MA
1812. and its own output. representing its own highest address. to determine whether a particular address
provided by BC 1814 lies wifltin flte range of addresses contained within that particular MA 1812. The
particular MA 1812 whose address space includes that address will then respond by accepting the read or
write request from BC 1814.

MC 1816 is the data path for transfer of data between BC 1814 and IOS 116 and JP 114. MC 1816
contains a high speed cache storing data from MSB 1810 which is currently being utilized by either l0S 116
or JP 114. MSB 1810 thereby provides MEM 112 with a large storage capacity while MC 1816 provides the
appearance of a high speed memory. In addition to operating as a cache, MC 1816 includes a bypass write
path which allows IOS 116 to write blocks offour 32 bit words directly imo MSB 1810 through BC 1814. in
addition, MC 1816 includes a cache write-back path which allows data to be transferred out of MC 1816's
cache and stored while further data is transferred into MC 1816's cache. Displaced data from MC 1816's
cache may then be written back-into MSB 1810 at a later, more convenient time. This write-back path
enhances speed of operation of MC 1816 by avoiding delays incurred by transferring data front MC 1816 to
M58 1810 before new data may be written into MC 1816.

MEM 112's FlU 1820 allows manipulation of data formats in writes to and reads from MEM 112 by both
JP 114 and I05 116. For example, Flu 1820 may convert unpacked decimal data to packed decimal data.
and vice versa. In addition, FlU 1820 allows MEM 112 to operate as a bit addressable memory. For example,
as described all data transfers to and from MEM 112 are of 32 bit words. If a data transfer of less than 32 bits
is required, the 32 bit word containing those data bits may be read from MC 1816 to FIU 1820 and therein
manipulated to extract the required data bit. FlU 1820 then generates a 32 bit word containing those
required data bits, plus fill bits, and provides that new 32 bit word to JP 114 or IOS 116. When writing lnto
MEM 112 from lOS 116 through FIU 1820, data is transferred onto lOM Bus 130. read into FlU 1820,
operated upon, transferred onto-MOD Bus 140, and transferred from MOD Bus 140 to MC 1816. In read
operations from MEM 112 to I05 116, data is transferred from MC 1816 to MOD Bus 140, van-itten into FIU
1820 and operated upon, and transferred onto MIO Bus 129 to I05 116. In a data read from MEM 112to JP
114, data is transferred from MC 1816 omo MOD Bus 140, transferred into FIU 1820 and operated upon, and
transferred again onto MOD.Bus 140 to JP 114. In write operations from JP 114 to MEM 112. data on JPD
Bus 142 is transferred into FlU 1820 and operated upon, and is then transfened onto MOD Bus 140 to MC
1816. MOD Bus 140 is thereby utilized as an MEM 112 internal bus for Flu 1820 operations.

Finally, MIC 1822 provides primary control of BC 1814, MC 1816, and FIU 1820. MlC 1822 receives
control inputs from and provides control outputs to PD Bus 146 and lOMC Bus 131. MIC 1822 contains
primary microcode control for MEM 112, but BC 1814, MC 1816, and FlU 1820 each include internal
microcode control. independent, incemal microcode controls allow BC 1814, MC 1816, and FIU 1820 to
operate independently of MIC 1822 after their operations have been initiated by MIC 1822. This allows BC
1814 and M58 1810, MC 1816, and FIU 1820 to operate independently and asynchronously. Efficiency and
speed of operation of MEM 112 are thereby enhanced by allowing pipelining of MEM 112 operations.

3. Fetch Unit (FU) 120 (Hg. 19)
A primary function of FU 120 is to execute SlNs. in doing so, FU 120 fetches instructions and data

(SOPs and Names) from MEM 112, returns results of operations to MEM 112, directs operation of EU 12.
executes instructions of user's programs, and performs the various functions of CS 101's operating
systems. As part of these functions, FU 120 generates and manipulates logical addresses and descriptors
and is capable of operating as a general purpose CPU.

Referring to Fig. 19, a major element of FU 120 is the Descriptor Processor (DESP) 1910. DESP 1910
includes General Register file (GRF) 506. GRF 506 is a large register array divided vertically into three parts
which are addressed in parallel. A first part, AONGRF 1932. stores AON fields of logical addresses and
descriptors. A second part, OFFGRF 1934, stores offset fields of logical addresses and descriptors and is
utilized as a 32 bit wide general register array. A third portion GRF 506, LENGRF 1936, is a 32 bit wide
register array for storing length fields of logical descriptors and as a general register for storing data.
Primary data path from MEM 112 to FU 120 is through MOD Bus 140. which provides inputs to OFFGRF
1934. As indicated in Fig. 19, data may be transferred from OFFGRF 1934 to inputs of AONGRF 1932 and
LENGRF 1936 through various interconnections. Similarly, outputs from LENGRF 1936 and AONGRF 1932
may be transferred to inputs of AONGRF 1932, OFFGRF 1934, and LENGRF 1936.

Output of OFFGRF 1934 is connected to inputs of DESP 1910's Arithmetic and Logic Unit (ALU) 1942.
ALU 1942 is a general purpose 32 bit ALU which may be used in generating and manipulating logical
addresses and descriptors. as distinct from general purpose arithmetic and logic operands performed by
MUX 1940. Output of ALU 1942 is connected to JPD Bus 142 to allow results of arithmetic and logic
operations to be transferred to MEM 112 or EU 122.

22

Petitioner Apple Inc. — Exhibit 1024, 15.4067

Petitioner Apple Inc. - Exhibit 1024, p. 4068

l.l

or

II

15

35

65

EP 0 067 555 B1

Also connected from output of OFFGRF 1934 is Descriptor Multiplexer (MUX) 1 940. An output of MUX
1940 is provided to an input of ALU 1942. MUX 1940 is a 32 bit ALU, including an accumulator, for data
manipulation operations. MUX 1940, together with ALU 1942, allows DESP 1910 to perform 32 bit
arithmetic and logic operations. MUX 1940 and ALU 1942 may allow arithmetic and logic operations upon
operands of greater than 32 bits by performing successive operations upon successive 32 bit words of
larger operands.

Logical descriptors or addresses generated or provided by DESP 1910. are provided to Logical
Descriptor (LD) Bus 1902. LD Bus 1902 in turn is connected to an input of Address Translation Unit (ATU)
1928. ATU 1928 is a cache mechanism for converting logical descriptors to MEM 112 physical descriptors.

LD Bus 1902 is also connected to write input of Name Cache (NC) 1926. NC 1926 is a cache mechanism

for storing logical descriptors corresponding to operand Names currently being used in user's programs.
As previously described, Name Table Entries corresponding to operands currently being used in user’s
programs are stored in MEM 112. Certain Name Table Entries for operands of a user's program currently
being executed are transferred from those Name Tables in MEM 112 to FU 120 and are therein evaluated to
generate corresponding logical descriptors. These logical descriptors are then stored in NC 1926. As will be
described further below, the instruction stream of a user's program is provided to FU 120's Instruction ’
Buffer (lBl 1962 through MOD Bus 140. FU 120's Parser (P) 1964 separates out. or parses, Names from 1B
1962 and provides these Names as address inputs to NC 1924. NC 1924 in turn provides logical descriptor
outputs to LD Bus 1902. and thus to input of ATU 1928. NC 1926 input from LD Bus 1902 allows logical
descriptors resulting from evaluation of Name Table Entries to be written into NC 1926. FU 120's
Protections Cache (PC) 1934 is a cache mechanism having an input connected from LD Bus 1902 and
providing information, as described further below, regarding protection aspects of references to data in
MEM 112 by user's programs. NC 1926. ATU 1928, and PC 1934 are thereby acceleration mechanisms of,
respectively, CS 101's Namespace addressing, logical to physical address structure. and protection
mechanism.

Referring again to DESP 1910. DESP 1910 includes BIAS 1952, connected from output of LENGRF 1936.
As previously described, operands containing more than 32 data bits are transferred beteen MEM 112 and
JP 114 by means of string transfers. in order to perfomt string transfers, it is necessary for FU 120 to
generate a corresponding succession of logical descriptors wherein length fields of those logical
descriptors is no greater than 5 bits, that is, specify lengths of no greater than 32 data bits.

A logical descriptor describing a data item to be transferred by means of a string transfer will be stored
in GRF 506. AON field of the logical descriptor will reside in AONGRF 1932, O field in OFFGRF 1934, and L
field in LENGRF 1936. At each successive transfer of a 32 bit word in the string transfer, 0 field of that

original logical descriptor will be incremented by the number of data bits transferred while L field will be
accordingly decremented. The logil descriptor residing in GRF 506 will thereby describe. upon each
succewsive transfer of -the string transfer, that portion of the data item yet to be transferred. 0 field in
OFFGRF 1934 will indicate increasingly larger offsets into that data item, while L field will indicate
successively shorter lengths. AON and 0 fields of the logical descriptor in GRF 506 may be utilized directly
as AON and O fields of the successive logical descriptors of the string transfer. L field of the logical
descriptor residing in LENGRF 1936, however, may not be so used as L fields of the successive string
transfer logical descriptors as this L field indicates remaining length of data item yet to be transferred.
instead, BIAS 1952 generates the 5 bit L fields of successive string transfer logical descriptors while
correspondinglydecrementing Lfield of the logical descriptor in LENGRF 1936. During each transfer, BIAS
1952 generates L field of the next string transfer logical descriptor while concurrently providing L field of
the current string transfer logical descriptor. By doing so, BLAS 1952 thereby increases speed of execution
of string transfers by performing pipelined Lfield operations. BIAS 1952 thereby allows CS 101 to appear to
the user to be a variable word length machine by automatically performing string transfers. This
mechanism is used for transfer of any data item greater than 32 bits, for example double precision floating
point numbers

Finally, FU 120 includes microcode circuitry for controlling all FU 120 operations described above. in
particular, FU 120 includes a microinstruction sequence control store (mCl 1920 storing sequences of
microinstructions for controlling step by step execution of all FU 120 operations. in general, these FU 120
operations fall into two classes. A first class includes those microinstruction sequences directly concerned
with executing the SOPs of user's programs. The second class includes microinstruction sequences
concerned with CS 101's operating systems, including and certain automatic, internal FU 120 functions
such as evaluation of Name Table Entries.

As previously described, (:5 101 is a multiple S-Language machine. For example. mC 1920 may contain
microinstruction sequences for executing user's SOPs in at least four different Dialects. mC 1920 is
comprised of a writeable control store and sets of microinstruction sequences for various Dialects may be
transferred into and out of mC 1920 as required for execution of various user's programs. By storing sets of
microinstruction sequences for more than one Dialect in mC 1920, it is possible for user’s programs to be
written in a mixture of user languages. For example, a particular user's program may be written primarily in
FORTRAN but may call certain COBOL routines. These COBOL routines will be correspondingly translated
into COBOL dialect SOPs and executed by COBOL microinstruction sequences stored in mc 1920.

The instruction stream provided to FU 120 from MEM 112 has been previously described with

23

Petitioner Apple Inc. — Exhibit 1024, p. 4068

Petitioner Apple Inc. - Exhibit 1024, p. 4069

El? 0 067 556 Bil

reference to Fig.3. SOPS and Names of this instruction stream are transferred from MOD Bus 140 into IBs
1962 as they are provided from MEM 112. IB 1962 includes two 32 bit (one word) registers. I8 1962 also
includes prefetch circuitry for reading for SOPs and Names of the instruction stream from MEM 112 in such
a manner that IB 1962 shall always contain at least one SOPs or Name. FU 120 includes (P) 1964 which

5 reads and separates, or parses, SOPs and Names from lB 1962. As previously described. P 1964 provides
those Names to NC 1926, which accordingly provides logical descriptors to ATU 1928 so as to read the
corresponding operands from MEM 112.
. SOPs parsed by P 1964 are provided as inputs to Fetch Unit Dispatch Table (FUDT) 1904 and Execute
Unit Dispatch Table (EUDT) 1966. Referring first to FUDT 1904, FUDT 1904 is effectively a table for

10 translating SOPs to starting addresses in mC 1912 of corresponding microlnstruction sequences. This
intermediate translation of SOPs to mC 1912 addresses allows efficisnt packing of microinstruction

999090085 Within MC 1912. That is, certain micminstruction sequences may be common to two or mor€-
S-Language Dialects. Such microinstruction sequences may therefore be written into mc 1912 once andy

‘may be referred to by different SOPs of differ§_nt_S-Language Dialects.
15 EUDT 1966 perfomts a similar function with respect to EU 122. As will be described below, EU 122

contains a mC, similar to mc 1912, which is addressed through EUDT 1966 by SOPs specifying EU 122
operations. in addition, FU 120 may provide such addresses mC 1912 to initiate EU 122 operations as

required 10 355551 Wrtain FU 120 °Derations. Examples of such operations which may be requested by FU
120 include calculations required in evaluating Name Table Entries to provide logical descriptors to be20 loaded rnto NC 1926. .

Associated with both FUDT 1904 and EUDT 1966 are Dialect (D) registers 1905 and 1967. D registers
1905 and 1967 store information indicating the particular S-Language Dialect currently being utilized in '

execution of a user’s program. Outputs of D registers 1905 and 1967 are utilized as part of the address
Inputs to rnC 1912 and EU 122's mC.

25

4. Execute Unit (EU) 122 (Fig. 20)

' - As previously described, EU 12 is an arithmetic and logic unit provided to relieve FU 120 of certain
anthmetrc operations. EU 122 is capable of performing addition, subtraction, multiplication, and division
operations on Integer, packed and unpacked decimal, and single and double precision floating operands.

30 EU 12 is an independently operating microcode controlled machine including Microcode Control (mCl
- _2010 whrch._as descnbed above. is addressed by EUDT 1966 to initiate EU 122 operations. rnC 2010 also

Includes logic for handling mutual interrupts between FU 120 and EU 122. That is, FU 120 may interrupt

current EU 122_opera_tions to call upon EU 122 to assist an FU 120 operation. For example, FU 120 may
Interrupt an anthmetrc operation currently being executed by EU 122 to call upon EU 122 to assist in

35 generating a logical descriptor from a Name Table Entry.

Similarly, EU 12 may intemrpt current FU 120 operations when EU 122 requires FU 120 assistance in
executing a current arithmetic operation. For example, EU 122 may imerrupt a current FU 120 operation if
EU 12 receives an instruction and operands requiring EU 122 to perform a divide by zero.

Referring to Fig. 20, a partial bloclr diagram of EU 122 is shown. EU 12 includes two arithrnetic and
40 logic units. A first arithmetic and logic unit (MULT) 2014 is utilized to perform addition, subtraction,

multiplication, and division operations upon integer and decimal operands, and upon mantissa fields of
single and double precision floating point operands. Second ALU (EXP) 2016 is utilized to perform
operations upon single and double precision floating point operand exponent fields in parallel with
operations performed upon floating point mantissa fields by MULT 2014. Both MULT 2014 and EXP 2016

45 include an arithmetic and logic unit. respectively MALU 2074 and EXPALU 2084. MULT 2014 and EXP 2016
also include register files, respectively MRF 2050 and ERF 2080, which operate and are addressed in parallel
in a manner similar to AONGRF 1932, OFFGRF 1984 and LENGRF 1936.

Operands for EU 122 to operate upon are provided from MEM 112 through MOD Bus 140 and are
transferred into Operand Buffer (OPB) 2022. In addition to serving as an input buffer, OPB 2022 performs

50 certain data format manipulation operations to transform input operands into formats most efficiently
operated with by EU 122. in particular, EU 122 and MULT 2014 may be designed to operate efficiently with
packed decimal operands. OPB 2022 may transform unpacked decimal operands into packed decimal
operands. Unpacked decimal operands are in the form of ASCII characters wherein four bits of each
characters are binary codes specifying a decimal value between zero and nine. Other bits of each character

55 are referred to as zone fields and in general contain infonnation identifying particular ASCII characters. For
example, zone field bits may specify whether a particular ASCII character is a number, a letter, or
punctuation. Packed decimal operands are comprised of a series of four bit fields wherein each field
contains a binary number specifying a decimal value of between zero and nine. OPB 2022 converts
unpacked decimal to packed decimal operands by extracting zone field bits and packing the four numeric

60 value bits of each character into the four bit fields of a packed decimal number.
EU 122 is also capable of transforming the results of arithmetic operands, for example in packed

decimal format, into unpacked decimal format for transfer back to MEM 112 or FU 120. in this case. a
packed decimal result appearing at output of MALU 2074 is written into MRF 2050 through a multiplexer,
not shown in Fig. 20. which transforms the four bit numeric code fields of the packed decimal results into

95 corresponding bits of unpacked decimal operand characters, and forces blanks into the zone field bits of

24

‘ Petitioner Apple Inc. — Exhibit 1024, p. 4069

Petitioner Apple Inc. - Exhibit 1024, p. 4070

l\

‘ti

10

EP 0 067 556 B1

those unpacked decimal characters. The results of this operation are then read from MFIF 2050 to MALU
2074 and zone field bits for those unpacked decimal characters are read from Constant Store (CST) 2060 to
MALU 2074. These inputs from MRF 2050 and CST 2060 are added by MALU 2074 to generate final result
outputs in unpacked decimal fonhat. These final results may then be transferred onto JPD Bus 142 through
Output Multiplexer (OM) 2024.

Considering first floating point operations, in addition or subtraction of floating point operands it is
necessary to equalize the values of the floating point operand exponent fields. This is referred to as
prealignment. in floating point operations, exponent fields of the two operands are transferred into
EXPALU 2034 and compared to determine the difference between exponent fields. An output representing
difference between exponent fields is provided from EXPALU 2034 to an input of floating point control
(FPC) 2002. FPC 2002 in turn provides control outputs to MALU 2074, which has received the mantissa fields
of the two operands. MALU 2074, operating under direction of FPC 2002, accordingly right or left shifts one
operand's mantissa field to effectively align that operand's exponent field with the other operand's
exponent field. Addition or subtraction of the operand's mantissa fields may then proceed.
‘ EXPALU 2034 also performs addition or subtraction of floating point operand exponent fields in
multiplication or division operations. while MALU 2074 performs multiplication and division ofthe operand
mantissa fields. Multipiication and division of floating point operand mantissa fields by MALU 2074 is
performed by successive shifting of one operand, corresponding generation of partial products of the other
operand, and successive addition and subtraction of those partial products.

Finally, EU 122 performs normalization of the results of floating point operand operations by left
shifting of a final result's mantissa field to eliminate zeros in the most significant characters of the final
result mantissa field, and corresponding shifting of the final result exponent fields. Normalization of
floating point operation results is controlled by FPC 2002. FPC 2002 examines an unnormalized floating
point result output of MALU 2074 to detect which, if any, of the most significant characters of that results
contain zeros. FPC 2002 then accordingly provides control outputs to EXPALU 2034 and MALU 2074 to
correspondingly shift the exponent and mantissa fields of those results so as to eliminate leading character
zeros from the mantissa field. Nonhalized mantissa and exponent fields of floating point results may then
be transferred from MALU 2074 and EXPALU 2034 to JPD Bus 142 through OM 2024.

As described above. EU 122 also performs addition, subtraction, multiplication, and division
operations on operands. In this respect, EU 12 uses a leading zero detector in FPC 2002 in efficiently
performing multiplication and division operations. FPC 2002's leading zero detector examines the
characters or bits of two operands to be multiplied or divided, starting from the highest. to detenhine
which, ifany, contain zeros so as not to require a multiplication or division operation. FPC 2002 accordingly
left shifts the operands to effectively eliminate those characters or bits, thus reducing the number of
operations to multiply or divide the operands and accordingly reducing the time required to operate upon
the operands. - -

Finally, EU 12 utilizes a unique method, with associated hardware, for performing arithmetic
operations on decimal operands by utilizing circuitry which is otherwise conventionally used only to
perform operations upon floating point operands. As described above, MULT 2074 is designed to operate
with packed decimal operands, that is operands in the form of consecutive blocks of four bits wherein each
block of four bits contains a binary code representing numeric values of between zero and nine. Floating
point operands are similarly in the form of consecutive blocks of four bits. Each block of four bits in a
floating point operand, however, contains a binary number representing a hexadecimal value of between
zero and fifteen. As an initial step in operating with packed decimal operands, those operands are loaded.
one at a time, into MALU 2074 and. with each such operand, a number comprised of all hexadecimal sixes
is loaded into MALU 2074 from CST 2060. This CST 2060 number is added to each packed decimal operand

to effectively convert those packed decimal operands into hexadecimal operands wherein the four bit
blocks contain numeric values in the range of six to fifteen, rather than in the original range of zero to nine.
MULT 2014 then perfonns arithmetic operation upon those transformed operands, and in doing so detects
and saves information regarding which four bit characters of those operands have resulted in generation of
carries during the arithmetic operations. in a final step. the intermediate result resulting from completion of
those arithmetic operations upon those transformed operands are reconvened to packed decimal format
by subtraction of hexadecimal sixes from those characters for which carries have been generated.
Effectively. EU 122 converts packed decimal operands into "Excess Six" operands, performs arithmetic
operations upon those "Excess Six" operands, and reconverts "Excess Six" results of those operations
back into packed decimal format.

Finally, as previously descibed FU 120 controls transfer of arithmetic results from EU 122 to MEM 112.
in doing so, FU 120 generates a logical descriptor describing the size of MEM 112 address space, or
"container", that result is to be transferred into. in certain arithmetic operations, for example integer
operations. an arithmetic result may be larger than anticipated and may contain more bits than the MEM
112 "container". Container Size Check Circuit (CSC) 2052 compares actual size of arithmetic results and L
fields of MEM 112 "container" logical descriptors. CSC 2052 generates an output indicating whether an
MEM 112 "container" is smaller than an arithmetic result.

Having briefly described certain features of CS 101 structure and operation in the above overview,
these and other features of CS 101 will be described in further detail next below in a more detailed

25

Petitioner Apple Inc. — Exhibit 1024, p. 4070

Petitioner Apple Inc. - Exhibit 1024, p. 4071

m_

15

EP 0 067 556 B1

introduction of CS 101 structure and operation. Then, in further descriptions, these and other features of CS
101 structure and operation will be described in depth.

1. introduction (Figs. 101-110)
A. General Structure and Operation (Fig 101)

a. General Structure

Referring to Fig. 101, a partial block diagram of Computer System (CS) 10110 is shown. Maior elements
of CS 10110 are Dual Port Memory (MEM) 10112, Job Processor (JP) 10114, lnputI0utput System (IOS)
10116, and Diagnostic Processor (DP) 10118. JP 10114 includes Fetch Unit (FU) 10120 and Execute Unit (EU)
1012.

Referring first to I08 10116, lOS 10116 is interconnected with External Devices (ED) 10124 through
lnputloutput (IIO) Bus 10126. ED 10124 may include, for example, other computer systems, keyboard]
display units, and disc drive memories. lOS 10116 is interconnected with Memory Input/Output (M10) Port
10128 of MEM 10112 through input/Output to Memory (lOM) Bus 10130 and Memory to input/Output (MlO)
Bus 10129, and with FU 10120 through [/0 Job Processor (IOJP) Bus 10132.

DP 10118 is interconnected with, for example. external keyboardICFlT Display Unit (DU) 10134 through
Diagnostic Processor input/Output (DPIO) Bus 10136. DP 10118 is interconnected with IOS 10116, MEM
10112, FU 10120, and EU 10122 through Diagnostic Processor (DP) Bus 10138.

Memory to Job Processor (MJP) Port 10140 of Memory 10112 is interconnected with FU 10120 and EU
10122 through Job Processor Data (JPD) Bus 10142. An output of MJP 10140 is connected to inputs of FU
10120 and EU 10122through Memory Output Data (MOD) Bus 10144. An output of FU 10120 is connected to
an input of MJP 10140 through Physil Descriptor (PD) Bus 10146. FU 10120 and EU 10122 are

interconnected through Fetch/EJ_<ecute (FIE) Bus 10148. ‘

b. General Operation
As will be discussed further below, IOS 10116 and MEM 10112 operate independently under general

control of JP 10114 in executing multiple user's programs. In this regard, MEM 10112 is an intelligent.
prioritizing memory having separate and independent ports MIO 10128 and MJP 10140 to lOS 10116 and JP
10114 respectively. MEM 10112 is the primary path for information transfer between External Devices
10124 (through IOS 10118) and JP 10114. MEM 10112 thus operates both as a buffer for receiving and
storing various individual user's programs (e.g., data. instructions, and results of program execution) and
as a main memory for JP 10114.

A primary function of lOS 10116 is as an inputloutput buffer between CS10110 and ED 10124. Data and
instructions are transferred from ED 10124 to IOS 10116 through lI0 Bus 10126 in a manner and format
compatible with ED 10124. IOS 10116 receives and stores this information, and manipulates the
information into formats suitable fortransfer into MEM 10112. IOS 10116_then indicates to MEM 10112 that
new information is available for transfer into MEM 10112. Upon acknowledgement by MEM 10112, this
infonnation is transferred into MEM 10112 through lOM Bus 10130 and Ml0 Port 10128. MEM 10112 stores
the lnfonnation in selected portions of MEM 10112 physical address space. Atthis time, IOS 10116 notifies
JP 10114 that new information is present in MEM 10112 by providing a "semaphore" signal to FU 10120
through IOJP Bus 10132. As will be described further below, CS 10110 manipulates the data and
instructions stored in MEM 10112 into certain information structures used in executing user's programs.
Among these structures are certain structures, discussed further below, which are used by CS 10110 in
organizing and controlling flow and execution of user programs.

FU 10120 and EU 10122 are independently operating microcode controlled "machines" together
comprising the CS 10110 micromachine for executing user's programs stored in MEM 10112. Among the
principal functions of FU 10120 are: (1) fetching and interpreting instructions and data from MEM 10112 for
use by FU 10120 and EU 10122; (2) organizing and controlling flow of user programs; (3) initiating EU 10122
operations; (4) performing arithmetic and logic operations on data; (5) controlling transfer of data from FU
10120 and EU 10122 to MEM 10112; and, (6) maintaining certain "stack" and "register" mechanisms,
described below. FU 10120 "cache" mechanisms, also described below, are provided to enhance the speed
of operation of JP 10114. These che mechanisms are acceleration circuitry including, in part, high speed
memories for storing copies of selected information stored in MEM 10112. The information stored in this
acceleration circuitry is therefore more rapidly available to JP 10114. EU 101fl is an arithmetic unit capable
of executing integer, decimal, or floating point arithmetic operations. The primary function of EU 10122 is
to relieve FU 10120 from certain extensive arithmetic operations, thus enhancing the efficiency of CS 10110.

In general, operations in JP 10114 are executed on a memory to memory basis; data is read from MEM
10112, operated upon, and the results returned to MEM 10112. in this regard, certain stack and cache
mechanisms in JP 10114 (described below) operate as extensions of MEM 10112 address space.

in operation, FU 10120 reads data and instructions from MEM 10112 by providing physical addresses
to MEM 10112 by way of PA Bus 10146 and MJP Port 10140. The instructions and data are transferred to FU
10120 and EU 10122 by way of MJP Port 10140 and MOD Bus 10144. Instructions are interpreted by FU
10120 microcode circuitry, not shown in Fig. 101 but described below, and when necessary, microcode
instructions are provided to EU 10122 from FU 10120’s microcode control by way of F/E Bus 10148, or by
way of JPD Bus 10142.

26

Petitioner Apple Inc. — Exhibit 1024, p. 4071

Petitioner Apple Inc. - Exhibit 1024, p. 4072

\W

\"

..i

20

45

50

EP 0 067 556 B1

As stated above, FU 10120 and EU 10122 operate asynchronously with respect to each other’s
functions. A microinstruction from FU 10120 microcode circuitry to EU 10122 may initiate a selected
operation of EU 10122. EU 1012 may then proceed to independently execute the selected operation. FU
10120 may proceed to concurrently execute other operations while EU 10122 is completing the selected
arithmetic operation. At completion of the selected arithmetic operation, EU 10122 signals FU 10120 that
the operation results are available by way of a "handshake" signal through F/E Bus 10148. FU 10120 may

‘then receive the arithmetic operation results for further processing or, as discussed momentarily, may
directly transfer the arithmetic operation results to MEM 10112. As described further below, an instruction
buffer referred to as a “queue" between FU 10120 and EU 1012 allows FU 10120 to assign a sequence of
arithmetic operations to be perfonned by EU 10122.

lnfonnation, such as results of executing an instruction, is written into MEM 10112 from FU 10120 or
EU 10122 by way of JPD Bus 10142. FU 10120 provides a “physical write address" signal to MEM-10112 by
way of PA Bus 10146 and MJP Port 10140. Concurrently, the information to be written into MEM 10112 is
placed on JPD Bus 10142 and is subsequently written into MEM 10112 at the locations selected by the
physical write address.

FU10120 places a semaphore signal on IOJP Bus 10132 to signal to lOS 101 16 that infonnation, such as
the results of executing a user's program, is available to be read out of CS 10110. lOS 10116 may then
transfer the information from MEM 10112 to lOS 10116 by way of M10 Port 10128 and IOM Bus 10130.
Information stored in lOS 10116 is then transferred to ED 10124 through V0 Bus 10126.

During execution of a user's program, certain information required by JP 10116 may not be available in
MEM 10112. In such cases as further described in a following discussion, JP 10114 may write a requestfor
information into MEM 10112 and notify lOS 10116, by way of IOJP Bus 10132, that such a request has been
made. lOS 10116 will then read the request and transfer the desired information from ED 10124 into MEM
10112 through lOS 10116 in the manner described above. in such operations, lOS 10116 and JP 10114
operate together as a memory manager wherein the memory space addressable by JP 10114 is tenned
virtual memory space, and includes both MEM 10112 memory space and all external devices to which IOS
10116 has access.

As previously described, DP 10118 provides a second interface between Computer System 10110 and
the external world by way of DPiO Bus 10136. DP 10118 allows DU 10134, for example a CRT and keyboard
unit or a teletype. to perform all functions which are conventionally provided by a hard (i.e., switches and
lights) console. For example, DP 10118 allows DU 10134 to exercise control of Computer System 10110 for
such purposes as system initialization and start up, execution of diagnostic processes, and fault monitoring
and identification. DP 10118 has read and write access to most memory and register portions within each of
lOS 10116. MEM 10112. FU 10120, and EU 10122 by way of DP Bus 10138. Memories and registers in CS
10110 can therefore be directly loaded or inifialized during system start up, and can be directly read or
loaded with test and diagnostic signals for fault monitoring and identification. In addition, as described
further below. microinstructions may be loaded into JP 10114's microcode circuitry at system start up or as
required. 1

Having described the general structure and operation of Computer System 10110, certain features of
Computer System 10110 will next be briefly described to aid in understanding the following. more detailed
descriptions of these and other features of Computer System 10110.

c. Definition of Certain Terms

Certain terms are used relating to the structure and operation of CS 10110 throughout the following
discussions. Certain of these terms will be discussed and defined first. to aid in understanding the following
descriptions. Other terms will be introduced in the following descriptions as required.

A procedure is a sequence of operational steps, or instructions. to be executed to perfonn some
operation. A procedure may include data to be operated upon in performing the operation.

Aprogram is a static group of one or more procedures. in general, programs may be classified as user
programs, utility programs, and operating system programs. A user program is a group of procedures
generated by and private to one particular user of a group of users interfacing with CS 10110. Utility
programs are commonly available to all users; for example, a compiler comprises of a set of procedures for
compiling a user language program into an S-language program. Operating system programs are groups
of procedures internal to CS 10110 for allocation and control of CS 10110 resources. Operating system
programs also define interfaces within CS 10110. For example, as will be discussed further below all .
operands in a program are referred to by "NAME”. An operating system program translates operand
NAME into the physical locations of the operands in MEM 10112. The NAME translation program thus
defines the interface between operand NAME (name space addresses) and MEM 1011 2 physical addresses.

A process is an independent locus of control passing through physical. logical or virtual address
spaces, or, more particularly, a path of execution through a series of programs (i.e., procedures). A process
will generally include a user program and data plus one or more utility programs (e.g., a compiler) and
operating system programs necessary to execute the user program.

An object is a uniquely identifiable portion of “data space" accessible to CS 10110. An object may be
regarded as a container for infonnation and may contain data or procedure information or both. An object
may contain for example. an entire program, or set of procedures, or a single bit of data. objects need not

27

Petitioner Apple Inc. — Exhibit 1024, p. 4072

Petitioner Apple Inc. - Exhibit 1024, p. 4073

15

50

EP 0 067 555 81

be contiguously located in the data space accessible to CS 10110, and the Information contained in an
object need not be oontiguously located in that object.

A domain is a state of operation of CS 10110 for the purposes of CS 10110's protection mechanisms.
Each domain is defined by a set of procedures having access to objects within that domain for their
execution. Each object has a single domain of execution in which it is executed if it is a procedure object, or
used, if it is a data object. CS 10110 is said to be operating in a particular domain if it is executing a
procedure having that domain of execution. Each object may belong to one or more domains: an obiect
belongs to a domain if a procedure executing in that domain has potential access to the object. CS 10110
may. for example have four domains: User domain, Data Base Management System (DBMS) domain.
Extended Operating System (EOS) domain, and Kernel Operating System (K03) domain. User domain is
the domain of execution of all user provided procedures, such as user or utility procedures. DBMS domain
is the domain of execution for operating system procedures for storing, retrieving, and handling data. EOS
domain is the domain of execution of operating system procedures defining and forming the user level
interface with CS 10110, such as procedures for controlling an executing files, processes, and V0
operations. KOS domain is the domain of execution of the low level, secure operating system which
manages and controls CS 10110's physical resources. Other embodiments of CS 10110 may have fewer or
more domains than those just described. For example, DBMS procedures may be incorporated into the
EOS domain or EOS domain may be divided by incorporating the V0 procedures into an lIO domain. There
is no hardware enforced limitation on the number of, of boundaries between, domains in CS 10110. Certain
CS 10110 hardware functions and structures are, however. dependent upon domains.

A subject is defined, for purposes of CS 10110's protection mechanisms, as a combination of the
current principle (userl. the current process being executed, and the domain the process is currently being
executed in. in addition to principle, process, and domain, which are identified by UlDs. subject may
include a Tag, which is a user assigned identification code used where added security is required. For a
given process, principle and process are constant but the domain is determined by the procedure currently
being executed. A process‘s associated subject is therefore variable along the path of execution of the
process.

Having discussed and defined the above terms. certain features of CS 10110 will next be brieflydescribed.

d. Multi-Program Operation
CS 10110 is capable of concurrently executing two or more programs and selecting the sequence of

execution of programs to make most effective use of CS 10110's resources. This is referred to as
multiprogramming. in this regard, CS 10110 may temporarily suspend execution of one program, for
example when a resource or certain information required for that program is not immediately available,
and proceed to execute another program until the required resource or information becomes available. For
example, particular information required by a first program may not be available in MEM 10112 when
called for. JP 10114 may, as discussed further below, suspend execution of the first program, transfer a
request for that information to lOS 10116, and proceed to call and execute a second program. IOS 10116
would fetch the requested information from ED 10124 and transfer it into MEM 10112. At some time after
lOS-10116 notifies JP 10114 that the requested information is available in MEM 10112, JP 10114 could
suspend execution of the second program and resume execution of the first program.

8. Multi-Language Operation
As previously described, CS 10110 is a multiple language machine. Each program written in a high

level user language, such as COBOL or FORTRAN, is compiled into a corresponding Soft (8) Language
program. That is, in terms of a conventional computer system, each user level language has a
corresponding machine language, classically defined as an assembly language. In contrast to classical
assembly languages, S-Languages are mid-level languages wherein each command in a user's high level
language is replaced by, in general, two or three S-Language instructions, referred to as SlNs. Certain SlNs
may be shared by two or more high level user languages. CS 10110. as further described in following
discussions. provides a set, or dialect. of microcode instructions (S-interpreters) for each S-Language. S-
lnterpreters interpret SlNs and provide corresponding sequences of microinstructions for detailed control
of CS 10110. CS 10110's instruction set and operation may therefore be tailored to each user's program,
regardless of the particular user language. so as to most efficiently execute the user's program. Computer
System 10110 may, for example, execute programs in both FORTRAN and COBOL with comparable
efficiency. in addition. a user may write a program in more than one high level user language without loss
of efficiency. For example, a user may write a portion of his program in COBOL. but may wish to write
certain portions in FORTRAN. In such cases, the COBOL portions would be compiled into COBOL SlNs and
executed with the COBOL dialect S-Interpreter. The FORTRAN portions would be compiled into FORTRAN
SlNs and executed with a FORTRAN dialect S-interpreter. The present embodiment of CS 10110 utilizes a
uniform format for all SlNs. This feature allows simpler S-Interpreter structures and increases efficiency of

‘SIN interpretation because it is not necessary to provide means for interpreting each dialect individually.

Petitioner Apple Inc. — Exhibit 1024, p. 4073

Petitioner Apple Inc. - Exhibit 1024, p. 4074

(V

A

an

my

45

50

55

EP 0 067 556 B1

f. Addressing Structure
Each object created for use in, or by operation of, a CS 10110 is permanently assigned a Unique

identifier (UID). An object's UID allows that object to be uniquely identified and located at any time,
regardless of which particular CS 10110 it was created by or for or where it is subsequently located. Thus
each time a new object is defined, a new and unique UID is allocated, much as social security numbers are
allocated to individuals. A particular piece of information contained in an object may be located by a logical
address comprising the object's UlD, an offset from the start of the object of the first bit of the segment, and
the length (number of bits) of the information segment. Data within an object may therefore be addressed
on a bit granular basis. As will be described further in following discussions, UlD's are used within a (38
10110 as logical addresses, and,for example, as pointers. Logically, all addresses and pointers in CS 10110
are UlD addresses and pointers. As previously described and as described below, however, short,
temporary unique identifiers, valid only within JP 10114 and referred to as Active Object Numbers are used
within JP 10114 to reduce the width of address buses and amount of address information handled.

An object becomes active in CS 10110 when it is transferred from backing store CED 10124 to MEM
10112 for use in executing a process. At this time. each such object is assigned an Active Object Number
(AON). AONs are short unique identifiers and are related to the object's UlDs through certain CS 10110
information structures described below. AONs are used only within JP 10114 and are used in JP 10114, in
place of UlDs, to reduce the required width of JP 10114's address buses and the amount of address data
handled in JP 10114. As with UID logical addresses, a piece of data in an object may be addressed through
a bit granular AON logical address comprising the object's AON, an offset from the start of the object of the
first bit of the piece, and the length of the piece. _

The transfer of logical addresses, for example pointers, between MEM 10112 (UIDA) and JP 10114
(AONs) during execution of a process requires translations between UlDs and AONs. As will be described
in a later discussion, this translation is accomplished, in part, through the information structures
mentioned above. Similarly, translation of logiml addresses to physical addresses in MEM 10112, to
physically access information stored in MEM 10112, is accomplished through CS 10110 information
structures relating AON logical addresses to MEM 10112 physical addresses.

Each operand appearing in a program is assigned a Name when the program is compiled. Thereafter,
all references to the operands are through their assigned Names. As will be described in detail in a later
discussion, CS 10110’s addressing structure includes a mechanism for recognizing Names as they appear
in an Instruction stream and Name Tables containing directions for resolving Names to AON logical
addresses. AON logical addresses may then be evaluated, for example translated into a MEM 10112
physical address, to provide actual operands. The use of Names to identify operands in the instructions
stream (process) (1) allows a complicated address to be replaced by a simple reference of uniform format;
(2) does not require that an operation be directly defined by data type in the instruction stream; (3) allows
repeated references to an operand to be made in an instruction stream by merely repeating the operand's
Name; and, (4) allows partially completed Name to address translations to be stored in a cache to speed up
operand references. The use of Names thereby substantially reduces the volume of information required in
the instruction stream for operand references and increases CS 10110 speed and efficiency by performing
operands references through a parallel operating, underlying mechanism.

Finally, CS 10110 address structure incorporates a set of Architectural Base Pointers (ABPS) for each
proces. ABPs provide an addressing framework to locate data and procedure information belonging to a
process and are used, for example, in resolving Names to AON logical addresses.

9. Protection Mechanism
CS 10110’s protection mechanism is constructed to prevent a user from (1) gaining access to or

disrupting another user's process, including data, and (2) interfering with or otherwise subverting the
operation of CS 10110. Access rights to each particular active object are dynamically granted as a function
of the currently active subject. A subject is defined by a combination of the current principle (user), the
current process being executed, and the domain in which the process is currently being executed. in
addition to principle, process, and domain, subject may include a Tag, which is a user assigned
identification code used where added security is required. For a given process, the principle and process
are constant but the domain is determined by the procedure currently being executed. A process’s
associated subject is therefore variable along the path of execution of the process.

in a present embodiment of CS 10110, procedures having K05 domain of execution have access to
objects in KOS, EOS, DBMS, and User domains; procedures having EOS domain of execution have access
to objects in EOS, DBMS, and User domains; procedures having DBMS domain of execution have access to
objects in DBMS and User domains; and procedures having User domain of execution have access only to
objects in User domain. A user cannot, therefore, obtain access to objects in KOS domain of execution and
cannot influence CS 10110‘s low level, secure operating system. The user's process may, however. call for
execution a procedure having KOS domain of execution. At this point the process's subject is in the K05
domain and the procedure will have access to certain objects in KOS domain.

In a present embodiment of CS 10110, also described in a later discussion, each object has associated
with it an Access Control List (ACL). An ACL contains an Access Control Entry (ACE) for each subject having
access to that object. ACEs specify, for each subject. access rights a subject has with regard to that object.

29

Petitioner Apple Inc. — Exhibit 1024, p. 4074

Petitioner Apple Inc. - Exhibit 1024, p. 4075

15

20

25

EP 0 067 556 B1

There is normally no relationship, other than that defined by an object's ACL. between subjects and
objects. CS 10110, however, supports Extended Type Objects having Extended ACLs wherein a user may
specifically define which subjects have what access rights to the object. '

In another embodiment of CS 10110, described in a following discussion, access rights are granted on
a dynamic basis. In executing a process, a procedure may calla second procedure and pass an argument to
the called procedure. The calling procedure will also pass selected ewess rights to that argument to the
called procedure. The passed access rights exist only for the duration of the call.

In the dynamic access embodiment, access rights are granted only at the time they are required. In the

ACL embodimegt, access rights are granted upon object creation or upon specific request. In either
embodiment, each procedure to which arguments may be passed in a_cross-domain call has associated
with it an Access Information Array (MA). A procedure’s AIA states what access rights a calling procedure
(subject) must have before the called procedure can operate on the passed argument. CS 10110's
protection mechanisms compare the calling procedure’s access rights to the rights required by the lled
procedure. This ensures that a calling procedure may not ask a called procedure to do what the calling
procedure is not allowed to do. Effectively. a calling procedure can pass to a called procedure only the
access rights held by the calling procedure. . '

Having described the general structure and operation and certain features of CS 101 10, those and other
features of CS 10110 operation will next be described in greater detail.

8. Computer System 10110 Information Structures and Mechanisms (Fi9S- 102. 103. 104. 105)
CS 10110 contains certain information structures and mechanisms to assist in efficient execution of

processes. These structures and mechanisms may be considered as falling into three general types. The
first type concerns the processes themselves, i.e., procedure and data objects comprising a user's process
or directly related to execution of a user's process. The second type are for management, control. and
execution of processes. These structures are generally shared by all processes active in CS 10110. The third
type are CS 10110 micromachine information structures and mechanisms. These structures are concerned
with the etemal operation of the CS 10110 micromachine and are private to the (:5 10110 micro-machine.

a. Introduction (Fig. 102)
Referring to Fig. 102, a pictorial representation of CS 10110 (MEM 10112, FU 10120, and EU 10122) is

shown with certain information structures and mechanisms depicted therein. It should be understood that
these information structures and mechanisms transcend or "cut across" the boundaries between MEM

10112, FU 10120, EU 10122. and IOS 10116. Referring to the upper portion of Fig. 103 Process Structures
10210 contains those information structures and mechanisms most closely concerned with individual
processes, the first and third types of information structures described above. Process Structures 10210
reside in MEM 10112 and‘ Virtual Processes 10212 include Virtual Processes (VP) 1 through N. Virtual
Processes 10212 may contain, in a present embodiment of CS 10110, up to 256 VP's. As previously
described. each VP 50°"-ides Pena") °bi9°tS Particular to a single usefs process, for example stack objects
previously described and further described in a following description. Each VP also includes a Process
Object containing certain information required to execute the process, for example pointers to other
process information.

Virtual Processor State Blocks (VPSBs) 10218 include VPSBs containing certain tables and mechanisms
for managing execution of VPs selected for execution by CS 10110.

A particular VP is bound into CS 10110 when a Virtual Process Dispatcher, described in a following
discussion selects that VP as eligible for execution. The selected VPs Process Object, as previously
described, is swapped into a VPSB. VPSBs 10218 may contain, for example 16 or 32 State Blocks so that (25
10110 may concurrently execute to 16 or 32 VPs. When a VP assigned to e VPSB is to be executed, the VP
is swapped onto the Infonnatlon structures and mechanisms shown in FU 10120 and EU 10122. FU Register
and Stack Mechanism (FURSM) 10214 and EU Register and Stack Mechanism (EURSM) 10216, shown
respectively in FU 10120 and EU 10122, comprise register and stack mechanisms used in execution of VPs
bound to CS 10110. These register and stack mechanisms, as will be discussed below, are also used for
certain CS 10110 process management functions. Procedure Objects (P05) 10213 contains Procedure
Objects (P0s) 110 N ofthe processes executing in CS 10110.

Addressing Mechanisms (AM) 10220 are a part of CS 10110's process management system and are
generally associated with Computer System 10110 addressing functions as described in following
discussions. UIDIAON Tables 1022 is a stnicture for relating UlD's and AON's. previously discussed.
Memory Management Tables 10224 includes structures for (1) relating AON logical addresses and MEM
10112 physical addresses; (2) managing MEM 1D112's physical address space; (3) managing transfer of
information between MEM 10112 and CS 10110’s backing store (ED10124) and, (4) activating objects into
CS 10110; Name Cache (NC) 10226 and Address Translation Cache (ATC) 10228 are acceleration
mechanisms for storing addressing information relating to the VP currently bound to CS 10110. NC 1026,
described further below, contains information relating operand Names to AON addresses. ATC 10228, also
discussed further below, contains information relating AON addresses to MEM 10112 physical addresses.

Protection Mechanisms 10230, depicted below AM 10220, include protection Tables 10232 and
Protection Cache (PC) 10234. Protection Tables 10232 contain information regarding access rights to each

30

Petitioner Apple Inc. — Exhibit 1024, p. 4075

Petitioner Apple Inc. - Exhibit 1024, p. 4076

u

I!)

25

30

35

45

55

EP‘ 0 067 555 B1

object active in CS 10110. PC 10234 contains protection information relating to certain objects of the VP
currently bound to CS 10110.

Microinstruction Mechanisms 10236, depicted below PM 10230, includes Micro-code (M Code) Store
10238, FU (Micro-code) M Code Structure 10240, and EU Micro-code (M Code) Structure 10242. These
structures contain microinstruction mechanisms and tables for interpreting SlNs and controlling the
detailed operation of CS 10110. Micro-instruction Mechanisms 10232 also provide microcode tables and
mechanisms used, in part, in operation of the low level, secure operating system that manages and
controls CS 10110's physical resources. .

Having thus briefly described certain CS 10110 information structures and mechanisms with the aid of
Hg. 102, those infonnation structures and mechanisms will next be described in further detail in the order
mentioned above. in these-descriptions it should be noted that, in representation of MEM 10112 shown in
Fig. 102 and in other figures of following discussions, the addressable memory space of MEM 10112 is
depicted. Certain portions of MEM 10112 address space have been designated as containing certain
information structures and mechanisms. These structures and mechanisms have real physical existence in
MEM 10112, but may vary in both location and volume of MEM 10112 address space they occupy.
Assigning position of a single, large memory to contain these structures and mechanisms allows these
structures and mechanisms to be reconfigured as required for most efficient operation of CS 10110. in an
alternate embodiment, physically separate memories may be used to contain the structures and
mechanisms depicted in MEM 10112, rather than assigned portions of a single memory.

b. Process Structure 10210 (figs. 103, 104, 105)
Referring to Fig. 103, a partial schematic representation of Process Structures 10210 is shown.

Specifically, Fig. 103 shows a Process (F) 10310 selected for execution, and its associated Procedure
Objects (PCs) in Process Objects (P05) 10213. F 10310 is represented in Fig. 103 as including four procedure
objects in Pos 10213. It is to be understood that this representation is for clarity of presentation; a particular
F 10310 may include any number of procedure objects. Also for clarity of presentation, EURSM 10216 is not
shown as EURSM 10216 is similar to FURSM 10214. EURSM 10216 will be described in detail in the
following detailed discussons of CS 10110's structure and operation.

As previously discussed, each process includes certain data and procedure object. As represented in
Fig. 103 for P. 10310 the procedure objects reside in P05 10213. The data objects include Static Data Areas
and stack mechanisms in F 10310. P05. for example KOS Procedure Object (KOSPO) 10318, contain the
various procedures of the process, each procedure being a sequence of SlNs defining an operation to be
performed in executing the process. As will be described below, Procedure Objects also contain cartain-
information used in executing the procedures contained therein. Static Data Areas (SDAs) are data objects
generally reserved for storing data having an existence for the duration of the process. P 10310's stack
mechanisms allow stacking of procedures for procedure calls and returns and for swapping processes in
and out of JP 10114. Macro-Stacks (MAS) 10328 to 10334 are generally used to store automatic data (data
generated during execution of a procedure and having an exisnance for the duration of that procedure).
Although shown as separate from the staclss in P 10310, the SDAs may be contained with MASs 10328 to
10334. Secure Stack (SS) 10336 stores, in general, CS 10110 micro-machine state for each procedure called.
information stored in SS 10336 allows machine state to be recovered upon return from a called procedure,
or when binding (swapping) a VP into CS 10110.

As shown in F 10310, each process is structured on a domain basis. A F 10310 may therefore include,
for each domain, one or more procedure objects containing procedures having that domain as their
domain of execution, an SDA and an MAS. For example, KOS domain of P 10310 includes KOSPO 10318,
KOSSDA 10326, and KOSMAS 10334. P 10310's $8 10336 does not reside in any single domain of F 10310,
but inaead is a stack mechanism belonging to CS 10110 mlcromachine. _

Having described the overall structure of a P 10310, the individual information structures and
mechanisms ofa P 10310 will next be described in greater detail.

1. Procedure Objects (Fig. 103)

KOSPO 10318 is typical of CS10110 procedure objects and will be referred to for illustration in the
following discussion. Major components of KOSPO 1(B18 are Header 1038, External Entry Descripter
(EED) Area 10340, Internal Entry Descripter (IED) Area 10342, S-Op Code Area 10344, Procedure
Environment Descripter (PED) 10348, Name Table (NT) 10350, and Access information Array (AIA) Area10352.

Header 10338 contains certain infonnation identifying PO 10318 and indicating the number of ennies in
EED area 10340, discussed momentarily.

EED area 10340 and IED area 10342 together contain_ an Entry Descripter (ED) for each procedure in
KOSPO 10318. KOSPO 10318 is represented as containing Procedures 1, 2, and 11, of which Procedure 11
will be used as an example in the present discussion. EDs effectively comprise an index through certain all
information in KOSPO 10318 can be located. lEDs form an index to all KOSPO 10318 procedures which may
be called only from other procedures contained in KOSPO 10318. EEDs form an index to all KOSPO 10318
procedures which may be called by procedures external to KOSPO 10318. Externally callable procedures
are distinguished aid, as described in a following discussion of CS 10110's protection mechanisms, in

31

Petitioner Apple Inc. — Exhibit 1024, p. 4076

Petitioner Apple Inc. - Exhibit 1024, p. 4077

10

15

20

25

55

EP 0 067 556 B1

confimting external calling procedure's access rights.
Referring to E0 11, ED for procedure 11, three fields are shown therein. Procedure Environment

Descripter Offset (PEDO) field indicates the start. relative to start of KOSPO 10318, of Procedure 11's PED in
PED Area 10348. As will be discussed further below, a procedure's PED contains a set of pointers for
locating information used in the execution of that procedure. PED Area 10348 contains a PED for each
procedure contained in 10318. In the present embodiment of CS 10110, a single PED may be shared by two
or more procedures. Code Entry Point (CEP) field indicates the start. relative to Procedure Base Pointer
(PBP) which will be discussed below, of Procedure 1 1's SlN Code and SIN Code Area 10344. Finally, ED 11's
lnitial Frame Size (lFS) field indicates the required Initial Frame Size of the KOSMAS 10334 frame storing
Procedure 11's automatic data.

PED 11, Procedure 11's PED in PED Area 10348, contains a set of pointers for locating information used
in execution of Procedure 11. The first entry in PED 11 is a header containing information identifying PED
11. PED 11's Procedure Base Pointer lPBP) entry is a pointer providing a fixed reference from which other
information in PO 10318 may be located. in a specific example, Procedure 11's CEP indicates the location,
relative to PBP, of the start of Procedure 11's S-Op code in S-Op Code Area 10344. As will be described
further below, PBP is a CS 10110 Architectural Base Pointer (ABP). CS 10110's ABP's are a set of
architectural pointers used in CS 10110 to facilitate addressing of CS 10110's address space. PED 11's Static
Data Pointer (SDP) entry points to data, in PO 10318. specifying certain parameters of P 10310’s KOSSDA
10326. Name Table Pointer (NTP) entry is a pointer indicating the location, in NT 10350. of Name Table
Entry's (NTE's) for Procedure 11's operands. NT 10350 and NTE's will be described in greater detail in the
following discussion of Computer System 10110's Addressing Structure. PED 11's S-Interpreter Pointer
(SlP) entry is a pointer, discussed in greater detail in a following discussion of CS 10110's microcode
structure, pointing to the particular S-lnterpcter (SlNT) to be used in interpreting Procedure 11 's SIN Code.

Referring finally to AIA 10352. AIA 10352 contains, as previously discussed, information pertaining to
access rights required of any external procedure calling a 10318 procedure. There is an AIA 10352 entry for
each PO 10318 procedure which may be called by an exnemal procedure. A particular AIA entry may be
shared by one or more procedure: having an ED in EED Area 10340. Each EED contains certain information,‘
not shown for clarity of presentation, indicating that that procedure's corresponding AIA entry must be
referred to, and the calling procedure's access rights confirmed, whenever that procedure is called.

2. Stack Mechanism (Figs. 104, 105)
As previously described, P10310's stack mechanisms include SS 10336. used in part for storing

machine state, and MAS's 10328 no 10334, used to store local data generated during execution of P 10310's
procedures. F 10310 is represented as containing an MAS for each CS 10110 domain. in an alternate
embodiment of CS 10110, a particular P 10310 will include MAS’: only for those domains in which that F
10310 is executing a procedure. - -

Referring to MAS's 10328 to 10334 and $5 10336, P 10310 is represented as having had eleven
procedure calls. Procedure 0 has called Procedure 1, Procedure 1 has called Procedure 2, and so on. Each
time a procedure is called, a comesponding stack frame is constructed on the MAS of the domain in which
the called procedure is executed. For example, Procedures 1, 2, and 11 execute in KOS domain; MAS
frames for Procedures 1, 2, and 11 therefore are placed on KOSMAS 10334. Similarly, Procedures 3 and 9
execute in EOS domain. so that their stack frames are placed on EOSMAS 10332. Procedures 5 and 6
execute in DBMS domain, so that their stack frames are placed on DBMSMAS 10330. Procedures 4. 7, 8,
and 10 execute in User domain with their stack frames being placed on‘USERMAS 10328. Procedure 11 is
the most recently called procedure and procedure 11's stack frame on KOSMAS 10334 is referred to as the
current frame. Procedure 11 is the procedure which is currently being executed when VP 10310 is bound to
CS 10110.

55 10336, which is a stack mechanism of CS 10110 micromachine, contains a frame for each of
Procedures 1 to 11. Each 55 10336 frame contains, in part, CS 10110 operating state for its corresponding
procedure. ' .

Referring to Fig. 104, a schematic representation of a typical MAS, for example KOSMAS 10334, is
shown. KOSMAS 10334 includes Stack Header 10410 and a Frame 10412 for each procedure on KOSMAS
10334. Each Frame 10412 includes a Frame Header 10414, and may contain a Linkage Pointer Block 10416, a
Local Pointer Block 10418, and a Lol (Automatic) Data Block 10420.- -

KOSMAS 10334 Stack Header 10410 contains at least the following information:
(1) an offset, relative to Stack Header 10410, indicating the location of Frame Header 10414 of the first

frame on KOSMAS 10334; ~-

(2) a Stack Top Offset (STO) indicating location, relative to start of KOSMAS 10334, of the top of
KOSMAS 10334; top of KOSMAS 10334 is indicated by pointer STO pointing to the top of the last entry of
Procedure 11 Frame 10412's Local Data Block 10420;

(3) an offset, relative to start of KOSMAS 1034, indicating location of Frame Header 10414 of the
current top frame of KOSMAS 10334; in Fig. 104 this offset is represented by Frame Pointer (FP), an ABP
discussed further below;

(4) the VP 10310's UID; .
(5) a UID Pointer indicating location of certain domain environment information, described further in a

32

Petitioner Apple Inc. — Exhibit 1024, p. 4077

Petitioner Apple Inc. - Exhibit 1024, p. 4078

\.\

.11

10

I5

20

35

60

EP 0 067 555 31

following discussion:
(6) a signaller pointer indicating the location of certain routines for handling certain CS 10110 operating

system faults;
(7) e UID pointer indicating location of KOSSDA 10326; and
(8) a frame label sequencer containing pointers to headers of frames in other domains; these pointers

are used in executing non-local go~to operations.
KOSMAS 10334 Stack Header 10410 thereby contains information for locating certain important points

in KOSMAS 10334‘s structure, and for locating certain infonnation pertinent to executing procedures in
KOS domain.

Each Frame Header 10414 contains at least the following information:
(1) offsets, relative to the Frame Header 10414. indicating the locations of Frame Headers 10414 of the

previous and next frames of KOSMAS 10334: .
(2) an offset, relative to the Frame Header 10414, indicating the location of the top of that Frame 10412;
(3) information inditing the number of passed arguments contained in that Frame 10412;
(4) a dynamic back pointer, in UID/Offset format, to the previous Frame 10412 if that previous Frame

10412 resides in another domain;
(5) a UlDlOffset pointer to the environmental descripter of the procedure calling that procedure;
(6) a frame label sequence containing infonnation indicating the locations of other Frame Headers

10414 in KOSMAS 10334; this information is used to locate other frames in KOSMAS 103341orthe purpose
of executing local go-to operations. Frame Headers 10414 thereby contain infonnation for locating certain
important points in KOSMAS 10334 structure, and certain data pertinent to executing the associated
procedures. In addition, Frame Headers 10414, in combination with Stack Header 10410, contain
information for linking the activation records of each VP 10310 MAS, and for linking together the activation
records of the individual MAS's.

Linkage Pointer Blocle 10416 contain pointers to arguments passed from a calling procedure to the
lled procedure. For example, Linkage Pointer Block 10416 of Procedure 11's Frame 10412 will contain
pointers to arguments passed to Procedure 11 from Procedure 10. The use of linkage pointers in CS 10110’s
addressing structure will be discussed further in a following discussion of CS 10110’s Addressing
Structure. Local Data Pointer Blocks 10418 contain pointers to certain of the associated procedure's local
data. Indicated in Fig. 104 is a pointer, Frame Pointer (FP), pointing between top most Frame 10412's
Linkage Pointer Block 10416 and Local Data Pointer Block 10418. FP, described further in following
discussions, is an ABP to MAS Frame 10412 of the process's current procedure.

Each Frame 10412's Local (Automatic) Data Block 10420 contains certain of the associated procedure's
automatic data.

As described above, at each procedure call a MAS frame is constructed on top of the MAS of the
domain in which the called procedure is executed. For example, when Procedure 10 calls Procedure 11 a
Frame Header 10414 for Procedure 11 is constructed and placed on KOSMAS 10334. Procedure 1 1's linkage
pointers are then generated, and placed in Procedure 11's Linkage Pointer Block 10416. Next Procedure 1 1'5
local pointers are generated and placed in Procedure 11's Local Pointer Block 10418. Finally, Procedure 11's
local data is placed in Procedure 11's Local Data Block 10420. During this operation, USERMAS 'l0328's
frame label sequence is updated to include an entry pointing to Pnocedure 11's Frame Header 10414.
KOSMAS 10334's Stack Header 10410 is updated with respect to ST0 to the new top of KOSMAS 10334.
Procedure 2's Frame Header 10414 is updated with respect to offset to Frame Header 10414 of Procedure 11
Frame 10412, and with respect to frame label sequence indicating location of Procedure 11's Frame Header
10414. As Procedure 11 is then the current procedure, FP is updated to a point between Linkage Pointer
Block 10416 and Local Pointer Block 10418 of Procedure 11's Frame 10412. Also, as will be discussed below,
a new frame is constructed on SS 10336 or Procedure 11. CS 10110 will then proceed to execute Procedure
11. During execution of Procedure 11, any further local data generated may be placed on the top of
Procedure 11's Local Data Block 10420. The top of stack offset information in Procedure 11's Frame Header
10414 and in KOSMAS 10334 Stack Header 10410 will be updated accordingly.

MAS's 10328 to 10334 thereby provide a per domain stack mechanism for storing data pertaining to
individual procedures, thus allowing stacking of procedures without loss of this data. Although structured
on a domain basis, MAS's 10328 to 10334 comprise a unified logical stack structure threaded together
through infonnation stored in MAS stack and frame headers.

As described above and previously, 85 10336 is a (28 10110 micromachine stack structure for storing.
in part, CS 10110 micromachine state for each stacked VP 10310 procedure. Referring to Fig. 105. a partial
schematic representation of a $8 10336 Stack Frame 10510 is shown. SS 10336 Stack Header 10512 and
Frame Headers 10514 contain information similar to that in MAS Stack Headers 10410 and Frame Headers

10414. Again, the information contained therein locates certain points within $5 10336 structure. and
threads together SS 10336 with MAS's 10328 to 10334. -

SS 1036 Stack Frame 10510 contains certain infonnation used by the CS 10110 micromachine in
executing the VP 10212 procedure with which this frame is associated. Procedure Pointer Block 10516
contains certain pointers including ABPs, used by CS 10110 micromachine in locating information within
VP 10310’s information structures. Micro-Routine Frames lMRFs) 10518 together comprise Micro-Routine
Stack (MRS) 10520 within each SS 10336 Stack Frame 10510. MRS Stack 10520 is associated with the

3

Petitioner Apple Inc. — Exhibit 1024, p. 4078

Petitioner Apple Inc. - Exhibit 1024, p. 4079

15

20

25

30

85

EIP 0 087 556 B1

internal operation of CS 10110 microroutines executed during execution of the VP 10212 procedure
associated with the Stack Frame 10510. SS 1036 is thus a dual function CS 10110 micromachine stack.
Pointer Block 10516 entries effectively define an interface between CS 10110 micromachine and the current
procedure of the current process. MRS 10520 comprise a stack mechanism for the internal operations of CS
10110 micromachine.

Having briefly described Virtual Processes 10212, FURSM 10214 will be described next. AS stated
above, EURSM 10216 is similar in operation to FURSM 10214 and will be described in following detailed
descriptions of CS 10110 structure and operation.

_3. FURSM 10214 (Fig. 103)
Referring again to H9. 103, FURSM 10214 includes CS 10110 micromachine information structures

used internally to CS 10110 micromachine in executing the procedures of a P 10310. When a VP. for
example P 10310, is to be executed, certain information regarding that VP is transferred from the Virtual '
Processes 10212 to FURSM 10214 for use in executing that procedure. in this respect. FURSM 10214 may be
regarded as an acceleration mechanism for the current Virtual Process 10212.

FURSM 10214 includes General Register File (GRF) 10354, Micro Stack Pointer Register Mechanism
(MISPR) 10356, and Return Control Word Stack (RCWS) 10358. GRF 10354 includes Global Registers (GRs)
10360 and Stack Registers (SR5) 10362. GRs 10360 include Architectural Base Registers (ABRs) 10364 and
Micro—Contro| Registers (MCRs) 10366. Stack Registers 10362 include Micro-Stack (MlS) 10368 and Monitor
Stack (MOS) 10370.

Referring first to GRF10354, and assuming for example that Procedure 11 of P 10310 is currently being
executed, GRF 10354 primarily contains cenain pointers to F 10310 data used in execution of Procedure 11.
As previously disussed, CS 10110's addressing structure includes certain Architectural Base Pointers
(ABP‘s) for each procedure. ABPs provide a framework for excessing CS 10110's address space. The ABPs
of each procedure include a Frame Pointer (FP). a Procedure Base Pointer (PBP), and a Static Data Pointer
(STP). As discussed above with reference to KOSPO 10318, these ABPs reside in the procedure's PEDs.
When a procedure is called, these ABP‘s are transferred from that procedure's PED to ABR's 10364 and
reside therein for the duration of that procedure. As indicated in Fig. 103, FP points between Linkage
Pointer Block 10416 and Local pointer Blocks 10418 of Procedure 11's Frame 10412 on KOSMAS 10334. PBP
points to the reference point from which the elements of KOSPO 10318 are located. SDP points to KOSSDA
10326. if Procedure 11 calls, for example, a Procedure 12, Procedure 11's ABPs will be transferred onto
Procedure Pointer Block 10516 ofSS 10336 Stadt Frame 10510 for Procedure 11. Upon return to Procedure
11, Procedure 11's ABPs will be transferred from Procedure Pointer Block 10516 to ABR's 10364 and
execution of Procedure 11 resumed.

MCRs 10336 contain certain pointers used by CS 10110 micromachine in executing Procedure 11. CS
10110 micromachine pointers indicated in Fig. 103 include Program Counter (PC), Name Table Pointer
(NTP), S-Interpreter Pointer (SIP), Secure Stack Pointer (SSP), and Secure Stack Top Offset (SSTO). NTP and
SIP have been previously described with reference to KOSPO 10318 and reside in KOSPO 10318. NTP and
SH’ are transferred into MCR's 10366 at start of execution of Procedure 11. PC, as indicated in Fig. 103, is a
pointer to the Procedure 11 SIN currently being executed by CS 10110. PC is initially generated from
Procedure 11's PBP and CEP and is thereafter incremented by CS 10110 micromachine as Procedure 11's
SIN sequences are executed. SSP and SST0 are. as described in a following discussion, generated from
information contained in SS 10336's Stack Header 10512 and Frame Headers 10514. As indicated in Fig. 103
SSP points to start of SS 10336 while SSTO indicates the current top frame on SS 10336, whether
Procedure Pointer Block 10516 or a MRF 10518 of MRS 10520, by indicating an offset relative to SSP. If
Procedure 11 calls a subsequent procedure, the contents of MCR's 10366 are transferred into Procedure
11's Procedure Pointer Block 10516 on SS 10336, and are retumed to MCR's 10366 upon return to
Procedure 11.

Registers 10360 contain further pointers. described in following detailed discussions of CS 10110
operation, and certain registers which may be used to contain the current procedure's local data.

Referring now to Stack Registers 10362, MIS 10368 is an upward extension, or acceleration, of MRS
10520 of the current procedure. As previously stated, MRS 10520 is used by CS 10110 micromachine in
executing certain mlcroroutinas during execution of a particular procedure. MIS 10368 enhances the
efficiency of CS 10110 micromachine in executing these microroutines by accelerating certain most recent
MRFS 10518 of that procedure's MRS 10520 into FU 10120. MIS 10368 may contain, for example, up to the
eight most recent MRFs 10518 of the current procedures MRS 10520. As various microroutines are called or
returned from, MRS 10520 MRF's 10518 are transferred accordingly between $5 10336 and MIS 10368 so
that MIS 10368 always contains at least the top MRF10518 of MRS 10520, and at most eight MRFs 10518 of
MRS 10520. MISPR 10356 is a CS 10110 micromachine mechanism for maintaining MIS 10368. MISPR
10356 contains a Current Pointer, a Previous Pointer. and a Bottom Pointer. Current Pointer points to the
topmost MRF 10518 on MIS 10368. Previous Pointer points to the previous MRF 10518 on MIS 10368, and
Bottom Pointer points to the bottom-most MRF10518 on MIS 10368. MISPR 10356's Current, Previous and
Bottom Pointers are updated as MRFs 10518 are transferred between SS 10336 and MIS 10368. If Procedure
11 calls a subsequent procedure, all Procedure 11 MRFs10518 are transferred from MIS 10368 to Procedure
11's MRS 10520 on SS 10336. Upon return to Procedure 11, up to seven of Procedure 11's MRFs 10518

34

Petitioner Apple Inc. — Exhibit 1024, p. 4079

Petitioner Apple Inc. - Exhibit 1024, p. 4080

.20

25

30

65

EP 0 067 556 B1

frames are returned from S3 10336 to MIS 10368.

Referring to MOS 10370, MOS 10370 is a stack mechanism used by CS 10110 micromachine for certain
microroutines for handling fault or enor conditions. These mlcroroutines always run to completion, so that
MOS 10370 resides entirely in FM 10120 and is not an extension of a stack residing in a P 10310 in MEM
10112. MOS 10370 may contain, for example, eight frames. if more than eight successive fault or error
conditions occur, this is regarded as a major failure of CS 10110. Control of CS 10110 may then be
transferred to DP 10118. ‘As will be described in a following discussion, diagnostic programs in DP 10118
may then be used to diagnose and locate the CS 101 10 faults or errors. In other embodiments of CS 10110
MOS 10370 may contain more or fewer stack frames, depending upon the degree of self diagnosis and
correction capability desired for CS 10110. .

RCWS 10358 is a two-part stack mechanism. A first part operates in parallel with MIS 10368 and a
second part operates in parallel with MOS 10370. As previously described, CS 10110 is a microcode
controlled system. RCWS is a stack for storing the current microinstruction being executed by CS 10110
micromachine when the current procedure is interrupted by a fault or error condition, or when a
su bsequent procedure is called. That portion of RCWS 10358 associated with MIS 10368 contains an entry
for each MRF 10518 residing in MIS 10368. These RCWS 10356 entries are transferred between SS 10336
and MIS 10368 in parallel with their associated MRFs 10518. When resident in SS 10336, these RCWS 10358
entries are stored within their associated MRFs 10518. That portion of RCWS 10358 associated with MOS
10370 similarly operates in parallel with MOS 10370 and, like MOS 10370, is not an extension of an MEM
10112 resident stack.

in summary, each process active in CS 10110 exists as a separate, complete, and sa|f—contai_ned entity,
or Virtual Process, and is structurally organized on a domain basis. Each Virtual Process includes, besides
procedure and data objects, a set of MAS’s for storing local data of that processes procedures. Each Virtual
Process also includes a CS 10110 micromachine stack. SS 10336, for storing CS 10110 micromachine state
pertaining to each stacked procedure of the Virtual Process. CS 10110 micromachine includes-a set of
information structures, register 10360, MIS 10368, MOS 10370, and RCWS 10358, used by CS 10110
micromachine in executing the Wrtual Process's procedures. Certain of these CS 10110 micromachine
infomtation structures are shared with the currently executing Wrtual Process, and thus are effectively
acceleration mechanisms for the current Virtual Process, while others are completely lntemal to CS 10110
micromachlne.

A primary feature of CS 10110 is that each process’ macrostacks and secure stack resides in MEM
10112. CS 10110’s macrostack and secure stacks are therefore effectively unlimited in depth.

Yet another feature of CS 10110 micromachine is the use of GRF 10354. GRF 10354 is, in an

embodiment of CS 10110, a unitary register array containing for example, 256 registers. Certain portions, or
address locations, of GRF 10354 are dedicated to, respectively, GRs 10360, MlS 10368. and MOS 10370. The
capacities of GR 10360, MIS 10368, and M05 10370, may therefore be adjusted, as required for optimum CS
10110 efficiency, by reassignment ofGRF10354's address space. In other embodiments of (:8 10110, GRs
10360, MIS 10368, and M03 10370 may be implemented a functionally separate registers arrays.

Having briefly described the structure and operation of Process Structures 10210, VP State Block 10218
will be described next below.

C. Virtual Processor State Blocks and Virtual Process Creation (Fig. 102)
Referring again to Fig. 102. VP State Blocks 10218 is used in management and control of processes. VP

State Blocks 10218 contains a VP State Block for each Wrtual Process (VP) selected for execution by CS
10110. Each such VP State Block contains at least the following information: (1) the state, or identification
number of a VP;

(2) entries identifying the particular principle and particular process of the VP;
(3) an AON pointer to that VP's secure Stack (e.g., SS 10336);
(4) the AON’s of that VP's MAS stack objects (e.g., MAS’s 10328 to 10334); and,
(5) certain information used by CS 10110’s VP Management System.
The information contained in each VP State Block thereby defines the current state of the asociated VP.
A Process is loaded into CS 10110 by building a primitive access record and loading this access record

into CS 10110 to appear as an already existing VP. A VP is created by creating a Process Object, including
pointers to macro- and secure-stack objects created for that VP, micromachine state entries, and a pointer
to the user’s program. C5 10110’s KOS then generates Macro- and Secure-Stack Objects with headers for
that process and, as described further below, loads protection infonnation regarding that process’ objects
into protection Structures 10230. CS 10110’s KOS then copies this primitive machine state record into a
vacant VPSB selected by CS 10110’s VP Manager, thus binding the newly created VP into CS 10110. At that
time a K05 lnitializer procedure completes creation of the VP for example by calling in the user's program
through a compiler. The newly creatd VP may then be executed by CS 10110.

Having briefly described VP State Blocks 10218 and creation of a VP, CS 10110’s Addressing Structures
10220 will be decribed next below.

35

Petitioner Apple Inc. — Exhibit 1024, p. 4080

Petitioner Apple Inc. - Exhibit 1024, p. 4081

I0

20

50

El? 0 057 556 81

-D. Addressing Stmcture 10220 (Figs. 103, 106, 107, 108)
1. Objects, UlD's, AON’s, Names, and Physical Addresses (Fig. 106)
As previously described, the data space accessible to CS 10110 is divided into segments. or containers.

referred to as objects. in an embodiment of CS 10110, the addressable data space of each object has a
capacity of 2“ bits of information and is structured into 2"’ pages with each page containing 2“ bits ofinformation.

Referring to Fig. 106A. a schematic representation of CS 10110's addressing structure is shown. Each
object created for use in, or by operation of, a CS 10110 is permanently assigneda unique identifier (UID).
An object's UID allows an object to be uniquely identified and located at any future point in time. Each UID
is an 80 bit number, so that the total addressable spam of all CS 10110’s includes 2” objects wherein each
object may contain up to 2” bits of infonnation. As indicated in Fig. 106, each B0 bit UID is comprised of 32
bits of Logical Allocation Unit Identifier (LAUID) and 48 bits of Object Serial Number l0SNl. LAUlDs are
associated with individual CS 10110 systems. LAUlDs identify the particular CS 10110 system generating a
particular object. Each LAUlD is comprised of a Logical Allocation Unit Group Number (LAUGN) and a
Logical Allocation Unit Serial Number lLAU$N). LAUGNS are assigned to individual CS 10110 systems and
may be guaranteed to be unique to a particular system. A particular system may, however, be assigned
more than one LAUGN so that there may be a time varying mapping between LAUGNS and CS 10110
systems. LAUSNs are assigned within a particular system and, while LAUSNs may be unique within a
particular system, LAUSNs need not be unique between systems and need not map onto the physical
structure of a particular system.

0SNs are associated with individual objects created by an LAU and are generated by an Architectural
Clock in each CS 10110. Architectural clock is defined as a 64 bit binary number representing increasing
time. Least significant bit of architectural clock represents incremems of 600 picoseconds, and most
significant bit represents increments of 127 years. In the present embodiment of CS 10110, certain most
significant and least significant bits of architectural clock time are disregarded as generally not required
practice. Time indicated by architectural clock is measured relative to an arbitrary, fixed point in time. This
point in time is the same for all CS 10110s which will ever be constructed. All CS 10110s in existence will
therefore indicate the same architectural clock time and all UlDs generated will have a common basis. The
use of an architectural clock for generation of OSNs is advantageous in that it avoids the possibility of
accidental duplication of OSNs if a CSC 10110 fails and is subsequently reinitiated.

As stated above, each object generated by or for use in a CS 10110 is uniquely identified by its
associated UlD. By appending Offset (O) and Length (L) infonnation to an object's UID, a UID logical
address is generated which may be used to locate particular segments of data residing in a particular
object. As indicated in Fig. 106. O and Liields of a UID logical address are each 32 bits. 0 and Lfields can
therefore indicate any particular bit, out of 2”" bits, in an object and thus allow blt granular addressing of
information in objects. ' -

As indicated in Fig. 106 and as previously described, each object active in CS 10110 is assigned a short
temporary unique identifier valid only within JP 10114 and referred to as an Active Object Number (AON).
Because fewer objects may be active in a CS 10110 than may exist in a CS 10110's address space, AON's
are, in the present embodiment of CS 10110, 14 bits in length. A particular CS 10110 may therefore contain
up to 2“ active objects. An object's AON is used within JP 10114 in place of that object's UID. For example,
as discussed above with reference to process structures 10210, a procedure's FP points to start of that
procedure's frame on its process‘ MAS. When that FF is residing in 55 10336. it is expressed as a UlD.
When that procedure is to be executed, FF is transferred from SS 1036 to ABR's 10364 and is translated
into the corresponding AON. Similarly, when that procedure is stacked, FP is returned to SS 1036 and in
doing so is translated into the corresponding UlD. Again, a particular data segment in an object may be

' addressed by means of an AON logical address comprising the object's AON plus associated 32 bit Offset
(O) and Length lL) fields.

Each operand appearing in a process is assigned a Name and all referencesto a process's operands are
through those assigned Names. As indicated in fig. 1065, in the present embodiment of CS 10110 each
Name is an 8.12, or 16 bit number.. All Names within a particular process will be ofthe same length. As will
be described in a following discussion, Names appearing during execution of a process may be resolved,
through a procedure's Name Table 10350 or through Name Cache 10226, to an AON logical address As
described below, an AON logical address corresponding to an operand Name may then be evaluated to a
MEM 10112 physical address to locate the operand referred to.

The evaluation of AON logical addresses to MEM 10112 physical addresses is represented in Fig. 1060.
An AON logical addrass's L field is not involved in evaluation of an AON logical address to a physical
address and, for purposes of clarity of presentation, is therefore not represented in Fig. 106C. AON logical '
address L field is to be understood to be appended to the addresses represented in the various steps of the
evaluation procedure shown in Fig. 106C. ,

. As described above, objects are 2” bits structured into 2"‘ pages with each page containing a 2" bits of
data. MEM 10112 is similarly physically structured into frames with, in the present embodiment of CS
10110, each frame containing 2"‘ bits of data. In other embodiments of C5 10110. both pages and frames
may be of different sizes but the translation of AON logical addresses to MEM 10112 physical addresses will
be simflar to that described momentarily. '

35

Petitioner Apple Inc. — Exhibit 1024, p. 4081

Petitioner Apple Inc. - Exhibit 1024, p. 4082

70

I5

25

30

EP 0 067 556 81

An AON Iogicai address 0 field was previously described as a 32 hit number representing the start,
relative to start of the object, of the addressed data segment within the object. The 18 most significant bits
of O field represent the number (P) of the page within the object upon which the first bit of the addressed
data occurs. The 14 least significant bits of O field represent the offset (0,), relative to the start of the page,
within that page of tl1e first bit of the addressed data. AON logical address 0 field may therefore, as
indicated in Fig. 106C, be divided into an 18 bit page (P) field and a 14 bit offset within page (0,) field. Since,
as described above, MEM 10112 physical frame size is equal to object page size, AON logical address 0,,
field may be used directly as an offset within frame (0,) field of the physical address. As will be described
below, an AON logical address AON and P fields may then be related to the frame number (FN) of the MEM
10112 frame in which that page resides, through Addressing Mechanisms 1020.

Having briefly described the relationships between UlDs, UID Logical Addresses, Names, AONs. AON
Logical Addresses, and MEM 10112 Physical Addresses, Addressing Mechanisms 10220 will be describednext below.

2. Addressing Mechanisms 10220 (Fig. 107)

Referring to Fig. 107, a schematic representation of Computer System 10110's Addressing
Mechanisms 10220 is shown. As previously described, Addressing Mechanisms 10220 comprise UIDIAON
Tables 10222. Memory Management Tables 10224, Name Cache 10226, and Address Translation Unit10228.

UlD/AON Tables 1022 relate each object's UlD to its assigned AON and include AOT. Hash Table
(AOTl-fl’) 10710. Active Object Table (AOT) 10712, and Active Object Table Annex (AOTA) 10714.

An AON corresponding to a particular UID is determined through AOTHT 10710. The UID is hashed to
provide a UlD index into AOTl-IT 10710, which then provides the corresponding AON. AOTHT 10710 is
effectively an acceleration mechanism of AOT 10712 t , asjust described, provide rapid translation of UlDs
to AONs. AONs are used as indexes irrto AOT 10712, which provides a corresponding AOT Entry (AOTE).
An AOTE as described in following detailed discussions of CS 10110. includes, among other information,
the UlD corresponding to the AON indexing the AOTE. In addition to providing translation between AONs
and UlDs, the UlD of an AOTE may be compared to an original UID to determine the correctness of an AONfrom AOTHT 10710.

Associated with AOT 10712 is AOTA 10714. AOTA 10714 is an extension of ACT 10712 and contains
certain information pertaining to active objects, for example the domain of execution of each activeprocedure object. '

Having briefly described CS 10110’s mechanism for relating UIDs and AONs, CS 10110's mechanism
for resolving operand Names to AON logical addresses will be described next below.

3. Name Resolution (Figs. 103, 108)

Referring first to Fig. 103, each procedure object in a VP, for example KOSPO 10318 in VP 10310, was
described as containing a Name Table (NT) 10350. Each NT 10350 contains a Name Table Entry (NTE) for
each operand whose Name appears its procedure. Each NTE contains a description of how to resolve the.
corresponding Name to an AON Logical Address, including fetch mode information, type of data referred
to by that Name, and length of the data segment referred to. -

Referring to Fig. 108, a representation of an NTE is shown. As indicated, this N'l'E contains seven
’ information fields: Flag, Base (B), Predisplacement (PR), Length (L), Displacement (D). Index (I), and Inter-

element Spacing (IES). Flag Field, in part, contains information describing how the remaining fields of the
NTE are to be interpreted, type of information referred to by the NTE, and how that information is to
handled when fetched from MEM 10112. L field, as previously described, indicates length, or number of
bits in, the data segment. Functions of the other NTE fields will be described during the followingdiscussions.

In a present embodiment of CS 10110, there are five types of NTE: (1) base (B) is not a Name, address
resolution is not indirect; (2) B is not a Name, address resolution is indirect; (3) B is a Name, address
resolution is indirect; (4) B is a Name, address resolution is indirect. A frfth type is an NTE selecting a
particular element from an array of elements. These five types of N'l'E and their resolution will be describedbelow, in the order mentioned.

In the first type, B is not a Name and address resolution is not indirect, B Field specifies an ABR 10364
containing an AON plus offset (AON/O) Pointer. The contents of D Field are added to the 0 Field of this
pointer, and the result is the AON Logical Address of the operand. in the second type, Bis not a Name and
address resolution is indirect, B Field again specifies an ABR 10364 containing an AON/O pointer. The
contents of PR field are added to the 0 Field of the A0 NIO pointer to provide an AON Logical Address of a
Base Pointer. The Base Pointer AON Logical Address is evaluated, as described below, and the Base Pointer
fetched from MEM 10112. The contents of D Freld are added to the 0 Field of the Base Pointer and the result
is the AON Logical Address of the operand.

NTE types 3 and 4 correspond, respectively to NTE types 1 and 2 and are resolved in the same manner
except that B l-‘reld contains a Name. The B Field Name is resolved through another NTE to obtain an AON!
O pointer which is used In place of the ABR 10364 pointers referred to in discussion of types 1 and 2.

The fifth type of N'i'E is used in references to elements of an array. These array NTEs are resolved in the

37

Petitioner Apple Inc. — Exhibit 1024, p. 4082

Petitioner Apple Inc. - Exhibit 1024, p. 4083

I0

15

20

45

50

EP 0 067556 B1

same manner as NTE types 1 through 4 above to provide an AON Logical Address of the start of the array. l
and IE8 Fields provide additional information to locate a particular element in the array. I Field is always
Name which is resolved to obtain an operand value representing the particular element in the array. lES
Field provides information regarding spacing between elements of the array, that is the number of bits
between adjacent element ofthe array. IES Field may contain the actual IES value, or it may contain a Name
which is resolved to an AON Logical Address leading to the inter-element spacing value. The l and IE8
values, obtained by resolving the I and IE3 fields as just described, are multiplied togetherto determine the
offset, relative to the start of the array, of the particular element referred to by the NTE. This within array
offset is added to the 0 Held of the AON Logical Address of the start of the array to provide the AON Logical
Address of the element.

In the current embodiment of CS 10110, certain NTE fields, for example B, D, and Flag fields, always .
contain literals. Certain other fields, for example, IES, D, PRE, and L fields, may contain either literals or
names to be resolved. Yet other fields, for example I field, always contain names which must be resolved.

Passing of arguments from a calling procedure to a called procedure has been previously discussed
with reference to Virtual Processes 10212 above, and more specifically with regard to MAS's 10328 to 10334
of VP 10310. Passing of arguments is accomplished through the calling and smiled procedure's Name
Tables 10350. In illustration, a procedure W(a, b, c) may wish to pass arguments a, b, and c to procedure
Xlu, v, w), where arguments, v and w correspond to arguments a, b, and c. At compilation, NTEs are
generated for arguments a, b, and c in procedure We procedure object, and NTEs are generated for
arguments u. v and w in Procedure X's procedure object. Procedure X's NTEs for u, v, and w are
constructed to resolve to point to pointers in Linkage Pointer Blocl(10416 of Procedure X's Frame 10412 in
MAS. To pass arguments a, b, and c from Procedure W to Procedure X, the NTEs of arguments a, b, and c
are resolved to AON Logical Addreses (l.e., AONIO form). Arguments a, b, and c's AON Logical Addresses
are then translated to corresponding UID addresses which are placed in Procedure X's Linkage Pointer
Block 10416 at those places pointed to by Procedure X's NTEs for u, v, and w. When Procedure X is
executed, the resolution of Procedure X's NTEs for u, v, and w will be resolved to locate the pointers, in
Procedure X's Linkage Pointer Block 10416 to arguments a, b, and c. When arguments are passed in this
manner, the data type and length information are obtained from the called procedure’s NTEs, rather than
the calling procedure's NTEs.'This allows the calling procedure to pass only a portion of. for example,
arguments a, b. or c, to the called procedure and thus may be regarded as a feature of CS 1011_0’s
protection mechanisms. '

Having briefly described resolution of Names to AONIOffset addresses, and having previously
described translation of UID addresses to AON addresses, the evaluation of AON addresses to MEM 10112
physil addresses will be described next below. -

4. Evaluation of AON Addresses to Physical Addresses (Fig. 107)
Referring again to Fig. 107, a partial schematic representation of CS 10110's Memory Management

Table 1024 is shown. Memory Hash Table (MHT) 10716 and Memory Frame Table (MFT) 10718 are
concerned with translation of AON addresses into MEM 10112 physical addresses and will be discussed
first. Working Set Matrix (WSM) 10720 and Virtual Memory Manager Request Queue (VMMRO) 10722 are
concerned with management of MEM 10112's available physical address base and will be discussed

- second. Active Object Request Queue (AOR0) 10728 and Logical Allocation Unit Directory (LAUD) 10730
are concerned with locating inactive objects and management of which objects are active in CS 10110 and
will be discussed last.

Translation of AONIO Logical Addresses to MEM 10112 physical addresses was previously discussed
with reference to Fig. 106C. As stated in that discussion, objects are divided into pages. Correspondingly,
the AONIO Logical Address’ 0 Field is divided into an 18 bit page number (Pl Field and a 14 bit offset within
a page (0,) Field. MEM 10112 is structured into frames, each of which in the present embodimem of CS
10110 is equal to a page of an object. An AON/O address’ 0, field may therefore be used directly as an
offset within frame (0,) of the corresponding physical address. The AON and P fields of an AON address
must, however, be translated into a MEM 10112 frame represented by a corresponding Frame Number
(FNI. -

Referring now to Fig. 107, an AON address’ AON and P Fields are "hashed" to generate an MHT index
which is used as an index into MHT 10716. Briefly, "hashing" is a method of indexing, or locating,
infonnation in a table wherein indexes to the information are generated from the information itself through
a "hashing function". A hashing function maps each piece of information to the corresponding index
generated from it through the hashing function. MHT 10716 then provides the corresponding FN of the
MEM 10112 frame in which that page is stored. FNs are used as indexes into MFG 10718, which contains,
for each FN, an entry describing the page stored in that frame. This information includes the AON and P of
the page stored in that MEM 10112 frame. An FN from MHT 10716 may therefore be used as an Index into
Ml-‘I’ 10718 and the resulting AON/P of MFT 10718 compared to the original AON/P to confirm the
correctness of the FN obtained from MHT 10716. MHT 10716 is an effectively acceleration mechanism of
MFT 10718 to provide rapid translation of AON address to MEM 10112 physical addresses.

Ml-T 10718 also stores ”used" and "modified" information for each page in MEM 10112. This
information indicates which page frames stored therein have been used and which have been modified.

38

Petitioner Apple Inc. — Exhibit 1024, p. 4083

Petitioner Apple Inc. - Exhibit 1024, p. 4084

15

20

25

5'0

65

EP 0 067 556 B1

This information is used by CS 10110 in determining which frames may be deleted from MEM 10112, or are
free, when pages are to be written into MEM 10112 from backing store (ED 10124). For example, if a page's
modified bit indicates that that page has not been written into, it is not necessary to write that page back
into backing store when it is deleted from MEM 10112; instead, that page may be simply erased.

Referring finally to ATU 10228, ATU 10228 is an acceleration mechanism for MHT 10716. AON/O
addresses are used directly, without hashing, as indexes into ATU 10228 and ATU 10228 correctly provides
corresponding FN and O outputs. A CS 10110 mechanism, described in a following detailed discussion of
CS 10110 operation, continually updates the contents of ATU 10228 so that ATU 10228 contain the FN's and
0,, (0.) of the pages most frequently referenced by the current process. if ATU 1028 does not contain a
corresponding entry for a given AON input. an ATU fault occurs and the FN and 0 information may be
obtained directly from MHT 10716.

Referring now to WSM 10720 and VMMRQ 10722, as previously stated these mechanisms are
concerned with the management of MEM 10112’s available address space. For example, if MHT 10716 and
MFT 10718 do not contain an entry for a page referenced by the current procedure, an MHT/MFT fault
occurs and the reference page must be fetched from backing store (ED 10124) and read into MEM 10112.
WSM 10720 contains an entry for each page resident in MEM 10112. These entries are accessed by indexes
comprising the Virtual Processor Number (VPN) of the virtual process making a page reference and the P of
the page being referenced. Each WSM 10720 entry contains 2 bits stating whether the particular page is
part of a VP’s working set, that is, used by that VP, and whether that page has been referenced by that VP.
This information, together with the information contained in that MFT 10718 entries described above, is
used by CS 10110's Virtual Memory Manager (VMM) in transferring pages into and out of MEM 10112.

CS 10110's VMM maintains VMMRO 10722, which is used by VMM to control transfer ofpages into and
out of MEM 10112. VMMRQ 1072 includes Virtual Memory Request Counter (VMRC) 10724 and a Queue of
lfirtual Memory Request Entries lVMREs) 10726. As will be discussed momentarily, VMRC 10724 tracks the
number of currently outstanding request for pages. Each VMRE 10726 describes a particular page which
has been requested. Upon occurrence of a MHT/MFT (or page) fault, VMRC 10724 is incremented, which
initiates operation of CS 10110's VMM, and a VMRE 10726 is placed in the queue. Each VMRE 10726
comprises the VPN of the process requesting the page and the AON/O of the page requested. At this time.
the VP making the request is swapped out of JP 10114 and another VP bound to JP 10114. VMM allocates
MEM 10112 frame to contain the requested page, using the previously described information in MFT 10718
and WSM 10720 to select this frame. In doing so, VMM may discard a page currenfly resident in MEM 10112
for example. on the basis of being the oldest page, an unused page, or an unmodified page which does not
have to be written back into backing store. VMM then requests an IIO operation to transfer the requested
page into the frame selected by the VMM. While the IIO operation is proceeding, VMM generates new
entries in MHT 10716 and MFT 10718 for the requested page, cleans the frame in MEM 10112 which is to be
occupied by that page, and suspends operation. IOS 10116 will proceed to execute the IIO operation and
writes the requested page directly into MEM 10112 in the frame specifled by VMM. lOS 10116 then notifies
CS 10110's VMM that the page now residm in memory and can be referenced. At some later time, that VP
requesting that page will resume execution and repeat that reference. Going first to ATU 10228, that VP will
take an ATU 10228 fault since VP 10212 has not yet been updated to contain that page. The VP will then go
to MHT10716 and MFT 10718 for the required information and, concurrently, WSM 10720 and ATU 10228
will be updated. ‘

In regard to the above operations, each VP active in CS 10110 is assigned a Page Fault Frequency Time
Factor (PFFT) which is used by CS 10110's VMM to adjust that VP's Working set so that the interval between
successive page faults for that VF lies in an optimum time range. This assists in ensuring CS 10110's VMM
is operating most efficiently and allows CS 10110's VMM to be tuned as required.

The above discussions have assumed that the page being referenced, whether from a UID/O address.
an AON/O address, or a Name, is resident in an object active in CS 10110. While an object need not have a
page in MEM 10112 to be active, the object must be active to have a page in MEM 10112. A VF, however,
may reference a page in an object not active in CS 10110. if such a reference is made. the object must be
made active in CS 10110 before the page can be brought into MEM 10112. The result is an operation similar
to the page fault operation described above. CS 10110 maintains an Active Object Manager (AOM),
including Active Obiect Request Queue (AORO) 10728, which are similar in operation to CS 10110's VMM
and VMMRO 10722. CS 10110's AOM and AORO10728 operate in conjunction with AOTI-lT10710 and AOT
10712 to locate inactive objects and make them active by assigning them AON’s and generating entries for
them in AOTHT 10710, AOT 10712, and AOTA 10714. _

Before a particular object can be made active in CS 10110, it must first be located in backing store (ED
10124). All obiects on backing store are located through a Logical Aliocation Unit Directory (LAUD) 10730,
which is resident in backing store. An LAUD 10730 contains entries for each object accessible to the
particular CS 10110. Each LAUD 10730 entry comains the information necessary to generate an AOT 10712
entry for that object. An LAUD 10730 is accessed through a UID/O address contained in CS 10110's VMM. A
reference to an LAUD 10730 results in MEM 10112 frames being assigned to that LAUD 10730, and LAUD
10730 being transferred into MEM 10112. if an LAUD 10730 entry exists for the referenced inactive object,
the LAUD 10730 entry is transferred into AOT 10712. At the next reference to a page in that object. AOT
10712 will provide the AON for that object but, because the page has not yet been transferred into MEM

39

Petitioner Apple Inc. — Exhibit 1024, p. 4084

Petitioner Apple Inc. - Exhibit 1024, p. 4085

15

20

25

EP 0 067 556 B1

10112. a page fault will occur. This page fault will be handled in the manner described above and the
referenced page transferred into MEM 10112.

Having briefly described the structure and operation of CS 10110's Addressing Structure, including the
relationship between UlDs, Names. AONs. and Physical Addresses and the mechanisms by which CS 10110
manages the available address space of MEM 10112, CS 10110's protecuon stmctures Will be describednext below.

E. CS 10110 Protection Mechanisms (Fig. 109)
Referring to Fig. 109, a schematic representation of Protection Mechanisms 10230 is shown. Protection

Tables 10232 include Active Primitive Access Matrix (APAM) 10910, Active Subject Number Hash Table
(ASNHT) 10912, and Active Subject Table (AST) 10914. Those portions of Protection Mechanism 10230

resident in FU 10120 include ASN Register 10916 and Protection Cache (PC) 10234. .
As previously discussed, access rights to objects are arbitrated on the basis of subjects. A subject has

been defined as a particular combination of a principle, Process. and Domain (PPD), each of which is
identified by a corresponding UlD. Each object has associated with it an Access Control List (ACL) 10918
containing an ACL Emry (ACLE) for each subject having access rights to that object. °

When an object becomes active in CS 10110 (i.e., is assigned an AON) each ACLE in that object's ACL
10918 is written into APAM 10910. Concurrently, each subject having access rights to that object, and for
which there is an ACLE in that objects ACL 10918, is assigned an Active Subject Number (ASN). These
ASNs are written into ASNHT 10912 and their corresponding PPDs are written into AST 10914.
Subsequently, the ASN of any subject requesting access to that object is obtained by hashing the PPD of
that subject to obtain a PPD index into ASNHT 10912. ASNHT 10912 will in turn provide a corresponding
ASN. An ASN may be used as an index into AST 10914. AST 10914 will provide the corresponding PPD,
which may be compared to an original PPD to eonfinn the accuracy of the ASN.

As described above. APAM 10910 contains an ACL10918 for each object active in CS 10110. The access
rights of any particular active subject to a particular active object are determined by using that subjecfs
ASN and that object's AON as indexes into APAM 10910. APAM 10910 in turn provides a 4 bit output
defining whether that subject has Read (R) Write (W) or Execute (E) rights with respect to that object, and
whether that particular entry is Valid (V).

ASN Register 10916 and PC 10234 are effectively acceleration mechanisms of Protection Tables 10232.
ASN Register 10916 stores the ASN of a currently active subject while PC 10234 stores certain access right
irrforrnation for objects being used by the current process. PC 10234 entries are indaced by ASNs from ASN
register 10916 and by a mode input from JP 10114. Mode input defines whether the currenrprocedure
intends to read, write, or execute with respect to a particular object having an entry in PC 10234. Upon
receiving ASN and mode inputs, PC 10234 provides a go/.nogo output indicating whether that subject has
the access rights required to execute the intended operation with respect to that object.

in addition to the above mechanism, each procedure to which arguments may be passed in a cross-
domain call has associated with it an Access Information Array (AIA) 10352, as discussed with reference to
Virtual Processes 10212. A procedure’s AIA 10352 states what access rights a calling procedure (subject)
must have to a particular object (argument) before the called procedure can operate on the passed
argument. CS 10110's protection mechanisms compare the calling procedures access rights to the rights
required by the called procedure. This insures the calling procedure may not ask a called procedure to do
what die calling procedure is not allowed to do. Effectively, a calling procedure can pass to a called
procedure only the access rights held by the calling procedure. _

Finally, PC 10234, APAM 10910, or AST 10914 faults (i.e., misses) are handled in the same manner as
described above with reference to page faults in discussion of CS 10110’s Addressing Mechanisms 10220.
As such, the handling of protecdon misses will not be discussed further at this point.

Having briefly described structure and operation of CS 10110's Protection Mechanisms 10230, CS
10110’s Micro-instruction Mechanisms 10236 will be described next below.

F. CS 10110 Micro-instruction Mechanism iFig. 110)

As previously described, CS 10110 is a multiple language machine. Each program written in a high
level user language is compiled into a corresponding S-Language program containing instructions
expressed as SlNs. CS 10110 provides a set, or dialect, of microcode instructions, referred to as S-
lnterpreters (SlNTs) for each S—Language. SlNTs interpret SlNs and provide corresponding sequences of
microinstructions for detailed control of CS 10110.

Referring to fig. 110, a partial schematic representation of CS 10110‘s Micro-instruction Mechanisms
10236 is shown. At system initialization all C_S 10110 microcode, including SlNTs and all machine assist
microcode, is transferred from backing store to Micro»Code Control Store imCCS) 10238 in MEM 10112.
The Micro-Code is then transferred from mCCS 10238 to FU Micro-Code Structure (FUmC) 10240 and EU
Micro-Code Structure (EUmC) 10242. EUmC 10242 is similar in stmcture and operation to FUmC 10240 and
thus will be described in following detailed descriptions of CS 10110's structure and operation. Similarly,
CS 10110 machine assist microcode» will be described in following detailed discussions. The present
discussion will oonoem CS 10110's S—lnterpreter mechanisms.

CS 10110's S-interpreters (SlNTs) are loaded into S-interpret Table (SlTi') 11012, which is represented

40

Petitioner Apple Inc. — Exhibit 1024, p. 4085

Petitioner Apple Inc. - Exhibit 1024, p. 4086

ml

10

15

20

35

55

EP 0 O6? 556 B1
in Fig. 110 as containing S-Interpreters 1 to N. Each SIT contains one or more sequences of micro-code;
each sequence of microcode corresponds to a particular SIN in that S-Language dialect. S—lnterpreter
Dispatch Table ISDT) 11010 contains S-Interpreter Dispatchers (SDs) 1 to N. There is one SD for each SINT
in SITT 11012, and thus 3 SD for each S-Language dialect. Each SD comprises a set of pointers. Each pointer
in a particular SD corresponds to a particular SIN of that SD's dialect and points to the corresponding
sequence of microlnstructions for interpreting that SIN in that dialect's SIT in SITT 11012. In illustration, as
previously discussed when a particular procedure is being executed the SIP for that procedure is
transferred into one of mCR's 10366. That SIP points to the start of the SD for the SIT which is to be used to
interpret the SlNs of that procedure. In Fig. 110, the SIP in mCRs 10366 is shown as pointing to the start of
SD2. Each S-Op appearing during execution of that procedure is an offset, relative to the start of the
selected SD. pointing to a corresponding SD pointer. That SD pointer in turn points to the corresponding
sequence of microinstmctions for interpreting that SIN in the corresponding SIT in SITT 11012. As will be
described in following discussions, once the start of a microcode sequence for interpreting an SIN has been
selected, CS 10110 micromachine then proceeds to sequentially call the microinstructions of that sequence
from Sl'IT 11012 and use those microinstructions to control operation of CS 10110.

G. Summary of Certain CS 10110 Features and Alternate Embodiments
The above Introductory Overview has described the overall structure and operation and certain

features of CS 101, that is, CS 10110. The above Introduction has further described the structure and
operation and further features ofCS 10110 and, in particular, the physical implementation and operation of
CS 10110's information, control, and addressing mechanisms. Certain of these CS 10110 features are
summarized next below to briefly state the basic concepts of these features as implemented in CS 10110. In
addition, possible alternate embodiments of certain of these concepts are described.

First. CS 10110 is comprised of a plurality of independently operating processors, each processor
having a separate microinstmction control. In the present embodiment of CS 10110, these processors
include FU 10120, EU 10122, MEM 10112 and IOS 10116. Other such independently operating processors,

.for example, special arithmetic processors such as an array processor, or multiple FU 1D120‘s, may be
added to the present CS 10110.

In this regard, MEM 10112 is a multiport processor having one or more separate and independent ports
to each processor in CS 10110. All communications between CS 10110's processors are through MEM
10112, soythat MEM 10112 operates as the central communications node of CS 10110, as well as performing
memory operations. Further separate and independent ports may be added to MEM 10112 as further
processors are added to CS 10110. CS 10110 may therefore be described as comprised of a plurality of
separate, independent processors, each having a separate microinstruction control and having a separate
and independent port to a central -communications and memory node which in itself is an independent
processor having a separate and independent microinstruction control. As will be further described in a
following detailed description of MEM 10112, MEM 10112 itself is comprised ofa plurality ofindepandently
operating processors, each performing memory related operations and each having a separate
microinstruction control. Coordination of operations between CS 10110's processors is achieved by
passing "messages" between the processors, for example, SOP's and descriptors.

CS 10110's addressing mechanisms are based, first, upon UID addressing of objects. That is, all
informafion generated for use in or by operation of a CS 10110, for example, data and procedures, is
structured into objects and each object is assigned a permanent UID. Each UID is unique within a particular
CS10110 and between all CS 10110's and is permanently associated with a particular object. The use of UID
addressing provides a permanent, unique addressing means which is common to all CS 10110's. and to
other computer systems using CS 10110's UID addressing.

Effectively, UID addressing means that the address (or memory) space of a particular CS 10110
includes the address space of all systems, for example disc drives or other CS 101105, to which that
particular CS 10110 has access. UID addressing allows any process in any CS 10110 to obtain access to any
object in any CS 10110 to which it has physical access, for example, another CS 10110 on the other side of
the world. This access is constrained only by CS 10110's protection mechanism. In alternate embodiments
of CS 10110, certain UlDs may be set aside for use only within a particular CS 10110 and may be unique
only within that particularcs 10110. These reserved UlDs would, however, be a limited group known to all
CS 10110 systems as not having uniqueness between systems, so that the unique obiect addressing
capability of CS 10110's UID addressing is preserved. .

As previously stated, AONs and physical descriptors are presently used for addressing within a CS
10110, effectively as shortened UlDs. In altemete embodiments of CS 10110, other forms of AONs may be
used, or AONs may be discarded entirely and UlDs used for addressing within as well as between CS1D110s.

CS 10110's addressing mechanisms are also based upon the use of descriptors within and between CS
10110s.

-Each descriptor includes an AON or UID field to identify a particular object, an offset field to specify a
bit granular offset within the object, and a length field to specify a particular number of bits beginning at the
specified offset. Descriptors may also include a type, or format field identifying the particular format of the
data referred to by the descriptor. Physical descriptors are used for addressing MEM 10112 and, in this

41

Petitioner Apple Inc. — Exhibit 1024, p. 4086

Petitioner Apple Inc. - Exhibit 1024, p. 4087

EP 0 067 556 B1

case, the AON or UID field is replaced by a frame number field referring to a physical location in MEM
10112.

As stated above, descriptors are used for addressing within and between the separate, independent
processors (FU 10120, EU 10122, MEM 10112,. and IOS 10116) comprising CS 10110, thereby providing
common, system wide bit granular addressing which includes format information. in particular, MEM
10112 responds to the type information fields of descriptors by performing formatting operations to
provide requestors with data in the format specified by the requester in the descriptor. MEM 10112 also
accepts data in a fonnat specified in a descriptor and reformats that data into a fonnat most efficiently used
by MEM 10112 to store the data.

AB previously described, all operands are refened to in CS 10110 by Names wherein all Names within a
particular S-Language dialect are of a uniform, fixed size and format. A K value specifying Name size is
provided to FU 10120, at each change in S-Language dialect, and is used by FU 10120 in parsing Names
from the instruction stream. in an alternate embodiment of CS 10110, all Names are the same size in all S-
Language dialects, so that K values, and the associated circuitry in FU 10120's parser, are not required.

I-‘rnally, in descriptions of CS 10110‘s use of SOPs. FU 10120's microinstnrction circuitry was described
as storing one or more S-Interpreters. S-Interpreters are sets of sequences of microinstructions for
interpreting the SOPs of various S-Language dialects and providing corresponding sequences of
microinstructions to control CS 10110. in an alternate embodiment of CS 10110. these S-Interpreters (SlTl'
11012) would be stored in MEM 10112. FU 10120 would receive SOPs from the instruction stream and,
using one or more S-interpreter Base Pointers (that is, architectural base pointers pointing to the SlTl'
11012 in MEM 10112), address the SlTl' 11012 stored in MEM 10112 MEM 10112 would respond by
providing, from the Sl‘lT 11012 in MEM 10112, sequences of microlnstructions to be used directly in
controlling CS 10110. Altemately, the SITT 11012 in MEM 10112 could provide conventional instructions
usable by a conventional CPU, for example, Fonran or machine language instnrctions. This, for example,
would allow FU 10120 to be replaced by a conventional CPU, such as a Data General Corporation Eclipse“.

Having briefly summarized certain features of CS 10110, and alternate embodiments ofcertain of these
features, the stmcture and operation of CS 10110 will be dwcfibed in detail below.

2. DETAILED DESCRIPTION OF (:8 10110 MAJOR SUBSYSTEMS
(Figs. 201-206, 207-274)

Having previously described the overall structure and operation of CS 10110, the structure and
operation of CS 10110’s major subsystems will next be individually described in further detaiL As
previously discussed, CS 10110‘s major subsystems are, in the order in which they will be described, MEM
10112, FU 10120, EU 10122,lOS10116. and DP 10118. individual block diagrams of MEM 10112, FU 10120,
EU 10122, lOS 10116, and DP 10118 are shown in, respectively, Figures 201 through 205. Figures 201
through 205 may be assembled asshown in Fig. 206 to construct a more detailed block diagram of CS
10110 corresponding to that shown in Fig. 101. Forthe purposes ofthe following descriptions, it is assumed
that Figs. 201 through 205 have been assembled as shown in H9. 206 to constmct such a block diagram.
Further diagrams will be presented in following descriptions as required to convey structure and operation
of CS 10110 to one of ordinary skill in the art.

As previously described, MEM 10112 is an intelligent. priortizing memory having separate and
independent ports MIO 10128 and MJF 10140 to, respectively, IOS 10116 and JP 10114. MEM 10112 is

. shared by and is accessible to both JP 10114 and IOS 10116 and is the primary memory of CS 10110. In
addition. MEM 10112 is the primary path for information transferred between the external world (through
IOS 10115) and JP 10114.

As will be described further below, MEM 10112 is a two-level memory providing fast access to data
stored therein. MEM 10112 first level is comprised of a large set of random access arrays and MEM 10112
second level is comprised of a high speed cache whose operation is generally transparent to memory
users, that is JP 10114 and IOS 10116. Information stored in MEM 10112, in either level, appears to be bit
addressable to both JP 10114 and (OS 10116. in addition, MEM 10112 presents simple interfaces to both JP
10114 "and IOS 10116. Due to a high degree of pipe lining (concurrent and overlapping memory operations)
MEM10112lnterfaces to both JP 10114 and IOS 10116 appear as if each HP 10114 and I05 101 16 have full
access to MEM 10112. This feature allows data transfer rates of up to, for example, 63.6 megabytes per
second from MEM 10112 and 50 megabytes per second to MEM 10112.

in the following descriptions, certain terminology used on those descriptions will be introduced first.
followed by description of MEM 10112 physical organization. Then MEM 10112 port structures will be
described, followed by descriptions of MEM 10112's control organization and control flow. Next, MEM
10112's interfaces to JP 10114 and IOS 10116 will be described. Following these overall descriptions the
major logical structures of MEM 10112 will be individually described, starting at MEM 10112's interfaces to
JP 10114 and IOS 10116 and proceeding inwardly to MEM 10112's first (or bulk) level of data stored. finally,
certain features of MEM 10112 microcode control structure will be described.

A. MEM 10112 (Figs. 201, 206, 207-237)

a. Terminology '
Certain terms are used throughout the following descriptions and are defined here below for reference

42

Petitioner Apple Inc. — Exhibit 1024, p. 4087

Petitioner Apple Inc. - Exhibit 1024, p. 4088

5 .

10

20

25

35

EP 0 067 556 B1

by the reader.
A word is 32 bits of data

A byte is 8 bits of data
A block is 128 bits of data (that is, 4 words).

A block is always aligned on a block boundary, that is the low order 7 bits of logical or physical address
are zero (see Chapter 1, Sections A.f and D. Descriptions of CS 10110 Addressing).

The term aligned refers to the starting bit address of a data item relative to certain address boundaries.
A starting bit address is block aligned when the low order 7 bits of starting bit address are equal to zero,
that is the starting bit address falls on a boundary between adjacent blocks- A word align starting bit
address means that the low order 5 bits of starting bit address are zero, the starting bit address points to a
boundary between adjacent words. A byte aligned starting bit address means that the low order 3 bits of
starting bit address are zero, the starting bit address points to a boundary between adjacent bytes.

Bit granular data has a starting bit address falling within a byte, but not on a byte boundary, or the
address" is aligned on a byte boundary but the length of the data is bit granular, that is not a multiple of 8bits. '

b. MEM 10112 Physical Structure (Fig. 201)
Referring to Fig. 201, a partial block diagram of MEM 10112 is shown. Major functional units, of MEM

10112 are Main Store Bank (MSB) 20110, including Memory Arrays (MA's) 20112, Bank Controller (BC)
20114, Memory Cache (MC) 20116, including Bypass Write file (BYF) 20118, Field isolation Unit (F|Ul 20120,
and Memory Interface Controller (MIC) 20122.

MSB 20110 comprises MEM 10112's first or bulk level of storage. MSB 20110 may include from one to,
for example, 16 MA 20112’s. Each MA 20112 may have a storage capacity, for example, 256 K-byte, 512 K-
byte, 1 M-byte, or 2 M-bytes of storage capacity. As will be described further below, MA 20112's of different
capacities may be used together in MSB 20110. Each MA 20112 has a data input connected in parallel to
Write Data (WD) Bus 20124 and a data output connected in parallel to Read Data (RD) Bus 20126. MA's
20112 also have control and address ports connected in parallel to address and control (ADCTL) Bus 20128.
In particular, Data inputs 20124 of Memory Arrays 20112 are connected in parallel to Write Data (WD) Bus
20126, and Data Outputs 20128 of Memory Arrays 20112 are connected in parallel to Read Data (RD) Bus
20130. Control Address Ports 20132 of Memory Arrays 20112 are connected in parallel to Address and' Control (ADCTL) Bus 20134.

Data Output 20136 of Bank Controller 20114 is connected to WD Bus 20126 and Data Input 20138 of BC
20114 is connected to RD Bus 20130. Control and Address Port 20140 of BC 20114 is connected to ADCTL

_ Bus 20134. BC 20114's Data input 20142 is connected to MC 20116's Data Output 20144 through Store Back
Data (SBD) Bus 20146. BC 20114's Store Back Address input 20148 is connected to MC 20116 Store Back
Address Output 20150 through Store Back Address (SBA) Bus 20152. BC 20114's Read Data Output 20154 is
connected to MC 20116's Read Data input 20156 through Read Data Out (RDO) Bus 20158. BC 20114's
Control Port 20160 is connected to Memory Control (MCNTL) Bus 20164.

MC 20116 has Output 20166 connected to MIO Bus 10131 through M10 Port 10128, and Port 20168
connected to MOD Bus 10144 through MJP Port 10140. Control Port 20170 of MC 20116 is connected to
MCN'l'L Bus 20164. input 20172 of BYF 20118 is connected to IOM Bus 10130 through MIO Port 10128, and

_ Output 20176 is connected to SBD Bus 20146 through Bypass Write In (BWI) Bus 20178.
finally, FlU 20120 has an Output 20180 and an Input 20182 connected to, respectively, MIO Bus 10129

and IOM Bus 10130 through MIO Port 10128. lnput 20184 and Port 20186 are connected to, respectively,
JPD Bus 10142 and MOD Bus 10144 through MJP Port 10140. Control Port 20188 is connected to MCNTL
Bus 20164. Referring finally to MIC 20122. MiC 20122 has Control Port 20190 and Input 20192 connected to.
respectively, IOMC Bus 10131 and IOM Bus 10130 through MlO Port 10128. Control Port 20194 and input
20196 are connected, respectively, to JPMC Bus 10147 and Physical Descriptor (PD) Bus 10146 through MJP
Port 10140. Control Port 20198 is connected to MCNTL Bus 20164.

c. MEM 10112 General Operation

Referring first to MEM 10112's interface to 105 10116, this interface includes MIO Bus 10129, IOM Bus
10130, and IOMC Bus 10131. Read and Write Addresses and data to be written into MEM 10112 are
transferred from I05 10116 to MEM 10112 through IOM Bus 10130. Data read from MEM 10112 is
transferred to I05 10116 through MIO Bus 10129. IOMC 10131 is a Bi—directional Control bus between MEM
10112 and IOS 10116 and, as described further below, transfers control signals between MEM 10112 and
IOS 10116 to control transfer of data between MEM 10112 and IOS 10116.

MEM10112'sinterfaceto JP 10114 is MJP Port 10140 and lncludesJPD Bus 10142, MOD Bus 10144, PO
Bus 10146, and JPMC Bus 10147. Physical descriptors, that is MEM 10112 physical read and write
addresses, are transferred from JP 101 14 to MEM 10112 through PD Bus 10146. S Ops, that is sequences of
S instructions and operand names, are transferred from MEM 10112 to JP 10114 through MOD Bus.10144
while data to be written into MEM 10112 from JP 10114 is transferred from JP 101 14 to MEM 10112 through
JPD Bus 10142. JPMC Bus 10147 is a By-directional Control bus for transferring command and control
signals between MEM 10112 and JP 10114 for controlling transfer of data between MEM 10112 and JP
10114. As will be described further below, MJP Port 10140, and in particular MOD Bus 10144 and PD Bus

43

Petitionet‘ Apple Inc. — Exhibit 1024, p. 4088

Petitioner Apple Inc. - Exhibit 1024, p. 4089

70

15

20

35

65

EP o 067 556 B1

10146, is generally physically organized as a single port that operates as a dual port. In a first case, MJP Port
10140 operates as a Job Processor lnstruction (Jl)-Port for transferring S Ops from MEM 10112 to JP 10114.
In a second case, MOD 10144 and PD 10146 operate as a Job Processor Operand (JO) Port for transfer of
operands. from MEM 10112 to JP 10114, while JPD Bus 10142 and PD Bus transfer operands from JP 10114
to MEM 10112.

Referring to MSB 20110, MSB 20110 contains MEM 10112's first, or bulk, level of storage capacity. MSB ’
20110 may contain from one to, for example, 16 MA's 20112. Each MA 20112 contains a dynamic, random
access memory array and may have a storage capacity of, for example 256 Kilo-bytes, 512 Kilo-bytes, 1
Mega—bytes, or 2 Mega-bytes. MEM 10112 may therefore have a physical capacity of up to, for example. 16
Mega—bytes of bulk storage. As will be described further below. MA 201125 of different capacity may be
used together in M88 20110, for example, four 2 Mega-byte MA 20112’s and four 1 Megabyte MA 20112's.

BC 20114 controls operation of MA's 20112 and is-the path for transfer of data to and from MA's 20112.
In addition, BC 20114 performs error detection and correction on data transferred into and out of MA's
20112. refreshes data stored in MA's 20112, and, during a refresh operations, performs error detection and
correction of data stored in MA's 20112.

MC 20116 comprises MEM 10112’s second, or cache, level of storage capacity and contains, for
example 8 Kilo-bytes of high speed memory. MC 20116, including BYF 20118, is also the path for data
transfer between MSB 20110 (through EC 20114) and JP 10114 and lOS 10116. ln general, all read and write
operations between JP 10114and IOS 10116 are through MC 20116. IOS 10116 may, however, perform read
and write operations of complete blocks by-passing MC 20116. Black write operations from lOS 10116 are
accomplished through BYF 20118 while block read operations are performed through a data transfer path
internal to MC 20116 and shown and described below. All read and write operations between MEM 10112
and JP 10114, however, must be performed through the cache internal to MC 20116, as will be shown and
described further below.

As also shown and described below. HU 20120 includes write data registers for receiving data to be
written into MEM 10112 from JP 10114 and lOS 10116, and circuitry for manipulating data read from MSB
20110 so that MEM 10112 appears as a bit addressable memory. FIU 20120, in addition to providing bit
addressability of MEM 10112, performs right and left alignment of data, zero fill of data, sign extension
operations, and other data manipulation operations described further below. In performing these data
manipulation operations on data read from MEM 10112 to JP 10114, MOD Bus 10144 ls used as a data path
internal to MEM 10112 for transferring of data from MC 20116 to FlU 20120, and from FIU 20120 to MC
20116. That is, data to be transferred to JP 10114 is read from MC 20116, transferred through MOD Bus
lC144 to FIU 20120. manipulated by FIU 20120, and transferred from FIU 20120 to JP 10114 through MODBus 10144.

MIC 20122 contains circuitry controlling operation of MEM 10112 and, in particular, controls MEM
101 12's interface with JP 10114 and lOS 10116. MIC 20122 receives MEM10112 read and write request. that
is read and write addresses through PD Bus 10146 and IOM Bus 10130 and control signals through JPMC
Bus 10147 and IOMC Bus 10131, and provides control signals to BC 20114, MC 20116, and Flu 20120
through MCNT1. Bus 20164.

Having described the overall structure and operation of MEM 10112, the structure and operation of
MEM 101125 Port, M10 Port 10128, and MJP Port 10140, will be described next. followed by descriptions of
MEM 10112’s control stnrcture and the control and flow of MEM 10112 read and write requests.

d. MEM 10112 Fort Structure

MEM 10112 port structure is designed to provide a simple interface to JP 10114 and IOS 10116. While
providing fast and flexible operation in servicing MEM 10112 read and write requests from JP 10114 and
IOS 10116. In this regard, MEM 10112, as will be described further below, may handle up to 4 read and write
requests concurrently and up to, for example, a .6 M-byte per second data rate. In addition MEM 10112 is
capable of perfonning bit granular addressing, block read and write operations, and data manipulations,
such as alignment and filling, to enable JP 10114 and IOS 10116 to operate most efficiently.

MEM 10112 effectively services requests from three ports. These ports are M10 Port 10128 to I05
10116, hereafter referred to as l0 Port, and JI and J0 Ports, described above, to JP 10114. These three ports
share the entire address base of MEM 10112, but IOS 10116, for example, may be limited from making full
use of MEM 101 12's address space. Each port has a different set of allowed operations. For example, J0
Port can use a bit granular addresses but can reference only 32 bits of data on each request. Jl Port can
make read requests only to word align 32 bit data items. 10 Port may reference bit granular data, and, as
described further below, may read or write up to 16 bytes on each read or write request. The characteristics
of each of these ports will be discussed next below.

1. IO Port Characteristics

. IOS 10116 may access MEM 10112 in either of two modes. The first mode is black transfers by-passing
or through the cache in MC 20116, and the second is non-block transfer through the cache and MC 20118.

Block by-passes may occurfor both read and write operations. A read or write operation is eligible for a
block by-pass if the data is on block boundaries, is 16 bytes long, and the read or write request is not
accompanied by a control signal indicating that en encache (load into MC 20116's che) operation is to be

44

Petitioner Apple Inc. — Exhibit 1024, p. 4089

Petitioner Apple Inc. - Exhibit 1024, p. 4090

EP .0 067 556 B1

performed. A by-pass operation takes place only if the block address, that is the physical address of the
block in MEM 10112 does not address a currently encached block, that is the block is not present in MC
20116's cache. if the block is encached in MC 20116's cache, the read or write transfer is to MC 20116's
cache.

5 Partial block references, that is non-full block transfers will go through MC 20116's cache. If a cache
miss occurs, that is the reference data is not present in MC 20116's cache. MEM 10112's control structures
transfer the data to or from MSB 20110 and update MC 20116's cache. it should be noted that partial blocks
may be as short as one byte, or up to 15 bytes long. A starting byte address may be anywhere within a
block. but the partial block's length may not cross a block boundary.

10 Bit length transfers, that is transfers of data items having a length of 1 to 16 bits and not a multiple of a
byte, or where address is not on a byte boundary, go through MC 20116's cache. These operations may
cross byte, word, or block boundaries but may not cross page boundaries. These specific operations
requested by IO port determines whether a read or write request is a partial block or bit length transfer.

75 2. J0 Port Characteristics

All read or write requests from JO Port must go through MC 20116's cache; by—pass operations may
not be perfonned. The data transferred between MEM 10112 and JP 10114 is always 32 bits in length but. of
the 32 bits passed. from zero to 32 bits may be valid data. JP 10114 determines the location of valid data
within the 32 bits by referring to certain FlU specification bits provided as part of the read or write request.

20 As will be described further below, FIU specification bits. and other control bits. are provided to MIC 20122
by JP 10114 through JPMC Bus 10147 when each read or write request is made.

While MEM 10112 does not perform block by-pass operations to JP 10114, MEM 10112 may perform a
cache read-through operation. Such operations occur on a JP 10114 read request wherein the requested
data is not present in MC 20116's cache. if the JP 10114 read request is for a full word. which is word

; 25 aligned, MEM 10112's Load Manager. discussed below, transfers the requested data directly to JP 10114
while concurrently loading the requested data into MC 20116's cache. This operation is referred to as a
"hand-off" operation. These operations may also be performed by l0 Port for 16 bit half words aligned on
the right hand half word of a 32 bit word, or its full block is handed left and loaded into MC 20116's cache.

:0 3. J1 Port Characteristics

All Jl Port requests are satisfied through MC 20116's cache: MEM 10112 does not perfonn by-pass
operations to J! Port. Jl Port requests are always read requests for fulI—word aligned words and are handed
off, as described above. if a cache miss occurs. in most other respects, Jl Port requests are similar to JO
Port requests.

35 Having described the overall structure and operation-of MEM 10112, including MEM 10112's input and
output ports to JP 10114 and Kits 10116, MEM 10112's control structure will be described next below.

e. MEM 10112 Control Structure and Operation (Fig. 207) .
Referring to Fig. 207, a more detailed block diagram of MIC 20116 is shown. H9. 207 will be referred to

40 in conjunction with I-‘lg. 201 in the following discussion of MEM 10112’s control structure.

1. MEM 10112 Control Structure

Referring first to Fig. 207, MCNTL Bus 20164 is represented as including MCNTL-BC Bus 20164A,
MCNTL-MC Bus 201643, and MCNTL-FlU Bus 2016-4C. Buses 20164A, 201643, and 20164C are branches of

as MCNTL Bus 20164 connected to, respectively, BC 20114, MC 20116, and FIU 20120. Also represented in Fig.
207 are PD Bus 10146 and JPMC Bus 10147 to JP 10114. and IOM Bus 10130 and IOMC Bus 10131 to 105
10116.

J0 Port Address Register (JOPAR) 20710 and JI Fort Address Register (JlPAR) 20712 have inputs
connected from PD Bus 10146. 10 Port Address Register (IOPAR) 20714 has an input connected from IOM

so Bus 10130. Fort Control Logic.(PC) 20716 has a bi-directional input/outputs connected from JPC 10147 and
IOMC Bus 10131. By-pass ReadlWrite Control Logic (BR/WC) 20718 has a bidirectional inputloutput
connected from IOMC Bus 10131. -

Outputs of JOPAR 20710, JIPAR 20712. and IOPAR 20714 are connected to inputs of Port Request
Multiplexer (PRMUX) 20720 through, respectively, Buses 20732, 20734. 20736. PRMUX 20720’s output in

55 turn is connected to Bus 20738. Branches of Bus 20738 are connected to inputs of Load Pointers (LP) 20724.
Miss Control (MISSC) 20726, and Request Manager (RM) 20722, and to Buses MCNTL-MC 201648 and
MCN'TL-FIU 20164C.

Outputs of PC 20716 are connected to inputs of JOPAR 20710, JIPAR 20712, IOPAR 20714, PRMUX
20720, and LP 20724 through Bus 20738. Bus 20740 is connected between an input/output of PC 20716 and

5a in inputloutput of RM 2072.

An output of BRIWC’ 20718 is connected to MCNTL-MC Bus 201648 through Bus 20742. Inputs of BRI
WC 20718 are connected from outputs of RM 20722 and Read Queue (R0) 20728 through, respectively,Buses 20744 and 20746.

RM 2072 has outputs connected to MCNTL-BC Bus'20164A, MCNTL-HU Bus 20164C, and input of
55 MISSC 20726, and an input of LP 20724 through, respectively, Buses 20748, 20750, 20752. and 20754.

45 .

Petitioner Apple Inc. — Exhibit 1024, p. 4090

Petitioner Apple Inc. - Exhibit 1024, p. 4091

I0

15

20

30

55

as o 067 555 £31"

MISSC 20726's output is connected to MCN'l'L-BC Bus 20164A. Outputs of LP 20724 are connected to
MCNTL-MC Bus 20164B and to an input of LM 20730 through, respectively, Buses 20756 and 20758. HO
20728’s input is connected from MCNTL-MC Bus 20164B through Bus 20760 and R0 20728 has outputs

. connected to an input of LP 20724. through Bus 20762, and as previously described to an input of BRIWC
20718 through Bus 20746. Finally, LM 20730’s output is connected to MCNTL-MC Bus 201648 through Bus20764.

Having described the structure of MIC 20716 with reference to Fig. 207, and having previously
described the structure of MEM 10112 with reference to l-‘lg. 201, MEM 10112's control structure operation
will next be described with reference to both figures 201 and 207.

2. MEM 10112 Control Operation

Referring first to Fig. 207, JOPAR 20710, JIPAR 20712, and IOPAR 20714 are, as previously described, .
connected from PD Bus 10146 from JP 10114 and IOM Bus 10130 from l0S 10116. JPAR 20710, JIPAR
20712, and IOPAR 20714 receive read and write request addresses from JP 10114 and lOS 10116 and store
these addresses for subsequent service by MEM 10112. As will be described further below, these address
inputs from JP 10114and IOS 10116 include FIU information specifying whatdata manipulation operations
must be performed by FlU 20120 before requested data istransferred to the requester or written into MEM
10112, information regarding the destination data read from MEM 10112 is to be provided to, information
regarding the type of operation to be performed by MEM 10112, and information regarding operand length.
Request address infomtation received and stored in JOPAR 20710, JIPAR 20712, and IOPAR 20714 is
retained therein until MEM 10112 has initiated service of the corresponding requests. MEM 10112 _will
accept further request address information into a given port register only after a previous request into that
port has been serviced or aborted. Address infonnafion outputs from JOPAR 20710. JIPAR 20712, and
IOPAR 20714 is transferred through PRMUX 20720 to Bus 20738 and from there to RM 20722, MC 20116,
and FIU 20120 as service of individual requests is initiated. As will be described below, this address
information will be transferred through PRMUX 20720 and Bus 20738 to LP 20724 for use in servicing a
che miss upon occurrence of a MC 20116 miss.

PC 20716 receives command and control signals pertinent to each requested memory operation from
JP 10114 and [OS 10116 through JPMC Bus 10147 and l0SC Bus 10131. PC 20716 includes request
arbitration logic and port state logic. Request arbitration logic determines the sequence in which IO, Jl, J0
ports are serviced, and when each port is to be serviced. In determining the sequence of port service,
request arbitration logic uses present port state information for each port from the port state logic, .
information from JPMC Bus 10147 and l0MC Bus 10131 regarding each incoming request, and information
from RM 20722 concerning the present state of operation of MEM 10112. Port state logic selects each
partiwlar port to be serviced and, by control signals through Bus 20738, enables transfer of each port's
request address information from JOPAR 20710, JlPAR 20712, and IOPAR 20714 through PRMUX 20720 to
Bus 20738 for use by the remainder of MEM 10112's control logic in servicing the selected port. In addition
to request infonnation received from JP 10114 and IOS 10116 through JPMC Bus 10147 and IOMC Bus
10131, portstate logic utilizes information from RM 20722 and, upon occurrence of a cache miss, from LM
20730 (for clarity of presentation, this connection is not represented in Fig. 207). Port state logic also
controls various port state flag signals, for example port availability signals, signals indicating valid
requests, and signals indicating that various ports are waiting service.

RM 207fl controls execution of service for each request. RM 20722 is a microcode controlled
"micromachine" executing programs called for by requested MEM 10112 operations. inputs of RM 20722
include request address information from IOPAR 20714, JIPAR 20212, and JOPAR 20210, including
information regarding the type of MEM 10112 operation to be perfonned in servicing a particular request,
intenupt signals from other MEM 10112 control elements, and, for example, start signals from PC 20716‘s
request arbitration logic. RM 2072 provides control signals to FIU 20120, MC 20116, and most other partsof MEM 10112's control structure.

Referring to Fig. 201, MC 20116's cache is, for example, an 8 Kilo-byte, four set associative cache used
to provide rapid access to a subset of data stored In MSB 20110. The subset of MSB 20110 data stored in
MC 20116’s cache at any time is the data most recently used by JP 10114 or lOS 10116. MC 20116's cache,
described further below, includes tag store comparison logic for detennining encached addresses, a data
store containing corresponding encached data. and registers and logic necessary to update cache contents
upon occunence of a cache miss. Registers and logic for servicing cache’ misses includes logic for
determining the least recently used cache entry and registers for capture and storage of information
regarding missed cache references, for example modify bits and replacement page numbers. inputs to MC
20116 are provided from RM 2072, LM 20730 (discussed further below), FIU 20120, MSB 20110 (through
BC 20114), LP 20724 (described further below) and address information from PRMUX 20720. Outputs of MC
20116 include data and go to FIU 20120 (through MOD Bus 10144), the data requestors (JP 10114 and IOS
10116), and a MC 20116 Write Back File (described further below).

As previously described, FIU 20120 includes logic necessary to make MEM 10112 appear bit
' addressable. In addition, FIU 20120 includes logic for performing certain data manipulation operations as

required by the requestors (JP 10114 or IOS 10116). Data is transferred into FIU 20120 from MC 20116
through that portion of MOD Bus 10144 internal to MEM 10112, is manipulated as required, and is then

46

Petitioner Apple Inc. — Exhibit 1024, p. 4091

Petitioner Apple Inc. - Exhibit 1024, p. 4092

10

20

60

EP 0 oer 556 B1.

transferred to the requestor through MOD Bus 10144 or MIO Bus 10129. In the case of writes requiring read-
modify-write of encached data, the data is transferred back to MC 20116 through MOD Bus 10144 after
manipulation. In general, data manipulation operations include locating requested data onto selected MOD
Bus 10144 or MIO Bus 10139 lines and filling unused bus lines as specified by the requestor. Data inputs to
HU 20120 may be provided from MC 20116 orJP10114through MOD Bus 10144 or from IOS 101 16 through
IOM Bus 10130. Data outputs from FIU 20120 may be provided to MC 20116, JP 10114, or IOS 10116
through these same buses. Control information is provided-to FIU 20120 from RM 20722 through Bus 20748
and MCNTL-FIU Bus 20164C. Address infonnation may be provided to FIU 20120 from JOPAR 20710, JIPAR
20712, or IOPAR 20714 through PRMUX 20720, Bus 20738, and MCNTL-FIU Bus 20164C. _

Retuming to Fig. 207, MlSSC 20726 is used in handling MC 20116 misses. In the event of a request
referring to data not in MC 20116's cache, MlSSC 20726 stores block address of the reference and type of
operation to be performed, this information being provided from an address register in Mi: 20116 and from
RM 2072. MISSC 20726 utilizes this information in generating a command to BC 20114, through MCNTL-
BC Bus ‘20164A, for a data read from MSB 20110 to obtain the referenced data. BC 20114 places this
command in a queue, or register, and subsequently executes the commanded read operation. MISSC
20726 also generates an entry into R0 20728 (described further below) indicating the type of operation to
be performed when referenced data is subsequently read from MSB 20110.

R0 20728 is, for example. a three-level deep queue storing information indicating operations
associated with data being read from MSB 20110. Two kinds of operation may be indicated: block by-pass
reads and che loads. if a cache load is specified, that is a read and store to MC 20116's cache, is indicated.
RM 2072 is interrupted and forced to place other MEM 10112 operations in Idle until cache load is
completed. A block by-pass read operation results in by—pass read control (described below) assuming
control of the data from MSB 20110. Inputs to R0 20728 are control signals from RM 20752, MISSC 20726,
and BC 20114. R0 20728 provides control outputs to LP 20724 (described below) LM 20730 (described
below) RM 20722, and by—pass read control (described below).

LP 20724 is a set of registers for storing infomtation necessary for servicing MC 20116 misses that
result in orderto load MC 201 16's tag store. LM 20730 uses this information when data stored in MSB 201 10
and read from MSB 20110 to service a MC 20116 cache miss, becomes available through BC 20114. Inputs
to LP 20724 include the address of the missing reference, provided from JOPAR 20710, JIPAR 20712, or
IOPAR 20714 through PRMUX 20720 and Bus 20738, commands from RM 2072, and a control signal from
R0 20728. LP 20724 outputs include addresses of missed references to MC 20116, through Bus 20756 and
MNC'TL-MC 201648. and command signals to LM 20730 and BRIWC 20718.

LM 20730, referred to above, controls loading of MC 20116's cache with data from MSB 20110 after
occurrence of a cache miss. R0 20728, referred to above, indicates, for each data read from MSB 20110,
whether the data read is the result of a MC 20116 cache miss. If the data is read from MSB 20110 as a result

of a cache miss, LM 20730 proceeds to issue a sequence of control signals for loading the data from MSB
20110 and its associated address into MC 20116's cache. This data is transferred into MC 20116's cache data

store while the block address, from LP 20724 is transferred into the tag store (described in the following
discussion) of MC 20116's cache. if the transfer of data into MC 20116's cache replaces data previously
resident in that cache, and that previous data is "dirty". that is has been written into so as to be different
from an original copy of the data stored on MSB 20110, the modified data resident in MC 20116's cache
must be written back into MSB 20110. This operation is performed through a Write Back File contained in
MC 20116 and described below. In the event of such an operation, LM 20730 initiates a write back operation
by MC 20116 and BC 20114, also as described below. ' '

As will be described further in a following description, all MC 20116 cache load operations are full 4
word blocks. A request resulting in a MC 20116 cache miss may result in a "hand—off", that is a read
operation of a full 4 word block. Handoff operations also may be of single 32 bit words wherein a 32 bit
word aligned word is transferred from JP 10114 or a 16 bit operand alignedon the right half-word is
transferred from IOS 10116. In such a handoff operation, LM 20730 will send a valid request signal to the
requesting port and a handoff operation will be performed. Otherwise, a waiting signal will be sent to the
requesting port and the request will re-enter the priority queue of PC 20716 for subsequent execution. To
accomplish these operations, LM 20730 receives input from R0 20728, (not shown in Fig. 207 for clarity of
presentation) and LP 20724. LM 20730 provides outputs to port state logic of PC 20716, to MC 20116, MC
20116's Write Back file and MC 20116's Write Back Address Register and to BC 20114.

Referring to Fig. 201, as previously discussed IOS 20116 may request a full block write operation
directly to MSB 20110. Such a by-pass write request may be honored if the block being transferred is not
encached in MC 20116's cache. In such a case, RM 20722 will initiate the transfer setting up By-pass Write
Control logic in BR/WC 20718, and may then pass control of the operation over to BR/WC 20718's By-Pass
Write Control logic for completion. By-pass Write Control may then accept the remaining portion of the
data block from lOS 10116. generating appropriate hand shaking signals through IOMC Bus 10131, and
load the data block into BYF 20118 and MC 20116. MISSC 20726 will provide a by-pass write command to
BC 20114, through MNCTL-PC Bus 20164A. BC 20114 will then transfer the data block from BYF 20118 and
into MA's 20112 and MSB 20110.

As previously described, BYF 20118 receives data from IOM Bus 10130 and provides data output to BC

20114 through BWY Bus 20178 and SBD Bus 20146. BYF20118 is capable of simultaneously accepting data

47

Petitioner Apple Inc. — Exhibit 1024, p. 4092

Petitioner Apple Inc. - Exhibit 1024, p. 4093

10

45

50

Eli” 0 067 556 [311

from IOM Bus 10130 while reading data out to BC 20114. Control of writing data into BYF 20118 is provided
from BRIWC 20718's By-Pass Write Control logic.

IOS 10116 may, as previously described, request a full block read operation by-passing MC 20116's
cache. In such a case, BR/WC 20718's by—pass read control handles data transfer to I05 10116 and
generates required hand shaking signals to IOS 10116 through IOMC Bus 10131. The data path for by-pass
read operations is through a data path internal to MC 20116, rather than through BYF 20118. This internal
data path is RDO Bus 20158 to Ml0 Bus 10129. '

As previously described, BC 20114 manages all data transfers to and from MA's 20112 in MSB 20110.
BC 20114 receives requests for data transfers from RM 20722 in an internal queue register. All data
transfers to and from MSB 20110 are full block transfers with block aligned addresses. On data write
operations, BC 20114 receives data from BWF 20118 or from MC 20116's Write Back File and transfers the
data into MA's 20112. During read operations, BC 20114 fetches the data block from MA's 20112 and places
the data block on RDO Bus 20158 while signalling to MIC 20122 that the data is available. As described
above, MIC 20122 tracks and controls transfer of data and BYF 20118, MC 20116, and MC 20116's Write Back
File, and directs data read from MSB 20110 to the appropriate destination, MC 20116's Data Store, JP
10114, or IOS 10116.

In addition to the above operations, BC 20114 controls refresh of MA's 20112 and performs error
detection and correction operations. in this regard, BC 20114 performs two error detection and correction
operations. In the first. BC 20114 detects single and double bit errors in data read from MSB 20110 and
corrects single bit errors. In the second, BC 20114 reads data stored in MA's 20112 during refresh
operations and perfomts single bit en-or detection. Whenever an error is detected. during either read
operations or refresh operations, BC 20114 makes a record of that error in an error log contained in BC
20114 (described further in a following description). Both JP 10114 and IOS 10116 may read BC 20114’s
error log, and information from BC 20114‘s error log may be recorded in a CS 10110 maintenance log and to
assist in repair and trouble shooting of CS 10110. BC 20114’s error log may be addressed directly by RM
2072 and data from BC 20114's error log is transferred to JP 10114 or lOS 10116 in the same manner as
data stored in MSB 20110.

Referring finally to MA's 20112, each MA 20112 contains an array of dynamic semiconductor random
access memories. Each MA 20112 may contain 256 Kilobytes, 512 Kilo-bytes. 1 Mega-bytes. or 2 Mega-
bytes of data storage. The storage capacity of each MA 20112 is organized as segments of 256 Kilo-bytes
each. In addressing a particular MA 20112. BC 20114 selects that particular MA 20112 as will be described
further below. BC 20114 concurrently selects a segment within that MA 20112, and a block of four words
within that segment. Each word may comprise 39 bits of information. 32 bits of data and 7 bits of error
correcting code. The full 39 bits of each MA 20112 word are transferred between BC 20114 and MA's 20112
during each read and write operation. Having briefly described the general structure and operation of MEM
10112. certain types of operations which may be performed by MEM 10112 will be described next below.

f. MEM 10112 Operations
MEM 10112 may perform two general types of operation. The first type are data transfer operations

and the second type are memory maintenance operations. Data transfer operations may include read,
write, and read and set. Memory maintenance operations may include read error log, repair block, and
flush cache. Except during a flush cache operation, the existence of MC 20116 and its operation is invisible
to the requestors, that is JP 10114 and IOS 10116.

A MEM 10112 read operation transfers data from MS 10112 to a requester, either JP 10114,or IOS
10116. A read data transfer is asynchronous in that the requestor cannot predict elapsed time between
submission ofa memory operation request and return of requested data. Operation of a requester in MEM
10112 is coordinated by a requested data available signal transmitted from MEM 10112 to the requester.

A MEM10112 write operation transfers data from either JP 10114 or IOS 10116 to MEM 10112. During
such operations, JP 10114 is not required to wait for a signal from MEM 10112 that data provided to MEM
10112 from JP 10114 has been accepted. JP 101 14 may transfer data to MEM 10112's JO Port whenever a
J0 Port available signal from MEM 10112 is present: read data is accepted immediately without further
action or waiting required of JP 10114. Word write operations from IOS 10116 are performed in a similar
manner. On block write operations. however, IOS 10116 is required to wait for a data taken signal from
MEM 10112 before sending the 2nd, 3rd and 4th words of a block.

MEM 10112 has a capability to perform "lock bit" operations. In such operations, a bit granular read of
the data is performed and the entire operand is transmitted to the requestor. At the same time, the most
significant bit of the operand, that is the Lock Bit, is set to one in the copy of data stored in MEM 10112. In
the operand sent to the requester, the lock bit remains at its previous value, the value before the current
read and set operation. Test and set operations are performed by performing read and set operations
wherein the data item length is specified to be one bit.

As previously described, MEM 10112 perfonns certain maintenance operations, including error
detection. MEM 10112's Error Log in BC 20114 is a 32 bit register containing an address field and an error
code field. On a first error to occur, the error type and in some cases, such as ERCC errors on read data
stored in MSB 20110, the address of the data containing the error are stored in BC 20114’s Error Log

Register. An interrupt signal indicating detection of an error is raised at the same that information

48

Petitioner Apple Inc. — Exhibit 1024, p. 4093

Petitioner Apple Inc. - Exhibit 1024, p. 4094

.20

26

55

60

65

EP 0 067 556 B1

regarding the error is stored in the Error Log. if multiple errors occur before Error Log is read and reset, the
Information regarding the first error will be retained and will remain valid. The Error Log code field will,
however, indicate that more than one error has occurred.

JP 1_0114 may request a read Error Log operation referred to as a "Read Log and Reset" operation. In
this operation, MEM 10112 reads the entire contents of Error Log to JP 10114, resets Error Log Register, and
resets the interrupt signal indicating presence of an error. IOS 10116, as discussed further below, is limited
to reading 16 bits at a time from MEM 10112. It therefore requires two read operations to read Error Log.
First read operation to lOS 10116 reads an upper 16 bits of Error Log data and does not reset Error Log. The
second read operation is performed in the same manner as a JP 10114 Read Log and Reset operation,
except that only the low order 16 bits of Error Log are read to I08 10116.

MEM 10112 perfonns repair block operations to correct parity or ERCC errors in data stored in MC
20116’s Cache or in data stored in MA's 20112. In a repair block procedure, parity bits for data stored in MC
20116's Cache, or ERCC check bits of data stored in MA's 20112, are modified to agree with the data bits of
data stored therein. In this regard, repaired uncorrectible errors, such as two bit errors of data in MA's
20112, will have good ERCC and parity values. Until a repair block operation is performed, any read request
directed to bad data, that is data having parity or ERCC check bits indicating invalid data, will be flagged as
invalid. Repair block operations therefore allow such data to be read as valid. for example to be used in a
data correction operation. Errors are ignored and not logged in BC 20114’s Error Log in repair block
operations. A write operation into an area containing bad data may be accomplished if_ MEM 10112's
internal operation does not require a read-modified-write procedure. Only byte aligned writes of integral
byte length data resicfing in MG 20116 and word aligned writes of integral word lengths of data in MSP
20110 do not require read-rnodified-write operation. By utilizing such write operations, it is therefore
possible to overwrite bad data by use of normal write "operations before or instead of repair block
operations.

MEM 10112 performs a cache flush operation in event of a power failure, that is when MEM 10112 goes
into battery back-up operation. In such an event, only MA's 20112 and BC 20114 remain powered. Before JP
10114 and IOS 10116 lose power, JP 10114 and l0S10116 musttransfer to MEM 10112 any data, including
operating state, to be saved. This is accomplished by using a series of normal write operations. After
conclusion of these write operations, both JP 10114 and IOS 10116 transmit a flush cache request to MEM
10112. Upon receiving two flush cache requests. MEM 10112 flushes MC 20116's Cache so that all dirty data
encached in MG 20116's Cache is transfened into MA's 20112 before power is lost. If only JP 10114 or IOS
10116 is operating, DP 10118wiIl detect this fact and will have transmitted an enabling signal (FLUSHOK) to
MEM 10112 during system initialization. FLUSHOK enables MEM 10112 to perform cache flush upon
receiving a single flush cache request. After a cache flush operation. no further MEM 10112 operations are
possible until Dp 10118 resets a power failure lock-out signal to enable MEM 10112 to resume normal
operation. - -

Having described MEM 10112's overall structure and operation and certain operations which may be
performed by MEM 10112, MEM 10112's interfacesto JP 10114 and IOS 10116 will be described next below.

9. MEM 10112 interfaces to JP 10114 and IOS 10116 (Figs. 209, 210, 211, 204)
As previously described, MJP Port 10140 and Mlo Port 10128 logically function as three independent

ports. These ports are an ID Portto IOS 10116, a JP Operand Port to JP 10114 and a JP instruction Port to JP
10114. Referring to Figs. 209, 210, and 211, diagramic representations of IO Port 20810, JP Operand (JPO)
Port 21010, and JP instruction lJPl) port 21110 are shown respectively.

l0 Port 20910 handles all IOS 10116 requests to MEM 10112, including transfer of both instructions and
operands. JPO Port 21010 is used for read and write operations of operands. for example numeric values,
to and from JP 10114. JPI Port 21110 is used to read SlNs. that is SOPs and operand NAMEs, from M_EM
10112 to JP 10114. Memory service requests to a particular port are serviced in the order that the requests
are provided to the Port. Serial order is not maintained between requests to different ports. but ports may
be serviced in the order of their priority. In one embodiment of the present invention, l0 Port 20910 is
accorded highest priority, followed by JPO port 21010, and lastly by JPI Port 21110, with requests currently
contained in a port having priority over incoming requests. As described above and will be described in
more detail in following descriptions, MEM 10112 operations are pipelined. This pipelining allows
interleaving of requests from I0 Port 20910, JPO Port 21010, and JPI port 21110, as well as overlapping
service of requests at a particular port. By overlapping operations it is meant that one operation servicing a
particular part begins before a previous operation servicing that port has been completed.

1. IO Port 20910 Operating Characteristics (Figs. 209, 204)
Referring first to Fig. 203, a diagramic representation of IO port 20910 is shown. Signals are transmitted

between IO Port 20910 and IOS 10116 through Ml0 Bus 10129. IOM Bus10130, and IOMC Bus 10131. Ml0
Bus 10129 is a unidirectional bus having inputs from MC 20116 and FlU 20120 and dedicated to transfers of
data andinstructlons from MEM 10112 to IOS 10118. IOM Bus 10130 is likewise a unidirectional bus and is
dedicated to the transfer, from IOS 10118 to MEM 10112, of read addresses, write addresses. and data to be
written into MEM 10112. lOM Bus 10130 provides inputs to BYF 20118, FlU 20120, and MIC 20122. IOMC
Bus 10131 is a set of dedicated signal lines forthe exchange of control signals between lOS10118 and MEM

49

Petitioner Apple Inc. — Exhibit 1024, p. 4094

Petitioner Apple Inc. - Exhibit 1024, p. 4095

10

15

25

EP 0 067 556 B1

10112. ' ‘

Referring first to Ml0 Bus 10129, Ml0 Bus 10129 is a 36 bit bus receiving read data inputs from M
20116's Cache and from FIU 20120. A single read operation from MEM 10112 to I08 10116 transfers one 32
bit word (or 4 bytes) of data (M|Ol0—31)) and four hits of odd parity (MlOPl0—3)). or one parity bit per byte.

Referring next to IOM Bus 10130, a single transfer from IOS 10116 to MEM 10112 includes 36 bits of
information which may comprise either a memory request comprising a physical address, a true length,
and command bits. These memory requests and data are multiplexed onto IOM 10130 by IOS 10116.

Data transfers from IOS 10116 to MEM 10112 each comprise a single 32 bit data word (lOM(0—31)) and
four hits of odd parity (IOMP(0—3)) or one parity bit per byte. Such data transfers are received by either BYF
20118 or FlU 20120. -

Each IOS .10116 memory request to MEM 10112, as described above, an address field, a length field,
and an operation code field. Address and length fields occupy the 32 IOM Bus 10130 lines used for transfer
of data to MEM 10112 in [05 10116 write operations. Length field includes four bits of information
occupying bits (l0M(03)) of lOM Bus 10130 and address field contains 27 bits of information occupying bits
llOM(4—31)) of IOM Bus 10130. Together, address and length field specify a physical starting address and
true length of the particular data item to be written into or read from MEM 10112. Operation code field
specifies the type of operation to be perfonned by MEM 10112. Certain basic operation codes comprise 3
bits of information occupying bits llOMF (32-36)) of IOM Bus 10130; as described above. These same lines
are used for transfer of parity bits during data transfers. Certain operations which may be requested of
MEM 10112 by IOS 10116 are, together with their corresponding command code fields, are;

000 = read.
001 = read and set.
010 =- write,
011 = error,
100 = read error log (first half),
101 = read error log (second half) and reset,
110 = repair block. and
111 = flush cache.

Two further command bits may specify further operations to be performed by MEM 10112. A first
command bit, indicates to MEM 10112 during write operations whether it is desirable to encache flue data
being written into MEM 10112 in MC 20116's Cache. IOS 10116 may setthis bit to zero if reuse of the data is
unlikely. thereby indicating to MEM 10112 that MEM 10112 should avoid encaching the data. IOS 10116
may set this bit to one if the data is likely to be reused, thereby indicating to MEM 10112 that it is preferable
to encache the data. A second command bit is referred to a CYCLE. CYCLE command bit indicates to MEM
10112 whether a particular data transfer is a single cycle operation, that is a bit granular word, or a four
cycle operation. that is a block aligned bloc|_<__or a byte aligned partial block.

IOMC 10131 includes a set of dedicated lines for exchange of control signals between IOS 10116 and
MEM 10112 to coordinate operation of l0S 10116 and MEM 10112. A first such signal is Load l0 Request
(LlOR)frorn lOS10116 to MEM 10112. When IOS 10116 wishes to load a memory request into MEM 10112,
IOS 10116 asserts UOR to MEM 1011?. [OS 10116 must assert UOR during the same system cycle during
which the memory request, that is address. length. and command code fields, are valid. -

lf LIOR and I0 Port Available (IOPA) signals, described below, are asserted during the same clock cycle,
MEM 10112'5 port is loaded from l0S10116 and IOPA is dropped, indicating the request has been accepted.
if a load of a request is attempted and IOPA is not asserted, MEM 10112 remains unaware of the request,
UOR remains active. and the request must then be repeated when IOPA is asserted.

IOPA is a signal from MEM 10112 to IOS 10116 which is asserted by MEM 10112 when MEM10112 is‘
available to accept a new request from IOS 10116. lOPA may be asserted while a previous request from IOS
10116 is completing operation if the address, length. and operation code fields of the previous request are
no longer required by MEM 10112, for example in servicing bypass operations.

I0 Data Taken (TIOMD) is a signal from MEM 10112 to I05 10116 indicating that MEM 10112 has
accepted data from IOS 10116. IOS 10116 places a first data word on IOM Bus 10130 on the next system
clock cycle after a write request is loaded; that is, UOR has been asserted, a memory request presented,
and IOPA dropped. MEM 10112 then takes that data word on the clock edge beginning the next system
clock cycle. At this point. MEM 10112 asserts TIOMD to indicate the data has been accepted. On a single
word operations 1'l0MD is not used by IOS 10116 as a first data word is always accepted by MEM 10112 if
I0 Port 20910 was available. On block operations, a first data word is always taken but a delay may occur
between acceptance of first and second words. I03 1 0116 is required to hold the second word valid on IOM
Bus 10130 until MEM 10112 responds with 110MB to indicate that the block operation may proceed.

Data Available for ID (DAVIO) is a signal asserted by MEM 10112 to IOS 10116 indicating that data
requested by lOS 10116 is available. DAVIO is asserted by MEM 10112 during the system clock cycle In
which MEM 10112 places the requested data on Ml0 Bus 10129. In any single word type transfer. DAVIO is
active for a single system clock transfer. In block type transfers, DAVIO is normally 'active for four
consecutive system clock cycles. Upon event of a single cycle "bubble" resulting front detection and

50

Petitioner Apple Inc. — Exhibit 1024, p. 4095

Petitioner Apple Inc. - Exhibit 1024, p. 4096

15

20

40

45

55

6'0

65

EP 0 067 556 B1

correction of an ERCC error by BC 20114, DAVIO will remain high for four non-consecutive system clock
cycles and with a single cycle bubble, a non-assertion, in DAVl0 corresponding to the detection and
correction of the error.

l0 Memory Interrupt (IMINT) is a signal asserted by MEM 10112 to I05 10116 when BC 20114 places a
record of a detected error in BC 20114's Error Log, as described above.

Previous MlO Transfer Invalid iPMlOl) signal is similarly a signal asserted by MEM 10112 to I05 10116
regarding errors in data read from MEM 10112 to IOS 10116. If an uncorrectible error appears in such data,
that is an error in two or more data bite, the incorrect data is read to IOS 10116 and PMlOl signal asserted by
MEM 10112. Correctible, or single bit. errors in data do not result in assertion of PMlOl. MEM 10112 will
assert PMlOl to lOS 10116 of the next system clock cycle following MEM 10112's assertion of DAVl0.

Having described MEM 10112's interface to I08 10116, and certain operations which IOS 10116 may
request of MEM 10112, certain MEM 10112 operations within the capability of the interface will be
described next. First, operand transfers, for example of numeric data, between MEM 10112 and lOS 10116
may be‘ hit granular with any length from one to sixteen bits. Operand transfers may cross boundaries
within a page but may not cross physical page boundaries. As previously described, MIO Bus 10129 and
IOM Bus 10130 are capable of transferring 32 bits of data at a time. The least significant 16 bits of these
buses, that is bits 16 to 31, will contain right justified data during operand transfers. The contents of the
most significant 16 bits of these buses is generally not defined as MEM 10112 generally does not perform
fill operations on read operations to lo Port 20910, nor does IOS 10116 fill unused bits during write
operations. During a read or write operation, only those data bits indicated by length field in the
corresponding memory request are of significance. in all cases, however. parity must be valid on all 32 bits
of M10 Bus 10129 and IOM Bus 10130.

Referring to Fig. 204. IOS 10116 includes Data Channels 20410 and 20412 each of which will be
described further in a following detailed description of I05 10116. Data Channels 20410 and 20412 each
possess particular characteristics defining certain lO Port 20910 operations. Data Channel 20410 operates
to read and write block aligned full and partial blocks. Full blocks have block aligned addresses and lengths

. of 16 bytes. Partial blocks, have byte aligned addresses and lengths of 1 to 15 bytes; a partial block transfer
must be within a block, that is not cross block boundaries. A full 4 word block will be transferred between

IDS 10116 and MEM 10112 in either case, but only those blocks indicated by length of field in a
corresponding MEM 10112 request are of actual significance in a write operation. Non-addressed bytes in
such operations may contain any infonnation so long as parity is valid for the entire data transfer. Data
Channel 20412 preferably reads or writes 16 hits at a time on double byte boundaries. Such reads and
writes are right justified on MIO Bus 10129 and IOM Bus 10130. The most significant 16 bits of these buses
may contain any information during such operations so long as parity is valid for the entire 32 bits. Data
Channel 20412 operations are similar to I05 10116 operand read and write operations with double byte
aligned addresses and lengths of 16 bits. Finally, instructions, for example controlling IOS 10116 operation,
are read from MEM 10112 to IOS 10116 a block at a time. Such operations are identical to a full black data
read.

Having described the operating characteristics of IO Port 20910, the operating characteristics of JPO
Port 21010 will be described next.

2. JPO Port 21010 Operating Characteristics (Fig. 210)
Referring to Fig. 210, a diagramic representation of JPO Port 21010 is shown. As previously described,

JPO Port 21010 is utilized for transfer of operands, for example numeric data, between MEM 10112 and JP
10114. JPO Port 21010 includes a request input (address, length, and operation information) to MIC 20122
from 36 bit PD Bus 10146, a write data input to FIU 20120 from 32 bit JPD Bus 10142, a 32 bit read data
output from MC 20116 and FIU 20120 to 32 bit MOD Bus 10144, and bi-directional control inputs and
outputs between MIC 20122 and JPMC Bus 10147.

Referring first to JPO Port 21010's read data outputto MOD Bus 10144, MOD Bus 10144 is used by JPO
Port 21010 to transfer data, for example operands, to JP 10114. MOD Bus 10144 is also utilized internal to
MEM 10112 as a bidirectional bus to transfer data between MC 20116 and FIU 20120. in this manner, data
may be transferred from MC 20116 to FIU 20120 where certain data format operations are performed on the
data before the data is transferred to JP 10114 through MOD Bus 10144. Data may also be used to transfer
data from FIU 20120 to MC 20116 after a data format operation is performed in a write operation. Data may
also be transferred directly from MC 20116 to JP 10114 through MOD Bus 10144. Internal to MEM 10112,
MOD Bus 10144 is a 36 bit bus for concurrent transfer of 32 bits of data. MOD Bus 10144 bits lMOD(0—<i1)),
and 4 bits of odd parity. 1 bit per byte, MOD Bus 10144 bits lMODP(0—3)). External to MEM 10112, MOD
Bus 10144 is a 32 bit bus, comprising bits (MODl0—31)); parity bits are not read to JP 10114.

Data is written into MEM 10112 through JPD Bus 10142 to FIU 20120. As just described, data format
operations may then be performed on this data before it is transferred from FIU 20120 to MC 20116 through
MOD Bus 10144. In such operations, JPD Bus 10142 operates as a 32 bit bus carrying 32 bits of data, bits
(JPD (0-31)), with no parity bits. JO Port 21010 generates parity for JPD Bus 10142 data to be written into
MEM 10112 as this data is transferred into MEM 10112.

Memory requests are also transmitted to MEM 10112 from JP 10114 through JPD Bus 10142, which
operates in this regard as a 40 bit bus. Each such request includes an address field, a length field, an FIU

51

Petitioner Apple Inc. — Exhibit 1024, p. 4096

Petitioner Apple Inc. - Exhibit 1024, p. 4097

10

15

55

50

EP 067 556 B1

field specifying data formating operations to be performed, operation code field. and a destination code
field specifying destination of data read from MEM 10112. Address field Includes a 13 brt physical page
number field, (JPPN(0—12)), and a 14 bit physical page offset field, (JPPO(0—13)). Length field Includes 6
bits of length infonnation, (JLNG(0-5)), and expresses true length of the data item to be written to or read
from MEM 10112. _

As JPD Bus 10142 and MOD Bus 10144 are each capable oftransferring 32 bits of data in a single MEM
10112 read or write cycle, 6 bits of length information are required to express true length. As will be
described in a following description, JP 10114 may provide physical page offset and length information
directly to MEM 10112, performs logical page number to physical page number translations, and may
perform a Protection Mechanism 10230 check on the resulting physical page number. As such. MEM 10112
expects to receive (JPPNl0—12)) later than lJPPO(0—13)) and (JLNG(0—5l). (JPPO(0—13)) and
(JLNGl0—5)) should, however, be valid during the system clock cycle in which a JP 10114 memory request
is loaded into MEM 10112.

Operation code field provided to MEM 10112 from JP 10114 is a 3 bit code. lJMCMD(0—2)) specifying
an operation to be fonned by MEM 10112. Certain operations which JP 10114 may request of MEM 10112,
and their corresponding operation codes. are:

000 = read;
001 = read and set;
010 = write;
011 = error;
100 = error;
101 =-— read error log and reset:
110 = repair block: and,
111 = flush ache.

_' Two bit FIU field, (JFlU(0—1)) specifies data manipulation operations to be performed in executing
read and write operations. Among the data manipulation operations which may be requested by JP 10114,
and their FlU fields, are:

00 = right justified, zero fill:
01 -= right justlfied, sign extend;
10 = left justify, zero fill; and.
11 = left iustify, blank fill.

For write operations, JPO Port 21010 may respond only to the most significant bit of FlU field, that is
the FlU field bit specifying alignment.

Finally, destination field is a two bit field specifying a JP 10114 destination for data read from MEM
1011?. This field is ignored for write operations to MEM 10112. A first bit of destination field. JPMDST,
identifies the destination to be FU 10120, and the second field, EBMDST, specifies EU 10120 as the
destination.

JPMC Bus 10147 includes dedicated lines for exchange of control signals between JPO Port 21010 and
JP 10114. Among these control signals is Load J0 Request (LJOR), which is asserted by JP 10114 when JP
10114 wishes to load a request into MEM 10112. LJOR is asserted concurrently with presentation of the
memory request to MEM 10112 through PD Bus 10146. JO Port Available (JOPA) is asserted by MEM 10112
when JPO Port 21010 is available to accept a new memory request from JP 10114. If LJOR and JOPA are
asserted concurrently, MEM 10112 accepts the memory request from JP 10114 and MEM 10112 drops
JOPA to indicate that memory request has been accepted. As previously discussed, MEM 10112 may assert
JOPA while a previous request is being executed and the PD Bus 10146 information. that is the memory
request previously provided concerning the previous request. is no longer required.

If JP 10114 submits a memory request and JOPA is not asserted by MEM 10112, MEM 10112 does not
accept the request and JP 10114 must resubmit that request when JOPA is asserted. Because, as described
above, JPPN field of a memory request from JP 10114 may arrive latecompared to the other fields of the
request, MEM 10112 will delay loading of JPPN field for a particular request until the next system clock
cycle after the request was initially submitted. MEM 10112 may also obtain this JPPN field atthe same time
it is being loaded into the port register by bypassing the port register.

JP 10114 may abort a memory request upon asserting Abort JP Request (ABJR). ABJR will be accepted
by MEM 10112 during system clock cycle after accepting memory request from JP 10114 and ABJR will
result in cancellation of the requested operation. A single ABJB line is provided for both JPO Port 21010
and JP! Port 21110 because, as described in a following description, MEM 10112 may accept only a single
request from JP 10114, to either JPO Port 21010 or to JPI port 21110, during a single system clock wcle.

Upon completion of an operand read operation requested through JPO Port 21010 MEM 10112 may
assert either of two data available signals to JP 10114. These signals are data available for FA(DAVFA) and
data available for EB(DAVEB). k previously described, a part of each read request from JP 10114 includes
a destination field specifying the intended destination of the requested data. As will be described further_

52

Petitioner Apple Inc. — Exhibit 1024, p. 4097

Petitioner Apple Inc. - Exhibit 1024, p. 4098

1|‘

I0

15

25

50

65

EP 0 067 556 B1

below, MEM 10112 tracks such destination information for read requests and returns destination
information with a corresponding information in the form of DAVFA and DAVEB. DAVFA indicates a
destination in FU 10120 while DAVEB indicates a destination in EU 10122. MEM 10112 may also assert
signal zero filled (ZFILLJ specifying whether read data for JPO Port 21010 is zero filled. ZFlLL is valid only
when DAVEB is asserted.

For JPO Port 21010 write request, the associated write data word should be valid on same system clock
cycle as the request, or one system clock cycle later. JP 10114 asserts Load JP Write Data (LJWD)' during the
system clock cycle when JP 10114 places valid write data on JPD Bus 10142.

As previously discussed. when MEM10112 detects an error in servicing a JP 10114 request MEM10112
places a record of this error in MC 20116's Error Log. When an entry is placed in Error Log for either JPO
Port 21010 or I0 Port 20910, MEM 10112 asserts an interrupt flag signal indicating a valid Error Log entry is
present. DP 10118 detects this flag signal and may direct the flag signal to either JP 10114 or IOS 1011 6, or
both. lOS 10116 or JP 10114, as selected by DP 10118, may then read and reset Error Log and reset the flag.
The interrupt flag signal is not necessarily directed to the requester, JP 10114 or lOS 10116, whose request
resulted in the error.

If an unconectible MEM 10112 error, that is an error in two or more bits of a single data word. is
detected in a read operation the incorrect data is read to JP 10114 and an imralid data signal asserted. A
signal. Previous MOD Transfer Invalid (PMODI), is asserted by MEM 10112 on the next system clock cycle
following either DAVFA or DAVEB. PMODI is not asserted for single bit errors, instead the data is corrected
and the corrected data read to JP 10114. ,

Having described JPO Port 21010's structure, and characteristics, JPl Port 21110 will be described next
below.

3. JPI Port 21110 Operating Characteristics (H9. 211)
Referring to l-‘lg. 211, a diagramic representation of JPI Port 21110 is shown. JPI port 21110 includes an

address input from PD Bus 10146 to FlU 20120, a data output to MOD Bus 10144 from MC 20116, and bi-
directional control inputs and outputs from MIC 20122 to JPMC Bus 10147. As previously described, a
primary function of JPl Port 21110 is the transfer of SOPs and operand NAMEs from MEM 10112 to JP
10114 upon request from JP 10114. JP! Port thereby performs only read operations wherein each read
operation is a transfer of a single 32 blt word having a word aligned address.

Referring to JPI Port 21 1 10 input from PD Bus 10146, read requests to MEM10112 by JP 10114for SOPs
and operand NAMEs each comprise a 21 bit word address. As described above, each JPI Port 21110 read
operation is of a single 32 bit word. As such, the five least significant bits of address are ignored by MEM
10112. For the same reason, a JPI Port 21110 request to MEM 10112 does not include a length field. an
operation code field, an FIU field, or a destination code field. Length, operation code, and FIU code fields
are not required since JPI Port 21110 performs only a single type of operation and destination code field is
not required because destination is inherent in a JPI Port 21110 request. V

The 32 bit words read from MEM 10112 in response to JPl Port 21110 requests are transferred to JP
10114 through MC 20116's 32 bit outputlao MOD Bus 10144. As in the case of JPO 21010 read outputs to JP
10114, JPl Port 21110 does not provide parity information to JP 10114.

Control signals exchange between JP 10114 and JPI Port 21110through JPMC Bus 10147 include Load
J1 Request (LJIR) and JI Port Available (JIPAI, which operate in the same manner as discussed with
reference to JPO Port 21010. As previously described, JPO Port 21010 and JPI Port 21110 share a single
Abort JP Request lABJR) command. Similariy, JPO Port 21010 and JPI Port 21110 share previous MOD
Transfer Invalid (PMODI) from MEM 10112. As described above, a JPI port 21110 request does not include a
destination field as destination is implied. MEM 10112 does, however, provide a Data Available Signal
(DAVFII to JP 10114 when a word read from MEM 10112 in response to a JPI Port 21110 request is present’
on MOD Bus 10144 and valid. ‘ ‘

Having described the overall structure and operation of MEM 10112, and the structure and operation of
MEM 10112’s interface to JP 10114 and lOS 10116. the structure and operation of FIU 20120 MEM 10112 will
next be described in further detail. '

h. FIU 20120 (Figs. 201, 230, 231)
As previously described. FIU 20120 performs certain data manipulation operations, including those

operations necessary to make MEM 10112 bit addressable. Data manipulation operations may be
performed on data being written into MEM 10112, for example, JP 10114 through JPD Bus 10142 or from
lOS 10116 through IOM Bus 10130. Data manipulations operations may also be performed on data being
read from MEM10112 to JPD10114 or IOS 10116. In case of data read to JP 10114, MOD Bus 10144 is used
both as a MEM 101 12 internal bus, in transferring data from MC 20116 to FIU 201 20 for manipulation, and to
transfer manipulated data from MEM 10112 to JP 10114. In case of data read to lOs10116, MOD Bus 10144
is again used as MEM 10112 internal bus to read data from MC 20116 to FlU 20120 for subsequent
manipulation. The manipulated data is then read from FIU 20120 to I08 10116 through MIO Bus 10129.

Certain data manipulation operations which may be performed by FIU 20120 have been previously
described. In general, a data manipulation operation consists of four distinct operations, and FIU 20120
may manipulate data in any possible manner which may be achieved through performing any combination

53

Petitioner Apple Inc. — Exhibit 1024, p. 4098

Petitioner Apple Inc. - Exhibit 1024, p. 4099

10

15

20

25

40

55

EP 0 067 556 B1

of these operations. These four possible operations are selection of data to be manipulated, rotation or‘
shifting of that data, masking of that data, and transfer of that manipulated data to a selected destination.
Each FIU 20120 data input will comprise a thirty-two bit data word and, as described above, may be
selected from input provided from JPD Bus 10142, MOD Bus 10144, and IOM Bus 10130. In certain cases, an
FIU 20120 data input may comprise two thirty-two bit words, for example, when a cross word operation is
performed generating an output comprised of bits from each of two different thirty-two bit words. Rotation
or shifting of a selected thirty-two bit data word enables bits within a selected word to be repositioned with
respect to word boundaries. When used in conjunction with the masking operation, described
momentarily, rotation and shifting may be reiterably perfonned to transfer any selected bits in a word to
any selected locations in that word. As will be described further below, a masking operation allows any
selected bits of a word to be affectively erased, thus leaving only certain other selected bits, or certain
selected bits to be forced to predetermined values. A masking operation may be performed, for example, to
zero fill or sign extend portions of a thirty-two bit word. in conjunction with a rotation or shifting operation,
a masking operation may, for example, select a single bit of a thirty-two bit input word, position that bit in
any selected bit location, and force all other bits of that word to zero. Each output of FIU 20120 is a thirty-
two bit data word and, as described above, may be transferred on to MOD Bus 10144 or onto MIO Bus,

' 10129. As will be described below, selection of a particular sequence of the above four operations to be
performed on a particular data word is detennined by control inputs provided from Mic 20122. These
control inputs from MIC 20122 are decoded and executed by microinstruction control logic included within
FIU 20120.

Referring to Fig. 230, a partial block diagram of FIU 20120 is shown. As indicated therein, FIU 20120
includes Data Manipulation Circuitry lDMC) 23010. and FlU Control Circuitry (FlUCl 23012. Data
Manipulation Circuitry 23010 in turn includes FlUlO circuitry (FIUIO) 23014, Data Shifter (DS) 23016, Mask
-Logic (MSK) 23018, and Assembly Register (AR) logic 23020. Data manipulation circuitry 23010 will be
described first followed by FIUC 23012. in describing data manipulation circuitry 23010, FIUIO 23014will be
described first, followed by DS 23016, MSK 23018, and AR 23020, in that order.

Referring to FIUIO 23014, FIUIO 23014 comprises FIU 20120's data input and output circuitry. Job
Processor Write Data Register (JWDR) 23022, ID System Write Data Register (IWDR) 23024, and Write input
Data Register (RIDR) 23026 are connected from, respectively, JPD Bus 10142, lOlVl Bus 10130, and MOD Bus
10144 for receiving data word inputs from, respectively. JP 10114, l0S 10116, and MC 20116. JWDR 23022,
IWDR 23024 and RIDR 23026 are each thirty-six bit registers comprised, for example, of SN74S374
registers. Data words transferred into IWDR 23024 and RIDR 23026 are each, as previously described,
comprised of a thirty-two data word plus four bits of parity. Data inputs from JP 10114 are, however, as
previously described, thirty-two bit data words without parity. Job Processor Parity Generator (JPPGl
23028 associated with JWDR 23022 is connected from JPD Bus 10142 and generates four bits of parity for
each data input to JWDR 23022. JWDR 23022's thirty~six bit input thereby comprises thirty—two bits of data.
directly from JPD Bus 10142, plus a corresponding four bits of parity from JPPG 23028.

Data words, thirty—two bits of data plus four hits of parity, are transferred into JWDR 2302, IWDR
23024, or RIDR 23026 when, respectively, input enable signals Load JWD (LJWD), Load IWD (LlWDl or Load
RID (LRID) are asserted. LJWD is provided from FU 10120 while LlWD and LRID are provided from MIC
20122.

Data words resident in JWDR 23022, IWDR 23024, or RlDR 23026 may be selected and transferred onto
FIU 20120's lntemal Data 08) Bus 23030 by output enable signals JWD'Enable Output (JWDEO). IWD
Enable Output (IWDEO), an RlD Enable Output lRlDEO). JWDEO, IWDEO, and RDIEO are provided from
FIUC 23012 described below.

As will be described further below, manipulated data words from DS 23016 or AR 23020 will be
transferred onto, respectively, Data Shifter Output (DSO) Bus 23032 or Assembly Register Output (ASYRO)
Bus 23034for subsequent transfer onto MOD Bus 10144 or MIO Bus 10129. Each manipulated data word
appearing on DSO Bus 23032 or ASYRO Bus 23034 will be comprised of 32 bits of data plus 4 bits of parity.
Manipulated data words present on DSO Bus 23032 may be transferred onto MOD Bus 10144 or MIO Bus
10129 through, respectively, DSO Bus To MOD Bus Driver Gate (DSMOD) 23036 or BSO Bus To MIO Bus
Driver Gate (DSMIO) 23038. Manipulated data words present on ASYRO Bus 23034 may be transferred onto
MOD Bus 10144 or MIO Bus 10129 through, respectively, ASYRO Bus To MOD Bus Driver Gate lASYMOD)
23040 or ASYRO Bus To MIO Bus Driver Gate (ASYMIO) 23042. DSMOD 23036, DSMIO 23038, ASYMOD
23040, and ASYMIO 23042 are each comprised of, for example, SN74S244 drivers. A manipulated data
word on DSO Bus 23032 be transferred through DSMOD 23036 to MOD Bus 10144 when driver gate enable
signal Driver Shift To MOD (DRVSHFMOD) to DSMOD 23036 is asserted. Similarly, a manipulated data
word on DSO Bus 23032 will be transferred through DSMIO 23038 to MIO Bus 10129 when driver gate

enable signal Drive Shift Through MIO Bus (DRVSHFMIO) to DSMIO 23038 is asserted. Manipulated data
words ‘present on ASYRO Bus 23034 may be transferred onto MOD Bus 10144 or MIO Bus 10129 when.
respectively, driver gate enable signal Drive Assembly To Mod Bus (DRVASYMOD) to ASYMOD 23040 or
Drive Assembly To MIO Bus lDRVASYMlO) to ASYMIO 23042 are asserted. DRVSHFMOD. DRVSHFMIO,
DRVASYMOD, and DRVASYMIO are provided, as described below, from FIUC 23012.

Registers IARM 23044 and BARMR 23046, which will be described further in a following description of
DP 10118, are used by DP 10118 to, respectively, write data words onto IB 23030 and to Read data words

54

Petitioner Apple Inc. — Exhibit 1024, p. 4099

Petitioner Apple Inc. - Exhibit 1024, p. 4100

u‘

25

35

55

EP 0 067 556 B‘!

from MOD Bus 10144. for example manipulated data words from FIU 20120. Data word written into lAFlMR
23044 from DP 10118, that is 32 bits of data and 4 bits of parity, will be transferred onto IB Bus 23030 when
register enable output signal IARM enable output (IARMEO) from FIUC 23012 is asserted. Similarly, a data
word present on MOD Bus 10144, comprising 32 bits of data plus 4 bits of parity, will be written into BARMR
23046 when load enable signal Load BARMR iLDBARMRl to BARMR 23046 is asserted by MIC 20122. A data
word written into BARMR 23046 from MOD Bus 10144 may then subsequently be read to DP 10118. IARMR
23044 and BARMR 23046 are similar to JWDR 23022, IWDR 23024, and IRDR 23026 and may be comprised,
for example, of SN74S299 registers.

Referring finally to i0 Parity Check Circuit ilOPC) 23048, IOPC 23048 is connected from IB Bus 23030 to
receive each data word, that is 32 bits of data plus 4 bits of parity, appearing on lB Bus 23030. IOPC 23048
confirms parity and data validity of each data word appearing on lB Bus 23030 and, in particular,
determines validity of parity and data of data words written into FIU 20120 from IOS 10116. IOPC 23048

ggpperates output Parity Error (PER). previously discussed, indicating a parity error in data words from IOS
Referring to DS 23016, DS 23016 includes Byte Nibble Logic (BYNL) 23050, Parity Rotation Logic (PRU

23052. and Bit Scale Logic (BSL) 23054. BYNL 23050, PRL 23052, and BSL 23054 may respectively be
comprised of, for example, 25510 shifters. BYNL 23050 is connected from IB Bus 23030 for receiving and
shifting the 32 data bits of a‘ data word selected and transferred onto lB Bus 23030. PRL 23052 is a 4 bit
register similarly connected from lB Bus 23030 to receive and shift the 4 parity bits of a data word selected
and transferred onto I8 Bus 23030. Outputs of BYNL 23050 and PRL 23052 are both connected onto DSO
Bus 23032, thus providing a 36 bit FIU 20120 data word output directly from BYNL 23050 and PRL 23052.
BYNL 23050‘s 32 bit data output is also connected to BSL 23054's input. BSL 23054's 32 bit output is in turn
provided to MSK 23018. 4

As previously described. DS 23016 performs data manipulation operations involving shifting of bits
within a data word. In general, data shift operations performed by DS 23016 are rotations wherein data bits
are right shifted, with least significant bits of data word being shifted imo most significant bit position and

. most significam bits being translated towards least significant bit positions. D5 23016 rotation operations
are performed in two stages. l-‘rrst stage is performed by BYNL 23050 and PRL 23052 and comprises right
rotations on a nibble basis (a nibble is defined as 4 bits of data). That is, BYNL 23050 right shifts a data word
by an integral number of 4 bit increments. A right rotation on a nibble by nibble basis may, for example, be
performed when RM 20722 asserts Fl.lPl-IALF previously described. FUPHALF is asserted for IOS 10116 half
word read operations wherein the request data resides in the most significant 16 bits of a data word from

' MC 20116. BYNL 23050 will perform a right rotation of 4 nibbles to transfer the desired 16 bits of data into
the least significant 16 bits of BYNL 23050’s output. Resulting BYNR 23050 output. together PRL 23052’s
parity bit output would then be transferred through DSO 23050 to MIO Bus 10129. in addition to performing
data shifting operations. DS 23016 may transfer a data word, that is the 32 bits of data, direaly to MSK
23018 when data manipulation to be performed does not require data shifting, that is shifts of 0 bits may be
performed.

Because data bits are shifted by BYNL 23050 on a nibble basis, the relationship between the 32 data
bits of a word and the corresponding 4 parity bits may be maintained if parity bits are similarly right rotated
by an amount corresponding to right rotation of data bits. This relationship is true if the data word is shifted
in multiples of 2 nibbles,that is 8 bits or 1 byte. PRL 23052 right rotates the 4 parity bits of a data word by an
amount corresponding to right rotation of the corresponding 32 data bits in BYNL 23050. Right rotated
outputs of BYNL 23050 and PRL 23052 therefore comprise a valid data word having 32 bits of data and 4 bits
of parity wherein the parity bits are correctly related to the data bits. A right rotated data word output from
BYNL 23050 and PR1. 23052 may be transferred onto DSO Bus 23032 for subsequem transfer to MOD Bus
10144 or Ml0 Bus 10129 as described above. DSO 23032 is used as FIU 20120's output data path for byte
write operations and "rotate read" operations wherein the required manipulation of a particular data word
requires only an integral numer of right rotations by bytes. Amount of right rotation of 32 bits of data in
BYNL 23050 and 4 bits of parity in PRL 23052 is controlled by input signal shift (SHFT) (0-2) to BYNL 23050
and PRL 23052. As will be described below, SHFT (0-2) is generated, together with SHFT i3—-4) controlling
BSL 23054, by FIUC 23012. BYNL 23050 and PRL 23052, like BSL 23054 described below, are parallel shift
logic chips and entire rotation operation of BYNL 23050 and PRL 23052 or BSL 23054 may be performed in a
single clock cycle.

Second stage of rotation is performed by BSL 23054 which, as described above, receives the 32 data
bits of a data word from BYNL 23050. BSL 23054 performs right rotation on a bit by bit basis with the shift
amount being selectable between 0-3 bits. Therefore, BSL 23054 may rotate bits through nibble
boundaries. BYNL 23050 and BSL 23054 therefore comprise a data shifting circuit capable of performing
bit-by-bit right rotation by an amount from 1 bit to a full 32 bit right rotation.

Referring now. to MSK 23018, MSK 23018 is comprised of 5 32 bit Mask Word Generators (MWG's)
23056 to 23064. MSK 23018 generates a 32 bit output to AR 23020 by selectively combining 32 bit mask
word outputs of MWG's 23056 to 23064. Each mask word generated by one of MWG's 23056 to 23064 is
effectively comprised a bit by bit combination of a set of enabling bits and a predetermined 32 bit mask
word, generated by FIUC 23012 and MIC 20122. MWG's 23058 to 23064 are each comprised of for example,
open collector NAND gates for performing these functions, while NWG 2305615 comprised of a PROM.

55

Petitioner Apple Inc. — Exhibit 1024, p. 4100

Petitioner Apple Inc. - Exhibit 1024, p. 4101

10

20

25

EP 0 067 556 1

As just described, outputs of MWG's 23056 to 23064 are all open collector circuits so that any selected
combination of mask word outputs from MWG's 23056 to 23064 may be 0Fled together to comprise the 32
bit output of MSK 23018.

MWG 23056 to MWG 23064 generate, respectively, mask word outputs Locked Bit Word (LBW) (0-31),
Sign Extended Word (SEW) (0-31), Data Mask Word (DMW) (0-31), Blank Fill Word (BWF) (0-31), and
Assembly Register Output (ARO) (0-31). Referring first to MWG 23064 and ARO (0-31), the contents of
Assembly Register (ASYMR) 23066 in AR 23020 are passed through MWG 23064 upon assertion of enabling
signal Assembly Output Register lASYMOR). ARO (0-31) is thereby a copy of the contents of ASYMR
23066 and MWG 23054 allows the contents of ASYMR 23066 to be ORed with the selected combination of
LBW (0-31), SEW (0-31), DMW (0-31), or BFW (0-31).

DMW (0-31) from MWG 23060 is generated by ANDing enable Input Data Mask (DMSK) (0-31) with
the 32 bit output of DS 23016. DMSK (0-31) is a 32 bit enabling word generated, as described below, by
FIUC 23012. FIUC 23012 may generate 4 different DMSK (0-31) patterns. Referring to Fig. 231, the 4 DMSKS
(0-31) which may be generated by FIUC 20132 are shown. DMSKA (0-31) is shown in LineAof Fig. 231. in
DMSKA (0-31) all bits to the left of but not including a bit designated by Left Bit Address (LBA) and all bits
to the right of and not including a bit designated by Right Bit Address (EBA) are 0. All bits between, and
including, those bits designated by LBA and RBA are 1's. DMSKB (0-31) is shown ln Line B of Fig. 231 and
is DMSKA (0-31) inverted. DMSKC (0-31) and DMSKD (0-31) are shown, respectively, in Lines C and D of
Fig. 231 and are comprised of, respectively, all 0's or all 1's. As stated above DMSK (0-31) is ANDed with
the 32 bit output of DS 23016. As such, DMSKC (0-31) may be used, for example, to inhibit DS 23016’s
output while DMSKD (0-31) may be used, for example, to pass DS Z3016’: output to AR 23020. DMSKA
(0-31) and DMSKB (0-31) may be used, for example. to gate selected portions of DS 23016's output to AR
23020 where, for example, the selected portions of DS 23016's output may be OFled with other mask word
outputs MSK 23018. '

Referring next to MWG 23062, MWG 23062 generates BFW (0-31). BFW (0-31) is used in a particular
operation wherein 32 bit data words containing 1 to 4 ASCII blanks are required to be generated wherein 1
bitlbyte contains a logic one and remaining bits contain logic zeros. In this case, the ASCII blank bytes may
cohtain logic 1's in bit positions 2, 10, 18, and 26.

Referring again to Fig. 231, Line E therein shows 32‘bit right mask (RMSK) (0-31) which may be
generated by FIUC 23012. In the most general case, RMSK contains zeros in all bit positions to the left of
and including a bit position designated by RBA. When used in a blank fill operation, bit positions 2, 10, 18,
and 26 may be selected to contain logic 1's depending upon those byte positions containing logic 1's, that
is in those bytes containing ASCII blanks; these bytes to the right of RBA are determined by RMSK (0-31).

-‘ HMSK (0-31) is enabled through MWG 23052 as BWF (0-31) when MWG 23062 is enabled by blank fill
lBLNl(FlLL) provided from FIU 23012.

As described above, MWG's 23058 to 23064 and in particular lVlWG's 23060 and MWG 23062 are NAND
gate operations. Therefore, the outputs of MWGs 23056 through 23064 are active low signals. The inverted
output of ASYMR 23066 is used as an output to ASYRO 23034 to invert these outputs to active high.

MWG 23058. generating SEW (0—31),_ is used in generating sign extended or filled words. In sign
extended words, all bit spaces to the left of the most significant bit of a 32 bit data word are filled with the
sign bit of the data contained therein, the left most bits ofthe 32 bit word arefilled with 1's or 0's depending
on whether that word's sign bit indicates that the data contained therein is a positive or negative number.

Sign Select Multiplexer (SIGNSEL) 23066 is connected to receive the 32 data bits of a word present on
lB Bus 23030. Sign Select (SGNSEL) (0-4) to SIGNSEL 23066 is derived from SBA (0-4), that is from SBA
Bus 21226 from PBMUX 20720. As previously described, SBA (0-4) is Starting Bit Address identifying the
first or most significant bit of a data word. When a data word contains a signed number, most significant bit
contains sign bit of that number. SGNSEL (0-4) input to SIGNSEL 23066 is used as a selection input and,
when SIGNSEL is enabled by Sign Extend (SIGNEXT) from FIU 23012, selects the sign bit on lB Bus 23030
and provides that sign bit as an input to MWG 23058.

Sign bit inputto MWG 23058 is ANDed with each bit of left hand mask (LMSK) (0-31) from FIUC 23012.
Referring again to Fig. 231, LMSK (0-31) is shown on Line F thereof. LMSK (0-31) contains all 0's to the
right of and including the bit space identified by LBA and 1's in all bit spaces to the left of that bit space
identified by LBA. SEW (0-31) will therefore contain sign bit in all bit spaces to the left of the most
significant bit of the data word present on output of MWG 23058. The data word on IB Bus 23030 may then
be passed through DS 23016 and subjected to a DMSK operation wherein all bits to the left of the most
significant bit are forced to 0. SEW (0-31) and DMW (0-31) outputs of MWG's 23058 and 23060 may then
be 0Red to provide the desired find extended word output.

LBW (0-31), provided by MWG 23056, is used in locked bit operations wherein the most significant
data bit of a data word is in MEM 10112 forced to logic 1. SIGNSEL (0-4) is an address inputto MWG 23056
and, as previously described, indicates most significant data bit of a data word present on an IB Bus 23030.
MWG 23056 is enabled by input Lock (LOCK) from FIUC 23012 and the resulting LBW (0-31) will contain a
single logic 1 in the bit space of the most significant data bit of the data word present on IB Bus 23030. The
data word present on IB Bus 23030 may then be passed through DS 23016 and MWG 23060 to be 0Red with
LBW (0-31) so that that data words most significant data bit is forced to logic 1.

Referring to AR 23020, AR 23020 includes ASYMR 23066, which may be comprised for example of a_

56

Petitioner Apple Inc. — Exhibit 1024, p. 4101

Petitioner Apple Inc. - Exhibit 1024, p. 4102

10

in

25

EP 0 067 556 B1

SN74S175 registers, and Assembly Register Parity Generator (ASYPG) 23070. As previously described,
ASYMR 23066 is connected from MSK 23018 32 bit output. A 32 bit word present on MSK 23018’s output
will be transferred into ASYMR 23066 when ASYMR 23066 is enabled by Assembly Register Load
(ASYMLD) from MIC 20122. The 32 bit word generated through DS 23016 and MSK 23018 will then be
present on ASYRO Bus 23034 and may, as described above, then be transferred onto MOD Bus 10144 or
MIO Bus 10129. ASYPG 23070 is connected from ASYMR 23066 32 bit output and will generate 4 parity bits
for the 32 bit word prmently on the 32 data lines of ASYRO Bus 23034. ASYPG 23070's 4 bit parity output is
bused on the 4 parity bit lines of ASYRO Bus 23034 and accompany the 32 bit data word present thereon.

Having described structure and operation of Data Manipulation Circuitry 23010, FIUC 23012 will be
described next below.

Referring again to Fig. 230, FIUC 23012 provides pipelined microinstruction control of PM 20120. That
is. control signals are received from MIC 2012 during a first clock cycle and certain of the control signals
are decoded by microinstrucfion logic to generate further FIUC 23012 control signals. During the second
clock cycle, control signals received and generated during first clock cycle are provided to DMC 23010.
some of which are further decoded to provide yet other control signals to control operation of FIUC 23012.
FIUC 23012 includes initial Decode Logic (IDL) 23074, Pipeline Registers (PPLR) 23072, Final Decoding Logic
(FDL) 23076. and Enable Signal Pipeline Register (ESPR) 23098 with Enable Signal Decode Logic (ESDL)
23099.

IDL 23074 and Control Pipeline Register (CPR) 23084 of PPLR 23072 are connected from control outputs
of MIC 20122 to receive control signals therefrom during a first clock cycle as described above. IDL 23074
provides outputs to control pipeline registers Right Bit Address Register (RBAR) 23086. Left Bit Address
Register (LBAR) 23088 and Shift Register (SHFR) 23090 of PFLR 23072. CPR 23084 and SHFR 23090 provide
control outputs directly to DMC 23010. As described above these outputs control DMC 23010 during second
clock cycle.

CPR 23084, RBAR 23086. and LBAR 23088 provide outputs to FDL 23076 during second clock cycle and
FDL 23076 in turn provides certain outputs directly to DMC 23010.

ESPR 23098 and ESDL 23099 receive enable and control signals from MIC 20122 and in turn provide
enable and control signals to DMC 23010 and certain other portions of MEM 10112 circuitry.

lDL 23074 and FDL 23076 may be comprised, for example, of PROMs. CPR 23084, RBAR 23086, LBAR
Z3088, SHFR 23090. and ESPR 23098 may be comprised, for example, of SN74S194 registers. ESDL 23099
may be comprised of, for example, compatible decoders, such as logic gates.

Referring first to IDL 23074, IDL 23074 performs an initial decoding of circuitry control signals from MlC
20122 and provides further control signals used by FIUC 23012 in controlling FIU 20120. IDL 23074 is
comprised of read-only memory arrays Right Bit Address Decoding Logic (RBADL) 23078, Left Bit Address
Decoding Logic lLBADL) 23080, and Shift Amount Decoding Logic (SHFAMTDL) 23082. RBADL 23078
receives, as address inputs, final Bit Address (FBA) (0-4), Bit Length Number (BLN) (0-4), and Starting Bit
Address (SBA) (0—-4). FBA, BLN and SBA define, respectively, the final bit, length, and starting bit of a
requested data item as previously discussed with reference to PRMUX 20720. RBADL 23078 also receives
chip select enable signals Address Translation Chip Select (ATCS) 00, 01, 0.2, 03, O4, and 15 from MIC 20122
and, in particular, RM 20722. When FIU 20120 is required to execute certain MSK 23018 operations. inputs
FBA (0—-4), BLN (0-4), and SBA (0-4), together with an ATCS input, are provided to RBADL 23078 from
MIC 20122. RBADL 23078 in turn provides output RBA (Right Bit Address) (0-4), which has been described
above with reference to DMSK (0-31) and RMSK (0-31). LBADL 23080 is similar to RBADL 23078 and is
provided with inputs BLN (0-4), FBA (o-4), SBA (0-4), and ATCS os, 07, ca. 09, and as from MIC 20122.
Again, for certain MSK 23018 operations, LBADL 23080 will generate Left Bit Address (LBA) (0-4). which
has been previously discussed above with reference to DMSK (0-31) and LMSK (0-31).

RBA (0-4) and LBA (0-4) are, respectively, transferred to RBAR 23086 and LBAR 23088 at start of
second clock cycle by Pipeline Load Enable signal FIPELD provided from MIC 20122. RBAR 23088 and LBAR
23088 in turn respectively provide outputs Register Right Address (RRAD) (0-4) and Register Left Address
(RLAD) (0-4) as address inputs to Right Mask Decode Logic (RMSKDL) 23092, Left Mask Decode Logic
(LMSKDL) 23094, and FDL 23076 at start of second clock cycle. RRAD (0-4) and RLAD (0-4) correspond
respectively to RBA (0-4) and LBA (0-4).

RMSKDL 23092 and LMSKDL 23094 are ROM arrays, having, as just described, RRAD (0-4) and RLAD
(0-4) as, respectively, address inputs and Mask Enable (MSKENBL) from CPR 23084 as enable inputs.
Together, RMSKDL 23092 and LMSKDL 23094 generate, respectively, RMSK (0-31) and LMSK (0—31)_to
MSK 23018.-RMSK (0-31) and LMSK (0-31) are provided as inputs to Exclusive Or/Exclusive Nor gating
(XOR/XNOR) 23096. XOR/XNOR 23096 also receives enable and selection signal Out Mask (OUTMSK) from
CPR 23084. RMSK (0-31) and LMSK (0-31) inputs to XOR/XNOR 23096 are used, as selected by OUTMSK
from CPR 23084, to generate a selected DMSK (0-31) as shown in Fig. 231. DMSK (0-31) output of XOR]
XNOR 23098 is provided, as described above, to MSK 23018.

Referring again to IDL 23074, Si-lFAMTBL 23082 decodes certain control inputs from MIC 20122 to
generate, through SHFR 23090, control inputs SHFT (0-4) and SGNSEL (0-4) to, respectively, DS 23016,
SIGNSEL 23068 and MWG 23056. Address inputs to the PROMS comprising SHFAMTBL 23082 include FBA
(0-4), SBA (0-4), and FLIPHALF iFLlPHAi.F) from MIC 20122. FBA (0-4) and SBA (0-4) have been
described above. FIJPHALF is a control signal indicating that, as described above, that 16 bits of data

57

Petitioner Apple Inc. — Exhibit 1024, p. 4102

Petitioner Apple Inc. - Exhibit 1024, p. 4103

15

20

30

EIP O 067 556 B1

requested by l0S 10116 resides in the upper half of a 32 bit data word and causes those 16 bits to be
transferred to the lower half of FIU 20120‘s output data word onto MIO Bus 10129. MlC 2012 also provides
chip enable signals ATCS 10, 11, 12, 13, and 14. Upon receiving these control inputs from MIC 20122,
SHFAMTDL 23082 generates an output shift amount (SHFAMT) (0-4) which, together with SBA (0-4) from
MIC 20122, is transferred into SHFR 23090 by PIPELD at start of second clock cycle. SHFR 23090 then
provides corresponding outputs SHFT (0-4) and SIGNSEL (0-4). As described above, SlGNSEL (0-4) are
provided to SIGNSEL 23068 and MWG 23056 and MSK 23018. SHFT (0-4) is provided as SHFT (0-2) and
SHFT (3-4) to, respectively, BYNL 23050 and BSL 23054 and DS 23016.

Referring to CPR 23084. as described above certain control signals are provided directly to FIU 20120
circuitry without being decoded by IDL 23074 or FDL 23076. Inputs to CPR 23084 include Sign Extension
(SIGNEXT) and Lock (LOCK) indicating, respectively, that FIU 20120 is to perform a sign extension
operation through MWG 23058 or a lock bit word operation through MWG 23056. CPR 23084 provides
corresponding outputs SlGNEXT and LOCK to MSK 23018 to select these operations. input Assembly
Output Register (ASYMOR) and Blank Fill (BLANKFILL) are passed through CPR 23084 as ASYMOR and
BLANKFILL to, respectively, MWG 23064 and MWG 23062 to select the output of ASYMR 23066 as a mask
or to indicate that MSK 23018 is to generate a blank filled word through MWG 23062. Inputs OUTMSK and
MSKENBL to CPR 23084 arevprovided, as discussed above. as enable signals OUTMSK and MSl(ENBLto,
respectively. EXORJENOR 23096 and RMSKDL 23092 and LMSKBL 23094 and generating RMSK (0-31),
LMSK (0-31), and DMSK (0-31) as described above. 1

Referring finally to ESPR 23098 and ESDL 23099, ESPR 23098 and PPLR 23072 together comprise a
pipeline register and ESDL 23099 decoding logic for providing enable signals to FIU 20120 and other MEM
10112 circuitry. ESPR 23098 receives inputs Drlve MOD Bus (DRVMOD) (0-1), Drive MIO Bus (DRVMIO)
(0-1), and Enable Register (ENREG) (0-1) from MIC 20122 as previously described. DRVMOD (0-1),
DRVMIO (0-1), and ENREG (0-1) are transferred into ESPR 23098 by PIPELD as previously described with
reference to PPl.R 23072. ESPR 23098 provides correspondingoutpus to ESDL 23099, which in turn
decodes DRVMOD (0-1), DRVMIO (0-1), and ENREG (0-1) to provide enable signals to FIU 20120 and
other MEM 10112 cincuitry. Outputs DRVSHFMOD. DRVASYMOD, DRVSHFMIO, and DRVASYMIO are
provided to DSMOD 23036, DSMIO 23038, ASYMOD 23040, ASYMIO 23042, and FlUl0 23014 to control
transfer of FIU 20120 manipulated data words onto MOD Bus 10144 and MIO Bus 10129. Outputs IARMEO,
JWDEO, IWDEO, and RIDEO are provided as output enable signals to IARMR 23044, JWDR 23022, IWDR
23024, and RIDR 23026 to transfer the contents of these registers onto IB Bus 23030 as previously
described. Outputs DRVCAMOD, DRVAMIO, DRVBYMOD, and DRVBYMIO are provided to MC 20116 for
use in controlling transfer of information onto MOD Bus 10144 and MIO Bus 10129.

Having described the structure and operation of MEM 10112 above, the structure and operation of FU
10120 will be described next below.

B. Fetch Unit 10120 (figs. 202, 206. 101, 103, 104, 238)
As has been previously described, FU 10120 is an independently operating, microcode controlled

machine comprising, together with EU 1012, CS 10110's mlcromachine for executing user's programs.
Principal functions of PU 10120 include: (1) Fetching and interpreting instructions, that is SlNs comprising
SOPs and Names, and data from MEM 10112 for use by FU 10120 and EU 10122: (2) Organizing and
controlling flow and execution of user programs; (3) initiating EU 10122 operations; (4) Perfonning
arithmetic and logic operations on data; (5) Controlling transfer of data from FU 10120 and EU 10122 to
MEM 10112: and, (6) Maintaining certain stack register mechanisms. Among these stack and register
mechanisms are Name Cache (NC) 10226, Address Translation Cache (ATC) 10228, Protection Cache (PC)
10234, Architectural Base Registers (ABFls) 10364, Micro-Control Registers (mCRs) 10366, Micro-Stack
(M15) 10368, Monitor Stack (MOS) 10370 of General Register Frle (GRF) 10354, Micro-Stack Pointer Register
Mechanism (MISPR) 10356, and Return Control Word Stack (RCWS) 10358. in addition to maintaining these
FU 10120 resident stack and register mechanisms, FU 10120 generates and maintains, in whole or part,
certain MEM 10112 resident data structures. Among these MEM 10112 resident data structures are Memory
Hash Table (MH1') 10716 and Memory Frame Table (MW) 10718, Working Set Matrix (WSM) 10720, Virtual
Memory Management Request Queue (VMMRO) 10721, Active Object Table (AOT) 10712, Active Subject
Table (AST) 10914, and Virtual procesor State Blocks (VPSBS) 10218. In addition, a primary function of FU
10120 is the generation and manipulation of logical descriptors which, as previously described, are the
basis of CS 10110's internal addressing structure. As will be described further below, while FU 10120's
internal structure and operation allows FU 10120 to execute arithmetic and logic operations, FU 10120's
structure includes certain features to expedite generation and manipulation of logical desuiptors.

Referring to Hg. 202, a partial block diagram of FU 10120 is shown. To enhance clarity of presentation,
certain interconnections within FU 10120, and between FU 10120 and EU 10122 and MEM 10112 are not
shown by line connections but, as described further below, are otherwise indicated, such as by common
signal names. Major functional elements of FU 10120 include Descriptor Processor (DES?) 20210, MEM
10112 Interface Logic (MEMINT) 20212, and Fetch Unit Control Logic (FUCTL) 20214. DSP 20210 is, in
general, an arithmetic and logic unit for generating and manipulating entries for MEM 10112 and FU 10120
resident stack mechanisms and caches. as described above, and. in particular, for generation and
manipulation of logical descriptors. In addition, as stated above, DSP 20210 is a general purpose Central

58

Petitioner Apple Inc. — Exhibit 1024, p. 4103

Petitioner Apple Inc. - Exhibit 1024, p. 4104

'1

15

20

25

35

50

EP 0 067 556 B1

Processor Unit (CPU) capable of perfonning certain arithmetic and logic functions. A
DESP 20210 includes AON Processor (AONP) 20216, Offset Processor (OFFP) 20218, Length Processor

(LENP) 20220. OFFP 20218 comprises a general, 32 bit CPU with additional structure to optimize generation
and manipulation of offset fields of logical descriptors. AONP 20216 and LENP 20220 comprise.
respectively, processors for generation and manipulation of AON and length fields of logical descriptors
and may be used in coniuction with OFFP 20218 for execution of certain arithmetic and logical operations.
DESP 20210 includes GRF 10354, which in turn include Global Registers (GRS) 10360 and Stack Registers
(SR5) 10362. As previously described, GR's 10360 includes ABRS 10364 and mCRs 10366 while 5Rs 10362
includes MIS 10368 and MOS 10370.

MEMINT 20212 comprises FU 10120’s interface to MEM 10112 for providing Physical Descriptors
(physical addresses) to MEM 10112 to read 5lNs and data from and write data to MEM 10112. MEMINT
20212 includes, among other logic circuitry, MC 1026, ATC 10228, and PC 10234.

FUCTI. 20214 controls fetching of SlNs and data from MEM 10112 and provides sequences of
microinstructions for control of FU 10120 and EU 10122 in response to SOPs. FUCTL 20214 provides Name
inputs to MC 10226 for subsequent fetching of corresponding data from MEM 10112. FUCTL 20214
includes, in part, MISPR 10356, RCWS 10358, Fetch Unit S-interpreter Dispatch Table (FUSDTJ 11010, and
Fetch Unit S-interpreter Table (FUSfTl'l 11012. '

Having described the overall structure of FU 10120, in particular with regard to previous descriptions in
Chapter 1 of this description, DESP 20210, MEMINT 20212, and FUCTL 20214 will be described in further
detail below, and in that order.

1. Description Processor 20210 (Figs. 202, 101, 103, 104, 238, 239)
As described above. DESP 20210 comprises a 32 bit CPU for perfonning_a|l usual arithmetic and logic

operations on data. in addition, a primary function of DESP 20210 is generation and manipulation of entries
for, for example, Name Tables (N'l's) 10350, ATC 10228, and PC 10234, and generation and manipulation of
logical descriptors. As previously described, with reference to CS 10110 addressing structure, logical
descriptors are logical addresses, or pointers. to data storai in MEM 10112. Logical descriptors are used.
for example, as architectural base pointers or_ microcontrol pointers in ABRs 10364 and mCRs 10366 as
shown in Fig. 103, or as linkage and local pointers of Procedure Frames 10412 as shown in Fig. 104. in a
further example, logical descriptors generated by DESP 20210 and corresponding to certain operand
Names are stored in MC 1026, where they are subsequently accessed by those Names appearing in SlNs
fetched from MEM 10112 to provide rapid translation between operand Names and corresponding logil
descriptors.

As has been previously discussed with reference to CS 10110 addressing structure, logical descriptors
provided to ATU 10228, from DESP 20210 or NC 10226, are translated by ATU 10228 to physical descriptors
vlmich are actual physical addresses of corresponding data stored in MEM 10112. That data subsequently is
provided to JP 10114, and in particular to FU 10120 or EU 10122, through MOD Bus 10144.

As has been previously discussed with reference to MEM 10112, each data read to JP 10114 from MEM
10112 may contain up to 32 bits of information. if a particular data item referenced by a logical descriptor
wntains more than 32 bits of data, DESP 20210 will, as described further below, generate successive logical
descriptors, each logical descriptor referring to 32 bits or less of information, until the entire data item has
been read from MEM 10112. In this regard, it should be noted that NC 1026 may contain logical descriptors
only for data items of 255 bits or less in length. All requests to MEM 10112 for data items greater than 32
bits in length are generated by DESP 20210. Most of data items operated on by CS 10110 will, however, be
32 bits or less in length so that NC 10226 is capable of handling most operand Names to logical descriptor
translations.

As described above, DESP 20210 includes AONP 20216, OFFP 20218, and LENP 20220. OFFP 20218
comprises a general purpose 32 bit CPU with additional logic circuitry for generating and manipulating
table and cache entries. as described above, and for generating and manipulating offset fields of AON
pointers and logical descriptors. AONP 20218 and LENP 20220 comprise logic circuitry for generating and
manipulating, respectively, AON and length fields of AON pointers and logical descriptors. As indicated in
Fig. 202, GRF 10354 is vertically divided in three parts. A first part resides in ANOP 20216 and, in additon to
random data, contains AON fields of logical descriptors. Second and third parts reside, respectively, in
OFFP 20218 and LENP 20220 and, in addition to containing random data, respectively contain offset and
length fields of logical descriptors. AON, Offset, and length portions of GRF 10354 residing respectively in
AONP 20216, OFFP 20218, and LENP 20220 are designated, respectively, as AONGRF, OFFGRF, and
LENGRF. AONGRF portion of GRF 1035415 28 bits wide while OFFGRF and LENGRF portions of GRF 10354
are 32 bits in width. Although shown as divided vertically into three parts, GRF 10354 is addressed and
operates as a unitary structure. That is, a particular address provided to GFlF 10354 will address
corresponding horizontal segments of each of GRF 10354's three sections residing in AONP 20216, OFFP
20218, and LENP 20220.

a. Offset Processor 20218 Structure

Referring first to OFFP 20218, in addition to being a 32 bit CPU and generating and manipulating table
and cache entries and offset fields of AON pointers and logical descriptors, OFFP 20218 is DESP 20210’s

59

Petitioner Apple Inc. — Exhibit 1024, p. 4104

Petitioner Apple Inc. - Exhibit 1024, p. 4105

15

45

EP 0 067 556 Bil

primary path for receiving data from and transferring data to MEM 10112. OFFP 20218 includes Offset Input
Select Multiplexer (OFFSEL) 20238, OFFGRF 20234, Offset Multiplexer Logic (OFFMUX) 20240, Offset ALU
(OFFALU) 20242, and Offset ALU A lnputs Multiplexer (OFFALUSA) 20244.

OFFSEL 20238 has first and second 32 bit data inputs connected from, respectively, MOD Bus 10144
and JPD Bus 10142. OFFSEL 20238 has a third 32 bit data input connected from a first output of OFFALU
20242, a fourth 28 bit data input connected from a first output of AONGRF 20232. and a fifth 32 bit data input
connected from OFFSET Bus 20228. OFFSEL 20238 has a first 32 bit output connected to input of OFFGRF
2084 and a second 32 bit output connected to a first input of OFFMUX 20240. OFFMUX 20240 has second
and third 32 bit data inputs connected from, respectively, MOD Bus 10144 and JPD Bus 10142. OFFMUX
20240 also has a fourth 5 bit data input connected from Bias Logic (BIAS) 20246 and LENP 20220, described
further below, and fifth 16 bit data input connected from NAME Bus 20224. Thirty-two bit data output of
OFFGRF 20234 and first 32 bit data output of OFFMUX 20240 are connected to, respectively, first and
second data inputs of OFFALUSA 20244. A first 32 bit data output of OFFALUSA 20244 and a second 32 bit
data output of OFFMUX 20240 are connected, respectively, to first and second data inputs of OFFALU
20242. A second 32 bit data output of OFFALUSA 20244 is connected to OFFSET Bus 20228. A first 32 bit
data output of OFFALU 20242 is connected to JPD Bus 10142, to a first input of AON Input Select
Multiplexer lAONSEL) 20248 and AONP 2021 S, and, as described above, to a third input of OFFSEL 20238. A
second 32 bit data output of OFFALU 20242 is connected to OFFSET Bus 20228 and third 16 bit output is

connected to NAME Bus 20224. '

b. AON Processor 20216 Structure

Referring to AONP 20216, a primary function of AONP 20216 is that-of containing AON fields of AON
pointers and logical descriptors. In addition, those portions of AONGRF 20232 not othenivise occupied by
AON pointersand logical descriptors may be used as a 28 bit wide general register area by JP 10114. 'l'hese
portions of AONGRF 20232 may be so used either alone or in conjunction with corresponding portions of
OFFGRF 202% and IENGRF 20236. AONP 20216 includes AONSEL 20248 and AONGRF 202%. As

previously described, a first 32 bit data input AONSEL 20248 is connected from a first data output of
OFFALU 20242. A second 28 bit data input of AONSEL 20248 is connected from 28 bit output of AONGRF
20232 and from AON Bus 20230. A third 28 bit data input of AONSEL 20248 is connected from logic zero.
that is a 28 bit input wherein each input bit is set to logic zero. Twenty-eight bit data output of AONSEL
20248 ls connected to data input of AONGRF 20232. As lust described, 28 bit data output of AONGRF 20232
is connected to second data input of AONSEL 20248. and is connected to AON Bus 20230.

c. Length Processor 20220 Structure '
Referring finally to LENP 20220, a primary function of LENP 20220 is the generation manipulation of

length fields of AON pointers and physical descriptors. In addition, LENGRF 20236 may be used, in part,
either alone or in conjunction with corresponding address spaces ofAONGRF 20232 and OFFGRF 20234, as
general registers for storage of data. LENP 2020 includes Length Input Select Multiplexer (LENSEL) 20250,
LENGRF 20236, BiAS 20246, and Length ALU (LENALU) 20252. LENSEL 20250 has first and second data
inputs connected from, respectively, LENGTH Bus 20226 and OFFSET Bus 20228. LENGTH Bus 20226 is
eight data bits, zero filled while OFFSET Bus 20228 is 32 data bits. LENSEL 20250 has a third 32 bit data
input connected from data output of LENALU 20252. Thirty-two bit data output of LENSEL 20250 is
connected to data input of LENGBF 20236 and to a first data input of BIAS 20246. Second and third 32 bit
data inputs of BIAS 20246 are connected from, respectively, Constant (C) and Literal (L) outputs of FUSl'lT
11012 as vln'Il be described further below. Thirty~two bits data output of LENGRF 20236 is connected to JPD
Bus 10142, to Write Length lnput (WL) input of NC was, and to a first input of LENALU 20252. five bit
output of BIAS 20246 is connected to a second input of LENALU 20252, to LENGTH Bus 2036, and, as
previously described, to a fourth input of OFFMUX 20240. Thirty-two bit output of LENALU 20252 is
connected, as stated above, to third input of LENSEL 20250.

Having described the overall operation and the structure of DESP 20210, operation of DESP 20210 will
be described next below in further detail.

d. Descriptor Processor 20210 Operation
a.a. Offset Selector 20238

Referring to OFFP 20218. GRF 10354 includes GR's 10360 and SR’s 10362. GR's 10360 in turn contain
ABR's 10364, mCR's 10366, and a set of general registers. SR’s 10362 include MIS 10368 and MOS 10370.
GRF 10354 is vertically divided into three parts. AONGRF 20232 is 28 bits wide and resides in AONP 20216,
LENGRF 10354 is 32 bits wide and resides in LENP 20220. and OFFGRF 20234 is 32 bits wide and resides in
OFFP 20218. AONGRF 20232, OFFGRF 20234, and LENGRF 20236 may be comprised of Fairchild 934225.

in addition to storing offset fields of AON pointers and logical descriptors. those portions of OFFGRF
20234 not reserved for ABR's 10365, mCR's 10366, and SFl’s 10362 may be used as general registers, alone
or in conjunction with corresponding portions AONGRF 20232 and LENGRF 20236, when OFFP 20218 is ‘
being utilized as a general purpose, 32 bit CPU. OFFGRF 20234 as will be described further below, is
addressed in parallel with AONGRF 20232 and LENGRF 20236 by address inputs provided from FUC"TL
20214. .

Petitioner Apple Inc. — Exhibit 1024, p. 4105

Petitioner Apple Inc. - Exhibit 1024, p. 4106

10

20

25

30

EP 0067 556 B1

OFFSEL 20238 is a multiplexer, comprised for example of SN74S244s and SN74S257s, for selecting
data inputs to be written into selected address locations of OFFGRF 20234. OFFSEL 20238's first data input
is from MOD Bus 10144 and is the primary path for data transfer between MEM 10112 and DESP 20210. As
previously described, each data read from MEM 10112 to JP 10114 is a single 32 bit word where between
one and 32 bits may contain actual data. If a data item to be read from MEM 10112 contains more than 32
bits of data, successive read operations are performed until the entire data item has been transferred.

OFFSEL 20238's second data input is from JPD Bus 10142. As will be described further below, JPD Bus
10142 is a data transfer path by which data outputs of FU 10120 and EU 10122 are written into MEM 10112.
OFFSEL 20238's input of JPD Bus 10142 thereby provides a wrap around path by which data present at
outputs of FU 10120 or EU 1012 may be transferred back into DESP 20210 for further use. For example, as
previously stated a first output of OFFALU 20242 is connected to JPD Bus 10142, thereby allowing data
output of OFFP 20218 to be returned to OFFP 20218 for further processing. or to be transferred to AONP
20216 or LENP 20220 as will be described further below. In addition, output of LENGRF 20236 is also
connected to JPD Bus 10142 so that length fields of AON pointers or physical descriptors, or data, may be
read from LENGRF 20236 to OFF 20218. This path may be used, for example, when LENGRF 20236 is being
used as a general purpose register for storing data or intermediate results of arithmetic or logical
operations.

OFFSEL 20238's third input is provided from OFFALU 20242's output. This data path thereby provides a
wrap around path whereby offset fields or data residing in OFFGRF 20234 may be operated on and returned
to OFFGRF 20234, either in the same address location as originally read from or to a different address
location. OFFP 20218 wrap around path from OFFALU 20242's output to OFFSEL 20238's third input, and
thus to OFFGRF 20234, may be utilized, for example. in reading from MEM 10112 a data item containing
more than 32 bits of data. As previously described, each read operation from MEM 10112 to JP 10114 is of a
32 bit word wherein between one and 32 bits may contain actual data. Transfer of a data word containing
more than 32 bits is accomplished by performing a succession of read operations from MEM 10112 to JP
10114. For example. if a requested data item contains 70 bits of data, that data item will be transferred in
three consecutive read operations. First and second read operations will each transfer 32 bits of data, and
final read operation will transferthe remaining 6 bits of data. To read a data item of greater than 32 bits
from MEM 10112 therefore. DESP 20210 must generate a sequence of logical descriptors, each defining a
successive 32 bit segment of that-data item. Final logical descriptor of the sequence may define a segment
of less than 32 bits, for example, six hits as in the example just stated. in each successive physical
descriptor, offset field must be incremented by value of length field of die preceding physical descriptor to
define starting addresses of successive data items segments to be transferred. Length field of succeeding
physil descriptors will, in general, remain constant at 32 bits except for final transfer which may be less
titan 32 bits. Offset field will thereby usually be incremented by 32 bits at each transfer until final transfer.
OFFP 20218's wrap around data path from OFFALU 20242's output to their input of OFFSEL 20238 may, as
stated above, be utilized in such sequential data transfer operations to write incremented or decremented
offset field of a current physical descriptor back into OFFGRF 20234.to be offset field of a next succeeding
physical descriptor.

in a further example, OFFP 20218’s wrap around path from OFFALU 20242's output to third input of
OFFSEL 20238 may be used in resolving Entries in Name Tables 10350, that is Name resolutions. In Name
resolutions, as previously described, offset fields of AON pointers, for example Linkage Pointers 10416, are
successively added and subtracted to provide a final AON pointer to a desired data item.

OFFSEL 20238's fourth input, from AONGRF 20232's output, may be used to transfer data or AON fields
from AONGRF 20232 to OFFGRF 20234 or OFFMUX 20240. This data path may be used, for example, when
OFFP 20218 is used to generate AON fields of AON pointers or physical descriptors or when performingName evaluations. '

Finally, OFFSEL 20238's fifth data input from OFFSET Bus 20228 allows offset fields on OFFSET Bus
20228 to be mitten into OFFGRF 20234 or transferred into OFFMUX 20240. This data path may be used, for
example, to copy offset fields to OFFGRF 20234 when JP 10114 is performing a Name evaluation.

Referring now to OFFMUX 20240, OFFMUX 20240 includes logic circuitry for manipulating individual
bits of 32 bit words. OFFMUX 20240 may be used, for example, to increment and decrement offset fields by
length fields when performing string transfers, and to generate entries for, for example, MHT 10716 and
MFT 10718. OFFMUX 20240 may also be used to aid in generating and manipulating AON, OFFSET, and
LENGTH fields of physical descriptors and AON pointers.

b.b. Offset Multiplexer 20240 Detailed Structure (Fig. 238)
Referring to Fig. 238, a more detailed, partial block diagram of OFFMUX 20240 is shown. OFFMUX

20240 includes Offset Multiplexer lnput Selector (OFFMUXIS) 23810, which for example may be comprised
of SN74S373s and SN74S244s and Offset Multiplexer Register (OFFMUXR) 23812, which for example may
be comprised of SN74S374s. OFFMUX 20240 also Includes Field Extraction Circuit (FEXT) 23814, which
may for example be comprised of SN74SZ57s, and Offset Multiplexer Field Selector (OFFMUXFS) 23816,
which for example may be comprised of $N74S257s and SN74S374s. finally, OFFMUX 20240 includes
Offset Scaler (OFFSCALE) 23818, which may for example be comprised of AMD 258105, Offset Inter-
element Spacing Encoder lOFFlESENC) 23820, which may for example be comprised of Fairchild 934275

61

Petitioner Apple Inc. — Exhibit 1024, p. 4106

Petitioner Apple Inc. - Exhibit 1024, p. 4107

20

60

es 0 057 55a B1‘

and Offset Multiplexer Output Selector (OFFMUXOS) 23822, which may for example be comprised of AMD
2585, Fairchild 934275. and SN74S244s.

Referring first to OFFMUX 20240's connections to other portions of OFFP 20218, OFFMUX 20240's first
data input, from OFFSEL 20238, is connected to a first input of OFFMUXIS 23810. OFFMUX 20240's second
input, from MOD Bus 10144. is connected to a second input of OFFMUXIS 23810. OFFMUX 20240's third
input, from JPD Bus 10142, is connected to a first input of OFFMUXFS 23816 while OFFMUX 20240's fourth
input. from BIAS 20245, is connected to a first input of OFFMUXOS 23822. OFFMUX 20240's fifth input.
from NAME Bus 20224, is connected to a second input of OFFMUXFS 23816. OFFMUX 20240's first output,
to OFFALUSA 20244, is connected from output of OFFMUXR 23812 while OFFMUX 20240's second output.
to OFFALU 20242, is connected from output of OFFMUXOS 23822.

Refening to OFFMUX 20240's internal connections, 32 bit output of OFFMUXIS 23810 is connected to
input OFFMUXR 23812 and 32 bit output of OFFMUXR 23812 is connected, as described above, as first
output of OFFMUX 20240, and as a third input of OFFMUXFS 23816. Thirty-two bit output of OFFMUXR
23812 is also connected to input of FEXT 23814. OFFMUXFS 23816's first, second and third inputs are
connected as described above. Afourth input of OFFMUXFS 23816 is a 32 bit input wherein 31 bits are set
to logic zero and 1 bit to logic 1. A fifth input is a 32 bit input wherein 31 bits are set to logic 1 and 1 to logic
0. A sixth input of OFFMUXFS 23816 is a 32 bit literal (L) input provided from FUSl'iT 11012 and is a 32 bit
binary number comprising a part of a microinstruction FUCTL 20214, described below. OFFM UXFS 23816's
seventh and eighth input are conneued from FEXT 23814. input 7 comprises Flu and TYPE fields of Name
Table Entries which have been read into OFFMUXR 23812. lnput8 is a general purpose input conveying bits
extracted from a 32 bit word captured in OFFMUXR 23812. As indicated in Fig. 238. OFFMUXFS 23816‘s
first, third, fourth, filth, and sixth inputs are each 32 bit inputs which are divided to provide two 16 bit inputs
each. That is, each of these 32 bit inputs is divided into a first input comprising bit 0 to 15 of that 32 bit input.
and a second input comprising bits 16 to 31.

Thirty-two bit output of OFFMUXFS 23816 is connected to inputs of OFFSCALE 23818 and OFFIESENC
23820. As indicated in Fig. 238. Field Select Output (FSO) otOFFMUXFS 23816 is a 32 bit word divided into a
first word including 0 to 15 and a second word including bits 16 to 31. Output FSO of OFFMUXFS 23816. as
will be described further below, thereby reflects the divided structure of OFFMUXFS 23816's first. third,
fourth, fifth. and sixth inputs.

Logical functions performed by OFFMUXFS 23816 in generating output F50, and which will be
described in further detail In following descriptions, include:

(1) Passing the contents of OFFMUXR 23812 directly through OFFMUXFS 23816:
(2) Passing a 32 bit word on JPD Bus 10142 directly through OFFMUXFS 23816:
(3) Passing a literal value comprising a part of a microlnstruction from FUCTL 20214 directly through

OFFM UXFS 23816:

(4) Forcing PS0 to be literal values 00000000;
(5) Forcing FSO to be literal value 0000 001;
(6) Extracting Name Table Entry fields;
(7) Accepting a 32 bit word from OFFMUXR 23812 or JPD Bus 10142, or 32 bits of a microinstruction

from FUCTL 20214, and passing the lower 16 hits while forcing the upper 16 bits to logic 0:
(8) Accepting a 32 bit word from OFFMUXR 23812 or JPD Bus 10142, or 32 bits of miroinstruction from

FUCTL 20214, and passing the higher 16 bits while forcing the lower 16 bits to logic 0;
(9) Accepting a 32 bit word from OFFMUXR 23812. orJPD Bus 10142, or Name Bus 20224, or 32 bits of e

mlcroinstruction from FUCTL 20214, and passing the lower 16 bits while sign extending bit 16 to the upper
16 bits: and, ' .

(10) Accepting a 32 bit word from Name Bus 20224 and passing the lowest 8 bits while sign extending
bit 24 to the highest 24 bits.

Thlrty—two bit output of OFFSCALE 23818 and 3 bit output of 0FFlESENC 23820 are connected,
respectively. to second and third inputs of OFFMUXOS 23822. OFFMUXOS 23822's first input is, as
described above, OFFMUX 20240's fourth input and is connected from output BIAS 20246. Finally,
OFFMUXOS 23822's 32 bit output, OFFMUX (0-31) is OFFMUX 20240's second output and as previously
described as connected to a second input of OFFALU 20242.

c.c. Offset Multiplexer 20240 Detailed Operation
a.a.a. lntemal Operation

Having described the structure of OFFMUX 20240 as shown in Fig. 238. opemtion of OFFMUX 20240
will be described below. internal operation of OFFMUX 20240, as shown in Fig. 238, will be described first,
followed by description of OFFMUX 20240's operation with regard to DESP 20210. .

Referring first to OFFMUXR 23812, OFFMUXR 23812 is a 32 bit register receiving either a 32 bit word
from MOD Bus 10144, MOD (0-—31),.or a 32 bit word received from OFFSEL 20238, OFFSEL (0-31), and is
selected by OFFMUXIS 23810. OFFMUXR 23812 in turn provides those selected 32 bit wordsfrom MOD Bus
10144 or OFFSEL 20238 as OFFMUX 20240's first data output to OFFALUSA 20244, as FEXT 23814's input,
and as OFFMUXFS 23816’s third input. OFFMUXR 23812's 32 bit output to OFFMUXFS 23816 is provided as
two parallel 16 bit words designated as OFFMUXR output (OFFMUXRO) (0-15) and (16--31). As described
above, OFFMUXFS 23816's output to OFFALUSA 20244 from OFFMUXR 23812 may be right shifted 16_

62

Petitioner Apple Inc. — Exhibit 1024, p. 4107

Petitioner Apple Inc. - Exhibit 1024, p. 4108

in

n

10

25

45

EP 0 067 556 B1

places and the highest 16 bits zero filled.
FEXT 23814 receives OFFMUXRO (0-15) and (16-31) from OFFMUXR 23812 and extracts certain

fields from those 16 bit words. In particular, FEXT 23814 extracts FlU and TYPE fields from NT 10350 Entries
which have been transferred into OFFMUXR 23812. FEXT 23814 may then provide those FlU and TYPE
fields as OFFMUXFS 23816's seventh input. FEXT 23814 may, selectively, extract certain other fields from
32 bit words residing in OFFMUXR 23812 and provide those fields as OFFMUXFS 23816's eighth input.

OFFMUXFS 23816 operates as a multiplexer to select certain fields from OFFMUXFS 23816's eight
inputs and provide corresponding 32 bit output words, Field Select Output (F50), comprised of those
selected fields from OFFMUXFS 23816's inputs. As previously described, FSO is comprised of 2, parallel 16
bit words, FSO (0-15) and PS0 (16-31). Correspondingly, OFFMUX 20240's third input, from JPD Bus
10142, is a 32 bit input presented as two 16 bit words, JPD (0--15) and JPD (16--<31). Similarly, OFFMUXFS
23816's fourth, fifth. and sixth inputs are each presented as 32 bit words comprised of 2, parallel 16 bit
words, respectively, "0" (0-15) and (16-31), "1” (0-15) and (16-31), and L (0--15) and (16-31).
OFFMUXFS 23816's second input, from NAME Bus 20224, is presented as a single 16 bit word, NAME
(16-31), while OFFMUXFS 23816's inputs from FEXT 23814 are each less than 16 bits in width. OFFMUXFS
23816 may, for a single 32 bit output word, select FSO (0-15) to contain one of corresponding 16 bit inputs
JPD (0-15), "0" (0-15), "1" (0-15), or L (0-15). Similarly, FSO (16-31) of that 32 bit output word may be
selected to contain one of NAME (16-31), JPD (16-31), O (16-31),1 (16-31), L (16-31), or inputs 7 and 8
from FEXT 23814. OFFMUXFS 23816 therefore allows 32 bit words, comprised of two 16 bit fields, to be
generated from selected portions of OFFMUXFS 23816's inputs.

OFFMUXFS 23316 32 bit output is provided as inputs to OFFSCALE 23818 and OFFIESENC 23820.
Referring first to OFFIESENC 23820, OFFlESENC 23820 is used, in particular, in resolving, or evaluating, NT
10350 Entries (NTES) referring to arrays of data words. As indicted in Fig. 108, word D of an NTE contains
certain information relating to inter-element spacing (lES) of data words of an anay. Word D of an NTE may
be read from MEM 10112 to MOD Bus 10144 and through OFFMUX 20240 to input of OFFIESENC 23820.

.0FFlESENC 23820 then examines word D's IES field to determine whether inter-element spacing of that
array is a binary multiple, that is 1, 2, 4, 8, 16, 32, or 64 bits. in particular, OFFIESENC 23820 determines
whether 32 bit word D contains logic zeros in the most significant 25 bits and a single logic one in the least
significant 7 bits. if inter-element spacing is such a binary multiple, starting addresses of data words of that
array may be determined by left shifting of index (IE5) to obtain offset fields of physical addresses ofwords
in the array and a slower and more complex multiplication operation is not required. In such cases,
OFFlESENC generates a first output, IE5 Encodeable (IESENC) to FUCTL 20214 to indicate that inter-
element spacing may be determined by simple left shifting. OFFIESENC 3820 then generates encoded
output, Encoded lES (ENClESl, to OFFMUXOS 23822. ENCIES is then a coded value specifying the amount
of left shift necessary to translate index (IE5) value into offsets of words in that array. As indicated in Fig.
238. ENCIES is OFFMUXOS 23822's third input.

OFFSCALE 23818 is a left shift shift network with zero fill of least significant bits, as bits are left shifted.
Amount of shift by OFFSCALE 23818 is selectable between zero and 7 bits. Thirty-two bit words transferred
into OFFSCALE 23818 from OFFSCALE 23818 from OFFMUXFS 23816 may therefore be left shifted, bit by
bit. to selectively reposition bits within that 32 bit input word. In conjunction with OFFMUXFS 23816, and a
wrap around connection provided by OFFALU 20242’s output to OFFSEL 20238, OFFSCALE 23818 may be
used to generate and manipulate, for example, entries for MHT 10716, MFT 10718, AOT 10712, and AST
10914, and other CS 10110 data structures.

OFFMUXOS 23822 is a multiplexer having first. second, and third inputs from, respectively, BIAS
20246, OFFSCALE 23818, OFFIESENC 23820. OFFMUXOS 23822 may select any one of these inputs as
OFFMUX 20240's second output, OFFMUX (0-31). As previously described, OFFMUX 20240's second
output is connected to a second input of OFFALU 20242. .

Having described internal of OFFMUX 20240, operation of OFFMUX 20240 with regard to overall
operation of DESP 20210 will be described next below.

b.b.b. Operation Relative to Descriptor Processor 20210
OFFMUX 20240's first input, from OFFSEL 20238, allows inputs to OFFSEL to be transferred through

OFFMUXIS 23810 and into OFFMUXR 23812. This input allows OFFMUXR 23812 to be loaded. under
control of FUC'l'L 20214 microinstructions, with any input of OFFSEL 20238. in a particular example,
OFFALU 20242’s output may be fed back through OFFSEL 20238's third input and OFFMUX 20240's first
input to allow OFFM UX 20240 and OFFALU 20242 to perfonn reiterative operations on a single 32 bit word.

OFFMUX 20240's second input, from MOD Bus 10144, allows OFFMUXR 23812 to be loaded directly
from MOD Bus 10144. For example, NTEs from a currently active procedure may be loaded into OFFMUXR
23812 to be operated upon as described above. In addition, OFFMUX 20240's second input may be used in
conjunction with OFFSEL 20238's first input, from MOD Bus 10144, as parallel input paths to OFFP 20218.
These parallel input paths allow pipelining of OFFP 20218 operations by allowing OFFSEL 20238 and
OFFGRF 20234 to operate independently from OFFM UX 20240. For example. FU 10120 may initiate a read
operation from MEM 10112 to OFFMUXR 23812 during a first microinstruction. The data so requested will
appear on MOD Bus 10144 during a second microinstruction and may be loaded into OFFMUXR 23812
through OFFMUX 20240's second input from MOD Bus 10144. Concurrently, FU 10120 may initiate, at start

63

Petitioner Apple Inc. — Exhibit 1024, p. 4108

Petitioner Apple Inc. - Exhibit 1024, p. 4109

15

20

EP 0 067 556' B1

of second mlcroinstruction, an independent operation to be performed by OFFSEL 20238 and OFFGRF ’
20234. for example loading output of OFFALU 20242 into OFFGRF 20234. Therefore, by providing an
independent path into OFFMUX 20240 from MOD Bus 10144, OFFSEL 20238 is free to perform other,
concurrent data transfer operations while a data transfer from MOD Bus 10144 to OFFMUX 20240 is being
performed.

OFFMUX 20240's third input, from JPD Bus 10142, is a general purpose data transfer path. For
example, data from LENGRF 20236 or OFFALU 20242 may be transferred into OFFMUX 20240 through JPD
Bus 10142 and OFFMUX 20240's third input.

OFFMUX 20240's fourth input is connected from BIAS 20246 and primarily used during string transfers
as described above. That is, length fields of physical descriptors generated for a string transfer may be
transferred into OFFMUX 20240 through OFFMUX 20240's fourth input to increment or decrement, offset
fields of those physical descriptors in OFFALU 20242.

OFFMUX 20240's fifth input is connected from NAME Bus 20224. As will be described further below,
. Names are provided to NC 10226 by FUCTL 20214 to call, from MC 1026, logical descriptors corresponding

to Names appearing on MOD Bus 10144 as part of sequences of SlNs.
As each Name is presented to NC 10226, that Name is transferred into and captured in Name Trap (NT)

20254. Upon occurrence of an NC 10226 miss, that is NC 1026 does not contain an entry corresponding to
a particular Name, that Name is subsequently transferred from NT 20254 to OFFMUX 20240 through NAME
Bus 20224 and OFFMUX 20240's fifth input. That Name, which is previously described as an 8, 12, or 16 bit
binary number, may then be scaled, that is multiplied by a NTE size. That scaled Name may then be added
to Name Table Pointer (NTP) from mCRs 10366 to obtain the address of a corresponding NTE in an NT
10350. In addition, a Name resulting in a NC 10226 miss. or a page fault in the corresponding NT 10350, or
requiring a sequence of Name resolves, may be transferred into OFFGRF 20234 from OFFMUX 20240,
through OFFALU 20242 and OFFSEL 20238 third input. That Name may subsequently be read, or restored,
from OFFGRF 20234 as required.

Referring now to outputs of OFFMUX 20240, OFFMUX 20240's first output,-from OFFMUXR 23812.
allows contents of OFFMUXR 23812 to be transferred to first input of OFFALU 20242 through OFFALUSA
20244. OFFMUX 20240's second output, from OFFMUXOS 23822, is provided directly to second input of
OFFALU 20242. OFFALU 20242 may be concurrently provided with a first input from OFFMUXR 23812 and a
second input, for example a manipulated offset field. from OFFMUXOS 23822.

Referring to OFFALUSA 20244, OFFALUSA 20244 is a multiplexer. OFFALUSA 20244 may select either
output of OFFGRF 20234 or first output of OFFMUX 20240 to be either first input of OFFALU 20242 or to be
OFFP 20218’s output to OFFSET Bus 20228. For example, an offset field from OFFGRF 20234 may be read to
OFFSET Bus 20228 to comprise offset field of a current logical descriptor, and concurrently read into
OFFALU 20242 to be incremented or decremented to generate offset field of a subsequent _logical
descriptor in a string transfer. _ '

OFFALU 20242 is a‘ general purpose, 32 bit arithmetic and logic unit capable of performing all usual
ALU operations. For example, OFFALU 20242 may add, subtract. increment, or decrement offset fields of
logical descriptors. in addition, OFFALU 20242 may serve as a transfer path for data, that is OFFALU 20242
may transfer input data to OFFALU 20242's outpum without operating upon that data. OFFALU 20242's first

’ output, as described above, is connected to JPD Bus 10142, to third input of OFFSEL 20238, and to first
input of AONSEL 20248. Data transferred or manipulated by OFFALU 20242 may therefore be transferred
on to JPD Bus 10142, or wrapped around into OFFP 20218 through OFFSEL 20238 for subsequent or
reiterative operations. OFFALU 20242's output to AONSEL 20248 may be used, for example, to load AON
fields of AON pointers or physical descriptors generated by OFFP 20218 into AONGRF 20232. in addition,
this data path allows FU 10120 to utilize AONGRF 20232 as, for example, a buffer or temporary memory ‘
space for intermediate or final results of FU 10120 operations.

OFFALU 20242's output to OFFSET Bus 20228 allows logical descriptor offset fields to be transferred
onto OFFSET Bus 20228 directly from OFFALU 20242. For example, a logical descriptor offset field may be
generated by OFFALU 20242 during a first clock cycle, and transferred immediately onto OFFSET Bus 20228
during a second clock cycle.

OFFALU 20242's third output is to NAME Bus 20224. As will be described further below, NAME Bus
20224 is address input (ADR) to NC 10228. OFFALU 20242's output to NAME Bus 20224 thereby allows
OFFP 20218 to generate or provide addresses, that is Names, to NC 10226.

Having described operation of OFFP 20218, operation of LENP 20220 will be described next below.

a. Length Processor 20220 (Fig. 239)
Referring to Fig. 202, a primary function of LENP 20220 is generation and manipulation of logical

descriptor length fields, including length fields of logical descriptors generated in string transfers. LENP
2020 includes LENGRF 20236, LENSEL 20250, BIAS 20246, and LENALU 20252. LENGRF 20236 may be
comprised, for example, of Fairchild 934225. LENSEL 20250 may be comprised of, for example, SN74S2FIs,
SN74S157s, and SN74S244s, and LENALU 20252 may be comprised of. for example, SN74S381s.

As previously described. LENGRF 20236 is a 32 bit wide vertical section of GRF 10354. LENGRF 20236
operates in parallel with OFFGRF 20234 and AONGRF 20232 and contains, in part, length fields of logical
descriptors. In addition, also as previously described, LENGRF 20236 may contain data.

64

Petitioner Apple Inc. — Exhibit 1024, p. 4109

Petitioner Apple Inc. - Exhibit 1024, p. 4110

20

55

EP 0 067 556 B1

LENSEL 20250 is a multiplexer having three inputs and providing outputs to LENGRF 20235 and first
input of BIAS 20246. LENSEL 20250's first input is from Length Bus 20226 and may be used to write physical
descriptor or length fields from LENGTH Bus 20226 into LENGRF 20236 or into BIAS 20246. Such length
fields may be written from LENGTH Bus 20226 to LENGRF 20236, for example, during Name evaluation or
resolve operations. LENSEL 20250’s second input is from OFFSET Bus 20228. LENSEL 20250's second input
may be used, for example, to load length fields generated by OFFP 20218 into LENGRF 20236. in addition,
data operated upon by OFFP 20218 may be read into LENGRF 20236 for storage through LENSEL 20250's
second input.

LENSEL 20250’s third input is from output of LENALU 20252 and is a wrap around path to retum output
of LENALU 20252 to LENGRF 20256. LENSEL 20250's third input may, for example, be used during string
transfers when length fields of a particular logical descriptor is incremented or decremented by LENALU
20252 and returned to LENGRF 20236. This data path may also, for example, be used in moving a 32 bit
word from one location in LENGRF 20236 to another location in LENGRF 20236. As stated above, LENSEL
20250‘s output is also provided to first input BIAS and allows data appearing at first, second, or third inputs
of LENSEL 20250 to be provided to first input of BIAS 20246.

BIAS 20246, as will be described in further detail. below. generates logical descriptor length fields
during string transfers. As described above. no more than 32 bits of data may be read from MEM 10112
during a single read operation. A data item of greater than 32 bits in length must therefore be transferred in
a series, or string, of read operations, each read operation transferring 32 bits or less of data. String transfer
logical descriptor length fields generated BIAS 20246 are provided to LENGTH Bus 20226, to LENALU 20252
second input, and to OFFMUX 20240's fourth input, as previously described. These string transfer logical
descriptor length fields, referred to as bias fields are provided to LENGTH Bus 20226 by BIAS 20246 to be
length fields of the series of logical descriptors generated by DESP 20210 to execute a string transfer. These
bias fields are provided to fourth input OFFMUX 20240 to increment or decrement offset fields of those
logical descriptors, as previously described. These bias fields are provided to second input of LENALU
20252, during string transfers. to correspondingly decrement the length field of a data item being read to

_ MEM 10112 in a string transfer. BIAS 20246 will be described in greater detail below, after LENALU 20252 is
first briefly described.

a.e. Length ALU 20252 V
LENALU 20252 is a general purpose, 32 bit arithmetic and logic unit capable of executing all customary

arithmetic and logic operations. In particular, during a string transfer of a particular data item LENALU
20252 receives that data items length field from l£NGRF 20236 and successive bias fields from BIAS 20246.
LENALU 20252 then decrements that logical descriptors current length field to generate length field to be
used during next read operation of the string transfer, and transfers new length field back into LENGRF
20236 through LENSEL~20250's-third input.

b.b. BlAS 20246 (Fig. 239)
Referring to Hg. 239. a partial block diagram of BlAS 20246 is shown. BIAS 20246 includes Bias

Memory (BIASMJ 23910, Length Detector (LDETl 23912, Next Zero Detector (NXTZR0l 23914, and Select
Bias (SBlASl 23916. input of LDET 23912 is first input of BlAS 20246 and connected from output of LENSEL
20250. Output of LDET 23912 is connected to data input of BIASM 23910, and data output of BIASM 23910 is
connected to input of NXTZRO 23914. Output of NXTZRO 23914 is connected to a first input of SBIAS
23916. A second input of SBIAS 23916 is BIAS 20246's second input, L8, and is connected from an output of
FUCTL 20214. Athird input of SBIAS 23916 is BlAS 20246's third input, L, and is connected from yet another
output of FUCTL 20214. Output of SBIAS 23916 is output of BIAS 20246 and, as described above, is
connected to LENGTH Bus 20226, to a second input of LENALU 20252, and to fourth input of OFFMUX
20240.

BIASM 23910 is a 7 bit wide random access memory having a length equal to, and operating and
addressed in parallel with, SR's 10362 of GRF 10354. BlASM 23310 has an address location corresponding
to each address location of SR’s 10362 and is addressed concurrently with those address locations in SR's
10362. BIASM 23910 may be comprised, for example, of AMD 27S03As.

BIASM 23910 contains a bias value of each logical descriptor residing in SR's 10362. As described
above, a bias value is a number representing number of bits to be read from MEM 10112 in a particular read
operation when a data item having a corresponding logical desuiptor, with a length field stored LENGRF
20236, is to be read from MEM 10112. Initially, bias values are written into BIASM 23910. in 3 manner
described below. when their corresponding length fields are written into LENGRF 20236. If a particular data
item has a length of less than 32 bits, that data item's initial bias value will represent that data items actual
length. For example, if a data item has a length of 24 bits the associated bias value will be e 6 bit binary
number representing 24. That data item's length field in LENGRF 20236 will similarly contain a length value
of 24. if a particular item has a length of greater than 32 bits for example, 70 hits as described in a previous
example, that data item must be read from MEM 10112 in a string transfer operation. As previously
described, a string transfer is a series of read operations transferring 32 hits at a time from MEM 10112,
with a final transfer of 32 bits or less completing transfer of that data item. Such a data item's initial length

‘field entry in LENGRF 20236 will contain, using the same exampleas previously described, a value of 70.

65

Petitioner Apple Inc. — Exhibit 1024, p. 4110

Petitioner Apple Inc. - Exhibit 1024, p. 4111

~ ‘transfer that data item from MEM 10112 will transfer 32 bits of data.

10

I5

20

El’ 0 057 ass 1:

That data item's initial bias entry written into a corresponding address space of BlASM 23910 will comain a
bias value of 32. That initial bias value of 32 indicates that at least the first read operation required to

When a data item having a length of less than 32 bits, for example 24 bits, is to be read from MEM
10112, that data item's bias value of 24 is read from BlASM 23910 and provided to LENGTH Bus 20226 as
length field of logical descriptor for that read operation. Concurrently, that bias value of 24 is subtracted
from that data items length field read from LENGI-'lF 20236. Subtracting that bias value from that length
value will yield a result of zero, indicating that no further read operations are required to complete transfer
of that data item.

If a data item having, for example, a length of 70 bits is to be read from MEM 10112, that data item's
initial bias value of 32 is read from BlASM 23910 to LENGTH Bus 20226 as length field of first logical
descriptor of a string transfer.,Concurrently, that data item's initial length field is read from LENGRF 20236.
That data item's initial bias value, 32. is subtracted from that data item's initial length value, 70, and
LENALU 20252. The result of that subtraction operation is the remaining length of data item to be
transferred in one or more subsequent read operations. in this example, subtracting initial bias value from
initial length value indicates that 38 bits of thatdata item remain to be transferred. LENALU 20252’s output
representing results of this subtraction, for example 38, are transferred to LENSEL 20250's third input to
LENGRF 20236 and written into address location from which that data Item's initial length value was read.
This new length field entry then represents remaining length of that data item. Concurrently, LDET 23912
examines that residual length value being written into l.£NGRF 20236 to determine whether remaining
length of that data item is greater than 32 bits or is equal to or less than 32 bits. lf remaining length is
greater than 32 bits, LDET 23912 generates a next bias value of 32. which is written into BIASM 23910 and
same address location that held initial bias value. If remaining data item length is less than 32 bits, IJJET
23912 generates a 6 bit binary number representing actual remaining length of data item to be transferred.
Actual remaining length would then, again, be written into BlASM 23910 address location originally
containing initial bias value. These operations are also performed by LDET 23912 in examining initial length
field and generating a corresponding initial bias value. These read operations are continued as described
above until LDET 23912 detects that remaining length field _is 32 bits or less, and thus that transfer of that
data item will be completed upon next read operation. When this event is detected, LDET 23912 generatesa
seventh bit input into BlASM 23910, which is written into BIASM 23910 together with last bias value of that
string transfer, indicating that remaining length will be zero after next read operation. When a final bias
value is read from BlASM 23910 at start of next read operation of that string transfer, that seventh bit is
examined by NXTZRO 23914 which subsequently generates a test condition output, Lest Read (LSTRD) to
FUCTL 20214. FUCTL 20214 may then terminate execution of that string transfer after that last read
operation, if the transfer has been successfully completed.

As previously described, the basic unit of length of a data item in CS 10110 is 32 bits. Accordingly, data
items of 32 or fewer bits may be transferred directly while data items of more than 32 bits require a string
transfer. in addition, transfer of a data item through a string transfer requires tradting of the transferred
length, and remaining length to be transferred, of both the data item itself and the data storage space of the
location the data item is being transferred to. As such, BIAS 20246 will store, and operate with, in the
manner described above, length and bias fields of the logical descriptors of both the data item and the
location the data item is being transferred to. FUCTL 20214 will receive an LSTHD test condition if bias field
of source descriptor becomes zero before or concurrently with that of the destination, that is a completed
transfer. or if bias field of destination becomes zero before that of the source, and may provide an

appropriate microcode control response. it should be noted that if source bias field becomes zero before
that of the destination, the remainder of the location that this data item is being transferred to will be filled
and padded with zeros. if the data item is larger than the destination storage capacity, the destination
location will be filled to capacity and FUCTL 20214 notified to initiate appropriate action.

in addition to allowing data item transfers which are insensitive to data item length, BIAS 20246 allows
string transfers to be accomplished by short, tight microcode loops which are insensitive to" data item
length. A string transfer, for example, from location A to location B is encoded as:

(1) Fetch from A, subtract length from bias A, and update offset and length of a: and,
i2) Store to B, subtract length from bias 8, and branch to (1) if length of B does not go to zero or fall

through (and transfer) if length of 3 goes to zero. Source (Al length need not be texted as the microcode
loop continues until length of B goes to zero; as described above, 8 will be filled and padded with zeros if
length of A is less than length of B. or B will be filled and the string transfer ended if~length of A is greater
than or equal to length of B.

LDET 23912 and NXTZRO 23914 thereby allow FUCTL 20214 to automatically initiate a string transfer
upon occurrence of a single microinstruction from FUCTL 20214 initiating a read operation by DESP 20210.
That microinstruction initiating a read operation will then be automatically repeated until LSTRD to FUCTL
20214 from NXTZRO 23914 indicates that the string transfer is completed. LDET 23912 and NXTZRO 23914
may, respectively. be comprised for example of 87452605. Sl\l74S133s, SN74S51s. SN74S00s. 5N74$00S.
SN74S04s, SN74S02s, and SN74S32s. '

Referring finally to SBIAS 23916, SBIAS 23916 is a multiplexer comprised. f°|' example. Of SN74S288S.
SN74S374s, and SN74S244s. SBIAS 23916, under microinstruction control from FUCTL 20214, selects BIAS _4

65

Petitioner Apple Inc. — Exhibit 1024, p. 4111

Petitioner Apple Inc. - Exhibit 1024, p. 4112

.\

.20‘

.95

55

‘ EP 0067556 B1

20246's output to be one of a bias value from BiASM 23910, L8, or L. SBlAS 23916's first input, from BIASM
23910, has been described above. SBIAS 23916's second input, L8, is provided from FUCTL 20214 and is 8
bits of a mlcroinstruction provided from FUSlTl' 11012. SBlAS 23916’: second input allows microcode
selection of bias values to be used in manipulation of length and offset fields of logical descriptors by
LENALU 20252 and OFFALU 20242, and for generating entries to MC 10226. SBIAS 23916’s third input, L, is
similarly provided from FUCTL 20214 and, is a decoded length value derived from portions of
microinstructions in FUSl1T 11012. These microcode length values represent certain commonly occurring
data item lengths, for example length of 1, 2, 4, 8, 16, 32, and 64 bits. An L input representing a length of 8
bits, may be used for example in reading data from MEM 10112 on a byte by byte basis.

Having described operation of LENP 20220, operation of AONP 20216 will be described next below.

i. AON Processor 20216
a.a. AONGRF 20232

As ‘described above, AONP 20216 includes AONSEL 20248 and AONGRF 20232. AONGRF 20232 is a 28
‘ bit wide vertical section of GHF 10354 and stores AON fields of AON pointers and logical descriptors.

AONSEL 20248 is a multiplexer for selecting inputs to be written into AONG RF 20232. AONSEL 20248 may
be comprised, for example of SN74S257s. AONGRF 20232 may be comprised of, for example, Fairchild
934225.

As previously described, AONGRF 20232's output is connected onto AON Bus 20230 to allow AON
fields of AON pointers and logical descriptors to be transferred onto AON Bus 20230 from AONGRF 20232.
AONGRF 20232's output. together with a bi—directional input from AON Bus 20230, is connected to a second
input of AONSEL 20248 and to a fourth input of AONSEL 20238. This data path allows AON fields, either
from AONGRF 20232 or from AON Bus 20230, to be written into AONGRF 20232 or AONGRF 20234, or
provided as an input to OFFMUX 20240.

b.b. AON Selector 20248

AONSEL 20248's first input is, as previously described, connected from output of OFFALU 20242 and is
used. for example. to allow AON fields generated or manipulated by OFFP 20218 to be written into
AONGRF 20232. AONSEL 20248's third input is a 28 bit word wherein each bit is a logical zero. AONSEL I
20248’: third input allows AON fields of all zeros to be written into AONGRF 20232. An AON field of all zeros
is reserved to indicate that corresponding entries In OFFGRF 20234 and LENGRF 20236 are neither AON
pointers nor logical descriptors. AON fields of all zeros are thereby reserved to indicate that corresponding
entries in OFFGRF 20234 and LENGRF 20236 contain data.

In summary, as described above, DESP 20210 includes AONP 20216, OFFP 20218, and LENP 20220.
OFFP 20218 contains a vertical section of GRF 10354, OFFGRF 20234, for storing offset fields of AON

pointers and logical descriptors, and for containing data to be operated upon by DESP 20210. OFFP 20218 is
principal path for transfer of data from MEM 10112 to JP 10114 and is a general purpose 32 bit arithmetic
and logic unit for performing all usual arithmetic and logic operations. In addition, OFFP 20218 includes
circuitry, for example OFFMUX 20240, for generation and manipulation of AON, OFFSET, and LENGTH
fields of logical descriptors and AON pointers. OFFP 20218 may also generate and manipulate entries for,
for example, NC 10226, ATU 10228, PC 10234. AOT 10712, MHT 10716, MFl' 10718, and other data and
address structures residing in MEM 10112. LENP 20220 includes a vertical section of GRF 10354. LENGRF
20236, for storing length fields of logical descriptors, and for storing data. LENP 20220 further includes
BIAS 20246, used in conjunction with LENGRF 20236 and LENALU 20252, for providing length fields of
logical descriptors for MEM 10112 read operations and in particular automatically perfonning string
transfers. AONP 20216 similarly includes a vertical section of GRF 10354, AONGRF 20232. A primary
function AONGRF 20232 is storing and providing AON fields of AON pointers and logical descriptors.

Having described structure and operation of DESP 20210, structure and operation of Memory Interface
(MEMlNT) 20212 will be described next below.

2. Memory Interface 20212 (Figs. 106, 240)
MEMlNT 20212 comrises FU 10120’: interface to MEM 10112. As described above, MEMlNT 20212

includes Name Cache (NC) 10226, Address Translation Unit (ATU) 10228, and Protection Cache (PC) 10234,
all of which have been previously briefly described. MEMINT 20212 further includes Descriptor Trap (DEST)
20256 and Data Trap (DAT) 20258. Functions performed by MEMINT 20212 includes (1) resolution of Names
to logical descriptors, by NC 10226; (2) translation of logical descriptors to physical descriptors. by ATU
10228; and (3) confirmation of access writes to objects, by PC 10234.

As shown in Fig. 202, NC 10226 adress input (ADR) is connected from NAME Bus 20224. NC 10226
Write Length Field input (WL) is connected from LENGRF 20236’s output. NC 10226's Write Offset Field
lnput (W0) and Write AON Field Input (WA) are connected, respectively, from OFFSH Bus 20228 and AON
Bus 20230. NC 10226 Read AON Field (RA), Bead Offset field (H0), and Read Length Field (RL) outputs are
connected, respectively, to AON Bus 20230, OFFSET Bus 20228, and LENGTH Bus 20226.

DEST 20256’s bi-directional AON (AON). Offset (OFF). and Length (LEN) ports are connected by bi-
directional buses to and from, respectively, AON Bus 20230, OFFSET Bus 20228, and LENGTH Bus 2026.

PC 10234 has AON (AON) and Offset (OFF) inputs connected from, respectively, AON Bus 20230 and

67

Petitioner Apple Inc. — Exhibit 1024, p. 4112

Petitioner Apple Inc. - Exhibit 1024, p. 4113

10

20

25

30

as 0 ca? 556 B1

OFFSET Bus 20228. PC 10234 has a Write Entry (WEN) input connected from JPD Bus 10142. ATU 10228 has

AON (AON), Offset (CF), and Length (LEN) inputs connected from, respectively, AON Bus 20230, OFFSET
Bus 20228, and LENGTH Bus 20226. ATU 10228's output is connected to physical Descriptor (PD) Bus
10146.

Finally, DAT 20258 has a bi-directional port connected to and from JPD Bus 10142.

e.a. Description Trap 20256 and Data Trap 20258
Referring first to DST 20256 and DAT 20258, DST 20256 is a register for receiving and capturing logical

descriptors appearing on AON Bus 20230, OFFSET Bus 20228, and Length Bus 20226. Similarly. DAT 20258
is a register for receiving and capturing data words appearing on JPD Bus 10142. DST 20256 and DAT 20258
may subsequently return captured logical descriptors or data words to, respectively. AON Bus 20230.
OFFSET Bus 20228, and LENGTH Bus 20226, and to JPD Bus 10142.

As previously described, many CS 10110 operations, in particular MEM 10112 and JP 10114 operations.
are pipelined. That is, operations are overlapped with certain sets within two or more operations being
executed concurrently. For example, FU 10120 may submit read request to MEM 10112 and, while MEM
10112 is accepting and servicing that request. submit a second read request. DEST 20256 and DAT 20258
assist in execution of overplapping operations by providing a temporary record of these operations. For
example, a part of a read orwrite request to MEM 10112 by FU 10120 is a logical descriptor provided to ATU
10228. if, for example the first red request lust referred to results in a ATU 10228 cache miss or a protection
violation, the logical descriptor of that first request must be recovered for subsequent action by CS 10110
as previously described. That logical descriptor will have been captured and stored in DEST 20256 and thus
is_immediately available, so that DESP 20210 is not required to regenerate that descriptor. DAT 20258
serves a similar purpose with regard to data being written into MEM 10112 from JP 10114. That is. DAT
20258 receives and captures a mpy of each 32 bit word transferred onto JPD Bus 10142 by JP 10114. in
event of MEM 10112 being unable to accept a write request, that data may be subsequently reprovided
from DAT 20258.

b.b. Name Cache 10fl6, Address Translation Unit 10228, and Protection Cache 10234 (Fig. 108)
Referring to NC 10226. ATU 10228, and PC 10234, these elements of MEMINT 20212 are primarily cache

mechanisms to enhance the speed of FU 10120's interface to MEM 10112, and consequently of CS 10110's
operation. As described previously, NC 10226 mntains a set of logical descriptors corresponding to certain
operand names currently appearing in a process being executed by CS 10110. NC 1026 thus effectively
provides high speed resolution of certain operand names to corresponding logical descriptors. As
described above with reference to string transfers, NC 10226 will generally contain logical desciiptors only
for data items of less than 256 bits length. NC 10226 read and write addresses are names provided on
NAME Bus 20224. Name read and write addresses may be provided from DESP 20210, and in particular
from OFFP 20218 as previously described, or from FUCTL 20214 as will be described in a following
description of FUCTL 20214. Logical descriptors comprising NC 10226 entries, each entry comprising an
AON field, an Offset field, a Length field, are written into NC 10226 through NC 10226 inputs WA, W0, and
WL from. respectively, AON Bus 20230, OFFSET Bus 20228. and LENGRF 20236's output. Logical
descriptors read from NC 10226 in response to names provided to NC 10226 ADR input are provided to
AON Bus 20230, OFFSET Bus 20228, and LENGTH Bus 20226 from, respectively, NC 10226 outputs RA, R0,
and RL . «

' ATU 10228 is similarly a cache mechanism for providing high speed translation of logical to physical
descriptors. in general, ATU 1028 will contain, at any given time, a set of logical to physical page number
mappings for MEM 10112 read and write requests which are currently being made, or anticipated to be
made, to MEM 10112 by JP 10114. As previously described, each physical descriptor is comprised of a
Frame Number (FN) field, and Offset Within Frame (0) fields, and a Length field. As discussed with
reference to string transfers, a physical descriptor length field, as in a logical descriptor length field, specify
a data item of less than or equal to 32 bits length. Referring to Fig. 106C, as previously discussed a logical
descriptor comprised of a 14 bit AON field, a 32 bit Offset field, and Length field, wherein 32 bit logical
descriptor Offsetfield is divided into a 18 bit Page Number (P) field and a 14 bit Offset within Page (0) field.
in translating a logicl imo a physical descriptor, logical descriptor Length and O fields are used directly, as
respectively, physical descriptor length and 0 fields. Logical descriptor AON and P fields are translated into
physical descriptor FN field. Because no actual translation is required, ATU 10228 may provide logical
descriptor L field and corresponding 0 field directly, that is without delay, to MEM 10112 as corresponding
physical descriptor O and Length fields. ATU 10228 cache entries are thereby comprised of physical
descriptor FN fields corresponding to AON and P fields of those logical descriptors for which ATU 10228
has corresponding entries. Because physical descriptor FN fields are provided from ATU 10228's cache,
rather than directly as in physical descriptor O and Length fields, a physical descriptor’s FN field will be
provided to MEM 10112, for example, one clock cycle later than that physical descriptors 0 and Length
fields, as has been previously discussed.

Referring to Fig. 202, physical descriptor FN fields to be written into ATU 10228 are, in general, .
generated by DESP 20210. FN fields to be written into ATU 10228 are provided to ATU 10228 Data Input (Di)
through JPD Bus 10142. ATU 10228 read and write addresses are comprised of AON and Pfieids of logical.

BB

Petitioner Apple Inc. — Exhibit 1024, p. 4113

Petitioner Apple Inc. - Exhibit 1024, p. 4114

.'.,:..

.,\

1.\

25

EP 0 067 556 B1

descriptors and are provided to ATU 10228's AON and OFF inputs from, respectively, AON Bus 20230 and
OFFSET Bus 20228. ATU 10228 read and write addresses may be provided from DESP 20210 or, as
described further below, from FUCTL 20214. ATU 10228 FN outputs, together with 0 and Length fields
comprising a physical descriptor, are provided to PD Bus 10146.

PC 10234 is a cache mechanism for oonfinning active procedure’s access rights to obiects identified by
logical descriptors generated as a part of JP 10114 read or write requests to MEM 10112. As previously
described access rights to objects are arbitrated on the basis of subjects. A subject has been defined as a
particular combination of a principal, process, and domain. A principal, process, and domain are each
identified by corresponding UlDs. Each subject having access rights to an object is assigned an Active
Subject Number (ASN) as described in a previous description of CS 10110's Protection Mechanism. The
ASN ofa subject currently active in CS 101 10 is stored in ASN Register 10916 in FU 10120. Access rights of a
currently active subject to currently active objects are read from those objects Access Control Lists (ACLl
10918 and stored in PC 10234. If the current ASN changes, PC 10234 is flushed of corresponding access
right entries and new entries, corresponding to the new ASN, are written into PC 10234. The access rights
of a particular cun'ent ASN to a particular object may be determined by indexing, or addressing, PC 10234
with the AON identifying that object. Addresses to write entries into or read entries from PC 10234 are
provided to PC 10234 AON input from AON Bus 20230. Entries to be written into PC 10234 are provided to

' PC 10234’s WEN input from JPD Bus 10142. PC 10234 is also provided with inputs, not shown in Fig. 202 for
purposes of clarity, from FUCTL 20214 indicating the current operation to be perfomed by JP 10114 with
respect to an object being presently addressed by FU 10120. Whenever FU 10120 submits a read or write
request concerning a particular object to MEM 10112, AON field of that request is provided as an addess to
PC 10234. Access rights of the current active subject to that object are read from corresponding PC 10234
entry and compared to FUCTL 20214 inputs indicating the particular operation to be performed by JP 10114
with respect to that object. The operation to be performed by JP 10114 is then compared to that active
subject's access rights to that object and PC 10234 provides an output indicating whether that active subject
possesses the fights required to perform the imended operation. indexing of PC 10234 and comparison of
access rights to intended operation is performed concurrently with translation of the memory request
logil descriptor to a corresponding_ physical descriptor by ATU 10228. if PC 10234 indicates that that
active subject has the required access rights, the intended operation is executed by JP 10114. if PC 10234
indicates that that active subject cioes not have the required acces rights, PC 10234 indicates that a
protection mechanism violation has occurred and interrupts execution of the intended operation.

c.c Structure and Operation of a Generalized Cache and NC 10226 (Fig. 240)
Having described overall structure and operation of NC 10226, ATU 10228, and PC 10234. structure and

operation of these caches will be described in further detail below. Structure and operation of NC 10226,
ATU 10228, and PC 10234 are similar, except that NC 10226 is a four-way set associative cache, ATU 10228
is a threeway set associative cache and PC 10234 is a two—vvay set associative cache.

As such, the structure and operation of NC 10226, ATU 10228, and PC 10234 will be described by
reference to and description of a generalized cache similar but not necessarily identil to each of NC
10226, ATU 10228, and PC 10234. Reference will be made to NC 10226 in the description of a generalized
cache next below, both to further illustrate structure and operation of the generalized cache, and to
describe differences between the generalized cache and NC 10226. ATU 10228 and PC 10234 will then be
described by description of differences between ATU 10228 and PC 10234 and the generalized cache.

Referring to fig. 240, a partial block diagram of a generalized fou r-way, set associative cache is shown.
Tag Store (TS) 24-010 is comprised of Tag Store A (TSA) 24012. Tag Store B lTSB) 24014, Tag Store C (TSC)
24-016. and Tag Stone D (TSD) 24018. Each of the cache's sets, represented by TSA 24012 to TSD 24018, may
contain, for example as in NC 10226, up to 16 entries, so that TSA 24012 to TSD 24018 are each 16 words
long.

Address inputs to a cache are divided into a tag field and an index field. Tag fields are stored in the
cache's tag store and indexed, that is addressed to be read or written from or to tag store by indexfield of
the address. A tag read from tag store in response to index field of an address is then compared to tag field
of that address to indicate whether the cache contains an entry corresponding to that address, that is,
whether a cache hit occurs. in, for example, NC 10226, a Name syllable may be comprised of an 8, 12, or 16
bit binary word, as previously described. The four least significant bits ofthese words, or Names, comprise
NC 10226's index field while the remaining 4, 8, or 12 most significant bits comprise NC 10226's tag field.
TSA 24012 to TDS 24018 may each, therefore, be 12 entry wide memories to store the 12 bit tag fields of 16
bit names. index (lNDl or address inputs ofTSA 24012 to TSD 24018, would in NC 1026, be connected from
four least significant bits of NAME Bus 20224 while Tag Inputs (TAGI) of TSA 24012 to TSD 24018 would be
connected from the 12 most significant bits of NAME Bus 20224.

As described above, tag outputs of TS 24010 are compared to tag fields of addresses presented to" the
cache to determine whether the cache contains an entry corresponding to that address. Using NC 10226 as
an example 12 bit Tag Outputs (TAGOs) of TSA 24012 to TSD 24018 are connected to first inputs of Tag
Store Comparators iTSCl 24019. respectively to inputs of Tag Store Comparitor A (TSCA) 24020, Tag Store
Comparitor B (TSCBl 2402, Tag Store Comparitor D (TSCD) 24024, and Tag Store Comparitor E (TSCEl
24026. Second 12 bit inputs of TSCA 24020 to TSCE 24026 may be connected from the 12 most significant

69

Petitioner Apple Inc. — Exhibit 1024, p. 4114

Petitioner Apple Inc. - Exhibit 1024, p. 4115

I5

20

as o 057 555 B1

bits of NAME Bus 20224 to receive tag fields of NC 10226 addresses. TAS 24020 to TSCE 24026 compare tag '
field of an address to tag outputs read from TSA 24012 to TSE 24018 in response to index field of that
address, and provide four bit outputs indicating which, if any, of tlie possible 16 entries and their associated
tag store correspond to that address tag field. TSCA 24020 to TSCE 24026 may be comprised, for example,
of Fairchild 933463.

Four bit outputs of TSCA 24012 to TSCE 24026 are connected in the generalized cache to inputs of Tag
Store Pipeline Registers (TSPF!) 24027; respectively to inputs of Tag Store Pipeline Register A (TSPRA)
24028, Tag Store Pipeline Register B (TSPRBl 24030, Tag Store Pipeline Register C (TSPFlCl 24032, and Tag
Store Pipeline Register D (TSPRDI 24034. ATU 10228 and PC 10234 is pipelined with a single cache access
operation being executed in two clock cycles. During first clock cycle tag store is addressed and tags store
therein compared to tag field of address to provide indication of whether a che hit has occurred, that is
whether cache contains an entry corresponding to a particular address. During second clock wcle, as will
be described below, a detected cache hit is encoded to obtain access to a corresponding entry in cache data
store. Pipeline operation over two clock cycles is provided by cache pipeline registers which include, in
part, TSPRA 24028 to TSPRD 24034. NC 10226 is not pipelined and does not includeTSPRA 24028 to TSPRD
24034. in NC 10226, outputs of TSCA 24012 to TSCD 24024 are connected directly to inputs of TSHEA 24036
to TSHED 24042, described below.

. Outputs of TSPRA 24028 to TSPRD 24034 are connected to inputs of Tag Store Hit Encoders (TSHE)
24035, respectively to Tag Store Hit Encoder A (TSHEA) 24036, Tag Store Hit Encoder 8 (TSHEB) 24038, Tag
Store Hit Encoder C (TSHECl 24040, and Tag Store Hit Encoder D (TSHED) 24042. TSHEA 24036 to TSHED
24042 encode, respectively, bit inputs from TSPRA 24028 to TSPRD 24034 to provide single bit outputs
indicating which, if any, set of the cache’s four sets includes an entry corresponding to the address input.

Single bit outputs of TSHEA 24036 to TSHED 24042 are connected to inputs of Hit Encoder (HE) 24044.
HE 24044 encodes single bit inputs from TSHEA 24036 to TSHED 24042 to provide two sets of ouputs. First
outputs of HE 24044 are provided to Cache Usage Store (CUS) 24046 and indicate in which of the cache’s

‘ four sets, corresponding to TSA 24012 to TSD 24018, a cache hit has occurred. As described previously with
reference to MC 20116, and will be described further below, CUS 24046 is a memory containing information
for tracking usage of cache entries. That is, CUS 24046 contains entries indicating whether. for a particular
Index, Set A, Set 8. Set C or Set D of the cache’s four sets has been most recently used and which has been
least recently used. CUS 24046 entries regarding Sets A, B, C. and D are stored in, respectively, memories
CUSA 24088, CUSB 24090, CUSC 24092, and CUSD 24094. Second output of HE 24044, as described further
below, is connected to selection input of Data Store Selection Multiplexer (DSSMUX) 24048 to select an
output from Data Store (DS) 24050 to be provided as output of the cache when a cache hit occurs.

Referring to DS 24050, as previously described a cache’s data store contains the information, or
entries, stored in that cache. For example, each entry in NC 10226‘s DS 24050 is a logical descriptor
comprised of an AON, and. Offset, and Length. A cache‘: data store parallels, in structure and organization,
that cache’s tag store and entries therein are identified and located through that cache’s tag store and
associated tag store comparison and decoding logic. ln NC 10226, for example, for each Name having an
entry in NC 1026 there will be an entry, the tag field of that name, stored in T5 24010 and a conesponding
entry, a logical descriptor corresponding to that Name, in D5 24050. As described above, NC 10226 is a
four-way, set associative cache so that TS 24010 and DS 24050 will each contain four sets of data. Each set
was previously described as containing up to 16 entries. DS 24050 is therefore comprised of four 16 word
memories. Each memory is 65 bits wide, accommodating 28 bits of AON, 32 bits of offset, and 5 bits of
length. These four component data store memories of DS 24050 are indicated in Fig. 240 as Data Store A
(DSA) 24052, Data Store 8 (DSB) 24054, Data Store C (DSC) 24056, and Data Store D (DSD) 24058. DSA
24052. DSB 24054, DSC 24056 and DSD 24058 correspond, respectively, in structure. contents, and
operation to TSA 24012, TSB 24014, TSC 24016 and TSD 24018. .

Data lnputs (Dls) of DSA 24052 to DSD 24058 are, in NC 10226 for example, connected from AON Bus
20230, OFFSET Bus 20228, LENGTH Bus 20226 and comprise inputs WA, W0, WL respectively of NC 10226.
DSA 24052 to DSD 24058 Dis are, in NC 10226 as previously described, utilized in writing NC 10226 entries
into DSA 24052 to DSD 24058. Address inputs of DSA 24052 to DSD 24058 are connected from address
outputs of Address Pipeline Register (ADRPR) 24060. As will be described momentarily, except during
cache flush operations, DSA 24052 to DSD 24058 address inputs are comprised of the same index fields of
cache addresses as are provided as address inputs to TS 24010, but are delayed by one clock cycle and
ADRPR 24060 for pipelining purposes. As described above, NC 10226 is not pipelined and does not have the
one clock cycle delay. An address input to the che will thereby result in corresponding entries, selected
by index field of that address, being read from TSA 24012 to TSD 24018 and DSA 24052 to DSD 24058. The
four outputs of DSA 24052 to DSD 24058 selected by a particular index field of a particular address are
provided as inputs to DSSMUX 24048. DSSMUX 24048 is concurrently provided with selection control
input from HE 24044. As previously described, this selection input to DSSMUX 24048 is derived from T5
24010 tag entries and indicates which of DSA 24052 to DSD 24058 entries corresponds to an address
provided to the cache. In response to that selection control input, DSSMUX 24048 selects one of DS 24050’s
four logical descriptor outputs as the cache’s output corresponding to that address. DSSMUX 24048’s
output is then provided, through Buffer Driver (BD) 24062 as the cache’s output, for example in NC 10226 to
AON Bus 20230, OFFSET Bus 20228, and LENGTH Bus 20226.

70

Petitioner Apple Inc. — Exhibit 1024, p. 4115

Petitioner Apple Inc. - Exhibit 1024, p. 4116

35

60

EP 0 067 556 B1

Referring to ADRMUX 24062, ADRMUX 24062 selects one of two sources to provide address inputs to
DS 24050, that is to index to DS 24050. As described above, a first ADRMUX 24062 input is comprised ofthe
cache‘s address index fields and, for example in NC 10226, is connected from the four least significant bits
of NAME Bus 2024. During cache flush operations, DS 24050 address inputs are provided from Flush
Counter lFLUSHCTR) 24066, which in the example is a four bit counter. During cache flush operations,
FLUSHCTR 24066 generates sequential bit addresses which are used to sequentially addres DSA 24052 to
DSD 24058. Selection between ADRMUX 24062 first and second inputs, respectively the address index
fields and from FLUSHCTR 24066, is controlled by Address Multiplexer Select (ADRMUXS) from FUCTL
20214.

Validity Store (VALS) 24068 and Dirty Store (DlRTYS) 24070 are memories operating in parallel with,
and addressed in parallel with TS 24010. VALS 24068 contains entries indicating validity of corresponding
TS 24010 and DS 24050 entries. That is, VALS 24068 entries indicate whether corresponding entries have
been written into corresponding locations in T5 24010 and DS 24050. in the example, VALS 24068 may
thereby" be a 16 word by 4 bit wide memory. Each bit of a VALS 24068 word indicates validity of a
corresponding location in TSA 24012 and DSA 24052, TSB 24014 and DSB 24054, TSC 24016 and DSC
24056, and TSD 24018 and DSD 24058. DIRTYS 24070 similarly indicates whether corresponding entries in
corresponding lotions of TS 24010 and DS 24050 have been written over, or modified. Again, DIRTYS
24070 will be a sixteen word by four bit wide memory.

Address inputs of VALS 24068 and DlFl‘lYS 24070 are, for example in NC 10226, connected from least
significant bits of NAME Bus 20224 and are thus addressed by index fields of NC 10226 addresses in
parallel with TS 24010. Outputs of VALS 24068 are provided to TSCA 24020 to TSEE 24026 to inhibit outputs
0fTSCA 24020 through TSCE 24026 upon occurrence of an invalid concurrence between a T8 24010 entry
and a NC 10226 address input. Similar outputs of DIRTYS 24070 are provided to FUCTL 20214 for use in
cache flush operations to indicate which NC 10226 entries are dirty and must be written back into an MT
10350 rather than disgarded.

Outputs of VALS 24068 and DIRTYS 24070 are also connected, respectively, to inputs of Validity
Pipeline Register lVALPR) 24072 and Dirty Pipeline Register (DlFlTYPRl 24074. VALPR 24072 and DIRTYPR
24074 are pipeline registers similar to TSPRA 24028 to TSPRD 24034 and are provided for timing purposes
as will be described momentarily. Outputs of VALPR 24072 and DIRTYPR 24074 are connected to inputs of,
respectively. Validity Write Logic (VWL) 24076 and Dirty Write Logic (DWL) 24078. As described above, NC
10226 is not a pipelined cache and does not include VALPR 24072 and DIRTYPR 24074; outputs of VALS
24068 and D|R'l'YS 24070 are connected directly to inputs of VWL 24076 and DWL 24078. Outputs of VWL
24076 and DWL 24078 are connected, respectively, to data inputs of VALS 24068 and DlRTYS 24070. Upon
occurrence of a write operation to TS 24010 and DS 24050, that is writing in or modifying a cache entry,
corresponding validity and dirty word entries are read from VALS 24068 and DIRTYS 24070 by index field of
the caches input address. Outputs to VALS 24068 DIRTYS 24070 are received and stored in, respectively,
VALPR 24070 and DIRTYPR 24074. At start of next clock cycle, validity and dirty words in VALPR 24072 and
DIRTYPR 24074 are read into. respectively. VWL 24076 and DWL 24078. VWL 24076 and DWL 24078
respectively modify those validity or dirty word entries from VALS 24068 and DIRTYS 24070 in accordance
to whether the corresponding entries in TS 24010 and DS 24050 are written into or modified. These
modified validity and dirty words are then written, during second clock cycle. from VWL 24076 and DWL
24078 into, rpectively, VALS 24068 and DIRTYS 24070. Control inputs of VWL 24076 and DWL 24078 are
provided from FUCTL 20214.

Referring finally to Least Recent Used Logic (LRUL) 24080, LRUL 24080 tracks usage of cache entries.
As previously described. the generalized cache of Fig. 240 is a four way, set associative cache with, for
example, up to 16 entries in each of NC ‘l0226's sets. Entries within a particular set are identified, as
described above, by indexing the cache's TS 24010 and DS 24050 may contain, concurrently, up to four
individual entries identified by the same index but distiguished by having different tags. In this case, one
entry would reside in Set A, comprising TSA 24012 and DSA 24052, one in Set B, comprising TSB 24014 and
DSB 24054, and so on..Since the possible number of individual entries having a common tag is greater than
the number of cache sets, it may be necessary to delete a particular cache entry when another entry having
the same tag is to be written into the cache. In general, the cache‘s least recently used entry would be
deleted to provide a location in TS 24010 and DS 24050 for writing in the new entry. LRUL 24080 assists in
determining which cache entries are to be deleted when necessary in writing in a new entry by tracking and
indicating relative usage of the cache‘s entries. LRUL 24080 is primarily comprised of a memory, LRU
Memory lMLRU) 24081, containing a word for each cache set. As described above, NC 10226, for example,
includes 16 sets of 4 frames each, so that LRUL 24080's memory may correspondingly be, for example, 16
words long. Each word indicates relative usage of the 4 frames in a set and is a 6 bit word. -

Words are generated and written into LRUL 24080's MLRU 24081, through input Register A. B, C, D
(RABCD) 24083, according to a write only algorithm executed by HE 24044, as described momentarily. Each
bit of each six word pertains to a pair of frames within a particular cache set and indicates which of those
two frames was more recently used than the other. For example, Bit 0 will contain logic 1 if Frame A was
used more recently than Frame B and a logic zero if Frame B was used more recently than Frame A.
Similarly, Bit 1 pertains to Frames Aand C, Bit 2 to Frames A and D, Bit 3 to Frames B and C, Bit 4to Frames
B and D, and Bit 5 to Frames C and D. Initially, all bits of a particular LRUL 24080 word are set to zero.

71

Petitioner Apple Inc. — Exhibit 1024, p. 4116

Petitioner Apple Inc. - Exhibit 1024, p. 4117

lEiP do on 556 at

Assuming, for example, that the frames of a particular set are used in the sequence Frame A, Frame D,
Frame B; Bits 0 to 5 of that LRUL 24080 word will initially contain all zeros. Upon a reference to Frame A,
Bits 0. 1, and 2, referring respectively to Frames A and B, Frames A and C, and Frames A and D, will be
written as logic 1's. Bits 3, 4, and 5, referring respectively to Frames B and C, Frames B an D. and Frames C

5 and D, will remain logic 0. Upon reference to Frame D. Bits 0 and 1, referring respectively to Frames A and B
and Frames A and C, will remain logic 1's. Bit 2, referring to Frames A and D, will be changed from logic 1 to
logic 0 to indicate that Frame D has been referred to more recently than Frame A. Bit 3, referring to Frames
B and C. will remain logic 0. Bits 4 and 5, referring respectively to Frames B and D and Frames C and D, will
be written as logic 0, although they are already logic zeros, to indicate respectively that Frame D has been

1a used more recently than Frame 8 or Frame C. Upon reference to Frame 8, Bit 0, referring to Frames A and B,
will be written to logic 0 to indicate that Frame B h_as been used more recently than Frame A Bits 1 and 2,
referring rasectively to FramesA and C and Frames A and D, will remain respectively as logic 1 and logic 0.
Bits three and four, referring respectively to Frames 3 and C and Frames 8 and D, will be written as logics
1's to indicate respectively that Frame B has been used more recently than Frame C or Frame D. Bit five will

15 remain logic 0. -
When it is necessary to replace a cache entry in a particular frame, the LRUL 24080 word referring to.

the cache set containing that frame will be read from LRUL 24080’s MLRL 24081 through LRU Register
(RLRU) 24085 and decoded by LRU Decode Logic (LRUD) 24087 to indicate which is least recently used
frame. This decoding is executed by means of a Read Only Memory operating as a set of decoding gating.

20 Having described the structure and operation of a generalized cache as shovrm in i-‘lg. 240, with
references to NC 10226 for illustration and to point out differences between the generalized cache and NC
10226, structure and operation of ATU 10228 and PC 10234 will be described next below. ATU 10228 and PC
10234 will be described by describing the differences between ATU 10228 and PC 10234 and the
generalized cache and NC 10226. ATU 10228 will be described first, followed by PC 10234.

25
d.d. Address Translation Unit 10228 and Protection Cache 10234

ATU 10228 is a three-way, set associative cache of 16 sets, that is contains 3 frames for each set.
Structure and operation of ATU 10228 is "similar to the generalized cache described above. Having 3 rather
than 4 frames per set, ATU 10228 does not include a STD 24018, ATSCE 24026, ATSPRD 24034, ATSHED

30 24042. or ADSD 24058. As previously described ATU 10228 address inputs comprise AON and O fields of
logical descriptors. AON fields are each 28 bits and O fields comprise the 18 most significant bits of logical
descriptor offset fields, so that ATU 10228 address inputs are 48 bits wide. Four least significant bits of O
fields are used as index. AON fields and the 14 most significant bits of O field comprise ATU 10228‘s tags.
ATU 1028 tags are thereby each 42 bits in width. Accordingly, TSA 24012, TSB 24014, and TSC 24016 of

35 ATU 10228‘s TS 24010 are each 16 words long by 42 bits wide.
DSA 24052, DSB 24054, and DSC 24056 of ATU 10228 are each 16 bits long. ATU 10228 outputs are, as

previously described. Dhvsical descriptor Frame Number (FN) fields of 13 bits each. ATU 10228‘s DSA
24052. DSB 24054, DSC 24056 are thereby each 13 bits wide.

ATU 10228's LRUL 24080 is similar in structure and operation to that of the generalized cache. ATU
4a 12028's LRUL 24080 words, ear:h corresponding to an ATU 10228 set, are each 3 bits in width as 3 bits are

sufficient to indicate relative usage of frames within a 3 frame set. In ATU 10228, Bit 1 of an LRUL 24080
word indicates whether Frame A was used more recently than Frame 8, Bit 2 whether Frame A was used

. more recently than Frame C, and Bit 3 whether Frame B was used more recently than Frame C. In all other

res:rI>1ects, other than as stated above, ATU 10228 is similar in structure and operation to the generalizedca e.

45 Referring to PC 10234, PC 10234 is a two-way, set associative cache of 8 sets, that is has two frames per
set. Having 2 rather than 4 frames. PC 10234 will not include a TSC 24016, a TSD 24018, a TSCC 24024, a
TSCD 24026. a TSPRC 24032, a TSPRD 24034, a TSHEC 24040, a TSHED 24042, a DSC 24056, or a DSD24058.

5,, Address inputs of PC 10234 are the 28 bit AON fields of logical descriptors. The 3 least significant bits of
those AON fields are utilized as indexes for addressing PC 10234’s TS 24010 and DS 24050. The 25 most
significant bits of those AON field address inputs are utilized as PC 10234‘s tags, so that PC 10234's TSA
24012 and TSB 24014 are each 8 word by 25 bit memories.

Referring to PC 10Z34's LRUL 24080, a single bit is sufficient to indicate which of the two frames in each
55 of PC 10234's sets was most recently accessed. PC 10234's LRUL 24080's memory is thereby 8 words, or

sets long. one bit wide.

As previously described, PC 10234 entries comprise information regarding access rights of certain
active subiects to certain active objects. Each PC 10234 entry contains 35 bits of infonnation. Three bits of
this information indicate whether a particular subject was read, write, or execute rights relative to a

so particular object. The remaining 32 bits effectively comprise a length field indicating the volume or portion,
that is the number of data bits, of that object to which those access rights pertain.

Referring again to Hg. 240, PC 10234 differs from the generalized cache and from NC 10226 and ATU
10228 in further including Extent Check Logic (EXTCHK) 24082 and Operation Check Logic (OPRCHK) 24084.
PC 10234 entries include, as described above, 3 bits identifying type of access rights a particuiar subiect has

55 to a particular object. These 3 bits, representing a Read (R), Write (W). orfixecute (E) right, are provided to a-

72

Petitioner Apple Inc. — Exhibit 1024, p. 4117

Petitioner Apple Inc. - Exhibit 1024, p. 4118

20

25

55

EP 0 057 556 31

first input of OPRCHK 24084. A second input of OPRCHK 24084 is provided from FUCTL 20214 and specifies
whether JP 10114 intends to perform a Read (RI), a Write (WI), or Execute (El), operation with respect to that
object. OPRCHK 24084 compares OPRCHK 24084 access right inputs from DS 24050 to OPRCHK 24084's
intended operation input from FUCTL 20214. If that subject does not possess the rights to that object which
are required to perform the operation intended by JP 10114, OPRCHK 24084 generates an Operation
Wolatlon (OPRV) indicating that a protection violation has omurred.

Similarly, the 32 bits of a PC 10234 entry regarding extent rights is provided as an input (EXTENT) to
EXTCHK 24082. As stated above, EXTENT field of PC 10234 entry indicates the length or number of data
bits, within an obect, to which those access rights pertain. EXTENT field from PC 10234 entry is compared,
by EXTCHK 24082, to offset field of the logical descriptor of the current JP 10114 request to MEM 10112 for
which a current protection mechanism check is being made. if comparison of extent rights and offset field
indicate that the current memory request goes beyond the object length to which the corresponding rights
read from DS 24050 apply, EXTCHK 24082 generates an Extent Wolation (EXTV) output. EXTV indicates that
ecurrent memory request by JP 10114 refers to a portion of an object to which the PC 10234 entry read
from BS 24050 does not apply. As described previously, each read from or write to MEM 10112, even as
part oi a string transfer. is a 32 bit word. As such, EXTCHK 24082 will generate an EXTV output when
OFFSET field of a current logical descriptor describes a segment of an object less than 32 bits from the limit
defined by EXTENT field of the PC 1084 entry provided in response to that logical descriptor. EXTV and
OPRV are gated together, by Protection Violation Gate (PVG) 24086 to generate Protection Violation
(PROTV) output indicating that either an extent or an operation violation has occurred.

Having described the structure and operation of MEMINT 20212, and previously the stmcture and
operation of DESP 20210, structure and operation of FUCTL 20214 will" be described next below.

3. Fetch Unit Control Logic 20214 (Fig. 202)
The following descriptions will provide a detailed dwcription of FU 10120's structure and operation.

Overall operation of FU 10120 will be described first, followed by description of FU 10120’s structure, and
finally by a detailed description of FU 10120 operation.

As previously described, FUCTL 20214 directs operation of JP 10114 in executing procedures of user's
processes. Among the functions perfonned by FUCTL 20214 are, first, maintenance and operation of CS
10110’s Name Space, UID, and AON based addressing system, previously described; second,
interpretation of SOPs of user's processes to provide corresponding sequences of microinstructions to FU
10120 and EU 10122 to control operation of JP 10114 in execution of user's processes, previously
described; and, third, control of operation of CS 10110's internal mechanisms, for example CS 10110's
stack mechanisms. »

As will be described in further detail below, FUCTL 20214 includes prefetcher (PREF) 20260 which

generates a sequence of logical-addresses, each logil address comprising an AON and an ofiset field, for
reading S-instructions (SlNs) ofa usefis program from MEM 10112. As previously described, each SIN may
be comprised of an S-Operation (SOP) and one or more operand Names and may occupy one or more 32
bitwords. SlNs are read from MEM 10112 as a sequence of single 32 bit words, so that PREF 20260 need not
specifya length field in a MEM10112 read request for an SIN. SlNs are read from MEM 101 12 through MOD
Bus 10144 and are captured and stored in Instruction Buffer (INSTB) 20262. PARSER 20264 extracts, or
parses, SOPs and operand Names from INSTB 20262. PARSER 20264 provides operand Names to NC 10226
and SOPs to FUS lntrepreter Dispatch Table (FUSDT) 11010 and to EU Dispatch Table (EUSDT) 20266
through Op-Code Register (OPCODEREG) 20268. Operation of INSTB 20262 and PARSER 20264 is
controlled by Current program Counter (CPC) 20270, Initial Program Counter (IPC) 20272, and Executed
program Counter (EPC) 20274.

As previously described, FUSDT 11010 provides, for each SOP received from OPCODEREG 20268, a
corresponding S-Interpreter Dispatch (SD) Pointer. or address, to FUSI'|'l' 11012 to select a corresponding
sequence of microinstructions to direct operation of JP 10114, in particular FU 10120. As previously
described, FUSITT 11012 also contains sequences of microinstructions for controlling and directing
operation of CS 10110's internal mechanisms, for example those mechanisms such as RCWS 10358 which
are involved in swapping of processes. EUSDT 20266 performs an analogous function with respect to EU
10122 and provides SD Pointers to EU S—lnterpreter Tables (EUSI'lTs) residing in EU 10122.

Micro-Program Counter (mPC) 20276 provides sequential addresses to FUSITT 11012 to select
individual microinstructions of sequences of microinstructions. Branch and Case Logic (BRCASE) 20278
provides addresses to FUSITT 11012 to select microinstructions sequences for microinstructions branches
and and cases. Repeat Counter (REPCTH) 20280 and Page Number Register (PNREG) 20282 provide
addresses to FUSlTT11012 during FUSITT 11012 load operations.

As previously described, FUSl'lT 11012 is a writable microinstruction control store which is loaded with
selected S-interpreters (SlNTs) from MEM 10112.

FUSITT 11012 addresses are also provided by Event Logic (EVENT) 20284 and by JAM input from NC
10226. As will be described further below, EVENT 20284 is part of FUCTL 20214's circuitry primarily

concerned with operation of CS 10110's internal mechanisms. lnput JAM from NC 10226 initiates certain
, FUCTL 20214 control functions for CS 10110's Name Space addressing mechanisms, and in particular NC

10226. Selection between the above discussed address inputs to FUSHT 11012 is "controlled by S-

73

Petitioner Apple Inc. — Exhibit 1024, p. 4118

Petitioner Apple Inc. - Exhibit 1024, p. 4119

10

15

EP 0 067 556 B1

interpreter Table Next Address Generator Logic (SITTNAG) 20286.
Other portions of FUCTL 20214's circuitry are concerned with operation of CS 10110's internal

mechanisms. For example, FUCTL 20214 includes Return Control Word Sted((RCWS) 10358. previously
described with reference to CS 10110's Stack Mechanisms. Register Address Generator (RAG) 20288
provides pointers for addressing of GRF 10354 and RCWS 10358 and includes Micro-Stack Pointer
Registers (MISPR) 10356.

As previously described. MISPR 10356 mechanism provides pointers for addressing Micro—Stack (MIS)
10368. As will be described further below, actual MIS 10368 Pointers pointing to current, previous, and
bottom frames of MIS 10368 reside in Micro-Control Word Register 1 (MCW1) 20290. MCW1 20290 and
Micro-Control Word Zero Register (MCWO) 20292 together contain certain information indicating the
current execution environment of a microinstruction sequence currently being executed by FU 10120. This
execution information is used in aide of execution of these microinstruction sequences. State Registers
(STATE) 20294 capture and store certain information regarding state of operation of FU 10120. As
described further below, this information, referred to as state vectors, is used to enable and direct
operation of FU 10120.

Timers (TTMERS) 20296 monitor elapsed time since occurrence of the events requiring servicing by FU
10120. If waiting time for these events exceeds certain limits, TIMERS 20296 indicate that these limits have
been exceeded so that service of those events may be initiated.

Finally, Fetch Unit to E Unit Interface Logic (FUEUINT) 20298 comprises the FU 10120 portion of the
interface between FU 10120 an EU 10122. FUEUINT 20298 is primary path flirough which operation of FU
10120 and EU 10122 is coordinated.

Having described overall operation of FU 10120, structure of FU 10120 will be described next below
with aide of Fig. 202, description of FU 10120's structure will be followed by a detailed description of FU
10120 wherein further, more detailed, diagrams of certain portions of FU 10120 will be introduced as
required to enhance clarity of presentation.

a.a. Fetch Unit Control Logic 20214 Overall Structure
Referring again to Fig. 202, as previously described Fig. 202 includes a partial block diagram of FUCTL

20214. Following the same sequence of description as above, PREF 20260 has a 28 bit bi-directional port
connected to AON Bus 20230 and 32 bit bi-directional port directed from OFFSET Bus 20228. A control input
of PREF 20260 is connected from control output of INSTB 20262.

INSTB 20262 32 bit data input (DI) is connected from MOD Bus 10144. INSTB 20262's 16 bit output (D0)
is connected to 16 bit bi-directional input of OPCODEREG 20268 and to 16 bit NAME Bus 20224.
OPCODEREG 20268‘s input comprises 8 bits of SINT and 3 bits of dialect selection. As previously described,
NAME Bus 20224 is connected to 16 bit bi-directional port of Name Trap (NT) 20254, to address input ADR
of NC 10226. and to inputs and outputs of OFFP 20228. Control inputs of INSTB 20262 and PARSER 20264
are connected from a control output of CPC 20270. .

Thirty-two bit input of CPC 20270 is connected from JPD Bus 10142 and CPC 20270's,32 bit output is
connected to 32 bit input of IPC 20272. Thirty-two bit output of IPC 20272 is connected to 32 bit input of EPC
20274 and to JPD Bus 10142. EPC 20274's 32 bit output is similarly connected to JPD Bus 10142.

Eleven bit outputs of OPCODEREG 20268 are connected to 11bit address inputs of FUSDT 11010 and
EUSDT 20266. These 11 bit address inputs to FUSDT 11010 and EUSDT 20266 each comprise 3 bits of
dialect selection code and 8 bits of SINT code. Twelve bit SDT outputs of EUSDT 20266 is connected to
inputs of Microinstmction Control Store in EU 10122, as will be described in a following description of EU
10122. FUSDT 11010 has, as described further below, two outputs connected to address (ADR) Bus 20298.
First output of FUSDT 11010 are six bit SDT pointers, or addresses, corresponding to generic SlNTs as will
be described further below. Second output of FUSDT 11010 are 15 bit SDT pointers, or addresses, for
algorithm microlnstruction sequences, again as will be described further below. ‘

Referring to RCWS 10358. RCWS 10358 has a first bidirectional port connected from JPD Bus 10142.
Second, third, and fourth bi-directional ports of RCWS 10358 are connected from. respectively, a bi-
directional port of MCW1 20290, a first bi-directional port EVENT 20284, and a bi-directional port of mPC
20276. An output of RCWS 10358 is connected to ADR Bus 20298.

An input of mPC 20276 is connected from ADR Bus 20298 and first and second outputs of mPC 20276
are connected to. respectively, an input of BRCASE 20278 and to ADR Bus 20298. An output of BRCASE
20278 is connected to ADR Bus 20298.

As described above, a first bi-directional port of EVENT 20284 is connected to RCWS 10358. A second
bidirectional port of EVENT 20284 is connected from MCWO 20292. An output of EVENT 20284 is connected
to ADR Bus 20298. 1

Inputs of RPCTR 20280 and PNREG 20282 are connected from JPD Bus 10142. Outputs of RPCTR 20280
and PNREG 20282 are connected to ADR Bus 20298.

ADR Bus 20298, and an input from a first output of FUSl'iT 11012, are connected to inputs of SITTNAG
20286.

Output of SITTNAG 20286 is connected, through Control Store Address lCSADR) Bus 20299, to address
input of FU$l'iT 11012. Data input of FUSITT 11012 is connected from JPD Bus 10142. Comrol outputs of
FUSITT 11012 are connected to almost all elements of JP 10114 and thus, for clarity of presentation, are not _

74

Petitioner Apple Inc. —‘Exhibit 1024, p. 4119

Petitioner Apple Inc. - Exhibit 1024, p. 4120

-.1

20'

60

EP 0 067 556 31

shown in detail by drawn physical connections but are described in following descriptions.
As described above, MCWO 20292 and MCW1 20290 have bi-directional ports connected to,

respectively, bidirectional ports of EVENT 20284 and to a second bidirectional port of RCWS 10358. Outputs
, of MCWO 20292 and MCW1 20290 are connected to JPD Bus 10142. Other inputs of MCWO 20292 and

MCW1 20290, as will be described further below, are connected from several other elements of JP 10114
and, for clarity of presentation, are not shown herein in detail but are described in the following text. STATE
20294 similarly has a large number of inputs and outputs connected from and to other elements of JP
10114, and in particular FU 10120. Inputs and outputs of STATE 20294 are not indicated here for clarity ofpresentation and will be described in detail below.

RAG 20288 has an input connected frorn JPD Bus 10142 and other inputs connected, for example, from
MCW1 20290. RAG 20288, including MISPR 10356, provides outputs, for example, as address inputs to
RCWS 10358 and GRF 10354. Again, for clarity of- presentation, inputs and outputs of RAG 20288 are not
shown in detail in Fig. 202 but will be described in detail further below.

TIMERS 20296 receive inputs from EVENT 20284 and FUSITI‘ 11012 and provide outputs to EVENT
20284. For clarity of presentation, these indications are not shown in detail in Fig. 202 but will be describedfurther below.

FUlNT 20298 receives control inputs from FUSl'lT 11012 and EU 10122. FUINT 20298 provides outputs
to EU 10122 and to other elements of FUCTL 20214. For clarity of presentation, connections to and from
HJINT 20298 are not shown in detail in E9. 202 but will be described in further detail below.

Having described the overall operation, and structure, of FUCTL 20214, operation of FUCTL 20214 will
be described next below. During the following descriptions further diagrams of certain portions of FUCTL
20214 will be introduced as required to disclose structure and operation of FUCTL 20214 to one of ordinary
skill in the art. FUCTL 20214’s operation with regard to fetching and interpretation of SlNs, that is SOPs and
operand Names, will be described first, followed by description of FUCTL 20214’s operation with regard toCS 10110's internal mechanisms.

b.b. Fetch Unit Control Logic 20214 Operations
Referring first to those elements of FUCTL 20214 directly concerned with control of JP 10114 in

response to SOPs and Name syllables, those elements include: (1) PREF 20260; (2) INSTB 20262; (3)
PARSER 20264; (4) CPC 20270, IPC 20272, and EPC 20274; (5) OPCODEREG 20268; (6) FUSDT 11010 and
EUSDT 20266; (7) mPC 20276: (8) BRCASE 20278; (9) REPCTR 20200 and PNREG 20282; (10) a part of RCWS
10358; (11) SlTTNAG 20286: (12) FUSl1T11012: and. (13) NT 20254. These FUCTL 20214 elements will be

_ described below in the order named.

a.a.a. Prefetcher 20260, instruction Buffer 20262, Parser 20264, Operation Code Register 20268,
CPC 20270, IPC 20272, and EPC 20274 (H9. 241) '

As described above, PREF 20260 generates a series of addresses to MEM 10112 to read SlNs of users
programs from MEM 10112 to FUCTL 20214, and in particular to lNS'l'B 20262. Each PREF 20260 read
request transfers one 32 bitword from MEM 10112. Each SIN may be comprised of an SOP and one or more
Name syllables. Each SOP may comprise, for example, 8 bits of information while each Name syllable may
comprise, for example, 8, 12, or 16 bits of data. in general, and as will be described in further detafl in a
following description of STATE 20294, PREF 20260 obtains access to MEM 10112 on alternate 110
nanosecond system clock cycles. PREF 20260's access to MEM 10112 is conditional upon INSTB 20282
indicating that INSTB 20262 is ready to receive an SIN read from MEM 10112. In particular, INSTB 20262
generates control output Qulry Prefetch (QPF) to PREF 20260 to enable PREF 20260 to submit a request to
MEM 10112 when, as described further below, INSTB 20262 is ready to receive an SIN read from MEM10112.

PREF 20260 is a counter register comprised, for example of SN74S163s.
Bi-directional inputs and outputs of PREF 20260 are connected to AON Bus 20230 and OFFSET Bus

- 20228. As PREF 20260 reads only single 32 bit words, PREF 20260 is not required to specify a LENGTH field
as" part of an SIN read request, that is an AON and an OFFSET field are sufficient to define a single 32 bit
word. At start of read of a sequence of SlNs from MEM 10112, address (AON and OFFSET fields) of first 32
bit word of that SIN sequence are provided to MEM 10112 by DESP 20210 and concurrently loaded, from
AON Bus 20230 and OFFSET Bus 20228, into PREF 20260. Thereafter, as each successive thirty-two bit word
of the SlN’s sequence is read from MEM 10112, the address residing in PREF 20260 is incrememed to
specify successive 32 bit words of that SlN’s sequence. The successive single word addresses are. for all
words after first word of a sequence, provided to MEM 10112 from PREF 20260. ’

As described above. INSTB 20262 receives SlNs from MEM 10112 through MOD Bus 10144 and, with
PARSER 20264 and operating under control of CPC 20270, provides Name syllables to NAME Bus 20224
and SlNs to OPCODEREG 20268. lNSTB 20262 is provided, together with PREF 20260 to increase execution
speed of SlNS. .

Referring to l-‘lg. 241, a more detailed block diagram of INSTB 20262, PARSER 20264, CPC 20270, IPC
20272, EPC 20274 as shown. INSTB 20262 is shown as comprising two 32 bit registers having parallel 32 bit
inputs from MOD Bus 10144. INSTB 20262 also receives two Write Clock (WC) inputs, one for each 32 bit
register of INSTB 20262, from Instruction Buffer Write Control (INSTBWC) 24110. lNSTB 20262's outputs

75

Petitioner Apple Inc. — Exhibit 1024, p. 4120

Petitioner Apple Inc. - Exhibit 1024, p. 4121

10

25

50

60

El?’ 0 067 556 B1

are structured as eight. eight bit Basic Syllables (BSs), indicated as BSO to 857. BSO, BS2, B54. and BS6 are
0Red to comprise eight bit Basic Syllable, Even (BSEl of INSTB 20262 while BSO, BS3, BS5. and B57 are
similarly Ofied to comprise Basic syllable, Odd (BSO) of INSTB 20262. BSO and BSE are provided as inputs
of PARSER 20264.

« PARSER 20264 receives a first control input from Current Syllable Size Register (CSSR) 24112,
associated with CPC 20270. A second control input of PARSER 20264 is provided from instruction Buffer
Syllable Decode Register (IBSDECR) 24114, also associated with CPC 20270. PARSER 20264 provides an
eight bit output to NAME Bus 20224 and to input of OPCODEREG 20268.

Referring to INSTBWC 24110, INSTBWC 24110 provides, as described further below, control signals
> pertaining to writing of SlNs into INSTB 20262 from MOD Bus 10144. INSTBWC 24110 also provides control

signals pertaining to operation of PREF 20260. In addition to WC outputs to INSTB 20262, INSTBWC 24110
provides control output OFF to PREF 20260, controloutput Instruction Buffer Hung (IBHUNG) to EVENT
20284, and control signal Instruction Buffer Wait (IBWAIT) to STATE 20294. INSTBWC 24110 also receives a
control input BRANCH from BBCASE 20278 and an error input from TIMERS 20296.

Referring to CFC 20270, lPC 20272, and EPC 20274. lPC 20272 and EPC 20274 are represented in Fig. 241
as in Fig. 202. Further FUCTL 20214 circuitry is shown as associated with CPC 20270. CFC 20270 is a twenty-
nine bit register receiving bits one to twety—five lCPC(1—25l) from bits one to twenty-five of JPD Bus 10142.
CPC 20270 Bit 0 (CPCO) is provided from CPCO CPCO Select (CPCOS) 24116. Inputs of CPCOS 24116 are Bit
1 output from CPC 20270 (CPC1) and Bit 0 from JPD Bus 10142. Bits twentysix, twenty-seven, and twenty-
eight of CPC 20270 (C?C(2628)) are provided from CPC Multiplexer (CPCMUX) 24118. CPCMUX 24118 also
provides an input to IBSDECR 24114. inputs of CPCMUX 24118 are bits twemy—five, twenty-six, and twenty-
eight from JPD Bus 10142 and a three bit output of CPC Arithmetic and Logic Unit (CPCALU) 24120. A first .
input of CPCALU 24120 is connected from output bits 26, 27. and 28 of CPC 20270. Second input of CPCALU
24120 is connected irom CSSR 24112. CSSR 24112’s input is connected from JPD Bus 10142.

As described above, INSTB 20262 is implemented as a sixty-four bit wide register. INSTB 20262 is
organized as two thirty-two bit words, referred to as Instruction Buffer Word 0 (I80) and Instruction Buffer
Word 1 (I81). and operates as a two word. first—in-first-out buffer memory. PREF 20260 loads one of I80 or
IB1 on each memory reference by PREF 20260. Only PREF 20260 may load INSTB 20262, and INSTB 20262
may be loaded only from MOD Bus 10144. Separate clocks, respectively Instruction Buffer Write Clock 0
(IBWCO) and instruction Buffer Write Clock 1 (IBWC1), are provided from INSTBWC 24110 to load.
respectively, IBWO and IBW1 into INSTB 20262. IBWCO and IBWC1 are each a gated 110 nano-second clock."
An IBWO or an IBW1 is written into INSTB 20262 when, respectively, IBWCO or IBWC1 is enabled by
INSTBWC 24110. IBWCO and IBWC1 will be enabled only when MEM 10112 indicates that data for INSTB
20262 is availabe by asserting interface control signal DAVI as previously discussed.

INSTBWC 24110 is primarily concerned with control of FU 10120 with respectto writing of SlNs into
INSTB 20262. As described above. INSTBWC 24110 provides IBWCO and IBWC1 to INSTB 20262. IBWCO and
IBWC1 are enabled by INSTBWC 24110's input DAV! from MEM 10112. Selection between IBWCO and
IBWC1 is controlled by INSTBWC 24110‘s input from CPC 20270. in particular, and as will be described
further below. Bit 26 (CPC 26) of CPC 20270's twenty-nine blt word indicates whether IBWO or IBW1 is
written into INSTB 20262.

In addition to controlling writing of IBWO and IBW1 into lNSTB 20262, INSTBWC 24110 provides control.
signals to elements of FU 10120 to control reading of SlNs from MEM 10112 to INSTB 20262. In this regard,
INSTBWC 24110 detects certain conditions regarding status of SIN words in INSTB 20262 and provides
corresponding control signals, described momentarily, to other elements of FU 10120 so that INSTB 20262
would generally always contain at least one valid SOP or Name syllabie. First, if lNS'l'B 20262 is not full,that
is either IBWO’ or IBW1 or both is invalid, for example because IBWO has been read from INSTB 20262 and
executed, INSTBWC 24110 detects this condition and provid control signal QPF to PREF 20252 to initiate a
read from MEM 10112. INSTBWC 24110 currently enables either lBWO or IBW1 portion of INSTB 20262 to
receive the word read from MEM 10112 in response to PREF 20260's request. As stated above, this
operation will be initiated when INSTBWC 24110 detects and indicates, by generating a validity flag, that
either IBWO or IBW1 is invalid. in this case, IBWO or IBW1 will be indicated as invalid when read from INSTB
20262 by PARSER 20264. As will be described further below, INSTBWC 24110 validity flags for IBWO and
IBW1 are generated by INSTBWC 24110 control inputs comprising Bits 26 to 28 (CFC 26-28) from CPC
20270 and by current syllable size or value, flag (K) input from CSSR 24112. Secondly. INSTBWC 24110 will
detect when INSTB 20262 is empty, that is when both IBWO and IBW1 are invalid. asjust described, or when
only a half of a sixteen bit Name syllable is present in INSTB 20262. in response to either condition,
INSTBWC 24110 will generate control signal IBWAIT to STATE 20294. As will be described further below,
IBWAIT will result in suspension of execution of microinstructions referencing INSTB 20262. PREF 20260
requests to MEM 10112 will already have been initiated, as described above unless certain other corditions,
described momentarily. occur. Thirdly, INSTBWC 24110 will detect when INSTB 20262 is empty and PREF
20262 is hung, that is unable to submit requests to MEM 10112, and a cun-ent microinstruction is
attempting to parse a syllable from INSTB 20262. In this case, INSTBWC 24110 will generate control signal
lnstructlon Buffer Hung (lBHUNGl to EVENT 20284. As will be described further below, IBHUNG will result
in initiation of a microinstruction sequence to restore flow of words to INSTB 20262. Fourthly, INSTBWC

_ 24110 will detect, through microinstruction control signals provided from FUSTIT 11012, when a branch in ,

76

Petitioner Apple Inc. — Exhibit 1024, p. 4121

Petitioner Apple Inc. - Exhibit 1024, p. 4122

ht

10'

20

25

30

EP 0 057 555 ‘B1 I

a microinstruction sequence provided by FUSITT 11012 in response to an SOP occurs[In this case, both
IBWD and IBW1 will be flaged as invalid. lNSTBWC 24110 will then ignore SIN words being read from MEM
10112 in response to a previously submitted PREF 20260 request. but not yet received at the time the
branch occurs. This prevents INSTB 20260 from receiving invalid SIN words: PREF 20260 and INSTB 20262
will then proceed to request and receive valid SlN words of the branch.

As described above, PARSER 20264, operating under control of CPC 20270 and CPC 20270 associated
circuitry, reads Name syllables and SOPs from INSTB 20262 to, respectively, NAME Bus 20224 and
OPCODEREG 20268. PARSER 20264 operates as a multiplexer with associated control logic.

As previously described, INSTB 20262 is internally structured as eight. eight bit words, BSO to BS7.
IBWD comprises BSO to B3 while IBW1 comprises BS4 to BS7. Each SOP is comprised of eight bits of data
and thus comprises one Basic Syllable while each Name syllable comprises 8, 12, or 16 bits of data and thus

_ comprises either one or two Basic Syllables. Name syllable size, as previously stated, is indicated by
Current Syllable Size Value K stored in CSSR 24112.

B80 and B54 are loaded into lNSTB 20262 from MOD Bus 10144 bits zero to seven while BS2 and BS6
- are loaded from MOD Bus 10144 bits sixteen to twenty-three. BS1 and BS5 are loaded from MOD Bue 10144

bits eight to fifteen while B33 and BS7 are loaded from MOD Bus 10144 bits twenty-four to thirty-one. Odd
numbered Basic Syllable outputs B81, B53, B55, and BS7 are 0Red to comprise eight bit,Basic Syllable.
Odd output BSO of INSTB 20262. Even numbered Basic Syllable outputs BSO. BS2, BS4 and BS6 of INSTB
20262 are similarly ORed to comprise eight bit Basic Syllable, Even output BSE. At any time, one odd
numbered Basic Syllable output and one even numbered Basic Syllable output of INSTB 20262 are selected
as inputs to PARSEH 20264 by lnstmction Buffer Head Enable (lB0l-'iE) enable and selection signals
provided to INSTB 20262 by IBSDECR 24114. IBSDECI-‘l 24 1 14 includes decoding circuitry. Input to IBSDECR
24114's decoding logic is comprised of three bits (RCPC(26—28)) provided from CPCMUX 24118. As
indicated in Fig. 241, CPC (26-28) may be provided from JPD Bus 10142 bits 25 to 28 or from output of
CPCALU 24120. One input CPCALU 24120 is CPC (26-28) from CPC 20270. Operation of CPC 20270 and CPC
20270's associated circuitry will be described further below. RCPC (26-28) is decoded by IBSDECR 24114
to generate IBORE (0-7) to INSTB 20262. RCPC 26 and RCPC 27 are decoded to select one of the four odd
numbered Basic Syllable outputs (that is BS1, BS3, BS5 or BS7) of INSTB 20262 as the odd numbered basic
syllable input to PARSER 20264. RCPC 28 selects either the preceding or the following even numbered
Basic Syllable output of INSTB 20262 as the even numbered Basic Syllable input to PARSER 20264. The
eight decoded bits of IBORE (0-7) generated by IBDECR 24114 decoding logic are loaded into IBSDECR
24114 eight bit register and subsequently provided to INSTB 20262 as IBORE (0-7).

PARSER 20264 selects BSO, or BSE, or both BSD and BSE, as PARSER 202643 output to NAME Bus
20224 or to OPCODEHEG 20268. in the case of an SOP or an eight bit Name syllable. either BSO or BSE will
be selected as PARSER 20264's output. in the case of a twelve or sixteen bit Name syllable, bath BSD and
BSE may be selected as-PAHSER 20264's output. PARSER 20264 operation is controlled by microinstruction
control outputs from FUSITT 11012.

Program counters IPC 20272. EPC 20274. and CPC 20270 are associated with control of fetching and
parsing of SlNs. in general, IPC 20272, EPC 20274, and CPC 20270 operate under microinstruction controlfrom FUSITT 11012.

CPC 20270 is Cunent Program Counter and contains 28 bits poiming to the current syllable in INSTB
20272. Bits 29 to 31 of CPC 20270 are not provided, so the bits 29 to 31 of CPC 20270's output are zero, which
guarantees byte boundaries for SOP5. Cements of CPC 20270 are thereby also a pointer which is a byte
align offset into a current procedure object. Initial Program Counter (IPC) 20272 is a buffer register
connected from output of CPC 20270 and provided for timing overlap. IPC 20272 may be loaded only from
CPC 20270 which, as previously described, is 29 bits wide, that does not contain bits 29, 30, and 31 which
are forced to zero in IPC 20272. IPC 20272 may be read onto JPD Bus 10142 as a start value in an
unconditional branch. ,

EPC 20274 is a thirty~two bit register usually containing a pointer to the current SOP being executed.
Upon occurrence of an SOP branch, the pointer in EPC 20274 will point to the SOP from which the branch
was executed. The pointer residing in EPC 20274 is an offset into a current procedure obiect. EPC 20274
may be loaded only from IPC 20272, and may be read onto JPD Bus 10142.

Referring again to CPC 20270, as described above CPC 20270 is a current syllable counter. CPC 20270
contains a pointer to the next SOP syllable, or Base Syllable, to be parsed by PARSER 20264. M SOPs are

- always on byte boundaries. CPC 20270 pointer is 29 bits wide, CPC (0-28). The three low order bits of CPC

20270's pointer, that is CPC (29-31), do not physically exist and are assumed to be always zero. CPC
20270's pointer to next instruction syllable to be parsed thereby always points to byte boundaries.

CPC 20270 bits 26 to 28, CPC (26-28), indicate, as" described above, a particular Base Syllable in INSTB
20262. Bits 0-25 (CPC(0-25)) of CPC 20270 indicate 32 bit words, read into INSTB 20262 as IBWO and
lBW1, of a sequence of SlNs. CPC 20270 pointer is updated each time a parse operation reading a Base
Syllable from INSTB 20262 is executed. As previously described, these parsing operations are performed
under microinstruction control from FUSITT 11012.

Conceptually, CPC 20270 is organized as a twenty-six bit counter, containing CPC (0-25), with a three
bit register appended on the low order side, as CPC (26-28). This organization is used because CPC
(26-28) counts INSTB 20262 Base syllables parsed and must be incremented dependant upon current

77

Petitioner Apple Inc. — Exhibit 1024, p. 4122

Petitioner Apple Inc. - Exhibit 1024, p. 4123

20

25

30

35

40

50

Esp. o 057 555 B1

Name Syllable Size K stored CSSR 24112. CPC (0-25), however, counts successive thirty-two bit words of a
sequence of SlNs and may thereby be implemented as a binary counter. As shown in Fig. 241, CPC (25-28)
is loaded from output of CPCMUX 24118. A first input of CPCMUX 24118 is connected from bits 29 to 31 of
JPD Bus 10142. This input to CPC (25-28) from JPD Bus 10142 is provided to allow CPC 20270 to be loaded
from JPD Bus 10142, for example when loading CPC 20270 with an initial pointer value. Second input of
CPCMUX 24118 is from output of CPCALU 24120 and is the path by which CPC (26-28) is lncrememed as
successive Base Syllables are parsed from INSTB 20262. A first input of CPCALU 24120 is CPC (25-28)
from CPC 20270. Second input of CPALU 24120 is a dual input from CSSR 24112. First input from CSSR
24112 is logic 1 in the least significant bit position, that is in position corresponding to CPC (28). This input
is used when single Base Syllables are parsed from INSTB 20262, for example in an eight bit SOP or an
eight bit Name syllable. CSSR 24112's first input to CPCALU 24120 increments CPC (0-32) by eight, that is
one to CPC (25-28), each time a single Base Syllable is parsed from INSTB 20262. Second input to CPCALU
24120 from CSSR 24112 is K. that is current Name Syllable size. As previously described, K may be eight,
twelve, or sixteen. CPC (26-28) is thereby incremented by one when K equals eight and is incremented by
two when K equals twelve or sixteen. As shown in Fig. 241, K is loaded into CSSR 24112 from JPD Bus
10142. '

CPC (0-25). as described above, operates as a twenty-six hit counter which is incremented each time
CPC (26-28) overflows. CPC (0-25) is incremented by carry output of CPCALU 24120. in actual
implementation, CPC 20270 is organized to reduce the number of integrated circuits required. CPC (1-25)
is constructed as a counter and Inputs of CPC (1-25) counter are connected from bits 1 to 24 of JPD Bus
10142 to allow loading of an initial value of CPC 20270 pointer. CPC (0) and CPC (26-28) are implemented
as a four bit register. Operation of cPc (26-28) portions oflthis register have been described above. input

of CPC (0) portion of this register is connected from output of CPCOS 24116. CPCOS 24116 is a multiplexer
having a first input connected from bit 0 of JPD Bus 10142. This input from JPD Bus 10142 is used, for
example, when loading CPC 20272 with an initial pointer value. Second input of CPCOS 24116 is overflow
output of CPC (1-25) counter and allows CPC (0) portion of the four bit register and CPC (1-25) counter to
operate as a twenty-six hit counter. ~

Finally, as shown in Fig 241, output of CPC 20270 may be loaded into IPC 20272. An initial CPC 20270
pointer value may therefore be written into CPC 20270 from JPD Bus 10142 and subsequently copied into
IPC 2032.

Referring again to PARSER 20264, as described above PARSER 20264 reads, or parses, basic syllables
from INSTB 20262 to NAME Bus 20224. Input of PARSER 20264 is a sixteen bit word comprised of an eight
bit odd numbered Base syllable, 850, and an eight bit even numbered Base Syllable, BSE. Depending upon
whether PARSER 20264 is parsing an eight bit SOP, an eight bit Name syllable, a twelve bit Name syllable,
or sixteen bit Name syllable, PARSER 20264 may select BSO, BSE, or both B50 and BSE, as output onto
NAME Bus 20224. . . <

if PARSER 20264 is parsing Name syllables and K is not equal to eight, that is equal to twelve or sixteen,
PARSER 20264 transfers both BSO and BSE onto NAME Bus 20224 anddetermines which of B50 or BSE is

most significant. The decision as to whether BSO or BSE is most significant is detennined by CPC (28). if
CPC (28) indicates B50 is most significant, B50 is transferred onto NAME Bus 20224 bits 0 to 7
(NAME(0—7)) and BSE onto NAME Bus 20224 bits eight to fifteen lNAME(3-15)). if CPC (281 indicates BSE
is most significant, BSE is transferred onto NAME (0-7) and BSO onto NAME (8-15). This operation
insures that Name syllables are parsed onto NAME Bus 20224 in the order in which occurin the SIN stream.

If PARSER 20264 is parsing Name syllables of Syllable Size K = 8, PARSER 20264 will select either BSO
or BSE, as indicated by CPC (28), as output to NAME (O-7). PARSER 20264 will place 0's on NAME (8-15).

if PARSER 20264 is parsing SOPs of eight bits, PARSER 20264 will select BSO or BSE as output to
NAME (0-7) as selected by CPC (28). PARSER 20264 will place 0's onto NAME (8-15). Concurrently,
PARSER 20264 will generate OPREGE to OPCODEREG 20268 to enable transfer of NAME (0-7) into
OPCODEREG 20268. OPCODEFIEG 20268 is not loaded when PARSER 20264 is parsing Name syllables. The
microinstruaion input from FUSl'iT 11012 which controls PARSER 20264 operation also determines
whether PARSER 20264 is parsing an SOP or a Name syllable and controls generation of OPREGE.

Operation of NC 10226. which receives Name syllables as address inputs from NAME Bus 20224, has
been discused previously with reference to MEMINT 20212. Name Trap (NT) 20254 is connected from
NAME Bus 20224 to receive and capture Name syllables parsed onto NAME Bus 20224 by PARSER 20264.
Operation of NT 20254 has been also previously discussed with reference to MEMINT. .

b.b.b. Fetch Unit Dispatch Table 11010, Execute Unit Dispatch Table 20266 and Operation Code
Register 20268 (Hg. 242)

As previously described, CS 10110 is a multiple language machine. Each program written in a high
level user language is compiled into a corresponding S-‘Language program containing S-Language
instructions referred to as SOPs. CS 10110 provides a set or dialect, of microcode instructions, referred to
as S—lnterpreters (SlNTs) for each S-Language. SlNTs interpret $OPs to provide corresponding sequences
of microinstructions for detailed control of CS 10110 operations. CS 10110’s SlNTs for FU 10120 and EU
10122 operations are stored, respectively, in FUSFFT 11012 and in a corresponding control store memory in
EU 10122, described in a following description of EU 10122. Each SINT comprises one or more sequences .

78

Petitioner Apple Inc. — Exhibit 1024, p. 4123

Petitioner Apple Inc. - Exhibit 1024, p. 4124

10

20

25

65

EP 0087 556 B1

of microinstructions, each sequence of microinstructions corresponding to a particular SOP in a particular‘
S-Lang uage dialect. Fetch Unit S-Interpreter Dispatch Table (FUSDT) 11010 and Execute Unit S-Interpreter
Dispatch Table (EUSDT) 20256 contain an S-Interpreter Dispatcher (SD) for each S-Language dialect. Each
SD is comprised of a set of SD Pointers (SDPs) wherein each SDP in a particular SD corresponds to a
particular SOP of that SD dialect. Each SDP is an address pointing to a location, in FUS|'lT11012 or EUSITT,
of the start of the corresponding sequence of microinstructions for interpreting the SOP corresponding to
that SDP. As will be described further below, SOPs received and stored in OPCODEREG 202 are used to

generate addresses into FUSDT 11010 and EUSDT 20266 to select corresponding SDPs. Those SDPs are
then provided to FUSl'iT 11012 through ADR 20202, or to EUSITI’ through EUDIS Bus 20206, to select
corresponding sequences of microinstructions from FUSITT 11012 and EUSDT.

Referring to Fig. 242, a more detailed block diagram of OPCODEREG 20268, FUSDT 11010, and EUSDT I
20266 is shown. As shown therein, OPCODEHEG 20268 is comprised of OP-Code Latch (LOPCODE) 24210,
Dialect Register lRDlAL) 24212, Load Address Register (LADDR) 24214, and Fetch Unit Dispatch Encoder
(FUDISENC) 24216. Data inputs of LOPCODE 24010 are connected from NAME Bus 20224 to receive SOPs
parsed from lNSTB 20262. Load inputs of RDIAL 24212 are connected from Bits 28 to 31 ofJPD Bus 10142.
Outputs of LOPCODE 24210, RDIAL 24212 and LADDR 24214 are connected to inputs of FUDISENC 24216.
Outputs of FUDISENC 24216 are connected to address inputs of FUSDT 11010 and EUSDT 20266.

FUSDT 11010 is comprised of Fetch Unit Dispatch i-"lie (FUDISF) 24218 and Algorithm File (AF) 24220.
Address inputs of FUDlSF 24218 and AF 2420 are connected, as previously described, from address
outputs of FUDISENC 24216. Data load inputs of FUDlSF 24218 and AF 2420 are connected from.
respectively, Bits 10 to 15 and Bits 16 to 31 of JPD Bus 10142. SDP outputs of FUDlSF 24218 and AF 24220
are connected to ADFl Buses 20202. _

EUSDT 20266 is comprised of Execute Unit Dispatch File (EUDISF) 24222 and Execute Unit "Dispatch
Selector (EUDISS) 24224. Address inputs of EUDISF 24222 are, as described above, connected from outputs
of FUDISENC 24216. Data load inputs of EUDISF 24222 are connected from Bits 20 to 31 of JPD Bus 10142.
Inputs of EUDISS 24224 are connected from SDP output of EUDISF 2422.2, from Bits 20 to 31 of JPD Bus
10142, and from Microcode Literal (mLlT) output of FUSDT 11012. SDP outputs of EUDISS 24224 are
connected to EUDIS Bus 20206.

As previously described, OPOODEREG 20268 provides addresses, generated from SOPs loaded into
OPCODEREG 20268, to FUSDT11010 and EUSDT 20266 to select SDPs to be provided as address inputs to
FUSDT 11012 and EUSl'lT. LOPCODE 24210 receives and stores eight bit SOPs parsed from lNSTB 20262 as
described above. OPCODEREG 20268 also provides addresses to FUSDT 11010 and EUSDT 20266 to load
FUSDT 11010 and EUSDT 20266 with SDs for S-Language dialects currently being utilized by CS 10110.
LOPCODE 24210 and FiDlAL 24212, as described below, provide addresses to FUSDT 11010 and EUSDT
20266 when translating SOPs to SDPs and ADDR 24214 provides addresses when FUSDT11010 and EUSDT
20266 are being loaded with SDs.

Referring first to LADDR 24214, LADDR 24214 has an eight bit counter. Addresses are provided to
FUSDT 11010 and EUSDT 20266 from LADDR 24214 only when FUSDT 11010 and EUSDT 20266 are being
loaded with SDs, that is groups of SDPs for S-Language dialects currently being utilized by CS 10110.
During this operation, output of LADDR 24214 is enabled to FUSDT 11010 and EUSDT 20266 by microcode
control signals (not shown for clarity of presentation) from FUSl'i'l' 11012. Selection between FUDlSF
24216, AF 2420, and EUDISF 24222 to receive addresses is similarly provided by microinstruction enable
signals (also not shown for clarity of presentation) provided from FUSlTT11012. These FUSDT 110.10 and
EUSDT 20266 address enable inputs may select, at any time, any or all of FUDlSF 24218, AF 24220, or
EUDSF 24222 to receive address inputs. SDPs to be loaded into FUDISF 24218, AF 2420. and EUDISF 24222
are provided, respactively,.from Bits 10 to 15 (JPD(10—15il, Bits 16 to 31 (JPD(16—31l). and Bits 20 to 31
(JPD(20-—31i) of JPD Bus 10142. Address contents of LADDR 24214 are successively incremented by one as
successive SDPs are loaded into FUSDT 11010 and EUSDT 20266. incrementing of LADDR 24214 is, again,
controlled bv_microinstruction control inputs from FUSi'lT 11012.

Lo Address inputs to FUSDT 11010 and EUSDT 20266 during interpretation of SOPs are provided from
. PCODE 24210 and FlDlAL 24212. LOPCODE 24210 is a register counter having, as described above, data
Inputs connected from NAME Bus 20224 to receive SOPs from PARSER 20264. in a first mode, LOPCODE
24210 may operate as a latch, loaded with one SOP at a time from output of PARSER 20264. In a second
mode. LOPCODE 24210 operates as a clock register to receive successive eight bit inputs from low order 2
eight bits of NAME Bus 20224 (NAME(8-—1$)). Loading of LOPCODE 24210 is contolled by microinstruction
control outputs (not shown for clarity of presentation) from FUSFIT 11012.

As will be described further below, eight bit SOPs stored in LOPCODE 24210 are concatenated with the
0|-"Put of BDIAL 24212 to provide addresses to FUSDT 11010 and EUSDT 20266 to select SDPs
corresponding to particular SC_)Ps. That portion of these addresses provided from LOPCODE 24210, that is
the eight bit SOPs, selects particular SDPs within a particular SD. Particular SDs are selected by that portion
of these addresses which IS provided from the contents of RDIAL 24212. '

RDIAL 24212 receives and stores four bit Dialect Codes indicating the particular S-Language dialect
cumently being used by CS 10110 and executing the SOPs of a users program. These four bit Dialect Codes
are provided from JPD Bus 10142, as JPD (26-31). Loading of RDIAL 24212 with tour bit Dialect Codes is
controlled by mrcroinstruction control signals provided form FUSITT 11012 (not shown for clarity of

79

Petitioner Apple Inc. — Exhibit 1024, p. 4124

Petitioner Apple Inc. - Exhibit 1024, p. 4125

20

30

EP 0 067 556 Bil

presentation). . '
Four bit Dialect Codes in RDIAL 24212 define partitions in FUDISF 24218, AF 24220 and EUDISF 24222.

’ Each partition contains SDPs for a different S-Language dialect. that is contains a different SD. FUDISF
24218, AF 24220 and EUDISF 24222 may contain, for example, eight 128 word partitions or four 256 word

, partitions. A single bit of Dialect Code, for example Bit 3, defines whether FUDISF 24218, AF 24220, and
EUDISF 24222 contain four or eight partitions. if FUSDT 11010 and EUSDT 20266 contain four partitions. the
two most significant bits of address into FUSDT11010 and EUSDT 20266 are provided from Dilect Code Bits
1 and 2 and determine which partition is addressed. The lower order eight bits of address are provided
from LOPCODE 24210 and determine which word in a selected partition is addressed. if FUSDT 11010 and
EUSDT 20266 contain eight partitions, the three most significant bits of address into FUSDT 11010 and
EUSDT 20266 are provided from Bits 0 to 2 of Dialect Code, to select a particular partition, and the lower
seven bits of address are provided from LOPCODE 24210 to select a particular word in the selected
partition.

As described above, LOPCODE 24210 eight bit output and RDIAL 24212's four bit output are
concatenated together, through FUDlSENC 24216, to provide a ten bit address input to FUSDT 11010 and
EUSDT 20266. FUDISENC 24216 is an encoding circuit and will be described further below with reference to
FUDISF 24218. As previously described, selection of FUDISF 24218, AF 24220, and EUDISF 24222 to receive
address inputs from RDIAL 24212 and LOPCODE 24210 is controlled by microinstruction control enable
inputs provided from FUSlTl' 11012 (not shown for clarity of presentation).

A Referring to FUSDT 11010, both FUDISF 24218 and AF 24220 provide SDPs to FUSITT 11012, but do so
for differing purposes. In general, microinstruction control operations may be regarded as falling into two
classes. First, there are those microinstruction operations which are generic, that is general in nature and
used by or applying to a broad variety of SOPs of a particular dialect or even of many dialects. An example
of this class of microinstruction operation is fetches of operand values. FUDISF 24218 provides SDPs for
this class of microinstruction operations. As described below, FUDlSF 24218 is a fast access memory
allowing a single microinstruction control output of FUSl'l'l' 11012 to parse an SOP from INSTB 20262 into
LOPCODE 24210, and a corresponding SDP to be provided from FUDISF 24218. That is, an SOP of this
generic class may be parsed from lN$T8 20262 and a corresponding SDP provided from FUDlSF 24218
during a single system clock cycle. Operation of FUDISF 24218 thereby enhances speed of operation of JP
10114, in particular at the beginning of execution of new SOPs.

The second class of microinstruction operations are those specific to particular SlNTs or to particular
groups of SlNTs. These groups of SlNTs may reside entirely within a particular dialect, for example
FORTRAN, or may exist within one or more dialects. SDPs for this ciass of microinstruction operation are
provided by AF 24220. As described further below, AF 24220 is slower than FUDISF 24218, but is larger. in
general, AF 24220 contains SDPs of microinstruction sequences specific to particular SlNTs. in general,‘
generic microinstruction operations are perfonned before those operations specific to particular SlNTs. so
that SDPs are required from AF 24220 at a later time than those from FUDISF 24218. SDPs for specific SINT
operations may therefore be provided from lower speed AF 24220 without a penalty in speed of execution
of SOPs.

Flefening again to FUDISF 24218, FUDISF 24218 is a 1,024 word by 6 bit fast access by polar memory.
Each word contained therein, as described above, is an SDP, or address to start of a corresponding

sequence of microinstructions in FLlSlTl' 11012. As will be described further below, FUSITT is an 8K (8192)
word memory. SDPs provided by FUDISF 24218 are each, as described above, 6 bits wide and may thus
address a limited, 32 word area of FUSl1T11012’s address space. FUDISF 24218 is enabled to provide SDPs
to FUSl1T 11012 by microinstruction control signals (not shown for clarity of presentation) from FUSHT
.1 1012. FUDISF 24218 six bit SDPs are encoded by FUDlSENC 24219 to address FUSTIT 11012 address space
in increments of 4 microinstructions, that is in increments of 4 address locations. FUDISF 24218 SDPs

thereby address 4 microinstructions at a time from FUSTIT 11012's microinstruction sequences. As will be
described further below, mPC 20276 generates successive microinstruction addresses to Rl$lTT11012 to
select successive microinstructions of a sequence following an initial microinstruction selected by an SDP
from FUSDT 11010. An FUDISF 24218 SDP will thereby select the first microinstruction of a 4
microinstruction block, and mPC 20276 will select the following 3 microinstructions of that 4
microinstruction sequence. A 4 microinstruction sequence may therefore be executed in line, or
sequentially, for each FUDISF 24218 SDP provided in response to a generic SOP. FUDISENC 24219 encodes
FUDISF 24218 six bit SDPs to select these 4 microinstruction sequences so that the least significant bit of
these SDPs occupies the 24 bit of FUSITT 11012 address inputs, and so on. The two least significant bits of
an FUSITT 11012 address, or SDP, provided from FUDISF 24218 are forced to 0 while the ninth and higher
bits may be hard-wired to define any particular block of 128 addresses in FUSl'l'l' 1 1012. This hard-wiring of
the most significant bits of FUSITT 11012 addresses from FUDISF 24218 allows a set of generic
microinstruction sequences selected by FUDISF 24218 to be located as desired within FUSITF 11012’s

‘ address space. FUDlSENC 24219 is comprised of a set of driver gates.
As previously described, SDPs for generic microinstructions currently being utilized by CS 10110 in

executing usefs programs are written into FUDISF 24218 from Bits 10 to 15 of JPD Bus 10142
(JPD(10-—15)). Addresses for loading SDPs into FUDISF 24218 are provided, as previously described, from
LADDR 24214. LADDR 24214 is enabled to provide load addresses, and FUDISF 24218 is enabled to be

80

Petitioner Apple Inc. — Exhibit 1024, p. 4125

Petitioner Apple Inc. - Exhibit 1024, p. 4126

70

20

35

40

EP 0 067 556 B1

written into, by microinstruction control signals (not shown for clarity of presentation) provided from
FUSITT 11012.

Referring to AF 2420, as previously described AF 24220 is of larger capacity than FUDISF 24218, but
has slower access time. AF 24220 is a 1,024 word by 15 blt memory. ln general, 2 clock cycles are required
to obtain a DSF from AF 24220. During first clock cycle, an SOP is loaded into LOPCODE 24210 and, during
second clock cycle, AF 24220 is addressed to provide a corresponding SDP. SDPs provided by AF 24220 are
each 15 bits in width and thus pable of addressing a larger address space than that of FUSl‘l'l’ 11012. As
previously described, FUSITT 11012 is an 8K word memory. lf FUSITT 11012 is addressed by an AF 24220
SDP referring to an address location outside of FUSITT11012’s address space, FUSlT'|' 11012 will generate
a microinstruction Not In Control Store output to EVENT 20284 as described further below. An AF 24220 '
SDP resulting in this event will then be used to address certain microinstruction sequences stored in MEM
10112. These microinstructions will then be executed from MEM 10112, rather than from FUSDT 11010.
This operation allows certain microinstruction sequences, for example rarely used microinstruction
sequences, to remain in MEM 10112, thus freeing AF 2420 and FUSl‘l'|’ 11012's address spaces from more
frequently used SOPs. _

As previously described AF 2420 is loaded, with SDPs, for S|NTs currently being used by CS 10110 in
executing user's programs, from Bits 16—31 ofJPD Bus 10142 (JPD(15--31)). Also as previously discussed,
addresses to_ load SDPs into AF 24220 are provided from LADDR 24214. LADDR 24214 is enabled to provide
load addresses and AF 24220 to receive SDPs, by microinstruction control signals (not shown for clarity of
presentation) provided from FUSl'lT 11012.

Referring finally to EUSDT 20266. SDPs may be provided to EU 10122 from 3 sources. EU 10122 SDPs
may be provided from EUDISF 24222, from JPD Bus 10142 or from literal fields of microinstructions
provided from FUSl'lT11012. EUDISF 24222's SDPs are each 12 bits in width and comprise 9 bits ofaddress
into EUSl'l'l' and 3 bits of operand format information. _

EUDISF 24222 is 1,024 word by 12 bit memory. As previously described addresses to read SDPs from
EUDISF 24fl2 are provided from OPCODEREG 20268 by concatenating a 4 bit Dialect Code from RDIAL
24212 and an 8 bit SOP from LOPCODE 24210. SDPs provided by EUDlSF 24222 are provided as a first input
to EUDlS$ 24224.

EUDISS 24224 is a multiplexer. As just described, a first input of EUDISS 24224 are SDPs from EUDISF
24222. A second 12 bit Input of EUDISS 24224 is provided from Bits 20 to 31 of JPD Bus 10142
(JPDl20—31)). A third input of EUDlSS 24224 is a 12 bit input provided from a literal field of an FUSl'lT
11012 microinstruction output. EUDISS 20224 selects one of these 3 inputs to be transferred on EUDIS Bus
20206 to be provided as an execute unit SDP to EUSITT. Selection between EUDISS 2022473 inputs is
provided by microinstruction control signals (not shown for clarity of presentation) provided from FUSl'lT11012.

As previously described, EUDISF 24222 is loaded, with SDPs for $—Language dialects currently being
used by CS 10110, from Bits 20 to 31 of JPD Bus 10142 lJPDl20-—31l). Addresses to load SDPs into EUDISF
24222 are provided, as previously described, from LADDR 20214. FUSITT 11012 provides enable signals
(not shown for clarity of presentation] to LADDR 24214 and EUDISF 24222 to enable writing of SDPs into
EUDISF 24222.

- The structure and operation of FUCTL 20214 circuitry for fetching and parsing SlNs from MEM 10112 to
provide Name syllables and SOPs, and for interpreting SOP to provide SDPs to FUSl'l'T 11012 and EUSITT
from FUSDT 11010 and EUSDT 20266, have been described above. As described above, SDPs provided by

_ FUSDT 11010 and EUSDT 20266 are initial, or starting, addresses pointing to first microinstructions of
sequences of microinstructions. Addresses for microinstructions following those initial microinstructions
are provided by FUCTL 20214’s next address generator circuitry which may include mPC 20276, BRCASE
20278, REPCTR 20280 and PNREG 20282, EVENT 20284 and SITTNAG 20286. mPC 20276, BRCASE 20278,
FlEPClTl 20280 and PNREG 20282, and Sl'l'TNAG 20286 are primarily concerned with generation of next
addresses during execution of microinstruction sequences in response to SOPs and will be described next
below. EVENT 20284 and other portions of FUCTL 20214’s circuitry are more concerned with generation of
microinstruction sequences with regard to CS 10110's internal mechanisms operations ‘and will be
described in a later description. EU 10122 also includes next address generation circuitry and this circuitry
will be described in a following description of EU 10122.

c.c.c. Next Address Generator 24310 (Fig. 243)
As stated above, in FU 10120 first, or initial, microinstuctions of microinstruction sequences for

interpreting SOPs are provided by FUSDT 11010. Subsequent addresses of microinstructions within these
sequences are, in general, provided by mPC 20276 and BRCASE 20278. mPC 20276, as described further
below, provides sequential addresses for selecting sequemial microinstructions of microinstruction
sequences. BRCASE 20278 provides addresses for selecting microinstructions when a microinstruction
Branch or microinstruction Case operation is required. REPCTR 20280 and PNREG 20282 provide addresses
for writing, or loading, of micnoinstruction sequences into FUSl‘lT 11012. Other portions of FUCTL 20214
circuitry, for example EVENT 20284, provides microinstruction sequence selection addresses to select
microinstruction sequences for controlling operation of CS 10110's internal mechanisms SITTNAS 20286
selects between these microinstruction address sources to provide to FUSITT 11012 those addresses

81

Petitioner Apple Inc. — Exhibit 1024, p. 4126

Petitioner Apple Inc. - Exhibit 1024, p. 4127

20

50

Eli” 0 067 556 B1

required to select mlcroinstructions of the operation to be currently executed by CS 10110.
Referring to i-"lg. 243, a partial block diagram of FU 10120's Next Address Generator (NAG) 24310 is

shown. in addition to FUSDT 11010, NAG 24310 includes mPC 20276, BRCASE 20278, EVENT 20284.
REPCTR 20280 and PNREG 20282, a part of RCWS 10358, and SITTNAS 20286. EVENT 20284 is, as
described above, primarily concerned with execution of microinstruction sequences for controlling C5
10110 imemai mechanisms. EVENT 20284 as shown herein only to illustrate its relationships to other
portions of NAG 24310. EVENT 20284 will be described further in a following description of FUCTL 20214's
circuitry’ controlling CS 10110's internal mechanisms. Similarly, operation of RCWS 10358 will be
described in part in the present description of NAG 24310, and in part in a following description of control
of CS 10110's intemai mechanisms.

Referring first to NAG 24310’: structure, interconnections of FUSDT 11010, RCWS 10358, mPC 20276,
BRCASE 20278, REPCTR 20280, PNREG 20282. EVENT 20284, and SiTTNAS 20286 have been previously
described with reference to i-"lg. 202. NAG 24310's structure will be described below only wherein Fig. 243
differs from Fig. 202. _

Referring first to SITTNAS 20286, SITTNAS 20286 is shown as comprised of EVENT Gate (EVNTGT)
24310 and Next Address Select Multiplexer (NASMUX) 24312. NASMUX 24312 is comprised of NAS.
Multiplexer A (NASMUXAl 24314, NASMUXB 24316. NASMUXC 24318. and NASMUXD 24320. Outputs of
EVNTGT 24310 and NASMUXA 24314 to NASMUXD 24320 are 0Red to CSADR 20204 to provide
microinstruction selection addresses to FUSITT 11012. '

ADR 20202 is shown in Fig. 243 as comprised of nine buses, Address A (AURA) Bus 24322 to Address i
(ADRI) Bus 24338. Output of EVENT 20284 is connected to input of EVNTGT 24310 by ADRA Bus 24322.
Outputs of REPCTH 20280 and PNREG 20282 and output of AF 2420 are connected to inputs of NASMUXA
24314 by, respectively, ADRB Bus 24324 and ADRC Bus 24326. Outputs of RCWS 10358 and FUDISENC
24219 are connected to inputs of NASMUXB 24316 by, respectively, ADRD Bus 24328 and ADRE Bus 24330.
Outputs of BRCASE 20278 and second output of mPC 20276 are connected to inputs of NASMUXC 24318
by, respectively, ADRF Bus 24332 and ADRG Bus 24334. Second output of mPC 20276 and JAM output of
NC 10226 are connected to inputs of NASMUXD 24320 by, respectively, ADRH Bus 24336 and ADRI Bus
24338. ADR 20202 thus comprises a set of buses connecting microinstruction address sources to inputs of
SFITNAS 20286. -

Refening to mPC 20276, mPC 20276 is comprised of Micro—Pro9ram Counter Counter (mPCC) 24340
and Micro-Program Counter Arithmetic and Logic Unit (mPCALU) 24342. Data input of mPCC 24340 is
connected from CSADR Bus 20204. Output of mPCC 24340 is connected to a first input of mPCALU 24342
and is mPC 20276‘s third output to BRCASE 20278. Second input of mPCALU 24342 is a fifteen binary
number set, for mpie by hard-wiring, to be binary one. Output of mPCALU 24342 comprises mPC
20276's first output. to RCWS 10358, and mPC’ 20276's second output, to inputs of NASMUXC 24318 and
NASMUXD 24320. . .

BRCASE 20278 is shown in Fig. 243 as comprising Mask and Shift Multiplexer lMSMUX) 24344, Case
Mask and Shift Logic (CASEMS) 24346, Branch and Case Multiplexer (BCMUX) 24348 and Branch and Case
Arithmetic and Logic Unit (BCALU) 24350. A first input of MSMUX 24344 lAONBC, not previously shown) is
connected from output of AONGRF 20232. A second input of MSMUX 24344 (OFFMUXR, not previously
shown) is connected from output of OFFMUXR 23812. Output of MSMUX 24344 is connected to input
CASEMS 24346, and output of CASEMS 24346 is connected to a first input of BCMUX 24348. A second input
of BCMUX 24348, Bl.iT is connected from a literal field output of FUSFIT 11012's microinstruction output.
Output of BCMUX 24348 and third output of mPC‘ 20276, from output of mPCC 24340, are connected,
respectively, to first and second inputs of BCALU 24350. Output of BCALU 24350 comprises BRCASE 20278
outputs to NASMUXC 24318.

An address to select a next microinstruction may be provided to FUSiTi' 11012 by SITTNAS 20286 from
any of eight sources. first source is output of mPC 20276. Output of mPC 20276 is referred to as Micro-
Program Count Plus 1 imPC+1) and is fifteen bits of address. Second source is from EVENT 20284 and is
comprised of five hits of address. Third source is output of FUDISP 24218 and FUDISENC 24219 and, as
previously described, is comprised of six bits of address. Fourth source is output of AF 24220 and, as

previously described, is comprised of fifteen bits of address. fifth source is output of BRCASE 20278.
Output of BRCASE 20278 is referred to as Branch and Case Address (BRCASEADR) and comprises fifteen
bits of address. Sixth source is an output of RCWS 10358. Output of RCWS 10358 is referred to as RCWS
Address (RCWSADR) and is comprised of fifteen bits of address. Seventh source is REPCTR 20280 and
PNREG 20282 whose outputs (REPPN) together comprise fifteen bits of address. Finally, eighth source is
JAM input from NC 10226, which comprises five bits of address. These address sources differ in number of
bits of address that they provide, but a microinstruction address gated onto CSADFI Bus 20202 by SITTNAS
20286 always comprises fifteen bits of address. If a particular source applies fewer than fifteen bits, that
address is extended to fifteen bits by SlTTNAS 20286. In general, extension of address bits may be
performed by hard—wiring of additional address input bits to SI1TNAS 20286 from each of these sources
and will be described further below. _ _

Referring to mPC 20276, mPCC 24340 is a fifteen bit register and mPCALU 24342 is a fifteen bit ALU.
mPCC 24340 is, as described above, connected from CSADR Bus 20204 and is sequentially-loaded with a
microinstruction address currently being presented to FUSITT 11012. mPCC 24340 will thus contain the

82

Petitioner Apple Inc. — Exhibit 1024, p. 4127

Petitioner Apple Inc. - Exhibit 1024, p. 4128

20

25

EP 0 067 556 B1

address of the currently executing microinstruction. mPCALU 24342 is dedicated to incrementing the
address contained in mPCC 24340 by one. mPC+1 output of mPCALU 24342 will thereby always be address
of next sequential microinstruction. mPC+1 is. as described above, a fifteen bit address and is thus not
extended in SITTNAS 20286.

Referring to BRCASE 20278, as described above BRCASE 20278 provides next microinstruction
addresses for mPC 20276 Relative Branches and for Case Branches. Next microinstruction addresses for
microprogram Relative Branches and for Case Branches are both generated as addresses relative to
address of currently executing microinstruction as stored in mPCC 24340, but differ in the manner in which
these relative addresses are generated. Considering first Case Branches, Case Branch addresses relative to
a currently executing microinstruction address are generated, in part, by MSMUX 24344 and CASEMS
24346. As described above, MSMUX 24344 which is a multiplexer receives two inputs. First input is AONBC. .
from output of AONGRF 20232 and second input is OFFMUXR from output of OFFMUXR 23812. Each of
these inputs is eight bits, or one byte, in width. Acting under control of microinstruction output from
FUSlTT11012. MSMUX 24344 selects either input AONBC or input OFFMUXR as an eight bit output to input
of CASEMS 24346. CASEMS 24346 is a Mask and Shift circuit, similar in structure and operation to that of
FlU 20116 but operating upon bytes rather than thirty~two bit words. CASEMS 24346, operating under
microinstruction control from FUSlTT 11012, manipulates eight bit input from MSMUX 24344 by masking
and shifting to provide eight bit Case Value (CASEVAL) output to BCMUX 24348. CASEVAL represents a
microinstruction address displacement relative to address of a currently executing microinstmction and,
being an eight bit number, may express a displacement of O to 255 address lotions in FUSITI’ 11012.

BCMUX 24348 is an eight bit multiplexer, similar in structure and operation to MSMUX 24344, and is
controlled by microinstruction inputs provided from FUSITT 11012. In executing a case operation, BCMUX
24348 selects CASEVAL input to MCMUX 241-148's output to first input of BCALU 24350. BCALU 24350 is a
sixteen bit arithmetic and logic unit. Second input of BCALU 24350 is fifteen bit address of currently
executing microinstruction from mPCC 24340. BCALU 24350 operates under microinstruction control
provided from HJSITT 11012 and, in executing a Case operation, adds CASEVAL to the address of a

. currently executing microinstruction. During a Case operation, carry input of BSALU 24350 is forced, by
microinstruction control from FUSlTT 11012, to one so that BCALU 24:-i50‘s second input is effectively
mPC+1, or address of currently executing microinstruction plus 1. Output BRCASEADR of BCALU 24350
will thereby be fifteen bit Case address which is between one and 256 FU5lTl' 11012 address locations
higher than the address location of the currently executing microinstruction. The actual case value address
displacement from the address of the currently executing microinstruction is determined by either input
AONBC or input OFFMUXR to MSMUX 24344, and these mask and shift operations are performed by
CASEMS 24346. .

Case operations as described above may be used, for example, in interpreting and manipulating CS
10110 table entries. For example, Name Table Entries of Name Tables 10350 contain flag fields carrying
information regarding certain operations to be performed in resolving and evaluating those Name Table
Entries. These operations may be implemented as Case Branches in microinstruction sequences for
resolving and evaluating those Name Table Entries. in the present example, during resolve of a Name
Table Entry the microinstruction sequence for performing that resolve may direct a byte of that Name Table
Entry's flag field to be read from AONGRF 20232, or OFF_MUXR 23812, and through MSMUX 24344 to
CASEMS 24348. That microinstruction sequence will than direct CASEMS 24346 to shift and mask that flag
field byte to provide a CASEVAL That CASEVAL will have a value dependent upon the flags within that flag
field byte and, when added to mPC+1, will provide a FUSlTT 11012 microinstmction address for a
microinstruction sequence for handling that Name Table Entry in accordance with those flag bits.

As described above, BRCASE 20278 may also generate microinstruction addresses for Branches
occurring within execution of a given microinstruction sequence. in this case, microinstruction control
signals from FUSlTT11012 direct BCMUX 24348 to select BCMUX 24348's second input as output to BCALU
24350. BCMUX 24348's second input is Branch Literal (BUT). As described above, BLlT is provided from a
literal field of a microinstruction word from FUSl1T11012’s microinstruction output. BUT output of BCMUX
24348 is added to address of cu rrendy executing microinstruction from mPCC 24340, and BCALU 24350, to

4 provide fifteen bit BRCASEADR of a microinstruction address branched to from the address of the currently
executing microinstruction. BRCASEADR may represent, for example, any of four Branch Operations.
Possible Branch Operations are: first, a Conditional Short Branch: second, a Conditional Short Call; third, a
Long Go To; and, fourth, a Long Call. in each of these possible Branch Operations, BUT is treated as the
tvvos complement of the desired branch value, that is the microinstruction address offset relative to the
address of the currently executing microinstruction. BLIT field may therefore be, effectively, added to or
subtracted from the address of the currently executing microinstruction, to provide a microinstruction
address having a positive or negative displacement from the address of the currently executing
microinstruction. In a Conditional Short Branch or a Conditional Short Call, the fourteen bit literal field is a
sign extended eight hit number. Both Conditional Short Branch and Conditional Short Call microinstruction
addresses may therefore point to an address within a range of +127 to -128 FUSl1T 11012 address
locations of the address of the currently executing microinstruction. in the case of a Long Go T0 or Long
Call, the BLIT field is a fourteen bit number representing displacement relative to the address of the
currently executing microinstruction. BRCASEADR may, in these cases, represent a FUSlTT 11012

83

Petitioner Apple Inc. — Exhibit 1024, p. 4128

Petitioner Apple Inc. - Exhibit 1024, p. 4129

10

I5

25

40

45

EP 0 067 556 [Bil

microinstruction address within a range of +8191 to --8192 FUSlTl' 11012 address locations of the address‘
of the currently executing microinstruction. BRCASE 20278 thereby provides FU 10120 with capability of
executing a full range of microinstruction sequence Case and Brandi operations. _ _ _

Referring to RCWS 10358, as previously described RCWS 10358 stores information regarding
microinstruction sequences whose execution has been halted. RCWS 10358 allows execution_ of those
microinstruction sequences to be resumed at a latertime. A return control word (RCW) may be written onto
RUNS 10358 during any microinstruction sequence that issues a Call to another rnicroinstruction
sequence. The lling microinstruction sequence may, for example, be aborted to service an_ event..3$
described further in a following description, or may result in a Jam. A Jam is a call for a mrcroinstrucoon
sequence which is forced by operation of CS 10110 hardware, rather than by a microinstruction sequence.
RCWS 10358 operation with regard to CS 10110's imernal mechanisms will be described in a following
description of EVENT 20284, STATE 20294, and MCW1 20290 and MCWO 20292. For purposes of the
present discussion, that portion of a RCW concerned with interpretation of SOPs contains, first, certain
state information from FUSITI‘ 11012 and, second, a retum address into FU$i‘l'l’ 11012. State that FU_SlTT
11012 state is provided from STATE 20294. as described below, and that portion of a RCW containing
FUSl'lT 11012 state information will be described in a following description. Microinstruction address
portions of RCWs are provided from output of mPCALU 24342. This microinstrucfion address is the address
of the microinstruction to which FU 10120 is to return upon retum from a Call, Bvent, or Jam. Upon
occurrence of a Call or Jam, the microinstruction return address is mPC+1, that is the address of the
microinstmction after the mlcroinstruction issuing the Call or Return. For aborted microinstruction
sequences, the microinstruction return address is mPC, that is the address of the microinstruction
executing at the time abort occurs. _ ‘ _ _

Upon return froma call, service of an evem, or service of a jam. FU 10120 state flag P°'1!°n 07 “CW '3
loaded into STATE 20294. Microinstruction return address is provided by RCWS 10358 as fifteen bit
RCWSADR to SITTNAS 20286 and is gated onto CSADR 20204. RCWSADR is provided to FUSITT 11012 to
select the next microinstruction and is loaded into mPCC 24340 from CSADR 20204

_ M previously described, RCWS 10358 is connected to JPD Bus 10142 by a bi-directional bus. RCWS
may be written into RCWS 10358 from JPD Bus 10142, or read from RCWS 10358 to JPD Bus 10142. The
fifteen. bit next microinstruction address portion, and the single bit FUSITT 11012 state portion of RCW is
written from or read to Bits 16 to 31 of JPD Bus 10142. FU 10120 may write Present Bottom RCW or Previous
RCW into RCWS 10358 from JPD Bus 10142 and may read Present Bottom RCW, or Previous RCW, or
another selected BCW, onto JPD Bus 10142. RCWS 10358 thereby provides a means for storing and
returning microinstruction addresses of microinstruction sequences whose execution has been
suspended, and a means for writing and reading microinstruction address, and FUSITT 11012 state flags,
from and to JPD Bus 10142. _

As previously described, REPCTR 20280 and PNREG 20282 provide microinstruction addresses for
writing of microinstructions imo FUSlTT11012. REPCTR 20280 is an eight bit counter and PNREG 20282 is a
seven bit register. Eight bit output of REPCTR 20280 is left concatenated with seven bit output of PNREG
20282 to provide fifteen bit microinstruction addresses REPPN. That is, REPCTR 20280 provides the eight
low order bits of microinstruction address while PNREG 20282 provides the seven most significant bits of
address.

REPCTR may be loaded from Bits 24-31 of JPD Bus 10142, and may be read to Bits 24-31 of JPD Bus
10142. in addition, the eight bits of microinstruction address in HEPCTR 20280 may be incremented or ,
decremented as microinstructions are written into FUSl'iT 11012.

As described above. PNREG 20282 contains the seven most significant bits of microinstruction
address. These address bits may be written into PNREG 20282 from Bits 17-23 of JPD Bus 10142. Contents
of PNREG 20282 may not, in general, be read to JPD Bus 1014.2 and may not be incremented or
decremented.

Referring to JAM input to SFITNAS 20286 from NC 10226, certain Name evaluate or resolve operations‘
may result in jams. A Jam functions as a call to microinstruction sequences for servicing Jams and are
forced by FU 10120 hardware circuitry involved in Name syllable evaluates and resolves.

JAM input to SITTNAS 20286 is comprised of six Jam address bits. Three bits are provided by NC
10226 and three hits are provided from FUSl'lT 11012’s microinstruction output as part of microinstruction
sequences for correcting Name syllable evaluates and resolves. Thethree bits of address from NC 1026
form the most significant three bits of JAM address. One ofthese bits gates JAM address onto CSADR Bus
20204 and is thus not a true address bit. Output of FUSl'I'l' 11012 provides the three least significant bits of
JAM address and specifies the particular microinstruction sequence required to service the particular Jam
which has occurred. Therefore‘, during Name evaluate or resolves, the microinstruction sequences
provided by FUSITT 11012 to perform Name evaluates or resolves specifies what microinstruction
sequences are to be initiated if a Jam occurs. The three hits of JAM address provided by NC 10226
determine, first, that a Jam has occurred and, second, provide two bits of address which, in combination
with the three bits of address from FUSITT 11012, specify the particular microinstruction sequence for
handling that Jam. JAM address inputs from NC 10226 and from FUSl'l'|' 11012 thereby provide six of the
fifteen bits of JAM address. The remaining nine bits of JAM address are provided, for example. by hard-
wired inputs to NASMUXD 24320. These hard-wired address bits force JAM address to address FUSl'l‘i.

84

Petitioner Apple Inc. — Exhibit 1024, p. 4129

Petitioner Apple Inc. - Exhibit 1024, p. 4130

20

EP 0 067 556 B1

11012 in blocks of 4 microinstruction addresses, in a manner similar to address inputs to FUDlSF 24218 and
FUDISENC 24219.

Address inputs provided to Sl'l'l'NA$ 20286 from FUSDT 11010 have been previously described with
respect to description of FUCTL 20214 fetch, parse. and dispatch operations. Address Inputs provided by
EVENT 20284 will be described in a following description of FUCTL 20214‘s operations with regard to CS
10110's internal mechanisms.

Referring finally to SFITNAS 20286, as previously described Sl‘l'l'NAS 2028615 comprised of EVNTGT
24310 and NASMUX 24312. Inputs are provided to NASMUX 24312, as described above, from FUSDT
11010. mPC 20276, BRCASE 20278, RCWS 10358, REPC'l'R 20280 and PNREG 20282, and by JAM input.
These inputs are, in general, provided with regard to FUCTL 20214's operations in fetching, parsing, and
interpreting $0Ps and Name syllables. These operations are thereby primarily directly concerned with
execution of user's programs, that is the execution of sequences of SlNs. NASMUX 24312 selects between
these inputs and transfers selected address inputs onto CSADR 20204 as microinstruction addresses to
FUSl'lT' 11012 under microinstruction control from microinstruction outputs of FUSITT 11012.

Microinstruction address outputs are provided to SFITNAS 20286 from EVENT 20284 in response to Events.
described further below, occurring in CS 10110's operations in executing user's programs. These
microinstruction addresses from EVENT 20284 are gated onto CSADR 20204. to select appropriate
microinstruction sequences, by EVNTGT 24310. EVNTGT 24310 is separated from NASMUX 24312 to allow
EVNTGT 24310 to over-ride NASMUX 24312 and provide microinstruction address to EVENT 20284 while
NASMUX 24312 is inhibited due to occurrence of certain Events. These Events are. in general, associated
with operation of CS 10110's intemal mechanisms and structure and operation of EVENT 20284, together

with ETIATE 20294, MCW1 20290, and MCWO20292, and other portions of RCWS 10358. will be describedl'18Xt 8 OW.

c.c. FUCTL 20214 Control Circuitry for CS 10110 lntemal Mechanisms (Figs. 244-——249)
Certain portions of FUCTL 20214's Control Circuitry are more directly ooncemed with operation of CS

10110's internal mechanisms, for example CS 10110 Stack Mechanisms. This circuitry may include STATE
20294, EVENT 20284, MCW1 20290 and MCWO 20292, portions of RCWS 10358. REG 20288, and Timers
20296. These FUCTL 20214 control elements will be described next below, beginning with STATE 20294.

a.a.a. State Logic 20294 (Figs. 244A—244Z)
in general, all CS 10110 operations, including execution of microinstructions, are controlled by CS

10110's Operating State. CS 10110 has a number of Operating States, hereafter referred to as States, each
State being defined by certain operations which may be perfonned in that State. Each of these States will
be described further below. Current State of CS 10110 is indicated by a set of State Flags stored in a set of
registers in STATE 20294. Each State is entered from previous State and is exited to a following State. Next
State of CS 10110 is detected by random logic gating distributed throughout CS 10110 to detect certain
condifions indicating which State CS 10110 will enter next. Outputs of these Nana State Detection gates are
provided as inputs to STATE 20294’s registers. A particular State register is set and provides a State Flag
output when CS 10110 enters the State associated with that particular register. State Flag outputs of STATE
20294's state registers are provided as enable signals throughout CS 10110 to enable initiation of
operations allowed within cs 10110's current State, and to inhibit initiation of operations which are not
allowed within CS 10110's current State.

Certain of CS 10110's States, and associated STATE 20294 State Registers and State Flag outputs, are:
(1) M0: the initial State of any microinstruction.
State MO is always entered as first data cycle of every microinstruction. During MO, CS 10110's State

may not be changed, thus allowing a microinstruction to be arbitrarily aborted and restarted from State
MO. In nonnal execution of microinstructions, State MO is followed by State M1, described below, that is,
State M0 is exited to State M1. State M0 may be entered from State M0 and from State M1 , State AB. State
LR, State NR, or State MS, each of which will be described below.

(2) EP: Enable Pause State. State EP is entered when State M0 is entered for the first time in a

microinstruction. If that mlcroinstruction requests a pause, that microinstruction will force State M0 to be
re-entered for one clock cycle. If State M0 lasts more than one clock cycle, State EP is entered on each
extension of State M0 unless the extension is a result of a pause request.

(3) SR: Source GRF State. SR State is active for one clock cycle wherein SR State register enables
loading of a GRF 10354 output register. State SR is re-entered on every State M0 cycle except a State M0
cycle generated by a mlcroinstruction requesting extension of State M0. when all STATE 20294 State
Registers are cleared, DP 20218 may set state SR register alone, for purposes of reading from GRF 10354.

(4) M1: Final state of normal microinstruction execution. State M1 is the exit State of normal

microinstruction execution. FUSlTl'11012 microinstruction register, described below, is loaded with a next
microinstruction upon exit from State M1. in addition, State M1 Flag output of STATE 20294 enables all CS
10110 registers to receive data on their inputs, that is data on inputs of these registers are clocked to
outputs of these registers. State M1 may be entered from State M1, or from State MO, State MW, State
MWA, or State W8. '

(5) LA: Load Accumulator Enable State. State LA is entered. upon exit from State M1, by

85

Petitioner Apple Inc. — Exhibit 1024, p. 4130

Petitioner Apple Inc. - Exhibit 1024, p. 4131

5

10

15

20

25

65

EP 0 067 556 B1 _

microinstructlons which read data from MEM 10112 to OFFMUXR 23812. As previously described,
OFFMUXR 23812 serves as a general purpose accumulator for DESP 20210. STATE LA overlaps into,
execution of next microinstruction, and persists until data is returned from MEM 10112 in response to a
request to MEM 10112. When MEM 10112 signals data is available, by asserting DAVFA, LA State Flag
enables loading of data into OFFMUXR 23812. lfthe next microinstruction references OFFMUXR 23812, that
microlnstruction execution is deferred until a read to OFFMUXR 23812 is completed, as indicated by CS
10110 exiting from State LA

(6) RW: Load GRF 10354 wait state. State RW is entered from State M1 of microinstructions which read
data from MEM 10112 to GRF 10354. RW Fag lnhiblts initiation of a next microinstruction. that is prevents
entry to State M0. and persists through the CS 10110 clock cycle during which data is returned from MEM
10112 in response to a request. State RW initiates Load GRF Enable State, described below.

(7) LR: Load GRF Enable State. State LR is entered in parallel with State RW, on last clock cycle of RW,
and persists for one CS 10110 clock cycle. LR Flag enables writing of MEM 10112 output data into GRF
10354. » .

(8) MR: Memory Reference Trailer State. State MR is entered on transition to State MO whenever a
previous microinstruction makes a logical or physical address reference to MEM 10112. MR Flag enables
recognition of any MEM 10112 reference Events, described below, which may occur. State MR persists for
one clock cycle. If an MEM 10112 memory reference Event occurs, that Event forces exit from State MR to
States AB and MA,rotherwise State MR has no effect upon selection next state.

(9) SB: Store Back Enable State. State SB is entered during State M0 of a microlnstructlon following a
microinstruction which generated a store back of a result of a EU 10122 operation. SB Flag gates that result
to be written into MEM 10112 through JPD Bus 1014?. ’

(10) AB: Microinstruction Abort State. State AB is entered from first MO State after an Event request is
recognized, as described in a following description.

State AB may be entered from State M0 or from State AB and suppresses an entry into State M1.-If
there has been an uncompleted reference to MEM 10112. that is, the reference has not been aborted and
data has not retumed from MEM 10112, JP 10114 remains in State AB until the MEM 10112 reference is
completed. Should an abort have occurred due to a MEM 10112 reference Event, State AB lasts two clock
cycles only. As will be described in a following description of EVENT 20284, State MO of a first
microinstruction of a Handler for an Event causing an abort is entered from State A8. A8 Flag gates the
Handler address of the highest priority recognized Event onto CSADR Bus 20204 to select a corresponding
Event Handler microinstruction sequence. EVENT 20284 is granted control of CSADR Bus 20204 during all
State AB clock cycles. _

(11) AR: Microinstruction Abort Reset State. State AR is entered in parallel with first clock wcle of State
AB and persists for one clock cycle. AR Flag resets various STATE 20294 State Registers when an abort
occurs. If there are no uncompleted MEM 10112 references, next State AB clock cycle is theylast. On
uncornpleted MEM 10112 references. State AR is entered, but State AB remains active until reference is
complete. Should a higher priority Event request service and be recognized while JP 10114 is in State AB.
State AR is reentered. State AB will thereby be active for two clock cycles during all honored Event
requests.

(12) MA: MEM 10112 Reference Abort. State MA is entered in parallel with State AB if a MEM 10112
reference is aborted, as indicated by asserted ABORT control signal output from MEM 10112. State MA
persists for one clock cycle and State AB flag generates a MEM 10112 Reference Abort Flag which, as
described below, results in a repeat of the MEM 10112 reference. AB Flag also resets MEM 10112 Trailer
States, described below.

(13) NW: Nano-interrupt Wait State. State NW is entered from State M0 of a microinstruction which
issues a Nano-interrupt Request to EU 10122 for an EU 10122 operation. FU 10120 remains in State NW
until EU 10122 acknowledges that interrupt. Various EU 10122 Events may make requests at this time- State
NW is exited into State AB or State M1.

(14) FM: First Microinstruction of a SIN. State FM is entered in parallel with State M0 on first
microinstruction of each SIN and persists for one clock cycle. FM Flag inhibits premature use of AF 24220
and enables recognition of SlN Entry Events. State FM is re—entered upon return from all aborts taken
during State M0 of the first microinstruction of an SIN.

(15) SOP: Original Entry to First $lN. State SOP is entered upon entry to State M0 of the first
rnicroinstruction of an SOP and is exited from upon ‘any exit from that microinstruction. State SOP is
entered only once for each SOP. SOP Flag may be used, for example, for monitoring performance of JP
10114.

(16) EU: EU 10122 Operand Buffer Unavailable. State EU is entered from State M0 of a microinstruction
which attempts to read data to EU 10122 Operand Buffer, described in a following description, wherein EU
10122 Operand Buffer is full. When a new SOP is entered, three fetches of data from MEM 10112 may be
performed before EU 10122 Operand Buffer is full; two fetches will fill EU 10122 Operand Buffer~but EU -
1012 may take one operand during a second fetch, thereby clearing EU 10122 Operand Buffer space for a
third operand.

(17) NR: Long Pipeline Read. Entry into State NR disables overlap of MEM10112 reads and disables
execution of the next microlnstruction. A following microinstruction does not enter State M0 until

88

Petitioner Apple Inc. — Exhibit 1024, p. 4131

Petitioner Apple Inc. - Exhibit 1024, p. 4132

I0

20

EP 0 067 556 B1

' requested data is returned from MEM 10112. State NR is entered from State NR or from State M1.
(18) NS: Nonpipeline Store Back. State NS is entered in parallel with State SB whenever a

microinstruction requesting a pipeline store back, or a write to MEM 10112. occurs. State NS flag generates
entry into State M0 of a following microinstruction upon exit from State SB.

(19) WA: Load Control Store State A. State WA is entered from State M0 of a microinstruction which
directs loading of microinstruction into FUSITT 11012. WA State Flag controls selection of addresses to
CSADR Bus 20204 for writing into FUSl‘lT 11012, and generates a write enable pulse to FUSITT 11012 to
write microinstmctions ‘into FUSITT 11012.

(20) WB: Load Control Store State B. State W8 is entered from State WA and is used to generate an
appropriate tlming interval for writing into FUS|‘lT 11012. State WB also extends State M1 to 2 clock cycles
to ensure a valid address input to FUSl‘lT 11012 when a next microinstruction is to be read from FUSITT
11012.

' Having described certain CS 10110 states, and operations which may be performed within those states,
state sequences for certain CS 10110 operations will be described next below with aid of Figs. 244Ato 2442.
H9. 244A to Big. 2442 represent those state timing sequences necessary to indicate major features of CS
10110 state timing. All state timing shown in Figs. 244A to 244V assumes full pipelining of CS 10110
operations. for example pipelinlng of reads from and writes to MEM 10112 by JP 10114. Pipelining is not
assumed in figs. 244W to 2442. Referring to Figs. 244A to 2442, these figures are drawn in the form of
timing diagrams, with time increasing from left to right. Successive horizomaily positioned "boxes"
represents successive CS 10110 states during successive CS 10110110 nano-second clock cycles. Vertically
aligned "boxes" represent alternate CS 10110 states which may occur during a particular clock cycle.
Horizontally extended dotted lines connecting certain states represented in Fig. 244A to 2442 represent an
indeterminate time interval which is an integral multiple of 110 nano-second CS 10110 clock cycles.

Referring to Fig. 244A to 2442 in sequence, State “liming Sequences shown therein represent:
(1) Fig. 244A; state timing for execution of a normal microinstruction with no Events occurring and no

MEM 10112 references.

(2) Fig 244B execution of a normal microinstruction, with no Events occurring, no MEM 10112
references, and a hold in State M0 for one clock cycle.

(3) Fig. 2440; a microinstruction requests an extension of State M0 for one clock cycle, with no Events
occurring and no MEM 10112 references.

(4) Fig. 244D; a write to MEM 10112 from DESP 20210, for example from GRF 10354 or from OFFALU
20242. MEM 10112 port is available and MEM 10112 reference is made during firstsequentiai occurrence of
States M0 and M1. _

(5) Fig. 244E; a write to MEM 10112 from DESP 20210 as described above. MEM 10112 port is
unavailable for an indeterminate -number of clock cycles. A MEM 10112 reference is made during first
sequential occurrence of States M0 and M1.

(6) Fig. 244F; writing of an EU 10122 result back into MEM 10112. MEM 10112 is available and a write
operation is initiated during first sequential occurrence of States M0 and M1.

(7) Fig. 244G; writing back of an EU 10122 result to MEM 10112 as described above. MEM 10112 port is
unavailable for an undetermined number of clock cycles, or EU 10122 does not have a result ready to be
written into MEM 10112. Write operation is initiated during first sequential occurrence of States M0 and M1.

(8) HQ. 244H; 3 read of an EU 1012 result into FU 10120. EU 10122 result is not available for an
undaten-nined number of clock cycles.

(8) Fig. 244i; a read from MEM 10112 to OFFMUXR 23812, with no delays. The microinstruction
following the microinstruction initiating a read from MEM 10112 does not reference OFFMUXR 23812.

(10) l-'ig. 244J; a read from MEM 10112 to OFFMUXR 23812 with data from MEM 10112 being delayed
by an indeterminate number of clock cycles. The next following microinstructlon from that initiating the
read from MEM 10112 does not reference OFFMUXR 23812.

(11) Fig. 244K; a read from MEM 10112 to OFFMUXR 23812. The next microinstruction following the
microinstruction initiating the read from MEM 10112 references OFFMUXR 23812.

(12) Fig. 244L; a read from MEM 10112 to GRF 10354. The read to GRF 10354 is initiated by the first
sequentially occurring States M0 and M1.

(13) Fig. 244M; a read from MEM 10112 to GRF 10354 and to OFFMUXR 23812. in this case, read
operations may not be overlapped.

(14) Fig. 244N; JP 10114 honors an Event request and initiates a corresponding Event Handler
microinstmction sequence, no MEM 10112 references occur.

(15) Fig. 2440; JP 10114 honors an Event request as stated above. MEM 10112 references are made
during the first sequential occurrence of States M0 and M1 and a MEM 10112 reference Event occurs. in
case of an MEM 10112 reference event, State MA is entered from one clock cycle. This occurs only if a MEM
10112 reference is made and aborted.

(16) Fig. 244P; an Event occurs in a MEM 10112 reference made during the first sequential occurrence
of States MO and M1. The MEM 10112 reference does not result in a memory reference Event. CS 10110
remains in State AB until the MEM 10112 reference is completed by return of data from MEM 10112.

(17) Fig. 2440: a read of data from MEM 10112 or JPD Bus 10114 to EU 10122 Operand Queue. EU
10122 Operand Queue is not full.

Petitioner Apple Inc. — Exhibit 1024, p. 4132

Petitioner Apple Inc. - Exhibit 1024, p. 4133

10

20

30

65

EP 0 057 556 B1

(18) Fig. 244R; a read of MEM 10112 or JPD Bus 10142 data to EU 10122 Operand Queue. EU 10122
Operand Queue is full when the microinstruction initiating the read is issued.

(19) Fig. 2445: a request for a "nano-interrupt" to EU 10122 by FU 10120 with no Events occurring.
(20) Fig. 244T; FU 10120 submits a "nano-interrupt" request to EU 10122 and an EU 10122 State

Overflow, described further in a following description, occurs. No other Events are recognized, as
described in a following description of EVENT 20284.

(21) H9. 244U; FU 10120 submits a "nano-interrupt" request to EU 10122. Another Event is recognized
during State M0 and an abort results. First abort state is entered for the non-EU 1012 event. All aborts
recognized in State M0 are taken or acknowledged, before entrance into State M0. Therefore, on retry at
State M0 of the original microinstruction entered from State M0, next abort recognized is for EU 10122
Stack Overflow Event since EU 10122 Stack Overflow has higher priority.

(22) Fig. 244V: a load of a 27 bit microinstruction segment into FUSITT 11012.
In Figs. 244A to 244V, pipelining MEM 10112 reads and writes, and of JP 10114 operations. has been

assumed. In figs. 244W to 2442, non-overlapping operation of JP 10114 is assumed.
(23) Fig. 244W; a read of data from MEM 10112 to OFFMUXR 23812.
(24) Fig. 244x; a read of data from MEM 10112 to EU 10122 Operand Queue.
(25) Fig. 244Y: a write of an EU 10122 result into MEM 10112.
(26) Eng. 2442; a read of a 32 bit SIN word from MEM 10112 in response to a prefetch or conditional

prefetch request.
Having described the general structure and operation of STATE 20294, and the operating states and

operations of CS 10110, structure and operation of EVENT 20284 will be described next below.

b.b.b. Event Logic 20284 (Figs. 245, 246, 247, 248) _ -
An Event is a request for a change in sequence of execution of microinstmctions which is generated by

CS 10110 circuitry, rather than by currently executing microinstructions. Occurrence of an Event will result
in provision of a microinstruction sequence, referred to as an Event Handler, by FUSlTl' 11012 which
modifies CS 10110’s operations in accordance with the needs of that Event. Event request signals may be
generated by CS 10110 circuitry internal to JP 10114, that is from FU 10120 or EU 10122 or C8 10110
circuitry external to JP 10114, for example from IOP 10116 or from MEM 10112. Event request signals are
provided as inputs to EVENT 20284. As will be described further below, EVENT 20284 masks Event‘
Requests to determine which Events will be recognized during a particular CS 10110 Operating State,
assigns priorities for servicing multiple Event Requests. and fabricates Handler addresses to FUSl'iT 11012
for microinstruction sequences for servicing requests. EVENT 20284 then provides those Handler
microinstruction addresses to FUSITT 11012 through EVNTGT 24310, to initiate execution of selected Event
Handler microinstruction sequences.

Certain terms and expressions are used throughout the following description. The following
paragraphs define these usages and provide examples illustrating these terms. An Event “makes a
request" when a condition in CS 10110 hardware operation results in a Event Request signal being
provided to EVENT 20284. As will be described further below, these Event Request signals are provided to
EVENT 20284 combinatorial logic which determines the validity of those "requests".

An Event Request "is recognized" it it is not masked, that is inhibited from being acted upon. Masking
may be explicit, using masks generated by FUSITT 11012, or may be implicit, resulting from an improper
CS 10110 State or invalid due to other considerations. That is, certain Events are recognized only during
certain CS 10110 States even though those requests may be recognized during certain other states. Any
number of requests. for example up to 31, may be simultaneously recognized.

An Event Request is "honored" if it is the highest priority Event Request occurring. When a request is
honored, a corresponding address. of a corresponding microinstruction sequence in FUSlTl' 11012, for its
Handler microinstruction sequence is gated omo CSADR Bus 20204 by EVENT 20284. A request is honored
when CS 10110 enters State AB.'State AB gates the selected Event Handler microinstruction address on
CSADR Bus 20284. -

To summarize, a number of Events may request service by JP 10114. Of these Events, all, some, or
none, may be recognized. Only one Event Request, the highest priority Event Request, will be honored
when JP 10114 enters State AB. Microinstruction control of (‘.8 10110 will then transfer to that Event's
Handler microinstruction sequence. A necessary condition for entering State AB is that an Event Request

,has been made and recognized. n Ir

A microinstnrction sequence "completes , is completed", or reaches "completion" when CS 10110
exits State M1 while that microinstruction sequence is active. A microinstruction sequence may, as
described above, be aborted in State M0 an indefinite number of times before, if ever,‘reaching completion.

A MEM 10112 reference "completes", "is completed", or reaches "completion" when requested data
is returned to the specified destination, that is read from MEM 10112 to the requestor, or MEM 10112
accepts data to be written into MEM 10112.

"Trace Traps" are an inherent feature of microinstructions being executed. Trace Traps occur on every
microinstruction of a given type (if not masked), for example during a sequence of microinstructions to
perform a Nameevaluate or resolve, and occur on each microinstruction of the sequence. in general, a

, Trace Trap Event must be serviced before execution of the next microinstruction. Trace Traps are distinct .

88

Petitioner Apple Inc. — Exhibit 1024, p. 4133

Petitioner Apple Inc. - Exhibit 1024, p. 4134

EP 0' 067 556 B1

from lntermpts in that an interrupt. described below, does not occur on execution of each microinstruction
of a microinstmction sequence, but only on those microinstructions where certain other conditions must

be considered. ;
_ “lnterrupts" are the largest class of events in JP 10114. Occurrence of an interrupt may not, in general,

5 be predicted for a particular execution of a particular microinstruction in a particular instance. Interrupts
may require service before execution of the next microinstruction, before execution of the current

microinstruction can complete, or before beginning of -the next SIN. An Interrupt may be unrelated to
execution of any microinstruction, and is serviced before beginning of the next microinstruction.

A “Machine Check" is an Event that JP 10114 may not handle alone, or whose occurrence makes
"’ further actions by JP 10114 suspect. These events are captured In EVENT 20284 Registers and result in a

request to DP 10118 to stop operation of JP 10114 for subsequent handling.
In summary, three major classes of Events in CS 10110 are Trace Traps, Interrupts, and Machine

Checks. Each of these class of events will be described in further detail below, beginning with Trace Traps.
The State of all possible Trace Trap Event Requests, whether requesting or not requesting, is loaded

'5 into EVENT 20284 Registers at completion of State M1 and at completion of State AB. That is, since Trap
Requests are a function of the currently executing microinstruction, the State of a Trap Request will be
loaded into EVENT 20284 Trace Trap Registers at end of State M1 of each currently executing
microinstruction. Similarly, if any Trap Requests are recognized, State AB will be entered at the end of the
first clock cycle oi the next following State M0 and their State loaded at end of the State AB.

29 Recognized, or unmasked, Trap Requests may be pushed onto RCWS 10358 as Pending Requests.
Unrecognized, or masked. Trace Trap Requests may be pushed onto RCWS 10358 as Not Pending Requests
and are subsequently disregarded. Subsequently, when a microinstruction sequence ends in a return to a
calling microinstruction sequence. the Trace Trap Request bits in an RCWS 10358 may be used to generate
Trace Trap Event Requests. -

35 Upon exitfrom State AB, all Trace Trap Requesm, except Micro-Break-Point and Microinstruction Trace
Traps, described below, are loaded into corresponding EVENT 20284 Trace Trap Request Registers as not
requesting. Micro—Break-Point and Microinstruction Trace Traps. are, in general. always latched as
requesting at completion of State AB. Trace Traps may be explicitly masked by a Trace Mode Mask, an
lndivisibility Mode Mask, and by a Trace Enable input, all generated by FUSITT 11012 as described below.

30 Micro-Break—Point Trap may also be masked by clearing a Trace Enable bit in a Trace Enable field of certain
microinstruction: containing Trace Traps. in general, masking is effective from State MD of the
microinstruction which generates the mask, through completion of a microinstruction which clears the
mask Trace Traps generated by a microinstruction which clears a mask are taken so as to abort a following
microinstruction during its MO State.

35 Referring to Fig. 245. CS 10110 state timing for a typical Trap Request, and generation of a
microinstruction address to a corresponding Trace Trap Handler microinstruction sequence by EVENT
20284 is shown. Fig. 245 is drawn using the same conventions as described above with reference to Fig.
244A to 244.7. In Fig. 245, a microinstruction executing in States M0 and M1 causes a Trace Trap Request
but does not generate an MR (Memory Reference) Trailer State. Trace Trap Request to EVENT 20284 is

40 signaled by Time A. This Trace Trap Request is latched into EVENT 20284 Trace Trap Event Registers, and
an Abort Request is provided to STATE 20294. At Time 8, FU 10120 enters States AB and AR. The

microinstruction address for a Handler micminstruction sequence of the highest priority Event present in
EVENT 20284 is presented to FUSITT 11012 and execution of the addressed microinstruction sequence
begins. At Tlme C, FU 10120 exits States AB and AR and enters State AB. State AB will be exited at end of

45 the next 110 nanosecond clock cycle. Address of the selected Event Handler microinstruction sequence will
remain on CSADR Bus 20204 for duration of State AB. At Time D, a pointer into RCWS 10358, described in a
following description, is incremented, thereby effectively pushing the first microinstruction's return control
word, that is the microinstruction executing at first State M0, onto RCWS 10358. First microinstruction of
the Trace Trap Event Handler microinstruction sequence is provided by FUSiTT 11012. Execution of

60 Handler microinstruction sequence will begin at start of the third State MD of the state timing sequence
shown in Fig. 245. EVENT 20284's Trace Trap Register for this event is now latched in nonrequesting state
and will remain so until transition out oi second State M1 shown in Fig. 245. At this time. EVENT 20284
Registers will latch new Trap Requests. Finally, at Time E. Trace Trap Event Registers of EVENT 20284 are
latched with new Trap Requests arising from execution of the microinstruction being executed in States M0

55 and M1 occurring between Times D and E. Traps due to the microinstruction that was executed in States
M0 and M1 before Tune A, but were not serviced, are requested again when the previously pushed RCW
described above is returned from RCWS 10358 upon return from the Trace Trap Event Handler
microinstruction sequence initiated at Time D. All Trace Trap Requests which have been serviced are
explicitly cleared in RCWS 10358 RCWs by their Event Handler microinstruction sequences to prevent

so recurrence of those Trap Requests. Since Trace Trap Event Requests arising from reads or writes to MEM
10112 will recur ifthose requests are repeated, EVENT 20284 generates memory repeat interrupts after all
aborted MEM 10112 read and write requests to insure that these Traps will eventually be serviced. Event
Handler microinstruction sequences for these read and write Trace Trap Events explicitly disable serviced
Trace Trap Event Requests by clearing bits in the logical descriptor of the aborted memory read and write

65 requests.

Petitioner Apple Inc. — Exhibit 1024, p. 4134

Petitioner Apple Inc. - Exhibit 1024, p. 4135

10

15

20

25

EP oos7 556 31

Having described overall structure and operation of Trace Trap Events, certain specific Trace Trap
Events will be described in greater detail below. Trace Trap Events occurring in CS 10112 may include
Name Trace Traps, SOP Trace Traps, Microinstruction Trace Traps, Micro-Break-Point Trace Traps, Logical
Write Trace Traps, Logical Read Trace Traps, UID Read Trace Traps, and UID Write Trace Traps. These
Trace Traps will be described below in the order named,

A Name Trace Trap is requested upon every microinstruction sequence that contains an evaluate or
resolve of a Name syllable. Name Trace Traps are provided by decoding certain microinstruction lrelds of
those microinstruction sequences. Name Trace Trap field is masked by either Trace Mask. lndivisibility
Mask. or Trace Enable, as described above. All of these masks are set and cleared by microinstruction

colrlrtrhfil signals provided during microinstruction sequences calling for resolves or evaluates of Namesy a es.
A SOP Trace Trap may be requested whenever FU 10120 enters State FM (First Microinstruction of an

SOP). SOP Trace Traps may be masked by Trace Mask, lndivisibility Mask. or Trace Trap Enable, again
provided by microinstruction control outputs of FUSITI’ 11012. In general, the first microinstruction of such
a microinstruction sequence interrupting such $0Ps is not completed before a Trace Trap is taken.

Microlnstruction Trace Traps may be requested upon completion of microinstructions which do not
contain a Return Command, that is those microinstructions which do not return microinstruction control of

CS 10110 to the calling microinstruction sequence. For microinstruction sequences containing Return
Commands. state of microinstruction Trace Trap Request in a corresponding RCW is used. Every
microinstruction for which a Microinstruction Trace Trap is not masked is aborted duringstate M0 of
execution of that microinstruction. Microinstruction Trace Traps may be masked by Trace Mask,
lndivisibllity Mask. or Trace Enable from FUSITT 11012. A M7cro—Break-Point Trap may be requested upon
execution of microinstructions which do not contain Return Commands, but in which a Trace Enable bit in a
microinstruction is asserted. A Micro-Break—Point Trap may be masked by Trace Mask, lndivisibility Mask,
or Trace Enable. In addition, a Trace Enable bit of a microinstruction field in these microinstruction
sequences controls recognition of Micro-Break-point Traps. Micro-Break-Point Traps are thereby requested
whenever a microinstruction Trace Trap is requested. but have additional enabling "conditions expressed in
the microinstnrctions. Since only recognized Traps are pushed onto RUNS 10358 in a RCW, a
Micrcinstruction Trace Trap and a Micro-Break-Point Trap having different request states may be present in
RCWS 10358 concurrently.

Logical Write Trace Traps may be requested when enabled by a bit set in a logical descriptor during a
microinstruction sequence submitting a write request to MEM 10112 and using logical descriptors to do so.
Logical Write Trace Traps are recognized only if they occur during a state which will be immediately
folloyved by State MR (Memory Reference Trailer). A Logical Write Trace Tr-ap will result in the MEM 10112
write request being aborted. Logical Write Trace Traps may be masked by Trace Masls, lndivisibility Mask.
or Trace Trap Enable. A further condition for recognition of a Logical Write Trace Trap is determined by the
state of certain bits in a logical descriptor of the memory write request. Logical Write Trace Traps are, in
general, not pushed onto RCWS 10358 as part of a RC\N since aborted MEM 10112 requests are re-
generated so that Logical Write Trace Traps may be repeated.

Logical Read Trace Traps are similar in all respects to the Logical Write Trace Traps. but occur during
MEM10112 read requests. Generation of Logical Read TraceTraps is controlled again in part by certain bits
in logical descriptors of MEM 10112 read requests.

In certain implementations ofCS 10110, UID Trace Traps may be requested when FU 10120 requests an
MEM 10112 read operation based upon a UID adores or pointer. UID Read Trace Traps are recognized if
‘requested and there is, in general, no explicit masking of UlD Read Trace Traps. Generation of UID Read
Trace Traps is controlled by certain bits in MEM 10112 read request logical descriptors. UID Read Trace
Trap Requests result in the MEM 10112 read requests being aborted and CS 10110 entering State AB.
Handler microinstruction sequences for UID Read Trace Traps will, in general, reset the trapped enable bit
in the MEM 10112 read request logical descriptor before re-issuing the MEM 10112 read request.

UID Write Trace Traps are similar to UID Read Trace Traps. and are controlled by bits in the logical
descriptor in MEM 10112 write request based upon UID addresses or pointers.

Having described above structure and operation of Trace Trap Events, CS 10110 Interrupt Events will
be described next below.

As previously described, Intermpts form the largest class of CS 10110 Events. Interrupts may be
regarded asfalling into one or more of several classes. First, Memory Reference Repeat interrupts are those
lntermpt Events associated, in general, with read and write requests to MEM 10112 in which a read or write
request is submitted to MEM 10112, and an Interrupt Event results. That interrupt Event is handled, and the
MEM 10112 request repeated. Second, Deferred Service Interrupts are those Interrupts wherein CS 10110
defers service of an Interrupt until entry to a new SIN. Fourth, Microinstruction Service Interrupts occur
when a currently executing microinstruction requires assistance of an Event Handler microinstruction
sequence to be completed. Finally, Asynchronous Interrupt Events may occur at any time and must be
serviced before CS 10110 may exit State MO of the next microinstruction. These interrupt Events will be
described next below in the order named. ’ -

A Memory Reference Repeat Interrupt is requested, for example, if a microinstruction executes a
command, and a corresponding RCW read from RCWS 10358 indicates that a memory reference was_

90

Petitioner Apple Inc. — Exhibit 1024, p. 4135

Petitioner Apple Inc. - Exhibit 1024, p. 4136

10

15 "

20

25

30

35

6'5

EP oo_s7 556 B1_

aborted before entrance to the microinstruction sequence from which return was executed. This type of
Interrupt Event occurs for all aborted memory references. If an event is honored, that is abort state is
entered, for any event and there is a memory reference outstanding, not aborted, the memory reference-
completes before State A8 is exited. No memory Repeat Interrupt Request will be written into the RCW
written onto RCWS 10358. Conversely, if a memory reference is aborted, even if the event honored is not
that event which aborted the memory reference. a Memory Repeat Interrupt Request will be written into a
RCW pushed onto a RCWS 10358. ‘ ~

There are two state timing sequences for execution of Memory Repeat Interrupts. In the first case, there
are no MEM 10112 references in the mcroinstruction executing a Return Command. In the second case, a
microinstruction executing a Return Command executes a return and also makes a MEM 10112 reference.
Referring to Fig. 246, a CS 10110 State Tlming Diagram for the first case is shown. Fig. 246 is drawn using
the same conventions as used in Fig. 244 and 245. As described above, in the first case a microinstruction
executing a Return Command is executed in States M0 and M1 following Time D. An aborted MEM 10112
reference was made in States M0 and M1 preceding Time A. An MEM 10112 Reference Abort Request is
made upon CS10110's entry into State MR following Time A. Since a Memory Repeat Interrupt is requested
only from a RCW provided by RCWS 10358, a Memory Repeat Interrupt is indicated only if a
microinstruction executes a Return Command resulting in RCWS 10358 providing such an RCW. Therefore,
a Memory Repeat Interrupt Request Register of EVENT 20284 is loaded with "not requesting" at this time.
At Time B, CS 10110 enters State AB, State AR, and State MA At this time, a Memory Reference Abort
Request is asserted and written into an RCW when State AB is exited just before Time D. At Time D, CS
10110 exits State AR and State MA. As just described, CS10110 will remain in State B until Time D. At Time
D, Memory Reference Abort Request is written into RCWS 10358 as part of an RC\N and, as described
further below, various RCWS 10358 Stack Pointers are incremented to load that RCW into RCWS 10358. At
this time, EVENT 20284's Interrupt Request Register receives "no request" as state of Memory Repeat
Interrupt. First microinstruction of Memory Repeat Interrupt Handler microinstruction sequence is provided
by FIJSl'lT 11012. At Time E, the last microinstruction of the Memory Repeat Interrupt Handler
microinstruction sequence is provided by FUSITT 11012 and a Return Command is decoded. RCWS 10358
Previous Stack Pointer, previously described, is selected to address RCWS 10358 to provide the previously
written RCW as output to EVENT 20284's Memory Repeat Interrupt Event Register. At Time F, EVENT
20284's Memory Repeat Interrupt Register is loaded from output of RCWS 10358 and RCWS 10358’s Stack
Register Pointers are decremented. At this time, Memory Repeat Interrupt Request is made and, as
described below, is written into the current Return Control Word, whether honored or not. JP 10114 then
repeats the aborted MEM 10112 reference.

In the second case, a State Timing Sequence wherein the microinstruction executing a return also
makes a MEM 10112 reference, CS 10110 State Timing is identical up to Time F. At Time F, MEM 10112
Repeat request is not recognized and the state of Memory Repeat lntemipt written into the current Return
Control Word is "not requesting" unless a current MEM 10112 reference is aborted. The previous MEM
10112 Repeat Interrupt Request is disregarded as it is assumed that it is no longer required. Thus, there are
two ways to avoid, or cancel a Memory Repeat Interrupt Request. First, that portion of a RCW receiving a
MEM 10112 Repeat Interrupt Request may be rewritten as "not requesting". Second, an aborted MEM
10112 reference may be made in the same microinstruction that returns from a Handler servicing the
aborted MEM 10112 reference.

Certain CS 10110 Events result in aborting a MEM 10112 read or write references and may result in
repeat of MEM 10112 references. These events may include:

(1) Logical read and write Traps and, in certain implementations of CS 10110, UID read and write Traps.
previously discussed;

(2) A PC 10234 miss;
(3) Detection of a protection Wolation by PC 10234:
(4) A Page Crossing in a MEM 10112 read or write request:
(5) A Long Address Translation, that is an ATU 10228 miis requiring JP 10114 to evaluate a logical

descriptor to provide a corresponding physical descriptor;
(6) Detection of a reset dirty bit flag from ATU 10228 upon a MEM 10112 write request as previously

described;
(7) An FU 10122 stack overflow;
(8) An FU 10122 Illegal Dispatch:
(9) A Name Trace Trap event as previously described;
(10) A Store Back Exception, as will be described below;
(11) EU 1012 Events resulting in eboning of a Store Back, that is a write request to MEM 10112 from

EU 10122;

(12) A read request to a non-accelerated Stack Frame, that is a Stack Frame presently residing in MEM
10112 rather than accelerated to JP 10114 Stack Mechanisms; and,

(13) Conditional Branches in SIN sequences resulting outstanding MEM 10112 read reference from
PREF 20260; and, '

Of these Events, Logical Read and Write Traps, UID Read and Write Traps, and Name Trace Traps have
been previously described. Other Events listed above will be described next below in further detail.

91

Petitioner Apple Inc. — Exhibit 1024, p. 4136

Petitioner Apple Inc. - Exhibit 1024, p. 4137

10

15

20

EIP (ll 06? 556 B1

A PC 10234 Mis Interrupt may be requested upon a logical MEM 10112 reference, that is when a
logical descriptor is provided as input to ATU 10228 and a protection state is not encached in PC 10234. PG
10234 will. as previously described, indicate that a corresponding PC 10234 entry is not present by
providing a Event Protection Violation IEVENTPVIOLI output to EVENT 20284. PC 10234 will concurrently
assert an Abort output (ABORT) to force CS 10110 into State AB and thus abort that MEM 10112 reference.

A Page Crossing MEM 10112 Reference Interrupt is requested if a logical MEM 10112 reference, that is
a logical descriptor. specifies an operand residing on two logical pages of MEM 10112. An output of ATU
10228 will abort such MEM 10112 references by asserting an Abort output (ABORT).

A Protection Ifiolation Interrupt is requested if a logical MEM 10112 reference does not possess proper
access rights, a mode violation, or if that reference appears to refer to an illegal portion of that object. an
extent violation. Again, PC 10234 will indicate occurrence of a Protection Violation Event, which may be
disabled by a microinstruction control output of FUSITT 11012. V

A Long Address Translation Event may be requested upon a logical MEM 10112 reference for which
ATU 1028-does not have an encached entry. ATU 1028 will abort that MEM 10112 reference by asserting
outputs ABORT and Long Address Translation Event (EVENTl.ATl.

A Dirty Bit Reset Event lntenupt may be requested when JP 10114 attempts to write to an MEM 10112
page having an encached entry in ATU 1028 whose dirty bit is not set. ATU 10228 will abort that MEM
10112write request by asserting outputs ABORT and Write Long Address Translation Event (EVENTWLAT).

An FU 10120 User Stack Overflow Event may be requested If the distance between a Current Frame
Pointer and a Bottom Frame Pointer, previously described with reference to CS 10110 Stack Mechanisms, is
greater than a given value. As previously described, in CS 10110 this value is eight. A User Stack Overflow
Event will continue to be requested until either Current Frame Pointer or Bottom Frame Pointer changes
value so that the difference limit defined above is no longer violated. A User Stack Overflow Event may be
masked by a Trace Mask. an Indivisibility Mask. or by enable outputs of a microinstruction from FUSl'lT
11012. A Handler microinstruction sequence for User Stack Overflow Events must be executed with one or
more of these masks set to prevent recursion of these events. CS 10110 is defined to be nmning on Monitor
Stack (MOS) 10370 when User Stack Overflow Events are masked. User Stack Overflow Events are not
loaded into any of EVENT 20284's Event Registers, nor are these events written into a RCW to be written
onto RCWS 10358.

Illegal EU 10122 Dispatch Events are requested by EUSDT 20266 if FU 10120 attempts to dispatch, or
provide an initial microinstruction sequence address, to EU 10122 to a EUSTIT address which is not
access-able to a user's program. Illegal EU 10122 Dispatch Events are. in general, not masked. Illegal EU
10122 Dispatch Event Requests are cleared upon CS 10110 exits from State AB. The Handler
microinstruction sequence for Illegal EU 10122 Dispatch Events should, in general, reset Illegal EU 10122
Dispatch Event entries in FICWs to prevent recursion of these events.

EU 10122 will indicate a Store Back Exception Event if any one of a number of exceptional conditions
arise during arithmetic operations. These events are recognized when CS 10110 enters State 58 and are
ignored except during Store Back to MEM 10112 of EU 10122 results. These Events may be disabled by
microinstruction output of FUSITT 11012 but are, in general, not masked. Store Back Exception Events may
be written into RCWs, to be stored in RCWS 10358, and are cleared upon CS 10110's exit from State AB.
Again, a Store Beck Exception Event Handler microinstruction sequence should reset Store Back Exception
Events written into RCWs to prevent recursion of these events.

As described above, the next major class of Interrupt Events are Deferred Service Interrupts. cs 10110
defers service of Deferred Service Interrupts until entry of a new SOP Deferred Service Interrupts which
have been recognized will be serviced before completion of execution of the first microinstruction of that
new SOP. Deferred Service Interrupts include Nonfatal MEM 10112 Errors. Interval ‘Fmer Overflows. and
Interrupts from IOS 10116. These lntermpts will be described below, in the order named.

A Nonfatal MEM 10112 Interrupt is signaled by MEM 10112 upon occurrence of a correctable (single
bit) MEM 10112 error. Nonfatal Memory Error Interrupts are recognized only during State M0 of the first
microinstruction of an SOP. MEM 10112 will continue to assert Nonfatal Memory Errorlnterrupt until JP
10114 issues an acknowledgement to read MEM 10112's Error Log.

An Interval Timer Overflow Interrupt is indicated by TIMERS 20296 when, as described below, an
interval Timer increments to zero, thus indicating lapse of an allowed time limit for execution of an
operation. Interval Timer Overflow Interrupts are recognized during State M0 of the first microinstruction of
a SOP. TIMERS 20296 will continue to request such interrupts until cleared by a microinstruction output of
FUSITT 11012.

IOS 10116 will indicate an IOS 10116 Interrupt to indicate that an inter~processor message from IOS
10116 to JP 10114 is pending. IOS 10116 will continue to assert an IOS 10116 Interrupt Request. which is
stored in a register, until cleared by a microinstruction control output of FUSITT11012. IOS 10116 Intenupts
are recognized during State M0 of the first microinstruction of an SOP.

The next major class of CS 10110 events are Interrupts due to the requirement by microinstruction
sequences to be serviced in order to complete execution. These Interrupts must be serviced before a
microinstruction sequence may be completed. Microinstruction Service Interrupts include Illegal SOP
Events, Microinstructions Not Present in FUSITT 11012 Events, an attempted parse of a hung INSTB 20262,
underflow of an FU 10120 Stack, an NC 10226 Cache Miss, or an EU 10122 Stack Overflow. Each of these _,

92

Petitioner Apple Inc. — Exhibit 1024, p. 4137

Petitioner Apple Inc. - Exhibit 1024, p. 4138

10

20

25

30

ea cos? 555 31

events will be described below, in the order named.

An Illegal SOP Event is indicated by FUSDT 11010 to indicate that a current SOP Code is a Long Code,
that is greater than eight bits, while the current dialect (S~Language) expects only Short Operation Codes,
that is eight bit SOPs. An illegal SOP interrupt is not detected for unimplemented SOPs within the proper
code length range. Illegal SOP Events are, in general, not masked. FUSDT 11010 continues to indicate an
illegal SOP Event until a new SOP is loaded into OPCODEREG 20268. Illegal SOP Events are recognized
during the first microinstruction of an SOP, that is during State FM. Should a Handler microlnstruction
sequence for a higher priority event change contents of OPCODEREG 20268, a previous Illegal SOP Event
will be indicated again when the aborted SOP is retried.

Absence of a Microinstruction in FUSl'l'l' 11012 is indicated by FUSITT 11012 asserting a Control Store
Address Invalid (CSADVALID). This FUSl'lT 11012 output indicates that that particular microinstruction
address points outside of FUS|‘l'l' 11012’s address space. Output of FUSITT 11012 in such event is not
determined and parity checking, described below, of microinstruction output is inhibited. The Handler
microinstruction sequence for these Events will load FUSlTl' 11012 address zero with the required
microinstruction from MEM 10112, as previously described, and retum to the original microinstruction
sequence.

An attempted parse of a hung INSTB 20262 is indicated by INSTBWC 24110 when a parse operation is
attempted, INSTB 20262 is empty. and PREF 20260 is not currently requesting S|Ns from MEM 10112. in
general, these Events are not masked. if a higher priority Event is serviced. these Events are indicated again
when the aborted microinstniction is retried if the original conditions still apply.

An FU 10120 Stack Underflow Event is requested when a currem microinstruction references a
Previous Stack Frame which is not in an accelerated stack, that is, the Current Stack Pointer equals Bottom
Stack Pointer. FU 10120 Underflow Events are, in general, not masked and are requested again on a retry if
the microinstruction is aborted and this event has not been serviced.

An NC 1026 Miss Interrupt occurs on a MEM 10112 read or write operation when a load or read of NC
1022615 attempted and thereis no valid NC 10226 block corresponding to that Name wllabla. An NC 10226

, Miss Event does not result in a request for a Name evaluate or resolve. In general, these Events are not
masked and result in a request being issued again if the microinstruction resulting in that Event is retried
and has not been serviced. _ .

An EU 10122 Stack Overflow Event is requested from EU 10122 to indicate that EU 10122 is currently
already servicing at least one level of interrupt an FU 10122 is requesting another. As will be described in a
following description of EU 10122. EU 10122 contains a one level deep stack for handling of interrupts. EU
10122 Stack Overflow Events are enabled during State NW. All previously pending events will have been
serviced before EU 10122 Stack Overflow~Event requests are recognized. These Events will be serviced
immediately upon entry into a following State M0, being the highest priority interrupt event. EU 10122
Stack Overflow Events may, in general, not be masked and once recognized are the next honored event.

finally, the third major class of CS 10110 lntenupt Events are Asychronous Events. Asynchronous
Events must, in general, be serviced before exiting State M0 of a microinstruction after they are recognized.
Asychronous Events include Fatal Memory Error Events, AC Power Failure Events, Egg Timer Overflow
Events, and EU 10122 Stack Underfiow Events. CS 10110 Egg Timer is a part of TIMERS 20296 and will be
discussed as part of TlMERS 20296. These events will be described below, in the order referred to.

Fatal MEM 10112 Error Events are requested by MEM 10112 by assertion of control signal output
PMODI, previously described, when last data read from MEM 10112 contains a noncorrectable error. Fatal
MEM 10112 Error Events are recognized on first State MO after occurrence. Fatal MEM 10112 Error Events
are stored in an EVENT 20284 Event Register and are cleared upon entry into its service microlnstruction
sequence. in general, Fatal MEM 10112 Error Events may not be masked.

AC Power Failure Events are indicated by DP 10118 by assertion of output signal ACFAAIL when DP
10118 detects a failure of power to CS 10110. Recognition of AC Power Failure Events is disabled upon
entry to AC Power Failure Event Handler microinstruction sequence. No further AC Power Failure Events
will be recognized until DP 10118 relnitiates JP 10114 operation.

As will be described further below, FUC'i'L 20214’s Egg ‘Turner is a part of TIMERS 20296. Egg Timer
Overflow Events are indicated by TlMERS 20296 whenever TIMERS 20296's Egg Timer indicates overflow
of Egg Timer Counter. Egg Timer Overflow Events may be masked as described in a following description.

Finally, EU 10122 Stack Underflow Events are signaled by EU 10122 when directed to read a word from
EU 10122 Stack Mechanism and there is no accelerated stack frame present. EU 1012 will continue to
assert this Event Interrupt until acknowledged by JP 10114 by initiation of a Handler microinstruction
sequence.

The above descriptions of CS 10110 events have stated that recognition of certain of those Events may
be masked, that is inhibited to allow recognition of other Events having higher priority. Certain of these
masking operations were briefly described in the above descriptions and will be described in further. detail
next below. In general, recognition of Events may be masked in five ways, four of which are properly
designated as masks. These four masks are generated by microinstruction control from FUSl'l'l' 11012 and
include Asychronous Masks for, in general, Asychronous Events. Monitor Masks are utilized for those CS
10110 operations being performed on Monitor Stack (MOS) 10370, as previously described with reference
to CS 10110 Stack Mechanisms. Trace Mask is utilized with reference to Trace Trap Events. lndivisible Mask

93

Petitioner Apple Inc. — Exhibit 1024, p. 4138

Petitioner Apple Inc. - Exhibit 1024, p. 4139

I5

20

30

EP 0 067 556 Bil

is generated or provided by FUSl'l'|' 11012 as an integral or indivisible part of certain microinstructions and
allow recognition of certain selected events during certain single microinstructions. Certain other Events,
for example Logical Read and Write Traps and UID Read and Write Traps, are recognized or masked by flag
bits in logical descriptors associated with those operations. finally, certain microinstructions result in
FUSl'iT 11012 providing microinstruction control outputs enabling or inhibiting recognition of certain
events, but differ from lndivislble Masks in not being associated with single particular microinstructions.

Refening to Fig. 247, the relative priority level and applicable masks of certain CS 10110 Events are
depicted therein in three vertical columns lnforrnation regarding priority and masking of particular Events
is shown in horizontal entries, each comprising an entry in each of these three vertical columns. Left hand
column. titled Priority Level, states relative priority of each Event entry. Second column, titled EVENT,
specifies which Event is referred to in that table entry. A particular Event will yield priority to all higher
priority Events and will take presidence over all lower priority Events. Fig. 247's third column, titled Masked
By, specifies for each entry which masks may be used to mask the corresponding Event. A indicates use of
Asychronous Masks,-M use of Monitor Mask, T use of Trace Trap Mask, and I represents that lndivisible
Mask may be used. DES indicates that an Event is enabled or masked by flag bits of logical descriptors,
while MCWD indicates that a particular Event may be masked by microinstruction control signal outputs
provided by HJ$lTl' 11012. NONE indicates that a particular Event may, in general, not be masked.

The final major class of CS 10110 event was described above as Machine Check Events. In general, if
any of these Events are detected by logic gating in EVENT 20284, EVENT 20284 will provide a Check.
Machine signal to DP 10118. DP 10118 will then stop operation of JP 10114 and Machine Check Event
Handler microinstruction sequences will be initiated. Among these Machine Check Events are wherein FU

,10120 is ettemting to store back an EU 1012 result to MEM 10112 and EU 10122 signals a parity error in EU
10122's Control Store. These events are stored in EVENT 20284 Event Registers and recogized when FU

10120 enters State AB. EU 1012 will have previously ceased operation until a corrective microinstruction
sequence may be initiated. The same Event will occur if FU 10120 attempts to use an EU 10122 arithmetic
operation result or test operation result having a parity error in EU 10122's Control Store. Should MOS
10870 overflow or underflow, this event will be detected, FU 10120 operations stopped, and corrective
microinstruction sequences initiated. MOS 10370 overflow or underflow occurs whenever a previous MOS
10370 Stack Frame is referenced, whenever MOS 10370 Stack Pointer equals MOS 10370 Bottom Stack
Pointer, or the difference between MOS 10370 Currem and Bottom Stack Poimers is greater than sixteen.
Underflows result in a transferof operation to MIS 10368, while overflows are handled by DP 10118. Finally,
a Machine Check Event will be requested when a parity error is detected in a microinstruction currently
being provided by FUSl'iT 11012 during State M0 of that micrcinaruction.

Having described general operation of EVENT 20284, the structure and operation of EVENT 20284 will
be described briefly next below.

Referring to Fig. 248, a partial block diagram of EVENT 20284 is shown. EVENT 20284 includes Event
Detector (EDET) 24810, Event Mask and Register Circuitry (EMR) 24812, and Event Handler Selection Logic
(EH5) 24814. EDET 24810 is comprised of random logic gating and, as previously described, receives inputs
representing event conditions from other portions of CS 1 0110's circuitry. EDET 24810 detects occurrences
ofCS 10110 operating conditions indicating that Events have occurred and provides outputs to EMR 24812
indicating what Events are requested. ,

EMR 24812 includes a set of registers, for example SN74S194s, comprising EVENT 20284's Event
Registers. These registers are enabled by mask inputs, described momentarily, to enable masking of those
Events which are latched in EVENT 20284's Event Registers. Certain Events, as previously described, are
not latched and logic gating having mask enable inputs is provided to enable masking of those events
which are not latched. EMR 24812 mask inputs are Asychronous, Monitor, Trace Trap, and lndivisible
Masks. respectively AMSK, MMSK, TMSK, and lSM|(, provided from FUSl'l'|' 11012. Mask inputs derived
from FUSl'iT 11012 microinstruction outputs (mWRD) are provided from microinstruction control outputs
of FUSITT 11012. EMR 24812 provides outputs representing mask and unmask events which have been
requested to EHS 24814. .

EHS 24814 is comprised of logic gating detecting which of EH8 24814's unmasked Event Requests is of
highest priority. EHS 24814 selects the highest priority unmasked Event Request input and provides a
corresponding Event Handler microinstruction address to EVNTGT 24310 through ADRA Bus 24322. These
address outputs of EHS 24814 are five bit addresses selecting the initial microinstruction of the Event
Handler microinstruction sequence of the current highest priority unmasked Event. M previously
described with reference to NASMUX 24312, certain inputs of ENTGT 24310 are hard-wired to provide a full
fifteen bit address output from EVNTGT 24310. EVENT 20284 also provides, from EHS 24814, an Event
Enable Select (EES) output to STTTNAS 20286 to enable EVNTGT 24310 to provide microinstruction
addresses to CSADR Bus 20204 when EVENT 20284 must provide a microinstruction address for handling
of a current Event.

Having described the structure and operation of FUCTL 20214's circuitry providing microinstruction
addresses to FUSl1T 11012, FUSl'iT 11012 will be described next below.

c.c.c. Fetch Unit S-interpreter Table 11012 (Fig. 249)
Referring to fig. 249, a partial block diagram of FUSITT 11012 is shown. Address (ADR) and Data

94

Petitioner Apple Inc. — Exhibit 1024, p. 4139

Petitioner Apple Inc. - Exhibit 1024, p. 4140

I0

20

25

30

40

45

EP 0 067 556 B1 .

(DATA) inputs of Micro-instruction Control Store (mCS) 24910 are connected, respectively, from CSADR
Bus 20204 through Address Driver lADFlDFlV) 24912 and from JPD Bus 10142 through Data Driver (DDRV)
24194. mCS 24910 comprises a memory for storing sequences of microlnstructions currently being utilized
by CS 10110. mCS 24910 is an 8K (8192) word by 80 bit wide memory. That is, mCS 24910 may contain, for
example, up to, 8192 80 bit wide microinstructions. Mlcminstructions to be written into mCS 24910 are
provided, as previously described, to mCS 24910 DATA input from JPD Bus 10142 through DDRV 24914.
Addresses of microinstructions to be written into or read from mCS 24910 are provided to mCS 24910 ADR
input from CSADR Bus 20204 through ADRDRV 24912. ADRDRV 24912 and DDRV 24914 are buffer drivers
comprised, for example, of SN74S240s and SN74S244s. ‘

Also connected from output of ADRDRV 24912 is input of Nonpresem Micro-Instruction Logic iNPm|S)
24916. NPmlS 24916 is comprised of logic gating monitoring read addresses provided to mCS 24910. When
a microinstruction read address present on CSADR Bus 20204 refers to an address location not within mCS
24910's address space, that is of a non-present microinstruction, NPmlS 24916 generates an Event Request
output ‘indicating this occurrence. As previously described FUCTL 20214 will then call, and execute,

‘microinstructions so addressed irom MEM 10112.

As indicated in Fig. 249, mCS 24910 provides three sets of outputs. These outputs are Direct Output
(D0), Direct Decoded Output (DDO), and Buffered Decode Output (BDO). in general, control information
within a particular microstruction word is used on next clock cycle after the address of that particular
microinstmction word has been provided to mCS 24910 ADR input. That is, during a first clock cycle a
microinstrucIion's address is provided to mCS 24910 ADR input. That selected microinstruction appears
upon mCS 24910's DO, DDO, BDO outputs during that clock cycle and are used, after decoding, during next
clock cycle. Outputs DO, DDO, BDO differ in delay time before decoded microinstruction outputs are
available for use.

mCS 24910 DO output provides certain bits of microinstruction words directly to particular
destinations, or users, through Direct Output Buffer (DOB) 24918. These microinstructions bits are latched
and decoded at their destinations as required. D08 24918 may be comprised, for example, of SN‘l4SO4s.

mCS 24910's DDO output provides decoded microinstruction control outputs for functions requiring
the presence of fully decoded control signals at the start of the clock cycle in which those decoded control
signals are utilized. As shown in Fig. 249, mCS 24910's DDO output is connected to input of Direct Decode
Logic (DDL) 24920. DDL 24920 is comprised of logic gating for decoding certain microinstruction word bits
during same clock cycle in which those bits are provided by mCS 24910's DDO. These mlcroinstruction bits
are provided, as described above, during the same clock cycle in which a corresponding address is
provided to mCS 24910's ADR input. During this clock cycle, DDL 24920 decodes mCS 24910's DDO
microinstruction bits to provide fully decoded outputs by end of this clock cycle. Outputs of DDL 24920 are
connected to inputs of Direct Decade Register (DDR) 24922. DDR 24922 is a register comprised, for
example, of SN74S374s. DDL 24920's fully decoded outputs are loaded into DDR 24922 at the end of the
clock in/cle during which, as just described, an address is provided to mCS 24910's ADR input and mCS
24910's corresponding DDO output is decoded by DDL 24920. Fully decoded microinstruction control
outputs corresponding to mCS 24910's DDO outputs are thereby available at start of the second clock cycle.
Microinstruction control outputs of DDR 24922 are thereby available to FU 10120 at start of the second clock
cycle for those FU 10120 operations requiring immediate, that is undelayed, microinstruction control signal
outputs from FUSl'lT 11012.

Finally, mCS 24910's BDO is provided for those FU 10120 operations not requiring microinstruction
control signals immediately at the start of the second clock cycle. As shown in Fig. 249, mCS 24910's BDO is
connected to inputs of Buffered Decode Register (BDR) 24924. Microinstruction word output bits from mCS
24910's BDO are provided to inputs of BDR 24924 during the clock cycle in which a corresponding address
is provided to mCS 24910's ADR input. mCS 24910's BDO outputs are loaded into BDR 24924 at end of this
clock cycle. BDR 24924's outputs are connected to inputs of Buffered Decode Logic (BDL) 24926. BDL 24926
is comprised of logic gating for decoding outputs of BDR 24924. BDL 24926 thereby provides decoded
microinstruction control outputs to FU 10120 at some delayed time after start of the second clock cycle.
Microinstruction control outputs from BDL 24926 are thereby delayed in time from the appearance of
microinstruction control outputs of DDR 24922 but. as BDR 24924 stores microinstruction word bits rather
than decoded microinstruction word bits, BDR 24924 is required to store proportionately fewer bits than
DDR 24922.

Finally, as shown in Fig. 249 outputs of DDR 24922 and BDR 24924, are connected to inputs of
Microinstruction Word Parity Checker (mWPC) 24928. mWPC 24928 is comprised of logic gating for
checking parity of outputs of DDR 24922 and BDR 24924. A failure in parity of either output of DDR 24922
and BDR 24924 indicates a possible error in microinstruction output from mCS 24910. When such an error
is detected by mWPC 24928, mWPC 24928 generates a corresponding Microinstruction Word Parity Error
(mWPE).

d.d. CS 10110 internal Mechanism Control
Associated with SFl's 10362. the stack mechanism area of GRF 10354, are two CS 10110 control

structures primarily associated with operation of CS 10110’s internal mechanisms. A first of these referred
to as Machine Control Block, describes current execution environment of JP 10114 microprograms, that is,

95

Petitioner Apple Inc. — Exhibit 1024, p. 4140

Petitioner Apple Inc. - Exhibit 1024, p. 4141

10

I5

20

25

60

EP one? 556 11

JP 10114 microinstruction sequences. Machine Control Block is comprised of two infon-nation words
residing in MCW1 20290 and MCWO 20292. These Machine Control Words contain all comrol state
infonnation necessary to execute JP 10114's current microprogram. Second control structure is a portion
of RCWS 10358, which as previously described parallels the structure of SR‘s 10362. Each register frame on
MIS 10368 or MOS 10370 has, with exception of Top (Current) Register Frame, associated with it a Return
Control Word (RCW) residing in RCWS 10358. RCWs are created when MIS 10362 or MOS 10370 register
frames are pushed, that is moved onto MIS 10368 or MOS 10370 due to creation of a new Current Register
Frame. A current RCW does not exist in a present embodiment of CS 10110.

RCWS 10358 will be described first next below, followed by Machine Control Block.

a.a.a. Return Control Word Stack 10358 ll-"lg. 251)
Referring to Fig. 251, a diagramic representation of a RCWS 10358 RCW is shown. As previously

described, RCWS 10358 RCWs contain information necessary to reinitiate or continue execution of a
microinstruction sequence if execution of that sequence has been discontinued.

.Execution of a microinstruction sequence may be discontinued due to a requirement to service a CS
10110 Event, as described above, or if that microinstruction sequence has called for execution of another
microinstruction sequence, as in a Branch or Case Operation.

As shown in Fig. 251, each RCW may contain, for example, 32 bits of information. RCW Bits 16 to 31
inclusive are primarily conaarned with storing current microinstruction address of microinstruction
sequences which have been discontinued, as described above. Bits 17 to 31 inclusive contain
microinstruction sequence return address. Return address is. as previously described, address of the
microinstruction cunently being executed of a microinstruction sequence whose execution has been
discontinued. When JP 10114 returns from servicing of an Event or execution of a called microinstruction
sequence, return address is provided from RCWS 10358 to SITTNAS 20286 and through CSADR Bus 20204
to FUSFIT 11012 as next microinstruction address to resume execution of that microinstruction sequence.
Bit 16 of an RCW contains a state bit indicating whether the particular microinstruction referred to by return
address field is the first microinstruction of a particular SOP. That is, Bit 16 ofan RCW stores CS 10110 State
Flvl.

Bits 8 to 15 inclusive of an RCW contain information pertaining to current condition code of JP 10114
and to pending Interrupt Requests. In particular, Bit 8 contains a condition code bit which, as previously
described indicates whether a particular test condition has been met. RCW Bit 8 is thereby, as previously
described, a means by which JP 10114 may pass results of a particular test from one microinstruction
sequence to another Bits 9 to 15 inclusive of an RCW contain information regarding currently pending
Interrupts. These Interrupts have been previously discussed. in general. with reference to EVENT 20284. In
particular, RC\N Bit 9 contains pending state of Illegal EU 10122 Dispatch Interrupt Requests; RCW Bit 10
contains pending state of _Name Trace Trap Request; RCW Bit 11 contains pending state of Store Back
Interrupt Request; RCW Bit 12 contains pending state of Memory Repeat Intenupt Request: RCW Bit 13
contains pending state of SOP Trace Trap Request; RCW Bit 14 contains pending state of Microtrace Trap
Request: and. RCW Bit 15 contains pending state of Micro-Break Point Trap Request. Interrupt Handling
microinstruction sequence which require use of CS 10110 mechanisms containing information regarding
pending Interrupts must, in general, save and store that infom-ration. This save and restore operation is
accomplished by use of Bits 9 to 15 of RCWS 10358's RCWs. Upon entry to an interrupt Handling
microinstruction sequence, these bit flags are set to indicate Interrupts which were outstanding at time of
entry to that microinstruction sequence. Because these bits are used to initiate Interrupt Request upon
returns, pending Interrupts may be cancelled by resetting appropriate bits of Bits 9 to 15 upon return. This
mpability may be used to implement Microinstruction Trace Traps, previously described.

As indicated in Fig. 251, RCW Bits 0 to 7 are not utilized in a present embodiment of CS 10110. RCW bits
0 to 7 are not implemented in a present embodiment of CS 10110 but are reserved for future use.

As previously described, RCWs may be written into or read from RCWS 10358 from JPD Bus 10142.
This allows contents of RCWS 10358 to be initially written as desired, or read from RCWS 10358 to MEM
10112 and subsequently restored as required for swapping of processes in CS 10110.

b.b.b. Machine Control Block (Fig. 252)
As described above, FUCTL 20214's Machine Control Block is comprised of a Machine Control Word 1

(MCW1) and a Machine Control Word 0 (MCWO). MCW1 and MCWO reside, respectively, in Registers MCW1
20290 and MCWO 20292. MCW1 and MCWO described the current execution environment of FUCTL 20214's

cunrent microprogram, that is the microinstruction sequence currently being executed by JP 10114.
Referring to Fig. 252, diagramic representations of MC\N0 and MCW1 are shown. As indicated therein,

MCWO and MCW1 may each contain, for example, 32 bits of information regarding current microprogram
execution environment.

Referring to MCWO, MCWO includes 6 execution environment subfields. Bits 0 to 3 inclusive contain a
Top Of Stack Counter (TOSCNT) subfleld which is a pointer to Current Frame of accelerated Microstack
(MIS) 10368. TOSCNT field is initially set to point to Frame 1 of MS 10368. Bits 4 to 7 inclusive comprise a
Top of Stack -1 Counter (TOS-1 CT) subfield which is a pointer to Previous Frame of accelerated MS 10368,
that is to the MS 10368 frame proceeding that pointed by TOSCNT subfield. TOSl_CNT subfield is initially ,

96

Petitioner Apple Inc. — Exhibit 1024, p. 4141

Petitioner Apple Inc. - Exhibit 1024, p. 4142

10

20

25

EP 0 067 556 B1

set to Frame 0 of MIS 10368. Bits 8 to 11 inclusive comprise a Bottom of Stack Counter (BOSCNT) subfield
which is a pointer to Bottom Frame of accelerated Mls 10368. BOSCNT subfield is initialiy set to point to
Frame 1 of MS 10368. TOSCNT. T05-1CNT, and BOSCNT subfields of MCWO may be read, written,
incremented and decremented under microprogram control as frames are transferred between Mls 10368
and a SS 10336. . T

Bits 17 to 23 inclusive and Bits 24 to 31 inclusive of MCWO comprise, respectively, Page Number
Register (PNREG) and Repeat Counter (REPCTR) subfields which, together, comprise a microinstruction
address pointing to a microinstruction currently being written into FUSFIT 11012. ‘

Bits 12 to 15 inclusive of MCWO comprise an Egg Timer (EGGT) subfield which will be described further
below with respect to TIMERS 20296. Bit 16 of MCWO is not utilized in a present embodiment of CS 10110.
' Referring to MCW1, MCW1 is comprised oftour subfields. Oi the 32 bits comprising MCW1, Bits 0 to 15
inclusive and Bits 24 and 25 are not utilized in a present embodiment of CS 10110. Bit 16 is comprised of 8
Condition Code (CC) subfield indicating results of certain test conditions in JP 10114. As previously
described CC subfield is automatically saved and restored in RCWS 10358 RCWS.

Bits 17 to 19 inclusive of RCW1 comprise an Interrupt Mask (IM) subfield. The three bits of IM subfield
are utilized to indicate a hierarchy of non—interruptible JP 10114 microinstruction control operating states.
That is, a three bit code stored therein indicates relative power to interrupt between three otherwise
noninterruptible JP 10114 operating states. Bits 20 to 23 inclusive comprise an Interrupt Request (lR)
subfieid which indicate Interrupt Request. These lntermpt Requests may include, for example, Egg Timer
Overflow, lmerval Timer Overflow, or Non-Fatal Memory Error, as have been previously described. Finally,
Bits 26 to 31 inclusive comprise a Trace Trap Enable (TTR) subfield indicating which Trace Trap Events,
previously described, are currently enabled. These enables may include Name Trace Enable, Logical
Retrace Enable, Logical Write ‘Trace Enable, SOP Trace Enable, Microinstruction Enable, and
Microinstruction Break point Enable.

MCWO and MCW1 has been described above as if residing in registers having individual, discrete
existence, that is MCW1 20290 and MCWO 20292. In a present embodiment of CS 10110, MCW1 20290 and
MCWO 20292 do not exist as a unified, discrete register structure but are instead comprised of individual
registers having physical existence in other portions of FUC11. 20214. MCW1 20290 and MCWO 20292. and
MCW1 and MCWO. have been so described to more distinctiy represent the structure of information
contained therein. In addition, this approach has been utilized to illustrate the manner by which current JP
10114 execution state may be controlled and monitored through JPD Bus 10142. As indicated in Fig. 202.
MCW1 20290 and MCWO 20292 have outputs connetned to JPD Bus 10142, thus allowing current execution
state of JP 10114 to be read out of FUCTl. 20214. individual bits or subfields of MCWO and MCW1 may, as.
previously described, be written by microinstruction control provided by FUSITT 11012. In a present
physical embodiment of CS 10110, those registers of MCWO 20292 containing subfields TOSCNT. TOS-
1CNT, and BOSCNT reside in RAG 20288. Those portions of MC\N0 20292 containing subfield EGGT reside
in 'l1MERS 20236. MCWO 20292 registers contain PNREG and REPCTR subfields are physically comprised of
REPCTR 20280 and PNREG 20282. In MCW1 20290, CC subfield exists as output of FUCTL 20214 test
circuits. Those MCW1 20290 registers containing IM. lR, and ‘HE subfieids reside within EVENT 20284.

Having described FUCTL 20214 structure and operation as regards RCWS 10358, MCW1 20290 and
MCWO 20292. FUCTL 20214, RAG 20288 will be described next below.

c.c.c. Register Address Generator 20228 (Fig. 253)
Referring to Fig. 253. a partial block diagram of RAG 20228, together with diagramic representation of

GRF 10354, BIAS 20246 and RCWS 10358, is shown. As previously described, JP 10114 register and stack
mechanisms include General Register File (GRF) 10354. BlAS 20246, and RCWS 10358. GRF 10354 is, in a
present embodiment of CS 10110, a 256 word by 92 bit wide array of registers. GRF 10354 is divided
horizontally to provide Global Registers lGRs) 10360 and Stack Registers (SRs) 10362, each of which
contains 128 of GRF 10354’s 256 registers. GRF 10354, that is both GRS 10360 and SRS 10362, is divided
vertically into three vertical sections designated as AONGRF 20232, OFFGRF 20234, and LENGRF 20236.
AONGRF 20232, OFFGRF 20234, and LENGRF 20236 are, respectively, 28 bits, 32 bits, and 32 bits wide. GRs
10360 is utilized as an array of 128 individual registers, each register containing one 92 bit word. Site 10362
is structured and utilized as an array of 16 register frames wherein each frame contains eight registers and
each register contains one 92 bit wide word. Eight of SR 10362's frames are utilized as Microstacic (MB)
10362 and the remaining eight of SR 10362's frames are utilized as Monitor Stack (MOS) 10370. For
addressing purposes only, as described further below, GRs 10360 is regarded as being structured in the
same manner as SRs 10362. that is as 16 frames of eight registers each. .

BIAS 20246. as previously described, is a register array within BIAS 20246. BIAS 20246 contains 128 six
bitwide registers, or words, and operates in parallel with and is addressed in parallel with SR 10362 portion
of GRF 10354. RCWS 10358 is, as previously described, an array of 16 registers, or words, wherein each
register contains one 32 bit RCW. RCWS 10358 is structured and operates in parallel with 5Rs 10362. with
each RCWS 10358 register corresponding to a SR 10362 frame of eight registers. As described below,
RCWS 10358 is addressed in parallel with SR 10362's frames.

Source and Desfinafion Register Addresses (SDAR) for selecting a GRF 10354 register to be,

97

Petitioner Apple Inc. — Exhibit 1024’, p. 4142

Petitioner Apple Inc. - Exhibit 1024, p. 4143

I5

20

40

50

55

El? 0 I067 556 ii

Vesllectively. read from or written to are provided by RAG 20288. As described above BIAS 20246 operates
and is addressed in parallel with SR 10362 portion of GRF 10354, that is parallel with SRs 10362. BIAS 20246
registers are thereby connected to and in parallel with address inputs of SRs 10362 and are addressed
concurrently with GRs 10360. Registers RCWS 10358 also operate and are addressed in parallel with SR3
10362. Addrex inputs of RCWS 10358's registers are thereby connected in parallel with address inputs of
SR 10362's registers. ‘

RAG 20288's address inputs to GRF 10354, and to BIAS 20246 and RCWS 10358, may select registers
therein to be either source registers, that is registers providing data, or destination registers, that is
registers receiving data. RAG 20288's address outputs are designated as output Source and Destination
Register Address (SDADR) of RAG 20288. RAG 20288's SDADR output is connected to address input of
register comprising GRF 10354, BIAS 20246, and RCWS 10358. As described above, SR5 10362 are
structured as 16 frames of 8 registers per frame and RCWS 10358 is structured as a-corresponding 16

_ frames of one register per frame. GRF 10354 and BIAS 20246 are structured and utilized as single registers
but, for addressing purposes, are regarded as being comprised of 16 frames of 8 registers per frame. Each
SDADR output of RAG 20288 is an 8 bit word wherein the most signifint bit indicates whether the
addressed register, either a Source or a Destination Register, reside in GRs 10360 or within SR5 10362, BIAS
20246, and RCWS 10358. The four next most significant bits comprise a frame select field for selecting one
of 16 frames within GRs 10360 or within SRs 10362, BIAS 20246, and RCWS 10358. The three least
significant bits comprise a register select field selecting a particular register within the frame selected by
frame select field. ' .

Within a single system clock cycle, SDADR output of RAG 20288 may select a source register and data
may be read from that source register, or SDADR output may select a destination register and data may be
written into that destination register. As previously described, each JP 10114 microinstruction requires a
minimum of two—systern clock cycles for execution, that is at first clock cycle in State M0 and a second
clock cycle in State M1. During a single microinstruction therefore, a source register may be selected and
data read from that source register, and a destination register selected and data written into that
destination register. Certain operations, however, may require more than one microinstruction for
execution. For example, a read-modify—write operation wherein data is read from a particular register,
modified, and written back into that register may ‘require two or more microinstructions for execution.

Referring first to RAG 20288 structure, RAG 20288 includes MISPR 10356. MISPR 10356 includes Top Of
Stack Counter (TOSCNT) 25310, Top Of Stack-1 Counter (TOS-1CNT) 25312, and Bottom Of Stack Counter
(BOSCNT) 25314. Contents of TOSCNT 25310, TOS-1CNT 25312 and BOSCNT 25314 are respectively,
pointers to Current, Previous, and Bottom frames of SR5 10362, that is, to MIS 10368. As will be described
below, these pointers are also utilized to address MOS 10370. TOSCNT 25310, TOS-1CNT 25312, and
BOSCNT 25314 are each four bit binary counters comprised, for example, of SN74S163s.

Data inputs of TOSCNT 25310 to BOSCNT 25314 are connected from JPD Bus 10142. Control inputs of
TOSCNT 15310 to BOSCNT 25314 areconnacted from microinstruction control outputs of FUSl'l‘l' 11012.
Data outputs afTOSCNT 25310 to BSOCNT 25314 are connected to data inputs of Source Register Address
Multiplexer (SRCADRJ 25316 and to data inputs of Destination Register Address Multiplexer (DSTADR)
25318. Date outputs of TOSCNT 25310 and BOSCNT 25314 are connected to inputs of Stack Event Monitor
Logic (SEM) 25320.

Source and destination frame addresses are selected. as will be described further below, by SRCADR
25316 and DSTADR 25318 respectively. in addition to data inputs from TOSCNT 25310 and BOSCNT 25314,
data inputs of SRCADR 25316 and DSTADR 25318 are connected from microinstruction word CONEXT
subfield output from FUSlTl' 11012. Control inputs of SRCADR 2$16 and DSTADR 25318 are connected

' from, respectively, microinstruction word RS and RD subfield outputs from FUSl'l'l' 11012. Source Frame
Address Field (SRCFADRl output of SRCADR 25316 and Destination Frame Address Field (DSTFADR)
output of DSTADR 25318 are connected to inputs of Source and Destination Register Address Multiplexer
(SDADRMUX) 25322. SRCFADR and DS‘l'FADR comprise frame select fields of RAG 20288, SDADR outputs
for, respectively, source and destination registers.

In addition to SRCFADR and DSTFADR outputs of ADRSRC 25316 and DSTADR 2531 B, SDADRMUX
25322 receives microinstruction word SRC and DST subfield inputs from microinstruction outputs of
FUSl'l'l' 11012. As previously described, SRC subfield is a 3 hit number designating a source register, that
is, a source register within a frame selected by SRCFADR. DST is similarly a 3 bit number selecting a
destination register within a frame indicated by DSTFADR. SRC subfield input to SDADRMUX 25322 is
concatenated with SRCADR 25316 to respectively comprise, as described above, register and frame fields
of a source register SDADR output of SDADRMUX 25322. Similarly, DST subfield is concatenated with
DSTFDADR output of DSTADR 25318 to comprise, respectively, register and frame subfields of a
destination register SDADR output of SDADRMUX 25322. Selection between source and destination

register address inputs to SDADRMUX 25322, to generate a corresponding source of destination register
SDADR output of SDADRMUX 25322 is controlled by microinstruction control inputs (not shown for clarity
of presentation) connected to control inputs of SDADRMUX 25322. RDWS 25324 is a PROM decoding MD
field from microinstruction words during reads from MEM 10112 and provides register select field of
destination register address and selects one of the pointers as frame select field. _

An Event output of SEM 25320 is connected to an input of EVENT 20284, previously described.

98

Petitioner Apple Inc. — Exhibit 1024, p. 4143

Petitioner Apple Inc. - Exhibit 1024, p. 4144

10

I5

55

EP 0 067 556 B1

SRCADR 25316, DSTADR 25318, and SDADRMUX 25322, as will be described further below, operate as
. multiplexers and may be comprised, for example, of SN74S153s.

Having described structure and organization of GRF 10354, BlAS 20246, and RCWS 10358, and
structure of RAG 20288, operation of RAG 20288 to generate Source of Destination Register Address
outputs SDADR will be described next below. Addressing of JP 10114's stack mechanism, comprising SRs
10362 and RCWS 10358, will be described first, followed by addressing of GRs 10360 and BIAS 20246.

SR 10362 portion of G RF 10354, RCWS 10358, and BIAS 20246 are addressed by Current, Previous, and
Bottom Frame Pointers contained, respectively, in TOSCNT 25310, TOS-1CNT 25312, and BOSCNT 25314.
Current. Previous, and Bottom Pointers comprise frame select fields of SDADRMUX 25322. As previously
described, Currant, Previous and Bottom Pointer outputs of TOSCNT 25310 to BOSCNT 25314 are provided
as inputs of SRCADR 25316 and DSTADR 25318. Microinstruction word RS subfield to control input of
SRCADR 25316 selects either Current, Previous or Bottom Pointer input of SFICADR 25316 to comprise
SRCFADR output of SRCADR 25316, that is to be frame select field of source register address. Similarly,
microinstruction word RD subfield to control input of DSTADR 25318 concurrently selects either Current,
Previous, or Bottom Pointer inputs of DSTADR 25318 to comprise DSTADR 25318's concurrently selects
either Current. Previous, or Bottom Pointer inputs of DSTADH 25318 to comprise DSTADR 253185
DSTFADR output, that is frame select field of destination register address. As described above, SRCFADR
and DSTFADR are provided as inputs to SD_ADRMUX 25322. Mlcroinstruction word SRC and DST subfield
inputs to SDADRMUX 25322 concurrently determine, respectively, sourceand destination registers within
source and destination frames specified by SRCFADR and DSTFADR. SDADHMUX 25322 then, operating
under microinstruction control, selects either SRCFADR and SRC to comprise SDADR output to SR 10362 as
a source register address or selects DSTFADR and DST as SDADR output specifylnga destination register
address. By microinstruction control of SRCADR 25316, DSTADR 25318, and SDADRMUX 25322, a CS
10110 microprogram may select a source frame and register within SR 10362 and simultaneously specify a
possible different destination frame and register within SR 10362. All possible combinations of source
frame and register and destination frame and register in GRs 10360, SRs 10362, BIAS 20246, and RCWS
10358 are valid.

Control of SRCADR 25316, DSTADR 25318, and SDADRM UX 25322 in addressing SR 10362 portion of
GRF10354. and RCWS 10358, is controlled, in part, by current CS 10110 state. Pertinent CS 10110 operating
states, previously described, are State MI and State RW. When CS 10110 is in neither State RW nor State
M1. SR 10362 is addressed through SRCADR 25316 and microinstruction word SRC subfield, that is SR
10362 and RCWS 10358 are provided with source register addressa when CS 10110 is in neither RW nor
M1 States. When CS 10110 enters State M1, SR 10362 and RCWS 10358 is addressed through DSTADR
25318 and by microinstruction word DST subfield. That is, SR 10362 and RCWS 10358 are provided with
destination register addresses during State M1. Similarly, SR 10362 and RCWS 10358 are provided with
destination register addresses when CS 10110 is operating in State RW, that is when data is being read
from MEM 10112 and written into SR 10362 or RCWS 10358. In this case, however, low order 3 bits of
destination register address, that is register select field, are provided by RDS 25324, which decodes
microinstruction word subfield MD (Memory Destination). RDS 25324 also provides a control input that
DSTADR 25318 to select one of Current, Previous, or Bottom pointers from MISPR 10356 to comprise frame
select field of destination register address.

As stated above, frame select field of source and destination register addresses are provided from
TOSCNT 25310, TOS-1CNT 26312. and BOSCNT 25314. As described above, the most significant bit of
source and destination register address are forced to logic 1 or logic 0, depending upon whether GR 10360
or SR 10362, BIAS 20246, and RCWS 10358 are being addressed. Contents of TOSCNT 25310 to BOSCNT
25314, that is Current, Previous, and Bottom Pointers, are controlled by microinstruction control outputs of
FUSITT 11012. Current and Previous Pointers change as stacks are "pushed" or ”popped" to and from MlS
10368 as JP 10114 performs, respectively, calls and returns. Similarly, Current, Previous and Bottom
Pointers will be incremented or decremented as MIS 10368 frames are transferred between MIS 10368 and
MEM 10112, as previously described with respect to CS 10110's Stack Mechanisms.

Referring first to Current and Previous Pointer operation, Current and Previous Pointers in TOSCNT
25310 and TOS-1CNT 25312 are initially set, respectively, to point to Frames 1 and 0 of MlS 10368 by being
loaded from JPD Bus 10142. TOSCNT 25310 and TOS-1CNT 25312 are enabled to count when two
conditions are met. First condition is dependent upon current operating state of CS 10110. TOSCNT 25310
and TOS-1CNT 25312 will be enabled to count during last system clock cycle of CS 10110 operating States
M1 or AB. Second condition is dependant upon whether JP 10114 is to execute a call or return. TOSCNT
25310 and TOS-ICNT 25312 may be enabled to count if a current mlcroinstruction indicates JP 10114 is to
execute a call or return, or if CS 10110 is exiting State AB as exit from State AB is an implied call operation.
Both a call and an implied call, that is exit from State AB, will cause TOSCNT 25310 and TOS-1CNT 25312 to
be incremented. A return will cause TOSCNT 25310 and T051 CNT 25312 to be decremented.

Referring to BOSCNT 25314, Bottom Frame Pointer is initially loaded from JPD Bus 10142 to point to
MlS 10368 Frame 1. Again, incrementing or decrementing of BOSCNT 25314 is dependant upon CS 10110
operating state and operation to be perfonned. BOSCNT 25314 is enabled to count upon exiting from State
M1. in addition, DEVCMD subfield of a current microinstruction word must indicate that BOSCNT 25314 is

to be incremented or decrememed. BOSCNT 25314 will be incremented or decremented upon exh from

99

Petitioner Apple Inc. — Exhibit 1024, p. 4144

Petitioner Apple Inc. - Exhibit 1024, p. 4145

I0

15

20

30

50

E1.» 0 as? sea Bil

State M1 as indimted by microinstruction word DEVCMD subfield.
SEM 25320 monitors relative values of Current and Bottom Pointers residing in TOSCNT 25310 and

BOSCNT 25314 and provides outputs to EVENT 20284 for purposes of controlling operation of Ml 10368
and M05 10370. SEM 25320 is comprised of a Read 0nly‘Memory, for example 9354273, receiving Current
and Bottom Pointers as inputs. SEM 25320 detects 3 Events occurring in operation of TOSCNT 25310 and
BOSCNT 25314, and thus in operation of MlS 10368 and MOS 10370. First, SEM Z5320 detects an MIS 10368
Stack Overflow. This Event is indicated ifthe present value of Current Frame Pointer is greater than 8 larger
than the present value of Bottom Frame Pointer. Second, SEM 25320 detects when MIS 10368 contains only
one frame of information. This event is indicated if the value of Current Frame Pointer is equal to the value
of Bottom Frame Pointer. In this case, the previous frame of M15 10368 resides in MEM 10112 and must be
fetched from MEM 10112 before a reference to the previous stack frame may be made. ‘lhird, SEM 25320
detects when MIS 10368 and M08 10370 are full. This Event is indicated if the present value of Current
Frame Pointer is 16 larger than the present value of Bottom Frame Pointer. When this Event occurs, any
further attempt to write a frame onto MIS 10368 or MOS 10370 will result in a MOS 10370 Stack Overflow.
EVENT 20284 responds to these Events indicated by SEM 25320 by initiating execution of an appropriate
Event Handling microinstruction sequence, as previously decribed. it should be noted that MIS 10368 and
M05 10370 are addressed in the same manner. that is through use of Current, Previous and Bottom Frame
Pointers and certain microinstruction word subfields. Primary difference between operation of M18 10368
and MOS 10370 is invthe manner in which stack overflows are handled. in the case of MlS 10368, stack
frames are transferred between MIS 10368 and MEM 10112 so that MIS 10368 is effectively a bottomless
stack. MOS 10370, however, contains a maximum of 8 stack frames. in a present embodiment of CS 10110,
so that no more than eight Events may be pushed onto MOS 10370 at a given time.

GR 10360 is addressed in a manner similar to SR 10362, BIAS 20245, and RCWS 10358, that isthrough
ADRSRC 25316, DSTADR 25318, and SDADRMUX 25322. Again, register select fields of source and
destination register addresses are provided by microinstructlon word SRC and DST subfields. Frame select
field of source and destination register addresses is, however, specified by microinstruction word CONEXT
subfield. in this case, microinstruction word RS and RD subfields specify that frame select fields of source
and destination register addresses are to be provided by CONEXT subfield. Accordingly, ADRSRC 25316
and DSTADR 25318 provide CONEXT subfield as SRCFADR and DSTFADR inputs to SDADRMUX 25322.

Having described structure and operation of RAG 20288, ‘ITMERS 20296 will be described next below.
Referring to Fig. 254, a partial block diagram of TlMERS 20296 is shown. As indicated therein. TIMERS

20296 includes Interval Timer (INTTIVIR) 25410, Egg Timer (EGGTMR) 25412, and Egg Timer Clock Enable
Gate (EGENB) 25416. .

d.d.d. Timers 20296 (H9454)
Referring first to INTTMR 25410, a primary function of INTTMR 25410 is to maintain CS 10110

architectural time as previously described with reference to Fig. 106A and previous descriptions of CS
10110 UID addressing. As described therein, a portion of all UID addresses generated by all CS 10110

. systems is ‘an Object Serial Number (OSN) field. OSN field uniquely defines each object created by
operation of or for use in a particular CS 10110. OSN field of an object's UID is, in a particular CS 10110,
generated by determining time of creation of that object relative to an arbitrary historic starting time
common to all CS 10110 systems. That time is maintained within a MEM 10112 storage space, or address
location, but is measured by operation of INTFMR 25410.

lN'lTMFl 25410 is a 28 hit counter clocked by a 110 Nano-Second Clock (110NSCLK) input and is
enabled to count by a one MHZ Clock Enable input (CLl<1MHZENB). INTTMR 25410 may thereby be clodted
at a one MHZ rate to measure one microsecond intervals. Maximum time interval which may be measured
by INTTMR 25410 is thereby 268.435 seconds.

As indicated in Eng. 254, INTTMR 25410 may be loaded from and read to JPD Bus 10142. In normal
operation, the MEM 10112 location containing architectural time for a particular CS 10110 will be loaded
with current architectural time at time of start up of that particular CS 10110. INTTMR 25410 will
concurrently be loaded with all zeros. Thereafter, INTTMR 25410 will be clocked at one microsecond
intervals. Periodically, when lNTl'MFl 25410 overflows, architectural time stored in MEM 10112 will be
accordingly updated. At any time, therefore, current architectural time may be determined. down to a one
microsecond increment, by reading architectural time from the previous updated architectural time stored
in MEM 10112 and elapsed interval since last update of architectural time from INTTMR 25410. in the event
of a failure of CS 10110, architectural time in MEM 10112 and INTTMR 25410 may be saved in MEM 10112
by reading elapsed intervals since last architectural time update. When normal CS 10110 operation
resumes, INTTMR 25410 may be reloaded with a count reflecting currem architectural time. As indicated in
Fig. 254, INTTMR 25410 is loaded from JPD Bus 10142 when lN'l'l'MR 25410 is enabled by a Load Enable
input (LDE) provided from DP 10118.

Referring to EGGTMR 25412, certain CS 10110 Events, in particular Asychronous Events previously
described with reference to EVENT 20284, are received or acknowledged by EVENT 20284 only at
conclusion of State M1 of first microinstruction of an SOP. As certain CS 10110 microinstructions have long

execution times, these Asynchronous Events may be subjected to an extended latency, or waiting, interval ,

100

Petitioner Apple Inc. — Exhibit 1024, p. 4145

Petitioner Apple Inc. - Exhibit 1024, p. 4146

20

35

EP 0 067 556 B1

before being serviced. EGGTMR 25412, in effect. measures latency time of pending Asychronous Events
and provides an output to EVENT 20284 if a predetennined maximum latencytime is exceeded.

As indicated in Fig. 254. EGGTMR 25412 is clocked by a 110 Neno-Second Clock input (110NSCLK).
EGGTMR 25412 is initially set to zero by load input ll.DZRO) at end of State Ml of the first microinstruction
of each SOP executed by CS 10110, or when specifically instructed so by DEVCMD subfield of a
microinstruction word. EGGTMR 25412 is incremented when enabled by ClockEnable (CLKEN Bl input from
EGGENB 25416. There are two conditions necessary for EGGTMR 25412 to be incremented. First condition
is occurrence of an Asychronous Event, which is indicated by input ASYEVNT to EGGENB 25416 from
EVENT 20284 Second condition is that 16 or more microseconds have elapsed since last increment of
EGGTMR 25412. This interval is measured by an output from fourth bit of lN'|TMR 25410 which, as shown
in Fig. 254, is connected to an input of EGGENB 25416. EGGTMR 25412 is a four bit counter and will thereby
overflow and generate output OVRFLW to EVENT 20284 256 microseconds after beginning of en SOP if an
Asychronous Event has occurred and if at least 16 microseconds have elapsed since start of that SOP
EGGTMR 25412 thereby insures a maximum service latency of 256 microseconds for Asychronous Events.

e.e.e. Fetch Unit 10120 Interface to Execute Unit 10122
finally, as previously described FU 10120‘s interface to EU 10122 is primarily comprised of EUDIS Bus

20206, for providing EUDPs to EU 10122’s EUSITT. and FUINT 20298. Operation of EUSDT 20266 and EUDIS
Bus 20206 has been previously described and will be described further in a following description of EU
10122. FUINT 20298 is primarily concerned with generating Event Requests for conditions signalled from
EU 1012 so that these Events may be serviced. In this regard, FUINT 20298 is primarily comprised of gates
receiving Event Requests from EU 10122 and providing corresponding outputs to EVENT 20284. Another
interface function performed by FUINT 20298 is generation of a "transfer complete" signal generated by FU
10122 and provided to EU 10122 to assertthat a EU 1012 result read from EU 10122 to FU10120 has been
received. This transfer complete signal indicates to EU 10122 that EU 10122's result register, described in _a
following description of EU 10122, is available for further use by EU 10122. This transfer complete signal is
generated by an output of HJSITT 11012 as part of microinstruction sequences for transferring data from
EU 10122 to FU10120 or MEM 10112. '

Having described structure and operation of FU 10120, including DESP 20210, MEMINT 20212. and
FUCTL 20214, the structure and operation of EU 10122 will be described next below.

C. Execute Unit 1012 (Figs. 203, 255-268)
As previously described. EU 10122 is an arithmetic processor capable of executing integer. packed and

unpacked decimal, and single and double precision floating point arithmetic operations. A primary function
of EU 10122 is to relieve FU 10120 of certain arithmetic operations, thus enhancing efficiency of (:5 10110.

Transfer of operands from MEM 10112 to EU 10122 is controlled by FU 10120. as is transfer of results of
arithmetic operations from EU 10122 to FU 10120 or MEM 10112. In addition, EU 10122 operations are
initiated by FU 10120 by EU 10122 Dispatch Pointers invited to EU 10122 by EUSDT 20266. EU 10122
Dispatch Pointers may initiate both arithmetic operations required for execution of SlNs and certain EU
10122 operations assisting in handling of CS 10110 events. As previously described, EU 10122 Dispatch
Pointers are translated into sequences of microinstructions for controlling EU 10122 by EU 10122's EUSITT
which is similar in structure and operation to FUSITT 11012. As will be described further below. EU 10122
includes a command queue for receiving and storing sequences of EU 10122 Dispatch Pointers from FU
10120. In addition, EU 1012 includes a general register file, or scratch pad memory, similar to GRF 10354.
EU 10122's general register file is utilized, in part, in EU 10122 Stack Mechanisms similar to FU 10120's_SR's

Referring to Fig. 203. a panial block diagram of EU 10122 is shown. EU 101z2's general structure and
operation will be described first with reference to Fig. 203. Then EU 10122's structure and operation will be
described in further detail with aid of subsequent figures which will be presented as required.

As indicated in Fig. 203, major elements of EU 10122 include Execute Unit Control Logic (EUCL) 20310,
Execute Unit IO Buffer (EUIO) 20312, Multiplier Logic (MULT) 20314, Exponent Logic (EXP) 20316, Multiplier
Control Logic (MULTCNTLl 20318, and Test and Interface Logic iTSTlNTl 20320. EUCL 20310 receives
Execute Unit Dispatch Pointers (EUDP's) from EUSDT 20266 and provides corresponding sequences of
microinstructions to control operation of EU10122.

EUIO 20312 receives operands. or date, from MEM 10112, translates those operands into certain
fonnats most efficiently used by EU 10122. EUlO 20312 receives results of EU 10122's operations and
translates those results into formats to be returned to MEM 10112 or FU 10120, and presents those results
to MEM 10112 and FU 10120.

MULT 20314 and EXP 20316 are arithmetic units for performing arithmetic manipulations of EU 10122
operations. In particular, EXP 20316 performs operations with respect to exponent fields of single and
double precision floating point operations. MULT 20314 performs arithmetic manipulations with respect to
mantissa fields of single and double precision floating point operations, and arithmetic operations with
regard to integer and packed decimal operations. MULTCNTl_. 20318 controls and coordinates operation of

101

Petitioner Apple Inc. — Exhibit 1024, p. 4146

Petitioner Apple Inc. - Exhibit 1024, p. 4147

IEP 0 067 556 I31

MULT 20314 and EXP 20316 and prealignment and normalization of mantissa and exponent fields in
floating point operations. Finally, TSTINT 20320 performs certain test operations with regard to EU 10122's
operations, and is the lmerface between EU 10122 and FU 10120.

a. General Structure of EU 10122
1. Execute Unit IIO 20312

Referring first to EUIO 20312, EUIO 20312 includes Operand Buffer (OPB) 2('.B22, Final Result Output
Multiplexer (FROM) 20324, and Exponent Output Multiplexer (EXOM) 20326. OPB 20322 has first and
second inputs connected. respectively, from MOD Bus 10144 and JPD Bus 10142 OPB 20322 has a first
output connected to a first input of Multiplier Input Multiplexer (MUL‘l1M) 20328 and MULT 20314. A
second output of OPB 20322 is connected to first inputs of inputs Selector A (lNSELA) 2030 and Exponent
Execute Unit General Register File input Multiplexer (EXRM) 20332 in EXP 20316.

FROM 20324 has an output connected to JPD Bus 10142. A first input of FROM 20324 is connected from
output of Multiplier Execute in General Register file Input Multiplexer (MULTRM)<20334 and MULT 20314.
A second input 01 FROM 20324 is connected from output of Final Result Register (RFRl 20336 of MULT_
20314. EXOM 20326 has an output connected to JPD Bus 10142. EXOM 20326 is a first input connected from
output of Scale Register lSCALER) 20338 of EXP 20316. EXOM 20326 has second and third inputs
connected from outputs of, respectively, Next Address Generator (NAG) 20340 and Command Oueue
(COMO) 20342 of EUCL 20310.

2. Execute Unit Control Logic 20310
Referring to EUCL 20310, EUCL 20310 includes NAG 20340, COMO 20342, Execute Unit 5 interpreter

Table (EUSITT) 20344, and Mlcnoinstruction Control Register and Decode Logic (mCRDl 20346. COMO
20342 has an input connected from EUDIS Bus 20206 for receiving SDPs from EUSDT 20266. COMO 20342
has, as described above, a first output connected to a third input of EXOM 20326, and has a second output
connected to an input of NAG 20340. NAG 20340 has. as described above, a first output connected to
second input of EXOM 2(B26. NAG 20340 has a second output connected to a first input of EUSITT 20344.
As previously described, EUSiTl' 20344 corresponds to FUSlTi' 11012 and stores sequences of
micnoinstructions for controlling operation of EU 10122 in response to'EU 10122 Dispatch Pointers from FU
10120. EUSl'i‘l’ 20344 has a second input connected from JPD Bus 10142 and has an output connected to
‘input of mCRD 20346. mCRD 20346 includes a register and logic for receiving and decoding
microinstructions provided by EUSITT 20344. in addition to an input from EU SITT 20344, mCRD 20346 has
first outputs providing decoded microinstruction control signals to all parts of EU 10122. mCRD 20346 also
has a second output connected to a first input of input Selecter B (INSELB) 20348 and EXP 20316.

3. Multiplexer Logic 20314
Referring to MULT 20314. MULT 20314 includes two parallel arithmefic operation paths for performing

addition. subtraction. multiplication. and division operations on padted decimal numbers, integer
numbers. and mantissa portions of single and double precision floating point numbers. MULT 20314 also
includes a related portion of EU 10122's general register file. a memory for storing constants used in
arithmetic operations, and certain input data selection circuits. That portion of EU 10122's GRF residing in
MULT 20314 is comprised of Multiplier Register File lMUL'i'RFl 20350. Output of MULTRF 20350 is
connected to a second input of MULTIM 20328. A first input of MULTRF 20350 is connected from output of
RFR 20336 and a second input of MULTRF 20350 is connected from output of MULTRM 20334. First and
second inputs of MULTRM 20334 are in turn connected, respectively, from output of RFR 20336 and from
output of Container Size Logic (CONSIZE) 20352 of TS‘l'lNT 20320.

MULTIM 20328 selects the data inputs to MULT 20314's arithmetic circuits and has. as previously
described, first and second inputs connected respectively from first output of OPB 20322 and from output
of MULTRF 20350. Output of MULTIM 20328 is connected through Multiplier (MULT) Bus 20354 to input of
Multiplier Ouotient Register (MOR) 20356 and to input of Nibble Shifter (NIBSHF) 20358. Another input to
MOR 20356 and NIBSHF 20358 is provided by Constant Store (CONST) 20360. CONST 20360 is a memory
for storing constant values used n MULT 20314 operations. Output of CONST 20360 is connected to MULT
Bus 20354. MULT 20314's arithmetic circuits may thereby be provided with inputs from OPB 20322,
MULTRF 20350, and CONST 20360.

MULT 20314’: arithmetic circuitry is comprised of two. parallel arithmetic operation paths having. as
common inputs, outputs of MULTIM 20328 and CONST 20360. Common termination of these parallel
arithmetic operation paths is Final Register Shifter (FRS) 20362. Afirst arithmetic operation path is provided
through NIBSHF 20358, whose input is connected from MULT Bus 20354. NIBSHF 20358’: output is
connected to a first input of FRS 20362 and a control input of NRBSHF 20358 is connected from an output of
Multiplier Control Logic lMULTCNT) 20364 and MULTCNTL 20318.

MULT 20314's second arithmetic operation path is provided through MOR 20356. As described above,
MOR 20356's input is connected from MULT Bus 20354. MOR 29356‘s output is connected to first and

102

Petitioner Apple Inc. — Exhibit 1024, p. 4147

Petitioner Apple Inc. - Exhibit 1024, p. 4148

ID

20

25

50

55

El’ 0 067 556 81

second inputs of Times 1 And Times 2 Multiply Shifter lMULTSHFl'12l 20366 and Times 4 And ‘limes 8
Multiply Shifter (MULTSHFT48) 20368. Outputs of MULTSHFl'12 and MULTSHFT8 are connected.
respectively, to first and second inputs of First Multiplier Arithmetic and Logic Unit (MULTALU1) 20370.
MULTALU1 20370's output is connected to input of Multiplier Working Register (MWR) 20372. Output of
MWR 20372 is connected to a first input of Second Multiplier Arithmetic and Logic Unit (MULTALU2) 20374.
A second input of MULTALU2 20374 is connected from output of RFR 20336. Output of MULTALU2 is
connected to a second input of FRS 20362. As described above, first input of FRS 20362 is connected from
output of NIBSHF 20368. Output of FRS 20362 is connected to input of RFR 2036.

As described above, output of RFR 20336 is connected to second input of MULTALU2 20374. to first
input of MULTRF 20350, to first input of MULTRM 20334, and to second input of FROM 20324. Output of
RFR 20336 is also connected to input of Leading Zero Detector (IZD) 20376 of MULTCNTL 20318, and to
inputs of Exception Logic (ECPT) 20378, CONSIZE 20352, and TSTINT 20320.

4. Exponent Logic 20316
Referring to EXP 20316, as previously described EXP 20316 performs certain operations with respect to

exponent fields of single and double precision floating point number in EU 10122 floating point operations.
EXP 20316 includes a second portion of EU 10122's general register file, shown herein as Exponent Register
File (EXPRFl 20380. Although indicated as individual register files, MULTRF 20350 and EXPRF 20380
comprise, as in GRF 10354, a unitary register file structure with common. parallel addressing of
corresponding registers therein.

Output of EXPRF 20380 is connected to a second inpct of INSELA 20330. Afirst input of EXPRF 20380 is
connected from output of EXRM 20332. As previously described, a first input of EXRM 20332 is connected
from second output of OPB 20322 through EXPO Bus 20325. A second input of EXRM 20332 is connected
from output Scale Register (SCALER) 20338. A second input of EXPRF 20380 is connected from output of
Sign Logic (SIGN) 20382. input of SIGN 20382 is connected from second output of SCALER 20338.

INSELA 20330, INSELB 20348, Exponem ALU (D(PALU) 20334 and SCALER 20338 comprise EXP
20316's arithmetic circuitry for manipulating exponent fields of floating point numbers. lNSEt.A 20330 and
INSELB 20348 select, respectiveIy,first and second inputs to EXPALU 20384. As previously described. a first
input of lNSELA 20330 is connected from second output of OPB 20322 through EXPO Bus 20325. Second
input of INSELA 20330 is connected from output of EXPRF 20380. Output of lNSEl.A 20330 is connected to
first input of EXPALU 20384. First input of INSELB 20348 is, aspreviously described, connected from a
second output of mCRD 20346. Second input of INSELB 20348 is connected from output of OPB 20322
through EXPO Bus 20325. Third input of INSELB 20348 is connected from output of SCALER 20338 and
fourth input of INSELB 20348 is connected from output of I10 20376. Output of INSELB 20348 is connected
to second input of EXPALU 20348. Output of EXPALU 20348 is connected to input of SCALER 20338.

As previously described. second output of SCALER 20338 is connected with input of SIGN 20382 and
first output is connected to second input of EXRM 20332 and to third input of INSELB 20348. First output of
SCALER 20338 is also connected to EXPO Bus 20325. to first input of EXOM 20326, and to a second input of
MULTCNT 20364.

5. Multiplier Control 20318
As previously described, MULTCNTL 20313 provides certain control signals and information for

controlling and coordinating operation of EXP 20316 and MULT 20314 in performing arithmetic operations
on floating point numbers. MULTCNTL 20318 includes LZD 20376 and MULTCNT 20364. Input of LZD 20376
is connected from output of RFR 20336 through FR Bus 2(B37. Output of LZD 20376 are connected to a
second input of MULTCNT 20364 and to fourth input of lNSELB 20348. A second input of MULTCNT 20364
is connected from output of SCALER 20338. As previously described, control output of MULTCNT 20364 is
connected to control inputs of NIBSHF 20358.

6. Test and interface Logic 20320
Finally, TSTINT 20320 includes ECPT 20378, CONSIZE 20352, and Testing Condition Logic (TSTCON)

20386. Input of ECPT 20378 and first input of CONSlZE 20352 are connected from output of RFR 20336
through FR Bus 20337. A second input of CONSIZE 20352 is connected from LENGTH Bus 20226. An output
of CONSlZE 20352 is connected, together with other inputs from EU 10122 (not shown for clarity of
presentation) to TSTCON 20386. Output of TSTCON 20386 (not shown for clarity of presentation) are
connected to NAG 20340. TSTCON 20386 and ECPT 20378 have outputs to and inputs from FU 10120's
FUINT 20298.

Having described the overall structure of EU 10122 above, operation of EU 10122 will be described next
below with aid of further diagrams which will be introduced as required. Finally, operation of TSTINT 20320
will be described, including a description of the detailed control signal interface between EU 10122 and FU
10120 through TSTINT 20320 and FUINT 20298. In addition to defining the interface between EU 10122 and
FU 10120, certain features of EU 10122 operation will be described wherein those operations are executed

103

Petitioner Apple Inc. — Exhibit 1024, p. 4148

Petitioner Apple Inc. - Exhibit 1024, p. 4149

I0

15

65

ea 0 057 556 31‘
in cooperation with MEM 10112 and FU 10120. For example, EU 10122’s Stack Mechanisms, comprising in
part portions of MULTRF 20350 and EXPRF 20380, resides panly in MEM 10112 so that operation of EU
10122’s Stack Mechanisms requires cooperative operations by EU 10122, MEM 10112 and FU 10120.

b. Execute Unit 10122 Operation (Fig. 255)"
1. Execute Unit Control Logic 20310 (Fig. 255) ,

Referring to Fig. 255, a more detailed block diagram of EUCL 20310 is shown. As described above.
EUCL 20310 receives EU 10122 Dispatch Pointers through EUDIS Bus 20206 from EUSDT 20266 and FUCTL
20214. EU 10122 Dispatch Pointers select certain EU 10122 microinstruction sequences for executing EU
10122 arithmetic operations as required to execute user's programs, that is SOPs, and to assist in handling
JP 10114 Events. As described above, major elements of EUCL 20310 include COMO 20342, EUSITT 20344,
mCRD 20346, and NAG 20340. ‘

e.a. Command Queue 20342

Inputs of COMO 20342 are connected from EUDIS Bus 20206 to receive and store EU 10122 Dispatch
pointers provided from EUSDT 20266. Each such EU 10122 Dispatch Pointer is comprised of two
information fields. A first information field contains a 10 bit starting address of a corresponding sequence

7 of microinstructions residing in EUSl'lT 20344. Second field of each EU 10122 Dispatch Pointer is a 6 bit
field containing certain control lnforrnation, such as information identifying data format of corresponding
operands to be opemted upon. In this case unit dispatch pointer control field hits specify whether operands
to be operated upon comprise signed or unsigned integer, packed or unpacked decimal, or single or double
precision floating point numbers.

COMO 20342 is comprised of two one word wide by two word deep register files. A first of these
register fields is comprisedof SOP Command Oueue Control Store (COGS) 25510 and SOP Command
Queue Address Store (COASl 25512. Together, COCS 25510 and COAS 25512 comprise a one word wide by
two word deep register file for receiving and storing EU 10122 Dispatch Pointers corresponding to SOPs,
that is Dispatch Pointers for initiating EU 10122 operations directly concerned with executing a user's
program. Address fields of these SOPs are received in COAS 25512, while control fields are received and
stored in COCS 25510. COMO 20342 is thereby capable of receiving and storing up to two sequential EU
10122 Dispatch Pointers corresponding to user program SOPs These SOP derived Dispatch Pointers are
executed in the order received from FU 10120. EU 10122 is thereby capable of receiving and storing one
currently executing SOP Dispatch Pointer and one pending SOP Dispatch Pointer. Further SOP Dispatch
Pointers may be read into COMO 20342 as previous SOPs are executed.

b.b. Command Oueue Event control Store 25514 and Command Oueue Event Address Comrol
Store 25516

Command Queue Event Control Store iCOCEl 25514 and command Oueue Event Address Control
Store (COAE) 25516 are similar in function and operation to, respectively, COCS 25510 ad COAS 25512.
COCE 25514 and COAE 25516 receive and store. however. EU 10122 Dispatch Pointers initiating EU 10122
operations requested by FU 10120 as required to handle JP 10114 Events. Again, COCE 25514 and COAE
25516 comprise a one word wide by two word deep register file. COAE 25516 receives and stores address
fields of Event Dispatch Pointers, while COCE 25514 receives and stores corresponding control fields of
Event Dispatch Pointers. Again, COMO 20342 is capable of receiving and storing up to two sequential Event
Dispatch Pointers at a time.

As indicated in Fig. 255. outputs of COAS 25512 and COAE 25516, that is address fields of EU 10122
Dispatch Pointers are provided asjnputs to Select Case Multiplexer (SCASE) 25518 and Starting Address
Select Multiplexer (SASl 25520 and NAG 20340, which will be described further below. Control field
outputs of OOCS 25510 and COCE 25514 are provided as inputs to OPB 20322, described further below.

cc. Execute Unit S-Interpreter Table 20344
Referring to EUSITI’ 20344, as described above EUSITT 20344 is a memory for storing sequences of

microinstructions for controlling operation of EU 10122 in response to EU 10122 Dispatch Pointers received
from FU 10120. These microinstruction sequences may, in general, direct operation of EU 1012210 execute
arithmetic operations in response to SOPs of users programs, or aid direct execution of EU 10122
operations required to service JP 10114 Events. EUSl'TT 20344 may be, for example, a 60 bit wide by l,280
word long memory structured as pages of 128 words per page. A portion of EUSl'TT 20344’s pages may be
contained in Read Only Memory, for example for storing sequence of microlnstructions for handling JP
10114 Events. Remaining portions of EUSITT 20344 may be constructed of Random Access Memory, for
example for storing sequences of microinstructions for executing EU 10122 operations in response to user
program SOPs. This structure allows EU 10122 mlcroinstnrction sequences concerned with operation of JP

10114's internal mechanisms, for example handling of JP 10114 Events, to be effectively permanently

104

Petitioner Apple Inc. — Exhibit 1024, p. 4149

Petitioner Apple Inc. - Exhibit 1024, p. 4150

20

25

45

EP 0 057 556 B1

required. *
As previously described, EUSITT 20344's second input is a Data (DATA) input connected from JPD Bus

10142. EUSITT 2034423 data input is utilized to write sequences of microinstructions lnto EUSHT 20344
from MEM 10112 through JPD Bus 10142. EUSlTl' 20344's first input is an address (ADR) input connected
from output of Address Driver (ADRD) 25522 and NAG 20340. Address inputs provided by ADRD 25522
select word locations within EUSlTl' 20344 for writing of microinstructions into EUSITT 20344. or for
reading of microlnstructlons from EUSITT 20344 to mCRD 20346 to control operation of EU 10122.
Generation of these address inputs to EUSITT 20344 by NAG 20340 will be described further below.

d.d. Microcode Controi Decode Register 20346
Output of EUSITT 20344 is connected to input of mCRD 20346. As previously described, mCRD 20346 is

a register for receiving microinstructions from EUSITT 20344, and decoding logic for decoding those
microlnstructions and providing corresponding control signals to EU 10122. As indicated in Fig. 255,
Diagnostic processor Micro-Program Register (DPmR) 25524 is a 60 bit register connected in par-allelwith
output of EUSITT 20344 to input of mCRD 20346. DPmR 25524 may be loaded with 60 bit microinstructions
by DP 10118. Diagnostic microinstructions may thereby be provided directly to input of mCRD 20346 to
provide direct microinstruction by microinstruction control of EU 10122.

Outputs of mCRD 20346 are provided. in general, to all portions of EU 10122 to control detailed
operations of EU 10122. Certain outputs of mCRD 20346 are connected to inputs of Next Address Source
Select Multiplexer (NASS) 25526 and Long Branch Page Address Gate (IBPAG) 25528 and NAG 20340. As
will be described further below. these outputs of mCRD 23046 are used in generating address inputs to
EUSFIT 20344 when particular microinstructions sequences call for Jumps or Long Branches to other
microinstruction sequences. Outputs of mCFlD 20346 are also connected in parallel to inputs of Execution
Unit Micro-instruction Parity Check Logic lEUmlPC) 25530. EUmlPC 25530 checks parity of all
mlcrolnstniction outputs of mCRD 20346 to detected errors in mCRD 20346's outputs.

e.e. Next Address Generator 20340 -

As described above, read and write addresses to EUSITT 20344 provided by NAG 20340 through ADRD
25522. Address inputs to ADRD 25522 are provided from either NASS 25526 or Diagnostic Processor
Address Register (DPAR) 25532. In normal operation. address inputs to EUSITT 20344 are provided from
NASS 25526 as will be described momentarily. DP 10118, however, may load EUSHT 20344 addresses into
DPAR 25532. These addresses may then be read from DPAR 25532 through ADRD 25522 to individually
select address locations within EUSl'lT 20344. DPAR 25532 may be utilized. in particular, to provide

addresses to allow stepping through of EU 10122 mlcroinstruction sequences microinstruction by
microinstruction. _

As described above, NASS 25526 is a multiplexer having inputs from three NAG 20340 address
sources. NASS 25526's first address input is from Jump (JMP) output of mCRD 20346 and LBPAG 25528.
These address inputs are utilized, in part, when a current rnicroinstruction calls for a Jump or Long Branch
to another microinstruction or mlcroinstruction sequence. Second address source is provided from SAS
25520 and, in general, is comprised of starting addresses of microinstniction sequences. SAS 25520 is a
multiplexer having a first input from COAS 25512 and CQAE 25516, that is starting addresses of
microinstruction sequences corresponding to SOPs or for servicing JP 10114 Events. A second SAS 25520
input is provided from Sub—routine Return Address Stack (SUBRA) 25534. In general, and as will be
described further below. SUBRA 25534 operates as} stack mechanism for storing current microinstruction
addresses of interrupted microinstruction sequences. These stored addresses may subsequently be
utilized to resume execution of those interrupted microlnstruction sequences. Third address source to
NASS 25526 is provided from Sequential and Case Address Generator (SCAG) 25536. In general, SCAG
25536 generates address to select sequential microinstructlons within particular microlnstruction
sequences. SCAG 25536 also generates microinstruction address for microinstruction Case operations. As
incficated in Fig. 255, outputs of SCAG 25536 and of SAS 25520 are bused together to comprise a single
NASS 25526 input. Selection between outputs of SCAG 25536 and SAS 25520 are provided by control
inputs (not shown for clarity of presentation) to SCAG 25536 and SAS 25520. Selection between NASS
25526's address inputs is controlled by Next Address Source Select Control Logic (NASSC) 25538, which
provides control inputs to NASS 25526. NASSC 25538 is effectively a multiplexer receiving control inputs
from TSTCON 20386 and TSTINT 20320. As will be described further below. TSTCON 20386 monitors
certain operating conditions or states within EU 10122 and provides corresponding inputs to NASSC 25538.
NASSC 25538 effectively decodes these control inputs from TSTCON 20386 to provide selection control
input to NASS 25526. _ _

Having described overall structure and operation of NAG 20340, operation of NAG 20340 will be

105

Petitioner Apple Inc. — Exhibit 1024, p. 4150

Petitioner Apple Inc. - Exhibit 1024, p. 4151

I0

15

20

I El? 0067 556 B1
described in further detail next below.

Referring first to NASS 25526’s address inputs provided from JMP output of mCRD 20346 and LBPAG
25528, this address source is provided to allow selection of a next microinstruction by a current
microinstruction. JMP output of mCRD 20346 allows a current microinstruction to direct a Jump to another
microinstruction within the same page of EUSiTl' 20344. NASS 25526's input through LBPAG 25528 is
provided from another portion of mCRD 20346's output specifying pages within EUSl'lT 20344. This input
through LBPAG 25528 allows execution of Long Branch operations, that isjurnps from a microinstruction in
one page of EUS|'i'T 20344 to a microinstruction in another page. In addition, NASS 25526's inputfrom JMP
output of mCRD 20346 and through LBPAG 25528 is utilized to execute an Idle, or Standby, routine when
EU 10122 is not currently executing a microinstruction sequence requested by FU 10120. In this case, ldle
routine directs TSTCON 20386 to monitor EU 10122 Dispatch Pointer inputs to EU 10122 from FU 10120. If
no EU 10122 Dispatch Pointers are present in COMO 20342, or none are pending, TSTCON 20386 will direct
NASSC 25538 to provide control inputs to NASS 25526 to select NASS 25526's input from mCRD 20346 and
LBPAG 25528. Idle routine will continually test for EU 10122 Dispatch pointer inputs until such a Dispatch
Pointer is received into COMO 20342. At this time, TSTCON 20386 will detect the pending Dispatch Pointer
and direct NASS 25538 to provide control outputs to NASS 25526 to select NASS 25526's input from, in
general, SAS 25520. TSTCOND 20386 and NASSC 25538 will also direct NASS 25526 to select inputs from
SAS 25520 upon return from a called microinstruction to a previously interrupted microinstructionsequence.

As described above, SAS 25520 receives starting addresses from COMO 20342 and from SUBRA
25534. SAS 25520 will select the output of CQAS 75512 or of COAE 25516 as the input to NASS 25526 when
a new microinstruction sequence is to be initiated to execute a users program SOP or to service a JP 10114
Event. SAS 25520 will select an address output of SUBRA 25534 upon return from a called sub-routine to a
previously executing but intenupted sub-routine. SUBRA 25534, as described above, is effectively a stack
mechanism for storing addresses of currently executing microinstructions when those microinstruction
sequences are interrupted. SUBRA 25534 is an 11 bit wide by 8 word deep register with certain registers
dedicated for use in stacking Event Handling microinstmctlon sequences. Other portions of SUBRA 25534
are utilized for stacking of microinstruction sequences for executing SOPs, that is for stacking
microinstruction sequences wherein a first microinstruction sequence calls for a second microinstruction
sequence. SUBRA 25534 is not operated as a first-in-first out stack, but as a random access memory
wherein address inputs selecting registers and SUBRA 25534 are provided by microinstructlon control
outputs of mCRD 20346. Operations of SUBRA 25534 as a stack mechanism Is thereby controlled by the
microinstruction sequences stored in EUSITT 20344. As indicated in Hg. 25, addresses of current
microinstructions of interrupted. microinstruction sequences are provided to data input of SUBRA 25534

g from output of SCAG 25536, which will be described next below.
As described above, SCAG 25536 generates sequential addresses to select sequential

microinstructions within rnicroinstruction sequences and to generate microinstruction addresses for Case
operations. SCAG 25536 includes Next Address Register INXTR) 25540, Next Address Arithmetic and Logic
Unit (NAALU) 25542. and SCASE 25518. NAALU 25542 is a 12 bit arithmetic and logic unit. A first eleven bit

. input of NAALU 25542 is connected from output of ADRD 25522 and is thereby current address provided to
EUSl1T 20344. A second four bit input to NAALU 25542 is provided from output of SCASE 25518. During
sequential execution ofa microinstruction sequence, output of SCASE 25518 is binary zeros and carry input
of NAALU is forced to 1. Output of NAALU 25542 will thereby be and address one greater than the current
microinstruction address provided to EUSl1T 20344 and will thereby be the address of the next sequential
microinstruction. As indicated in Fig. 255, SCASE 25518 receives an input from output of SCALER 20338.
This input is utilized during Case operations and allows a data sensitive number to be selected as SCASE
25518's output into second input of NAALU 25542. SCASE 25518's input from SCALER 20338 thereby
allows NAG 20340 to perform microinstruction Case operations wherein Case Values are detarrnined by the
contents of SCALER 20338, ' ‘

Next address outputs of NAALU 25542 are loaded into NXTR 25540, which is comprised of tri-state
output registers. Next address outputs of NXTR 25540 are connected, in common with outputs of SAS
25520, to second input at NASS 25526 as described above. During normal execution of microinstruction
sequences, therefore, SCAG 25536 will, through NASS 25526 and ADRD 25522. select sequential
microinstructions from EUSITT 20344. SCAG 25536 may also, as just described, provide next
microinstruction addresses in microinstruction Case operations.

In summary, NAG 20340 is capable of performing all usual microinstruction sequence addressing
operations. For example, NAG 20340 allows selection of next microinstructions by current
microinstructions, either for Jump operations or Long Branch operations, through NASS 25526's input
from mCRD 20346’s JMP or through LBPAG 25528. NAG 20340 may provide microinstruction sequence
starting addresses through COMO 20342 and SAS 25520, or may provide return addresses to interrupted
and stacked microinstruction sequences through SUBRA 25534 and SAS 25520. NAG 20340 may
sequentially address micnoinstructions of a particular microinstruction sequence through operation of
SCAG 25536, or may perform mciroinstruction Case operations through SCAG 25536.

108

Petitioner Apple Inc. — Exhibit 1024, p. 4151

Petitioner Apple Inc. - Exhibit 1024, p. 4152

15

25

40

50

55

EP 0 067 556 B1

2. Operand Buffer 20322
Having described structure and operation of EUCL 20310, structure and operation of OPB 20322 will be

described next below. As previously described, OPB 20322 receives operands, that is data, from MEM
10112 and FU 10120 through MOD Bus 10144 and JPD Bus 10142. OPB 20322 may then perform certain
operand format translations to provide data to MULT 20314 and EXP 20316 in the formats most efficiently
utilized by MULT 20314 and EXP 20316. As previously described, EU 10122 may perform arithmetic
operations on integer, packed and unpacked decimal, and single or double precision floating point
numbers.

In summary, therefore, OPB 20322 is capable of accepting integer, single and double precision floating
point. and packed and unpacked decimal operands from MEM 10112 and FU 10120 and providing
appropriate fields of those operands to MULT 20314 and EXP 20316 in the formats most efficiently utilized
by MULT 20314 and EXP 20316. ln doing so, OPB 20322 extracts exponent and mantissa fields from single
and double precision floating polnt operands to provide exponent and mantissa fields of these operands to,
respectively, EXP 20316 and MULT 20314, and also unpacks, or converts, unpacked decimal operands to
packed decimal operands most efficiently utilized by MULT 20314.

Having described structure and operation of OPB 20322, structure and operation of MULT 20314 will be
described next below. -

3. Multiplier 20314 (Figs. 257, 258)
MULT 20314. as previously described, performs addition, subtraction, multiplication, and division

operations on mantissa fields of single and double precision floating point operands. integer operands. and
decimal operands. As described above with reference to OPB 20322, OPB 20322 converts unpacked decimal
operands to packed decimal operands to be operated upon by MULT 20314. MULT 20314 is thereby
effectively pable of performing all arithmetic operations on unpacked decimal operands.

a.a. Multiplier 20314 Data Paths and Memory (Fig. 257)
Referring to Fig. 257, a more detailed block diagram of MULT 20314’s data paths and memory is

shown. As previously described, major elements of MULT 20314 include memory elements comprised of
MULTRF 20350 and CONST 20360. operand input and result output multiplexing logic including MULTIM
20328 and MULTRM 20334. and arithmetic operation logic. MULT 20314’s operand input and result output
multiplexing logic and memory elements will be described first, followed by description of MULT 20314’s
arithmetic operation logic. -

As previously described, input data, including operands, is provided to MULT 20314’s arithmetic
operation logic through MUL'TlN Bus 20354. MUL'l1N Bus 20354 may be provided with data from three
sources. A first source is CONST 20350 which is a 512 word by 32 bit wide Read Only Memory. CONST
20360 is utilized to store constants used in arithmetic operations. In particular, CONST 20360 stores zone
fields for unpacked decimal. that is Ascr character, operands. As previously described, unpacked decimal
operands are received by OPB 20322 and converted to packed decimal operands for more efficient
utilization by MULT 20314. As such. final result outputs generated by MULT 20314 from such operands are
in packed decimal format. As will be described below, MULT 20314 may be utilized to convert these packed
decimal results into unpacked decimal results by insertion of zone fields. As indicated in Fig. 257, address
inputs are provided to CONST 20360 from EXPO Bus 20325 and from output of mCRD 20346. Selection
between these address inputs is provided through CONST Address Multiplexer (CONSTAM) 2910. CONST
20360 addresses will, in general, be provided from EUCL 20310 but alternately may be provided from EXPO
Bus 20325 for special operations. -

Operand data is provided to MULTIN Bus 20354 through MULTIM 20328, which is a dual input, 64 bit
multiplexer. A first input of MUL'l1M 20328 is provided from OPQ Bus 20323 and is comprised of operand
information provided from OPB 20322. OPO Bus 20323 is a 66 bit wide bus and operand data appearing
thereon may be comprised of 32 bit integer operands; 32 bit packed decimal operands, either provided
directly from OPB 20322 or as a result of OPB 20322's conversion of an unpacked decimal to a packed
decimal operand; 24 bit single precision operand mantissa fields; or 56 bit double precision floating point
operand mantissa fields. As previously described, certain OP0 Bus 20323 may be zero or sign extension
filled, depending upon the particular operand.

Second input of MULTIM 20328 is provided from MULTRF 20350. MULTRF 20350 is a 16 word by 64 bit
wide random access memory. As indicated in Figs. 203 and 257, MULTRF 20350 is connected between
output of RFR 20336, through FR Bus 20337, and to input of MULT 20314’s arithmetic operation logic
through MULTIM 20328 and MULTIN Bus 20354. MULTRF 20350 may therefore be utilized as a scratch pad
memory for storing intermediate results of arithmetic operations, including reiterative arithmetic
operations. In addition. a portion of MULTRF 20350 is utilized, as in GRF 10354, as an EU 10122 Stack
Mechanism similar to MIS 10368 and M05 10370 in FU 10120. Operation of EU 10122 Stack Mechanism will
be described in a following descripion of EU 10122's interfaces to MEM 10112 and FU 10120. Address
Inputs (ADR) of MULTRF 20350 are provided from Multiplier Register File Address Multiplexer
lMULTRFAM) 25712.

107

Petitioner Apple Inc. — Exhibit 1024, p. 4152

Petitioner Apple Inc. - Exhibit 1024, p. 4153

10

30

40

EP 0 067 556 B1

MULTRFAM 25712 is a dual four bit multiplexer comprised, for example, of SN74S258s. In addition to
address inputs to MULTRF 20350, MULTRFAM 25712 provides address inputs to EXPRF 20380. As
previously described, MULTRF 20350 and EXPRF 20380 together comprise an EU 10122 general register file
similar to GRF 10354 and FU 10120. As such, MULTRF 20350 and EXPRF 20380 are addressed in parallel to
read and writeparallel entries from and to MULTRF 20350 and EXPRF 20380. Address inputs to MULTRFAM
25712 are provided, first, from outputs of mCRD 20346, thus providing microinstruction control of
addressing of MULTRF 20350 and EXPRF 20380. Second address input to MULTRFAM 25712 is provided
from output of Multiplier Register File Address Counter (MULTRFACl 25714.

MULTRFAC 25714 is a four hit counter and is used to generate sequential addresses to MULTRF 20350
and EXPRF 20380. Initial addresses are loaded into MULTRFAC 25714 from Multiplier Register File Address
Counter Multiplexer (MULTRFACM) 25716. MULTRFACM 2916 is a dual four bit multiplexer. Inputs to
MULTRFACM 25716 are provided. first, from outputs of mCRD 20346. This input allows microinstruction
selection of an initial address to be loaded into MULTRFAC 25714 to be subsequently used and generating
sequential MULTRF 20350 and EXPRF 20380 addresses. Second address input to MULTRFACM 25716 is
provided from OPO Bus 20323 MULTRFACM 25716's input from OPQ Bus 20323 allows a single address. or
a starting address of a sequence of addresses, to be selected through JPD Bus 10142 or MOD Bus 10144, for
example from MEM 10112 or FU 10120.

Intermediate and final result outputs of MULT 20314 arithmetic logic are provided to data inputs of
MULTRF 20350 directly from FR Bus 20337 and from MULTRM 20334. Inputs to MULTRM 20334. in turn. are
provided from FR Bus 20337 and from output of CONSIZE 20352 and TSTINT N320.

FR Bus 20337 is a 64 bit bus connected from 64 bit output of RFR 20336 and carries final and
intermediate results of MULT 20314 arithmetic operations As will become apparent in a following
description of MULT 20314 arithmetic operation logic, RFR 20336 output, and thus FR Bus 20337, are 64 bits
wide. Sixty-four bits are provided to insure retention of all significant data bits of certain MULT 20314
arithmetic operation lntennediate results. in particular operations involving double precision floating point
64 bit mantissa fields. In addition, as will be described momentarily and has been previously stated, MULT
20314 may convert a final result in packed decimal format into a final result in unpacked decimal format. In
this operation, a single 32 bit, or one word, packed decimal result is converted into a 64 bit, or two word.
unpacked decimal format by insertion of zone fields.

As described above, two parallel data paths are provided to transfer irriorrnatlon from FR Bus 20337
into MULTRF 20350. Hrst path is directly from FR Bus 20337 and second path is through Unpacked Decimal
Multiplexer (UPDM) 25718 of MULTRM 20334. Direct path is utilized for thirty-two bits of information
comprising bits 0 to 23 and bits 56 to 63 of FR Bus 20337. Data path through UPDM 25718 may comprise
either bits 24 to 55 of FR Bus 20337, which are connected into a first input of UPDM 25718, or bits 40
through 55 which are connected to a second input of UPDM 25718. Single precisionfloating point numbers
are 32 bit numbers plus two or more guard bits and are thus written into MULTRF 20350through bits Oto 23
of the direct path into MULTRF 20350 and through first input (bits 24 to 55) of UPDM 25718. Double
precision floating point numbers are 5 bits wide. plus guard bits, and thus utilize the direct path into
MULTRF 20350 and the path through first input of UPDM 25718. Bits 56 to 63 of direct path are utilized for
guard bits of double precision floating point numbers. Both integer and packed decimal numbers utilize
bits 24 through 55 of FR Bus 20337, and are thus written into lVlULTRF 20350 through first input of UPDM
25718. As previously described, bits 0 to 23 of these operands are filied by sign extension.

a.a.a. Container Size Check

As stated above, MULTRM 20334 has an Input from CONSIZE 2035?. As will be described below with
referent» to TSTINT 20320, CONSIZE 20352 performs a "container size" check upon each store back of
results from EU 10122 to MEM 10112. CONSIZE 20352 compares the number of significant bits in a result to
be stored back to the logical descriptor describing the MEM 10112 address space that result is to be written
into. Where reiterative write operations to MEM 10112 are required totransfer a result into MEM 10112, that
is a string transfer. container size information may read from CONSIZE 20352 through Container Size Driver
(CONSIZED) 25720 and MULTRM 20334 and written into MULTRF 20350. This allows EU 10122, using
container size information stored in MULTRM 20350, to perform continuous container size checking during
a string transfer of result from EU 10122 to MEM 10112. in addition, as will be described momentarily,
container size information may be read from CONSIZE 20352 to JPD Bus 10144.

b.b.b. Final Result Output Multiplexer 20324 .
Referring finally to FROM 20324, as previously described FROM 20324 is utilized to transfer. in general,

results of EU 10122 arithmetic operations onto JPD Bus 10142 for transfer to MEM 10112 or FU 10120. As
indicated in Fig. 29, FROM 20324 is comprised of 24 bit Final Result Bus Driver (FRBD) 25722 and Result
Bus Driver (RBR) 25724. Input of FRBD 25722 is connected from PR Bus 20337 and allows data appearing
thereon to be transferred onto JPD Bus 10142. in particular. FRBD 25722 is utilized to transfer 24 bit
mantissa fields of single precision floating point results onto JPD Bus 10142 in parallel with a

_correspondin_g exponent_field from EXP 20316. RBR 25724 input is connected from RSLT Bus 20388 to allow

108

Petitioner Apple Inc. — Exhibit 1024, p. 4153

Petitioner Apple Inc. - Exhibit 1024, p. 4154

25

30

- - EP 0 067 556 B1

output of UPDM 25718 to be transferred onto JPD Bus 10142. RBR 25724, RSLT Bus 20388, and UPDM
25718 are used, in general, to transfer final results of EU 10122 operations from output of MULT 20314 onto
JPD Bus 10142. Final results transferred by this data path include integer, packed and unpacked decimal
results, and mantissa fields of double precision floating poim results. Both unpacked decimal numbers and
mantissa fields of double precision floating point numbers are comprised of two 32 bit words and are thus
transferred onto JPD Bus 10142 in two sequential transfer operations.

Having described structure and operation of MULT 20314’s memory elements and input and output
circuitrv. MULT 20314's arithmetic operation logic will be described next below.

4. Test and interface Logic 20320 (Figs. 260-268)
As previously described, TS‘i1NT 20320 includes CONSIZE 20352. ECPT 20328. TSTCOND 20384, and

lNTl-'tPT 20388. CONSIZE 20352. as previously described, performs “container size" check operations when
results of EU 10122 operations are to be written into MEM 101 12. That is, CONSIE 20352 compares size or
number of significant bits, of an EU 10122 result to the capacity, or container size. of the MEM 10112
location that EU 10122 result is to be written into. As indicated, in Fig. 203, CONSIZE 20352 receives a first
input. that is the results of EU 10122 operations, from FR Bus 20337. A second input of CONSIZE 2035? is
connected to LENGTH Bus 20226 to receive length field of logical descriptors identifying MEM 10112
address space into which those EU 10122 results are to be written. CONSIZE 20352 includes logic circuitry,
for example a combination of Read Only Memory and Field Programmable Logic Arrays. for examining EU
10122 operation results appearing on AFR Bus 20337 and determining the number of bits of data in those
results. CONSIZE 20352 compares EU 10122 result size to logical descriptor length field and, in particular, if
result size exceeds logical descriptor length, provides an alarm output to ECPT 20328. described below.

TSTCOND 20384, previously described and which will be described further below, is an interface circuit
between FU 10120 and EU 10122. TSTCOND 20384 allows FU 10120 to specify and examine results of
certain test operations performed by EU 10122 with respect to EU 10122 operations.

ECPT 20328 monitors certain EU 10122 operations and provides outputs indicating when certain
"exceptions" have occurred. These exceptions include attempted divisions by zero, floating point exponent
underflow or overflow, and integer container size fault.

INTRPT 20388 is again an interface between EU 10122 and FU 10120 allowing FU 10120 to interrupt EU
10122 operations. INTRPT 20388 allows FU 10120 to direct EU 10122 to execute certain operations to aid in
handling of certain FU 10120 events previously described.

Operation of CONSIZE 20352, ECPT 20328, TSTCOND 20384, INTRPT 20388, and other features of EU
10122's interface with EU 10120 will be described further below in the following description of operation of
that interface and of operation of _certain EU 1012 internal mechanisms, such as FU 10120 StackMechanisms.

a.a. FU 10120/EU 10122 Interface

As previously described, EU 10122 and FU 10120 are asychronous processors, each operating under its
own microcode control. EU 1012 and FU 10120 operate simultaneously and independently of each other
but are coupled, and their operations coordinated. by interface signals described below. Should EU 1012
not be able to respond immediately to a request from FU 10120, FU 10120 will idle until EU 10122 becomes
available; conversely, should EU 10122 not receive, or have present, operands or a request for operations
from FU 10120, EU 10122 will remain in idle state until operands and requests for operations are receivedfrom FU 10120.

In normal operation, EU 10122 manipulates operands under control of FU 10120, which in turn is under
control of SOPs of a user's program. When FU 10120 requires arithmetic or logical manipulation of an
operand, FU 10120 dispatches a command, that is an Execute Unit Dispatch.Pointer (EUDP) to EU 10122. As
previously described, an EUDP is basically an initial address into EUSHT 20344. An EUDP identifies starting
location of a EU 10122 microinstnrction sequence performing the required operation upon operands.
Operands are fetched from MEM 10112 under FU 10120 control, as previously described, and are
transferred into OPB 20322. Those operands are then called from OPB 20322 by EU 10122 and transferred
into MULT 20314 and EXP 20316 as previously described. After the required operation is completed, FU
10120 is notified that a result is ready. At this point, FU 10120 may check certain test conditions, for
example through TSTCOND 20384, such as whether an integer or decimal carry bit is set or whether a
mantissa sign bit is set or reset. This test operation is utilized by FU 10120 for conditional branching and.
synchronization of EU 10120 and EU 10122 operations. Exception checking. by ECPT 20328, is also
performed at this time. Exception checking determines, for example, whether division by zero was
attempted or if a container size fault has occurred.-in general, FU 10120 is not informed of exception errors
until FU 10120 requests exception checking. After results are transferred into FU 10120 or MEM 10112 by
EU 1012, EU 10122 goes to idle operation until a next operation is requested by FU 10120.

Having briefly described overall interface operation between FU 10120 and EU 10122, Operafion Ofthat
interface, referred to as handshaking, will be described in greater detail next below. In general.

handshaking operation between EU 10122 and FU 10120 during normal operation may be regardedas
following into six operations. These operations may include, for example, loading of COMO 20342, loading
of OPB 20322, storeback or transfer of results from EU 10122 to FU 10120 or MEM 10112, check of test

109

Petitioner Apple Inc. — Exhibit 1024, p. 4154

Petitioner Apple Inc. - Exhibit 1024, p. 4155

15

20

30

60

El?’ 0 067 556 B1

conditions. exception checking, and EU 10122 idle operation. Handshaking between FU 10120 and EU
10122 will be described below for each of these classes of operation, in the order just referred to.

a.a.a. Loading of Command Queue 20342 (Fig. 260)
Referring to Fig. 260, a schematic representation of EU 10122‘s interface with FU 10120 for purposes of

loading COMO 20342 as shown. During normal SOP directed J_P 10114 operation, 8 bit operation (OP) codes
are parsed from the instruction stream, as previously described. and concatenated with dialect inforrnatlon
to address EUSDT 20266 also as previously described. EUSDT 20266 provides corresponding addresses,
that is EUDPs. to EUSl‘l'l' 20344.

Dialect infonnation specifies the S-Language currently being executed and. consequently, the group of
microinstruction sequences available in EUSITT 20344 for that S-Language. As previously described, FU
10120 may specify four 5-Language dialects with up to 256 EU 10122 microinstruction sequences per
dialect, or 8 dialects with up to 128 microinstruction sequences per dialect.

EUDPs provided by EUSDT 20266 are comprised of a 9 bit address field, a 2 bit operand infomtation
field, and a 1 bit flag field, as previously described. Address field is starting address of a microinstruction
sequence in EUSlTl' 20344 and EU 10122 will perform the operation directed by that microinstruction'
sequence. EUSl‘l'l' 20344 requires 11 bits of address field and the 9 bit address field of EUDPs are mapped
into an 11 bit address field by left justification and zero filling.

FU 10120 may also dispatch, or select, any EU 10122 microlnstruction controlled operation from JPD
Bus 10142. Such EUDPs are provided from JPD Bus 10142 to data input of EUSITT 20344 and passed
directly through to mCHD 20346. Before a EUDP may be provided from JPD Bus 10142, however. PU 10120
provides a check operation comparing that EUDP to aplist of legal, or allowed, EUSDT 20344 addresses
stored in MEM 10112. A fault will be indicated if an EUDP provided through JPD Bus 10142 is not a legal
EUSI'l'l' 20344 address. Altemately, FU 10120 may effectively provide an EUDP, or EUSiTl' 20344
addresses. from a literal field in a FU 10120 microinstruction word. Such a FU 10120 microinstruction word
literal field may be effectiveiy utilized as an SOP into EUSDT 20256.

Handshaking between EU 10122 and FU 10120 during load COMO 20342 operations may proceed as
illustrated in Fig. 260. A twelve bit EUDP may be placed on EUDlS Bus 20206 and Control Signal Load
Command Queue (LDCMO) asserted. If COMO 20342 is full, EU 10122 raises control signal Command Hold
(CMDHOLD) which uses FU 10120 to remain in State M0 until there is room in COMO 20342. As,
previously described, COMO 20342 is comprised of two, two word buffers wherein one buffer is utilized for
nonnal SOP operation and the other utilized for control of FU 10120 and EU 10122 internal mechanism
operation.

EUDPs are loaded into COMO 20342 when state timing signals M1CPT and M1 are asserted. if a EUDP
being transferred into COMO 20342 concerns a double precision floating point operation. control signal Set
Double Precision (SETDPl is asserted. SETDP is utilized to control OPB 20322, and because single precision
and precision floating point operations otherwise utilize the same SOP and thus would otherwise refer to
same EUSFIT 20344 microlnstruction sequence.

At this point. a EUDP has been loaded into COMO 20342 and will be decoded to control FU 10120
operation by EUCL 2(B10 as previously described. Each particular EUDP will be cleared by that EUDPs
EUSl'lT 20344 microinstruction sequence after the requested microinstruction sequence has been
executed.

b.b.b. Loading of Operand Buffer 20320 (fig. 2611
Referring to Fig. 261, a diagramic representation of the interface and handshaking between EU 10122,

FU 10120 and MEM 10112for loading OPB 20322 is shown. Control signal Clear Queue Full (CLOF) from EU
10122 must be asserted by EU 1012 before FU 10120 initiates a request to MEM 10112 for an operand to be
transferred to EU 10122. CLOF clears and "EU 10122's OPB 20322 Full" condition in FU 10120. CLOF
indicates.thereby. that there is room in OPB 20322 to receive operands. lf FU 10120 is in a "EU 10122's OPB
20322 Full" condition and further operand is required to be transferred to EU 10122, FU 10120 will remain in
State M1 untfl CLOF is asserted. .

At the beginning of execution of a particular SOP, FU 10120 may transfer two operands to OPB 20322
without"EU 10122's OPB 20322 Full" condition occurring. This is because EU 10122 is idle atthe beginning
of an SOP execution and generally immediately unloads a first operand from OPB 2032 before a second
operand arrives. ‘

' Control signal Job Processor Operand (JPOP) provided from FU 10120 must be non-asserted for
operands to be transferred from MEM 10112 to OPB 20322 through MOD Bus 10144. This is the normal
condition of JPOP. lf JPOP is asserted, OPB 20322 is loaded with data from JPD Bus 10142. Data is strobed
into OPB 20322 from JPD Bus 10142 by control signals M1CPT and JPOP. Operands read from MEM 10112,
however, are transferred into OPB 20322 through MOD Bus 10144 when MEM 10112 asserts DAVEB to
indicate that valid data from MEM 10112 is available on MOD Bus 10144. DAVEB is also utilized to strobe
data on MOD Bus 10144 into OPB 20322. If control signal ZFILL from MEM 10112 is asserted at this point,
ZFILL is interpreted during integer operand operations to indicate that those operands are unsigned and

110

Petitioner Apple Inc. — Exhibit 1024, p. 4155

Petitioner Apple Inc. - Exhibit 1024, p. 4156

I0

20

25

30

35

60

EP 0 067 556 B1

should be left zero filled, rather than sign extended. if data is being provided from JPD Bus 10142 rather
than from MEM 10112, that is if JPDP is asserted, bit 11 of current EUDP may be utilized to perform the
same function as ZFILL during loading of OPB 20322 from MOD Bus 10144.

Loatfing of OPB 20322 is controlled, in part, by bits 9 and 10 of EUDPs provided from FU 10120 through
EUDIS Bus 20206. Bit 9 indicates length of a first operand while bit 10 indicates length of a second operand.
Operand length, together with operand type specified in address portion of a EUDP, determines how a
particular operand is unloaded from OPB 20322 and transferred imo MULT 20314 and EXP 20316.

At this point, both COMO 20342 and OPB 20322 have been loaded with, respectively, EUDPs and
operands. it should be noted that operands are generally not transferred into OPB 2032 before a
corresponding EUDP is loaded into COMO 20342. Operands and EUDPs may, however, be simultaneously ‘
transferred into EU 10122. if other operands are required for a particular operation, those operands are
loaded into OPB 20322 as described above.

c.c.c. Storeback (Fig. 262)
Referring to Fig. 252, a diagramic representation of a storeback. or transfer, of results to MEM 10112

from EU 10122 and handshaking performed therein is shown. When a final result of a EU 10122 operation is
available, EU 10122 asserts control signal Data Ready (DRDY). FU 10120 thereupon responds with comrol
signal Transfer to JPD Bus 10142 (XJPD), which gates EU 10122's result onto JPD Bus 10142. In normal
operation, that is execution of SOPs, FU 10120 causes EU 10122's result to be stored back into a destination
in MEM 10112, as selected by a physical descriptor provided from R) 10120. Alternately, a result may be
transferred into FU 10120, 32 bits, or one word. at a time.

FU 10120 may, as described above and described further below, check EU 1012 test conditions during
storeback of results. FU 10120 generates control signal Transfer Complete (XFRCI once the storeback
operation is completed. XFRC also indicates to EU 10122 that EU 10122’s results and test conditions have
been accepted by FU 10120, so that EU 10122 need no longer assert these results and test conditions.

d.d.d. Test Conditions (Fig. 263) . ,
Referring to Fig. 263. a diagrarnic representation of checking of EU10122 test conditions by FU 10120,

and handshaking therein. is shown. AS previously described. test results inditing certain conditions and
operations of EU 10122 are sampled and stored in TSTCOND 2038-4 and may be examined by FU 10120.
When DRDY is asserted by EU 10122. FU 10120 may select. for example, one of 8 EU 10122 conditions to
test. as well as transferring results as described above. EU 10122 conditions which may be tested by FU
10120 are listed and described below. Such conditions. as whether a final result is positive, negative, or
zero, may bechecked in order to facilitate conditional branching of FU 10120 operations as previously
described. FU 10120 specifies a condition to be tested through Test Condition Select signals lTEST(24)l. FU
10120 asserts control signal EU Test Enable (EUTESTEN) to EU 10122 to gate the selected test condition.
That selected test condition then appears as Data Signal Test Condition (TC) from EU 10122 to FU 10120. A
TC of logic 1 may, for example, indicate that the selected condition is false while a TC of logic 0 may
indicate that the selected condition is true. FU 1 0120 indicates that FU 10120 has sensed the requested test
condition, and that the test condition need no longer be asserted by EU 10122. by asserting control signal
XFRC.

e.e.e. Exception Checking (Fig. 264)
Referring to fig. 264, a diagramic representation of exception checking of EU 10122 exceptions by FU

10120, and handshaking therein, is shown. As previously described, any EU 10122 exception conditions
may be checked by FU 10120 as FU 10120 is initiating storeback of EU 10122 results.~Exception checking
may detect, for example, attempted division by zero, floating point exponent underflow or overflow, or a
container size fault. An attempted division by zero or floating point underflow or overflow may be checked
before storebecit, that is without specific request by FU 10120.

As previously described. a container size fault is detected by CONSIZE 20352 by comparing length of
result with size of destination container in MEM 10112. Container size exception checking occurs during
store back of EU 10122 results. that is while FU 10120 is in State 58. Container size is automatically
performed by EU 10122 hardware, that is by CONSIZE 20352, only on results of less than 33 bits length. Size
checking of larger results, that is larger integers and BCD results, is performed by a microcode routine.
using CONSIZE 20352's output, as transfer of such larger results is executed as string transfer. It is
unnecessary to perform container size check for either single or double precision floating point results as
these data types always occupy either 32 or 64 bits. Destination container size is provided to CONSIZE
20352 through LENGTH Bus 20226.

Control signal Length to Memory AON or Random Signals (LMAONRS) is generated by FU 10120 from
Type field of the logical descriptor corresponding to a particular EU 1012 result. LMAONRS indicates that
the results data type is an unsigned integer. LMAONRS determines the manner in which a required
container size of the EU 10122 result is determined. After receivng this infonnation from LMAONRS, EU
10122 determines whether destination container size in MEM 10112 is sufficiently large to contain the EU

‘I11

Petitioner Apple Inc. — Exhibit 1024, p. 4156

Petitioner Apple Inc. - Exhibit 1024, p. 4157

‘_,___,‘_4

10

75

20

25

30

55

EP 0 067 556 31

10122 result. if that destination container size is not sufficiently large, a container size fault is detected by
CONSIZE 20352. or through an EU 10122 microinstruction sequence.

Container size faults, as well as division by zero and exponent underflow and overflow faults, are
signaled to FU 10120 when FU 10120 asserts control signal Check Size (CKSIZE). At this time, EU 10122
asserts control signal Exception (EXCPTl if any of the above faults has occurred. if a fault has occurred, an
Event request to EU 10120 results. When an Event request is honored by FU 10120, FU 10120 may interrupt
EU 10122 and dispatch EU 10122 to a microinstruction routine that transfers those exception conditions
onto JPD Bus 10142. if a container size fault has mused that exception condition, EU 10122 may transfer to
FU 10120 the required container size through JPD Bus 10142.

f.f.f. Idle Routine

finally, when a current EU 10122 operation is completed, EU 10122 goes into an idle loop
microinstruction routine. If necessary, FU 10120 may assert control signal Excute Unit Abofl (EUABOHTl to
force EU 1012 into Idle loop microinstruction routine until EU 10122 is required for further operations.

g.g.g. EU 10122 Stack Mechanism (Figs. 265, 266, 267)
As previously described, EU 10122 may perform either of two classes of operations. First, EU 10122

may perform arithmetic operations in execution of SOPs of user's programs. Second, EU 10122 may
operate as an arithmetic calculator assisting operation of PU 10120's internal mechanisms and operations,
referred to as kernel operations. . _

in kernel operation, EU 10122 acts as an arithmetic calculator for FU 10120 during address generation,
address translation, and other kernel functions. In kernel mode, EU 10122 is executing microinstruction
sequences at request of FU 10120 kernel microinstruction sequences, rather than at request of an SOP. ln
general. these kernel operations are vital to operation of JP 10114. FU 10120 may interrupt EU 10122
operations with regard to SOPs and initiate EU 1012 microinstruction sequences to perform lremel
operations.

When interrupted, EU 10122 saves EU 10122's current operating state in a one level deep stack. EU
1012 may then accept an EUDP from that portion of COMO 20342 utilized to receive and store EUDPs
regarding FU 10120's and EU 10122's internal, or kernel, operations.When requesting kernel operations by
EU 10122, FU 10120 generally transfers operands to OPB 20322 through JPD Bus 10142, and receives EU
10122 final results through JPD Bus 10142. Operands may also be provided to EU 10122 through MOD Bus
10144. After EU 10122 has completed a requested kernel operation, EU 10122 reloads operating state from
its irrtemal stack and continues normal operation from the point normal operation was interrupted.

Should another interrupt from FU 10120 occur while a prior interrupt is being executed, EU 10122
mova current state and data. that is of first interrupt, to MEM 10112. EU 10122 requests FU 10120 store
state and date of first interrupt in MEM 10112 by requesting an ”EU 10122 Stack Overflow’ Event. EU

- 10122's “norrnal" state, that is state and data pertaining to the operation EU 10122 is executing at time of
occurrence of first interrupt, is stored in an EU 10122 internal stack and remains there. EU 1012 then
begins executing second interrupt. When EU 10122 has completed operations for second interrupt, state
from first interrupt is reloaded from MEM 10112 by EU 10122 requesting a "EU 10122 Stack Underflow"
Event to FU 10120. EU 10122 then completes execution of first interrupt and reloads state and resumes
execution of normal operation, that is the operation being executed before the first interrupt.

EU 10122 is therefore capable of handling interrupts from FU ‘[0120 during two circumstances. l-"rrst
interrupt circumstance is comprised of interrupts occurring during normal operation, that is while
executing SOPs of users programs. Second circumstance arises when interrupts occur during kernel
operations, that is during execution of microinstruction sequences for handling i“te|'WDtS- EU 10122
operation will be described next below for each of these circumstances, and in the order referred to.

Referring to Fig. 265, a diagramic representation of EU 10122's stack mechanisms, previously
described, is shown. Those portions of EU 10122's stack mechanisms residing wlthln EU 10122 are
comprised of EU 10122's Current State Registers (EUC$l'-ls) 26510 and EU 10122's lntemal Stack (EUIS)
26512. EUCSR 26510 is comprised of EU 10122's internal registers which contain data and state of current
EU 10122 operation. EUCSR 26510 may be comprised, for example, of mCRD 20346, registers of TSTINT
20320, and the previously described registers within MULT 20314 and EXP 20316.

State and data contained in EUCSR 26510 is that of the operation currently being executed by EU
10122. This current state may, for example, be that of a SOP currently being executed by EU 101 22, or that
of an interrupt, for example a fourth interrupt of a nested sequence of interrupts, requested by FU 10120.

EUIS 26512 is comprised of certain registers of MULTRF 20350 and EXPRF 20380. EUIS 26512 is utilized
to store and save currem state of an SOP operation currently being executed by EU 10122 and which has
been interrupted. State and data of that SOP operation will remain stored in EUlS 26512 regardless of the
number of interrupts which may occur on a nested sequence of interrupts requested by FU 10120. State
and data of the interrupted SOP operation will be returned from EUIS 26512 to EUCSR 26510 when all
interrupts have been completed.

Final portion of EU 10122's stack mechanism is that portion of EU 10122's internal stack (EUES) 26514

112

Petitioner Apple Inc. — Exhibit 1024, p. 4157 I

Petitioner Apple Inc. - Exhibit 1024, p. 4158

20

25

60

EP 0 067 556 B1

residing in MEM 10112. EUES26514 is comprised of certain MEM 10112 address locations used to store
state and data of successive interrupt operations of sequences of nested intermpts. That is, if a sequence of
four interrupts is requested by FU 10120, state and data of fourth interrupt will reside in EUCSR 26510 while
state and data of first, second, and third interrupts have been transferred. in sequence, into EUES 26514. In

’ this respect, and as previously described operation of ‘EU 10122's stack mechanisms is similar to that of, for
example, MIS 10368 and SS 10336 previously described with reference to Fig. 103.

As described above, an interrupt may be requested of EU 10122 by FU 10120 either during EU 10122
normal operation, that is during execution of SOPs by EU 10122, or while EU 10122 is executing a previous
interrupt requested by FU 10120. Operation of EU 10122 and FU 10120 upon occurrence of an interrupt
during EU 10122 normal operation will be described next below.

Referring to Fig. 266, a diagramic representation of handshaking between EU 10122 and FU 10120
during an intermpt of EU 10122 while EU 10122-is operating in normal mode is shown and should be
referred to in conjunction with Fig. 265. For purposes of the following discussions, interrupts of EU 10122
operations by FU 10120 are referred to as nanointerrupts to distinguish from interrupts internal to FU
10120.

FU 10120 interrupts normal operation of EU 10122 by assertion of control signal Nano-Interrupt
(NINTP) during State M0 of PU 10120 operation. NINTP may be masked by EU 10122 during certain critical
EU 10122 operations, such as arithmetic operations. If NINTP is masked by EU 10122, FU 10120 will remain
in State NW until EU 10122 acknowledges the interrupt.

Upon receiving NINTP from FU 10120, EU 101225 transfers state and data of current SOP operation
from EUCSR 26510 to EUIS 26512. EU 10122 then asserts control signal Nano-Interrupt Acknowledge
(MACK) to FU 10120 to acknowledge availability of EU 10122 to accept a nanointerrupt. FU 10120 will then
enter State M1 and place an EUDP on EUDIS Bus 20206. Loading of COMO 20342 then proceeds as
previously described, with EU 10122 loading nanoimerrupt EUDPs into the appropriate registers of COMO
20342. COMO 20342 is loaded as previously described and, if JPOP is asserted, data transferred into‘0PB
20292 from JPD Bus 10142. If JPOP is not asserted, data is taken into OPB 20322 from MOD Bus 10144. EU
10122 then proceeds to execute the required nanointerrupt operation and storing back of results and
checking of test conditions proceeds as previously described for EU mu normal operation. In general,
exception checking is not performed. When EU 10122 has completed execution of the nanointerrupt
operation, EU 10122 transfers state and data of the interrupted SOP operation from EUlS 26512 to EUCSR
26510 and resumes execution of that SOP. At this point, EU 10122 asserts control signal Nano-Interrupt
Trap Enable (NlTE). NITE is received and tested by FU 10120 to indicate end of nanointerrupt processing.

Referring to Fig. 267, a diagramic representation of interfaces between EU 10122, FU 10120, and MEM
10112 during nested, or sequential, EU 10122 interrupts for kernel operations, and handshaking therein, is
shown. During the following discussion, it is assumed that EU 10122 is already processing a nanointemrpt
for a kernel operation submitted to EU 10122 by FU 10120. FU 10120 may then submit a second, third, or
fourth, nanointerrupt to EU 10122 for a further kernel operation. FU 10120 will assert NINTP to request a
nanolmerrupt of EU 10122. EU 10122's normal mode state and data from a previously executing SOP
operation has been stored in, and remains in, EUlS 26512. Current state and data of currently executing
nanoimerrupt operation in EUCSR 26510 will be transferred to EUES 26514 in MEM 10112 to allowinitiation
of pending nanointerrupt. EU 10122 will at this time assert NIACK and control signal Execute Unit‘ Event
(EXEVT). EXEVT to FU 10120 informs FU 10120 that an EU 1012 Event has occurred, specifically, and in
this case, EXEVT requests FU 10120 service of an EU 10122 Stack Overflow. FU 10120 is thereby trapped to
an "EU 10122 Stack Overflow" Event Handler microinstruction sequence. This handler transfers current I
state and data of interrupted nanointerrupt previously executing in EU 10122 into EUES 26514. State and
data of internrpted nanointerrupt is transferred to EUES 26514, one 32 bit word at a time. FU 10120 asserts
control signals XJPD to gate each of these state and data words onto JPD Bus 10142 and controls transfer
of these words into EUES 26514.

Processing of new nanointerrupt proceeds as described above with reference to interrupts occurring
during normal operation. If any subsequent nanointerrupts occur, they are handled in the same manner as
just described; FU 10120 signals a nanointerrupt to FU 10120. current EU 10122 state and data is saved by

. FU 10120 in EUES 26514, and new nanointerrupt is processed. After a nested nanointerrupt, that is a
nanointerrupt of a sequence of nanointernrpts, has been serviced, EU 10122 asserts control signal EU
10122 Trap (ETRAP) to FU 10120 to request a transfer of a previous nanointerrupt’s state and data from
EUES 26514 to EUCSR 26510. Fl} 10120 wi11 retrieve that next previous nanointerrupt state and data from
EUES 26514 through MOD Bus 10144 and will transfer that data and state onto JPD Bus 10142. This state
and data is returned, one 32 bit word at a tlrne, and is strobed into EU 10122 by JPOP from FU 10120.
Processing of that prior nanointerrupt will then resume. The servicing of successively prior nanointerrupts
will continue until all previous nanointerrupts have been serviced. Original state and data of EU 10122.that
is that of SOP operation which was initially interrupted, is then returned to EUCSR 26510 from EUIS 26512
and execution of that SOP resumed. At this time, EU 10122 asserts NITE to indicate end of EU 10122 kernel
operations in regard to nanointerrupts.

Having described structure and operation of EU 10122, FU 10120 and MEM 10112, with respect to
servicing of kernel operation nanointerrupts by EU 10122, loading of EU 10122's EUSlTl' 20344 with
microinstruction sequences will be described next below.

113

Petiti0ner'App1e Inc. — Exhibit 1024, p. 4158

Petitioner Apple Inc. - Exhibit 1024, p. 4159

15

EP 0 067 556 B1

h.h.h.h Loading 01 Execute Unit S-interpreter Table 20344 (Fig. 268)
Referring to Fig. 288, a diagramic representation of interface and handshaking between EU 10122, FU

10120, MEM 10112, and DP 10118 during loading of microinstructlons into EUSlTl’ 20344 is shown. As
previously described, EUSITT 20344 contains all microinsttuctions required for control of EU 10122 in
executing kernel nanointerrupt operations and in executing arithmetic operations in response to SOPs of
users programs. EU$l1T 20344 may store microinstruction sequences for interpreting arithmetic SOPs of
user's programs for, for example, up to 4 different S-Language Dialects. in general, a capacity of storing
microlnstruction sequences for arithmetic operations in up to 4 S-Language Dialects is sufficient for most
requiremems, so that EUSITT 20344 need be loaded with microinstruction sequences only at initialization
of CS 10110 operation. Should microinstruction sequences for arithmetic operations of more than 4 5-
Language Dialects be required. those microinstruction sequences may be loaded into EUSFTT 20344 in the
manner as will be described below.

As previously described. a portion of the mlcroinstructions stored in EUSITT 20344 is contained in
Read Only Memories and is thus permanently stored in EUSITT 20344. Mlcroinstruction sequences
permanently stored in EUSl‘iT 20344 are, in general, those required for execution of kernel operations.
Microinstruction sequences permanently stored in Eusm 20344 include those used to assist in writing
other EU 10122 microinstmction sequences into EUSITT 20344 as required. Certain microinstructlon
sequences are stored in a Random Access Memory, referred to as the Writeable Comrol Store (WCS)
portion of EUSl1'l' 20344, and include these for interpreting arithmetic operation SOP: of various 5-
Language Dialects. .

Writing of microinstruction sequences into EU 10122 is initialized by forcing EU 10122 into an Idle state.
Initialization of EU 10122 is accomplished by FU 10120 asserting EUABORT or by DP 10118 asserting
control signal clear (CLEAR). Either EUABORT or CLEAR will clear a cu rrent operation of EU 10122 and force
EU 10122 into idle state. wherein EU 10122 waits for further EUDPs provided from FU 10120. FU 10120 then

dispatches a EUDP initiating loading of EUSITT 20344to EU 10122 through EUDIS Bus 20206. Load EUSl'iT
20344 EUDP specifies starting address of a two step microinstruction sequence in the PROM portion of
EUSi1T 20344. This two step rnicroinstruction sequence first loads zeros into SCAG 25536, which as
previously described provides read and write addresses to EUSl1'l' 20344. EUSITT 20344 load
microinstmction sequence then reads a microinstruction from EUSlTi' 20344 to mCRD 20346. This
microinstruction specifies conditions for handshalcing operations with FU 10120 so that loading of EUSITT
20344 may begin. At this time, and from this microinstruction word, EU 10122 asserts control signal Di‘-iDY
to FU 10120 to indicate that EU 10122 is ready to accept EUDPs from FU 10120 for directing loading of
EUSITT 20344. This initial microinstruction also generates a write enable control signal for the WCS portion
of EUSl'lT 20344, inhibits loading of mCFlD 20346 from EUSITT 20344, and inhibits normal loading
operations of NXTR 25540 and SCAG 25536. This first micnoinstnrction also directs NASS 25526 to accept
address inputs from SCAG 25536 and, finally, causes NITE to FU 10120 to be asserted to unmask
nanointerrupts from FU 10120.

FU 10120 then generates a read request to MEM10112, and MEM 10112 transfers a first 32 bitword of a
EU 10122 microinstruction word onto JPD Bus 10142. Each such 32 bit word from MEM 10112 comprises
one half ofa 64 bit microinstruction word of EU 10122. When FU 10120 receives DRDY from EU 10122, FU

10120 generates control signal Load Writeable Control Store (LDWCSl. LDWCS in turn transfers a 32 bit
word on JPD Bus 10142 into a first address of the WCS portion ofEUSl1T 20344. A next 32 bit halfword of a
EU 10122 microinstruction word is than read from MEM 10112 through JPD Bus 10142 and transferred into
the second half of that first address within the WCS portion of EUSI1'i' 20344. The address in SCAG 25536 is
then incremented to select a next address within EUSlTl' 20344 and the process just described repeated
automatically, including generation of DRDY and LDWCS. until loading of EUSlTl' 20344 is completed.

After loading of EUSiTi‘ 20344 is completed, the loading process is terminated when FU 10120 asserts
NINTP. or DP 10118 asserts Control Signal Load Complete (LOADCRl-. Either NINTP or LOADCR releases
control of operation of NAG 20340 to allow EU 10122 to resume normal operation.

The above descriptions have described structure and operation of EU 10122, including: execution of
various arithmetic operations utilizing various operand formats; operation of EU 10122, FU 10120, and
MEM 10112 with regard to handshaking; loading of EUDPs and operands: storeback of results; chedring of
test conditions and exceptions; EU 10122 Stack Mechanisms during normal and kernel operations; and
loading of EU 10122 microinstruction sequences into EUSlTl' 20344. IOS 10116 and DP 10118 will be
described next below, in that order. '

0. U0 System 10116 (Figs. 204, 206, 269)
Referring to Fig. 204, a partial block diagram of I05 10116 is shown. As previously described, IOS 10116

operates as an interface between CS 10110 and the external world, for example, ED 10124. A primary
function of I05 10116 Is the transfer of data between (25 10110, that is MEM 10112, and the external world.

In addition to performing transfers of data, IOS 10116 controls access between various data sources and
sinks of ED 10124 and MEM 10112. As previously described, i0S 10116 directly addresses MEM 10112’s
physical address space to write data into or read data from MEM 10112. As such, IOS 10116 also performs
address translation, a mapping operation required in transferring data between MEM 10112’s physical

114

Petitioner Apple Inc. — Exhibit 1024, p. 4159

Petitioner Apple Inc. - Exhibit 1024, p. 4160

ID

20

25

30

35

40

EP 0067556 B1

address space and address spaces of data sources and sinks in ED 10124.
As shown in Fig. 204.108 10116 includes Data Mover (DMOVR) 20410. Input/0U’¢PU* (_3°"t|’°' “$09550?

(IOCP) 20412, and one or more data channel devices. IOS 10116‘s data channel deV|CES may Include
ECUPSE° Burst Multiplexer Channel (EBMC) 20414, NOVA Data Channel (NDC) 20416. and other data
channel devices as required for a particular configuration of a CS 10110 system. IOCP 20412 controls and
directs transfer of data between MEM 10112 and ED 10124, and controls and directs mapping of addresses
between ED 10124 and MEM 10112's physical address space. IOCP 20412 may be comprised, for example,
of a general purpose computer, such as an ECLIPSEQ M600 computer available from Data General
Corporation of Westboro, Massachusetts. . _

EBMC 20414 and NDC 20416 comprise data channels through which data is transferred between ED
10124 and IOS 10116. EBMC 20414 and NDC 20416 perform actual transfers of data to and from ED 101.24.
under control of IOCP 20412, and perform mapping of ED 10124 addresses to MEM 10112 physical
addresses, also under control of IOCP 20412. EBMC 20414 and NDC 20416 may respectively be comprised,
for example. of an ECLIPSEP Burst Multiplexer Data Channel and a NOVA° Data Channel, also available
from Data General Corporation of Westboro, Massachusetts. _

DMOVR 20410 comprises IOS 10116's interface to MEM 10112. DMOVR 20410 is the path through
which data and addresses are transferred between EBMC 20414 and NDC 20416 and MEM 10112.
Additionally, DMOVR 20410 controls access between EBMC 20414, NDC 20416, and other IOS 10116 data
channels. and MEM 10112. _

ED 10124, as indicated in Fig. 204, may be comprised of one or more data sinks and sources. ED 10124
data sinks and sources may include commercially available disc drive units, line printers, communication
lengths, tape units. and other computer systems, incIud.ng other CS 10110 systems. In general, ED 10124
may include ali such data devices as are generally interfaced with a computer system.

a. IIO System 10116 Structure (Fig. 204)
Referring first to the overall structure of I05 10116, data inputloutput of ECLIPSE“ Burst Multiplexer

Channel Adapter and Control Circuitry (BMCAC) 20418 of EBMC 20414 is connected to bi-directional BMC
Address and Data (BMCAD) Bus 20420. BMCAD Bus 20420 in turn is connected to data and address inputs
and outputs of data sinks and sources of ED 10124.

Similarly, data and address inputs and outputs of NOVA° Data Channel Adapter Control Circuits
(NDCAC) 20422 in NDC 20416 is connected to bi—directional NOVA’ Data Channel Address and Data
(NDCAD) Bus 20424. NDCAD Bus 20424 in turn is connected to address and data inputs and outputs of data
sources and sinks of ED 10124. BMCAD Bus 20420 and NDCAD Bus 20424 are paths for transfer of data and
addresses between data sinks and sources of ED 10124 and IOS 10116‘s data channels and may be
expanded as required-.to include other IOS 10116 data channel devices and other data sink and source

devices of ED 10124.

Within EBMC 20414, bi-directional data input and output of BMCAC 20418 is connected to bl-dlrectionai
input and output of BMC Data Buffer (BMCDB) 20426. Data inputs and data outputs of BMCDB 20426 are
connected to, respectively, Data Mover Output Data (DMOD) Bus 20428 and Data Mover Input Data (DMID)
Bus 20430. Address outputs of BMCAC 20418 are connected to address inputs of Burst Multiplexer Channel
Address Translation Map (BMCATM) 20432 and address outputs of BMCATM 20432 are connected onto
DMID Bus 20430. A bi-directional control input and output of BMCATM 20432 is connected from bi-
directional IO Control Processor Control (IOCPC) Bus 20434.

Referring to NDC 20416, as indicated in Fig. 204 data inputs and outputs of NDCAC 20422 are
connected, respectively, from DMOD Bus 20428 and to DMID Bus 20430. Address outputs of NDCAC 20422
are connected to address inputs of NOVA° Data Channel Address Translation Map (NDCATM) 20436.
Address outputs of NDCATM 20436 are, in turn, connected onto DMID Bus 20430. A bi-directional control
input and output of NDCATM 20436 is connected from IOCPC Bus 20434.

Referring to IOCP 20412. a bi-directional control input and output of IOCP 20412 is connected from
IOCPC Bus 20434. Address and data output of IOCP 20412 is connected to NDCAD Bus 20424. An address
output of IOCP Address Translation Map (lOCPATM) 20438 within IOCP 20412 is connected onto DMID Bus
20430. Data inputs and outputs of IOCP 20412 are connected, respectively. to DMOD Bus 20428 and DMID
Bus 20430. A bi~directional control input and output of IOCP 20412 is connected to a bi-directional control
input and output of DMOVR 20410.

Referring finally to DMOVR 20410, DMOVR 20410 includes Input Data Buffer (IDB) 20440, Output Data
Buffer (ODB) 20442, and Priority Resolution and Control (PRC) 20444. A data and address input of IDB 20440
is connected from DMID Bus 20430. A data and address output of IDB 20440 is connected to IOM Bus 10130
to MEM 10112. A data output of ODB 20442 is connected from MID Bus 10129 from MEM 10112, and a data
output of ODB 20442 is connected to DMOD Bus 20428. Bi-directional control inputs and outputs of IDB
20440 and ODB 20442 are connected from bi-directional control inputs and outputs of PRC 20444. A bi-
directional control input and output of PRC 20444 is connected from a bi-directional control input and
output of IOCP 20412 as described above. Another bi-directional control input and output of PRC 20444 is
connected to and from IOMC Bus 10131 and thus from a control input and output of MEM 10112. Having
described overall structure of I05 10116, operation of IOS 10116 will be described next below.

115'

Petitioner Apple Inc. — Exhibit 1024, p. 4160

Petitioner Apple Inc. - Exhibit 1024, p. 4161

10

20

30

35

IEIP 0067 556 Bil ‘

b. IIO System 10116 Operation (Fig. 269)
1. Data Channel Devices

Referring first to EBMC 20414, BMCAC 20418 receives data and addresses from ED 10124 through
BMCAD Bus 20420. BMCAC 20418 transfers data into BMCDB 20426, where that data is held for subsequent
transmission to MEM 10112 through DMOVR 20410, as will be described below. BMCAC 20418 transfers
addresses received from ED 10124 to BMCATM 20432. BMCATM 20432 contains address mapping
Information correlating ED 10124 addresses with MEM 10112 physical addresses. BMCATM 20432 thereby
provides MEM 10112 physical addresses corresponding to ED 10124 addresses provided through BMCAC
20418.

When, as will be described further below, EBMC 20414 is granted access to MEM 10112 to write data
into MEM 10112, data stored in BMCDB 20426 and corresponding addresses from BMCATM 20432 are
transferred onto DMID Bus 20430 to DMOVR 20410. As will be described below, DMOVR 20410 then writes
that data into those MEM 10112 physical address locations. When data is to be read from MEM 10112 to ED
10124, data is provided by DMOVR 20410 on DMOD Bus 20428 and is transferred into BMCDB 20426.
BMCAC 20418 then reads that data from BMCDB 20426 and transfers that data onto BMCAD Bus 20420 to
ED 10124. During transfers of data from MEM 10112 to ED 10124, MEM 10112 does not provide addresses
to be translated into ED 10124 addresses to accompany that data. Instead, those addresses are generated
and provided 'by BMCAC 20418. ‘

NDC 20416 operates in a manner similar to that of EBMC 20414 except that data inputs and outputs of
NDCAC 20422 are not buffered through a BMCDB 20426. ~

As previously described, MEM 10112 has capacity to perform block transfers, that is sequential
transfers of four 32 bit words at a time. In general, such transfers are performed through EBMC 20414 and
are buffered through BMCDB 20426. That is. BMCDB 20426 allows single 32 bit words to be received from
ED 10124 by EBMC 20414 and stored therein until a four word block has been received. That block may then
be transferred to MEM 10112. Similarly, a block may be received from MEM 10112, stored in BMCDB 20426.
and transfened one word at a time to ED 10124. In contrast, NDC 20416 may generally be utilized for single
word transfers. .

_ As Indicated in Fig. 204, EBMC 20414, NDC 20416, and each data channel device of I08 10116 each
contain an individual address translation map, for-example BMCATM 20432 In EBMC 20414 and NDCATM
20436 in NDC 20416. Address translation maps stored therein are effectively constructed and controlled by
IOCP 20412 for each data channel device. IOS 10116 may thereby provide an individual and separate
address translation map for each IOS 10116 data channel device. This allows IOS 10116 to insure that no
two data channel devices, nor two groups of data sinks and sources in ED 10124. will mutually interfere by
writing into and destroying data in a common area of MEM 10112 physical address space. Altemately, IOS
10116 may generate address translation maps for two or more data channel devices wherein these maps
share a common, or overlapping, area of MEM 10112‘s physical address space. This allows data stored in
MEM 10112 to be transferred between IOS 10116 data channel devices through MEM 10112, and thusto be
transferred between venous data sink and source devices of ED 10124. For example, a first ED 10124 data
source and a first IOS 10116 data channel may write data to be operated upon into a particular area of MEM
10112 address space. The results of CS 1011 0 operations upon that date may then be written into a
common area shared by that first data device and a second data device and read out of MEM 10112 to a
second ED 10124 date sink by that second data channel device. Individual mapping of I08 10116's data
channel devices thereby provides total flexibility in partitioning or sharing of MEM 10112's address space
through IOS 10116. g

2. IIO Control Processor 20412
As described above, IOCP 20412 is a general purpose computer whose primary function is overall

direction and control or data transfer between MEM 10112 and ED 10124. IOCP 20412 controls mapping of
addresses between IOS 10116'_s data channel devices and MEM 10112 address space. In this regard, IOCP
20412 generates address translation maps for IOS 10116's data channel devices, such EBMC 20414 and
NDC 20416. IOCP 20412 loads these address translation maps into and controls, for example, BMCATM
20432 of EBMC 20414 and NDCATM 20436 and NDC 20416 through IOCPC Bus'20434. IOCP 20412 also
provides certain control functions to DMOVR 20410, as indicated in Fig. 204. In addition to these functions,
IOCP 20412 is also provided with data and addressing inputs and outputs. These data addressing inputs
and outputs may be utilized, for example, to obtain infonnation utilized by IOCP 20412 in generating and
controlling mapping of addresses between IOS 10116's data channel devices and MEM 10112. Also, these
data and address inputs and outputs allow IOCP 20412 to operate. in part. as a data channel device. As
previously described, IOCP 20412 has data and address inputs and outputs connected from and to DMID
Bus 20430 and DMOD Bus 20428. IOCP 20412 thus has access to data being transferred between ED 10124
and MEM 10112. providing l0CP 20412 with direct access to MEM 10112 address space. In addition, IOCP
20412 is provided with control and address outputs to NDCAD Bus 20424, thus allowing IOCP 20412 partial

. control of certain data source and sink devices in ED 10124.

116

Petitioner Apple Inc. — Exhibit 1024, p. 4161

Petitioner Apple Inc. - Exhibit 1024, p. 4162

10-

25

EP 0 067 556 B1

3. Data Mover 20410 (Fig. 269)
a.a. Input Data Buffer 20440 and Output Data Buffer 20442

As described above, DMOVR 20410 comprises an interface between IOS 10116's data channels and
MEM 10112. DMOVR 20410 performs actual transfer of data between IOS 10116's data channel devices and
MEM 10112. and controls access between lOS 10116's data channel devices and MEM 10112. IDB 20440
and ODB 20442 are data and address buffers allowing asynchronous transfer of data between IOS 10116
and MEM 10112. That is. ODB 20442 may accept data from MEM 10112 as that data becomes available and
then hold that data until an l0S 10116 data channel device, for example EBMC 20414, is ready to accept that
data. lDB 20440 accepts data and MEM 10112 physical addresses from IOS 10116's data channel devices.
DE 20440 holds that data and addresses for subsequent transmission to MEM 10112 when MEM 10112 is

ready to accept data and addresses. lDB 20440 may. for example. accept a burst. or sequence, of data from
EBMC 20414 or single data words from NDC 20416 and subsequently provide that data to MEM 10112 in
block. or four word. transfers as previously described. Similarly, ODB 20442 may accept one or more black
transfers or data from ODB 20442 and subsequently provide that data to NDC 20416 as single words, or to
DMID 20430 as a data burst. in addition, as previously described. a block transfer from MEM 10112 may not
appear as four sequential words. In such cases, ODB 20442 accepts the four words of a block transfer as
they appear on MIO Bus 10129 and assembles those words into a block comprising four sequential words
for subsequent transfer to ED 10124.

Transfer of data through IDB 20440 and ODB 20442 is controlled by PRC 20444, which exchanges

gontr;<al1§ii.;nals with IOCP 20412 and has an interface. previously described, to MEM 10112 through IOMCus .

b.b. Priority Resolution and Control 20444 (Fig. 269)
As previously described, PRC 20444 controls access between I05 101 16 data channel devices and MEM

10112. This operation is performed by means of a Ring Grant Acwss Generator (RGAGl within PRC 20444.
Referring to fig. 270, a diagremic representation of PRC 20444's RGAG is shown. In general, PRC

20444's RGAG is comprised of a Ring Grant Code Generator (RGCG) 26910 and one or more data channel
request comparators. In Fig. 269, PRC 20444’s RGAC is shown as including ECUPSEQ Burst Multiplexer
Channel Request Comparator (EBMCRCl26912, NOVA” Data Channel Request Comparator lNDCRC) 26914,
Data Channel Device X Request Comparator (DCDXHC) 26916, and Data Channel Device 2 Request
Comparator lDCDZRC) 26918. PRC 20444's RGAG may include more or fewer request comparators as
required by the number of data channel devices within a particular lOS 10116.

As indicated in Fig. 269, Request Grant Code (RGC) outputs of RGCG 26910 are connected in parallel to
first inputs of EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and DCDZRC 26918. Second inputs of
EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and DCDZRC 26918 are connected from other portions of
PRC 20444 and receive indications that, respectively, EBMC 20414, NDC 20416, DCDX. or DCDZ has

. submitted a request for a read or write access to MEM10112.
Request Grant Outputs (GRANT) of EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and DCDZRC 26918

are in turn connected to other portions of PRC 20444 circuitry to indicate when read or write access to MEM .
10112 has been granted in response to a request by a particular IOS 10116 data charinel device. when
indication of such a grant is provided to those other portions of PRC 20444, PRC 20444 proceeds to generate
appropriate control signals to MEM 10112, through IOMC Bus 10131 aspreviously described, to IDB 20440
and ODB 20442, and to IOCP 20412. PRC 20444’s control signals initiate that read or write request to that
IOS 10116 data channel device. Grant outputs of EBMCRC 212. NDCRC 26914. DCDXRC 26916, and
DCDZRC 26918 are also provided as inputs to RGCG 26910 to indicate, as described further below. when a
particular lOS 10116 has requested and been granted access to MEM 10112.

1% indicated in fig. 269, a diagramic figure above RGCG 26910, RGCG generates a repeated sequence
of unique RGCs. Herein indicated as numeric digits 0 to 15. Each RGC identifies. or defines, a particular
time slot during which a IOS 10116 data channel device may be granted access to MEM 10112. Certain
RGC: are, effectively, assigned to particular IOS 10116 data channel devices. Each‘ such data channel device
may request access to MEM 10112 during its assigned RGC identified access slots. For example, EBMC
20414 is shown as being allowed access to MEM 10112 during those access slots identified by RGCs 0, 2, 4,
6, 8, 10, 12, and 14. NDC 20416 isindicated as being allowed access to MEM 10112 during RGC slots 3, 7,11,
and 15. DCDX is allowed access during slots 1 and 9. and DCDZ is allowed access during RGC slots 5 and
13.

As described above. RGCG generates RGCs 0 to 15 in a repetitive sequence. During occurrence of a
particular RGC, each request comparator of PRC 20444's RGAG examines that RGC to determine whether
its associated data channel device is allowed access during that RGC slot, and whether that associated data
channel device has requested access to MEM 10112. If that associated data channel device is allowed
access during that RGC slot, and has requested access, that data channel device is granted access as
indicated by that request comparator's GRANT output. The request comparators GRANT output is also
provided as an input to RGCG 26910 to indicate to RGCG 26810 that access has been granted during that
RGC slot.

if a particular data channel device has not claimed and has not been granted access to«MEM 10112\

117

A Petitioner Applclnc. — Exhibit 1024, p. 4162

Petitioner Apple Inc. - Exhibit 1024, p. 4163

20

30

ED

8 er’ 0 car 555 B1

during that RGC slot. RGCG 25910 will go directly to next RGC slot. in next RGC slot, PRC 20444's RGAG
again determines whether the particular data channel device allowed access during that slot has submitted
a request. and will grant access if such a request has been made. If not. RGCG 26910 will again proceed
directly to next RGC slot, and so on. in this manner, PRC‘20444's RGAG insures that each data channel
device of IOS 10116 is allowed access to MEM 10112 without undue delay. in addition, PRC 204-44's RGAG

prevents a single, or more than one. data channel device from monopolizing access to MEM 10112. As
described above, each data channel device is allowed access to MEM 10112 at least once during a particular
sequence of RGCs. At the same time, by not pausing within a particular RGC in which no request for access
to MEM 10112 has occuned, PRC 20444‘s RGAG effectively automatically skips over those data channel
devices which have not requested access to MEM 10112. PRC 20444's RGAG thereby effectively provides,
within a given time interval, more frequent access to those data channel devices which are most busy. in
addition, the RGCs assigned to particular I05 10116 data channel devices may be reassigned as required to
adapt a particular (28 10110 to the data input and output requirements of a particular CS 10110
configuration. That is, if EBMC 20414 is shown to require less access to MEM 10112 then NDC 20416,
certain RGCs may be reassigned from EBMC 20414 to NDC 20416. Access to MEM 10112 by IOS 10116's
data channel devices may thereby be optimized as required.

Having described structure and operation of [OS 10116, structure and operation of DP 10118 will be
described next below.

E. Diagnostic Processor 10118 (figs. 101, 205)
Referring to Fig. 101, as previously described, DP 10118 is interconnected with IOS 10116, MEM 10112,

FU 10120, and EU 10122 through DP Bus 10138. DP 10118 is also Interconnected, through DPIO Bus 10136,
with the extemal world and in particular with DU 10134. in addition to performing diagnostic and fault
monitoring and correction operations, DP 10118 operates, in part, to provide control and display functions
allowing an operator to interface with CS 10110. DU 10134 may be comprised, for example. of a CRT and
keyboard unit, or a teletype, and provides operators of CS 10110 with all control and display functions
which are conventionally provided by a hard console, that is a console containing switches and lights. For
example, DU 10134, through DP 10118, allows ‘an operator to exercise control of CS 10110 for such
purposes as system initialization and startup, execution of diagnostic processes, fault monitoring and
identification, and control of execution of programs. As will be described further below, these functions are
accomplished through DP 10118's interfaces with IOS 10116, MEM 10112, FU 10120, and EU 10122.

DP 10118 is a general purpose computer system, for example a NOVA“ 4 computer of Data General
Corporation of Westboro, Massachusetts. Interface of DP 10118 and DU 10134. and mutual operation of DP
10118 and DU 10134, will be readily apparent to one of ordinary skill in the art. DP 10118's interface and
operation. with IDS 10116,, MEM 10112, FU 10120, and EU 10122 will be described further next below.

DP 10118, operating as a general purpose computer programmed specifcially to per-fon'n the functions
described above, has, as will be described below, read and write access to registers of I08 10116, MEM
10112, FU 10120 and EU 10122 through DP Bus 10138. DP 10118 may read data directly from and write data
directly Into t_hose registers. As will be described below, these registers are data and instruction registers
and are integral parts ofCS 10110's circuitry during normal operation of CS 101 10. Access to these registers
thereby allows DP 10118 to directly control or effect operation of CS 10110. In addition. and as also will be
described below, DP 10118 provides, in general. all clock signals to all portions of CS 10110 circuitry and
may control operation of that circuitry through control of these clock signals.

For purposes of DP 10118 functions, CS 10110 may be regarded as subdivided Into groups of
functionally related elements, for example DESP 20210 in FU 10120. DP 10118 obtains access to the
registers of these groups, and control of clocks therein, through scan chain circuits, as will be described
next below. In general, DP 10118 is provided with one or more scan chain circuits for each maiorfunctional
sub-element of CS 10110.

Referring to Fig. 205, a diagramic representation of DP 10118 and a typical DP 10118 scan chain is
shown. As indicated therein, DP 10118 includes a general purpose Central Processor Unit, or computer,
(DPCPU) 27010. A first interface of DPCPU 27010 is with DU 10134 through DPIO Bus 10136. DPCPU 27010
and DU 10134 exchange data and control signals through DPIO Bus 10136 in the manner to direct
operations of DPCPU 27010, and to display the results of those operations through DU 10134.

Associated with_DPCPU 27010 is Clock Generator (CLKG) 27012. ClJ(G 27012 generates, in general, all
clock signals used within CS 10110.

DPCPU 27010 and CLKG 27012 are interfaced with the various scan chain circuits of CS 1011 0 through
DP Bus 10138. As described above, CS 10110 may include one or more scan chains for each major sub-.
element of CS 10110. One such scan chain, for example DESP 20210 Scan Chain (DESPSC) 27014 is
illustrated in Fig. 205.

Interface between DPCPU 27010 and CU(G 27012 and. for example, DESPSC 27014 is provided through
DP Bus 10138. As indicated in Fig. 205, DESPSC 27014 includes Scan Chain Clock Gates (SCCG) 27016 and
one or more Scan Chain Registers (SCRsl 27018 to 27024.

SCCG 27016 receives clock signals from CLKG 27012 and control signals from DPCPU 27010 through
55 DP Bus 10138. SCCG 27016 in turn provides appropriate clock signals to the various registers and circuits

118

Petitioner Apple Inc. — Exhibit 1024, p. 4163

Petitioner Apple Inc. - Exhibit 1024, p. 4164

20

25

40

65

EP 0 067 556 B1‘

of, for example, DESP 20210. Clock control signals provided by DPCPU 27010 to SCCG 27016 control, or
gate, the various clock signals to these registers and circuits of DESP 20210. thereby effectively allowing
DPCPU 2701010 control of DESP 20210.

scns 27018 to 27024 are comprised of various registers within DESP 20210. For example, SCRs 27018
to 27024 may include the output buffer registers of AONGRF 20232, OFFGRF 20234, LENGHF 20236, output
registers of OFFALU 20242 and LENALU 20252, and registers within OFFMUX 20240 and BIAS 20246. Such
registers are indicated in the present description, as previously described, by arrows appended to ends of
those registers, with a first arrow Indicating an input and a second an output. In normal CS 10110
operations, as previously described, SCRs 27018 to 27024 operate as parallel in, parallel out buffer registers
through which data and Instructions are transferred. SCFls 27018 to 27024 are also capable of operating as
shift registers and, as indicated in Fig. 205, are connected together to comprise a single shift register circuit
having an input from DPCPU 27010 and an output to DPCPU 27010. Control inputs to SCRs 27018 to 27024
from DPCPU 27010 control operation of SCRs 27018 to 27024, that is whether these registers shall operate
as parallel in, parallel out registers, or as shift registers of DESPSC 27014’s scan chain. The shift register

‘ scan chain comprising SCFls 27018 to 27024 allows DPCPU 27010 to read the contents of SCRs 27018 to
27024 by shifting the content of these registers into DPCPU 27010. Conversely, DPCPU 27010 may write into
SCRs 27018 to 27024 by shifting information generated by DPCPU 27010 from DPCPU 27010 and through
the shift register scan chain to selected loxztions within SCBs 27018 to 27024.

Scan chain clock generator circuits and scan chain registers of each scan chain circuit within CS 10110
thereby allow DP 10118 to control operation of each major sub-element of CS 10110. For example, to read
information from the scan chain registers therein, and to write information into those scan chain regiaers
as required for diagnostic, monitoring, and control functions

Having described structure and operation of each major element of CS 10110, including MEM 10112,
FU 10120, EU 10122, IOS 10116. and DP 10118, certain operations of. in particular. FU 10120 will be
described further next below. The following descriptions will further disclose operational features of JP
10114, and in particular FU 10120, by describing in greater detail certain operations therein by further
describing microcode control of JP 10114.

F. CS 10110 Micromachlne Structure and Operation (Figs. 270-274)
a. Introduction '

The preceding descriptions have presented the hardware structures and operation of FU 10120 and EU
10122. The following description will describe how devices in FU 10120, and certain EU 1012 devices,
function together as a microprogramrnable computer. henceforth termed the FU micromachine. The FU
mlcromachine performs two tasks: it interprets SlNs, and it responds to certain signals generated by
devices in FU 10120. EU 10122, MEM 10112, and I05 10116. The signals to which the FU micromachine
responds are termed Event signals. In terms of structure and operation, the FU micromachine is
characterized by the following:
--— Registers and ALUs specialized for the handling of logical descriptors.
—- Registers organized as stacks for invocations of microroutines (microinstruction sequences).
— Mechanisms allowing microroutine invocations by means of event signals from hardware.
- Mechanisms which allow an invoked microroutine to return either to the microinstruction following the

one which resulted in the invocation or to the microinstruction which resulted in the invocation.

— Mechanisms which allow the contents of stack registers to be transferred to MEM 10112, thereby
creating a virtual microstack of limitless size.

— Mechanisms which guarantee response to an event signal within a predictable length of time.
— The division ofthe devices comprising the micromachine into two groups: those devices which may be

used by all microcode and those which may be used only by K05 (Kernel Operating System,
previously described) microcode.
These devices and mechanisms allow the FU micromachine to be used in two ways: as a virtual

micromachine and as a monitor micromachine. Both kinds of micromachine use the same devices in FU
10120, but perform different functions and have different logical properties. In the following discussion,
when the FU micromachine is being used as a virtual micromachine. it is said to be in virtual mode, and
when it is being used as a monitor micromachine, it is said to be in monitor mode. Both modes are
introduced here and explained in detail later.

When the FU micromachine is being used in vinual mode, it has the following properties:
It runs on an essentially infinite mlcromachine stack belonging to a Process 610.
It can respond to any number of event signals in the M0 cycle (state) of a single rnicroinstruction.

— A page fault may occur on the invocation of any microroutine or on return from any microroutine.
—— When the PU micromachine is in virtual mode, any microroutine may not run to completion, i.e.,

complete its execution in a predictable length of time, or complete it at all.
—— lt is executing a Process 610.

The last four properties are consequences of the first: Event signals result in invocations, and since the
mlcromachine stack is infinite, there is no limit to the number of invocations. The infinite micromachine

stack is realized by placing micromachine stack frames on Secure Stack 10336 belonging to a lfrocess 610,

119

Petitioner Apple Inc. — Exhibit 1024, p. 4164

Petitioner Apple Inc. - Exhibit 1024, p. 4165

I0

15

20

EP 0 067556 B1

and the virtual micromachine therefore always runs on a micromachine stack belonging to some Process
610. Furthermore, if the invocation of a micnoroutine or a return from a microroutine requires
micromachine frames to be transferred from Secure Stack 10336 to the FU micromachine, a page fault may
result. and Process 610 which is executing the microroutine may be removed from JP 10114, thereby
making the time required to execute the microroutine unpredictable. indeed, if process 610 is stopped or
killed, the execution of the microroutine may never finish. As will be seen in descriptions below, the Virtual
Processor 612 is the means by which the virtual micromachine gains access to a Process 610's
micromachine stack.

When in monitor mode, the PU micromachine has the following properties:
— it has a micromachine stack of fixed size, the stack is always available to the FU micromachine, and it is

not associated with a Process 610.

— It can respond to only a fixed number of events during the M0 cycle of a single microinstruction.
— ln monitor mode, invocation of a microroutine or return from a microroutine will not cause a page

fault. -

-— Microroutines executing on the FU micromachine when the micromachine is in monitor mode are
guaranteed to run to completion unless they themselves perform an action which causes them to give
up JP 10114. ‘

—- Microroutines executing in monitor mode need not be performing functions for a Process 610.
Again, the remaining properties are consequences of the first: because the monitor micromachine's

stack is of fixed size, the number of events to which the monitor micromachine can respond is limited;
furthermore, since the stack is always directly accessible to the micromachine, microroutine invocations
and returns will not cause page faults, and microroutines running in monitor mode will run to completion
unless they themselves perform an action which causes them to give up JP 10114. Finally, the monitor
micromachine's stack is not associated with a Process 610's Secure Stack 10336, and therefore, the monitor
micromachine can both execute functions for Processes 610 and execute functions (which are related to no
Process 610, for example,) the binding and removal of Virtual Processors 612 from JP 10114.

The description which follows first gives an overview of the devices which make up the micromachine,
continues with descriptions of invocations on the micromachine and micromachine programming, and
concludes with detailed discussions of the virtual and monitor modes and an overview of the relationship
between the micromachine and CS 10110 subsystems. The manner in which the micromachine performs
specific operations such as SIN parsing, Name resolution, or address translation may be found in previous
descriptions of CS 10110 components which the micromachine uses to perform the operations.

b. Overview of Device Comprising FU Micromachine (Fig. 270)
Fig. 270 presents an overview of the devices comprising the micromachine. Fig. 270 is based on Fig.

201, but has been simplified to improve the clarity of the discussion. Devices and subdivisions of the
micromachine which appear in Fig. 201 have the numbers given them in that figure. When a device in Fig.
270 appears in two subdivisions, it is shared by those subdivisions.

fig. 270 has four main subdivisions. Three of them are from Fig. 201: FUC‘I'L 20214, which contains the
devices used to select the next microinstruction to be executed by the micromachine, DESP 2021 O, which
contains stack and global registers and ALUs for descriptor processing; and MEMINT 20212. which
contains the devices which translate Names into logical descriptors and logical descriptors into physical
descriptors. The fourth subdivision, EU Interface 27007, represents those portions of EU 10122 which may
be manipulated by FU 10120 microcode.

Fig. 270 further subdivides FUCTL 20214 and MEMINT 20212. FUCTL 20214 has four subdivisions:
— l—Stream Reader 27001, which contains the devices used to obtain SlNs and parse them into SOPs and

Names. -

-- SOP Decoder 27003, which translates SOPs into locations in FU microcode (FUSITF 11012), and in
some cases EU microcode (EUSITT 20344), which contain the microcode that performs the
corresponding $lNs. P

—— Microcode Addressing 27013. which determines the location of the next microinstruction to be
executed in FUSITT 11012.

— Register Addressing 27011, which contains devices which generate addresses for GRF 10354 registers.

MEMINT 20212 also has three subdivisions:
— Name Translation Unit 27015, which contains devices which accelerate the translation of Names into

logical descriptors.
— Memory Reference Unit 27017, which contains devices which accelerate the translation of logical

descriptors into physical descriptors.
— Protection Unit 27019, which contains devices which accelerate primitive access checks on memory

references made with logical descriptors. .

Fig. 270 also simplifies the bus structure of Fig. 202 by combining LENGTH Bus 20226, 0FF$l:T Bus
20228, and AONR Bus 20230 into a single structure, Descriptor Bus (DE) 27021. in addition, internal bus

55 connections have been reduced to those necessary for explaining the logical operation of the

120

Petitioner Apple Inc. — Exhibit 1024, p. 4165

Petitioner Apple Inc. - Exhibit 1024, p. 4166

EP 0 057 556 31
micromachine. The following discussion first describes those devices used by most microcode executing
on Fl) 10120, and then describes devices used to perform special functions, such as Name translation or
protection checking.

1. Devices used by Most Microcode _ _
1'lie subdivisions of the micromachine which contain devices used by most microcode areivlicrocode

Addressing 27013, Register Addressing 27011, DESP 20210, and EU Interface 27007. In addition, most
microcode uses MOD Bus 10144, JPD Bus 10142. and DB Bus 27021. The discussion begins with the buses

in and then describes the other devices in the above order.

as. MOD Bus 10144, JPD Bus 10142. and DB Bus 27021
MOD Bus 10144 is the only path by which data may be obtained from MEM 10112. Data on MOD Bus

15 10144 may have as its destination instruction Stream Reader 27001, DESP 20210, or EU Interface 27007. In
the first case, the data on MOD Bus 10144 consists of SlNs; in the second, it is data to be processed by FU
10120, and in the third, it is data to be processed by EU 10122. In the present embodiment, data to be
processed by FU 10120 is generally data which is destined for internal use in FU 10120, for example in
Name Cache 10226. Data to be processed by EU 10122 is generally operands represented by Names in

2a SlNs. -

JPD Bus 10142 has two uses: it is the path by which data returns to MEM 10112 after it has been
processed by JP 10114, and it is the path by which data other than logical descriptors moves between the
subdivisions of the micrcmachine. For example, when CS 10110 is initialized, the microinstructions which
are loaded into FUSl'lT 11012 are transferred from MEM 10112 to DESP 20210 via MOD Bus 10144, and

25 from DESP 20210 to FUSITT 11012 via JPD Bus 10142. -

DB 27021 is the path by which logical descriptors are transferred in the micromachine. DB 27021
_. connects Name Translation Unit 27015, DESP 20210, Protection Unit 27019, and Memory Reference Unit

27017. Typically, a logical descriptor is obtained from Name Translation Unit 27015, placed in a register in
DESP 20210, and then presented to Protection Unit 27019 and Memory Reference Unit 27017 whenever a

30 reference is made using a logical descriptor. However, DB 27021 is also used to transmit cache entries
fabricated in DESP 20210 to ATU 10228, Name cache 1026 and Protection Cache 10234.

b.b. Microcode Addressing
35 As discussed here. microcode addressing is comprised of the following devices: 'I'imers 20295, Event

Logic 20284, RCWS 10358, BRCASE 20278, mPC 20276, MCWO 20292, MCW1 20290, SITTNAS 20286, and
FUSITT 11012. All of these devices have already been described in detail. and they are discussed here only
as they affect microcode addressing. Other devices contained in fig. 202, State Registers 20294, Repeat

Eounter 20280, and PNREG 20282 are not directly relevant to microcode addressing, and are not discussed40 ere.

As has already been described in detail, devices in Microcode Addressing 27013 are loaded from JPD
Bus 10142. The microcode addresses provided by these devices and by FUSDT 11010 are transmitted
among the devices and to FUSITT 11012 by CSADR Bus 20204. There are six ways in which the next
microcode address may be obtained:

45 —-— Most commonly, the value in mPC 20276 is incremented, by 1 by a special ALU in mPC 20276. thus
yielding the address of the microinstruction following the current microinstruction.

—— lfa microinstruction specifies a call to a microroutine or a branch, the microinstruction contains a literal
which an ALU in BRCASE 20278 adds to the value in mPC 20276 to obtain the location of the next

microinstruction. _
so -- If a microinstruction specifies the use of a case value to calculate the location of the next

microinstruction, BRCASE 20278 adds a value calculated by DESP 20210 to the value in mPC 20716.
The value calculated by DESP 20210 may be obtained from a field of a logical descriptor, thus allowing
the micromachine to branch to different locations in microcode on the basis of type information
contained in the logical descriptor. On return from an invocation of a microroutine, the location at

55 which execution of the microroutine in which the invocation occurred is to continue is obtained from
RCWS 10358.

— At the beginning of the executionof an SIN, the location at which the microcode for the SIN begins is
obtained from the $lN’s SOP by means of FUSDT 11010.

-— Certain hardware signals cause invocations of microroutines. There are two classes of such signals:
so Event signals, which Event Logic 20284 transforms into invocations of certain microroutines, and JAM

signals, which are translated directly into locations in microcode. ’
The addresses obtained as described above are transmitted to SHTNAS 20286, which selects one of

the addresses as the location of the next microinstruction to be executed and transmits the location to
FUSl'I'l' 11012. As the location is transmitted to FUSITT 11012, it is also stored in mPC 20276. All addresses

55 except those for Jams are tranfarred to SITTNAS 20286 via CSADR Bus 20204. Addresses obtained from

121

Petitioner Apple inc. — Exhibit 1024, p. 4166

Petitioner Apple Inc. - Exhibit 1024, p. 4167

10

15

20

25

30

EP 0 067 556 B1

JAM signals are transferred by separate lines to SITTNAS 20286.
As will be explained in detail below, microroutine calls and returns also involve pushing and popping

micromachine stack frames and saving state contained in MCW1 20290.
Register Addressing 27011 controls access to micromachine registers contained in GRF 10354. As

explained in detail below, GRF 10354 contains both registers used for the micromachine stack and global
registers, that is, registers that are always accessible to all microroutines. The registers are grouped in
frames. and individual registers are addressed by frame number and register number. Register Addressing
27011 allows addressing of any frame and register in the GRs 10360 of GRF 10354, but allows addressing of
registers in only three frames of the SR's 10362: the wrrent (top) frame. the previous frame (i.e., the frame
preceding the top frame), and the bottom frame, that is, the lowest frame in a virtual micromachine stack
which is still contained in GRF 10354. The values provided by Register Addressing 27011 are stored in
MCWO 20292. As will be explained in the discussion of microroutine invocations which follows. current and
previous are incremented on each invocation and decrememed on each return.

c.c. Description Processor 20210 li-‘lg. 271)
DESP 20210 is a set of devices for storing and processing logical descriptors. The intemal structure of

DESP 20210's processing devices has already been explained in detail; here, the discussion deals primarily
with the structure and contents of GRF 10354. In a present embodiment of CS 10110, GRF 10354 contains
256 registers. Each register may contain a single logical descriptor. Fig. 271 illustrates a Logical Descriptor
27116 in detail. in a present embodiment of CS 10110, a Logical Descriptor 27116 has four main fields:
—— RS Field 27101, which contains various flags which are explained in detail below.
-- AON Field 27111. which contains the AON portion of the address of the data item represented by the

Logical Descriptor 27116.
-— OFF field 27113, which contains the offset portion of the address of the data item represented by

Logical Descriptor 27116.
~ LEN Field 27115. which contains the length of the data item represented by the Logical Descriptor' 27116.
RS Field 27101 has subfields as follows:

—— R113 Field 27103 and WTD Field 27105 may be set by microcode to disable certain Event signals
provided for debuggers by CS 10110. For details, see a following description of debugging aids in C5
10110.

— FIU Field 27107 contains two bits. The fields are set from information in the Name Table Entry used to
construct the Logical Descriptor 27116. The bits determine how the data specified by the Logical
Descriptor 27116 is to be justified and filled when it is fetched from MEM 10112.

— TYPE Field 27108's four bits are also obtained from the Name Table Entry used to construct the Logical
Descriptor 27116. The field's settings vary from S—Language to S-Language, and are used to
communicate S-Language-specific type information to the S-Language‘s S-Interpreter microcode.
The four fields of a Logical Descriptor 27116 are contained in three separately-accessible fields in a GRF

10354 register: one containing RS Field 27101 and AON Field 27111, one containing OFF Field 27113, and
one containing LEN Field 27115. in addition, each,GRF 10354 register may be accessed as a whole. GRF
10354 is further subdivided into 32 frames of eight registers each. An individual GRF 10354 register is
addressed by means of its frame number and its register number within the frame. in a present
embodiment of CS 10110, half of the frames in GRF 10354 belong to SR‘s 10362 and are used for
micromachine stacks, and half belong to GRs 10360 for storing "global information". in SR’s 10362, each
GRF 10354 frame contains information belonging to a single invocation of a microroutine. As previously
explained, Register Addressing 27011 allows addressing of only three GRF 10354 frames in SR's tack 10362.
the current top frame in the stack. the previous frame, and the bottom frame. Registers are accessed by
specifying one of these three frames and a register number.

The global information contained in GRs 10360, is lnforrnation which is not connected with a single
invocation. There are three broad categories of global information:
—- information belonging to Process 610 whose Virtual Processor 612 is currently bound to JP 10114.

Included in this information are the current values of Process 610's ABPs and the pointers which KOS
uses to manage Process 610's stacks.

— lnforrnation required for the operation of KOS. included in this information are such items as pointers
to KOS data bases which occupy fixed locations in MEM 10112.

—- Constants, that is. fixed values required for certain frequently performed operstionsvin FU 10120.
Remaining registers are available to microprogrammers as temporary storage areas for data which

cannot be stored in a microroutine's stack frame. For example, data which is shared by several
microroutines may best be placed in a GR 10360. Addressing of registers in the GFls 10360 of GRF 10354
requires two values: a value of 0 through 15 to specify the frame and a value of 0 through 7 to specify the
register in the frame.

As previously discussed in detail, each of the three components AONP 20216. OFFP 20218, and LENP
20220 of DESP 20210 also contains ALUs. registers, and logic which allows operations to be performed on
individual fields of GRF 10354 registers. in particular. OFFP 20218 contains OFFALU 20242, which may be

122

Petitioner Apple Inc. — Exhibit 1024, p. 4167

Petitioner Apple Inc. - Exhibit 1024, p. 4168

20

25

50

55

EP 0 067 556 B1

used as a general purpose 32 bit arithmetic and logical unit. OFFALU 20242 may further serve as a source
and destination for JPD Bus 10142, the offset portion of DB 27021, and NAME Bus 20224, and as 8
destination for MOD Bus 10144. Consequently, OFFALU 20242 may be used to perform operations on data
on these buses and to transfer data from one bus to another. For example, when an SIN contains a literal
value used in address calculation, the literal value is transferred via NAME Bus 20224 to OFFALU 20242,
operated on, and output via the offset portion of DB 27021’. .

d.d. EU 10122 lmerface -

FU 10120 specifies what operation EU 10122 is to perform, what operands it is to perform it on, and
when it is finished, what is to be done with the operands. FU 10120 can use two devices in EU 10122 as
destinations for data, and one device as a source for data. The destinations are COMO 20342 and OPB
20322. COMO 20342 receives the location in EUSITT 20344 of the microcode which is to perform the
operation desired by the FU 10120. COMO 20342 may receive the location in microcode either from an FU
10120 mlcroroutlne or from an SlN’s SOP. ln the first case, the location is transferred via JPD Bus 10142,

‘and in the second, it is obtained from EUSDT 20266 and transferred via EUDlS Bus 20206. OPB 20322

receives the operands upon which the operation is to be performed. if the operands come directly fr'om
MEM 10112, they are transferred to OPB 20322 via MOD Bus 10144; if they come from registers or devices
in FU 10120, they are transferred via JPD Bus 10142.

Result Register 27013 is a source for data. After EU 10122 has completed an operation, FU 10120
obtains the result from Result Register 27013. FU 10120 may then place the result in MEM 10112 or in any
device accessible from JPD Bus 10142.

2. Specialized Micromachine Devices
Each of the groups of specialized devices serves one of CS 10110's subsystems. l-Stream Reader 27001

is part of the S-Interpreter subsystem, Name Translation Unit 27015 is part of the Name Interpreter
subsystem, Memory Reference Unit 27017 is part of the Virtual Memory Management System, and
Protection Unit 27019 is part of the Access Control System. Here, these devices are explained only in the
context of the micromachine; for a complete understanding of their functions within the subsystems to
which they belong, see previous descriptions of the subsystems.

a.a. l-Stream Reader 27001

l-Stream Reader 27001 reads and parses a stream of SlNs (termed the I-Stream) from a Procedure
Object 604, 606, 608. The l-Stream consists of SOPs (operation codes), Names, and literals. As previously
memioned. in a present embodiment of CS 10110,the l~Stream read from a given Procedure 602 has a fixed
format: the SOPs are 8 bits long and the Names and literals all have a single length. Depending on the
procedure, the length may be 8, 12. or 16 bits. l-Stream Reader 27001 parses the I-Stream by breaking it up
into its constituent SOPs and Names and passing the SOPs and Names to appropriate pans of the
micromachine. I-Stream Reader 27001 contains two groups of devices:
—— PC Values 27006, which is made up of three registers which contain locations in the I-Stream. When

added to ABP PBP, the values contained in these registers specify locations in Procedure Object 901
containing the Procedure 602 being executed. CPC 20270 contains the location of the SOP or Name
currently being interpreted; lPC 20272 contains the location of the beginning of the SIN currently being
executed; EPC 20274, finally, is of interest only at the beginning of the execution of an SIN; at that time,
it contains the location of the last SIN to be executed.

—- Parsing Unit 27005, which is made up of INSTB 20262. PARSER 20264, and PREF 20260. The
micromachine uses PREF 20260 to create Logical Descriptors 27116 for the l-Stream. which are then
placed on DB Bus 27021 and used in logical memory references. The data returned from these
references is placed in lN5TB 20262, and parsed by PARSER 20264.
SOPs, Names, and literals obtained by PARSER 20264 are placed on NAME Bus 20224, which connects

PARSER 20264, SOP Decoder 27003, Name Transiation Unit 27015, and OFFALU 20242.

.b.b. SOP Decoder 27003
SOP Decoder Z7003 decodes SOPsin1ao locations in FU 10120 and EU 10122 microcode. SOP Decoder

27003 comprises FUSDT 11010, EUSDT 20266, Dialect Register (RDIAIJ 24212. and LOPDCODE 24210.
FUSDT 11010 are further comprised of FUDlSP 24218 and FALG 24220. The manner in which these devices
translate SOPs contained in S|Ns into locations in FUSl'lT 11012 and EUSITT 20344 has been previously
described.

c.c. Name Translation Unit 27015

Name Translation Unit 27015 accelerates the translation of Names into Logical Descriptors 27116. This
operation is termed name resolution. it is comprised of two components: NC 10226 and Name Trap 20254.
NC 10226 contains copies of information from a Procedure Object 604's Name Table 10350, andthereby
makes it possible to translate Names into Logical Descriptors 27116 without referring to Name Table 10350.
When a Name is presented to Name Translation Unit 27015, it is latched into Name Trap 20254 for later use
by Name Translation Unit 27015 if required. As will be explained in detail later, in the present embodiment.

123

Petitioner Apple Inc. — Exhibit 1024, p. 4168

Petitioner Apple Inc. - Exhibit 1024, p. 4169

EP 0 es? ass Bil

Name translation always begins with the presentation of a Name to NC 10226. if the Name has already
been translated, the information required to construct its Logical Descriptor 27116 may be contained in NC
10226. lfthere is no information for the Name in NC 10226, Name Resolution Microcode obtains the Name
from Name Trap 20254, uses information from Name Table 10350 for the procedure being executed to

5 translate the Name, places the required information in NC 10226. and attempts the translation again. When
the translation succeeds, a Logical Descriptor 27116 corresponding to the Name is produced from the
infonnation in Name Cache 10115, placed on DB Bus 27021, and loaded into a GRF 10354 register.

10 d.d. Memory Reference Unit 27017
Memory Reference Unit 27017 performs memory references using Logical Descriptors 27116. Memory

Reference Unit 27017 receives a command for MEM 10112 and e Logical Descriptor 27116 describing the
date upon which the command is to be performed. In the case of a write operation, Memory Reference Unit
27017 also-receives the data being written via JPD Bus 10142. Memory Reference Unit 27017 translates

15 Logical Descriptor 27116 to a physical descriptor and transfers the physical descriptor and the command to
MEM 10112 via PD Bus 10146. A Memory Reference Unit 27017 has four components: ATU 10228. which
contains copies of information from KOS virtual memory management system tables. and thereby
accelerates logical-to-physical descriptor translation; Descriptor Trap 20256, which traps Logical
Descriptors 27116, Command Trap 27018, which traps memory commands; and Data Trap 20258, which

20 traps data on write operations. When a logical memory reference is made, a Logical Descriptor 27116 is
presented via DB Bus 27021 to ATU 10228, and at the same time, Logiwl Descriptor 27116 and the memory
command are trapped in DescriptorTrap 20256 and Command Trap 27018. On write operations, the data to
be written is trapped in Data Trap 20258. if the information needed to form the physical descriptor is
present in ATU 10228, the physical descriptor is transferred to MEM 10112 via PD Bus 10146. if the

25 information needed to fonn the physical descriptor is not present in ATU 10228, an Event Signal from ATU
10228 invokes a mlcroroutine which retrieves Logical Desaiptor 27116 from Descriptor Trap 20256 and
uses information contained in KOS virtual memory management wstem tables to make an entry in ATU
10228 for Logical Descriptor 27115. When the microroutine returns, the logical memory reference is
repeated using Logical Descriptor 27116 from Descriptor Trap 20256, the memory command from

30 Command Trap 27018, and on write operations, the data in Data Trap 20258. As will be described in detail in
. the discussion of virtual memory management, if the data referenced by a logical memory reference is not

present in MEM 10112, the logical memory reference causes a page fault.

as e.e. The Protection Unit 27019

On each logical memory reference. Protection Unit 27019 checks whether the subject making the
reference has access rights which allow itto perform the action specified by the memory command on the
object being referenced. if the subject does not have the required access rights, a signal from Protection
Unit 27019 causes MEM 10112 to abort the logical memory reference. Protection Unit 27019 consists of

40 Protection Cache 10234, which contains copies of information from KOS Access Control System tables, and
thereby speeds up protection checking, and shares Descriptor Trap 20256, Command Trap 27018, and Data
Trap 20258 with Memory Reference Unit 27017. When a logical memory reference is made, the AON and
offset portions of the logical descriptor are presented to Protection Cache 10234. if Protection Cache 10234
contains protection information for the object specified by the AON and offset and the subject perionning

as the memory reference has the required access, the memory reference may continue; if Protection Cache
10234 contains protection information and the subject does not have the required access, a signal from
Protection Cache 10234 aborts the memory reference. if Protection Cache 10234 does not contain the
required access information, a signal from Protection Cache 10234 aborts the memory reference and
invoices a microroutine which obtains the access information from KOS Access Control System tables and

59 places it in Protection Cache 10234. When Protection Cache 10234 is ready, the memory access is repeated.
using the logical descriptor from Descriptor Trap 20256, the memory command from Command Trap
27018, and in the case of write operations, the data in Data Trap 20258.

55 f.f. K08 Micromachine Devices
As mentioned in the above introduction to the micromachine. the devices making up the

micromachine may be divided imo two classes: those which any microcode written for the micromachine
may manipulate, and those which may be manipulated exclusively by KOS microcode. The latter class
consists of certain registers in GRs 10360 of GRF 10354, the bottom frame of the portion of the virtual

so micromachine stack in the stack portion (stackflegisters 10362) of GRF 10364, and the devices contained in
Protection Unit 27019 and Memory Reference Unit 27017. Because Protection Unit 27019 and Memory
Reference Unit 27017 may be manipulated only by KOS microcode, non-KOS microcode may not use
Descriptor Trap 20256 or Command Trap 27018 as a source or destination, may not load or invalidate
registers in.ATU 10228 or Protection Cache 10234, and may not perform physical memory references, i.e.,

65 memory references which place physical descriptors directly on PD Bus 10146, instead of presenting logical

124

Petitioner Apple Inc. — Exhibit 1024, p. 4169

Petitioner Apple Inc. - Exhibit 1024, p. 4170

20

50

so cos? 556 B1

descriptors to Memory Reference Unit 27017 and Protection Unit 27019. Similarly, non-KOS microcode
may not specify KOS registers in the GRs 10360 of GHF 10354 or the bottom frame of the stack portion of
GRF 10354 when addressing GFIF 10354 registers. Further, in embodiments allowing dynamic loading of
FUSITT 11012, only KOS microcode may manipulate the devices provided for dynamic loading.

In a present embodiment of CS 10110, the distinction between KOS devices and registers and devices
and registers accessible to all microprograms is maintained by the microbinder. The microbinclar checks all
microcode for microinstructions which manipulate devices in Protection Unit 27019, or Memory Reference
Unit 27017, or which address GRF 10354 registers reserved for KOS use. However, it is characteristic of the
micromachine that KOS devices are logically and physically separate from devices accessible to all
microprograms and, consequently. other embodiments of CS 10110 maY "59 h3VdVV3re “Vices 10 P"°V°""
non-KOS microprograms from manipulating KOS devices.

c. Micromachine Stacks and Microroutine Calls and Returns (Figs. 272, 273)
1. Micromachine Stacks (Fig. 272)

As previously mentioned, the FU micromachine is a stack micromachine The properties of the FU
micromechine’s stack depends on whether the FU micromachine is in virtual or monitor mode. In virtual
mode. the micromachine stack is of essentially unlimited size; if it contains more frames than allowed for
inside FU 10120, the top frames are in GRF 10354 and the remaining frames are in Secure Stack 10336
belonging to Process 610 being executed by the FU micromachine. In the following, the virtual mode
micromachine stack is termed the virtual micromachine stack. In monitor mode. the micromachine stack
consists of a fixed amount of storage; in a present embodiment of CS 10110, the monitor mode
micromachine stack is completely contained in the stack portion, SR5 10362, of GRF 10354; in other
embodiments of CS 10110, part orall ofthe monitor mode micromachine stack may be contained in an area
of MEM 10112 which has a fixed size and a fixed location known to the monitor micromachine. In yet other
embodiments of CS 10110. monitor mode micromachine stack may be of flexible depth in a manner similar
to the virtual micromachine stack. In either mode, microroutines other than certain K05 microroutines
which execute state save and restore operations may access only two frames of GRF 10354 stack: the frame
upon which the microroutlne is executing. called the current frame. and the frame upon which the
microroutine that invoked that microroutine executed, called the previous frame. KOS microroutines which
execute state save and restore operations may in addition access the bottom frame of that portion of the
virtual micromachine steel: which is contained In GRF 10354.

Fig. 272 illustrates stacks for the FU micromachine. Those portions of the micromachine stack which
are contained in the FU are contained in SR's 10362 (of GRF 10354) and in RCWS 10358. Each register of
RCWS 10358 is pemtanently associated with a GHF frame in SR3 10362 of GRF 10354, and the RCWS 10358
register and the GRF frame together may contain one frame of a micromachine stack. As previously
describe, each register of GRF 10354 contains three fields: one for an AON and other information. one for
an offset, and one for a length. As illustrated in H9. 251, each register in RCWS 10358 contains four fields:
— A one bit field which retains the value of the Condition Code register in MCW1 20290 at the time that

the invocation which created the next frame occurred.
— A field indicating what Event Signals were pending at the time that the invocation to which the RCWS

register belongs invoked another microroutine.
— A flag indicating whether the microinstruction being executed when the invocation occurred was the

first microinstruction in an SIN.

-—— The address at which the execution of the invoking microroutina is to continue.
The uses of these fields will become apparent in the ensuing discussion.

The space available for micromachine stacks in SR5 10362 and RCWS 10358 is divided into two parts:
Frames 27205 reserved for MOS 10370 and Frames 27206 available for the MlS 27203. Frames 27206 may
contain no‘MlS Frames 27203, or be partially or completely occupied by MlS Frames 27203. Space which
contains no Mls Frames is Free Frames 27207. The size of the space reserved for Monitor Micromachine
Stack Frames 27205 is fixed, and Spaces 27203, 27205, and 27207 always come in the specified order. -
Register Addressing 27011 handles addressing in Stock Portion 27201 of GRF 10354 and RCWS 10358 in
such fashion that the values for the locations of current, previous, and bottom frames_ specifying registers
in RCWS 10358 or frames in Stack Portion 27201 automatically "wrap around” when they are incremented
beyond the largest index value allowed by the sizes of the registers or decremented below the smallest
index value. Thus. though Spaces 27203, 27205, and 27207 always have the same relative order, their GRF
10354 frames and RCWS registers may be located anywhere in Stack Portion 27201 and RCWS 10358.

2. Microroutine invocations and Returns _ _
in CS 10110, microroutines may be invoked by other microroutines or by signals from CS_10110

hardware. The methods of invocation aside. microroutine invocations and returns resemble invocations of
and returns from procedures written in high—level languages. in the following, the general principles of
microroutine invocations and returns are discussed, and thereafter.’ the specific methods by which
microroutines may be invoked in CS 10110. The differences between invocations in monitor mode and

125

Petitioner Apple Inc». — Exhibit 1024, p. 4170

Petitioner Apple Inc. - Exhibit 1024, p. 4171

20

25

EP 0 067 556 B1

invocations in virtual mode are explained in the detailed discussions of the two modes. P _ t
The microroutine which is currently being executed runs on‘the frame specified by Current_ om er

27215. When an invocation occurs, either because the executing microroutine performs a call. or because 3
signal which causes invocations has occurred. JP 10114 hardware does three things: _ _ h
— It stores state information for the invoking microroutine in the RCWS 10358 register associatedwit the

current frame. The state information includes the location at which execution of the invoking

microroutine will resume. as well as other state infonnation. _ ' »
It increments Current Pointer 27215 and Previous Pointer 27213, thereby providing a frame for the new

invocation. _ ’ .

It begins executing the first instruction of the new|Y "“{°k9d ml¢"°f°'-""!°- _ , h
Because the newly-invoked microroutine can access registers of the Invoking I'[’I|G|'°|'0|-"5018 Sframe. t _e

invoking microroutine can pass "arguments" to the invoked microroutine by placing values in registers I:
its frame used by the invoked microroutine. However, the invoking microroutine cannot_specify whicf
registers contain “arguments" on an invocation, so the invoked microroutine must which registers 0
the previous frame are used by the invoking microroutine. _Since the only arguments wluchh it
microroutine has access to are those in the previous frame. a m|¢I'0|’0UtI"B 93" P355 3'9‘-"'l9"l"5 W '° _'
received from its invoker to a microroutine which it invokes only by copying the arguments from I13
invoke.-'5 name 10 its own frame,‘ which then becomes the newly-invoked routine's previous frame.

The return is the reverse of the above: Current Pointer 27215 and Previous Pointer 27213 are

decremented, thereby "popping off" the finished invocation's frame and returning to the invoker’s‘fiame.
The invoker then resumes execution at the location specified in the RCWS 10358 register and using the

state saved in the RCWS 10358. The saved state includes the value ofthe Condition Code in MCW1 20290 at
the time of the invocation and flags indicating various pending Events. The Condition Code field in MCW1
2029015 set to the saved value, and the pending event flags may cause Events to occur as described in
detail beiow.

3. Means of Invoking Microroutines
In the micromachine, invocations may be produced either by commands in microinstructions or by

hardware signals. In the following, invocations produced by commands in microinstructlons are termed
Calls, while those produced by hardware signals are tenried Event invocations and Jams. invocations are
further distinguished from each other by the locations to which they return. Calls and Jams return to the
microinstruction following the microinstruction in which the invocation occurs; Event invocations retum to
that microinstruction, which is then repeated.

In terms of implementation, the different retum locations are a consequence of the point in the
micromachine cycle atwhich Calls, Jams. and Event invocations save a return location and transfer control
to the called routine. With Calls and Jams, these operations are performed in the M1 wcle; with Event
invocations, on the other hand, the Event signal during the M0 cycle causes the M0 cycle to be followed by
a MA cycle instead of the M1 cycle, and the operations are perlomied in the MA cycle. In the M1 cycle, the
value in mPC 20276 is incremented: in the MA wcle, it is not. Consequently, the return value saved in
RCWS 10358 on a Call or Jam is the incremented value of mPC 20276, while the return value saved on an
Event invocation is the unincremented value of mPC 20276. The following discussion will deal first with
Calls and Jams. and then with Event invocations.

A Call command in a microlnstruction contains a literal value which specifies the offset from the
microinstruction containing the Call at which execution is to continue after the Call. When the
microinstruction with the Call command is executed in micromachine tn/cle M1. BRCASE 20278 adds the
offset contained in the command to the current value of mPC 20276 in order to obtain the location of the

invoked microroutine and sets SFITNAS 20286 to select the location provided by BRCASE 20278 as the
location of the next microinstruction. Then the Call command increments mPC 20276 and stores the
incremented value of_ mPC 20276 in the RCWS 10358 register associated with the current frame in SR5
10362 and increments Current Pointer 27215 and Previous Pointer 27213 to provide a new frame in Si-‘ts
10362. The Jam works exactly like the Call, except that a hardware signal during micromachine cycle M1
causes the actions associated with the invocation to occur and provides the location of the invoked
microroutine directly to SITTNAS 20286. .

Wlth Events. Event Logic 20284 causes an invocation to occur during cycle M0 and provides the
location of the invoked microroutine via CSADR 20299. Since the Event occurs during cycle M0,the location
stored in RCWS 10358 is the unincrementedyvalue of mPC 20276. and SITTNAS 20286 selects the location
provided by Event Logic 20284 as the location of the next microinstruction. Since the return from the Event
causes the mlcrolnstruction during which the Event occurred to be re-executed, the microinstruction and
the microroutine to which it belongs may be said to be "unaware" of the Event's occurrence. The only
difference between the execution of a microinstruction during which an Event occurs and the execution of
the same microinstruction without the Event is the length of time required for the execution.

126

Petitioner Apple Inc. — Exhibit 1024, p. 4171

Petitioner Apple Inc. - Exhibit 1024, p. 4172

15

20

'55

65

EP 0 067 556 B1

4. Occurrence of Event invocations (Fig. 273)
As described previously, Event invocations are produced by Event Logic 20284. The location in

microcode to which Event Logic 20284 transfers control is determined by the following:
_ —— The operation being commenced by FU 10120. Certain Event invocations may occur only at the

beginning of certain FU 10120 operations.

-— The state of Event signal lines from hardware and internal registers in Event Logic 20284.
— The state of certain registers visible via MCW1 20290. Some of these registers enable Events and

others mask Events. Of the registers which enable Events, some are set by Event signals and others by
the microprogram.

— On returns from invocations of microroutines, the settings of certain bits in the RCWS 10358 register
belonging to the micromachine frame for the invocation that is being returned to.
Microprograms may use these mechanisms to disable Event signals and to delay an Event lnvocatlon

from an Event signal for a single microinstruction or an indefinite period. and FU 10120 uses them to
automatically delay Event invocations resulting from certain Event signals. Using traditional programming
tenninology, the mechanisms allow a differential masking of Event signals. An Event signal may be
explicitly masked for a single microinstruction, it may be masked for a sequence of microinstructionst it
may be automatically masked until a certain operation occurs, or it may be automatically masked for a
certain maximum length of time. Event signals which occur while they are masked are not lost. in some
cases, the Event signal continues until it is serviced; in others, a register is set to retain the fact that the
Event signal occurred. When the Event signal is unmasked, the set register causes the Event signal to
reoccur. In some cases, finally, the Event signal is not retained, but recurs when the microinstructlon which
caused it is repeated.

In the following, the relationship between FU 10120 operations and Event signals is first presented, and
then a detailed discussion of the enabling registers in MCW1 20290 and ofthe bits in RCWS 10358 registerswhich control Event invocations.

FU 10120 allows Event invocations resulting from Event signals to be inhibited for a single
microinstruction; it also delays certain Event invocations for certain Event signals until the first
microinstruction of an SIN. Other Event signals occur only at the beginning of an SlN, at the beginning of a
Namespace Resolve or Evaluate operation, or at the beginning of a logical memory reference.

Event invocations may be delayed for a single microinstruction by setting a field of the
microinstruction itself. Setting this field delays almost all Event invocations, and thereby guarantees that
an Event invocation will not occur during the microinstruction's M0 cycle.

Event signals relating to debugging occur at the beginnings of certain micromachine operations. Such
Event signals are called Trace Event signals. As will be explained In detail, in the discussion of the
debugger, Trace Event signals can occur on the first microinstruction of an SIN, at the beginning of an
Evaluate or Resolve operation, at the beginning of a logical memory reference, or at the beginning of a
micruinstruction. IPM interrupt signals and interval Timer Overflow Event signals are automatically masked
until the beginning of the next SIN or until a maximum amount oftime has elapsed. which ever occurs first.
The mechanisms involved here are explained in detail in the discussion of interrupt handling in the FU10120 micromachine.

Turning now to the registers used to mask and enable Event signals, Fig. 273 is a representation of the
masking and enabling registers in MCW1 20290 and of the field ln RCWS 10358 registers which controls
Event invocations. Beginning with the registers in MCW1 20290. there are three registers which control
Event invocations: Event Mask Register (EM) 27301, Events Pending Register lEP) 27309. and Trace Enable
Register (TE) 27319. Bits in EM 27301 mask certain Event signals as long as they are set; bits in EP Register
27309 record the occurrence of certain Event signals while they are masked; when bits in TE Register 27319
are set. Trace Event signals occur before certain FU 10120 operations.

EM 27301 contains three one bit fields: Asynchronous Mask field 27303, Monitor Mask field 27305,
and Trace Event Mask Field 27307. As explained in detail in the discussion of FU 10120 hardware, these bits
establish a hierarchy of Event masks. If Asynchronous Mask Field 27303 is set, only two Event signals are
masked: that resulting from an overflow of EGGTMR 25412 and that resulting from ‘an overflow of EU
10122's stack. If Monitor Mask Field 27305 is set, those Events are masked, and additionally, the FU Stack
Overflow Event signal is masked. As will be explained in detail later, when the FU 10120 Stack Overflow
Event signal is masked, the FU micromachine is executing in monitor mode. if Trace Event Mask Field
27307 is set, Trace Trap Event signals are masked in addition to the above signals. Each of the fields in EM
27301 may be individually set and cleared by the microprogram. '

Four Event signals set fields in EP 27309: the EGGTMR 25412 Runout signal sets ET field 27311, the

INTTMR 25410 Runout signal sets lT Field 27313, the Non-Fatal Memory Error signal sets ME Field 27315,
and the lnter-Proces Message signal sets IPM Field 27317. Event invocations for all of these Event signals
but the Egg Timer Runout signal occur at the beginning of an Slhl: in these cases the fields In EP 27309
retain the fact that the Event signal has occurred until that time; the Event invocation" for the Egg. Timer
Runout signal occurs as soon after the signal as the settings of mask bits in EM 27301 allow. The brtprn ET
Field 27311 retains the fact of the Egg Timer Runout signal until the masking allows the Event invocation to
occur. All of the fields in E? 27309 but ME Field 27315 may be reset by microcode..The ITIICFOTOUUNGS
invoked by the Events must reset the appropriate fields; otherwise, they Will be rernvoked when they

127

Petitioner Apple Inc. — Exhibit 1024, p. 4172

Petitioner Apple Inc. - Exhibit 1024, p. 4173

10

15

20

25

65

EP 0 067 556 B1

return. ME Field 27315 is automatically reset when the memory error is serviced.
‘IE Register Field 27319 enables tracing. Each bit in the register enables a kind of Trace Event signal

when it is set. Depending on the kind of tracing, the Trace Event signal occurs at the beginning of an SIN, at
the beginning of e Resolve or Evaluate operation, at the beginning of a logical memory reference, or at the
beginning of a microinstruction. For details, see the following description of debugging.

Turning now to the registers contained in R0/VS 10358, each RCWS Register 27322 contains eight
fields which control Event signals. The first field is PM Field 27323. FM Field 27323 rellects the value of a
register in Event Logic 20284 when the invocation to which RCWS Register 27322 belongs occurs. The
register in Event Logic 20284 is set only when the microinstruction currently being executed is the first
microinstruction of an SIN. Thus, FM I-'ield 27323 is set only in RCWS Registers 27322 belonging to Event
invocations which occur in the M0 cycle ofthe first microinstruction in the SIN, i.e.. at the beginning of the
SIN. The value of the register in Event Logic 20284 is saved in FM Field 27323 because several Event
invocations may occur at the beginning of a single SIN. The Event invocations occur in order of priority:
when the one with the highest priority returns, the fact that FM l-‘ield 27323 is set causes the register in
Event Logic 20284 to again be set to the state which it has on the first microinstruction of an SIN. The
register's state, thus set, causes the next Event invocation which must occur at the beginning of the SIN to_
take place. After all such invocations are finished, the first microinstmction enters its M1 cycle and resets
the register in Event Logic 20284. in its reset state, the register inhibits all Event invocations which may
occur only at the beginning of an SIN. It is again set at the beginning of the next SIN.

The remaining fields in RCWS Register 2732 which control Event invotions are the fields in Return
Signals I-‘ield 27331. These fields allow the lnforrnation that an Event signal has occurred to be retained
through Event invocations until the Event signal's Event invocation takes place. When an invocation occurs.
these fields are set by Event Logic 20284. On return from the invocation, the values of the fields are input
into Event Logic 20284, thereby producing Event signals. The Event signal with the highest priority results
in an Event invocation, and the remaining Event signals set fields in Return Signals field 27331 belonging
to RCWS Register 27322 belonging to the invocation which is being executed when the Event signals occur.
Because the fields in Return Signals Field 2730 are input into Event Logic 20284, microcode invoked as a
consequence of Event signals which sets one of these fields must reset the field itself. Otherwise, the return
from the microcode will simply result in a reinvocation of the microcode.

The seven fields in Return Signals I-'ieId 27330 have the following significance:
When EG Field 27333 is set. an EU 10122 dispatch operation produced an illegal location in EU 10122
microcode EUSI'lT 20344. ‘
When NT Field 27335, ST Field 27341, mT Field 27343, or mB Field 27345 is set. a trace signal has
occurred. These are explained in detail in the discussion of debugging.
When ES I-‘ield 27337 is set. an _EU'10122 Storeback Exception has occurred, i.e.. an error occurred
when EU 10122 attempted to store the result of an operation in MEM 10112.
When MRR Field 27339 is set. a condition such as an ATU 10228 miss or a Protection Cache 10234 miss
has occurred, and it is necessary to reattempt a memory reference.

d. Virtual Micromadiines and the Monitor Mlcromachine

As previously described, microcode being executed on FU 10120's micromachine can run in either
monitor mode or virtual mode. In this portion of the discussion. the distinguishing features and
applications of the two modes are explained in detail.

1. Virtual Mode

As previously mentioned, the chief distinction between virtual mode and monitor mode is MIS 10368.
The fact that Mls 10368 is of essentially unlimited size has the following consequences for microroutines
which execute in virtual mode.

— An invocation of a microroutine executing in virtual mode may have as its consequence further
_ invocations to any depth. ‘

—- Any invocation of or return from a microroutine executing in virtual mode may cause a page fault.
The FU micromechine is in virtual mode when all bits in the Event Masks portion of MCW1 20290 are
cleared. In this state, no enabled Event signals are masked, and Event invocations may occur in any
microinstruction which does not itself mask them. .

Because invocations may occur to any depth in virtual mode. microroutines executing in this mode
may be recursive. Such recursive microroutines are especially useful for the interpretation of Names.
Often, as previously described, the Name Table Entry for a Name will contain Names which’:-esolve to other
Names, and the virtual micromachine's limitless stack allows the use of recursive Name Resolution

microroutines in such situations. Recursive microroutines may also be used for complex SlNs. such as
Calls.

Because invocations can occur to any depth, any number of Events may occur while a microroutine is
executing in monitor mode. This in turn greatly simplifies Event handling. if an Event signal occurs while an
Event with a given priority is being handled and the Event being signalled has a higher priority than the one

128

Petitioner Apple Inc. — Exhibit 1024, p. 4173

Petitioner Apple Inc. - Exhibit 1024, p. 4174

EP 0 067 556 B1

being handled, the result is simply the invocation of the new Events handler. Thus. the order in which the
Event handlers finish corresponds exactly to the priorities of their Events: those with the highest finish first.

A page fault may occur on any microinvocation or return executed in virtual mode because an
invocation in virtual mode which occurs when there are no more Free Frames 27207 on SR5 10362 causes

5 an Event signal which invokes a microroutine running in monitor mode. The microroutine transfers MlS
Frames 27203 from GRF 10354 to Secure Stack 10336 in MEM 10112. and the transfer may cause a page
fault. Sirnilady, when a microreturn takes place from the last frame on MlS Frames 27203 on SR5 10362, an
Event signal occurs which invokes a microroutine that transfers additional frames from Secure Stack 10336
to GRF10354, and this transfer, too, may cause a page fault.

The fact that page faults may occur on microinvocations or microretums in virtual mode has two

important consequences: microroutines which cannot tolerate page faults other than those explicitly
generated by the microroutine itself cannot execute in virtual mode, and because unexpected page faults
cause execution to become indeterminate, microroutines which must run to completion cannot execute in
virtualmode. For example, if the microroutine which handles page faults executed in virtual mode, its

15 invocation could cause a page fault, which would cause the microroutine to be invoked again, which would
cause another page fault, and so on through an infinite series of recursions.

2. Monitor Micromachine - ’

29 As previously described, the essential feature of monitor mode is MOS 10370. In a present
embodiment of CS 10110, this stack has a fixed minimum size, and is always contained in GRF Registers
10354. The nature of MOS 10370 has four consequences for microroutines which execute in monitor mode:
— When the micromachine is in monitor mode. the depth of invocations is limited; recursive

microroutines therefore cannot be executed in monitor mode, and Event invocations must be limited.

25 —— invocations of microroutines or returns from microroutines in monitor mode never result in pagefaults.

—— Microroutines executing in monitor mode are guaranteed to mn to completion if they do .not suspend
the Process 610 which they are executing or perform a Call to software.

-— When the micromachine is executing in monitor mode, it is guaranteed to return to virtual mode within
30 a reasonable period of time, either because a microroutine executing in monitor mode has run to

completion, or because the microroutine has suspended the Process 610 which it is executing, or has
made a Call to software. The result in both cases is the execution ofa new sequence of SOPs, and thusa retum to virtual mode.

In a present embodiment of CS 10110, the PU micromachine is in monitor mode when a combination of

35 masking bits in MCW1 20290 is set which results in the masking of the FU Stack Overflow Event and the Egg
Timer Overflow Event._As previously described, these Events are masked if Fields 27303. 27305, or 27307 is
set. These Events and the consequences of masking them are explained in detail below.

The event signal for the FU Stack Overflow Event occurs on microinvocations for which there is no
frame available in MIS Frames 27203. if the Event signal is not masked, it causes the invocation of a

40 microroutine which moves MlS Frames from MIS Frames 27203 onto a Process 610's Secure Stack 10336.
When the FU Stack Overflow Event is masked. all frames in SI‘-is 10362 of GRs 10380 are available for
microroutine invocations and microroutine invocations will not result in page faults, but if the capacity of
Sfls 10362 is exceeded, FU 10120 ceases operation.

The Egg Timer Overflow event signal occurs when Egg TMR 25412 runs out. As will be explained in
45 detail later, Egg TMR 25412 ensures that an Interval Timer Runout, an Inter-processor Message, or a Non-

fatal Memory Error will be serviced by JP 10114 within a reasonable amount of time. if an Interval Timer
Runout Event signal or an lnter—processor Message Event signal occurs at a time when it is inefficient for
the FU micromachine to handle the Event, Egg TMR 25412 begins nmning. When Egg TMR 25412 runs out.
the Event is handled unless the micromachine is in monitor mode. If the Egg TMR 25412 Runout Event

59 signal occurs while the FU micromachine is in monitor mode, i.e., while the Event is masked, the Event
signal sets Field 27311 in MCW1 20290. When the FU micromachine reverts to virtual mode, i.e., when all
Event Mask bits in MCW1 20290 are cleared, the Egg TMR 25412 Runout Event occurs, and the interval
Timer Runout lnter-processor Message Event handlers are invoked by Event Logic 20284.

e. lnterrupt and Fault Handling

1. General Principles _
Any computer system must be able to deal with occurrences which disrupt the normal execution of a

program. Such occurrences are generally divided into two classes: faults and interrupts. A fault occurs as a
so consequence of an attempt to execute a machine instruction, and its occurrence is therefore synchronous

with the machine instruction. Typical faults are floating point overflow faults and page faults. A floating
point overflow fault occurs when a machine instruction attempts to perform a floating point an'thmetIc
operation and the result exceeds the capacity of the CS 10110's floating point hardware, that IS EU 10122. A
page fault occurs when a machine instruction in a computer system with virtual memory attempts to

55 reference data which is not presently available in the computer system's primary memory, that is MEM

129

Petitioner Apple Inc. — Exhibit 1024, p. 4174

Petitioner Apple Inc. - Exhibit 1024, p. 4175

10

25

EP 0 067 556 81

10112. Since faults are synchronous with the execution of machine instructions and in many cases the
result of the execution of specific machine instructions, their occurrence is to some extent predictable.

The occurrence of an intenupt is not predictable- An interrupt occurs as a consequence of some action
taken by the computer system which has no direct connection with the execution of a machine irstruction
by the computer system. For example, an IIO interrupt occurs when data transmitted by an l/O device (l0S
10116) reaches the central processing unit (FU 10120), regardless of the machine instruction the central
processing unit is currently executing.

In conventional systems, interrupts and faults have been handled as follows: if_an imerrupt or fault
occurs, the computer system recognizes the occurrence before it executes the next machine instruction and
executes an interrupt-handling microroutine or Procedure 602 instead of the next machine instruction. if
the interrupt orfault cannot be handled by the Process 610 in which it occurs, the interrupt or fault results in
a process swap. When the interrupt handling routine is finished, Process 610 which faulted or was
interrupted can be returned to the CPU if it was removed and the next machine instruction executed.

While-the above method works well with faults, the fact that interrupts are asynchronous causes
several problems:
—- Machine instructions cannot require an indefinite amount of time to execute, since intenupts cannot be

handled until the machine instruction during which they occur is finished.
— It must be possible to remove a Process 610 from the CPU at any time, since the occurrence of an

interrupt is not predictable. This requirement greatly increases the difficulty of process management.
The method used for interrupt and fault handling in a present embodiment of CS 10110 is described
below.

2. Hardware lnternrpt and Fault Handling in CS 10110 —
in CS 10110, there are two levels of interrupts: those which may created and dealt with completely by

software, and those which may created by hardware signals. The former class of interrupts is dealt with in
the discussion of Processes 610: the latter, termed hardware interrupts, is discussed below.

In (25 10110, hardware interrupts and faults begin as invocations of microroutines in FU 10120. The
invocations may be the result of Event signals or may be made by microprograms. For example, when IOS
V10116 places data in MEM 10112 for JP 10114, an lmer-processor Message Event signal results, and the
signal causes the invocation of Inter-processor Message Interrupt handler microcode. On the other hand, a
Page Fault begins as an invocation of Page Fault microcode by LAT microcode. The actions taken by the
microcode which begins handling the fault or interrupt depend on whether the fault or interrupt is handled
by the Process 610 which was being executed when the fault or Event occurred or by a special KOS Process
610.

In the first case, the Event microcode may perfonn a Microcode-to-Software Call to a hig h—lavel
language procedure which handles the Event. An example of an Event handled in this fashion is a floating
point overflow: when FU 10120 microcode determines that a floating point overflow has occurred, it
invokes microcode which may invoke a floating point overflow procedure provided by the high-level
language whose S-Language was being executed when the overflow occurred. In altemate embodiments
of CS 10110, the overflow procedure may also be in microcode.

in the second case, the microcode handling the fault or interrupt puts information in tables used by a
K05 Process 610 which handles the fault or interrupt and than causes the K05 Process 610 to run at some
later time by advancing an Event Counter awaited by the Process 610. Event Counters and the operations
on them are explained in detail in a following description of Processes 610. Since the tables and Evem
Counters manipulated by microcode are always present in MEM 10112, these operations do not cause page
faults, and can be performed in monitor mode. For example, when IOS 101 16 transmits an IPM Event signal
to JP 10114 after IOS 10116 has loaded data into MEM 10112, the Evem resulting from the Event signal
invokes microcode which examines a queue containing messages from l0S 10116. The messages in the
queue contain Event Counter locations, and the microcode which examines the queue advances those
Event counters, thereby causing Processes 610 which were waiting for the data returned by the U0
operation to raoommence execution.

3. The Monitor Mode, Differential Masking and Hardware Interrupt Handling
FU 10120 micromachine's monitor mode and differential masking facilities allow a method of

hardware interrupt handling which overcomes two problems associated with conventional hardware
interrupt handling: an interrupt can be handled in a predictable amount of time regardless of the amount of
time required to execute an SIN, and if the microcode which handles the interrupt executes in monltor
mode, the interrupt may be handled at anytime without unpredictable consequences. There are two
sources of hardware interrupts in CS 10110: an Inter-Processor Message (IPM) and an lnterval Timer 25410
Flunout. An IPM occurs when IOS 10116 completes an ll0 task for JP 10114 and signals completion of the
task via IOJP Bus 10132. An lnterval Timer Runout occurs when a preset time at which CS 10110 must take
some action is reached. For example, a given Process 610 may have a limit placed on the amount of time it
may execute on JP 10114. As is explained in a following description of process synchronization, the virtual
processor management system sets lnterval Timer 25412 to run out when Process 610 has used all of the
time available to it. '

130

Petitioner Apple Inc. — Exhibit 1024, p. 4175

Petitioner Apple Inc. - Exhibit 1024, p. 4176

60

EP 0 067 556 B1

Both IPMs and interval Timer Runouts begin as Event signals. The immediate effect of the Event signal
is to set a bit in EP Field 27309 of MCW1. in principle, the set bit can cause invocation of the event
microcode for the Event on the next M0 cycle in which the FU 10120 micromachine is in virtual mode. Since
microroutines running in monitor mode are guaranteed to return the mlcromachine to virtual mode within
a reasonable length of time, and the Event invocation will occur when this happens, the Event is
guaranteed to be serviced in a reasonable period of time. The microroutines invoked by the Events
themselves execute in monitor mode, thereby guaranteeing that no page faults will occur while they are
executing and that Process 610 which is executing on JP 10114 when the hardware interrupt occurs need
not be removed from JP 10114.

While hardware interrupts are serviced in principle as described above, considerations of efficiency
require that as many hardware interrupts as possible be serviced when the size of the FU micromachine's
stack is at a minimum, i.e., at the beginning of an SlN's execution. This requirement is achieved by means
of Egg TMR 25412 and ET Flag 27311 in MCW1 20280. As described above, when an IPM interrupt or an
Interval Timer 25410 Runout interrupt occurs, Field 27317 or 27313 respectively is set in MCW1 20290. At
the same time, Egg TMR 25412 begins running. If the current SlN's execution ends before Egg TMR 25412
runs out, the set Field in MCW1 20290 causes the Interval Timer Runout or lnter-processor Message Event
invocations to occur on the first microinstruction for the next SIN. if, on the other hand, the current SlN's
execution does not end before Egg TMR 25412 runs out, the Egg Timer Runout causes an Event signal. The
immediate result of this signal is the setting of ET bit 27311 in MCW1 20290, and the setting of El’ bit 27311
in tum causes the interval Timer Runout Event invocation andlor IPM Event invocation to take place on the
next M0 cycle to occur while the mlcromachine is in virtual mode. The above mechanism thus guarantees
that most hardware interrupts will be handled at the beginning of an SIN. but that hardware interrupts will

- always be handled within a certain amount of time regardless of the length of time required to execute an
SIN.

9. FU Micromachine and CS 10110 Subsystems
The subsystems of CS 10110, such as the object subsystem, the process subsystem, the S—lnterpreter

subsystem, and the Name interpreter subsystem, are implemented all or in part in the micromachine. The
description of the micromachine therefore closes with an overview of the relationship between these
subsystems and the micromachine. Detailed descriptions of the operation of the subsystems have been
presented previously.

The subsystems fall into three main groups: KOS subsystems, the Name interpreter subsystem, and
the S-Interpreter subsystem. The relationship bemoan the three is to some extent hierarchical: the KOS
subsystems provide the environment required by the Name Interpreter subsystem, and the Name
Interpreter subsystem provides the environment required by the S-interpreter subsystem. For example, the
S—lnterpreter subsystem interprets SlNs consisting of SOPs and Names; the Name interpreter subsystem
translates Names into logical descriptors. using values called ABPs to calculate the locations contained in
the logical descriptors. The KOS subsystems lculate the values of the ABPs, translate Logical Descriptors
27116 into physical MEM 10112 addresses, and check whether a Process 610 has access to an object which
it is referencing.

In a present embodiment of CS 10110, the Name Interpreter subsystem and the S-Interpreter
subsystem are implemented completely in the micromachine; in other embodiments, they could be
implemented in high-level languages or in hardware. The KOS subsystems are implemented in both the
micromachine and in high-level language routines. in alternate embodiments of CS 10110, KOS
subsystems may be embodied entirely in microcode, or in high-level language routines. Some high-level
language routines may execute in any Process 610, while others are executed only by special KOS
Processes 610. The KOS subsystems also differ from the others in the manner in which the user has access:
with the S-interpreter subsystem and the Name interpreter subsystem, the subsystems come into play only
when S|Ns are executed; the subsystems are not directly visible to users of the system. Portions of the K05
subsystems. on the other hand, may be explicifly invoked in high-level language programs. For example,
an invocation in a high-level language program may cause KOS to bind a Process 610 to a Virtual Processor
612.

The following will first list the functions performed by the subsystems, and then relate the subsystems
to the monitor and virtual micromachine modes and specific mlcromachine devices. KOS subsystems
perform the following functions:
— Virtual-memory management;
—- Virtual processor management;
— Inter-processor communication;
— Access Control:
— Object management; and,
-- Process management.
The Name Interpreter perfonns the following functions:
— Fetching and parsing SOPs, and
-— Interpreting Names
The S-interpreter, finally, dispatches SOPs, i.e., locates the FU 10120 and EU 10122 microcode which

‘I31

Petitioner Apple Inc. — Exhibit 1024, p. 4176

Petitioner Apple Inc. - Exhibit 1024, p. 4177

10

15

20

25

50

EP 0 067 556 B1

executes the operation corresponding to a given SOP for a given S-Language.
Of these subsystems, the S-interpreter, the Name interpreter, and the microcode components of the

K05 process and object manager subsystems execute on the virtual micromachine; the microcode
components of the remaining KOS subsystems execute on the monitor micromachine. As will be seen in
the discussions of these subsystems, subsystems which execute on the virtual mlcromachlne may cause
Page Faults, and may therefore reference data located anywhere in memory; subsystems which execute on
the monitor micromachine may not cause Page Faults, and the data bases which these subsystems
manipulate must therefore always be present at known locations in MEM 10112.

The relationship between subsystems and FU 10120 micromachine devices is the following:
Microcode for all subsystems uses DESP 20210, Microcode Addressing 27013, and Register Addressing .
27011, and may use EU Interface 27007. S-Interpreter microcode uses SOP Decoder 27003, and Name
Interpreter Microcode uses Instruction Stream Header 27001, Parsing Unit 27005, and Name Translation
Unit 27015. KOS virtual memory management microcode uses Memory Reference Unit 27017, and
Protection Microcode uses Protection Unit 27019.

Having described in detail the structure and operation of CS 10110's major subsystems, MEM 10112,
FU 10120, EU 10122.l0S 10116, and DP 10118, and the CS 10110 micromachine, CS 10110 operation will be
described in further detail next below. First, operation of CS 10110's Namespace, S-Interpreter, and Pointer
Systems will be described. Then, operation of CS 10110 will be described in further detail with respect to CS
10‘l10’s Kernel Operating System.

3. Namespace. S-interpreters, and Pointers (Figs. 301-307, 274)
The preceding chapters have presented an overview of CS 10110, examined its hardware in detail, and

explained how the FU 10120 hardware functions as a micromachlne which controls the activities of other
CS 10110 components. In the remaining portions of the specification, the means are presented by which
certain key features of CS 10110 are implemented using the hardware, the micromachine, tables in
memory, and high-level language programs. The present chapter presents three of these features: the
Pointer Resolution System, Namespaoe, and me S-interpreters. »

The Pointer Resolution System translates pointers, i.e., data items which contain location information, _
into UID-offset addresses. Namespace has three main functions:
— It locates SlNs and fetches them from CS 10110's memory into FU 10120.
— it parses $lNs into SOP: and Names.
— it translates Names into Logical Descriptors 27116 or values.
The S-interpreters-decode S—operations received from namespace into locations in microcode contained in
FUSl1T 11012 and EUSI1T 20344 and then execute that microcode. If the S-operations require operands.
the S-interpreters use Namespace to translate the operands into Logical Descriptors 27116 or values as
required by the operations.

Since Namespaoe depends on the Pointer Resolution System and the S-interpreters depend on
Namespace, the discussion of the systems begins with pointers and then deals with namespaoe and S-
interpreters. '

A. Pointers and Pointer Resolution (l-‘Igs. 301, 302)
A pointer is a data item which represents an address, i.e., in CS 10110, a UID-offset address. CS 10110

has two large classes of pointers: resolved pointers and unresolved pointers. Resolved pointers are
pointers whose values may be immediately interpreted as UID-offset addresses: unresolved pointers are
pointers whose values must be interpreted by high level language routines or microcode routines to yield
UID-offset addresses. The act of interpreting an unresolved pointer is called resolving it. Since the manner
in which an unresolved pointer is resolved may be determined by a high-level language routine written by
a system user, unresolved pointers provide a means by which users of the system may define their own
pointer types.

Both resolved and unresolved pointers have subclasses. The subclasses of resolved pointers are UID
pointers and object relative pointers. UlD pointers contain a UID and offset, and can thus represent any CS
101 10 address; object-relative pointers contain only an offset; the address's UlD is assumed to be the same
as that of the object containing the object-relative pointer. An object-relative pointer can therefore only
represent addresses in the object which contains the pointer.

The subclasses of unresolved pointers are ordinary unresolved pointers and associative pointers. The
difference between the two kinds of unresolved pointers is the manner in which they are resolved. Ordinary
unresolved pointers are always resolved by high-level language routines, while associative pointers are
resolved the first time they are used in a Process 610 and a domain by high-level language routines, but are
subsequently resolved by means of a table called the Associated Address Table lAAT). This table is
accessible to microcode, and associative pointers may therefore be more quickly resolved than ordinary '
unresolved pointers.

The following discussion will first explain the formats used by all CS 10110 pointers, and will then
explain how pointers are processed in FU 10120. '

132

Petitioner Apple Inc. — Exhibit 1024, p. 4177

Petitioner Apple Inc. - Exhibit 1024, p. 4178

EP O 067 556 B1 '

a. Pointer Formats (Fig. 301)
Figure 301 represents a CS 10110 pointer. The figure has two parts: a representation of General Pointer

Format 30101. which gives an overview of the fields which appear in all CS 10110 pointers, and a detailed
presemation of Flags and Format Field 30105, which contains the information by which the kinds of CS

5 10110 pointers are distinguished.
Turning firsl to General Pointer Fonnat 30101, all CS 10110 pointers contain 128 bits and are divided

into three main fields:

—— Offset Field 30103 contains the offset portion of a UID-offset address in resolved pointers and in
associative pointers; in other unresolved pointers, it may contain an offset from some point in an

'9 object or other information as defined by the user.
—- Flags and Fonnat Field 30105 contains flags and format codes which distinguish between kinds of

pointers. These flags and format codes are explained in detail below.
— UID "field 30115 contains a UlD in UID pointers and in some associative pointers; in objectrelative

pointers. and other associative pointers, its meaning is undefined, and in ordinary unresolved pointers,
'5 -' it may contain information as defined by the user.

- Flags and Format Field 30105 contains four subfields: ’
Fields 30107 and 30111 are reserved and must be set to 0.

NR Field 30109 indicates whether a pointer is resolved or unresolved. In resolved pointers, the field is
set to 0, and in unresolved pointers, it Is set to 1.

29 -— Format Code Field 30113 indicates the kind of resolved or unresolved pointers. Format codes for the
present embodiment are explained below. ‘
The values of Format Code Field 30113 may range from 0 to 31. If Format Code Field 30113 has the

value 0, the pointer is a null pointer, i.e., a pointer which neither directly nor indirectly indicates an address.
The meanings of the other format codes depend on the value of NR Field 30109: '

 25 NH Field Value Format Code Value Meaning _
0 1 UID poimer

30 0 2 Obiect—nelative pointer

0 all other codes Illegal

1 1 UID associative pointer

35 1 2 Object-relatlve
associative pointer

1 all other codes Ordinary unresolved
40 poimer

As indicated by the above table, the present embodiment has two kinds of associative poimer, UID
associative pointers" and object-relative associative pointers. Like a UID pointer, a UID associative poimer
contains a UID and an offset, and like an object-relative pointer, an object-relative assoclatlve poimer

45 contains an offset and takes the value of the UID from the object to which it belongs. However, as will be
explained in detail later, the UID and offset which the associative pointers contain or represent are not used

_ as addresses. instead, the UID and offset are used-as tags to locate entries in the AAT. which associates an
associative pointer with a resolved pointer.

50 b. Pointers in FU 10120 (Fig. 302) -

When a pointer is used as an address in FU 10120, the address infonnation in the poimer must be
translated into a Logical Descriptor 27116 consisting of an AON. an offset, and a length field of 0: when a
Logical Descriptor 27116 in FU 10120 is used to fonn a pointer value in memory. the AON must be
convened back to a UID. The first conversion is termed pointer-to-descriptor conversion. and the second

55 descriptor-to-pointer conversion. Both conversions are accomplished by microcodes executing in FU10120.

What is involved in the translation depends on the kind of pointer: if the pointer is a UID pointer, the
UID must be translated into an AON; if the pointer is an object—relative pointer, the AON required to fetch"
the pointer is the pointer’s AON. so no translation is necessary. If the pointer is an unresolved pointer, it

so must first be translated imo a resolved pointer and then into a Logical Descriptor 27116. If the pointer is
associative, the translation to a resolved poimer may be performed by means ofthe ATT.

In the present embodiment, when other FU 10120 microcode calls pointer-to-descriptor microcode. the
calling microcode passes Logical Descriptor 27116‘for the location of the pointer which is to be translated

_ __4 as an argument to the pointer-to-description translation microcode. The pointer-to-descriptor microcode
55 returns a Logical Descriptor 27116 produced from the value of the poimer at the location specified by

133

Petitioner Apple Inc. — Exhibit 1024, p. 4178

Petitioner Apple Inc. - Exhibit 1024, p. 4179

1a_

40

55

EP 0 067 556 B1

Logical Descriptor 27116 which the pointer-to-descriptor microcode received as an argument. -
The pointer-to-descriptor microcode first uses Logical Descriptor 27116 given it as an ‘argument to

fetch the value of the pointer's Offset Field 30103 from memory. It then saves Logical Descriptor 27116's
offset in the output register belonging to OFFALU 20242 and places the value of the pointer's Offset Field
30103 in the offset field of Logical Descriptor 27116 which it received as an argument. The pornter:to-
descriptor microcode then saves Logical Descriptor 27116 indicating the pointer's location by storing
Logical Descriptor 27116‘s AON and offset (obtained from OFFALU 20242) in a register In the GR!‘ 10354
frame being used by the invocation of the pointento-descriptor microcode. Next. the microcode adds 40 to
the offset stored in OFFALU 20242, thereby obtaining the address of NR Field 30109, and uses the address
to fetch and read NR Field 30109 and Format Code Field 30113. The course of further processing is
determined by the values of these fields. lf NR field 30109 indicates a resolved pointer, there are four cases.
as determined by the value of Format Code Field 30113:
-— Format code field = 0: The pointer is a null pointer.
— Format code field = 1: The pointer is a UID pointer.
—. Format code field = 2: The pointer is an intra-object pointer.
—- Any other value of the format code field: The pointer is invalid.

In the first case, the microcode sets all fields of the argument to 0: in the second, it fetches the value of
UID Field 30115 from memory and invokes LAR microcode (explained in the discussion of objects), which
translates the UlD to the AON associated with it. The AON is then loaded into the argument's AON field. ln
the third case, the AON of Logical Descriptor 27116 for the pointer's location and the pointer's AON are the
same, so the argument already contains the translated pointer. In the fourth case, the microcode performs
a call to a pointer fault—handling Procedure 602 which handles invalid pointer faults, passing saved Logical
Descriptor 27116 for the pointer as an argument. Procedure 602 which handles the fault must return a
resolved pointer to the microcode, which then converts it to a Logical Descriptor 271 16 as described above.

c. Descriptor to Pointer Conversion

Descriptor to pointer conversion is the reverse of pointer to descriptor conversion with resolved
pointers. The operation must be performed whenever a resolved pointer is moved from an FU 10120
register into MEM 10112. The operation takes two arguments: a Logical Descriptor 27116 which specifies
the address to which the pointer is to be written, and a Logical Descriptor 27116 whose AON and offset
fields specify the location contained in the pointer. There are two cases: intra-object pointers and UID
pointers. Both kinds of pointers have values in Offset Field 30103, so the descriptor-to-pointer microcode
firstwrites the second arguments offset to location specified by the first argument‘s Logical Descriptor
27116. The next step is to determine whether the pointer is an irrtra-object pointer or a UID pointer. To do
so, the microcode compares the arguments’ AONs. If they are the same, the pointer points to a location in
the object which contains it, and is therefore an intra-object pointer. Since UID Field 30115 of an intra-object
pointer is meaningless. the only step remaining for intra-object pointers is to set Flags and Format Field
30105 to the binary representation of 2, which sets all bits but bit 46 to 0, and thereby identifies the pointer
as a resolved intra-object pointer. .

W'rth UID pointers, the descriptor—to-pointer microcode sets Flags and Format Field 30105 to 1. thereby
identifying the pointer as a resolved UlD pointer, and calls a K05 LAR microroutine (explained in detail in
the discussion of obiects) which converts the first argument's AON to a UID and places the result UID in the
current frame. When the K03 AON no UID conversion microroutine returns, the descriptor-to-pointer
microcode writes the UlD to the converted pointer's UID Field 30115.

B. Namespace and the S-Interpreters (figs. 303-307)
Namespace and the S-Interpreter both interpret infonnation contained in Procedure Objects 608.

Consequently, the discussion ofthese components of CS 10110 begins with an overview of those pans of
Procedureobject 606 relevam to Namespace and the S-interpreters, and then explains Namespace and the
S-interpreters in detail.

a. Procedure Object 606 Overview (Fig. 303)
Figure 303 represents those portions of Procedure Object 608. Fig. 303 expands information contained

in Fig. 103; Fields which appear in both i-"rgures have the number of Fig. 103. Portions of Procedure Object '
608 which are not discussed here are dealt with later in the discussion of Calls and Returns. The most

important part of a Procedure Obiect 608 for these systems is Procedure Environment Descriptor (FED)
30303. A Procedure 802's FED 30303 contains the information required by Namespace and the S-interpreter
to locate and parse Procedure 602's code and interpret its Names. A number of Procedures 602 in a
Procedure Object 608 may share a PED 30303. As will be seen in the discussion of Calls, the fact that a
Procedure 602 shares a PED 30303 with the Procedure 602 that invokes it affects the manner in which the
Call is executed.

The fields of FED 30303 which are important to the present discussion are three fields in Header 30304:
‘ K field 30305, LN Field 30307, and SIP Held 30309, and three ofthe remaining fields: NTP Field 30311, SDPP
i-"leld 30313. and PEP Field 30315.

134

Petitioner Apple Inc. — Exhibit 1024, p. 4179

Petitioner Apple Inc. - Exhibit 1024, p. 4180

10

20

60

EP o 067 555 B1
— K Field 30305 indicates whether the Names in the SlNs of Procedures 602 which share PED 3lB03 have

8, 12, or 16 bits.

— LN Field 30307 contains the Name which has the largest index of any in Procedure 602's Name Table
10350. I

— SIP Field 30309 is a UlD pointer to the object which contains the S-interpreter for Procedure 602's 3-
Language. .
NTP Field 30311 is an object-relative pointer to the beginning of Procedure 602's Name Table 10350.
SDPP Field 30313 is a pointer which is resolved to the location of static data used by Procedures 602 to
which PED 30303 belongs when one of Procedures 602 is invoked by a given Process 610. The resolved
pointer corresponding to SDPP 30313 is the SDP ABP.

-- PBP Field 30315 contains the PBP ABP for invocations of Procedures 602 to which PED 30303 belongs.
The PBP ABP is used to calculate locations inside Procedure Object 608.
Other areas of interest in Procedure Object 608 are Literals 30301 and Static Data Prototype (SDPR)

30317. Literals 30301 contains literal values, i.e., values in Procedure 602 which are known at compile time
and will not change during program execution. SDPR 30317 may contain any ofthe following: pointers to
extemal routines and to static data contained in other objects, infonnation required to create static data for
:3 Procedure 602, and in some cases. the static data itself. Pointers in SDPR 30317 may be either resolved or
non-resolved.

In the present embodiment, Binder Area 30323 is also lmporta nt. Binder Area 30323 contains
information which allows unresolved pointers contained in Procedure Object 608 to be resolved.
Unresolved pointers other than SDPP 30313 in Procedure Object 608 all contain locations in Binder Area
30323, and the specified location contains the information required to resolve the pointer.

Fig. 303 contains arrows showing the locations in Procedure Object 608 pointed to by NTP Field 30311,
SDPP Field 30313, and PBP Field 30315. NTP Field 30311 points to the beginning of Name Tables 10350, and
thus a Name's Name Table Entry can be located by adding the Name's value to N1? Field 3031 1. PBP Field
30315 points to the beginning of Literals 30301, and consequently, the locations of Literals and the

_. locations of SlNs may be expresadas offsets fron1 the value of PBP Field 30315. SDPP Field 30313 points to
the beginning of SDPR 30317. As will be explained in detail in the discussion of Calls, when a procedure 602
has static data, the SDP ABP is derived from SDPP Field 30313.

b. Namespace
The Namespace component of CS 10110 locates SlNs belonging to a procedure and fetches them from

memory to FU 10120. parses SlNs into SOPS and Names, and performs Resolve and Evaluation operations
on Names. The Resolve operation translates a Name into a Logil Descriptor 27116 for the data
represented by the Name, while the Evaluation operation obtains the data itself. The Evaluation operation
does so by performing-a Resolve operation and then using the resulting Logical Descriptor 27116 to fetch
the data. Since the Evaluation and Resolve operations are the most complimted, the discussion begins with
them.

1. Name Resolution and Evaluation ,
Name Resolution and Evaluation translate Names into Logical Descriptors 27116 by means of

infonnation contained in the Names’ NTEs, and the NTEs define locations in terms of Architectural Base
Registers. Consequently, the following discussion will first describe Name Table Entries and Architectural
Base Pointers and than the means by which Namespace translates the information contained in the Name
Table Entries and Architectural Base Pointers into Logical Descriptors 27116.

2. The Name Table (Fig. 304) 4
As previously mentioned, Name Tables 10350 are contained in Procedure Objects 608. Name Tables

10350 contain the information required to translate Names into Logical Descriptors 27116 for the operands
represented by the Names. Each Name has as its value the number of a Name Table Entry. A Name's Name
Table Entry is located by multiplying the Name's value by the size of a short Name Table Entry and adding
the product to the value in N‘I'P Field 30311 of PED 30303 belonging to Procedure 602 which contains the
SIN.

The Name Table Entry contains length and type information for the data item specified by the Name.
and represents the data item's location as a displacement from a known location, termed the base. The
base may be a location specified by an ABP, a location specified by another Name. or a location specified
by a pointer. In the latter case, the pointers location may be specified in terms of an ABP or as a Name.

Fig. 304 is a detailed representation of a Name Table Entry (N'l'E) 30401. There are two kinds of N'l'Es
30401: Short NTEs 30403 and Long NTEs 30405. Short-NTEs 30403 contain 64 bits; Long NTEs 30405
contain 128 bits. Names that represent scaier data items whose displacements may be expressed in 16 bits
have Short NT'Es 30403; Names that represent scaler data items whose displacements require more than
16 bits and Names that represent array elements have Long NTEs 30405.

A Short NTE 30403 has four main fields, each 16 bits in length:

-- Flags and Fonnat l-"reid 30407 contains flags and format information which specify how Namespace is '
to imerpret NTE 30401.

135

Petitioner Apple Inc. — Exhibit 1024, p. 4180

Petitioner Apple Inc. - Exhibit 1024, p. 4181

10

20

65

EP 0 067 556 B1

— Base Field 30425 indicates the base to which the displacement is to be added to obtain the location of
the data represented by the Name. Base Field 30425 may represent the location in four ways: by means
of an AB? by means of a Name, by means of a pointer located by means of an ABP, and by means of a
pointer located by means of a Name.

— Length Field 30435 represents the length of the data. The length may be a literal value or a Name. If it is
a Name, the Name resolves to a location which contains the data item's length.

— Displacement Field 30437 contains the displacement of the beginning of the data from the base
specified in Field 30425. The displacement is a signed integer value.
Long NTES 30405 have four additional fields, each 16 bits long: Two of the fields, Index Name Field

30441 and IE5 Field 30445 are used only in NTEs 30401 for Names that represent arrays.
— Displacement Extension Field 30439 is used in all Long NTEs 30405. If the displacement value in Field

30437 has less than 16 bits. Displacement Extension Field 30439 contains sign bits, i.e.. the bits in the
field are set to 0 when the displacement is positive and 1 when the displacement is negative. When the
displacement value has more than 16 bits. Displacement Extension Field 30439 contains the most
significant bits of the displacement value as well as sign bits.

— Index Name Field 30441 contains a Name that represents a value used to index an element of an array.
— Field 30443 is reserved.

IES Field 30445 contains a Name or Literal that specifies the size of an element in an array. The value
represented by this field is used together with the value represented by Index Name Field 30441 to locate
an element of an array.

As may be seen from the above, the following fields may contain names: Base Field 30425, Length
Field 30435, Index Name Field 30441, and IE5 Field 30445. .

Two fields in N'l'E 30401 require further consideration: Flags and Format Field 30407 and Base Field
30425. Flags and Format l-‘ield 30407 has three subfields: Flags Field 30408, FM Field 30421, and Type Field
30423. Turning first to Flags Field 30408. the six flags in the field indicate how Namespace is to interpret
NTE 30401. The flags have the following meanings when they are set:
— 'LongN'l'EFleg30409:NTE30401isaLongN'l'E30405.

Length is a Name Flag 30411: Length Field 30435 contains a Name.
Base is a Name Flag 30413: Base field 30425 contains a Name instead of the number of an ASP.
Base indirect Flag 30415: Base Field 30425 represents a pointer, and the location represented by N'l'E
30401 is to be calculated by obtaining the pointer‘: value and adding the value contained in
Displacemem Field 30437 and Displacement Extension Field 30439 to the pointefs offset.
Nray Flag 30417: NTE 30401 represents an array.
IE5 is a Name Flag 30419: IES Field 30445 contains a Name that represents the IES value.
Several of these flags may be set in a given ME 30401. For example, an entry for an array element that

was referenced via a pointer to the array which in turn was represented by a Name, and whose IES value
was represented by a Name, would have Flags 30409, 30413, 30415, 30417. and 30419 set.

FM Field 30421 indicates how the data represented by the Name is to be forrnated when it is fetched
from memory. The value of FM Field 30421 is placed in FIU Field 27107 of Logical Descriptor 27116
produced from N'l'E 30401. The two bits allow for four possibilities:

II

Setting Meaning

00 right justify, zero fill

01 right justify, sign fill

10 left justify. zero fill

11 left justifv. ASCII space fill

The four hits in Type Field 30423 are used by compilers for language-specific type information. The
value of Type Field 30423 is placed in Type Field 27109 of Logical Descriptor 27116 produced from NTE
30401.

Base I-'ield 30425 may have either Base is an ABP Format 30427 or Base is a Name Format 30432. The
manner in which Base Field 30425 is interpreted depends on the setting of Base is a Name Flag 30413 and
Base Indirect Flag 30415. There are four possibilities:

136

Petitioner Apple Inc. — Exhibit 1024, p. 4181

Petitioner Apple Inc. - Exhibit 1024, p. 4182

I0

20

25

30

55

§ EP M57 556 31

Field Settings

Base is a Name Base Indirect Meaning

0 0 ABP Format locates base
directly.

ABP Format locates a pointer
which is the base. '

Base is Name Format locates
base when Name is resolved.

Base is Name Format locates
a pointer when Name is
resolve and the pointer is '-
the base.

As indicated by the above table. Base Field 30425 is interpreted as having Base is ABP Format 30427
when Base is a Name Flag 30411 is not set. in Base is ABP Format 30427, Base Field 30425 has two
subfields: ABP Field 30429 and Pointer Locator Field 30431. The latter field has meaning only when Base
Indirect Flag 30415 is set. ABP field 30429 is a two-bit code which indicates the ABP. The settings and their
meanings are the following: ' -

Setting APB

00 I FP

O1 Unused

10 SDP

1 1 PBP

The ABPs are discussed below. When Base Indirect Ftag 30415 is set to 1 and Base is a Name Flag
30413 is set to 0, the remaining 14 bits of the Base Field in ABP Fonnat are interpreted as Pointer Locetor
Field 30413. When so interpreted, Pointer Locator Field 30413 contains a signed integer, which, when
multiplied by 128, gives the displacement of a pointer from the ABP specified in ABP Field 30429. The value
of this pointer is then the base to which the displacement ls added. .

Base field 30425 is interpreted as having Base is a Name Format 30432 when Base is a Name Flag
30413 is set to 1. ln Base is a Name Format 30432, Base Field 30425 contains a Name. if Base lndirect Flag
30415 is not set, the Name is resolved to obmin the Base. If Base Indirect Flag 30415 is set. the name is
evaluated to obtain a pointer value, and that pointer value is the Base.

3. Architectural Base Pointers (Figs. 305. 306)
If Base is a Name Flag 30413 belonging to a NTE 30401 is not set, Base Field 30425 specifies one of the

three ABPs in CS 10110:

—- PBP specifies a location in Procedure Object 608'to which displacements may be added to obtain the
locations of Literals and SlNs.

-- SDP specifies a location in a Static Data Block for an invocation of a Procedure 602 to which
displacements may be added to obtain the locations of static data and linkage pointers to Procedures
602 contained in other Procedure Objects 608 and static data.

— FP specifies a location in the MAS frame belonging to Procedure 6025 current invocation to which
displacements may be added to obtain the location of local data and linkage pointers to arguments.
Each time a" Process 610 invokes e Procedure 602. Call microcode saves the current values of the ABPs

on Secure Stack 10336, calculates the values of the ABPs for the new invocation, and places the resulting
' Logical Descriptors 27116 in FU 10120 registers, where they are accessible to Namespace microcode.

Call microcode calculates the ABPs as follows: PBP is obtained directly from PBP Field 30315 in PED
‘ 30303 belonging to the Procedure 602 being executed. All that is required to make it into a Logical

Descriptor 27116 is the addition of the AON for Procedure Object 608's UlD. V
SDP is obtained by performing a pointer-to«descriptor translation on SDPP Field 30313. FP, finally, is

provided by the portion of Call microcode which creates the new MAS 502 frame for the invocation. As is

described in detail in the discussion of call, the Call microcode copies linkage pointers to the invocation's
actual arguments onto MAS 502, sets FP to point to the location following the last actual argument. and
then allocates storage for the invocation's local data. Positive displacements from FP thus specify locations

137

Petitioner Apple Inc. — Exhibit 1024, p. 4182

Petitioner Apple Inc. - Exhibit 1024, p. 4183

Y0

I5

20

25

EP 0 067 sss B1

in the local data, while negative offsets specify linkage pointers.
a.a. Resolving and Evaluating Names (Fig. 305) V»

The primary operations performed by Namespace are resolving names and evaluating them. A Name
has been resolved when Namespace has used the ABPs and information contained in the Name's NTE
30401 to produce a Logical Descriptor 27116 for the Name: a name has been evaluated when Namespace
has resolved the Name, presented the resulting Logical Descriptor 27116 for the Name to memory, and
obtained the value of the data represented by the Name from memory.

The resolve operation has three parts, which may be performed in any order:
— Obtaining the Base from Base l-‘ield 30425 of the Name's NTE 30401.
-- Obtaining the displacement. .
— Obtaining the length from Length Field 30435.

Obtaining the length is the simplest of the operations: if Length in a Name Flag 30411 is set. the length
is the value obtained by evaluating the Name contained in Length Field 30435: otherwise. Length Field
30435 contains a literal value and the length is that liteial's value.

There are four ways in which the Base may be calculated. Which is used depends on the settings of
Base is a Name Flag 30413 and Base Indirect Flag 30415:
— Both Flags 0: the ASP specified in ABP Field 30429 is the Base.
— Base is a Name Flag 30413 O and Base Indirect Flag 30415 1: The Base is the location contained in the

pointer specified by ABP Field 30429 and pointer Locator Field 30431.
— Base is a Name Flag 30413 1 and Base Indirect Flag 30415 0: The Base is the location obtained by

resolving the Name in‘Base Field 30425.
-- Both Flags 1: The Base is the location obtained by evaluating the Name in Base Field 30425.

The manner in which Namespace calculates the displacement depends on whether NTE 30401
represents a scalar data item or an array data item. in the first case, Namespace adds the value contained in
Displacement Held 30437 and Displacement Extension Field 30439 to the location obtained for the Base; in
the second case, Namespace evaluates Index Name Field 30441 and ES Field 30445, multiplies the
resulting values together, and adds the product to the value in Displacement Field 30437 in order to obtain
the displacement.

if any field of a NTE 30401 contains a Name, Namespece obtains the value or location represented by
the Name by performing a Resolve or Evaluation operation on it as required. As mentioned in the
discussion of NTEs 30401, flags in Flags Field 30408 indicate which fields of an ME 30401 contain Names.
Since the NTE 30401 for a Name used in another NT'E 30401 may itself contain Names. Namespace
performs the Resolve and Evaluation operations recursively.

I

b.b. implementation of Name Evaluation and Name Resolve in CS 10110
in the present embodiment, the Name Evaluation and Resolve operations are carried out by FU 10120

microcode Eval and Resolve commands. Both commands require two pieces of infonnation: a register in
the current frame of SR portion 10362 of GHF 10354 for receiving Logical Descriptor 27116 produced by the
operation, and the source of the Name which is to be resolved or evaluated. Both Resolve and Eval may
choose between three sources: Parser 20264. Name Trap 20254, and the low-order 16 bits of the output
register for OFFALU 20242. Resolve may specify current frame registers 0. 1. or 2 for Logical Descriptor
27116, and Eval may specify current frame registers'0 or 1. At the end of the Resolve operation, Logical
Descriptor 27116 for the data represented by the Name is in the specified SR 10362 register and at the end
of the Evaluation operation, Logical Descriptor 27116 is in the specified SR 10362 register and the data's
value has been transferred via MOD Bus 10114 to EU 10122's OPB 20322.

The execution of both Resolve and Eval commends always begin with the presentation ofthe Name to
Name Cache 10226. The Name presented to Name Cache 10226 is latched into Name Trap 20254. where it is
available for subsequent use by Name Resolve microcode. '

If there is an entry for the Name In Name Cache 10226, a name cache hit occurs. For Namm with NTEs
30401 fulfilling three conditions, the Name Cache 10226 entry for the Name is a Logical Descriptor 271 16 for
the data item represented by the Name. The conditions are the following:
- NTE 30401 contains no Names.

-— Length Field of NTE 30401 specifies a length of less than 256 bits.
— If Base is Indirect Flag 30415 is set, Pointer Displacement Field 30431 must have a negative value.

indicating that the base is a linkage poimer.
Logical Descriptor 27116 can be encached in this case because neither the location nor the length of the

data represented by the Name can change during the life of an invotion of Procedure 602 to which the
Name belongs. If the Name Cache 10226 entry for the Name is a Logical Descriptor 27116, the hit causes
Name Cache 10226 to place Logical Descriptor 27116 in the specified SR 10362 register. In all other cases.
the Name cache 1026 entry for the Name does not contain a Logical Descriptor 27116, and a hit causes
Name Cache 10226 to emit a JAM signal. The JAM signal invokes microcode which uses information stored ~
in Name Cache 10226 to construct Logical Descriptor 27116 for the data item represented by the Name.
JAMS are explained in detail below.

If there is no entry for the Name in Name cache 1026, a Name Cache Miss occurs, and Name Cache
10226 emits a cache miss JAM signal. The Name Resolve microroutine invoked by the cache miss JAM

138

Petitioner Apple Inc. — Exhibit 1024, p. 4183

Petitioner Apple Inc. - Exhibit 1024, p. 4184

n

15

20

EP 0 067 556 B1

signal constructs an entry in Name Cache 10226 from the Name's NTE 30401, using FU 10120's DESP 20210
to perform the necessary calculations. When it is finished, the cache miss microcode leaves a Logical
Descriptor 27116 for the Name in the specified SR 10362 register and returns.

The Resolve operation is over when Logical Descriptor 27116 has been placed in the specified GRF
10354 register; the Evaluation operation continues by presenting Logical Descriptor 27116 to Memory
Reference Unit 27017, which reads the data represented by Logical Descriptor 27116 from memory and
places it on OPB 20322. The memory reference may result in Protection Cache 10234 misses and ATU 10228

misses, as well as protection faults and page faults, but these are handled by means of event signals and
are therefore invisible to the Evaluation operation.

Name Cache 10226 produces 15 different JAM signals. The signal produced by a JAM depends on the
following: whether the operation is a Resolve or an Eval. which register Logical Descriptor 27116 is to be
placed in, whether a miss occurred, and in the case of a hit, which register in the Name Cache 10226 entry
for the Name was loaded last. From the point of view of the behavior of the microcode invoked by the JAM,
the last two factors are the most important. Their relation to the microcode is explained in detail below.

in the present embodiment, all entries in Name Cache 10226 are invalidated when a Procedure 602

calls another Procedure 602. The invalidation is required because Calls always change the value of FF and
may also change the values of SDP and PBP, thereby changing the meaning of NTEs 30401 using
displacements from ABPs. Entries for Names in invoked Procedure 602 are created and loaded into Name
Cache 10226 when the Names are evaluated or resolved and a cache miss occurs.

The following discussion will first present Name Cache 10226 as it appears to the microprogrammer
and then explain in detail how Name Cache 10226 is used to evaluate and rolve Names, how it is loaded.
and how it is flushed.

c.c. Name Cache 10226 Entries (Fig. 306)
. The structure and the physical behavior of Name Cache 10226 was presented in the discussion of FU

10120 hardware; here, the logical structure of Name Cache 1026 entries as they appear to the
. microprogrammer is presented. To the microprogrammer, Name Cache 10226 appears as a device which,

when presented a Name on NAME Bus 20224,_always provides the microprogrammer with a Name Cache
10226 entry for the Name consisting of four registers. The microprog rammer may read from or write to any
one of the four registers. When the microprogrammer writes to the four registers, the action taken by Name
Cache 10226 when a hit occurs on the Name associated with the four registers depends on which of the
registers has most recently been loaded. The means by which Name Cache 10226 associates a Name with
the four registers, and the means by which Name Cache 10226 provides registers when it is full are invisible
to the microprogrammer.

l-‘lg. 306 illustrates Name Cache Enby 30601 for a Name. The four Registers 30602 in Name Cache Entry
30601 are numbered Othrough 3, and each Register 30602 has an AON, offset, and length field like those in
GRF 10354 registers, except that some flag bits in GRF 10354 register AON fields are not included in
Register 30602 fields, and the length field in Register 30602 is 8 bits long. As is the case with GRF 10354
registers, the microprogrammer can read or write individual fields of Register 30602 or entire Register
3060?. Name Cache Entry 30601 is connected via DB 27021 to DESP 20210, and consequently. the contents
of a GRF 10354 register may be obtained from or transferred to a Register 30602 or viceversa. When the
contents of a Register 30602 have been transfered to a GRF 10354 register, the contents may be processed
using OFFALU 20242 and other arithmetic-logical devices in DESP 20210.

d.d. Name Cache 10226 Hits

When a Name is presented to Name Cache 10226 and Name Cache 10226 has a Name Cache Entry
30601 containing infomtation about the Name, a name cache hit occurs. On a hit, Name Cache 10226
hardware always loads the contents of Register 30602 0 of the Name's Name Cache Entry 30601 into the
GRF 10354 register specified in the Resolve or Eval microoommand. in addition, a hit may result in the
invocation of microcode via a JAM:

— The JAM may invoke special microcode for resolving Names of array elements whose NTEs 30401
allow certain hardware accelerations of index calculations.

—— The JAM may invoke general name resolution microcode which produces a Logical Descriptor 27116
from the contents of Name Cache Entry 30601.

Whether the hit produces a JAM. and the kind of JAM it produces, are detennined bythe last Register
30602 to be loaded when Name Cache Entry 30601 was created by Name Cache Miss microcode. lf Register
30602 0 was the last to be loaded, no JAM occurs; if Register 30602 1 was loaded last, the JAM for special
array Name resolution occurs; it Register 30602 2 or 3 was loaded last, the JAM for general Name
resolution occurs.

As may be inferred from the above, Name Cache 10226 hardware defines the manner in which Name

Cache Entries 30601 are loaded for the first two cases. In the first case, Name Cache Register 30602 0 must
contain Logical Descriptor 27116 for the Name's data. As already mentioned, the Name's NTE 30401 must
therefore describe data whose location and length does not change during an invocation and whose length
is less than 256 bits. Name Cache 10226 hardware also determines the form of Name Cache Entries 30601

for encachable arrays. An encachable array N'l'E 30401 is an array NTE 30401 which falls the following

139

Petitioner Apple Inc. — Exhibit 1024, p. 4184

Petitioner Apple Inc. - Exhibit 1024, p. 4185

IO

15

20

25

50

EP 0 067 556 B1

conditions:

-— The only Name contained in array NTE 30401 is in Index Name Field 30441. _
— NTE 30401 for the index Name fills the conditions for scaler NTEs 30401 for which Logical Descriptors

27116 may be encached.

— The value in IE8 Field 30445 is no greater than 128 and a power of 2. _
— Array NTE 30401 otherwise fills the conditions for sealer NTEs 30401 for which Logical Descriptors

27116 may be encached.
In the present embodiment, the encachable array entry uses registers O. 1. and 2 of Name Cache Entry

30601 for the name:

9991539’ Contents

AON ‘ OFFSET LENGTH

0 Logical Descriptor 27116 for the index Name

1 0 IES power of 2 unused

2 Logical Descriptor 27116 for the array

When a hit for this type of entry occurs. the resulting JAM signal does two things: it invokes
encachable an'ay resolve microcode and it causes the index Name's Logical Desciiptor 27116 to be
presented to Memory Reference Unit 27017 for a read operation which returns the value of the data
represented by the index Name to an accumulator in OFFALU 20242. ‘lite encachable an'ay resolve
microroutine then uses the Name that caused the JAM, latched into Name Trap 20254, to lots Register
30602 2 of Name Cache Entry 30601 for the Name, writes the cements of Register 30602 2 into the GRF
register specified bythe Resolve or Eval microcommand. obtains the product ofthe [ES value and the index
value byshitting the index value leftthe number oftimes specified by the lES exponent in Register 306021,
adds the result to the offset field ofthe GRF 10354 register containing the array's Logical Descriptor 27116,
thus obtaining Logical Descriptor 27116 for the desired array element, and returns.

For the other cases, the manner in which Name Cache Entries 30601 are loaded and processed to
obtain Logical Descriptors 271 16 is determined by the microprogrammer. The JAM signal which results if a
Name Cache Entry 30601 is neither a Logical Descriptor 27116 nor an encachable array entry merely
invokes a microroutine. The rriicroroutine uses the Name latched into Name Trap 20254 to locate the
Name's Name Cache Entry 30601 and then reads tag values in Name Cache Entry 30601 to determine how
the infonnation in Name Cache Entry 30511 is to be translated into a Logical Descriptor 27116. The contents
of Name Cache Entries 30601 for the other cases have two general forms: one for NTEs 30401 with Base is
Indirect Flag 30415 set. and one for NTEs in which it is not set. The first general form looks like this:

Register Contents

AON OFFSET . LENGTH

0 ABP AON tagllength unused

1 0 index _name/IES unused

. 2 0 unused unused

3 0 data displacement unused
from loc. specified

by pointer

Register 30602 0 contains the AON of the ABP. Register 30602 0's offset field contains two items: the
tag, which contains Flags Field 30408 of NTE 30401 along with other information. and which determines
how Name Resolve microcode interprets the contents of Name Cache Entry 30601 , and a value or Name for
the length of the data item. Register 30602 1 is used only if the Name represents a data item in an array. It
then contains the Name from Index field 30441 and the Name or value from IES Field 30445. The offsettield

‘ of Register‘30602 3 contains the sum of the offset indicated by NTE 30401 's ABP and of the displacement
‘indicated by NTE 30401.

The second format, used for N1'Es 30401 whose bases are obtained from pointers or by resolving a
Name. looks like this:

140

Petitioner Apple Inc. — Exhibit 1024, p. 4185

Petitioner Apple Inc. - Exhibit 1024, p. 4186

i_r

EP 0 067 5562 B1

Registers Contents

AON OFFSET LENGTH

5" 0 0 tag/length unused

1 0 index name/IES unused

2 0 FM and type bitsl unused
10 base field

3 0 - . data displacement unused
from loc. specified
by pointer or name15

in this form, the location of the Base must be obtained either by evaluating a pointer or resolving a
Name. Hence, there is no field specifying the Base's AON. Othenrvise, Registers 30602 0 and 1 have the

20 same contents as in the previous format. in Register 30602 2, the offset field contains Name Table Entry
30401's FM Field 30421 and Type Field 30423 and Base Field 30425. The Offset i-‘raid of Register 30602 2
contains the value of Name Table Entry 30401 Displacement l-‘relds 30437 and 30439.

As in Name Table Entries 30401. the index must be represented by a Name, and length. IE8. and Base
may be represented by Names. If a field of Name Cache Entry 30601 contains a Name, a flag in the tag

25 indicates that fact, and Name Resolve microcode performs an Eval or Resolve operation on it as required to
obtain the value or location represented by the name. ' ‘

The microcode which resolves Name Cache Entries 30601 of the types just described uses the general
algorithms described in the discussion of Name Table Entries 30401, and is therefore not discussed further
here.

e.e. Name Cache 10226 Misses

when a Name is presented to Name Cache 10226 and there is no Name Cache Entry 30601 for the
Name, a name cache miss occurs. On a miss Name Cache 10226 hardware emits a JAM signal which
invokes name cache miss microcode. The microcode obtains the Name which caused the miss from Name

35 Trap 20254 and locates the Name's NTE 30401 by adding the Name to the value of NTP 30311 from PED
30303 for Procedure 602 being executed. As will be explained in detail later, when a Procedure 602 is called,
the Call microcode places the AON and offset specifying the NTP’s location in a register in GR’s 10360.
Using the information contained in the Name's N'l'E 30401, the Cache Miss microcode resolves the Name
and constructs a Name Cache Entry 30601 for it. As described above, the microcode detennlnes the method

40 by which it resolves the Name and the form ofthe Name's Name Cache Entry 30801 by reading Flags Field
30408 in the Name's NTE 30401. Since the descriptions of the Resolve operation, the mlcromachine, Name
cache 1026. and the formats of Name Cache Entries 30601 are sufficient to allow those skilled in the art to
understand the operations performed by Cache Miss microcode, no further description of the microcode is
provided.

f.f. Flushing Name Cache 10226

As described in the discussion of Name Cache 10226 hardware, hardware means, namely VALS 24068,
exist which allow Name Cache Entries 30601 to be invalidated. Name Cache Entries 30601 may be
invalidated singly, or all entries in Name cache 1026 may be invalidated by means of a single

50 microcommand. The latter operation is termed name cache flushing. in the present embodiment, Name
Cache 10226 must be flushed when Process 610 whose Virtual Processor 612 is bound to JP 10114 executes
a Call or a Return and whenever Virtual Processor 612 N0 is unbound from JP 10114. Flushing is required
on Call and Return because Calls and Returns change the values of the ABPs and other pointers needed to
resolve Names. At a minimum, a Call produces a new MAS Frame 10412, and a Return returns to a previous

55 Frame 10412, thereby changing the value of FF. If the called Procedure 602 has a different PED 30303 from
that of the calling Procedure 602, the Call or Return may also change PBP, SDP, and NTP. Flushing is
required when a Virtual Processor 612 is unbound from JP 10114 because Virtual Processor 612 which is
next bound to JP 10114 is bound to a different Process 610, and therefore cannot use any information
belonging to Process 610 bound to the Previous Virtual Processor 612.

g.g. Fetching the I-Stream ~
As explained in the discussion of FU 10120 hardware, SlNs are fetched from memory by Prefetcher

20260. PREF 20260 contains a Logical Descriptor 27116 for a location in Code 10344 belonging to Procedure
602 which is currently being executed. On any MO cycle. PREF 20260 can place Logical Descriptor 27116 on

55 DB 27021, cause Memory Reference Unit 27017 to fetch 32 bits at the location specified by Logil

141

Petitioner Apple Inc. — Exhibit 1024, p. 4186

Petitioner Apple Inc. - Exhibit 1024, p. 4187

20

55

ea 0 067 556 B1

Descriptor 27116, and write them into INSTB 20262. When INSTB 20262 is full, PREF 20260 stops fetching
SlNs until Namespace parsing operations, described below, have processed part of the contents of INSTB
20262, thereby creating space for more SlNs.

The fetching operation is automatic, and requires intervention from Namespace only when a SIN
causes a branch, i.e., causes the next SIN to be executed to be seine other SIN than the one immediately
following the current SIN. On a branch, Namespace must load PREF 20260 with the location of the next SIN
to be executed and cause PREF 20260 to begin fetching SlNs at that location. The operation which does this
is specified by the load-prefetchvfor-branch microcommand. The microcommand specifies a source for a
Logical Descriptor 27116 and transfers that Logical Descriptor 27116 via DE 27021 to PREF 20260. After
PREF 20260 has thus been loaded, it begins fetching SlNs at the specified location. Since any SlNs still in
lNS'l'B 20262 have been rendered meaningless by the branch operation, the first SlNs loaded into INSTB
20262 are simply written over INSTB 20262's prior contents. Fig. 274 contains an example ofthe use of the
load-prefetch-for-branch microcommand.

h.h. Parsing the l«Stream
The I-steam asfetched from MEM 10112 and stored in INSTB 20262 is a sequence of SOPs and Names.

As already mentioned, the I-stream has a fixed format: in the present embodiment, SOPs are always 8 bits
long. and Names may be 8, 12, or 16 bits long.The length of Names used in a given procedure isfixed. and
is indicated by the value in K Field 30305 in the Procedure 602's PED 30303. The Namespace parsing
operations obtain the SOPs and Names from the l-stream and place them on NAME Bus 20224. The SOPs
are transferred via this bus to the devices in SOP Decoder 27003, while the Names are transferred to Name
Trap 20254 and Name Cache 10226 for Resolve and Evaluation operations as described above. As the
parsing operations obtain SOPs and Names. they also update the three program counters CPC 20270, EPC
20274, and IPC 20272. The values in these three counters are offsets from PBP which point to locations in
Code 10344 belonging to Procedure 602 being executed. CFC 20270 points to the lstream syllable currently
being parsed, so it is updated on every parsing operation. EPC 20274 points to the beginning of the last SIN
executed by JP 10114, and IPC 20272 points to the beginning of the current SlN, so these program counters
are changed only at the beginning of the execution of an SIN. i.e., when a SOP is parsed.

As described in the discussion of FU 10120 hardware. in the current implementation, parsing consists
physically of reading 8 or 16 bits of data from a location in INSTB 20262 identified by a pointer for INSTB
20262 which is accessible only to the hardware. As data is read, the hardware increments the pointer by the
number of bits read, wrapping around and retuming to the beginning of INSTB 20262 if it reacha the end.
At the same time that the hardware increments the pointer. lt increments CPC 20270 bythe same number of
bits. As previously mentioned, CPC 20270 contains the offset from PBP ofthe SOP or Name being currently
parsed, thus coordinating the reading of lNSTB 20262 with the readin of Procedure 602's Code 10344.

The number of bits read depends on whether Parser 20264 is reading an SOP or a Name. and in the
latter case. by the syllable size specified for the Name. The syllable size is contained in CSSR 24112. On a
Call to a Procedure 602 which has a different FED 30303 from that of the calling procedure. the Call
microcode loads the value contained in K Field 30305 into CSSR 24112.

Namespace's parsing operations are performed by separate microcommands for parsing SOPs and
Names. There is a single microcommand for parsing S—operations: parse-op-stage. The microcommand
obtains the next eight bits from INSTB 20262, places the bits onto NAME Bus 20224, and latches them into
LOPCODE Register 24212. it also updates EPC 20274 and IPC 20272 as required at the beginning of an SIN:
EPC 20274 is set to IPC 20272's fomier value, and IPC 20272 is set to CPC 20270’: value. At the end of the
operation, CPC 20270 is incremented by 8. Since the parsing of an SOP always occurs as the first operation
in the interpretation of an SlN, the parse-op-stage command is generally combined with a dispatch fetch
command. As will be explained below, the latter command interprets the S-operation as an address in
FDISP 24218. and FDlSP 24218 in turn produces an address in FUSITT 11012. The latter address is the
location of the beginning of the SIN microcode for the SIN.

There are two microcommands for parsing Names:

parse_k_load__epc and paise_k_dispatch_ebox. Both commands obtain a number of bits from INSTB 20262
and-placethem on NAME Bus 20214. With both microcommands, the syllable size, I(, stored in CSSR 24112,
determines the number of bits obtained from INSTB 20262. Both commands also increment CPC by the
value stored in CSSR 24112. in addition, parse_k_load_epc sets EPC to lPC’s value, while
parse_k_dispatch_ebox also dispatches EU 10122, i.e., interprets the SOP saved in LOPCODE 24210 as an
address in EDISP 24222, which in turn contains an address in EU EUSl'i'l’ 20344. The EU EUSITT 20344
address is passed via EUDIS Bus 20206 to COMO 20342 in EU 10122. '

c. The S-Interpreters (Fig. 307) ~
CS 10110 does not assign fixed meanings to SOPs. While all SOPs are 8 bits long, a given 8 bit SOP

may have one meaning in one S-Language and a completely different meaning in another S-Language. The
semantics of an S-Language's S-operations are determined completely by the S-interpreter for the 8-
Language. Thus, in order to correctly interpret an S-operation, CS 10110 must know what S-interpreter it is
to use. The S-interpreter is identified by a UlD pointer with offset 0 in SIP Field 30309 of FED 30303 for

142

Petitioner Apple Inc. — Exhibit 1024, p. 4187

Petitioner Apple Inc. - Exhibit 1024, p. 4188

I0

15

20

30

EP 0 057 556 31

Procedure 602 that CS 10110 is currently executing. In the present embodiment, the UID is the UID of a
microcode object which contains FU 10120 microcode. when loaded into FUSITI’ 11012, the microcode
interprets SOPs as defined by the S-Language to which the SOP belongs. In other embodiments, the UID
may be the UID of a Procedure Object 608 containing Procedures 602 which interpret the S-Language's
SOPs, and in still others, the S-interpreter may be contained in a PROM and the S-interpreter UID may not
specify an oblect. but may serve solely to identify the S-interpreter.

When a Procedure 602 executes an SIN on JP 10114, CS 10110 must translate the value of SIP Pointer

30309 for Procedure 602 and the S-instruction's SOP into a location in the microcode or high-level language
code which makes up the S-interpreter. The location obtained by the translation is the beginning of the
microcode or higholevel language code which implements the SIN. The translation of an SOP together with
SIP Pointer 30309 into a location in the S-interpreter is temted dispatching. Dispatching in the present
embodiment involves two primary components: a table in memory which translates the value of SIP
Pointer 30309 into a small integer called the Dlalect Number, and 5-operation Decoder Portion 27003 of the
EU 10120 micromachine. The following discussion will first present the table and explain how an SIP
Pointer 30309 is translated into a Dialect Number, and then explain how the Dialect Number and the SOP
together are translated into locations in FUSITT 11012 and EUSITT 20344.

1. Translating SIP into a Dialect Number (Fig. 307)
In the present embodiment, all S-interpreters in CS10110 are loaded into FUSl'lT 11012 when CS10110

begins operation and each S-interpreter is always placed in the same location. Which S-interpreter is used
to interpret an S-Language is determined by”a value stored in dialect register HDIAL 24212. Consequently,
in the present embodiment. a Call to a Procedure 602 whose S-interpreter differs from that of the calling
Procedure 602 must translate the UID poimer contained in SIP Field 30309 into a Dialect Number.

I-"lg. 307 represents the table and microcode which performs this translation in the present
embodiment. S-interpreter Translation Table (STl'l 30701 is a table which is indexed by small AONs. Each
STT Entry ISTTE) 30703 has two fields: an AON Field 30705 and e Dialect Number Field 30709. Dialect
Number field 30709 contains the Dialect Number for the S-interpreter object whose AON is in AON field
30705.

When CS 10110 beglns operation, each S-interpreter object is wired active and assigned an AON small
enough to serve _as an index in ST!‘ 30701. By convention, a given S-interpreter object is always assigned
the same AON and the same Dialect Number. The AON is placed in AON Field 30705 of STTE 30703 indexed
by the AON, and the Dialect Number is placed In Dialect Number field 30709. Since the S-interpreter
objects are wired active, these AONs will never be reassigned to other objects.

On a Call which requires a new S_-interpreter. Call microcode obtains the new SIP from SIP Feld 30309,
calls KOS LAR microcode to translate its UID to its AON, uses the AON to locate the S-interpretefs S'l'l'E
30703, and places the value of-Dialect Number field 30709 into RDIAI. 21242.

Other embodiments may allow S-interpreters to be loaded into FUSl'l'I' 11012 at times other than
system initialization, and allow S-interpreters to occupy different locations in FUSITT 11012 at different
times. In these embodiments, S‘lT 30701 may be implemented In a manner similaryto the implementations
of A81’ 10914 or MHT 10716 in the present embodiment.

7. Dispatching .
Dispatching is accomplished by Dispatch Files 27004. These files translate the values provided by

RDIAI. 24212 and the SOP of the S-instruction being executed into the location of microcode for the SIN
specified by the 5-operation in the S-interpreter specified by the value of RDIAL 24212. The present
embodiment has three dispatch files: FDISP 24218, FALG 24220, and EDISP 24222. FDISP 24218 and FALG
24220 translate S-operations into locations of microcode which executes on FU 10120; EDISP 24222
translates S-operations into locations of microcode which executes on EU 10122. The difference between
FDISP 24218 and FALG 24220 is one of speed: FDISP 24218 can translate an SOP in the same
microinstruction which perfonns a parse_op_stage command to load the SOP into LOPCODE 24210. FALG
2420 must perform the translation on a cycle following the one in which the SOP is loaded imo LOPCODE
24210. Typically, the location of the first portion of the microcode to execute an S-operation is contained in
an FDISP 24218 register, the location of portions executed later is contained in an FALG 24220 register, and
the location of microcode for the S—operation which executes on EU 10122 is contained in EDISP 24222.

In the present embodiment. the registers accomplish the translation from S-operation to microcode
location as follows: As mentioned in the discussion of FU 10120 hardware. each Dispatch File contains 1024
registers. Each register may contain an address in an S-interpreter. As will be seen in detail later, the
address may be an address in an S-interpreters object. or it may be the address in FUSITT 11012 or EUSl‘lT
20344 of a copy of microcode stored at an S-interpreter address. The registers in the Dispatch Files may be
divided into sets of 128 or 256 registers. Each set of registers translates the SOPs for a single S-Language
into locations in microcode. Which set of registers is used to interpret a given S-operation is decided by the
value of RDIAL 24212; which register in the set is used is determined by the value of the S-operation. The
value contained in the specified register is then the location of microcode which executes the S-instruction
specified by the S-operation In the S-Language specified by RDIAL 24212.

Logically, the register addressed by the concatenated value in turn contains a 15 bit address which is

143

Petitioner Apple Inc. — Exhibit 1024, p. 4188

Petitioner Apple Inc. - Exhibit 1024, p. 4189

70

15

20

45

50

55

fee in nor see 1

the location in the S-interpreter of the first microinstruction of microcode used to execute the S-instruction
specified by the S-operation in the S—Language specified by the contents of HDIAL 24212. in the present
embodiment, the microcode referred to by the address may have been loaded into FUSITT 11012 and
EUSITT 20344 or it may be available only in memory. Addresses of microcode located in FUSITT 11012 and
EUSITT 20344 are only eight bits long. Consequently, if a Dispatch Hie 27004 contains an address which
requires more bits than that, the microcode specified by the address is in memory. As described in the
discussion of FU 10112 hardware, addresses larger than 8 bits produce an Event Signal, and microcode
invoked by the event signal fetches the microinstruction at the specified address in the S-interpreter from
memory and loads it into location 0 of FUSl'lT 11012. The event microcode then returns, and the
microinstruction at location 0 is executed. ifthe next microinstruction also has an address larger than 8 bite,
the event signal occurs again and the proces described above is repeated. _

As previously mentioned, FDISP 24218 is faster than FALG 24220. The reason for the difference in
speed is that FDISP registers contain only 6 bits for addressing the S-interpreter. The present embodiment
assumes that all microcode addressed via FDISP 24218 is contained in FUSITT 11012. it concatenate: 2 zero
bits with the six bits in the FDISP 24218 register to produce an 8 bit address for FUSITT 11012. FDISP 24218
registers can thus contain the location of every founh FUSITT 11012 register between FUSITT register 256
and FUSITT register 448. The microcode loaded into these locations in FUSITT 11012 is microcode for
operations which are performed at the start of the SIN by many different SlNs. For example, all $lNs which
perform operations on 2 operands and assign the result to a location specified by a third operand must
parse and evaluate the first two operands and parse and resolve the third operand. Only after these
operations are done are $lNs-specific operations performed. In the present embodiment, the microcode
which parses, resolves, and evaluates the operands is contained in a part of FUSITT 11012 which is
addressable by FDlSP 24218.

As previously mentioned. in the present embodiment. FUSITT 11012 and EUSITT 20344 may be loaded
only when CS 101 10 is initialized. The microcode loaded into FUSl1T110‘l2 and EUSl1'l' 20344 is produced
by the microbinder from the microcode for the various SlNs. To achieve efficient use of FlJSl'lT 11012 and
EUSITI’ 20344, microcode for operations shared by various S-interpreters appears only once in FUSITT
11012 and EUSFIT 20344. While the $lNs in different S—L.anguages which share the microcode have

different registers in FDISP 24218, FALG 24220. or EDISP 24222 as the case may be, the registers for each of
the S-instructions contain the same location in FUSITT 11012 or EUSITT 20344.

4. The Kernel Operating System
A. Introduction

Many of the unique properties of CS 10110 are produced by the manipulation of tables in MEM 10112
and Secondary Storage 10124 by programs executing on JP 101 14. These programs and tables together
make up the Kernel Operating System (KOS). Having described CS 10110's components and the means by
which they cooperate to execute computer programs. this specification now presents a detailed account of
KOS and of the properties of CS 101 10 which it produces. The discussion begins with a general introduction
to operating systems. than presents an overview of CS 10110's operating systems, an overview of the KOS.
and detailed discussions of the implementation of objects, access control, and Processes 610.

a. Operating Systems (Fig. 401)
in CS 10110, as in other computer systems, the operating system has two functions:

— it controls the use of CS 10110 resources such as JP 10114, MEM 10112, and devices in IOS 10116 by
. programs being executed on C5 10110. -

— It defines how CS 10110 resources appear to users of (:3 10110.
The second function is a consequence of the first: By controlling the manner in which executing

programs use system resources. the operating system in fact determines how the system appears to its
users. Figure 401 is a schematic representation of the relationship between User 40101, Operating System
40102, and System Resources 40103. When User 40101 wishes to use a System Resource 40103. User
40101 requests the use of System Resource 40103 from Operating System 40102, and Operating System
40102 in turn commands CS 10110 to provide the requested Resources 40103. For example. when a user
program wishes to use a peripheral device. it does not deaI\i1'rth the device directly. but instead calls the
Operating System 40102 procedure 602 that controls the device._While Operating System 40102 must take
into account the device's complicated physical properties. the user program that requested the device need
know nothing about the physical properties. but must only know what information the Operating System
40102 Procedure 602 requires to perform the operation requested bythe user program. For example. while
the peripheral device may require that a precise pattern ofdata be presented to it, the Operating System
40102 procedure 602 may only require the data itself from the user program. and may format the data as
required by the peripheral device. The Operating System 40102 Procedure 602 that controls the peripheral
device thus transforms a complicated physical interface to the device into a much simpler logical interface.

1. Resourcs Controlled by Operating Systems (Fig. 402)

Operating Systems‘40102 control two kinds of resources: physical resources and virtualresources. The
physical resources in the present embodiment of CS 10110 are JP 10114, IOS 10116 and the peripheral

144

Petitioner Apple Inc. — Exhibit 1024, p. 4189

Petitioner Apple Inc. - Exhibit 1024, p. 4190

u

ll

20

25

50

EP 0 067 556 81

devices associated with IOS 10116, MEM 10112, and Secondary Storage 10124. Virtual resources are
resources that the operating system itself defines for users of CS 10110. As was explained above, in
controlling how CS 10110's resources are used. Operating System 40102 defines how CS 10110 appears to
the users. instead of the physical resources controlled by Operating System 40102, the user sees a far
simpler set of virtual resources. The logical I/O device interface that Operating System 40102 gives the user
of a physical IIO device is such a virtual resource. Often, an Operating System 40102 will define sets of
virtual resources and multiplex the physical resources.among these virtual resources. For instance,
Operating System 40102 may define a set of Virtual Processors 612 that correspond to a smaller group of
physical processors, and a set of virtual memories that correspond to a smaller group of physical
resources. When a user executes a program, it runs on a Virtual Processor 612 and uses virtual memory. it
seems to the user of the virtual processor and the virtual memory that he has sole access to a physical
processor and physical memory, but in fact, Operating System 40102 is multiplexing the physical
processors and memories among the Virtual Processors 612 and virtual memories.

Operating System 40102, too, uses virtual resources. For instance, the memory management portion
of an Operating System 40102 may use 1/0 devices; when it does so, it uses the virtual IIO devices defined
by the portion of the Operating System 40102 that manages the V0 devices. One part of Operating System
40102 may also redefine virtual resources defined by other pans of Operating System 40102. For instance,
one part of Operating System 40102 may define a set of primitive virtual i/O devices and another part may
use these primitive virtual I/O devices to define a set of high-level user-oriented l/O devices. Operating
System 40102 thus turns the physical CS 10110 into a hierarchy of virtual resources. How a user of CS
10110 perceives CS 10110 depends entirely on the level at which.he is dealing with the virtual resources.

The entity that uses the resources defined by Operating System 40102 is the process. A Process 610
may be defined as the activity resulting from the execution at a program with its data by a sequential
processor. Whenever a user requests the execution of a program on C5 10110, Operating System 40102
creates a Process 610 which then executes the Procedures 602 making up the user's program. in physical
terms, a process 610 is a set of data bases in memory that contain the current state of the program
execution that the process represents. Operating System 40102 causes Process 610 to execute the program
by giving Process 610 access to the virtual resources which it requires to execute the program. by giving
the virtual resources access to those parts of Proixss 610's state which they require to perform their
operations, and by giving these virtual resources access to the physical resources. The temporary
relationship ofone resource to another or of a Process 610 to a resource is called a binding. When a Process
610 has access to a given Virtual Processor 612 and Virtual processor 612 has access to process 610's state,
process 610 is bound to Virtual Processor 612, and when Virtual Processor 612 has access to JP 10114 and
Virtual Processor 612's state is loaded into JP 101 14 registers. Virtual processor 612 is bound to JP 10114,
and JP 10114 can execute SlNs contained in Procedures 602 in the program being executed by Process 610
bound to Virtual Processor 612. Binding and unbinding may occur many times in the course of the
execution of a program by a Process 610. For instance. if a Process 610 executes a reference to data and the
data is not present in MEM 10112. then Operating System 40102 unbinds Process 610's Virtual Processor
612 from JP 10114 until the data is available in MEM 10112. If the data is not available for an extended

period of time. or if the user for whom Process 610 is executing the program wishes to stop the execution of
the program for a while, Operating System 40102 may unbind process 610 from its Virtual Processor 612.
Virtual Processor 612 is then available for use by other Processes 610. i

As mentioned above. the binding process involves giving a first resource access to a second resource,
and using the first resource’s state in the second resource. To permit binding and unbinding, Operating
System 40102 maintains data bases that contain the current state of each resource and each Process 610.
State may be defined as the information that the operating system must have to use the resource or
execute the Process 610. The state of a line printer, for instance. may be variables that indicate whether the
line printer is busy, free, off line. or out of order. A Process 610's state is more involved, since it must
contain enough information to allow Operating System 40102 to bind Process 610 to a Virtual Processor
612, execute Process 610 for a while, unbind Process 610, and than rebind it and continue execution where
it was halted. A process 610's state thus includes all of the data used by Process 610 up to the time that it
was unbound from a Wrtual Procmsor 612. along with information indicating whether Process 610 is ready
to begin executing again.

Figure 402 shows the relationship between Processes 610, virtual, and physical resources in an
operating system. The figure shows a multi-process Operating System 40102. that is, one that can
multiplex CS 10110 resources among several Processes 610. The Processes 610 thus appear to be
executing concurrently. The solid arrows in Figure 402 indicate bindings between virtual resources or
between virtual and physical resources. Each Process 610 is created by Operating System 40102 to execute
a user program. The program consists of Procedures 602, and Process 610 executes Procedures 602 in the
order prescribed by the program. Processes 610 are created and managed by a component of Operating
System 40102 called the Process Manager. Process Manager 40203 executes a Process 610 by binding it to
a Virtual Processor 612. There may be more Processes 610 than there are Virtual Processors 612. in this
case, Operating System 40102 multiplexes Virtual Processors 612 among Processes 610.

Virtual Processors 612 are created and made available by another component of Operating System

65 40102, Virtual Processor Manager 40205. Virtual Processor Manager 40205 also multiplexes JP 10114

145

Petitioner Apple Inc. — Exhibit 1024, p. 4190

Petitioner Apple Inc. - Exhibit 1024, p. 4191

I5

20

30

40

El? o 057 sss B11

among Virtual Processors 612. if a Virtual Processor 612 is ready to run, Virtual Processor Manager 40205
binds it to JP 10114. When Virtual Processor 612 can run no longer, or when another Virtual Processor 612
requires JP 10114, Virtual Processor Manager 40205 unbinds running Virtual Procasor 812 from JP 10114
and binds another Virtual Processor 612 to it.

Virtual Processors 612 use virtual memory and IIO resources to perform memory access and input-
output. Virtual Memory 40206 is created and managed by Virtual Memory Manager 40207, and Virtual IIO
Devices 40208 are created and managed by Virtual IIO Manager 40209. Like Virtual Processor Manager
40205, Components 40207 and 40209 of Operating System 40102 multiplex physical resources among the
virtual resources. As described above, one set of virtual resources may use another set. One way in which
this can happen is indicated by the broken arrows in Figure 402. These arrows show a binding between
Virtual Memory 40206 and Virtual l/O Device 40208. This binding occurs when Virtual Memory 40206 must
handle a reference to data contained on a peripheral device such as a disk drive. To the user of Virtual
Memory 40206, all data appears to be available in MEM 10110. in fact, however, the data is stored on
peripheral devices such as disk drives, and copied into MEM 10112 when required. When a Process 610
references data that has not been copied into MEM 10112, Virtual Memory 40206 must use IOS 10116 to
copy the data into MEM 10112. in order to do this, it uses a Virtual IIO Device 40208 provided by Virtual I/O
Manager 40209.

b. The Operating System in CS 10110 ‘
For the sake of clarity, Operating System 40102 has been described as though it existed outside of CS

10110. In fact, however, Operating System 40102 itself uses the resources it controls. in the present
embodiment, parts of Operating System 40102 are embodied in JP 10114 hardware devices. parts are
embodied in microcode which executes on JP 10114, and parts are embodied in Procedures 602. These
Procedures 602 are sometimes called by Processes 610 executing user programs, and sometimes by
special Operating System Processes 610 which do nothing but execute operations for Operating System
40102.

The manner in which the components of Operating Swtem 40102 interact may be illustrated by the
way in which CS 10110 handles a page fault, i.e., a reference to data which is not available in MEM 10110.
The first indication that there may be a page fault is an ATU Miss Event Signal. This Event Signal is
generated by ATU 10228 in i’-‘U 10120 when there is no entry in ATU 10228 for a Logical Descriptor Z7116
used in a read or write operation. The Event Signal invokes Operating System 40102 microcode, which
examines a table in MEM 10112 in orderto find whetherthe data described by Logical Descriptor 271 16 has
a copy in MEM 10112. if the table indicates that there is no copy, Operating System 40102 microcode
communicates the fact of the page fault to an Operating System 40102 Virtual Memory Manager process
610 and removes Virtual Processor 612 bound to the Process 610 which was exewting when the page fault
occurred from JP 10114. Some time later, Virtual _Memory Manager Process 610 is bound to JP 10114.
Procedures 802 executed by Virtual Memory Manager Process 610 then initiate the 1/0 operations required
to locate the desired data in Secondary Storage 10124 and copy it into MEM 10112. When the data is
available in MEM 10112. Operating System 40102 allows Virtual Processor 612 bound to Process 610 which
was executing when the page fault occurred to return to JP 10114. Virtual Processor 612 repeats the
memory reference which caused the page fault. and since the data is now in MEM 10112, the reference
succeeds and execution of Process 610 continues.

c. Extended Operating System and the Kernel Operating System (Fig. 403)
in CS 10110, Operating System 40102 is made up of two component operating systems, the Extended

Operating System (E05) and the Kernel Operating System (KOS). The KOS has direct access to the physical
resources. it defines a set of primitive virtual resources and multiplexes the physical resources among the
primitive virtual resources. The EOS has access to the primitive virtual resources defined by KOS, but not to
the physical rources. The EOS defines a set of user-level virtual resources and multiplexes the primitive
virtual resources defined by KOS among the user level virtual resources. For example. KOS provides EOS
with Processes 610 and Virtual processors 612 and binds Virtual Processors 612 to JP 10114, but EOS
decides when a Process 610 is to be created and when a process 610 is to be bound to a Virtual processor
612. '

Figure 403 shows the relationship between a user Process 610, EOS, KOS, and the physical resources
in CS 10110. l-‘igure 403 shows three levels of interface between executing user Process 610 and JP 10114.
The highest level of interface is Procedure Level 40302. At this level, Process 610 interacts with CS 10110 by
calling Procedures 602 as specified by the program Process 610 is executing. The calls may be either calls
to User Procedures 40306 or calls to EOS Procedures 40307. When Process 610 is executing a procedure

- 602, Process 610 produces a stream of SlNs. The stream contains two kinds of SlNs. S-language SlNs 40310
and KOS SlNs 40311. Both kinds of SlNs interact with CS 10110 at the next level of interface. SIN-level
Interface 40309. SlNs 40310 and 40311 are interpreted by Microcode 40312 and 40313, and
Microinstmctions 40315 interact with CS 10110 at the lowest level of interface. JP 10114 interface 40316. As

55 already explained in the discussion of the FU 10120 micromachine, certain conditions in JP 10114 result in

146

Petitioner Apple Inc. — Exhibit 1024, p. 4191

Petitioner Apple Inc. - Exhibit 1024, p. 4192

II

10

15

20

25

30

60

EP 0 067 556 B1

Event Signals 40314 which invoke microroutines in S-interpreter Microcode 40312 or KOS Microcode
40313. Only Procedure-Level Interface 40302_and SIN-level Interface 40309 are visible to users. Procedure-
level Interface 40309 appears as calls in user Procedures 602 or as statements in user Procedures 602 which
compilers translate imo calls to EOS procedures 802. SIN-level Interface 40309 appears as the Name Tables
10335 and SlNs in Procedure Objects 608 generated by compilers

As Figure 403 indicates, EOS exists only at Procedural Level 40302, while KOS exists at Procedural
Level 40302, and SIN Level 40304, and within the microcode beneath SIN Level 40309. The only portion of
the operating system that is directly available to user Processes 610 is EOS Procedures 40307. EOS
Procedures 40307 may in mm call KOS procedures 40308. In many cases, an EOS Procedure 40307 will
contain nothing more than the call to a K08 Procedure 40308.

User Procedures 40306, EOS Procedures 40307, and KOS Procedures 40308 all contain S-language
Slhls 40310. In addition, KOS Procedures 40308 only may contain special K05 SlNs 40311. Special KOS
SlNs 40311 control functions that are not available to EOS Procedures 40307 or User Procedures 40306, and

KOS SlNs 40311 may therefore not appear in Procedures 40306 or 40307. S-language SlNs 40310 are
' interpreted by S-interpreter Microcode 40312, while KOS SlNs 40311 are interpreted by K05 Microcode

40313. KOS Microcode 40313 may also be called by S-interpreter Microcode 40313. Depending on the
hardware conditions that cause Event Signals 40314, Signals 40314 may cause the execution of either S-
interpreter Microcode 40312 or KOS Microcode 40313.

Figure 403 shows the system as it is executing a user Process 610. There are in addition special
Processes 610 reserved for K05 and E05 use. These Processes 610 work like user Processes 610, but carry
out operating system functions such as process management and virtual memory management. With one
exception, EOS Processes 610 call EOS Procedures 40307 and KOS Procedures 40308, while KOS Processes
610 call only KOS Procedures 40303: The exception is the beginning of Process 610 execution: KOS
perfonns the KOS-level functions required to begin executing a Process 610 and then calls EOS. E05
performs the required EOS level functions and then calls the first User Procedure 40306 in the program
Process 610 is executing.

A description of how KOS handles page faults can serve to show how the parts of the system at the JP
10114-—, SlN—, and procedure Levels work together. A page fault occurs when a Process 610 references a
data item that has no copy in MEM 10112. The page fault begins as an Event Signal from ATU 10228. The
Event Signal invokes a microroutine in KOS Microcode 40313. if the microroutine confirms that the
referenced data item is not in MEM 10112, it records the fact of the page fault in some KOS tables in MEM
10112 and calls another K05 microroutine that unbinds Virtual Processor 612 bound to Process 610 that

caused the page fault from JP 10114 and allows another Process 610's Virtual Processor 612 to run. Some
time after the page fault. a special operating system Process 610, the Virtual Memory Manager Process 610.
runs and executes KOS Procedures 40309. Virtual Memory Manager Process 610 initiates the 110 operation
that reads the data from Secondary Storage 10124 imo MEM 10112. When 105 10116 has finished the
operation. Process 610 that caused the page fault can run again and Wrtual Memory Manager Process 610
performs an operation which causes Process 610's Wrtual Processor 612 to again be bound to JP 10114.
When Process 610 resumes execution, it again attempts to reference the data. The data is now in MEM
10112 and consequently, the page fault does not recur.

The division of Operating System 40102 into two hierarchically-related operating systems is
characteristic for CS 10110. Several advantages are gained by such a division:
— Each of the two operating systems is simpler than a single operating system would be. EOS can

concern itself mainly with resource allocation policy and high-level virtual resources, while KOS can
ooncem itself with low-level virtual resources and hardware control. V

- Because each operating system is simpler, it is easier to verify that each system's components are
performing correctly, and the two systems are therefore more dependable than a single system.

—- Dividing Operating System 40102 makes it easier to implement dilferent embodiments of CS 10110.
Only the interface provided by EOS is visible to the user, and consequently, the user interface to the
system can be changed without altering KOS. In fact, a single CS 10110 may have a number of E055.
and thereby present different interfaces to different users. Similarly, changes in the hardware affect the
implementation of the K05, but not the interface that KOS provides EOS. A given EOS can therefore
run on more than one embodiment of CS 10110.

—- A divided operating system is more secure than a single operating system. Physical accessto JP 10114
is provided solely by K05, and consequently, KOS can ensure that users manipulate only those
resources to which they have access rights.
All CS5 10110 will have the virtual resources defined by KOS, while the resources defined by EOS will

vary from one CS 10110 to another and even within a single CS 10110. Consequently, the remainder of the
discussion will concern itself with KOS.

The relationship between the K05 and the rest of CS 10110 is governed by four principles:
, -— Only the K05 has access to the resources it controls. User calls to EOS may result in EOS calls to K05,

and S-language SlNs may result in invocations of KOS microcode routines, but neither EOS nor user
programs may directly manipulate resources controlled by KOS.

— The KOS is passive. It responds to calls from the EOS, to microcode invocations, and to Event Signals,
but it initiates no action on its own.

147

Petitioner Apple Inc. — Exhibit 1024, p. 4192

Petitioner Apple Inc. - Exhibit 1024, p. 4193

I0

20

60

EP 0 067 556 B1 "

— The KOS is invisible to all system users but the EOS. KOS does not affect the logical behavior of a
Process 610 and is noticeable to users only with regard to the speed with which a Process 610 executes
on C8 10110.

As discussed above. KOS manages both physical and virtual resources The physical resources and
‘some of the virtual resources are visible only within KOS; others of the virtual resources are provided to
EOS. Each virtual resource has two main parts: a set of data bases that contain the virtual resource's state,
and a set of routines that manipulate the virtual resource. The set of routines for a virtual resource are
termed the resource's manager. The routines may be KOS Procedures 40308. or they may be KOS
Microcode 40313. As mentioned, in some cases, K05 uses separate Processes 610 to manage the
resources.

For the purposes of this specification, the resources managed by KOS fall into two main groups: those
‘ associated with objects, and those associated'with_Processes 610. In the following, first those resources

associated with objects, and then those associated with Processes 610 are discussed.

B. Objects and Object Management (Fig. 404)
The virtual resources ten-ned objects are defined by KOS and manipulated by EOS and KOS. Objects as

seen by EOS have five properties:
— A single UID that identifies the object throughout the object's life and specifies what Logical Allocation

Unit (LAU) the object belongs to.
—- A set of attributes that describe the object and limit access to it.
— Bit-addressable contents. lthe present embodiment, the contents may range from 0 to l2"32) -— 1 bits

in length. Any bit in the contents may be addressed by an offset.
— Objects may be created.
— Objects may be destroyed. ’

All afthe data and Procedures 602 in a CS 10110 are contained in objects. Any process 610 executing
on a CS 10110 may use a UID-off set address to attemptto access data or Procedures 602 in certain objects
on any CS 10110 accessible to the CS 10110 on which Process 610 is executing.The objects which may be
thus accessed by any Process 610 are those having U|Ds which are guaranteed unique for all present and
future CS 10110. Objects with such unique UlDs thus form a single address space which is at least
potentially accessible to any process 610 executing on any CS 10110. As will be explained in detail later,
whether a Process 610 can in fact access an object in this single address space depends on whether Process
610 has access rights to the object. other objects, whose UlDs are not unique, may be accessed only by
Processes 610 executing -on Css 10110 or groups of CS5 10110'for which the non-unique UID is in fact
unique. No two objects accessible to a CS 10110 at a given time may have identical UlDs.

The following discuxion of objects will first deal with objects as they are seen direcdy by E05 and
indirectly by user programs, and then deal with objects as they appear to KOS.

Figure 404 illustrates how objects appear to EOS. The object has three parts: the UlD 40401, the
‘ Attributes 40404, and the Contems, 40406. The object's contentsreside in a Logical Allocation Unit (LAU),

40405. UID 40401 has two parts: a LAU Identifier (LAUlDl 40402 that indicates what LAU 40405the object is
on, and the Object Serial Number (OSN) 40403, which specifies the object in LAU 40405.

The EOS can create an object on a LAU 40405, and given the object's UlD 40401, can destroy the object.
ln addition, EOS can read and change an object's Attributes 40404. Any Process 610 executing on a CS
10110 may reference information In an object by specifying the object's UID 40401 and the bit in the object
at which the information begins. At thehighest level, addresses in cs 10110 thus consist of a UlD 40401
specifying an object and an offset specifying the number of bits imo the object at which the information
begins. As will be explained in detail below, KOS translates such UlD-offset addresses imo Intermediate
forms called AON-offset addresses for use in JP 10114 and into page number-displacement addresses for
use in referencing information which has been copied into MEM 10112. -

The physical implementation and manipulation of objects is restricted solely to KOS. For instance
objects and their attributes are in fact stored in Secondary Storage 10124. When a program references a
portion of an object, KOS copies that portion of the object from Secondary Storage 10124 into MEM 10112,
and if the portion in MEM 10112 is changed. updates the copy of the object in Secondary Storage 10124.
EOS and user programs cannot control the location of an object in Secondary Storage 10124 orthe location
of the copy of a portion of an object in MEM 10112. and therefore n access the object only by means of
KOS.

While EOS cannot control the physical implementation of an object, it can provide KOS with
information that allows KOS to manage objects more effectively. Such information is termed hints. For
instance, KOS generally copies a portion of an object into MEM 10112 only if a Process 610 references
information in the object. However, EOS schedules Process 610 execution, and therefore can predict that
certain objects will be required in the near future. EOS can pass this information on to K05, and KOS can
use the information to decide what portions of objects to copy into MEM 10112.

a. Objects and User Programs (fig. 405)
As stated above. user programs manipulate objects, but the objects are generally not directly visible to

user programs. instead, user programs use symbols such as variable names or other references to refer to

148

Petitioner Apple Inc. — Exhibit 1024, p. 4193

Petitioner Apple Inc. - Exhibit 1024, p. 4194

‘i

-1

10

20

25

EP o 067 556 at
data stored in objects or file names to refer to the objects themselves. The discussion of Namespace has
already illustrated how CS 10110 compilers translate variable names appearing in statements in .
Procedures 602 into Names, i.e., indexes of NTEs 30401. how Name Resolve microcode resolves NTE 30401

into Logical Descriptors 27116. and how ATU 10228 translates Logical Descriptors 27116 into locations in
MEM 10112 containing copies of the portions of the objects in which the data represented by the variables
resides. ' ' '

The translation of filenames to UlDs 40401 is accomplished by E05. E08 maintains a filename
translation table which establishes a relationship between a system filename called a pathname and the
UID 40401 of the object containing the file's data, and thereby associates the pathname with the object. A
Pathname is a sequence of ASCII characters which identifies a file to a user of CS 10110. Each pathname in
a given CS 10110 must be unique. Figure 405 shows the filename translation table. Referring to that figure,
when a user gives pathname 40501 to the E05, E05 uses Fileneme Translation Table 40503 to translate
pathname 40501 into UID 40401 for object 40504 containing the file. An object in CS 10110 may thus be
identified in two ways: by means of its UID 40401 or by means of a Pathname 40501. While an object has
only a single UID 40401 throughout its life, the object may have many Pathnames 40501. All that is required
to change an object's pathname 40501 is the substitution of one Pathname 40501 for another in the object's
Entry 40502 in Filename Translation Table 40503. One consequence of the fact that an object may have
different Pathnames 40501 during its life is that when a program uses a Pathname 40501 to identify an
object, a user of CS 10110 may make the program process a different object simply by giving the object
which formerly had Pathname 40501 which appears in the program a new Pathname 40501 and giving the
next object to be processed the Pathname 40501 which appears in the program. V

In the present embodiment, an object may contain only a single file, and consequently, a Pathname
40501 always refers to an entire object. in other embodiments, e Pathname 40501 may refer to a portion of
an object. and in such embodiments, l-'ilenama Translation Table 40503 will associate a Pathname 40501
with a UID-offset address specifying the beginning of the file.

-. b. UlDs 40401 (Fig. 406)
UlDs 40401 may identify objects and other entities in CS 10110. Any entity identified by a UlD 40401 has

only a single UID throughout its life. Figure 406 is a detailed representation of a CS 10110 UlD 40401. UID
40401 is 80 bits long, and has two fields. Field 40402. 32 bits long, is the Logical Allocation Unit ldentlfler
(LAUID). lt specifies LAU 40405 containing the object. LAUID 40402 is further subdivided into two subfields:
IAU Group Number (LAUGN) 40607 and LAU Serial Number (LAUSN) 40605. LAUGN 40607 specifies a
group of LAUs 40405, and LAUSN 40605 specifies a LAU 40405 in that group.'Purchasers ofCS10110 may
obtain LAUGNs 40607 from the manufacturer. The manufacturer guarantees that he will assign LAUGN
40607 given the purchaser to no other CS 10110, and thus these LAUGNs 40607 may be used to form UlDs
40401 which will be unique for all CSs10110. field 40604, 48 bits long, is the Object Serial Number l0SN). It
specifies the object in LAU 40405.

UlDs 40401 are generated by K05 Procedures 602.
There are two such procedures 602, one which generates UlDs 40401 which identify objects, and

another which generates UlDs 40401 which identify other entities in CS 10110. The former Procedure 602 is
called Generate Object UID, and the latter Generate Non-object UID. The Generate Object UlD Procedure
602 is called only by the K08 Create Object Procedure 602. Create Object Procedure 602 provides Generate
Object UID Procedure 1502 with a LAUID 40402. and Generate Object UID Procedure 602 returns a UlD 40401
for the object. In the present embodiment, UID 40401 is formed by taking the current value of the
architectural clock. contained in a location in MEM 10112, forming an OSN 40403 from the architectural
clock's current value, and concatenating OSN 40403 to LAUID 40402. -

Generate Non-object UID Procedure 602 may be invoked by EDS to provide a UlD 40401 which does
not specify an object. Non—object UlDs 40401 may be used in cs 10110 wherever a unique label is required.
For example. as will be explained in detail later, all Virtual processors 612 which are available to CS 10110
have non-object UlDs 40401- All such non-object UlDs 40401 have a single LAUSN 40607, and thus, EOS
need only provide a LAUGN 40605 as an argument. Generate Non-object UID Procedure 602 concatenates
LAUGN 40605 with the special LAUSN 40607, and LAUID 40402 thus produced with an OSN 40403 obtained
from the architectural clock. In other embodiments, OSNs 40403 for both object and non-object UlDs 40401
‘may be generated by other means, such as counters.

CS 10110 also has a special UID 40401 called the Null UID 40401. The Null UID 40401 contains nothing
but‘0 bits, and is used in situations which require a UID value which cannot represent an entity in CS 10110.

c. Object Attributes ‘ .
What a program can do with an object is determined by the object's Attributes 40404. There are two

kinds of Attributes 40404: Object Attributes and Control Attributes. Object Attributes describe the object's
contents; Control Attributes control access to the object. Objects may have Attributes 40404 even though
they have no Contents 40406, and in some cases, objects may even exist solely for their Attributes 40404.

For the purposes of this discussion, there are two kinds of Object Attributes: the Size Attribute and the
Type Attributes.

An object's Size Attribute indites the number of bits that the object currently contains. On each

149

Petitioner Apple Inc. — Exhibit 1024, p. 4194

Petitioner Apple Inc. - Exhibit 1024, p. 4195

15

EP in 057 556 at

reference to an object's Contents 40406, KOS checks to make sure that the data accessed does not extend‘
beyond the end of the object. if it does, the reference is aborted.

The Type Attributes indicate what kind of information the object contains and how that information
may be used. There are three categories of Type Attributes: the Primitive Type Attributes, the Extended
Type Attribute, and the Domain of Execution attribute. An object's Primitive Type Attribute indicates
whether the object is a data object, a Procedure Object 608, an Extended Type Manager, or an S—interpreter.
As their names imply, data objects contain data and Procedure Objects 608 contain Procedures 602.
Extended Type Managers (ETMs) are a special type of Procedure Object 608 whose Procedures 608 may
perfonn operations solely on objects called Extended Type Objects. Extended Type Objects (ETOsl are
objects which have an Extended Type Attribute in addition to their Primitive Type Attribute; for details, see
the discussion of the Extended Type Attribute below. S-interpreters are objects that contain interpreters for
S-languages. In the present embodiment, the interpreters consist of dispatch tables and microcode, but in
other embodiments, the interpreters may themselves be written in high-level languages. Like the Length
Attribute, the Primitive Type Attributes allow KOS to ensure that a program is using an object correctly. For
instance, when the KOS executes a call for a Procedure 602 itchecks whether the object specified by the call
is a Procedure Object 608. If it is not, the call fails.

d. Attributes and Access Control -

The remaining Object Attributes and the Control Attributes are all part of CS 10110's Access Control
System. The Access Control System is discussed in detail later; here, it is dealt with only to the extent
required for the discussion of objects. in CS 10110, an access of an object occurs when a Process 610
fetches SlNs contained in a Procedure Object 608, reads data from an object, writes data to an object, or in
some cases, when Process 610 transfers control to a Procedure 602. The Access Control System checks
whether a Process 610 has the rlghtto perform the access it is attempting. There are two kinrk of access in
CS 10110, Primitive Access and Extended Access. Primitive Access is access which the Access Control
System checks on every reference to an object by a Process 610; Extended Access is access that is checked
only on user request Primitive access checks are performed on every object; extended access checks may
be perfonned only on H03, and may be perfonned only by Procedures 602 contained in ETlVls.

The means by which the Access Control System checks a Process 610's access to an object are Process
610's subject and the object's Access Control Lists (ACLs). Each Process 610 has a subject made up of four
UlDs 40401. These UlDs 40401 specify the following:
— The userfor whom Process 610 was created. This UID 40401 is termed the principal component of the

subject.
Process 610 itself. This UID 40401 is termed the process component.
The domain in which Process 610 is currently executing. This UID 40401 is termed the domain
component. ..

— A user-defined subgroup of subjects. This UID 40401 is termed the tag component.
A domain is a group of objects which may potentially be accessed by any Process 610 which is

executing a Procedure 602 in one of a group of Procedure Objects 608 or ETMs. Each Procedure Object 608
or El’M has a Domain of Execution (DOE) Attribute. This attribute is a UID 40401, and while -a Process 610 is
executing a Procedure 802 in that Procedure Object 608 or ETM, the DOE attribute UID 40401 is the domain
component in Process 610's subject. The DOE attribute thus defines a group of objects which may be
accessed by a Process 610 executing Procedures 602 from Procedure Object 608. The group of objects is
called Procedure Object 608's domain. As may be seen from the above definition, a subject's domain
component may change on any call to or return from a Procedure 602. The tag component may change
whenever the user desires. The principal component and the process component, on the other hand. do not
change for the life of Process 610.

The ACLs which make up the other half of the Access Control System are attributes of objects. Each
ACL consists of a series of Entries (ACLE), and each ACLE has two parts: a Subject Template and a set of
Access Privileges. The Subject Template defines a group of subjects, and the set of Access Privileges define
the kinds of access that subjects belonging to the group have to the object. To check whether an access to
an object is legal, the K05 examines the ACLs. it allows access only if it finds an ACLE whose Subject
Template matches the current subject of Process 610 which wishes to make the access and whose set of
Access Privileges includes the kind of access desired by Process 610. For example, a Procedure Object 608
may have an ACL with two entries: one whose Subject Template allows any subject access, and whose set
of Access Privileges allows only Execute Access, and another whose Subject Template allows only a single
subject access and whose set of Access Privileges allows Read, Write, and Execute Access. Such an ACL
allows any user of CS 10110 to execute the Procedures 602 in Procedure Object 608. but only a specified
Process 610 belonging to a specified user and executing a specified group of Procedures 602 may examine
or modify the Procedures 602 in the Procedure Object 608. '

There are two kinds of ACLs. All objects have Primitive Access Control Lists (PACLsl.' ETOs may in
addition have Extended Access Control Lists (EACLs). The subject portion of the ACLE is the same in all
ACLs; the two kinds of list differ in the kinds of access they control. The access controlled by the PACL is
defined by K05 and is checked by KOS on every attempt to gain such access; the access controlled by the
EACL is defined by the user and is checked only when the user requests K05 to do so.

150

Petitioner Apple Inc. — Exhibit 1024, p. 4195

Petitioner Apple Inc. - Exhibit 1024, p. 4196

n

20

40

EP 0 067 556 B1‘

c. Implementation of Objects
1. Introduction (Fig. 407, 408)

The user of a CS 10110 need only concern himself with objects as they have just been described. In
order for a Process 610 to reference an object, the object's LAU 40405 must be accessible from CS 10110
upon which Process 610 is mnning, Process 610 must know the object's UID 40401, and Process 610's
current subject must have the right to access the object in the desired manner. Process 610 need know
neither how the object's Contents 40406 and Attributes 40404 are stored on C5 10110's physical devices nor
the methods CS 10110 uses to make the object's Contents 40406 and Attributes 40404 available to Process
61 O. -

The K03, on the other hand, must implement objects on the physical devices that make up CS 10110. In
so doing, it must take into account two sets of physical limitations:
- In logical terms, all CS5 10110 have a single logical memory, but the physical implementation of

memory in the system is hierarchical: a given CS 10110 has rapid access to a relatively small MEM
10112, much slower access to a relatively large amount of slow Secondary Storage 10124, and very
slow access to LAUs 40405 on other accessible CSs 10110.

-- UlDs 40401. and even more, subjects, are too large to be handled efflciently on JP 101 14's internal data
paths and in JP 10114’s registers.
The means by which the KOS overcomes these physical limitations will vary from embodiment to

embodiment. Here, there are presented first an overview and then a detailed discussion of the means used
in the present embodiment.

The physical limitations of the memory are overcome by means of a Virtual Memory system. The
Virtual Memory System creates a one-level logical memory by automatically bringing copies of those
portions of objects required by executing Processes 610 into MEM 10112 and automatically copying altered
portions of objects from MEM 10112 back to Secondary Storage 10124. Objects thus reside primarily in
Secondary Storage 10124, but copies of portions of them are made available in MEM 10112 when a Process
610 makes a reference to them. Besides bringing portions of objects into MEM 10112, when required, the
Virtual Memory System keeps track of where in MEM 10112 the portions are located, and when a Process
610 references a portion of an object that is in MEM 10112, the Virtual Memory System translates the
reference into a physical location in MEM 10112.

- JP 10114’: need for smaller object identifiers and subject identifiers is satisfied by the use of internal
identifiers tailed Aalve Object Numbers (AONs) and Active Subject Numbers (ASNs) inside JP 10114. Each
time a UID 40401 is moved from MEM 10112 into JP 101 14's registers,.it is translated into an AON, and the
reverse translation takes place each time an AON is moved from a JP 10114's registers to MEM 10112.
Similarly, the current subjects of Processes 610 which are bound to Virtual Processors 612 are translated
from four UlDs 40401 into small integer ASNs. and when Virtual Processor 612 is bound to JP 10114, the
ASN for the subject belonging to Virtual Processor 612's process 610 is placed in a JP 10114 register. The
translations from UID 40401 to AON and vice-versa, and from subject to ASN are performed by K05.

When KOS translates UlDs 40401 to AONs and vice-versa, it uses AOT 10712. An AOT 10712 Entry
lAOTE) for an object contains the objects UlD 40401, and the AOTE's index in AOT 10712 is that object's
AON. Thus, given an object's AON, KOS can use AOT 10712 to determine the object's UlD 40401, and given
an obect's UID 40401, K05 can use AOT 10712 to determine the object's AON. If the object has not been
referenced recently, there may be no AOTE for the object. and thus no AON for the object's. UID 40401.
Objects that have no AONs are called inactive objects. if an attempt to convert a UID 40401 to an AON
reveals that the object is inactive, an inactive Object Fault results and K05 must activate the object. that is,
it must assign. the object an AON and make an AOTE for it.

KOS uses AST 10914 to translate subjects into ASN's. When a Process 610's subject changes, AST
10914 provides Process 610 with the new subject's ASN. A subject may presently have no ASN associated
wltii it.‘ Such subjects aretermed inactive subjects. If a subject is inactive, an attempt to translate the subject
to an ASN causes KOS to activate the subject, that is, to assign the subject an ASN and make an entry for
the subject in AST 10914.

In order to achieve efficient execution of programs by Processes 610, K08 accelerates information that
is frequently used by executing processes 610. There are two stages of acceleration:
-- Tables that contain the information are wired into MEM 10112, that is, the Virtual Memory System

never uses MEM 10112 space reserved for the tables for other purposes. .
—- Special hardware devices in JP 10114 contain portions of the information In the tables.

MHT 10716, AOT 10712, and AST 10914 are examples of the first stage of acceleration. As previously
mentioned, these tables are always present in MEM 10112. Address Translation Unit (ATU) 10228 is an __
example of the second stage. As previously explained, ATU 10228 is a hardware cache that contains copies
of me most recently used MHT 10716 entries. Like MHT 10716, it translates AON offset addresses into the
MEM 10112 locations that contain copies of the data that the UID-offset address corresponding to the AON-
offset address refers to ATU 10228 is maintained by KOS Logical Address Translation (LAT) microcode.

Figure 407 shows the relationship between ATU 10228. MEM 10112, MHT 10716, and KOS LAT
microcode 40704. When JP 10114 makes a memory reference, ‘rt passes AON-offset Address 40705 to ATU
10228. if ATU 1028 contains a copy of MHT 10716’s entry for Address 40705, it immediately produces the
comesponding MEM 10112 Address 40706 and transmits the address to MEM 10112. If there is no copy,

151

Petitioner Apple Inc. — Exhibit 1024, p. 4196

Petitioner Apple Inc. - Exhibit 1024, p. 4197

10

15

20

EIP o 067 556 B1]

ATU 10228 produces an ATU Miss Event Signal which invokes LAT microcode 40704 in JP 10114. LAT
microcode 40704 obtains the MHT entry that corresponds to the AON-offset address from MHT 10716.
places the entry in ATU 10228, and returns. JP 10114 then repeats the reference. This time, there is an entry
for the reference, and ATU 10228 translates the AON address into the address of the copy of the data
contained in MEM 10112. -

The relationship between KOS table, hardware cache, and microcode just described is typical for the
present embodiment of CS 10110. The table (in this case, MHT 10716), is the primary source of information
and is maintained by the Virtual Memory Manager Process, while the cache accelerates portions of the
table and is maintained by KOS microcode that is invoked by event signals from the cache.

AOT 10712, AST 10314, and MHT 10716 share another characteristic that is typical of the present
embodiment of CS 101 10: the tables are constructed in such a fashion that the table entry that performs the
desired translation is located by means of a hash function and a hash table. The hash function translates
the large UID 40401, subject, or AON imo a small integer. This integer is the index of an entry in the hash
table. The contents of the hash table entry is an index into AOT 10712, AST 10914, or MHT 10716, as the
case may be, and these tables are maintained in such a fashion that the entry corresponding to the index
provided by the hash table is either the entry that can perform the desired translation or contains
information that allows KOS to find the desired entry. The entries in the tables furthermore contain the
values they translate. Consequently, KOS can hash the value, find the entry, and then check whether the
entry is the one for the hashed value. if it is not. KOS can quickly go from the entry located by the hash table
to the correct entry.

figure 408 shows how hashing works in AST 10914 in the present embodiment. in the present
embodiment, Subject 40801, i.e., the principal, process, and domain components of the current subject, are
input into Hash Function 40802. Hash Function 40802 produces die index of an entry in AS11-(T 10710.
ASTHT Entry 40504 in turn contains the index of an Entry (ASTEl 40806 in AST 10914 These ASTE 40806
indexes are ASNs. ASTE 40806 contains the principal, process, and domain components of some subject
and a link field pointing to ASTE 40806’. ASTE 40808’ has 0 in its link field, which indicates that it is the last
link in the chain of ASTES begining with ASTE 40806. If the hashing of a subject yields ASTE 40806, KOS
compares the subject in ASTE 40806 with the hashed subjed; if they are identical, ASTE 40806’s, index in
AST 10914 is the subject's ASN. If they are not identical, KOS uses the link in ASTE 40808 to find ASTE
40806‘. it compares the subject in ASTE 40806’ with the hashed subject; if they are identical, ASTE 40806"s
AST index is the subject's ASN; otherwise, ASTE 40806’ is the last entry in the chain. and consequently,
there is no ASTE 40806 and no ASN for the hashed subject.

in the following, we will discuss the implementation of objects in the present embodiment in detail,
beginning with the implementation of objecm in Secondary Storage 10124 and proceeding then to CS
10110's Active Object Management System, the Access Control System, and the Virtual Memory System.

2. Objects in Secondary Storage 10124 (Figs. 409, 410)
As described above, objects are collected imo LAUs 40405. The objects belonging to a LAU 40405 are

stored in Secondary Storage 10124. Each LAU 40405 contains an object whose contents are a table called
the Logical Allocation Unit Directory (LAUD). As its name implies, the LAUD is a directory of the objects in
LAU 40405. Each object in LAU 40405, including the object containing the LAUD, has an entry in the LAUD.
Figure 409 shows the relationship between Secondary Storage 10124, LAU 40405, the LAUD, and objects.
LAU 40405 resides on a number of Storage Devices 40904. LAUD Object 40902’ in LAU 40405 contains
LAUD 40903. Two lAUDEs 40906 are shown. One contains the attributes of LAUD Object 40902 and the
location of its contents, and the other contains the attributes of LAUD Object 40902’ containing" LAUD 40903
and the location of its contents.

KOS uses a table called the Active LAU Table (ALAUT? to locate the LAUD belonging to LAU 40405.

figure 410 illustrates the relationship between ALAUT41001, Al.AUT Entries 41002, LAUs 40405. and LAUD
Objects 40902’. Each LAU 40405 accessible to CS 10110 has an Entry (ALAUTE) 41002 in Al.AUT 41001.
ALAUTE 41002 for LAU 40405 includes LAU 40405's LAUID 40402 and UlD 40401 of LAU 40705's LAUD
Object 40902’. Hence, given an object's. UID 40401, KOS can use UlD 40401's LAUlD 40402 to locate
ALAUTE 41002 for the object's LAU 40405, and can use ALAUTE 41002 to locate LAU 40405's LAUD 40903.
Once LAUD 40903 has been found, OSN portion 40402 of the object's UID 40401 provides the proper
LAUDE 40906, and LAUDE 40906 contains object's attributes and the location of its contents.

LAUD 40903 and the Procedures 602 that manipulate it belong to a part of KOS termed the Inactive
Object Manager. The following discussion of the Inactive Object Manager will begin with the manner in
which an object's contents are represented on Secondary Storage 10124, will then discuss LAUD 40903 in
detail, and conclude by discussing the operations perlonned by inactive Object Manager Procedures 602.

a.a. Representation of an Object's Contents on Secondary Storage 10124
In general. the manner in which an object's contents are represented on Secondary Storage 10124

depends completely on the Secondary Storage 10124. If a LAU 40405 is made up of disks, then the object's
contents will be stored in disk blocks. As long as KOS can locate the object's contents, it makes no
difference whether the storage is contiguous or non-contiguous.

In the present embodiment, the objects’ contents are stored in files created by the Data General

152

Petitioner Apple Inc. — Exhibit 1024, p. 4197

Petitioner Apple Inc. - Exhibit 1024, p. 4198

,1

10

-45

EP 0 067 556 B1

Advance Operating System (AOS) procedures executing on I05 10116 These procedures manage files that
contain objects‘ contents for KOS. in future css 10110, the representation of an object's contents on
Secondary Storage 10124 will be managed by a portion of KOS.

b.b. LAUD 40903 (fig. 411, 412)
Figure 411 is a conceptual illustration of LAUD 40903. LAUD 40903 has three parts: LAUD Header

41102, Master Directory 41105, and LAUD Entries (LAUDEs) 40906. LAUD Header 41102 and Master
Directory 41105 occupy fixed locations in LAUD 40903, and can therefore always be located from the UID
40401 of LAUD 40903 given in ALAUT 41001. The locations of LAUDEs 40906 are not fixed, but the entry for
an individual object can be located from Master Directory 41105.

Turning first to LAUD Header 41102, LAUD Header 41102 contains LAUlD 40402 belonging to LAU
40405 to which LAUD 40903 belongs and OSN 40403 of LAUD 40903. As will be explained in greater detail
below, KOS can use OSN 40403 to find LAUDE 40906 for LAUD 40903.

Turning now to Master Directory 41105, Master Directory 41105 translates an object's OSN 40403 into
the location of the object's LAUDE 40906. Master Directory 41105 comains one Entry 41108 for each object
in LAU 40505. Each Entry has two fields: OSN Field 41106 and Offset Field 41107. OSN Field 41106 contains
OSN 40403 for the object to which Entry 41108 belongs; Offset Field 41107 contains the offset of the
object's LAUDE 40906 in LAUD 40903. K05 orders Entries 41108 by increasing OSN 40403, and can
therefore use binary search means to find Entry 41108 containing a given OSN 40403. Once Entry 41108 has
been located, Entry 41108's Offset Field 41107, combined with LAUD 40903's OSN 40403, yields the UID
offset address of the object's LAUDE 40906. '

Once KOS knows the location of LAUDE 40906 it can determine an object's Attributes 40404 and the
- location of its Contents 40406. Figure 411 gives only an overview of LAUDE 40906's general stmcture.

LAUDE 40906 has three components: a group of fields of fixed size 41109 that are present in every LAUDE
40906, and two variable sized components, one, 41139, containing entries belonging to the object's PACL,
and another. 41141, containing the object's EACL

As the preceding descriptions of the LAUD’s components imply, the number of LAUDEs 40906 and
Master Directory Entries 41108 varies with the number of objects in LAU 40405. Furthermore, the amount of
space required for an object's EACL and PACL varies from object to object. K05 deals with this problem by '
including Free Space 41123 in each LAUD 40903. When an object is created, or when an object's ACLs are
expanded,the inactive Object Manager expands LAUD 40903 only ifthere is no available Free Space 41123;
ifthere is Free Space 41123, the inactive Object Manager takes the necessary space from Free Space 41123;
when an object is deleted or an object's AcLs shortened, the Inactive Object Manager retums the unneeded
space to Free Space 41123.

figure 412 is a detailed representation of a single LAUDE 40906. Figure 412 presents those fields of
LAUDE 40906 which are common to all embodiments of CS 10110: fields which may vary from
embodiment to embodiment are ignored. Starting at the top of Figure 412, Structure Version Field 41209
contains information by which KOS can determine which version of LAUDE 40906 it is dealing with. Size
Field 41211 contains the Size Attribute of the object to which LAUDE 40906 belongs. The Size Attribute
specifies the number of bits currently contained in the object. Lock Field 41213 is a K05 lock. As will be
explained in detail in the discussion of Processes 610. Lock Field 41213 allows only one Process 610 to read
or write LAUDE 40906 at a time, and therefore keeps one Process 610 from altering LAUDE 40906 while
another Process 610 is reading LAUDE 40906". File identifier 41215 contains a system identifier for the file
which contains the Contents 40406 ofthe object to which LAUDE 40906 belongs. The form of‘ File identifier
41215 may vary from embodiment to embodiment; in the present embodiment, it is an AOS system file
identifier. UID l-‘ield 41217 contains UID 40401 belonging to LAUDE 40906's object. Primitive Type Field
41219 contains a value which specifies the object's Primitive Type. The object may be a data object, a
Procedure Object 608, an ETM. or an S-interpreter object. AON Field 41 221 contains a valid value only when
LAUDE 40906’: object is active, i.e.. has an entry in ACT 10712. AON Field 4121 then contains the object's
AON. if the object is an ETC, Extended Type Attribute Field 41223 contains the UID 40401 of the ETO's ETM.
Otherwise. it contains a Null UID 40401. Similarly, ifthe object is a Procedure Object 608 or an ETM. Domain
of Execution Attribute Field 41225 contains the object's Domain of Execution Attribute.

The remaining parts of LAUDE 40906 belong to the Access Control System and will be explained in
detail in that discussion. Attribute Version Number Field 41227 contains a value indicating which version of
ACLES this LAUDE 40906 contains, PACL Size Field 41229 and EACL Size Field 41231 contain the sizes ofthe
respective ACLs, PACL Offset Held 41233 and EACL Offset Field 41235 contain the offsets in LAUD 40903 of
additional PACLEs 41139 and EACLEs 41141, and fixed PACLE5 41237 contains the portion of the PACL
which is always included in LAUDE 40906. ’

3. Active Objects (fig. 413)
An active object is an object whose UID 40401 has an AON associated with it. in the present

embodiment, each CS 10110 has a set of AONs’ KOS associates these AONs with UlDs 40401 in such
fashion that at any given moment. an AON in a CS 10110 represents a single UID 40401. inside FU 10120.
AONs are used to represent UlDs CS 10110. In the present embodiment. the AON is represented by 14 bits.
A 112-bit UID-offset address (80 bits for UID 40401 and 32 forthe offset) is thus represented inside FU 10120

153

Petitioner Apple Inc. — Exhibit 1024, p. 4198

Petitioner Apple Inc. - Exhibit 1024, p. 4199

15

20

55

EP 0 067 556 Bil

by a 46-bit AON-offset address (14 bits for the AON and 32 bits for the ofiset).
A CS 10110 has far fewer AONs than there are UlDs 40401. K03 multiplexes a CS10110's AONs among

those objects that are being referenced by CS 10110 and therefore require AONs as well as UlDs 40401.
While a given AON represents only a single UID 40401 at any given time, at different times, a UID 40401
may have different AONs associated with it. 4 '

Figure 413 provides a conceptual representation of the relationship between AONs and UlDs 40401.
Each CS 10110 has potential access to 2'“.'80 UlDs 40401. Some of these UlDs. however. represent entities
other than objects, and others are never associated with any entity. Each CS 10110 also has a set of AONs
41303 available to it. In the present embodiment, this set may have up to 2”14 values. Since the AONS are
only used imernally, each CS 10110 may have the same set of AONs 41303. Any AON 41304 in set of AONs
41303 may be associated with a single UID 40401 in set of object UlDs 41301. At different times, an AON
41304 may be associated with different UlDs 40401.

As mentioned above, KOS associates AONs 41304 with UlDs 40401. It does so by means of AOT 10712.
Each AOT entry (AOTE) 41306 in AOT 10712 associates a UlD 40401 with an AON 41304. AON 41304 is the
index of AOTE 41306 which contains UID 40401. Until AOTE 41306 is changed, the AON 41304 which is the

index of AOTE 41306 containing UID 40401 represents UID 40401. AOT 10712 also allows UlDs 40401 to be‘
translated into AONs 41303 and vice-versa. I-‘igure 413 illustrates the process for UID-offset Address 41308
and AON-offset Address 41309. AOTE 41306 associates AON 41304 in AON-offset Address 41309 with UlD
40401 in UID-offset Address 41308, and Addresses 41308 and 41309 have the same Offset 41307.
Consequently, AON-offset Address 41309 represents UID-offset Address 41308 inside JP 10114. Since both
addresses use the same Offset, Address 41309 can be translated into address 41308 by translating Address
41309’s AON 41304 into Address 41308's UID 40401, and Address 41308 can be translated into Address

' 41309 bythe reverse process. In both ses, the translation is performed by finding the proper AOTE 41306.
The process by which an object becomes active is called object activation. A UID-offset Address 41308

cannot be translated into an AON-offset Address 41309 unless the object to whidt UID 40401 of UID-offset
Address 41308 belongs is active. if a Process 610 attempts to perfonn such a translation using a UID 40401
belonging to an inactive object, an Inactive Object Fault occurs. K08 handlesthe fault by removing Process-
610 that attempted the translation from JP 10114 until a special KOS Process called the Object Manager
Process has activated the object. After the object has been activated, Process 610 may return to JP 10114
and complete the UID 40401 to AON 41304 translation.

The portion of K05 that manages active objects is called the Active Object Manager (AOM). Parts of the
AOM are Procedures 602, and parts of it are microcode routines. The high-level language components of
the AOM may be invoked only by KOS processes 610. K08 Active Object Manager Process 610 perfomts
most of the functions involved in active object management.

a.a. UID 40401 to AON 41304 Translation

Generally speaking, in'CS 10110, addresses stored in MEM 10112 and Secondary Memory 10124 are
stored as UID offset addresses. The only form of address that FU 10120 can translate into a location in MEM
10112 is the AON-offset form. Consequently. each time an address is loaded from MEM 10112 into a FU
10120 register, the address must be translated from a UID-offset address to an AON-offset address. The
reverse translation must be performed each time an address is moved from a FU 10120 register back into
memory.

Such translations may occur at any time. For example, a running Virtual Processor 612 performs such a
translation when the Process 610 being executed by Virtual Processor 612 rries out an indirect memory
reference. An indirect memory reference is a reference which first fetches a pointer, that is, a data item
whose value is the address of another data item, and then uses the address contained in the pointer to fetch
the data itself. In CS 10110, pointers represent UID-offset addresses. Virtual Processor 612 performs the
indirect memory reference by fetching the pointer from MEM 10112, placing it in FU 10120 registers,
translating UlD 40401 represented by the pointer into AON 41304 associated with it. and using the resulting
AON-offset address to access the data at the location specified by the address.

Most such translations, however, occur when Virtual Processor 612 state is saved or restored. For
instance, when one Process 610's Virtual Processor 612 is removed from JP 10114 and another Process
610's Virtual Processor 612 is bound to JP 10114, the state of Virtual Processor 612 being removed from JP
10114 is stored in memory, and the state of lflrtual Processor 612 being bound to JP 101 14 is moved into JP
10114’s registers. Because only UID-offset addresses may be stored in memory, all of the AON-offset
addresses in the state of Virtual Processor 612 which is being removed from JP 10114 must be translated.
into UID-offset addresses. Similarly. all of the UID-offset addresses in the state of Virtual Processor 612 ~ 4' ‘ ' ’
being bound to JP 10114 must be translated into AON-offset addresses before they can be loaded into FU
10120 registers.

C. The Access Control System
As mentioned in the introduction to objects, each time a process 610 accesses data or SlNs in an object,

the K08 Access Control System checks whether Process 610's cunent subject has the right to perform the
kind of access that Process 610 is attempting. If Process 610's cun-ant subject does not have the proper

access, the Access Control System aborts the memory operation which Process 610 was attempting to

154

Petitioner Apple Inc. — Exhibit 1024, p. 4199

Petitioner Apple Inc. - Exhibit 1024, p. 4200

10

20

30

35

55

EP 0 067 556 B1

carry out. The following discussion presents details of the implementation of the Access Control System,
beginning with subjects. then proceeding to subject templates, and finally to the means used by KOS to
accelerate access checking. . .

a. Subjects
A Process 610's subject is part of process 610's state and is contained along with other state belonging

to Process 610 in an object called a Process Object. Process Objects are dealt with at length in the detailed
discussion of Processes 610 which follows the discussion of objects. While a subject has. as memioned
above, four components, the principal component, the process component, the domain component, and
the tag component, the Access Control System in the present embodiment of CS 10110 assigns values to
only the first three components and ignores the tag component when checking access.

In the present embodiment, the UlDs 40401 which make up the components of a Process 610's subject
are the UlDs 40401 of objects containing infonnation about the entities represented by the UlDs 40401. The
principal component's UlD 40401 represents an object called the Principal Object. The Principal Object

-contains information about the user for whom Process 610 was created. For example, the information
might concern what access rights the user had to the resources of CS 10110, or it might contain records of
his use of CS 10110. The process component's UID 40401 represents the Process Object, while the domain
component's UID 40401 represents an object called the Domain Object. The Domain Object contains
information which must be accessible to any Process 610 whose subject has the Domain 0bject's UID
40401 as its domain component. Other embodiments of CS 10110 will use the tag component of the
subject. In these embodiments, the tag component's UID 40401 is the UID 40401 of a Tag Object comaining
at least such information as a list ofthe subjects which make up the group of subjects represented by the
tag component's UID.

b. Domains

As stated above, the subject's domain component is the domain of execution attribute belonging to the
Procedure Object 608 or ETM whose code is being executed when the access request is made. The domain
component of the subject thus gives Process 610 to which the subject belongs potential access to the group
of objects whose AC1: have ACLEs with subject templates containing domain components that match the
DOE attribute. This group of objects is the domain defined by the Procedure Object 608 or El’M's DOE
attribute. When a Process 610 executes a Procedure 602 from a Procedure Object 608 or ETM with a given
DOE attribute, Process 610 is said to be executing in the domain defined by that DOE attribute. As may be
inferred from the above, different Procedure Objects 608 or ETMs may have the same DOE attribute, and
objects may have ACLEs which make them members of many different domains.

In establishing a relationship between a group of Procedure Objects 608 and another group of objects,
a domain allows a programmer using CS 10110 to ensure that a given object is read, executed. or modified
only by a certain set of Procedures 60?. Domains may thus be used to construct protected subsystems in
CS 10110. One atample of such a protected subsystem is KOS itself: the objects in CS 10'l10which contain
KOS tables all have ACLs whose domain template components match only the DOE which represents the
K05 domain. The only Procedure Objects 608 and ETMs which have this DOE are those which contain KOS
Procedures 602, and consequently, only KOS Procedures 602 may manipulate KOS tables.

Since an object may belong to more than one domain. a programmer may use domains to establish
hierarchies of access. For example. if some of the objects in a first domain belong both to the first domain
and a second domain. and the second domain's objects all also belong to the first domain. then Procedures
602 contained in Procedure Objects 608 whose DOEs define the first domain may access any object in the
first domain, including those which also belong to the second domain. while those from Procedure Objects
608 whose DOES define the second domain may access only those objects in the second domain.

c. Access Control Lists — ~«

As previously mentioned, the Access Control System compares the subject belonging to Process 610
making an access to an object and the kind of access Process 610 desires to make with the object’s ACLs to
determine whether the access is legal. The following discussion of the ACLs will first deal with Subject
Templates, since they are common to all ACLs, and then with PACLs and EACLs._

1. Subject Templates (H9. 416)
I-‘rgure 416 shows Subject Templates, PACL Entries (PACLES). and EACL Entries (EAGLES). Turning first

to the Subject Templates, Subject Template 41601 consists of four components, Principal Template 41605,
Process Template 41607, Domain Template 41609, and Tag Template 41611. Each template has two fields.
Flavor Field 41603, and UID Field 41605. Flavor Field 41603 indicates the way in which the template to which
it belongs is to match the corresponding component of the subject for Process 610 attempting the access.
Flavor I-‘reld 41603 may have one of three values: match any, match one. match group. if Flavor I-‘reld 41603
has the value match any, any subject component UID 40401 matches the template, and the Access Control
System does not examine UID Field 41605. if Flavor Field 41603 has the value match one, then the
corresponding subject component must have the same UID 40401 as the one contained in UID Field 41605.
If Flavor Field 41603 has the value match group, finally, then UID Field 41605 contains a UlD 40401 of an

155

Petitioner Apple Inc. — Exhibit 1024, p. 4200

Petitioner Apple Inc. - Exhibit 1024, p. 4201

20

45

EP O 067 556 B1

object containing information about the group of subject components which the given subject component
may match. '

2. Primitive Access Control Lists lPACLs)

- PACLs are made up of PACLEs 41613 as illustrated in Figure 416. Each PACLE 41613 has two parts: a
subject template 41601 and an Access Mode Bits Field 41615. The values in Access Mode Bits Field 41615
define 1 1 kinds of access. The eleven kinds fall into two group5:»Primitive Data Access and Pl"|l"l"|itlVe Non-
data Access. Primitive Data Access controls what the subject may do with the object's Contents 40406:
Primitive Non—data Access controls what the subjectmay do with the object's Attributes 40404.

There are three kinds of Primitive Data Access: Read Access. Write Access. and Execute Access. If _a
subject has Read Access, it can examine the data contained in the object; if the subject has Write Access, It
can alter the data contained in the object; if it has Execute Access, it can treat the data in the object as a
Procedure 602 and attempt to execute it. A subject may have none of these kinds of access. or any
combination of the kinds. On every reference to an object, the K08 checks whether the subject performing
the reference has the required Primitive Data Access.

Primitive Non-data Access to an object is required only to set or read an object's Attributes 40404, and
is checked only when these operations are perfonned. The kinds of Non—data Access correspond to the
kinds of Attributes 40404: '

Attributes Kind of Access

Object Attributes get object attributes
set object attributes

Primitive Control get primitive control
attributes

Attributes set primitive control
attributes

Extended Control get extended control
Attributes attributes

set extended control
attributes

ETM Access use as ETlVl
' create ETO

The access rights for object attributes allow a subject to get and set the object attributes described
previously. The access rights for primitive and extended control attributes allow a subject to get and set an
object's PACL and EACL respectively.

An object may have any number of PACLEs 41613 in its PACL The first five PACLEs 41613 in an object's
PACL are contained in fixed PACE Field 4123? of LAUDE 40906 for the object: the remainder are stored in
LAUD 40903 at the location specified in PACL Offset Field 41233 of LAUDE 40906.

3. APAM 10918 and Protection Cache 10234 (Fig. 421)
Primitive non-data access rights are checked only when users invoke KOS routines that require such

access rights. and extended access rights are checked only when users request such checks. Primitive data
access rights, on the other hand, are checked every time a Virtual Processor 612 makes a memory reference
while executing a Process 610. The K05 implementation of primitive data access right checking therefore
emphasizes speed and efficiency. There are two parts to the implementation: APAM 10918 in MEM 10112.
and Protection Cache 10234 in JP 10114. APAM 10918 is in a lotion in MEM 10112 known to K05
microcode. APAM 10918 contains primitive data access information copied from PACLEs 41613 which
belong to active objects and whose Subject Template 41601 matches an active subject. Protection Cache
10234. in turn. contain copies of the information in APAM 10918forthe active subject of Process 610 whose
Virtual Processor 612 is currently bound to JP 10114 and active objects referenced by Process 610. A
primitive data access check in CS 10110 begins with Protection Cache 10234, and if the infonnation is not
contained in Protection Cache 10234, proceeds to APAM 1091 B, and if it is not there, finally, to the object's
PACL The discussion which follows begins with APAM 10918.

Figure 421 shows APAM 10918. APAM 10913 is organized as a two-dimensional array. The array's row
indexes are AONs 41304, and its column indexes are ASNs. There is a row for each AON 41304 in CS 101 10,
and a column for each ASN. In figure 421, only a single row and column are shown. Any primitive data
access infonnation in APAM 10918 for the object represented by AON 41304 j is contained in Row 42104,
while Column 42105 contains any primitive data access information in APAM 10918 for t:ha subject

156

Petitioner Apple Inc. — Exhibit 1024, p. 4201

Petitioner Apple Inc. - Exhibit 1024, p. 4202

.1

40

45

EP 0 067 556 B1

represented by ASN k. APAM Entry (APAME) 42106 is at the intersection of Row 42104 and Column 42105,
and thus contains the primitive data access information from that PACLE 41613 belonging to the object
represented by AON 41304] whose Subject Template 41601 matches the subject represented by ASN k.

An expanded view of APAME 42106 is presented beneath the epresentation of APAM 10918. APAME
42106 contains four 1-bit fields. The bits represent die kinds of primitive data access that the subject
represented by APAME 42106's column index has to the object represented by APAME 42106’s row index.
— Field 42107 is the Valid Bit. lfthe Valid Bit is set, APAME 42106 contains whatever primitive data access

infomtation is available for the subject represented by the column and the object represented by the
row. The remaining fields in APAME 42105 are meaningful only if Valid Blt 42107 is set.

— Field 42109 is the Execute Bit. If it is set, APAME 42106’s subject has Execute Access to APAME 42106's
object. '

- Field 42111 is the Read Bit. if it is set, APAME 42106's subject has Read Access to APAME 42106's
object.

— Field 42113 is the Write Bit. If it is set, APAME 42106's subject has Write Access to APAME 42106’s
object.

Any combination of bits in Fields 42109 through 42113 may be set. it all of these fields are set to O,
APAME 42106 indicates that the subject it represents has no access to the object it represents.

KOS sets APAME 42106 for an ASN and an AON 41304 the first time the subject represented by the
ASN references the object represented by AON 41304. Until APAME 42106 is set. Valid Bit 421 07 is set to 0.
When APAME 42106 is set, Valid Bit 42107 is set to 1 and fields 42109 through 42113 are set according to
the primitive data access information in the object's PACl.E 41613 whose Subject Template 41601 matches
the subject. When an object is deactivated, Valid Hits 42107 in all APAMEs 42106 in the row belonging to the
object's AON 41304 are set to 0: similarly. when a subject is deactivated, Valid Bits 42107 in all APAMES
42106 in the column belonging to die subject's ASN are set to 0. '

4. Protection Cache 10234 and Protection Checking (Fig; 422)
The final stage in the acceleration of protection information is Protection Cache 10234 in'JP 10114. The

' details of the way in which Protection Cache 10234 functions are presented in the discussion of the
hardware; here, there are discussed the manner in which Protection Cache 10234 performs access checks,
the relationship between protection Cache 10234, APAM 10918. and A01‘ 10712. and the manner in which
KOS protection cache microcode maintains Protection Cache 10234.

figure 422 is a block diagram of Protection Cache 10234, AO1'E 10712, APAM 10918, and KOS
Microcode 42207 which maintains Protection Cache 10234. Each time JP 10114 makes a memory reference
using a Logical Descriptor 27116, it simultaneoufly presents Logical Descriptor 27116 and a Signal 42208
indicating the kind of memory operation to Protection Cache 10234 and ATU 10228. Entries 42215 in
Protection Cache 10234 contain primitive data access and length information for obiects previously
referenced by the current subject of Process 610 whose Virtual Processor 612 is currently bound to JP
10114. On every memory reference, Protection Cache 10234 emits a Valid/invalid Signal 42205 to MEM
10112 if Protection Cache 10234 contains no Entry 42215 for AON 41304 contained in Logical Descriptor
27116's AON field 27111, if Entry 42215 indicates that the subject does not have the type of access required
by process 610. or if the sum of Logical Descriptor 27116's OFF field 27113 and LEN field 27115 exceedthe
object's current size, Protection Cache 10234 emits an lnvalidsignal 42205. This signal causes MEM 10112
to abort the memory reference. Otherwise. Protection Cache 10234 emits a Valid Signal 4205 and MEM
10112 executes the memory reference.

When Protection Cache 10234 emits an invalid Signal 4205, it latches Logical Descriptor 27116 used to
make the reference into Descriptor Trap 20256, the memory command into Command Trap 27018, and if it
was a write operation, the data into Data Trap 20268, and at the same time emits one of two Event Signals
to K05 microcode. Illegal Access Event Signal 42208 occurs when Process 610 making the reference does
not have the proper access rights or the data referenced extends beyond the end of the object. illegal
Access Event Signal 42208 invokes KOS microcode 42215 which performs a Microcode to Software Call
4217 (described in the discussion of Calls) to KOS Access Control System Procedures 602 and passes the
contents of Descriptor Trap 20256. Command Trap 27018, the ASN of Process 610 (contained in a register
MGR's 10360), and if necessary, Data Trap 20258 to these Procedures 602. These procedures 602 inform
EOS of the protection violation, and EOS can then remedy it.

Cache Miss Event Signal 42206 occurs when there is no Emry 42215 for AON 41304 in protection Cache
10234. Cache Miss Event Signal 4206 invokes K05 Protection Cache Mis Microcode 42207. which
constructs missing Protection Cache Entry 42215 from information obtained from AOT 10712 and APAM
10918. if APAM 10918 contains no entry for the current subject’: ASN and the AON of the obiect being
referenced. protection Cache Miss Microcode 42207 performs a Microcode-to-software Call to KOS Access
Control System Procedures 602 which go to LAUDE 40906 for the object and copy the required primitive
data access information from the PACLE 41613 belonging to the object whose Subject Template 41601
matches the subject attempting the reference into APAM 10918. The K05 Access Control System
Procedures 602 then return to Cache Miss Microcode 42207, which itself returns. Since Cache Miss

Microcode 41107 was invoked by an Event Signal, the return causes JP 10114 to reexecute the memory
reference which caused the protection cache miss. if protection Cache 10234 was loaded as a result of the

157

Petitioner Apple Inc. — Exhibit 1024, p. 4202

Petitioner Apple Inc. - Exhibit 1024, p. 4203

10

40

E0

55

EP 0 067 556 B1

last protection cache miss, the miss does not recur; if Protection Cache 10234 was not loaded because the
required infomtation was not in APAM 10918, the miss recurs, but since the information was placed in
APAM 10918 as a result of the previous miss, Cache Miss Microcode 4207 can now construct an Entry
42215 in Protection Cache 10234. When Cache Miss Microcode 42207 returns. the memory reference is
again attempted, but this time Protection Cache 10234 contains the infonnation and the miss does not
recur.

Cache Miss Microcode 4207 creates a new Protection Cache Entry 42215 and loads it into Protection
Cache 10234 as follows: Using AON 41304 from Logical Descriptor 27116 latched into Descriptor Trap
20256 when the memory reference which caused the miss was executed and the current subject's ASN,
contained in GFl’s 10360, Cache Miss Microcode locates APAME 42106 for the subject represented by the
ASN and the obiect represented by AON 41304 and copies the contents of APAME 42106 into a JP 10114
register which may serve as a source for JPD Bus 10142. It also uses AON 41304 to locate AOTE 41306 for
the object and copies the contents of Size Field 41519 into another JP 10114 register which is a source for
JPD Bus 10142. it then uses three special microcommands, executed in successive microinstructions, to
load Protection Cache Entry 42215. The first microcommand loads Protection Cache Entry 42215's TS 24010
with AON 41304 of Logical Descriptor 27116 latched into Descriptor Trap 20256; the second loads the
object's size into Protection Cache 10234's EXTENT field, and the third loads the contents of APAME 42106
in the same fashion. '

Another microcommand invalidates all Entries 42215 in Protection Cache 10234. This operation, called
flushing, is performed when an object is deactivated or when the current subject changes. The current
subject changes whenever a Virtual Processor 612 is unbound from JP 101 14, and whenever a Process 610
performs a II to or a return from a Procedure 602 executing in a domain different from that in which the
lling Procedure 602 or the Procedure 602 being returned to executes in. In the cases of the Call and the
unbinding of Virtual Processor 612, the cache flush is performed by KOS Call and dispatching microcode: in
the case of object deactivation, it is performed by a K05 procedure using a special KOS SIN which invokes
Cache Flush Microcode.

D. Processes

1. Synchronization of Processes 610 and Virtual Processors 612
Since Processes 610 and the Virtual Processors 612 to which they are bound may execute concurrently

on CS 10110, KOS must provide means for synchronizing Processes 610 which depend on each other. For
example, if process 610 A cannot proceed until Process 610 B has performed some operation, there must
be a mechanism for suspending A's execution until 8 is finished. Generally speaking, four kinds of
synchronization are necessary:
-—- One Process 610 must be able to halt and wait for another Process 610 to finish a task before it

proceeds. .
-— One Process 610 must be able to send another Process 610 a message and wait for a reply before it

proceeds.
-—- when processes 610 share a data base. one Process 610 must be able to exclude other Processes 610

from the data base until the first Process 610 is finised using the data base.
— One Process 610 must be able to interrupt another Process 610, i.e., asynchronously cause the second

Process 610 to perform some action.
KOS has internal mechanisms for each kind of synchronization, and in addition supplies

synchronization mechanisms to EOS. KOS uses the internal mechanisms to synchronize Virtual Processors
612 and KOS Processes 610, while EOS uses the mechanisms supplied by KOS to synchronize all other
Processes 610. The internal mechanisms are the following:
— Event counters, Await Entries, and Await Tables. As will be explained in detail below, Event Counters

and Await Entries allow one Process 610 to halt and wait for another Process 610 to complete an
operation. Event counters and Await. Entries are also used to implement proces interrupts. Await
Entries are organized into Await Tables. .

—— Message Queues. Message Queues allow one Process 610 to send a message to another and wait for a
repiy. Message Queues are implemented with Event Counters and queue data structures. _

-— Locks. Locks allow one Process 610 to exclude other Processes 610 from a data base or a segment of
code. Locks are implemented with Event Counters and devices called Sequencers.
K05 makes Event Counters, Await Entries, and Message Queues available to EOS. it does not provide

Locks, but it does provide Sequencers, so that EDS can construct its own Locks. The following discussion
will define and explain the logical properties of Event Counters, Await Entries, Message Queues,
sequencers, and Locks. Their implementation ln the present embodiment will be described along with the
implementation of Processes 610 and Virtual Processors 612.

a. Event Counters 44801. Await Entries 44804, and Await Tables (Fig. 448. 449)
Event Counters, Await Entries, and Await Tables are the fundamental components of the K08

Synchronization System. Figure 448 illustrates Event Counters and Await Entries in the present
embodiment. Figure 449 gives a simplified representation of Process Event Table 44705, the present
embodiment's Await Tables Turning first to Figure 448, Event Counter 44801 is an area of memory which

158

Petitioner Apple Inc. — Exhibit 1024, p. 4203

Petitioner Apple Inc. - Exhibit 1024, p. 4204

20

25

EP 0 067 555' B1

contains a value that may only be increased. in one of the present embodiment, Event Counters 44801 for
K08 systems which may not page fault are always present in MEM 10112; other Event Counters 44801 are
stored in Secondary Storage 10124 unless a Process 610 has referenced them and thereby caused the VMM
System to load them into MEM 101 12. The value contained in an Event Counter 44801 is termed an Event
Counter Value 44802. in the present embodiment, Eventcounter 44801 contains 64 bits of data. of which 60
make up Evem Counter Value 44802. Event Counter 44801 may be referred to either as a variable or by
means of a 128-bit UID pointer which comains Event Counter 44801’s location. The UID pointer is terme_d anEvent Counter Name 44803. '

Await Entry 44804 is a component of entries in Await Tables. in the present embodiment, there are two
Await Tables: Process Evem Table 44705 and Virtual Processor Await Table (VPAT) 45401. VPAT 45401 is
always present in MEM 10112. As already mentioned, Figure 449 illustrates PET 44705. Both PET 44705 and
UPAT 45401 will be described in detail later. Each Await Entry 44804 contains an Event Counter Name
44803, an Event Counter Value 44802, and a Back Link 44805 which identifies a Process 610 or a Virtual
Processor 612. Await Entry 44804 thus establishes a relationship between an Event Counter 44801, an Event
Counter Value 44802. and a Process 610 or Virtual processor 612.

Turning now to Figure 449, in the present embodiment, all Await Entries 44804 for user Processes 610
are contained in PET 44705. PET 44705 also contains other information. Figure 449 presents only those
parts of PET 44705 which illustrate Await Entries 44804. PET 44705 is structured to allow rapid location of
Await Entries 44804 belonging to a specific Event Counter 44801. PET entries (PETEs) 44909 contain links
which allow them to be combined into lists in PETE 44705. There are four kinds of lists in PET 44705:
- Event counter lists: these lists link all PETEs 44909 for Event Counters 44801 whose Event Counter

Names 44803 hash to a single value.

—— Await lists: These lists link all PETB 44909 for Event Counters 44801 which a given Process 610 is
awaiting. V

—- Interrupt lists: These lists link all PETE: 44909 for Event Counters 44801 which will cause an interrupt to
occur for a given Process 610.

— The Free list: PE'TEs 44909 which are not being used in one of the above lists are on a free list.
Each PETE 44909 which is on an await list or an interrupt List is also on an event counter list.
Turning first to the event counter lists, all PETEs 44909 on a given event counter list contain Event

Counter Names 44803 which hash to a single value. The value is produced by Hash Function 44901, and
then used as an indat in PET Hash Table (PETHT) 44903. That entry in PETHT 44903 contains the index in
PET 44705 of that PETE 44909 which is the head of the event counter list. PETE List 44904 represents one
such event counter list. Thus, given an Event Counter Name 44803, KOS can quickly find all Await Entries
44804 belonging to Event Counter 44801.

in the present embodiment, the implementation of Event Counters 44801 and tables with Await Entries
44804 involves both Processes 610 and lfirtuel Processors 612 to which Processes 610 are bound. As will be

explained later. a large number of Event Counters 44801 and Await Entries 44804 belonging to Processes
610 are multiplexed onto a small number of Event Counters 44801 and Await Entries 44804 belonging to the
Processes’ Virtual Processors 612. Await entries 44804 for Event Counters 44801 belonging to Virtual
Processors 612 are contained in VPAT 45401.

b. Synchronization with Event Counters 44801 and Await Enhies 44804

_ The simplest form of Process 610 synchronization provided by KOS uses only Event Counters 44801
and Await Entries 44804. Coordination takes place like this: A Process 610 A requests KOS to perform an
Await Operation, i.e., to establish one or more Await Entries 44804 and to suspend Process 610 A until one
of the Await Entries is satisfied. in requesting the Await Operation. Process 610 A defines what Event
Counters 44801 it is awaiting and what Evem Counter Values 44802 these Event Counters 44801 must have
for their Await Entries 44804 to be satisfied. After K05 establishes Await Entries 44804, it suspends Process
610 A. While process 610 A is suspended, other Processes 610 request K08 to perform Advance Operations
on the Event Counters 44801 specified in Process 610 A's Await Entries 44804. Each time a Process 610
requests an Advance Operation on an Event Counter 44801, KOS increments Evem Counter 44801 and
checks Event Counter 44801's Await Entries 44804. Eventually, one Event Counter 44801 satisfies one of
Process 610 A's Await Entries 44804, i.e., reaches a value equal to or greater than the Event Counter Value
44802 specified in its Await Entry 44804 for process 610 A. At this point, K05 allows process 610 A to
resume execution. As process 610 A resumes execution, it deletes all of its Await Entries 44804.

E. Virtual Processors 612 (fig. 453)

As previously stated, a Virtual processor 612 may be logically defined as the means by which a Process
610 gains access to JP 10114. In physical terms, a lfirtuai Processor is an area of MEM 10112 which contains
the information that the K05 microcode which binds Virtual Processors 612 to JP 10114 and unbinds them
from JP 10114 requires to perform the binding and unbinding operations. Figure 453 shows a Virtual
Processor 612. The area of MEM 10112 belonging to a Virtual Processor 612 is Virtual processor 612's
Virtual Processor State Block iVPSBi 614. Each Virtual Processor 612 in a CS 10110 has a VPSB 614.
Together, the VPSBs 614 make up VPSB Array 45301. Vlfithin the Virtual Processor management system,
each Virtual Processor 612 is known by its VP Number 45304. which is the index of the Virtual Processor

159

Petitioner Apple Inc. — Exhibit 1024, p. 4204

Petitioner Apple Inc. - Exhibit 1024, p. 4205

70

is

20

25

60

EP 0 067 556 B1

612's VPSB 614 in VPSB Array 45301. Virtual Processors 612 are managed by means of lists contained in
Micro VP Lists (MVPL) 45309. Each Virtual processor 612 has an Entry (MVPLE) 45321 in MVPL 45309, and
as Virtual Processor 612 changes state, virtual processor management microcode moves it from one list to
another in MVPL 45309.

VPSB 614 contains two kinds of information:

information from Process Object 901 belonging to Process 610 which is bound to VPSB 614's Virtual
Processor 612, and information used by the Virtual Processor Management System to manage Virtual
Processor 612. The most important infomiation from Process Object 901 is the following:
- Process 610's principal and process UlDs 40401.
—- AONs 41304 for Process 610's Stack Objects 44703. (VPSB 614 uses AONs 41304 because KOS

guarantees that AONs 41304 belonging to Stack Objects 44703 will not change as long as a Process 610
is bound to a Virtual Processor 612.)
Given AON 41304 of Process 610's SS object 10336, the Virtual Processor Management System can

locate that-portion of Process 610's state which is moved into registers belonging to‘JP 10114 when process
610's Virtual Processor 612 is bound to JP 10114. Similarly, when Virtual Processor 612 is unbound from JP
10114, the virtual processor management system can move the contents of JP 10114 registers into the
proper location in SS Object 10336.

a. Virtual Processor Managment (Fig. 453)
E05 can perform six operations on Virtual Processors 612:
Request VP allows EOS to request a Virtual Processor 612 from KOS.
Release VP allows EDS to retum a Virtual Processor 612 to KOS.
Bind binds a Process 610 to a Virtual Processor 612.
Unbind unbinds a process 610 from a Virtual Processor 612.
Run allows KOS to blnd Process 610's Virtual Processor 612 to JP 10114.

Stop prevents KOS from binding process 610's Virtual Processor 612 to JP 10114.
As can be seen from the above list of operations, EDS has no direct influence over tl'ie actual binding of

a Wrtual Processor 612 to JP 10114. This operation is performed by a component of KOS microcode called
the Dispatcher. Dispatcher microcode is executed whenever one of four things happens:
— Process 610 whose \firtual Processor 612 is currently bound to JP 10114 executes an Await Operation.
—- Process 610 whose Wrtual Processor 612 is currently bound to JP 10114 executes an Advance

Operation which satisfies an Await Entry 44801 for some other Process 610.
— Either Interval Timer 25410 or Egg Timer 25412 overfiovvs, causing an Event Signal which invokes

Dispatcher microcode.

— IOJP Bus 10132 is activated, causingan Event Signal which invokes Dispatcher microcode. 10$ 10116
activates IOJP bus 10132 when it loads data into MEM 10112 for JP 10114.
When Dispatcher microcode is invoked by one of these events, it examines lists in MVPL 45309 to

determine which Virtual Processor 612 is to run next. For the purposes of the presem discussion, only two '
lists are important: the running list and the eligible list. In the present embodiment. the running list, headed
by Running List Head 45321, contains only a single MVPLE 45321, that representing Virtual Processor 612
cumently bound to JP 10114. In embodiments with multiple JPs10114. the running list may have more than
one MVPLE 45321. The eligible list, headed by Eligible List Head 45313, contains MVPLES 45321
representing those Virtual Processors 612 which rriay be bound to JP 10114. MVPLES 45321 on the eligible
list are ordered by priorities assigned Processes 610 by EOS. Whenever KOS Dispatcher microcode is
invoked. it compares the priority of Process 610 whose Virtual Processor 612's MVPLE 45321 is on the
running list with the priority of Process 610 whose Virtual Processor 612's MVPLE 45321 is at the head of
the eligible list. if the latter Process 610 has a higher priority, KOS Dispatcher microcode places MVPLE
45321 belonging to the former Process 610's Virtual Processor 612 on the eligible list and MVPLE 45321
belonging to the latter Process 610's Virtual Processor 612 onto the running list. Dispatcher microcode then
swaps Processes 610 by moving state in JP 10114 belonging to the former Process 610 onto the former
Process 610's SS object 10336 and moving JP 10114 state belonging to the latter Process 610 from the latter
Process 610's SS object 10336 into JP 10114.

b. Virtual Processors 612 and Synchronization (Fig. 454)
When a synchronization operation is performed on a Process 610, one of the consequences of the

operation is a synchronization operation on a Virtual Processor 612. For example, an Advance Operation
which satisfies an Await Entry 44804 for a Process 610 causes an Advance Operation which satisfies a
second Await Entry 44804 for Process 610's Virtual Processor 612. Similarly, a synchronization operation
perlonned on a Virtual Processor 612 may have a synchronization operation on Virtual Processor 612's
Process 610 as a consequence. For example, if a Virtual Processor 612 performs an operation involving file
IIO, Virtual Processor 812's Process 610 must await the completion of the H0 operation.

Figure 454 illustrates the means by which process level synchronization operations result in virtual
processor—level synchronization operations and vice-versa. The discussion first describes the components
which transmit process-level synchronization operations to Virtual Processors 612 and the manner in which
these components operate. Then it describes the components which transmit virtual processor-level

160

Petiti0nerApp1cInc. — Exhibit 1024‘, p. 4205

Petitioner Apple Inc. - Exhibit 1024, p. 4206

19

20

EP 0067 556 B1

synchronization operations to Processes 610 and the operation of these components.
The first set of components is made up of VPSBA 45301 and VPAT 45401. VPSBA 45301 is shown here

with two VPSBs 614: one belonging to a Virtual Processor 612 bound to a user Process 610 and one
belonging to a Virtual Processor 612 bound to the K03 Process Manager process 610. VPAT 45401 is a
virtual processor-level table of Await Entries 44804. Each Await Entry 44804 is contained in a VPAT Entry
(VPATEI 45403. Each Wrtual Processor 612 bound to a Process 610 has a VPAT Chunk 45402 of four VPATEs

45403 in VPAT 45401, and can thus await up to four Event Counters 44801 at any given time. The location of
a Virtual processor 612's VPAT Chunk 45402 is kept in Virtual Processor 612's VPSB 614. When an Advance
Operation satisfies any of the Await Entries 44804 belonging to a Virtual Processor 612. all in Virtual
Processor 612's VAT Chunk 45402's Await Entries 44804 are deleted. As in PET 44705. VPATES 45403
containing Await Entries 44804 which are awaiting a given Event Counter 44801 are linked together in a list.

VPATEs 45403 forhvirtual Processors 612 bound to user Processes 610 may contain Await Entries 44804
for user Process 610's Private Event Counter 45405. Private Event Counter 45405 is contained in Process

610's Process Object 901. it is advanced each time an Await Entry 44804 in a PETE 44909 on a PET List
belonging to Process 610 is satisfied.

The components operate as follows: When KOS performs an Await Operation on Process 610, it makes
Await Entries 44804 in both PET 44705 and VPAT45401 and puts Process 610's VP 61 2 on the suspended list
in MVPL 45309. As previously described, an Await Entry 44804 in PEI‘ 44705 awaits an Event Counter 44801
specified in the Await Operation which created Await Entry 44804. Await Entry 44804 in VPAT 45401 awaits
Process 610's Private Event Counter45405. Each time an Await Entry44804 belonging to Process 610 in PET
44705 is satisfied, Process 610's Private Event Counter 45405 is advanced. The advance of Private Event
Counter 45405Asatisfies Await Entry 44801 for Process 610's Virtual processor 612 in VPAT 45401, and
consequently, KOS deletes Virtual Processor 612's VPATEs 45403 and moves Virtual Processor 612's

MVPLE 45321 in MVPL 45309 from the suspended list to the eligible list. ,
The components which allow a Virtual Processor 612 to transmit a synchronization operation to a

' process 610 are the following: Outward Signals Object (050) 45409. Multiplexed Outward Signals Event
Counter 45407, and PET 44705. 050 45409 contains Event Counters 44801 which KOS FU 10120 microcode

' advances when it perfoms operations which user Processes 610 are awaiting. Event Counters 44801 in 050
45409 are awaited by Await Entries 44804 in PET 44705. Each time KOS FU 10120 microcode advances an

Event Counter 44801 in OSO 45409, it also advances Multiplexed Outward Signals Event Counter 45407. It
is awaited by an Await Entry 44804 in VPAT 45401 belonging to Virtual Processor 612 bound to KOS
Process Manager Process 610. When Wrtual Processor 62 bound to K05 Process Manager Process 610 is
again bound to JP 10114, KOS Process Manager Process 610 examines all PEl'Es 44909 belonging to the
Event Counters 44801 in 050 45423. if an advance of an Event Counter 44801 in OSO 44801 satisfied a PETE
44909 Process 610, that Process 610's Private Event Counter 45405 is advanced as previously described.
and Process 610 may again execute.

A user I/O operation illustrates how the components work together. Each user V0 channel has an Event
Counter 44801 in OSO 45409. When a Process 610 performs a user U0 operation on a channel. the EOS l/O
routine establish an Await Entry 44804 in the PET 44705 list belonging to Process 810 for the channel's
Event Counter 44801 in 050 45409. When the V0 operation is complete. I08 10116 places a message to JP
10114 in an area of MEM 10112 and activates l0.lP Bus 10132. The activation of IOJP Bus 10132 causes an

Event Signal which invokes KOS microcode. The microcode examines the message from IOS 10116 to
’ determine which channel is involved, and then advances Event Counter 44801 for that channel in OSO

45409 and Multiplexed Outward Signals Event Counter 45407. The latter advance satisfies an Await Entry
44804 for Process Manager Process 610's Virtual Processor 612 in VPAT 45401, and Process Manager
Process 610 begins executing. Process Manager Process 610 examines 050 45409 to determine which
Event Counters 44801 in OSO 45409 have been advanced since the last time process manager Process 610
executed, and when it finds such an Event Counter 44801, it examines the Event Counter Chain in PET
44705 for that Event Counter44801. If it finds that the advance satisfied any Await Entries 44804 in the Event '
Counter Chain, it advances Private Event Counter 45405 belonging to Process 610 specified in Await Entry
44804. thereby causing that Process 510 to resume execution as previously described. -

F. Process 610 Stack Manipulation
This section of the specification for CS 10110 describes the manner in which Process 610's MAS 502

and SS 504 are manipulated. As previously mentioned. in CS 10110, a Process 610's MAS S02 and SS 504
are contained in several objects. in the present embodiment, there are five objects, one for each domain's
portion of the Macro Stack (MAS) [MAS Objects 10328 through 10324) and one for the Secure Stack (SS)
(55 Object 10336). ln other embodiments, a Process 610's MAS 502 may contain objects for user-defined
domains as well. Though a Process 610's MAS 502 and SS 504 are contained in many obiects, they function
as a single logical stack. The division into several objects is a consequence of two things: the domain
component of the protection system, which requires that an object referenced by a Procedure 602 have
Procedure 602's domain of execution, and the need for a location inaccessible to user programs for
micromachine state and state which may be manipulated only by KOS.

Stack manipulation takes place under the following circumstances:
— When a procedure 602 is invoked or a Return SIN is executed. Procedure 602 invocations are

161

Petitioner Apple Inc. — Exhibit 1024, p. 4206

Petitioner Apple Inc. - Exhibit 1024, p. 4207

10

I5

20

50

IEIP _c 067 556 at

performed by means of a Call SIN. Call causes a transfer of control to the first SIN in the invoked
Procedure 602 and the Return SIN causes a transfer of control back to the SIN in the invoking Proceclu re
602 which follows the Call SIN.
When a non-local Go To SIN is executed. The non-local Go To causes a transfer of control to an

arbitrary position in some Procedure 602 which was previously invoked by Process 610 and whose
invocation has not yet ended.

—- When a conditionarises, i.e., an execution of a statement _in a program puts the executive Process 610
into a state which requires the execution of a previously established Handler Procedure 602.

— When a Process 610 is interrupted, i.e., when an Interrupt Entry 45718 for Process 610 is satisfied.
Most of the mechanisms involved in stack manipulation are used in Call and Retum; these operations

are therefore dealt with in detail and the other operations only as they differ from Call and Return. The
discussion first introduces Call and Return, then explains the stacks in detail, and finally analyzes Call and
Return and the other operations in detail.

1..Introduction to Call and Return
As a Process 610 executes a program. it executes Call and Return SlNs. A Call SIN begins an invocation

of a procedure 602, and a Return SIN ends the invotion. Generally speaking, a Call SIN does the
following:

It saves the state of Process 61 0's execution of Procedure 602 which contains the Call SIN. Included in

this state is the information required to continue Procedure 602's execution after the Call SIN is
finished. This portion of the state is termed calling Procedure 602's Macrostate.

— It creates the state which Process 610 requires to begin execution called Procedure 602.
—- It transfers control to the first Sl’N in the called Procedure 602's code.

The Return SIN does the opposite: it releases the state of called Procedure 602, restores the saved state
of calling Procedure 602. and transfers control to the SIN in the calling Procedure 602 following the Call SIN.
An invocation of a Procedure 602 lasts from the execution of the Call SIN which transfers control to the
Procedure 602 to the execution of the Return SIN which transfers control back to Procedure 602 which
contained the Call SIN. The state‘ belonging to a given invocation of a Procedure 602 by a Process 610 is
called Procedure 602's invocation state. -

While Calls and Returns may be implemented in many different fashions, it is advantageous to
implement them using stacks. When a Call creates invocation state for a Procedure 602, that invocation
state is added to the top of Process 610's stack. The area of a stack which comains the invocation state of a
Procedure 602 is called a frame. Since a called Procedure eoz may call another procedure 602, and that
another, a stack may have any number offrames, each frame containing the invocation state resulting from
the invocation of a Procedure 602 by Process 610. and each frame lasting as long as the invocation it
represents. When called Procedure 602 returns to Its caller. the frame upon which it executes is released
and the caller resumes execution on its frame. Procedure 602 being currently executed by a Process 610
thus always runs on the top frame of Process 610's MAS 502.

Calls and Returns in CS 10110 behave logiily like those in other computer systems using stacks to
preserve process 610 state- When a Process 610 executes a Call SIN, the SIN saves as Macrostate the
current values of the ABPs, the location of the SIN at which the execution of calling Procedure 602 is to
continue, and information such as a pointer to calling Procedure 602's Name Table 10350 andlUlD 40401
belonging to the S-interpreter object which contains the S-interpreter for Procedure 602's S~language. The
Call SIN then creates a stack frame for called Procedure 602, obtains the proper ABP values, the location of
called Procedure 602's Name Table 10350 and UID 40401 belonging to its S-interpreter object, and begins
executing newly-invoked Procedure 602 on the newly-created stack frame. The Return SIN deletes the stack
frame obtains the ABP values and name interpreter infon-nation from the Macrostate saved during the Call
SIN and then transfers control to the SIN at which execution of calling Procedure 602 is to continue.

However the manner in which Call and Return are impleniented is deeply affected by CS 10110's
Access Control System Broadly speaking there are two classes of Calls and Returns in CS 0110: those
which are mediated by K05 and those which are not. In the following discussion, the former class of Calls
and Returns are termed Mediated Calls and Returns, and the latter are called Neighborhood Calls and
Returns. Most Calls and Returns executed by CS 10110 are Neighborhood Calls and Returns; Mediated
Calls and Returns are typically executed when a user procedure 602 calls E05 Procedures 602 and these in
turn call KOS Procedures 602. The Mediated Call makes CS 10110 facilities available to user Processes 610

while protecting these CS 10110 facilities from misuse and therefore generally serves the same purpose as
wstern calls in the present art. As will be seen in the ensuing discussion. Mediated Call requires more CS
10110 overhead than Neighborhood Call but the extra overhead is less than that generally required by
system calls in the present art.

Mediated Calls and Returns involve S-interpreter. Namespace, and KOS microcode. S—interpreter and
Namespace microcode interpret the Names involved in the call and only modifies those portions of
Macrostate accessible to the S-interpreter. The remaining Macrostate is modified by KOS microroutines
invoked in the course of the Call SIN. A Mediated Call may be made to any Procedure 602 contained in an
object to which Process 610's subject has Execute Access at the time the invocation occurs. Mediated Calls
and Returns must be made In the following situations:

162

Petitioner Apple Inc. — Exhibit 1024, p. 4207

Petitioner Apple Inc. - Exhibit 1024, p. 4208

5

15

20

25

45

EP 0 067 556 B1

— ‘ When called Procedure 602 has a different Procedure Environment Descriptor (PED) 30303 from that
used by calling Procedure 602. Such Calls are termed CrossoPED Calls.

—- When called Procedure 602 is in a different Procedure Object 608 from calling Procedure 602. Such
Calls are termed Cross-Procedure Object Calls.

— When called Procedure 602's Procedure Object 608 has a different Domain of Execution (DOE) Attribute
from that of calling Procedure 602's Procedure Object 608, and therefore must place its Invocation
State on a different MAS object from that used by calling Procedure 602. Such Calls are termed Cross-
Domain Calls. '

in all of the above Calls, the infon-nation required to complete the Call is not available to the S-
interpreter and consequently. K05 mediation is required to complete the Call. Neighborhood Calls and
Fletums only modify two components of Macrostate: die pointer to the current SIN and the FP ABP. Both of
these components are available to the S—interpreter as long as called Procedure 602 has the same PED
30303 i.e., uses the same Name Tabe 10350 and S-interpreter or the calling Procedure 602 and hes Names
with the same syllable size as calling Procedure 602. The Call and fietum SlNs are specific to each $-
language, but they resemble each other in their general behavior. The following discussion will deal
exclusively with this general behavior and will concentrate on Mediated Calls and Returns The discussion
first describes MAS 502 and SS 504 belonging to a Process 610 and those parts of Procedure Object 608
involved in Calls and Returns, and then describes the implementation of Calls and Returns.

2. Macro Stacks (MAS) 502 (Fig. 467)
Figure 467 gives an overview of an object belonging to a Process 610's MAS 502. The description of

this Figure will be followed by descriptions of other Figures containing detailed representations of portions _ ’
of MAS objects.

At a minimum MAS Object 46703 comprises KOS MAS Header 10410 together with Unused Storage
46727 reserved for the other elements comprising MAS Object 46703. if Process 610 has not yet returned
from an invocation of a Procedure 602 contained in a Procedure Object 608 whose DOE is that required for
access to MAS Object 46703. MAS object 46703 further comprises a Stack Base 46703 and at least one MAS
Frame 46709. -

Each MAS Frame 46709 represents one mediated invocation of a procedure 602 contained in a
Procedure Objece 608 with the DOE attribute required by MAS 46703, and may in addition represent
neighborhood invocations of Procedures 602 which share that Procedure 602's Procedure Object 608. The
topmost MAS Frame 46709 represents the most recent group of invocations of Procedures 602 with the
DOE attribute required by MAS Object 46703 and the bottom MAS Frame 46709 the earliest group of
invocations from which Process 610 has not yet returned. Frames for invocations of Procedures 602 with
other domains of execution are contained in other MAS Objects 46703. As will be explained in detail below
MAS Frames 46709 in .different MAS objects 46703 are linked by pointers.

MAS Domain Stack Base 46703 has two main pans: KOS MAS Header 10410 which contains
irrfon-nation used by KOS microcode which manipulates MAS Object 46703, and Perdomein lnforrnatlon
46707, which contains information about 46703's domain and static information, i.e., information which
lasts longer than an invocation used by Procedures 602 with MAS Frames 46709 on MAS Object 46703.
MAS Frame 46709 also has two main parts, a KOS Frame Header 10414which contains infonnation used by
KOS to manipulate Frame 46709 and S—interpreter Portion 46713 which contains infonnatlon available to
the S-interpreter when it executes the group of Procedures 602 whose invocations are represented by
Frame 46709.

When making Calls and Returns, the S-interpreter and KOS microcode use a group of pointers to
locations in MAS Object 46703. These pointers comprise the following:
— MAS Object UlD 46715 the UlD 40401 of AS Object 46703.
—— First Frame Offset lFFO) 46719 which locates the beginning of KOS Frame Header 10414 belonging to

the first MAS Frame 46709 in MAS Object 46703.
Frame Header Pointer (Fl-lPl 46702 which locates the beginning of the topmost KOS Frame Header
10414 in MAS Object 46703.
Stack Top Offset (STD) 46704 a 32-bit offset from Stack UlD 46715 which marks the first bit in Unused
Storage 46727.
As will be seen presently all of these pointers are contained in fields in KOS MAS Header 46705.

a.e. MAS Base 10410 (Fig; 468)
Figure 468 is a detailed representation of MAS Domain Stack Base 10410 Turning flrst to the detailed

representation of KOS MAS Header 46705 contained therein, there are the following fields:
— Fonnat Information Field 46801 containing infonnation about the format of KOS MAS Header 46705.
— Flags Field 46803. Of these flags, only one is of interest to the present discussion: Domain Active Flag

46804. This flag is set to TRUE when Process 610 to which MAS Object 46703 belongs is executing the
invocation of Procedure 602 whose invocation record makes up the topmost MAS Frame 46709
contained in MAS Object 46703 to which KOS MAS Header 46705 belongs.

— PFO Field 46805: All MAS Headers 46705 and Frame Headers 46709 have fields containing offsets

locating the previous and following headers in MAS Object 46703. In a Stack Header 46705 there is no

163

Petitioner Apple Inc. 2 Exhibit 1024, p. 4208

Petitioner Apple Inc. - Exhibit 1024, p. 4209

EP 0 067 556 B1

previous header and this field is set to 0.

- FFO Field 46805: The field locating the following header in a Stack Header 46705 this field contains FFO
46719 since the next header is the first Frame Header in MAS Object 46703.

— STO Field 46807: the field containing ST0 offset 46704.
5 — Process lD Field 46809: UlD 40401 belonging to Process Object 901 for Process 610 to which MAS

Object 46703 belongs. '

—— Domain Environment Information pointer Field 46811: The pointer contained in the field locates an ‘
area which contains domain-specific information. In the present embodiment. the area is part of MAS
Stack Base 10410; however, in other embodiments, it may be contained in a separate object.

70 — Signaller Pointer Field 46813: The pointer contained in the field locates a Procedure 602 which KOS
invokes when a Process 610's execution causes a condition to arise while it is executing in the domain
to which MAS object 46703 belongs.

— AAT Pointer Field 30211: 'l11e pointer in Field 30211 locates AAT 30201 for MAS Object 46703. AAT
30201 is described in detail in Chapter 3.

75 — Frame Label Sequencer Field 46819: This field contains a Sequencer 451 02. Sequencer45102 is used to
generate labels used to locate MAS Frames 46709 when a non-local GOTO is executed. .
Turning now to the detailed representation of Domain Environment information 46821 located by

Domain Environment Information Pointer Field 46811 there are the following fields:
— KOS Format lnforrnation Field 423.

29 - Flags Field 46825 containing the following flags:
— Pending Interrupt Flag 46827, set to TRUE when Process 610 has an interrupt pending for the

domain to which MAS Object 46703 belongs.
—- Domain Dead Flag 46829, set to TRUE when Process 610 can no longer execute Procedures 602

with domains of execution equal to that to which MAS Object 46703 belongs.
25 -- Invoke Verify an Entry Flag 46833 and invoke Verify on Exit Flag 46835. The former flag is set to

TRUE when KOS is to invoke a Procedure 602 which checks the domain's data bases before a
Procedure 602 is allowed to execute on the domain's MAS Object 46703; the latter is set to TRUE
when KOS is to invoke such a Procedure 602 on exit from a Procedure 602 with the domain as its
DOE.

30 — Default Handler Non-null Flag 46835 is setto TRUE when there is a default clean-up handler for the
domain. Clean-up handlers are described later.

-— Interrupt Mask Field 46839 determines what interrupts set for Process 610 in MAS object 46703'sdomain will be honored.

Domain UID Field 46841 contains UID 40401 for the domain to which MAS Object 46703 belongs.
Fields 46843 through 46849 are pointers to Procedures 602 or tables of pointers to Procedures 602.
The Procedures 602 so located handle situations which arise as MASS 502 are manipulated. The
use of these fields’ will become clear as the operations which require their use are explained.

b.b. Per-domain~Data Area 46853 (Fig. 468l
4a Per-domain Data Area 46853 contains data which cannot be kept in MAS Frames 46709 belonging to

invocations of Procedures 602 executing in MAS Object 46703's domain, but which must be available to
these invocations Per-Domain Data Area 46853 has two components: Storage Area 46854 and AAT 30201.
Storage Area 46854 contains static data used by Procedures 602 with invocations on MAS Object 46703 and
data used by S-interpreters which are used by such procedures 602. Associated Address Tabla (AAT) 30201

45 is used to ioizte data in Storage Area 46854. A detailed discussion ofAAT 30201 is contained in Chapter 3.
Two kinds of data is stored in Storage Area 46854: static data and S-interpreter data.
Static data is stored in Static Data Block 468. Static Data Block 46863 comprises two parts: Linkage

Pointers 46865 and Static Data Storage 46867 Linkage Pointers 46865 are pointers to static data not
contained in Static Data Storage 46867 for example, data which lasts longer than Process 610 and pointers

so to External Procedures 602 which the Procedure 602 to which Static Data Storage 46867 belongs invokes.
_Static-Data Storage 4686? contains storage for static data used by the Procedure 602 which does not last

' longer than Process 610 executing the Procedure 602. ‘
S-interpreter data is data required by S-interpreters used by Procedures 602 executing on MAS object46703.

55 The S—interpreter data is stored in S-interpreter Environment Block (SE8) 46864 which, like Static Data
Block 46864 is located via AAT 30201: The contents of SEB 46864 depend on the S-interpreter.

cc MAS Frame 46709 Detail (fig. 469) ,
Figure 469 represents a typical frame in MAS Object 46703. Each MAS Frame 46709 contains a

so Mediated Frame 4$47 produced by a Mediated Call of a Procedure 602 contained in a Procedure Object
608 whose DOE attribute is the one required for execution on MAS object 46703. Mediated Frame 46947
may be followed by Neighborhood Frames 46945 produced by Neighborhood Cells of Procedures 602.
Mediated Frame 46947 has two parts, a K05 Frame Header 10414 which is manipulated by KOS microcode.
and an 5-interpreter portion which is manipulated by S—interpreter and Namespace microcode.

55 Neighborhood Frames 46945 have no KOS Frame Headers 10414. As will become clear upon closer

‘I64

Petitioner Apple Inc. — Exhibit 1024, p. 4209

Petitioner Apple Inc. - Exhibit 1024, p. 4210

I0

20

25

’ EP 0 067 556 B1

examination of Figure 469. Mediated Frames 46947 in the present embodiment contain no Macrostate. in
the present embodiment. Macrostata for these frames is kept on SS Object 1036: however in other
embodiments, Macrostate may be stored in Mediated Frames 46947. Neighborhood Frames 46945 contain
those portions of the macrostate which may be manipulated by Neighborhood Call; the location of this
macrostate depends on the Neighborhood Call SIN.

Turning now to KOS Frame Header 10414. there are the following fields:
— KOS Fomiat lnforrnation Field 46901 containing information about MAS Frame 46709's format.
— Flags l-‘ield 46902. This field contains the following flags:

Result of Cross-domain Call Flag 46903. This Flag is TRUE if MAS Frame 46709 which precedes this
MAS Frame 46709 is in another MAS Object 46703.
Is Signaller Flag 46905. This flag is TRUE if this MAS Frame 46709 was created by the invocation of
a Signaller Procedure 602.
Do Not Return Flag 46907: This flag is TRUE l'f Process 610 is not to return to the invocation for

‘which this MAS Frame 46709 was created.

Flags 46909 through 46915 indicate whether various lists used in condition handling and non-local
GOTOs are present in the MAS Frame 46709.

Previous Frame Offset Field 46917. Next Frame Offset-Field 46919. and Frame Top Offset Field 46921

are offsets which give the location where Header 10414 for the previous MAS Frame 46709 in MAS
Object 46703 begins. the location where the header for the next MAS Frame 46709 in MAS Object
46703 begins. and the location of the first bit beyond the top of MAS Frame 46709 respectively.
Fields 46923 through 46927 are offsets which locate lists in S-interpreter portion 46713 of Frame 46709.
KOS establishes such lists to handle conditions and non-local GOTOs. Their use will be explained in
detail under those headings. -
Fields 46929 and 46933 contain information about Procedure 602 whose invocation is represented by
MAS Frame 46709. Field 46929 contains the number of arguments required by procedure 602 and Field
46933 contains a resolvable pointer to Procedure 602's PED 30303. Both these fields are used primarily
for debugging.
Dynamic Back Pointer Fieid 46931 contains a resolvable pointer to the preceding MAS Frame 46709
belonging to Process 610's MAS 502 when that MAS Frame 46709 is contained in a different MAS
Object 46703. In this case, Flag field 46903 is set to TRUE. When the preceding MAS Frame 46709 is
contained in the same MAS object 46703 field 46931 contains a pointerwith a null UlD 40401 and Flag
l-'ield 46903 is set to FALSE.

Frame Label Field 46935 is for a Frame Label produced when a non-local GOT0 is established which
transfers control to the invocation represented by MAS Frame 46709. The label is generated by Frame
Label Sequencer 46819 in KOS MAS Header 10410.
S-interpreter Portion 46713 of MAS Frame 46709 comprises those portions of MAS Frame 46709 which

are under control of the S-interpreter. S-interpreter Portion 46713 in turn comprises two main subdivisions:
those parts belonging to Mediated Frame 46947 and those belonging to Neighborhood Frames 46945.

The exact form of S-interpreter portion 46949 of KOS Frame 46947 and of S-interpreter Frames 46945
depends on the Call SlN which created the frame in question. However all Neighborhood Frames 46945 and
S-interpreter portions 46949 of Mediated Frames 46947 have the same armngements for storing Linkage
Pointers 10416 and local data in the frame. Linkage Pointers 10416 are pointers to the locations of actual
arguments used in the invocation and Local Storage 10420 contains data which exists only during the
invocation. in all Mediated Frames 46947 and Neighborhood Frames 46945. Linkage pointers 10416
precede Local Storage 10420. Furthermore, when a Mediated Frame 46947 or a Neighborhood Frame 46945
is the topmost frame of Process 610's MAS. i.e, when Process 610 is executing on that frame. the FP always
points to the beginning of Local Storage 10420. and the beginning of Linkage Pointers 10416 lsalwavsat a
known displacement from FP. References to Linkage Pointers 10416 may therefore be expressed as
negative offsets from FP, and references to Local Storage 10420 as positive offsets.

In addition, S-interpreter Portion 46713 may contain lists of information used by KOS to execute non-
local GOTOs and conditions, as well as S—interpreter frames for non-mediated calls. The lists of information
used by KOS are contained in List Area 46943. The exact location of List Area 46943 is determined by the
compiler which generates the SlNs and Name Table for the Procedure 602 whose invocation is represented
by Mediated Frame 46947. When Procedure 602's source text contains statements requiring storage in List
Area 46943, the compiler generates SlNs which place the required amount of storage in Local Storage
10420. KOS routines then build lists in Area 46943, and place the offsets of the heads of the lists in Fields
46923, 46925 or 46927, depending on the kind of list. The lists and their uses are described in detail later.

3. SS 504 (Fig. 470)
Figure 470 presents an overview of SS 504 belonging to a Process 610. SS 504 is contained in SS Object

10336. SS Object 10336 is manipulated only by KOS microcode routines. Neither Procedures 602 being
executed by Process 610 nor S-interpreter or Namespace microcode may access information contained in
SS Object 10336.

SS Object 10336 comprises two main components. SS Base 47001 and SS Frames 47003. Turning first
to the geneial structure of SS Frames 47003, each time a Process 610 executes a Mediated Call K05

165

Petitioner Apple Inc. — Exhibit 1024, p. 42lO

Petitioner Apple Inc. - Exhibit 1024, p. 4211

ID

20

25

EP 0 067 556 B1

microcode creates a new $3 Frame 47003 on SS Obiect 10336 belonging to Process 610 and each time a
Process 610 executes a Mediated Return. KOS microcode removes the current top SS Frame 47003 from SS
Object 10336. There is thus one SS Frame 47003 on SS Object 10336 belonging to a process 610 for each

liiilllllllffi illllllli ‘Will llll rllililiii W7 Wli i"-’2'
SS Frames 47003 comprise two kinds of frames:
Ordinary Frames 10510 and Cross-domain Frames 47039. Cross-domain Frames 47039 are created

whenever Process 610 executes a Cross-domain Call: for all other Mediated Calls. Ordinary Frames 10510
are created. Cross-domain Frames 47039 divide SS Frames 47003 into Groups 47037 of SS Frames 47003

belonging to sequences of invocations in a single domain. The first SS Frame 47003 in a Group 47037 is a
Cross-domain Frame 47039 for the invocation which entered the domain, and the remainder of the SS
Frames 47003 are Ordinary Frames 10510 for a sequence of invocations in that domain. These groups of SS
Frames 47003 correspond to groups of Mediated Frames 46947 in a single MAS Object 46703.

a.a.. SS Base 47001 (Fig. 471)
S5 Base 47001 comprises four main parts: SS Header 10512 Process Microstate 47017, Storage Area

47033 for JP 10114 register contents, and initialization Frame Header 47035. Secure Stack Header 10512
contains the following information: .
-— Fields 47001 and 47009 contain flag and fonnat information; the exact contents of these fields are

unimportant to the present discussion. .
— Previous Frame Offset Value Field 47011 is a standard field in headers in SS Object 1036; here it is set

to 0, since there is no previous frame. ’
— Secure Stack First Frame Offset Field 47013 contains the offset of the first SS Frame 47039 in SS object

10336, i.e., initialization Frame Header 47035.
-— Process UID field 47015 contains UID 40401 of Process 610 to which SS Object 10336 belongs.
— Number of Cross Domain Frames Field 47016 contains the number of Cross-domain Frames 47039 in

SS Object 10336.
Process Microstate 47017 contains information used by KOS microcode when it executes Process 610

to which SS Object 10336 belongs Fields 47019, 47021 and 47022 contain the offsets of locations in SS
Object 10336. Field 47019 contains the value of SSTO the location of the first free bit in SS Object 10336;
Field 47021 contains the value of SSFO, the location of the topmost frame in SS object 10336; Field 47022
finally contains the value of XDFO, the location of the topmost Cross-domain Frame 47039 in SS Object
10336. All of these locations are marked in Figure 470. '

Other fields of interest in Process Microstate 47017 comprise the following: Offsets in Storage Area
Field 47023 contains offsets of locations in Storage Area 47033 of SS Object 10336; Domain Number Field
47025 contains the domain number for the DOE of Procedure 602 currently being executed by Process 610.
The relationship between domain UlDs and domain numbers is explained in the discussion of domains.
VPAT Offset Field 47027 contains the offset in VPAT 45401 of VPAT Chunk 45402 belonging to Virtual
Prouassor 612 to which Process 610 is bound. Signal Pointer Field 47029 contains a resolved pointer to the
Signaller la Procedure 602 used in condition handling) belonging to the domain specified by Domain
Number Field 47025 and Trace lnfonnation Field 47031 contains a resolved pointer to that domain's Trace
Table, described later.

Storage Area for JP 10114 register Contents 47033 is used when a Virtual Processor 612 must be
removed from JP 10114. When this occurs, either because Virtual Processor 612 is unbound from JP 10114,
because CS 10110 is being halted, or because CS 10110 has failed, the contents of JP 10114 registers which
contain information specific to Virtual Processor 612 are copied imo Storage Area 47033. When Virtual
Processor 612 is returned to JP 10114, these register contents are loaded back into the JP 10114 registers
from whence they came. Initialization Frame Header 47035, finally, is a dummy frame header which is used
in the creation of SS Object 10336.

b.b. SS Frames 47003 (Fig. 471)
Commencing the discussion of SS Frames 47039 and 10510. Figure 471 illustrates these structures in

detail. Ordinary SS Frame 10510 comprises three main divisions: Ordinary SS Frame Header 10514,
Macrostate 10516 and Microstate 10520. Ordinary SS Frame Header 10514 contains information used by
KOS microcode to manipulate Ordinary SS Frame 10510 to which Header 10514 belongs. Macrostate 10516
contains the values of the ABPs for the frame's mediated invocation and other information required to
resume execution of the invocation. Microstate 10520 contains micromachine state from FU 10120 and EU
10122 registers. The amount of micromachine state. depends on the circumstances; in the present
embodiment, some micromachine state is saved on all Mediated Calls; furthennore, if a Process 610
executes a microcode—to—software Call, the micromachine state that existed at the time of the call is saved:
finally. Microstate 10520 belonging to the topmost SS Frame 47003 may contain information which was
transferred from FU 10120 GRF registers 10354 or EU 10122 register and stack mechanism 10216 when
their capacity was exceeded. For details about this portion of Microstate 10520 see the discussion of the FU
10120 micromachine in Chapter 2. The discussion of SS Object 1036 continues with details concerning SS
Header 10514 and Macrostate 05163. -

136

Petitioner Apple Inc. — Exhibit 1024, p. 4211

Petitioner Apple Inc. - Exhibit 1024, p. 4212

20

25

35

50

55

6'0

EP O 067 556 B1

a.a.a. Ordinary SS Frame Headers 10514 (Fig. 741)
Fields of interest in Ordinary Secure Stack Frame Header 10514 are the following:
Format lnfonnation 47103 which identifies the format of Header 10514.

Flags field 47105 which contains one flag of interest in this discussion: Frame Type Flag 47107: in
Ordinary SS Frames 10510 this field is set to FALSE.
Offset Fields 47109 through 47113: Field 47109 contains the offset of the previous SS Frame 47039 or
10510. Field 47111 contains the offset of the following SS Frame 47039 or 10510. and Field 47113
contains the offset of the last SS Frame 47039 or 10510 preceding the next Crossdomain Frame 47039
Field 47117 contains the current domain number for the domain in which the mediated invocation
represent SS Frame 47039 or 10510 is executing.
Field 47119 contains the offset of the preceding Cross-domain Frame 47039.
Field 47121 contains offsets for important locations in Microstate 10520.

Il

- b.b.b. Detailed Structure of Macrostate 10516 (Fig. 471)
These fields are of interest in Macrostate 10516:

Syllable Size Field 47125 contains the value of K, i.e., the size of the Names in the Sim belonging to
Procedure 602 which the invocation is executing. .
End of Name Table Field 47127 contains the location of the last Name in Name Table 10350 belonging
to Procedure 602 which the invocation is executing.
Fields 47129 through 47143 are resolved pointers to locations in Procedure Object 901 containing
Procedure 602 being executed by the invocation and resolved pointers to locations containing data
being used by Procedure 602. l-“ield 47129 contains a pointer to Procedure 602's PED 30303; if
Procedure 602 is an External Procedure 602. Field 47131 contains a pointer to Procedure 602's entry in
Gates 10340; Field 47135 contains the U|D—offset value of FF for the invocation; Field 47135 contains a
pointer to SEB 46864 used by Procedure 602's S-interpreter. Field 47137 contains the UlD-offset value
of SDP and Field 47139 contains that of PBP. SIP Field 47141 contains a pointer to Procedure 602's 8-
imerpreter object. and NTP, finally. is a pointer to Procedure 602's Name Table 10350.
field 47145 contains the PC forthe SIN which is to be executed on return from the mediated invocation

to which SS Frame 47003 belongs.

c.c.c. Cross domain SS Frames 47039 (I-'ig. 471)
Cross-domain SS Frames 47039 differ from Ordinary SS Frames 10510 in two respects: they have an

additional component. Cross-domain State 10513, and fields in Cross domain Frame Header 47157 have
different meanings from those in Ordinary Frame Header 10514.

Cross-domain State 10513 contains information which KOS Call microcode uses to verify that a return
to a Procedure 602 whose DOE differs from that of Procedure 602 whose invocation has ended is returning
to the proper domain. Fields of interest in Cross-domain State 10513 include GOTO Tag 47155 used for non-
local GOT0s which cross domains, Stack Top Pointer Value 47153, which gives the location afthe first free
bit in the new domain’s MAS Object 46703 and Frame Header Pointer Value 47151, which contains the
location of the topmost Mediated Frame Header 46709 in new MAS Object 46703.

'l1'iere are three fields in Cross-domain Frame Header 47157 which differ from those in Ordinary 55
Frame Header 47101. These fields are Flag Field 47107 which in Cross~domain Frame Header 471 57 always
has the value TRUE. preceding Cross-domain Frame Offset Field 47161, which contains the offset of
preceding Cross-domain Frame 47039 in SS Object 10336 and Next Cross domain Frame Offset Field 47159.
which contains the location of the next Cross-domain Frame 47039. These last two fields occupy the some
locations as I-"ields 47111 and 47109 respectively in Ordinary SS Frame Header 10514.

As will be noted from the above description of 55 Frames 47003. Secure Stack Object 10336 in the
present embodiment contains three kinds of information: macrostate cross-domain state and microstate.
In other embodiments, the information in SS object 1036 may be stored in separate stack structures, for
example, separate microstate and cross-domain stacks. or information presently stored in MAS Objects
46703 may be stored in SS Object 10336, and vice-versa.

4. Portion of Procedure Object 608 Relevant to Call and Return (Fig. 472) .
. The information which Process 610 requires to construct new frames on its MAS Objects 46703 and SS

Object 10336 and to transfer control to invoked Procedure 602 is contained in invoked Procedure 602's
Procedure Object 608. Figure 472 is an overview of Procedure Object 608 showing the information used in a
Call. figure 472 expands information contained in Figures 103 and 303; fields that appear in those Figures
have the names and numbers used there.

Beginning with Procedure_Object Header 10336, this area contains two items of information used in
cells: an offset in Field 47201 giving the location of Argument Information Array 10352 in Procedure Object

' 608 and a value in Field 47203 specifying the number of gates in Procedure Object 608. Gates allow the
Invocationof External Procedures 602 that is, Procedures 602 which may be invoked by Procedures 602
contained in other Procedure Objects 608. Procedure Object 608's gates are contained in External Entry
Descriptor Area 10340. There are two kinds of gates: those for Procedures 602 contained in Procedure
Object 608, and those for procedures 602 contained in other Procedure Objects 608, but callable via

167

Petitioner Apple Inc. — Exhibit 1024, p. 4212

Petitioner Apple Inc. - Exhibit 1024, p. 4213

10

I5

20

EP 0 067 556' 31

Procedure Object 608. Gates for Procedures 602 contained in Procedure Object 608 are termed Local Gates
47205. Local Gates 47205 contain lntemal Emry Offset (IEO) Field 47207 which contains the offset in
Procedure Object 608 of Entry Descriptor 47227 for Procedure 602. if Procedure 602 is not contained in
Procedure Object 472 its gate is a Link Gate 47206. Link Gates 47206 contain Binder Area Pointer (BAP)
fields 47208. A BAP Field 47208 contains the locations of an area in Binder Area 30323 which in turn
contains a pointer to a Gate in another Procedure Object 608. The pointer in Binder Area 30323 may be
either resolved or unresolved. If Procedure 602 is contained in that Procedure Object 608, the Gate is a Local
Gate 47205; otherwise, it Is another Link Gate 47206.

Procedure Environment Descriptors (PEDS) 10348 contains PEDs 30303 for Procedures 602 contained

in Procedure Object 608. Most of the macrostate information for a Procedure 602 may be found in its PED
30303. PED 30303 has already been described, but for ease of understanding, its contents are reviewed
here.
— K Field 30305 contains the size of Procedure 602's Names.

— Largest Name (LN) Field 30307 contains the i
Beginning with Procedure Object Header 10336, this area contains two items of infonnation used in

Calls: an Offset in Field 47201 giving the location of Argument lnfomtation Array 10352 in Procedure Object
608 and a value in Field 47203 specifying the number of gates in Procedure Object 608. Gates allow the
invocation of External Procedures 602. that is, Procedures 602 which may be invoked by Procedures 602
contained in other Procedure Objects 6nter to Static Data Block 46863. Thus, for that Invocation of
Procedure 602 on invotion, the SDP ABP is derived via SDPP field 30313.
— PBP Field 30315 is the pointer from which the current PC is calculated. When Procedure 602 is invoked.

this value becomes the PBP ABP.

— S-interpreter Environment Prototype Pointer (SEPP) Field 30316 contains the location of SEB Prototype
Field 30317. When Procedure 602 is invoked, Field 30316 locates SEB 46864 via AAT 30201 in the same
manner as SDPP field 30313 locates the invocation's static data.

A Procedure 602's PED 30303 may be located from its lntemal Entry Descriptor 47227. A PED 30303
may be shared by several Procedures 602. Of course in this case, the values contained in shared PED 30303
are the same for all Procedures 602 sharing it. As will be explained in detail later in the present
embodiment. ifa calling Procedure 602 does not share a PED 30303 with called Procedure 602 the Call must
be mediated. A lling Procedure 602 may make a Neighborhood Call only to Procedures 602 with which it
shares a PED 30303.

The next portion of Procedure Object 608 which is of interest is Internal Entry Descriptors 10342. Each
Procedure 602 contained in Procedure Object 608 has an Entry Descriptor 47227. Entry Descriptor 47227
contains four fields of interest:
-—— PBP Offset Field 47229 contains the offset from PBP at which the first SIN in Procedure 602's code is .

located.

— Flags Field 47230 contains flags which are checked when Procedure 602 is invoked. Four flags are ofinterest:

- Argument lnfomiation Array Present Flag 47235 which is set to TRUE if Procedure 602 has entries
in Argument Information Array 10352.

—— SEB Flag 47237 is set to TRUE if SEPP 47225 is non-null, i-e., if Procedure 602 has a SEB 46864 for
its S~interpreter. ‘

— Do Not Check Access Flag 47239 is set to TRUE if KOS Call microcode is not to perform protection
checking on the actual arguments used to invoke Procedure 602.

—- PED Offset Field 47231 contains the offset of Procedure 602's PED 30303 from the beginning of
Procedure Object 608.

— Frame Size Field 47233 contains the initial size of the Local Storage Portion 10420 of MAS Frame
46709 for an invocation of procedure 602.
Other areas of interest for Calls are SE8 Prototype Area 47241, Static Data Area Prototype 30317,

Binder Area 30323 and Argument information Array 10352. SEB Prototype type Area 47241 and Static Data
Area Prototype 30315 contain information used to create an SEB 46864 and Static Data Block 468
respectively for Procedure 602. These areas are created on a par-MAS Object 46703 basis. The first time
that a Process 610 executes a Procedure 602 in a domain, SEB 46864 and Static Data Block 46863 required
for Procedure 602 are created either in MAS Object 46703 belonging to the domain or in another object
accessible from MAS Object 46703. SEB 46864 and Static Data Block 46863 then remain as long as MAS

' Object 46703 exists.
Static Data Prototype 30317 contains two kinds of information: Static Data Links 30319 and Static Data

Initialization Information 30321 Static Data Unks 30319 contain locations in Binder Area 30323, which in

turn contains pointers which may be resolved to yield the locations of data or External Procedures 602.
when a Static Data Block 46863 is created for a Procedure 602, the information in Binder Area 30323 is used
to create Linkage Pointers 46865. Static Data Initialization Information 30321 contains information required
to create and initialize static data in Static Data Storage 46867. . _

As mentioned in the discussions of Link Gates 47206 and Static Data Links 30319 Binder Area 30323
contains pointers which may be resolved as described in Chapter 3 to yield locations of data and External

550 Procedures 602.

168

Petitioner Apple Inc. — Exhibit 1024, p. 4213

Petitioner Apple Inc. - Exhibit 1024, p. 4214

70

20 '

25

45

EP M67 556 31 ’

Argument information Array (MA) 10352 contains information used by KOS Call microcode to check
whether the subject which is invoking Procedure 602 has access to the actual arguments used in the
invocation which allows the uses made of the arguments in Procedure 602. This so-called "Trojan horse
check" is necessary because a Call may change the domain component of a subject. Thus, a subject which
is lacking access of a specific kind to a data item could gain that access by passing the data item as an
argument to a Procedure 602 whose DOE gives it access rights that the calling subject itself lacks.

Each Local Gate 47205 in Procedure Object 608 has an element in AIA 10352. Each of these Argument
information Array Elements (AlAEs) 60845 has fields indicating the following: '
— The minimum number of arguments required to invoke Procedure 602 to which Local Gate 47205

belongs, in Field 47247.
—- The maximum number of argumems which may be used to invoke Procedure 602 in Field 47249.
— The access rights that the invoking subject must have to the actual arguments in order to invoke ‘

Procedure 602 in Field 47251.

Fieid47251 is itself an array which specifies the kinds of access that the invoking subject must have to
‘ the actual arguments it uses to invoke Procedure 602. Each formal argument for Procedure 602 has an

Access Mode Array Entry (AMAE) 47255. The order of the AMAEs 47255 corresponds to the order of
Procedure 602's fonnal arguments. The first fon-nal argument has the first AMAE 47255, the second the
second, and so forth. An AMAE 47253 is four bits long. There are two forms of AMAE 47253: Primitive
Access Form 47255 and Extended Access Form 47257. in the former form. the leftmost bit is set to 0. The

three remaining bits specify read, write, and execute access. if a bit is on, the subject performing the
invocation must have that kind of primitive access to the object containing the data item used as an actual
for the formal argument corresponding to that AMAE 47253. In the Extended Access Fonn 47257, the
leftmost bit is set to 1 and the remaining bits are defined to represent extended access required for
Procedure 602. The definition of these bits varies from Procedure 602 to Procedure 602.

5. Execution of Mediated Calls

Having described the portions of MAS Object 46703, SS Object 10336. and Procedure Object 608 which
are involved in Calls, the discussion turns to the description of the Mediated Call Operation. First, there is
presented an overview of the Mediated Cali SW and then the implementation of Mediated Calls in the
present embodiment is discussed, beginning with a simple Mediated Call and continuing with Cross-
Procedure Object Calls and Cross Domain Calls. The discussion closes with a description of software-to-
microcode Calls.

8.8. Mediated Cali SlNs

While the exact form of a Mediated Call SIN is S-language specific, all Mediated Call SlNs must contain
four_ items of information:

— The SOP for the operation.
— A Name that evaluates to a pointer to the Procedure 602 to be invoked by the SIN.

A literal (constant) specifying the number of actual arguments used in the invocation.
A list of Names which evaluate to pointers to the actual arguments used in the invocation.
if Procedure 602 requires no arguments, the literal will be 0 and the list of Names representing the

actual arguments will be empty.
In the present. embodiment, Mediated Call and Return SlNs are used whenever called Procedure 602

has a different PED 30303 from calling Procedure 602. In this case, the Call must save and recalculate
rnacrostate other than F and PC. and mediation by KOS Call microcode is required. The manner in which
KOS Call microcode mediates the Call depends on whether the Call is a simple Mediated Call a Cross-
procedure Object Call, or a Cross-Domain Cali.

b.b. Simple Mediated Calls (Fig. 270, 468, 469, 470. 471, 472)
When the Mediated Call SIN is executed, S-interpreter microcode first evaluates the Name which

represents the location of the called Procedure 602. The Name may evaluate to a pointer to a Gate 47205 or
4707 in another Procedure Object 608 or to a pointer to an Entry Descriptor 47227 in the present Procedure
Object 608. When the Name has been evaluated, S-interpreter Call microcode invokes KOS Call microcode,
using the evaluated Name as an argument. This microcode first fills in Macrostate Fields 10516, left empty
until now, in the current invocation's SS Frame 47003. The microcode obtains the values for these fields

from registers in FU 10120 where they are maintained while Virtual Processor 612 of Process 610 which is
executing the Mediated Call is bound to JP 10114.

The next step to determine whether the pointer which KOS Call microcode received from S-interpreter
‘ Call microcode is a pointer to an External Procedure. To make this determination, KOS Call microcode

compares the pointer’s AON 41304 with that of Procedure Object 608 for Procedure 602 making the Call. If
they are different, the Call is e Cross-Procedure Object Call, described below. In the case of the Simple
Mediated Call, the format field indicates that the location is an Entry Descriptor 47227. KOS Call microcode
continues by saving the location of Entry Descriptor 47227 and creating a new Mediated Frame 46947 on
current MAS Object 46703 and a new Ordinary 85 Frame 10510 on 88 Object 10336 for called Procedure
602. As KOS Call microcode does so, it sets Fields 46917 and 46919 in Mediated Frame Header 10414 and

169

Petitioner Apple Inc. — Exhibit 1024, p. 4214

Petitioner Apple Inc. - Exhibit 1024, p. 4215

15

20

IEP 0 067 556 1

Fields 47109 and 47111 in Ordinary SS Frame Header 10514 to the values required by the addition offrames
to MAS Object 46703 and SS Object 10336.

New Mediated Frame 46947 is now ready for Linkage Pointers 10416 to the actual arguments used in
the Call, so KOS Call microcode returns to S-interpreter Call microcode, which parses the SIN to obtain the
literal specifying the number of arguments and saves the literal value. S-interpreter Call microcode then
parses each argument Name, evaluates it, and places the resulting value in Unkage Pointers Section 10416.
When Linkage Pointers Section 10416 is complete, S-interpreter Call Microcode calculates the new location
of FP from the location of the top of Linkage Pointers Section. 10416 and places a pointer for the location in
the R1 10120 register reserved for FF. At this time. S-interpreter Call microcode also places the new
location of the top of the stack in Stack Top Offset Field 46807.

S-interpreter Call microcode then invokes KOS Call microcode to place the value of the literal
specifying the number of arguments in MAS Frame Field 46929, to calculate the new value of FHP 46702
and place it in the FU 10120 register reserved for that value, and finally to obtain the state necessary to
execute called Procedure 602 from called Procedure 602's Entry Descriptor 47227 and PED 30303. As
previously stated, S-interpreter Call microcode saved the lotion of Entry Descriptor 47227. Using this
location. K08 Call Microcode obtains the size of the storage required for local data from Field 4723 and
adds that amount of storage to the new MAS Frame 46709. Then KOS Call Microcode uses Field 47231 to
locate PED 30303 for Procedure 602. PED 30303 contains the remainder of the necessary information about
Procedure 602 and KOS Cali microcode copies the location oi PED 30303 into PED Pointer Field 46933 and
then copies the values of K Field 30305. Last Name Field 30307, NTP Field 30311 and PBP Field 30315 into
the relevam registers in FU 10120. KOS Call microcode next translates the pointer in SlP Field 30309 into a
dialect number as explained in Chapter 3, and places it in register RDIAL 24212 of FU 10220 and thereupon
derives SDP by resolving the pointer in SDPP Field 30313 and a pointer to SEB 46864 by resolving the
pointer in SEPP Field 30316. Having performed these operations. KOS Call microcode returns to S-
interpreter Call microcode, which finishes the Call by obtaining a new PC, that is, resetting registers in l-
stream Reader 27001 in FU 10120 so that the next SIN to be ietdied will be the first SIN of called procedure
602 S-interpreter Call microcode obtains the infomiation required to change PC from Field 47229 in Entry
Descriptor 47227 which contains the offset of the first SIN of called Procedure 602 from PBP.

In the present embodiment. some FU 10120 state produced by the Mediated Call SIN is retained on SS
504 throughout the duration of Procedure 602's invocation. The saved state allows Process 610 to
reattempt the Mediated Call if the Call fails before the called Procedure 602 begins executing. When a
Mediated Return SIN is executed, it resumes execution on the retained state from the CALL SINT. The
Mediated Return is much simplerthan the Call. Since all ofthe information required to resume execution of
the invotion which perfomed the Call is contained in Macrostate 10516 in the calling invocation's SS
Frame 47003, Return need only pop the called invocation’s frames from current MAS Object 46703 and SS
Object 10336. copy Macrostate 10516 47123 from the calling invocation's SS Frame 47003 into the proper
FU 10120 registers, translate SIP Value 47141 into a dialect number, and resume executing the calling
invocation. The pop operation involves nothing more than updating those pointers in MAS Object 46703
and 55 Object 10336 which pointed to locations in the old topmost frame so that they now point to
equivalent locations in the new topmost frame.

c.c. invocations of Procedures 602 Requiring $EBs 46864 (Fig. 270, 468, 469, 470, 471, 472)
if a Procedure 602 requires a SEB 46864, this fact is indicated by Flag Field 47237 in Procedure 602's

Entry Descriptor 47227. PED 30303 for such a Procedure 602 contains SEPP Field 47225, whose value is a
non-resolvable pointer. The manner in which a SE8 46864 is created for Procedure 602 and SEPP field
47225 is translated into SEP. a pointer which contains the location of SEB 46664 and is saved as part of the
invocation's macrostate on SS 1036, is similar to the manner in which a Static Data Block 46863 is created
and the non-resolvable pointer comained in SDPP field 47225 is translated into SDP. The first time that a
Procedure 602 requiring a SEB 46864 is invoked on a MAS Object 46703, a SEB 46864 is created for the
Procedure 602 and an AATE 4685 is created which associates the nonresolvable pointer in SEPP field
47226 and the location of SEB 46864. That location is the value of SEP when the procedure is executing on
MAS object 46703. On subsequent invocations of Procedure 602. AATE 468$ serves to translate the value
in SEPP field 47225 into SEP.

d.d. Cross-Procedure Object Calls (Fig. 270, 468. 469, 470. 471, 472)
A Mediated Call which invokes an Extemal Procedure 602 is called a Cross-Procedure Object Call. As

previously mentioned. KOS Call microcode assumes that any time the Name representing the called
Procedure 602 in a Mediated Call SIN resolves to the location of a Gate that the Call is to an External
Procedure 602. As long as newly-called External procedure 602 has the same DOE as calling Procedure 602.
Cross~Procedure Object Calls differ from the Simple Mediated Call only in the manner in which called
Procedure 602's Entry Descriptor 47227 is located. Once KOS Call microcode has determined as described
above that a Mediated Call is a Cross-Procedure Object Call it must next determine whether it is a Cross-
Domain Call. To do so, KOS Call microcode compares the DOE Attribute of called Procedure 602's
Procedure Object 608 with the domain component of the current subject. KOS Call microcode uses
Procedure Object 608's AON 41304 to obtain Procedure Object 608's DOE from Field 41521 of its AOTE

170

Petitioner Apple Inc. — Exhibit 1024, p. 4215

Petitioner Apple Inc. - Exhibit 1024, p. 4216

I0

20

30

EP 0 067 556 B1

41306 and it uses the ASN for the current subject, stored in an FU 10120 register, to obtain the current
subject's domain component from AST 10914. if the DOE and the current subject's domain component
differ. the Call is a Cross-domain Call, described below; otherwise, the Call locates the Gate 47205 or 47206
specified by the evaluated Name for called Procedure 602 in its Procedure Object 608. if the Gate is a Local
Gate 47205, the Call uses Entry Descriptor Offset Field 47207 to locate Entry Descriptor 47227 belonging to
Called Procedure 602 and then proceeds as described in the discussion of a Simple Mediated Call.

if the Gate is a Link Gate 47206, KOS Call microcode obtains the pointer corresponding to Link Gate
47206 from Binder Area 47245 and resolves it to obtain a pointer to another Gate 47205 or 47206, which
KOS Call microcode uses to repeat the External Procedure 602 call described above. The repetitions
continue until the newly~located gate is a Local Gate 47205. whereupon Call proceeds as described for
Simple Mediated Calls.

e.e. Cross-domain Calls (Fig. 270, 408‘, 418, 468, 469. 470, 471, 472) '

if a’ called Procedure 602's Procedure Object 608 has a DOE attribute differing from that of calling
Procedure 602's Procedure Object 608, the Call is a Cross-domain Call. The means by which KOS Call
microcode determines that a Mediated Call is a Cross-Domain Call have previously been described; If the
Call is a Cross-Domain Call, KOS Call microcode must inactivate MAS Object 46703 for the domain from
which the Call is made, perform trojen horse argument checks, switch subjects, place a Cross-domain
Frame 47039 on SS object 10336, and locate and activate MAS Object 46703 for the new domain before it
can make a Mediated Frame 46947 on new MAS Object 46703 and continue as described in the discussion
of a Simple Mediated Call.

Cross-domain Call microcode first inactivates the current MAS Object 46703 by setting Domain Active
Flag 46804 to FALSE The next step is the trojan horse argument checks. In order to perform troian horse
argument checks, Cross-domain Call must have pointers to the actual arguments used in the cross-domain
invocation. Consequently, Cross-domain Call first continues like a non-cross-domain Call: it creates a
Mediated Frame Header 10414 on old MAS Object 46703 and returns to S—imerpreter microcode, which

_ .evaluates the Names of the actual arguments. and places the pointers in Linkage Pointers 10416 above
Mediated Frame Header 10414. However, the macrostate for the invomtion performing the call was placed
on SS Object 10335 before Mediated Frame Header 10414 and Linkage Pointers 10416 were placed on old
MAS Object 46703. Consequently, when calling Procedure 602 resumes execution after a Return, it will
resume on MAS Frame 46709 preceding the one built by Cross-domain Call microcode.

Once the pointers to the actual arguments are available, Cross-domain Call Microcode performs the
trojan horse check. As described in the discussion of Procedure Object 608 and illustrated in figure 472, the
information required to perfonn the check is contained in AIA 10352. Each Local Gate 47205 in Procedure
Object 608 has an Al.AE 47245, each formal argument in Local Gate 47205's procedure has an entry in AIAE
47245’s AMA 47251, and the formal argument’: AMAE 47253 indicates what kind of access to the fennel
argument's actual argument is required in lied Procedure 602.

Field AIA OFF 47201 contains the location of AlA 10352 in Procedure Object 608, and using this
information and Loni Gate 47205's offset in Procedure Object 608. Cross-domain Call microcode locates
AIAE 47245 for Local Gate 47205. The first two fields in AIAE 47245 contain the minimum number of
arguments in the invocation and the maximum number of arguments. Cross-domain Call microcode
checks whether the number of actual arguments falls between these values. if it does, Cross-domain Call
microcode begins checking the access allowed individual arguments. For each argument pointer. Cross-
domain Call microcode calls LAR microcode to obtain the current AON 41 304 for the pointers UID and uses
AON 41304 and the ASN for Process 610's current subject (i.e., the caller's subject) to locate an entry in
either APAM 10918 or ANPAT 10920, depending on whether the arguments AIAE specifies primitive access
(47255) or extended access (47257) respectively. If the information from APAM 10918 or ANPAT 10920
confinns that Process 610's current subject has the right to access the argument in the manner required in
lied Procedure 602, the Trojan Horse microcode goes on to the next argument. if the current subject has
the required access to all arguments, the trojan horse check succeeds and the Cross-domain Call continues.
Otherwise. it fails and Cross-domain Call performs a microcode-to-software Call as explained below.

Next. Cross-domain Call microcode places Cross domain State 10513 on SS Object 10336. As explained
in the discussion of SS object 10836, Cross-domain State 10513 contains the information required to return
to the callefs frame on fon'ner MAS Object 46703. Having done this, Cross-domain Call microcode changes
subjects. Using the current subject's ASN, Cross-Domain Call microcode obtains the current subject from
AST 10914 replaces the subject's domain component with DOE Attribute 41225 for called Procedure 602's
Procedure Object 608 and uses AST 10914 to translate the new subject thus obtained into a new ASN. That
ASN then is placed in the appropriate FU 10120 register. ‘

After the subject has been changed, Cross-domain Call microcode uses Domain Table 41801 to
translate the DOE of called Procedure 602 into a domain number. Cross-domain Call microcode then uses
the domain number as an index into Array of MAS AONs 46211 in VPSB 614 for Virtual Processor 612
belonging to Process 610 making the cross-domain call. The entry corresponding to the domain number
contains AON 41304 of MAS Object 46703 for that domain.

Having located the proper MAS Object 46703, Cross-domain Call microcode uses STO field 46807 in
MAS Header 10410 belonging to the new domains MAS Object 46703 to locate the top of the last MAS

171

Petitioner Apple Inc. — Exhibit 1024, p. 4216

Petitioner Apple Inc. - Exhibit 1024, p. 4217

15

20

25

50

EP 0 067 556 B1

Frame 46709. It then saves the value of FHP 46702 used in the preceding invocation in a FU 10120 register,
adds a Mediated Frame Header 10414 to the top of MAS Object 46703, and calculates a new FHP 46702
which points to new Mediated Frame Header 10414. KOS Cross-Domain Call microcode then places the old
value of FHP 46702 in FHP Value Field 47151 of SS Object 10336 and the old value of STO 46704 (pointing to
the top of the last complete MAS Frame 46709 on previous MAS Object 46703) in Field 47153 of Cross-
Domain State 10513 and fills in Mediated Frame Header 10414 fields as follows: Result of Cross-domain
Call Field 46903 is set to TRUE. Previous Frame Offset Field 46917 is set to 0, and Dynamic Back Pointer
Field 46931 is set to the saved value of FHP 46702. Dynamic Beck Foimer Field 46931 thus points to the
header of the topmost Mediated Frame 46947 on the previous MAS Object 46703. The values of the
remaining fields are copied from Mediated Frame Header 10414 which Cross-Domain Call created on
previous MAS Object 46703.

Cross-domain Call microcode next copies the argument pointers for the formal arguments from the top
of previous MAS Object 46703 to new Mediated Frame 46947 and calculates FP. Cross-domain Call
Microcode finishes by returning to S-interpreter Call microcode, which completes the Call as described for
Simple Mediated Calls.

Except for the work involved in transferring to a new MAS Object 46703, Cross-domain Return is like
other Returns from Mediated Calls. Old FHP 46701 from Field 47151 of Cross-Domain State 10513 and old
STO 46704, from field 47153 of Cross—domain State are placed in FU 10120 registers. Then the frames
belonging to the invocation that is ending are popped off of SS Object 10336 and off of MAS Object 46703
belonging to the domain of called Procedure 602 and MAS Object 46703 is inactivated by setting Domain-
Active Flag 46804 to FALSE. Then KOS Cross-domain Return microcode uses old Fl-lP 46701 and old STO
46704.to locate MAS Object 46703 being returned to and the topmost Mediated Frame 46947 on that MAS
Object 46703. MAS Object 46703 being returned to is activated, and finally, the contents of Macrostate
10516 belonging to the invocation being returned to are placed in the appropriate registers of FU 10120 and
execution of the invocation resumes.

f.f. Failed Cross-Doamin Calls (Fig. 270, 468. 469, 470, 471, 472)
A Cross-Domain Call as described above may fail at several points between the time that the calling

invocation begins the call and called Procedure 602 begins executing. On failure, Cross-Domain Call
microcode performs a microcode-to-software Call. KOS Procedures 602 invoked by this Call may remedy
the reason for the Cross Domain Call's failure and reattempt the Cross-domain Call. This is possible
because the implementation of Cross Domain Call in CS 10110 saves sufficient FU 10120 state to allow
Process 610 executing the Cross-Domain Call to return to the invocation and the Mediated Call SlN from
which the Cross-Domain Call began. On failure. the invocation's MAS Frame 46709 may be located from
the values of STO fieid 47153 and FHP Field 47151 in Cross-Domain State 10513. and the Mediated Call SIN
may be located by using information saved in FU 10120 state.

6 Neighborhood Calls (Fig. 458. 479, 472) ,
As previously mentioned. Procedures 602 called via Neighborhood Calls must have the same PED

30303 as calling Procedure 602. The only macrostate values which are not part of PED 30303 are PC and PP;
consequemly Neighborhood Call need only save PC and FF of the invocation performing the call and
calculate these values for the new invocation. in addition, Neighborhood Call saves ST0 46704 in order to
make it easier to locate the top of the previous lnvocation's Neighborhood Frame 46947. Neighborhood
Retum simply restores the saved values. Since the macrostate values copied from or obtained via PED
30303 do not change during the sequence of invocations, and therefore need not be saved on SS Object
10336. Neighborhood Calls do not have SS Frames 47003. _

The invention may be embodied in yet other specific forms without departing from the spirit or
essential characteristics thereof. Thus, the present embodiments are to be considered in all respects as
illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather
than by the foregoing description. A

Claims

1. A digital computer system (CS 101) including processor means (JP 114) for performing operations
upon operands, memory means (MEM 112) for storing said operands and procedures, said procedures
including instructions for controlling said operations and names referring to certain of said operands to be
operated upon, ALU means (2034, 2074) for performing said operations, bus means (MOD 140. JP5 142) for
conducting said instructions. names and operands between said memory means and said processor
means, and U0 means (I05 116) for conducting at least said operands between said memory means and
devices extemal to said digital computer system. characterised in that said processor means (JP 114)
comprises means for addressing said operands, including name table means (10350) for storing name
table entries, each name table entry corresponding to one of said names included in each one of said
procedures and each name table entry comprising first data from which may be determined an address of a
location in said memory means of the operand referred to by one of said names and second data
identifying a format of that operand, and translation means [NAME TRANS UNlT Z7015) connected to said

172

Petitioner Apple Inc. — Exhibit 1024, p. 4217

Petitioner Apple Inc. - Exhibit 1024, p. 4218

EP 0 067 556 81

bus means and responsive to said name table entries for providing outputs to said memory means
representing said addresses, and further characterised in that said instructions are intemtediate level 5-
language Instructions from a plurality of sets of such instructions, each set corresponding to a particular
higher level user programming language, and further characterised by receiving means (INSTB 20262)

5 connected to said bus means for receiving said instructions from said memory means. and microcode
control means (10240. 27003, 27013) connected between said receiving means and said ALU means for
providing sequences of microinstructions for controlling said ALU means, said sequences being selected
from a plurality of sequences of microinstructions corresponding to said 5-language instructions
respectively.

7" 2. A digital computer system according to claim 1, characterised in that the S-language instructions
have a uniform, fixed format.

3. A digital computer system according to claim 1 or 2, characterised in that the names are of uniform
length and fonnat. _

4. A digital computer system according to any of claims 1 to 3, characterised in that each procedure
15 ‘further includes a name table pointer (NTP 30311) representing a base location in said memory means

(MEM 112), and said first data of each name table entry contains information from which may ‘be
determined an address offset of a memory location relative to the base location, and in that said translation
means (NAME TRANS UNIT 27015) further comprises base register means (NCR. MCR 10366) connected to
said bus means for receiving and storing said name table pointer of the procedure currently controlling the

20 operations performed by said ALU means.
5. A digital computer system according to any of claims 1 to 4, characterised by name cache means A

(10226) connected to outputs of said translation means (NAME TRANS UNIT 27015) and having outputs to
said memory means (MEM 112) for storing said addresses, and further connected to said receiving’ means

‘ (INSTB 20262) and responsive to said names to provide name cache outputs to said memory means
Z‘? representing said addreses of certain operands for which said name cache means has stored said

addresses.

6. A digital computer system according to any of claims 1 to 5, characterised in that each of said“ 8-
Language instructions is a member of an S-Language dialect of a plurality of S-Language dialects, and in
that said receiving means (INSTB 20262) further comprises dialect code means (RDIAL 24212) for storing a

80 dialect code specifying the dialect of which the received 5-Language instructions are members. and in that
said sequences of microinstructions include a set of sequences of microinstructions, corresponding to each
said S-Language dialect, each set of sequences of microinstructions including at least one sequence of
microinstrucfions corresponding to each S—Language instruction in a corresponding S-Language dialect,
and in that said microcode control means (10240, 27003, 27013) is responsive to the dialect code and to

35 cad’: received S—Language instruction to provide to said ALU means (2034, 2074) a sequence of
microinstructions corresponding to that S—Language instruction.

7. A digital computer system according to claim 1 or 2, characterised in that each procedure includes a
dialect code denoting an S-Language dialect of which the S-Language instructions of the procedure are
members, and in that said microcode control means (10240, 27003, 27013) further comprises control store

40 means (SITT 11012) for storing said sequences of microinstructions for controlling said ALU means (2034,
2074), and dispatch table means (SIDT 11010) for storing addresses corresponding to locations in said
control store means of each sequence of microinstructions, and in that said dispatch table means is
responsive to said dialect code and to each insuuction to provide to said control store means each address
corresponding to said at least one microinstruction sequence corresponding to each said instruction. and

45 said control store means is responsive to each address to provide to said ALU means said sequence of
microinstructions corresponding to each instruction.

8. A digital computer system according to claim 1. 6 or 7, characterised in that said microcode control
means (10240, 27003, 27013) comprises writable control store means (11012) connected to said bus means
for storing said sequences of microinstructions, and control store addressing means (SFITNAS 20286)

so responsive to each S-Language instruction and to operation of said processor means for generating control
store read addresses and write addresses (CSADR 20204). and in that said writable control store means is
responsive to said read addresses to provide said sequences of microinstructions to said ALU means (2034,
2074) and is responsive to said write addresses to store said sequences of microinstructions.

9. A digital computer system according to claim 7, characterised in that said control store means (Sl'l'l'
55 11012) comprises writable control store means connected to said bus means for storing said‘ sequences of

mlcroinstmctions. and in that said dispatch table means comprises write address means responsive to
operation of said processor means for generating write addresses, and in that said writable controlstore
means is responsive to said write addresses for storing said sequences of mlcroinstmctions.

so Patentansprfiche

1. Digitales Datenverarbeitungssystem (_CS 101). enthaltend: Prozessormittel (MEM 114) zur
Durchfflhrung von Operationen an Operanden, Speichermittel (MEM 112) zum 5peiche_rn der Operanden
und von Prozeduren, die Befehle zur Steuerung der Operationen und Namen enthalten, die auf gewisse der

as Operanden Bezug nehmen, an denen Operationen durchgeffihrt werden sollen, eein Rechenwerk (2034,

173

Petitioner Apple Inc. — Exhibit 1024, p. 4218

Petitioner Apple Inc. - Exhibit 1024, p. 4219

15

20

25

50

Eu» o 067 5545 B1

2074) zur Durchffihrung der Operationen, Bus-Mittel (MOD 140, JPE 118) _ffir den Verkehr der Befehle,
Namen und Operanden zwischen den Speichermitteln und den Prozessonnifteln, und EingabelAusgabe-
Mittel (I05 116) ffir den Verkehr wenigstens der Operanden zwischen den Speichermitteln und Geréten
aulserhaib des digitalen Datenverarbeitungssystems. gekennzeichnet durch Prazessormittel (JP 114), die
Mittel zur Adressierung der Operanden einschlieislich Namenstabeilenmittei (10350) zur Speicherung von
Namenstabeflen-Einsprungpunkten enthallen, wobei jeder Namenstabellen-Einsprungpunkt einem der
Namen entspricht, die in jeder der Prozeduren enthalten sind. und erste Daten, aus denen eine Adresse
eines Platzes derienigen Operanden in den Speichennitteln besfimmt werden kann. auf die durch einen der
Namen Bezug genommen wird, und zweite Daten enthanen die ein Format dieses Operanden identifi-
zieren, und durch Ubersetzungsmittel (NAME TRANS UNIT 27015). die mit den Bus-Mitteln verbunden sind
und auf die Namenstabellen-Einsprungpunkta unter Bereitstellung von diese Adressen reprisantierenden
Ausgaben far die Speichermittel ansprechen, femer dadurch gekennzeichnet. dais (fie Befehle minlere S-
Sprache-Befehle von einer Vielzahl von Sfitzen solcher Befehle sind. von denen jeder Satz einer
besonderen héheren Benutzerprogrammiersprache entspricht, und ferner gekennzeichnet durch ein mh
den Bus-Mitteln verbundenes Empfangsmittel (INSTB 20262) zum Empfang der Befehie von den Speicher-
mltteln, und durch mit dem Empfangsmitte) und dem Rechenwerk varbundene Mikrocode-Steuerrnittel

' (10240, 27003, 27013) zur Bereitstellung von Mikrobefehlssequenzen zur Steuerung des Rechenwerks,
wobei diese Sequenzen aus einer Welzahl von Mikrobefehlésequenzen ausgewéhlt sind, die den jeweiligen
S-Sprache-Befehlen entsprechen. _

2. Digitales Datenverarbeitungssystem nach Anspruch 1, dadurch gekennzeichnet, dais die S-Sprache—
Befehle ein gleichffirmiges, festes Format haben.

3. Digitaies Datenverarbeitungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dal3 die
Namen eine gieichfdrmige Lénge und ein gleichfdrmiges Fonnat haben.

4. Digitales Datenverarbeitungssystem nach einem der Ansprfiche 1 bis 3, dadurch gekennzeichnet.
da8 jede Prozedur weiter einen Namenstabellenzeiger (NTP 30311) enthélt, der einen Basisplatz in den
Speichermitteln (MEM 112) représentiert, daB die etsten Daten jedes Namenstabellen-Einsprungpunktes
tnformationen enthalten, aus denen die Adresse eines vom Basisspeicherplatz versetzten Speicherplatzes
bestimmt werden kfinnen, und dal?» die Ubersetzungsmittel (NAME TRANS UNIT 27015) weiter Bas1sregl-
sterrnittel (NCR, MCR 10366) enthalben, die mit den Bus-Mineln verbunden sind, um den Namenstabellem
zeiger derjenigen Prozedur zu empfangen und zu speichern, die gerade die vorn Rechenwerk durch-
geffihrten Operationen steuert. *

5. Digitales Datenverarbeitungssvstern nach einem der Ansprfighe 1 bis 4, gekennzeichnet durch
Namens-Cache-Speicherrnittel (10226), die mit den Ausgéngen der Ubersetzungsmittel (NAME TRANS
UNIT 27015) verbunden sind und zu den Speichermittein (MEM 112) ffihrend Ausgénga zum Speichem der
Adressen haben, und die weiter mit dem Empfangsmittel HNSTB 20262) verbunden sind und auf die
Namen unter Bereitsteilung von Namens-Cache-Ausgaben ffir die Speicherrnittel ansprechen, die die
Adressen von gewissen Operanden représentieren, ffir die die Namens-Cache-Speid1ermittel die Adressen
gespaichert haben.

6. Digitales Datenverarbeitungssystem nach einem der Anspniche 1 bis 5, dadurch gekennzeichnet,
déB ieder der S-Sprache-Befehle ein Mitglied eines Ssprache-Dialekts einer Vielzahi von S-Sprache-
Dialekten ist, dal3 das Empfangsmittel (INSTB 20262) weiher ein Dialekt-Code-Mine! (RDIAL 24212) zur

A Speicherung eines Dialekt-Codes enthait, der den Dialelct bestimmt, von dem die empfangenen S-Sprache—
Befehle Mitglieder sind, dal3 die Mikrobefehlssequenzen einen Sat: von Mikrobefehissequenzen ent-
sprechend jedem S-Sprache-Dialelct enthatten, wobei iede Mikrobefehlssequenz wenigstens eine jedem S-
Spracl1e—Befehi in einem entsprechenden S-Sprache-Dialekt entsprechenden Mikrobefehlssequenz enthéiit,
und daB die Mikrocode-Steuermittei (10240, 27003, 27013) auf den Dialekt-Code und jeden empfangenen S-
Sprache-Befehl unter Bereitsteilung einer diesem S-Sprache-Befehl entsprechenden Mikrobefehlssequenz
ffir das Rechenwerk ansprechen. .

7. Digitales Datenverarbeitungssystem nach Anspruch 1 oder 2. dadurch gekennzeichnet, dafl jede
Prozedur einen Dialektoode enthéit, der einen S-Sprache—Dialekt bezeichnet, von dem die S-Sprache
Befehle der Prozedur Mitglieder. sind, dais die Mikrooode-Steuermittel (10240, 27003. 27013) femer $teuer-
speichermittel (SFIT 11012) zur Speichemng der Mikrobefehlssequenzen ffir die Sleuerung des Hechen—
werks (2034. 2074) und Verteilettabeiienmittei (SIDT 11010) zur Speicherung von Adressen enthalten, die
Plitzen jeder Mikrobefehlssequenz in den Sfeuerspeichennitteln emsprechen, und dafl die Verteiler-
tabelienmittel auf den Dialektcode und jeden Befehi unter Bereitstellung jeder Adresse, die der wenigstens
einen, zu jedem Befehl gehérenden Mikrobefehissequenz entspricht, ffir die Steuerspeichennittel
ansprachen, wihrend die Steuerspeichermittel auf jede Adresse unter Bereitstellung der jedem Befehl ent-
spreehenden Mikrobefehlssequenz fflr das Rechenwerk ansprechen.

8. Digitaies Datenverarbeitungssystem nach Anspruch 1, 6 oder 7, dadurch gekennzeichnet, daB die
Mikrocode-Steuennittei (10240, 27003. 27013) ein mit den Bus-Mitteln verbundenes Schreibsteuerspeicher-
mittel (11012) zur Spelcherung der Mikrobefehlssequenzen und Steuerspeicheradressierrnittel (SITTNAS
20286) enthalten, die auf jeden S-Sprache—Befeh| und auf Operationen des Prozessorrninels unter '
Erzeugung von Steuerspeicher1ese- und —schreibadressen (CSADR 20204) ansprechen, und das die
Schreibsteuerspeichermittel auf die Leseadressen unter Bereitstellung der Mikrobefehlssequenzen far das
Rechenwerk und auf die Schreibadressen unter Speicherung dieser Mikrobefehlssequenzen ansprechen.

174

Petitioner Apple Inc. — Exhibit 1024, p. 4219

Petitioner Apple Inc. - Exhibit 1024, p. 4220

15

20

25

A EP 0 067 556 31

9. Digitales Datenverarbeitungssystem nach Anspruch 7, dadurch gekennzeichnet, daB die Steuer-
speichennittel (SITT 11012) mit den Bus—Mitteln verbundene Schreibsteuerspeichermittel zur Speicherung
der Mikrobefehissequenzen enthahen, daB die Verteilertabellenmittel Schreibadrossenmittel enthalten, die
auf Operationen des Prozesson-nittels unter Erzeugung von Schreibadressen ansprechen. und daB die
Schreibsteuerspeichermittel auf die Schreibadressen unter Speicherung der Mikrobefehlssequenzen
ansprechen.

Revendications

1. Un systéme d’ordinateur numérique (CS 101), comprenant un processeur (JP 114) pour effectuer des
operations sur des opérandes, une mémoire (MEM 112) pour mémoriser lesdits opérandes et des
procedures, lesdites procédures contenant des instructions pour commander lesdites opérations et des
désignations se rapportant é certains desdits opérandes pour les traiter, une unité arithmétique et logique
ALU (2034, 2074) pour effectuer lesdites opérations, des bus (MOD 140, JPB 142) pour transmettre lesdites
instructions, lesdites désignations et lesdits opérandes entre ladite mémoire et ledit procaseur, et des
moyens d'entréelsortie 1/0 (305 116) pour transmettre au moins lesdits opérandes entre ladite mémoire et
des dispositifs extérieurs audit systeme d’ordinateur numérique, caractérisé en oe que ledit processeur (JP
114) comprend des moyens pour Padressage desdits opérandes. comportant une table de désignations
(10350) pour mémoriser des entrées de table de désignations, chaque entrée de tabie de désignations
correspondant 5 une desdites designations incluses dans chacune desdites procédures et chaque entréa de '
table da désignations comprenant une prerniére donnée 5 partir de laquelle peut étre déterminée une
adresse d'un emplacement de ladite mémoire contenant |'opérande auquel se refiéte |'une desdites
designations et une seconde donnée identifiant un format de cet opérande, et des moyens de transcodage
(NAME TRANS UNIT 27015) relies auxdits bus et réagissant auxdites entrées de tables de designations de_.. _
faqon a transmettre 3 ladite mémoire des signaux de sortie représentant lesdites adresses, et en outre
caractérisé en ce que lesdites instructions sont des instructions en langage-S de niveau intermédiaire
provenant d'une pluralité d'ensemb|es de telles instructions, chaque ensemble correspondent a un
langage de programmation par utilisateur de niveau supérieur partiwlier, et en outre caractérisé en oe que
des moyens de reception (INSTB 20262) sont r'eliés auxdits bus pour recevoir Iesdites instructions a‘: partir
de ladite mémoire, et des moyens de commande de microcode (10240, 27003, 27013) connectés entre
lesdits moyens de reception et ladite ALU pour foumir des séquences de microinstructions servant ii
commander ladite ALU, les dites séquences étant sélectionnées parmi une pluralité de sequences de
micro-instructions correspondent respectivernent auxdites instructions en langage-S.

2. Un systéme d’or'dinateur numérique selon la revendication 1, caractérisé en ce que Ies instructions
en langage-S ont un fonnat fixe et unifonne.

3. Un systéme d’ordinateur numérique salon une des revendications 1 ou 2, caractérisé en ce que les
désignations ont une Iongueur et un format uniformes.

4. Un systéme d'ordinateur numérique selon une quelconque des revendications 1 fa 3, caractérisé en
ee que cheque procédure oomprend en outre un pointeur de table de désignations (NTP 30311)
représentant un emplacement de base dans ladite mémoire (MEM 112) et Iadite premiere donnée de
chaque entrée de la table de désignations contient une information a partir de laquelle peut étre déterminé
un décalage d’adresse d'un emplacement de mémoire par rapport a Vemplacement de base, et en ce que
lesdits moyens de transcodage (NAME TRANS UNIT 27015) comprennent en outre un moyen formant
registre de base (NCR. MCR 10366). qui est relié auxdits bus de facon A recevoir et mémoriser (edit pointeur
de tabla da désignations dans la procédure qui est en train de commander les operations effectuées par
ladite ALU. .

5. Un systeme d'ordinateur numérique selon une quelconque des revendications 1 a 4, caractérisé par
un moyen formant antémémoire de désignations (10226), relié aux sorties desdits moyens de transcodage
(NAME TRANS UNIT 27015) et comportant des sorties reliées a Iadite mémoire (MEM 112) pour mémoriser
lesdites adresses, et en outne relié auxdits moyens de reception (lNSTB 20262) at réagissant auxdites
désignations pour foumir a ladite mémoire des sorties de‘)'antémémoire de désignations représentant
lesdites adresses de certains opérandes pour lesquels ladite antémémoire de désignations a mémorisé
Iesdites adresses.

6. Un systéme d'ordinateur numérique selon une quelconque des revendications 1 A 5, caractérisé en
ce que chacune desdites instructions en langage-S est un élérnent d'un dialecte en langage-S faisant partie
d'une pluralité de dialectes en langage-S et en ce que lesdits moyens de réception (INSTB 20262)
comprennent en outre un moyen de codage de dialecte (RDIAL 24212) pour mémoriser un code de dialecte
spécifiant le dialecte dont les instructions en Iangage-s recues sont des éiéments, et en oe que lesdites
séquences de micro-instructions contiennent un ensemble de sequences de micro-instructions
correspondant é chacun desdits dialectes en langage-S, chaque ensemble de sequences de micro-
instructions comprenant au moins une sequence de micro-instructions correspondant Ea chaque instruction
en langage-S dans un dialecte en (engage-S correspondent, et en oe que lesdits moyens de commande de
microcode (10240, 27003, 27013) réagissent audit code de dialecte et a cheque Instruction en langage-S
recue pour foumir 5 ladite ALU (2034, 2074) une sequence de micro-instructions correspondant a cette
instruction en langage—S.

175

Petitioner Apple Inc. — Exhibit 1024, p. 4220

Petitioner Apple Inc. - Exhibit 1024, p. 4221

10

15

20

30

35

' ‘EP 0067556 B1

7. Un systéme d'ordinateur numérique selon une des revendications 1 et 2, caractérisé en ce que '
cheque procédure comprend un code de dialecte définissant un dialecte en langage-S dont Ies instructions
en Iangage-S de la procédu re sont des éléments et en ce que lesdits moyens de commande de microcode
(1020, 27003, 27013 comprennent en outre une mémoire de commande (SFIT 11012) pour mémoriser
lesdites séquences de micro-instructions pour commander ladite ALU (2034, 2074), et un moyen A table de
distribution (SIDT 11010) pour mémoriser des adresses correspondent aux omplacements de chaque
sequence de micro-instructions dens ladite mémoire de commande, et en ce que {edit moyen é table de
distribution réagit audit code de dialecte et 3 cheque instruction pour fournir 5 Iadite mémoire de
commande cheque adresse correspondent 5 ladite sequence de micro—instructlons au moins prévue
correspondent 3 chacune desdites instructions. et Iadite mémoire de commande réagit 5 cheque adresse
pour fournir 5 ladite ALU ladite sequence de micro-instructions correspondent 2: cheque instruction.

8. Un systérne 8 ordineteur numérique selon une des revendications 1, 6 et 7, caramérisé en oe que
lesdits moyens de commande de microcode (10240, 27003, 27013) oomprennent une mémoire de
commande Inscriptible (11012) reliée auxdits bus pour mémoriser Iesdltes séquances de micro-instructions
et un moyen d’adressage de mémoire de commande (SITTNAS 20286) réagissant 3 chaque instruction en
Iangage-S at au fonctionnement dudit processeur pour produire des adresses de lecture et des adresses
d'écriture dans la mémoire de oommande»(CSADR 20204) et en oe que ladite mémoire de commande
inscriptible réagit auxditts adresses de lecture pour foumir lesdites séquences de micro-instructions e
Iadite ALU (2034. 2074) et réagit auxdites adresses d'écritu re pour mémorisar lesdites séquences de micro-
instructions. ' .

9. Un systéme d'ordinateur numérique selon la revendication 7, caractérisé en ce que Iadite mémolre
- de commande (SITT 11012) comprend une mémoire de commande inscriptibie qui est reliée auxdits bus de

mémoriser lesdites sequences de micro-instructions et en ce que Iedit moyen 5 tabie de distribution
comprend un moyen d’adressage d’écriture réagissant au fonctionnement dudit processeur pour produire
des adresses d’écriture, et en ce que la mémoirede commande inscriptible réagit auxdites adresses
d'écriture pour mémoriser lesdites séquences de micro-instructions.

176

Petitioner Apple Inc. — Exhibit 1024, p. 4221

Petitioner Apple Inc. - Exhibit 1024, p. 4222

r.____.....___..—....._....

EP 0 067 556 B1

nos 116/Msm_32 JP 1'14
123 32 14 32 .

I AONADDRESS
A°-"=55 . .Lomc.moaess.

123 14 32 32
um DESCRIPTDH

AON DESCHFTOR(LOGICAL DESCHIPTOR)

32 32

THE ME

o—— um IAON

o

G:ADDRESS

‘- } nsscmrrron

FIG 2

SIN 5|N
I 2

_. ,.2 .

WEEEEEEE
INSTRUCTION STREAII

FIG 3

Petitioner Apple Inc. — Exhibit 1024, p. 4222

Petitioner Apple Inc. - Exhibit 1024, p. 4223

EP 0 067 556 B1

21mxourmwDOUO¢U_2

..L

Swat.2no

w5:..3¢<.._

Ev

mzonuzfimz.uzo_8:..B:.uaooozui_uaooouog.19:20:..now8.sawuzo:.o:c5z_wa<:oz<..53

VGEmuz=.u<:._<zo.._.zu>zoo ¢20.._.03¢—w2_UDOOOKOEmzo=u:Emz_uc<:uz<..uziuqzmzo:u:5m=.N01302:cum:

Petitioner Apple Ific. — Exhibit 1024, p. 4223

Petitioner Apple Inc. - Exhibit 1024, p. 4224

EP 0 067 556 B1

._.

N:am:___________
L

Petitionsr Apple Inc. — Exhibit 1024, p. 4224

Petitioner Apple Inc. - Exhibit 1024, p. 4225

EP 0 067 556 B1

QGE

.._.__nH__.u.Gu_do__uuaauuos.T..I4u.=auuoEu_..ramu_.u...%....u.__.w......wn%...._
__.

____rIIIII.__.III.._STU:I..STUInIu.ilulnfl.lllllllllll..|
Petitioner Apple Inc. — Exhibit 1024, p. 4225

Petitioner Apple Inc. - Exhibit 1024, p. 4226

~ EP 0 067 556 B1

C5 ‘I01 LEVEL5

 701
USER
RITEHFACE 709 HIGH LEVEL I-INGUKGES. UTILWIES, FILES, PROCESSORS

702 - 703

' ‘ " . sos
coumzns amnan muss, cu.

rnocsssons)

ARCHITECTUAL
INTERFACE 708 $LANGUfiGE.S , U10-OFFSET flDDRESS‘NG. OBJECTS. RCCESS CONTHDL

7%

K05 SOFTWARE

rm

S-INTEHPRETER MCODE

115 _
_ mus m1’Em=R£1'Ea means

1 :0
K05 n:OODE

PU I20 INTERFACE 711
 nsvscss
Fl! :20 m “S m snscuxuzzn names 7‘

ozscnmon 5 D “Em um: mus
713 55 723

FUIZO WCS 3

7

118

DISPATQ-I
nmzs ,

nun: INTERPRETER '25 "9
.. .. _. _.. ADDRESS

TRA§
u

was mCODE

FIG 7

Petitioner Apple Inc. — Exhibit 1024, p. 4226

Petitioner Apple Inc. - Exhibit 1024, p. 4227

EP 0 057 555 B1

EXECUTING PROCESSES S"l'OPPE_D PROCESSES

PROCESS A
BOUND TD VP -

 vIn‘rbALmocesson
STATE

ll

MEMORY SYSTEM
VIRTUAL PROCESSOR ll BOUND TO ‘W1 14

JP 114

FIG 8

Petitioner Apple Inc. — Exhibit 1024, p. 4227

Petitioner Apple Inc. - Exhibit 1024, p. 4228

EP 0 067 556 B1

mGE«8.55»0:012
xufi...cum:¢uo<m:GO!

..o<..mno:8053new
53m:8!

canxourmuzauum\|u|Ir|lJ¢ua<mzmo:

 D5¥0<hmW0:05..u.:.¢new

mac.

humaneamuuozs

Petitioner Apple Inc. — Exhibit 1024, p. 4228

Petitioner Apple Inc. - Exhibit 1024, p. 4229

EP dos? 555 B1

ENTRIES

NEW
PEA

OLD OLD
PC PBA

INVOKER EXAMPLE
CODE CODE

 OLD

REGISTERS I004

NEW MACRO
STATE

PRODUCED BY
CALL IIICODE

'3'

NEW
rmv

ax.mm.£ 'NT

(OTHER IIACROSTATE)

DESCRIPTOR FOR EXAMPLE

I005

EXAMPLES
FRAME

’ DESCRIPTOR FOR C

OLD FF m::l’\(::‘s

DJACROSTACK
OBJECT

‘ 1010

I

I

NEW FP

EXAMPLES

FRAME

INVOXEWS

SECURE STACK

OBJECT

MEMORY SYSTEM

FIG 10

Petitioner Apple Inc. — Exhibit 1024, p. 4229

Petitioner Apple Inc. - Exhibit 1024, p. 4230

'EP 0 067 556 B1

STORAGE FOR 3

stone: ran 5

stance son It

POINTER TOZ

FRAIIE HEADER

EXAMPLE‘:
FRAME I102

FP

IIOI

|| 1 1%
5,0,, mvoxesrs

“GE F” 2 ram: 1 ma

HEIIAINDER

‘ OF
8703

I

I

I

I

I

I

I

I

n-—a:n:n:-un--—.-—.
FIG 11

Petitioner Apple Inc. — Exhibit 1024, p. 4230

Petitioner Apple Inc. - Exhibit 1024, p. 4231

EP 0 067 556 B1

\
LOGICAL DESCRIPTOH I20!

LOG OFFSET
PAGE NO. DISP

PHYSICAL PAGE
NO.

PHYSICAL DESCRIPTOR I202

FIG 12

B‘S OFFSET

U10 (LON)

SECONDARY MEMORY

EXAMPLES FRAME

STORAGE FOR 8

3 I
«rs ram: I

No.) I

L.. .____.:LE"_"Ln___i‘3'f’i°“‘”" ._________.____.._J
‘ PRIMARY MEMORY

FIG 13

10

Petitioner Apple Inc. — Exhibit 1024, p. 4231

Petitioner Apple Inc. - Exhibit 1024, p. 4232

EP 0067 556 B1

ACCESS CONTROL OVERVIEW

PRINCRPAL IED PROCESS UID DOMAIN UIO
1494 I405 14$

"SUBJECT uaa
SUBJECI TEMPLATE Ina
MODES um

FIG 14

Petitioner Apple Inc. — Exhibit 1024, p. 4232

Petitioner Apple Inc. - Exhibit 1024, p. 4233

EP 0657 555 B1

INVOCATION
FROM SUSPEND

IIIGODE

FU 10120 REGISTERS

unsa FOR A 5”

upsa son a 5,‘

UPS ARRAY
I512

SECURE STACK
FOR NS PROCESS

RE6lS'TE$ RESERVED
FOR VP SWAPPING

U-CODE EXECUTION

VP NUMBER ‘I513

DESCHIPTOR
TO POINTER

TRANSLATION
SECURE STACK

FOR B‘S PROCESS
9%

UNE FROM [05

1 I6INTEHRUPT
UNES

FIG 15

12

Petitioner Apple Inc. — Exhibit 1024, p. 4233

Petitioner Apple Inc. - Exhibit 1024, p. 4234

EP 0067556 B1 .

Petitioner Apple Inc. — Exhibit 1024, p. 4234

Petitioner Apple Inc. - Exhibit 1024, p. 4235

. EP 0067556 B1

Petitioner Apple Inc. — Exhibit 1024, p. 4235

Petitioner Apple Inc. - Exhibit 1024, p. 4236

EP- 0 057 556 B1

«flaw0...

Petitioner Apple Inc. — Exhibit 1024, p. 4236

Petitioner Apple Inc. - Exhibit 1024, p. 4237

EP 0 067 556 31'

18

Pétiti0ne1‘ Apple Inc. — Exhibit 1024, p. 4237

Petitioner Apple Inc. - Exhibit 1024, p. 4238

EP 0 067 556 B1

o:.o.nu

17

Petitioner Apple Inc. — Exhibit 1024, p. 4238

Petitioner Apple Inc. - Exhibit 1024, p. 4239

EP 0 067 556 B1

.2:.03

«N3.38::P.":9:.m=u.=:u:..5u.5»u=¢_;mun:mucusDuMOOOEanWOOUE28.ms_m_z<:ous.zo:u=¢5z..o:u.:n_
.25

u..o<umu._u<._.zo=ou.5E‘20:03.62:
zo:.<..mz<E.mmu¢nn<

au._n<....:u=mu<z<:232m:

2::23.2!:m=m_z<:um_zozamucoO<I_
..ou_.ao

apouaaonuuuaxa
uzaauoofiIn_2<=0mI:u_z<:ou:3.00.;55:.01¢xo<._.uO21E5»cu._.aEu¢Ducuusouxan.

2.05.50usaouuoca

g....... _. _....l...

.8560nnuuoza

1-

ah0u_.nO.uz=ouooE..L

1a

Petitioner Apple Inc. — Exhibit 1024, p. 4239

Petitioner Apple Inc. - Exhibit 1024, p. 4240

EP’ 0 067_ 556 B1

2:GE

2.3.no:32:2:33—.m¢u._.m_om¢

.845
33«uzauun

mzupeuwzJCDOJO

uomoocu

1..mm.m._m...emm..T.uzanuoofir..aaaauILSoc26E..<z¢u.=..

>¢pu....u_.m....@..ln.|_.._u...%uu_.._pounce5:30»uu_.¢oItIIl..rIIw¢:__uuo¢..uxsouuouuuxanmuos.an.2an44:55:canname53e.2::o.z<:o.m..__23.5:2.:3.92u.=u_¢m._.u.om=9.:5.E: 52.3u§auoE8..m....amuuuwnomzanwooza
19

Petitioner Apple Inc. — Exhibit 1024, p. 4240

Petitioner Apple Inc. - Exhibit 1024, p. 4241

EP 0 067 556 31

ms—GEoneenu«E0.593:305.0mm

3mo.5n<m:3:5

23.200.3amnionmgouooza
I30.

—uaqcuuz..5o¢.o¢o§

93.

u:.::nus;.ennui»uwas:mz..So¢ozoicanon
:35uzrsoc.98.:

2w!<¢Luz:.=o¢..a..u.:

3::iN‘-(EL.ucanuocznflanLH515.uuxsnuoac....«.2:Lu:<.__u-—nzaanuozsII?!H

3..0...‘S2:Sufi:53¢22mo:w.vo.zmnquxu:<¢_..u.~o_a=u_=..o..uo<az_..Hutu»a..u...:_a¢4100.. lo.-e.2».-9u=<:o5$Sun.20333..Eat:wasta..o..=.u»z.o..anti...2.?u¢E.z.o..._<uo..33._<.—.<Ou:.<:o._.:$<5:._<UO._«_.o.cuoflz53:;2-3a¢Ez.o..$5.2...23m2.u§En..<uo..am.53o:.<:o5$2.3..¢uo..

VEu

20

Petitioner Apple Inc. — Exhibit 1024, p. 4241

Petitioner Apple Inc. - Exhibit 1024, p. 4242

EP 0067 556 B1‘ "

FIG. 106A

NAME fiE3OLVE

FIG. 1068

FIG. 106C

Petitioner Apple Inc. — Exhibit 1024, p. 4242

Petitioner Apple Inc. - Exhibit 1024, p. 4243

EP 0 067 556 B1

2::E..22:zo_»Smz<5mwuzofi.m:0<Uus_<z

«:92m...
uSzo<.2._>.223.2.5Hui

.3.GE

Lr|..Fl.

nude:2043::I.|l.|lInI.I.l|II.Il.||lIL.|..I|IulI....I|..||...l...|lI.I.|...m~l§.I..|.l|..l|I..||_|.rBn«.=

mu.=:u::.5az_uaumoa¢
22

Petitioner Apple Inc. — Exhibit 1024, p. 4243

Petitioner Apple Inc. - Exhibit 1024, p. 4244

EP 0.067 556 31

WORD A NTE

flj
_
WORD B

WORD C

WORD D

FIG; 108

Petitioner Apple Inc. — Exhibit 1024, p. 4244

Petitioner Apple Inc. - Exhibit 1024, p. 4245

EP 0 067 556 B1

9...o5uoooz8cvane.mzu<0zo=owS=..

2:GE

N.:2am:3:22.

5_

II _S3.—zo=ow.5§— flan_IIl1'IIII..I.|L:I:I:I
mama":n_z¢=uu:zo_._.uu.5¢..ll'|llIllllll|l"l|l|

24

Petitioner Apple Inc. — Exhibit 1024, p. 4245

Petitioner Apple Inc. - Exhibit 1024, p. 4246

EP_ 0 067 556 B1

6:.SE

2::.5:

25

Petitioner Apple Inc. — Exhibit 1024, p. 4246

Petitioner Apple Inc. - Exhibit 1024, p. 4247

EP 6067 556 31

Bu.9...~29u:.:.01-5.03«:5»05..33.005_.|

..A_1l.lm.nm]

_“

zo=<._on_9.5.5

¢w.30¢.»zO0mu5=.m.E_>¢O2u-4

¢ua..D-.3209..z:.

i.

_Ii—.!I_oI_¢n.“_I‘_._‘n.I.v‘_._ln_u_
.8

:223::

.280:0.3::O_I2:2:0.

23.am:

Petitioner Apple Inc. — Exhibit 1024, p. 4247

Petitioner Apple Inc. - Exhibit 1024, p. 4248

_EP 0 067 556 B1

lllliiilill

llIIIlI.II|lll|IIlII'I|lInIII|l.|.I¢IllIl|I|l'I-II|.u||I|l.In|2.22.5.2.IIEJl._

153,454I
.32

an...

Mm1

5«ChzoE:.umwn

0.604I33Guano

 |oEo _I_-_l»u_I.I_

._a

VI

2:3

Petitioner Apple Inc. — Exhibit 1024, p. 4248

Petitioner Apple Inc. - Exhibit 1024, p. 4249

EP 0 067 556 31

_|llllllllllllII.m.~m.~._o._.uIIIIIIIlIIIIIIII.1I2:: _35can:301
2::Sauce

umalnenIEEIIII..Ill
_|:.m:.|.lI}III''IIn.3.050..35203j .Dflnvh

~22
usiz

?.:..3..a
zoicuzuumnw..na<auraswe

2.05do._>200.5505

n<z..:n.-II-II

E.m._a.S¢F:i

n

a—2::.22
flu.r-.300acuauz

HI!«:2O2.
ov.o.ao: will|.luIlIIlI.l..|.|l||I...I||¢l|...ll..l..|..l..lIlncllu.|ln|.|.....I.|.||I.I.Il..Iu

____________________._

28

Petitioner Apple Inc. — Exhibit 1024, p. 4249

Petitioner Apple Inc. - Exhibit 1024, p. 4250

mwficm .:.:.G...

«IlIISIlIIIiIIIIII:1In ..:uzw..ll_

EP 0057 556 B1 ‘

_~19manno:

newdxl_I:a...m..an..uIIIII!Illl....”..”.I.u....1.I|..I|IIu......nll._|._

5::

«Eu.manon»IlGI.I|I|I.l|oII|nI||IIIIlI|III.ll|IIIIuu|ll.lII.'IlIl|IIl|IIu
Illlulllllullllilllilllll-|IIII!Il...IlIu|l.IIl

iii

Petitioner Apple Inc. — Exhibit 1024, p. 4250

Petitioner Apple Inc. - Exhibit 1024, p. 4251

EP 0 067 556 B1

nz<::oo
¢m....o¢__.zoo35.3nuuam:2:

VQNGE
.¢u....oE.zouCPFZEAU2...

¢u..._OE.200mzo:<o_z=s.:oo

3.3an

30

Petitioner Apple Inc. — Exhibit 1024, p. 4251

Petitioner Apple Inc. - Exhibit 1024, p. 4252

EP 0 067 556 B1

swamGE

52:.

3.n73ficano.

05.G._O¢h200:21zo_.S._ouu¢>._._¢O_¢A
2:cuunanE2.

BOOEtna(._.<O52:09.20

.22

23.35:2;.55.:.833:”._ouo..o..s

commuoomm02man
0213300

30.

9azsiou.ua¢no<5323..

o<onz33.
MJOEIOD02¢¢=1<n<..uz:¢:o<._<o1>OI

you.0:30:5

=m>o:<5:

 ..mzz<..u<.—.<O$6239.3

30520022..2.=o<02¢.Ssnuu

C0:.915:9:

dzz<:uX35Scanum.._..ou

31

Petitioner Apple Inc. — Exhibit 1024, p. 4252

Petitioner Apple Inc. - Exhibit 1024, p. 4253

EP 0 067_' 556 B1

mam.0EFIIITllllllllllllIITIIIILQE
Petitioner Apple Inc. — Exhibit 1024, p. 4253

Petitioner Apple Inc. - Exhibit 1024, p. 4254

‘ EP 006? 556 81

wow.G_..._
 2:2an

. D30.DUDEcanonm_n:u

vuuénu.m0.u83.. E

aovmmu...3_.._23.am

non.m:k0-.0-mo.

:..«.3udotE.2Ems.

Petitioner Apple Inc. — Exhibit 1024, p. 4254

Petitioner Apple Inc. - Exhibit 1024, p. 4255

EP 0 067 556 B1

xcmGE
:5.ulna0:0.D1

«E2

*

zufiozpzoouu<..=...m»z.22Eozm:.

 D

 flMm_E_l_fl_..E%,
 4693.200u:E.<o<u¢an<..>a

50124.!5.58..

9220!.E03:30:on.45.203

uzo...

Petitioner Apple Inc. — Exhibit 1024, p. 4255

Petitioner Apple Inc. - Exhibit 1024, p. 4256

EP 0 067 556 B1

.nNGI
¢O¢¢w«in..:(><<5:30.3P50«:3

_

9:;EDA

uuamnnz.....<><E9.Sn=2...30..:2.amuse?

Evil}! 06 runs doll
nun mm‘

Ea:E2azxzuno5.

apm.GE..=<><29..Susan:Q10;conga<531:‘>¢(bib29.3<5393¢..=<><34..39.31.533...;=5.:o=<z=ouo3.3:o_.—<¢u..o=.3?_L.73.3204.o«.o.auuzuoc

ZVIDI fldf V7101 OOH LILOI» OH‘?Dill)! Gd A

manGE
..=<>¢puom8053D104ED:cu(H10L=<><<5::70.«:393¢:70.(kinH.283

2:23......aura»:D.

332zo:<¢u..o3.3:55:9:nausea:

GCLOI Oil ltlol DIIOIOE IOI ROI

Petitioner Apple Inc. — Exhi it 1024, p. 4256

Petitioner Apple Inc. - Exhibit 1024, p. 4257

EP 0 067 556 B1

 I'll.-.l||l.lI‘ll:‘II-.I|.III.|.lI|IIII .IIiIIiiIIIIIONwONDE._.r.agnu...._uI..IItIIIIII..III1uuuuuuuuuu..u.....JrI..on_......mm.mm_*...¢.__Q._u__rIIIIIIIIIIIIII.lL

3:»:.|IIn||_
_.,.nn1uuuuuuuuuuuuuuu5.Ajc ann ;Q.—oanonnTj

:03

_BWBMBWBW__.................-I._
..u_.zo.¢

.”......fi.__.3.2.2gigs:|.|II...l 52..9__fimalnlaulI.IIIIanIi:32a__«.gdaze._.53383.an__.IIIIIIIIII__qllmza=<.»o..n_“I5..e I___MSuezm.—.».u.|.».Ll:.u_&H_xEIlitIIIL38.on050..._fl_______.___|II.IlII|I.I'Il|II.|uIl|IlIaI.IIIIII.|u.IllI|
36

Petitioner Apple Inc. — Exhibit 1024, p. 4257

Petitioner Apple Inc. - Exhibit 1024, p. 4258

EP 0 067 556 B1

_.IIII..HIIIIIIIIIIIIIIII.IIIIIIIIIIII._rI.w_,.we.<24at_.._IIIIII.IJ__.5_1IIIIIII.IIIIIIIIIIIIIIIIIIIII.____ din»<8._fluInIIIIIIIIIIIIIIII.FI=m....H...Ha._____E.__._______E..______E13:.< no23....‘28:_____.——___—n.._<xn_..u.u«ana(nu———_.32__FIIIIIII|IIIIIIIIIIIIII.IL__111_—ulIII'II.lIIQIIllIII.Iflo“4.fl..J—1___._.9882_3....__<5.___Z...I....+:______Smut.4.39:38:.¢83:.c2.3.:.___ ____IEII__1P__8..%T_..una_.a«on<3a5...1__o.lII‘lII|IIIIiII|II|III.II____II||I|I‘IIlIIIIIIuI.|IIIII..I.III.______%II. 2...:.:..a..___
.z..

_aaon...a—_01::«n:__2...oc—.—__...oz._no_______flan»:88:.3354coma:___..___1ewanna_lI|III|IlalI1InulL_1.IHIIIR'IHlIILflI_m....e....-I__wzfluniIIIIII.nI|...wI..m.IIfl
eaonuau>90xm3.r:O

___a~..wu_m_:aa““1.5.3.._
¢0—a>n<zo:>n<

I__
j200..i.run:

__5329».taxes___I__.m.II.__r.I|....I.WI..I..._.ww.....mIIIIIIIIIIIIIIIIIIIIIIIIIIIII._
37

Petitioner Apple Inc. — Exhibit 1024, p. 4258

Petitioner Apple Inc. - Exhibit 1024, p. 4259

‘ EP 0 067 555 B1

menuGE1lllllllII..llllII..rI.m..=..u.._.._nm..IllllllllllllllllllII
1:1»;__

one:one!ouoi.on-:.¢_.0.3bu>200.!(0>800.}Z4Z30:.‘uxu>30

_a

_

_a

_

co:.3ZS_no:no35_nos.34>5.—nno:uxu>29_
L

rllII93:.33

:a.3zn.5

sic:

=n.2§.a..:9:rIIIIIIIIIIIL|II.Ill.IIII-IIIIululillullnlohafludflu

Petitioner Apple Inc. — Exhibit 1024, p. 4259

Petitioner Apple Inc. - Exhibit 1024, p. 4260

EP 0 067 556 B1

 hM.N.@~.u~

-u<mmJ

3:.___.OOOOOOOOOOOOOOOOOOOOOOOOOOOO.52:E.OOOOOOOOOOOOOOOOOOOO.___________.85...v«.u<n4AD.cox__..egmzwxmz3:02:0O3.¢ox___e_OOOOOOOOOOOOOOOO____________<n:.lLLranzwxmz.<.¢ozx0000.______._.______OOOOOOOOOOOO
Petitioner Apple Inc. — Exhibit 1024, p. 4260

Petitioner Apple Inc. - Exhibit 1024, p. 4261

EP 0 057 556 B1 ‘

mumGE
2:2msa

uzuae

22:¢InanH:>I|O

=n._=xazfinuuo
332:0

.22

awazu
uxuuurzo

3.2.7304.9:96.._uu.:o(

QMNGE2&8xaspmmuuo
 «:2:72001

.22N31!

«:99:.

40

Petitioner Apple Inc. — Exhibit 1024, p. 4261

Petitioner Apple Inc. - Exhibit 1024, p. 4262

EP 0 067 556 B1

5...:.0:Oh

OWN.6...‘.33.oz

«oz.9:9..

Petitioner Apple Inc. — Exhibit 1024, p. 4262

Petitioner Apple Inc. - Exhibit 1024, p. 4263

EP 0 067 556 B1

>930
Weaaacn>»—u

..31
-8:

5.05.0xumzuzozicuuoxxutfixuwxu::t.u
own.9:I08:

«SYN.91222oz

9.GE:05
anO<O._azunO23:

43.03.13

42

Petitioner Apple Inc. — Exhibit 1024, p. 4263

Petitioner Apple Inc. - Exhibit 1024, p. 4264

EP 0 067 556 B1

hSN.03

,..m...._..

:9:332:.»:52_.288..unooao9.4zwpeuuun:o:2:manmac:9canon...kc

uzazn.a
2«on02.u«.¢30¢OK...uz:.nuoucno _an.o.oaoH

canonguns:6O

:.n.ou_ugo“.2.:96
«:99....H25.no:

Petitioner Appk: Inc. — Exhibit 1024, p. 4264

Petitioner Apple Inc. - Exhibit 1024, p. 4265

EP 0 067 556 B1

9949.31) JPD aus Iona

EUSDT 20266

1 2 TO EUDIS102%

EU DSPITCH
FILE

JPDRD41)

‘l'DA.X'

OPCODEREG 20285

NAME 305 20224

FIG. 242

Petitioner Apple Inc. — Exhibit 1024, p. 4265

Petitioner Apple Inc. - Exhibit 1024, p. 4266

EP 0 067 556 B1

:2:Dan.

45

Petitioner Apple Inc. — Exhibit 1024, p. 4266

Petitioner Apple Inc. - Exhibit 1024, p. 4267

EP 0 067 555 31

i’?
DITA WHTITEII INTO

N OFFIIUKI 23812

I
DATA AVIIIJQLI

EP ‘S

K SR---SR

DATA FBOI
EEK 10113

 Ir ear 10354 01
<—¢ orsuuxn menesansucao

O
FIG. 244

Petitioner Apple Inc. — Exhibit 1024, p. 4267

Petitioner Apple Inc. - Exhibit 1024, p. 4268

EP 0 067 556 B1

I:'.1l:ll.'.'.'lll
El E E E El

ii a W,‘ E! E gm
0 :I“E?§fl$llEAD E ,, 5

m -~ mum manna LE In E II W
, E In U

DATA ntrunuen

> rourruuxazaeu

E nnnnn En "" ~"~
DEE E E H

an E U H E
W .V

DATARETURKE ~_
TUED10122 --

an» «an nuann.
In I: an

:1 X u an
_ Y

DATAREIIRNE
FHOHUEI10112

an -— ~~ an
E m .
In a

Z .

FIG. 244A

47

Petitioner Apple Inc. — Exhibit 1024, p. 4268 .

Petitioner Apple Inc. - Exhibit 1024, p. 4269

EP 0 057 556 B1

IIEIJEZIIEI L
E

A 5 c D E

FIG. 245

IIIEIIIEIIEE BE
. ZE

II

A B C D E F

FIG. 246

48

Petitioner Apple Inc. — Exhibit 1024, p. 4269

Petitioner Apple Inc. - Exhibit 1024, p. 4270

.. W

EP 0 067 556 B1

MASKED

E-UNIT STACK OVERFLOW
FATAL MEMORY ERROR

PRIORITY
LEVEL

rowan FAIL

n max sucx ovsnnow
M.T.|

ILLEGAL E-UNIT WSPATCH (GATE FAULT)
STOREBACK EXCEPTION
NAMETBACE TRAP
LOGlCAL READ TRACE TRAP
LOGICAL WRITE TRACE TRAP
U10 READ DERH-EHENCE TRAP
UID WRITE DEREFERENCE TRAP
PROTECTION CACHE MISS
PROTECTION VFOLATION
PAGE CROSSING INTEHRUPT

TJ AND DES

 MEMORY REFERENCE REPEAT
£56 TIMER OVERFLOVI
E-BOX STACK UNDERFLOW
NOPLFATAL MEMORY ERROR
INTERVAL TIMER OVEREFLOW
IPM ENTEBRUPT
S-OP TRACE TRAP

A.H.T.|

IJICROINSTRUCTION TRACETRAP
NON-PRESBIT ll|CROlN$T|l|.lC'l'ION
INSTRUCTION PREFETCH IS HUNG
F-BOX STACK UNDERFLOVI
IIICROINSTRUCTION
BREAKPOINT TJ AND
TRACETRAP MCWD
HISS ON NAME CACHE
LOAD OR READ REGISTER

FIG. 247

Petitioner Apple Inc. — Exhibit 1024, p. 4270

Petitioner Apple Inc. - Exhibit 1024, p. 4271

EP 0 067 558 B1

3W.3‘...

0232

o_ne«»a»z>uOh

xmz.

wanes¢¢D¢

mzwpuugummu4az<:»z>u

I53
»un»z>u

Petitioner Apple Inc. — Exhibit 1024, p. 4271

Petitioner Apple Inc. - Exhibit 1024, p. 4272

EP 0 057 556 B1

39:.GE

0DEu0S3

.33O
4OBh

._an2U504Oon_.o—:uo._.sNOOUuD0Bantamo
E0.IQB—

UL)’:B

uni...cuxuuxo
>5.1...

.3:0.00..3039._.Du¢.D

an3::O...

3.:

2.:

_.

9..:=..E2.l.|.Io..=:=u..o..»zou:o:u:E.m:.o=u=..can<3
-3:>¢a=a¢A:0:

¢u>;=_3u¢ao<cu._=¢a(H10
:0:

E<bID

32:.343102..«la.BAH10¢;

51

Petitioner Apple Inc. — Exhibit 1024, p. 4272

Petitioner Apple Inc. - Exhibit 1024, p. 4273

2'

EP 0 067 555 B1

FIG. 251

MCW1

FIG. 252 I

52

Petitioner Apple Inc. — Exhibit 1024, p. 4273

Petitioner Apple Inc. - Exhibit 1024, p. 4274

EP 0 067 556 B1

«mm..oE

uxeto

5.6201

.was:..2¢u_.n_cu¢

Petitioner Apple Inc. — Exhibit 1024, p. 4274

Petitioner Apple Inc. - Exhibit 1024, p. 4275

EP Q06? 556 B1

3.mN.63

So

¢u.S_ou¢:o=<z.8uo
ozu,«8..onuu5_ow..8.53

.—.r.n_-A

SOIKwk4035.200¢u_:=o¢._u<»u

¢n<n<ON318»xafino:o=<z=auo

.a=o_>u¢.=._.zu..aO.—

.:§..a<na

._o<u¢u

«-0._.583;:55.hKw2ODcanonEwan0...

Snow01¢

NS..utnau20¢:93

-1305¢

Petitioner Apple Inc. — Exhibit 1024, p. 4275

Petitioner Apple Inc. - Exhibit 1024, p. 4276

EP 0 667 556 B1

..._omzo=OENOA

EmGIDpz>m>m<
..nzm~::=.._u

m3

«:2vauou
.=.m>uO...3._...¢>O 33.DE.

55

Petitioner Apple Inc. — Exhibit 1024, p. 4276

Petitioner Apple Inc. - Exhibit 1024, p. 4277

EP 0 067 556 31

no:02¢:...o.uzxz
U<Z.32:

man.63

.2:510%

M:3:

.228.mzozazoucu83.052

.ED‘

040:XUICCDanhenna
.36.

uzzuu«:32.:.=33

53“ ...5....._<_¢umno1|III4...3to.N.0.:n.o~83...m_DDN.
.9:.

:33

56

Petitioner Apple Inc. — Exhibit 1024, p. 4277

Petitioner Apple Inc. - Exhibit 1024, p. 4278

EP 0067556 B1

canes

2.2:.an

acne.53

kmSE5.2Gvflfln2:. .9202105

o!_~fn
2.5:uzaxuop.96

\cl«:22.5:: .2:..3:o22....o9:;.23.22.43:

=:«..

nnnonone50¢...u.na~

OKUEsoc;..
.2:

E.
2:.

....o.aaa

Petitioner Apple Inc._ — Exhibit 1024, p. 4278

Petitioner Apple Inc. - Exhibit 1024, p. 4279

PHYSICAL
DESCRIPTOR

EP 0 i167 555 B1

El-IDPCO-III

FIG. 262

DRIJV

EBTTEN

FIG. 263

58

Petitioner Apple Inc. — Exhibit 1024, p. 4279

Petitioner Apple Inc. - Exhibit 1024, p. 4280

(I

In

EP 0 067 556 B1

LEM!-1|

‘_

FIG.‘ 254

IIHD INTEIIRIJPT

IND DITERRUFY

15’? DITEREUPY

FIG. 265

FIG. 266

59

Petitioner Apple Inc. — Exhibit 1024, p. 4280

Petitioner Apple Inc. - Exhibit 1024, p. 4281

EP 0 067 556 B1

PHVS!CA|. DESCRIPTORS

PHYSICAL DESCHIFTORS

Petitioner Apple Inc. — Exhibit 1024; p. 4281

Petitioner Apple Inc. - Exhibit 1024, p. 4282

EP 0057 556 B1 ‘

umuouqBuaouxumuuu<nounnone33...up:«Souuzau_Euaoucrzccu__Susan:E53__Euaouc.=.<¢u-auaouu_.z<¢o
ctnfia..o.a.v.n.o

9.09:

¢2..<¢mzmommuoo<._.z<¢O02.:

33s¢>o:n.822.:.. uaau992:. I009uaau

61

Petitioner Apple Inc. — Exhibit 1024, p. 4282

Petitioner Apple Inc. - Exhibit 1024, p. 4283

EP 0 067 556 B1

1: IO! OOVI

~00:uu¢.Eu.—z_an5:K.3:mzuoquzE<W~:.¢..mm3<>us

92201 SHEEIIVN

'lIIIIIIl-Iullal

A301: 90

22a.22:um:Eozms.53.4.J59:mic.can05.
ENGI

exec‘: nu wan

Enfiammo=.«oa..zo<

annexand:3

lC0:I 80

38.uzo3::man9:.

Eo:az.mmuuaa¢uoooe
«one...zcoamu

.=.«.=nm<zt._u

um<uEm=.....~.
.mizca!<_. I.

N39 UCICIV
H31 SIDBH

m..<zo.m»zu>w

wz....u<:o...u=..2::an

Petitioner Apple Inc. — Exhi it 1024, p. 4283

Petitioner Apple Inc. - Exhibit 1024, p. 4284

EP 0 067 556 B1

LOGICAL oescmpron nemn.

as AON I-EN
27101 27111 27115

13 14 27 28 . -59 60 91.o

I :
I I LOGICALDESCFIIPTOR 27116
I

| I
1 . I
| I

2 3 4 5 G 30 7 1o 11 1

RS FIELD

FIG. 271

Petitioner Apple Inc. — Exhibit 1024, p. 4284

Petitioner Apple Inc. - Exhibit 1024, p. 4285

EP 0 067 556 31

mmmOI.

:2...

moéopmEgzouum.gonzo.Eoamz9.:==u
eons.MKUno—ONnN20.5.0154.5

_.sun1m.m—¢<K5
____.__

.3...u

cans.zoapumxaumuMW.

2.$245%W.cnno.m>>U¢
oounm235..<:.—¢.>mS99113

XDVLS 'lVfl.l.UlI\ U05

0us.<¢mzou30¢
ouiummx
fl. .ma:3::9.:32$:

_

mom:muss:zufin
.£3:._>

.2NRm=o.>ux._

:Lem::.~..Sufi«E245much.

3uzcxuKO“.30¢

Inl-l.IlIIlIIIIlE2...mas:

—- !0ll.lXUVLS ‘IVHLHIA HO!
3'|9V'llVAV SSWVU1

Petitioner Apple Inc. — Exhi it 1024, p. 4285

Petitioner Apple Inc. - Exhibit 1024, p. 4286

(1

§

MN
EM 2730!

91305

EP- 0 067 556 B1

smucvunss comnowuc EVENT INVOCATION

V////EE%%
MCW1 20290

37307 2130! 273!) 27%|! 27317 2732! 27523 27335 27327 ZYOID 2733!

EP 27309
flflflfl
TE REGISTER 27319

FM RETURN ADDRESS
21524 27326

new-5 REGISTER 2732:
V////&

H n —

n .. 3 5 -2 9 3-'3 " 2 .. 2 2 EN N N N h
n
n g. -

RETURN SIGNALS 2733!

FIG. 273

Petitioner Apple Inc. — Exhibit 1024, p. 4286

Petitioner Apple Inc. - Exhibit 1024, p. 4287

EP 0067556 B1

POINTER FORMATS

GENERAL POINTER FORMAT 30101

OFFSET FLAGS AND IN um vomvensz um
30:03 FORMAT 301 as

BITS O-31

RESERVED

» 3010'!

32 33 34 35 36 37 33 39

BITS 32-47 BITS A8-‘I27

F’”'7"
.._—..__lFLAGS AND FORMAT 20105

NR RESERVED
30109 39‘ V‘

40 41 42

FORMAT CODE
30‘ |3

43 44 45 46 41

ha. 301

Petitioner Apple Inc. — Exhibit 1024, p. 4287

Petitioner Apple Inc. - Exhibit 1024, p. 4288

EP 0 067 556 B1

ASSOCIATED ADDRESS TABLE

AAT PTR
am: 1 VERSION 7 cuaazrrr ADDRESS30204 A 30305

AAT HEADER
4 30203

UID-0FFSET*FIELD ponmen new
30207 30299

AAT 113201

MAS OBJECT FOR A PROCESS

 AATE ARRAY
30201

FIG. 302

Petitioner Apple Inc. — Exhibit 1024, p. 4288

Petitioner Apple Inc. - Exhibit 1024, p. 4289

EP 0 067 555 31

NAMESPACE OVERVIEW OF A PROCEDURE OBJECT

GATES ‘ 3lllfiPEP

_ LITERAL5 arm:

SIP 30309
NTP 30311 SDPP 30:13

PEI) 30303

PED 30323

PEDS 10348

mreanu ENTRY
nescmnons 10342 _

CODE 10344 .

Ill!
LINKAGE FOINTERS

39319 5TA‘|'|C
SUPP —--—-—-———- DATA

STATIC DATA mmanou moron»:
mronuumou aom 30317

W

mm: uauzs 19:50

amosn AREA
3032!

FIG. 303

68

Petitioner Apple Inc. — Exhibit 1024, p. 4289

Petitioner Apple Inc. - Exhibit 1024, p. 4290

EP 0 067 556 B1

LONG NTE 30405

snont NTE 30:0:-————--1
‘ ms}: INDEX

3555 Lsncru E" NAME RESERVED
39425 30435 30439 3044! * 30413

15 16 3132 47 as 6364 9596 111 112 117

FLAGS ST
FORMAT

30407

N1‘E 30401
FLAGS 30:08

'/éflflfl//////.3 3.2:7 8 3 I4 15

FLAGS AND FORMAT 30407

‘S’ nomten LOCATION 3043» “S5 '5 ‘"304:3 APE 30427
16 17 ‘B 3'

BASE 30415

use IS A

16 31

FIG. 304

59

Petitioner Apple Inc. — Exhibit 1024, p. 4290

Petitioner Apple Inc. - Exhibit 1024, p. 4291

EP 0 067 556 B1

23m

.38 muss.9.H212xunz_

mom.O_..._

.5:on$5£2025...mo<.:_HSeer.EonE...
«n

3.:O0nm<CVO...>(¢:<m.can5u¢.oz_m_.um.:.oceanuh:U204fiunmoi:n«E85._..a..._pub;u._.z
ommaza5;$90

 o.m233mum.$3Am_D.¢._.l<MOSH8:5230$an-onSwanScan

SnonmzstxofiaEon

..mn¢uzmas:

mu?

am:candb:H0422....¢0uucqzoumno.2BO".uo<..o.8<0mam»KO".uo<zo5no

E.

u....:<xuzo..5._omu:W542._...
.

70

Petiti0ner.App1e Inc. — Exhi it 1024, p. 4291

Petitioner Apple Inc. - Exhibit 1024, p. 4292

flap 0067.556 B1

NAME CACHE REGISTERS

E BIT OF LENGTH
Aon arr _

r-*4-—I I-----*---—“‘1 a—-‘*1
NAME CACHE REGISTER 30652

NAME CACHE ENTRY 30601

FIG. 306

TRANSLATING S-lN'|'ERPRETEfl UIDS TO DIALECT NUMBERS

SMITERPRETER IND

LAR MICROCODE

 S-INTERPRETER ADN DIALECT NO.

30705 30709

I
5-INTERPRETER TRANSLATION TABLE 30701 7

FIG. 307

71

Petitioner Apple Inc. — Exhibit 1024, p. 4292

Petitioner Apple Inc. - Exhibit 1024, p. 4293

EP 0 067 556 B1

REQUEST F OR

SYSTEM RESOURCES

' opennme SYSTEM
40102

OPERATING SYSTEM

COMMANDS TO RESOURCES

SYSTEM RESOURCES
40103

FIG 401

Petitioner Apple Inc. — Exhibit 1024, p. 4293

Petitioner Apple Inc. - Exhibit 1024, p. 4294

EP 0 067 556 B1

HULTIPROCE SS OPERATING SYSTEM

USER

PROCEDURE

USER
PROCEDURE

USER
PROCEDURE

 597 602

602

PROCESS PROCESS

 610 SID PROCESS MANAGER 10203

VIRTUAL
PROCESSOR

VIRTUAL
PROCESSOR

612 513

402%

VIRTUAL MEMORV

MANAGER 40207

VIRTUAL! O
MANAGER .-I-0209

FIG 402

Petitioner Apple Inc. — Exhibit 1024, p. 4294

Petitioner Apple Inc. - Exhibit 1024, p. 4295

1.

EP 0 05? 556 B1

E05 AND ROS

EXECUTING USER PROCESS

SID

CALLS TO

CALLS To
use»: pnoceounes cos pnocaounes

vnocenuns Mm, 403,.
LEVEL _ ____ _____ _____ ______ __c

{,'f,;,§,"“ 5 cos caus T0 was40305

usen PROCEDURES £05 xos
«cane _ pnocznunes uaoceounss£0301 QCSCE

s-umcunee “O5
sm ’ sms SW5
LEVEL _ , 403m 4031!
INTERFACE- ’............._...._.__.._ _. ..
A0309 .7nC.ALI.STO

5-unsung: mcoos K05 MCODE
40312

SIGNALS SIGNALS
FROM pnou
MRDWAFE HARDWARE

..,3,. mms'rRuc‘rIaN ma"«us-5

JP __ _ _ _ _ _ _ __ __ _ __ _
INTERFACE J, m“

FIG. 403

74

Petitioner Apple Inc. — Exhibit 1024, p. 4295

Petitioner Apple Inc. - Exhibit 1024, p. 4296

EP oo6_7 555 31 —

EOS VIEW OF OBJFCTS

OBJECT UID 40410 i

ATTRIBUTES

OBJECT SERIAL N0. _ OF THEOBJECT

40403 “M04

LOGICAL ALLOCATION UNIT 40405

OBJECT
CONTENTS

FIG 404

75

Petitioner Apple Inc. — Exhibit 1024, p. 4296

Petitioner Apple Inc. - Exhibit 1024, p. 4297

1.!

EP 0 067 556 B1

PATHNAME TO UID-OFFSET TRANSLATION

PATHNAME

FIG 405

OBJECT UlD'S
UNIVERSAL IDENTIFIER O1

OBJECT SERIAL NUMBER “um
(68 BITS) 40502 (33 5115) 40593

uucu (24 arts) . ('5“;'f;:)‘W05 40501

FIG 405

76

Petitioner Apple Inc. — Exhibit 1024, p. 4297

Petitioner Apple Inc. - Exhibit 1024, p. 4298

EP 0 067 556 B1

ATU. MHT. AND MEMORY

PRIMARY
MEMORY -

AON- ADDRESS
OFFSET

ADDRESS
50705

ENTRY NOT IN
CACHE: lNVOKE

mCODE

407 I0

AON OFFSET
ADDRESS
TO MHT

£0708

K05
meno-

nounue

mrr ENTRY
FOR Acn-
OFFSET

ADDRESS

FIG 407

Petitioner Apple Inc. — Exhibit 1024, p. 4298

Petitioner Apple Inc. - Exhibit 1024, p. 4299

SUBJECT

PRINCIPAL
DOMAIN

PROCESS

HASH
FUNCTION

EP 0 067 556 31

FIG 408

78

Petitioner Apple Inc. — Exhibit 1024, p. 4299

Petitioner Apple Inc. - Exhibit 1024, p. 4300

- EP 0067556 B1

Q8:

SouspauanoDDSFIII.I3:.»=1

..uOW00¢.Bmu..__o.a_:

:8:k:<._<.u....<..02¢u._a<._.DddU>._._.U<

 .8»oz

.89wosmo

38.wosua

wSou_Bmnno

_m\\\\\\\\\\\\\\\\\\\\\\\\\\\\

wll§3%§%IIlll;
38»03¢;

38-wcmcw:IIIIIIIlIIl1..l._83::5
AGDOLII

mpuuaao9.223..

79

Petitioner Apple Inc. — Exhibit 1024, p. 4300

Petitioner Apple Inc. - Exhibit 1024, p. 4301

EP 0 067 556 B1

IVOEflIIIIIILIIIWIIIIIIIIIItllllIJ4 B..1¢u..o.:.

..<zoEaa<3._.
mus;uuzu

2:.-ufimzN035$5..

n83O3<..ucapoafiuD:<....<.=..uozoo

80

Petitioner Apple Inc. f Exhibit 1024, p. 4301

Petitioner Apple Inc. - Exhibit 1024, p. 4302

-u

7 EP 0 067 555 B1

LAUDE DETAIL

STRUCTURE VER$!ON
41209

FILE IDENTIFIER
41215

EXTENDED TYPE ATTRIBUTE l|?23

CONTROL
ATTRIBUTE
INFORMATION
A1239

FIXED PACLES

41237

¥ LAUDE 10906

FIG. 412

81

Petitioner Apple Inc. — Exhibit 1024, p. 4302

Petitioner Apple Inc. - Exhibit 1024, p. 4303

0"

EP 0 067 556 B1

 UIDS AND AONS
SET 41301 OF

UIDS FOR OBJECTS
ACCESSIBLE TO A

COMPUTER SYSTEM 10110

SET #1303 OF
ADNS IN A GIVEN

COMPUTER SYSTEM 101 10

}<—-14 ens——|

£1304

UID 40401 FOR OBJECT X 41302

40401

[UP 10 29° urns 40401) (up to 214 Aofls)

AOT 10712

we son 0345:! x 4130: _
AOTE U N

(U IS OBJECT l‘S AON)

 UID-AONTRANSLATION AON-UIOTRANSLATION l.l|D~AONTRANSLATION AON-UIDTHhN5LfiT|0N
. UID FOR OJBECT X 41302

UID-OFFSET ADDRESS 4130! ION-OFFSET ADDRESS 41309

FIG 4 13

Petitioner Apple Inc. — Exhibit 1024, p. 4303

Petitioner Apple Inc. - Exhibit 1024, p. 4304

(H

U‘

EP 0 067 556 B1

SUBJECT TEMPLATES. PACLES. AND EACLE5

ruwon new ' um new
M653 41605‘ ' ' ”

- pmncwu couwonenr usoe

- nnocsss COMPONENT near

- comm comonarr 41609
- ne couponenr us: 1

SUBJECT TEMPLATE neat

. SUBJECT TEMPLATE
4:601

ACCESS MODE BITS 5 I615

PACLE 41613

SUBJECT TEMPLATE
AIBDI

ACCESS MODE ARRAY H537

EACLE urns

FIG. 4 16

Petitioner Apple Inc. — Exhibit 1024, p. 4304

Petitioner Apple Inc. - Exhibit 1024, p. 4305

X
Ztn
<

AONINDEXES42103 COLUMNFORASNK42I05

42107: VAUD
42109: EXECUTE

EP 0 067 556 B1

APAM
ASN INDEXES R2102

APAME 42105
FOR AON J. ASN K

-.—.__...._—._—j—-.2--—.—:.-——--—-—.—

APAM 10918

APAME 42006
42111: HEAD

flflflfl

FIG. 421

34

Petitioner Apple Inc. — Exhibit 1024, p. 4305

Petitioner Apple Inc. - Exhibit 1024, p. 4306

LOGCAL
DESCRIPTOR

11116

EP 0 067 555 B1

PRIMITIVE DATA ACCESS CHECKING

VALID/lNVALlD
SIGNAL 13205 Y0 NEH 10112

ENTRY 4221!

MEMORY
ovenmou

42203 "5" A01’ run:

‘or: cases so»: 05.:

C-ILL TO IDS
IHIOTECTIQI VIOLATION

PRDCEDLINES PNII. DATA
can . Acctss mm

 PfiOTECWON CACHE I022!
ILLEGAL
AXES5
EVENT 42298

K05 IIICOD8
10 SOFTWARE
CALL IIICODE

42215

034. LENGTH
42210

APAM 10913

42213

APAHE
12 106 F OR
5U3J.- OBJ.

PAIR

' FIG. 422

Petitioner Apple Inc. — Exhibit 1024, p. 4306

Petitioner Apple Inc. - Exhibit 1024, p. 4307

EP 0 067 556 B1

EVENT COUNTERS AND AWAIT ENTRIES

EVENT COUNTEII unit «so:

7/‘ EVENT COUNTER VALUE 448!!!
O 4 EVENT COUNTER M601

EVENT COUNTEE NAME 44803

%
I ancx Lmx uaas | '93I-:_ u—— —— j can —i

128

—- AWAI1’ ENTRV 45804I

FIG. 448

AWAIT TABLE OVERVIEW

FE1’ LOCK 4491!

FREE LIST HEAD I-«INT

FREE PETE “N9

EC LIST HEAD «so:

LIST PETE D9‘ .

. awn‘: ENTRY ,4480!

US? PETEOBB

. Awm emu-r .44504

EVENT COUNTE NIKE
61303 FOE ADVAN§D EC

 PETNTINDEX

ELY
FIG- 449 “°°=

PET C4705 WITH
9:: cc us‘; «so:

Petitioner Apple Inc. — Exhibit 1024, p. 4307

Petitioner Apple Inc. - Exhibit 1024, p. 4308

'9,‘

In

W

VP
NO

45304

NO
45304

EP 0 057 556 31

UK) 5 FOR PROCESS OBJECT 901

uurs Fon PROCESS STACKS ,
' 10328-10336

PROCESS OBJECT
901

USER HAS
10325VPSB614 FOR VPA 45303

DBMS MAS
‘H1330 . -

VPSBAASSDI
EOS MAS

10332

RUNNING U51’ HEAD 45311

ELIGIBLE LIST HEAD A5313

SUSPENDED LIST HEAD 45315
K05 MAS

STOPPED UST HEAD 45317 10334

KILLED LIST HEAD 45319

SECURE STAO(
lD33S

MVPLE 45309

FIG. 453

Petitioner Apple Inc. — Exhibit 1024, p. 4308

Petitioner Apple Inc. - Exhibit 1024, p. 4309

EP 0 067 556 B1

VIRTUAL PROCESSOR SYNCHRONIZAWON .

PROCESS
OBJECT 901

FOR PROCESS I

PRIVATE EC 45405

V758 51‘
FOR NON-K05 PROCESS

A'S VTWIUAL PROCESSOR

 uwnn ENTRY son ECBI

MULTIPLEXED
OUTWARD SIGNALS EC

VPSB 614 FOR
105 PROCESS MANAGER

PRO§5S'S VP.

(5407

VPS BA 1530!

van cuumc 45402 ":r":"‘

- I. O3
VP TE :01: as E 5407 ‘°‘‘ '’“°‘“555 ‘ 5

vmmn rnocssson an "“°°‘55 “
__ vpn cnuux 1544::

son pnoc MANAGER
PnocEss's
VIRTUAL PROCESSOR
612

OUTWARD $|GNALs
OEJECT 45423

FIG. 454

~ VPATE (5603

VPATE FOR PRN EC 45405

VPAT 45401

Petitioner Apple Inc. — Exhibit 1024, p. 4309

Petitioner Apple Inc. - Exhibit 1024, p. 4310

. EP 0067556 81

MAS OBJECT OVERVIEW

UNUSED STORAGE
’ £6717

-I:—s'ro 46704
S-INIEHPRETER

PORTION OF FRAME

HAS

.6 E asn: mm:
'- . 167
2 5 3 9 ~ ME mnso Fame 09:
- 3 3; mp HEADER loan3: 4 3 _

2 5 § 3; 45702 was Fame 'D 4 ._ 4670935 1 1 5-

: 5 3 LOCAL um:
cs 2 45110X

um: 45704
not To n-um:
EN ANOTHER
was 0345:!’

FPO
Q6719

nsnaoum
INF OKIIATIOII

Q5707

ms
345:
10110

:05 was HEADER
46705

ans came? up

46715

ms dmecr 4610:

FIG. 467

Petitioner Apple Inc. — Exhibit 1024, p. 4310

Petitioner Apple Inc. - Exhibit 1024, p. 4311

0.-

- . EP 0 067 556 B1

MAS BOSE DETAIL

5TAT1C DATA

STORAGE 56861"0 stoma: AREA

SODVEBVVLVO N1IlIO0‘U3d LINKAGE POINTERS
46885

STATIC DATA
BLOCK 66863

SEE 46864

- snmc nun FAULT HO LR PTR 46549

IOLBUVZBV NIVKOO-llid

5;-=

353. .2;
.I=omut am: 46813 . S:- _-3,. nasnrnmaast2fl

AATE 30203A

A Wm,

A

FORMAT INFOR 46101

STACK BASE 1D4‘°

 SOLIDIIHONVH 133110SVII

 E

FLAGS 25 FLAGS 46803: 45804: DOMAIN ACTIVE

46627. PENDING INTERUFT
46329-. DOMAIN DEAD
A6531: INVOKE VERIFY Old ENTRY
46833: INVOKE VERIFY DH EXIT
46835: DEFAULT HANDLER NON-NULL

FIG. 468

so

Petitioner Apple Inc. .— Exhibit 1024, p. 4311

Petitioner Apple Inc. - Exhibit 1024, p. 4312

,»

II

EP O 067 556 B1

MAS FRAME DETAIL

LOCAL STORAGE 10420

FF

U51’ AREA 43943

7 LINKAGE pounens mus

NEXT FFAIIE OFF 619

 MAS FRAME 45709

@
FLAGS 15902

65903: RESULT OF CROSS-DOMAIN
450905: IN SIGNALLER
08907: 00 NOT RETURN
45fi09~15: LCST PRESENT FLAGS

FIG. 469

91

LINKAGE POINTERS 104 16

PREV. FRAME OFF I591?

FLAGS A6902

. FORMAT INFO A690!

@%

z

;'3
:5 vs
mg :-5: KgO: HID

2: "'2Q 5

o gg«=8

EILOVBHVIHL-I0 NOl.l.UOdUlllfldllilfll-S I

 08901 BDVUOJS 1V3D1

H897 INVUJ OBIVIOBII

1'
El

=2"?
:33-.DOINI

NOTE: IN A runs
REBULTHIG man
A CRDSSrDOMAlN
C-ALL. F0 11 -0;
IN A Fun:
MAKING A CROSS-
DOMAIN CALL.
MPO - 0

Petitioner Apple Inc. — Exhibit 1024, p. 4312

Petitioner Apple Inc. - Exhibit 1024, p. 4313

-1

(u

'1.

5570
I7043

SSFO
(1045

51030
47061

SSFO
47034

SECURE S'l'AO(
NEAOEN 10512

EP 0 067 556 B1

$5 10336 OVERVIEW

 TOP ORDINARY FRAME l0510C

TOP C8058 OOMAIH
FRAME 41039C

TRACE IHFO P11! £1031

STAET SIGNALLER FTR 47029
cnoss-uowuu mm:470393

ORDDCMW FRAME 10510!

$055-DOMAIN FRAME
47035

VPAT OFFSET £1027

OOMAIII NUMEEH 47025
0001!SBVIVEHIDVLSEHHOHS

 ' oérsers m
stoma: AREA 47023

XDFO VAL 41022

SSFO VAL (7021

[C019IDNIIWOIENOLIJOOANINVUOJSINVIH

SSTO VAL £1019
INITIALIZATION

FRAME HEADER 47$!)

'. STORAGE AREA FOR
J? ‘I01 14 REGISTER
CONTEIWS 47033

PROCESS mcnosw ATE 41017

HO X-DOM PBS (7016

FROESS IJID 47015man3318NOVLBIHHDBS
SSFO VALUE 47013

7

FIG. 470

PHOCESS
IFICROSTATE 41017

PREV FR OFF (7011

FLAGS l1®9

FORMA-‘I INFO 47001

sewn: s‘l‘AcK OBJECT 10:36 szcunt stgcx uupzn ms-gz

Petitioner Apple Inc. — Exhibit 1024, p. 4313

Petitioner Apple Inc. - Exhibit 1024, p. 4314

.1

‘V:

l!..

EP 0 067 556 B1

SECURE STACK 10336 FRAME DETAIL

(‘Z/\‘/‘:3

PC - INF ORMATION 47 M5

SI? VALUE £7141

SDP VALUE 47137

S~|N'|'EflP ENV PTH 47135

ENIRY DESC FIR 47131

END 05 N1‘ 41127

SVLLABLE SIZE 41125

MACROSTATE ‘IOSDE

 MICHOSTAVEI052!)

MACBOSTATE IDSTE

ORDIIIARV SS 10336 FRAME
HEADER 10514

IIIGIOSTATE “#0 47121

PREC X-DDHADI FR OFF I71 ‘IB

DOMAIN NO 411 17

FORMA! "(F0 47105

ORDINARV ss FRAME NEADER tosu

MICROBTAVE10510

MACROSTITE 10516

CROSS-DOMAIN
FRAME fl£ADER

G070 T15 17 I55

CflO88~DOMAlN8I’Af_EIOIIS
NEX! I-DON $47159

PREV X-DOM FR 47161 '

CROSS-OOIIAIK FRAME
NE ADE R 41 ‘I 37

CROSS-DOMNN FRAME 47039

FIG. 471

Petitioner Apple Inc. — Exhibit 1024, p. 4314

Petitioner Apple Inc. - Exhibit 1024, p. 4315

EP 0 067 556 B1

PROCEDURE OBJECT OVERVIEW

antes
(EXT. Eurav
DESC-)
10:40

}

}

}

LIA OFF 41201 GATELINE

ENTRY DEC. GP 11207

SUPP 30113
PEP 30315 $99 $36

-vow» -e
venoanzu "°°";‘,’g: an

ENTRY DESQIFITOII 47127

STATIC DATA UNIS so: 19

I

CODE 47249
'03“ ACCESS non: Am.“

4725:

AIAE 47265
PBOTOVVPE

W 11%?
Aug; PfllK"|'|VE AC§3S 47355

* an euneo ACCESS 411:1
sun:
can
vnowrvrz

snnc nan 3”"
mmmnnou Mo

30$!

4125:

V} — Access TYFE cone
£1235: MA PREVENT
17137: SE3 PRESENT
41139: 00 NOT DECK Mifisfi

FIG. 472

Petitioner Apple Inc. — Exhibit 1024, p. 4315

Petitioner Apple Inc. - Exhibit 1024, p. 4316

Europiiisches Patentamt

® European Patent Office
Office européen des brevets

0 257 585

A2

® Publication number:

(9 EUROPEAN PATENT APPLICATION

@ Application number: 871121583

@ Date of filing: 21.03.37

@ am. CL": HO4L 9/oo

 @ Priority: 22.08.86 JP 197610I86
zzoaas JP 197511/as

@ Date of publication of application:
02.03.88 Bulletin 88/09

Designated Contracting States:
BE DE FR GB

(9 Key distribution method.

® The invention relates to a method of distributing
a key for enciphering un unenciphered or plaintext
message and for deciphering the enciphered mes-
sage.

The method comprises the following steps:
generating a first random number in a first system
(101); generating first key distribution information in

the first system (101) by applying a predetennined
first transformation to the first random number on the

basis of first secret information known only by the
first system (101); transmitting the first key distribu-
tion infonnation to a second system (102) via a

communication channel (103); receiving the first key
distribution information in the second system (102);
generating a second random number in the second

system (102); generating second key distribution in-
formation by applying the predetermined first trans-
formation to the second random number on the

basis of second secret information known only by

mthe second system (102); transmitting the second
Qkey distribution information to the first system (101)
Iflvia the channel (103); receiving the second key

“distribution information in the first system (101); and
Lggenerating an enciphering key in the first system

N(101) by applying a predetermined second trans-

cformation to the second key distribution information
on the basis of the first random number and iden-

aitification information of the second system (102)
which is not secret.

 @ Applicant: mac GORPORAHON
33-1, Shlba 5-chome. Mlnatio-ku

Tokyo 108(JP)

(79 Inventor: Okamoto, Elli clo NEG corporation
33-1, Shlba 5-chome _
Mlnato-ku Tokyo(JP)

® Representative: Vosslus & Parmer
Slebertstrasse 4 P.O. Box 86 07 67

D-81300 Mtlnchen 86(DE)

GenerationofKey I’slribu|inn(odeX3 2..-4‘(modall

3 :

Xeroxcopycentre

Petitioner Apple Inc. — Exhibit 1024, p. 4316

Petitioner Apple Inc. - Exhibit 1024, p. 4317

1 0257585 2

KEY DlSTR|BU'I1ON METHOD

BACKGROUND OF THE INVENTION

The invention relates to a method of distribut-

ing a key for enciphering an unenciphered or plain-
text message and for deciphering the enciphered
message.

A public key distribution method used in a

public key cryptosystem as a well-known key dis-

tribution method is disclosed in a paper entitled
"New Directions in Cryptography" by W. Difiie and
M.E. Hellman. published in the IEEE Transactions

on Information Theory. Vol. IT-22, No. 6, pp. 644 to
654. November issue. 1976. The key distribution

method disclosed in the paper memorizes public
information for each of conversers. in the system.

before a converser A sends an enciphered mes-
sage to a converser B, the converser A prepares
an enciphering key (which represents a number

obtained by calculating Ya XA (mod p)) gen-
erated from public information Y; of the converser

B and secret information XA which is kept secret

by the converser A. The number p is a large prime
number of about 256 bits in binary representation,

which is publicly known. a (mod b) means a

remainder of division of the number 3 by the num-
ber Q. The converser B also prepares the key wk in

accordance to YAxB (mod p) _in a similar man-
ner. Y, and Y; are selected so as to be equal to

a"A (mod p) and «*3 (mod p), respec-
tively. As a result, Ya XA (mod p) becomes’
equal to v,."s (mod 9). it is known that even if
YA, _a_ and p are known. it is infeasible for anybody

except the converser A to obtain X. which satisfies
YA = a"A (mod p).

The prior art key distribution system of the

type described. however. has disadvantages in that
since the system needs a large amount of public

information corresponding to respective convers-

ers. the amount of the public information increases
as the ‘number of conversers increases. Further.
strict control of such information becomes neces-

sary to prevent the information from being tam-
pered.

SUMMARY OF THE lNVENTlON

An object of the invention is. therefore, to pro-
vide a key distribution method free from the above-

mentioned disadvantages of the prior art system.
According to an aspect of the invention, there

is provided a method which comprises the follow-
ing steps: generating a first random number in a

first system; generating first key distribution in-

20

30

45

formation in the first system by applying a pre-
detennined first transformation to the first random

number on the basis of first secret infonnation

known only by the -first system; transmitting the

first key distribution information to a second sys-

tem via a communication channel; receiving the
first key distribution information in the second sys-
tem; generating a second random number in the

second system: generating second key distribution
information by applying the predetermined first
transformation to the second random number on

the basis of second secret information known only

by the second system; transmitting the second key
distribution information to the first system via the
channel; receiving the second key distribution in-

formation in the first system; and generating an
enciphering key in the first system by applying a
predetermined’ second transformation to the sec-

ond key distribution information on the basis of the
first random number and identification information

of the second system which is. not secret.
According to another aspect of the invention.

there is provided a method which comprises the
following steps: generating a first random number
in the first system; generating.first key distribution
information by applying a predetermined first trans-
formation to the first random number on the basis

of public infonnation in the first system and gen-
erating first identification information by applying a
predetermined second transformation to the first
random number on the basis of first secret informa-

tion known only by the first system; transmitting
the first key distribution information and the first

identification information to a second system via a

communication channel; receiving the first key dis-
tribution infonnation and the first identification in- .

formation in the second system; examining whether
or not the result obtained by applying a predeter-
mined third transformation to the first key distribu-
tion. information on the basis of the first identifica-

tion information satisfies a first predetermined con-

dition. and. it it does not satisfy, suspending key
distribution processing: generating a second ran-
dom number if said condition is satisfied in the

preceding step; generating second key distribution -
‘infonnation by applying the predetermined first
transformation to the second random number on

the basis of the public information, and generating
second identification information by applying the

« predetermined second transformation to the sec-
ond random number on the basis of second secret

information known only by the second system;
transmitting the second key distribution information
and the second identification information to the first

system via the communication channel: and exam-

Petitioner Apple Inc. — Exhibit 1024, p. 4317

Petitioner Apple Inc. - Exhibit 1024, p. 4318

3 ,0257585 4.15

ining whether or not the result obtained by applying
a third predetermined transformation to the second
key distribution information on the basis of the

second identification information in the first system
satisfies a predetermined second condition. and if

the result does not satisfy the second condition.

suspending the key distribution processing, or if it

satisfies the second condition. generating an enci-
phering key by applying a fourth predetennined
transformation to the first random number on the

basis of the second key distribution inionnation.

BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the invention

will become more apparent from the following de-
tailed description when taken in conjunction with

the accompanying drawings in which:
FIG. 1 is a block diagram of a first embodi-

ment of the invention;

FIG. 2 is a block diagram of a second em-
bodiment of the invention: and

FIG. 3 is a block diagram of an example of
systems 101, 102. 201 and 202.

In the drawings, the same reference numerals
represent the same structural elements.

PREFERRED EMBODIMENTS

Referring now to FIG. 1. a first embodiment of

the invention comprises a first system 101. a sec-
ond system 102 and an insecure communication

channel 103 such as a telephone line which trans-

mits communication signals between the systems
101 and 102. it is assumed herein that the systems
101 and 102 are used by users or conversers A
and B, respectively. The user A has or knows a

secret integer number 8,. and public integer num-

bers _e_. 9. g_ and r_1_ which are not necessarily secret
while the user B has or knowsa secret integer
number Sgand the public integer numbers. These

integer numbers are designated and distributed in

advance by a reliable person or organization. The
method to designate the integer numbers will be
described later.

An operation of the embodiment will next be
described on a case in which the user A starts

communication. The system 101 of the user A

generates a random number 1 (Step A1 in FIG. 1)
and sends a first key distribution code X ,. repre-

sentative of a number obtained by computing SA 0
a7 (mod Q) (Step A2) to the system 102 of the user
B (step A3). Next. when the system 102 receives

the code XA(Step 81). it generates a random num-

ber t (Step B2), calculates (X;/IDA) ‘ (mod _n) (Step
B5). and keeps the resulting number as a encipher—

2D

35

ing key wk for enciphering a message into storage
means (not shown). The identification code IDA

represents herein a number obtained by consider-

ing as a numeric value a code obtained by encod-
ing the address. the name and so on of the user A.

The encoding is, for instance. periomied on the
basis of the American National Standard Code for

Infonnation interchange. Then, the system 102
transmits to the system 101 of the user A a second

key distribution code X9 representative of a num-

ber obtained by calculating S; ca‘ (mod 3) (Steps
B3 and 34).

The system 101. on the other hand. receives

the code X5 (Step A4). calculates (Xa'/IDg)7 (mod

n) (Step A5). and keeps the resulting number as
the key wk for enciphering a message. The iden-
tification code iDg represents the numbers obtained
by considering as a numeric value a code obtained

by encoding the name. address. and so on of the
user B.

Subsequently. communication between the us-

ers A and B will be conducted by transmitting
messages enciphered with the enciphering key wk
via the channel 103.

The integer numbers SA. S3. g. g. 5 and g are
determined as follows. Q is assumed to be a prod-

uct of two sufficientiy large prime numbers 3 and
3. For instance. 3 and g may be 2'-9 or so. _e_ and g
are prime numbers which are equal to or less than

Q. while 3 is a positive integer number which is

equal to or less than 3. Further, g is defined as an
integer number which satisfies e.d (mod (p—1)o(q-
1)) = 1. S A and S3 are defined as numbers

obtainable from ID,‘ (mod _r1) and ID3‘ (mod g).
respectively.

If S... S3. _e_. g. 5. and g are defined as above.
ID, and ID 3 become equal to SA‘ (mod n) and

Sg'(mod g), respectively. This can be proved from
a paper entitled “A Method for Obtaining Digital
Signatures and Publick-Key CryplJosystems" by
R.L Rivest et al.. published in the Communication

of the ACM. Vol. 21. No. 2. pp. 120 to 126. Since

the key obtained by (Xa'/IDa)' (mod Q) on the side
of the user A becomes equal to a"‘ (mod 3) and
the key obtained by (X,."/IDA)‘ (mod n) on the side
of the user B becomes equal to u"‘ (mod 3). they
can prepare the same enciphering key. Even if a

third party tries to assume the identity of the user
A. he cannot prepare the key wk since he cannot

find out 5 whichmeets ID A = 2' (mod 3).
Referring now to FIG. 2. a second embodiment

of the invention comprises a first system 201. a
second system 202 and an insecure communica-
tion channel 203. It is assumed herein that the

systems 201 and 202 are used by users A and B.
respectively. The user A has or knows a secret

integer number SA and public integer numbers g.
g. 3. and _n. which are not necessarily secret while

Petitioner Apple Inc. — Exhibit 1024, p. 4318

Petitioner Apple Inc. - Exhibit 1024, p. 4319

.5 0 257 585 6

the user B has or knows a secret integer number

Saand the public integer numbers. These integer
numbers are designated and distributed by a reli-
able person or organization in advance. The meth-

od to designate the integer numbers will be de-
scribed later. '

An operation of the embodiment will next be
described on a case where the user A starts com-

munication. The system 201 of the user A gen-'

erates a random number 1 (Step AA1 in FIG. 2)
and detemtines a first key distribution code XA

representative of a number obtained by computing

a” (mod 51) as well as a first identification code
YAindicative of a number obtained by computing

SA on‘-'(mod Q)‘ (AA2). The system 201 then trans-
mits a first pair of XA and YA to the system 202 of
the user 3 (Step AA3). Thereafter, the system 202
receives the first pair (XA . YA) (Step BB1), cal-

culates YA‘ /XA° (mod Q. and examines whether or
not the number obtained by the calculation is iden-
tical to the number indicated by an identification

code IDA obtained by the address, the name and
so on of the user A in a similar manner to in the

first embodiment (Step BB2). If they are not iden-
tical to each other, the system suspends process-

ing of the key distribution (Step BB7). On the other
hand, if they are identical to each other. the system

202 generates a random number t (Step BB3) and
determines a second key distribution code X A

representative of a number obtained by calculating

a“ (mod 3) and a second identification code Y5

obtained by calculating S5 oa“—" (mod 51) (Step
BB4). The system 202 then transmits a second pair

of X3 and Y; to the system 201 of the user A (Step

BB5). The system 202 calculates XA‘ (mod 5) and
keeps the number thus obtained as a enciphering
key wk (Step BB6).

The system 201, on the other hand. receives

the second pair (X3, Y5) (Step AA4). calculates Y-

3°/x,= (mod Q), and examines whether or not the
number thus obtained is identical to the number

indicated by an identification code ID3 obtained by
the address, the name and so on of the user B in a

similar manner to in the first embodiment (Step
AA5). If they are not identical to each other, the

system suspends the key distribution processing
(Step AA7). If they are identical to each other. the

system 201 calculates X3’ mod rt), and stores the
number thus obtained as a enciphering key wk‘
(Step AA6). Although the codes IDA and JD 3 are
widely known, they may be informed by the user A
to the user B.

The integer numbers SA, 53. e. 9. 5 and g are
detennined in the_ same manner as in the first
embodiment. As a result. ID A and IDA. becomes

equal to YA“/XA° (mod _l_'l) (= sfi On“/am (mod 3))
and Y3“/X3‘ (mod g) (=4 3‘; cam/a°'= (mod 5 »,
respectively. if we presuppose that the above-men-

10

15

20

25

35

50

55

tioned reliable person or organization who prepared

SA and S3 do not act illegally, since SA is pos-

sessed only by the user A while_S5 is possessed
only by the user B. the first pair (x A: YA) which

satisfies yA° /xA° (mod Q) = IDA can be prepared
only by the user A while the second pair (x3 . ya)

which satisfies ya’/x5‘ (mod _n) = IDA can be pre-
pared only by the user 3. it is impossible to find

out a number 5 which satisfies 5‘ (mod Q) = Q on
the basis of 3. band 3 since finding out X is
equivalent to breaking the RSA public key cryp-

togram system disclosed in the above-mentioned
the Communication of the ACM. It is described in
the above-referenced IEEE Transactions on Infor-

mation Theory that the key wk cannot be cal-
culated from the codes xA or X3 ‘and g. The key
distribution may be implemented similarly by mak-

ing the integer number _(_2_ variable and sending it
from a user to another.

An example of the systems 101, 102. 201 and
202 to be used in the first and second embodi-

mentswill next be described referring to FIG. 3.
Referring now to FIG. 3. a system comprises a

_terminal unit (TMU) 301 such as a personal com-

puter equipped with communication processing
functions. a read only memory unit (ROM) 302, a
random access memory unit (RAM) 303, a random

number generator (RNG) 304, a signal processor
(SP) 306, and a common bus 305 which intercon-
nects the TMU 301, the ROM 302, the RAM 303.
the RNG 304 and the SP 306.

The RNG 304 may be a key source 25 dis-
closed in U.S. Patent No. 4,200,700. The SP 306

may be a processor available from CYLINK Cor-
poration under the trade name CY 1024 KEY MAN-
AGEMENT PROCESSOR.

The RNG 304 generates random numbers 5 or
t by a command given from the SP 306. The ROM

407 stores the public integer numbers e_ . 3, 3, Q
and the secret integer number SA (if the ROM 407
is used in the system 101 or 201) or the secret

integer number S3 (rf the ROM 407 is used in the
system 102 or 202). The numbers SA and S3 may
be stored in the RAM 303 from the TMU 301

everytime users communicates. According to 'a
program stored in the ROM 407, the SP 306 ex-
ecutes the above-mentioned steps A2. A5, AA2,
AA5. AA6 and AA7 (if the SP 306 is used in the

system 101 or 201). or the steps B3, B5. BB2.
BB4, BB6 and BB7 (rf the SP 306 is used in the
system 102 or 202). The RAM 303 is used to

temporarily store calculation results in these steps.

Each of the systems 101, 102, 201 and 202

may be a data processing unit such as a general

purpose computer and an IC Gntegrated circuit)
card.

Petitioner Apple Inc. '— EXhi‘bi't'TO’2ZlI,_1fX‘4‘F3 19

ll

Petitioner Apple Inc. - Exhibit 1024, p. 4320

7 0257 585 8

As described in detail hereinabove, this inven-

tion enables users to effectively implement key
distribution simply with a secret piece of infonna-
tion and several public pieces of infonnation.

While this invention has thus been described in

conjunction with the preferred embodiments there-

of, it will now readily be possible for those skilled in
the art to put this inventioninto practice in various
other manners.

claims

1. A key distribution method comprising the
following steps:

a) generating a first random number in a first
system;

b) generating first key distribution informa-
tion in said first system by applying a predeter-
mined first transformation to said first random num-
ber on the basis of first secret infonnation known

only by said first system;

c) transmitting said first key distribution in-
fonnation to a second system via a communication
channel;

d) receiving said first key distribution in-
formation in said second system;

a) generating a second random number in
said second system;

f) generating second key distribution infor-
mation by applying said predetennined first trans-
formation to said second random number on the

basis of second secret infonnation known only by
said second system;

g) transmitting said second key distribution
information to said first system via said channel;

h) receiving said second key distribution in-
formation in said first system: and

i) generating an enciphering key in said first
system by applying a predetennined second trans-
formation to said second key distribution infonna-
tion on the basis of said first random number and

identification information of said second system
which is not secret. -

2. A key distribution method as claimed in

Claim 1, in which said first system includes first

data processing means for executing said steps a).

b) and i). and first communication processing
means for executing said steps c) and h).

3. A key distribution method as claimed in

Claim 1 or 2, in which said second system includes

second data processing means for executing said
steps e) and f). and second communication pro-

cessing means for executing said steps d) and g).
4. A key distribution method comprising the

following steps:

a) generating a first random number in a first
system:

10

15

20

55

b) generating first key distribution infome-

tion in said first system by applying a predeter-
mined first transfonnation to said first random num-

ber on the basis of public infonnation and generat-

ing first identification infonnation by applying a
predetennined second transfonnation to said first

random number on the basis of first secret informa-
tion known only by said first system;

c) transmitting said first key distribution in-
fonnation and said first identification infonnation to

a second system via a communication channel;

cl) receiving said first key distribution in-
fonnation and said first identification information in

said second system;

e) examining whether or not the result ob-

tained by applying a predetermined third trans-
fonnation to said first key distribution infonnation
on the basis of said first identification infonnation

satisfies a predetennined first condition and. it it

does not satisfy. suspending key distribution pro-
cessing;

f) generating a second random number if

said first condition is satisfied at said step e);
g) generating second key distribution infor-

mation by applying said predetennined first trans-

fonnation to said second random number on_ the

basis of said public infonnation, and generating
second identification infonnation by applying said
predetennined second transfonnation to said sec-

ond random number on the basis of second secret

information known only by said second system;
h) transmitting said second key distribution

infonnation and said second identification infonna-

tion to said first system via said communication
channel: and

i) examining in said first system whether or

not the result obtained by applying a predeter-
mined third transfonnation to said second key dis-
tribution information on the basis of said second

identification infonnation satisfies a predetermined

second condition and, if the result does not satisfy
said second condition. suspending said key dis-
tribution processing or, if it satisfies said second

condition. generating said enciphering key by ap-
plying a predetennined fourth transfonnation to
said first random number on the basis of said

second key distribution infonnation.

5. A key distribution method as claimed in

Claim 4, in which said first system includes first

data processing means for executing said steps a),

b) and i). and first communication processing
means for executing said step c).

6. A key distribution method as claimed in

Claim 4 or 5, in which said second system includes

second data processing means for executing said
steps a). f) and g). and second communication

processing means for executing said steps d) and
h).

Petitioner Apple Inc. — Exhibit 1024, p. 4320

Petitioner Apple Inc. - Exhibit 1024, p. 4321

0257585

2 2. Deg. 1587

:coe:o3:$<xEx33:cozobcmumxmuouweco_mm_EmS:._.E.SE:9emumx2.382.555>3.3:o:P_m:mu.+525:2eoucamBco:P_m:mu<xwuouU8E_3mm
N2

2:2__:.m_E:..xE:33.we.._o:Emcmomx38BE_8wm<xmuouyoco_mm_em:P_»2:_§5:..«mu.<x2.88_§._._t5Ex3:o:P_m:mo._._wnE:zsoucumS:o:Em:mo
SF

Petitioner Apple Inc. — Exhibit 1024, p. 4321

Petitioner Apple Inc. - Exhibit 1024, p. 4322

0257585

co:8_::EEouwecoficmamsm

:c_.2_.:<xu.canx3.5.._oco:u._mcm_...Am».mx.3:o_mm_Em:a._».2Be.asamH.erasas2:8.5ms".axmus385.88.+._mnE:zEouccmwe:o:c._w:mw<9L:no.5u<x\u<>.4».<x_3a_8#_

2:Be.ax".>3.us:o:Emcmu

:o_:H._::EEouuo:o_m:mn_m_..m

8_"EE5wx\...:.“_».mx.3a_8m~_.<>.<x.no...o_mm_Em_.E._.p.2_§_..a.,..smM.4»wasEaN<<=:UuE_._m%u.<Xwasweco_tu._m:mD ._bnezzEoucomuscozfimcmo

Petitioner Apple Inc. — Exhibit 1024, p. 4322

Petitioner Apple Inc. - Exhibit 1024, p. 4323

0257585

VO
9
("1

Fig.3

Petitioner Apple Inc. — Exhibit 1024, p. 4323

Petitioner Apple Inc. - Exhibit 1024, p. 4324

Europalsches Patentamt

Q European Patent Office ® Publication number: 0
Office européen des brevets

(9 EUROPEAN PATENT APPLICATION

® Application number: e93o151o.7 Int. cu; G06F 1/00

E2) Date of filing: 16.02.89

69 Applicant: DIGITAL EQUIPMENT
CORPORATION
111 Powdermill Road

Maynard Massachusetts 01754-1418(US)

@ Priority: omaas us 154944

@ Date of publication of application:
13.09.89 Bulletin 89/37

(72) Inventor: Robert, Gregory
12 Carson Circle

Nashua New Hampshire 03062(U$)
Inventor: Chase, David

, 28 Bay View Road
Wellesley Massachusetts 02181(US)
Inventor: Schaeter, Ronald
7 Gioconda Avenue

Acton Massachusetts 01720(US)

Designated Contracting States:
DE FR GB

Representative: Goodman, Christopher et al
Eric Potter & Ciarkson 14 Oxford Street

Nottingham NG1 5BP(GB)

(5) Software licensing management system.

(7) A license management system which includes a
license management facility that determines whether

usage of a licensed program is within the scope of
the license. The license management system main-
tains a license unit value for each licensed program

and a pointer to a table identifying an allocafion unit
value associated with each use of the licensed pro-

gram. in response to a request to use a licensed

Nprogram, the license management system responds
<with an indication as to whether the license unit

value exceeds the allocation unit value associated

gwith the use. Upon receiving the response. the op-
meration of the licensed program depends upon poli-

cies established by the licensor.

LICENSING
POLICY
HODULE

EP0332
Xerox Copy Centre

Petitioner Apple Inc. — Exhibit 1024, p. 4324

Petitioner Apple Inc. - Exhibit 1024, p. 4325

'..-\._ f

1 EP 0 332 304 A2 2

SOFTWARE LICENSING MANAGEMENT SYSTEM

BACKGROUND OF THE INVENTION

1. F_ie_ld pf th_e invention

The invention relates generally to the field of

digital data processing systems, and more specifi-
cally to a system for managing licensing for. and
usage of. the various software programs which may
be processed by the systems to ensure that the

software programs are used within the terms of the
software licenses.

a Description o_f th_e E-r_‘;(_)£ E

A digital data processing system includes three
basic elements. namely, a processor element. a

memory element and an input/output element. The
memory element stores information in addressable

storage locations. This information includes data
and instructions for processing the data. The pro-
cessor element fetches information from the mem-

ory element. interprets the information as either an
instruction or data. processes the data in accor-
dance with the instructions. and returns the pro-

cessed data to the memory element for storage

therein. The input/output element. under control of

the processor element. also communicates with the
memory element to transfer information. including
instructions and data to be processed, to the mem-

ory. and to obtain processed data from the mem-
ory.

Typically, an inputroutput element includes a
number of diverse types of units. including video

display terminals. printers. interfaces to the public
telecommunications network. and secondary stor-

age subsystems. including disk and tape storage
devices. A video display terminal permits a user to

run programs and input data and view processed
data. A printer permits a user to obtain a processed
data on paper. An interface to the public tele-
communications network permits transfer of infor-

mation over the public telecommunications net-
work.

The instructions processed by the processor

element are typically organized into software pro-
grams. Recently, generation and sales of software
programs have become significant businesses both
for companies which are primarily vendors of hard-

ware. as well as for companies which vend soft-
ware alone. Software is typically sold under li-
cense. that is. vendors transfer copies of software

to users under a license which governs how the

'20

30

35

45

50

users may use the software. Typically. software
costs are predicated on some belief as to the

amount of usage which the software program may
provide and the economic benefits. such as cost

saving which may otherwise be incurred. which the
software may provide to the users. Thus. license
fees may be based on the power of the processor
or the number of processors in the system. or the
number of individual nodes in a network. since

these factors provide measures of the number of
users which may use the software at any given
time.

In many cases. however. it may also be desir-
able. for example. to have licenses and license

fees more closely relate to the actual numbers of

users which can use the program at any given time
or on the actual use to which a program may be

put. Furthermore, it may be desirable to limit the
use of the program to specified time periods. A
problem arises particularly in digital data process-

ing systems which have multiple users and/or mul-
tiple processors. namely. managing use of licensed
software to ensure that the use is within the terms

of the license. that is. to ensure that the software is

only used on identified processors or by the num-
bers of users permitted by the license.

SUMMARY E THE INVENTION

The invention provides a new and improved

licensing management system for managing the
use of licensed software in a digital data process-

ing system.
In brief summary. the license management

system includes a license management facility and

a licensing policy module that jointly determine
whether a licensed program may be operated. The
license management facility maintains a license
unit value for each licensed program and a pointer
to a table identifying a license usage allocation unit
value associated with usage of the licensed pro-

gram. in response to a request to use a licensed

program. the license management facility deter-
mines whether the remaining license unit value
exceeds the license usage allocation unit value
associated with the use. If the license unit value

does not exceed the license usage allocation unit

value. the license management facility permits us-

age of the licensed program and adjusts the li-
cense unit value by a function of the license usage
allocation unit value to reflect the usage. On the
other hand. if the license unit value associated with

use of the license program does exceed the li-

Pctitioner Apple Inc. — Exhibit 1024, p. 4325

Petitioner Apple Inc. - Exhibit 1024, p. 4326

3 EP 0 332 3o4“A2 4

cense usage allocation unit value. the licensing

policy module determines whether to allow the
licensed program to be used in response to other

licensing policy factors.

BRIEF DESCRIPTION E 1-E DRAWINGS

This invention is pointed out with particularity

in the appended claims. The above and further

advantages of this invention may be better under-
stood by referring to the following description taken

in conjunction with the accompanying drawings. in
which:

Fig. 1 is a general block diagram of a new

system in accordance with the invention;
Figs. 2 and 3 are diagrams of data structures

useful in understanding the detailed operation of
the system depicted in Fig. 1: and

Figs. 4A-1 through 415-2 are ,ilow.\ c_iiagr_am_s,..,‘

which are useful in understanding the detailed g‘p-
erations of the system "depicted in'i-‘ig. 1‘; ’

..;.~...'

DETAILED DESCRIPTION 95 if! ILLUSTRATIVEEMBODIMENT

._..y.,. 1 .

Fig. 1 depicts a general block diagram of a
system in accordance with the invention for use in
connection with a digital data processing system
which assists in managing software use in accor-
dance with software licenses. With reference to Fig,

1, the new system includes a license management
facility 10 which operates in conjunction with a
license data base 11 and license unit tables 12.

and under control of an operating system 13 and

licensing policy module 15 to control use of ii-
censed programs, such as licensed program 14. so
that the use is in accordance with the terms of the
software license which controls the use of the soft-

ware program on a system 16 identified by a
system marketing model (SMM) code in a digital
data processing system.

As is conventional, the digital data processing

system including the licensing management sys-

tem may include one or more systems 16. each
including one or more processors. memories and

input/output units. interconnected in a number of
ways. For example, the digital data processing
system may comprise one processor. which may
include a central processor unit which controls the

system and one or more auxiliary processors which
assist the central processor unit. Alternatively. the _

digital data processing system may comprise mul-
tiple processing systems. in which multiple central

2D

30'

.35..

45

50

55

processor units are tightly coupled. or clustered or
networked systems in which multiple central pro-
cessor units are loosely coupled. generally operat-

ing relatively autonomously, interacting by means
of messages transmitted over a cluster or network
connection. In a tightly coupled multiple processing
system. for example, it may be desirable to control
the number of users which may use a particular

software program at one time. A similar restriction
may be obtained in a cluster or network environ-
ment by controlling the number of particular nodes.
that is. connections to the communications link in
the cluster or network over which messages are
transferred. In addition, since the diverse proces-

sors whlch may be included in a digital data pro-

cessing system may have diverse processing

speeds and powers, represented by differing sys-
tem marketing model (SMM) codes. it may be
desirable to include a factor for speeds and power

in determining the number of processors on which

a program may be used concurrently. .
' As ‘will be explained in greater detail below, the

license database 11 contains a plurality of entries

20 (described below in connection with Fig. 2) each
containing information relating to the terms of the
license for a particular licensed program 14. In one
embodiment such information may include a ter-
mination date. if the license is for a particular time

period or expires on a particular date, and a num-
ber of licensing units if the license is limited by

usage of the license program. in that embodiment.
the entry also includes identification of a license
unit table 40 (described below in connection with

Fig. 3) in the license unit tables 12 that identifies

fithe number of allocation units for usage of the
licensed program on the types of systems 16
which may be used in the digital dataiprocessing
system as represented by the system marketing
model (SMM) codes.

when a user wishes to use a licensed program

14. a GRANT LICENSE request message is gen-

erated which requests infonnation as to the licens-

ing status of the licensed program 14. The GRANT
LICENSE request message is transmitted to the

licensing policy module 15. which notifies the op-
erating system of the request. The operating sys-
tem 13. in turn. passes the request. along with the

system marketing model of the specific system 16

being used by the user, to the license management
facility 10 which determines whether use of the

program is permitted under the license. '
In response to the receipt of the GRANT Ll-

CENSE request from the user and the system

marketing model (SMM) code of the system 16
being used by the user on which the licensed
program will be processed. the license manage-
ment facility 10 obtains from the license data base
the entry 20 associated with the licensed program

Petitioner Apple inc. — Exhibit 1024, p. 4326

Petitioner Apple Inc. - Exhibit 1024, p. 4327

5 EP0332 304A2 6

14 and determines whether the use of the licensed

program 14 is within the terms of the license as
indicated by the information in the license data
base 11 and the license unit tables 12.

In particular. the license management facility
10 retrieves the contents of the entry 20 associated

with the licensed program. If the entry 20 indicates
a tennination data. the license management facility
10 compares the system data. which is maintained

by the digital data processing system in a conven-
tional manner, with the termination date identified

in the entry. if the system date is after the termina-
tion date identified in the entry 20. the license has
expired and the license management facility 10

generates a usage disapproved message. which it
transmits to the operating system 13. On the other
hand. if the temtination date indicated in the entry

20 is after the system date. the license has not

expired and the license management facility 10
proceeds to determine whether the usage of the
licensed program 14 is permitted under other
terms of the license which may be embodied in the
entry 20.

In particular. the license management facility
10 then determines whether the usage of the li-

censed program is permitted under usage limita-
tions. in that operation, the license management

- facility obtains the number of license units remain-
ing. which indicates usage of the licensed program
14 not including the usage requested by the user.
as well the identification of the table 40 in license

unit tables 12 associated with the licensed program

14. The license management facility 10 then com-
pares the number of license units which would be
allocated for use of the licensed program 14. which
it obtains from the table 40 identified by entry 20 in
the license data base 11. and the number of re-

maining units to determine whether sufficient li-
cense units remain to permit usage of the licensed
program 14.

If the number of remaining license units in-
dicated by entry 20 in the license data base 11
exceeds the number. from license unit tables 12. of
license units which would be allocated for use of

the licensed progam 14. the usage of the licensed
program is pemtitted under the license. Accord-

ingly, the license management facility transmits a
usage approved response to the operating system
13. In addition. the license management facility 10

adjusts the number of remaining license units in
entry 20 by a function of the license units allocated
to use of the licensed program to reflect the usage.

On the other hand. if the number of remaining

license units indicated by entry 20 in the license
data base is less than the number of license units
which would be allocated for use of the licensed

program 14. the usage of the licensed program 14
is not permitted by the license. In that case. the

20

25

30

35

50

55

license management facility 10 transmits a usage

disapproved response to the operating system 13.

in addition. the license management facility 10 may
also log the usage disapproved response; this in-
formation may be used by a system operator to

determine whether usage of the licensed program
14 is such as to warrant obtaining an enlarged
license.

Upon receipt of either a usage approved re-

sponse or a usage disapproved response to the
GRANT LICENSE request. the operating system 13

passes the response to the licensing policy module

15. if a usage approved response is received. the
licensing policy module normally allows usage of
the licensed program 14. if a usage disapproved
response is received. the licensing policy module
determines whether the usage of the licensed pro-

gram may be permitted for other reasons. For
example. usage of the licensed program 14 may
be permitted under a group license. whose terms

are embodied in entries in group license tables 17.

Under a group license. usage may be permitted of
any of a group of licensed programs. The oper-
ations to determine to whether usage is permitted

may be performed in the same manner as de-
scribed above in connection with license manage-

ment facility 10. In addition. if the usage of the

licensed program 14 is not permitted under a
group license. usage may nonetheless be permit-
ted under the licensor's licensing practices. which
may be embodied in the licensing policy module
15. If the licensing policy module determines that

usage of the program should be permitted. notwith-
standing a usage disapproved response from the
license management facility 10. because the usage

is permitted under a group license or the licensor's
licensing practices. the licensing policy module 15
permits usage of the licensed program. Otherwise.
the licensing policy module does not permit usage
of the licensed program in response to the GRANT
LICENSE request.

When a user no longer requires use of a li-

censed program 14, it transmits a RELEASE LI-
CENSE request to the licensing policy module 15.
The operations perfomted by the licensing policy
module depend on the basis for permitting usage

of the licensed program. If usage was permitted as
a result of a group license. if the group license is
limited by usage. the licensing policy module 15. if
necessary. adjusts the records in the group license
tables 17 related to the group license to reflect the
fact that the licensed program 14 related to the

group license is not being used. If the usage was
permitted as a result of a group license which is
not limited by usage. but instead is limited in
duration. or if the usage was permitted in response

to the licensor's licensing policies. the licensing

policy module 15 need do nothing. If the licensing

Petitioner Apple Inc. — Exhibit 1024, p. 4327

Petitioner Apple Inc. - Exhibit 1024, p. 4328

7 EP0332 304A2 8

policy module 15 maintains a log of usage outside
the scope of a group or program license, it may
make an entry in the log of the RELEASE request.

Finally, if usage was permitted as a result of
the license management facility 10 providing an
approve usage response to the GRANT LICENSE

request. the licensing policy module 15 transmits

the RELEASE LICENSE request to the operating

system 13. In response. the operating system 13
transfers the RELEASE LICENSE request_ to the

license management facility 10, along with an iden-
tification of the system 16 using the licensed pro-

gram 14. The license management facility 10 then
obtains from the license data base the identification

of the appropriate license usage allocation unit
value table in license unit tables 12, and deter-
mines the number of allocation units associated

with this use of the licensed program 14 based on
the identified allocation table and the processor.

The license management facility 10 then adjusts
the number of license units for the licensed pro-

gram 14 in the license data base 11 to reflect the
release.

It will be appreciated by those skilled in the art
that. the license management facility 10 may. in

response to a GRANT LICENSE request. instead of

deducting allocation units from the entries in the
license data base 11 associated with the licensed

programs 14, detennine the number of allocation
units which would be in use if usage of the li-

censed program 14 is pennitted, and respond
based on that determination. If the license man-

gement facility 10 operates in that manner, it may
be advantageous for the entries in license data

base 11 relating to each licensed program 14 to
maintain a running record of the number of alloca-
tion units associated with its usage. The licensing

policy module 15 may operate similarly in connec-

tion with group licenses that are limited by usage.
It will also be appreciated that the new license

management system thus permits the digital data
processing system to control use of a licensed
program 14 based on licensing criteria in the li-
cense data base 11. the license unit tables 12. the

group licensing tables 17 and the licensor's general

licensing policies rather than requiring an operator
to limit or restrict use of a licensed program or

charging for the license based on some function of
the capacity of all of the processors in the digital
data processing system. The new license manage-
ment system allows for very flexible pricing of

licenses and licensing policies, since the digital
data processing system itself enforces the licens-

ing terms controlling use of the licensed programs
14 in the system.

Fig. 2 depicts the detailed structure of the
license data base 12 (Fig. 1) used in the license

management system depicted in Fig. 1. With refer-

20

25

30

40

50

ence to Fig. 2. the license data base includes a
plurality of entries generally identified by reference

numberal 20. with each entry being associated with
one licensed program 14. Each entry 20 includes a
number of fields. including an issuer name field 21
identifying the issuer of the license, an authoriza-
tion number field 22 which contains an authoriza-

tion number, a producer name field 23 which iden-

tifies the name of the vendor of the licensed pro-

gram. and a product name field 24 which contains
the name of the licensed program. The contents of
these fields may be used, for example, in connec-

tion with other license management operations.
such as determining the source of licensed pro-
grams in the event of detection of errors in pro-

grams. and in locating duplicate entries in the
license data base or entries which may be com-

bined as a result of licenses being obtained and
entered by. perhaps different operators or at dif-
ferent times.

Each entry 20 in the licensing data base 11
also includes a license number field 25 whose

contents identify the number of licensing units re-
maining. A license of a licensed program 14 iden-
tifies a number of licensing units. which may be a

function of the price paid for the license. An avail-
ability table field 26 and an activity table field 27
identify license usage allocation unit value tables in
the license unit tables 12 (described in connection

with Fig. 3) to be used in connection with the
GRANT LICENSE and RELEASE LICENSE re-

quests.

By way of background. a license may be in
accordance with a licensing paradigm which re-

quires concurrent use of the licensed program 14
on several processors to be a function of the pro-
cessor power and capacity. and the availability
table field 26 identifies a license usage allocation
unit table to be used in connection with that. In an

alternative. a license may be in accordance with a

licensing paradigm which requires concurrent use
of the licensed program to be a function of the

number of users using the program. and the activ-

ity table field 27 identifies a license usage alloca-
tion unit valve table in the license unit tables 12 to

be used in connection with that. If either licensing

paradigm is used to the exclusion of the other. one
field contains a non-zero value and the other field

contains a zero value. In addition. a license may be

in accordance with both licensing paradigms, that
is, concurrent use of a program may be limited by
both processor power and capacity and by the
number of concurrent users. and in that case both
fields 26 and 27 have non-zero values.

In one embodiment of the licensing manage-
ment system. fields 21 through 27 of an entry 20 in
the licensing data base 11 are required. In that

embodiment. an entry 20 in the licensing data may

Petitioner Apple Inc. — Exhibit 1024, p. 4328

Petitioner Apple Inc. - Exhibit 1024, p. 4329

9 EP0332304A2 10

also have several optional fields. In particular. an

entry 20 may include a datelversion number field
30 whose contents comprise either a date or ver-
sion number to identify the licensed program. if a
license is to terminate on a specific date. the entry

20 may include a Iicensor termination date field 31
or a licensee termination date field 32 whose con-

tents specify the termination date assigned by the
licensor or licensee. This may be particularly use-

ful, for example, as a mechanism for permitting
licensees to demonstrate or try a program before

committing to a long or open term license.
Finally, an entry 20 in the license data base

includes a checksum field 33. which includes a

checksum of the contents of the other fields 21

through 27 and 30 through 32 in the entry 20.
which may be established by means of a math-

ematical algorithm applied to the contents of the
various fields. The general mechanism for estab-

lishing checksums is well known in the art. and will
not be described further herein. The contents of all

fields 21 through 27 and 30 through 33 of a new
entry 20 are entered by an operator. Prior to estab-
lishment of an entry in the license data base 11.

the license management facility 10 may verify cor-
rect entry of the information in the various fields by

calculating a checksum and comparing it to the
checksum provided by the operator. if the check-

sum provided by the operator and the checksum
determined by the license management facility are
the same. the entry 20 is established in the license
data base 11. On the other hand. if the checksum

provided by the operator and the checksum deter-
mined by the license management facility differ.
the license management facility 10 determines that
the information is erroneous or the license is invalid

and does not establish the entry 20 in the license

data base 11. It will be appreciated that. if the

checksum-generation algorithm is hidden from an
operator. the checksum provides a mechanism for

verifying, not only that the information has been
properly loaded into the entry. but also that the
license upon which the entry is based is authorized
by the licensor.

The structure of group Iioense tables 17 may
be similar to the structure of the license data base

11, with the addition that the entries for each Ii-

cense reflected in the group license tables 17 will
need to identify all of the licensed programs cov-
ered thereby.

As described above. the licensing unit tables

12 (Fig. 1) contain information as to the allocation
units for use in determining the number of licensing
units associated with use of a licensed program.

The structure of a licensing unit table 40 is de-

picted in l-‘lg. 3. Vlfith reference to Fig. 3. the
licensing unit table includes a plurality of entries
41(1) through 41 (N) (generally identified by refer-

10

15

20

25

30

35

45

55

ence numeral 41) each identified by a particular

type of processor. One entry 41 in the table 40 is
provided for each type of processor which can be
included in the digital data processing system
which can use the licensed programs 14 which
reference the license unit table 40. The processor

associated with each entry is identified by a pro-
cessor identification field 42. The successive fields

in the entries 41 (which form the various columns

in the table 40 depicted in Fig. 3) form license

usage allocation unit value tables 43(1) through 43-

(M) (generally identified by reference numeral 43).
The contents of the availability table field 26 and

the activity table field 27 identify a license usage
allocation unit value table 43. If there are non-zero

contents in both availability field 26 and activity
field 27. the contents which identify be the same

license usage allocation unit value table 43 or dif-
ferent license usage allocation unit value tables 43.
As described above. the contents of the license

usage allocation unit value table identify the num-
ber of licensing units associated with use of the
licensed programs which identify the particular li-

cense usage allocation unit value table. for each of
the identified processors.

The operation of the licensing management

system is depicted in detail in Figs. 4A-1 through
4—B. Figs. 4A-1 through 4A-4 depict. in a number of
steps the details of operation of the licensing man-

agement system in connection with the GRANT
LICENSE request from a licensed program 14.

Figs. 48-1 and 4B-2 depict. in a number of steps.
the details of operation in connection with the RE-
LEASE LICENSE request from a licensed program

14. in the l-'rgs.. the particular steps perfonned by
the licensing policy module 15. the license man-

agement facility 10 and the operating system 13
are indicated in the respective steps. Since the

operations depicted in Figs. 4A-1 through 4B-2 are
substantially as described above in connection with

Fig. 1. they will not be described further herein.
The foregoing description has been limited to a

specific embodiment of this invention. It will be
apparent. however. that variations and modifica-
tions may be made to the invention. with the attain-
ment of some or all of the advantages of the
invention. Therefore. it is the object of the appen-
ded claims to cover all such variations and modi-

fications as come within the true spirit and scope of
the invention.

Claims

1. A license management system for managing

usage of a licensed software program comprising:

licensing storage means for storing a licensing unit
value identifying a number of licensing units asso-

Petitioner Apple Inc. — Exhibit 1024, p. 4329

Petitioner Apple Inc. - Exhibit 1024, p. 4330

11 EP0332 304A2 12

ciated with the licensed software program;

usage allocation value storage means for storing a

usage allocation value identifying a number of li-
censing units associated with a use of the licensed
software program: and

licensing verification means responsive to a usage
request to use said licensed software program for
determining. based on the contents of said licens-

ing storage means and said usage allocation value
storage means. whether usage of said licensed
software program is permitted and. if usage is

permitted, for adjusting the contents of said licens-

ing storage means by a value to the contents of
said usage allocation value storage means.

2. A license management system as defined in
claim 1 for use in a digital data processing system
which generates a system date value. said licens-
ing storage means includes a plurality of fields
including a licensing unit storage field for storing

said licensing unit number identifying value and a

field identifying a termination date. said licensing
verification means further determining whether us-

age of said licensed software program is permitted
in response to a comparison of said system date
and said termination date.

3. A license management system as defined in
claim 1 for managing usage of plurality of licensed
software programs. wherein said licensing storage
means includes a plurality of entries each contain-

ing a program identification field identifying a li-
censed software program and a licensing unit stor-

age field for storing said licensing unit value. said
licensing verification means including:
request receiving means for receiving a usage re-

quest identifying a licensed software program;
licensing unit retrieval means responsive to said
request receiving means receipt of a usage request
for retrieving the contents of said licensing unit

storage field from the entry of said licensing stor-

age means whose program identification field iden-
tifies the licensed software program identified in
said usage request; and
licensing unit processing means for determining.
based on the contents of retrieved licensing unit

storage field and said usage allocation value stor-
age means. whether usage of said licensed soft-
ware program is pemiitted and. is usage is permit-

ted. for adjusting the contents of said licensing

storage means by a value related to the contents of
said usage allocation value storage means.

4. A license management system as defined in
claim 3 for use in a digital data processing system

which generates a system date value. each entry in
said licensing storage means further including a
termination date field identifying a termination data.

said licensing unit processing means further deter-

20

25

30

35

40

45

50

55

mining whether usage of said licensed software
program is permitted in response to a comparison

of said system date and said termination date.
5. A license management system as defined in

claim 3 wherein said usage allocation value storage

means includes a plurality of usage allocation ta-

bles each storing a value identifying a number of
licensing units, each entry in said licensing storage
means further including a usage allocation table
identification field identifying a usage allocation ta-

ble. said licensing verification means further includ-

ing usage allocation table retrieval means respon-

sive to said request receiving means receipt of a
usage request for retrieving the contents of the

usage allocation table identified by the contents of
said usage allocation table identification field of
said retrieved entry, said licensing unit processing
means using said retrieved usage allocation table
in its determination.

6. A license management system as defined in
claim 5 wherein a request message further in-

cludes licensing usage allocation value selection

criteria and each usage allocation table includes a
plurality of entries each identifying a usage alloca-
tion value associated with a licensing usage alloca-

tion value selection criterion. said licensing verifica-
tion means including means for retrieving. from the
usage allocation table identified by said entry in
said licensing storage means. the usage allocation

value associated with the licensing usage allocation
value selection criterion in said request message

and using said retrieved usage allocation value in
its determination.

7. A license management system as defined in
claim 3 wherein a request message further in-

cludes licensing usage allocation value selection
criteria and said usage allocation table includes a
plurality of entries each identifying a usage alloca-
tion value associated with a licensing usage alloca-

tion selection criterion. said licensing verification
means including means for retrieving the usage
allocation value associated with the licensing usage
allocation selection criterion in said request mes-

sage and using said retrieved usage allocation val-
ue in its determination.

8. A license management system as defined in
claim 1 wherein said licensing verification means

further operates in response to a release request

message for adjusting the contents of said licens-
ing storage means by a value related to the con-
tents of said usage allocation value storage means.

9. A license management system as defined in
claim 8 for managing usage of a plurality of li-
censed software programs. wherein said licensing
storage means includes a plurality of entries each
containing a program identification field identifying
a licensed software program and a licensing unit

storage field for storing said licensing unit value.

Petitioner Apple Inc. — Exhibit 1024, p. 4330

Petitioner Apple Inc. - Exhibit 1024, p. 4331

13 EP0332 304A2 14

said licensing verification means including:

request receiving means for receiving a release
request identifying a licensed software program:

licensing unit processing means for adjusting the
contents of said licensing storage means by a
value related to the contents of said usage alloca-

tion value storage means.

10. A license management system as defined
in claim 9 wherein said usage allocation value

storage means includes a plurality of usage alloca-
tion tables each storing a value identifying a num-

ber of licensing units, each entry in said licensing

storage means further including a usage allocation
table identification field identifying a usage alloca-

tion table. said licensing verification means further

including usage allocation table retrieval means re-
sponsive to said request receiving means receipt of

a usage request for retrieving the contents of said
usage allocation table identification field of said
retrieved entry. said licensing unit processing
means using retrieved usage allocation table in its
adjusting.

11. A license management system as defined
in claim 10 wherein a release message further

includes licensing usage allocation value selection
criteria and each usage allocation table includes a

plurality of entries each identifying a usage alloca-
tion value associated with a licensing usage alloca-
tion value selection criterion, said licensing verifica-

tion means including means for retrieving, from the

usage allocation table identified by said entry in
said licensing storage means. the usage allocation
value associated with the licensing usage allocation
value selection criterion in said request message

and using said retrieved usage allocation value in
its adjusting.

12. A license management system as defined
in claim 8 wherein a release message further in-

cludes licensing usage allocation value selection
criteria and each usage allocation table includes a

plurality of entries each identifying a usage alloca-
tion value associated with a licensing usage alloca-
tion value selection criterion. said licensing verifica-

tion means including means for retrieving, from the

usage allocation value table identified by said entry
in said licensing storage means. the usage alloca-
tion value associated with the licensing usage al-
location value selection criterion in said request

message and using said retrieved usage allocation
value in its adjusting.

13. A license management system for use in a
digital data processing system including a system
date generating means for generating a system
data value. said license management system com-
prising:

licensing storage means including a plurality of
entries each associated with a licensed software

program, each entry containing a licensing units

10

20

25

30

35

50

55

field for storing a licensing unit value identifying a
number of licensing units associated with the li-
cense software program. a usage allocafion table.
and a termination date:

usage allocation table storage means for storing a
plurality of usage allocation tables. each usage
allocation table having a plurality of usage alloca-

tion entries each usage allocation entry being asso-
ciated with a licensing usage allocation value selec-

tion criterion and storing a usage allocation value
identifying a number of licensing units; and
licensing verification means including:
usage grant means including:

usage request message receiving means for re-

ceiving a usage request message from a licensed
software program. said usage request message

identifying said licensed software program and us-
age grant criteria:
entry retrieval means responsive to the receipt of a

usage request message for retrieving from said
licensing storage means the licensing table entry
associated with said licensed software program;

usage allocation table retrieval means for retrieving
from said usage allocation table storage means a

usage allocation entry identified by said retrieved
licensing table entry and the licensing usage al-
location value selection criterion identified by the

received usage request message:

licensing request processing means including:
usage detennination means including licensing unit
comparing means for comparing the contents of
said licensing units field and said usage allocation
units field and date comparison means for compar-

ing the system date value with the contents of said
termination date field to detennine whether usage

of said licensed software program is permitted.

response generation means for generating a mes-

sage in response to the determination by said

usage determination means: and
licensing unit adjusting means for adiusting the
contents of said licensing units field in response to

a positive determination by said usage determina-
tion means:

usage release means including:
usage release message receiving means for receiv-

ing a usage request message from a licensed
software program: said usage request message
identifying said licensed software program and us-

age grant criteria;
entry retrieval means responsive to the receipt of a

usage request message for retrieving from said
licensing storage means the licensing table entry
associated with said licensed software program:

usage allocation table retrieval means for retrieving
from said usage allocation table storage means a

usage allocation entry identified by said retrieved
licensing table entry and the licensing usage al-
location value selection criterion identified by the

Petitioner Apple Inc. — Exhibit 1024, p. 4331

Petitioner Apple Inc. - Exhibit 1024, p. 4332

15 EP0332 304A2 16

received usage request message:

licensing release processing means for adjusting
the contents of said licensing units field in relation
to the value of said usage allocation entry.

20

25

30

35

40

45

50

55

Petitioner Apple Inc. — Exhibit 1024, p. 4332

Petitioner Apple Inc. - Exhibit 1024, p. 4333

.4""~.

EP0332304A2

LICENSED

PROGRAM

 GRANT

GROUP

LICENSE

TABLES

LICENSING

POLICY

MODULE

LICENSE

MANAGEMENT
FACILITY (UTILITY)

 LICENSE
DATA
BASE

FIG. I

Petitioner Apple Inc. — Exhibit 1024, p. 4333

Petitioner Apple Inc. - Exhibit 1024, p. 4334

cu c-ingereichi I Newly flied

N@'~J,\/q=,~!1-3me¢_r*et.dé,'3.osé
I

.—.,_-.,.,..,..V.—.-_.v-,-.—.%_..a.?..-r9 9 S 5 o a 0 $3‘!9 9 5 o 7
9: sec .,, ,,

EPO332304A2

REQU I RED
ENTRY FIELDS
20(1)

CHECK SUM

LICENSE

DATA

BASE 1

FIG. 2

Petitioner Apple Inc. — Exhibit 1024, p. 4334

Petitioner Apple Inc. - Exhibit 1024, p. 4335

*1‘Th,

:

u cIr.;::.ic:hi I N32-;:y Ii.-ad
EP 0 332 304 A2 ‘ mi" fl wérwé

-*JvU‘~:v:=;&?FFI~>fiL~=~;+N.,~~ '
‘I ' 3 1 V

an...»-au-—-r-9-""“'$"""'Y O D I

LICENSE UNIT TABLE L40

FIG. 3

Petitioner Apple Inc. — Exhibit 1024, p. 4335

Petitioner Apple Inc. - Exhibit 1024, p. 4336

IW
I.,I\.:u.-L I I »u.--.. .-na-

Ncuve!2emeni dépcsé

..,U' K." L‘

EP 0 332 304 A2
,,_, __..’‘ “.'.3J——__o.|—--5»,1 I 3 Q)

" 0 I -1
519 I 1

I 0to

FIG. 4A-1
GRANT LICENSE

50USER ISSUES GRANT LICENSE REQUEST TO REQUEST

USAGE OF LICENSED PROGRAM 1A

IEEIN POLICY MODULE TRANFERS GRANT LICENSESILICE G

REQU TO OPERATING SlYSTEM
52OPERATING SYSTEM TRANSFERS GRANT LICENSE REQUEST

AND SMM VALUE TO LICENSE MANAGEMENT FACILITY

o.@
N

DE
ME

AVEMREUW6RA0TPEWTEncb._YRYDA3NRDOAEBUHECU0TE7V%D.TI.uEm._.rPWM0SEN.vlACLESF.UDEARMSCT7.EIESES:V..H_.W._STT?_G..HEENNNAA.fl|Hu11H0EET.DS$ClRTFNCCLUNETI0I0EA7)REWAL3IERlR638F8TSD2Errn..ANMTTI.DI.TM5umHEImmmmummyMsM3EBEIEERAGTU%LFUFSSF?EINDTBAOLUNT..HNEATAF.EDNAmmTMmvmmKHEEmMY._M..._BW6LHLWP.rh.._m.L..
G0S.l_

MmMmMWWSmumAY0SUENoSDIAAMNNI.EVEMTMDIEOL6UEUGGSSVI.VTBARASN I.NNAI.EAAMVTV0TSEEICLEEml...ANCCRmmflSRTCWIU.ORULVYMVLNMIEPILDFRAASDIULROL456OI76
55556

FIG
4A"3

3>._._.:.u<n_:mEm<z<zmmzma:

FIG.

4 A“3

Petitioner Apple Inc. — Exhibit 1024, p. 4336

Petitioner Apple Inc. - Exhibit 1024, p. 4337

.«

LICENSINGPOLICYMODULE15

EPO332304A2

FIG. 4A-2

FTG.4A'l

62 LICENSING POLICY MODULE l5 RECEIVES REFUSE
RESPONSE FROM OPERATING SYSTEM 13

55 IS'LICENSED PROGRAM COVERED BY A GROUP

LICENSE? |

YES

J
64ADJUST CONTENTS OF GROUP LICENSE TABLES

17 TO REFLECT USAGE OF LICENSED PROGRAM l4
UNDER GROUP LICENSE

65PERMIT USAGE OF LICENSED VROGRAM 14

55IS USAGE OF LICENSED PROGRAM l4 PERMITTED N0
BY LICENSOR’S OTHER LICENSING POLICIES?

I

YES
57PERMIT USAGE OF LICENSED PROGRAM BY USER

TOTERMINATE USAGE OF LICENSED PROGRAM l4

Petitioner Apple Inc. — Exhibit 1024, p. 4337

Petitioner Apple Inc. - Exhibit 1024, p. 4338

LICENSEMANAGEMENTFACILITY10

EP 0 332 304 A2

FIG. 4A-3

0 I .

TIDOES ACTIVITY TABLE FIE
RETRIEVED FROM LICENSIN
A NON-ZERO VALUE?

72 RETRIEVE CONTEN
ALLOCATION UNIT
BY ACTI TY TAB

 TBDOES VALUE IN LICENSE UN
EXCEED VALUE IN RETRIEVED
LICENSE USAGE A N

74IS SYSTEM DATE AFTER D
TERMINATION DATE FIELD
TERMINATION DATE FIELD

.ENTRY 20 RETRIEVED FROM
BASE ll?

7§DECREMENT CONTENTS OF LI E

FIELD 25 BY FUNCTION OF ENTS OF

OF LICENSE USAGE ALLOCATION ggI£NgATABLE 43 RETRIEVED IN STEPS

75TRANSMIT POSITIVE RESPONSE TO OPERATING
SYSTEM 13

F1G.4J¥4

Petitioner Apple Inc. — Exhibit 1024, p. 4338

Petitioner Apple Inc. - Exhibit 1024, p. 4339

EP 0 332 304 A2 ;.i;'; .».—+« '..-,-‘= .-— —.—'-

FIG. 4A-4

F|G.4A—3

77 OPERATING SYSTEM 13
RESPONSE TO LICENS LI

80 LICENSING POLICY MODULE 15 PERMITS USAGE
OF LICENSED PROGRAM 1’-I BY USER

F|G.4B-1
RELEASE LICENSE

90 USER ISSUES RELEASE LICENSE REQUEST TO REQUEST

RELEASE OF LICENSED PROGRAM 14 ¢
SILICENSING POLICY MODULE 15 DETERM ES HE

USAGE OF LICENSED PROGRAM ll! WAS PURSUANT TO
LICENSOR'S OTHER LICENSING POLICIES

DETERMINES WHETHER
lll WAS PURSUANT

CY MODULE 15 TRANSFERS RELEASE
T TO OPERATING SYSTEM 13

97OPERATING SYSTEM 13 TRANSFERS RELEASE LICENSE
REQUEST TO LICENSE MANAGEMENT FACILITY 1O

.®F|G.4B'2

Petitioner Apple Inc. — Exhibit 1024, p. 4339

LI
ES

Petitioner Apple Inc. - Exhibit 1024, p. 4340

EP 0 332 304 A2

FIG. 4B-2

CENSE MANAGEMENT FACILITY RETRIEVES .
RY 20 FROM LICENSE DATA BASE ASSOCIATED

LICENSED PROGRAM lll

 OF LI NSE USAGE ALLOCATION

%NTIFIED BY CONTENTS OF

S>:._$E:,m__.§<z<z$28:

Petitioner Apple Inc. — Exhibit 1024, p. 4340

Petitioner Apple Inc. - Exhibit 1024, p. 4341

Europaisches Patentamt

European Patent Office«-0
Office européen des brevets

® Publication number: 0 393 806

A2

(2) V EUROPEAN PATENT APPLICATION

@Appiication number. 9030o115.4

@ Date of filing: 05.01.90

@ lnt.Cl.5: H04L 9/32, H04L 9/08

EP0393806A2

@ Priority: 17.04.39 us 39555

Date of publication of application:
24.10.90 Bulletin 90/43

Designated Contracting States:
DE FR GB IT

® Applicant‘. TRW INC.
1900 Richmond Road

Cleveland Ohio 44124(us)

 ® Inventor: Goss. Kenneth C.
1470 island Court

Oceano California 93445-9464(US)

Flepresentative: Allden, Thomas Stanley et al
A.A. THORNTON 8: CO. Northumberland

House 303-306 High Holborn

London WC1V 7LE(GB)

® Cryptographic method and apparatus for public key exchange with authentication.

@ A technique for use in a public key exchange
cryptographic system, in which two user devices
establish a common session key by exchanging
information over an insecure communication chan-

nel. and in which each user can authenticate the

identity of the other, without the need for a key
distribution center. Each device has a previously

stored unique random number Xi. and a previously
stored composite quantity that is formed by trans-

forming)6 to Y: using a transformation of which the
inverse in computationally infeasible: then con-

catenating W with a publicly known device identifier,
and digitally signing the quantity. Before a commu-

nication session is established. two user devices

exchange their signed composite quantities, trans-
form them to unsigned form. and authenticate the

identity of the other user. Then each device gen-
erates the same session key by transforming the
received Y value with its own X value. For further

security. each device also generates another random

number X'i. which is transformed to a corresponding
number Y'i. These Y'i values are also exchanged,
and the session key is generated in each device.

using a transformation that involves the device's ownXi and Xi numbers and the Y: and Yi numbers
received from the other device.

Xerox Copy Centre

Petitioner Apple Inc. — Exhibit 1024, p. 4341

Petitioner Apple Inc. - Exhibit 1024, p. 4342

1 EP0393 806A2 2

BACKGROUND 9:: THE INVENTION

This invention relates generally to cryptograph-
ic systems and. more particularly. to cryptographic
systems in which an exchange of information on an
unsecured communications channel is used to es-

tablish a common cipher key for encryption and

decryption of subsequently transmitted messages.
Cryptographic systems are used in a variety of
applications requiring the secure transmission of

lnfonnation from one point to another in a commu-
nications network. Secure transmission may be
needed between computers. telephones. facsimile

machines, or other devices. The principal goal of
encryption is the same in each case: to render the
communicated data secure from unauthorized

eavesdropping.
By way of definition, "plaintext" is used to refer

to a message before processing by a cryptograph-
ic system. "Ciphertext“ is the form that the mes-
sage takes during transmission over a communica-
tions channel. "Encryption" or "encipherrnent“ is
the process of transformation from plaintext to
ciphertext. "Decryption" or “deciphennent" is the
process of transformation from ciphertext to plain-

text Both encryption and decryption are controlled
by a "cipher key" or keys. Without knowledge of
the encryption key. a message cannot be encryp-
ted. even with knowledge of the encrypting pro-
cess. Similarly. without knowledge of the decryp-
tion key. the message cannot be decrypted, even
with knowledge of the decrypting process.

More specifically, a cryptographic system can
be thought of as having an enciphering transforma-
tion E... which is defined by an enciphering al-

gorithm E that is used in all enciphering operations.
and a key K that distinguishes E.. from other oper-
ations using the algorithm E. The transformation E...
encrypts a plaintext message M into an encrypted
message. or ciphertext C. Similarly, the decryption
is performed by a transformation D.. defined by a
decryption algorithm D and a key K.

Dorothy ER Denning. in "Cryptography and

Data Security," Addison-Wesley Publishing Co.
1983, suggests that, for complete secrecy of the
transmitted message. two requirements have to be
met. The first is that it should be computationally
infeasible for anyone to systematically determine
the deciphering transformation D. from intercepted
ciphertext C, even if the corresponding plaintext M
is known. The second is that it should be computa-
tionally infeasible to systematically determine plain-
text M from intercepted ciphertext C. Another goal
of cryptography systems is that of data authentic-

ity. This requires that someone should not be able

to substitute false ciphertext C’ for ciphertext C
without detection.

10

20

25

30

35

40

45

60

By way of further background, cryptographic
systems may be classified as either "symmetric"
or “asymmetric.” In symmetric systems. the enci-

phering and deciphering keys are either the same

easily determined from each other. When two par-
ties wish to communicate through a symmetric

cryptographic system. they must first agree on a
key, and the key must be transferred from one

party to the other by some secure means. This
usually requires that keys be agreed upon in ad-
vance, perhaps to be changed on an agreed

timetable. and transmitted by courier or some other
secured method. Once the keys are known to the
parties, the exchange of messages can proceed
through the cryptographic system.

An asymmetric cryptosystem is one in which
the enciphering and deciphering keys differ in such
a way that at least one key is computationally
infeasible to determine from the other. Thus, one of

the transformations E.. or D. can be revealed with-

out endangering the other.
In 1976, the concept of a "public key" encryp-

tion system was introduced by W. Diffie and M.
Hellman, "New Directions in Cryptography.". IEEE
Trans. on lnfo. Theory, Vol. IT-22(6). pp. 644-54
(Nov. 1976). In a public key system. each user has
a public key and private key. and two users can
communicate knowing only each other's public
keys. This permits the establishment of a secured
communication channel between two users without

having to exchange "secret" keys before the com-
munication can begin. As pointed out in the pre-
viously cited text by Denning. a public key system
can be operated to provide secrecy by using a
private key for decryption; authenticity by using a
private key for encryption; or both, by using two
sets of encryptions and decryptions.

In general, asymmetric cryptographic systems
require more computational "energy" for encryp-
tion and decryption than symmetric systems.
Therefore. a common development has been a
hybrid system in which an asymmetric system.

such as a public key system. is first used to
establish a “session key“ for use between two

parties wishing to communicate. Then this common
session key is used in a conventional symmetric

cryptographic system to transmit messages from
one user to the other. Diffie and Hellman have

proposed such a public key system for the ex-
change of keys on an unsecured communications
channel. However. as will be described, the Diifie

Hellman public key system is subject to active

eavesdropping. That is to say, it provides no fool-
proof authentication of its messages. With knowl-

edge of the public keys. an eavesdropper can
decrypt received ciphertext. and then re-encrypt

the resulting plaintext for transmission to the in-
tended receiver. who has no way of knowing that

Petitioner Apple Inc. — Exhibit 1024, p. 4342

Petitioner Apple Inc. - Exhibit 1024, p. 4343

3 EP 0 393 806 A2 4

the message has been intercepted. The present
invention relates to a significant improvement in
techniques for public key exchange or public key
management.

One possible solution to the authentication

problem in public key management, is to establish

a key distribution center. which issues secret keys
to authorized users. The center provides the basis

for identity authentication of tansmitted messages.

In one typical technique. a user wishing to transmit
to another user sends his and the other user's

identities to the center; e.g. (A,B). The center
sends to A the ciphertext message EA(B,K,T,C).
where EA is the enciphering transformation derived

from A's private key. K is the session key, T is the
current date and time. and C = E3(A,K.T), where

E3 is the enciphering tanstormation derived from
B's private key. Then A sends to B the message 0.
Thus A can send to B the session key K encrypted

with B's private key: yet A has no knowledge of B's
private key. Moreover. B can verify that the mes-

sage truly came from A, and both parties have the
time code for further message identity authentica-
tion. The difficulty, of course, is that a central

facility must be established as a repository of pri-
vate keys, and it must be administered by some

entity that is trusted by all users. This difficulty is
almost impossible to overcome in some applica-

tions. and there is. therefore, a significant need for
an alternative approach to public key management.
The present invention fulfills this need.

Although the present invention has general ap-
plication in many areas of communication employ-

ing public key management and exchange. the
invention was first developed to satisfy a specific
need in communication by facsimile (FAX) ma-
chines. As is now well known. FAX machines trans-

mit and receive graphic images over ordinary tele-
phone networks, by first reducing the images to

digital codes, which are then transmitted, after ap-
propriate modulation, over the telephone lines. FAX
machines are being used at a rapidly increasing
rate for the transmission of business information.
much of which is of a confidential nature. over lines
that are unsecured. There is a substantial risk of

loss of the confidentiality of this imformation, either

by deliberate eavesdropping, or by accidental
tansmission to an incorrectly dialed telephone
number.

Ideally. what is needed is an
encrypting/decrypting box connectable between the
FAX machine and the telephone line, such that
secured communications can take place between

two similarly equipped users, with complete se-
crecy of data, and identity authentication between

the users. For most users, a prior exchange of
secret keys would be so inconvenient that they
could just as well exchange the message itself by

10

20

25

30

35

40

50

55

the same secret technique. A public key exchange
system is by far the most convenient solution but
each available variation of these systems has its

own problems, as discussed above. The Diffie-.
Hellman approach lacks the means to properly

authenticate a message. and although a key dis-
tribution center would solve this problem, as a

practical matter no such center exists for FAX
machine users, and none is likely to be established

in the near future. Accordingly, one aspect of the

present invention is a key management technique
that is directly applicable to data transmission us-

ing FAX machines.

SUMMARY E THE INVENTION

The present invention resides in a public key

cryptographic system that accomplishes both se-
crecy and identity authentication, without the need

for a key distribution center or other public facility.
and without the need for double encryption and
double decryption of messages. Basically. the in-

vention achieves these goals by using a digitally
signed composite quantity that is pre—stored in
each user communication device. In contrast with

the conventional Diffie-Hellman technique. in which

random numbers)6 are selected _for each commu-
nication session. the present invention requires that
a unique number X: be preselected and pre-stored
in each device that is manufactured. Also stored in

the device is the signed composite of a Y: value
and a publicly known device identifier. The W value
is obtained by a transformation from the X: value.

using a transformation that is practically irrevers-
ible.

Before secure communications are established,

two devices exchange these digitally signed quan-

tities, which may then be easily transfonned into
unsigned form. The resulting identifier information
is used to authenticate the other user's identity.

and the resulting W value from the other device is
used in a transformation with)6 to establish a

session key. Thus the session key is established

without fear of passive or active eavesdropping,
and each user is assured of the other's identity
before proceeding with the tansfer of a message
encrypted with the session key that has been es-
tablished.

One way of defining the invention is in terms of
a session key generator. comprising storage means

for storing a number of a first type selected prior to
placing the key generator in service. and a digitally
signed composite quantity containing both a unique

and publicly known identifier of the session key
generator and a number of a second type obtained
by a practically irreversible transformation of the

Petitioner Apple Inc. — Exhibit 1024, p. 4343

Petitioner Apple Inc. - Exhibit 1024, p. 4344

5 EP 0 393 806 A2 6

number of the first type. The session key generator
has a first input connected to receive the number

of the first type, and a second input connected to
receive an input quantity transmitted over an in-
secure communications channel from another ses-

sion key generator, the input quantity being digital-
ly signed and containing both a publicly known

identifier of the other session key generator and a
number of the second type generated by a prac-
tically irreversible transformation of a number of the

first type stored in the other session key generator.
The session key generator also has a first output

for transmitting the stored. digitally signed compos-
ite quantity over the insecure communications

channel to the other session key generator. a sec-
ond output. means for decoding the signed input
quantity received at the second input, to obtain the

identifier of the other session key generator and
the received number of the second type, and
means for generating a session key at the second
output, by performing a practically irreversible

transfonnation of the number of the second type
received through the second input, using the num-
ber of the first type received through the first input.

For further security of the session key, the
session key generator further includes a third input,
connected to receive another number of the first

type. generated randomly, and means for generat-
ing at the first output, for transmission with the
digitally signed composite quantity. a number of
the second type obtained by a practically irrevers-
ible transformation of the number of the first type
received through the third input. The session key
generator also includes means for receiving from
the second input another number of the second

type generated in and transmitted from the other

session key generator. The means for generating a
session key pertonns a practically irreversible

transformation involving both numbers of the first
type, received at the first and third inputs, and both
numbers of the second type received at the sec-
ond input, whereby a different session key may be

generated for each message transmission session.
More specifically, the number of the second

type stored in digitally signed form in the storage

means is obtained by the transfonnation Ya = a’‘'’’
mod p, where Xa is the number of the first type

stored in the storage means. and a and p are
publicly known transformation parameters. The

number of the second type received in the digitally
signed composite quantity from the other session

key generator is designated Yb, and the means for
generating the session key performs the trans-

formation K = Yb"" mod p.
When additional numbers X'a and X'b are also

generated prior to transmission, the means for gen-
erating the session key perfonns the transformation

K = (Y’b)"°mod p 9 (Yb)’‘ amod p,

10

20

25

35

40

45

50

55

where X'a is the number of the first type that is
randomly generated. Y'b is the additional number
of the second type received from the other session
key generator, and the e symbol means an exclu-
sive OR operation. _

In terms of a novel method, the invention com-

prises the steps of transmitting from each device a
digitally signed composite quantity to the other
device, the composite quantity including a publicly
known device identifier lDa and a number Ya de-

rived by a practically irreversible transformation of

a secret number Xa that it is unique to the device,

receiving a similarly structured digitally signed
composite quantity from the other device. and

transforming the received digitally signed compos-
ite quantity into an unsigned composite quantity
containing a device identifier lDb of the other de-
vice and a number Yb that was derived by trans-
formation from a secret number Xb that is unique
to the other device. Then the method performs the
steps of verifying the identity of the other device

from the device identifier lDb, and generating a
session key by perfomiing a practically irreversible
transfonnation involving the numbers Xa and Yb.

Ideally, the method also includes the steps of

generating another number X'a randomly prior to
generation of a session key, transforming the num-

ber X'a to a number Y'a using a practically ir-
reversible transfonnation. transmitting the number

Y'a to the other device, and receiving a number
Y'b from the other device. in this case. the step of
generating a session key includes a practically

irreversible transformation involving the numbers
Xa, x'a, Y'b and Y'b.

in particular, the transformations from X num-

bers to Y numbers is of the type Y = a" mod p,
where a and p are chosen to maximize irrever-

sibility of the transformations. and the step of gen-
erating a session key includes the transformation

K = (v'b)*-mod p e (Yb)" amod p.
where 6 denotes an exclusive OR operation.

It will be appreciated from this brief summary

that the present invention represents a significant
advance in the field of cryptography. In particular,
the invention provides for both secrecy and identity

authenticity when exchanging transmissions with
another user to establish a common session key.
Other aspects and advantages of the invention will

become apparent from the following more detailed
description, taken in conjunction with the accom-
panying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram showing a
public key cryptographic system of the prior art;

Petitioner Apple Inc. — Exhibit 1024, p. 4344

Petitioner Apple Inc. - Exhibit 1024, p. 4345

7 EP 0 393 806 A2 8

FIG. 2 is a block diagram similar to FIG. 1,

and showing how active eavesdropping may be
used to attack the system;

FIG. 3 is a block diagram of a public key
cryptographic system in accordance with the
present invention;

FIG. 4 is a block diagram of a secure fac-
simile system embodying the present invention;
and

FIG. 5 is a block diagram showing more
detail of the cryptographic processor of FIG. 4.

DESCRIPTION OF THE PREFERRED EMBODI-

As shown in the accompanying drawings for

purposes of illustration. the present invention is
concemed with a public key cryptographic system.

As discussed at length in the preceding back-
ground section of this specification. public key sys-
tems have, prior to this invention. been unable to

provide both secrecy and identity authentication of
a message without either a costly double trans-
formation at each end of the communications chan-

nel, or the use of key distribution center.
U.S. Patent No. 4,200,770 to Hellman et al.

discloses a cryptographic apparatus and method in
which two parties can converse by first both gen-
erating the same session key as a result of an

exchange of messages over an insecure channel.
Since the technique disclosed in the Hellman et al.

'770 patent attempts to provide both secrecy and

authentication in a public key cryptographic sys-
tem. the principles of their technique will be sum-
marized here. This should provide a better basis

for an understanding of the present invention.
In accordance with the Hellman et al. tech-

nique, two numbers a and p are selected for use
by all users of the system, and may be made

public. For increased security, p is a large prime
number, and a has a predefined mathematical rela-
tionship to p, but these restrictions are not impor-
tant for purposes of this explanation. Before start-
ing communication. two users. A and B. indicated
in FIG. 1 at 10 and 12, perform an exchange of

messages that results In their both computing the
same cipher key, or session key K, to be used in
transmitting data back and forth between them. The
first step in establishing the session key is that

each user generates a secret number in a random
number generator 14, 16. The numbers are des-
ignated Xa, Xb, respectively, and are selected from
a set of positive integers up to p-1. Each user also
has a session key generator 18, 20, one function of
which is to generate other numbers Y from the
numbers X, a and p. using the transformations:

Ya = u"‘ mod p.

10

15

20

30

35

40

45

50

55

Yb = a"" mod p. l
The values Ya. Yb are then processed through a
conventional transmitter/receiver 22, 24. and ex-

changed over an insecure communications channel
26.

The term “mod p‘ means modulo p, or using
modulo p arithmetic. Transforming an expression to
modulo p can be made by dividing the expression
by p and retaining only the remainder. For exam-
ple, 34 mod 17 = 0,35 mod 17 = 1. and so forth.

Similarly, the expression for Ya may be computed

by first computing the exponential expression an’.
then dividing the result by p and retaining only the
remainder.

If a and p are appropriately chosen, it is com-
putationally infeasible to compute Xa from Ya. That
is to say, the cost of performing such a task, in
terms of memory or computing time needed, is
large enough to deter eavesdroppers. In any event,
new X and Y values can be chosen for each

message, which is short enough to preclude the

possibility of any X value being computed from a
corresponding Y value.

After the exchange of the values Ya. Yb. each
user computes a session key K in its session key
generator 18. 20. by raising the other user's Y
value to the power represented by the user's own
X value. all modulo p. For user A, the computation
is:

K = Yb” mod p.
Substituting for Yb.
K = (a’‘‘’)’‘‘‘ mod p = a"“"" mod p.
For user B. the computation is:

K = Ya"" mod p.
Substituting for Ya.

K = (a"‘)"° mod p = a"""" mod p.
The two users A, B now have the same session

key K, which is input to a conventional crypto-

graphic device 28, 30. A transmitting cryptographic
device, e.g. 28, transforms a plaintext message M
into ciphertext C for transmission on the commu-
nications channel 26, and a receiving cryptographic
device 30 makes the inverse transformation back to

the plaintext M.
The Hellman et al. 770 patent points out that

the generation of a session key is secure from

eavesdropping, because the information exchanged
on the insecure channel includes only the Y values,

from which the corresponding X values cannot be
easily computed. However, this form of key ex-

change system still has two significant problems.
One is that the system is vulnerable to attack from
active eavesdropping, rather than the passive

eavesdropping described in the patent. The other
is that identity authentication can be provided only
by means of a public key directory.

Active eavesdropping takes place when an un-
authorized person places a substitute message on

Petitioner Apple Inc. — Exhibit 1024, p. 4345

Petitioner Apple Inc. - Exhibit 1024, p. 4346

9 EP0393806A2 10

the communications channel. FIG. 2 depicts an

example of active eavesdropping using the same
components as FIG. 1. The active eavesdropper E
has broken the continuity of the unsecured line 26,

and is receiving messages from A and relaying
them to B. while sending appropriate responses to
A as well. In effect. E is pretending to be B. with
device Eb. and is also pretending to be A. with

device Ea. E has two cryptographic devices 34a,
34b. two session key generators 36a. 36b. and two
number generators 38a. 38b. When device Eb re-

ceives Ya from A, it generates Xb' from number
generator 38b. computes Yb’ from Xb' and trans-
mits Yb’ to A. Device Eb and user A compute the
same session key and can begin communication of
data. Similarly. device Ea and user B exchange Y

numbers and both generate a session key, ifferent
from the one used by A and Eb. Eavesdropper E is
able to decrypt the ciphertext C into plaintext M.

then encipher again for transmission to B. A and B

are unaware that they are not communicating di-
rectly with each other.

In accordance with the present invention. each

user is provided with proof of identity of the party
with whom he is conversing. and both active and
passive eavesdropping are rendered practically im-
possible. FIG. 3 shows the key management ap-
proach of the present invention. using the same
reference numerals as FIGS. 1 and 2. except that
the session key generators are referred to in FIG. 3

as 18' and 20'. to indicate that the key generation
function is different in the present invention. The

user devices also include a number storage area
40, 42. Storage area 40 contains a preselected
number Xa. stored at the time of manufacture of
the A device, and another number referred to as

"signed Ya.“ also stored at the time of manufac-

ture. Xa was chosen at random. and is unique to
the device. Ya was computed from Xa using the
transfonnation

Ya = ax‘ mod p.
Then the Ya value was concatenated with a num-

ber lDa uniquely identifying the user A device,
such as a manufacturer's serial number. and then

encoded in such a way that it was digitally
"signed" by the manufacturer for purposes of au-

thenticity. The techniques for digitally signing data
are known in the cryptography art, and some will
be discussed below. For the present. one need

only consider that the number designated "signed
(Ya.lDa)" contains the value Ya and another value

lDa uniquely identifying the A device, all coded as

a "signature" confirming that the number originated
from the manufacturer and from no-one else. User

B's device 12 has stored in its storage area 42 the
values Xb and signed (Yb,lDb).

Users A and B exchange the signed (Ya.lDa)
and signed (Yb,lDb) values. and each session key

10

15

20

25

30

35

55

generator 18, 20 then "unsigns" the received val-
ues and verifies that it is conversing with the cor-
rect user device. The user identifiers lDa and IDb

are known publicly. so user device A verifies that

the number lDb is contained in the signed (Yb.lDb)
number that was received. Likewise. user device B

verifies that the value signed (Ya.lDa) contains the
known value lDa. By performing the process of

"unsigning“ the received messages. the user de-
vices also confirm that the signed data originated
from the manufacturer and not from some other

entity.
Since the Xa. Xb values are secret values. and

it is infeasible to obtain them from the transmitted

signed (Ya.lDa) and signed (Yb,lDb) values. the
users may both compute identical session keys in
a manner similar to that disclosed in the Hellman et

al. '770 patent. If an eavesdropper E were to at-
tempt to substitute fake messages for the ex-

changed ones. he would be unable to satisfy the
authentication requirements. E could intercept a
signed (Ya.lDa) transmission. could unsign the
message and obtain the values Ya and lDa. E
could similarly obtain the values Yb and lDb. How-
ever. in order for E and A to use the same session

key, E would have to generate a value Xe. compute
Ye and concatenate it with IDb. which is known.

and then digitally "sign" the composite number in
the same manner as the manufacturer. As will be

explained. digital signing involves a transformation
that is very easy to effect in one direction, the
unsigning direction, but is computationally infeasi-

ble in the other. the signing direction. Therefore,
eavesdropper E would be unable to establish a
common session key with either A or B because he

would be unable to generate messages that would
satisfy the authentication requirements.

As described thus far. the technique of the
invention establishes a session key that is derived
from X and Y values stored in the devices at the

time of manufacture. Ideally. a new session key
should be established for each exchange of mes-
sage traffic. An additional unsecured exchange is
needed to accomplish this.

The number generator 14 in the A device 10

generates a random number X'a and the number

generator 16 in, the B device 12 generates a ran-
dom number X b. These are supplied to the ses-
sion key generators 18, 20. respectively. which

generate values Y'a and Y'b in accordance with the
transformations:

Y'a = a",a mod p.
Y'b = a" b mod p.
These values are also exchanged between the A
and B devices. at the same time that the values of

signed (Ya.lDa) and signed (Yb,lDb) are ex-

changed. After the authenticity of the message has
been confirmed. as described above. the session

Petitioner Apple Inc. — Exhibit 1024, p. 4346

Petitioner Apple Inc. - Exhibit 1024, p. 4347

11 EP0393 806A2 12

key generators perform the following transfon'na-
tions to derive a session key. At the A device, the

session key is computed as

Ka = (Y'b)"“mod p e (Yb)" amod p.
and at the B device. the session key is computed
as .

Kb = (Y'a)""mod p 9: (Ya)’‘ bmod p,
where "e" means an exclusive OR operation.

Thus the session key is computed at each

device using one fixed number, i.e. fixed at manu-

facturing time. and one variable number. i.e. cho-
sen at session time. The numbers are exclusive

ORed together on a bit-by-bit basis. It can be
shown that Ka = Kb by substituting for the Y
values. Thus: ,

Ka = (.25 b)"“mod p $,(axb)x amod p
- (a"°)’5 bmod p e (ax a)""mod p

(Ya)" bmod p e (Y'a)?"'mod p
= (Y'a)’°’mod p 9 (Ya)’‘ bmod p
= Kb.

This common session key satisfies secrecy

and authentication requirements, and does not re-
quire double encryption-decryption or the use of a
public key directory or key distribution center. The
only requirement is that of a manufacturer who will
undertake to supply devices that have unique de
vice lD's and selected X values encoded into them.

For a large corporation or other organization, this

obligation could be assumed by the organization
itself rather than the manufacturer. For example, a
corporation might purchase a large number of com-
munications devices and complete the manufactur-

ing process by installing unique lD's, X values, and
signed Y values in the units before distributing
them to the users. This would relieve the manufac-

turer from the obligation.
The process described above uses parameters

that must meet certain numerical restrictions. The

length restrictions are to ensure sufficient security,
and the other requirements are to ensure that each

transfonnation using modulo arithmetic produces a
unique transformed counterpart. First, the modulus
p must be a strong prime number 512 bits long. A
strong prime number is a prime number p that
meets the additional requirement that (p-1)/2 has at

least one large prime factor or is preferably itself a
prime number. The base number must be a 512-bit
random number that satisfies the relationships:

a“’”’2mod p = p-1, and
1 < a < p-1.

Finally, the values X and X’ are chosen as 512-bit
random numbers such that

1 < x. x’ < p-1.
As indicated above, the process of‘authentica-

tion in the invention depends on the ability of the
manufacturer, or the owner of multiple devices, to

supply a signed Y value with each device that is
distributed. A digital signature is a property of a

10

15

20

25

30

35

45

50

55

message that is private to its originator. Basically,

the signing process is effected by a transformation
that is extremely diificult to perform. but the in-
verse transfonnation, the "unsigning.“ can be per-
formed easily by every user. The present invention

is not limited to the use of a particular digital

signature technique.
One approach is to use an RSA public key

signature technique. The RSA technique takes its
name from the initial letters of its originators, Riv-
est, Shamir and Adleman, and is one of a class of

encryption schemes known as exponentiation ci-
phers. An exponentiation cipher makes the trans-
formation C = P“ mod n, where e and n constitute

the enciphering key. The inverse transformation is

accomplished by P = C“ mod n. \Mth appropriate
selection of n. d and e, the values of n and d can

be made public without giving away the exponent e
used in the encryption transformation. Therefore, a

digital signature can be applied to data by perform-
ing the exponentiation transformation with a secret
exponent e, and providing a public decryption ex-
ponent d, which, of course, will be effective to

decrpyt only properly "signed" messages.
In the preferred embodiment of the present

invention, another approach is used for digital sig-

nature, namely a modular square-root transforma-
tion. in the expression x = m2 mod n, the number
m is said to be the square root of x mod n, or the
modular square root of x. if n is appropriately
selected, the transformation is very difficult to per-
form in one direction. That is to say. it is very

difficult to compute m from x, although easy to
compute x from m. if the modulus n is selected to
be the product of two large prime numbers, the
inverse or square-root transformation can only be
made if the factors of the modulus are known.

Therefore, the modulus n is chosen as the product

of two prime numbers, and the product is 1,024
bits long. Further, the factors must be different in

length by a few bits. In the devices using the
present invention, the value "signed (Ya.lDa)" is
computed by first assembling or concatenating the
codes to be signed. These are:

1. A numerical code lDa uniquely identifying

the A device. in the present embodiment of the

invention, this is a ten-digit (decimal) number en-
coded in ASCII format, but it could be in any
desired fomiat.

2. A number of ASCII numerical codes in-

dicating a version number of the device. This may
be used for device testing or analyzing problems
relating to device incompatability.

3. The value Ya computed from the chosen
value of Xa, encoded in binary form.

4. A random value added to the |east-signifi-
cant end of the composite message, and used to
ensure that the composite message is a perfect

Petitioner Apple Inc. — Exhibit 1024, p. 4347

Petitioner Apple Inc. - Exhibit 1024, p. 4348

13 EPO 393 806A2 14

modular square.

The last element of the message is needed
because of inherent properties of the modular
squaring process. If one were to list all possible

values of a modular square x. from 1 to n-1. and all
corresponding values of the modular square root

m. some of the values of x would have multiple
possible values of m. but others of the values of x

would have no corresponding values of m. The
value added to the end of the message ensures
that the number for which a modular square root is

to be computed, is one that actually has a modular
square root. A simple example should help make
this clear.

Suppose the modulus n is 7849. It can be
verified by calculator that a value x of 98 has four

possible values of m in the range 1 to n-1: 7424,
1412. 6437 and 425. such that m‘-’ mod 7849 = 98.

However, the x value 99 has no possible modular

square root values m. If the composite message to
be signed had a numerical value of 99. it would be
necessary to add to it a value such as 1. making a
new x value of 100. which has four possible square

root values in the range 1 to n-1. namely 1326.
7839. 10 and 6523. In most instances. it does not

matter which of these is picked by the modular

square root process employed. since the squaring
or "unsigning" process will always yield the com-
posite message value 100 again. However, there
are a few values of m that should be avoided for

maximum security. If the x value is a perfect
square in ordinary arithmetic (such as the number
100 in the example), two values of m that should

be avoided are the square root of x by ordinary
arithmetic (the number 10 in the example), and the
number that is the difference between the modulus

n and the ordinary-arithmetic square root of x (Le.

7839 in the example). If e number fitting this defini-
tion is used as a signed message, the signature is
subject to being "forged" without knowledge of the
factors of n. Therefore. such numbers are avoided

in assigning signatures, and each device can be
easily designed to abort an exchange when the
signed message takes the form of one of these
avoided numbers.

When the modular square root process is used

for digitally signing the composite data stored in
each device, the "unsigning" process upon receipt

of a signed composite message is simply the
squaring of the message. modulo n. The value n is
not made public, although it could be determined
by close examination of one of the devices. Even

with knowledge of the modulus n, however, the
computation of the modular square root is com-

putationally infeasible without knowledge of the fac-
torization of n.

With a knowledge of the factorization of the
modulus n, the computation of the modular square

10

20

25

30

35

45

50

55

root becomes a feasible. although laborious task.
which may be perfonned by any known computa-
tional method. It will be recalled that this process is

perfonned prior to distribution of the devices em-

bodying the invention, so computation time is not a
critical factor.

It will be understood that the cryptographic
technique of the invention may be implemented in

any form that is convenient for a particular applica-
tion. Modular arithmetic is now well understood by

those working in the field, and may be imple-
mented in hardware form in the manner described

in the '770 Hellman et al. patent. More conve-
niently, off-the-shelf modular arithmetic devices are
available for connection to conventional micropro-

cessor hardware.‘ For example. part number
CY1024 manufactured by CYLINK. of Sunnyvale.
California 94087, perfonns modular addition. mul-
tiplication and exponentiation.

For application to facsimile communications.
the technique of the invention may be made com-
pletely "transparent" to the user. FIG. 4 shows the
architecture of a device for connection between a

conventional FAX machine 50 and a telephone line
52. The device includes a first conventional modem

54 (modulator/demodulator) for connection to the
FAX machine 50 and a second modem 56 for

connection to the telephone line 52. The modems

54, 56 function to demodulate all messages enter-
ing the device from either the FAX machine or the
telephone line. and to modulate messages for
transmission to the FAX machine or onto the tele-

phone line. The device further includes a commu-

nications processor 58 connected between the two

modems 54. 56, and a cryptographic processor 60
connected to the communications processor 58.

The communications processor 58 manages mes-
sage traffic flow to and from the modems 54, 56
and to and from the cryptographic processor 60,
and ensures that the necessary communications
protocols are complied with. In one preferred em-
bodiment of the invention, the communications pro-
cessor is a microprocessor specified by part num-
ber MC68000, manufactured by Motorola Corpora-
tion.

As shown in FIG. 5, the cryptographic proces-
sor 60 includes a conventional microprocessor 62
having a data bus 64 and a data bus 66. to which
various other modules are connected. The micro-

processor 62 may be, for example, a National
Semiconductor Company device specified by part
number NSC800. The connected modules include

a random access memory (RAM) 68. a read-only

memory (ROM) 70. which serves as a storage area
for the X value and the signed Y value. an

integrated-circuit chip 72 for implementation of the
Data Encryption Standard (DES), a modular
arithmetic device 74 such as the CYLINK CY1024.

Petitioner Apple Inc. — Exhibit 1024, p. 4348

Petitioner Apple Inc. - Exhibit 1024, p. 4349

15 EP0393 806A2 16

and an interface module 76 in the form of a dual-

port RAM. for connection to the communications
processor 58.

For transparent operation of the device shown

in FIGS. 4 and 5. a user supplies not only the
telephone number of a destination FAX machine.
but also the ID of the intended destination FAX

encoding/decoding device. When the digitally
signed Y values are exchanged, the sending user
device automatically “unsigns" the transmission by

performing a modular squaring function; then com-
pares the intended destination ID with the user ID
returned with the Y value. and aborts the session it

there is not a match. The key management steps

previously described proceed automatically under
control of the cryptographic processor 60. and
when a session key has been derived, this is

automatically applied in a conventional crypto-
graphic process, such as the DES. to encrypt and
decrypt a facsimile transmission.

It will be appreciated from the foregoing that
the present invention represents a significant ad-
vance in cryptographic systems. In particular. the

invention provides a technique for establishing a
common session key for two users by means of an
exchange of messages over an insecure commu-
nications channel. What distinguishes the invention
from prior approaches to public key exchange sys-
tems is that the technique of the invention provides
for identity authentication of the users without the

need for a key distribution center or a public key
register. Further, the technique is resistant to both
passive and active eavesdropping. It will also be
appreciated that, although an embodiment of the
invention has been described in detail for purposes
of illustration. various modifications may be made

without departing from the spirit and scope of the
invention. Accordingly, the invention is not to be
limited except as by the appended claims.

Claims

1. A secure key generator. comprising:
storage means for storing a number of a first type
selected prior to placing the key generator in ser-

vice, and a digitally signed composite quantity con-
taining both a unique and publicly known identifier
of the key generator and a number of a second
type obtained by a practically irreversible trans-
formation of the number of the first type;
a first input connected to receive the number of the
first type;

a second input connected to receive an input quan-
tity transmitted over an insecure communications
channel from another key generator, the input

quantity being digitally signed and containing both
a publicly known identifier of the other key gener-

20

25

30

35

45

50

55

ator and a number of the second type generated
by a practically irreversible transformation of a
number of the first type stored in the other key

generator;

a first output for transmitting the stored. digitally
signed composite quantity over the insecure com-
munications channel to the other key generator;
a second output:

means for decoding the signed input quantity re

ceived at the second input. to obtain the identifier
of the other key generator and the received num-
ber of the second type; and
means for generating a session key at the second
output. by performing a practically irreversible
transformation of the number of the second type
received through the second input. using the num-
ber of the first type received through the first input.

2. A secure key generator as defined in claim
1. wherein the key generator further comprises:
a third input, connected to receive another number
of the first type, generated randomly;
means for generating at the first output. for trans-

mission with the digitally signed composite quan-
tity. a number of the second type obtained by a
practically irreversible transformation of the number
of the first type received through the third input
and

means for receiving from the second input another
number of the second type generated in and trans-
mitted from the other key generator;
and wherein the means for generating a session
key performs a practically irreversible transfonna-
tion involving both numbers of the first type. re-
ceived at the first and third inputs, and both num-

bers of the second type received at the second
input, whereby a different session key may be
generated for each message transmission session.

3. A secure key generator as defined in claim
1. wherein:

the number of the second type stored in digitally
signed form in the storage means is obtained by
the transformation Ya = a"‘ mod p, where Xa is
the number of the first type stored in the storage
means. and a and p are publicly known transfonna-
tion parameters;
the number of the second type received in the

digitally signed composite quantity from the other
key generator is designated Yb: and

the means for generating the session key performs
the transformation K = Yb“ mod p.

4. A secure key generator as defined in claim
2. wherein:

the number of the second type stored in digitally
signed fonn in the storage means is obtained by

the transfonnation Ya = ax“ mod p, where Xa is
the number of the first type stored in the storage
means. and a and p are publicly known transfonna-
tion parameters:

Petitioner Apple Inc. — Exhibit 1024, p. 4349

Petitioner Apple Inc. - Exhibit 1024, p. 4350

17 EP0393 806A2 18

the number of the second type received in the

digitally signed composite quantity from the other
key generator is designated Yb; and
the means for generating the session key performs
the transformation .

K = (Y'b)"‘mod p 9 (Yb)" amod p.
where X'a is the number of the first type that is
randomly generated. Y'b is the additional number
of the second type received from the other key

generator, and the e symbol denotes an exclusive
OR operation. '

5. A method of generating a secure session
key between two user devices connected by an
insecure communications channel, comprising the

following steps performed at both devices:
transmitting a digitally signed composite quantity to
the other device, the composite quantity including
a publicly known device identifier lDa and a num-
ber Ya derived by a practically irreversible trans-
formation of a secret number Xa that it is unique to
the device:

receiving a similarly structured digitally signed
composite quantity from the other device;

transforming the received digitally signed compos-
ite quantity into an unsigned composite quantity

containing a device identifier lDb of the other de-
vice and a number Yb that was derived by trans-
formation from a secret number Xb that is unique
to the other device;

verifying the identity of the other device from the
device identifier lDb: and

generating a session key by performing a prac-
tically irreversible transformation involving the num-
bers Xa and Yb.

6. A method as defined in claim 5. and further

including the steps of:

generating another number X'a randomly prior to
generation of a session key;

transforming the number X'a to a number Y'a using
a practically irreversible transformation;

transmitting the number Y'a to the other device;
and

receiving a number Y'b from the other device:
wherein the step of generating a session key in-
cludes a practically irreversible transformation in-

volving the numbers Xa. x'a, Yb and Yb
7. A method as defined in claim 6. wherein:

the transformations from X numbers to Y numbers

is of the type Y = ax mod p, where at and p are
chosen to maximize irreversibility of the transfor-
mations; and

the step of generating a session key includes the
transfonnation ,

K = (Y'b)""mod p e (Yb)" amod p,
where as denotes an exclusive OR operation.

8. A method of authentication in a public key
cryptographic system, the method comprising the
steps of:

10

20

25

30

35

40

45

50

10

selecting a unique random number Xi for each
cryptographic device to be distributed;

transfonning the number)0 to a new number Y:
using a practically irreversible transformation;
forming a composite quantity by combining the
number Y: with a publicly known device identifier
lDi;

digitally signing the composite quantity containing
W and |Di;

storing the signed composite quantity and the num-
ber Xi permanently in each device;
exchanging, between two devices. a and b. desir-
ing to establish secured communication. the signed
composite quantities stored in each;

authenticating. in each of the two devices, the
identity of the other device; and
generating, in each of the two devices, a session
key to be used for secured communication.

9. A method as defined in claim 8, wherein the

step of authenticating includes:
transforming the digitally signed composite quantity
received from the other device into unsigned form:
and

comparing the value of lDb in the unsigned quan-
tity with the known lDb of the other device.

10. A method as defined in claim 9, wherein:

the step of generating the session key includes
performing a transformation that involves a value
Yb received from the other device and the value Xa
of this device.

11. A method as defined in claim 10. wherein:

the step of digitally signing includes computing a
modular square root of the composite quantity; and
the step of transforming the digitally signed com-

posite quantity to unsigned form includes comput-
ing a modular square of the signed quantity.

12. A method as defined in claim 11. wherein:

the steps of computing a modular square root and

computing a modular square both employ a
modulus that is the product of two prime numbers.

13. A method as defined in claim 8, and further

comprising the steps of:

transforming, in each of the two devices, the
digitally signed composite quantity received from
the other device into unsigned form; and
generating, in each of the two devices, a, b, a

random number x'a, X'b;

transforming the numbers x'a, X'b into numbers
Y'a, Y'b by a transformation that is practically

irreversible: and I
exchanging the numbers Y a, Y'b between the two
devices;

and wherein the step of generating the session key
includes performing a practically irreversible trans-

formation involving the numbers Xa, x'a, Yb, and
Y'b in device a. and the numbers Xb, X'b, Ya, and
Ya in device b.

14. A method as defined in claim 13, wherein:

Petitioner Apple Inc. — Exhibit 1024, p. 4350

Petitioner Apple Inc. - Exhibit 1024, p. 4351

19 EP 0 393 806 A2 20

the transformations from X numbers to Y numbers

is of the type Y = oz" mod p, where a and p are
chosen to maximize irreversibility of the transfor-
mations; and

the step of generating a session key includes the
transformations ,

K = (Y'b)"°mod p e (Yb)" amod p,
for device a, and ,

K = (Y'a)"”mod p e (Ya)" bmod p,
for device b, where e denotes an exclusive OR

operation.
15. A method as defined in claim 13. wherein:

the step of digitally signing includes computing a
modular square root of the composite quantity; and
the step of transforming the digitally signed com-
posite quantity to unsigned tonn includes comput-
ing a modular square of the signed quantity.

16. A method as defined in claim 15. wherein:

the steps of computing a modular square root and
computing a modular square both employ a
modulus that is the product of two prime numbers.

15

20

25

30

35

40

45

50

55

11

Petitioner Apple Inc. — Exhibit 1024, p. 4351

Petitioner Apple Inc. - Exhibit 1024, p. 4352

Petitioner Apple Inc. - Exhibit 1024, p. 4353

Petitioner Apple Inc. - Exhibit 1024, p. 4354

Petitioner Apple Inc. - Exhibit 1024, p. 4355

Petitioner Apple Inc. - Exhibit 1024, p. 4356

Petitioner Apple Inc. - Exhibit 1024, p. 4357

Petitioner Apple Inc. - Exhibit 1024, p. 4358

Petitioner Apple Inc. - Exhibit 1024, p. 4359

Petitioner Apple Inc. - Exhibit 1024, p. 4360

Petitioner Apple Inc. - Exhibit 1024, p. 4361

Petitioner Apple Inc. - Exhibit 1024, p. 4362

Petitioner Apple Inc. - Exhibit 1024, p. 4363

Petitioner Apple Inc. - Exhibit 1024, p. 4364

Petitioner Apple Inc. - Exhibit 1024, p. 4365

Petitioner Apple Inc. - Exhibit 1024, p. 4366

Petitioner Apple Inc. - Exhibit 1024, p. 4367

Petitioner Apple Inc. - Exhibit 1024, p. 4368

Petitioner Apple Inc. - Exhibit 1024, p. 4369

Petitioner Apple Inc. - Exhibit 1024, p. 4370

Petitioner Apple Inc. - Exhibit 1024, p. 4371

Petitioner Apple Inc. - Exhibit 1024, p. 4372

Petitioner Apple Inc. - Exhibit 1024, p. 4373

Petitioner Apple Inc. - Exhibit 1024, p. 4374

Petitioner Apple Inc. - Exhibit 1024, p. 4375

Petitioner Apple Inc. - Exhibit 1024, p. 4376

Petitioner Apple Inc. - Exhibit 1024, p. 4377

Petitioner Apple Inc. - Exhibit 1024, p. 4378

Petitioner Apple Inc. - Exhibit 1024, p. 4379

Petitioner Apple Inc. - Exhibit 1024, p. 4380

Petitioner Apple Inc. - Exhibit 1024, p. 4381

Petitioner Apple Inc. - Exhibit 1024, p. 4382

Petitioner Apple Inc. - Exhibit 1024, p. 4383

Petitioner Apple Inc. - Exhibit 1024, p. 4384

Petitioner Apple Inc. - Exhibit 1024, p. 4385

Petitioner Apple Inc. - Exhibit 1024, p. 4386

Petitioner Apple Inc. - Exhibit 1024, p. 4387

Petitioner Apple Inc. - Exhibit 1024, p. 4388

Petitioner Apple Inc. - Exhibit 1024, p. 4389

Petitioner Apple Inc. - Exhibit 1024, p. 4390

Petitioner Apple Inc. - Exhibit 1024, p. 4391

Petitioner Apple Inc. - Exhibit 1024, p. 4392

Petitioner Apple Inc. - Exhibit 1024, p. 4393

Petitioner Apple Inc. - Exhibit 1024, p. 4394

Petitioner Apple Inc. - Exhibit 1024, p. 4395

Petitioner Apple Inc. - Exhibit 1024, p. 4396

Petitioner Apple Inc. - Exhibit 1024, p. 4397

Petitioner Apple Inc. - Exhibit 1024, p. 4398

Petitioner Apple Inc. - Exhibit 1024, p. 4399

Petitioner Apple Inc. - Exhibit 1024, p. 4400

Petitioner Apple Inc. - Exhibit 1024, p. 4401

Petitioner Apple Inc. - Exhibit 1024, p. 4402

Petitioner Apple Inc. - Exhibit 1024, p. 4403

Petitioner Apple Inc. - Exhibit 1024, p. 4404

Petitioner Apple Inc. - Exhibit 1024, p. 4405

Petitioner Apple Inc. - Exhibit 1024, p. 4406

Petitioner Apple Inc. - Exhibit 1024, p. 4407

Petitioner Apple Inc. - Exhibit 1024, p. 4408

Petitioner Apple Inc. - Exhibit 1024, p. 4409

Petitioner Apple Inc. - Exhibit 1024, p. 4410

Petitioner Apple Inc. - Exhibit 1024, p. 4411

Petitioner Apple Inc. - Exhibit 1024, p. 4412

Petitioner Apple Inc. - Exhibit 1024, p. 4413

Petitioner Apple Inc. - Exhibit 1024, p. 4414

Petitioner Apple Inc. - Exhibit 1024, p. 4415

Petitioner Apple Inc. - Exhibit 1024, p. 4416

Petitioner Apple Inc. - Exhibit 1024, p. 4417

Petitioner Apple Inc. - Exhibit 1024, p. 4418

Petitioner Apple Inc. - Exhibit 1024, p. 4419

Petitioner Apple Inc. - Exhibit 1024, p. 4420

Petitioner Apple Inc. - Exhibit 1024, p. 4421

Petitioner Apple Inc. - Exhibit 1024, p. 4422

Petitioner Apple Inc. - Exhibit 1024, p. 4423

Petitioner Apple Inc. - Exhibit 1024, p. 4424

Petitioner Apple Inc. - Exhibit 1024, p. 4425

Petitioner Apple Inc. - Exhibit 1024, p. 4426

Petitioner Apple Inc. - Exhibit 1024, p. 4427

Petitioner Apple Inc. - Exhibit 1024, p. 4428

Petitioner Apple Inc. - Exhibit 1024, p. 4429

Petitioner Apple Inc. - Exhibit 1024, p. 4430

Petitioner Apple Inc. - Exhibit 1024, p. 4431

Petitioner Apple Inc. - Exhibit 1024, p. 4432

Petitioner Apple Inc. - Exhibit 1024, p. 4433

Petitioner Apple Inc. - Exhibit 1024, p. 4434

Petitioner Apple Inc. - Exhibit 1024, p. 4435

Petitioner Apple Inc. - Exhibit 1024, p. 4436

Petitioner Apple Inc. - Exhibit 1024, p. 4437

Petitioner Apple Inc. - Exhibit 1024, p. 4438

Petitioner Apple Inc. - Exhibit 1024, p. 4439

Petitioner Apple Inc. - Exhibit 1024, p. 4440

Petitioner Apple Inc. - Exhibit 1024, p. 4441

Petitioner Apple Inc. - Exhibit 1024, p. 4442

Petitioner Apple Inc. - Exhibit 1024, p. 4443

Petitioner Apple Inc. - Exhibit 1024, p. 4444

Petitioner Apple Inc. - Exhibit 1024, p. 4445

Petitioner Apple Inc. - Exhibit 1024, p. 4446

Petitioner Apple Inc. - Exhibit 1024, p. 4447

Petitioner Apple Inc. - Exhibit 1024, p. 4448

Petitioner Apple Inc. - Exhibit 1024, p. 4449

Petitioner Apple Inc. - Exhibit 1024, p. 4450

Petitioner Apple Inc. - Exhibit 1024, p. 4451

Petitioner Apple Inc. - Exhibit 1024, p. 4452

Petitioner Apple Inc. - Exhibit 1024, p. 4453

Petitioner Apple Inc. - Exhibit 1024, p. 4454

Petitioner Apple Inc. - Exhibit 1024, p. 4455

Petitioner Apple Inc. - Exhibit 1024, p. 4456

Petitioner Apple Inc. - Exhibit 1024, p. 4457

Petitioner Apple Inc. - Exhibit 1024, p. 4458

Petitioner Apple Inc. - Exhibit 1024, p. 4459

Petitioner Apple Inc. - Exhibit 1024, p. 4460

Petitioner Apple Inc. - Exhibit 1024, p. 4461

Petitioner Apple Inc. - Exhibit 1024, p. 4462

Petitioner Apple Inc. - Exhibit 1024, p. 4463

Petitioner Apple Inc. - Exhibit 1024, p. 4464

Petitioner Apple Inc. - Exhibit 1024, p. 4465

Petitioner Apple Inc. - Exhibit 1024, p. 4466

Petitioner Apple Inc. - Exhibit 1024, p. 4467

Petitioner Apple Inc. - Exhibit 1024, p. 4468

Petitioner Apple Inc. - Exhibit 1024, p. 4469

Petitioner Apple Inc. - Exhibit 1024, p. 4470

Petitioner Apple Inc. - Exhibit 1024, p. 4471

Petitioner Apple Inc. - Exhibit 1024, p. 4472

Petitioner Apple Inc. - Exhibit 1024, p. 4473

Petitioner Apple Inc. - Exhibit 1024, p. 4474

Petitioner Apple Inc. - Exhibit 1024, p. 4475

Petitioner Apple Inc. - Exhibit 1024, p. 4476

Petitioner Apple Inc. - Exhibit 1024, p. 4477

Petitioner Apple Inc. - Exhibit 1024, p. 4478

Petitioner Apple Inc. - Exhibit 1024, p. 4479

Petitioner Apple Inc. - Exhibit 1024, p. 4480

Petitioner Apple Inc. - Exhibit 1024, p. 4481

Petitioner Apple Inc. - Exhibit 1024, p. 4482

Petitioner Apple Inc. - Exhibit 1024, p. 4483

Petitioner Apple Inc. - Exhibit 1024, p. 4484

Petitioner Apple Inc. - Exhibit 1024, p. 4485

Petitioner Apple Inc. - Exhibit 1024, p. 4486

Petitioner Apple Inc. - Exhibit 1024, p. 4487

Petitioner Apple Inc. - Exhibit 1024, p. 4488

Petitioner Apple Inc. - Exhibit 1024, p. 4489

Petitioner Apple Inc. - Exhibit 1024, p. 4490

Petitioner Apple Inc. - Exhibit 1024, p. 4491

Petitioner Apple Inc. - Exhibit 1024, p. 4492

Petitioner Apple Inc. - Exhibit 1024, p. 4493

Petitioner Apple Inc. - Exhibit 1024, p. 4494

Petitioner Apple Inc. - Exhibit 1024, p. 4495

Petitioner Apple Inc. - Exhibit 1024, p. 4496

Petitioner Apple Inc. - Exhibit 1024, p. 4497

Petitioner Apple Inc. - Exhibit 1024, p. 4498

Petitioner Apple Inc. - Exhibit 1024, p. 4499

Petitioner Apple Inc. - Exhibit 1024, p. 4500

Petitioner Apple Inc. - Exhibit 1024, p. 4501

Petitioner Apple Inc. - Exhibit 1024, p. 4502

Petitioner Apple Inc. - Exhibit 1024, p. 4503

Petitioner Apple Inc. - Exhibit 1024, p. 4504

Petitioner Apple Inc. - Exhibit 1024, p. 4505

Petitioner Apple Inc. - Exhibit 1024, p. 4506

Petitioner Apple Inc. - Exhibit 1024, p. 4507

Petitioner Apple Inc. - Exhibit 1024, p. 4508

Petitioner Apple Inc. - Exhibit 1024, p. 4509

Petitioner Apple Inc. - Exhibit 1024, p. 4510

Petitioner Apple Inc. - Exhibit 1024, p. 4511

Petitioner Apple Inc. - Exhibit 1024, p. 4512

Petitioner Apple Inc. - Exhibit 1024, p. 4513

Petitioner Apple Inc. - Exhibit 1024, p. 4514

Petitioner Apple Inc. - Exhibit 1024, p. 4515

Petitioner Apple Inc. - Exhibit 1024, p. 4516

Petitioner Apple Inc. - Exhibit 1024, p. 4517

Petitioner Apple Inc. - Exhibit 1024, p. 4518

Petitioner Apple Inc. - Exhibit 1024, p. 4519

Petitioner Apple Inc. - Exhibit 1024, p. 4520

Petitioner Apple Inc. - Exhibit 1024, p. 4521

Petitioner Apple Inc. - Exhibit 1024, p. 4522

Petitioner Apple Inc. - Exhibit 1024, p. 4523

Petitioner Apple Inc. - Exhibit 1024, p. 4524

Petitioner Apple Inc. - Exhibit 1024, p. 4525

Petitioner Apple Inc. - Exhibit 1024, p. 4526

Petitioner Apple Inc. - Exhibit 1024, p. 4527

Petitioner Apple Inc. - Exhibit 1024, p. 4528

Petitioner Apple Inc. - Exhibit 1024, p. 4529

Petitioner Apple Inc. - Exhibit 1024, p. 4530

Petitioner Apple Inc. - Exhibit 1024, p. 4531

Petitioner Apple Inc. - Exhibit 1024, p. 4532

Petitioner Apple Inc. - Exhibit 1024, p. 4533

Petitioner Apple Inc. - Exhibit 1024, p. 4534

Petitioner Apple Inc. - Exhibit 1024, p. 4535

Petitioner Apple Inc. - Exhibit 1024, p. 4536

Petitioner Apple Inc. - Exhibit 1024, p. 4537

Petitioner Apple Inc. - Exhibit 1024, p. 4538

Petitioner Apple Inc. - Exhibit 1024, p. 4539

Petitioner Apple Inc. - Exhibit 1024, p. 4540

Petitioner Apple Inc. - Exhibit 1024, p. 4541

Petitioner Apple Inc. - Exhibit 1024, p. 4542

Petitioner Apple Inc. - Exhibit 1024, p. 4543

Petitioner Apple Inc. - Exhibit 1024, p. 4544

Petitioner Apple Inc. - Exhibit 1024, p. 4545

Petitioner Apple Inc. - Exhibit 1024, p. 4546

Petitioner Apple Inc. - Exhibit 1024, p. 4547

Petitioner Apple Inc. - Exhibit 1024, p. 4548

Petitioner Apple Inc. - Exhibit 1024, p. 4549

Petitioner Apple Inc. - Exhibit 1024, p. 4550

Petitioner Apple Inc. - Exhibit 1024, p. 4551

Petitioner Apple Inc. - Exhibit 1024, p. 4552

Petitioner Apple Inc. - Exhibit 1024, p. 4553

Petitioner Apple Inc. - Exhibit 1024, p. 4554

Petitioner Apple Inc. - Exhibit 1024, p. 4555

Petitioner Apple Inc. - Exhibit 1024, p. 4556

Petitioner Apple Inc. - Exhibit 1024, p. 4557

Petitioner Apple Inc. - Exhibit 1024, p. 4558

Petitioner Apple Inc. - Exhibit 1024, p. 4559

Petitioner Apple Inc. - Exhibit 1024, p. 4560

Petitioner Apple Inc. - Exhibit 1024, p. 4561

Petitioner Apple Inc. - Exhibit 1024, p. 4562

Petitioner Apple Inc. - Exhibit 1024, p. 4563

Petitioner Apple Inc. - Exhibit 1024, p. 4564

Petitioner Apple Inc. - Exhibit 1024, p. 4565

Petitioner Apple Inc. - Exhibit 1024, p. 4566

Petitioner Apple Inc. - Exhibit 1024, p. 4567

Petitioner Apple Inc. - Exhibit 1024, p. 4568

Petitioner Apple Inc. - Exhibit 1024, p. 4569

Petitioner Apple Inc. - Exhibit 1024, p. 4570

Petitioner Apple Inc. - Exhibit 1024, p. 4571

Petitioner Apple Inc. - Exhibit 1024, p. 4572

Petitioner Apple Inc. - Exhibit 1024, p. 4573

Petitioner Apple Inc. - Exhibit 1024, p. 4574

Petitioner Apple Inc. - Exhibit 1024, p. 4575

Petitioner Apple Inc. - Exhibit 1024, p. 4576

Petitioner Apple Inc. - Exhibit 1024, p. 4577

Petitioner Apple Inc. - Exhibit 1024, p. 4578

Petitioner Apple Inc. - Exhibit 1024, p. 4579

Petitioner Apple Inc. - Exhibit 1024, p. 4580

Petitioner Apple Inc. - Exhibit 1024, p. 4581

Petitioner Apple Inc. - Exhibit 1024, p. 4582

Petitioner Apple Inc. - Exhibit 1024, p. 4583

Petitioner Apple Inc. - Exhibit 1024, p. 4584

Petitioner Apple Inc. - Exhibit 1024, p. 4585

Petitioner Apple Inc. - Exhibit 1024, p. 4586

Petitioner Apple Inc. - Exhibit 1024, p. 4587

Petitioner Apple Inc. - Exhibit 1024, p. 4588

Petitioner Apple Inc. - Exhibit 1024, p. 4589

Petitioner Apple Inc. - Exhibit 1024, p. 4590

Petitioner Apple Inc. - Exhibit 1024, p. 4591

Petitioner Apple Inc. - Exhibit 1024, p. 4592

Petitioner Apple Inc. - Exhibit 1024, p. 4593

Petitioner Apple Inc. - Exhibit 1024, p. 4594

Petitioner Apple Inc. - Exhibit 1024, p. 4595

Petitioner Apple Inc. - Exhibit 1024, p. 4596

Petitioner Apple Inc. - Exhibit 1024, p. 4597

Petitioner Apple Inc. - Exhibit 1024, p. 4598

Petitioner Apple Inc. - Exhibit 1024, p. 4599

Petitioner Apple Inc. - Exhibit 1024, p. 4600

Petitioner Apple Inc. - Exhibit 1024, p. 4601

Petitioner Apple Inc. - Exhibit 1024, p. 4602

Petitioner Apple Inc. - Exhibit 1024, p. 4603

Petitioner Apple Inc. - Exhibit 1024, p. 4604

Petitioner Apple Inc. - Exhibit 1024, p. 4605

Petitioner Apple Inc. - Exhibit 1024, p. 4606

Petitioner Apple Inc. - Exhibit 1024, p. 4607

Petitioner Apple Inc. - Exhibit 1024, p. 4608

Petitioner Apple Inc. - Exhibit 1024, p. 4609

Petitioner Apple Inc. - Exhibit 1024, p. 4610

Petitioner Apple Inc. - Exhibit 1024, p. 4611

Petitioner Apple Inc. - Exhibit 1024, p. 4612

Petitioner Apple Inc. - Exhibit 1024, p. 4613

Petitioner Apple Inc. - Exhibit 1024, p. 4614

Petitioner Apple Inc. - Exhibit 1024, p. 4615

Petitioner Apple Inc. - Exhibit 1024, p. 4616

Petitioner Apple Inc. - Exhibit 1024, p. 4617

Petitioner Apple Inc. - Exhibit 1024, p. 4618

Petitioner Apple Inc. - Exhibit 1024, p. 4619

Petitioner Apple Inc. - Exhibit 1024, p. 4620

Petitioner Apple Inc. - Exhibit 1024, p. 4621

Petitioner Apple Inc. - Exhibit 1024, p. 4622

Petitioner Apple Inc. - Exhibit 1024, p. 4623

Petitioner Apple Inc. - Exhibit 1024, p. 4624

Petitioner Apple Inc. - Exhibit 1024, p. 4625

Petitioner Apple Inc. - Exhibit 1024, p. 4626

Petitioner Apple Inc. - Exhibit 1024, p. 4627

Petitioner Apple Inc. - Exhibit 1024, p. 4628

Petitioner Apple Inc. - Exhibit 1024, p. 4629

Petitioner Apple Inc. - Exhibit 1024, p. 4630

Petitioner Apple Inc. - Exhibit 1024, p. 4631

Petitioner Apple Inc. - Exhibit 1024, p. 4632

Petitioner Apple Inc. - Exhibit 1024, p. 4633

Petitioner Apple Inc. - Exhibit 1024, p. 4634

Petitioner Apple Inc. - Exhibit 1024, p. 4635

Petitioner Apple Inc. - Exhibit 1024, p. 4636

Petitioner Apple Inc. - Exhibit 1024, p. 4637

Petitioner Apple Inc. - Exhibit 1024, p. 4638

Petitioner Apple Inc. - Exhibit 1024, p. 4639

Petitioner Apple Inc. - Exhibit 1024, p. 4640

Petitioner Apple Inc. - Exhibit 1024, p. 4641

Petitioner Apple Inc. - Exhibit 1024, p. 4642

Petitioner Apple Inc. - Exhibit 1024, p. 4643

Petitioner Apple Inc. - Exhibit 1024, p. 4644

Petitioner Apple Inc. - Exhibit 1024, p. 4645

Petitioner Apple Inc. - Exhibit 1024, p. 4646

Petitioner Apple Inc. - Exhibit 1024, p. 4647

Petitioner Apple Inc. - Exhibit 1024, p. 4648

Petitioner Apple Inc. - Exhibit 1024, p. 4649

Petitioner Apple Inc. - Exhibit 1024, p. 4650

Petitioner Apple Inc. - Exhibit 1024, p. 4651

Petitioner Apple Inc. - Exhibit 1024, p. 4652

Petitioner Apple Inc. - Exhibit 1024, p. 4653

Petitioner Apple Inc. - Exhibit 1024, p. 4654

Petitioner Apple Inc. - Exhibit 1024, p. 4655

Petitioner Apple Inc. - Exhibit 1024, p. 4656

Petitioner Apple Inc. - Exhibit 1024, p. 4657

Petitioner Apple Inc. - Exhibit 1024, p. 4658

Petitioner Apple Inc. - Exhibit 1024, p. 4659

Petitioner Apple Inc. - Exhibit 1024, p. 4660

Petitioner Apple Inc. - Exhibit 1024, p. 4661

Petitioner Apple Inc. - Exhibit 1024, p. 4662

Petitioner Apple Inc. - Exhibit 1024, p. 4663

Petitioner Apple Inc. - Exhibit 1024, p. 4664

Petitioner Apple Inc. - Exhibit 1024, p. 4665

Petitioner Apple Inc. - Exhibit 1024, p. 4666

Petitioner Apple Inc. - Exhibit 1024, p. 4667

Petitioner Apple Inc. - Exhibit 1024, p. 4668

Petitioner Apple Inc. - Exhibit 1024, p. 4669

Petitioner Apple Inc. - Exhibit 1024, p. 4670

Petitioner Apple Inc. - Exhibit 1024, p. 4671

Petitioner Apple Inc. - Exhibit 1024, p. 4672

Petitioner Apple Inc. - Exhibit 1024, p. 4673

Petitioner Apple Inc. - Exhibit 1024, p. 4674

Petitioner Apple Inc. - Exhibit 1024, p. 4675

Petitioner Apple Inc. - Exhibit 1024, p. 4676

Petitioner Apple Inc. - Exhibit 1024, p. 4677

Petitioner Apple Inc. - Exhibit 1024, p. 4678

Petitioner Apple Inc. - Exhibit 1024, p. 4679

Petitioner Apple Inc. - Exhibit 1024, p. 4680

Petitioner Apple Inc. - Exhibit 1024, p. 4681

Petitioner Apple Inc. - Exhibit 1024, p. 4682

Petitioner Apple Inc. - Exhibit 1024, p. 4683

Petitioner Apple Inc. - Exhibit 1024, p. 4684

Petitioner Apple Inc. - Exhibit 1024, p. 4685

Petitioner Apple Inc. - Exhibit 1024, p. 4686

Petitioner Apple Inc. - Exhibit 1024, p. 4687

Petitioner Apple Inc. - Exhibit 1024, p. 4688

Petitioner Apple Inc. - Exhibit 1024, p. 4689

Petitioner Apple Inc. - Exhibit 1024, p. 4690

Petitioner Apple Inc. - Exhibit 1024, p. 4691

Petitioner Apple Inc. - Exhibit 1024, p. 4692

Petitioner Apple Inc. - Exhibit 1024, p. 4693

Petitioner Apple Inc. - Exhibit 1024, p. 4694

Petitioner Apple Inc. - Exhibit 1024, p. 4695

Petitioner Apple Inc. - Exhibit 1024, p. 4696

Petitioner Apple Inc. - Exhibit 1024, p. 4697

Petitioner Apple Inc. - Exhibit 1024, p. 4698

Petitioner Apple Inc. - Exhibit 1024, p. 4699

Petitioner Apple Inc. - Exhibit 1024, p. 4700

Petitioner Apple Inc. - Exhibit 1024, p. 4701

Petitioner Apple Inc. - Exhibit 1024, p. 4702

Petitioner Apple Inc. - Exhibit 1024, p. 4703

Petitioner Apple Inc. - Exhibit 1024, p. 4704

Petitioner Apple Inc. - Exhibit 1024, p. 4705

Petitioner Apple Inc. - Exhibit 1024, p. 4706

Petitioner Apple Inc. - Exhibit 1024, p. 4707

Petitioner Apple Inc. - Exhibit 1024, p. 4708

Petitioner Apple Inc. - Exhibit 1024, p. 4709

Petitioner Apple Inc. - Exhibit 1024, p. 4710

Petitioner Apple Inc. - Exhibit 1024, p. 4711

Petitioner Apple Inc. - Exhibit 1024, p. 4712

Petitioner Apple Inc. - Exhibit 1024, p. 4713

Petitioner Apple Inc. - Exhibit 1024, p. 4714

Petitioner Apple Inc. - Exhibit 1024, p. 4715

Petitioner Apple Inc. - Exhibit 1024, p. 4716

Petitioner Apple Inc. - Exhibit 1024, p. 4717

Petitioner Apple Inc. - Exhibit 1024, p. 4718

Petitioner Apple Inc. - Exhibit 1024, p. 4719

Petitioner Apple Inc. - Exhibit 1024, p. 4720

Petitioner Apple Inc. - Exhibit 1024, p. 4721

Petitioner Apple Inc. - Exhibit 1024, p. 4722

Petitioner Apple Inc. - Exhibit 1024, p. 4723

Petitioner Apple Inc. - Exhibit 1024, p. 4724

Petitioner Apple Inc. - Exhibit 1024, p. 4725

Petitioner Apple Inc. - Exhibit 1024, p. 4726

Petitioner Apple Inc. - Exhibit 1024, p. 4727

Petitioner Apple Inc. - Exhibit 1024, p. 4728

Petitioner Apple Inc. - Exhibit 1024, p. 4729

Petitioner Apple Inc. - Exhibit 1024, p. 4730

Petitioner Apple Inc. - Exhibit 1024, p. 4731

Petitioner Apple Inc. - Exhibit 1024, p. 4732

Petitioner Apple Inc. - Exhibit 1024, p. 4733

Petitioner Apple Inc. - Exhibit 1024, p. 4734

Petitioner Apple Inc. - Exhibit 1024, p. 4735

Petitioner Apple Inc. - Exhibit 1024, p. 4736

Petitioner Apple Inc. - Exhibit 1024, p. 4737

Petitioner Apple Inc. - Exhibit 1024, p. 4738

Petitioner Apple Inc. - Exhibit 1024, p. 4739

Petitioner Apple Inc. - Exhibit 1024, p. 4740

Petitioner Apple Inc. - Exhibit 1024, p. 4741

Petitioner Apple Inc. - Exhibit 1024, p. 4742

Petitioner Apple Inc. - Exhibit 1024, p. 4743

Petitioner Apple Inc. - Exhibit 1024, p. 4744

Petitioner Apple Inc. - Exhibit 1024, p. 4745

Petitioner Apple Inc. - Exhibit 1024, p. 4746

Petitioner Apple Inc. - Exhibit 1024, p. 4747

Petitioner Apple Inc. - Exhibit 1024, p. 4748

Petitioner Apple Inc. - Exhibit 1024, p. 4749

Petitioner Apple Inc. - Exhibit 1024, p. 4750

Petitioner Apple Inc. - Exhibit 1024, p. 4751

Petitioner Apple Inc. - Exhibit 1024, p. 4752

Petitioner Apple Inc. - Exhibit 1024, p. 4753

Petitioner Apple Inc. - Exhibit 1024, p. 4754

Petitioner Apple Inc. - Exhibit 1024, p. 4755

Petitioner Apple Inc. - Exhibit 1024, p. 4756

Petitioner Apple Inc. - Exhibit 1024, p. 4757

Petitioner Apple Inc. - Exhibit 1024, p. 4758

Petitioner Apple Inc. - Exhibit 1024, p. 4759

Petitioner Apple Inc. - Exhibit 1024, p. 4760

Petitioner Apple Inc. - Exhibit 1024, p. 4761

Petitioner Apple Inc. - Exhibit 1024, p. 4762

Petitioner Apple Inc. - Exhibit 1024, p. 4763

Petitioner Apple Inc. - Exhibit 1024, p. 4764

Petitioner Apple Inc. - Exhibit 1024, p. 4765

Petitioner Apple Inc. - Exhibit 1024, p. 4766

Petitioner Apple Inc. - Exhibit 1024, p. 4767

Petitioner Apple Inc. - Exhibit 1024, p. 4768

Petitioner Apple Inc. - Exhibit 1024, p. 4769

Petitioner Apple Inc. - Exhibit 1024, p. 4770

Petitioner Apple Inc. - Exhibit 1024, p. 4771

Petitioner Apple Inc. - Exhibit 1024, p. 4772

Petitioner Apple Inc. - Exhibit 1024, p. 4773

Petitioner Apple Inc. - Exhibit 1024, p. 4774

Petitioner Apple Inc. - Exhibit 1024, p. 4775

Petitioner Apple Inc. - Exhibit 1024, p. 4776

Petitioner Apple Inc. - Exhibit 1024, p. 4777

Petitioner Apple Inc. - Exhibit 1024, p. 4778

Petitioner Apple Inc. - Exhibit 1024, p. 4779

Petitioner Apple Inc. - Exhibit 1024, p. 4780

Petitioner Apple Inc. - Exhibit 1024, p. 4781

Petitioner Apple Inc. - Exhibit 1024, p. 4782

Petitioner Apple Inc. - Exhibit 1024, p. 4783

Petitioner Apple Inc. - Exhibit 1024, p. 4784

Petitioner Apple Inc. - Exhibit 1024, p. 4785

Petitioner Apple Inc. - Exhibit 1024, p. 4786

Petitioner Apple Inc. - Exhibit 1024, p. 4787

Petitioner Apple Inc. - Exhibit 1024, p. 4788

Petitioner Apple Inc. - Exhibit 1024, p. 4789

Petitioner Apple Inc. - Exhibit 1024, p. 4790

Petitioner Apple Inc. - Exhibit 1024, p. 4791

Petitioner Apple Inc. - Exhibit 1024, p. 4792

Petitioner Apple Inc. - Exhibit 1024, p. 4793

Petitioner Apple Inc. - Exhibit 1024, p. 4794

Petitioner Apple Inc. - Exhibit 1024, p. 4795

Petitioner Apple Inc. - Exhibit 1024, p. 4796

Petitioner Apple Inc. - Exhibit 1024, p. 4797

Petitioner Apple Inc. - Exhibit 1024, p. 4798

Petitioner Apple Inc. - Exhibit 1024, p. 4799

Petitioner Apple Inc. - Exhibit 1024, p. 4800

Petitioner Apple Inc. - Exhibit 1024, p. 4801

Petitioner Apple Inc. - Exhibit 1024, p. 4802

Petitioner Apple Inc. - Exhibit 1024, p. 4803

Petitioner Apple Inc. - Exhibit 1024, p. 4804

Petitioner Apple Inc. - Exhibit 1024, p. 4805

Petitioner Apple Inc. - Exhibit 1024, p. 4806

Petitioner Apple Inc. - Exhibit 1024, p. 4807

Petitioner Apple Inc. - Exhibit 1024, p. 4808

Petitioner Apple Inc. - Exhibit 1024, p. 4809

Petitioner Apple Inc. - Exhibit 1024, p. 4810

Petitioner Apple Inc. - Exhibit 1024, p. 4811

Petitioner Apple Inc. - Exhibit 1024, p. 4812

Petitioner Apple Inc. - Exhibit 1024, p. 4813

Petitioner Apple Inc. - Exhibit 1024, p. 4814

Petitioner Apple Inc. - Exhibit 1024, p. 4815

Petitioner Apple Inc. - Exhibit 1024, p. 4816

Petitioner Apple Inc. - Exhibit 1024, p. 4817

Petitioner Apple Inc. - Exhibit 1024, p. 4818

Petitioner Apple Inc. - Exhibit 1024, p. 4819

Petitioner Apple Inc. - Exhibit 1024, p. 4820

Petitioner Apple Inc. - Exhibit 1024, p. 4821

Petitioner Apple Inc. - Exhibit 1024, p. 4822

Petitioner Apple Inc. - Exhibit 1024, p. 4823

Petitioner Apple Inc. - Exhibit 1024, p. 4824

Petitioner Apple Inc. - Exhibit 1024, p. 4825

Petitioner Apple Inc. - Exhibit 1024, p. 4826

Petitioner Apple Inc. - Exhibit 1024, p. 4827

Petitioner Apple Inc. - Exhibit 1024, p. 4828

Petitioner Apple Inc. - Exhibit 1024, p. 4829

Petitioner Apple Inc. - Exhibit 1024, p. 4830

Petitioner Apple Inc. - Exhibit 1024, p. 4831

Petitioner Apple Inc. - Exhibit 1024, p. 4832

Petitioner Apple Inc. - Exhibit 1024, p. 4833

Petitioner Apple Inc. - Exhibit 1024, p. 4834

Petitioner Apple Inc. - Exhibit 1024, p. 4835

Petitioner Apple Inc. - Exhibit 1024, p. 4836

Petitioner Apple Inc. - Exhibit 1024, p. 4837

Petitioner Apple Inc. - Exhibit 1024, p. 4838

Petitioner Apple Inc. - Exhibit 1024, p. 4839

Petitioner Apple Inc. - Exhibit 1024, p. 4840

Petitioner Apple Inc. - Exhibit 1024, p. 4841

Petitioner Apple Inc. - Exhibit 1024, p. 4842

Petitioner Apple Inc. - Exhibit 1024, p. 4843

Petitioner Apple Inc. - Exhibit 1024, p. 4844

Petitioner Apple Inc. - Exhibit 1024, p. 4845

Petitioner Apple Inc. - Exhibit 1024, p. 4846

Petitioner Apple Inc. - Exhibit 1024, p. 4847

Petitioner Apple Inc. - Exhibit 1024, p. 4848

Petitioner Apple Inc. - Exhibit 1024, p. 4849

Petitioner Apple Inc. - Exhibit 1024, p. 4850

Petitioner Apple Inc. - Exhibit 1024, p. 4851

Petitioner Apple Inc. - Exhibit 1024, p. 4852

Petitioner Apple Inc. - Exhibit 1024, p. 4853

Petitioner Apple Inc. - Exhibit 1024, p. 4854

Petitioner Apple Inc. - Exhibit 1024, p. 4855

Petitioner Apple Inc. - Exhibit 1024, p. 4856

Petitioner Apple Inc. - Exhibit 1024, p. 4857

Petitioner Apple Inc. - Exhibit 1024, p. 4858

Petitioner Apple Inc. - Exhibit 1024, p. 4859

Petitioner Apple Inc. - Exhibit 1024, p. 4860

Petitioner Apple Inc. - Exhibit 1024, p. 4861

Petitioner Apple Inc. - Exhibit 1024, p. 4862

Petitioner Apple Inc. - Exhibit 1024, p. 4863

Petitioner Apple Inc. - Exhibit 1024, p. 4864

Petitioner Apple Inc. - Exhibit 1024, p. 4865

Petitioner Apple Inc. - Exhibit 1024, p. 4866

Petitioner Apple Inc. - Exhibit 1024, p. 4867

Petitioner Apple Inc. - Exhibit 1024, p. 4868

Petitioner Apple Inc. - Exhibit 1024, p. 4869

Petitioner Apple Inc. - Exhibit 1024, p. 4870

Petitioner Apple Inc. - Exhibit 1024, p. 4871

Petitioner Apple Inc. - Exhibit 1024, p. 4872

Petitioner Apple Inc. - Exhibit 1024, p. 4873

Petitioner Apple Inc. - Exhibit 1024, p. 4874

Petitioner Apple Inc. - Exhibit 1024, p. 4875

Petitioner Apple Inc. - Exhibit 1024, p. 4876

Petitioner Apple Inc. - Exhibit 1024, p. 4877

Petitioner Apple Inc. - Exhibit 1024, p. 4878

Petitioner Apple Inc. - Exhibit 1024, p. 4879

Petitioner Apple Inc. - Exhibit 1024, p. 4880

Petitioner Apple Inc. - Exhibit 1024, p. 4881

Petitioner Apple Inc. - Exhibit 1024, p. 4882

Petitioner Apple Inc. - Exhibit 1024, p. 4883

Petitioner Apple Inc. - Exhibit 1024, p. 4884

Petitioner Apple Inc. - Exhibit 1024, p. 4885

Petitioner Apple Inc. - Exhibit 1024, p. 4886

Petitioner Apple Inc. - Exhibit 1024, p. 4887

Petitioner Apple Inc. - Exhibit 1024, p. 4888

Petitioner Apple Inc. - Exhibit 1024, p. 4889

Petitioner Apple Inc. - Exhibit 1024, p. 4890

Petitioner Apple Inc. - Exhibit 1024, p. 4891

Petitioner Apple Inc. - Exhibit 1024, p. 4892

Petitioner Apple Inc. - Exhibit 1024, p. 4893

Petitioner Apple Inc. - Exhibit 1024, p. 4894

Petitioner Apple Inc. - Exhibit 1024, p. 4895

Petitioner Apple Inc. - Exhibit 1024, p. 4896

Petitioner Apple Inc. - Exhibit 1024, p. 4897

Petitioner Apple Inc. - Exhibit 1024, p. 4898

Petitioner Apple Inc. - Exhibit 1024, p. 4899

Petitioner Apple Inc. - Exhibit 1024, p. 4900

Petitioner Apple Inc. - Exhibit 1024, p. 4901

Petitioner Apple Inc. - Exhibit 1024, p. 4902

Petitioner Apple Inc. - Exhibit 1024, p. 4903

Petitioner Apple Inc. - Exhibit 1024, p. 4904

Petitioner Apple Inc. - Exhibit 1024, p. 4905

Petitioner Apple Inc. - Exhibit 1024, p. 4906

Petitioner Apple Inc. - Exhibit 1024, p. 4907

Petitioner Apple Inc. - Exhibit 1024, p. 4908

Petitioner Apple Inc. - Exhibit 1024, p. 4909

Petitioner Apple Inc. - Exhibit 1024, p. 4910

Petitioner Apple Inc. - Exhibit 1024, p. 4911

Petitioner Apple Inc. - Exhibit 1024, p. 4912

Petitioner Apple Inc. - Exhibit 1024, p. 4913

Petitioner Apple Inc. - Exhibit 1024, p. 4914

Petitioner Apple Inc. - Exhibit 1024, p. 4915

Petitioner Apple Inc. - Exhibit 1024, p. 4916

Petitioner Apple Inc. - Exhibit 1024, p. 4917

Petitioner Apple Inc. - Exhibit 1024, p. 4918

Petitioner Apple Inc. - Exhibit 1024, p. 4919

Petitioner Apple Inc. - Exhibit 1024, p. 4920

Petitioner Apple Inc. - Exhibit 1024, p. 4921

Petitioner Apple Inc. - Exhibit 1024, p. 4922

Petitioner Apple Inc. - Exhibit 1024, p. 4923

Petitioner Apple Inc. - Exhibit 1024, p. 4924

Petitioner Apple Inc. - Exhibit 1024, p. 4925

Petitioner Apple Inc. - Exhibit 1024, p. 4926

Petitioner Apple Inc. - Exhibit 1024, p. 4927

Petitioner Apple Inc. - Exhibit 1024, p. 4928

Petitioner Apple Inc. - Exhibit 1024, p. 4929

Petitioner Apple Inc. - Exhibit 1024, p. 4930

Petitioner Apple Inc. - Exhibit 1024, p. 4931

Petitioner Apple Inc. - Exhibit 1024, p. 4932

Petitioner Apple Inc. - Exhibit 1024, p. 4933

Petitioner Apple Inc. - Exhibit 1024, p. 4934

Petitioner Apple Inc. - Exhibit 1024, p. 4935

Petitioner Apple Inc. - Exhibit 1024, p. 4936

Petitioner Apple Inc. - Exhibit 1024, p. 4937

Petitioner Apple Inc. - Exhibit 1024, p. 4938

Petitioner Apple Inc. - Exhibit 1024, p. 4939

Petitioner Apple Inc. - Exhibit 1024, p. 4940

Petitioner Apple Inc. - Exhibit 1024, p. 4941

Petitioner Apple Inc. - Exhibit 1024, p. 4942

Petitioner Apple Inc. - Exhibit 1024, p. 4943

Petitioner Apple Inc. - Exhibit 1024, p. 4944

Petitioner Apple Inc. - Exhibit 1024, p. 4945

Petitioner Apple Inc. - Exhibit 1024, p. 4946

Petitioner Apple Inc. - Exhibit 1024, p. 4947

Petitioner Apple Inc. - Exhibit 1024, p. 4948

Petitioner Apple Inc. - Exhibit 1024, p. 4949

Petitioner Apple Inc. - Exhibit 1024, p. 4950

Petitioner Apple Inc. - Exhibit 1024, p. 4951

Petitioner Apple Inc. - Exhibit 1024, p. 4952

Petitioner Apple Inc. - Exhibit 1024, p. 4953

Petitioner Apple Inc. - Exhibit 1024, p. 4954

Petitioner Apple Inc. - Exhibit 1024, p. 4955

Petitioner Apple Inc. - Exhibit 1024, p. 4956

Petitioner Apple Inc. - Exhibit 1024, p. 4957

Petitioner Apple Inc. - Exhibit 1024, p. 4958

Petitioner Apple Inc. - Exhibit 1024, p. 4959

Petitioner Apple Inc. - Exhibit 1024, p. 4960

Petitioner Apple Inc. - Exhibit 1024, p. 4961

Petitioner Apple Inc. - Exhibit 1024, p. 4962

Petitioner Apple Inc. - Exhibit 1024, p. 4963

Petitioner Apple Inc. - Exhibit 1024, p. 4964

Petitioner Apple Inc. - Exhibit 1024, p. 4965

Petitioner Apple Inc. - Exhibit 1024, p. 4966

Petitioner Apple Inc. - Exhibit 1024, p. 4967

Petitioner Apple Inc. - Exhibit 1024, p. 4968

Petitioner Apple Inc. - Exhibit 1024, p. 4969

Petitioner Apple Inc. - Exhibit 1024, p. 4970

Petitioner Apple Inc. - Exhibit 1024, p. 4971

Petitioner Apple Inc. - Exhibit 1024, p. 4972

Petitioner Apple Inc. - Exhibit 1024, p. 4973

Petitioner Apple Inc. - Exhibit 1024, p. 4974

Petitioner Apple Inc. - Exhibit 1024, p. 4975

Petitioner Apple Inc. - Exhibit 1024, p. 4976

Petitioner Apple Inc. - Exhibit 1024, p. 4977

Petitioner Apple Inc. - Exhibit 1024, p. 4978

Petitioner Apple Inc. - Exhibit 1024, p. 4979

Petitioner Apple Inc. - Exhibit 1024, p. 4980

Petitioner Apple Inc. - Exhibit 1024, p. 4981

Petitioner Apple Inc. - Exhibit 1024, p. 4982

Petitioner Apple Inc. - Exhibit 1024, p. 4983

Petitioner Apple Inc. - Exhibit 1024, p. 4984

Petitioner Apple Inc. - Exhibit 1024, p. 4985

Petitioner Apple Inc. - Exhibit 1024, p. 4986

Petitioner Apple Inc. - Exhibit 1024, p. 4987

Petitioner Apple Inc. - Exhibit 1024, p. 4988

Petitioner Apple Inc. - Exhibit 1024, p. 4989

Petitioner Apple Inc. - Exhibit 1024, p. 4990

Petitioner Apple Inc. - Exhibit 1024, p. 4991

Petitioner Apple Inc. - Exhibit 1024, p. 4992

Petitioner Apple Inc. - Exhibit 1024, p. 4993

Petitioner Apple Inc. - Exhibit 1024, p. 4994

Petitioner Apple Inc. - Exhibit 1024, p. 4995

Petitioner Apple Inc. - Exhibit 1024, p. 4996

Petitioner Apple Inc. - Exhibit 1024, p. 4997

Petitioner Apple Inc. - Exhibit 1024, p. 4998

Petitioner Apple Inc. - Exhibit 1024, p. 4999

Petitioner Apple Inc. - Exhibit 1024, p. 5000

