
Petitioner Apple Inc. - Exhibit 1002, p. 5001

W093/09209 ' ‘ ' i>crrus97/15243

SPE 503, the RPC service table is extended by an»RPC dispatch

table. The preferred embodiment RPC dispatch table is

organized as a list of Load Module references for each RPC

service supported internally by SPE 503. Each row in the table

5 ' contains a load module ID that services the call, a control byte

that indicates whether the call can be made from an external

caller, and whether the load module needed to service the call is

permanently resident in SPU 500. The RPC dispatch table may

be constructed in 5PU ROM 532 (or EEPROM) when SPU

10 firmware 508 is loaded into the SPU 500. If the RPC dispatch

table is in EEPROM. it flexibly allows for updates to the services

without load module location and version control issues.

In the preferred embodiment, SPE RPC manager 550 first

15 references a service request against the RPC service table to

determine the location of the service manager that may service

the request. The RPC manager 550 then routes the service

request to the appropriate service manager for action. Service

requests are handled by the service manager within the SPE 503

20 using the RPC dispatch table to dispatch the request. Once the

RPC manager 550 locates the service reference in the RPC

dispatch table, the load module that services the request is called

and loaded using the load module execution manager 568. The

load module execution manager 568 passes control to the

-373-

Petitioner Apple Inc. — Exhibit 1002, p. 5001

Petitioner Apple Inc. - Exhibit 1002, p. 5002

wo 93/09209 PC'l‘lUS97l15243

requested load module after performing all required context

configuration. or if necessary may first issue a request to load it

from the external management files 610.

5 SPU Time Baas Manager 554

The time base manager 554 supports calls that relate to

the real time clock (”RTC“) 528. In the preferred embodiment,

the time base manager 554 is always loaded and ready to

respond to time based requests.

10

The table below lists examples of basic calls that may be

supported by the Lime base manager 554:

15
Sets the time in the RTC 528. Access to this

command may be restricted to a VDE

administrator.

Changes the time in the RTC 528. Access to

this command may be restricted to a VDE

administrator.

Set GMT / local time conversion and the

current and allowable magnitude of user

ad'ustments to RTC 528 time.

20

 hannel Services Mann ; er Re o nests

-374-

Petitioner Apple Inc. — Exhibit 1002, p. 5002

Petitioner Apple Inc. - Exhibit 1002, p. 5003

W0 98/053209 PCl'IUS97l1S243

I all Name Descri tion
I: ind Time

’ nbind Time Unbind timer services from a channel as an

I event SOUTCB.

 Bind timer services to a channel as an event
 source.

 Sets an alarm notification for a specific time.

The user will be notified by an alarm event at

the time of the alarm. Parameters to this

request determine the event, frequency, and

reuested rocessin for the alarm.

lear I Cancels a reuested alarm notification.

OI

SPU Encryption/Decryption Manager 556

The Encryption/Decryption Manager 556 supports calls to

the various encrvption/decryption techniques supported by SPE

10 503/HPE 655. It may be supported by a hardware-based

encryption/decryption engine 522 within SPU 500. Those

encryption/decryption technologies not supported by SPU

encrypt"decrypt engine 522 may be provided by encrypt/decrypt .

manager 556 in software. The primary bulk

15 encryption/decryption load modules preferably are loaded at all

times, and the load modules necessary for other algorithms are

preferably paged in as needed. Thus. if the primary bulk

encryption/decryption algorithm is DES, only the DES load

modules need be permanently resident in the RAM 534a of SPE

20 503/HPE 655.

-375-

Petitioner Apple Inc. — Exhibit 1002, p. 5003

Petitioner Apple Inc. - Exhibit 1002, p. 5004

W0 98109209 PCI‘/US97I15243

The following are examples of RPC calls supported by

Encrypt/Decrypt Manager 556 in the preferred embodiment:

Call Name Descri - tion

5

PK Encrypt Encrypt a block using a PK (public key)

algorithm.

Eric t

Dec t I1°
RC-4 , Encrypt a block using the RC4 (or other bulk

.-tion) alorithm.

Decrypt a block using the RC-4 (or other bulk

15 encrvotion) algorithm.

Initialize Initialize DES instance to be used.

DES

Instance

Initialize RC-4 instance to be used.

20 ‘

Initialize Initialize MD5 instance to be used.

MD5

Instance

Block25

The call pa.rameters passed may include the key to be

30 used; mode (encryption or decryption): any needed Initialization

-376-

Petitioner Apple Inc. — Exhibit 1002, p. 5004

Petitioner Apple Inc. - Exhibit 1002, p. 5005

W0 98/119209 PCT/US97/15243

Vectors; the desired cryptographic operating (e.g.. type of

feedback); the identification of the cryptographic instance to be

used; and the start address, destination address, and length of

the block to be encrypted or decrypted.

5

SPU Key and Tag Manager 558

The SPU Key and Tag Manager 558 supports calls for key

storage, key and management file tag look up, key convolution,

and the generation of random keys, tags, and transaction

10 numbers.

The following table shows an example of a list of SPE/HPE

key and tag manager service 558 calls:

15 all Name I Deucri tion

2 .‘ Raneata

l t Kev l Remeve the requested kev.
Kev I Set (store; the specified kev.

net-ate Kev l Generate a key (air) for a snecified al orithm.

20 nerate Convoluted Key Generate a key using a specified convolution
al - orithm and algorithm - arameter block.

Return the currently set (default) convolution

arameters for a s ecific convolution al - orithm.

25

-377-

Petitioner Apple Inc. — Exhibit 1002, p. 5005

Petitioner Apple Inc. - Exhibit 1002, p. 5006

WO 98/09209 PCNUS97/15243

 ' alculate Hash Block Calculate the ‘hash block nu.mber“.for a specific

i umber . VDE Item ID.

-. t Hash Parameters ‘ Set the hash parameters and hash algorithm.I Forces a resvnchronization of the hash table.
t Hash Parameters D Retrieve the current hash« arameters/al - orithm.

- - chronize Management Synchronize the management files and rebuild

es the hash block tables based on information

found in the tables. Reserved for VDE

Keys and tags may be securely generated within SPE 503

10 (HPE 655) in the preferred embodiment. The key generation

algorithm is typically specific to each type of encryption

supported. The generated keys may be checked for cryptographic

weakness Le-fore they are used. A request for Key and Tag

Manager 558 to generate a key, tag and/or transaction number

15 preferably takes a length as its input parameter. It generates a

random number (or other appropriate ‘key value) of the requested

length as its output.

The key and tag manager 558 may support calls to retrieve

20 specific keys from the key storage areas in SPU 500 and any

keys stored external to the SPU. The basic format of the calls is

to request keys by key type and key number. Many of the keys

are periodically updated through contact with the VDE

administrator, and are kept within SPU 500 in NVRAM 534b or

-378-

Petitioner Apple Inc. — Exhibit 1002, p. 5006

Petitioner Apple Inc. - Exhibit 1002, p. 5007

W0 93/09109 I " rcr/vs97/15243

EEPROM because these memories are secure. updatable and

non-volatile.

SPE 503/HPE 655 may support both Public Key type keys

.5 and Bulk Encryption type keys. The public key (PK) encryption

type keys stored by SPU 500 and managed by key and tag

manager 558 may include. for example, a device public key, a

device private key. a PK certificate, and a public key for the

certificate. Generally, public keys and certificates can be stored

10 externally in non—secured memory if desired, but the device

private key and the public key for the certificate should only be

stored internally in an SPU 500 EEPROM or NVRAM 534b.

Some of the types of bulk encryption keys used by the SPU 500

may include, for example, general-purpose bulk encryption keys,

15 administrative object private header keys, stationary object

private header keys, traveling object private header keys,

download/initialization keys, backup keys, trail keys, and

A management file keys.

20 As discussed above, preferred embodiment Key and Tag

Manager 558 supports requests to adjust or convolute keys to

' make new keys that are produced in a deterministic way

dependent on site and/or time, for example. Key convolution is

an algorithmic process that acts on a key and some set of input

-379-

Petitioner Apple Inc. — Exhibit 1002, p. 5007

Petitioner Apple Inc. - Exhibit 1002, p. 5008

W0 98109209 Pcr/Us97/15243

parameter(s‘v to yield a new key. It can be used, for example, to

increase the number of keys available for use without incurring’

additional key storage space. It may also be used. for example,

as a process to ”age“ keys by incorporating the value of real-time

5 RTC 528 as parameters. It can be used to make keys site specific

by incorporating aspects of the site ID as parameters.

Key and Tag Manager 558 also provides services relating

to tag generation and management. In the preferred

10 embodiment, transaction and access tags are preferably stored

by SPE 503 (HPE 655) in protected memory (e.g., within the

NVRAM 534b of SPU 500). These tags may be generated by key

and tag manager 558. They are used to, for example. check

access rights to. validate and correlate data elements. For

15 example, they may be used to ensure components of the secured

data structures are not tampered with outside of the SPU 500.

Key and tag manager 558 may also support :1 trail transaction

tag and a communications transaction tag.

20 SPU Summary Services Manager 560

SPE 503 maintains an audit trail in reprogrammable non-

volatile memory within the SPU 500 and/or in secure database

610. This audit trail may consist of an audit summary of budget

activity for financial purposes, and a security summary of SPU

-380-

Petitioner Apple Inc. — Exhibit 1002, p. 5008

Petitioner Apple Inc. - Exhibit 1002, p. 5009

wo 93/09209 PCTIUS97/15243

use. When a request is made to the SPU, it logs the request as

having occurred and then notes whether the request succeeded

or failed. All successful requests may be summed and stored by

type in the SPU 500. Failure information, including the

5 elements listed below, may be saved along with details of the

an SPE on Access Failures

failure:

 10

15

This information may be analyzed to detect cracking attempts or

to determine patterns of usage outside expected (and budgeted)

norms. The audit trail histories in the SPU 500 may be retained

20 until the audit is reported to the appropriate parties. This will

allow both legitimate failure analysis and attempts to

cryptoanalyze the SPU to be noted.

Summary services manager 560 may store and maintain

25 this internal summary audit information. This audit

information can be used to check for security breaches or other

aspects of the operation of SPE 503. The event summaries may

-381-

Petitioner Apple Inc. — Exhibit 1002, p. 5009

Petitioner Apple Inc. - Exhibit 1002, p. 5010

WO 98/09209 PCTIUS97/15243

be maintained, analyzed and used by SPE 503 (HPE 655) or a

VDE administrator to determine and potentially limit abuse of

electronic appliance 600. In the preferred embodiment, such

parameters may be stored in secure memory (e.g., within the

5 NVRAM 534b of SPU 500).

There are two basic structures for which summary services

are used in the preferred embodiment. One (the "event summary

data structure“) is VDE administrator specific and keeps track of

10 events. The event summary structure may be maintained and

audited during periodic contact with VDE administrators. The

other is used by VDE administrators and/or distributors for

overall budget. A VDE administrator may register for event

summaries and an overall budget summary at the time an

15 electronic appliance 600 is initialized. The overall budget

summary may be reported to and used by a VDE administrator

in determining distribution of consumed budget (for example) in

the case of corruption of secure management files 61a

Participants that receive appropriate permissions can register

20 their processes (e.g., specific budgets) with summary services

manager 560, which may then reserve protected memory space

(e.g., within NVRAM 534b) and keep desired use and/or access' .

parameters. Access to and modification of each summary can be

controlled by its own access tag.

-382-

Petitioner Apple Inc. — Exhibit 1002, p. 5010

Petitioner Apple Inc. - Exhibit 1002, p. 5011

WO 98109209 PCIVUS97/15243

The following table shows an example of a list of PPE

summary service manager 560 service calls:

Create summary Create a summary service if the user

info has a "ticket“ that permits her to

reuest this service.

Return the current value of the

summary service. The caller must

present an appropriate tag (and/or

"ticket“) to use this request.

l Set the value of a sum.rnarv service.

Increment Increment the specified summary

service(e.g., a scalar meter summary

data area). The caller must present

an appropriate tag land/or ”ticket“) to

use this reuest.

Destroy the specified summary service

if the user has a tag and/or "ticket“

that permits them to request this

service.

In the preferred embodiment, the event summary data

structure uses a fixed event number to index into a look up table.

The look up table contains a value that can be configured as a

counter or a counter plus limit. Counter mode may be used by

VDE administrators to determine device usage. The limit mode

may be used to limit tampering and attempts to misuse the

electronic appliance 600. Exceeding a limit will result in SPE

-383 -

Petitioner Apple Inc. — Exhibit 1002, p. 5011

Petitioner Apple Inc. - Exhibit 1002, p. 5012

10

W0 98/09209 PCTIUS97/15243

503 (HPE 655) refusing to service user requests until it is reset

by a VDE administrator. Calls to the system wide event

summary process may preferably be built into all load modules

that process the events that are of interest.

The following table shows examples of events that may be

separately metered by the preferred embodiment event summary

data structure:

Event ;- e

S uccessful

Events

3
I

Initialization completed successfullv.

User authentication acce ted.

Communications established.

Channel loads set for specified values.

Dec tion comleted.

Kev information updated.

New budget created or ezdsting budget
udated.

New billing information generated or

eicistin - billing u dated.

New meter set up or existing meter

u dated.

New PERC created or ezdsting PERC

u dated.

New ob'ects re ; 'stered.

Administrative objects successfully
rocessed.

Audit rocessed successfull .

-384-

Petitioner Apple Inc. — Exhibit 1002, p. 5012

Petitioner Apple Inc. - Exhibit 1002, p. 5013

10

WO 98/09209 PCTIUS97I1S243

Failed Events Initialization failed.

correlation ta match.

Available budget insufiicient to complete
re uested rocedure.

Audit did not occur

Administrative object did not process
correctlv.

Other failed events.

Another, "overall currency budget“ summary data

structure maintained by the preferred embodiment summary

services manager 560 allows registration of VDE electronic

appliance 600. The first entry is used for an overall currency

budget consumed value, and is registered by the VDE

administrator that first initializes SPE 503 (HPE 655). Certain

currency consuming load modules and audit load modules that

complete the auditing process for consumed currency budget may

call the summary services manager 560 to update the currency

consumed value. Special authorized load modules may have

-385-

Petitioner Apple Inc. — Exhibit 1002, p. 5013

Petitioner Apple Inc. - Exhibit 1002, p. 5014

WO 98109209 PCTIUS97Il5243

access to the overall currency summary, while additional

summaries can be registered for by individual providers.

SPE Authentication Managerlservice Communications

Manager 564OI

The Authentication Manager/Service Communications

Manager 564 supports calls for user password validation and

“ticket”. generation and validation. It may also support secure

10 communications between SPE 503 and an external node or

device (e.g., a VDE administrator or distributor). It may support

the following examples of authentication-related service requests

in the preferred embodiment:

15 Call Name | Deecri tion

User Services

Create User Creates a new user and stores Name Services

Records (NSRSJ for use by the Name Services

Mana - er 752.

Authenticate Authenticates a user for use of the system.
User This request lets the caller authenticate as a

specific user ID. Group membership is also

authenticated by this request. The

authentication returns a ”ticket“ for the user.

20 Delete User Deletes a user’s NSR and related records.

 Ticket Services

Generate Generates a ”ticket“ for use of one or more

Ticket services.

-386-

Petitioner Apple Inc. — Exhibit 1002, p. 5014

Petitioner Apple Inc. - Exhibit 1002, p. 5015

wo 98/09209 PCTIUS97/15243

Authenticate Authenticates a ”ticket.“

Ticket

5 / Not included in the table above are calls to the secure

communications service. The secure communications service

provided by manager 564 may provide (e.g., in conjunction with

low-level services manager 582 if desired) secure

communications based on a public key (or others) challenge-

10 response protocol. This protocol is discussed in further detail

elsewhere in this document. Tickets identify users with respect

to the electronic appliance 600 in the case where the appliance

may be used by multiple users. Tickets may be requested by and

returned to VDE software applications through a ticket-granting

15 protocol (e.g., Kerberosn. VDE components may require ticketspto

be presented in order to authorize particular services.

SPE Secure Database Manager 566

Secure database manager 566 retrieves, maintains and

20 stores secure database records within secure database 610 on

memory external to SPE 503. Many of these secure database

files 610 are in encrypted form. All secure information retrieved

by secure database manager 566 therefore must be decrypted by

encrypt/decrypt manager 556 before use. Secure information

25 (e.g., records of use) produced by SPE 503 (HIPE 655) which must

-387-

Petitioner Apple Inc. — Exhibit 1002, p. 5015

Petitioner Apple Inc. - Exhibit 1002, p. 5016

WO 98/09209 PCI‘/US97Il5243

be stored external to the secure execution environment are also

encrypted by encrypt/decrypt manager 556 before they are stored

via secure database manager 566 in a secure database file 610.

(II For each VDE item loaded into SPE 503, Secure Database

manager 566 in the preferred embodiment may search a master

list for the VDE item ID, and then check the corresponding

transaction tag against the one in the item to ensure that the

item provided is the current item. Secure Database Manager

10 566 may maintain list of VDE item ID and transaction tags in a

"hash structure" that can be paged into SPE 503 to quickly locate

the appropriate VDE item ID. In smaller systems, a look up

table approach may be used. In either case, the list should be

structured as a pagable structure that allows VDE item ID to be

15 located quickly.

The ”hash based“ approach may be used to sort the list

into "hash buckets“ that may then be accessed to provide more

rapid and efiicient location of items in the list. In the "hash

20 based“ approach, the VDE item IDs are ”hashed“ through a

subset of the full item ID and organized as pages of the ”hashed“

table. Each ”hashed“ page may contain the rest of the VDE item

ID and current transaction tag for each item associated with that

page. The ”hash“ table page number may be derived from the

-388-

Petitioner Apple Inc. — Exhibit 1002, p. 5016

Petitioner Apple Inc. - Exhibit 1002, p. 5017

wo 9s/09209 1>c'rrus9-ms243

components of the VDE item ID, such as distribution ID, item

ID, site ID, user ID. transaction tag, creator ID, type and/or

version. The hashing algorithm (both the algorithm itself and

the parameters to be hashed) may be configurable by a VDE

5 administrator on a site by site basis to provide optimum hash

page use. An example of a hash page structure appears below:

Hash Pae Header

Distributor ID

Site ID

Transaction Tag

Hash Pae Ent -

Item ID

T e

Version

10

 15

20

 Transaction Ta

In this example, each hash page may contain all of the

25 VDE item IDs and transaction tags for items that have identical

distributor ID, item ID, and user ID fields (site ID will be fixed

for a given electronic appliance 600). These four pieces of

information may thus be used as hash algorithm parameters.

-389-

Petitioner Apple Inc. — Exhibit 1002, p. 5017

Petitioner Apple Inc. - Exhibit 1002, p. 5018

wo 93/09209 PCIIUS97/15243

The ”hash"‘ pages may themselves be frequently updated,

and should carry transaction tags that are checked each time a

"hash" page is loaded. The transaction tag may also be updated

’each time a ”hash“ page is written out.

As an alternative to the hash-based approach, if the

number of updatable items is kept small (such as in a dedicated

consumer electronic appliance 600), then assigning each

updatable item a unique sequential site record number as part of
10 its VDE item ID may allow a look up table approach to be used.

Only a small number of bytes of transaction tag are needed per

‘item, and a table transaction tag for all frequently updatable

items can be kept in protected memory such as SPU NVRAM

534b.

Random Value Generator Manager 565

Random Value Generator Manager 565 may generate

random values. If a ha.rdware~based SPU random value

generator 542 is present, the Random Value Generator Manager

20 565 may use it to assist in generating random values.

Other SPE RPC Services 592

Other authorized RPC services may be included in SPU

500 by having them "register“ themselves in the RPC Services

-390-

Petitioner Apple Inc. — Exhibit 1002, p. 5018

Petitioner Apple Inc. - Exhibit 1002, p. 5019

WO 98109209 PCTlUS97I!52-13

Table and adding their entries to the l?.PC Dispatch Table. For

example, one or more component assemblies 690 may be used to

provide additional services as an integral part of SPE 503 and its

associated operating system. Requests to services not registered

5 in these tables will be passed out of SPE 503 (HPE 655) for

external servicing.

SPE 603 Performance Considerations

Performance of SPE 503 (HPE 655) is a function of:

10 - complexity of the component assemblies used

- number of simultaneous component assembly operations

- amount of internal SPU memory available

- speed of algorithm for block encryption/decryption

15 The complexity of component assembly processes along

with the number of simultaneous component assembly processes

is perhaps the primary factor in determining performance.

These factors combine to determine the amount of code and data

and must be resident in SPU 500 at any one time (the minimum

20 device size) and thus the number of device size "chunks" the

processes must be broken down into. Segmentation inherently

increases run time size over simpler models. Of course, feature

limited versions of SPU 500 may be implemented using

significantly smaller amounts of RAM 534. ”Agg'regate“ load

-391-

Petitioner Apple Inc. — Exhibit 1002, p. 5019

Petitioner Apple Inc. - Exhibit 1002, p. 5020

WO 98109209 PCl‘IUS97I15243

modules as described above may remove flexibility in configuring

VDE structures and also further limit the ability of participants

to individually update otherwise separated elements, but may

result in a smaller minimum device size. A very simple metering

5 version of SPU 500 can be constructed to operate with minimal

device resources.

The amount of RAM 534 internal to SPU 500 has more

impact on the performance of the SPE 503 than perhaps any

10 other aspect of the SPU. The flexible nature ofVDE processes

allows use ofa large number of load modules, methods and user

data elements. It is impractical to store more than a small

number of these items in ROM 532 within SPU 500. Most of the

code and data structures needed to support a specific VDE

15 process will need to be dynamically loaded into the SPU 500 for

the specific VDE process when the process is invoked. The

operating system within SPU 500 then may page in the

necessary VDE items to perform the process. The amount of

RAM 534 within SPU 500 will directly determine how large any

20 single VDE load module plus its required data can be, as well as

the number of page swaps that will be necessary to run a VDE

process. The SPU I/O speed, encryption/decryption speed, and

the amount of internal memory 532, 534 will directly afl'ect the

number of page swaps required in the device. Insecure external

-392-

Petitioner Apple Inc. — Exhibit 1002, p. 5020

Petitioner Apple Inc. - Exhibit 1002, p. 5021

WO 98/09209 PCI‘IUS97IlS243

memory may reduce the wait time for swapped pages to be

loaded into SPU 500, but will still incur substantial

encryption/decryption penalty for each page.

5 In order to maintain security, SPE 503 must encrypt and

cryptographically seal each block being swapped out to a storage

device external to a supporting SPU 500, and must similarly

decrypt, verify the cryptographic seal for, and validate each block

as it is swapped into SPU 500. Thus, the data movement and

10 encryption/decryption overhead for each swap block has a very

large impact on SPE performance.

The performance of an SPU microprocessor 520 may not

significantly impact the performance of the SPE 503 it supports

15 if the processor is not responsible for moving data through the

encrypt/decrypt engine 522.

l I VDE Secure Database 610

VDE 100 stores separately deliverable VDE elements in a

20 secure (e.g., encrypted) database 610 distributed to each VDE

electronic appliance 610. The database 610 in the preferred

embodiment may store and/or manage three basic classes of VDE

items:

VDE objects,

-393 -

Petitioner Apple Inc. — Exhibit 1002, p. 5021

Petitioner Apple Inc. - Exhibit 1002, p. 5022

10

W098l09209

VDE process elements, and

VDE data structures.

The following table lists examples of some of the VDE

items stored in or managed by information stored in secure

database 610:

1
bjects Content Objects Provide a container for

content.

Provide a container for

information used to keep

VDE 100 0

Provide a container for

Administrative

Objects

- eratinz.

 Traveling Objects

content and control

information.

 Smart Objects Provide a container for

(user-specified) processes

and data.
 Method Cores Provide a mechanism to

relate events E0 COI'ltI‘0l

mechanisms and

ermissions.

("LMs“) executable code.

Method Data Independently deliverable

Elements (”MDEs“) data structures used to

control/customize

methods.

Permissions Records Permissions to use

("PERCs“) objects; ”b1ueprints“ to

 build component

assemblies.

-394-

Petitioner Apple Inc. — Exhibit 1002, p. 5022

PCTlUS97I15243

Petitioner Apple Inc. - Exhibit 1002, p. 5023

WO 98/09209 PCT/US9'7IlS243

User Data Elements Basic data structure for

("U'DEs“) storing information used

in conjunction with load

modules.

Used by VDE node to

maintain admim''strative

Administrative Data

Structures

Each electronic appliance 600 may have an instance of a

secure database 610 that securely maintains the VDE items.

Ul Figure 16 shows one example of a secure database 610. The

secure database 610 shown in this example includes the

following VDE-protected items:

° one or more PERCS 808;

- methods 1000 (including static and dynamic method

10 ”cores“ 1000, and MDES 1202);

- Static UDEs 1200a and Dynamic UDES 1200b; and

- load modules 1100.

Secure database 610 may also include the following

15 additional data structures used and maintained for

administrative purposes:

- an “object registry“ 450 that references an object

storage 728 containing one or more VDE objects;

0 name service records 452; and

-395-

Petitioner Apple Inc. — Exhibit 1002, p. 5023

Petitioner Apple Inc. - Exhibit 1002, p. 5024

wo 93/09209 ' PCT/US97I15243

- configuration records 454 (including site

configuration records 456 and user configuration

records 458).

5 Secure database 610 in the preferred embodiment does not

include VDE objects 300, but rather references VDE objects

stored, for example. on file system 687 and/or in a separate object

repository 728. Nevertheless, an appropriate ”starting point“ for

understanding VDE-protected information may be a discussion
10 of VDE objects 300.

VDE Objects 300

VDE 100 provides a media independent container model

for encapsulating content. Figure 17 shows an example ofa

15 ’’logical‘‘ structure or format 800 for an object 300 provided by the

preferred embodiment.

The generalized "logical object“ structure 800 shown in

Figure 17 used by the preferred embodiment supports digital

20 content delivery over any currently used media. "Logical object“

in the preferred embodiment may refer collectively to: content;

computer software and/or methods used to manipulate, record,

and/or otherwise control use of said content; and permissions,

limitations, administrative control information and/or

-396-

Petitioner Apple Inc. — Exhibit 1002, p. 5024

Petitioner Apple Inc. - Exhibit 1002, p. 5025

wo 98I09209 PCTIUS97IlS243

requirements applicable to said content, and/or said computer

software and/or methods. Logical objects may or may not be

stored, and may or may not be present in. or accessible to, any

given electronic appliance 600. The content portion of a logical

5 object may be organized as information contained in, not

contained in, or partially contained in one or more objects.

Briefly, the Figure 17 "logical object“ structure 800 in the

preferred embodiment includes a public header 802, private

10 header 804, a "private body“ 806 containing one or more methods

1000, permissions recordis) (PERC) 808 (which may include one

or more key blocks 810), and one or more data blocks or areas

812. These elements may be “packaged” within a ”container“

302. This generalized. logical object structure 800 is used in the

15 preferred embodiment for different types of VDE objects 300

categorized by the type and location of their content.

The “container” concept is a convenient metaphor used to

give a name to thecollection ofelements required to make use of

20 content or to perform an administrative-type activity. Container

302 typically includes identifying information, control structures

and content (e.g., a property or administrative data). The term

"container" is often (e.g., Bento/OpenDoc and OLE) used to

describe a collection of information stored on a computer

-397-

Petitioner Apple Inc. — Exhibit 1002, p. 5025

Petitioner Apple Inc. - Exhibit 1002, p. 5026

wo 93/09209 PCTlUS97Il5243

system’s secondary storage system(s) or accessible to a computer

system over a communications network on a ”server's“ secondary

storage system. The "’container“ 302 provided by the preferred

embodiment is not so limited or restricted. In VDE 100, there is

5 no requirement that this information is stored together, received

at the same time, updated at the same time, used for only a

single object, or be owned by the same entity. Rather, in VDE

100 the container concept is extended and generalized to include

real-time content and/or online interactive content passed to an

10 electronic appliance over a cable, by broadcast, or communicated

by other electronic communication means.

Thus, the “complete” VDE container 302 or logical object

structure 800 may not exist at the user’s location (or any other

15 location, for that matter) at any one time. The "logical object“

may exist over a particular period of time (or periods of time),

rather than all at once. This concept includes the notion of a

"virtual container“ where important container elements may

en'st either as a plurality of locations and/or over a sequence of

20 time periods (which may or may not overlap). Of course, VDE

100 containers can also be stored with all required control

structures and content together. This represents a continuum:

from all content and control structures present in a single

-398-

Petitioner Apple Inc. — Exhibit 1002, p. 5026

Petitioner Apple Inc. - Exhibit 1002, p. 5027

W0 98/09209 PCI'IUS97I15243

container, to no locally accessible content or container specific

control structures.

~ Although at least some of the data representing the object

5 is typically encrypted and thus its structure is not discernible,

within a PPE 650 the object may be viewed logically as a

”container“ 302 because its structure and components are

automatically and transparently decrypted.

10 A container model merges well with the event—driven

processes and ROS 602 provided by the preferred embodiment.

Under this model, content is easily subdivided into small, easily

manageable pieces. but is stored so that it maintains the

structural richness inherent in unencrypted content. .An object._

15 oriented container model (such as Bento/OpenDoc or OLE) also

provides many of the necessary ”hooks“ for inserting the

necessary operating system integration components, and for

defining the various content specific methods.

20 In more detail, the logical object structure 800 provided by

the preferred embodiment includes a public (or unencrypted)

header 802 that identifies the object and may also identify one or

more owners of rights in the object and/or one or more

distributors of the object. Private (or encrypted) header 804 may

-399-

Petitioner Apple Inc. — Exhibit 1002, p. 5027

Petitioner Apple Inc. - Exhibit 1002, p. 5028

W0 98/139209 PCTIUS97l15243

include a part or all of the information in the public header and

further, in the preferred embodiment, will include additional

data for validating and identifying the object 300 when a user

attempts to register as a user of the object with a service

5 V clearinghouse, VDE administrator, or an SPU 500.

Alternatively, information identifying one or more rights owners

and/or distributors of the object may be located in encrypted form

within encrypted header 804, along with any of said additional

validating and identifying data.

10

Each logical object structure 800 may also include a

"private body“ 806 containing or referencing a set of methods

1000 (i.e., programs or procedures) that control use and

distribution of the object 300. The ability to optionally

15 incorporate different methods 1000 with each object is important

to making VDE 100 highly configurable. Methods 1000 perform

the basic function of defining what users (including, where

appropriate, distributors, client administrators, etc.), can and

cannot do with an object 300. Thus, one object 300 may come

20 with relatively simple methods, such as allowing unlimited

viewing within a fixed period of time for a fixed fee (such as the

newsstand price of a newspaper for viewing the newspaper for a

period of one week after the paper’s publication), while other

-400-

Petitioner Apple Inc. — Exhibit 1002, p. 5028

Petitioner Apple Inc. - Exhibit 1002, p. 5029

wo 9s/09209 PCT/US9‘7ll5243

objects may be controlled by much more complicated (e.g., billing

and usage limitation) methods. .

Logical object structure 800 shown in Figure 17 may also

5 include one or more PERCS 808. PERCs 808 govern the use of an

object 300, specifying methods or combinations of methods that

must be used to access or otherwise use the object or its contents."

The permission records 808 for an object may include key

block(s) 810, which may store decryption keys for accessing the

10 content of the encrypted content stored within the object 300.

The content portion of the object is typically divided into

portions called data blocks 812. Data blocks 812 may contain

any sort of electronic information, such as, ”content,“ including

15 computer programs, images, sound, VDE administrative

information, etc. The size and number of data blocks 812 may be

selected by the creator of the property. Data blocks 812 need not

all be the same size (size may be influenced by content usage,

database format, operating system, security and/or other

20 considerations). Security will be enhanced by using at least one

key block 810 for each data block 812 in the object, although this

is not required. Key blocks 810 may also span portions of a

plurality of data blocks 812 in a consistent or pseudo-random

manner. The spanning may provide additional security by

-401-

Petitioner Apple Inc. — Exhibit 1002, p. 5029

Petitioner Apple Inc. - Exhibit 1002, p. 5030

W0 98I09209 PCTIUS97/15243

applying one or more keys to fragmented or seemingly random

pieces of content contained in an object 300, database, or other

information entity.

5 Many objects 300 that are distributed by physical media

and/or by ”out of channel“ means (e.g., redistributed afizer receipt

by a customer to another customer) might not include key blocks

810 in the same object 300 that is used to transport the content

protected by the key blocks. This is because VDE objects may

10 contain data that can be electronically copied outside the

confines of a VDE node. If the content is encrypted, the copies

will also be encrypted and the copier cannot gain access to the

content unless she has the appropriate decryption key(s). For

objects in which maintaining security is particularly important,

15 the permission records 808 and key blocks 810 will frequently be

distributed electronically, using secure communications

techniques (discussed below) that are controlled by the VDE ‘ '

nodes of the sender and receiver. As a result, permission records

808 and key blocks 810 will frequently, in the preferred

20 embodiment, be stored only on electronic appliances 600 of

registered users (and may themselves be delivered to the user as

part of a registration/initialization process). In this instance,

permission records 808 and key blocks 810 for each property can

be encrypted with a private DES key that is stored only in the

-402 -

Petitioner Apple Inc. — Exhibit 1002, p. 5030

Petitioner Apple Inc. - Exhibit 1002, p. 5031

wo 93/09209 PCT/US97I15243

secure memory of an SPU 5500, making the key blocks unusable

on any other user‘s VDE node. Altemately, the key blocks 810

can be encrypted with the end users public key, making those

key blocks usable only to the SPU 500 that stores the

5 corresponding private key (or other. acceptably secure,

encryption/security techniques can be employed).

In the preferred embodiment, the one or more keys used to

encrypt each permission record 808 or other management

10 information record will be changed every time the record is

updated (or after :1 certain one or more events). In this event,

the updated record is re-encrypted with new one or more keys.

Alternately, one or more of the keys used to encrypt and decrypt

management information may be "time aged“ keys that

15 automatically become invalid after a period of time.

Combinations of time aged and other event triggered keys may

also be desirable: for example keys may change after a certain

number of accesses, and/or after a certain duration of time or

absolute point in time. The techniques may also be used

20 together for any given key or combination of keys. The preferred

embodiment procedure for constructing time aged keys is a

one-way convolution algorithmwith input parameters including

user and site information as well as a specified portion of the real

time value provided by the SPU RTC 528. Other techniques for

-403-

Petitioner Apple Inc. — Exhibit 1002, p. 5031

Petitioner Apple Inc. - Exhibit 1002, p. 5032

wo 934.9299 ' PCI‘IUS9'Ill5243

time aging may also be used. including for example techniques

that use only user or site information. absolute points in time,

and/or duration of time related to a subset of activities related to

using or decrypting VDE secured content or the use of the VDE

5 system.

VDE 100 supports many different types of ”objects“ 300

having the logical object structure 800 shown in Figure 17.

Objects may be classified in one sense based on whether the

10 protection information is bound together with the protected

information. For example. a container that is bound by its

control(s) to a specific VDE node is called a "stationary object“

(see Figure 15:. .-\ container that is not bound by its control

information to a specific VDE node but rather carries suflicient

15 control and permissions to permit its use. in whole or in part, at

any of several sites is called a ”Traveling Object“ (see Figure 19).

Objects may be classified in another sense based on the

nature of the information they contain. A container with

20 information content is called a "Content Object“ (see Figure 20).

A container that contains transaction information, audit trails,

VDE structures, and/or other VDE control/administrative

information is called an "Administrative Object“ (see Figure 21).

Some containers that contain executable code operating under

-404-

Petitioner Apple Inc. — Exhibit 1002, p. 5032

Petitioner Apple Inc. - Exhibit 1002, p. 5033

wo 93/09209 PCT/US97I15243

VDE control (as opposed to being control information) are

called "Smart Objects.“ Smart Objects support user agents and

provide control for their execution at remote sites. There are

other categories of objects based upon the location, type and

5 access mechanism associated with their content, that can include

combinations of the types mentioned above. Some of these

objects supported by VDE 100 are described below. Some or all

of the data blocks 812 shown in Figure 17 may include

“embedded” content. administrative, stationary, traveling and/or

10 other objects.

1. Stationary Objects

Figure 18 shows an example of a "Stationary Object“

structure 850 provided by the preferred embodiment.

15 "Stationary Object“ structure 850 is intended to be used only at

specific VDE electronic appliance/installations that have received

explicit permissions to use one or more portions of the stationary

object. Therefore, stationary object structure 850 does not

contain a permissions record (PERC) 808; rather, this

20 permissions record is supplied and/or delivered separately (e.g.,

at a different time, over a different path, and/or by a diflerent

party) to the appliance/installation 600. A common PERC 808

may be used with many different stationary objects.

-405-

Petitioner Apple Inc. — Exhibit 1002, p. 5033

Petitioner Apple Inc. - Exhibit 1002, p. 5034

WO 98109209 PCTIUS97l15243

As shown in Figure 18, public header 802 is preferably

"pla.in'text“ (i.e., unencrypted). Private header 804 is preferably

encrypted using at least one of many "’private header keys.“

Private header 804 preferably also includes a copy of
U!

identification elements from public header 802, so that if the

identification information in the plaintext public header is

tampered with, the system can determine precisely what the

tamperer attempted to alter. Methods 1000 may be contained in

a section called the "private body“ 806 in the form of object local

10 methods, load modules. and/or user data elements. This private

body (method; section 806 is preferably encrypted using one or

more private body keys contained in the separate permissions

record 808. The data blocks 812 contain content (information or

administrative: that may be encrypted using one or more content

15 keys also provided in permissions record 808.

2. Traveling Objects

Figure 19 shows an example of a "traveling object“

structure 860 provided by the preferred embodiment. Traveling

20 objects are objects that carry with them sufiicient information to

enable at least some use of at least a portion of their content

when they arrive at a VDE node;

-406-

Petitioner Apple Inc. — Exhibit 1002, p. 5034

Petitioner Apple Inc. - Exhibit 1002, p. 5035

WO 98/09209 PCFIUS97/15243

Traveling object structure 860 may be the same as

stationary object structure 850 shown in Figure 18 except that

the traveling object structure includes a permissions record

(PERC) 808 within private header 804. The inclusion of PERC

5 808 within traveling object structure 860 permits the traveling

object to be used at any VDE electronic appliance/participant 600

(in accordance with the methods 1000 and the contained PERC

808).

10 ”Traveling“ objects are a class ofVDE objects 300 that can

specifically support “out of channel“ distribution. Therefore, they

include key l)lOCl(lS-' S10 and are transportable from one

electronic appliance 600 to another. Traveling objects may come

with a quite limited usage related budget so that a user may use,

15 in w';.uie or part. content (such as a computer program, game, or

database) and evaluate whether to acquire a license or further

license or purchase object content. Alternatively, traveling object

PERCS 808 may contain or reference budget records with, for

example:

20 (a) budget(s) reflecting previously purchased rights or

credit for future licensing or purchasing and

enabling at least one or more types of object content

usage, and/or

-407-

Petitioner Apple Inc. — Exhibit 1002, p. 5035

Petitioner Apple Inc. - Exhibit 1002, p. 5036

W0 98N9209 PC'l‘lUS9‘7Il5243

(b) budget(s') that employ (and may debit) available

credit(s) stored on and managed by the local VDE

node in order to enable object content use, and/or

0! (c) budgetls) reflecting one or more maximum usage

criteria before a report to a local VDE node (and,

optionally. also a report to a clearinghouse) is

required and which may be followed by a reset

allowing further usage, and/or modification of one or

10 more 01‘ the original one or more budgetts).

As with standard VDE objects 300, a user may be required

to contact a clearinghouse service to acquire additional budgets if

the user wishes to continue to use the traveling object after the

15 exhaustion of an available budget('s) or if the traveling object (or

a copy thereof) is moved to a different electronic appliance and

the new appliance does not have a available credit budgetis) that

corresponds to the requirements stipulated by perm_is_sions

record 808.

20

For example, a traveling object PERC 808 may include a

reference to a required budget VDE 1200 or budget options that

may be found and/or are expected to be available. For example,

the budget VDE may reference a consumer’s VISA, MC, AMEX,

-408-

Petitioner Apple Inc. — Exhibit 1002, p. 5036

Petitioner Apple Inc. - Exhibit 1002, p. 5037

wo 93/09209 PCTIUS97/15243

or other ”generic“ budget that may be object independent and

may be applied towards the use of a certain or classes of

traveling object content (for example any movie object from a

class of traveling objects that might be Blockbuster Video

5 rentals). The budget VDE itself may stipulate one or more

classes of objects it may be used with, while an object may

specifically reference a certain one or more generic budgets.

Under such circumstances, VDE providers will typically make

information available in such a manner as to allow correct

10 referencing and to enable billing handling and resulting

payments.

Traveling objects can be used at a receiving VDE node

electronic appliance 600 so long as either the appliance carries

15 the correct budget or budget type (‘e.g. sufiicient credit available

from a clearinghouse such as a VISA budget) either in general or

for specific one or more users or user classes, or so long as the

traveling object itself carries with it sufiicient budget allowance

or an appropriate authorization (e.g., a stipulation that the

20 traveling object may be used on certain one or more installations

or installation classes or users or user classes where classes

correspond to a specific subset of installations or users who are

represented by a predefined class identifiers stored in a secure

database 610). Aflzer receiving a traveling object, if the user

-409-

Petitioner Apple Inc. — Exhibit 1002, p. 5037

Petitioner Apple Inc. - Exhibit 1002, p. 5038

10

20

wo 93109299 ' PCTIUs97I15243

(and/or installation) doesn't have the appropriate budgetls)

and/or authorizations, then the user could be informed by the

electronic appliance 600 (using information stored in the

traveling object) as to which one or more parties the user could

contact. The party or parties might constitute a list of

alternative clearinghouse providers for the traveling object from

which the user selects his desired contact).

As mentioned above. traveling objects enable objects 300 to

be distributed "Out—Of-Channel?‘ that is. the object may be

distributed by an unauthorized or not explicitly authorized

individual to another individual. "Out of channel“ includes paths

of distribution that allow. for example. a user to directly

redistribute an object to another individual. For example, an

object provider might allow users to redistribute copies of an

object to their friends and associates (for example by physical

delivery of storage media or by delivery over a computer

network) such that if a friend or associate satisfies any certain

criteria required for use of said object, he may do so.

For example, if a software program was distributed as a

traveling object, a user of the program who wished to supply it or

a usable copy of it to a friend would normally be free to do so.

Traveling Objects have great potential commercial significance,

-410-

Petitioner Apple Inc. — Exhibit 1002, p. 5038

Petitioner Apple Inc. - Exhibit 1002, p. 5039

W0 98/09109 - PCTIUS97/15243

since useful content could be primarily distributed by users and

through bulletin boards. which would require little or no

distribution overhead apart from registration with the "original‘‘

’content provider and/or clearinghouse.

OI

The "out of channel“ distribution may also allow the

provider to receive payment for usage and/or elsewise maintain

at leastia degree of control over the redistributed object. Such

certain criteria might involve. for example. the registered

10 presence at a users VDE node ofan authorized third party

financial relationship. such as a credit card. along with sufficient

available credit for said usage.

Thus, ifthe user had a VDE node. the user might be able

15 to use the traveling object if he had an appropriate, available

budget available on his VDE node (and ifnecessary, allocated to

him), and/or if he or his VDE node belonged to a specially

authorized group of users or installations and/or if the traveling

object carried its own budgetls).

20

Since the content of the traveling object is encrypted, it

can be used only under authorized circumstances unless the

traveling object private header key used with the object is

broken—a potentially easier task with a traveling object as

-411-

Petitioner Apple Inc. — Exhibit 1002, p. 5039

Petitioner Apple Inc. - Exhibit 1002, p. 5040

wo 93/09209 PCTIUS97I15243

compared to. for example. permissions and/or budget information

since many objects may share the same key, giving a

cryptoanalyst both more information in cyphertext to analyze

and a greater incentive to perform cryptoanalysis.

OI

In the case oi‘ a "traveling object.“ content owners may

distribute information with some or all of the key blocks 810

included in the object 300 in which the content is encapsulated.

Putting keys in distributed objects 300 increases the exposure to

10 attempts to ‘defeat security mechanisms by breaking or

cryptoanalyzinsr the encryption algorithm with which the private

header is pI‘OI’.C‘L‘[(?d w;-.-_'.. by determining the key for the headers

encryption v. T‘:1i.~; iwcaking ofsecurity would normally require

considerable skill and time. but if broken. the algorithm and key

15 could be published so as to allow large numbers of individuals

who possess objects that are protected with the same keyis) and

algorithmlsi to illegally use protected information. As a result,

placing keys in distributed objects 300 may be limited to content

that is either "time sensitive“ (has reduced value after the

20 passage ofa certain period of time), or which is somewhat

limited in value, or where the commercial value of placing keys

in objects (for example convenience to end-users, lower cost of

eliminating the telecommunication or other means for delivering

keys and/or permissions information and/or the ability to

-412-

Petitioner Apple Inc. — Exhibit 1002, p. 5040

Petitioner Apple Inc. - Exhibit 1002, p. 5041

wo 98,0920’ PCT/U597/15243

supporting objects going ‘out-of-charmel“) exceeds the cost of

vulnerability to sophisticated hackers. As mentioned elsewhere,

the security of keys may be improved by employing convolution

techniques to avoid storing ”true“ keys in a traveling object,

5 although in most cases using a shared secret provided to most or

all VDE nodes by a VDE‘ administrator as an input rather than

site ID and/or time i.n order to allow objects to remain

independent of these values.

10 As shown in Figure 19 and discussed above, a traveling

object contains :1 permissions record 808 that preferably provides

at least some budget (one. the other, or both. in a general case).

Permission records 808 can, as discussed above, contain a key

block(s) 810 storing important key information. PERC 808 may

15 also contain or refer to budgets containing potentially valuable

quantities/"values. Such budgets may be stored within a

traveling object itself. or they may be delivered separately and

protected by highly secure communications keys and

administrative object keys and management database

20 techniques.

The methods 1000 contained by a traveling object will

typically include an installation procedure for "self registering“

the object using the permission records 808 in the object (e.g., a

-413-

Petitioner Apple Inc. — Exhibit 1002, p. 5041

Petitioner Apple Inc. - Exhibit 1002, p. 5042

wo 98/09209 PCT/U597/15243

REGISTER method). This may be especially useful for objects

that have time limited value. objects (or properties) for which the

end user is either not charged or is charged only a nominal fee

(e.g., objects for which advertisers and/or information publishers

U!
are charged based on the number of end users who actually

access published information), and objects that require widely

available budgets and may particularly benefit from

out-of-channel distribution (e.g., credit card derived budgets for

objects containing properties such as movies, software programs,

10 games, etc.). Such traveling objects may be supplied with or

without contained budget UDEs.

One use of traveling objects is the publishing of software,

where the contained permission recordfsl may allow potential “

15 customers to use the software in a demonstration mode, and

possibly to use the full program features for a limited time before

having to pay a license fee, or before having to pay more than an

initial trial fee. For example, using a time based billing method

and budget records with a small pre-installed time budget to

20 allow full use of the program for a short period of time. Various

control methods may be used to avoid misuse of object contents.

For example, by setting the minimum registration interval for

the traveling object to an appropriately large period of time (e.g.,

-414-

Petitioner Apple Inc. — Exhibit 1002, p. 5042

Petitioner Apple Inc. - Exhibit 1002, p. 5043

WO 98109209 PC!‘/US97I15243

a month, or six months or a year), users are prevented from

re-using the budget records in the same traveling object.

Another method for controlling the use of traveling objects

is to include time-aged keys in the permission records that areU:

incorporated in the traveling object. This is useful generally for

traveling objects to ensure that they will not be used beyond a

certain date without re-registration, and is particularly useful

for traveling objects that are electronically distributed by

10 broadcast, network. or telecommunications (including both one

and two way cable since the date and time ofdelivery of such

traveling objects aging keys can be set to accurately correspond

to the time the user came into possession of the object.

15 Traveling objects can also be used to facilitate "moving“ an

object from one electronic appliance 600 to another. A user could

move a traveling object. with its incorporated one or more

permission records 808 from a desktop computer, for example, to

his notebook computer. A traveling object might register its user

20 within itself and thereafter only be useabie by that one user. A

traveling object might maintain separate budget information,

one tor the basic distribution budget record, and another for the

"active“ distribution budget record of the registered user. In this

-415-

Petitioner Apple Inc. — Exhibit 1002, p. 5043

Petitioner Apple Inc. - Exhibit 1002, p. 5044

wo 93/09209 PCTIUS97/15243

way, the object could be copied and passed to another potential

user, and then could be a portable object for that user.

Traveling objects can come in a container which contains
Ul

other objects. For example, a traveling object container can

include one or more content objects and one or more

administrative objects for registering the content object(s) in an__

end users object registry and/or for providing mechanisms for

enforcing permissions and/or other security functions. Contained

10 administrative object: 5- may be used to install necessary

permission records and or budget information in the end user's

electronic appliance.

Content Objects

15 Figure 20 shows an example ofa VDE content object

structure 880. Generally, content objects 880 include or provide

information content. This "content“ may be any sort of electronic

information. For example, content may include: computer

software, movies, books, music, information databases,

20 multimedia information, virtual reality information, machine

Petitioner Apple Inc. — Exhibit 1002, 10- 5044

Petitioner Apple Inc. - Exhibit 1002, p. 5045

wo 93/059209 PCl‘IUS97I15243

and/or auditing electronic commercial transactions and

communications such as inter-bank transactions, electronic

purchasing communications, and the transmission of, auditing .

of, and secure commercial archiving of, electronically signed

5 contracts and other legal documents; the information used for

these transactions may also be termed ”content.“ As mentioned

above, the content need not be physically stored within the object

container but may instead be provided separately at a diflerent

time (e.g., a real time feed over a cable).

10

Content object structure 880 in the particular example

shown in Figure 20 is a type of stationary object because it does

not include a PERC 808. In this example, content object

structure 880 includes, as at least part of its content 812, at least

15 one embedded content object 882 as shown in Figure 5A.

Content object structure 880 may also include an administrative

object 870. Thus, objects provided by the preferred embodiment

may include one or more ”embedded“ objects. -

20 Administrative Objects

Figure 21 shows an example of an administrative object

structure 870 provided by the preferred embodiment. An

"administrative object“ generally contains permissions,

administrative control information, computer software and/or

-417-

Petitioner Apple Inc. — Exhibit 1002, p. 5045

Petitioner Apple Inc. - Exhibit 1002, p. 5046

W0 93/09209 l’Cl'IUS97Il 5243

methods associated with the operation of VDE 100.

Administrative objects may also or alternatively contain records

of use, and/or other information used in, or related to, the

operation of VDE 100. An administrative object may be

OI
distinguished from a content object by the absence of VDE

protected ”content“ for release to an end user for example. Since

objects may contain other objects, it is possible for a single object

to contain one or more content containing objects and one or

more administrative objects. Administrative objects may be used

10 to transmit information between electronic appliances for

update, usage reporting, billing and/or control purposes. They

contain information that helps to administer VDE 100 and keep

it operating properly. Administrative objects generally are sent

between two VDE nodes, for example, a VDE clearinghouse

15 service, distributor, or client administrator and an end users

electronic appliance 600.

Administrative object structure 870 in this example

includes a public header 802, private header 804 (including a

20 “PERC” 808) and a “private body“ 806 containing methods 1000.

Administrative object structure 870 in this particular example

shown in Figure 20 is a type ofvtraveling object because it

contains a PERC 808, but the administrative object could exclude

the PERC 808 and be a stationary object. Rather than storing

-418-

Petitioner Apple Inc. — Exhibit 1002, p. 5046

Petitioner Apple Inc. - Exhibit 1002, p. 5047

WO 98/09209 PCI'IUS97Il5243

information content. administrative object structure 870 stores

"administrative information content“ 872. Administrative

information content 872 may, for example, comprise a number of

records 872a, 872b, . . . 872n each corresponding to a different

5 ”event.“ Each record 872a. 872b, . . . 872n may include an

”event“ field 874, and may optionally include a parameter field

876 and/or a data field 878. These administrative content

records 872 may be used by VDE 100 to define events that may

be processed during the course of transactions, e.g., an event

10 designed to add a record to a secure database might include

parameters 896 indicating how and where the record should be

stored and data field 878 containing the record to be added. In

another example. :1 collection of events may describe a financial

transaction between the creatorisl of an administrative object

15 and the recipientl s i, such as a purchase, a purchase order, or an

invoice. Each event record 872 may be a set of instructions to be

executed by the end users electronic appliance 600 to make an

addition or modification to the end user's secure database 610,

for example. Events can perform many basic management

20 functions, for example: add an object to the object registry,

including providing the associated user/group record(s), rights

records, permission record and/or method records; delete audit

records (by ”rolling up“ the audit trail information into, for

example, a more condensed, e.g. summary form, or by actual

-419-

Petitioner Apple Inc. — Exhibit 1002, p. 5047

Petitioner Apple Inc. - Exhibit 1002, p. 5048

wo 98109209 ‘ ' PCl‘IUS97I1s243

deletion): add or update permissions records 808 for previously

registered objects: add or update budget records; add or update

user rights records; and add or update load modules.

On
In the preferred embodiment. an administrative object

may be sent. for example. by a distributor, client administrator,

or, perhaps, a clearinghouse or other financial service provider,

to an end user, or. alternatively, for example, by an object creator

to a distributor or service clearinghouse. Administrative objects,

10 for example. ma): increase or otherwise adjust budgets and/or

permissions of the receiving VDE node to which the

administrative 0b_lL’L‘t 15 being sent. Similarly, administrative

objects containing audit information in the data area 878 ofan

event record 872 can be sent from end users to distributors,

15 and/or clearinghouses and/or client administrators, who might

themselves further transmit to object creators or to other

M_g§_r£i_cipants in the object's chain of handling.

Methods

20 Methods 1000 in the preferred embodiment support many

of the operations that a user encounters in using objects and

communicating with a distributor. They may also specify what

method fields are displayable to a user (e.g., use events, user

re uest events, user res onse events, and user dis la events).9 P

-420-

Petitioner Apple Inc. — Exhibit 1002, p. 5048

Petitioner Apple Inc. - Exhibit 1002, p. 5049

wo 93/09209 “ 1>crrus97/15243

Additionally, if distribution capabilities are supported in the

method, then the method may support distribution activities,

distributor communications with a user about a method, method

modification, what method fields are displayable to a distributor,

5 and any distribution database checks and record keeping (e.g.,

distribution events, distributor request events, and distributor

TBSPODSE events).

Given the generality of the existing method structure, and

10 the diverse array of possibilities for assembling methods, a

generalized structure may be used for establishing relationships

between methods. Since methods 1000 may be independent of

an object that requires them during any given session, it is not

possible to define the relationships within the methods

15 themselves. "Control methods“ are used in the preferred

embodiment to define relationships between methods. Control

methods may be object specific, and may accommodate an

individual object’s requirements during each session.

20 A control method of an object establishes relationships

between other methods. These relationships are parameterized

with explicit method identifiers when a record set reflecting

desired method options for each required method is constructed

during a registration process.

-421-

Petitioner Apple Inc. — Exhibit 1002, p. 5049

Petitioner Apple Inc. - Exhibit 1002, p. 5050

wo 98/09209 PCTfUS97Il5243

An "aggregate method“ in the preferred embodiment

represents a collection of methods that may be treated as a single

unit. A collection of methods that are related to a specific

property, for example, may be stored in an aggregate method.

OI
This type of aggregation is useful from an implementation point

of view because it may reduce bookkeeping overhead and may

improve overall database efficiency. In other cases, methods

may be aggregated because they are logically coupled. For

example, two budgets may be linked together because one of the

10 budgets represents an overall limitation, and a second budget

represents the current limitation available for use. This would

arise if, for example. a large budget is released in small amounts

over time.

15 For example, an aggregate method that includes meter,

billing and budget processes can be used instead of three

separate methods. Such an aggregate method may reference a

single "load module“ 1 100 that performs all of the functions of

the three separate load modules and use only one user data

20 element that contains meter, billing and budget data. Using an

aggregate method instead of three separate methods may

minimize overall memory requirements, database searches,

decryptions, and the number of user data element writes back to

a secure database 610. The disadvantage of using an aggregate

-422-

Petitioner Apple Inc. — Exhibit 1002, p. 5050

Petitioner Apple Inc. - Exhibit 1002, p. 5051

wg 93/09209 PCT/US97I15243

method instead of three separate methods can be a loss of some

flexibility on the part of a provider and user in that various

functions may no longer be independently replaceable.

OI Figure 16 shows methods 1000 as being part of secure

database 610.

A "method“ 1000 provided by the preferred embodiment is

a collection of basic instructions and information related to the

10 basic instructions. that provides context. data, requirements

and/or relationships for use in performing, and/or preparing to

perform, the basic instructions in relation to the operation of one

or more electronic appliances 600. As shown in Figure 16,

methods 1000 in the preferred embodiment are represented in

15 secure database 610 by:

- method "cores“ 1000‘;

- Method Data Elements (MDES) 1202;

- User Data Elements (UDES) 1200; and

- ‘Data Description Elements (DTDs).

20

Method ”core“ 1000' in the preferred embodiment may

contain or reference one or more data elements such as MDES

1202 and UDEs 1200. In the preferred embodiment, MDEs 1202

and UDEs 1200 may have the same general characteristics, the

-423-

Petitioner Apple Inc. — Exhibit 1002, p. 5051

Petitioner Apple Inc. - Exhibit 1002, p. 5052

wo 93109209 PCI‘IUS97I152-13

main difference between these two types of data elements being

that a UDE is preferably tied to a particular method as well as a

particular user or group of users, whereas an MDE may be tied

to a particular method but may be user independent. These

5 MDE and UDE data structures 1200, 1202 are used in the

preferred embodiment to provide input data to methods 1000, to

receive data outputted by methods, or both. MDEs 1202 and

UDEs 1200 may be delivered independently of method cores

1000' that reference them. or the data structures may be

10 delivered as part of the method cores. For example, the method

core 1000’ in the preferred embodiment may contain one or more

MDES 1202 and or L'DEs 1200 (or portions thereof). Method core

1000' may, altematcly or in addition, reference one or more

MDE and/or UDE data structures that are delivered

15 independently of method core(s) that reference them.

Method cores 1000’ in the preferred embodiment also

reference one or more "load modules“ 1100. Load modules 1100

in the preferred embodiment comprise executable code, and may

20 also include or reference one or more data structures called ”data

descriptor“ (”DTD“) information. This “data descriptor“

information may, for example, provide data input information to

the DTD interpreter 590. DTDs may enable load modules 1100

-424-

Petitioner Apple Inc. — Exhibit 1002, p. 5052

Petitioner Apple Inc. - Exhibit 1002, p. 5053

wo 93/09109 PCI‘IUS97Il5243

to access (e.g., read from and/or write to) the MDE and/or UDE

data elements 1202. 1200.

« Method cores 1000’ may also reference one or more DTD

5 and/or MDE data structures that contain a textual description of

their operations suitable for inclusion as partof an electronic

contract. The references to the DTD and MDE data structures

may occur in the private header of the method core 1000', or may

be specified as part of the event table described below.

10

Figure 22 shows an example of a format for a method core

1000’ provided by the preferred embodiment. A method core

1000’ in the preferred embodiment contains a method event

table 1006 and a method local data area 1008. Method event _\

15 table 1006 lists "events.“ These "events“ each reference "load

modules“ 1100 and/or PERCs 808 that control processing of an

event, Associated W‘l1’.h each event in the list is any static data ~ -

necessary to parametetize the load module 1000 or permissions

record 808, and reference(s) into method user data area 1008

20 that are needed to support that event. The data that

parameterizes the load module 1100 can be thought of, in part,

as a specific function call to the load module, and the data

elements corresponding to it may be thought of as the input

and/or output data for that specific function call.

-425-

Petitioner Apple Inc. — Exhibit 1002, p. 5053

Petitioner Apple Inc. - Exhibit 1002, p. 5054

7/15243wo 98/09209 Paws’

Method cores 1000’ can be specific to a single user, or they

may be shared across a number of users (e.g., depending upon

the uniqueness of the method core and/or the specific user data

element). Specifically, each user/group may have its own UDE

5 _ 1200 and use a shared method core 1000’. This structure allows
for lower database overhead than when associating an entire

method core 1000‘ with a user/group. To enable a user to use a

method, the user may be sent a method core 1000’ specifying a

UDE 1200. If that method core 1000' already exists in the site's

10 secure database 610. only the UDE 1200 may need to be added.

Alternately, the method may create any required UDE 1200 at
registration time.

The Figure 2?. example of a format for a method core 1000'

15 provided by the preferred embodiment includes a public

(unencrypted) header 802, a private (encrypted) header 804,

method event table 1006, and a method local data area 1008.

An example of a possible field layout for method core 1000’

20 public header 802 is shown in the following table:

-426-

Petitioner Apple Inc. — Exhibit 1002, p. 5054

Petitioner Apple Inc. - Exhibit 1002, p. 5055

10

WO 98109209‘

:0 escriptive
I nformation

Method ID

Version ID

Class [D

Description(s)

PCl'IUS9‘7Il5243

Distributor of this method

(e... last chan e).

Unique sequence number

for this method.

Version number of this

method.

ID to support different

method "classes."

ID to support method type

atible searchin.

Textual description(s) of the

method.

Summary of event classes

(e.g., USE) that this method

su - orts.

-427-

Petitioner Apple Inc. — Exhibit 1002, p. 5055

Petitioner Apple Inc. - Exhibit 1002, p. 5056

WO 98109209

U!

10

15

PCTIUS97ll5243

An example of a possible field layout for private header

804 is shown below:

‘me ‘
Copy of Public Header 802 Method ID Method ID from

and "Other Classification

Information“

Descriptive

Information

of Events

Access and Access tag

Reference Tags

Validation tag

Correlation tag

Data Structure Reference

Check Value

Check Value for Public Header

-428-

Petitioner Apple Inc. — Exhibit 1002, p. 5056

Public Header

of events supported

in this method.

Tags used to

determine if this

method is the

correct method

under management

by the SPU; ensure

that the method

core 1000’ is used

only under

appropriate

circumstances.

Optional Reference to

DTD(s) and/or

MDE(s)

Check value for

Private Header and

method event table.

Check Value for

Public Header

Petitioner Apple Inc. - Exhibit 1002, p. 5057

wo 9s/09209 - ~ PCT/US97/15243

Referring once again to Figure 22, method event table

1006 may in the preferred embodiment include from 1 to N

method event records 1012. Each of these method event records

1012 corresponds to a different event the method 1000

5 represented by method core 1000’ may respond to. Methods

1000 in the preferred embodiment may have completely diflerent

behavior depending upon the event they respond to. For

example, an AUDIT method may store information in an audit

trail UD.E 1200 in response to an event corresponding to a usefs

10 use of an object or other resource. This same AUDIT method

may report the stored audit trail to a VDE administrator or other

participant in response to an administrative event such as, for

example, ti timer expiring within a VDE node or a request from

another VDE participant to report the audit trail. In the

15 preferred embodiment. each of these different events may be

represented by an "event code.“ This ”event code“ may be passed

as a parameter to a method when the method is called, and used

to "look up“ the appropriate method event record 1012 within

method event table 1006. The selected method event record

20 1012, in turn, specifies the appropriate information (e.g., load

module(s) 1100, data element UDE(s) and MDE(s) 1200, 1202,

and/or PERC(s) 808) used to construct a component assembly

690 for execution in response to the event that has occurred.

-429-

Petitioner Apple Inc. — Exhibit 1002, p. 5057

Petitioner Apple Inc. - Exhibit 1002, p. 5058

wo 9s/09209 rcr/us97/15243

Thus, in the preferred embodiment. each method event

record 1012 may include an event field 1014, a LM/PERC

reference field 1016. and any number of data reference fields

1018. Event fields 1014 in the preferred embodiment may

contain a "event code“ or other information identifying the

corresponding event. The LM/PERC reference field 1016 may

provide a reference into the secure database 610 (or other

”pointer“ information) identifying a load module 1100 and/or a

PERC 808 providing tor referencing) executable code to be loaded

10 and executed to perform the method in response to the event.

contained in the method local data area 1008 of the method core .

1000’, or they may be stored within the secure database 610 as

15 independent deliverables.

The following table is an example of a possible more

detailed field layout for a method event record 1012:

Field -1- e Deacri - tion

Event Field 1014 Identifies corresponding
- event.

Access tag Secret tag to grant access to
this row of the method

event record.

20

-430-

Petitioner Apple Inc. — Exhibit 1002, p. 5058

Petitioner Apple Inc. - Exhibit 1002, p. 5059

W0 98/09209 PCT/U597/15243

20 ' - l Deacri tion

LM/PERC DB ID or Database reference (or local
Reference offset/size ointer).

Field 1016 Correlation tag Correlation tag to assert
when referencing this

element.

of Data Element Reference Count of data reference
5 Fields ' fields in the method event

record. I

Data UDE ID or Database 610 reference (or
Reference offset/size local ointer).

Field 1 Correlation tag Correlation tag to assert
when referencing this

. element.

10 Data UDE ID or Database 610 reference (or
Reference offsetxsize local ointer).

Field n Correlation tag Correlation tag to assert
when referencing this

element.

15 Load Modules

Figure 23 is an example of a load module 1100 provided by

the preferred embodiment. In general, load modules 1100

represent a collection of basic functions that are used for control

operations.

20

Load module 1100 contains code and static data (that is

functionally the equivalent of code), and is used to perform the

basic operations of VDE 100. Load modules 1100 will generally

-431-

Petitioner Apple Inc. — Exhibit 1002, p. 5059

Petitioner Apple Inc. - Exhibit 1002, p. 5060

WO 98/09209 PC!‘/US97/15243

be shared by all the control structures for all objects in the

system, though proprietary load modules are also permitted.

Load modules 1100 may be passed between VDE participants in

administrative object structures 870, and are usually stored in

5 secure database 610. They are always encrypted and

authenticated in both of these cases. When a method core 1000'

references a load module 1100, a load module is loaded into the

SPE 503, decrypted. and then either passed to the electronic

appliance microprocessor for executing in an HPE 655 (if that is

10 where it executes). or kept in the SPE (ifthat is where it

executes). If no SPE 503 is present. the load module may be

decrypted by the HPE 655 prior to its execution.

Load module creation by parties is preferably controlled by

15 a certification process or :1 ring based SP1.’ architecture. Thus,

the process of creating new load modules 1100 is itself a

:L_:om'.rolled process, as is the process of replacing, updating or

deleting load modules already stored in a securedldatabase 610.

20 A load module 1100 is able to perform its function only

when executed in the protected environment of an SPE 503 or an

HZPE 655 because only then can it gain access to the protected

elements (e.g., UDEs 1200, other load modules 1100) on which it

operates. Initiation of load module execution in this

-432-

Petitioner Apple Inc. — Exhibit 1002, p. 5060

Petitioner Apple Inc. - Exhibit 1002, p. 5061

W0 98/09209 ' PCT/U59‘/ll5243

environment is strictly controlled by a combination of access

tags, validation tags, encryption keys, digital signatures and/or

correlation tags. Thus, a load module 1100 may only be

referenced if the caller knows its ID and asserts the shared

5 secret correlation tag specific to that load module. The

decrypting SPU may match the identification token and local

access tag of a load module after decryption. These techniques

make the physical replacement of any load module 1100

detectable at the next physical access of the load module.

10 Furthermore, load modules 1100 may be made ”read only“ in the

preferred embodiment. The read-only nature ofload modules

1100 prevents the write-back of load modules that have been

tampered with in non-secure space.

15 Load modules are not necessarily directly governed by

PERCS 808 that control them, nor must they contain any

time/date information or expiration dates. The only control

consideration in the preferred embodiment is that one or more

methods 1000 reference them using a correlation tag (the value

20 of a protected object created by the load module's owner,

distributed to authorized parties for inclusion in their methods,

and to which access and use is controlled by one or more PERCS

808). If a method core 1000’ references a load module 1100 and

asserts the proper correlation tag (and the load module satisfies

-433-

Petitioner Apple Inc. — Exhibit 1002, p. 5061

Petitioner Apple Inc. - Exhibit 1002, p. 5062

W098/09209 PC!‘/US97I15243

the internal tamper checks for the SPE 503), then that load

module can be loaded and executed, or it can be acquired from,

shipped to, updated, or deleted by, other systems.

5 As shown in Figure 23, load modules 1100 in the preferred

embodiment may be constructed of a public (unencrypted) header

802, a private (encrypted) header 804, a private body 1106

containing the encrypted executable code, and one or more data

description elements ("DTDs“) 1108. The DTDs 1108 may be

10 stored within a load module 1100, or they may be references to

static data elements stored in secure database 610.

The following is an example ofa possible field layout for

load module public header 802:

Field -,. e

VDE ID of Load Module.

Creator ID Site ID of creator of this load

module.

Type ID Constant indicates load

module t e.

-434-

Petitioner Apple Inc. — Exhibit 1002, p. 5062

Petitioner Apple Inc. - Exhibit 1002, p. 5063

W0 98/092119

U!

10

15

PCFIUS97/15243

Unique sequence number for

this load module, which

uniquely identifies the load

module in a sequence of load

modules created by an

authorized VDE '

Version number of this load

module.

Version ID

Other» ID to support diflerent load

classificatio module classes.
n

infonnation ID to support method type

Textual description of the

load module.

Descriptive

Information

Value that describes what

execution space (e.g., SPE or

HPE) this load module.

Execution

space code

Many load modules 1100 contain code that executes in an

SPE 503. Some load modules 1100 contain code that executes in

an HPE 655. This allows methods 1000 to execute in whichever

environment is appropriate. For example, an INFORMATION

method 1000 can be built to execute only in SPE 503 secure

space for government classes of security, or in an HPE 655 for

commercial applications. As described above, the load module

public header 802 may contain an "execution space code“ field

-435-

Petitioner Apple Inc. — Exhibit 1002, p. 5063

Petitioner Apple Inc. - Exhibit 1002, p. 5064

W0 98/09209 PCT/US97Il5243

that indicates where the load module 1100 needs to execute.

This functionality also allows for difi'erent SPE instruction sets

as well as different user platforms, and allows methods to be

constructed without dependencies on the underlying load module

5 instruction set.

Load modules 1100 operate on three major data areas: the

stack, load module parameters, and data structures. The stack

and execution memory size required to execute the load module

10 1100 are preferably described in private header 804, as are the

data descriptions from the stack image on load module call,

return, and any return data areas. The stack and dynamic areas

are described using the same DTD mechanism. The following is

an example ofa possible layout for a load module private header

15 1104:

Field go l Deacri tion

Copy of some or all of information from Object ID from Public Header.
ublic header 802

 Other

classification

information

Check Value

LM Exec Size

 Check Value for Public Header.

Size of executable code block.

Executable code size for the load

module.

LM Exec Stack Stack size required for the load
module.

-436-

20

Descriptive

Information

Petitioner Apple Inc. — Exhibit 1002, p. 5064

Petitioner Apple Inc. - Exhibit 1002, p. 5065

wo 9wo9zo9 PCTIUS97I15243

 Code that describes the execution

space for this load module.

Execution space code

Access and Access tag Tags used to determine if the load

reference tags module is the correct LM requested
Validation tag bv the SPE.

Correlation tag Tag used to determine if the caller

of the [M has the right to execute
this L.M.

 Digital Signature Used to determine if the LM

executable content is intact and

was created by a trusted source

(one with a correct certificate for

creatine LMs).

 Data record DTD Count Number of DTDs that follow the
descriptor 2 code block.__
information ‘

Iflocally defined. the physical size' and ofTset in bytes of the first DTD

I defined for this LM.

U!

I DTD 1 reference

If publicly referenced DTD. this is

the DTD ID and the correlation tag
to permit access to the record. "to

DTD N reference Iflocally defined. the physical size

and offset in bytes of the Nth DTD

defined for this LM.

If publicly referenced DTD, this is

the DTD ID and the correlation tag
to permit access to the record.

Check Value Check Value for entire LM.

Each load module 1100 also may use DTD 1108

10 . information to provide the information necessary to support

building methods from a load module. This DTD information

-437-

Petitioner Apple Inc. — Exhibit 1002, p. 5065

Petitioner Apple Inc. - Exhibit 1002, p. 5066

wo 93/09109 PCTIUS97/15243

contains the definition expressed in a language such as SGML

for the names and data types of all of the method data fields that

the load module supports, and the acceptable ranges of values

that can be placed in the fields. Other DTDs may describe the

DI function of the load module 1100 in English for inclusion in an

electronic contract, for example.

The next section of load module 1100 is an encrypted

executable body 1106 that contains one or more blocks of

10 encrypted code. Load modules 1100 are preferably coded in the

"native" instruction set of their execution environment for

efficiency and compactness. SPU 500 and platform providers

may provide versions of the standard load modules 1100 in order

to make their products cooperate with the content in distribution

15 mechanisms contemplated by VDE 100. The preferred

embodiment creates and uses native mode load modules 1100 in

lieu of an interpreted or ”p-code“ solution to optimize the

performance of a limited resource SPU. However, when

sufficient SPE (or HPE) resources exist and/or platforms have

20 sufiicient resources, these other implementation approaches may

improve the cross platform utility of load module code.

-438-

Petitioner Apple Inc. — Exhibit 1002, p. 5066

Petitioner Apple Inc. - Exhibit 1002, p. 5067

WO 98/09209

10

15

PCTIUS97!15243

The following is an example of a field layout for a load

module DTD 1108;

I
l Uses Obiect ID from Private Header.
 Site ID of creator of this DTD.reator ID

 e [D Constant.

ll escriptive
I A
I nforrnation

ccess and l—\cce5s [SE l Tags used to determine ifthe DTD is
5 ' the correct DTD requested by the SPE.Validation tag I

I I
Forrelation tag Tag used to determine lfthe caller of
l l this DTD has the right to use the DTD.

 lDTD Data Definition 1

TD Data Definition 2

I! Data Defimtion N

heck Value Check Value for entire DTD record.

Some examples of how load modules 1100 may use DTDs

1108 include:

- Increment data element (defined by name in DTD3)

value in data area DTD4 by value in DTD1

-439-

Petitioner Apple Inc. — Exhibit 1002, p. 5067

Petitioner Apple Inc. - Exhibit 1002, p. 5068

wo 93/09209 PCT/US97/15243

- Set data element (defined by name in DTD3) value

in data area DTD4 to value in DTD3

- Compute atomic element from event in DTD1 from

5 table in DTD3 and return in DTD2

- Compute atomic element from event in DTD1 from

equation in DTD3 and return in DTD2

10 - Create load module from load module creation

template referenced in DTD3

- Modify load module in DTD3 using content in DTD4

15 - Destroy load module named in DTD3

Commonly used load modules 1100 may be built into a

SPU 500 as space permits. VDE processes that use built-in load

modules 1100 will have significantly better performance than *

20 processes that have to find, load and decrypt external load

modules. The most useful load modules 1100 to build into a SPU

might include sealer meters, fixed price billing, budgets and load C

modules for aggregate methods that perform these three

processes.

25

User Data Elements (U'DEs) 1200 and Method Data Elements

(MDEs) 1202

User Data Elements (UDES) 1200 and Method Data

30 Elements (MDEs) 1202 in the preferred embodiment store data.

-440-

Petitioner Apple Inc. — Exhibit 1002, p. 5068

Petitioner Apple Inc. - Exhibit 1002, p. 5069

W0 98,0920, PCTmS97l1524§

There are many types of UDEs 1200 and MDEs 1202 provided by

the preferred embodiment. In the preferred embodiment, each of

these different types of data structures shares a common overall

format including a common header definition and naming

5 scheme. Other UDEs 1200 that share this common structure

include "local name services records“ (to be explained shortly)

and account information for connecting to other VDE

participants. These elements are not necessarily associated with

an individual user, and may therefore be considered MDEs 1202.

10 All UDEs 1200 and all MDEs 1202 provided by the preferred

embodiment may, if desired, (as shown in Figure 16) be stored in

a common physical table within secure database 610, and

database access processes may commonly be used to access all of

these different types of data structures.

15

In the preferred embodiment, PERCS 808 and user rights

table records are types of UDE 1200. There are many other

types of UDEs 1200/MDEs 1202, including for example, meters,

meter trails, budgets, budget trails, and audit trails. Different

20 formats for these different types of UDEs/MDEs are defined, as

described above, by SGML definitions contained within DTDs

1108. Methods 1000 use these DTDs to appropriately access

UDEs/MDEs 1200, 1202.

-441-

Petitioner Apple Inc. — Exhibit 1002, p. 5069

Petitioner Apple Inc. - Exhibit 1002, p. 5070

wo 98/09209 PCTIUS97/15243

Secure database 610 stores two types of items: static and

dynamic. Static data structures and other items are used for

information that is essentially static information. This includes

load modules 1100, PERCs 808, and many components of

methods. These items are not updated frequently and contain

expiration dates that can be used to prevent ”old“ copies of the

information from being substituted for newly received items.

These items may be encrypted with a site specific secure

database file key when they are stored in the secure database

10 610, and then decrypted using that key when they are loaded

into the SPE.

Dynamic items are used to support secure items that must

be updated frequently. The UDES 1200 of many methods must

15 be updated and written out of the SPE 503 after each use.

Meters and budgets are common examples of this. Expiration

dates cannot be used effectively to prevent substitution of the

previous copy of a budget UDE 1200. To secure these frequently

updated items, a transaction tag is generated and included in the

20 encrypted item each time that item is updated. A list of all VDE

item IDs and the current transaction tag for each item is

maintained as part of the secure database 610.

-442-

Petitioner Apple Inc. — Exhibit 1002, p. 5070

Petitioner Apple Inc. - Exhibit 1002, p. 5071

wo 93/09209 ‘ PCTIUS97/15243

Figure 24 shows an example of a user data element

(”UDE“) 1200 provided by the preferred embodiment. As shown

in Figure 24, UDE 1200 in the preferred embodiment includes a

public header 802, a private header 804, and a data area 1206.

5 The layout for each of these user data elements 1200 is generally

defined by an SGML data definition contained within a DTD

1108 associated with one or more load modules 1100 that operate

on the UDE 1200.

10 UDEs 1200 are preferably encrypted using a site specific

key once they are loaded into a site. This site-specific key masks

a validation tag that may be derived from a cryptographically

strong pseudo-random sequence by the SPE 503 and updated

each time the record is written back to the secure database 610.

15 This technique provides reasonable assurance that the UDE

1200 has not been tampered with nor substituted when it is

requested by the system for the next use.

Meters and budgets are perhaps among the most common

20 data structures in VDE 100. They are used to count and record

events, and also to limit events. The data structures for each

meter and budget are determined by the content provider or a

distributor/redistributor authorized to change the information.

Meters and budgets, however, generally have common

-443-

Petitioner Apple Inc. — Exhibit 1002, p. 5071

Petitioner Apple Inc. - Exhibit 1002, p. 5072

10

wo 93/09209 PCTIUS97!15243

information stored in a common header format (e.g., user ID, site

ID and related identification information).

The content provider or distributor/redistributor may

specify data structures for each meter and budget UDE.

Although these data structures vary depending upon the

particular application, some are more common than others. The

following table lists some of the more commonly occurring data

structures for METER and BUDGET methods:

 1| escription or

byte. short. long, or - cending count of

 unsigned versions of es.

the same widths

II escen
 ding Use byte. short, long, or

unsigned versions of

the same widths

I escending count of

ermitted use; eg.,

 2, 4 or 8 byte integer

split into two related

bytes or words

’ eter/Budget.

ompound meter

- ata structures.

Array bytes eter/Budget it indicator of use
’ r ownershi .
' ide bitmap Array of bytes ‘ eter/Budget ndicator of use or

wnership that may

= e with time.

. . ms was

-444.

Petitioner Apple Inc. — Exhibit 1002, p. 5072

Petitioner Apple Inc. - Exhibit 1002, p. 5073

W0 98/09209 . PCTIUS97ll5243

I ield type - ' II escription or

‘ 88 B9 '
-- Date 1: udget '3 ate of first

I : owable use.
i

...,n3....
.......Audmecum

ext Audit u'me_t eter/Budget I ate of next

I! ate ‘ - uired audit.

i- eter/Budget E ID of
uthorized auditor.

The information in the table above is not complete or

10 comprehensive, but rather is intended to show some examples of

types of information that may be stored in meter and budget

related data structures. The actual structure of particular

meters and budgets is determined by one or more DTDs 1108

associated with the load modules 1100 that create and

15 manipulate the data structure. A list of data types permitted by

the DTD interpreter 590 in VDE 100 is extensible by properly

authorized parties.

Figure 25 shows an example of one particularly

20 advantageous kind of UDE 1200 data area 1206. This data area

1206 defines a "map" that may be used to record usage

information. For example, a meter method 1000 may maintain

one or more "usage map“ data areas 1206. The usage map may

-445-

Petitioner Apple Inc. — Exhibit 1002, p. 5073

Petitioner Apple Inc. - Exhibit 1002, p. 5074

WO 93109109 PCT/US9‘7ll 5243

be a "usage bit map“ in the sense that it stores one or more bits

of information (i.e., a single or multi-dimensional bit image)

corresponding to each of several types or categories of usage.

Usage maps are an efficient means for referencing prior usage.

5 For example, a usage map data area may be used by a meter

method 1000 to record all applicable portions of information

content that the user has paid to use, thus supporting a very

efiicient and flexible means for allowing subsequent user usage

of the same portions of the information content. This may enable

10 certain VDE related security functions such as ”contiguousness,“

"logical relatedness,“ randomization of usage, and other usage

types. Usage maps may be analyzed for other usage patterns

(e.g., quantity discounting, or for enabling a user to reaccess

information content for which the user previously paid for

15 unlimited usage).

The ”usage map“ concept provided by the preferred

embodiment may be tied to the concept of "atomic elements.“ In

the preferred embodiment, usage of an object 300 may be

20 metered in terms of "atomic elements.“ In the preferred

embodiment, an "atomic element“ in the metering context defines

a unit of usage that is ”sufficiently significant“ to be recorded in

a meter. The definition of what constitutes an "atomic element“

is determined by the creator of an object 300. For instance, a

-445-

Petitioner Apple Inc. — Exhibit 1002, p. 5074

Petitioner Apple Inc. - Exhibit 1002, p. 5075

7/15243wo 9s/09209 PCWS9

"byte" of information content contained in an object 300 could be ‘

defined as an “atomic element,“ or a record of a database could be

defined as an "atomic element,‘‘ or each chapter of an

electronically published book could be defined as an ”atomic

5 element“.

An object 300 can have multiple sets of overlapping atomic

elements. For example, an access to any database in a plurality

of databases may be defined as an "atomic element.“

10 Simultaneously, an access to any record, field of records, sectors

of infonnations, and/or bytes contained in any of the plurality of

databases might also be defined as an "atomic element.“ In an

electronically published newspaper, each hundred words ofan

article could be defined as an ”atomic element,“ while articles of

15 i more than a certain length could be defined as another set of

"atomic elements.“ Some portions ofa newspaper (e.g.,

advertisements, the classified section. etc.) might not be mapped

into an atomic element.

20 The preferred embodiment provides an essentially

unbounded ability for the object creator to define atomic element

types. Such atomic element definitions may be very flexible to

accommodate a wide variety of different content usage. Some

examples of atomic element types supported by the preferred

-447-

Petitioner Apple Inc. — Exhibit 1002, p. 5075

Petitioner Apple Inc. - Exhibit 1002, p. 5076

wo 98,0920, Pcr/us97I1s243

embodiment include bytes, records, files, sectors, objects, a

quantity of bytes, contiguous or relatively contiguous bytes (or

other predefined unit types), logically related bytes containing

content that has some logical relationship by topic, location or

5 other user specifiable logic of relationship, etc. Content creators

preferably may flexibly define other types of atomic elements.

The preferred embodiment of the present invention

provides EVENT methods to provide a mapping between usage

10 events and atomic elements. Generally, there may be an EVENT

method for each different set of atomic elements defined for an

object 300. In many cases, an object 300 will have at least one

type of atomic element for metering relating to billing, and at

least one other atomic element type for non-billing related

15 metering (e.g., used to, for example. detect fraud, bill advertisers,

and/or collect data on end user usage activities).

In the preferred embodiment, each EVENT method in a

usage related context performs two functions: (1) it maps an

20 accessed event into a set of zero or more atomic elements, and (2)

it provides information to one or more METER methods for

metering object usage. The definition used to define this

mapping between access events and atomic elements may be in

the form of a mathematical definition, a table, a load module, etc.

-443-

Petitioner Apple Inc. — Exhibit 1002, p. 5076

Petitioner Apple Inc. - Exhibit 1002, p. 5077

wo 98’o9209 PCT/US97/15243

When an EVENT method maps an access request into ”zero“

atomic elements, a user accessed event is not mapped into any

atomic element based on the particular atomic element definition

that applies. This can be, for example, the object owner is not

5 interested in metering usage based on such accesses (e.g.,

because the object owner deems such accesses to be insignificant

from a metering standpoint).

A "usage map“ may employ a "bit map image“ for storage

10 of usage history information in a highly efiicient manner.

Individual storage elements in a usage map may correspond to

atomic elements. Different elements within a usage map may

correspond to different atomic elements (e.g., one map element

may correspond to number of bytes read, another map element

15 may correspond to whether or not a particular chapter was

opened, and yet another map element may correspond to some

other usage event).

One of the characteristics of a usage map provided by the

20 preferred embodiment of the present invention is that the

significance of a map element is specified, at least in part, by the

position of the element within the usage map. Thus, in a usage

map provided by the preferred embodiment, the information

indicated or encoded by a map element is a function of its

-449-

Petitioner Apple Inc. — Exhibit 1002, p. 5077

Petitioner Apple Inc. - Exhibit 1002, p. 5078

W0 gsmnog PCTIUS97/15243

position (either physically or logically) within the map structure.

As one simple example, a usage map for a twelve-chapter novel

could consist of twelve elements, one for each chapter of the

novel. When the user opens the first chapter, one or more bits

5 within the element corresponding to the first chapter could be

changed in value (e.g., set to ”one‘). In this simple example

where the owner of the content object containing the novel was

interested only in metering which chapters had been opened by

the user, the usage map element corresponding to a chapter

10 could be set to ”one“ the first time the user opened that

corresponding chapter, and could remain ”one“ no matter how

many additional times the user opened the chapter. The object

owner or other interested VDE participant would be able to

rapidly and efficiently tell which chaptens; had been opened by

15 the user simply by examining the compact usage map to

determine which elements were set to "one.‘

Suppose that the content object owner wanted to know

how many times the user had opened each chapter of the novel.

20 In this case, the usage map might comprise, for a twelve-chapter

novel, twelve elements each of which has a one-to-one

correspondence with a different one of the twelve chapters of the

novel. Each time a user opens a particular chapter, the

corresponding METER method might increment the value

-450-

Petitioner Apple Inc. — Exhibit 1002, p. 5078

Petitioner Apple Inc. - Exhibit 1002, p. 5079

S97I15243WO 98109209 PCT,”

contained in the corresponding usage map element. In this way, *

an account could be readily maintained for each of the chapters

of the novel.

5 The position of elements within a usage map may encode a

multi~variable function. For example, the elements within a

usage map may be arranged in a two-dimensional array as

shown in Figure 25B. Different array coordinates could

correspond to independent variables such as, for example, atomic

10 elements and time. Suppose, as an example, that a content

object owner distributes an object containing a collection of audio

recordings. Assume further that the content object owner wants

to track the number of times the user listens to each recording

within the collection, and also wants to track usage based on

15 month of the year. Thus, assume that the content object owner

wishes to know how many times the user during the month of

January listened to each of the recordings on a recording-by-

recording basis, similarly wants to know this same information

for the month of February, March, etc. In this case, the usage

20 map (see Figure 25B) might be defined as a two—dimensional

array of elements. One dimension of the array might encode

audio recording number. The other dimension of the array might

encode month of the year. During the month of January, the

corresponding METER method would increment elements in the

-451-

Petitioner Apple Inc. — Exhibit 1002, p. 5079

Petitioner Apple Inc. - Exhibit 1002, p. 5080

WO 98/09209 PCT/US97/15243

array in the "January“ column of the array, selecting which

element to increment as a function of recording number. When

January comes to an end. the METER method might cease

writing into the array elements in the January column, and

5 instead write values into a further set of February array

elements-once again selecting the particular array element in

this column as a function of recording number. This concept may

be extended to N dimensions encoding N different variables.

10 Usage map meters are thus an efficient means for

referencing prior usage. They may be used to enable certain

VDE related security functions such as testing for

contiguousness (including relative contiguousness), logical

relatedness (including relative logical relatedness), usage

15 randomization, and other usage patterns. For example, the

degree or character of the ’’randomness“ of content usage by a

user might serve as a potential indicator of attempts to

circumvent VDE content budget limitations. A user or groups of

users might employ multiple sessions to extract content in a

20 manner which does not violate contiguousness, logical

relatedness or quantity limitations, but which nevertheless

enables reconstruction of a material portion or all of a given,

valuable unit of content. Usage maps can be analyzed to

determine other patterns of usage for pricing such as, for

-452-

Petitioner Apple Inc. — Exhibit 1002, p. 5080

Petitioner Apple Inc. - Exhibit 1002, p. 5081

W0 98,0920, PCTIUS97Il5243

example, quantity discounting after usage of a certain quantity

of any or certain atomic units. or for enabling a user to reaccess

an object for which the user previously paid for unlimited

accesses (or unlimited accesses over a certain time duration).

5 Other useful analyses might include discounting for a given

atomic unit for a plurality of uses.

A further example of a map meter includes storing a

record of all applicable atomic elements that the user has paid to

10 use (or alternatively, has been metered as having used, though

payment may not yet have been required or made). Such a usage

map would support a very efficient and flexible way to allow

subsequent user usage of the same atomic elements.

15 A further usage map could be maintained to detect

fraudulent usage of the same object. For example, the object

might be stored in such a way that sequential access of long

blocks should never occur. A METER method could then record

all applicable atomic elements accesses during, for example, any

20 specified increment of time, such as ten minutes, an hour, a day,

a month, a year, or other time duration). The usage map could

be analyzed at the end of the specified time increment to check

for an excessively long contiguous set of accessed blocks, and/or

could be analyzed at the initiation of each access to applicable

-453-

Petitioner Apple Inc. — Exhibit 1002, p. 5081

Petitioner Apple Inc. - Exhibit 1002, p. 5082

wo 98I09209 PC!‘/US97/15243

atomic elements. After each time duration based analysis, if no

fraudulent use is detected, the usage map could be cleared (or

partially cleared) and the mapping process could begin in whole

or in part anew. If a fraudulent use pattern is suspected or

5 detected, that information might be recorded and the use of the

object could be halted. For example, the user might be required

to contact a content provider who might then further analyze the

usage information to determine whether or not further access

should be permitted.

10

Figure 25c shows a particular type of"wide bit map“ usage

record 1206 wherein each entry in the usage record corresponds

to usage during a particular time period t'e.g.. current month

usage, last month's usage, usage in the month before last, etc.).

15 The usage record shown thus comprises an array of “flags” or

fields 1206, each element in the array being used to indicate

usage in a different time period in this particular example.

When a time period ends, all elements 1206 in the array may be

shifted one position, and thus usage information (or the purchase

20 of user access rights) over a series of time periods can be

reflected by a series of successive array elements. In the specific

example shown in Figure 25c, the entire wide array 1206 is

shifted by one array position each month, with the oldest array

element being deleted and the new array element being ”tumed“

-454-

Petitioner Apple Inc. — Exhibit 1002, p. 5082

Petitioner Apple Inc. - Exhibit 1002, p. 5083

wo 93/09209 PC!‘/US97Il5243

in a new array map corresponding to the current time period. In .

this example, record 1302 tracks usage access rights and/or other

usage related activities during the present calendar month as

well for the five immediately prior calendar months.

5 Corresponding billing and/or billing method 406 may inspect the

map, determine usage as related to billing and/or security

monitoring for current usage based on a formula that employs

the usage data stored in the record, and updates the wide record

to indicate the applicable array elements for which usage

10 occurred or the like. A wide bit map may also be used for many

other purposes such as maintaining an element by element count

of usage, or the contiguousness, relatedness, etc. function

described above, or some combination of functionality.

15 Audit trail maps may be generated at any frequency

determined by control, meter, budget and billing methods and

load modules associated with those methods. Audit trails have a

structure to meters and budgets and theypmay contain

user specific information in addition to information about the

20 usage event that caused them to be created. Like meters and

budgets, audit trails have a dynamic format that is defined by

the content provider or their authorized designee, and share the

basic element types for meters and budgets shown in the table

above. In addition to these types, the following table lists some

-455-

Petitioner Apple Inc. — Exhibit 1002, p. 5083

Petitioner Apple Inc. - Exhibit 1002, p. 5084

10

15

20

25

WO 98109209 PCTIUS97115243

examples of other significant data fields that may be found in

audit trails:

Meter/Budgefi
Billin

Meter/Budgefl

Billing

Meter/Billing

ppropriate

limb

Budget/Billing

Meter/Budgeu’

Bflhnz

.VIeter/Budget.’
Billintz

Event ID that started a

Transaction number to

help detect audits that

have been tampered
with.

Atomic elernentlsl and

ID of object that was
used.

Personal information

about user.

Date/time of use.

VDE ID of user.

Audit trail records may be automatically combined into

single records to conserve header space. The combination

process may, for example, occur under control of a load module

that creates individual audit trail records.

Permissions Record Overview

Figure 16 also shows that PERCs 808 may be stored as

part of secure database 610. Permissions records (”PERCs“) 808

-456-

Petitioner Apple Inc. — Exhibit 1002, p. 5084

Petitioner Apple Inc. - Exhibit 1002, p. 5085

10

15'

20

W0 98/119209 PCl‘IlJS97Il5243

are at the highest level of the data driven control hierarchy

provided by the preferred embodiment of VDE 100. Basically,

there is at least one PERC 808 that corresponds to each

information and/or transactional content distributed by VDE

100. Thus, at least one PERC 808 exists for each VDE object 300

in the preferred embodiment. Some objects may have multiple

corresponding PERCS 808. PERC 808 controls how access and/or

manipulation permissions are distributed and/or how content

and/or other information may otherwise be used. PERC 808 also

specifies the ”rights“ of each VDE participant in and to the

content and/or other information.

In the preferred embodiment, no end user may use or

access a VDE object unless a permissions record 808 has been

delivered to the end user. As discussed above, a PERC 808 may

be delivered as part of a traveling object 860 or it may be

delivered separately (for example, within an administrative

object). An electronic appliance 600 may not access an object

unless a corresponding PERC 808 is present, and may only use

the object and related information as permitted by the control

structures contained within the PERC.

-457-

Petitioner Apple Inc. — Exhibit 1002, p. 5085

Petitioner Apple Inc. - Exhibit 1002, p. 5086

wo 93/09209 _ PCTIUS97!15243

Briefly, the PERC 808 stores information concerning the

methods, method options, decryption keys and rights with

respect to a corresponding VDE object 300.

5 PERC 808 includes control structures that define high

level categories or classifications of operations. These high level

categories are referred to as “rights.” The ”right“ control

structures, in turn, provide internal control structures that

reference ”methods“ 1000. The internal structure of preferred

10 embodiment PERC 808 organizes the "methods“ that are

required to perform each allowable operation on an object or

associated control structure (including operations performed on

the PERC itself). For example, PERC 808 contains decryption

keys for the object. and usage of the keys is controlled by the

15 methods that are required by the PERC for performing

operations associated with the exercise of a "right.“

—T__¢._

PERC 808 for an object is typically created _wl'_1e_n the object

is created, and future substantive modifications of a PERC, if

20 allowed, are controlled by methods associated with operations

using the distribution right(s) defined by the same (or different)

PERC.

-458-

Petitioner Apple Inc. — Exhibit 1002, p. 5086

Petitioner Apple Inc. - Exhibit 1002, p. 5087

W0 gsmmg PCTlUS97Il5243

Figure 22 shows the internal structures present in an

example of a PERC 808 provided by the preferred embodiment.

All of the structures shown represent (or reference) collections of

methods required to process a corresponding object in some

5 specific way. PERCS 808 are organized as a hierarchical

structure, and the basic elements of the hierarchy are as follows:

”rights“ records 906

. "control sets“ 914

”required method“ records 920 and

10 ”required method options“ 924.

There are other elements that may be included in a PERC

808 hierarchy that describe rules and the rule options to support

the negotiation of rule sets and control information for smart

15 objects and for the protection of a user’s personal information by

a privacy filter. These alternate elements may include:

optional rights records

optional control sets

optional method records

20 permitted rights records

permitted rights control sets

permitted method records

required DTD descriptions

optional DTD descriptions

-4596

Petitioner Apple Inc. — Exhibit 1002, p. 5087

Petitioner Apple Inc. - Exhibit 1002, p. 5088

wo 98109209 PCT/US97Il5243

permitted DTD descriptions

These alternate fields can control other processes that may, in

part, base negotiations or decisions regarding their operation on

the contents of these fields. Rights negotiation, smart object

5 control information, and related processes can use these fields for

more precise control of their operation.

The PERC 808 shown in Figure 26 includes a PERC

header 900, a CSO (”control set 0“) 902, private body keys 904,

10 and one or more rights sub-records 906. Control set 0 902 in the

preferred embodiment contains information that is common to

one or more ”rights“ associated with an object 300. For example,

a particular ”event“ method or methods might be the same for

usage rights, extraction rights and/or other rights. In that case,

15 "control set 0“ 902 may reference this event that is common

across multiple ”rights.“ The provision of "control set 0“ 902 is

actually an optimization, since it would be possible to store

different instances of a commonly-used event within each of

plural ”rights“ records 906 of a PERC 808.

20

Each rights record 906 defines a different "right“

corresponding to an object. A ”right“ record 906 is the highest

level of organization present in PERC 808. There can be several

different rights in a PERC 808. A ”right“ represents a major

-460-

Petitioner Apple Inc. — Exhibit 1002, p. 5088

Petitioner Apple Inc. - Exhibit 1002, p. 5089

wo 98/09209 PCT/US97]15243

functional partitioning desired by a participant of the basic

architecture of VDE 100. For example, the right to use an object

and the right to distribute rights to use an object are major

functional groupings within VDE 100. Some examples of

5 possible rights include access to content, permission to distribute

rights to access content, the ability to read and process audit

trails related to content and/or control structures, the right to

perform transactions that may or may not be related to content

and/or related control structures (such as banking transactions,

10 catalog purchases, the collection of taxes, EDI transactions, and

such), and the ability to change some or all of the internal

structure of PERCS created for distribution to other users.

PERC 808 contains a rights record 906 for each type of right to

object access/use the PERC grants.

15

Normally, for VDE end users, the most frequently granted

right is a usage right. Other types of rights include the

"extraction right,“ the ”audit right“ for accessing audit trail

information of end users, and a "distribution right“ to distribute

20 an object. Each of these different types of rights may be

embodied in a diflerent rights record 906 (or alternatively,

difierent PERCS 808 corresponding to an object may be used to

grant difi'erent rights).

-461-

Petitioner Apple Inc. — Exhibit 1002, p. 5089

Petitioner Apple Inc. - Exhibit 1002, p. 5090

wo 98m”o9 PCTIUS97Il5243

Each rights record 906 includes a rights record header 908,

a CSR ("control set for right“) 910, one or more "right keys“ 912,

and one or more "control sets“ 914. Each ”rights“ record 906

contains one or more control sets 914 that are either required or

5 selectable options to control an object in the exercise of that

”right.“ Thus, at the next level, inside of a ’'right‘‘ 906, are control

sets 914. Control sets 914, in turn, each includes a control set

header 916, a control method 918, and one or more required

methods records 920. Required methods records 920, in turn,

10 each includes a required method header 922 and one or more

required method options 924.

Control sets 914 exist in two types in VDE 100: common

required control sets which are given designations "control set 0“

15 or ”control set for right,“ and a set of control set options. ”Control

set 0“ 902 contains a list of required methods that are common to

all control set options, so that the common required methods do

not have to be duplicated in each control set option. A ”control

set for right“ (”CSR“) 910 contains a similar list for control sets

20 within a given right. ”Control set 0“ and any ”control sets for

rights“ are thus, as mentioned above, optimizations; the same

functionality for the control sets can be accomplished by listing

all the common required methods in each control set option and

omitting "control set O“ and any ”control sets for rights.“

-462-

Petitioner Apple Inc. — Exhibit 1002, p. 5090

Petitioner Apple Inc. - Exhibit 1002, p. 5091

10

15

20

WO 98/09209 PCTIUS97/15243

One of the control set options, "control set 0“ and the

appropriate "control set for right“ together form a complete

control set necessary to exercise a right.

Each control set option contains a list of required methods

1000 and represents a different way the right may be exercised.

Only one of the possible complete control sets 914 is used at any

one time to exercise a right in the preferred embodiment.

Each control set 914 contains as many required methods

records 920 as necessary to satisfy all of the requirements of the

creators and/or distributors for the exercise of a right. Multiple

ways a right may be exercised, or multiple control sets that

govern how a given right is exercised. are both supported. As an

example, a single control set 914 might require multiple meter

and budget methods for reading the object’s content, and also

require different meter and budget methods for printing an

object’s content. Both reading and printing an object’s content

can be controlled in a single control set 914.

Alternatively, two different control set_options could

support reading an object’s content by using one control set

option to support metering and budgeting the number of bytes

read, and the other control set option to support metering and

-463-

Petitioner Apple Inc. — Exhibit 1002, p. 5091

Petitioner Apple Inc. - Exhibit 1002, p. 5092

W0 98/09209 PCTIUS97/15243

budgeting the number of paragraphs read. One or the other of

these options would be active at a time.

Typically, each control set 914 will reference a set of

5 related methods, and thus different control sets can offer a

diflerent set of method options. For example, one control set 914

may represent one distinct kind of metering methodology, and

another control set may represent another, entirely difierent

distinct metering methodology.

10

At the next level inside a control set 914 are the required

methods records 920. Methods records 920 contain or reference

methods 1000 in the preferred embodiment. Methods 1000 are a

collection of ”events,“ references to load modules associated with

15 these events, static data, and references to a secure database 6l0

for automatic retrieval of any other separately deliverable data

elements that may be required for processing events (e.g.,

UDES). A control set 914 contains a list of required methods that

must be used to exercise a specific right (i.e., process events

20 associated with a right). A required method record 920 listed in

a control set 914 indicates that a method must eidst to exercise

the right that the control set supports. The required methods

may reference "load modules“ 1100 to be discussed below.

-454-

Petitioner Apple Inc. — Exhibit 1002, p. 5092

Petitioner Apple Inc. - Exhibit 1002, p. 5093

4W0 98/09209 PCTIUS97Il52 3

Briefly. load modules 1100 are pieces of executable code that may .

be used to carry out required methods.

Each control set 914 may have a control method record 918

5 as one of its required methods. The referenced control method

may define the relationships between some or all of the various

methods 1000 defined by a control set 906. For example, a

control method may indicate which required methods are

functionally grouped together to process particular events, and

10 the order for processing the required methods. Thus, a control

method may specify that required method referenced by record

920(a)(l)(i) is the first to be called and then its output is to go to

required method referenced by record 920(a)(l)(ii) and so on. In

this way, a meter method may be tied to one or more billing

15 methods and then the billing methods may be individually tied

to different budget methods, etc.

Required method records 920 specify one or more required

method options 924. Required method options are the lowest

20 level of control structure in a preferred embodiment PERC 808.

By parameterizing the required methods and specifying the

required method options 924 independently of the required

methods, it becomes possible to reuse required methods in many

diflerent circumstances.

-465-

Petitioner Apple Inc. — Exhibit 1002, p. 5093

Petitioner Apple Inc. - Exhibit 1002, p. 5094

10

15

20

WO 98109209 PCT/US97Il5243

For example, a required method record 920 may indicate

that an actual budget method ID must be chosen from the list of

budget method IDs in the required method option list for that

required method. Required method record 920 in this case does

not contain any method IDs for information about the type of

method required, it only indicates that a method is required.

Required method option 924 contains the method ID of the

method to be used if this required method option is selected. As i

a further optimization. an actual method ID may be stored if

only one option exists for a specific required method. This allows

the size of this data structure to be decreased.

PERC 808 also contains the fundamental decryption keys

for an object 300, and any other keys used with ”rights‘‘ (for

encoding and/or decoding audit trails. for example). It may

contain the keys for the object content or keys to decrypt portions

of the object that contain other keys that then can be used to

decrypt the content of the object. Usage of the keys is controlled

by the control sets 914 in the same ”right“ 906 within PERC 808.

In more detail, Figure 26 shows PERC 808 as including

private body keys 904, and right keys 912. Private body keys

904 are used to decrypt information contained within a private

-466-

Petitioner Apple Inc. — Exhibit 1002, p. 5094

Petitioner Apple Inc. - Exhibit 1002, p. 5095

10

15

20

W0 98I09209 PCT/US97Il5143

body 806 of a corresponding VDE object 300. Such in.formation

may include, for example, methods 1000, load modules 1100

and/or UDEs 1200. for example. Right keys 912 are keys used to

exercise a right in the preferred embodiment. Such right keys

912 may include, for example, decryption keys that enable a

method specified by PERC 808 to decrypt content for release by a

VDE node to an end user. These right keys 912 are, in the

preferred embodiment, unique to an object 300. Their usage is

preferably controlled by budgets in the preferred embodiment.

Detailed Example ofa PERC 808

Figures 26A and 26B show one example of a preferred

embodiment PERC 808. In this example, PERC header 900

includes:

a site record number 926.

a field 928 specifying the length of the private body

key block,

"' i a field 930 specifying the length of the PERC,

an expiration date/time field 932 specifying the

expiration date and/or time for the PERC,

a last modification date/time field 934 specifying the

last date and/or time the PERC 808 was

modified,

Petitioner Apple Inc. — Exhibit 1002, p. 5095

Petitioner Apple Inc. - Exhibit 1002, p. 5096

wo 93/09209 PCFIUS97/15243

the original distributor ID field 936 that specifies

who originallydistributed the PERC and/or

corresponding object,

a last distributor field 938 that specifies who was

5 the last distributor of the PERC and/or the

object,

an object ID field 940 identifying the corresponding

VDE object 300,

a field 942 that specifies the class and/or type of

10 PERC and/or the instance ID for the record

class to differentiate the PERCS of the same

type that may differ in their particulars,

a field 944 specifying the number of ”rights“ sub-

records 906 within the PERC, and

15 a validation tag 948.

The PERC 808 shown in Figures 26a, 26b also has private body

keys stored in a private body key block 950.

This PERC 808 includes a control set 0 sub-record 914 (0)

20 that may be used commonly by all of rights 906 within the

PERC. This control set 0 record 914(0) may include the following

fields:l

a length field 952 specifying the length of the control

set 0 record

-468-

Petitioner Apple Inc. — Exhibit 1002, p. 5096

Petitioner Apple Inc. - Exhibit 1002, p. 5097

wo 98/09209 PCT/U597/15243

a field 954 specifying the number of required

method records 920 within the control set

an access tag field 956 specifying an access tag to

control modification of the record and

5 one or more required method records 920.

Each required method record 920, in turn may include:

a length field 958 specifying the length of the

required method record

a field 960 specifying the number of method option

10 records within the required method record 920

an access tag field 962 specifying an access tag to

control modification of the record and

one or more method option records 924.

Each method option sub-record 924 may include:

15 a length field 964 specifying the length of the

method option record

a length field 966 specifying the length of the data

area (if any) corresponding to the method

option record

20 a method ID field 968 specifying a method ID (e.g.,

type/owner/class/instance)

a correlation tag field 970 specifying a correlation

tag for correlating with the method specified

in field 968

-469-

Petitioner Apple Inc. — Exhibit 1002, p. 5097

Petitioner Apple Inc. - Exhibit 1002, p. 5098

wo 98/09209 PCI‘/US97Il5243

an access tag field 972 specifying an access tag to

control modification of this record

a method-specific attributes field 974

a data area 976 and

a check value field 978 for validation purposes

rights records 906, and an overall check value field 980. Figure

23b is an example of one of right records 906 shown in Figure

10 16a. In this particular example, rights record 906a includes a

rights record header 908 comprising:

a length field 982 specifying the length of the rights

key block 912

a length field 984 specifying the length of the rights

15 record 908

an expiration date/time field 986 specifying the

expiration date and/or time for the rights

record

a right ID field 988 identifying a right

20 a number field 990 specifying the number of control

sets 914 within the rights record 906, and

an access tag field 992 specifying an access tag to

control modification of the right record.

- 470 -

Petitioner Apple Inc. — Exhibit 1002, p. 5098

Petitioner Apple Inc. - Exhibit 1002, p. 5099

10

15

20

W0 93/09209 PCTIUS97!15243

This example of rights record 906 includes:

a control set for this right (CSR) 910

a rights key block 912

one or more control sets 914, and

a check value field 994.

Object Registry

Referring once again to Figure 16, secure database 610

provides data structures that support a "lockup" mechanism for

”registered“ objects. This ”lookup“ mechanism permits electronic

appliance 600 to associate, in a secure way, VDE objects 300

with PERCS 808. methods 1000 and load modules 1100. In the

preferred embodiment, this lookup mechanism is based in part

on data structures contained within object registry 450.

In one embodiment, object registry 450 includes the

following tables:

- an object registration table 460;

- a subject table 462;

- a User Rights Table ("UR'I“‘) 464;

- an Administrative Event Log 442;

- a shipping table 444; and

- a receiving table 446.

-471-

Petitioner Apple Inc. — Exhibit 1002, p. 5099

Petitioner Apple Inc. - Exhibit 1002, p. 5100

10

15

20

WO 98/09209 PCT/US97!15243

Object registry 460 in the example embodiment is a

database of information concerning registered VDE objects 300

and the rights of users and user groups with regard to those

objects. When electronic appliance 600 receives an object 300

containing a new budget or load module 1100, the electronic

appliance usually needs to add the information contained by the

object to secure database 610. Moreover, when any new VDE

object 300 arrives at an electronic appliance 600, the electronic

appliance-must ”register“ the object within object registry 450 so

that it can be accessed. The lists and records for a new object

300 are built in the preferred embodiment when the object is

”registered“ by the electronic appliance 600. The information for

the object may be obtained from the object's encrypted private

header, object body, and encrypted name services record. This

information may be extracted or derived from the object 300 by

SPE 503, and then stored within secure database 610 as

encrypted records.

In one embodiment, object registration table 460 includes

information identifying objects within object storage (repository)

728. These VDE objects 300 stored within object storage 728 are

not, in the example embodiment, necessarily part of secure

database 610 since the objects typically incorporate their own

security (as necessary and required) and are maintained using

-472-

Petitioner Apple Inc. — Exhibit 1002, p. 5100

Petitioner Apple Inc. - Exhibit 1002, p. 5101

W0 98/09209 PCl‘lUS97Il5243

different mechanisms than the ones used to maintain the secure

database. Even though VDE objects 300 may not strictly be part

of secure database 610, object registry 450 (and in particular,

object registration table 460) refers to the objects and thus

5 ”incorporates them by reference“ into the secure database. In

the preferred embodiment, an electronic appliance 600 may be

disabled from using any VDE object 300 that has not been

appropriately registered with a corresponding registration record

stored wi-thin object registration table 460.

10

Subject table 462 in the example embodiment establishes

correspondence between objects referred to by object registration

table 460 and users (or groups of users) of electronic appliance

600. Subject table 462 provides many of the attributes of an

15 access control list (”ACL“), as will be explained below.

User rights table 464 in the example embodiment provides

permissioning and other information specific to particular users

or groups of usersand object combinations set forth in subject

20 table 462. In the example embodiment, permissions records 808

(also shown in Figure 16 and being stored within secure

database 610) may provide a universe of permissioning for a

particular object-user combination. Records within user rights

table 464 may specify a sub-set of this permissioning universe

-473-

Petitioner Apple Inc. — Exhibit 1002, p. 5101

Petitioner Apple Inc. - Exhibit 1002, p. 5102

10

15

20

W0 98/119209 PC'l'fUS97ll5243

based on, for example, choices made by users during interaction

at time of object registration.

Administrative event log 442, shipping table 444, and

receiving table 446 provide information about receipts and

deliveries of VDE objects 300. These data structures keep track

of administrative objects sent or received by electronic appliance

600 including, for example, the purpose and actions of the

administrative objects in summary and detailed form. Briefly,

shipping table 444 incudes a shipping record for each

administrative object sent (or scheduled to be sent) by electronic

appliance 600 to another VDE participant. Receiving table 446

in the preferred embodiment includes a receiving record for each

administrative object received (or scheduled to be received) by

electronic appliance 600. Administrative event log 442 includes

an event log record for each shipped and each received

administrative object, and may include details concerning each

distinct event specified by received administrative objects.

Administrative Object Shipping and Receiving

Figure 27 is an example of a detailed format for a shipping

table 444. In the preferred embodiment, shipping table 444

includes a header 444A and any number of shipping records 445.

Header 444A includes information used to maintain shipping

-474-

Petitioner Apple Inc. — Exhibit 1002, p. 5102

Petitioner Apple Inc. - Exhibit 1002, p. 5103

wo 93/09209 PCl‘IUS97I1s243

table 444. Each shipping record 445 within shipping table 444

provides details concerning a shipping event (i.e., either a

completed shipment of an administrative object to another VDE

participant, or a scheduled shipment of an administrative

5 object).

In the example embodiment of the secure database 610,

shipping table header 444A may include a site record number

444A(1), a user (or group) ID 444A(2), a series of reference fields

10 444A(3)-444A(6), validation tags 444A(7)-444A(8), and a check

value field 444A(9). The fields 444A(3)—444A(6) reference certain

recent IDs that designate lists of shipping records 445 within

shipping table 444. For example, field 44-1A(3) may reference to

a ’’first‘‘ shipping record representing a completed outgoing

15 shipment of an administrative object. and field 444A(4) may

reference to a "last“ shipping record representing a completed

outgoing shipment of an administrative object. In this example,

”first“ and “last” may, if desired, refer to time or order of

shipment as one example. Similarly, fields 444A(5) and 444A(6)

20 may reference to ’’first‘‘ and "last“ shipping records for scheduled

outgoing shipments. Validation tag 444A(7) may provide

validation from a name services record within name services

record table 452 associated with the user (group) ID in the

header. This permits access from the shipping record back to the

-475-

Petitioner Apple Inc. — Exhibit 1002, p. 5103

Petitioner Apple Inc. - Exhibit 1002, p. 5104

10

15

20

WO 98109209 Pcr/Us9'ms243

name services record that describes the sender of the object

described by the shipping records. Validation tag 444A(8)

provides validation for a ”first“ outgoing shipping record

referenced by one or more of pointers 444A(3)-444LA(6). Other

validation tags may be provided for validation of scheduled

shipping record(s).

Shipping record 444(1) shown includes a site record

number 4.45(1)(A). It also includes first and last scheduled

shipment date/times 445(1)(B), 445(1)(C) providing a window of

time used for scheduling administrative object shipments. Field

445(1)(D) may specify an actual date/time of a completed

shipment of an administrative object. Field 445(1)(E‘J provides

an ID of an administrative object shipped or to be shipped, and

thus identifies which administrative object within object storage

728 pertains to this particular shipping record. A reference field

445(1)(G) references a name services record within name services

record table 452 specifying the actual or intended recipient of the

administrative object shipped or to be shipped. This information

within name services record table 452 may, for example, provide

routing information sufficient to permit outgoing administrative

objects manager 754 shown in Figure 12 to inform object switch

734 to ship the administrative object to the intended recipient. A

field 445(1)(H) may specify (e.g., using a series of bit flags) the

-476-

Petitioner Apple Inc. — Exhibit 1002, p. 5104

Petitioner Apple Inc. - Exhibit 1002, p. 5105

10

15

20

WO 98/09209 PCTIUS97I1S243

purpose of the administrative object shipment, and a field

445(1)(I) may specify the status of the shipment. Reference

fields 445(1)(J), 445(1)(K) may reference "previous“ and ”next“

shipping records 445 in a linked list (in the preferred

embodiment, there may be two linked lists, one for completed

shipping records and the other for scheduled shipping records).

Fields 445(1)(L) - 445(1)(P) may provide validation tags

respectively from header 444A, to a record within administrative

event log- 442 pointed to by pointer 445(1)(F); to the name

services record referenced by field 445(1)(G): from the previous

record referenced by 445(1)(J); and to the next record referenced

by field 445(l)(K). A check value field 445(1)(Q) may be used for

validating shipping record 445.

Figure 28 shows an example of one possible detailed

format for a receiving table 446. In one embodiment, receiving

table 446 has a structure that is similar to the structure of the

shipping table 444 shown in Figure 27. Thus, for example,

receiving table 446 may include a header 446a and a plurality of

receiving records 447, each receiving record including details

about a particular reception or scheduled reception of an

administrative object. Receiving-table 446 may include two

linked lists, one for completed receptions and another for

schedule receptions. Receiving table records 447 may each

-477-

Petitioner Apple Inc. — Exhibit 1002, p. 5105

Petitioner Apple Inc. - Exhibit 1002, p. 5106

10

15

20

WO 98/09209 PC!‘/US97llS7A3

reference an entry within name services record table 452

specifying an administrative object sender, and may each point

to an entry within administrative event log 442. Receiving

records 447 may also include additional details about scheduled

and/or completed reception (e.g., scheduled or actual date/time of

reception, purpose of reception and status of reception), and they

may each include validation tags for validating references to

other secure database records.

Figure 29 shows an example ofa detailed format for an

administrative event log 442. In the preferred embodiment,

administrative event log 442 includes an event log record

442(1) . . . 442(N') for each shipped administrative object and for

each received administrative object. Each administrative event

log record may include a header 443a and from 1 to N sub-

records 442(J)(1) . . . 442(J)(N). In the preferred embodiment,

header 443a may include a site record number field 443A(1), a

record length field 443A(2), an administrative object ID field

443A(3), a field 443A(4) specifying a number of events, a

validation tag 443A(5) from shipping table 4_44 or receiving table

446, and a check sum field 443A(6). The number of events

specified in field 443A(4) corresponds to the number of sub-

records 442(J)(1) . . . 442(J)(N) within the administrative event

log record 442(J). Each of these sub-records specifies

-478-

Petitioner Apple Inc. — Exhibit 1002, p. 5106

Petitioner Apple Inc. - Exhibit 1002, p. 5107

WO 98109209 PCTIUS97Il5243

information about a particular ”event“ affected or corresponding .

to the administrative object specified within field 443(A)(3).

Administrative events are retained in the administrative event

log 442 to permit the reconstruction (and preparation for

5 i construction or processing) of the administrative objects that

have been sent from or received by the system. This permits lost

administrative objects to be reconstructed at a later time.

Each sub-record may include a sub-record length field

10 442(J)(1)(a), a data area length field 442(J)(1)(b), an event ID

field 442(J)(1)(c), a record type field 442(J)(1)(d), a record ID field

442(J)(1)(e), a data area field 442(J)(1)(f), and a check value field

442(J)(1)(g). The data area 442(J)(1)(fi may be used to indicate

which information within secure database 610 is affected by the

15 event specified in the event ID field 442(J)(1)(c), or what new

secure database item(s) were added, and may also specify the

outcome of the event.

The object registration table 460 in the preferred

20 embodiment includes a record corresponding to each VDE object

300 Within object storage (repository) 728. When a new object

arrives or is detected (e.g., by redirector 684), a preferred

embodiment electronic appliance 600 "registers" the object by

creating an appropriate. object registration record and storing it

-479-

Petitioner Apple Inc. — Exhibit 1002, p. 5107

Petitioner Apple Inc. - Exhibit 1002, p. 5108

wo as/09209 PC!‘/US97/15243

in the object registration table 460. In the preferred

embodiment, the object registration table stores information that

is user-independent, and depends only on the objects that are

registered at a given VDE electronic appliance 600. Registration

5 activities are typically managed by a REGISTER method

associated with an object.

In the example, subject table 462 associates users (or

groups of users) with registered objects. The example subject

10 table 462 performs the function of an access control list by

specifying which users are authorized to access which registered

VDE objects 300.

As described above, secure database 610 stores at least one

15 PERC 808 corresponding to each registered VDE object 300.

PERCS 808 specify a set of rights that may be exercised to use or

access the corresponding VDE object 300. The preferred

embodiment allows user to ”customize“ their access rights by

selecting a subset of rights authorized by a corresponding PERC

20 808 and/or by specifying parameters or choices that correspond

to some or all of the rights granted by PERC 808. These user

choices are set forth in a user rights table 464 in the preferred

embodiment. User rights table (URT) 464 includes URT records,

each of which corresponds to a user (or group of users). Each of

-480-

Petitioner Apple Inc. — Exhibit 1002, p. 5108

Petitioner Apple Inc. - Exhibit 1002, p. 5109

wo 98/09209 P(.'l‘IUS97/15243
these URT records specifies user choices for a corresponding

VDE object 300. These user choices may, either independently or

in combination with a PERC 808, reference one or more methods

1000 for exercising the rights granted to the user by the PERC

5 808 in a way specified by the choices contained within the URT

record.

Figure 30 shows an example of how these various tables

may interact with one another to provide a secure database

10 lookup mechanism. Figure 30 shows object registration table

460 as having a plurality of object registration records 460(1),

460(2), These records correspond to VDE objects 300(1),

300(2), . . . stored within object repository 728. Figure 31 shows

an example format for an object registration record 460 provided

15 by the preferred embodiment. Object registration record 460(N)

may include the following fields:

site record number field 466(1)

object type field 466(2)

creator ID field 466(3)

20 object ID field 466(4)

a reference field 466(5) that references subject

table 462

an attribute field 466(6)

a minimum registration interval field 466(7)

-481-

Petitioner Apple Inc. — Exhibit 1002, p. 5109

Petitioner Apple Inc. - Exhibit 1002, p. 5110

10

15

20

WO 98109209 PCI‘IUS97Il5243

a tag 466(8) to a subject table record, and

a check value field 466(9).

The site record number field 466(1) specifies the site

record number for this object registration record 460(N). In one

embodiment of secure database 610, each record stored within

the secure database is identified by a site record number. This

site record number may be used as part of a database lookup

process in order to keep track of all of the records within the

secure database 610.

Object type field 466(2) may specify the type of registered

VDE object 300 (e.g., a content object, an administrative object,

etc.).

Creator ID field 466(3) in the example may identify the

creator of the corresponding VDE object 300.

Object ID field 466(4) in the example uniquely identifies

the registered VDE object 300.

Reference field 466(5) in the preferred embodiment

identifies a record within the subject table 462. Through use of

this reference, electronic appliance 600 may determine all users

-482-

Petitioner Apple Inc. — Exhibit 1002, p. 5110

Petitioner Apple Inc. - Exhibit 1002, p. 5111

wo 93/09209 PC'I'IUS97I15243

(or user groups) listed in subject table 462 authorized to access

the corresponding VDE object 300. Tag 466(8) is used to validate

that the subject table records accessed using field 466(5) is the

proper record to be used with the object registration record

5 460(N).

Attribute field 466(6) may store one or more attributes or

attribute ‘flags corresponding to VDE object 300.

10 Minimum registration interval field 466(7) may specify

how often the end user may re-register as a user of the VDE

object 300 with a clearinghouse service, VDE administrator, or

VDE provider. One reason to prevent frequent re-registration is

to foreclose users from reusing budget quantities in traveling

15 objects until a specified amount of time has elapsed. The

minimum registration interval field 466(7) may be left unused

when the object owner does not wish to restrict re-registration.

Check value field 466(9) contains validation information

20 used for detecting corruption or modification of record 460(N) to

ensure security and integrity of the record. In the preferred.

embodiment, many or all of the fields within record 460(N) (as

with other records within the secure database 610) may be fully

or partially encrypted and/or contain fields that are stored

-483-

Petitioner Apple Inc. — Exhibit 1002, p. 5111

Petitioner Apple Inc. - Exhibit 1002, p. 5112

WO 98109209 PCFIUS97/15243

redundantly in each record (once in unencrypted form and once

in encrypted form). Encrypted and unencrypted versions of the

same fields may be cross checked at various times to detect

corruption or modification of the records.

As mentioned above, reference field 466(5) references

subject table 462, and in particular, references one or more

user/object records 460(M) within the subject table. Figure 32

shows anexample of a format for a user/object record 462(M)

10 provided by the example. Record 462(M) may include a header

468 and a subject record portion 470. Header 468 may include a

field 468(6) referencing a '’first“ subject record 470 contained

within the subject registration table 462. This "first“ subject

record 470(1) may, in turn, include a reference field 470(5) that

15 references a ”next“ subject record 470(2) within the subject

registration table 462, and so on. This "linked list“ structure

permits a single object registration record 460(N) to reference to

from one to N subject records 470.

20 Subject registration table header 468 in the example

includes a site record number field 468(1) that may uniquely

identify the header as a record within secure database 610.

Header 468 may also include a creator ID field 468(2) that may

be a copy of the content of the object registration table creator ID

-484-

Petitioner Apple Inc. — Exhibit 1002, p. 5112

Petitioner Apple Inc. - Exhibit 1002, p. 5113

10

15

20

W0 98I09209 PC!‘/US97/15243

field 466(3). Similarly, subject registration table header 468 may .

include an object ID field 468(5) that may be a copy of object ID

field 466(4) within object registration table 460. These fields

468(2), 468(5) make user/object registration records explicitly

correspond to particular VDE objects 300.

Header 468 may also include a tag 468(7) that permits

validation. In one example arrangement, the tag 468(7) within

the user/object registration header 468 may be the same as the

tag 466(8) within the object registration record 460(N) that

points to the user/object registration header. Correspondence

between these tags 468(7) and 466(8) permits validation that the

object registration record and user/object registration header

match up.

User/object header 468 also includes an original

distributor ID field 468(3) indicating the original distributor of

the corresponding VDE object 300, and the last distributor ID

field 468(4) that indicates the last distributor within the chain of

handling of the object prior to its receipt by electronic appliance

600.

~485-

Petitioner Apple Inc. — Exhibit 1002, p. 5113

Petitioner Apple Inc. - Exhibit 1002, p. 5114

wo 93/09109 PCI‘/US97Ils243

Header 468 also includes a tag 468(8) allowing validation

between the header and the ’’first‘‘ subject record 470(1) which

field 468(6) references

5 Subject record 470(1) includes a site record number 472(1),

a user (or user group) ID field 472(2), a user (or user group)

attributes field 472(3), a field 472(4) referencing user rights table

464, a field 472(5) that references to the "next" subject record

470(2) (if there is one), a tag 472(6) used to validate with the

10 header tag 468(8). a tag 472(7) used to validate with a

corresponding tag in the user rights table record referenced by

field 472(4), a tag 472(9) used to validate with a tag in the ”next“

subject record referenced to by field 472(5) and a check value

field 472(9).

15

User or user group ID 472(2) identifies a user or a user

group authorized to use the object identified in field 468(5).

Thus, the fields 468(5) and 472(2) together form the heart of the

access control list provided by subject table 462. User attributes

20 field 472(3) may specify attributes pertaining to use/access to

object 300 by the user or user group specified in fields 472(2).

Any number of different users or user groups may be added to

the access control list (each with a different set of attributes

-486-

Petitioner Apple Inc. — Exhibit 1002, p. 5114

Petitioner Apple Inc. - Exhibit 1002, p. 5115

10

15

20

WO 98/09209 PC'l‘IUS97Il5243

472(3)) by providing additional subject records 470 in the "linked

list“ structure.

Subject record reference field 472(4) references one or

mdre records within user rights table 464. Figure 33 shows an

example of a preferred format for a user rights table record

464(k). User rights record 464(k) may include a URT header

474, a record rights header 476, and a set of user choice records

478. URT‘ header 474 may include a site record number field, a

field 474(2) specifying the number of rights records within the

URT record 464(k), :1 field 474(3) referencing a ”first“ rights

record (i.e., to rights record header 476), a tag 474(4) used to

validate the lookup from the subject table 462, a tag 474(5) used

to validate the lookup to the rights record header 476, and a

check value field 474(6).

Rights record header 476 in the preferred embodiment

may include site record number field 476(1), a right ID field

476(2), a field 476(3) referencing the "next“ rights record 476(2),

a field 476(4) referencing a first set of user choice records 478(1),

a tag 476(5) to allow validation with URT header tag 474(5), a

tag 476(6) to allow validation with a user choice record tag

478(6), and a check value field 476(7). Right ID field 476(2) may,

for example, specify the type of right conveyed by the rights

-487-

Petitioner Apple Inc. — Exhibit 1002, p. 5115

Petitioner Apple Inc. - Exhibit 1002, p. 5116

wo 98/09209 PC'I‘IUS97I15243

record 476(e.g., right to use, right to distribute, right to read,

right to audit, etc.).

The one or more user choice records 478 referenced by

5 _ rights record header 476 sets forth the user choices

corresponding to access and/or use of the corresponding VDE

object 300. There willtypically be a rights record 476 for each

right authorized to the corresponding user or user group. These

rights govern use of the VDE object 300 by that user or user

10 group. For instance, the user may have an ”access“ right, and an

”extraction“ right, but not a "copy“ right. Other rights controlled

by rights record 476 (which is derived from PERC 808 using a

REGISTER method in the preferred embodiment) include

distribution rights, audit rights, and pricing rights. When an

15 object 300 is registered with the electronic appliance 600 and is

registered with a particular user or user group, the user may be

permitted to select among various usage methods set forth in

PERC 808. For instance, a VDE object 300 might have two

required meter methodologies: one for billing purposes, and one

20 for accumulating data concerning the promotional materials

used by the user. The user might be given the choice of a variety

of meter/billing “methods, such as: payment by VISA or

MasterCard; choosing between billing based upon the quantity of

material retrieved from an information database, based on the

-488-

Petitioner Apple Inc. — Exhibit 1002, p. 5116

Petitioner Apple Inc. - Exhibit 1002, p. 5117

wo 9s/09209 _ PC‘I‘IUS9'Ill5243
time of use, and/or both. The user might be offered a discount on

time and/or quantity billing if he is willing to allow certain

details concerning his retrieval of content to be provided to third

parties (e.g., for demographic purposes). At the time of

5 registration of an object and/or user for the object, the user would

be asked to select a particular meter methodology as the ”active

metering method“ for the first acquired meter. A VDE

distributor might narrow the universe of available choices for the

user to a subset of the original selection array stipulated by

10 PERC 808. These user selection and configuration settings are

stored within user choice records 480(1), 480(2), 480(N). The

user choice records need not be explicitly set forth within user

rights table 464; instead, it is possible for user choice records 480

to refer (e.g., by site reference number; to particular VDE

15 methods and/or information parameterizing those methods.

Such reference by user choice records 480 to method 1000 should

be validated by validation tags contained within the user choice

records. Thus, user choice records 480 in the preferred

embodiment may select one or more methods 1000 for use with

20 the corresponding VDE object 300 (as is shown in Figure 27).

These user choice records 480 may themselves fully define the

methods 1000 and other information used to build appropriate

components assemblies 690 for implementing the methods.

Alternatively, the user/object record 462 used to reference the

-489-

Petitioner Apple Inc. — Exhibit 1002, p. 5117

Petitioner Apple Inc. - Exhibit 1002, p. 5118

10

15

20

WO 98109209 PCTIUS97I15243

user rights record 464 may also reference the PERC 808

corresponding to VDE object 300 to provide additional

information needed to build the component assembly 690 and/or

otherwise access the VDE object 300. For example, PERC 808

may be accessed to obtain MDEs 1202 pertaining to the selected

methods, private body and/or rights keys for decrypting and/or

encrypting object contents, and may also be used to provide a

checking capability ensuring that the user rights record conveys

only those" rights authorized by a current authorization embodied

within a PERC.

In one embodiment provided by the present invention, a

conventional database engine may be used to store and organize

secure database 610, and the encryption layers discussed above

may be "on top of“ the conventional database structure.

However, if such a conventional database engine is unable to

organize the records in secure database 610 and support the

security considerations outlined above, then electronic appliance

600 may maintain separate indexing structures in encrypted

form. These separate indexing structures can be maintained by

SPE 503. This embodiment would require SPE 503 to decrypt

the index and search decrypted index blocks to find appropriate

"site record IDs“ or other pointers. SPE 503 might then request

the indicated record from the conventional database engine. If

-490-

Petitioner Apple Inc. — Exhibit 1002, p. 5118

Petitioner Apple Inc. - Exhibit 1002, p. 5119

WO 98109209 PCTIUS97/15243

the record ID cannot be checked against a record list, SPE 503

might be required to ask for the data file itself so it can retrieve

the desired record. SPE 503 would then perform appropriate

authentication to ensure that the file has not been tampered

5 with and that the proper block is returned. SPE 503 should not

simply pass the index to the conventional database engine

(unless the database engine is itself secure) since this would

allow an incorrect record to be swapped for the requested one.

10 Figure 34 is an example of how the site record numbers

described above may be used to access the various data

structures within secure database 610. In this example, secure

database 610 further includes a site record table 482 that stores

a plurality of site record numbers. Site record table 482 may

15 store what is in effect a "master list“ of all records Within secure

database 610. These site record numbers stored by site record

table 482 permit any record within secure database 610 to be

accessed. Thus, some of the site records within site r_ec_ord table

482 may index records with an object registration table 460,

20 other site record numbers within the site record table may index

records within the user/object table 462, still other site record

numbers within the site record table may access records within

URT 464, and still other site record numbers within the site

record table may access PERCS 808. In addition, each of method

-491-

Petitioner Apple Inc. — Exhibit 1002, p. 5119

Petitioner Apple Inc. - Exhibit 1002, p. 5120

10

15

20

WO 98109209 PCTIUS97!1 5243

cores 1000’ may also include a site record number so they may be ‘

accessed by site record table 482.

Figure 34A shows an example of a site record 4820) within

site record table 482. Site record 4826) may include a field

484(1) indicating the type of record, a field 484(2) indicating the

owner or creator of the record, a ”class “ field 484(3) and an

”instance“ field 484(4) providing additional information about

the record to which the site record 482(j) points; a specific

descriptor field 484(5) indicating some specific descriptor (e.g.,

object ID) associated with the record; an identification 484(6) of

the table or other data structure which the site record references;

a reference and/or offset within that data structure indicating

where the record begins; a validation tag 484(8) for validating

the record being looked up, and a check value field 484(9). Fields

484(6) and 484(7) together may provide the mechanism by which

the record referenced to by the site record 484(j) is actually

physically located within the secure database 610.

Updating Secure Database 610

Figure 35 show an example of a process 1150 which can be

used by a clearinghouse, VDE administrator or other VDE

participant to update the secure database 610 maintained by an

end user's electronic appliance 600. For example, the process

-492-

Petitioner Apple Inc. — Exhibit 1002, p. 5120

Petitioner Apple Inc. - Exhibit 1002, p. 5121

wo 98/09209 PCl‘IUS97Il5243

1500 shown in Figure 35 might be used to collect "audit trail“

records within secure database 610 and/or provide new budgets

and permissions (e.g., PERCs 808) in response to an end user’s

request.

Typically, the end user’s electronic appliance 600 may

initiate communications with a clearinghouse (Block 1152). This

contact may, for example, be established automatically or in

response to a user command. It may be initiated across the

10 electronic highway 108, or across other communications

networks such as a LAN, WAN, two-way cable or using portable

media exchange between electronic appliances. The process of

exchanging administrative information need not occur in a single

"on line“ session, but could instead occur over time based on a

15 number of different one-way and/or two~way communications

over the same or different communications means. However, the

process 1150 shown in Figure 35 is a specific example where the

end user’s electronic appliance 600 and the other VDE

participant (e.g., a clearinghouse) establish a two-way real-tirne

20 interactive communications exchange across a telephone line,

network, electronic highway 108, etc.

The end user’s electronic appliance 600 generally contacts

a particular VDE administrator or clearinghouse. The identity of

-493-

Petitioner Apple Inc. — Exhibit 1002, p. 5121

Petitioner Apple Inc. - Exhibit 1002, p. 5122

10

15

20

WO 98109209 PCT/US97Il5243

the particular clearinghouse is based on the VDE object 300 the

user wishes to access or hasalready accessed. For example,

suppose the user has already accessed a particular VDE object

300 and has run out of budget for further access. The user could

issue a request which will cause her electronic appliance 600 to

automatically contact the VDE administrator, distributor and/or

financial clearinghouse that has responsibility for that particular

object. The identity of the appropriate VDE participants to

contact is provided in the example by information within UDEs

1200, MDES 1202, the Object Registration Table 460 and/or

Subject Table 462, for example. Electronic appliance 600 may

have to contact multiple VDE participants (e.g., to distribute

audit records to one participant, obtain additional budgets or

other permissions from another participant. etc.). The Contact

1152 may in one example be scheduled in accordance with the

Figure 27 Shipping Table 444 and the Figure 29 Administrative

Event Log 442.

Once contact is established, the end user’s electronic

appliance and the clearinghouse typically authenticate one

another and agree on a session key to use for the real-time

information exchange (Block 1154). Once a secure connection is

established, the end user's electronic appliance may determine

(e.g., based on Shipping Table 444) whether it has any

-494-

Petitioner Apple Inc. — Exhibit 1002, p. 5122

Petitioner Apple Inc. - Exhibit 1002, p. 5123

wo 93/09209 PC'l‘lUS97I15243

administrative object(s) containing audit information that it is

supposed to send to the clearinghouse (decision Block 1156).

Audit information pertaining to several VDE objects 300 may be

placed within the same administrative object for transmission, or

5 diflerent administrative objects may contain audit information

about different objects. Assuming the end user’s electronic l

appliance has at least one such administrative object to send to

this particular clearinghouse (”yes“ exit to decision Block 1156),

the electronic appliance sends that administrative object to the

10 clearinghouse via the now~established secure real-time

communications (Block 1158). In one specific example, a single

administrative object may be sent an administrative object

containing audit information pertaining to multiple VDE objects,

with the audit information for each different object

15 compromising a separate "event“ within the administrative

object.

The clearinghouse may receive the administrative object

and process its contents to determine whether the contents are

20 ”valid“ and "legitimate." For example, the clearinghouse may

analyze the contained audit information to determine whether it

indicates misuse of the applicable VDE object 300. The

clearinghouse may, as a result of this analysis, may generate one

or more responsive administrative objects that it then sends to

-495-

Petitioner Apple Inc. — Exhibit 1002, p. 5123

Petitioner Apple Inc. - Exhibit 1002, p. 5124

wo 93,0920, PCT/US97/15243

the end user’s electronic appliance 600 (Block 1160). The end

user’s electronic appliance 600 may process events that update

its secure database 610 and/or SPU 500 contents based on the

administrative object received (Block 1162). For example, if the

5 audit information received by the clearinghouse is legitimate,

then the clearinghouse may send an administrative object to the

end user’s electronic appliance 600 requesting the electronic

appliance to delete and/or compress the audit information that

has been transferred. Alternatively or in addition, the

10 clearinghouse may request additional information from the end-

user electronic appliance 600 at this stage (e.g., retransmission

of certain information that was corrupted during the initial

transmission, transmission of additional information not earlier

transmitted, etc.). If the clearinghouse detects misuse based on

15 the received audit information, it may transmit an

administrative object that revokes or otherwise modifies the end

user’s right to further access the associated VDE objects 300.

The clearinghouse may, in addition or alternatively, send

20 an administrative object to the end user’s electronic appliance

600 that instructs the electronic appliance to display one or more

messages to the user. These messages may inform the user

about certain conditions and/or they may request additional

information from the user. For example, the message may

-496-

Petitioner Apple Inc. — Exhibit 1002, p. 5124

Petitioner Apple Inc. - Exhibit 1002, p. 5125

wo 98I09209 PC!‘/US9‘1Il524_3

instruct the end user to contact the clearinghouse directly by

telephone or otherwise to resolve an indicated problem, enter a

PIN, or it may instruct the user to contact a new service

company to re-register the associated VDE object. Alternatively,

5 the message may tell the end user that she needs to acquire new

usage permissions for the object, and may inform the user of cost,

status and other associated information.

During the same or different communications exchange,

10 the same or different clearinghouse may handle the end user’s

request for additional budget and/or permission pertaining to

VDE object 300. For example, the end user’s electronic appliance

600 may (e.g., in response to a user input request to access a

particular VDE object 300) send an administrative object to the

15 clearinghouse requesting budgets and/or other permissions

allowing access (Block 1164). As mentioned above, such requests

may be transmitted in the form of one or more administrative

objects, such as, for example, a single administrative object

having multiple ”events“ associated with multiple requested

20 budgets and/or other permissions for the same or different VDE

objects 300. The clearinghouse may upon receipt of such a

request, check the end user’s credit, financial records, business

agreements and/or audit histories to determine whether the

requested budgets and/or permissions should be given. The

-497-

Petitioner Apple Inc. — Exhibit 1002, p. 5125

Petitioner Apple Inc. - Exhibit 1002, p. 5126

W0 93,0920, PCTIUS97/15243

clearinghouse may, based on this analysis, send one or more

responsive administrative objects which cause the end user’s

electronic appliance 600 to update its secure database in

response (Block 1166, 1168). This updating might, for example,

5 comprise replacing an expired PERC 808 with a fresh one,

modifying a PERC to provide additional (or lesser) rights, etc.

Steps 1164-1168 may be repeated multiple times in the same or

different communications session to provide further updates to

the end user’s secure database 610.

10

Figure 36 shows an example of how a new record or

element may be inserted into secure database 610. The load

process 1070 shown in Figure 35 checks each data element or

item as it is loaded to ensure that it has not been tampered with,

15 replaced or substituted. In the process 1070 shown in Figure 35,

the first step that is performed is to check to see if the current

user of electronic appliance 600 is authorized to insert the item

into secure database 610 (block 1072). This test may involve, in

the preferred embodiment, loading (or using already loaded)

20 appropriate methods 1000 and other data structures such as

UDEs 1200 into an SPE 503, which then authenticates user

authorization to make the change to secure database 610 (block

1074). If the user is approved as being authorized to make the

change to secure database 610, then SPE 503 may check the

-498-

Petitioner Apple Inc. — Exhibit 1002, p. 5126

Petitioner Apple Inc. - Exhibit 1002, p. 5127

wo 93/09209 PCT/US97]15243

integrity of the element to be added tothe secure database by

decrypting it (block 1076) and determining whether it has

become damaged or corrupted (block 1078). The element is

checked to ensure that it decrypts properly using a

5 predetermined management file key, and the check value may be

validated. In addition, the public and private header ID tags (if

present) may be compared to ensure that the proper element has

been provided and had not been substituted, and the unique

element tag ID compared against the predetermined element

10 tag. If any of these tests fail, the element may be automatically

rejected, error corrected, etc. Assuming the element is found to

have integrity, SPE 503 may re-encrypt the information (block

1080) using a new key for example (see Figure 37 discussion

below). In the same process step an appropriate tag is preferably

15 provided so that the information becomes encrypted within a I‘

security wrapper having appropriate tags contained therein

(block 1082). SPE 503 may retain appropriate tag information so

that it can later validate or otherwise authenticate the item

when it is again read from secure database 610 (block 1084).

20 The now-secure element within its security wrapper may then be

stored within secure database 610.

Figure 37 shows an example of a process 1050 used in the

preferred embodiment database to securely access an item stored

-499-

Petitioner Apple Inc. — Exhibit 1002, p. 5127

Petitioner Apple Inc. - Exhibit 1002, p. 5128

10

15

20

WO 98109209 PCT/US97l1S243

in secure database 610. In the preferred embodiment, SPE 503

first accesses and reads in the item from secure database 610

records. SPE 503 reads this information from secure database

610 in encrypted form, and may ”unwrap“ it (block 1052) by

decrypting it (block 1053) based on access keys internally stored

within the protected memory of an SPU 500. In the preferred

embodiment, this "unwrap“ process 1052 involves sending blocks

of information to encrypt/decrypt engine 522 along with a

management file key and other necessary information needed to

decrypt. Decrypt engine 522 may return ”plaintext“ information

that SPE 503 then checks to ensure that the security of the

object has not been breached and that the object is the proper

object to be used (block 1054). SPE 503 may then check all

correlation and access tags to ensure that the read—in element

has not been substituted and to guard against other security

threats (block 1054’). Part of this "checking" process involves

checking the tags obtained from the secure database 610 with

tags contained within the secure memory or an SPU 500 (block

1056). These tags stored within SPU 500 may be accessed from

SPU protected memory (block 1056) and used to check further

the now-unwrapped object. Assuming this "checking" process

1054 does not reveal any improprieties (and block 1052 also

indicates that the object has not become corrupted or otherwise

damaged). SPE 503 may then access or otherwise use the item

-500-

Petitioner Apple Inc. — Exhibit 1002, p. 5128

Petitioner Apple Inc. - Exhibit 1002, p. 5129

wo 93m9209 PCT/US97!15243

(block 1058). Once use of the item is completed, SPE 503 may

need to store the item back into secure database 610 if it has

changed. If the item has changed, SPE 503 will send the item in

its changed form to encrypt/decrypt engine 522 for encryption

5 (block 1060), providing the appropriate necessary information to

the encrypt/decrypt engine (e.g., the appropriate same or

different management file key and data) so that the object is

appropriately encrypted. A unique, new tag and/or encryption

key may be used at this stage to uniquely tag and/or encrypt the

10 item security wrapper (block 1062; see also detailed Figure 3?

discussion below). SPE 503 may retain a copy of the key and/or

tag within a protected memory of SPU 500 (block 1064) so that

the SPE can decrypt and validate the object when it is again read

from secure database 610.

15

The keys to decrypt ‘secure database 610 records are, in the

preferred embodiment, maintained solely within the protected

memory of an SPU 500. Each index or record update that leaves

the SPU 500 may be time stamped, and then encrypted with a

20 unique key that is determined by the SPE 503. For example, a

key identification number may be placed "in plain view“ at the

front of the records of secure database 610 so the SPE 503 can

determine which key to use the next time the record is retrieved.

SPE 503 can maintain the site ID of the record or index, the key

-501-

Petitioner Apple Inc. — Exhibit 1002, p. 5129

Petitioner Apple Inc. - Exhibit 1002, p. 5130

wo 93/09209 PCTIUS97/15243

identification number associated with it, and the actual keys in

the list internal to the SPE. At some point, this internal list may

fill up. At this point, SPE 503 may call a maintenance routine

that re-encrypts items within secure database 610 containing

5 changed information. Some or all of the items within the data

structure containing changed information may be read in,

decrypted, and then re-encrypted with the same key. These

items may then be issued the same key identification number.

The items may then be written out of SPE 503 back into secure

10 database 610. SPE 503 may then clear the internal list of item

IDs and corresponding key identification numbers. It may then

begin again the process of assigning a different key and a new

key identification number to each new or changed item. By

using this process, SPE 503 can protect the data structures

15 (including the indexes) of secure database 610 against

substitution of old items and against substitution of indexes for

current items. This process also allows SPE 503 to validate

retrieved item IDs against the encrypted list of expected IDs.

20 Figure 38 is a flowchart showing this process in more

detail. Whenever a secure database 610 item is updated or

modified, a new encryption key can be generated for the updated

item. Encryption using a new key is performed to add security

and to prevent misuse of backup copies of secure database 610

-502-

Petitioner Apple Inc. — Exhibit 1002, p. 5130

Petitioner Apple Inc. - Exhibit 1002, p. 5131

wo 93/09209 PCl'IUS97Il57A3

records. The new encryption key for each updated secure

database 610 record may be stored in SPU 500 secure memory

with an indication of the secure database record or record(s) to

which it applies.

SPE 503 may generate a new encryption/decryption key

for each new item it is going to store within secure database 610

(block 1086). SPE 503 may use this new key to encrypt the

record prior to storing it in the secure database (block 1088).

10 SPE 503 make sure that it retains the key so that it can later

read and decrypt the record. Such decryption keys are, in the

preferred embodiment, maintained within protected non-volatile

memory (e.g., NVR.-LVI 534b) within SPU 500. Since this

protected memory has a limited size, there may not be enough

15 room within the protected memory to store 21 new key. This

condition is tested for by decision block 1090 in the preferred

embodiment. If there is not enough room in memory for the new

key (or some other event such as the number of keys stored in

the memory exceeding a predetermined number, a timer has

20 expired, etc.), then the preferred embodiment handles the

situation by re-encrypting other records with secure database

610 with the same new key in order to reduce the number of (or

change) encryption/decryption keys in use. Thus, one or more

secure database 610 items may be read from the secure database

-503-

Petitioner Apple Inc. — Exhibit 1002, p. 5131

Petitioner Apple Inc. - Exhibit 1002, p. 5132

10

15

20

WO 98109209 PCT/US97/15243

(block 1092), and decrypted using the old key(s) used to encrypt

them the last time they were stored. In the preferred

embodiment, one or more "old keys“ are selected, and all secure

database items encrypted using the old key(s) are read and

decrypted. These records may now be re-encrypted using the

new key that was generated at block 1086 for the new record

(block 1094). The old key(s) used to decrypt the other record(s)

may now be removed from the SPU protected memory (block 9

1096), and the new key stored in its place (block 1097). The old

key(s) cannot be removed from secure memory by block 1096

unless SPE 503 is assured that all records within the secure

database 610 that were encrypted using the old key(s) have been

read by block 1092 and re-encrypted by block 1904 using the new

key. All records encrypted (or re-encrypted) using the new key

may now be stored in secure database 610 (block 1098). If

decision block 1090 determines there is room within the SPU 500

protected memory to store the new key, then the operations of

blocks 1092, 1094, 1096 are not needed and SPE 503 may

instead simply store the new key within the protected memory

(block 1097) and store the new encrypted records into secure

database 610 (block 1098).

The security of secure database 610 files may be further

improved by segmenting the records into ”cornpa.rtments.“

-504-

Petitioner Apple Inc. — Exhibit 1002, p. 5132

Petitioner Apple Inc. - Exhibit 1002, p. 5133

10

15

20

WO 98/09209 PCT/US97Il524_3

Diflerent encryption/decryption keys may be used to protect

diflerent "compartments? This strategy can be used to limit the

amount of information within secure database 610 that is

encrypted with a single key. Another technique for increasing

security of secure database 610 may be to encrypt diflerent

portions of the same records with diflerent keys so that more

than one key may be needed to decrypt those records.

Backup of Secure Database 610

Secure database 610 in the preferred embodiment is

backed up at periodic or other time intervals to protect the

information the secure database contains. This secure database

information may be of substantial value to many VDE

participants. Back ups of secure database 610 should occur

without significant inconvenience to the user, and should not

breach any security.

_j__..___

The need to back up secure database 610 may be checked

at power on of electronic appliance 600, when SPE 503 is

initially invoked, at periodic time intervals, and if ”audit roll up“

value or other summary services information maintained by SPE

503 exceeds a user set or other threshold, or triggered by criteria

established by one or more content publishers and/or distributors

and/or clearinghouse service providers and/or users. The user

-505-

Petitioner Apple Inc. — Exhibit 1002, p. 5133

Petitioner Apple Inc. - Exhibit 1002, p. 5134

wo 98/09209 PCT/U397]15243

may be prompted to backup if she has failed to do so by or at

some certain point in time or after a certain duration of time or

quantity of usage, or the backup may proceed automatically

without user intervention.

Referring to Figure 8, backup storage 668 and storage

media 670 (e.g., magnetic tape) may be used to store backed up

information. Of course, any non-volatile media (e.g., one or more

floppy diskettes, a writable optical diskette, a hard drive, or the

10 like) may be used for backup storage 668.

There are at least two scenarios to backing up secure

database 610. The first scenario is ”site specific,“ and uses the

security of SPU 500 to support restoration of the backed up

15 information. This first method is used in case of damage to

secure database 610 due for example to failure of secondary

storage device 652, inadvertent user damage to the files, or other

occurrences that may damage or corrupt some or all of secure

database 610. This first, site specific scenario of back up

20 assumes that an SPU 500 still functions properly and is

available to restore backed up information.

The second back up scenario assumes that the user's SPU

500 is no longer operational and needs to be, or has been,

-506-

Petitioner Apple Inc. — Exhibit 1002, p. 5134

Petitioner Apple Inc. - Exhibit 1002, p. 5135

10

15

20

WO 98109209 PCT/US97/152-1'3

replaced. This second approach permits an authorized VDE

administrator or other authorized VDE participant to access the

stored back up information in order to prevent loss of critical

data and/or assist the user in recovering from the error.

Both of these scenarios are provided by the example of

program control steps performed by ROS 602 shown in Figure

39. Figure 39 shows an example back up routine 1250 performed

by an electronic appliance 600 to back up secure database 610

(and other information) onto back up storage 668. Once a back

up has been initiated, as discussed above, back up routine 1250

generates one or more back up keys (block 1252). Back up

routine 1250 then reads all secure database items, decrypts each

item using the original key used to encrypt them before they

were stored in secure database 610 (block 1254). Since SPU 500

is typically the only place where the keys for decrypting this

information within an instance of secure database 610 are

stored, and since one of the scenarios provided by back up

routine 1250 is that SPU 500 completely failed or is destroyed,

back up routine 1250 performs this reading and decrypting step

1254 so that recovery from a backup is not dependent on

knowledge of these keys within the SPU. Instead, back up

routine 1250 encrypts each secure database 610 item with a

newly generated back up key(s) (block 1256) and writes the

-507-

Petitioner Apple Inc. — Exhibit 1002, p. 5135

Petitioner Apple Inc. - Exhibit 1002, p. 5136

10

15

20

WO 98/09209 PC!‘/US97l15243

encrypted item to back up store 668 (block 1258). This process

continues until all items within secure database 610 have been

read, decrypted, encrypted with a newly generated back up

key(s), and written to the back up store (as tested for by decision

block 1260).

The preferred embodiment also reads the summary

services audit information stored within the protected memory of

SPU 500 by SPE summary services manager 560, encrypts this

information with the newly generated back up key(s), and writes

this summary services information to back up store 668 (block

1262).

onto back up store 668. It does this in two secure ways in order

to cover both of the restoration scenarios discussed above. Back

up routine 1250 may encrypt the back up key(s) (along with

other information such as the time of back up and other

appropriate information to identify the back up) with a further

key or keys such that only SPU 500 can decrypt (block 1264).

This encrypted information is then written to back up store 668

(block 1264). For example, this step may include multiple

encryptions using one or more public keys with corresponding

- 508-

Pctitioncr Apple Inc. — Exhibit 1002, p. 5136

Petitioner Apple Inc. - Exhibit 1002, p. 5137

we 98,0920, PCl‘IUS97I15243

private keys known only to SPU 500. Alternatively, a second

back up key generated by the SPU 500 and kept only in the SPU

may be used for the final encryption in place of a public key.

Block 1264 preferably includes multiple encryption in order to

5 _ make it more difficult to attack the security of the back up by

“cracking” the encryption used to protect the back up keys.

Although block 1262 includes encrypted summary services

information on the back up, it preferably does not include SPU

device private keys, shared keys, SPU code and other internal

10 security information to prevent this information from ever

becoming available to users even in encrypted form.

The information stored by block 1264 is sufficient to allow

the same SPU 500 that performed (or at least in part performed)

15 back up routine 1250 to recover the backed up information.

However, this information is useless to any device other than

that same SPU because only that SPU knows the particular keys

used to protect the back up keys. To cover the other possible

scenario wherein the SPU 500 fails in a non-recoverable way,

20 back up routine 1250 provides an. additional step (block 1266) of

saving the back up key(s) under protection of one or more further

set of keys that may be read by an authorized VDE

administrator. For example, block 1266 may encrypt the back up

keys with an "download authorization key“ received during

-509-

Petitioner Apple Inc. — Exhibit 1002, p. 5137

Petitioner Apple Inc. - Exhibit 1002, p. 5138

I 5243wo 9s/09209 PCWS97 ‘

initialization of SPU 500 from a administrator. This

encrypted version of back up keys is also written to back up store

668 (block 1266). It can be used to support restoration of the

back up files in the event of an SPU 500 failure. More

5 specifically, a VDE administrator that knows the download

authorization (or other) keys(s) used by block 1266 may be able

to recover the back up key(s) in the back up store 668 and

proceed to restore the backed up secure database 610 to the same

or different electronic appliance 600.

10

In the preferred embodiment, the information saved by

routine 1250 in back up files can be restored only after receiving

a back up authorization from an authorized VDE administrator.

In most cases, the restoration process will simply be a restoration

15 of secure database 610 with some adjustments to account for any

usage since the back up occurred. This may require the user to

contact additional providers to transmit audit and billing data

and receive new budgets to reflect activity since the last back up.

Current summary services information maintained within SPU

20 500 may be compared to the summary services information

stored on the back up to determine or estimate most recent usage

activity.

-510-

Petitioner Apple Inc. — Exhibit 1002, p. 5138

Petitioner Apple Inc. - Exhibit 1002, p. 5139

10

15

20

WO 98109209 PCI‘IUS9‘7Il5243

In case of an SPU 500 failure, an authorized VDE

administrator must be contacted to both initialize the

replacement SPU 500 and to decrypt the back up files. These

processes allow for both SPU failures and upgrades to new SPUs.

Inthe case of restoration, the back up files are used to restore

the necessary information to the user’s system. In the case of

upgrades, the back up files may be used to validate the upgrade

process.

The back up files may in some instances be used to

transfer management information between electronic appliances

600. However, the preferred embodiment may restrict some or

all information from being transportable between electronic

appliances with appropriate authorizations. Some or all of the

back up files may be packaged within an administrative object\

and transmitted for analysis, transportation, or other uses.

As a more detailed example of a need for restoration from

back up files, suppose an electronic appliance 600 suffers a hard

disk failure or other accident that wipes out or corrupts part or

all of the secure database 610, but assume that the SPU 500 is

still functional. SPU 500 may include all of the information (e.g.,

secret keys and the like) it needs to restore the secure database

610. However, ROS 602 may prevent secure database

-511-

Petitioner Apple Inc. — Exhibit 1002, p. 5139

Petitioner Apple Inc. - Exhibit 1002, p. 5140

wo 93/09109 PCTIUS97I1 5243

restorationluntil a restoration authorization is received from a

VDE administrator. A restoration authorization may comprise,

for example, a "secret value“ that must match a value expected

by SPE 503. A VDE administrator may, if desired, only provide

5 this restoration authorization aflzer, for example, summary

services information stored within SPU 500 is transmitted to the

administrator in an administrative object for analysis. In some

circumstances, a VDE administrator may require that a copy

(partial or complete) of the back up files be transmitted to it

10 within an administrative object to check- for indications of

fraudulent activities by the user. The restoration process, once

authorized, may require adjustment of restored budget records

and the like to reflect activity since the last back up, as

mentioned above.

15

Figure 40 is an example of program controlled ”restore“

routine 1268 performed by electronic appliance 600 to restore

secure database 610 based on the back up provided by the

routine shown in Figure 38. This restore may be used, for

20 example, in the event that an electronic appliance 600 has failed

but can be recovered or ”reinitialized“ through contact with a

VDE administrator for example. Since the preferred

embodiment does not permit an SPU 500 to restore from backup

unless and until authorized by a VDE administrator, restore

-512-

Petitioner Apple Inc. — Exhibit 1002, p. 5140

Petitioner Apple Inc. - Exhibit 1002, p. 5141

10

15

20

WO 98/09209 PCTIUS97!15243

routine 1268 begins by establishing a secure communication with‘

a VDE administrator that can authorize the restore to occur

(block 1270). Once SPU 500 and the VDE administrator

authenticate one another (part of block 1270), the VDE

administrator may extract ”work in progress“ and summary

values from the SPU 500’s internal non-volatile memory (block

1272). The VDE administrator may use this extracted

information to help determine, for example, whether there has "

been a security violation, and also permits a failed SPU 500 to

effectively ”dump‘-‘ its contents to the VDE administrator to

permit the VDE administrator to handle the contents. The SPU

500 may encrypt this information and provide it to the VDE

administrator packaged in one or more administrative objects.

The VDE administrator may then request a copy of some or all of

the current backup of secure database 610 from the SPU 500

(block 1274). This information may be packaged by SPU 500 into

one or more administrative objects, for example, and sent to the

VDE administrator. Upon receiving the information, the VDE

administrator may read the summary services audit information

from the backup volume (i.e., information stored by Figure 38

block 1262) to determine the summary values and other

information stored at time of backup. The VDE administrator

may also determine the time and date the backup was made by

reading the information stored by Figure 38 block 1264.

-513-

Petitioner Apple Inc. — Exhibit 1002, p. 5141

Petitioner Apple Inc. - Exhibit 1002, p. 5142

wo 98]-09109 PCT/US97/15243

The VDE administrator may at this point restore the

summary values and other information within SPU 500 based on

the information obtained by block 1272 and from the backup

.,(block 1276). For example, the VDE administrator may reset

5 SPU internal summary values and counters so that they are

consistent with the last backup. These values may be adjusted

by the VDE administrator based on the "work in progress“

recovered by block 1272. the amount of time that has passed

since the backup, etc. The goal may typically be to attempt to

10 provide internal SPU values that are equal to what they would

have been had the failure not occurred.

The VDE administrator may then authorize SPU 500 to

recover its secure database 610 from the backup files (block

15 1278). This restoration process replaces all secure database 610

records with the records from the backup. The VDE

administrator may adjust these records as needed by passing a

commands to SPU 500 during or after the restoration process.

20 The VDE administrator may then compute bills based on

the recovered values (block 1280), and perform other actions to

recover from SPU downtime (block 1282). Typically, the goal is

to bill the user and adjust other VDE 100 values pertaining to

the failed electronic appliance 600 for usage that occurred

-514-

Petitioner Apple Inc. — Exhibit 1002, p. 5142

Petitioner Apple Inc. - Exhibit 1002, p. 5143

wo 93/09209 PCI'IUS97I15243

subsequent to the last backup but prior to the failure. This

process may involve the VDE administrator obtaining, from

other VDE participants, reports and other information

pertaining to usage by the electronic appliance prior to its failure

5 and comparing it to the secure database backup to determine

which usage and other events are not yet accounted for.

In one alternate embodiment, SPU 500 may have

sufficient internal. non-volatile memory to allow it to store some

10 or all of secure database 610. In this embodiment, the additional

memory may be provided by additional one or more integrated

circuits that can be contained Within a secure enclosure. such as

a tamper resistant metal container or some form of a chip pack

containing multiple integrated circuit components, and which

15 impedes and/or evidences tampering attempts, and/or disables a

portion or all of SPU 500 or associated critical key and/or other

control information in the event of tampering. The same back up

routine 1250 shown in Figure 38 may be used to back up this

type of information, the only difference being that block 1254

20 may read the secure database item from the SPU internal

memory and may not need to decrypt it before encrypting it with

the “back up key(s).

-515-

Petitioner Apple Inc. — Exhibit 1002, p. 5143

Petitioner Apple Inc. - Exhibit 1002, p. 5144

wo gsmgzw PCT/US97!15243

Event-Driven VDE Processes

As discussed above, processes provided by/under the

preferred embodiment rights operating system (ROS) 602 may be

"event driven.“ This "event driven“ capability facilitates

5 integration and extendibility.

An ”event“ is a happening at a point in time. Some

examples of "events" are a user striking a key of a keyboard,

arrival of a message or an object 300, expiration of a timer, or a

10 request from another process.

In the preferred embodiment. ROS 602 responds to an

”event“ by performing a process in response to the event. ROS

602 dynamically creates active processes and tasks in response

15 to the occurrence of an event. For example, ROS 602 may create

and begin executing one or more component assemblies 690 for

performing a process or processes in response to occurrence of an

event. The active processes and tasks may terminate once ROS

602 has responded to the event. This ability to dynamically

20 create (and end) tasks in response to events provides great

fleidbility, and also permits limited execution resources such as

those provided by an SPU.500 to perform a virtually unlimited

variety of different processes in diflerent contexts.

Petitioner Apple Inc. — Exhibit 1002, p. 5144

Petitioner Apple Inc. - Exhibit 1002, p. 5145

wo 93/09209 PCl‘fUS97I1 5243

Since an ”event“ may be any type of happening, there are

an unlimited number of different events. Thus, any attempt to

categorize events into difierent types will necessarily be a

generalization. Keeping this in mind, it is possible to categorize

5 events provided/supported by the preferred embodiment into two

broad categories:

- user-initiated events; and

- system-initiated events.

10

Generally, "user-initiated“ events are happenings

attributable to a user (or a user application). A common "user-

initiated“ event is a user’s request (e.g., by pushing a keyboard

button, or transparently using redirector 684) to access an object

15 300 or other VDE-protected information.

"System-initiated“ events are generally happenings not

':zfii'5utable to a user. Examples of system initiated events

include the expiration of a timer indicating that information

20 should be hacked to non-volatile memory, receipt of a message

from another electronic appliance 600, and a service call

generated by another process (which may have been started to

respond to a system-initiated event and/or a user-initiated

event).

-517-

Petitioner Apple Inc. — Exhibit 1002, p. 5145

Petitioner Apple Inc. - Exhibit 1002, p. 5146

wo 98/09209 PCTIUS97/15243

ROS 602 provided by the preferred embodiment responds 4

to an event by specifying and beginning processes to process the

event. These processes are, in the preferred embodiment, based

on methods 1000. Since there are an unlimited number of

5 diflerent types of events, the preferred embodiment supports an

unlimited number of difierent processes to process events. This

flexibility is supported by the dynamic creation of component

assemblies 690 from independently deliverable modules such as

methodcores 1000’, load modules 1100, and data structures such

10 as UDEs 1200. Even though any categorization of the unlimited

potential types of processes supported/provided by the preferred

embodiment will be a generalization, it is possible to generally

classify processes as falling within two categories:

15 - processes relating to use of VDE protected information;

and

- processes relating to VDE administration.

'Uae"a.nd 'Admin.iatrative‘Proceaaes

20 ”Use“ processes relate in some way to use of VDE-

protected information. Methods 1000 provided by the preferred

embodiment may provide processes for creating and maintaining

a chain of control for use of VDE-protected information. One

specific example of a ”use“ type process is processing to permit a

-518-

Petitioner Apple Inc. — Exhibit 1002, p. 5146

Petitioner Apple Inc. - Exhibit 1002, p. 5147

wo 93/09209 PCTIUS97I15243

user to open a VDE object 300 and access its contents. A method

1000 may provide detailed use-related processes such as, for

example, releasing content to the user as requested (if

permitted), and updating meters, budgets, audit trails, etc. Use-

5 related processes are often user-initiated, but some use processes

may be system-initiated. Events that trigger a VDE use-related

process may be called "use events.“

An ”administrative“ process helps to keep VDE 100

10 working. It provides processing that helps support the

transaction management "infrastructure“ that keeps VDE 100

running securely and efficiently. Administrative processes may,

for example, provide processing relating to some aspect of

creating, modifying and/or destroying VDE-protected data

15 structures that establish and maintain VDE's chain of handling

and control. For example, "administrative" processes may store,

update, modify or destroy information contained within a VDE

electronic appliance 600 secure database 610. Administrative

processes also may provide communications services that

20 establish, maintain and support secure communications between

different VDE electronic appliances 600. Events that trigger

administrative processes may be called "administrative events.“

-519-

Petitioner Apple Inc. — Exhibit 1002, p. 5147

Petitioner Apple Inc. - Exhibit 1002, p. 5148

W0 98/09209 PCT/US97/15243

Reciprocal Methods

Some VDE processes are paired based on the way they

interact together. One VDE process may "request“ processing

services from another VDE process. The process that requests

5 processing services may be called a "request process.“ The

"request" constitutes an "event" because it triggers processing by

the other VDE process in the pair. The VDE process that

responds to the "request event“ may be called a "response

process.“ The "request process“ and "response process“ may be

10 called "reciprocal processes.“

The "request event“ may comprise, for example, a message

issued by one VDE node electronic appliance 600 or process for

certain information. A corresponding "response process“ may

15 respond to the "request event“ by, for example, sending the

information requested in the message. This response may itself

constitute a “request event“ if it triggers a further VDE ”response

process.“ For example, receipt of a message in response to an

earlier-generated request may trigger a "reply process.“ This

20 "reply process“ is a special type of ”response process“ that is

triggered in response to a ’’reply“ from another "response

process.“ There may be any number of ”request“ and ”response“

process pairs within a given VDE transaction.

-520-

Petitioner Apple Inc. — Exhibit 1002, p. 5148

Petitioner Apple Inc. - Exhibit 1002, p. 5149

wo ggfogzog PCI'IUS97Il 5243

A "request process“ and its paired "response process“ may

be performed on the same VDE electronic appliance 600, or the

two processes may be performed on different VDE electronic

appliances. Communication between the two processes in the

5 pair may be by way of a secure (VDE-protected) communication,

an "out of channel“ communication, or a combination of the two.

Figures 41a-41d are a set of examples that show how the

chain of handling and control is enabled using "reciprocal

10 methods.“ A chain of handling and control is constructed, in

part, using one or more pairs of "reciprocal events“ that

cooperate in request-response manner. Pairs of reciprocal events

may be managed in the preferred embodiment in one or more

"reciprocal methods.“ As mentioned above, a "reciprocal

15 method“ is a method 1000 that can respond to one or more

"reciprocal events.“ Reciprocal methods contain the two halves of

a cooperative process that may be securely executed at physically

and/or temporally distant VDE nodes. The reciprocal processes

may have a flexibly defined information passing protocols and

20 information content structure. The reciprocal methods may, in

fact, be based on the same or difierent method core 1000’

operating in the same or diflerent VDE nodes 600. VDE nodes

600A and 600B shown in Figure 41a may be the same physical

-521-

Petitioner Apple Inc. — Exhibit 1002, p. 5149

Petitioner Apple Inc. - Exhibit 1002, p. 5150

W0 93/09209 PCT/US97/15243

electronic appliance 600 or may be separate electronic

appliances.

Figure 41a is an example of the operation of a single pair

5 of reciprocal events. In VDE node 600A, method 1000a is

processing an event that has a request that needs to be processed

at VDE node 600B. The method 1000a (e.g., based on a

component assembly 690 including its associated load modules

1100 and data) that responds to this ”request“ event is shown in

10 Figure 41a as 1450. The process 1450 creates a request (1452)

and, optionally, some information or data that will be sent to the

other VDE node 1000b for processing by a process associated

with the reciprocal event. The request and other information

may be transmitted by any of the transport mechanisms

15 described elsewhere in this disclosure.

Receipt of the request by VDE node 600b comprises a

response event at that node. Upon receipt of the request, the

VDE node 600b may perform a ”reciprocal“ process 1454 defined

20 by the same or different method 1000b to respond to the response

event. The reciprocal process 1454 may be based on a component

assembly 690 (e.g., one or more load modules 1100, data, and

optionally other methods present in the VDE node 600B).

-522-

Petitioner Apple Inc. — Exhibit 1002, p. 5150

Petitioner Apple Inc. - Exhibit 1002, p. 5151

wo 93/09109 PCl'IUS97l15243

Figure 41b extends the concepts presented in Figure 41a to

include a response from VDE node 600B back to VDE node 600A.

The process starts as described for Figure 41a through the

receipt and processing of the request event and information 1452

5 by the response process 1454 in VDE node 600B. The response

process 1454 may, as part of its processing, cooperate with

another request process (1468) to send a response 1469 back to

the initiating VDE node 600A. A correspondingreciprocal

process 1470 provided by method 1000A may respond to and

10 process this request event 1469. In this manner, two or more

VDE nodes 600A. 600B may cooperate and pass configurable

information and requests between methods 1000A, 1000B

executing in the nodes. The first and second request-response

sequences [(1450, 1452, 1454) and (1468. 1469, 1470)] may be

15 separated by temporal and spatial distances. For efficiency, the

request (1468) and response (1454) processes may be based on

the same method 1000 or they may be implemented as two

methods in the same or different method core 1000'. A_ method

1000 may be parameterized by an "event code“ so it may provide

20 . diflerent behaviors/results for different events, or different

methods may be provided for dififerent events.

Figure 41c shows the extension the control mechanism

described in Figures 41a-41b to three nodes (60OA, 600B, 600C).

-523-

Petitioner Apple Inc. — Exhibit 1002, p. 5151

Petitioner Apple Inc. - Exhibit 1002, p. 5152

WO 98109209 PCT/US97Il 5243

Each request-response pair operates in the manner as described

for Figure 41b, with several pairs linked together to form a chain

of control and handling between several VDE nodes 600A, 600B,

600C. This mechanism may be used to extend the chain of

5 V handling and control to an arbitrary number of VDE nodes using

any configuration of nodes. For example, VDE node 600C might

communicate directly to VDE node 600A and communicate

directly to VDE 600B, which in turn communicates with VDE

node 600A. Alternately, VDE node 600C might communicate

10 directly with VDE node 600A, VDE node 600A may communicate

with VDE node 600B, and VDE node 600B may communicate

with VDE node 600C.

A method 1000 may be parameterized with sets of events

15 that specify related or cooperative functions. Events may be

logically grouped by function (e.g., use, distribute), or a set of

reciprocal events that specify processes that may operate in

conjunction with each other. Figure 41d illustrates a set of

"reciprocal events‘-‘ that support cooperative processing between

20 several VDE nodes 102, 106, 112 in a content distribution model

to support the distribution of budget. The chain of handling and

control, in this example, is enabled by using a set of "reciprocal

events“ specified within a BUDGET method. Figure 41d is an

example of how the reciprocal event behavior within an example

-524-

Petitioner Apple Inc. — Exhibit 1002, p. 5152

Petitioner Apple Inc. - Exhibit 1002, p. 5153

wo 9s/09209 PC'I‘IUS97I15243

BUDGET method (1510) work in cooperation to establish a chain

of handling and control between several VDE nodes. The

example BUDGET method 1510 responds to a ”use“ event 1478

by performing a ”use“ process 1476 that defines the mechanism

5 by which processes are budgeted. The BUDGET method 1510

might, for example, specify a use process 1476 that compares a

meter count to a budget value and fail the operation if the meter

count exceeds the budget value. It might also write an audit

trail that describes the results of said BUDGET decisions.

10 Budget method 1510 may respond to a ”distribute“ event by

performing a distribute process 1472 that defines the process

and/or control information for further distribution of the budget.

It may respond to a "request" event 1480 by performing a request

process 1480 that specifies how the user might request use

15 and/or distribution rights from a distributor. It may respond to a

“response” event 1482 by performing a response process 1484

that specifies the manner in which a distributor would respond

to requests from other users to whom they have distributed some

(or all) of their budget to. It may respond to a ”reply“ event 1474

20 by performing a reply process 1475 that might specify how the

user should respond to message regranting -or denying (more)

budget.

-525-

Petitioner Apple Inc. — Exhibit 1002, p. 5153

Petitioner Apple Inc. - Exhibit 1002, p. 5154

WO 98/09209 PC'I'fUS97ll5243

Control of event processing, reciprocal events, and their

associated methods and method components is provided by

PERCS 808 in the preferred embodiment. These PERCS (808)

’might reference administrative methods that govern the

5 creation, modification, and distribution of the data structures

and administrative methods that permit access, modification,

and further distribution of these items. In this way, each link in

the chain of handling and control might, for example, be able to

customize audit information, alter the budget requirements for

10 using the content, and/or control further distribution of these

rights in a manner specified by prior members along the

distribution chain.

In the example shown in Figure 41d, a distributor at a»-

15 VDE distributor node (106) might request budget from a content

creator at another node (102). This request may be made in the

context of a secure VDE communication or it may be passed in '

an “out-of-channel“ communication (e.g. a telephone call or

letter). The creator 102 may decide to grant budget to the

20 distributor 106 and processes a distribute event (1452 in

BUDGET method 1510 at VDE node 102). A result of processing

the distribute event within the BUDGET method might be a

secure communication (1454) between VDE nodes 102 and 106

by which a budget granting use and redistribute rights to the

-526-

Petitioner Apple Inc. — Exhibit 1002, p. 5154

Petitioner Apple Inc. - Exhibit 1002, p. 5155

WO 98109209 PCTIUS9'll15243

distributor 106 may be transferred from the creator 102 to the

distributor. The distributors VDE node 106 may respond to the

receipt of the budget information by processing the

communication using the reply process 1475B of the BUDGET

OI method 1510. The reply event processing 1475B might, for

example, install a budget and PERC 808 within the distributo1’s

VDE 106 node to permit the distributor to access content or

processes for which access is control at least in part by the

budget and/or PERC. At some point, the distributor 106 may

10 also desire to use the content to which she has been granted

rights to access.

After registering to use the content object, the user 112

would be required to utilize an array of "use‘ processes 1476C to,

15 for example, open, read, write, and/or close the content object as

part of the use process.

Once the distributor 106 has used some or all of her

budget, she may desire to obtain additional budget. The

20 distributor 106 might then initiate a process using the BUDGET

method request process (1480B). Request process 1480B might

initiate a communication (1482A_1_3) with the content creator VDE

node 102 requesting more budget and perhaps providing details

of the use activity to date (e.g., audit trails). The content creator

-527-

Petitioner Apple Inc. — Exhibit 1002, p. 5155

Petitioner Apple Inc. - Exhibit 1002, p. 5156

wo ggfogzog PCTIUS97]15243

102 processes the ‘get more budget’ request event 1482AB using

the response process (1484A) within the creato1’s BUDGET

method 1510A. Response process 1484A might, for example,

make a determination if the use information indicates proper use

5 of the content, and/or if the distributor is credit worthy for more

budget. The BUDGET method response process 1484A might

also initiate a financial transaction to transfer funds from the

distributor to pay for said use, or use the distribute process

1472A to distribute budget to the distributor 106. A response to

10 the distributor 106 granting more budget (or denying more

budget) might be sent immediately as a response to the request

communication 1482AB, or it might be sent at a later time as

pa.rt of a separate communication. The response communication,

upon being received at the distributors VDE node 106, might be

15 processed using the reply process 1475B Within the distributofs

copy of the BUDGET method 1510B. The reply process 1475B

might then process the additional budget in the same manner as

described above.

20 The chain of handling and control may, in addition to

posting budget information, also pass control information that

governs the manner in which said budget may be utilized. For

example, the control information specified in the above example

may also contain control information describing the process and

-528-

Petitioner Apple Inc. — Exhibit 1002, p. 5156

Petitioner Apple Inc. - Exhibit 1002, p. 5157

W0 98,0920, PCTIUS97/15243

limits that apply to the distributor's redistribution of the right to 1

use the creator’s content object. Thus, when the distributor

responds to a budget request from a user (a communication

between a user at VDE node 112 to the distributor at VDE node

5 106 similar in nature to the one described above between VDE

nodes 106 and 102) using the distribute process 1472B within

the distributor’s copy of the BUDGET method 1510B, a

distribution and request/response/reply process similar to the

one described above might be initiated.

10

Thus. in this example a single method can provide

multiple dynamic behaviors based on difierent ”tIigge1'ingl‘

events. For example. single BUDGET method 1510 might

support any or all of the events listed below:

15

IIvent 1 Process Deecrition

se“ Events lnse budeet
' - uest Events equest more budget Request more money for

I’ - essed by budet.

20 D ser Node equest audit by auditorI’ quest Process ~ 1 the budget use.‘ "

480C equest budget deletion deleted from s stem.

equest method updated audidn .

auditor 2. or vice versa.

equest different audit Change time interval between
terval audits.

I

ll
I
1

Request ability to provide ies ofa budet.

-529-

Petitioner Apple Inc. — Exhibit 1002, p. 5157

Petitioner Apple Inc. - Exhibit 1002, p. 5158

WO 98/09209 PC!‘/US97/15243

o 'stribute budet bud et to other users.

equest account status Request information on

current status of an account.

I‘ - uest Method Udate ' -- uest u date of method.

7' - uest Method Deletion Request deletion of method.

I‘ spouse Events ceive more budget Allocate more money to
I’ ceased by — bud et.

Udane method.
eceive auditor change Change from one auditor to—
eceive change to audit Change interval between

- terval audits.

eceive budzet deletion Delete bud et.

rovide audit to auditor #1 Forward audit information to
auditor #1.

rovide audit to auditor #2 Forward audit information to
auditor #2.

eceive account status Provide account status.

1' ceive New Receive new budget.

I‘ ceive Method Undate Receive udated information.

" ceive More Receive more for budget.

Send audit information.

reate New Create new budget.

-' vide More Provide more for bud et.

Delete information.

@Cov buden
wmDistribute budez.

is lav Method Dis - lav reuested method.

Ilelete Delete information.

it More Get more for budget.

t U dated Get undated information.

erform Deletion Delete information.

‘ udit I Perform audit.

auditing.

ethod Modification Modifv method.

- Get new budet.

Get audit information.

I (D ... I'D H(b

-530-

Petitioner Apple Inc. — Exhibit 1002, p. 5158

Petitioner Apple Inc. - Exhibit 1002, p. 5159

OI

10

15

20

25

WO 98/09209 PCTIUS97I15243

r___________ _ __

;
’ - I’ ' Provide new budget to user.

I’ vide More to user Provide more budget to user. p
Provided updated budget to
user.

Audit a specified user.

Delete method belonging to

Examples of Reciprocal Method Processes

 Ilelete usex’s method

A BUDGET

Figures 42a. 42b. 42c and 42d. respectively, are flowcharts

of example process control steps performed by a representative

example of BUDGET method 2250 provided by the preferred

embodiment. In the preferred embodiment. BUDGET method

2250 may operate in any of four different modes:

- use (see Figure 42a)

- administrative request (see Figure 42b)

- administrative response (see Figure 42c)

- administrative reply (see Figure 42d).

In general, the ”use“ mode of BUDGET method 2250 is invoked

in response to an event relating to the use of an object or its

content. The "administrative request“ mode of BUDGET method

2250 is invoked by or on behalf of the user in response to some

user action that requires contact with a VDE financial provider,

and basically its task is to send an administrative request to the

-531-

Petitioner Apple Inc. — Exhibit 1002, p. 5159

Petitioner Apple Inc. - Exhibit 1002, p. 5160

VDE financial provider. The "administrative response“ rnode of
BUDGET method 2250 is performed at the VDE financial

provider in response to receipt of an administrative request sent

from a VDE node to the VDE financial provider by the

5 "administrative request“ invocation of BUDGET method 2250

shown in Figure 42b. The "administrative response“ invocation

of BUDGET method 2250 results in the transmission of an

administrative object from VDE financial provider to the VDE

user node. Finally, the "administrative reply“ invocation of

10 B BUDGET method 2250 shown in Figure 42d is performed at the

user VDE node upon receipt of the administrative object sent by

the "administrative response“ invocation of the method shown in

Figure 42c.

15 In the preferred embodiment, the same BUDGET method

2250 performs each of the four different step sequences shown in

Figures 42a-42d. In the preferred embodiment, diflerent event

codes may be passed to the BUDGET method 22504.9 invoke

these various difierent modes. Of course, it would be possible to

20 use four separate BUDGET methods instead of a single

BUDGET method with four different "dynamic personalities,“

but the preferred embodiment obtains certain advantages by

using the same BUDGET method for each of these four types of
invocations.

-532-

Petitioner Apple Inc. — Exhibit 1002, p. 5160

Petitioner Apple Inc. - Exhibit 1002, p. 5161

wo 98/09209 PCTIUS97l1S243

Looking at Figure 42a, the ”use“ invocation of BUDGET

method 2250 first primes the Budget Audit Trail (blocks 2252,

2254). It then obtains the DTD for the Budget UDE, which it

uses to obtain and read the Budget UDE blocks 2256-2262).

5 BUDGET method 2250 in this ”use“ invocation may then

determine whether a Budget Audit date has expired, and

terminate if it has (”yes“ exit to decision block 2264; blocks 2266,

2268). So long as the Budget Audit date has not expired, the

method may then update the Budget using the atomic element

10 and event counts (and possibly other information) (blocks 2270,

2272), and may then save a Budget User Audit record in a

Budget Audit Trail UDE (blocks 2274, 2276) before terminating

(at terminate point 2278).

15 Looking at Figure 42b, the first six steps (blocks 2280

2290) may be performed by the user VDE node in response to

some user action (e.g., request to access new information, request

for a new budget, etc.). This "administrative request“ invocation

of BUDGET method 2250 may prime an audit trail (blocks 2280,

20 2282). The method may then place a request for administrative

processing of an appropriate Budget onto a request queue (blocks

2284, 2286). Finally, the method may save appropriate audit

trail information (blocks 2288, 2290). Sometime later, the user

VDE node may prime a communications audit trail (blocks 2292,

-533-

Petitioner Apple Inc. — Exhibit 1002, p. 5161

Petitioner Apple Inc. - Exhibit 1002, p. 5162

W0 98/09209 PC'I'fUS9'/I15243

2294), and may then write a Budget Administrative Request into

an administrative object (block 2296). This step may obtain

information from the secure database as needed from such

sources such as, for example, Budget UDE; Budget Audit Trail

5 UDE(s); and Budget Administrative Request Record(s) (block

2298).

Block 2296 may then communicate the administrative

object to a VDE financial provider, or alternatively, block 2296

10 may pass administrative object to a separate communications

process or method that arranges for such communications to

occur. If desired, method 2250 may then save a communications

audit trail (blocks 2300, 2302) before terminating (at termination

point 2304).

15

Figure 42c is a flowchart of an example of process control

steps performed by the example of BUDGET method 2250

provided by the prefened embodiment operating in an

”administrative response“ mode. Steps shown in Figure 42c

20 would, for example, be performed by a VDE financial provider

who has received an administrative object containing a Budget

administrative request as created (and communicated to a VDE

administrator for example) by Figure 42b (block 2296).

- 534-

Petitioner Apple Inc. — Exhibit 1002, p. 5162

Petitioner Apple Inc. - Exhibit 1002, p. 5163

WO 98/09209 PCTIUS97/15243

Upon receiving the administrative object, BUDGET

method 2250 at the VDE financial provider site may prime a

budget communications and response audit trail (blocks 2306,

2308), and may then unpack the administrative object and

5 ‘ retrieve the budget request(s), audit trai1(s) and record(s) it

contains (block 2310). This information retrieved from the

administrative object may be written by the VDE financial

provider into its secure database (block 2312). The VDE

financial provider may then retrieve the budget request(s) and

10 determine the response method it needs to execute to process the

request (blocks 2314, 2316). BUDGET method 2250 may send

the event(s) contained in the request record(s) to the appropriate

response method and may" generate response records and

response requests based on the RESPONSE method (block 2318).

15 The process performed by block 2318 may satisfy the budget

request by Writing appropriate new response records into the

VDE financial provider’s secure database (block 2320). BUDGET

method 2250 may then write these Budget administrative

response records into an administrative object (blocks 2322,

20 2324). which it may then communicate back to the user node

that initiated the budget request. BUDGET method 2250 may

then save communications and response processing audit trail

information into appropriate audit trail UDE(s) (blocks 2326,

2328) before terminating (at termination point 2330).

-535-

Petitioner Apple Inc. — Exhibit 1002, p. 5163

Petitioner Apple Inc. - Exhibit 1002, p. 5164

WO 98109209 PCT/US97/15243

Figure 42d is a flowchart of an example of program control

steps performed by a representative example of BUDGET

method 2250 operating in an "administrative reply“ mode. Steps

shown in Figure 42d might be performed, for example, by a VDE

10 write the reply record to the VDE secure database (blocks 2336

and communications audit trail information in an appropriate

15 Sometime later, the VDE user node may retrieve the reply

required to process it (blocks 2344, 2346). The VDE user node

may, optionally, prime an audit trail (blocks 2342, 2343) to

record the results of the processing of the reply event. The

20 BUDGET method 2250 may then send event(s) contained in the

reply record(s) to the REPLY method, and may generate/update

the secure database records as necessary to, for example, insert

new budget records, delete old budget records and/or apply

changes to budget records (blocks 2348, 2350). BUDGET method

-536-

Petitioner Apple Inc. — Exhibit 1002, p. 5164

Petitioner Apple Inc. - Exhibit 1002, p. 5165

WO 98109209 PCI'IUS97I15243

2250 may then delete the reply record from the secure data base

(blocks 2352, 2353) before writing the audit trail (if required)

(blocks 2354m 2355) terminating (at terminate point 2356).

5 B. REGISTER

Figures 43a)-43d are flowcharts of an example of program

control steps performed by a representative example of a

REGISTER method 2400 provided by the preferred embodiment.

In this example, the REGISTER method 2400 performs the

10 example steps shown in Figure 43a when operating in a ”use“

mode, performs the example steps shown in Figure 43b when

operating in an "administrative request“ mode, performs the

steps shown in Figure 43c when operating in an “administrative

response“ mode, and performs the steps shown in Figure 43d ~

15 when operating in an “administrative reply“ mode.

The steps shown in Figure 43a may be, for example,

performed at a user VDE node in response to some action by or

on behalf of the user. For example the user may ask to access an

20 object that has not yet been (or is not now) properly registered to

her. In response to such a user request, the REGISTER method

2400 may prime a Register Audit Trail UDE (blocks 2402, 2404)

before determining Whether the object being requested has

already been registered (decision block 2406). If the object has

-537-

Petitioner Apple Inc. — Exhibit 1002, p. 5165

Petitioner Apple Inc. - Exhibit 1002, p. 5166

W0 gslogzog PCT/US97/15243

already been registered (”yes“ exit to decision block 2406), the

REGISTER method may terminate (at termination point 2408).

Ifthe object is not already registered ("no“ exit to decision block

2406), then REGISTER method 2400 may access the VDE node

5 ' secure database PERC 808 and/or Register MDE (block 2410).

REGISTER method 2400 may extract an appropriate Register

Record Set from this PERC 808 and/or Register MDE (block

2412), and determine whether all of the required elements are

present that are needed to register the object (decision block

10 2414). If some piece(s) is missing (”no“ exit to decision block

2414), REGISTER method 2400 may queue a Register request

record to a communication manager and then suspend the

REGISTER method until the queued request is satisfied (blocks

2416, 2418). Block 2416 may have the effect of communicating a

15 register request to a VDE distributor, for example. When the

request is satisfied and the register request record has been

received (block 2420), then the test of decision block 2414 is

satisfied (”yes“ exit to decision block 2414), and REGISTER

method 2400 may proceed. At this stage, the REGISTER method

20 2400 may allow the user to select Register options from the set of

method options allowed by PERC 808 accessed at block 2410

(block 2422). As one simple example, the PERC 808 may permit

the user to pay by VISA or MasterCard but not by American

Express; block 2422 may display a prompt asking the user to

-538-

Petitioner Apple Inc. — Exhibit 1002, p. 5166

Petitioner Apple Inc. - Exhibit 1002, p. 5167

wo 98/09209 PCT/US97Il5243

select between paying using her VISA card and paying using her

MasterCard (block 2424). The REGISTER method 2400

preferably validates the user selected registration options and

requires the user to select different options if the initial user

5 options were invalid (block 2426, ”no“ exit to decision block

2428). Once the user has made all required registration option

selections and those selections have been validated (”yes“ exit to

decision block 2428), the REGISTER method 2400 may write an

User Registration Table (URT) corresponding to this object and

10 this user which embodies the user registration selections made

by the user along with other registration information required by

PERC 808 and/or the Register MDE (blocks 2430, 2432).

REGISTER method 2400 may then write a Register audit record

into the secure database (blocks 2432, 2434) before terminating

15 (at terminate point 2436).

Figure 43b shows an example of an "administrative

request“ mode of REGISTER method 2400. This Administrative

Request Mode may occur on a VDE user system to generate an

20 appropriate administrative object for communication to a VDE

distributor or other appropriate VDE participant requesting

registration information. Thus;'for example, the steps shown in

Figure 43b may be performed as part of the "queue register

request record“ block 2416 shown in Figure 43a. To make a

-539-

Petitioner Apple Inc. — Exhibit 1002, p. 5167

Petitioner Apple Inc. - Exhibit 1002, p. 5168

wo gyoggop PCT/US97I15243

Register administrative request, REGISTER method 2400 may

first prime a communications audit trail (blocks 2440, 2442), and

then access the secure database to obtain data about registration

(block 2444). This secure database access may, for example,

5 allow the owner and/or publisher of the object being registered to

find out demographic. user or other information about the user.

As a specific example, suppose that the object being registered is

a spreadsheet software program. The distributor of the object I

may want to know what other software the user has registered.

10 For example, the distributor may be willing to give preferential

pricing if the user registers a ”suite“ of multiple software

products distributed by the same distributor. Thus, the sort of

information solicited by a "user registration“ card enclosed with

_ most standard software packages may be solicited and

15 automatically obtained by the preferred embodiment at

registration time. In order to protect the privacy rights of the ,

user, REGISTER method 2400 may pass such user-specific data

through a privacy filter that may be at least in part customized

by the user so the user can prevent certain information from

20 being revealed to the outside world (block 2446). The

REGISTER method 2400 may write the resulting information

along with appropriate Register Request information identifying

the object and other appropriate parameters into an

administrative object (blocks 2448, 2450). REGISTER method

-540.

Petitioner Apple Inc. — Exhibit 1002, p. 5168

Petitioner Apple Inc. - Exhibit 1002, p. 5169

wo 93/09299 PCl'IUS97ll5243

2400 may then pass this administrative object to a

communications handler. REGISTER method 2400 may then

save a communications audit trail (blocks 2452, 2454) before

terminating (at terminate point 2456).

Figure 43c includes REGISTER method 2400 steps that

may be performed by a VDE distributor node upon receipt of

Register Administrative object sent by block 2448, Figure 43b.

REGISTER method 2400 in this "administrative response“ mode

10 may prime appropriate audit trails (blocks 2460, 2462), and then

may unpack the received administrative object and write the

associated register request(s) configuration information into the

secure database (blocks 2464, 2466). REGISTER method 2400

may then retrieve the administrative request from the secure

15 database and determine which response method to run to process

the request (blocks 2468, 2470). Ifthe user fails to provide

sufiicient information to register the object, REGISTER method

‘2400 may fail (blocks 2472, 2474). Otherwise, RE_G_I_S_TER

method 2400 may send event(s) contained in the appropriate

20 request record(s) to the appropriate response method, and

generate and write response records and response requests (e.g.,

PERC(s) and/or UDES) to the secure database (blocks 2476,

2478). REGISTER method 2400 may then Write the appropriate

Register administrative response record into an administrative

-541-

Petitioner Apple Inc. — Exhibit 1002, p. 5169

Petitioner Apple Inc. - Exhibit 1002, p. 5170

WO 98/09209 PCTIUS97]15243

object (blocks 2480, 2482). Such information may include, for

example, one or more replacement PERC(s) 808, methods,

UDE(s), etc. (block 2482). This enables, for example, a

distributor to distribute limited right permissions giving users

5 only enough information to register an object, and then later,

upon registration, replacing the limited right permissions with

wider permissioning scope granting the user more complete

access to the objects. REGISTER method 2400 may then save

the communications and response processing audit trail (blocks

10 2484, 2486), before terminating (at terminate point 2488).

Figure 43d shows steps that may be performed by the VDE

user node upon receipt of the administrative object

generated/transmitted by Figure 43c block 2480. The steps

15 shown in Figure 43d are very similar to those shown in Figure

42d for the BUDGET method administrative reply process.

C. AUDIT

Figures 44a-44c are flowcharts of examples of program

20 control steps performed by a representative example of an

AUDIT method 2520 provided by the preferred embodiment. As

in the examples above, the AUDIT method 2520 provides three

difi'erent operational modes in this preferred embodiment

example: Figure 44a shows the steps performed by the AUDIT

-542-

Petitioner Apple Inc. — Exhibit 1002, p. 5170

Petitioner Apple Inc. - Exhibit 1002, p. 5171

U!

10

15

20

WO 98/09209 PCI'IUS97I15243

method in an “administrative request“ mode; Figure 4-4b shows

steps performed by the method in the "administrative response“

mode; and Figure 44c shows the steps performed by the method

in an "administrative reply“ mode.

The AUDIT method 2520 operating in the "administrative

request“ mode as shown in Figure 44a is typically performed, for

example, at a VDE user node based upon some request by or on

behalf of the user. For example, the user may have requested an

audit, or a timer may have expired that initiates communication

of audit information to a VDE content provider or other VDE

participant. In the preferred embodiment, different audits of the

sa.me overall process may be performed by different VDE

participants. A particular "audit" method 2520 invocation may

be initiated for any one (or all) of the involved VDE participants.

Upon invocation of AUDIT method 2520, the method may prime

an audit administrative audit trail (thus, in the preferred

embodiment, the audit processing may itself be audited) (blocks

2522, 2524). The AUDIT method 2520 may then queue a request

for administrative processing (blocks 2526, 2528), and then may

save the audit administrative audit trail in the secure database

(blocks 2530, 2532). Sometime later, AUDIT method 2520 may

prime a communications audit trail (blocks 2534, 2536), and may

then write Audit Administrative Request(s) into one or more

-543~

Petitioner Apple Inc. — Exhibit 1002, p. 5171

Petitioner Apple Inc. - Exhibit 1002, p. 5172

wo gsmgzog PCTIUS97/15243

administrative object(s) based on specific UDE, audit trail

UDE(s), and/or administrative record(s) stored in the secure

database (blocks 2538, 2540). The AUDIT method 2520 may

then save appropriate information into the communications

5 audit trail (blocks 2542, 2544) before terminating (at terminate

point 2546).

Figure 44b shows example steps performed by a VDE

content provider, financial provider or other auditing VDE node

10 upon receipt of the administrative object generated and

communicated by Figure 44a block 2538. The AUDIT method

2520 in this "administrative response“ mode may first prime an

Audit communications and response audit trail (blocks 2550,

2552), and may then unpack the received administrative object

15 and retrieve its contained Audit request(s) audit trail(s) and

audit record(s) for storage into the secured database (blocks

 2554, 2556). AUDIT method 2520 may then retrieve the audit

mreq1.‘1est(s) from the secure database and determine—the response
method to run to process the request (blocks 2558, 2560). AUDIT

20 method 2520 may at this stage send eventls) contained in the

request record(s) to the appropriate response method, and

generate response record(s) and requests based on this method

(blocks 2562, 2564). The processing block 2562 may involve a

communication to the outside world.

-544.

Petitioner Apple Inc. — Exhibit 1002, p. 5172

Petitioner Apple Inc. - Exhibit 1002, p. 5173

wo 93/09209 PCl‘IUS97I15243

For example, AUDIT method 2520 at this point could call

an external process to perform, for example. an electronic funds

transfer against the user’s bank account or some other bank

account. The AUDIT administrative response can, if desired, call

5 an external process that interfaces VDE to one or more existing

computer systems. The external process could be passed the

user’s account number, PIN, dollar amount, or any other

information configured in, or associated with, the VDE audit

trail being processed. The external process can communicate

10 with non-VDE hosts and use the information passed to it as part

of these communications. For example. the external process

could generate automated clearinghouse (ACH) records in a file

for submittal to a bank. This mechanism would provide the

ability to automatically credit or debit a bank account in any

15 financial institution. The same mechanism could be used to

communicate with the existing credit card le.g. VISA) network by

submitting VDE based charges against the charge account.

Once the appropriate Audit response record(s) have been

20 generated, AUDIT method 2520 may write an Audit

administrative record(s) into an administrative object for

communication back to the VDE user node that generated the

Audit request (blocks 2566, 2568). The AUDIT method 2520 may

then save communications and response processing audit

-545-

Petitioner Apple Inc. — Exhibit 1002, p. 5173

Petitioner Apple Inc. - Exhibit 1002, p. 5174

wo 93/09109 PCTIUS97I15243

information in appropriate audit trail(s) (blocks 2570, 2572)

before terminating (at terminate point 2574).

Figure 44c shows an example of steps that may be

5 performed by the AUDIT method 2520 back at the VDE user

node upon receipt of the administrative object generated and

sent by Figure 44b, block 2566. The steps 2580-2599 shown in

Figure 44c are similar to the steps shown in Figure 43d for the

REGISTER method 2400 in the "administrative reply“ mode.

10 Briefly, these steps involve receiving and extracting appropriate

response records from the administrative object (block 2584), and

then processing the received information appropriately to update

secure database records and perform any other necessary actions

(blocks 2595, 2596).

15

Examples of Event-Driven Content-Based Methods

VDE methods 1000 are designed to provide a very flexible

and highly modular approach to secure processing. A complete

VDE process to service a "use event“ may typically be

20 constructed as a combination of methods 1000. As one example,

the typical process for reading content or other information from

an object 300 may involve the following methods:

- an EVENT method

- a METER method

-546-

Petitioner Apple Inc. — Exhibit 1002, p. 5174

Petitioner Apple Inc. - Exhibit 1002, p. 5175

wo 93/09209 PCl'IUS9'7I15243

- a BILLING method

- a BUDGET method.

Figure 45 is an example of a sequential series of methods

0: performed by VDE 100 in response to an event. In this example,

when an event occurs, an EVENT method 402 may ’’qualify‘‘ the

event to determine whether it is significant or not. Not all

events are significant. For example, if the EVENT method 1000

in a control process dictates that usage is to be metered based

10 upon number of pages read, then user request ”events“ for

reading less than a page of information may be ignored. In

another example, if a system event represents a request to read a

certain number of bytes, and the EVENT method 1000 is part of

a control process designed to meter paragraphs. then the EVENT

15 method may evaluate the read request to determine how many

paragraphs are represented in the bytes requested. This process

may involve mapping to ”atomic elements“ to be discussed in

more detail below.

20 EVENT method 402 filters out events that are not

significant with regard to the specific control method involved.

EVENT method 402 may pass on qualified events to a METER

process 1404, which meters or discards the event based on its

own particular criteria.

-547-

Petitioner Apple Inc. — Exhibit 1002, p. 5175

Petitioner Apple Inc. - Exhibit 1002, p. 5176

W0 98199209 PCT/US97/15243

In addition, the preferred embodiment provides an

optimization called ”precheck.“ EVENT method/process 402 may

perform this "precheck“ based on metering, billing and budget

information to determine whether processing based on an event

5 will be allowed. Suppose, for example, that the user has already

exceeded her budget with respect to accessing certain

information content so that no further access is permitted.

Although BUDGET method 408 could make this determination,

records and processes performed by BUDGET method 404 and/or

10 BILLING method 406 might have to be ”undone“ to, for example,

prevent the user from being charged for an access that was i

actually denied. It may be more efiicient to perform a ”precheck“

within EVENT method 402 so that fewer transactions have to be

“undone.”

15

METER method 404 may store an audit record in a meter

"trail“ UDE 1200, for example, and may also record information

related to the event in a meter UDE 1200. For example, METER

method 404 may increment or decrement a "meter" value within

20 a meter UDE 1200 each time content is accessed. The two

different data structures (meter UDE and meter trail UDE) may

be maintained to permit record keeping for reporting purposes to

be maintained separately from record keeping for internal

operation purposes, for example.

-548-

Petitioner Apple Inc. — Exhibit 1002, p. 5176

Petitioner Apple Inc. - Exhibit 1002, p. 5177

wo 98/09209 PCTIUS97/15243

Once the event is metered by METER method 404, the

metered event may be processed by a BILLING method 406.

BILLING method 406 determines how much budget is consumed

by the event, and keeps records that are useful for reconciliation

5 of meters and budgets. Thus, for example, BILLING method 406

may read budget information from a budget UDE, record billing

information in a billing UDE, and write one or more audit

records in a billing trail UDE. While some billing trail

information may duplicate meter and/or budget trail

10 information, the billing trail information is useful, for example,

to allow a content creator 102 to expect a payment of a certain

size, and serve as a reconciliation check to reconcile meter trail

information sent to creator 102 with budget trail information

sent to, for example, an independent budget provider.

15

BILLING method 406 may then pass the event on to a

BUDGET method 408. BUDGET method 408 sets limits and

records transactional information associated‘ with those limits.

For example, BUDGET method 408 may store budget

20 information in a budget UDE, and may store an audit record in a

budget trail UDE. BUDGET method 408 may result in a "budget

remaining“ field in a budget UDE being decremented by an

amount specified by BILLING method 406.

-549-

Petitioner Apple Inc. — Exhibit 1002, p. 5177

Petitioner Apple Inc. - Exhibit 1002, p. 5178

W0 gsmgzog PCTIUS97I15243

The information content may be released, or other action

taken, once the various methods 402, 404, 406, 408 have

processed the event.

5 - As mentioned above, PERCs 808 in the preferred
embodiment may be provided with "control methods“ that in

effect ”oversee“ performance of the other required methods in a

control process. Figure 46 shows how the required

methods/processes 402, 404, 406, and 408 of Figure 45 can be

10 organized and controlled by a control method 410. Control

method 410 may call. dispatch events, or otherwise invoke the

other methods 402, 404, 406, 408 and otherwise supervise the

processing performed in response to an “event.”

15 Control methods operate at the level of control sets 906

within PERCS 808. They provide structure. logic, and flow of

control between disparate acquired methods 1000. This

mechanism permits the content provider to create any desired

chain of processing, and also allows the specific chain of

20 processing to be modified (within permitted limits) by

downstream redistributors. This control structure concept

provides great flexibility.

-550-

Petitioner Apple Inc. — Exhibit 1002, p. 5178

Petitioner Apple Inc. - Exhibit 1002, p. 5179

W0 98/092119 PCI‘IUS97Il5243

Figure 47 shows an example of an "aggregate“ method 412.

which collects METER method 404, BUDGET method 406 and

BILLING method 408 into an ”aggregate“ processing flow.

Aggregate method 412 may, for example, combine various

Ul elements of metering, budgeting and billing into a single method

1000. Aggregate method 412 may provide increased efficiency as

a result of processing METER method 404, BUDGET method 406

and BILLING method 408 aggregately, but may decrease .

flexibility because of decreased modularity.

10

Many different methods can be in effect simultaneously.

Figure 48 shows an example of preferred embodiment event

processing using multiple METER methods 404 and multiple

BUDGET methods 1408. Some events may be subject to many

15 different required methods operating independently or

cumulatively. For example, in the example shown in Figure 48,

meter method 404a may maintain meter trail and meter

information records that are independent from the meter trail

and meter information records maintained by METER method

20 404b. Similarly, BUDGET method 408a may maintain records

independently of those records maintained by BUDGET method

408b. Some events may bypass BILLING method 408 while

nevertheless being processed by meter method 404a and

-551-

Petitioner Apple Inc. — Exhibit 1002, p. 5179

Petitioner Apple Inc. - Exhibit 1002, p. 5180

WO 98109209 PCTIUS97l15243

BUDGET method 408a. A variety of difierent variations are

possible.

'REPRESENTATIV'E EXAMPLES OF VDE METHODS

5 Although methods 1000 can have virtually unlimited

variety and some may even be user-defined, certain basic ”use“

type methods are preferably used in the preferred embodiment to

control ‘most of the more fundamental object manipulation and

other functions provided by VDE 100. For example, the

10 following high level methods would typically be provided for

object manipulation:

- OPEN method

- READ method

- WRITE method

15 - CLOSE method.

An OPEN method is used to control opening a container so

its contents may be accessed. A READ method is used to control

the access to contents in a container. A WRITE method is used

20 to control the insertion of contents into a container. A CLOSE

method is used to close a container that has been opened.

-552-

Petitioner Apple Inc. — Exhibit 1002, p. 5180

Petitioner Apple Inc. - Exhibit 1002, p. 5181

10

15

20

WO 98/09209 PCl'fUS97I15243

Subsidiary methods are provided to perform some of the

steps required by the OPEN, READ, WRITE and/or CLOSE

methods. Such subsidiary methods may include the following:

ACCESS method

PANIC method

ERROR method

DECRYPT method

ENCRYPT method

DESTROY content method

INFORMATION method

OBSCURE method

FINGERPRINT method

EVENT method.

CONTENT method

EXTRACT method

EMBED method

METER method

BUDGET method

REGISTER method

BILLING method

AUDIT method

An ACCESS method may be used to physically access

content associated with an opened container (the content can be

-553-

Petitioner Apple Inc. — Exhibit 1002, p. 5181

Petitioner Apple Inc. - Exhibit 1002, p. 5182

W0 98/09209 PCI'IUS97/15243

anywhere). A PANIC method may be used to disable at least a

portion of the VDE node if a security violation is detected. An

ERROR method may be used to handle error conditions. A

DECRYPT method is used to decrypt encrypted information. ' An

Ul ENCRYPT method is used to encrypt information. A DESTROY

content method is used to destroy the ability to access specific

content within a container. An INFORMATION method is used

to provide public information about the contents of a container. V

An OBSCURE method is used to devalue content read from an

10 opened container (e.g., to write the word ”SAMPLE“ over a

displayed image). A FINGERPRDJT method is used to mark

content to show who has released it from the secure container.

An event method is used to convert events into different events

for response by other methods.

15

Open

Figure 49_ is a flowchart of an example of preferred

embodiment process control steps for an example of an OPEN

method 1500. Different OPEN methods provide different

20 detailed steps. However, the OPEN method shown in Figure 49

is a representative example of a relatively full-featured ”open“

method provided by the preferred embodiment. Figure 49 shows

a macroscopic view of the OPEN method. Figures 49a-49f are

-554-

Petitioner Apple Inc. — Exhibit 1002, p. 5182

Petitioner Apple Inc. - Exhibit 1002, p. 5183

wo 9s/09209 1>c1vus97/15243

together an example of detailed program controlled steps

performed to implement the method shown in Figure 49.

The OPEN method process starts with an "open event.“

Ul This open event may be generated by a user application, an

operating system intercept or various other mechanisms for A

capturing or intercepting control. For example, a user

application may issue a request for access to a particular content

stored within the VDE container. As another example, another

10 method may issue a command.

In the example shown, the open event is processed by a

control method 1502. Control method 1502 may call other

methods to process the event. For example, control method 1502

15 may call an EVENT method 1504. a METER method 1506, a

BILLING method 1508, and a BUDGET method 1510. Not all

OPEN control methods necessarily call of these additional

methods, but the OPEN method 1500 shown in Figure 49 is a

representative example.

20

Control method 1502 passes a description of the open

event to EVENT method 1504. EVENT method 1504 may

determine, for example, whether the open event is permitted and

whether the open event is significant in the sense that it needs to

-555-

Petitioner Apple Inc. — Exhibit 1002, p. 5183

Petitioner Apple Inc. - Exhibit 1002, p. 5184

WO 98/09209 PCl‘IUS97l15243

be processed by METER method 1506. BILLING method 1508,

and/or BUDGET method 1510. EVENT method 1504 may

maintain audit trail information within an audit trail UDE, and

may determine permissions and significance of the event by

5 using an Event Method Data Element (MDE). EVENT method

1504 may also map the open event into an "atomic element“ and

count that may be processed by METER method 1506, BILLING

method 1508, and/or BUDGET method 1510.

10 In OPEN method 1500, once EVENT method 1504 has

been called and returns successfully, control method 1502 then

may call METER method 1506 and pass the METER method, the

atomic element and count returned by EVENT method 1504.

METER method 1506 may maintain audit trail information in a

15 METER method Audit Trail UDE, and may also maintain meter

information in a METER method UDE. In the preferred

embodiment, METER method 1506 returns a meter value to

contzTol method 1502 assuming successful completioMn._

20 In the preferred embodiment, control method 1502 upon

receiving an indication that METER method 1506 has completed

successfully, then calls BILLDIG method 1508. Control method

1502 may pass to BILLING method 1508 the meter value

provided by METER method 1506. BILLING method 1508 may

-556-

Petitioner Apple Inc. — Exhibit 1002, p. 5184

Petitioner Apple Inc. - Exhibit 1002, p. 5185

W0 98/09209 PCT[U397]15243

read and update billing information maintained in a BILLING

method map MDE, and may also maintain and update audit trail

in a BILLING method Audit Trail UDE. BILLING method 1508

may return a billing amount and a completion code to control

5 method 1502.

Assuming BILLING method 1508 completes successfully,

control method 1502 may pass the billing value provided by

BILLING method 1508 to BUDGET method 1510. BUDGET

10 method 1510 may read and update budget information within a

BUDGET method UDE, and may also maintain audit trail

information in a BUDGET method Audit Trail UDE. BUDGET

method 1510 may return a budget value to control method 1502,

and may also return a completion code indicating whether the

15 open event exceeds the user’s budget (for this type of event).

Upon completion of BUDGET method 1510, control

method 1502 may create a channel and establish read/use

control information in preparation for subsequent calls to the

20 READ method.

Figures 49a-49f are a more detailed description of the

OPEN method 1500 example shown in Figure 49. Referring to

Figure 49a, in response toan open event, control method 1502

-557-

Petitioner Apple Inc. — Exhibit 1002, p. 5185

Petitioner Apple Inc. - Exhibit 1002, p. 5186

Cl‘IUS97I15243WO 98109209 P

first may determine the identification of the object to be opened

and the identification of the user that has requested the object to

be opened (block 1520). Control method 1502 then determines

whether the object to be opened is registered for this user

5 (decision block 1522). It makes this determination at least in

part in the preferred embodiment by reading the PERC 808 and

the User Rights Table (URT) element associated with the

particular object and particular user determined by block 1520

(block 1524). If the user is not registered for this particular

10 object (”no“ exit to decision block 1522), then control method

1502 may call the REGISTER method for the object and restart

the OPEN method 1500 once registration is complete (block

1526). The REGISTER method block 1526 may be an

independent process and may be time independent. It may, for

15 example, take a relatively long time to complete the REGISTER

method (say if the VDE distributor or other participant

responsible for providing registration wants to perform a credit

check on the user before registering the user for this particular

object).

20

Assuming the proper URT for this user and object is

present such that the object is registered for this user (”yes“ exit

to decision block 1522), control method 1502 may determine

whether the object is already open for this user (decision block

-558-

Petitioner Apple Inc. — Exhibit 1002, 10- 5186

Petitioner Apple Inc. - Exhibit 1002, p. 5187

10

20

WO 98/09209 PCT/U897!15243

1528). This test may avoid creating a redundant_channel for

opening an object that is already open. Assuming the object is

not already open ("no“ exit to decision block 1528), control

method 1502 creates a channel and binds appropriate open

control elements to it (block 1530). It reads the appropriate open

control elements from the secure database (or the container, such

as, for example, in the case of a travelling object), and "binds“ or

”links“ these particular appropriate control elements together in

order to" control opening of the object for this user. Thus, block

1530 associates an event with one or more appropriate method

core(s), appropriate load modules, appropriate User Data

Elements, and appropriate Method Data Elements read from the

secure database (or the container) (block 1532). At this point,

control method 1502 specifies the open event (which started the

OPEN method to begin with), the object ID and user ID

(determined by block 1520). and the channel ID of the channel

created by block 1530 to subsequent EVENT method 1504,

METER method 1506, BILLING method 1508 and BUDGET

method 1510 to provide a secure database “transaction” (block

1536). Before doing so,+contro1 method 1502 may prime an audit

process (block 1533) and write audit information into an audit

UDE (block 1534) so a record of the transaction eidsts even if the

transaction fails or is interfered with.

-559-

Petitioner Apple Inc. — Exhibit 1002, p. 5187

Petitioner Apple Inc. - Exhibit 1002, p. 5188

10

15

20

WO 98109209 PCTIUS97/15243

The detail steps performed by method 1504 are set

forth on Figure 49b. EVENT method 1504 may first prime an

event audit trail if required (block 1538) which may write to an

EVENT Method Audit Trail UDE (block 1540). EVENT method

1504 may then perform the step of mapping the open event to an

atomic element number and event count using a map MDE

(block 1542). The EVENT method map MDE may be read from

the secure database (block 1544). This mapping process

performed by block 1542 may, for example, determine whether or

not the open event is meterable, billable, or budgetable, and may

transform the open event into some discrete atomic element for

metering, billing and/or budgeting. As one example, block 1542

might perform a one-to-one mapping between open events and

"open" atomic elements, or it may only provide an open atomic

element for every fifth time that the object is opened. The map

block 1542 preferably returns the open event, the event count,

the atomic element number, the object ID, and the user ID. This

information may be written to the EVENT method Audit Trail

UDE (block 1546, 1548). In the preferred embodiment, a test

(decision block 1550) is then performed to determine whether the

EVENT method failed. Specifically, decision block 1550 may

determine whether an atomic element number was generated. If

no atomic element number was generated (e.g., meaning that the

open event is not significant for processing by METER method

-560-

Petitioner Apple Inc. — Exhibit 1002, p. 5188

Petitioner Apple Inc. - Exhibit 1002, p. 5189

WO 98109209 PCI‘IUS97Il5243

1506, BILLING method 1508 and/or BUDGET method 1510),

then EVENT method 1504 may return a ”fail“ completion code to

control method 1502 (”no“ eidt to decision block 1550).

5 _ Control method 1502 tests the completion code returned by

EVENT method 1504 to determine whether it failed or was

successful (decision block 1552). If the EVENT method failed

(”no“ exit to decision block 1552), control method 1502 may "roll

back“ the secure database.transaction (block 1554) and return

10 itself with an indication that the OPEN method failed (block .

1556). In this context, "rolling back“ the secure database

transaction means, for example, "undoing" the changes made to

audit trail UDE by blocks 1540, 1548. However, this "roll back“

performed by block 1554 in the preferred embodiment does not

15 "undo“ the changes made to the control method audit UDE

blocks 1532, 1534.

Assuming the EVENT method 1504 completed

successfully, control method 1502 then calls the METER method

20 1506 shown on Figure 49c. In the preferred embodiment,

METER method 1506 primes the meter audit trail if required

(block 1558), Which typically involves writing to a METER

method audit trail UDE (block 1560). METER method 1506 may

then read a METER method UDE from the secure database

-561-

Petitioner Apple Inc. — Exhibit 1002, p 5189

Petitioner Apple Inc. - Exhibit 1002, p. 5190

W0 gsmgzog PCT/U597/I 5243

(block 1562), modify the meter UDE by adding an appropriate

event count to the meter value contained in the meter UDE

(block 1564), and then writing the modified meter UDE back to

the secure database (block 1562). In other words, block 1564

U!
may read the meter UDE, increment the meter count it contains,

and Write the changed meter UDE back to the secure database.

In the preferred embodiment, METER method 1506 may then

write meter audit trail information to the METER method audit

trail UDE ifrequired (blocks 1566, 1568). METER method 1506

10 preferably next performs a test to determine whether the meter

increment succeeded (decision block 1570). METER method

1506 returns to control method 1502 with a completion code (e.g.,

succeed or fail) and a meter value determined by block 1564.

15 Control method 1502 tests whether the METER method

succeeded by examining the completion code, for example

(decision block 1572). If the METER method failed (”no“ exit to

decision block 1572), then control method 1502 "rolls back“ a

secure database transaction (block 1574), and returns with an

20 indication that the OPEN method failed (block 1576). Assuming

the METER method succeeded (”yes“ exit to decision block 1572),

control method 1502 calls the BILLING method 1508 and passes

it the meter value provided by METER method 1506.

-562-

Petitioner Apple Inc. — Exhibit 1002, p. 5190

Petitioner Apple Inc. - Exhibit 1002, p. 5191

wo 93/09109 PCl‘IUS97I15243

An example of steps performed by BILLING method 1508

is set forth in Figure 49d. BILLING method 1508 may prime a

billing audit trail if required (block 1578) by writing to a

BILLING method Audit Trail UDE within the secure database

5 (block 1580). BILLING method 1508 may then map the atomic

element number, count and meter value to a billing amount

using a BILLING method "map MDE read from the secure

database (blocks 1582, 1584). Providing an independent

BILLING method map MDE containing, for example, price list

10 information, allows separately deliverable pricing for the billing

process. The resulting billing amount generated by block 1582

may be written to the BILLING method Audit Trail UDE (blocks

1586, 1588). and may also be returned to control method 1502.

In addition, BILLING method 1508 may determine whether a

15 billing amount was properly selected by block 1582 (decision

block 1590). In this example, the test performed by block 1590

generally requires more than mere examination of the returned

billing amount, since the billing amount may be changed in

unpredictable ways as specified by BILLING method map MDE.

20 Control then retums to control method 1502, which tests the

completion code provided by BILLING method 1508 to determine

whether the BILLING method succeeded or failed (block 1592).

Ifthe BILLDIG method failed (”no“ exit to decision block 1592),

control method 1502 may "roll back“ the secure database

-563-

Petitioner Apple Inc. — Exhibit 1002, p. 5191

Petitioner Apple Inc. - Exhibit 1002, p. 5192

wo 93/09209 PCl‘IUS97Il5243

transaction (block 1594), and return an indication that the

OPEN method failed (block 1596). Assuming the test performed

by decision block 1592 indicates that the BILLING method

(succeeded (”yes“ exit to decision block 1592), then control method

5 1502 may call BUDGET method 1510.

Other BILLING methods may use site, user and/or usage

information to establish, for example, pricing information. For

example, information concerning the presence or absence of an

10 object may be used in establishing ”suite“ purchases, competitive

discounts, etc. Usage levels may be factored into a BILLING

method to establish price breaks for different levels of usage. A

currency translation feature of a BILLING method may allow

purchases and/or pricing in many diflerent currencies. Many

15 other possibilities exist for determining an amount of budget

consumed by an event that may be incorporated into BILLING

methods.

An example of detailed control steps performed by

20 BUDGET method 1510 is set forth in Figure 49e. BUDGET

method 1510 may prime a budget audit trail if required by

Writing to a budget trail UDE (blocks 1598, 1600). BUDGET

method 1510 may next perform a billing operation by adding a

billing amount to a budget value (block 1602). This operation

-564-

Petitioner Apple Inc. — Exhibit 1002, p. 5192

Petitioner Apple Inc. - Exhibit 1002, p. 5193

wo 93/09109 PC'l‘fUS97IlS243

may be performed, for example, by reading a BUDGET method

UDE from the secure database. modifying it, and writing it back

to the secure database (block 1604). BUDGET method 1510 may

then write the budget audit trail information to the BUDGET

5 method Audit Trail UDE (blocks 1606, 1608). BUDGET method

1510 may finally, in this example, determine whether the user

has run out of budget by determining whether the budget value

calculated by block 1602 is out of range (decision block 1610). If

the user has run out of budget (”yes“ exit to decision block 1610),

10 the BUDGET method 1510 may return a "fail completion“ code to

control method 1502. BUDGET method 1510 then returns to

control method 1502, which tests whether the BUDGET method

completion code was successful (decision block 1612). If the

BUDGET method failed (”no“ exit to decision block 1612), control

15 method 1502 may "roll back“ the secure database transaction

and itself return with an indication that the OPEN method failed

(blocks 1614, 1616). Assuming control method 1502 determines

that the BUDGET method was successful, the control method

may perform the additional steps shown on Figure 49f. For

20 example, control method 1502 may write an open audit trail if

required by writing audit_information to the audit UDE that was

primed at block 1532 (blocks 16__1_8, 1620). Control method 1502

may then establish a read event processing (block 1622), using

the User Right Table and the PERC associated with the object

-565-

Petitioner Apple Inc. — Exhibit 1002, p. 5193

Petitioner Apple Inc. - Exhibit 1002, p. 5194

W0 98,092,” PCI'lUS97l152-13

and user to establish the channel (block 1624). This channel

may optionally be shared between users of the VDE node 600, or

may be used only by a specified user.

OI
Control method 1502 then, in the preferred embodiment,

tests Whether the read channel was established successfully

(decision block 1626). If the read channel was not successfully

established (”no“ exit to decision block 1626), control method

1502 ”rolls back“ the secured database transaction and provides

10 an indication that the OPEN method failed (blocks 1628, 1630).

Assuming the read channel was successfully established (”yes“

exit to decision block 1626), control method 1502 may "commit“

the secure database transaction (block 1632). This step of

"committing“ the secure database transaction in the preferred

15 embodiment involves, for example, deleting intermediate values

associated with the secure transaction that has just been

performed and, in one example, writing changed UDEs and

MDEs to the secure database. It is generally not possible to "roll

back“ a secure transaction once it has been committed by block

20 1632. Then, control method 1502 may ”tear__down“ the channel

for open processing (block 1634) before terminating (block 1636).

In some arrangements, such as multi-tasking VDE node

environments, the open channel may be constantly maintained

and available for use by any OPEN method that starts. In other

-566-

Petitioner Apple Inc. — Exhibit 1002, p. 5194

Petitioner Apple Inc. - Exhibit 1002, p. 5195

WO 98/09209 PCI'IUS97I15243

implementations, the channel for open processing may be rebuilt I

and restarted each time OPEN method starts.

Read

5 Figure 50, 50a-50f show examples of process control steps

for performing a representative example of a READ method

1650. Comparing Figure 50 with Figure 49 reveals that the

same overall high level processing may typically be performed for

READ method 1650 as was described in connection with OPEN

10 method 1500. Thus. READ method 1650 may call a control

method 1652 in response to a read event, the control method in

turn invoking an EVENT method 1654, a METER method 1656,

a BILLING method 1658 and a BUDGET method 1660. In the

preferred embodiment, READ control method 1652 may request

15 methods to fingerprint and/or obscure content before releasing

the decrypted content.

-—_____

H-Figures 50a-50e are similar to Figures 49a-4_9e. Of course,

even though the same user data elements may be used for both

20 the OPEN method 1500 and the READ method 1650, the method

data elements for the READ method may be completely difierent,

and in addition, the user data elements may provide different

auditing, metering, billing and/or budgeting criteria for read as

opposed to open processing.

-567-

Petitioner Apple Inc. — Exhibit 1002, p. 5195

Petitioner Apple Inc. - Exhibit 1002, p. 5196

PCTIUS97]15243WO 98109209

to release decrypted content to the user (block 1758). READ

control method 1652 may make this key determination based, in

part, upon the PERC 808 for the object (block 1760). READ

control method 1652 may then call an ACCESS method to

actually obtain the encrypted content to be decrypted (block

10 then determine whether a “fingerprint” is desired (decision block

1766). If fingerprinting of the content is desired ("yes“ eidt of

decision block 1766), READ control method 1652 may call the

FINGERPRINT method (block 1768). Otherwise, READ control

method 1652 may determine whether it is desired to obscure the

15 decrypted content (decision block 1770). If so, READ control

method 1652 may call an OBSCURE method to perform this

function (block 1772). Finally, READ control method 1652 may

20 1776).

Write

Figures 51, 51a-51f are flowcharts of examples of process

control steps used to perform a representative example of a

-568-

Petitioner Apple Inc. — Exhibit 1002, p. 5196

Petitioner Apple Inc. - Exhibit 1002, p. 5197

WO 98109209 PCTIUSWI15243

WRITE method 1780 in the preferred embodiment. WRITE

method 1780 uses a control method 1782 to call an EVENT

method 1784, METER method 1786, BILLING method 1788, and

BUDGET method 1790 in this example. Thus, writing

5 information into a container (either by overwriting information

already stored in the container or adding new information to the

container) in the preferred embodiment may be metered, billed

and/or budgeted in a manner similar to the way opening a

container and reading from a container can be metered, billed

10 and budgeted. As shown in Figure 51, the end result of WRITE

method 1780 is typically to encrypt content, update the container

table of contents and related information to reflect the new

content, and write the content to the object.

15 Figure 51a for the WRITE control method 1782 is similar

to Figure 49a and Figure 50a for the OPEN control method and

the READ control method, respectively. However, Figure 51b is

slightly diflerent from its open and read counterparts. In

particular, block 1820 is performed ifthe WRITE EVENT

20 method 1784 fails. This block 1820 updates the EVENT method

map MDE to reflect new data. This is necessa.ry to allow

information written by block 1810 to be read by Figure 51b

READ method block 1678 based on the same (but now updated)

EVENT method map MDE.

-569-

Petitioner Apple Inc. — Exhibit 1002, p. 5197

Petitioner Apple Inc. - Exhibit 1002, p. 5198

10

15

20

WO 98109209 I’CI'fUS97ll5243

Looking at Figure 51f, once the EVENT, METER,

BILLING and BUDGET methods have returned successfully to

WRITE control method 1782, the WRITE control method writes

audit information to Audit UDE (blocks 1890, 1892), and then

determines (based on the PERC for the object and user and an

optional algorithm) which key should be used to encrypt the

content before it is written to the container (blocks 1894, 1896).

CONTROL method 1782 then encrypts the content ("block 1898)

possibly by calling an ENCRYPT method, and writes the

encrypted content to the object (block 1900). CONTROL method

1782 may then update the table of contents (and related

information) for the container to reflect the newly written

information (block 1902), commit the secure database

transaction (block 1904). and return (block 1906).

Close

Figure 52 is a flowchart of an example of process control

“steps to perform a representative example of a CLOSE method

1920 in the preferred embodiment. CLOSE method 1920 is used

to close an open object. In the preferred embodiment, CLOSE

method 1920 primes an audit trail and writes audit information

to an Audit UDE (blocks 1.922, 1924). CLOSE method 1920 then

may destroy the current cha1mel(s) being used to support and/or

process one or more open objects (block 1926). As discussed.

-570-

Petitioner Apple Inc. — Exhibit 1002, p. 5198

Petitioner Apple Inc. - Exhibit 1002, p. 5199

wo 98/092119 PCTIUs97I1s243

above, in some (e.g., multi-user or multi-tasking) installations,

the step of destroying a channel is not needed because the

channel may be lefi operating for processing additional objects

for the same or diflerent users. CLOSE method 1920 also

Ul releases appropriate records and resources associated with the

object at this time (block 1926). The CLOSE method 1920 may

then write an audit trail Iif required) into an Audit UDE (blocks

1928, 1930) before completing.

10 Event

Figure 53a is a flowchart of example process control steps

provided by a more general example of an EVENT method 1940

provided by the preferred embodiment. Examples of EVENT

methods are set forth in Figures 49b, 50b and 51b and are

15 described above. EVENT method 1940 shown in Figure 53a is

somewhat more generalized than the examples above. Like the

EVENT method examples above, EVENT method 1940 receives

an identification of the event along with an event count and

event parameters. EVENT method 1940 may first prime an

20 EVENT audit trail (if required) by writing appropriate

information to an EVENT method Audit Trail UDE (blocks 1942,

1944). EVENT method 1940 may then obtain and load an

EVENT method map DTD from the secure database (blocks

1946, 1948). This EVENT method map DTD describes, in this

-571-

Petitioner Apple Inc. — Exhibit 1002, p. 5199

Petitioner Apple Inc. - Exhibit 1002, p. 5200

wo 93,0910, PCI‘/US97Il5243

example, the format of the EVENT method map MDE to be read Q

and accessed immediately subsequently (by blocks 1950, 1952).

In the preferred embodiment, MDEs and UDEs may have any of

various different formats, and their formats may be flexibly

UI specified or changed dynamically depending upon the

installation, user, etc. The DTD, in effect, describes to the

EVENT method 1940 how to read from the EVENT method map

MDE. DTDs are also used to specify how methods should write

to MDES and UDES, and thus may be used to implement privacy

10 filters by, for example, preventing certain confidential user

information from being written to data structures that will be

reported to third parties.

Block 1950 ("map event to atomic element # and event

15 count using a Map MDE“) is in some sense the ”heart“ of

method 1940. This step "maps“ the event into an "atomic

element number“ to be responded to by subsequently called.

methods. An example of process control steps performed by a

somewhat representative example of this ”mapping“ step 1950 is

20 shown in Figure 53b.

The Figure 53b example shows the process of converting a

READ event that is associated with requesting byte range 1001-

1500 from a specific piece of content into an appropriate atomic

-572-

Petitioner Apple Inc. — Exhibit 1002, p. 5200

Petitioner Apple Inc. - Exhibit 1002, p. 5201

wo 93/09299 PCTIUS9'Ill5243

element. The example EVENT method mapping process (block

1950 in Figure 53a) can be detailed as the representative process

shown in Figure 53b.

5 EVENT method mapping process 1950 may first look up

the event code (READ) in the EVENT method MDE (1952) using

the EVENT method map DTD (1948) to determine the structure

and contents of the MDE. A test might then be performed to

determine if the event code was found in the MDE (1956), and if

10 not ("No“ branch), the EVENT method mapping process may the

terminate (1958) without mapping the event to an atomic

element number and count. If the event was found in the MDE

(”Yes“ branch), the method mapping process may then

compare the event range (e.g., bytes 1001-1500) against the

15 atomic element to event range mapping table stored in the

(block 1960). The comparison might yield one or more atomic

element numbers or the event range might not be found in the

mapping table. The result of the comparison might then be

tested (block 1962) to determine if any atomic element numbers

20 were found in the table. If not (”No“ branch), the EVENT

method mapping process may terminate without selecting any

atomic element numbers or counts (1964). If the atomic element

numbers were found, the process might then calculate the atomic

element count from the event range (1966). In this example, the

-573-

Petitioner Apple Inc. — Exhibit 1002, p. 5201

Petitioner Apple Inc. - Exhibit 1002, p. 5202

W0 In H :09 PCI‘IUS97I15243

process might calculate the number of bytes requested by

subtracting the upper byte range from the lower byte range (e.g.,

1500 - 1001 + 1 = 500). The example EVENT method mapping

process might then terminate (block 1968) and return the atomic

5 ' element number(s) and counts.

EVENT method 1940 may then write an EVENT audit

trail if required to an EVENT method Audit Trail UDE (block

1970, 1972). EVENT method 1940 may then prepare to pass the

10 atomic element number and event count to the calling

CONTROL method (or other control process) (at exit point; 1978).

Before that, however, EVENT method 1940 may test whether an

atomic element was selected (decision block 1974). If no atomic

element was selected, then the EVENT method may he failed

15 (block 1974). This may occur for a number of reasons. For

example, the EVENT method may fail to map an event into an

atomic element if the user is not authorized to access the specific

areas of content that the EVENT method MDE does not describe.

This mechanism could be used, for example, to distribute

20 customized versions of a piece of content and control access to the

various versions in the content object by altering the EVENT

method MDE delivered to the user. A specific use of this

technology might be to control the distribution of difierent

—574~

Petitioner Apple Inc. — Exhibit 1002, p. 5202

Petitioner Apple Inc. - Exhibit 1002, p. 5203

10

15

WO 98109209 PCTIUS97ll5243

language (e.g., English, French, Spanish) versions of a piece of

content.

Billing

Figure 53c is a flowchart of an example of process control

steps performed by a BILLING method 1980. Examples of

BILLING methods are set forth in Figures 49d, 50d, and 51d and

are described above. BILLING method 1980 shown in Figure 53c

is somewhat more generalized than the examples above. Like

the BILLING method examples above, BILLING method 1980

receives a meter value to determine the amount to bill.

BILLING method 1980 may first prime a BILLING audit trail (if

required) by writing appropriate information to the BILLING

method Audit Trail UDE (blocks 1982, 1984). BILLING method

1980 may then obtain and load a BILLING method map DTD

from the secure database (blocks 1985, 1986), which describes

the BILLING method map MDE (e.g., a price list, table, or

parameters to the billing amount calculation algorithm) that

should be used by this BILLING method. The BILLING method

map MDE may be delivered either as part of the content object or

as a separately deliverable component that combined with the

control information at registration.

Petitioner Apple Inc. — Exhibit 1002, p. 5203

Petitioner Apple Inc. - Exhibit 1002, p. 5204

wo 98/09209 PCFIUS97/15243

The BILLING method map in this example may

describe the pricing algorithm that should be used in this

BILLING method (e.g., bill $0.001 per byte of content released).

Block 1988 ("Map meter value to billing amount“) functions in

5 the same manner as block 1950 of the EVENT method; it maps

the meter value to a billing value. Process step 1988 may also

interrogate the secure database (as limited by the privacy filter)

to determine if other objects or information (e.g., user

information) are present as part of the BILLING method

10 algorithm.

BILLING method 1980 may then write a BILLING audit

trail if required to a BILLING method Audit Trail UDE (block

1990, 1992), and may prepare to return the billing amount to the

15 calling CONTROL method (or other control process). Before

that, however, BILLING method 1980 may test whether a billing

amount was determined (decision block 1994). If no billing

amount was determined, then the BILLING method may he

failed (block 1996). This may occur if the user is not authorized

20 to access the specific areas of the pricing table that the BILLING

method MDE describes (e.g., you may purchase not more than

$100.00 of information from this content object).

-576-

Petitioner Apple Inc. — Exhibit 1002, p. 5204

Petitioner Apple Inc. - Exhibit 1002, p. 5205

wo 93/09209 PCl'lUS97I15143

Access

Figure 54 is a flowchart of an example of program control

steps performed by an ACCESS method 2000. As described

above, an ACCESS method may be used to access content

5 embedded in an object 300 so it can be written to, read from, or

otherwise manipulated or processed. In many cases, the

ACCESS method may be relatively trivial since the object may,

for example, be stored in a local storage that is easily accessible.

However, in the general case, an ACCESS method 2000 must go

10 through a more complicated procedure in order to obtain the

object. For example, some objects (or parts of objects) may only

be available at remote sites or may be provided in the form of a

real-time download or feed (e.g., in the case of broadcast

transmissions). Even if the object is stored locally to the VDE

15 node, it may be stored as a secure or protected object so that it is

not directly accessible to a calling process. ACCESS method

2000 establishes the connections, routings. and security

requisites needed to access the object. These steps may be

performed transparently to the calling process so that the calling

20 process only needs to issue an access request and the particular

ACCESS method corresponding to the object or class of objects

handles all of the details and logistics involved in actually

accessing the object.

Petitioner Apple Inc. — Exhibit 1002, p. 5205

Petitioner Apple Inc. - Exhibit 1002, p. 5206

W0 98/-09209 PCTIU597/15243

ACCESS method 2000 may first prime an ACCESS audit I

trail (if required) by writing to an ACCESS Audit Trail UDE

(blocks 2002, 2004). ACCESS method 2000 may then read and

load an ACCESS method DTD in order to determine the format

U! of an ACCESS MDE (blocks 2006, 2008). The ACCESS method

MDE specifies the source and routing information for the

particular object to be accessed in the preferred embodiment.

Using the ACCESS method DTD, ACCESS method 2000 may

load the correction parameters (e.g., by telephone number,

10 account ID, password and/or a request script in the remote

resource dependent language).

ACCESS method 2000 reads the ACCESS method MDE

from the secure database, reads it in accordance with the

15 ACCESS method DTD, and loads encrypted content source and

routing information based on the MDE (blocks 2010, 2012). This

source and routing information specifies the location of the

encrypted content. ACCESS method 2000 then determines

whether a connection to the content is available (decision block

20 2014). This ”connection“ could be, for example, an on-line

connection to a remote site, a real-time information feed, or a

path to a secure/protected resource, for example. If the

connection to the content is not currently available (”No“ exit of

decision block 2014), then ACCESS method 2000 takes steps to

-578-

Petitioner Apple Inc. — Exhibit 1002, p. 5206

Petitioner Apple Inc. - Exhibit 1002, p. 5207

W0 09 PCl‘IUS97ll5243

open the connection (block 2016). If the connection fails (e.g.,

because the user is not authorized to access a protected secure

resource), then the ACCESS method 2000 returns with a failure

indication (termination point 2018). If the open connection

5 succeeds, on the other hand, then ACCESS method 2000 obtains

the encrypted content (block 2020). ACCESS method 2000 then

writes an ACCESS audit trail if required to the secure database

ACCESS method Audit Trail UDE (blocks 2022, 2024), and then

terminates (terminate point 2026).

10

Decrypt and Encrypt

Figure 55a is a flowchart of an example of process control

steps performed by a representative example of a DECRYPT

method 2030 provided by the preferred embodiment. DECRYPT

15 method 2030 in the preferred embodiment obtains or derives a

decryption key from an appropriate PERC 808, and uses it to

decrypt a block of encrypted content. DECRYPT method 2030 is

passed a block of encrypted content or a pointer to where the

encrypted block is stored. DECRYPT 2030 selects a key number

20 from a key block (block 2032). For security purposes, a content

object may be encrypted with more than one key. For example, a

movie may have the first 10 minutes encrypted using a first key,

the second 10 minutes encrypted with a second key, and so on.

These keys are stored in a PERC 808 in a structure called a "key

-579-

Petitioner Apple Inc. — Exhibit 1002, p. 5207

Petitioner Apple Inc. - Exhibit 1002, p. 5208

wo 93/99209 PCT/US97/15243

block.“ The selection process involves determining the correct key

to use from the key block in order to decrypt the content. The

process for this selection is similar to the process used by

EVENT methods to map events into atomic element numbers.

5 DECRYPT method 2030 may then access an appropriate PERC

808 from the secure database 610 and loads a key (or ”seed“)

from a PERC (blocks 2034, 2036). This key information may be

the actual decryption key to be used to decrypt the content, or it

may be information from which the decryption key may be at

10 least in part derived or calculated. If necessary, DECRYPT

method 2030 computes the decryption key based on the

information read from PERC 808 at block 2034 (block 2038).

DECRYPT method 2030 then uses the obtained and/or calculated

decryption key to actually decrypt the block of encrypted

15 information (block 2040). DECRYPT method 2030 outputs the

decrypted block (or the pointer indicating where it may be

found), and terminates (termination point 2042).

Figure 55b is a flowchart of an example of process control

20 steps performed by a representative example of an ENCRYPT

method 2050. ENCRYPT method 2050 is passed as an input, a

block of information to encrypt (or a pointer indicating where it

may be found). ENCRYPT method 2050 then may determine an

encryption key to use from a key block (block 2052). The

-580-

Petitioner Apple Inc. — Exhibit 1002, p. 5208

Petitioner Apple Inc. - Exhibit 1002, p. 5209

wo 93/09209 PCl‘IUS9’II15243

encryption key selection makes a determination if a key for a

specific block of content to be written already exists in a key

block stored in PERC 808. Ifthe key already exists in the key

block, then the appropriate key number is selected. If no such

5 key exists in the key block, a new key is calculated using an

algorithm appropriate to the encryption algorithm. This key is

then stored in the key block of PERC 808 so that DECRYPT

method 2030 may access the key in order to decrypt the content

stored in the content object. ENCRYPT method 2050 then

10 accesses the appropriate PERC to obtain, derive and/or compute

an encryption key to be used to encrypt the information block

(blocks 2054, 2056, 2058, which are similar to Figure 55a blocks

2034, 2036, 2038). ENCRYPT method 2050 then actually

encrypts the information block using the obtained and/or derived

15 encryption key (block 2060) and outputs the encrypted

information block or a pointer where it can be found before

terminating (termination point 2062).

Content

20 Figure 56 is a flowchart of an example of process control

steps performed by a representative of a CONTENT method

2070 provided by the preferred embodiment. CONTENT method

2070 in the preferred embodiment builds a "synopsis" of

protected content using a secure process. For example,

-581-

Petitioner Apple Inc. — Exhibit 1002, p. 5209

Petitioner Apple Inc. - Exhibit 1002, p. 5210

wo 98,o92o9 PCTIlJS9'7I15243

CONTENT method 2070 may be used to derive unsecure

(“public”) information from secure content. Such derived public

information might include, for example, an abstract, an index, a

table of contents, a directory of files, a schedule when content

on
may be available, or excerpts such as for example, a movie

"trailer.“

CONTENT method 2070 begins by determining whether

the derived content to be provided must be derived from secure

10 contents, or whether it is already available in the object in the

form of static values (decision block 2070). Some objects may, for

example, contain prestored abstracts, indexes, tables of contents,

etc., provided expressly for the purpose of being extracted by the

CONTENT method 2070. If the object contains such static:

15 values (”static“ exit to decision block 2072), then CONTENT

method 2070 may simply read this static value content

information from the object (block 2074), optionally decrypt, and

H release this content description (block 2076]. If, o1_1__t_he other

hand, CONTENT method 2070 must derive the synopsis/content

20 description from the secure object (”derived“ eidt to decision block

2072), then the CONTENT method may then securely read

information from the container according to a synopsis algorithm

to produce the synopsis (block 2078).

-582-

Petitioner Apple Inc. — Exhibit 1002, p. 5210

Petitioner Apple Inc. - Exhibit 1002, p. 5211

wo 9s/09209 PCTIUS97115243

Extract and Embed

Figure 57a is a flowchart of an example of process control

steps performed by a representative example of an EXTRACT

method 2080 provided by the preferred embodiment. EXTRACT

5 method 2080 is used to copy or remove content from an object

and place it into a new object. In the preferred embodiment, the

EXTRACT method 2080 does not involve any release of content,

but rather simply takes content from one container and places it

into another container, both of which may be secure. Extraction

10 of content differs from release in that the content is never

exposed outside a secure container. Extraction and Embedding

are complementary functions; extract takes content from a

container and creates a new container containing the extracted

content and any specified control information associated with

15 that content. Embedding takes content that is already in a

container and stores it (or the complete object) in another

container directly and/or by reference, integrating the control

information associated with eidsting content with those of the

new content.

20

EXTRACT method 2080 begins by priming an Audit UDE

(blocks 2082, 2084). EXTRACT ‘method then calls a BUDGET

method to make sure that the user has enough budget for (and is

authorized to) extract content from the original object (block

-583-

Petitioner Apple Inc. — Exhibit 1002, p. 5211

Petitioner Apple Inc. - Exhibit 1002, p. 5212

10

15

20

WO 98/09209 PCTIUS97/15243

2086). Ifthe user’s budget does not permit the extraction ("no“

exit to decision block 2088), then EXTRACT method 2080 may

write a failure audit record (block 2090), and terminate

(termination point 2092). "If the user's budget permits the

extraction (”yes“ exit to decision block 2088), then the EXTRACT

method 2080 creates a copy of the extracted object with specified

rules and control information (block 2094). In the preferred

embodiment, this step involves calling a method that actually

controls’ the copy. This step may or may not involve decryption

and encryption, depending on the particular the PERC 808

associated with the original object, for example. EXTRACT

method 2080 then checks whether any control changes are

permitted by the rights authorizing the extract to begin with

(decision block 2096). In some cases, the extract rights require

an exact copy of the PERC 808 associated with the original object

(or a PERC included for this purpose) to be placed in the new

(destination) container (”no“ exit to decision block 2096). If no

control changes are permitted, then extract method 2080 may

simply write audit information to the Audit UDE (blocks 2098,

2100) before terminating (terminate point 2102). If, on the other

hand, the extract rights permit the user to make control changes

("yes“ to decision block 2096), then EXTRACT method 2080 may

call a method or load module that solicits new or changed control

information (e.g., from the user, the distributor who

-584-

Petitioner Apple Inc. — Exhibit 1002, p. 5212

Petitioner Apple Inc. - Exhibit 1002, p. 5213

10

15

20

WO 98/09209 PCI'IUS9'II15243

created/granted extract rights, or from some other source) from

the user (blocks 2104, 2106). EXTRACT method 2080 may then

call a method or load module to create a new PERC that reflects

these user-specified control information (block 2104). This new

PERC is then placed in the new (destination) object, the auditing

steps are performed, and the process terminates.

Figure 57b is an example of process control steps

performed by a representative example of an EMBED method

2110 provided by the preferred embodiment. EMBED method

2110 is similar to EXTRACT method 2080 shown in Figure 57a.

However, the EMBED method 2110 performs a slightly different

function—it writes an object (or reference) into a destination

container. Blocks 2112-2122 shown in Figure 57b are similar to

blocks 2082-2092 shown in Figure 57a. At block 2124, EMBED

method 2110 writes the source object into the destination

container, and may at the same time extract or change the

control information of the destination container. One alternative

is to simply leave the control information of the destination

container alone, and include the full set of control information

associated with the object being embedded in addition to the

original container control information. As an optimization,

however, the preferred embodiment provides a technique

whereby the control information associated with the object being

-585-

Pctitioncr Apple Inc. — Exhibit 1002, p. 5213

Petitioner Apple Inc. - Exhibit 1002, p. 5214

wo 93/09209 PCTIUS97Il5243

embedded are ”abstractedf‘ and incorporated into the control

information of the destination container. Block 2124 may call a

method to abstract or change this control information. EMBED

method 2110 then performs steps 2126-2130 which are similar to

5 ' steps 2096, 2104, 2106 shown in Figure 57a to allow the user, if

authorized, to change and/or specify control information

associated with the embedded object and/or destination

container. EMBED method 2110 then writes audit information

into an‘Audit UDE (blocks 2132, 2134), before terminating (at

10 termination point 2136).

Obscure

Figure 58a is a flowchart of an example of process control

steps performed by a representative example of an OBSCURE

15 method 2140 provided by the preferred embodiment. OBSCURE

method 2140 is typically used to release secure content in

devalued form. For example, OBSCURE method 2140 may

release a high resolution image in a lower resolution so that a

viewer can appreciate the image but not enjoy its full value. As

20 another example, the OBSCURE method 2140 may place an

obscuring legend (e.g., ”COPY,“ "PROOF,“ etc.) across an image

to devalue it. OBSCURE method 2140 may "obscure“ text,

images, audio information, or any other type of content.

-586-

Petitioner Apple Inc. — Exhibit 1002, p. 5214

Petitioner Apple Inc. - Exhibit 1002, p. 5215

10

15

20

WO 98109209 PCTIUS97]15243

OBSCURE method 2140 first calls an EVENT method to

determine if the content is appropriate and in the range to be

obscured (block 2142). If the content is not appropriate for

obscuring, the OBSCURE method terminates (decision block

2144 ”no“ exit, terminate point 2146). Assuming that the content

is to be obscured (”yes“ exit to decision block 2144), then

OBSCURE method 2140 determines whether it has previously

been called to obscure this content (decision block 2148).

Assuming the OBSCURE 2140 has not previously called for this

object/content (”yes‘ exit to decision block 2148), the OBSCURE

method 2140 reads an appropriate OBSCURE method MDE from

the secure database and loads an obscure formula and/or pattern

from the MDE (blocks 2150, 2152). The OBSCURE method 2140

may then apply the appropriate obscure transform based on the

patters and/or formulas loaded by block 2150 (block 2154). The

OBSCURE method then may terminate (terminate block 2156).

Fingerprint

Figure 58b is a flowchart of an example of process control

steps performed by a representative example of a

FINGERPRINT method 2160 provided by the preferred

embodiment. F1'NGER.PRIN'I‘ method 2160 in the preferred

embodiment operates to "mark" released content with a

"fingerprint" identification of who released the content and/or

-587-

Petitioner Apple Inc. — Exhibit 1002, p. 5215

Petitioner Apple Inc. - Exhibit 1002, p. 5216

“,0 93,092” PCl'IUS97Il5243

check for such marks. This allows one to later determine who

released unsecured content by examining the content.

FINGERPRINT method 2160 may, for example, insert a user ID

vfithin a datastream representing audio, video, or binary format

5 information. FINGERPRINT method 2160 is quite similar to

OBSCURE method 2140 shown in Figure 58a except that the

transform applied by FINGERPRINT method block 2174

“fingerprints” the released content rather than obscuring it.

10 Figure 58c shows an example of a ”fingerprinting“

procedure 2160 that inserts into released content "fingerprints"

2161 that identify the object and/or property and/or the user that

requested the released content and/or the date and time of the

release and/or other identification criteria of the released

15 content.

Such fingerprints 2161 can be ”buried“ -- that is inserted 4

in a manner that hides the fingerprints from typical users,

sophisticated "hackers," and/or from all users, depending on the

20 file format, the sophistication and/or variety of the insertion

algorithms, and on the availability of original, non-fingerprinted

content (for comparison for reverse engineering of algorithm(s)).

Inserted or embedded fingerprints 2161, in a preferred

embodiment, may be at least in part encrypted to make them

-588-

Petitioner Apple Inc. — Exhibit 1002, p. 5216

Petitioner Apple Inc. - Exhibit 1002, p. 5217

10

15

20

WO 98/09209 PCl‘IUS97Il5243

more secure. Such encrypted fingerprints 2161 may be

embedded within released content provided in "clear“ (plaintext)

form.

Fingerprints 2161 can be used for a variety of purposes

including, for example, the ofi:en related purposes of proving

misuse of released materials and proving the source of released

content. Software piracy is a particularly good example where

fingerprinting can be very useful. Fingerprinting can also help

to enforce content providers’ rights for most types of

electronically delivered information including movies, audio

recordings, multimedia, information databases, and traditional

"literary" materials. Fingerprinting is a desirable alternative or

addition to copy protection.

Most piracy of software applications, for example, occurs

not with the making of an illicit copy by an individual for use on

another of the individual’s own computers. but rather in giving a

copy to another party. This oflzen starts a chain (or more

accurately a pyramid) of illegal copies, as copies are handed from

individual to individual. The fear of identification resulting from

the embedding of a fingerprint "2161 will likely dissuade most

individuals from participating, as many currently do, in

widespread, ”casual“ piracy. In some cases, content may be

-589-

Petitioner Apple Inc. — Exhibit 1002, p. 5217

Petitioner Apple Inc. - Exhibit 1002, p. 5218

wo 93/09109 PCFIUS97/15243

checked for the presence of a fingerprint by a fingerprint method‘

to help enforce content providers’ rights.

Difl'erent fingerprints 2161 can have different levels of

U! security (e.g., one fingerprint 2161(1) could be

readable/identifiable by commercial concerns, while another

fingerprint 2161(2) could be readable only by a more trusted

agency. The methods for generating the more secure fingerprint

2161 might employ more complex encryption techniques (e.g.,

10 digital signatures) and/or obscuring of location methodologies.

Two or more fingerprints 2161 can be embedded in difierent

locations and/or using different techniques to help protect

fingerprinted information against hackers. The more secure

fingerprints might only be employed periodically rather than

15 each time content release occurs, if the technique used to provide

a more secure fingerprint involves an undesired amount of

additional overhead. This may nevertheless be effective since a

principal objective of fingerprinting is ‘deterrence-—that is the

fear on the part of the creator of an illicit copy that the copying

20 will be found out.

For example, one might embed a copy of a fingerprint 2161

which might be readily identified by an authorized party--for

example a distributor, service personal, client administrator, or

-590-

Petitioner Apple Inc. — Exhibit 1002, p. 5218

Petitioner Apple Inc. - Exhibit 1002, p. 5219

WO 98109209 PCI'IUS9‘1Il5243

clearinghouse using a VDE electronic appliance 600. One might

embed one or more additional copies or variants of a fingerprint

2161 (e.g., fingerprints carrying information describing some or

all relevant identifying information) and this additional one or

5 more fingerprints 2161 might be maintained in a more secure

manner.

Fingerprinting can also protect privacy concerns. For

example, the algorithm and/or mechanisms needed to identify

10 the fingerprint 2161 might be available only through a

particularly trusted agent.

Fingerprinting 2161 can take many forms. For example,

in an image, the color of every N pixels (spread across an image,

15 or spread across a subset of the image) might be subtly shified in

a visually unnoticeable manner (at least according to the normal,

unaided observer). These shifis could be interpreted by analysis

'”Tf'Hfi3 image (With or without access to the original image), with

each occurrence or lack of occurrence of a shifl: in color (or

20 greyscale) being one or more binary ”on or off“ bits for digital

information storage. The N pixels might be either consistent, or

alternatively, pseudo-random in order (but interpretable, at least

in part, by a object creator, object provider, client administrator,

and/or VDE administrator).

-591-

Petitioner Apple Inc. — Exhibit 1002, p. 5219

Petitioner Apple Inc. - Exhibit 1002, p. 5220

wo 93/09209 PC!‘/US97]15243

Other modifications of an image (or moving image, audio,

etc.) which provide a similar benefit (that is, storing information

in a form that is not normally noticeable as a result of a certain

modification of the source information) may be appropriate,

5 depending on the application. For example, certain subtle

modifications in the frequency of stored audio information can be

modified so as to be normally unnoticeable to the listener while

still being readable with the proper tools. Certain properties of

the storage of information might be modified to provide such

10 slight but interpretable variations in polarity of certain

information which is optically stored to achieve similar results.

Other va.riations employing other electronic, magnetic, and/or

optical characteristic may be employed.

15 Content stored in files that employ graphical formats, such

as Microsoft Windows word processing files, provide significant

opportunities for "burying“ a fingerprint 2161. Content that

includes images and/or audio provides the opportunity to embed

fingerprints 2161 that may be difiicult for unauthorized

20 individuals to identify since, in the absence of an

”unfingerprinted“ original for purposes of comparison. minor

subtle variations at one or more time instances in audio

frequencies, or in one or more video images, or the like, will be in

themselves undiscernible given the normally unknown nature of

-592-

Petitioner Apple Inc. — Exhibit 1002, p. 5220

Petitioner Apple Inc. - Exhibit 1002, p. 5221

W0 98/09209 PCT/U597’15143

the original and the large amounts of data employed in both

image and sound data (and which is not particularly sensitive to

minor variations). With formatted text documents, particularly

those created with graphical word processors (such as Microsoft

5 Windows or Apple Maclntosh word processors and their DOS

and Unix equivalents), fingerprints 2161 can normally be

inserted unobtrusively into portions of the document data

representation that are not normally visible to the end user (such

as in a header or other non-displayed data field).

10

Yet another form of fingerprinting, which may be

particularly suitable for certain textual documents, would

employ and control the formation of characters for a given font.

Individual characters may have a slightly different visual

15 formation which connotes certain ”fingerprint“ information. This

alteration of a given character’s form would be generally

undiscernible, in part because so many slight variations exist in

versions of the same font available from different suppliers, and

in part because of the smallness of the variation. For example,

20 in a preferred embodiment, a program such as Adobe Type Align

could be used which, in its off-the-shelf versions, supports the

ability of a user to modify font characters in a variety of ways.

The mathematical definition of the font character is modified

according to the user’s instructions to produce a specific set of

-593-

Petitioner Apple Inc. — Exhibit 1002, p. 5221

Petitioner Apple Inc. - Exhibit 1002, p. 5222

10

15

20

wo gg/99209 PCTIUS97]15243

modifications to be applied to a character or font. Information

content could be used in an analogous manner (as an alternative

to user selections) to modify certain or all characters too subtly

for user recognition under normal circumstances but which

nevertheless provide appropriate encoding for the fingerprint

2161. Various subtly different versions of a given character

might be used within a single document so as to increase the

ability to carry transaction related font fingerprinted

information.

Some other examples of applications for fingerprinting

might include:

1. In software programs, selecting certain

interchangeable code fragments in such a way as to

produce more or less identical operation, but on

analysis, differences that detail fingerprint

information.

With databases, selecting to format certain fields,

such as dates, to appear in different

3. In games, adjusting backgrounds, or changing order

of certain events, including noticeable or very subtle

changes in timing and/or ordering of appearance of

game elements, or slight changes in the look of

elements of the game.

-594-

Petitioner Apple Inc. — Exhibit 1002, p. 5222

Petitioner Apple Inc. - Exhibit 1002, p. 5223

wo 9sro92o9 ' PCTIUS9'7Il52-13

Fingerprinting method 2160 is typically performed (if at

all) at the point at which content is released from a content

object 300. However, it could also be performed upon

distribution of an object to ’’mark‘‘ the content while still in

5 encrypted form. For example, a network-based object repository

could embed fingerprints 2161 into the content of an object

before transmitting the object to the requester, the fingerprint

information could identify a content requester/end user. This

could help detect ”spoof“ electronic appliances 600 used to release

10 content without authorization.

Destroy

Figure 59 is a flowchart of an example of process control

steps performed by a representative performed by a DESTROY

15 method 2180 provided by the preferred embodiment. DESTROY

method 2180 removes the ability of a user to use an object by

destroying the URT the user requires to access the object. In the

preferred embodiment, a DESTROY method 2180 may first write’

audit information to an Audit UDE (blocks 2182, 2184).

20 DESTROY method 2180 may than call a WRITE and/or ACCESS

method to write information which will corrupt (and thus

destroy) the header and/or other important parts of the object

(block 2186). DESTROY method 2180 may then mark one or

more of the control structures (e.g., the URT) as damaged by

-595-

Petitioner Apple Inc. — Exhibit 1002, p. 5223

Petitioner Apple Inc. - Exhibit 1002, p. 5224

10

15

20

WO 98109209 PCTIUS97!15243

writing appropriate information to the control structure (blocks

2188, 2190). DESTROY method 2180, finally, may write

additional audit information to Audit UDE (blocks 2192, 2194)

before terminating (terminate point 2196).

Panic

Figure 60 is a flowchart of an example of process control

steps performed by a representative example of a PANIC method

2200 provided by the preferred embodiment. PANIC method

2200 may be called when a security violation is detected. PANIC"

method 2200 may prevent the user from further accessing the

object currently being accessed by, for example, destroying the

channel being used to access the object and marking one or more

of the control structures (e.g., the URT) associated with the user

and object as damaged (blocks 2206, and 2208-2210,

respectively). Because the control structure is damaged, the

VDE node will need to contact an administrator to obtain a valid

control structure(s) before the user may access the same object

again. When the VDE node contacts the administrator, the

administrator may request information sufficient to satisfy itself

that no security violation occurred, or if a security violation did

occur, take appropriate steps to ensure that the security

violation is not repeated.

-596-

Petitioner Apple Inc. — Exhibit 1002, p. 5224

Petitioner Apple Inc. - Exhibit 1002, p. 5225

wo gs/09209 PCI‘IUS97I152-13

Meter

Figure 61 is a flowchart of an example of process control

steps performed by a representative example of a METER

method provided by the preferred embodiment. Although

5 METER methods were described above in connection with

Figures 49, 50 and 51, the METER method 2220 shown in Figure

61 is possibly a somewhat more representative example. In the

preferred embodiment, METER method 2220 first primes an

Audit Trail by accessing a METER Audit Trail UDE (blocks

10 2222, 2224). METER method 2220 may then read the DTD for

the Meter UDE from the secure database (blocks 2226, 2228).

METER method 2220 may then read the Meter UDE from the

secure database (blocks 2230, 2232). METER method 2220 next

may test the obtained Meter UDE to determine whether it has

15 expired (decision block 2234). In the preferred embodiment, each

Meter UDE may be marked with an expiration date. If the

current date/time is later than the expiration date of the Meter

UDE (”yes“ exit to decision block 2234), then the METER method

2220 may record a failure in the Audit Record and terminate

20 with a failure condition (block 2236, 2238).

Assuming the Meter UDE is not yet expired, the meter

method 2220 may update it using the atomic element and event

count passed to the METER method from, for example, an

-597-

Petitioner Apple Inc. — Exhibit 1002, p. 5225

Petitioner Apple Inc. - Exhibit 1002, p. 5226

W0 gsmnog PCT/US97ll5243

EVENT method (blocks 2239, 2240). The METER method 2220

may then save the Meter Use Audit Record in the Meter Audit

Trail UDE (blocks 2242, 2244), before terminating (at terminate

point 2246).

Additional Security Features Provided by the Preferred
Embodiment

VDE 100 provided by the preferred embodiment has

10 sufficient security to help ensure that it cannot be compromised

short of a successful "brute force attack,“ and so that the time

and cost to succeed in such a "brute force attack“ substantially

exceeds any value to be derived. In addition, the security

provided by VDE 100 cornpartmentalizes the internal workings

15 of VDE so that a successful "brute force attack“ would

compromise only a strictly bounded subset of protected

information, not the entire system.

The following are among security aspects and features

20 provided by the preferred embodiment:

- security of PPE 650 and the processes it performs

- security of secure database 610

- security of encryption/decryption performed by PPE

650

-598-

Petitioner Apple Inc. — Exhibit 1002, p. 5226

Petitioner Apple Inc. - Exhibit 1002, p. 5227

PCTIUS97I15243WO 98109209

- key management; security of encryption/decryption

keys and shared secrets

- security of authentication/external communications

, - security of secure database backup

5 - secure transportability of VDE internal information

between electronic appliances 600

- security of permissions to access VDE secure

information

-l security of VDE objects 300

10 ° integrity of VDE security.

Some of these security aspects and considerations are

discussed above. The following provides an expanded discussion

of preferred embodiment security features not fully addressed.

15 elsewhere.

Management of Keys and Shared Secrets

VDE 100 uses keys and shared secrets to provide security.

The following key usage features are provided by the preferred

20 embodiment:

- different cryptosystem/key types

- secure key length

- key generation

- key ”convolution“ and key “aging.”

-599-

Petitioner Apple Inc. — Exhibit 1002, p. 5227

Petitioner Apple Inc. - Exhibit 1002, p. 5228

10

15

20

WO 98109209 PCTIUS97I15243

Each of these types are discussed below.

A. Public-Kay and Symmetric Key Cryptosystema

The process of disguising or transforming information to

hide its substance is called encryption. Encryption produces

”ciphertext.“ Reversing the encryption process to recover the

substance from the ciphertext is called ”decryption.“ A

cryptographic algorithm is the mathematical function used for

encryption and decryption.

Most modern cryptographic algorithms use a "key.“ The

”key“ specifies one of a family of transformations to be provided.

Keys allow a standard, published and tested cryptographic

algorithm to be used while ensuring that specific

transformations performed using the algorithm are kept secret.

The secrecy of the particular transformations thus depends on

the secrecy of the key, not on the secrecy of the algorithm.

There are two general forms of key-based algorithms,

either or both of which may be used by the preferred embodiment

PPE 650:

symmetric; and

public-key ("PK").

-600-

Petitioner Apple Inc. — Exhibit 1002, p. 5228

Petitioner Apple Inc. - Exhibit 1002, p. 5229

wo 93/09209 PC'1‘lUS97I15243

Symmetric algorithms are algorithms where the

encryption key can be calculated from the decryption key and

vice versa. In many such systems, the encryption and decryption

keys are the same. The algorithms, also called "secret-key“,

5 "single key“ or "shared secret“ algorithms, require a sender and

receiver to agree on a key before ciphertext produced by a sender

can be decrypted by a receiver. This key must be kept secret.

The security of a symmetric algorithm rests in the key:

the key means that anybody could encrypt and decrypt

10 information in such a cryptosystem. See Schneier, Applied

Qggpjggmphy at Page 3. Some examples of symmetric key

algorithms that the preferred embodiment may use include DES,

Skipjack/Clipper. IDEA, RC2, and RC4.

15 In public-key cryptosystems, the key used for encryption is

difierent from the key used for decryption. Furthermore, it is

computationally infeasible to derive one key from the other. The

algorithms used in these cryptosystems are called "public key“

because one of the two keys can be made public without

20 endangering the security of the other key. They are also

sometimes called “asymmetric” cryptosystems because they use

different keys for encryption and decryption. Examples of

public-key algorithms include RSA, El Gamal and LUC.

-601-

Petitioner Apple Inc. — Exhibit 1002, p. 5229

Petitioner Apple Inc. - Exhibit 1002, p. 5230

wo 93/09109 PCI‘IUs97/15243

The preferred embodiment PPE 650 may operate based on 4

only symmetric key cryptosystems, based on public-key

cryptosystems, or based on both symmetric key cryptosystems

and public-key cryptosystems. VDE 100 does not require any

5 specific encryption algorithms; the architecture provided by the

preferred embodiment may support numerous algorithms

including PK and/or secret key (non PK) algorithms. In some

cases, the choice of encryption/decryption algorithm will be

dependent on a number of business decisions such as cost,

10 market demands, compatibility with other commercially

available systems, export laws, etc.

Although the preferred embodiment is not dependent on

any particular type of cryptosystem or encryption/decryption

15 algorithm(s), the preferred example uses PK cryptosystems for

secure communications between PPEs 650, and uses secret key

cryptosystems for ”bulk“ encryption/decryption of VDE objects _

300. Using secret key cryptosystems (e.g., DES implementations

using multiple keys and multiple passes, Skipjack, RC2, or RC4)

20 for "bulk“ encryption/decryption provides efliciencies in

encrypting and decrypting large quantities of information, and

also permits PPEs 650 without PK-capability to deal with VDE

objects 300 in a variety of applications. Using PK cryptosystems

for communications may provide advantages such as eliminating

-602-

Petitioner Apple Inc. — Exhibit 1002, p. 5230

Petitioner Apple Inc. - Exhibit 1002, p. 5231

W0 98/09209 PCT/US97/15243

reliance on secret shared external communication keys to

establish communications, allowing for a challenge/response that

doesn’t rely on shared internal secrets to authenticate PPEs 650,

and allowing for a publicly available ”certification“ process

5 without reliance on shared secret keys.

Some content providers may wish to restrict use of their

content to PK implementations. This desire can be supported by

making" the availability of PK capabilities, and the specific

10 nature or type of PK capabilities, in PPEs 650 a factor in the

registration of VDE objects 300, for example, by including a

requirement in a REGISTER method for such objects in the form

of a load module that examines a PPE 650 for specific or general

PK capabilities before allowing registration to continue.

15

Although VDE 100 does not require any specific algorithm,

it is highly desirable that all PPEs 650 are capable of using the

same -algorithm for bulk encryption/decryption. If the bulk

encryption/decryption algorithm used for encrypting VDE objects

20 300 is not standardized, then it is possible that not all VDE

electronic appliances 600 will be capable of handling all VDE

objects 300. Performance diflerences will eidst between diflenent

PPEs 650 and associated electronic appliances 600 if

standardized bulk encryption/decryption algorithms are not

-603-

Petitioner Apple Inc. — Exhibit 1002, p. 5231

Petitioner Apple Inc. - Exhibit 1002, p. 5232

wo 9s/09209 1-cr/us97/15243

implemented in whole or in pm by hardware-based

encrypt/decrypt engine 522, and instead are implemented in

software. In order to support algorithms that are not

implemented in whole or in pm by encrypt/decrypt engine 522, a

5 component assembly that implements such an algorithm must be

available to a PPE 650.

B. Key Length

Increased key length may increase security. A "brute-

10 force“ attack of a cryptosystem involves trying every possible

key. The longer the key, the more possible keys there are to try.

At some key length, available computation resources will require

an impractically large amount of time for a ”brute force“ attacker

to try every possible key.

15

VDE 100 provided by the preferred embodiment

accommodates and can use many different key lengths. The

length of keys used by VDE 100 in the preferred embodiment is

determined by the algorithm(s) used for encryption/decryption,

20 the level of security desired, and throughput requirements.

Longer keys generally require additional processing power to

ensure fast encryption/decryption response times. Therefore,

there is a tradeoff between (a) security, and (b) processing time

and/or resources. Since a hardware-based PPE encrypt/decrypt

-604 -

Petitioner Apple Inc. — Exhibit 1002, p. 5232

Petitioner Apple Inc. - Exhibit 1002, p. 5233

wo 9s/09209 PC'WS9’7"5“3

engine 522 may provide faster processing than software-based

encryption/decryption, the hardware-based approach may, in

general, allow use of longer keys.

5 The preferred embodiment may use a 1024 bit modulus

(key) RSA cryptosystem implementation for PK

encryption/decryption, and may use 56-bit DES for “bulk”

encryption/decryption. Since the 56-bit key provided by standard

DES may not be long enough to provide sufficient security for at

10 least the most sensitive VDE information, multiple DES

encryptions using multiple passes and multiple DES keys may

be used to provide additional security. DES can be made

significantly more secure if operated in a manner that uses

multiple passes with different keys. For example, three passes

15 with 2 or 3 separate keys is much more secure because it

effectively increases the length of the key. RC2 and RC4

(alternatives to DES) can be exported for up to 40-bit key sizes,

but the key size probably needs to be much greater to provide

even DES level security. The 80-bit key length provided by

20 NSA’s Skipjack may be adequate for most VDE security needs.

The capability of downloading code and other information

dynamically into PPE 650 allows key length to be adjusted and

changed dynamically even after a significant number of VDE

-605-

Petitioner Apple Inc. — Exhibit 1002, p. 5233

Petitioner Apple Inc. - Exhibit 1002, p. 5234

wo gsfogzog PCT/U597/15243

electronic appliances 600 are in use. The ability of a VDE

administrator to communicate with each PPE 650 efiiciently

makes such after-the-fact dynamic changes both possible and

cost-eflective. New or modified cryptosystems can be

5 downloaded into eidsting PPEs 650 to replace or add to the

cryptosystem repertoire available within the PPE, allowing older

PPEs to maintain compatibility with newer PPEs and/or newly

released VDE objects 300 and other VDE-protected information.

For example, software encryption/decryption algorithms may be

10 downloaded into PPE 650 at any time to supplement the

hardware-based functionality of encrypt/decrypt engine 522 by

providing different key length capabilities. To provide increased

flexibility, PPE encrypt/decrypt engine 522 may be configured to

anticipate multiple passes and/or variable and/or longer key

15 lengths. In addition, it may be desirable to provide PPEs 650

with the capability to internally generate longer PK keys.

A__%_—..

"C. Key Generation

Key generation techniques provided by the preferred

20 embodiment permit PPE 650 to generate keys and other

information that are ”known“ only to it.

The security of encrypted information rests in the security

of the key used to encrypt it. If a cryptographically weak process

-606-

Petitioner Apple Inc. — Exhibit 1002, p. 5234

Petitioner Apple Inc. - Exhibit 1002, p. 5235

WO 98199209 PCT/US97Il5243

is used to generate keys, the entire security is weak. Good keys

are random bit strings so that every possible key in the key space

is equally likely. Therefore, keys should in general be derived

from a reliably random source, for example, by a

5 cryptographically secure pseudo-random number generator

seeded from such a source. Examples of such key generators are

described in Schneier,A (John Wiley and

Sons, 1994), chapter 15. If keys are generated outside a given

PPE 650 (e.g., by another PPE 550), they must be verified to

10 ensure they come from a trusted source before they can be used.

”Certif1cation“ may be used to verify keys.

The preferred embodiment PPE 650 provides for the

automatic generation of keys. For example, the preferred

15 embodiment PPE 650 may generate its own public/private key

pair for use in protecting PK-based external communications and

for other reasons. A PPE 650 may also generate its own

symmetric keys for various purposes during and after

initialization. Because a PPE 650 provides a secure

20 environment, most key generation in the preferred embodiment

may occur within the PPE (with the possible exception of initial

PPE keys used at manufacturing or installation time to allow a

15PE to authenticate initial download messages to it).

-607-

Petitioner Apple Inc. — Exhibit 1002, p. 5235

Petitioner Apple Inc. - Exhibit 1002, p. 5236

wo 98/09209 PCI'IUS97Il5243

Good key generation relies on randomness. The preferred .

embodiment PPE 650 may, as mentioned above in connection

with Figure 9, includes a hardware-based random number

generator 542 with the characteristics required to generate

5 reliable random numbers. These random numbers may be used

to ”seed“ a cryptographically strong pseudo-random number

generator (e.g., DES operated in Output Feedback Mode) for

generation of additional key values derived from the random

seed. In the preferred embodiment, random number generator

10 542 may consist of a "noise diode“ or other physically-based

source of random values (e.g., radioactive decay).

If no random number generator 542 is available in the

PPE 650, the SPE 503 may employ a cryptographic algorithm

15 (e.g., DES in Output Feedback Mode) to generate a sequence of

pseudo-random values derived from a secret value protected

within the SPE. Although these numbers are pseudo-random

rather than truly random, they are cryptographically derived

from a value unknown outside the SPE 503 and therefore may be

20 satisfactory in some applications.

In an embodiment incorporating an I-[PE 655 without an

SPE 503, the random value generator 565 software may derive

reliably random numbers from unpredictable external physical

-608-

Petitioner Apple Inc. — Exhibit 1002, p. 5236

Petitioner Apple Inc. - Exhibit 1002, p. 5237

wo 93/09209 PCI'IUS97ll5243

events (e.g., high-resolution timing of disk I/O completions or of

user keystrokes at an attached keyboard 612).

Conventional techniques for generating PK and non-PK

5 ' keys based upon such ”seeds“ may be used. Thus, if performance

and manufacturing costs permit, PPE 650 in the preferred

embodiment will generate its own public/private key pair based

on such random or pseudo-random ”seed“ values. This key pair

may then be used for external communications between the PPE

10 650 that generated the key pair and other PPES that wish to

communicate with it. For example, the generating PPE 650 may

reveal the public key of the key pair to other PPES. This allows

other PPEs 650 using the public key to encrypt messages that

may be decrypted only by the generating PPE (the generating

15 PPE is the only PPE that “knows” the corresponding "private

key“). Similarly, the generating PPE 650 may encrypt messages

using its private key that, when decrypted successfully by other

PPEs with the generating PPE’s public key, permit the other

PPEs to authenticate that the generating PPE sent the message.

20

Before one PPE 650 uses a public key generated by

another PPE, a public key certification process should be used to

provide authenticity certificates for the public key. A public-key

certificate is someone’s public key ”signed“ by a trustworthy

-609-

Petitioner Apple Inc. — Exhibit 1002, p. 5237

Petitioner Apple Inc. - Exhibit 1002, p. 5238

wo 98109209 PC'l‘IllS97Il5243

entity such as an authentic PPE 650 or a VDE administra1:or.

Certificates are used to thwart attempts to convince a PPE 650

that it is communicating with an authentic PPE when it is not

(e.g., it is actually communicating with a person attempting to

5 break the security of PPE 650). One or more VDE

administrators in the preferred embodiment may constitute a

certifying authority. By ’’signing‘'‘ both the public key generated I

by a PPE 650 and information about the PPE and/or the

corresponding VDE electronic appliance 600 (e.g., site ID, user

10 ID, expiration date. name, address, etc.), the VDE administrator

certifying authority can certify that information about the PPE

and/or the VDE electronic appliance is correct and that the

public key belongs to that particular VDE mode.

15 Certificates play an important role in the trustedness of

digital signatures, and also are important in the public~key

authentication communications protocol (to be discussed below).

In the preferred embodiment, these certificates may include

information about the trustedness/level of security of a particular

20 VDE electronic appliance 600 (e.g., whether or not it has a

hardware-based SPE 503 or is instead a less trusted software

emulation type HPE 655) that can be used to avoid transmitting -

certain highly secure information to less trusted/secure VDE

installations.

-610 -

Petitioner Apple Inc. — Exhibit 1002, p. 5238

Petitioner Apple Inc. - Exhibit 1002, p. 5239

wo 9g/09109 PCl'IUS9‘7/15243

Certificates can also play an important role in

decommissioning rogue users and/or sites. By including a site

and/or user ID in a certificate, a PPE can evaluate this

ipformation as an aspect of authentication. For example, if a

5 VDE administrator or clearinghouse encounters a certificate

bearing an ID (or other information) that meets certain criteria

(e.g., is present on a list of decommissioned and/or otherwise

suspicious users and/or sites), they may choose to take actions

based on those criteria such as refusing to communicate,

10 communicating disabling information, notifying the user of the

condition, etc. Certificates also typically include an expiration

date to ensure that certificates must be replaced periodically, for

example, to ensure that sites and/or users must stay in contact

with a VDE administrator and/or to allow certification keys to be

15 changed periodically. More than one certificate based on

different keys may be issued for sites and/or users so that if a

given certification key is compromised, one or more "backup“ I 4

certificates may be used. If a certification key is compromised, A

VDE administrator may refuse to authenticate based on

20 certificates generated with such a key, and send a signal after

authenticating with a ”backup“ certificate that invalidates all

use of the compromised key and all certificates associated with it

in further interactions with VDE participants. A new one or

-611-

Petitioner Apple Inc. — Exhibit 1002, p. 5239

Petitioner Apple Inc. - Exhibit 1002, p. 5240

wo 93/09209 PCTIU S97ll5243

more "backup“ certificates and keys may be created and sent to

the authenticated site/user after such a compromise.

If multiple certificates are available, some of the

5 certificates may be reserved as backups. Alternatively or in

addition, one certificate from a group of certificates may be

selected (e.g., by using RNG 542) in a given authentication,

thereby reducing the likelihood that a certificate associated with

a compromised certification key will be used. Still alternatively,

10 more than one certificate may be used in a given authentication.

To guard against the possibility of compromise of the

certification algorithm (e.g., by an unpredictable advance in the

mathematical foundations on which the algorithm is based),

15 distinct algorithms may used for different certificates that are

based on difierent mathematical foundations.

Another technique that may be employed to decrease the

probability of compromiseis to keep secret (in protected storage

20 in the PPE 650) the ”public“ values on which the certificates are

based, thereby denying an attacker access to values that may aid

in the attack. Although these values are nominally ”public,“ they -

need be known only to those components which actually validate

certificates (i.e., the PPE 650).

-612-

Petitioner Apple Inc. — Exhibit 1002, p. 5240

Petitioner Apple Inc. - Exhibit 1002, p. 5241

wo9s/09209 PCI‘IUS97Il5243

In the preferred embodiment, PPE 650 may generate its

own certificate, or the certificate may be obtained externally,

such as from a certifying authority VDE administrator.

Irrespective of where the digital certificate is generated, the

5 certificate is eventually registered by the VDE administrator

certifying authority so that other VDE electronic appliances 600

may have access to (and trust) the public key. For example, PPE

650 may communicate its public key and other information to a ‘-

certifying authority which may then encrypt the public key and

10 other information using the certifying authority’s private key.

Other installations 600 may trust the ”certificate“ because it can

be authenticated by using the certifying authority’s public key to

decrypt it. As another example, the certifying authority may

encrypt the public key it receives from the generating PPE 650

15 and use it to encrypt the certifying authority’s private key. The

certifying authority may then send this encrypted information

back to the generating PPE 650. The generating PPE 650 may

then use the certifying author-ity’s private key to internally

create a digital certificate, after which it may destroy its copy of

20 the certifying authority’s private key. The generating PPE 650

may then send out its digital certificate to be__stored in a

certification repository at the VDE administrator (or elsewhere)

if desired. The certificate process can also be implemented with

an external key pair generator and certificate generator, but

-613-

Petitioner Apple Inc. — Exhibit 1002, p. 5241

Petitioner Apple Inc. - Exhibit 1002, p. 5242

U!

10

15

20

WO 98109209 PCTIUS97I15243

might be somewhat less secure depending on the nature of the

secure facility. In such a case, a manufacturing key should be

used in PPE 650 to limit exposure to the other keys involved.

A PPE 650 may need more than one certificate. For

example, a certificate may be needed to assure other users that a

PPE is authentic, and to identify the PPE. Further certificates

may be needed for individual users of a PPE 650. These

certificates may incorporate both user and site information or

may only include user information. Generally, a certifying

authority will require a valid site certificate to be presented. prior

to creating a certificate for a given user. Users may each require

their own public key/private key pair in order to obtain

certificates. VDE administrators, clearinghouses, and other

participants may normally require authentication of both theisite

(PPE 650) and of the user in a communication or other

interaction. The processes described above for key generation

and certification for PPES 650 may also be used to form site/user

certificates or user certificates.

Certificates as described above may also be used to certify

the origin of load modules 1100 and/or the authenticity of

administrative operations. The security and assurance

techniques described above may be employed to decrease the

-614-

Petitioner Apple Inc. — Exhibit 1002, p. 5242

Petitioner Apple Inc. - Exhibit 1002, p. 5243

W0 98I09209 PCl‘IUS97ll5243

probability of compromise for any such certificate (including

certificates other than the certificate for a VDE electronic

appliance 600's identity).

OI D. Key Aging and Convolution

PPE 650 also has the ability in the preferred embodiment

to generate secret keys and other information that is shared

between multiple PPEs 650. In the preferred embodiment, such

secret keys and other information may be shared between

10 multiple VDE electronic appliances 600 without requiring the

shared secret information to ever be communicated explicitly

between the electronic appliances. More specifically, PPE 650

uses a technique called "key convolution“ to derive keys based on

a deterministic process in response to seed information shared

15 between multiple VDE electronic appliances 600. Since the

multiple electronic appliances 600 "know“ what the ”seed“

information is and also ”know“ the deterministic process used to

generate keys based on this information, each of the electronic

appliances may independently generate the "true key.“ This

20 permits multiple VDE electronic appliances 600 to share a

common secret key without potentially compromising its security

by communicating it over an insecure channel.

-615-

Petitioner Apple Inc. — Exhibit 1002, p. 5243

Petitioner Apple Inc. - Exhibit 1002, p. 5244

WO 98109209 PCTIUS97I15243

No encryption key should be used for an indefinite period. ’

The longer a key is used, the greater the chance that it may be

compromised and the greater the potential loss if the key is

compromised but still in use to protect new information. The

UI longer a key is used, the more information it may protect and

therefore the greater the potential rewards for someone to spend

the effort necessary to break it. Further, if a key is used for a

long time, there may be more ciphertext available to an attacker

attempting to break the key using a ciphertext-based attack. See

10 Schneier at 150-151. Key convolution in the preferred

embodiment provides a way to efficiently change keys stored in

secure database 610 on a routine periodic or other basis while

simplifying key management issues surrounding the change of

keys. In addition, key convolution may be used to provide "time

15 aged keys“ (discussed below) to provide "expiration dates“ for key

usage and/or validity.

Figure 62 shows an example implementation of key

convolution in the preferred embodiment. Key convolution may

20 be performed using a combination of a site ID 2821 and the high-

order bits of the RTC 528 to yield a site-unique value ”V“ that is

time-dependent on a large scale (e.g., hours or days). This value

”V“ may be used as the key for an encryption process 2871 that

transforms a convolution seed value 2861 into a "current

-616-

Petitioner Apple Inc. — Exhibit 1002, p. 5244

Petitioner Apple Inc. - Exhibit 1002, p. 5245

WO 98/09209 PCT/US97Il5243

convolution key“ 2862. The seed value 2861 may be a universe-

wide or group-wide shared secret value, and may be stored in

secure key storage (e.g., protected memory within PPE 650). The

seed value 2861 is‘ installed during the manufacturing process

On and may be updated occasionally by a VDE administrator. There

may be a plurality of seed values 2861 corresponding to diflerent

sets of objects 300.

The current convolution key 2862 represents an encoding

10 of the site ID 2821 and current time. This transformed value

2862 may be used as a key for another encryption process 2872

to transform the stored key 810 in the object’s PERC 808 into the

true private body key 2863 for the object’s contents.

15 The "convolution function“ performed by blocks 2861, 2871

may, for example, be a one-way function that can be performed

independently at both thecontent creator's site and at the

cont—ent use1’s site. If the content user does not use_precisely the

same convolution function and precisely the same input values

20 (e.g., time and/or site and/or other information) as used by the

content creator, then the result of the convolution function

performed by the content user will be different from the content

creator's result. If the result is used as a symmetrical key for

encryption by the content creator, the content user will not be

-617-

Petitioner Apple Inc. — Exhibit 1002, p. 5245

Petitioner Apple Inc. - Exhibit 1002, p. 5246

wo 98l09209 PC’l‘lUS97I152-13

able to decrypt unless the content user’s result is the same as the

result of the content creator.

The time component for input to the key convolution

5 function may be derived from RTC 528 (ca.re being taken to

ensure that slight differences in RTC synchronization between

VDE electronic appliances will not cause different electronic

appliances to use different time components). Different portions

of the RTC 528 output may be used to provide keys with different

10 valid durations, or some tolerance can be built into the process to

try several difierent key values. For example, a "time

granularity“ paraxneter can be adjusted to provide time tolerance

in terms of days, weeks, or any other time period. As one

example, if the "time granularity“ is set to 2 days, and the

15 tolerance is :2 days, then three real-time input values can be

tried as input to the convolution algorithm. Each of the resulting

key values may be tried to determine which of the possible keys

is actually used. In this example, the keys will have only a 4 day

life span.

20

Figure 63 shows how an appropriate convoluted key may

be picked in order to compensate for skew between the user’s

RTC 528 and the producer’s RTC 528. A sequence of convolution

keys 2862 (a-e) may be generated by using different input values

-618-

Petitioner Apple Inc. — Exhibit 1002, p. 5246

Petitioner Apple Inc. - Exhibit 1002, p. 5247

wo 93199109 PC'l‘lUS9‘IIl5243

2881(a-e), each derived from the site ID 2821 and the RTC 528

value plus or minus a differential (e.g., -2 days, -1 days, no delta,

+1 days, +2 days). The convolution steps 2871(a-e) are used to

generate the sequence of keys 2862(a-e).

Meanwhile, the creator site may use the convolution step

2871(2) based on his RTC 528 value (adjusted to correspond to

the intended validity time for the key) to generate a convoluted

key 2862(2), which may then be used to generate the content key

10 2863 in the object’s PERC 808. To decrypt the object’s content,

the user site may use each of its sequence of convolution keys

2862 (a-e) to attempt to generate the master content key 810.

When this is attempted, as long as the RTC 538 of the creator

site is within acceptable tolerance of the RTC 528 at the user

15 site, one of keys 2862(a-e) will match key 2862(2) and the

decryption will be successful. In this example, matching is

determined by validity of decrypted output, not by direct

comparison of keys.

20 Key convolution as described above need not use both site

ID and time as a value. Some keys may be generated based on

current real time, other keys might be generated on site ID, and

still other keys might be generated based on both current real-

time and site ID.

-619-

Petitioner Apple Inc. — Exhibit 1002, p. 5247

Petitioner Apple Inc. - Exhibit 1002, p. 5248

wo 93/09209 PC!‘/US97IlS243

Key convolution can be used to provide "time-aged“ keys.

Such "time-aged“ keys provide an automatic mechanism for

allowing keys to expire and be replaced by ”new“ keys. They

provide a way to give a user time-limited rights to make time-

5 limited use of an object, or portions of an object, without

requiring user re-registration but retaining significant control in

the hands of the content provider or administrator. If secure

database 610 is sufficiently secure, similar capabilities can be

accomplished by checking an expiration date/time associated

10 with a key, but this requires using more storage space for each

key or group of keys.

In the preferred embodiment, PERCS 808 can include an

expiration date and/or time afier which access to the VDE-

15 protected information they correspond to is no longer authorized.

Alternatively or in addition, after a duration of time related to

some aspect of the use of the electronic appliance 600 or one or

more VDE objects 300, a PERC 808 can force a user to send audit

history information to a clearinghouse, distributor, client

20 administrator, or object creator in order to regain or retain the

right to use the object(s). The PERC 808 can enforce such time-

based restrictions by checking/enforcing parameters that limit

key usage and/or availability past time of authorized use. ‘Time

-620-

Petitioner Apple Inc. — Exhibit 1002, p. 5248

Petitioner Apple Inc. - Exhibit 1002, p. 5249

W0 98/09209 PC'l‘fUS97l15243

aged“ keys may be used to enforce or enhance this type of time-

related control of access to VDE protected information.

”Time aged“ keys can be used to encrypt and decrypt a set

OI of information for a limited period of time, thus requiring

re-registration or the receipt of new permissions or the passing of

audit information, without which new keys are not provided for

user use. Time aged keys can also be used to improve system

security since one or more keys would be automatically replaced

10 based on the time ageing criteria—and thus, cracking secure

database 610 and locating one or more keys may have no real

value. Still another advantage of using time aged keys is that

they can be generated dynamically—thereby obviating the need

to store decryption keys in secondary and/or secure memory.

15

A "time aged key“ in the preferred embodiment is not a

"true key“ that can be used for encryption/decryption, but rather

is a piece of information that a PPE 650. in conjunction with .

other information, can use to generate a ”true key.“ This other

20 information can be time-based, based on the particular ”ID“ of

the PPE 650, or both. Because the ”true key“ is never exposed

but is always generated within a secure PPE 650 environment,

and because secure PPEs are required to generate the "true key,“

-621-

Petitioner Apple Inc. — Exhibit 1002, p. 5249

Petitioner Apple Inc. - Exhibit 1002, p. 5250

10

15

20

W0 98I09209 PC!‘/US97]15243

VDE 100 can use ”time aged“ keys to significantly enhance

security and flexibility of the system.

The process of ”aging“ a key in the preferred embodiment

involves generating a time-aged ”true key“ that is a function of:

(a) a ”true key,“ and (b) some other information (e.g., real time

parameters, site ID parameters, etc.) This information is

combined/transformed (e.g., using the ”key convolution“

techniques discussed above) to recover or provide a ”true key.“

Since the ”true key“ can be recovered, this avoids having to store

the ”true key“ within PERC 808, and allow different ”true keys“

to correspond to the same information within PERC 808.

Because the ”true key“ is not stored in the PERC 808, access to

the PERC does not provide access to the information protected by

the ”true key.“ Thus, "time aged“ keys allows content

creators/providers to impose a limitation (e.g., site based and/or

time based) on information access that is, in a sense, "external

of“ or auxiliary to the permissioning provided by one or more

PERCS 808. For example, a "time aged“ key may enforce an

additional time limitation on access to certain protected

information, this additional time limitation being independent of

any information or permissioning contained within the PERC

808 and being instead based on one or more time and/or site ID

values.

-622-

Petitioner Apple Inc. — Exhibit 1002, p. 5250

Petitioner Apple Inc. - Exhibit 1002, p. 5251

U:

10

15

WO 98109209 PCTIUS97I15243

As one example, time-aged decryption keys may be used to

allow the purchaser of a "trial subscription‘; of an electronically

published newspaper to access each edition of the paper for a

/period of one week, after which the decryption keys will no

longer work. In this example, the user would need to purchase

one or more new PERCs 808, or receive an update to an eidsting

one or more permissions records, to access editions other than

the ones from that week. Access to those other editions which

might be handled with a totally d.ifi'erent pricing structure (e.g.,

a ”regular“ subscription rate as opposed to a free or minimal

"trial“ subscription rate).

In the preferred embodiment, time-aged-based "true keys“

can be generated using a one-way or invertible "key convolution“

function. Input parameters to the convolution function may.»

include the supplied time-aged keys; user and/or site specific

values; a specified portion (e.g., a certain number of high order

bits) of the time value from an RTC 528 (if present) or a value

derived from such time value in a predefined manner; and a

block or record identifier that may be used to ensure that each

time aged key is unique. The output of the "key convolution“

function may be a "true key“ that is used for decryption purposes

until discarded. Running the function with a time-aged key and

-623-

Petitioner Apple Inc. — Exhibit 1002, p. 5251

Petitioner Apple Inc. - Exhibit 1002, p. 5252

WO 98/09209 PCTlUS97/15243

inappropriate time values typically yields a useless key that will ‘

not decrypt.

Generation of a new time aged key can be triggered based

on on some value of elapsed, absolute or relative time (e.g., based on

a real time value from a clock such as RTC 528). At that time,

the convolution would produce the wrong key and decryption

could not occur until the time-aged key is updated. The criteria

used todeterrnine when a new "time aged key“ is to be created

10 may itself be changed based on time or some other input variable

to provide yet another level of security. Thus, the convolution

function and/or the event invoking it may change, shift or employ

a varying quantity as a parameter.

15 One example of the use of time-aged keys is as follows:

1) A creator makes a “true” key, and encrypts content

With it.

2) A creator performs a "reverse convolution“ to yield a

20 "time aged key“ using, as input parameters to the

"reverse convolution“:

a) the ”true“ key,

b) a‘ time parameter (e.g., valid high—order

time bits of RTC 528), and

-624-

Petitioner Apple Inc. — Exhibit 1002, p. 5252

Petitioner Apple Inc. - Exhibit 1002, p. 5253

10

15

20

WO 98109209 PCrIUs97I1s243

c) optional other information (e.g., site ID

and/or user ID).

3) The creator distributes the "time-aged key“ to

content users (the creator may also need to

distribute the convolution algorithm and/or

parameters iflshe is not using a convolution

algorithm already available to the content users’

PPE 650).

4) The content user’s PPE 650 combines:

a) "time-aged“ key

b) high-order time bits

c) required other information ("same as 2c).

It performs a convolution function (i.e., the inverse of "reverse

convolution“ algorithm in step (2) above) to obtain the "true“ key.

Ifthe supplied time and/or other information is “wrong,” the

convolution function will not yield the "true" key, and therefore

content cannot be decrypted.

Any of the key blocks associated with VDE objects 300 or

other items can be either a regular key block or a time-aged key

block, as specified by the-object creator during the object

configuration process, or where appropriate, a distributor or

client administrator.

-625-

Petitioner Apple Inc. — Exhibit 1002, p. 5253

Petitioner Apple Inc. - Exhibit 1002, p. 5254

10

15

20

W0 98/119209 PCITU S97l1S143

"Time aged“ keys can also be used as part of protocols to

provide secure communications between PPEs 650. For example,

instead of providing "true" keys to PPE 650 for communications,

VDE 100 may provide only ”partial“ communication keys to the

l9PE. These "partial" keys may be provided to PPE 650 during
initialization, for example. A predetermined algorithm may

produce "true keys“ for use to encrypt/decrypt information for

secure communications. The predetermined algorithm can ”age“

these keys the same way in all PPEs 650, or PPES 650 can be

required to contact a VDE‘ administrator at some predetermined

time so a new set of partial communications keys can be

downloaded to the PPES. If the PPE 650 does not generate or

otherwise obtain ”new“ partial keys, then it will be disabled

from communicating with other PPES (a further, "fail safe“ key

may be provided to ensure that the PPE can communicate a

VDE administrator for reinitialization purposes). Two sets of

partial keys can be maintained within a PPE 650 to allow a. fixed

amount of overlap time across all VDE appliances 600. The older

of the two sets of partial keys can be updated periodically.

The following additional types of keys (to be discussed

below) can also be ”aged“ in the preferred embodiment:

individual message keys (i.e., keys used for a particular

message),

-626-

Petitioner Apple Inc. — Exhibit 1002, p. 5254

Petitioner Apple Inc. - Exhibit 1002, p. 5255

wo 98/09209 PCl‘IUS97Il5243

administrative, stationary and travelling object shared

keys,

secure database keys, and

private body and content keys.

Initial Installation Key Management

Figure 64 shows the flow of universe-wide, or ”master,“

keys during creating of a PPE 650. In the preferred

embodiment, the PPE 650 contains a secure non-volatile key

10 storage 2802 (e.g. SPU 500 non-volatile RAM 534 B or protected

storage maintained by HPE 655) that is initialized with keys

generated by the manufacturer and by the PPE itself.

The manufacturer possesses (i.e., knows, and protects from

15 disclosure or modification) one or more public key 2811/private

key 2812 key pairs used for signing and validating site

identification certificates 2821. For each site, the manufacturer

generates a site ID 2821 and list of site characteristics 2822. In

addition, the manufacturer possesses the public keys 2813, 2814

20 for validating load modules and initialization code downloads.

To enhance security, there may be a plurality of such

certification keys, and each PPE 650 may be initialized using

only a subset of such keys of each type.

-627-

Petitioner Apple Inc. — Exhibit 1002, p. 5255

Petitioner Apple Inc. - Exhibit 1002, p. 5256

wo ggfogzgg PCT/US97I157/13

As part of the initialization process, the PPE 650 may

generate internally or the manufacturer may generate and

supply, one or more pairs of site-specific public keys 2815 and

private keys 2816. These are used by the PPE 650 to prove its

5 identity. Similarly, site-specific database key(s) 2817 for the site

are generated, and if needed (i.e., if a Random Number

Generator 542 is not available). a random initialization seed

2818 is generated.

10 The initialization may begin by generating site ID 2821

and characteristics 2822 and the site public key 2815/private key

2816 pair(s). These values are combined and may be used to

generate one or more site identity certificates 2823. The site

identity certificates 2823 may be generated by the public key

15 generation process 2804, and may be stored both hi the PPE’s

protected key storage 2802 and in the manufacturer's VDE site

certificate database 2803.

The certification process 2804 may be performed either by

20 the manufacturer or internally to the PPE 650. If performed by

the PPE 650, the PPE will temporarily receive the identity

certification private key(s) 2812, generate the certificate 2823,

store the certificate in local key storage 2802 and transmit it to

-628-

Petitioner Apple Inc. — Exhibit 1002, p. 5256

Petitioner Apple Inc. - Exhibit 1002, p. 5257

wo 93/09209 PCT/US97l15243

the manufacturer, aflzer which the PPE 650 must erase its copy

of the identity certification private key(s) 2812.

Subsequently. initialization may require generation, by

5 the PPE 650 or by the manufacturer, of site-specific database

key(s) 2817 and of site-specific seed value(s) 2818, which are

stored in the key storage 2802. In addition, the download

certification key(s) 2814 and the load module certification key(s)

2813 may be supplied by the manufacturer and stored in the key

10 storage 2802. These may be used by the PPE 650 to validate all

further communications with external entities.

At this point, the PPE 650 may be further initialized with

executable code and data by downloading information certified

15 by the load module key(s) 2813 and download key(s) 2814. In the

preferred embodiment, these keys may be used to digitally sign

data to be loaded into the PPE 650, guaranteeing its validity,

additional key(s) encrypted using the site-specif_i_c_public

key(s) 2815 may be used to encrypt such data and protect it from

20 disclosure.

Installation and Update Key Management

Figure 65 illustrates an example of further key installation

either by the manufacturer or by a subsequent update by a VDE

-629-

Petitioner Apple Inc. — Exhibit 1002, p. 5257

Petitioner Apple Inc. - Exhibit 1002, p. 5258

wo 93,o9;09 PCT/US97l15243

administrator. The manufacturer or administrator may supply 4

initial or new values for private header key(s) 2831, external

communication key(s) 2832, administrative object keys 2833, or

other shared key(s) 2834. These keys may be universe~wide in

5 the same sense as the global certification keys 2811, 2813, and

2814, or they may be restricted to use within a defined group of

VDE instances.

To perform this installation, the installer retrieves the

10 destination site’s identity certificate(s) 2823, and from that

extracts the site public key(s) 2815. These key(s) may be used in

an encryption process 2841 to protect the keys being installed.

The key(s) being installed are then transmitted inside the

destination site’s PPE 650. Inside the PPE 650, the decryption

15 process 2842 may use the site private key(s) 2816 to decrypt the

transmission. The PPE 650 then stores the installed or updated

keys in its key storage 2802.

Object-Specific Key Use

20 Figures 66 and 67 illustrate the use of keys in protecting

data and control information associated with VDE objects 300.

Figure 66 shows use of a stationary content object 850

whose control information is derived from an administrative

-630-

Petitioner Apple Inc. — Exhibit 1002, p. 5258

Petitioner Apple Inc. - Exhibit 1002, p. 5259

wo 98/09209 PCl‘IUS97ll5243

object 870. The objects may be received by the PPE 650 (e.g., by ’

retrieval from an object repository 728 over a network or

retrieved from local storage). The administrative object

decryption process 2843 may use the private header key(s) 2815

5 to decrypt the administrative object 870, thus retrieving the

PERC 808 governing access to the content object 850. The

private body keyfs) 810 may then be extracted from the PERC

808 and used by the content decryption process 2845 to make the

content available outside the PPE 650. In addition, the database

10 key(s) 2817 may be used by the encryption process 2844 to

prepare the PERC for storage outside the PPE 650 in the secure

database 610. In subsequent access to the content object 850,

the PERC 808 may be retrieved from the secure database 610,

decrypted with database key(s) 2817, and used directly, rather

15 than being extracted from administrative object 870.

Figure 67 shows the similar process involving a traveling

object 860. The principal distinction between Figures 66 and 67

is that the PERC 808 is stored directly within the traveling

20 object 860, and therefore may be used immediately after the

decryption process 2843 to provide a private header key(s) 2831.

This private header key 2831is used to process content within

the traveling object 860.

-631-

Petitioner Apple Inc. — Exhibit 1002, p. 5259

Petitioner Apple Inc. - Exhibit 1002, p. 5260

wo 98/09209 PC'l‘IL“S97Il5243

Secret-Kay Variations

Figures 64 through 67 illustrate the preferred public-key

embodiment, but may also be used to help understand the secret-

key versions. In secret-key embodiments, the certification

5 process and the public key encryptions/decryptions are replaced

with private-key encryptions, and the public key/private-key

pairs are replaced with individual secret keys that are shared

between the PPE 650 instance and the other parties (e.g., the

load module supplier(s), the PPE manufacturer). In addition, the

10 certificate generation process 2804 is not performed in secret-key

embodiments, and no site identity certificates 2823 or VDE

certificate database 2803 exist.

Key Types

15 The detailed descriptions of key types below further

explain secret-key embodiments; this summary is not intended

as a complete description.The preferred embodiment PPE 650

"*Ea‘n‘use different types of keys and/or different "shared secrets“

for different purposes. Some key types apply to a ‘Public-

20 Key/Secret Key implementation, other keys apply to a Secret Key

only implementation, and still other key types apply to both.

The following table lists examples of various key and "shared

secret“ information used in the preferred embodiment, and

where this information is used and stored:

-632-

Petitioner Apple Inc. — Exhibit 1002, p. 5260

Petitioner Apple Inc. - Exhibit 1002, p. 5261

W0 98/119209 PCl'IUS97ll5243

i"“€°?””“““”n-=-”“-31 I O OIIPPK

: 0 5'

5

10

15

- cure Database

‘I’ B S
2°!
i

3| 8 S
25 fig

J - me ob'ects
- me ob'ects

‘iioth ermission record
ECTGCS

30 ecure Database Back =3 0:11 i‘

Master Keys

A "master“ key is a key used to encrypt other keys. An

35 initial or "master" key may be provided Within PPE 650 for

-633-

Petitioner Apple Inc. — Exhibit 1002, p. 5261

Petitioner Apple Inc. - Exhibit 1002, p. 5262

wo 93/09209 PCT/'US97l15243

communicating other keys in a secure way. During initialization '

of PPE 650, code and shared keys are downloaded to the PPE.

Since the code contains secure convolution algorithms and/or

coeflicients, it is comparable to a "master key.“ The shared keys

5 may also be considered "master keys.“

If public-key cryptography is used as the basis for external

communication with PPE 650, then a master key is required

during the PPE Public-key pair certification process. This

10 master key may be, for example, a private key used by the

manufacturer or VDE administrator to establish the digital

certificate (encrypted public key and other information of the

PPE), or it may, as another example, be a private key used by a

VDE administrator to encrypt the entries in a certification

15 repository. Once certification has occurred. external

communications between PPES 650 may be. established using the

certificates of communicating PPEs.

If shared secret keys are used as the basis for external

20 communications, then an initial secret key is required to

establish external communications for PPE 650 initialization.

This initial secret key is a "master key“ in the sense that it is

used to encrypt other keys. A set of shared partial external

communications keys (see discussion above) may be downloaded

- 634-

Petitioner Apple Inc. — Exhibit 1002, p. 5262

Petitioner Apple Inc. - Exhibit 1002, p. 5263

wo 98109209 PCTIUS97/15243

during the PPE initialization process, and these keys are used to '

establish subsequent external PPE communications.

Manufacturing Key

5 / A manufacturing key is used at the time of PPE

manufacture to prevent knowledge by the manufacturing staff of

PPE-specific key information that is downloaded into a PPE at

initialization time. For example, a PPE 650 that operates as

part of the manufacturing facility may generate information for

10 download into the PPE being initialized. This information must

be encrypted during communication between the PPEs 650 to

keep it confidential, or otherwise the manufacturing staff could

read the information. A manufacturing key is used to protect the

information. The manufacturing key may be used to protect

15 various other keys downloaded into the PPE such as, for

example, a certification private key, a PPE public/private key

pair, and/or other keys such as shared secret keys specific to the

PPE. Since the manufacturing key is used to encrypt other keys,

it is a "master key.“

20

A manufacturing key may be public-key based, or it may

be based on a shared secret. Once the information is

downloaded, the now-initialized PPE 650 can discard (or simply

not use) the manufacturing key. A manufacturing key may be

-335-

Petitioner Apple Inc. — Exhibit 1002, p. 5263

Petitioner Apple Inc. - Exhibit 1002, p. 5264

10

15

20

W0 98l09209 PCTIUS97Il5243

hardwired into PPE 650 at manufacturing time, or sent to the

PPE as its first key and discarded after it is no longer needed.

As indicated in the table above and in the preceding discussion, a

manufacturing key is not required if PK capabilities are included

in the PPE.

Certification Key Pair

A certification key pair may be used as part of a

”certi.fication“ process for PPEs 650 and VDE electronic

appliances 600. This certification process in the preferred

embodiment may be used to permit a VDE electronic appliance to

present one or more ”certificates“ authenticating that it (or its

key) can be trusted. As described above, this ”certification“

process may be used by one PPE 650 to ”certify“ that it is an

authentic VDE PPE, it has a certain level of security and

capability set (e.g., it is hardware based rather than merely

software based), etc. Briefly, the "certification“ process may

involve using a certificate ‘private key of a certification key pair

to encrypt a message including another VDE node’s public-key.

The private key of a certification key pair is preferably used to

generate a PPE certificate. It is used to encrypt a public-key of

the PPE. A PPE certificate can either be stored in the PPE, or it

may be stored in a certification repository.

-636-

Petitioner Apple Inc. — Exhibit 1002, p. 5264

Petitioner Apple Inc. - Exhibit 1002, p. 5265

wo 98109209 PCT/Us97I15243

Depending on the authentication technique chosen, the

public key and the private key of a certification key pair may

need to be protected. In the preferred embodiment, the

certification public key(s) is distributed amongst PPEs such that

5 they may make use of them in decrypting certificates as an

aspect of authentication. Since, in the preferred embodiment,

this public key is used inside a PPE 650, there is no need for this

public key to be available in plaintext, and in any event it is "

important that such key be maintained and transmitted with

10 integrity (e.g., during initialization and/or update by a VDE

administrator). If the certification public key is kept confidential

(i.e., only available in plaintext inside the PPE 650), it may make

cracking security much more difiicult. The private key of a

certification key pair should be kept confidential and only be

15 stored by a certifying authority (i.e., should not be distributed).

In order to allow, in the preferred embodiment, the ability

to diflerentiate installations with different levels/degrees of

trustedness/security, difierent certification key pairs may be

20 used (e.g., different certification keys may be used to certify

SPEs 503 then are used to certify I-IPEs 655‘).

-637-

Petitioner Apple Inc. — Exhibit 1002, p. 5265

Petitioner Apple Inc. - Exhibit 1002, p. 5266

10

15

20

WO98I09209 PCTIU S97Il52-13

PPE Public/Private Key Pair

In the preferred embodiment, each PPE 650 may have its

own unique ”device“ (and/or user) public/private key pair.

Preferably, the private key of this key pair is generated within

the PPE and is never exposed in any form outside of the PPE.

Thus, in one embodiment,'the PPE 650 may be provided with an

internal capability for generating key pairs intemally. If the

PPE generates its own public-key crypto-system key pairs

internally, a manufacturing key discussed above may not be

needed. If desired, however, for cost reasons a key pair may be

exposed only at the time a PPE 650 is manufactured, and may be

protected at that time using a manufacturing key. Allowing PPE

650 to generate its public key pair internally allows the key pair

to be concealed, but may in some applications be outweighed by

the cost of putting a public-key key pair generator into PPE

Initial Secret Key

The initial secret key is used as a master key by a secret

key only based PPE 650 to protect information downloaded into

the PPE during initialization. It is generated by the PPE 650,

and is sent from the PPE to a secure manufacturing database

encrypted using a manufacturing key. The secure database

sends back a unique PPE manufacturing ID encrypted using the

initial secret key in response.

-638-

Petitioner Apple Inc. — Exhibit 1002, p. 5266

Petitioner Apple Inc. - Exhibit 1002, p. 5267

wo 93/09109 S 1>crIus97/15243

The initial secret key is likely to be a much longer key

than keys used for "standard" encryption due to its special role in

PPE initialization. Since the resulting decryption overhead

occurs only during the initialization process, multiple passes

5 through the decryption hardware with selected portions of this

key are tolerable.

PPE Manufacturing ID

The PPE manufacturing ID is not a ”key,“ but does fall

10 within the classic definition of a "shared secret.“ It preferably

uniquely identifies a PPE 650 and may be used by the secure

database 610 to determine the PPE’s initial secret key during the

PPE initialization process.

15 Site ID, Shared Code, Shared Keys and Shared Secrets

The VDE site ID along with shared code, keys and secrets

are preferably either downloaded into PPE 650 during the PPE

initialization process, or are generated internally by a PPE as

part of that process. In the preferred embodiment, most or all of

20 this information is downloaded.

The PPE site ID uniquely identifies the PPE 650. The site

ID is preferably unique so as to uniquely identify the PPE 650

and distinguish that PPE from all other PPEs. The site ID in the

-639-

Petitioner Apple Inc. — Exhibit 1002, p. 5267

Petitioner Apple Inc. - Exhibit 1002, p. 5268

wo 98109109 PCTIUS97/15243

preferred embodiment provides a unique address that may be

used for various purposes, such as for example to provide

"address privacy“ functions. In some cases, the site ID may be

the public key of the PPE 650. In other cases, the PPE site ID

5 may be assigned during the manufacturing and/or initialization

process. In the case of a PPE 650 that is not public-key-capable,

it would not be desirable to use the device secret key as the

unique site ID because this would expose too many hits of the I

key—and therefore a different information string should be used

10 as the site ID.

Shared code comprises those code fragments that provide

at least a portion of the control program for the PPE 650. In the

preferred embodiment, a basic code fragment is installed during

15 PPE manufacturing that permits the PPE to bootstrap and begin

the initialization process. This fragment can be replaced during

the initialization process, or during subsequent download

processing, with updated control logic.

20 Shared keys may be downloaded into PPE 650 during the

initialization process. These keys may be used, for example, to

decrypt the private headers of many object structures.

-640-

Petitioner Apple Inc. — Exhibit 1002, p. 5268

Petitioner Apple Inc. - Exhibit 1002, p. 5269

10

15

20

WO98I09209 PCI‘IUS97I15243

When PPE 650 is operating in a secret key only mode, the '

initialization and download processes may import shared secrets

into the PPE 650. These shared secrets may be used during

communications processes to permit PPES 650 to authenticate

the identity of other PPEs and/or users.

Download Authorization Key

The download authorization key is received by PPE 650

during the initialization download process. It is used to

authorize further PPE 650 code updates, key updates, and may

also be used to protect PPE secure database 610 backup to allow

recovery by a VDE administrator (for example) if the PPE fails.

It may be used along with the site ID, time and convolution

algorithm to derive a site ID specific key. The download

authorization key may also be used to encrypt the key block used

to encrypt secure database 610 backups. It may also be used to

form a site specific key that is used to enable future downloads to

"ZHFPPE 650. This download authorization key is not shared

among all PPES 650 in the preferred embodiment; it is specific to

functions performed by authorized VDE administrators.

-541-

Petitioner Apple Inc. — Exhibit 1002, p. 5269

Petitioner Apple Inc. - Exhibit 1002, p. 5270

W0 gwwzog PCl'IlJS97Il5243

External Communications Keys and Related Secret and Public H
Information

There are several cases where keys are required when

5 PPEs 650 communicate. The process of establishing secure

10 communications. These keys comprise a public-key pair in the

alternatively or in addition.

Administrative Object Keys

15 In the preferred embodiment, an administrative object

shared key may be used to decrypt the private header of an

administrative object 870. In the case of administrative objects,

a permissions record 808 may be present in the private header.

In some cases, the permissions record 808 may be distributed as

20 (or Within) an administrative object that performs the function of

providing a right to process the content of other administrative

objects. The permissions record 808 preferably contains the keys

for the private body, and the keys for the content that can be

accessed would be budgets referenced in that permissions record

-642 -

Petitioner Apple Inc. — Exhibit 1002, p. 5270

Petitioner Apple Inc. - Exhibit 1002, p. 5271

10

15

20

ycl‘ 5243WO 98/09209 [U897/1

808. The administrative object shared keys may incorporate

time as a component, and may be replaced when expired.

Stationary Object Keys

A stationary object shared key may be used to decrypt a

private header of stationary objects 850. As explained above, in

some cases a permissions record 808 may be present in the

private header of stationary objects. If present, the permissions

record 808 may contain the keys for the private body but will not

contain the keys for the content. These shared keys may

incorporate time as a component, and may be replaced when

expired.

Traveling Object Shared Key:

A traveling object shared key may be used to decrypt the

private header of traveling objects 860. In the preferred

embodiment, traveling objects contain permissions record 808 in

their private headers. The permissions record 808 preferably

contains the keys for the private body and the keys for the

content that can be accessed as permitted by the permissions

record 808. These shared keys may incorporate time as a

component, and may be replaced when expired.

Petitioner Apple Inc. — Exhibit 1002, p. 5271

Petitioner Apple Inc. - Exhibit 1002, p. 5272

wo guogzog PCTIUS97/15243

Secure Database Keys

PPE 650 preferably generates these secure database keys

and never exposes them outside of the PPE. They are site-

specific in the preferred embodiment, and may be ”aged“ as

5 described above. As described above, each time an updated

record is written to secure database 610, a new key may be used

and kept in a key list within the PPE. Periodically (and when

the internal list has no more room), the PPE 650 may generate a

new key to encrypt new or old records. A group of keys may be

10 used instead of a single key, depending on the size of the secure

database 610.

Private Body Keys

Private body keys are unique to an object 300, and are not

15 dependent on key information shared between PPEs 650. They

are preferably generated by the PPE 650 at the time the private

body is encrypted, and may incorporate real-time as a component

...—.=to—”age“ them. They are received in permissions records 808, and

their usage may be controlled by budgets.

20

Content Keys

Content Keys are unique to an object 300, and are not

dependent on key information shared between PPEs 650. They

are preferably generated by the PPE 650 at the time the content

-544-

Petitioner Apple Inc. — Exhibit 1002, p. 5272

Petitioner Apple Inc. - Exhibit 1002, p. 5273

WO 98109209 PCTIUS97l15243

is encrypted. They may incorporate time as a component to ”age“

them. They are received in permissions records 808, and their

usage may be controlled by budgets.

5 Authorization Shared Secrets

Access to and use of information within a PPE 650 or

within a secure database 610 may be controlled using

authorization ”shared secrets“ rather than keys. Authorization

shared secrets may be stored within the records they authorize

10 (permissions records 808, budget records, etc.). The

authorization shared secret may be formulated when the

corresponding record is created. Authorization shared secrets

can be generated by an authorizing PPE 650, and may be

replaced when record updates occur. Authorization shared

15 secrets have some characteristics associated with ”capabilities“

used in capabilities based operating systems. Access tags

(described below) are an important set of authorization shared

secrets in the preferred embodiment.

20 Backup Keys

As described above, the secure database 610 backup

consists of reading all secure database records and current audit

"roll ups“ stored in both PPE 650 and externally. Then, the

backup process decrypts and re-encrypts this information using a

-645-

Petitioner Apple Inc. — Exhibit 1002, p. 5273

Petitioner Apple Inc. - Exhibit 1002, p. 5274

wo 9s/09209 PCl‘lUS97/15243

new set of generated keys. These keys, the time of the backup,

and other appropriate information to identify the backup, may be

encrypted multiple times and stored with the previously

encrypted secure database files and roll up data within the

5 backup files. These files may then all be encrypted using a

"backup key“ that is generated and stored within PPE 650. This

backup key 500 may be used by the PPE to recover a backup if

necessary. The backup keys may also be securely encrypted

(e.g., using a download authentication key and/or a VDE

10 administrator public key) and stored within the backup itself to

permit a VDE administrator to recover the backup in case of PPE

650 failure.

Cryptographic Sealing

15 Sealing is used to protect the integrity of information when

it may be subjected to modifications outside the control of the

PPE 650, either accidentally or as an attack on the VDE security.

Two specific applications may be the computation of check values

for database records and the protection of data blocks that are

20 swapped out of an SPE 500.

There are two types of sealing: keyless sealing, also

known as cryptographic hashing, and keyed sealing. Both

employ a cryptographically strong hash function, such as MD5 or

-545-

Petitioner Apple Inc. — Exhibit 1002, p. 5274

Petitioner Apple Inc. - Exhibit 1002, p. 5275

W0 93/139209 PCT/US97I15143

SHA. Such a function takes an input of arbitrary size and yields ‘

a fixed-size hash, or "digest.“ The digest has the property that it

is infeasible to compute two inputs that yield the same digest,

and infeasible to compute one input that yields a specific digest

5 p value, where ”infeasible“ is with reference to a work factor based

on the size of the digest value in bits. If, for example, a 256-bit

hash function is to be called strong, it must require

approidrnately on average l0"38 (2"128) trials before a

duplicated or specified digest value is likely to be produced.

10

Keyless seals may be employed as check values in

database records (e.g., in PERC 808) and similar applications. A

keyless seal may be computed based on the content of the body of

the record, and the seal stored with the rest of the record. The

15 combination of seal and record may be encrypted to protect it in

storage. If someone modifies the encrypted record without

knowing the encryption key (either in the part representing the

data or the part representing the seal). the decrypted content

will be different, and the decrypted check value will not match

20 the digest computed from the record’s data. Even though the

hash algorithm is known, it is not feasible to modify both the

record's data and its seal to correspond because both are

encrypted.

-647-

Petitioner Apple Inc. — Exhibit 1002, p. 5275

Petitioner Apple Inc. - Exhibit 1002, p. 5276

wo 98/09209 PCT/US97/15243

Keyed seals may be employed as protection for data. stored"

outside a protected environment without encryption, or as a

validity proof between two protected environments. A keyed seal

is computed similarly to aikeyless seal. except that a secret

5 initial value is logically prefixed to the data being sealed. The

digest value thus depends both on the secret and the data, and it

is infeasible to compute a new seal to correspond to modified

data even though the data itself is visible to an attacker. A

keyed seal may protect data in storage with a single secret value,

10 or may protect data in transit between two environments that

share a single secret value.

The choice of keys or keyless seals depends on the nature

of the data being protected and whether it is additionally

15 protected by encryption.

Taszins

Tagging is particularly useful for supporting the secure

storage of important component assembly and related

20 information on secondary storage memory 652. Integrated use of

information ”tagging“ and encryption strategies allows use of

inexpensive mass storage devices to securely store information

that, in part enables, limits and/or records the configuration,

-648-

Petitioner Apple Inc. — Exhibit 1002, p. 5276

Petitioner Apple Inc. - Exhibit 1002, p. 5277

wo 93/09209 PCI'lUS97I1s243

management and operation of a VDE node and the use of VDE

protected content.

I When encrypted or othervvise secured information is

5 delivered into a user's secure VDE processing area (e.g., PPE

650), a portion of this information can be used as a ”tag“ that is

first decrypted or otherwise unsecured and then compared to an

expected value to confirm that the information represents

expected information. The tag thus can be used as a portion of a

10 process confirming the identity and correctness of received, VDE

protected, information.

Three classes of tags that may be included in the control

structures of the preferred embodiment:

15 - access tags

- validation tags

- correlation tags.

These tags have distinct purposes.

20 An ag_c_e_ss__t_ag may be used as a "shared secret“ between

VDE protected elements and entities authorized to read and/or

modify the tagged elernent(s). The access tag may be broken into

separate fields to control different activities independently. Ifan

access tag is used by an element such as a method core 1000',

-549-

Petitioner Apple Inc. — Exhibit 1002, p. 5277

Petitioner Apple Inc. - Exhibit 1002, p. 5278

10

15

20

WO 98/09209 PCTIU597/1524}

administrative events that afi'ect such an element must include

the access tag (or portion of the access tag) for the afi'ected

element(s) and assert that tag when an event is submitted for

processing. If access tags are maintained securely (e.g., created

inside a PPE 650 when the elements are created, and only

released from PPE 650 in encrypted structures), and only

distributed to authorized parties, modification of structures can

be controlled more securely. Of course, control structures (e.g.,

PERCs 808) may further limit or qualify modifications or other

actions expressed in administrative events.

QQl1'_&l.a1;l9.n_T&.g§ are used when one element references

another element. For example, a creator might be required by a

budget owner to obtain permission and establish a business;

relationship prior to referencing their budget within the creator's

PERCs. After such relationship was formed, the budget owner

might transmit one or more correlation tags to the creator as one

aspect of allowing the creator to produce PERCs that reference

the budget owner's budget.

‘_~"alidatiQn_tags may be used to help detect record

substitution attempts on the part of a tamperer.

-650-

Petitioner Apple Inc. — Exhibit 1002, p. 5278

Petitioner Apple Inc. - Exhibit 1002, p. 5279

wo 93/09209 PC!‘IUS97I15243

In some respects, these three classes of tags overlap in

function. For example, a correlation tag mismatch may prevent

some classes of modification attempts that would normally be

prevented by an access tag mismatch before an access tag check

5 is performed. The preferred embodiment may use this overlap in

some cases to reduce overhead by, for example, using access tags

in a role similar to validation tags as described above.

In general, tagging procedures involve changing, within

10 SPE 503, encryption key('s), securing techniques(s), and/or

providing specific, stored tagts). These procedures can be

employed with secure database 610 information stored on said

inexpensive mass storage 652 and used within a hardware SPU

500 for authenticating, decrypting, or otherwise analyzing, using

15 and making available VDE protected content and management

database information. Normally, changing validation tags

involves storing within a VDE node hardware (e.g., the PPE 650)

one or more elements of information corresponding to the tagging

changes. Storage of information outside of the hardware SPE’s

20 physically secure, trusted environment is a highly cost savings

means of secure storage, and the security of important stored

management database information is enhanced by this tagging

of information. Performing this tagging "'change“ frequently (for

example, every time a given record is decrypted) prevents the

-651-

Petitioner Apple Inc. — Exhibit 1002, p. 5279

Petitioner Apple Inc. - Exhibit 1002, p. 5280

W0 98/09209 PCT/U597/15243

substitution of "incorrect“ information for ”correct“ information,

since said substitution will not carry information which will

match the tagging information stored within the hardware: SPE

during subsequent retrieval of the information.

on

Another benefit of information tagging is the use of tags to

help enforce and/or verify information and/or control

mechanisms in force between two or more parties. If information

is tagged by one party, and then passed to another party or

10 parties, a tag can be used as an expected value associated with

communications and/or transactions between the two parties

regarding the tagged information. For example, if a tag is

associated with a data element that is passed by Party A to Party

B, Party B may require Party A to prove knowledge of the correct

15 value of at least a portion of a tag before information related to,

and/or part of, said data element is released by Party B to Party

A, or vice versa. In another example. a tag may be used by Party

A to verify that information sent by Party B is actually

associated with, and/or part of, a tagged data element, or vice

20 versa.

From time to time, two parties (e.g., PPEs A and B), will

need to establish a communication channel that is known by

-652-

Petitioner Apple Inc. — Exhibit 1002, p. 5280

Petitioner Apple Inc. - Exhibit 1002, p. 5281

wo 93/ogzog PCI‘I'US9‘1Il5243

both parties to be secure from eavesdropping, secure from

tampering, and to be in use solely by the two parties whose

identifies are correctly known to each other.

5 The following describes an example process for

establishing such a channel and identifies how the requirements

for security and authentication may be established and validated

by the parties. The process is described in the abstract, in terms

of the claims and belief each party must establish, and is not to

10 be taken as a specification of any particular protocol. In

particular, the individual sub-steps of each step are not required

to be implemented using distinct operations; in practice, the

establishment and validation of related proofs is often combined

into a single operation.

15

The sub-steps need not be performed in the order detailed

below, except to the extent that the validity of a claim cannot be

""p“i'o‘\Ten before the claim is made by the other party. The steps

may involve additional communications betweenlthfientwo parties

20 than are implied by the enumerated sub-steps, as the I

”transmission“ of information may itself be broken into sub-

steps. Also, it is not necessary to protect the claims or the proofs

from disclosure or modification during transmission. Knowledge

of the claims (including the specific communication proposals

-653-

Petitioner Apple Inc. — Exhibit 1002, p. 5281

Petitioner Apple Inc. - Exhibit 1002, p. 5282

and acknowledgements thereof) is not considered protected

information. Any modification of the proofs will cause the proofs

to become invalid and will cause the process to fail.

U!
Standard public-key or secret-key cryptographic

techniques can be used to implement this process (e.g., X.509,

Authenticated Diffie-Hellman, Kerberos). The preferred

embodiment uses the three-way X.509 public key protocol steps.

10 The following may be the first two steps in the example

process:

A. (precursor step): Establish means of creating

validatable claims by A

B. (precursor step): Establish means of creating

15 validatable claims by B

These two steps ensure that each party has a means of

making claims that can be validated by the other party, for

instance, by using a public key signature scheme in which both

20 parties maintain a private key and make available a public key

that itself is authenticated by the digital signature of a

certification authority.

The next steps may be:

-654-

Petitioner Apple Inc. — Exhibit 1002, p. 5282

Petitioner Apple Inc. - Exhibit 1002, p. 5283

W0 98I09209 PC!‘IUS97]15243

 r

1. V Determine B's identity

2. Acquire means of validating claims made by B

3. Create a unique identity for this specific proposed

5 communication

4. Create a communication proposal identifying the

parties and the specific communication

-C’! Create validatable proof of A's identity and the

origin of the communication proposal

10 6. Deliver communication proposal and associated

proof to B.

These steps establish the identity of the correspondent

party B and proposes a communication. Because establishment

15 of the communication will require validation of claims made by

B, a means must be provided for A to validate such claims.

Because the establishment of the communication must be unique

to a specific requirement by A for communication, this

communication proposal and all associated traffic must be

20 unambiguously distinguishable from all other such trafiic.

Because B must validate the proposal as a legitimate proposal

from A, a proof must be provided that the proposal is valid.

-655-

Petitioner Apple Inc. — Exhibit 1002, p. 5283

Petitioner Apple Inc. - Exhibit 1002, p. 5284

wo gslogzog PCTIUS9'II15243

The next steps may be as follows:

 I

1. Extract A's identity from the communication

proposal

5 I 2. Acquire means ofvalidating claims made by A

3. Validate A’s claim of identity and communication

proposal origin

4. Determine the unique identification of the

communication proposal

10 5. Determine that the communication proposal does

not duplicate an earlier proposal

6. Create an acknowledgement identifying the specific

communication proposal

7. Create validatable proof of B's identity and the

15 origin of the acknowledgement

8. Deliver the acknowledgement and associated proof

toA.

These steps establish that party B has received A’s

20 communication proposal and is prepared to act on it. Because B

associated with a specific proposal, and that the proposal is not a

-656-

Petitioner Apple Inc. — Exhibit 1002, p. 5284

Petitioner Apple Inc. - Exhibit 1002, p. 5285

WO 98/09209 PCTIUS97!15243

replay. If B accepts the proposal, it must prove both B’s own

identity and that B has received a specific proposal.

The next steps may be:

 =

1. Validate B’s claim acknowledgement of A's specific

OI

proposal

2. Extract the identity of the specific communication

proposal from the acknowledgement

10 3. Determine that the acknowledgement is associated

with an outstanding communication proposal

4. Create unique session key to be used for the

proposed communication

5. Create proof of session keys creation by A

15 6. Create proof of session key's association with the

specific communication proposal

7. Create proof of receipt of B’s acknowledgement

8. Protect the session key from disclosure in

transmission

20 9. Protect the session key from modification in

transmission

10. Deliver protected session key and all proofs to B.

-657-

Petitioner Apple Inc. — Exhibit 1002, p. 5285

Petitioner Apple Inc. - Exhibit 1002, p. 5286

WO 98109209 PCT/US97I15243

These steps allows A to specify a session key to be

associated with all further traffic related to A's specific

communication proposal. A must create the key, prove that A

created it, and prove that it is associated with the specific

5 proposed communication. In addition, A must prove that the

session key is generated in response to B’s acknowledgement of

the proposal. The session key must be protected from disclosure

of modification to ensure that an attacker cannot substitute a

different value.

10

Tranaportability of VDE Installations Between PPEB 650

In a preferred embodiment, VDE objects 300 and other

secure information may if appropriate, be transported from one

PPE 650 to another securely using the various keys outlined

15 above. VDE 100 uses redistribution of VDE administrative

information to exchange ownership of VDE object 300, and to

allow the portability of objects between electronic appliances 600.

The permissions record 808 of VDE objects 300 contains

20 rights information that may be used to determine whether an

object can be redistributed in whole, in part, or at all. If a VDE

object 300 can be redistributed, then electronic appliance 600

normally must have a ”budget“ and/or other permissioning that

allows it to redistribute the object. For example, an electronic

-658-

Petitioner Apple Inc. — Exhibit 1002, p. 5286

Petitioner Apple Inc. - Exhibit 1002, p. 5287

wo 98109209 PC'l‘I|JS97I15243

appliance 600 authorized to redistribute an object may create an

administrative object containing a budget or rights less than or

equal to the budget or rights that it owns. Some administrative

objects may be sent to other PPEs 650. A PPE 650 that receives

5 one of the administrative objects may have the ability to use at

least a portion of the budgets, or rights, to related objects.

Transfer of ownership of a VDE object 300 is a special case

in which all of the permissions and/or budgets for a VDE object

10 are redistributed to a different PPE 650. Some VDE objects may

require that all object-related information be delivered (e.g., it’s

possible to "sell“ all rights to the object). However, some VDE

objects 300 may prohibit such a transfer. In the case of

ownership transfer, the original providers for a VDE object 300

15 may need to be contacted by the new owner, informed of the

transfer, and validated using an authorization shared secret that

accompanies reauthorization, before transfer of ownership can be

completed.

20 When an electronic appliance 600 receives a component

assembly, an encrypted part of the assembly may contain a value

that is known only to the party or PPE 650 that supplied the

assembly. This value may be saved with information that must

eventually returned to the assembly supplier (e.g., audit, billing

-659-

Petitioner Apple Inc. — Exhibit 1002, p. 5287

Petitioner Apple Inc. - Exhibit 1002, p. 5288

wo 93/09209 PCT/U 397/15243

and related information). When a component supplier requests

that information be reported, the value may be provided by the

supplier so that the local electronic appliance 600 can check it

against the originally supplied value to ensure that the request

OI is legitimate. When a new component is received, the value may

be checked against an old component to determine whether the

new component is legitimate (e.g., the new value for use in the

next report process may be included with the new component).

10 Integrity of VDE Security

There are many ways in which a PPE 650 might be

compromised. The goal of the security provided by VDE 100 is to

reduce the possibility that the system will be compromised, and

minimize the adverse effects if it is compromised.

15

The basic cryptographic algorithm that are used to

implement VDE 100 are assumed to be safe (cryptographically

strong). These include the secret-key encryption of content,

public-key signatures for integrity verification, public-key

20 encryption for privacy between PPEs 650 or between a PPE and

a VDE administrator, etc. Direct attack on these algorithms is

assumed to be beyond the capabilities of an attacker. For

domestic versions of VDE 100 some of this is probably a safe

assumption since the basic building blocks for control

-660 -

Petitioner Apple Inc. — Exhibit 1002, p. 5288

Petitioner Apple Inc. - Exhibit 1002, p. 5289

W0 98/09209 PCT/US97I15243

information have sufiiciently long keys and are suficiently

proven.

The following risks of threat or attacks may be significant:

- 5 - Unauthorized creation or modification of component

assemblies (e.g., budgets)

- Unauthorized bulk disclosure of content

- p Compromise of one or more keys

- Software emulation of a hardware PPE

10 - - Substitution of older records in place of newer

records

- Introduction of "rogue“ (i.e., unauthentic) load

modules

- Replay attacks

15 - Defeating ”fingerprinting‘

- A Unauthorized disclosure of individual content items

- Redistribution of individual content items.

A significant potential security breach would occur if one

20 or more encryption keys are compromised. As discussed above,

however, the encryption keys used by VDE 100 are sufficiently

varied and compartmentalized so that compromising one key

would have only limited value to an attacker in most cases. For

example, if a certification private key is exposed, an attacker

-661-

Petitioner Apple Inc. — Exhibit 1002, p. 5289

Petitioner Apple Inc. - Exhibit 1002, p. 5290

wo 98,092o9 PCIYUS97I15243

could pass the challenge/response protocol as discussed above

but would then confront the next level of security that would

entail cracking either the initialization challenge/response or the

external communication keys. If the initialization

5 - challenge/response sectuity is also defeated, the initialization

code and various initialization keys would also be exposed.

However, it would still be necessary to understand the code and

data to find the shared VDE keys and to duplicate the key-

generation (”convolution“) algorithms. In addition, correct real

10 time clock values must be maintained by the spoof. If the

attacker is able to accomplish all of this successfully, then all

secure communications to the bogus PPE would be compromised.

An object would be compromised if communications related to

the permissions record 808 of that object are sent to the bogus

15 PPE.

Knowledge of the PPE download authorization key and the

algorithms that are used to derive the key that encrypts the keys

for backup of secured database 610 would compromise the entire

20 secured database at a specific electronic appliance 600.

However, in order to use this information to compromise content

ofVDE objects 300, an understanding of appropriate VDE

internals would also be required. In a preferred embodiment,

the private body keys andpcontent keys stored in a secured

-662-

Petitioner Apple Inc. — Exhibit 1002, p. 5290

Petitioner Apple Inc. - Exhibit 1002, p. 5291

WO 98109209 PCl‘IUS9'IIl5243

database 610 are ”aged“ by including a time component. Time is ‘

convoluted with the stored values to derive the "true keys“

needed to decrypt content. If this process is also compromised,

then object content or methods would be revealed. Since a

U! backup of secured database 610 is not ever restored to a PPE 650

in the preferred embodiment without the intervention of an

authorized VDE administrator, a “bogus” PPE would have to be

used to make use of this information.

10 External communication shared keys are used in the

preferred embodiment in conjunction with a key convolution

algorithm based on site ID and time. If compromised, all of the

steps necessary to allow communications with PPEs 650 must

also be known to take advantage of this knowledge. In addition,

15 at least one of the administrative object shared keys must be

compromised to gain access to a decrypted permissions record

808.

Compromising an administrative object shared key has no

20 value unless the ”cracker“ also has knowledge of external

communication keys. All administrative objects are encrypted by

unique keys exchanged using the shared external

communications keys, site ID and time. Knowledge of PPE 650

-663-

Petitioner Apple Inc. — Exhibit 1002, p. 5291

Petitioner Apple Inc. - Exhibit 1002, p. 5292

wo 98109209 PCT/US97Il 5243

internal details would be necessary to further decrypt the

content of administrative objects.

, The private header of a stationary object (or any other

5 stationary object that uses the same shared key) if compromised,

may provide the attacker with access to content until the shared

key ”ages“ enough to no longer decrypt the private header.

Neither the private body nor the content of the object is exposed

unless a permissions record 808 for that object is also

10 compromised. The private headers of these objects may remain

compromised until the key "ages“ enough to no longer decrypt

the private header.

Secure database encryption keys in the preferred

15 embodiment are frequently changing and are also site specific.

The consequences of compromising a secured database 610 file or

a record depends on the information that has been compromised.

For example, permissions record 808 contain keys for the public

body and content of a VDE object 300. If a permissions record

20 808 is compromised, the aspects of that object protected by the

keys provided by the permissions record are also

compromised—if the algorithm that generates the "true keys“ is

also known. If a private body key becomes known, the private

body of the object is compromised until the key ”ages“ and

-664-

Petitioner Apple Inc. — Exhibit 1002, p. 5292

Petitioner Apple Inc. - Exhibit 1002, p. 5293

wo 93/09209 PCT/US97Il5243

expires. If the ”aging“ process for that key is also compromised,

the breach is permanent. Since the private body may contain

methods that are shared by a number of different objects, these

methods may also become compromised. When the breach is

Ul detected, all administrative objects that provide budgets and

permissions record should’ update the compromised methods.

Methods stored in secure database 610 are only replaced by more

recent versions, so the compromised version becomes unusable

after the update is completed.

10

If a content key becomes compromised, the portion of the

content encrypted with the key is also compromised until the key

"ages“ and expires. If the ”aging“ process for that key also

becomes compromised, then the breach becomes permanent. If

15 multiple levels of encryption are used, or portions of the content

are encrypted with different keys, learning a single key would be

insufiicient to release some or all of the content.

If an authorization shared secret (e.g., an access tag)

20 becomes known, the record containing the secret may be

modified by an authorized means if the "cracker“ knows how to

properly use the secret. Generally speaking, the external

communications keys, the administrative object keys and the

management file keys must also be "cracked“ before a shared

-665-

Petitioner Apple Inc. — Exhibit 1002, p. 5293

Petitioner Apple Inc. - Exhibit 1002, p. 5294

WO 98/09209 PCTIUS97ll 5243

secret is useful. Of course. any detailed knowledge of the

protocols would also be required to make use of this information.

In the preferred embodiment, PPE 650 may detect whether

5 or not it has become compromised. For example, by comparing

information stored in an SPE 503 (e.g., summary service

information) with information stored in secure database 610

and/or transmitted to a VDE participant (e.g., a VDE

clearinghouse), discrepancies may become evident. If PPE 650

10 (or a VDE administrator watching its ‘activities or

communicating with it) detects that it has been compromised, it

may be updated with an initialization to use new code, keys and

new encryption/decryption algorithms. This would limit

exposure to VDE objects 300 that existed at the time the

15 encryption scheme was broken. It is possible to require the PPE

650 to cease functioning after a certain period of time unless new

code and key downloads occur. It is also possible to have VDE

administrators force updates to occur. It is also likely that the

desire to acquire a new VDE object 300 will provide an incentive

20 for users to update their PPEs 650 at regular time intervals.

Finally, the end-to-end nature of VDE applications, in

which content 108 flows in one direction, generating reports and

bills 118 in the other, makes it possible to perform "back-end“

-666 -

Petitioner Apple Inc. — Exhibit 1002, p. 5294

Petitioner Apple Inc. - Exhibit 1002, p. 5295

wo 93/09209 PCTIUS97/15243

consistency checks. Such checks, performed in clearinghouses

116, can detect patterns of use that may or do indicate fraud

(e.g., excessive acquisition‘ of protected content without any

corresponding payment, usage records without corresponding

5 billing records). The fine grain of usage reporting and the ready

availability of usage records and reports in electronic form

enables sophisticated fraud detection mechanisms to be built so

that fraud-related costs can be kept to an acceptable level.

10 Integrity of Sofiware—Based PPE Security

As discussed above in cofnnection with Figure 10, some

applications may use a software-based protected processing

environment 650 (such as a "host event processing environment"

(HPE) 655) providing a software-based tamper resistant barrier

15 674. Software-based tamper resistant barrier 674 may be

created by software executing on a general—purpose CPU.

Various software protection techniques may be used to construct

and/or provide software-based tamper resistant barrier 674.

20 The risks or threat of attacks described above in

connection with PPE 650 apply to a software-based PPE. An

important threat to be countered with respect to a

software-based tamper resistant barrier 674 is an attack based

on a distributable computer program that can defeat the tamper

-667-

Petitioner Apple Inc. — Exhibit 1002, p. 5295

Petitioner Apple Inc. - Exhibit 1002, p. 5296

wo 93/09209 PCT/US97Il5243

resistant barrier wherever the program is run. Since a

sofirware-based tamper resistant barrier 674 typically will not be

as secure as a hardware-based tamper resistant barrier 502, it is

useful to explore example steps and procedures a "cracker" might

5 use to "’crack’ a software"-based tamper resistant barrier.

Figures 67A and 67B show example "cracking" techniques

a "cracker" might use to attack software-based tamper resistant

barrier 674.

10

Referring to Figure 67A, the software used to create

tamper resistant barrier 674 may be distributed, for example, on

a storage medium 3370 such as a floppy diskette or optical disk

(or, this software could be distributed electronically over network

15 108 and stored locally in a computer memory). The software

distribution medium 3370. provides software (code and data) for

loading into a computing device such as a general purpose

" personal computer 3372, for example. Personal computer 3372

may include, for example, a random access memory 3374 and a

20 hard disk 3376.

In one example, the software distribution medium 3370

might include installation materials 3470 and operational

materials 3472. The installation materials 3470 may be

-668-

Petitioner Apple Inc. — Exhibit 1002, p. 5296

Petitioner Apple Inc. - Exhibit 1002, p. 5297

W0 98/057209 PC'I'IUS97Il5243

executed by computer 3372 to install the operational materials

3472 onto the computer's hard disk 3376. The computer 3372

may then execute the operational materials 3472 from its hard

disk 3376 to provide software-based protected processing

5 environment 650 and associated software-based tamper resistant

barrier 672.

In this example, one attack technique an attacker might

use is to analyze software distribution medium 3370 (see Figure

10 67B, block 3352). Such analysis can take many forms.

Such analysis could be performed by a combination of one

or more techniques. Such techniques include, but are not limited

to, the following:

15 - An attacker can manually "dump" and/or disassemble

listings of the data from medium 3370. This analysis is

represented in Figure 67A by magnifying glass 3352A.

- An attacker can use cryptoanalytic and/or key search

techniques to decrypt any encrypted data from medium

20 3370.

- An attacker can use automated or semi-automated

disassembly tools to explore the functions of programs

stored on medium 3370 by studying the operation and flow

-669-

Petitioner Apple Inc. — Exhibit 1002, p. 5297

Petitioner Apple Inc. - Exhibit 1002, p. 5298

W0 gsmgzog l’CTlUS97Il5243

of the assembly language representation of the programs.

This analysis is represented in Figure 67A by block 3352B.

0 An attacker can use sofizware reverse~engineering tools to

reconstruct high-level language representations of the

5 programs on medium 3370, and study their functions.

This analysis is represented in Figure 67A by block 3352C,

producing source code 3371.

0 An attacker can use software reverse-engineering tools to

create an equivalent program to the programs stored on

10 medium 3370. As the equivalent program may be in a

more convenient form, possibly in a higher-level language,

it may be more amenable to analysis. This analysis i.s also

represented in Figure 67A by block 3352C, producing

source code 3371.

15 - An attacker can use software debugging and/or simulation

tools to follow and/or modify the dynamic execution of

programs from medium 3370. This technique can be

combined with any of the above static analysis techniques

to study the program as it operates. This analysis is

20 represented in Figure 67A by block 3352B.

- An attacker can use hardware-based debugging and/or

simulation tools (e.g., an in-circuit emulator, or ICE) to

follow and/or modify the dynamic execution of programs

from medium 3370.0 This technique may be more effective

-670-

Petitioner Apple Inc. — Exhibit 1002, p. 5298

Petitioner Apple Inc. - Exhibit 1002, p. 5299

10

15

20

W0 98I09209 PC'I‘IUs97I1s243

than the equivalent using software debugging and/or

simulation tools because it has less potential effect on

operation of the programs. This analysis is represented in

Figure 67A by block 335213.

Such analysis could provide clues and insights into the

installation materials 3470, the operational materials 3472, or

both.

Another attack technique could focus on the operational

materials 3472 in the form in which they are installed on

personal computer 3372. For example, one form of analysis

might involve analyzing the on-disk copy of the installed

software and/or associated data files installed on computer hard

disk 3376 (see Figure 67B, block 3354)’. This analysis is

represented in Figure 67A as a magnifying glass 3354B.

Because the installed operational materials 3472 can be executed

by computer 3372, the analysis need not be limited to analyzing

the static information stored on hard disk 3376, but could involve

performing static and/or dynamic analysis of the executing

sofiware (see Figure 67B, blocks 3356, 3358). Any of the

techniques described above could be used to analyze the

operational material sofiware 3472 to yield source code or other

more interpretable form 3373A and/or a memory image 3373B.

-671-

Petitioner Apple Inc. — Exhibit 1002, p. 5299

Petitioner Apple Inc. - Exhibit 1002, p. 5300

WO 93109209 PCT/US97!15243

The static and/or dynamic data within RAM 3374A could be

similarly analyzed (see Figure 67A, magnifying glass 3354A).

The resulting source code 3373A and/or memory image

0: 3373B could be carefully analyzed and reviewed (see magnifying

glasses 3354D, 3354E) to obtain an understanding of both the

static and dynamic structure and operation of operational

materials 3272. Dynamic code analysis could involve, for

example, tracing, single-stepping, data, or code break points of

10 the executing software image, using analysis techniques such as

described above. The executing software could be modified

dynamically (for example, by patching) during normal operation

to attempt to bypass its protection mechanisms and/or to learn

more about how it operates (see Figure 67B, block 3360, and the

15 "changes" inserted into Figure 67A memory image 3373B).

A further attack technique in this example might involve

comparing installed operational material 3472 software and data

files among several different PPE 650 instances to identify

20 important data structures, such as cryptographic keys (see

"compare" block 3362A of Figure 67A; and Figure 67B, block

3362). The resulting list of differences 3362B could be carefully

analyzed (see Figure 67A’s magnifying glass 3362C) to obtain

-672-

Petitioner Apple Inc. — Exhibit 1002, p. 5300

Petitioner Apple Inc. - Exhibit 1002, p. 5301

wo 93/09209 PCFIUS97!15243

important clues, using analysis techniques such as described

above.

A further attack technique might involve comparing the,

Ul
memory and/or disk images of installed operational material

3472 software and data files in a single instance of PPE 650,

after performing various operations using the PPE. This could

serve to identify important data structures, such as

cryptographic keys (see "compare" block 3362A of Figure 67A;

10 and Figure 67B, block 3362). The resulting list of diflerences

3362B could be carefully analyzed (see Figure 67A’s magnifying

glass 3362C) to obtain important clues, using analysis

techniques such as described above.

15 A further attack technique might involve analyzing the.‘

timing and/or order of modification to memory and/or disk

images of installed operational material 3472 software and data

files in a single instance of PPE 650, during the performance I I

performing various operations using the PPE. This could serve

20 to identify important data structures, such as cryptographic keys

(see "compare" block 3362A of Figure 67A; and Figure 67B, block

3362). The resulting list of difierences 3362B could be carefully

analyzed (see Figure 67A’s magnifying glass 3362C) to obtain

-673-

Petiti0n'er Apple Inc. — Exhibit 1002, p. 5301

Petitioner Apple Inc. - Exhibit 1002, p. 5302

wo 93/09209 PCTIUS97/15243

important clues, using analysis techniques such as described

above.

A further attack technique might involve duplicating one

5 . installed operational material 3472 instance by copying the

programs and data from one personal computer 3372B to

another personal computer 3372C or emulator (see Figure 67B,

block 3364, and the "copy" arrow 3364A in Figure 67A). The

duplicated PPE instance could be used in a variety of ways. such

10 as, for example, to place an impostor PPE 650 instance on-l.ine

and/or to permit further dynamic analysis.

A still additional avenue of attack might involve, for

example, saving the state of a PPE 650 (see Figure 67A, block

15 3366B) - for example, before the expenditure of credit - and

restoring the state at a subsequent time (e.g., after a payment

operation occurs) (see Figure 67A, arrows 3366A, 3366C, and

Figure 67B, block 3366). The stored state information 3366B

may also be analyzed (see Figure 67A, magnifying glass 3354F.

20

No software-only tamper resistant barrier 674 can be

wholly effective against all of these threats. A sufliciently

powerful dynamic analysis (such as one employing an in-circuit

emulator) can lay bare all of the software-based PPE 650's

-674-

Petitioner Apple Inc. — Exhibit 1002, p. 5302

Petitioner Apple Inc. - Exhibit 1002, p. 5303

wo 93/0.9209 PCI'IUS97Il5243

secrets. Nonetheless, various techniques described below in

connection with Figure 69A and following make such an analysis

extremely frustrating andtime consuming - increasing the "work

factor" to a point where it may become commercially unfeasible

5 to attempt to "crack" a software-based tamper resistant barrier

674.

PPE Initialization

Each PPE 650 needs to be initialized before it can be used.

10 Initialization may occur at the manufacturer site, after the PPE

650 has been placed out in the field, or both. The manufacturing

process for PPE 650 typically involves embedding within the

PPE sufficient software that will allow the device to be more

completely initialized at a later time. This manufacturing

15 process may include. for example. testing the bootstrap loader

and challenge-response software permanently stored within PPE

650, and loading the PPE’s unique ID. These steps provide a

basic VDE-capable PPE 650 that may be further initialized (e.g.,

after it has been installed within an electronic appliance 600 and

20 placed in the field). In some cases. the manufacturing and

further initialization processes may be combined to produce

"VDE ready“ PPES 650. This description elaborates on the

summary presented above with respect to Figures 64 and 65.

-675-

Petitioner Apple Inc. — Exhibit 1002, p. 5303

Petitioner Apple Inc. - Exhibit 1002, p. 5304

wo 93/09209 PCTIU597/15243

Figure 68 shows an example of steps that may be

performed in accordance with one preferred embodiment to

initialize a PPE 650. Some of the steps shown in this flowchart

may be performed at the manufacturing site, and some may be

5 performed remotely through contact between a VDE

administrator and the PPE 650. Alternatively, all of the steps

shown in the diagram may be performed at the manufacturing

site, or all of the steps shown may be performed through remote

communications between the PPE 500 and a VDE administrator.

10

If the initialization process 1370 is being performed at the

manufacturer, PPE 650 may first be attached to a testbed. The

manufacturing testbed may first reset the PPE 650 (e.g., with a

power on clear) (Block 1372). If this reset is being performed at

15 the manufacturer, then the PPE 650 preferably executes a

special testbed bootstrap code that completely tests the PPE

operation from a software standpoint and fails if something is 4

wrong with the PPE. A secure communications exchange may

then be established between the manufacturing testbed and the

20 PPE 650 using an initial challenge-response interaction (Block

1374) that is preferably provided as part of the testbed bootstrap

process. Once this secure communications has been established,

the PPE 650 may report the results of the bootstrap tests it has

performed to the manufacturing testbed. Assuming the PPE 650

-676-

Petitioner Apple Inc. — Exhibit 1002, p. 5304

Petitioner Apple Inc. - Exhibit 1002, p. 5305

WO 98199209 PC!‘/US97/I5143

has tested successfully, the manufacturing testbed may

download new code into the PPE 650 to update its internal

bootstrap code (Block 1376) so that it does not go through the

testbed bootstrap process upon subsequent resets (Block 1376).

5 The manufacturing testbed may then load new firmware into the

PPE internal non-volatile memory in order to provide additional

standard and/or customized capabilities (Block 1378). For

example, the manufacturing testbed may preload PPE 650 with

the load modules appropriate for the particular manufacturing

10 lot. This step permits the ‘PPE 500 to be customized at the

factory for specific applications.

The manufacturing testbed may next load a unique device

ID into PPE 650 (Block 1380). PPE 650 now carries a unique ID

15 that can be used for further interactions.

Blocks 1372-1380R typically are, in the preferred

embodiment, performed at the manufacturing site. Blocks 1374

and 1382-1388 may be performed either at the manufacturing

20 site, afier the PPE 650 has been deployed, or both.

To further initialize PPEL650, once a secure

communications has been established between the PPE and the

manufacturing testbed or a VDE administrator (Block 1374), any

-677-

Petitioner Apple Inc. — Exhibit 1002, p. 5305

Petitioner Apple Inc. - Exhibit 1002, p. 5306

WO 98/09209 PCTIUS97/15243

required keys, tags or certificates are loaded into PPE 650 (Bloclt

1382). For example, the manufacturing test bed may "load its

information into PPE 650 so the PPE may be initialized at a

later time. Some of these values may be generated internally

5 within PPE 650. The manufacturing testbed or VDE

administrator may then initialize the PPE real time clock 528 to

the current real time value (Block 1384). This provides a time

and date reference for the PPE 650. The manufacturing testbed

or the VDE administrator may next initialize the summary

10 values maintained internally to the PPE 500 (Block 1386). If the

PPE 650 is already installed as part of an electronic appliance

600, the PPE may at this point initialize its secure database 610

(Block 1388).

15 Figure 69 shows an example of program control steps

performed by PPE 650 as part of a firmware download process

(See Figure 68, Block 1378). The PPE download process is used

to load externally provided firmware and/or data elements into

the PPE. Firmware loads may take two forms: permanent loads

20 for soflzware that remains resident in the PPE 650; and transient

loads for sofiware that is being loaded for execution. A related

process for storing into the secure database 610 is performed for

elements that have been sent to a VDE electronic appliance 600.

-678-

Petitioner Apple Inc. — Exhibit 1002, p. 5306

Petitioner Apple Inc. - Exhibit 1002, p. 5307

WO 98/09209 PCl‘IUS97I15243

PPE 650 automatically performs several checks to ensure

that firmware being downloaded into the PPE has not been

tampered with, replaced, or substituted before it was loaded.

The download routine 1390 shown in the figure illustrates an

5 example of such checks. Once the PPE 650 has received a new

firmware item (Block 1392), it may check the item to ensure that

it decrypts properly usingthe predetermined download or

administrative object key (depending on the source of the

element‘) (decision Block 1394). If the finnware decrypts

10 properly (”yes“ exits to decision Block 1394), the firmware as

check valve may be calculated and compared against the check

valve stored under the encryption wrapper of the firmware

(decision Block 1396). If the two check summed values compare

favorably (”yes“ exit to decision Block 1396). then the PPE 650

15 may compare the public and private header identification tags

associated with the firmware to ensure that the proper firmware

was provided and had not-been substituted (step not shown in

the figure). Assuming this test also passes, the PPE 500 may

calculate the digital signatures of the firmware (assuming digital

20 signatures are supported by the PPE 650 and the firmware is

”signed“) and may check the calculated signature to ensure that

it compares favorably to the digital signatures under the

firmware encryption wrapper (Blocks 1398, 1400). If any of

-679-

Petitioner Apple Inc. — Exhibit 1002, p. 5307

Petitioner Apple Inc. - Exhibit 1002, p. 5308

W0 98I09209 PCT/US97!15243

these tests fail, then the download will be aborted (”fail“

termination 1401).

Assuming all of the tests described above pass, then PPE

5 650 determines whether the firmware is to be stored within the

PPE (e.g., an intemal non-volatile memory), or whether it is to

be stored in the secure database 610 (decision Block 1402). If the

firmware is to be stored within the PPE (”yes“ exit to decision

Block 1402), then the PPE 500 may simply store the information

10 internally (Block 1404). If the firmware is to be stored within

the secure database 610 (”no“ exit to decision Block 1402), then

the firmware may be tagged with a unique PPE-specific tag

designed to prevent record substitution (Block 1406), and the

firmware may then be encrypted using the appropriate secure

15 database key and released to the secure database 610 (Block

1408).

Example Techniques for Forming Software-Based Tamper

Resistant Barrier

20 Various sofisware protection techniques detailed above in

connection with Figure 10 may provide software-based tamper

resistant barrier 674 within asoftware-only and/or hybrid

sofizware/hardware protected processing environment 650. The

following is an elaboration on those above-described techniques.

-680-

Petitioner Apple Inc. — Exhibit 1002, p. 5308

Petitioner Apple Inc. - Exhibit 1002, p. 5309

WO 98/09209 PCIIUS97/15243

These software protection techniques may provide, for example,

the following:

- An on-line registration process that results in the creation

of a shared secret between the registry and the PPE 650

5 instance - used by the registry to create content and

transactions that are meaningful only to that specific PPE

instance.

- An installation program (that may be distinct from the

PPE operational material soficware) that creates a

10 customized installation of the PPE software unique to each

PPE instance and/or associated electronic appliance 600.

- Camouflage protections that make it difficult to reverse

engineer the PPE 650 operational materials during PPE

operation.

15 - Integrity checks performed during PPE 650 operation

(e.g., during on—1ine interactions with trusted servers) to

detect compromise and minimize damage associated with

any compromise.

20 In general, the soflrware-based tamper resistant barrier

674 may establish "trust" primarily through uniqueness and

complexity. In particular, uniqueness and customization

complicate the ability of an attacker to:

-681-

Petitioner Apple Inc. — Exhibit 1002, p. 5309

Petitioner Apple Inc. - Exhibit 1002, p. 5310

wo 93/09109 PCTIUS97I15243

- make multiple PPE instances with the same apparent

identity;

- make it harder for an attacker to create a sofiware

program(s) that will defeat the tamper—resistant barrier

5 674 of multiple PPE instances;

- make it harder for the attacker to reverse engineer (e.g.,

based upon encryption so that normal

debugging/emulation and other software testing tools can’t

easily provide access); and

10 - make it more difficult for an attacker to compare multiple

PPE instances to determine difierences between them.

In addition, the overall software-based tamper resistant barrier

674 and associated PPE system is sufficiently complex so that it

is difficult to tamper with a part of it without destroying other

15 aspects of its functionality (i.e., a "defense in depth").

Camouflaging techniques complicate an attacker’s analysis

through use of debugging/emulation or other software tools. For

4‘ “example, the PPE 650 may rewrite or overwrite memory

locations immediately after using same to make their contents

20 unavailable for scrutiny. Similarly, the PPE 650 operational

sofizware may use hardware and/or time dependent sequences to

prevent emulation. Additionally, some of the PPE 650

environment code may be self-modifying. These and other

techniques make it much harder to crack an individual PPE 650

-682-

Petitioner Apple Inc. — Exhibit 1002, p. 5310

Petitioner Apple Inc. - Exhibit 1002, p. 5311

wo 98/09209 PCl‘IUS97ll5243

instance, and more importantly - much harder to write a

program that could be used to defeat security on multiple PPE

instances. Because the legitimate owner/user of a particular

PPE instance may be trying to attack the security of his own

U! system, these techniques assume that individual instances may

eventually be cracked and provide additional security and

safeguards that prevent (or make it more difficult) for the

attacker who has cracked one PPE instance to use that

information successfully in cracking other PPE instances.

10 Specifically, these security techniques make it unlikely that an

attacker who has successfully cracked one or a small number of

PPE instances can write a program capable of compromising the

security of any arbitrary other PPE instance, for example.

15 Example Installation Process

Briefly, the preferred example software—based PPE 650

installation process provides the following security techniques:

- encrypted software distribution,

- installation customized on a unique instance and/or

20 electronic appliance basis,

- encrypted on-disk form,

0 installation tied to payment method,

- unique software and data layout, and

0 identifiable copies.

- 683 -

Petitioner Apple Inc. — Exhibit 1002, p. 5311

Petitioner Apple Inc. - Exhibit 1002, p. 5312

.‘ 243W0 98,0920’ PCTIUS97/15

Figure 69A shows one example technique for distributing

the PPE 650 software. In this example, the PPE 650 software is

distributed as two separate parts and/or media: the installation

materials 3470, and the operational materials 3472. Installation

5 materials 3470 may provide executable code and associated data

structures for installing the operational materials 3472 onto a

personal computer hard disk 3376, for example (see Figure 67A).

The operational materials 3472 may provide executable code and

associated data structures for providing protected processing

10 environment 650 and associated software-based tamper resistant

barrier 674.

In this example, installation materials 3470 and

operational materials 3472 are each encrypted by a "deliverable

15 preparation" process 3474 to provide encrypted installation.

materials 3470E and encrypted operational materials 3472E (the

encrypted portions are indicated in Figure 69A, by

cross-hatching). In this example, a small portion 3470C of the

installation materials 3470 may be maintained in clear

20 (unencrypted) form to provide an initial portion of the

This plain text portion 3470C may, for example, provide an

initial dialog, using an encrypted or other secure protocol with a

trusted registry 3476 such as VDE administrator 200h for

-684-

Petitioner Apple Inc. — Exhibit 1002, p. 5312

Petitioner Apple Inc. - Exhibit 1002, p. 5313

WO 93109209 PCTIUS97Il5243

example. This makes the distributed installation materials 3470 H

and operational materials 3472 meaningless and unreadable to

an attacker without additional information since the entire

content (except for the initial dialog with the registry 3476) is

5 unreadable.

In this example, the "deliverable preparation" process 3474

may encrypt the installation materials 3470 and operational

materials 3472 using one or more secret keys known to the

10 registry 3476. Multiple versions of these installation materials

3470 and operational materials 3472 may be distributed using

different, secret keys so that compromise of one key exposes only

a subset of the software distribution to unwanted disclosure.

The only non-encrypted part of the software distribution in p

15 plaintext is that portion 3470C of installation materials 3470

used to establish initial contact with the registry 3476.

The registry 3476 maintains a copy of the corresponding

decryption keys within a key generation and cataloging structure

20 3478. It provides these keys on demand during the registration

process (e.g., using a secure key exchange protocol, for example)

to only legitimate users authorized to set up a new protected

processing environment 650.

-685-

Petitioner Apple Inc. — Exhibit 1002, p. 5313

Petitioner Apple Inc. - Exhibit 1002, p. 5314

WO 98109209 PCT/US97/15243

Figures 69B-69C show example steps that may be

performed by a installation routine 3470 to install a protected

processing environment 650. In this example, upon coupling the

installation materials 3470 to an electronic appliance 600 such

5 as a personal computer 3372, the appliance begins executing the

unencrypted installation materials portion 3470C. This plain

text portion 3470C controls appliance 600 to contact registry

3476 and establish a registry dialog (Figure 69B, block 3470(1)).

The appliance 600 and the registry 3476 use a secure key

10 exchange protocol to exchange installation keys so that the

registry may deliver the appropriate installation key to the

appliance (Figure 69B, block 3470(2)). Using the provided

installation key(s), the appliance 600 may decrypt and run

additional portions of encrypted installation materials 3470E

15 (Figure 69B, block 3470(3) and following). Based on this

additional installation program execution. appliance 600 may

decrypt and install encrypted operational materials 3472E

(Figure 69B, block 3470(4)).

20 Rather than simply installing the operational materials

3472, in one example, installation materials 3470 makes the

installation different for each PPE 650 instance. For example,

the installation materials 3470 may customize the installation

by:

-686-

Petitioner Apple Inc. — Exhibit 1002, p. 5314

Petitioner Apple Inc. - Exhibit 1002, p. 5315

WO 98109209 PCTfUS97Il5243

- uniquely embedding important data into the installed

software,

- uniquely encrypting the installed software,

- uniquely making random changes to the installed

5 sofiware.

- uniquely mating the installed software with a particular

electronic appliance 600,

- providing a unique static.and/or dynamic layout or other

structure.

10

Randomly Embedded Cryptographic Keys

Installation routine 3470 may, for example, modify the

operational materials 3472 to customize embedded locations

where critical data such as cryptographic keys are stored. These

15 keys may be embedded into the text of the operational materials

3472 at locations that vary with each installation. In this

example, the registry 3476 may choose. on a random or

pseudo-random basis, at least some of the operational material

3472 locations in which a particular installation routine 3470

20 may embed cryptographic keys or other critical data (see Figure

69B, block 3470(5)). “

The installation process for the operational software may

involve decrypting its distribution (which may be the same for all

-687-

Petitioner Apple Inc. — Exhibit 1002, p. 5315

Petitioner Apple Inc. - Exhibit 1002, p. 5316

W0 98,05,209 PCT/US9711 5243

end users) and modifying it to encode the specific locations where.

its critical data (e.g., cryptographic keys) are stored. These keys

may be embedded within the text of the program at locations

that vary with every installation. The distribution of unique

5 information into the operational software 3472 can be based on a

secret key known to the registry 3476. This key may be

communicated by the registry 3476 during the registration dialog

using a secure key exchange. The key is shared between the

registry 3476 and the PPE 650 instance, and can serve both to

10 organize the installed PPE software, and as the basis of

subsequent integrity checks.

As shown in Figure 69D, the operational materials 3472

may include embedded locations 3480(a), 3480(b), 3480(c),

15 3480(d), 3480(e). reserved for storing (embedding) critical

information such as cryptographic keys. Each of these locations

3480 may initially store a random number string. In one

example, the registry 3476 or installation routine 3470 performs

a random operation 3482 to randomly select which subset of

20 these locations 3480 is to be used by a particular instance for

storing critical data. Thislselection list 3484 is applied as an

input to an operation materials preparation step 3474a (part of

the deliverable preparation operation 3474 shown in Figure

69A). The operation materials preparation step 3474a also

-688-

Petitioner Apple Inc. — Exhibit 1002, p. 5316

Petitioner Apple Inc. - Exhibit 1002, p. 5317

10

15

20

WO 98109209 PCl‘IUS97Il5243

accepts, as an input, cryptographic keys from a secure key store

3486. In this example, the operation materials preparation step

3474a embeds the cryptographic keys provided by key store 3486

into the selected locations 3484 of operation materials 3472.

In accordance with one example, the random operation

3482 selects a subset that is much less than all of the possible

locations 3480 - and the locations 3480 not used for storing

cryptographic keys store random data instead. An attacker

attempting to analyze installed operational materials 3472 won’t

be able to tell the difference between real cryptographic keys and

random number strings inserted into a place where

cryptographic keys might be stored.

In this example, the random location selection 3484 (which

is unique for each installation) may itself be encrypted by block

3488 based on an installation-unique key provided by key

generation block 3490 for example. The encryption key may be

securely maintained at registry 3476 so that the registry may

later notify the installation materials 3470 of this key - allowing

the installation materials to decrypt the resulting encrypted key

location block 3492 and recover listing 3484 of the subset of

locations 3480 used for embedding cryptographic keys.

-689-

Petitioner Apple Inc. — Exhibit 1002, p. 5317

Petitioner Apple Inc. - Exhibit 1002, p. 5318

10

15

20

WO 98109209 PCT/U597/15243

Embedded Customized Random Changes

Referring once again to Figure 69B, the installed

operational materials 3472 may be further customized for each

instance by making random changes to reserved, unused

portions of the operational materials (Figure 69B, block 3470(6)).

An example of this is shown in Figure 69E. In this example, the

operational materials 3472 include unused, embedded random

data or code portions 3494. Another technique with similar

efl'ect isshown in Figure 69F. In this example, false code

sections 3496 are included within reserved areas of the

operational materials 3472. These false code sections 3496 add

complexity, and may also be used as a electronic "fingerprint" to

help trace copies. Because the false code sections 3496 are

executable program code that are never executed (or if executed

perform no actual functions other than confounding analysis by,

for example, creating, modifying and/or destroying data that has

no impacton the operation of PPE 650 but may appear to have

such an impact), they can be used to confound analysis because

they may be difficult for an attacker to distinguish from true

code sections. In addition other false code may have the effect of

disabling the execution of PPE 650 if executed. Correspondence

Between Installed Software and Appliance "Signature". Another

technique that may be used during the installation routine 3470

is to customize the operational materials 3472 by embedding a

-690-

Petitioner Apple Inc. — Exhibit 1002, p. 5318

Petitioner Apple Inc. - Exhibit 1002, p. 5319

wo 98/09209 PCT/US97Il 5243

"machine signature" into the operational materials to establish a I

correspondence between the installed software on a particular

electronic appliance 600 (Figure 69C, block 3470(7)). This

technique prevents a software-based PPE 650 from being

5 transferred from one electronic appliance 600 to another (except

through the use of the appropriate secure, verified backup

mechanism).

For electronic appliances 600 where it is feasible to do so,

10 the installation procedure 3470 may determine unique

information about the electronic appliance 600 (e.g., a

"signature" SIG in the sense of a unique value - not necessarily a

"digital signature" in the cryptographic sense». Installation

routine 3470 embeds the electronic appliance "signature" SIG in

15 the installed operational materials 3472. Upon initialization, the

operational materials 3472 validate the embedded signature

value against the actual electronic appliance 600 signature SIG.

I and may refuse to start if the comparison fails. _____

Depending on the configuration of electronic appliance 600, the

20 machine signature may consist, for example, of some

combination of

- a hash of the ROM BIOS 658’ (see Figure 69G),

- a hash of a disk defect map 3497a.

- the Ethernet (or other) network adapter 666 address,

-691-

Petitioner Apple Inc. — Exhibit 1002, p. 5319

Petitioner Apple Inc. - Exhibit 1002, p. 5320

wo 93/09209 PCT/US97/15243

- information written into an unused disk sector,

- information stored in a non-volatile CMOS RAM(such as

used for hardware configuration data),

- information stored in non-volatile ("flash") memory (such

5 as used for system or peripheral component "BIOS"

programs) and/or

- hidden unique information placed into the root directory

3497b of the fixed disk drive 668.

10 Figure 69G shows an example of some of these

appliance-specific signatures.

In this example, machine signature information need not

be particularly large. Security is provided by hiding the machine

15 signature rather than on any other cryptographic strength,

because there is no more secure mechanism for key storage: to

protect it. Thus, it is satisfactory for the signature to be just

large enough (e.g., two bytes) that it is unlikely to be duplicated

by chance.

20

For some electronic appliances 600 where it can be

determined that the technique is safe, an otherwise unused

section of the non-volatile CMOS RAM 656a may be used to store

a signature 3497d. Signature 3497d is verified against the PPE

-692~

Petitioner Apple Inc. — Exhibit 1002, p. 5320

Petitioner Apple Inc. - Exhibit 1002, p. 5321

10

15

20

WO 98109209 PCl‘IUS97Il5243

650’s internal state whenever the PPE is initialized. Signature

3497d may also be updated whenever a significant change is

made to the secure database 610. If the CMOS RAM signature

3497d does not match the database value, PPE 650 may take this

mismatch as an indication that a previous instance of the secure

database 610 and/or PPE 650 software has been restored, and

appropriate action can be taken. This mechanism thus ensures

that even a bit-for-bit copy of the system's fixed disk 668 or other

storage medium cannot be saved and reloaded to restore an

earlier PPE 650 state. This particular technique depends upon

there being an unused location available Within CMOS RAM

656a, and may also require the CMOS RAM checksum algorithm

to be known. An incorrect implementation could cause a

subsequent reboot of electronic appliance 600 to fail because of a

bad CMOS checksum, or worse, couldalter some critical

configuration parameter within Cl}/IOS RAM 656a so that

electronic appliance 600 could not be recovered. Thus, care must

be taken before modifying the contents of CMOS RAM 656a.

A still alternate technique may involve marking otherwise

"good" disk sectors 3497c defective and using the sector(s) to

store machine signatures and/or encryption keys. This technique

ensures that a logical bit-for-bit copy of the media does not result

in a usable PPE 650 instance, and also provides relatively

-693-

Petitioner Apple Inc. — Exhibit 1002, p. 5321

Petitioner Apple Inc. - Exhibit 1002, p. 5322

wo 98,092!” PCTIUS97/15243

inaccessible and non-volatile storage for the information.

Because a relatively large amount of storage space can be

reserved using this technique, there is enough storage for a

cryptographically strong value.

Some of the "machine signature" techniques discussed

above may be problematic in some electronic appliances 600

because it may be difiicult to locate appropriate

appliance-unique information. For example, although in a

10 personal computer a ROM BIOS 658’ is always available, the

ROM BIOS’ information by itself may be insufiicient because it is

likely to be identical for a batch of electronic appliances 600

purchased together. Identifying a network adapter 666 an.d

determining its address is potentially difficult due to the wide

15 variety of adapters; additionally, an electronic appliance's

network address may change (although this occurrence may be

infrequent). Inserting random signature values into unused

“ byteslwithin the fixed disk root directory 3497b andlor partition

records may trigger some virus-checking programs, and the data

20 may be modified by defragmentation or other disk manipulation

programs. Where supported, a truly unused disk sector 3497c

(e.g., one that is marked "bad" even though it may still viably

store information) may be used to store the machine signature.

Even so, normal maintenance, upgrades or other failure recovery

-694-

Petitioner Apple Inc. — Exhibit 1002, p. 5322

Petitioner Apple Inc. - Exhibit 1002, p. 5323

wo 93/992139 PC!‘/US97/15243

procedures may disrupt a particular machine association. Since

the VDE administrator 200h participates in restoring a PPE 650

based on an encrypted backup image (as described above for

example in connection with Figures 39-40), the VDE

5 administrator may establish new associations at this point to

maintain correspondence between a particular PPE 650

installation and a particular electronic appliance 600.

Tie Installation To Payment Method

10 A still additional example technique for providing

additional security is to tie a particular PPE 650 installation at

registrationutime to a particular payment method (see Figure

69C, block 3470(8)). The registration process at installation time

may thus serve to tie the PPE 650 installation to some payment

15 method associated with the user, and to store the payment

association information both within the PPE 650 instance and at

the registry 3476. This technique assures that the actions of a

particular PPE 650 instance are accountable to the assigned user

with at least the reliability of whatever payment/credit

20 verification technique is employed.

Install Operational Materials In Encrypted Form

Operational materials 3472 may first be customized as

described above for the particular instance andlor appliance 600,

-695-

Petitioner Apple Inc. — Exhibit 1002, p. 5323

Petitioner Apple Inc. - Exhibit 1002, p. 5324

wo 98109209 PC'l’IUS97I!5243

then (at least mostly) encrypted for installation into the

appliance such as by storage onto disk 668 (see Figure 69C, block

3470(9)). Difierent installations may use different sets of

decryption keys to decrypt the information once installed.

5 Different parts of operational materials 3472 may be encrypted

with difierent cryptographic keys to further complicate the

analysis. This encryption makes analysis of the on disk form of

the operational materials 3472 more difficult or infeasible.

10 The beginning of the resulting stored executable file may

contain a small decryption program ("decryptor") that decrypts

the remainder of the operational materials 3472 as they are

loaded into memory. Confounding algorithms (as described

below) may be used in this decryptor to make static recovery of

15 the cryptographic keys difficult. Although the decryptor is

necessarily in unencrypted form in an all-software installation

without hardware support, the use of confounding algorithms to

develop the associated cryptographic keys effectively requires a

memory image to be captured afier the program has been

20 decrypted. Where supported (as described above), an unused

and inaccessible disk sector 3497c may be used to store the

decryption keys, and the operational materials 3472 may possess

only the address for that particular sector. Embedding this

address further complicates analysis.

-696-

Petitioner Apple Inc. — Exhibit 1002, p. 5324

Petitioner Apple Inc. - Exhibit 1002, p. 5325

wo 93:09:09 PC!‘/US97Il5243

Customized Layout

The installation materials 3470 may store the encrypted

operational materials 3472 onto the fixed disk 668 using a

5 customized storage layout (Figure 69C, block 3470(10)). Figure

69F, 69H, 691 and'69J shows example customized software and

data layouts. In these examples, each installed instance of

operational materials 3472 is diflerent in both executable form

and in data layout. These modifications make each PPE 650

10 instance require separate analysis in order to determine the

storage locations of its critical data such as cryptographic keys.

This technique is an effective counter to creation of programs

that can undo the protections of an arbitrary PPE 650 instance.

15 Instruction sequences within the operational materials

3472 may be modified by the installation routine to change the

execution flow of the executable operational materials 3472 and

to alter the locations at which the software expects to locate

critical data. The alterations in program flow may include

20 customization of time-consuming confounding algorithms. The

locations of the modifiable instruction sequences may be

embedded within operational materials 3470, and may therefore

be not directly available from an examination of the installation

and/or operational materials.

-697-

Petitioner Apple Inc. — Exhibit 1002, p. 5325

Petitioner Apple Inc. - Exhibit 1002, p. 5326

10

15

20

W0 98/092119 PCTIUS97/15243

Figure 69H shows one example operational materials 3472 l

executable code segment provided distinct processes 3498a,

3498b, 3498c, 3498d, 3498e. In this pa.rticu.lar example, segment

3498a is executed first and segment 3498e is executed last, but

the processes 3498b, 3498c and 3498d may be performed in any

order (i.e., they are sequence independent processes). The

installation materials 3470 may take advantage of this sequence

independence by storing and/or executing them in different

and/or depending upon the pa.rticular PPE instance 650. Figure

691, for example, shows a first static layout order, and Figure

69J shows a second, different static layout order. Data elements

associated with the executables may similarly be stored in

difierent orders (as shown in Figures 691, 69J) depending upon

the particular installation.

Dynamic Protection Mechanisms

In addition to the more static protection mechanisms

described above, dynamic protection mechanisms may be

employed to complicate both static and dynamic analysis of the

executable (executing) operational materials 3472. Such

techniques include, for example:

- implementation complexity,

- immediate overwriting,

- hardware dependent sequences,

- 698 -

Petitioner Apple Inc. — Exhibit 1002, p. 5326

Petitioner Apple Inc. - Exhibit 1002, p. 5327

W0 98/119209 PCT/US97Il5243

- timing dependencies,

- confounding algorithms,

- random modifications,

- dynamic load module decryption,

5 - on-1ine integrity checks,

- time integrity checks,

- machine association integrity checks,

- dynamic storage integrity checks, and

- hidden secret storage

10 - volatile secret storage

- internal consistency checks.

Figures 69K-69L show an example execution of

operational materials 3472 that may employ some or all of these

15 various dynamic protection mechanisms.

Upon starting execution (Figure 69K, block 3550), the installed

operational materials 3472 may run initialization code as

described above that is used to decrypt the stored encrypted

operational materials on an "as needed" basis (Figure 69K, block

20 3552). This initialization code may also check the current value

of the real-time clock (Figure 69K, block 3554).

-699-

Petitioner Apple Inc. — Exhibit 1002, p. 5327

Petitioner Apple Inc. - Exhibit 1002, p. 5328

10

15

20

WO 98109209 PCTIUS97]15243

Real Time CheckfVa1idation

Operational materials 3472 may perform this time check,

for example, to guard against replay attacks and to ensure that

the electronic appliance 600’s time is in reasonable agreement

with that of the VDE administrator 200h or other trusted node.

Figure 69M shows an example sequence of steps that may

be performed by the "check time" block 3554. In this example,

PPE 650 uses secure communications (e.g. a cryptographic

protocollto obtain the current real time from a trusted server

(Figure 69M, block 35543). PPE 650 may next ask the user if he

or she wishes to reset the electronic appliance real-time clock 528

(which may, for example, be the real-time clock module within a

personal computer or the like) so it is synchronized with the

trusted server's time clock.

Ifthe user responds affirmatively, PPE 650 mayreset the

time clock to agree with the real-time provided by the trust.ed

server ("yes" exit to decision block 3554b, Figure 69M, block

3554c). If the user responds that he or she does not want the

real-time clock reset ("no" exit to decision block 3554b), then PPE

650 may calculate a delta value of the difference between the

server's real-time clock and the electronic appliance’s real-time

clock 528 (Figure 69M, block 3554d). In either case, PPE 650

may store the current time Tcurrent into a non-volatile storage

-700-

Petitioner Apple Inc. — Exhibit 1002, p. 5328

Petitioner Apple Inc. - Exhibit 1002, p. 5329

wo 93/99209 PCl‘lUS97Il52-13

location Tstore indicating the current real-time (Figure 69M,

block 3554e).

Referring again to Figure 69K, PPE 650 can disable itself

5 if there is too much (or the wrong type) of a difference between

the trusted server’s time and the electronic appliance’s clock -

since such differences can indicate replay attacks, the possibility

that the PPE 650 has been restored based on a previous state,

etc. For example, if desired, PPE 650 can generate a time check

10 fail exception if the electronic appliance’s real-time clock 528

disagrees with the trusted server’s real-time by more than a

certain amount of acceptable drifi (Figure 69K, "yes" exit to

decision block 3556). In the event of such an exception, PPE 650

may disable itself (Figure 69K, block 3558) and require a dialog

15 between the user and registry 3476 (or other authority) -

providing additional protection against replay attacks and also

detecting clock failures that could lead to incorrect operation or

incorrect charges.

20 Dynamic Code Decryption and Data OverWriting

Operational materials 3472 may then decrypt the next

program segment dynamically (Figure 69K, block 3460. The

code may be decrypted dynamically when it is needed, then

re-encrypted or overwritten and discarded when not in use.

-701-

Petitioner Apple Inc. — Exhibit 1002, p. 5329

Petitioner Apple Inc. - Exhibit 1002, p. 5330

wo 93/09209 _ PcrIUs97I15243

This mechanism increases the tamper-resistance of the

executable code - thus providing additional tamper resistance for

PPE operations. As mentioned above, different decryption keys

may be required to decode different code portions, and the

5 decryption keys can be installation-specific so that an attacker

who successfully comprises the decryption key of one instance

cannot use that information to compromise any other instance’s

decryption key(s).

10 Once a portion of the operational materials 3472 has been

decrypted (Figure 69K, block 3560), that portion may

immediately overwrite all initialization code in memory since it

is no longer required (Figure 69K block 3562). The executing

operational materials 3472 may similarly overwrite all

15 unwrapped cryptographic keys once they are no longer needed,

and may also overwrite expanded key information developed by

initializing the cryptographic algorithms once no longer needed.

These techniques minimize the amount of time during which

usable key information is available for exposure in a memory

20 snapshot -— complicating all but the most dynamic of analysis

efibrts. Because all keys in permanent storage are either

encrypted or otherwise camouflaged, no such treatment is

required for I/O buffers.

-702-

Petitioner Apple Inc. — Exhibit 1002, p. 5330

Petitioner Apple Inc. - Exhibit 1002, p. 5331

wo 93/09209 PCI‘lUS97Il5243

Dynamic Check of Association Between Appliance and PPE

Instance

The executing operational materials 3472 may next

compare an embedded electronic appliance signature SIG’

5 against the electronic appliance signature SIG stored in the

electronic appliance itself (Figure 69K, decision block 3564). As

discussed above, this technique may be used to help prevent

operational materials 3472 from operating on any electronic

appliance 600 other than the one it was initially installed on.

10 . PPE 650 may disable operation if this machine signature check

fails ("no" exit to decision block 3564. Figure 69K; disable block

3566).

Self-Modifying and/or Hardware-Dependent Code Sequences

15 Executing operational materials 3472 may also employ

self-modifying code sequences that cannot easily be emulated

with a software debugger or single-stepping program (Figure

-“69Ifb‘lock 3568). These sequences may, for example, be

dependent on specific models of electronic appliances.600, and

20 may be patched into the operational materials 3472 as

appropriate to installation materials 3470 based on tests

performed during the installation process. Such

hardware-dependent sequences may be used to ensure that

critical algorithms yield different results when executed on the

-703-

Petitioner Apple Inc. — Exhibit 1002, p. 5331

Petitioner Apple Inc. - Exhibit 1002, p. 5332

wo 93/09209 PCTIU597115243

proper hardware as opposed to when executed on different

hardware or under software control such as in a debugger or

emulator. To prevent such hardware-dependent sequences from

being readily recognizable from a static examination of the code,

5 the sequences may be constructed at run time and then invoked -

so that they can be identified only by analysis of the instruction

sequences actually executed.

Dynamic Timing Checks

10 Executing operational materials 3472 may also make

dynamic timing checks on various code sequences, and refuse to

operate if they do not execute within the expected interval

(Figure 69K, block 3570, decision block 3572, "disable" block

3574). . An incorrect execution time suggests that the

15 operational materials 3472 are being externally manipulated

and/or analyzed or traced in some manner (eg, by a software

emulator). This technique thus provides additional protection

against dynamic analysis and/or modification

20 The expected execution intervals associated with certain

code sequences may be calculated during the installation

procedure. Resulting test values may be embedded into the

operational materials 3472. These timing tests may be

integrated with time integrity tests and dynamic integrity checks

-704-

Petitioner Apple Inc. — Exhibit 1002, p. 5332

Petitioner Apple Inc. - Exhibit 1002, p. 5333

W0 98/09209 PCT/U397/15243

to make it more difiicult to bypass them simply by patching out 4

the timing check. Care should be taken to eliminate false alarms

due to concurrent system activity (e.g., other tasks and/or

windows)..

Figure 69N' shows one example of a dynamic time check

routine 3570. In this example, a test may be performed to

determine whether it is time to perform another time check

(decision block 3570a). For example, this test 3570a may be

10 performed periodically and/or at the end of a time-dependent

sequence as described above. If performed periodically, a counter

V value may be incremented or reset to zero - readying this

counter for the next performance of test 3470A (see Figure 69N,

block 3570b, 3570c. 3570d).

15

If it is time to perform a check, PPE 650 compares the

stored time value Tstore with the current time value Tcurrent,

and determines whether the two values are within an acceptable

range (Figure 69N, decision block 3570E). If the two values

20 agree within an acceptable range (this range may be determined,

for example, in part by the time-dependent testing described

above), then PPE 650 may replace the stored time value Tstore

with the current Tcurrent in preparation for the next test

(Figure 69N, block 3570F). If, on the other hand, the two values

-705-

Petitioner Apple Inc. — Exhibit 1002, p. 5333

Petitioner Apple Inc. - Exhibit 1002, p. 5334

10

15

20

WO 98/09209 PC'rIUs97I1s243

are not within an acceptable range (the "not Within range" exit to"

decision block 3570E, Figure 69N), PPE 650 may disable

operation (block 3570G) and initiate a conversation with a

trusted time base or other verification facility to perform further

authenticity checking (Figure 69N, block 3570H).

As Figure 69L shows, further time checks may be performed

periodically and/or repeatedly based on other events (see block

3582, decision block 3584, disable block 3586).

Confounding Algorithms

The executing operational materials 3472 may also

perform various confounding algorithms - computationally

intensive algorithms that perform a complex operation in order

to generate values required at run time (Figure 69L, block 3576).

The purpose of such confounding algorithms is to make

infrequently invoked steps (e.g., initialization or other steps not

performed very frequently) inscrutable to an attacker who is

'—$ETssembling or tracing them. Confounding algorithms may

also be used for the time-dependent checking described above.

One example of such a "confounding algorithm" is a

modified version of the MD5 message digest function (applied

repeatedly to the same input value), which tests internally

generated results of the round functions and terminates when a

specific value is encountered. For example, one may make

-706-

Petitioner Apple Inc. — Exhibit 1002, p. 5334

Petitioner Apple Inc. - Exhibit 1002, p. 5335

wo 93/09209 PCI'I'US97Il5243

random modifications to the confounding algorithm (for example, i

by adjusting the "magic constants" in MD5) until it terminates

quickly enough to be useful with the desired value in some

register. This adjustment may be performed beforehand to yield

5 a prior knowledge of modifications that can then be installed

difierently and to each PPE 650 instance.

As one specific example, a family of 256 customized

confounding algorithms could be created, each defined by a

10 single modification of the ;VID5 "magic constants" (or even the

input data to MD5) so that the algorithm terminates with any of

256 possible values in some register. Critical values can then be

generated at run time by installing appropriate versions of the

algorithm into the operational materials 3472 and assembling

15 the values a byte at a time. Confounding algorithms may be

performed in a time-dependent value as described above; their

execution times may be logged and checked by PPE 650, and the

PPE 650 may disable operation if the confounding algorithms

run too rapidly or slowly.

20

"Such confounding algorithms are generally infeasible to

simulate by hand because they may require tens or hundreds of

millions of instructions to complete. They are expensive to

analyze at run time because single-stepping through the code is

— i707 -

Petitioner Apple Inc. — Exhibit 1002, p. 5335

Petitioner Apple Inc. - Exhibit 1002, p. 5336

wo 93/09209 PCTIUS97IlS243

time consuming (though not prohibitive, particularly if break

points are set at all the possible termination tests rather than for

every instruction). Although such confounding algorithms are

expensive in computation time, then need not be invoked

5 frequently - preserving efiiciency.

Random Modifications to Environment State

The executing operational materials 3472 may randomly

modify the PPE 650 environment state during normal operation

10 to reflect both actual PPE 650 operations being performed and to

include random modifications of data not significant to the

operating PPE 650 (Figure 69L, block 3578). Such techniques

help ensure that snapshots of the secure database 610 and

operational materials 3472 cannot readily be compared to

15 identify significant values and objects.

Such modifications may be based, for example, on actual

random values derived from unpredictable hardware events such

as disk I/O completion timing and keyboard timing. Such

20 techniques make it infeasible to experiment with "minor"

changes to the PPE 650 state even if the attacker can

successfully bypass integrity checks that prevent duplicates from

being made.

-708-

Petitioner Apple Inc. — Exhibit 1002, p. 5336

Petitioner Apple Inc. - Exhibit 1002, p. 5337

WO 98/09209 PCl‘IUS97I15243

Load Module Dynamic Decryption 8: -Re-Encryption

The executing operational materials 3472 may decrypt

load module 1100 code dynamically as needed, and re-encrypt it

or otherwise render it inscrutable when not in use (Figure 69L,

5 block 3580). In accordance with this technique, load module

executable code and/or data is decrypted dynamically when it is

needed, then re-encrypted or destroyed when not in use. In

addition, the location of executing load modules 1100 may be

varied randomly to foil attempts to set break points within the

10 load module. Different algorithms and a changing key may be

used to further confound dynamic analysis.

Hidden Secret Storage

The source database 610 and/or parts or all of operational

15 materials 3472 may be protected by cryptography employing

keys and/or authentication values hidden in normally

inaccessible locations in the appliance 600. If the key or

authentication value is not available, the decryption cannot be

performed, rendering PPE 650 unusable. Examples of such

20 locations include, but are not limited to:

- Disk storage artificially marked as damaged (for the

purpose of storing secrets);

0 Disk storage normally reserved as altemates for sectors

that may be marked as damaged;

-709-

Petitioner Apple Inc. — Exhibit 1002, p. 5337

Petitioner Apple Inc. - Exhibit 1002, p. 5338

WO 98109209 PCT/US97/15243

o Disk storage normally reserved for non-general purpose

use, such as sectors reserved by the manufacturer for

firmware storage, for storage of statistics, or for test

purposes, etc.;

5 - Non-volatile, writable, storage in the appliance or its

components, such as that used for configuration data,

device and controlled firmware, standard BIOS software,

etc;

- Unused storage in files maintained by an operating

10 system, such as the bytes between the logical end of a file

and the end of its last physical sector, etc.;

- Unused storage in file system controlstructures, such as

the bytes available to store as-yet-undefined attributes,

unused storage in file allocation maps and other

15 structures, unused storage in redundant (duplicate) file

maps and directories, unused or unneeded bytes in boot

records, etc.;

Storing secrets (e.g., cryptographic keys and

20 authentication values) in these locations serves two purposes: it

makes them difficult to locate by analysis of the PPE 650, and it

makes them difiicult to copy between one instance of the PPE

and another (or to replace the PPE’s contents with an earlier

version of the same).

-710-

Petitioner Apple Inc. — Exhibit 1002, p. 5338

Petitioner Apple Inc. - Exhibit 1002, p. 5339

3WO 98109209 PCT/US97I1524

Volatile Secret Storage

The secure database 610 and/or parts or all of operational

materials 3472 may be protected by cryptography employing

keys and/or authentication values ("cryptovariables") that are

5 maintained only in volatile storage during normal operation. For

example, during an initialization sequence, cryptovariables can

be read from permanent storage (e.g., disk). overwritten, and

held only in volatile memory during system operation. During

the shutdown sequence, the cryptovariables can be rewritten to

10 permanent storage.

This provides resistance to tampering because the

initialization sequence for an appliance, particularly a general-

purpose computer, is typically more difiicult to tamper with than

15 is the computer during normal operation. This technique

prevents the computer from itself being used to analyze the

contents of permanent storage media; only by removing the

media and analyzing it independently can the cryptovariables be

located and extracted. This technique has the drawback of

20 requiring the appliance’s operation always to be terminated

normally so that the termination sequence is guaranteed to

update the permanent storage. This drawback can be

ameliorated by maintaining frequent backups of the secure

database 610 and/or the protected crypto-variables that can be

-711-

Petitioner Apple Inc. — Exhibit 1002, p. 5339

Petitioner Apple Inc. - Exhibit 1002, p. 5340

WO 98109209 PCTIUS97Il5243

restored with administration by VDE administrator 200h if a

disorderly termination occurs.

Dynamic Integrity Check:

In this example, operational materials 3472 may also
0|

perform a variety of dynamic integrity checks that tie an

executing PPE 650 to a particular electronic appliance 600 and to

guard against various forms of replay or substitution attacks.

One example of a replay attack, for example. is an attack in

10 which a user restores the PPE 650 state from an earlier backup -

wiping out all recent billing records. PPE 650 includes a backup

mechanism (as discussed above in connection with Figures 39

and 40) that supports restoration of previous states after system

failure. Executing operational materials 3472 in this example

15 provides certain dynamic protection mechanisms (integrity

checks) that prevent such backup and restoration processes from

being misused to allow such replay attacks. Such checks may

identify incomplete or erroneous attempts to subvert tamper

resistant barrier 672. Great care must be taken to ensure that

20 these checks do not trigger as a result of execution or

implementation error, as there is potential for significant

disruption.

Petitioner Apple Inc. — Exhibit 1002, p. 5340

Petitioner Apple Inc. - Exhibit 1002, p. 5341

wo 93/09109 PCTIUS97/15243

For example, during PPE 650 operation, the internal state’

of the PPE is constantly being updated. During each interaction

with a trusted server, PPE 650 (and the trusted server) may test

the internal state of PPE 650 to determine whether it could be

5 derived from the internal state last seen by the trusted server for

this particular PPE 650 instance. If it could not, the result may

be taken as indicating a replay attack of some sort, and an

appropriate action can be taken (see Figure 69L, block 3592,

3594, 3596).

10

For example, such a check could be implemented using a

counter stored in PPE 650 and updated every time an operation

is performed. If the trusted server finds the counter to be

smaller than at the previous server interaction, this finding is

15 strong evidence that a previous state of the PPE 650

environment has been restored. In practice, the check might be

implemented with an obscure technique to prevent easy

manipulation of the counter value. For example, the counter

could be repeated hashing (e.g., with MD5) of a value that is

20 stored redundantly in several different locations within the

operational materials 3472 and secure database 610 - so that the

trusted server could verify that the current value can be derived

(e.g., by repeated MD5 applications) from a previous value. Such

checks may limit the severity of loss resulting from off-line

-713-

Petitioner Apple Inc. — Exhibit 1002, p. 5341

Petitioner Apple Inc. - Exhibit 1002, p. 5342

10

15

20

W098/09209 PCTIUS97l152-13

manipulation of PPE 650. Because the trusted server verifies

the consistency of PPE 650 at each interaction, the only loss that

may occur as a result of wholesale reloading of an earlier PPE

650 state is that of content that has already been delivered by

has not yet been charged for.

One example of a dynamic integrity check that executing

operational materials 3472 may perform (Figure 69L, block 3588)

might, for example, be the periodic verification of the integrity of

the operational materials code in memory by a checksum invoked

by a timer. If the timer does not tick regularly, the PPE 650 may

detect it and cease to operate (see Figure 69N). This verification

may counter attacks that might, for example, attempt to trick

PPE 650 access methods into releasing content that has been

decrypted but not electronically fingerprinted. Executing

operational materials 3472 may also include numerous internal

consistency checks to prevent substitution (replay) of stale

database 610 records, introduction of invalid load modules 1100,

external modification of the secure database 610, and so on.

Such checks may be made sufiiciently complex and interwoven

as to make modifications likely to be detected.

When an inconsistency is detected ("yes" exit to decision

block 3590, Figure 69L), PPE 650 can take appropriate action

-714-

Petitioner Apple Inc. — Exhibit 1002, p. 5342

Petitioner Apple Inc. - Exhibit 1002, p. 5343

10

15

20

W0 98I09209 PCI'lUS97ll5243

such as locking itself up from further use until reconstructed

under the trusted server’s control (Figure 69L, disable block

3591). For example, PPE 650 could encrypt its secure database

610 with a new, random key, then encrypt that with the sen'rer’s

public key. Only the server could then arrange to reconstruct the

user‘s instance of PPE 650.

Defense In Depth

Finally, although not a "camouflage" technique per se, the

complexity of operational materials 3472 may make it difficult to

understand them from the outside in. As discussed above, PPE

650 may make extensive use of RPC and coordinated work in

different threads of execution. Because much of the RPC trafiic

may be encrypted, it will be difficult to unravel even if

operational materials 3472 are heavily instrumented by the

attacker. Although the cryptographic keys are, in principal,

readily available in memory (e.g., because after all, the PPE 650

must be able to get them), there may be many keys and it will be

diflicult to identify the right one rapidly. In addition, a primary

benefit to be sought by subverting protection of software-based

PPE 650 installations is the ability to acquire content without

paying for it - in other words, the ability to "create money". The

integrity checks discussed above mean that anyyerror in

manipulating the budget and usage information data is likely to

-715-

Petitioner Apple Inc. — Exhibit 1002, p. 5343

Petitioner Apple Inc. - Exhibit 1002, p. 5344

wo 93/09209 PCT/US97/15243

be detected quickly. Even if the checks occur off-line withou.t

notification to any trusted server. it will make the user’s PPE

650 instance effectively useless - requiring its destruction and

recreation.

Networhng SPUa 500 and/or VDE Electronic Appliances 600

In the context of many computers interconnected by a local

or wide area network, it would be possible for one or a few of

them to be VDE electronic appliances 600. For example, a VDE-

10 capable server might include one or more SPUs 500. This

centralized VDE server could provide all VDE services required

within the network or it can share VDE service with VDE server

nodes; that is, it can perform a few, some, or most VDE service

activities. For example, a user’s non-VDE computer could issue a

15 request over the network for VDE-protected content. In response

to the request, the VDE server could comply by accessing the

appropriate VDE object 300, releasing the requested content and

delivering the content over the network 672 to the requesting

user. Such an arrangement would allow VDE capabilities to be

20 easily integrated into existing networks without requiring

modification or replacement of the various computers and other

devices connected to the networks.

-716-

Petitioner Apple Inc. — Exhibit 1002, p. 5344

Petitioner Apple Inc. - Exhibit 1002, p. 5345

WO 98109209 PCTIUS9'7Il52-13

For example, a VDE server having one or more protected

processing environments 650 could communicate over a network

with workstations that do not have a protected processing

environment. The VDE server could perform all secure VDE

UI processing, and release resulting content and other information

to the workstations on the network. This arrangement would

require no hardware or software modification to the

workstations.

10 However, some applications may require greater security,

flexibility and/or performance that may be obtained by providing

multiple VDE electronic appliances 600 connected to the same

network 672. Because commonly-used local area networks

constitute an insecure channel that may be subject to tampering

15 and/or eavesdropping, it is desirable in most secure applications

to protect the information communicated across the network. It

would be possible to use conventional network security

techniques to protect VDE-released content or other VDE

information communicated across a network 672 between a VDE

20 electronic appliance 600 and a non-VDE electronic appliance.

However, advantages are obtained by providing multiple

networked VDE electronic appliances 600 within the same

system.

-717-

Petitioner Apple Inc. — Exhibit 1002, p. 5345

Petitioner Apple Inc. - Exhibit 1002, p. 5346

wo 93/09209 PCT/US97/15243

As discussed above in connection with Figure 8, multiple

VDE electronic appliances 600 may communicate with one

another over a network 672 or other communications path. Such

networldng of VDE electronic appliances 600 can provide

5 advantages. Advantages include, for example, the possibility of

centralizing VDE resources, storing and/or archiving metering

information on a server VDE and delivering information and

services efficiently across the network 672 to multiple electronic

appliances 600.

10

For example, in a local area network topology, a "VDE

server“ electronic appliance 600 could store VDE-protected

information and make it available to one or more additional

electronic appliances 600 or computers that may communicate

15 with the server over network 672. As one example, anobject

repository 728 storing VDE objects could be maintained at the

centralized server, and each of many networked electronic

"a._‘;T§liance 600 users could access the centralized object repository

over the network 672 as needed. When a user needsto access a

20 particular VDE object 300, her electronic appliance 600 could

issue a request over network 672 to obtain a copy of the object.

The "VDE server“ could deliver all or a portion of the requested

object 300 in response to the request. Providing such a

centralized object repository 728 would have the advantage of

-718-

Petitioner Apple Inc. — Exhibit 1002, p. 5346

Petitioner Apple Inc. - Exhibit 1002, p. 5347

wo 93539209 PCI‘IUS97ll5243

minimizing mass storage requirements local to each electronic

appliance 600 connected to the network 672, eliminate

redundant copies of the same information, ease information

management burdens, provide additional physical and/or other

5 security for particularly important VDE processes and/or

information occurring at the server, where providing such

security at VDE nodes may be commercially impractical for

certain business models, etc.

10 It may also be desirable to centralize secure database 610

in a local area network topology. For example, in the context of a

local area network, a secure database 610 server could be

provided at a centralized location. Each of several electronic

appliances 600 connected to a local area network 672 could issue

15 requests for secure database 610 records over the network, and

receive those records via the network. The records could be

provided over the network in encrypted form. "Keys“ needed to

decrypt the records could be shared by transmitting them across

the network in secure communication exchanges. Centralizing

20 secure database 610 in a network 672 has potential advantages

of minimizing or eliminating secondary storage and/or other

memory requirements for each of the networked electronic

appliances 600, avoiding redundant information storage,

-719-

Petitioner Apple Inc. — Exhibit 1002, p. 5347

Petitioner Apple Inc. - Exhibit 1002, p. 5348

WO 98109209 PC['IUS97I15243

allowing centralized backup services to be provided. easing

information management burdens, etc.

One way to inexpensively and conveniently deploy

5 multiple instances of VDE electronic appliances 600 across a

network would be to provide network workstations with software

defining an HPE 655. This arrangement requires no hardware

modification of the workstations; an HPE 655 can be defined

using software only. An SPE(s) 503 and/or I-IPE(s) 655 could also

10 be provided within a VDE server. This arrangement has the

advantage of allowing distributed VDE network processing

without requiring workstations to be customized or modified

(except for loading a new program(s) into them). VDE functions

requiring high levels of security may be restricted to an SPU-

15 based VDE server. “Secure” HPE-based workstations could

perform VDE functions requiring less security, and could also

coordinate their activities with the VDE server.

Thus, it may be advantageous to provide multiple VDE

20 electronic appliances 600 within the same network. It may also

be advantageous to provide multiple VDE electronic appliances

600 within the same workstation or other electronic appliance

600. For example, an electronic appliance 600 may include

-720-

Petitioner Apple Inc. — Exhibit 1002, p. 5348

Petitioner Apple Inc. - Exhibit 1002, p. 5349

10

15

20

WO 98109209 PCTIUS97/15243

multiple electronic appliances 600 each of which have a SPU 500

and are capable of performing VDE functions.

For example, one or more VDE electronic appliances 600

can be used as input/output device(s) of a computer system. This

may eliminate the need to decrypt information in one device and

then move it in unencrypted form across some bus or other

unsecured charmel to another device such as a peripheral. If the

peripheral device itself is a VDE electronic appliance 600 having

a SPU 500, VDE-protected information may be securely sent to

the peripheral across the insecure chamiel for processing (e.g.,

decryption) at the peripheral device. Giving the peripheral

device the capability of handling VDE-protected information

directly also increases flexibility. For example, the VDE

electronic appliance 600 peripheral device may control VDE

object 300 usage. It may, for example, meter the usage or other

parameters associated with the information it processes, and it

may gather audit trials and other information specific to the

processing it performs in order to provide greater information

gathering about VDE object usage. Providing multiple

cooperating VDE electronic appliances 600 may also increase

performance by eliminating the need to move encrypted

information to a VDE electronic appliance 600 and then move it

again in unencrypted form to a non-VDE device. The VDE-

-721-

Petitioner Apple Inc. — Exhibit 1002, p. 5349

Petitioner Apple Inc. - Exhibit 1002, p. 5350

wo 93/09209 PCl‘IUS97I15243

protected information can be moved directly to its destination

device which, if VDE-capable, may directly process it without

requiring involvement by some other VDE electronic appliance

600.

Figure 70 shows an example of an arrangement 2630

comprising multiple VDE electronic appliances 600(1), 600(2),

600(3), . . . , 600(N). VDE electronic appliances 600(1) . . . 600(N)

may communicate with one another over a communications path

10 2631 (e.g., the system bus of a work station. a telephone or other

wire, a cable, a backplane, a network 672, or any other

communications mechanism). Each of the electronic appliances

600 shown in the figure may have the same general architecture

shown in Figure 8, i.e., they may each include a CPU (or

15 microcontroller) 654, SPU 500, RAM 656, ROM 658, and system

bus 653. Each of the electronic appliances 600 shown in the

figure may have an interface/controller 2632 (which may be

considered to be a particular kind of I/O controller 660 and/or

communications controller 666 shown in Figure 8). This

20 interface/controller 2632 provides an interface between the

electronic appliance system bus 653 and an appropriate electrical

connector 2634. Electrical connectors 2634 of each of the

respective electronic appliances 600(1), . . . 600(N) provide a

-722-

Petitioner Apple Inc. — Exhibit 1002, p. 5350

Petitioner Apple Inc. - Exhibit 1002, p. 5351

wo 93/09209 PCTIUS97I15243

connection to a common network 672 or other communication

paths.

Although each of electronic appliances 600 shown in the

5 figure may have a generally similar architecture, they may

perform different specialized tasks. For example, electronic

appliance 600(1) might comprise a central processing section of a

workstation responsible for managing the overall operation of

the workstation and providing computation resources. Electronic

10 appliance 600(2) might be a mass storage device 620 for the same

workstation, and could provide a storage mechanism 2636 that

might, for example, read information from and write information

to a secondary storage device 652. Electronic appliance 600(3)

might be a display device 614 responsible for performing display

15 tasks, and could provide a displaying mechanism 2638 such asa

graphics controller and associated video or other display.

Electronic appliance 600(N) might be a printer 622 that performs

printing related tasks and could include, for example, a print . V

mechanism 2640.

20

Each of electronic appliances 600(1), . . . 600(N) could

comprise a different module of the same workstation device all

contained Within a common housing, or the different electronic

appliances could be located within different system components.

-723-

Petitioner Apple Inc. — Exhibit 1002, p. 5351

Petitioner Apple Inc. - Exhibit 1002, p. 5352

Petitioner Apple Inc. - Exhibit 1002, p. 5353

Petitioner Apple Inc. - Exhibit 1002, p. 5354

Petitioner Apple Inc. - Exhibit 1002, p. 5355

Petitioner Apple Inc. - Exhibit 1002, p. 5356

Petitioner Apple Inc. - Exhibit 1002, p. 5357

Petitioner Apple Inc. - Exhibit 1002, p. 5358

Petitioner Apple Inc. - Exhibit 1002, p. 5359

Petitioner Apple Inc. - Exhibit 1002, p. 5360

Petitioner Apple Inc. - Exhibit 1002, p. 5361

Petitioner Apple Inc. - Exhibit 1002, p. 5362

Petitioner Apple Inc. - Exhibit 1002, p. 5363

Petitioner Apple Inc. - Exhibit 1002, p. 5364

Petitioner Apple Inc. - Exhibit 1002, p. 5365

Petitioner Apple Inc. - Exhibit 1002, p. 5366

Petitioner Apple Inc. - Exhibit 1002, p. 5367

Petitioner Apple Inc. - Exhibit 1002, p. 5368

Petitioner Apple Inc. - Exhibit 1002, p. 5369

Petitioner Apple Inc. - Exhibit 1002, p. 5370

Petitioner Apple Inc. - Exhibit 1002, p. 5371

Petitioner Apple Inc. - Exhibit 1002, p. 5372

Petitioner Apple Inc. - Exhibit 1002, p. 5373

Petitioner Apple Inc. - Exhibit 1002, p. 5374

Petitioner Apple Inc. - Exhibit 1002, p. 5375

Petitioner Apple Inc. - Exhibit 1002, p. 5376

Petitioner Apple Inc. - Exhibit 1002, p. 5377

Petitioner Apple Inc. - Exhibit 1002, p. 5378

Petitioner Apple Inc. - Exhibit 1002, p. 5379

Petitioner Apple Inc. - Exhibit 1002, p. 5380

Petitioner Apple Inc. - Exhibit 1002, p. 5381

Petitioner Apple Inc. - Exhibit 1002, p. 5382

Petitioner Apple Inc. - Exhibit 1002, p. 5383

Petitioner Apple Inc. - Exhibit 1002, p. 5384

Petitioner Apple Inc. - Exhibit 1002, p. 5385

Petitioner Apple Inc. - Exhibit 1002, p. 5386

Petitioner Apple Inc. - Exhibit 1002, p. 5387

Petitioner Apple Inc. - Exhibit 1002, p. 5388

Petitioner Apple Inc. - Exhibit 1002, p. 5389

Petitioner Apple Inc. - Exhibit 1002, p. 5390

Petitioner Apple Inc. - Exhibit 1002, p. 5391

Petitioner Apple Inc. - Exhibit 1002, p. 5392

Petitioner Apple Inc. - Exhibit 1002, p. 5393

Petitioner Apple Inc. - Exhibit 1002, p. 5394

Petitioner Apple Inc. - Exhibit 1002, p. 5395

Petitioner Apple Inc. - Exhibit 1002, p. 5396

Petitioner Apple Inc. - Exhibit 1002, p. 5397

Petitioner Apple Inc. - Exhibit 1002, p. 5398

Petitioner Apple Inc. - Exhibit 1002, p. 5399

Petitioner Apple Inc. - Exhibit 1002, p. 5400

Petitioner Apple Inc. - Exhibit 1002, p. 5401

Petitioner Apple Inc. - Exhibit 1002, p. 5402

Petitioner Apple Inc. - Exhibit 1002, p. 5403

Petitioner Apple Inc. - Exhibit 1002, p. 5404

Petitioner Apple Inc. - Exhibit 1002, p. 5405

Petitioner Apple Inc. - Exhibit 1002, p. 5406

Petitioner Apple Inc. - Exhibit 1002, p. 5407

Petitioner Apple Inc. - Exhibit 1002, p. 5408

Petitioner Apple Inc. - Exhibit 1002, p. 5409

Petitioner Apple Inc. - Exhibit 1002, p. 5410

Petitioner Apple Inc. - Exhibit 1002, p. 5411

Petitioner Apple Inc. - Exhibit 1002, p. 5412

Petitioner Apple Inc. - Exhibit 1002, p. 5413

Petitioner Apple Inc. - Exhibit 1002, p. 5414

Petitioner Apple Inc. - Exhibit 1002, p. 5415

Petitioner Apple Inc. - Exhibit 1002, p. 5416

Petitioner Apple Inc. - Exhibit 1002, p. 5417

Petitioner Apple Inc. - Exhibit 1002, p. 5418

Petitioner Apple Inc. - Exhibit 1002, p. 5419

Petitioner Apple Inc. - Exhibit 1002, p. 5420

Petitioner Apple Inc. - Exhibit 1002, p. 5421

Petitioner Apple Inc. - Exhibit 1002, p. 5422

Petitioner Apple Inc. - Exhibit 1002, p. 5423

Petitioner Apple Inc. - Exhibit 1002, p. 5424

Petitioner Apple Inc. - Exhibit 1002, p. 5425

Petitioner Apple Inc. - Exhibit 1002, p. 5426

Petitioner Apple Inc. - Exhibit 1002, p. 5427

Petitioner Apple Inc. - Exhibit 1002, p. 5428

Petitioner Apple Inc. - Exhibit 1002, p. 5429

Petitioner Apple Inc. - Exhibit 1002, p. 5430

Petitioner Apple Inc. - Exhibit 1002, p. 5431

Petitioner Apple Inc. - Exhibit 1002, p. 5432

Petitioner Apple Inc. - Exhibit 1002, p. 5433

Petitioner Apple Inc. - Exhibit 1002, p. 5434

Petitioner Apple Inc. - Exhibit 1002, p. 5435

Petitioner Apple Inc. - Exhibit 1002, p. 5436

Petitioner Apple Inc. - Exhibit 1002, p. 5437

Petitioner Apple Inc. - Exhibit 1002, p. 5438

Petitioner Apple Inc. - Exhibit 1002, p. 5439

Petitioner Apple Inc. - Exhibit 1002, p. 5440

Petitioner Apple Inc. - Exhibit 1002, p. 5441

Petitioner Apple Inc. - Exhibit 1002, p. 5442

Petitioner Apple Inc. - Exhibit 1002, p. 5443

Petitioner Apple Inc. - Exhibit 1002, p. 5444

Petitioner Apple Inc. - Exhibit 1002, p. 5445

Petitioner Apple Inc. - Exhibit 1002, p. 5446

Petitioner Apple Inc. - Exhibit 1002, p. 5447

Petitioner Apple Inc. - Exhibit 1002, p. 5448

Petitioner Apple Inc. - Exhibit 1002, p. 5449

Petitioner Apple Inc. - Exhibit 1002, p. 5450

Petitioner Apple Inc. - Exhibit 1002, p. 5451

Petitioner Apple Inc. - Exhibit 1002, p. 5452

Petitioner Apple Inc. - Exhibit 1002, p. 5453

Petitioner Apple Inc. - Exhibit 1002, p. 5454

Petitioner Apple Inc. - Exhibit 1002, p. 5455

Petitioner Apple Inc. - Exhibit 1002, p. 5456

Petitioner Apple Inc. - Exhibit 1002, p. 5457

Petitioner Apple Inc. - Exhibit 1002, p. 5458

Petitioner Apple Inc. - Exhibit 1002, p. 5459

Petitioner Apple Inc. - Exhibit 1002, p. 5460

Petitioner Apple Inc. - Exhibit 1002, p. 5461

Petitioner Apple Inc. - Exhibit 1002, p. 5462

Petitioner Apple Inc. - Exhibit 1002, p. 5463

Petitioner Apple Inc. - Exhibit 1002, p. 5464

Petitioner Apple Inc. - Exhibit 1002, p. 5465

Petitioner Apple Inc. - Exhibit 1002, p. 5466

Petitioner Apple Inc. - Exhibit 1002, p. 5467

Petitioner Apple Inc. - Exhibit 1002, p. 5468

Petitioner Apple Inc. - Exhibit 1002, p. 5469

Petitioner Apple Inc. - Exhibit 1002, p. 5470

Petitioner Apple Inc. - Exhibit 1002, p. 5471

Petitioner Apple Inc. - Exhibit 1002, p. 5472

Petitioner Apple Inc. - Exhibit 1002, p. 5473

Petitioner Apple Inc. - Exhibit 1002, p. 5474

Petitioner Apple Inc. - Exhibit 1002, p. 5475

Petitioner Apple Inc. - Exhibit 1002, p. 5476

Petitioner Apple Inc. - Exhibit 1002, p. 5477

Petitioner Apple Inc. - Exhibit 1002, p. 5478

Petitioner Apple Inc. - Exhibit 1002, p. 5479

Petitioner Apple Inc. - Exhibit 1002, p. 5480

Petitioner Apple Inc. - Exhibit 1002, p. 5481

Petitioner Apple Inc. - Exhibit 1002, p. 5482

Petitioner Apple Inc. - Exhibit 1002, p. 5483

Petitioner Apple Inc. - Exhibit 1002, p. 5484

Petitioner Apple Inc. - Exhibit 1002, p. 5485

Petitioner Apple Inc. - Exhibit 1002, p. 5486

Petitioner Apple Inc. - Exhibit 1002, p. 5487

Petitioner Apple Inc. - Exhibit 1002, p. 5488

Petitioner Apple Inc. - Exhibit 1002, p. 5489

Petitioner Apple Inc. - Exhibit 1002, p. 5490

Petitioner Apple Inc. - Exhibit 1002, p. 5491

Petitioner Apple Inc. - Exhibit 1002, p. 5492

Petitioner Apple Inc. - Exhibit 1002, p. 5493

Petitioner Apple Inc. - Exhibit 1002, p. 5494

Petitioner Apple Inc. - Exhibit 1002, p. 5495

Petitioner Apple Inc. - Exhibit 1002, p. 5496

Petitioner Apple Inc. - Exhibit 1002, p. 5497

Petitioner Apple Inc. - Exhibit 1002, p. 5498

Petitioner Apple Inc. - Exhibit 1002, p. 5499

Petitioner Apple Inc. - Exhibit 1002, p. 5500

Petitioner Apple Inc. - Exhibit 1002, p. 5501

Petitioner Apple Inc. - Exhibit 1002, p. 5502

Petitioner Apple Inc. - Exhibit 1002, p. 5503

Petitioner Apple Inc. - Exhibit 1002, p. 5504

Petitioner Apple Inc. - Exhibit 1002, p. 5505

Petitioner Apple Inc. - Exhibit 1002, p. 5506

Petitioner Apple Inc. - Exhibit 1002, p. 5507

Petitioner Apple Inc. - Exhibit 1002, p. 5508

Petitioner Apple Inc. - Exhibit 1002, p. 5509

Petitioner Apple Inc. - Exhibit 1002, p. 5510

Petitioner Apple Inc. - Exhibit 1002, p. 5511

Petitioner Apple Inc. - Exhibit 1002, p. 5512

Petitioner Apple Inc. - Exhibit 1002, p. 5513

Petitioner Apple Inc. - Exhibit 1002, p. 5514

Petitioner Apple Inc. - Exhibit 1002, p. 5515

Petitioner Apple Inc. - Exhibit 1002, p. 5516

Petitioner Apple Inc. - Exhibit 1002, p. 5517

Petitioner Apple Inc. - Exhibit 1002, p. 5518

Petitioner Apple Inc. - Exhibit 1002, p. 5519

Petitioner Apple Inc. - Exhibit 1002, p. 5520

Petitioner Apple Inc. - Exhibit 1002, p. 5521

Petitioner Apple Inc. - Exhibit 1002, p. 5522

Petitioner Apple Inc. - Exhibit 1002, p. 5523

Petitioner Apple Inc. - Exhibit 1002, p. 5524

Petitioner Apple Inc. - Exhibit 1002, p. 5525

Petitioner Apple Inc. - Exhibit 1002, p. 5526

Petitioner Apple Inc. - Exhibit 1002, p. 5527

Petitioner Apple Inc. - Exhibit 1002, p. 5528

Petitioner Apple Inc. - Exhibit 1002, p. 5529

Petitioner Apple Inc. - Exhibit 1002, p. 5530

Petitioner Apple Inc. - Exhibit 1002, p. 5531

Petitioner Apple Inc. - Exhibit 1002, p. 5532

Petitioner Apple Inc. - Exhibit 1002, p. 5533

Petitioner Apple Inc. - Exhibit 1002, p. 5534

Petitioner Apple Inc. - Exhibit 1002, p. 5535

Petitioner Apple Inc. - Exhibit 1002, p. 5536

Petitioner Apple Inc. - Exhibit 1002, p. 5537

Petitioner Apple Inc. - Exhibit 1002, p. 5538

Petitioner Apple Inc. - Exhibit 1002, p. 5539

Petitioner Apple Inc. - Exhibit 1002, p. 5540

Petitioner Apple Inc. - Exhibit 1002, p. 5541

Petitioner Apple Inc. - Exhibit 1002, p. 5542

Petitioner Apple Inc. - Exhibit 1002, p. 5543

Petitioner Apple Inc. - Exhibit 1002, p. 5544

Petitioner Apple Inc. - Exhibit 1002, p. 5545

Petitioner Apple Inc. - Exhibit 1002, p. 5546

Petitioner Apple Inc. - Exhibit 1002, p. 5547

Petitioner Apple Inc. - Exhibit 1002, p. 5548

Petitioner Apple Inc. - Exhibit 1002, p. 5549

Petitioner Apple Inc. - Exhibit 1002, p. 5550

Petitioner Apple Inc. - Exhibit 1002, p. 5551

Petitioner Apple Inc. - Exhibit 1002, p. 5552

Petitioner Apple Inc. - Exhibit 1002, p. 5553

Petitioner Apple Inc. - Exhibit 1002, p. 5554

Petitioner Apple Inc. - Exhibit 1002, p. 5555

Petitioner Apple Inc. - Exhibit 1002, p. 5556

Petitioner Apple Inc. - Exhibit 1002, p. 5557

Petitioner Apple Inc. - Exhibit 1002, p. 5558

Petitioner Apple Inc. - Exhibit 1002, p. 5559

Petitioner Apple Inc. - Exhibit 1002, p. 5560

Petitioner Apple Inc. - Exhibit 1002, p. 5561

Petitioner Apple Inc. - Exhibit 1002, p. 5562

Petitioner Apple Inc. - Exhibit 1002, p. 5563

Petitioner Apple Inc. - Exhibit 1002, p. 5564

Petitioner Apple Inc. - Exhibit 1002, p. 5565

Petitioner Apple Inc. - Exhibit 1002, p. 5566

Petitioner Apple Inc. - Exhibit 1002, p. 5567

Petitioner Apple Inc. - Exhibit 1002, p. 5568

Petitioner Apple Inc. - Exhibit 1002, p. 5569

Petitioner Apple Inc. - Exhibit 1002, p. 5570

Petitioner Apple Inc. - Exhibit 1002, p. 5571

Petitioner Apple Inc. - Exhibit 1002, p. 5572

Petitioner Apple Inc. - Exhibit 1002, p. 5573

Petitioner Apple Inc. - Exhibit 1002, p. 5574

Petitioner Apple Inc. - Exhibit 1002, p. 5575

Petitioner Apple Inc. - Exhibit 1002, p. 5576

Petitioner Apple Inc. - Exhibit 1002, p. 5577

Petitioner Apple Inc. - Exhibit 1002, p. 5578

Petitioner Apple Inc. - Exhibit 1002, p. 5579

Petitioner Apple Inc. - Exhibit 1002, p. 5580

Petitioner Apple Inc. - Exhibit 1002, p. 5581

Petitioner Apple Inc. - Exhibit 1002, p. 5582

Petitioner Apple Inc. - Exhibit 1002, p. 5583

Petitioner Apple Inc. - Exhibit 1002, p. 5584

Petitioner Apple Inc. - Exhibit 1002, p. 5585

Petitioner Apple Inc. - Exhibit 1002, p. 5586

Petitioner Apple Inc. - Exhibit 1002, p. 5587

Petitioner Apple Inc. - Exhibit 1002, p. 5588

Petitioner Apple Inc. - Exhibit 1002, p. 5589

Petitioner Apple Inc. - Exhibit 1002, p. 5590

Petitioner Apple Inc. - Exhibit 1002, p. 5591

Petitioner Apple Inc. - Exhibit 1002, p. 5592

Petitioner Apple Inc. - Exhibit 1002, p. 5593

Petitioner Apple Inc. - Exhibit 1002, p. 5594

Petitioner Apple Inc. - Exhibit 1002, p. 5595

Petitioner Apple Inc. - Exhibit 1002, p. 5596

Petitioner Apple Inc. - Exhibit 1002, p. 5597

Petitioner Apple Inc. - Exhibit 1002, p. 5598

Petitioner Apple Inc. - Exhibit 1002, p. 5599

Petitioner Apple Inc. - Exhibit 1002, p. 5600

Petitioner Apple Inc. - Exhibit 1002, p. 5601

Petitioner Apple Inc. - Exhibit 1002, p. 5602

Petitioner Apple Inc. - Exhibit 1002, p. 5603

Petitioner Apple Inc. - Exhibit 1002, p. 5604

Petitioner Apple Inc. - Exhibit 1002, p. 5605

Petitioner Apple Inc. - Exhibit 1002, p. 5606

Petitioner Apple Inc. - Exhibit 1002, p. 5607

Petitioner Apple Inc. - Exhibit 1002, p. 5608

Petitioner Apple Inc. - Exhibit 1002, p. 5609

Petitioner Apple Inc. - Exhibit 1002, p. 5610

Petitioner Apple Inc. - Exhibit 1002, p. 5611

Petitioner Apple Inc. - Exhibit 1002, p. 5612

Petitioner Apple Inc. - Exhibit 1002, p. 5613

Petitioner Apple Inc. - Exhibit 1002, p. 5614

Petitioner Apple Inc. - Exhibit 1002, p. 5615

Petitioner Apple Inc. - Exhibit 1002, p. 5616

Petitioner Apple Inc. - Exhibit 1002, p. 5617

Petitioner Apple Inc. - Exhibit 1002, p. 5618

Petitioner Apple Inc. - Exhibit 1002, p. 5619

Petitioner Apple Inc. - Exhibit 1002, p. 5620

Petitioner Apple Inc. - Exhibit 1002, p. 5621

Petitioner Apple Inc. - Exhibit 1002, p. 5622

Petitioner Apple Inc. - Exhibit 1002, p. 5623

Petitioner Apple Inc. - Exhibit 1002, p. 5624

Petitioner Apple Inc. - Exhibit 1002, p. 5625

Petitioner Apple Inc. - Exhibit 1002, p. 5626

Petitioner Apple Inc. - Exhibit 1002, p. 5627

Petitioner Apple Inc. - Exhibit 1002, p. 5628

Petitioner Apple Inc. - Exhibit 1002, p. 5629

Petitioner Apple Inc. - Exhibit 1002, p. 5630

Petitioner Apple Inc. - Exhibit 1002, p. 5631

Petitioner Apple Inc. - Exhibit 1002, p. 5632

Petitioner Apple Inc. - Exhibit 1002, p. 5633

Petitioner Apple Inc. - Exhibit 1002, p. 5634

Petitioner Apple Inc. - Exhibit 1002, p. 5635

Petitioner Apple Inc. - Exhibit 1002, p. 5636

Petitioner Apple Inc. - Exhibit 1002, p. 5637

Petitioner Apple Inc. - Exhibit 1002, p. 5638

Petitioner Apple Inc. - Exhibit 1002, p. 5639

Petitioner Apple Inc. - Exhibit 1002, p. 5640

Petitioner Apple Inc. - Exhibit 1002, p. 5641

Petitioner Apple Inc. - Exhibit 1002, p. 5642

Petitioner Apple Inc. - Exhibit 1002, p. 5643

Petitioner Apple Inc. - Exhibit 1002, p. 5644

Petitioner Apple Inc. - Exhibit 1002, p. 5645

Petitioner Apple Inc. - Exhibit 1002, p. 5646

Petitioner Apple Inc. - Exhibit 1002, p. 5647

Petitioner Apple Inc. - Exhibit 1002, p. 5648

Petitioner Apple Inc. - Exhibit 1002, p. 5649

Petitioner Apple Inc. - Exhibit 1002, p. 5650

Petitioner Apple Inc. - Exhibit 1002, p. 5651

Petitioner Apple Inc. - Exhibit 1002, p. 5652

Petitioner Apple Inc. - Exhibit 1002, p. 5653

Petitioner Apple Inc. - Exhibit 1002, p. 5654

Petitioner Apple Inc. - Exhibit 1002, p. 5655

Petitioner Apple Inc. - Exhibit 1002, p. 5656

Petitioner Apple Inc. - Exhibit 1002, p. 5657

Petitioner Apple Inc. - Exhibit 1002, p. 5658

Petitioner Apple Inc. - Exhibit 1002, p. 5659

Petitioner Apple Inc. - Exhibit 1002, p. 5660

Petitioner Apple Inc. - Exhibit 1002, p. 5661

Petitioner Apple Inc. - Exhibit 1002, p. 5662

Petitioner Apple Inc. - Exhibit 1002, p. 5663

Petitioner Apple Inc. - Exhibit 1002, p. 5664

Petitioner Apple Inc. - Exhibit 1002, p. 5665

Petitioner Apple Inc. - Exhibit 1002, p. 5666

Petitioner Apple Inc. - Exhibit 1002, p. 5667

Petitioner Apple Inc. - Exhibit 1002, p. 5668

Petitioner Apple Inc. - Exhibit 1002, p. 5669

Petitioner Apple Inc. - Exhibit 1002, p. 5670

Petitioner Apple Inc. - Exhibit 1002, p. 5671

Petitioner Apple Inc. - Exhibit 1002, p. 5672

Petitioner Apple Inc. - Exhibit 1002, p. 5673

Petitioner Apple Inc. - Exhibit 1002, p. 5674

Petitioner Apple Inc. - Exhibit 1002, p. 5675

Petitioner Apple Inc. - Exhibit 1002, p. 5676

Petitioner Apple Inc. - Exhibit 1002, p. 5677

Petitioner Apple Inc. - Exhibit 1002, p. 5678

Petitioner Apple Inc. - Exhibit 1002, p. 5679

Petitioner Apple Inc. - Exhibit 1002, p. 5680

Petitioner Apple Inc. - Exhibit 1002, p. 5681

Petitioner Apple Inc. - Exhibit 1002, p. 5682

Petitioner Apple Inc. - Exhibit 1002, p. 5683

Petitioner Apple Inc. - Exhibit 1002, p. 5684

Petitioner Apple Inc. - Exhibit 1002, p. 5685

Petitioner Apple Inc. - Exhibit 1002, p. 5686

Petitioner Apple Inc. - Exhibit 1002, p. 5687

Petitioner Apple Inc. - Exhibit 1002, p. 5688

Petitioner Apple Inc. - Exhibit 1002, p. 5689

Petitioner Apple Inc. - Exhibit 1002, p. 5690

Petitioner Apple Inc. - Exhibit 1002, p. 5691

Petitioner Apple Inc. - Exhibit 1002, p. 5692

Petitioner Apple Inc. - Exhibit 1002, p. 5693

Petitioner Apple Inc. - Exhibit 1002, p. 5694

Petitioner Apple Inc. - Exhibit 1002, p. 5695

Petitioner Apple Inc. - Exhibit 1002, p. 5696

Petitioner Apple Inc. - Exhibit 1002, p. 5697

Petitioner Apple Inc. - Exhibit 1002, p. 5698

Petitioner Apple Inc. - Exhibit 1002, p. 5699

Petitioner Apple Inc. - Exhibit 1002, p. 5700

Petitioner Apple Inc. - Exhibit 1002, p. 5701

Petitioner Apple Inc. - Exhibit 1002, p. 5702

Petitioner Apple Inc. - Exhibit 1002, p. 5703

Petitioner Apple Inc. - Exhibit 1002, p. 5704

Petitioner Apple Inc. - Exhibit 1002, p. 5705

Petitioner Apple Inc. - Exhibit 1002, p. 5706

Petitioner Apple Inc. - Exhibit 1002, p. 5707

Petitioner Apple Inc. - Exhibit 1002, p. 5708

Petitioner Apple Inc. - Exhibit 1002, p. 5709

Petitioner Apple Inc. - Exhibit 1002, p. 5710

Petitioner Apple Inc. - Exhibit 1002, p. 5711

Petitioner Apple Inc. - Exhibit 1002, p. 5712

Petitioner Apple Inc. - Exhibit 1002, p. 5713

Petitioner Apple Inc. - Exhibit 1002, p. 5714

Petitioner Apple Inc. - Exhibit 1002, p. 5715

Petitioner Apple Inc. - Exhibit 1002, p. 5716

Petitioner Apple Inc. - Exhibit 1002, p. 5717

Petitioner Apple Inc. - Exhibit 1002, p. 5718

Petitioner Apple Inc. - Exhibit 1002, p. 5719

Petitioner Apple Inc. - Exhibit 1002, p. 5720

Petitioner Apple Inc. - Exhibit 1002, p. 5721

Petitioner Apple Inc. - Exhibit 1002, p. 5722

Petitioner Apple Inc. - Exhibit 1002, p. 5723

Petitioner Apple Inc. - Exhibit 1002, p. 5724

Petitioner Apple Inc. - Exhibit 1002, p. 5725

Petitioner Apple Inc. - Exhibit 1002, p. 5726

Petitioner Apple Inc. - Exhibit 1002, p. 5727

Petitioner Apple Inc. - Exhibit 1002, p. 5728

Petitioner Apple Inc. - Exhibit 1002, p. 5729

Petitioner Apple Inc. - Exhibit 1002, p. 5730

Petitioner Apple Inc. - Exhibit 1002, p. 5731

Petitioner Apple Inc. - Exhibit 1002, p. 5732

Petitioner Apple Inc. - Exhibit 1002, p. 5733

Petitioner Apple Inc. - Exhibit 1002, p. 5734

Petitioner Apple Inc. - Exhibit 1002, p. 5735

Petitioner Apple Inc. - Exhibit 1002, p. 5736

Petitioner Apple Inc. - Exhibit 1002, p. 5737

Petitioner Apple Inc. - Exhibit 1002, p. 5738

Petitioner Apple Inc. - Exhibit 1002, p. 5739

Petitioner Apple Inc. - Exhibit 1002, p. 5740

Petitioner Apple Inc. - Exhibit 1002, p. 5741

Petitioner Apple Inc. - Exhibit 1002, p. 5742

Petitioner Apple Inc. - Exhibit 1002, p. 5743

Petitioner Apple Inc. - Exhibit 1002, p. 5744

Petitioner Apple Inc. - Exhibit 1002, p. 5745

Petitioner Apple Inc. - Exhibit 1002, p. 5746

Petitioner Apple Inc. - Exhibit 1002, p. 5747

Petitioner Apple Inc. - Exhibit 1002, p. 5748

Petitioner Apple Inc. - Exhibit 1002, p. 5749

Petitioner Apple Inc. - Exhibit 1002, p. 5750

Petitioner Apple Inc. - Exhibit 1002, p. 5751

Petitioner Apple Inc. - Exhibit 1002, p. 5752

Petitioner Apple Inc. - Exhibit 1002, p. 5753

Petitioner Apple Inc. - Exhibit 1002, p. 5754

Petitioner Apple Inc. - Exhibit 1002, p. 5755

Petitioner Apple Inc. - Exhibit 1002, p. 5756

Petitioner Apple Inc. - Exhibit 1002, p. 5757

Petitioner Apple Inc. - Exhibit 1002, p. 5758

Petitioner Apple Inc. - Exhibit 1002, p. 5759

Petitioner Apple Inc. - Exhibit 1002, p. 5760

Petitioner Apple Inc. - Exhibit 1002, p. 5761

Petitioner Apple Inc. - Exhibit 1002, p. 5762

Petitioner Apple Inc. - Exhibit 1002, p. 5763

Petitioner Apple Inc. - Exhibit 1002, p. 5764

Petitioner Apple Inc. - Exhibit 1002, p. 5765

Petitioner Apple Inc. - Exhibit 1002, p. 5766

Petitioner Apple Inc. - Exhibit 1002, p. 5767

Petitioner Apple Inc. - Exhibit 1002, p. 5768

Petitioner Apple Inc. - Exhibit 1002, p. 5769

Petitioner Apple Inc. - Exhibit 1002, p. 5770

Petitioner Apple Inc. - Exhibit 1002, p. 5771

Petitioner Apple Inc. - Exhibit 1002, p. 5772

Petitioner Apple Inc. - Exhibit 1002, p. 5773

Petitioner Apple Inc. - Exhibit 1002, p. 5774

Petitioner Apple Inc. - Exhibit 1002, p. 5775

Petitioner Apple Inc. - Exhibit 1002, p. 5776

Petitioner Apple Inc. - Exhibit 1002, p. 5777

Petitioner Apple Inc. - Exhibit 1002, p. 5778

Petitioner Apple Inc. - Exhibit 1002, p. 5779

Petitioner Apple Inc. - Exhibit 1002, p. 5780

Petitioner Apple Inc. - Exhibit 1002, p. 5781

Petitioner Apple Inc. - Exhibit 1002, p. 5782

Petitioner Apple Inc. - Exhibit 1002, p. 5783

Petitioner Apple Inc. - Exhibit 1002, p. 5784

Petitioner Apple Inc. - Exhibit 1002, p. 5785

Petitioner Apple Inc. - Exhibit 1002, p. 5786

Petitioner Apple Inc. - Exhibit 1002, p. 5787

Petitioner Apple Inc. - Exhibit 1002, p. 5788

Petitioner Apple Inc. - Exhibit 1002, p. 5789

Petitioner Apple Inc. - Exhibit 1002, p. 5790

Petitioner Apple Inc. - Exhibit 1002, p. 5791

Petitioner Apple Inc. - Exhibit 1002, p. 5792

Petitioner Apple Inc. - Exhibit 1002, p. 5793

Petitioner Apple Inc. - Exhibit 1002, p. 5794

Petitioner Apple Inc. - Exhibit 1002, p. 5795

Petitioner Apple Inc. - Exhibit 1002, p. 5796

Petitioner Apple Inc. - Exhibit 1002, p. 5797

Petitioner Apple Inc. - Exhibit 1002, p. 5798

Petitioner Apple Inc. - Exhibit 1002, p. 5799

Petitioner Apple Inc. - Exhibit 1002, p. 5800

Petitioner Apple Inc. - Exhibit 1002, p. 5801

Petitioner Apple Inc. - Exhibit 1002, p. 5802

Petitioner Apple Inc. - Exhibit 1002, p. 5803

Petitioner Apple Inc. - Exhibit 1002, p. 5804

Petitioner Apple Inc. - Exhibit 1002, p. 5805

Petitioner Apple Inc. - Exhibit 1002, p. 5806

Petitioner Apple Inc. - Exhibit 1002, p. 5807

Petitioner Apple Inc. - Exhibit 1002, p. 5808

Petitioner Apple Inc. - Exhibit 1002, p. 5809

Petitioner Apple Inc. - Exhibit 1002, p. 5810

Petitioner Apple Inc. - Exhibit 1002, p. 5811

Petitioner Apple Inc. - Exhibit 1002, p. 5812

Petitioner Apple Inc. - Exhibit 1002, p. 5813

Petitioner Apple Inc. - Exhibit 1002, p. 5814

Petitioner Apple Inc. - Exhibit 1002, p. 5815

Petitioner Apple Inc. - Exhibit 1002, p. 5816

Petitioner Apple Inc. - Exhibit 1002, p. 5817

Petitioner Apple Inc. - Exhibit 1002, p. 5818

Petitioner Apple Inc. - Exhibit 1002, p. 5819

Petitioner Apple Inc. - Exhibit 1002, p. 5820

Petitioner Apple Inc. - Exhibit 1002, p. 5821

Petitioner Apple Inc. - Exhibit 1002, p. 5822

Petitioner Apple Inc. - Exhibit 1002, p. 5823

Petitioner Apple Inc. - Exhibit 1002, p. 5824

Petitioner Apple Inc. - Exhibit 1002, p. 5825

Petitioner Apple Inc. - Exhibit 1002, p. 5826

Petitioner Apple Inc. - Exhibit 1002, p. 5827

Petitioner Apple Inc. - Exhibit 1002, p. 5828

Petitioner Apple Inc. - Exhibit 1002, p. 5829

Petitioner Apple Inc. - Exhibit 1002, p. 5830

Petitioner Apple Inc. - Exhibit 1002, p. 5831

Petitioner Apple Inc. - Exhibit 1002, p. 5832

Petitioner Apple Inc. - Exhibit 1002, p. 5833

Petitioner Apple Inc. - Exhibit 1002, p. 5834

Petitioner Apple Inc. - Exhibit 1002, p. 5835

Petitioner Apple Inc. - Exhibit 1002, p. 5836

Petitioner Apple Inc. - Exhibit 1002, p. 5837

Petitioner Apple Inc. - Exhibit 1002, p. 5838

Petitioner Apple Inc. - Exhibit 1002, p. 5839

Petitioner Apple Inc. - Exhibit 1002, p. 5840

Petitioner Apple Inc. - Exhibit 1002, p. 5841

Petitioner Apple Inc. - Exhibit 1002, p. 5842

Petitioner Apple Inc. - Exhibit 1002, p. 5843

Petitioner Apple Inc. - Exhibit 1002, p. 5844

Petitioner Apple Inc. - Exhibit 1002, p. 5845

Petitioner Apple Inc. - Exhibit 1002, p. 5846

Petitioner Apple Inc. - Exhibit 1002, p. 5847

Petitioner Apple Inc. - Exhibit 1002, p. 5848

Petitioner Apple Inc. - Exhibit 1002, p. 5849

Petitioner Apple Inc. - Exhibit 1002, p. 5850

Petitioner Apple Inc. - Exhibit 1002, p. 5851

Petitioner Apple Inc. - Exhibit 1002, p. 5852

Petitioner Apple Inc. - Exhibit 1002, p. 5853

Petitioner Apple Inc. - Exhibit 1002, p. 5854

Petitioner Apple Inc. - Exhibit 1002, p. 5855

Petitioner Apple Inc. - Exhibit 1002, p. 5856

Petitioner Apple Inc. - Exhibit 1002, p. 5857

Petitioner Apple Inc. - Exhibit 1002, p. 5858

Petitioner Apple Inc. - Exhibit 1002, p. 5859

Petitioner Apple Inc. - Exhibit 1002, p. 5860

Petitioner Apple Inc. - Exhibit 1002, p. 5861

Petitioner Apple Inc. - Exhibit 1002, p. 5862

Petitioner Apple Inc. - Exhibit 1002, p. 5863

Petitioner Apple Inc. - Exhibit 1002, p. 5864

Petitioner Apple Inc. - Exhibit 1002, p. 5865

Petitioner Apple Inc. - Exhibit 1002, p. 5866

Petitioner Apple Inc. - Exhibit 1002, p. 5867

Petitioner Apple Inc. - Exhibit 1002, p. 5868

Petitioner Apple Inc. - Exhibit 1002, p. 5869

Petitioner Apple Inc. - Exhibit 1002, p. 5870

Petitioner Apple Inc. - Exhibit 1002, p. 5871

Petitioner Apple Inc. - Exhibit 1002, p. 5872

Petitioner Apple Inc. - Exhibit 1002, p. 5873

Petitioner Apple Inc. - Exhibit 1002, p. 5874

Petitioner Apple Inc. - Exhibit 1002, p. 5875

Petitioner Apple Inc. - Exhibit 1002, p. 5876

Petitioner Apple Inc. - Exhibit 1002, p. 5877

Petitioner Apple Inc. - Exhibit 1002, p. 5878

Petitioner Apple Inc. - Exhibit 1002, p. 5879

Petitioner Apple Inc. - Exhibit 1002, p. 5880

Petitioner Apple Inc. - Exhibit 1002, p. 5881

Petitioner Apple Inc. - Exhibit 1002, p. 5882

Petitioner Apple Inc. - Exhibit 1002, p. 5883

Petitioner Apple Inc. - Exhibit 1002, p. 5884

Petitioner Apple Inc. - Exhibit 1002, p. 5885

Petitioner Apple Inc. - Exhibit 1002, p. 5886

Petitioner Apple Inc. - Exhibit 1002, p. 5887

Petitioner Apple Inc. - Exhibit 1002, p. 5888

Petitioner Apple Inc. - Exhibit 1002, p. 5889

Petitioner Apple Inc. - Exhibit 1002, p. 5890

Petitioner Apple Inc. - Exhibit 1002, p. 5891

Petitioner Apple Inc. - Exhibit 1002, p. 5892

Petitioner Apple Inc. - Exhibit 1002, p. 5893

Petitioner Apple Inc. - Exhibit 1002, p. 5894

Petitioner Apple Inc. - Exhibit 1002, p. 5895

Petitioner Apple Inc. - Exhibit 1002, p. 5896

Petitioner Apple Inc. - Exhibit 1002, p. 5897

Petitioner Apple Inc. - Exhibit 1002, p. 5898

Petitioner Apple Inc. - Exhibit 1002, p. 5899

Petitioner Apple Inc. - Exhibit 1002, p. 5900

Petitioner Apple Inc. - Exhibit 1002, p. 5901

Petitioner Apple Inc. - Exhibit 1002, p. 5902

Petitioner Apple Inc. - Exhibit 1002, p. 5903

Petitioner Apple Inc. - Exhibit 1002, p. 5904

Petitioner Apple Inc. - Exhibit 1002, p. 5905

Petitioner Apple Inc. - Exhibit 1002, p. 5906

Petitioner Apple Inc. - Exhibit 1002, p. 5907

Petitioner Apple Inc. - Exhibit 1002, p. 5908

Petitioner Apple Inc. - Exhibit 1002, p. 5909

Petitioner Apple Inc. - Exhibit 1002, p. 5910

Petitioner Apple Inc. - Exhibit 1002, p. 5911

Petitioner Apple Inc. - Exhibit 1002, p. 5912

Petitioner Apple Inc. - Exhibit 1002, p. 5913

Petitioner Apple Inc. - Exhibit 1002, p. 5914

Petitioner Apple Inc. - Exhibit 1002, p. 5915

Petitioner Apple Inc. - Exhibit 1002, p. 5916

Petitioner Apple Inc. - Exhibit 1002, p. 5917

Petitioner Apple Inc. - Exhibit 1002, p. 5918

Petitioner Apple Inc. - Exhibit 1002, p. 5919

Petitioner Apple Inc. - Exhibit 1002, p. 5920

Petitioner Apple Inc. - Exhibit 1002, p. 5921

Petitioner Apple Inc. - Exhibit 1002, p. 5922

Petitioner Apple Inc. - Exhibit 1002, p. 5923

Petitioner Apple Inc. - Exhibit 1002, p. 5924

Petitioner Apple Inc. - Exhibit 1002, p. 5925

Petitioner Apple Inc. - Exhibit 1002, p. 5926

Petitioner Apple Inc. - Exhibit 1002, p. 5927

Petitioner Apple Inc. - Exhibit 1002, p. 5928

Petitioner Apple Inc. - Exhibit 1002, p. 5929

Petitioner Apple Inc. - Exhibit 1002, p. 5930

Petitioner Apple Inc. - Exhibit 1002, p. 5931

Petitioner Apple Inc. - Exhibit 1002, p. 5932

Petitioner Apple Inc. - Exhibit 1002, p. 5933

Petitioner Apple Inc. - Exhibit 1002, p. 5934

Petitioner Apple Inc. - Exhibit 1002, p. 5935

Petitioner Apple Inc. - Exhibit 1002, p. 5936

Petitioner Apple Inc. - Exhibit 1002, p. 5937

Petitioner Apple Inc. - Exhibit 1002, p. 5938

Petitioner Apple Inc. - Exhibit 1002, p. 5939

Petitioner Apple Inc. - Exhibit 1002, p. 5940

Petitioner Apple Inc. - Exhibit 1002, p. 5941

Petitioner Apple Inc. - Exhibit 1002, p. 5942

Petitioner Apple Inc. - Exhibit 1002, p. 5943

Petitioner Apple Inc. - Exhibit 1002, p. 5944

Petitioner Apple Inc. - Exhibit 1002, p. 5945

Petitioner Apple Inc. - Exhibit 1002, p. 5946

Petitioner Apple Inc. - Exhibit 1002, p. 5947

Petitioner Apple Inc. - Exhibit 1002, p. 5948

Petitioner Apple Inc. - Exhibit 1002, p. 5949

Petitioner Apple Inc. - Exhibit 1002, p. 5950

Petitioner Apple Inc. - Exhibit 1002, p. 5951

Petitioner Apple Inc. - Exhibit 1002, p. 5952

Petitioner Apple Inc. - Exhibit 1002, p. 5953

Petitioner Apple Inc. - Exhibit 1002, p. 5954

Petitioner Apple Inc. - Exhibit 1002, p. 5955

Petitioner Apple Inc. - Exhibit 1002, p. 5956

Petitioner Apple Inc. - Exhibit 1002, p. 5957

Petitioner Apple Inc. - Exhibit 1002, p. 5958

Petitioner Apple Inc. - Exhibit 1002, p. 5959

Petitioner Apple Inc. - Exhibit 1002, p. 5960

Petitioner Apple Inc. - Exhibit 1002, p. 5961

Petitioner Apple Inc. - Exhibit 1002, p. 5962

Petitioner Apple Inc. - Exhibit 1002, p. 5963

Petitioner Apple Inc. - Exhibit 1002, p. 5964

Petitioner Apple Inc. - Exhibit 1002, p. 5965

Petitioner Apple Inc. - Exhibit 1002, p. 5966

Petitioner Apple Inc. - Exhibit 1002, p. 5967

Petitioner Apple Inc. - Exhibit 1002, p. 5968

Petitioner Apple Inc. - Exhibit 1002, p. 5969

Petitioner Apple Inc. - Exhibit 1002, p. 5970

Petitioner Apple Inc. - Exhibit 1002, p. 5971

Petitioner Apple Inc. - Exhibit 1002, p. 5972

Petitioner Apple Inc. - Exhibit 1002, p. 5973

Petitioner Apple Inc. - Exhibit 1002, p. 5974

Petitioner Apple Inc. - Exhibit 1002, p. 5975

Petitioner Apple Inc. - Exhibit 1002, p. 5976

Petitioner Apple Inc. - Exhibit 1002, p. 5977

Petitioner Apple Inc. - Exhibit 1002, p. 5978

Petitioner Apple Inc. - Exhibit 1002, p. 5979

Petitioner Apple Inc. - Exhibit 1002, p. 5980

Petitioner Apple Inc. - Exhibit 1002, p. 5981

Petitioner Apple Inc. - Exhibit 1002, p. 5982

Petitioner Apple Inc. - Exhibit 1002, p. 5983

Petitioner Apple Inc. - Exhibit 1002, p. 5984

Petitioner Apple Inc. - Exhibit 1002, p. 5985

Petitioner Apple Inc. - Exhibit 1002, p. 5986

Petitioner Apple Inc. - Exhibit 1002, p. 5987

Petitioner Apple Inc. - Exhibit 1002, p. 5988

Petitioner Apple Inc. - Exhibit 1002, p. 5989

Petitioner Apple Inc. - Exhibit 1002, p. 5990

Petitioner Apple Inc. - Exhibit 1002, p. 5991

Petitioner Apple Inc. - Exhibit 1002, p. 5992

Petitioner Apple Inc. - Exhibit 1002, p. 5993

Petitioner Apple Inc. - Exhibit 1002, p. 5994

Petitioner Apple Inc. - Exhibit 1002, p. 5995

Petitioner Apple Inc. - Exhibit 1002, p. 5996

Petitioner Apple Inc. - Exhibit 1002, p. 5997

Petitioner Apple Inc. - Exhibit 1002, p. 5998

Petitioner Apple Inc. - Exhibit 1002, p. 5999

Petitioner Apple Inc. - Exhibit 1002, p. 6000

