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second inputs of Times 1 And Times 2 Multiply Shifter (MULTSHFT12) 20366 and Times 4 And Times 8
Multiply Shifter (MULTSHFTA48) 20368. Outputs of MULTSHFT12 and MULTSHFT8 are connected,
respectively, to first and second inputs of First Multiplier Arithmetic and Logic Unit (MULTALU1) 20370.
MULTALU1 20370’s output is connected to input of Multiplier Working Register (MWR) 20372, Output of
MWR 20372 is cannected to a first input of Second Multiptier Arithmetic and Logic Unit {MULTALU2} 20374.
A second input of MULTALU2 20374 is connected from output of RFR 20336, Output of MULTALU2 is
connected to a sacond input of FRS 20362. As described above, first input of FRS 20362 is connected from
output of NIBSHF 20368, Output of FRS 20362 is connected to input of RFR 20336.

As described above, output of RFR 20336 is connected to second input of MULTALU2 20374, to first
input of MULTRF 20359, to first input of MULTRM 20334, and to second input of FROM 20324. Output of
RFR 20336 is also connected to input of Leading Zero Detector (LZD) 20376 of MULTCNTL 20318, and to
inputs of Exception Logic {ECPT) 20378, CONSIZE 20352, and TSTINT 20320.

4, Exponent Logic 20316

Referring to EXP 20316, as previously described EXP 20316 performs certain operations with respect to
expanent fields of single and double precision floating point number in EU 10122 floating point operations.
EXP 20316 includes a second portion of EU 10122’s general register file, shown herein as Exponent Register
File (EXPRF} 20380. Although indicated as individual register files, MULTRF 20350 and EXPRF 20380
comprise, as in GRF 10354, a unitary register file structure with common, parallel addressing of
corresponding registers therein.

Output of EXPRF 20380 is connected to a second inpt of INSELA 20330. A first input of EXPRF 20380 is
connected from output of EXRM 20332. As previously described, a first input of EXRM 20332 is connected
from second output of OPB 20322 through EXPQ Bus 20325. A second input of EXRM 20332 is connected
from output Scale Register (SCALER) 20338. A second input of EXPRF 20380 is connected from output of
Sign Logic (SIGN) 20382. Input of SIGN 20382 is connected from second output of SCALER 20338.

INSELA 20330, INSELB 20348, Exponent ALU (EXPALU) 20384 and SCALER 20338 comprise EXP
20316's arithmetic circuitry for manipulating exponent fields of floating point numbers. INSELA 20330 and
INSELB 20348 select, respectively, first and second inputs to EXPALU 20384. As previously described, a first
input of INSELA 20330 is connected from second output of OPB 20322 through EXPQ Bus 20325. Second
input of INSELA 20330 is connected from output of EXPRF 20380. Output of INSELA 20330 is connected to
first input of EXPALU 20384. First input of INSELB 20348 is. as previously described, connected from a
second output of mCRD 20346. Second input of INSELB 20348 is connected from output of OPB 20322
through EXPQ Bus 20325, Third input of INSELB 20348 is connected from output of SCALER 20338 and
fourth input of INSELB 20348 is connected from output of LZD 20376. Output of INSELB 20348 is connected
to second input of EXFALU 20348. Output of EXPALU 20348 is connected to input of SCALER 20338.

As previously described, second output of SCALER 20338 is connected with input of SIGN 20382 and
first output is connected to second input of EXRM 20332 and to third input of INSELB 20348. First output of
SCALER 20338 is also connected to EXPQ Bus 20325, to first input of EXOM 20326, and to a second input of
MULTCNT 20364.

5. Muttiplier Control 20318

As previously described, MULTCNTL 20318 provides certain control signals and information for
controlling and coordinating operation of EXP 20316 and MULT 20314 in performing arithmetic operations
on fioating point numbers. MULTCNTL 20318 includes LZD 20376 and MULTCNT 20364. Input of LZD 20376
is connected from output of RFR 20336 through FR Bus 20337. Output of LZD 20376 are connected to a
second input of MULTCNT 20364 and to fourth input of INSELB 20348. A second input of MULTCNT 20364
is connected from output of SCALER 20338. As previously described, control output of MULTCNT 20364 is
connected to control inputs of NIBSHF 20358. :

6. Test and Interface Logic 20320

Finally, TSTINT 20320 includes ECPT 20378, CONSIZE 20352, and Testing Condition Logic (TSTCON)
20386. Input of ECPT 20378 and first input of CONSIZE 20352 are connected from output of RFR 20336
through FR Bus 20337. A second input of CONSIZE 20352 is connected from LENGTH Bus 20226. An output
of CONSIZE 20352 is connected, together with other inputs from EU 10122 (not shown for clarity of
presentation) to TSTCON 20386. Output of TSTCON 20385 (not shown for clarity of presentation) are

connected to NAG 20340. TSTCON 20386 and ECPT 20378 have outputs to and inputs from FU 10120's
FUINT 20298.

Having described the overall structure of EU 10122 above, operation of EU 10122 witl be described next
below with aid of further diagrams which will be introduced as required. Finally, operation of TSTINT 20320
will be described, including a description of the detailed control signal interface between EU 10122 and FU
10120 through TSTINT 20320 and FUINT 20298. In addition to defining the interface between EU 10122 and
FU 10120, certain features of EU 10122 operation will be described wherein those operations are executed
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in cooperation with MEM 10112 and FU 10120. For examnple, EU 10122's Stack Mechanisms, com‘prising in
part portions of MULTRF 20350 and EXPRF 20380, resides partty in MEM 10112 so that opersation of EU
10122's Stack Mechanisms requires cooperative operations by EU 10122, MEM 10112 and FU 10120.

b. Execute Unit 10122 Operation (Fig. 255)
1. Execute Unit Contro! Logic 20310 (Fig. 255}

Referring to Fig. 255, a more detailed block diagram of EUCL 20310 is shown. As descrlbed above,
EUCL 20310 receives EU 10122 Dispatch Pointers through EUDIS Bus 20206 from EUSDT 20266 and FUCTL
20214, EU 10122 Dispatch Pointers selsct certain EU 10122 microinstruction sequences for executing EU
'10122 arithmetic operations as required to execute user's programs, that is SOPs, and to assist in handling
JP 10114 Events. As described above, major elements of EUCL 20310 include COMQ 20342, EUSITT 20344,
mCRD 20346, and NAG 20340.

a.a. Command Queue 20342

Inputs of COMQ 20342 are connected from EUDIS Bus 20206 to receive and store EU 10122 Dispatch
pointers provided from EUSDT 20266. Each such EU 10122 Dispatch Pointer is comprised of two
information fields. A first information field contains a 10 bit starting address of a corresponding sequence
of microinstructions residing in EUSITT 20344. Second field of each EU 10122 Dispatch Pointer is a 6 bit
field containing certain control information, such as information identifying data format of corresponding
operands to be operated upon. In this case unit dispatch pointer control field hits specify whether operands
to be operated upon comprise signed or unsigned integer, packed or unpacked decimal, or single or double
precision floating point numbers.

COMQ 20342 is comprised of two one word wide by two word deep register files. A first of these
register fields is comprised of SOP Command Queue Control Store (CQCS) 25510 and SOP Command
Queue Address Store (CQAS) 25512. Together, CQCS 25510 and CQAS 25512 comprise a one word wide by
two word deep register file for receiving and storing EU 10122 Dispatch Pointers corresponding to SOPs,
that is Dispatch Pointers for initiating EU 10122 operations directly concerned with executing a user’s
program. Address fields of these SOPs are received in CQAS 25512, while control fields are received and
stored in CQCS 25510. COMQ 20342 is thereby capable of receiving and storing up to two sequential EU
10122 Dispatch Pointers corresponding to user program SOPs These SOP derived Dispatch Pointers are
executed in the order received from FU 10120. EU 10122 is thereby capable of receiving and storing one
currently executing SOP Dispatch Pointer and one pending SOP Dispatch Pointer. Further SOP Dispatch
Pointers may be read into COMQ 20342 as previous SOPs are executed.

b.b. Command Queue Event Contro! Store 26514 and Command Queue Event Address Control
Store 25516

Command Queue Event Control Store {(CQCE) 25514 and command Queue Event Address Control
Store (CQAE) 25516 are similar in function and operation to, respectively, CQCS 25510 ad CQAS 25512,
CQCE 25514 and CQAE 25516 receive and store, however, EU 10122 Dispatch Pointers initiating EU 10122
operations requested by FU 10120 as required to handie JP 10114 Events. Again, CQCE 25514 and CQAE
25516 comprise a one word wide by two word deep register file, CQAE 25516 receivas and stores address
fields of Event Dispatch Pointers, while CQCE 25514 receives and stores corresponding control fields of
Event Dispatch Pointers. Again, COMQ 20342 is capable of receiving and storing up to two sequential Event
Dispatch Pointers at a time.

As indicated in Fig. 255, outputs of CQAS 25512 and CQAE 25516, that is address fields of EU 10122
Dispatch Pointers are provided as inputs to Select Case Multiplexer (SCASE) 25518 and Starting Address
Select Muitiplexer (SAS) 25520 and NAG 20340, which will be described further below. Control field
outputs of CQCS 25510 and CQCE 25514 are provided as inputs to OPB 20322, described further below.

c.c. Execute Unit S-Interpreter Table 20344

Referring to EUSITT 20344, as described above EUSITT 20344 is a memory for storing sequences of
microinstructions for controlling operation of EU 10122 in response to EU 10122 Dispatch Pointers received
from FU 10120. These microinstruction sequences may, in general, direct operation of EU 10122 to execute
arithmetic operations in respanse to SOPs of user's programs, or aid direct execution of EU 10122
operations required to service JP 10114 Events. EUSITT 20344 may be, for example, a 60 bit wide by ,280
word long memory structured as pages of 128 words per page. A portion of EUSITT 20344's pages may be
contained in Read Oniy Memory, for example for storing sequence of microinstructions for handling JP
10114 Events. Remaining portions of EUSITT 20344 may be constructed of Random Access Memory, for
exampie for storing sequences of microinstructions for executing EU 10122 operations in response to user
program SOPs. This structure allows EU 10122 microinstruction sequences concerned with operstion of JP
10114’s internal mechanisms, for example handiing of JP 10114 Events, to be effectively permanently
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stored in EUSITT 20344. That portion of EUSITT 20344 constructed of Random Access Memo'ry may be
used to store sequences of microinstructions for executing SOPs. These Rendom Access Memories may be
used as writable control store to allow sequences of microinstructions for executing SOPs of one or more
S-Languages currently being utilized by CS 10110 to be written into EUSITT 20344 from MEM 10112 as
required.

As previously described, EUSITT 20344's second input is a Data (DATA)} input connected from JPD Bus
10142. EUSITT 20344's data input is utilized to write sequences of microinstructions into EUSITT 20344
from MEM 10112 through JPD Bus 10142, EUSITT 20344's first input is an address {ADR) input connected
from output of Address Driver (ADRD) 25522 and NAG 20340. Address inputs provided by ADRD 25522
select word locations within EUSITT 20344 for writing of microinstructions into EUSITT 20344, or for
reading of microinstructions from EUSITT 20344 to mCRD 20346 to control operation of EU 101 22,
Generation of these address inputs to EUSITT 20344 by NAG 20340 will be described further below.

d.d. Microcode Controt Decode Register 20346

Output of EUSITT 20344 is connected to input of mCRD 20346, As previously described, mCRD 20346 is
a register for receiving microinstructions from EUSITT 20344, and decoding logic for decoding those
microlnstructions and providing corresponding control signals to EU 10122. As indicated in Fig. 255,
Diagnostic processor Micro-Program Register {DPmR) 25524 is a 60 bit register connected in paraliel with
output of EUSITT 20344 to input of mCRD 20346. DPmR 25524 may be ioaded with 60 bit microinstructions
by DP 10118. Diagnostic microinstructions may thereby be provided directly to input of mCRD 20346 to
provide direct microinstruction by microinstruction control of EU 10122,

Outputs of mCRD 20346 are provided, in gsneral, to all portions of EU 10122 to control detailed
operations of EU 10122. Certain outputs of mCRD 20346 are connected to inputs of Next Address Source
Select Multiplexer (NASS) 25526 and Long Branch Page Address Gate (LBPAG) 25528 and NAG 20340. As
will be described further below, these outputs of mCRD 23046 are used in generating address inputs to
EUSITT 20344 when particular microinstructions sequences call for Jumps or Long Branches to other
microinstruction sequences. Outputs of mCRD 20346 are also connected in parallel to inputs of Execution
Unit Micro-instruction Parity Check Logic (EUmMIPC) 25530, EUmIPC 25530 checks parity of all
microinstruction outputs of mCRD 20346 to detected errors in mCRD 20346's outputs.

e.e. Next Address Generator 20340 -

As described above, read and write addresses to EUSITT 20344 provided by NAG 20340 through ADRD
25522. Address inputs to ADRD 25522 are provided from either NASS 25526 or Diagnostic Processor
Address Register (DPAR) 25532. In nommal operation, address inputs to EUSITT 20344 are provided from
NASS 25526 as will be described momentarity. DP 10118, however, may load EUSITT 20344 addresses into
DPAR 25532, These addresses may then be read from DPAR 25532 through ADRD 25522 to individually
select address locations within EUSITT 20344. DPAR 25632 may be utilized, in particular, to provide
addresses to allow stepping through of EU 10122 microinstruction sequences microinstruction by
microinstruction.

As described above, NASS 25526 is a multiplexer having inputs from three NAG 20340 address
sources. NASS 25526's first address input is from Jump {JMP) output of mCRD 20346 and LBPAG 25528.
These address inputs are utilized, in part, when a current microinstruction calls for a Jump or Long Branch
to another microinstruction or microinstruction sequence. Second address source is provided from SAS
25520 and, in general, is comprised of starting addresses of microinstruction sequences. SAS 25520 is a
multiplexer having a first input from COAS 25512 and CQAE 25516, that is starting addresses of
microinstruction sequences corresponding to SOPs or for servicing JP 10114 Events. A second SAS 25520
input is provided from Sub-routine Return Address Stack (SUBRA) 25534. In general, and as will be
described further below, SUBRA 25534 operates as a stack mechanism for storing current microinstruction
addresses of interrupted microinstruction sequences. These stored addresses may subsequently be
utilized to resume execution of those interrupted microiristruction sequencss. Third address source to
NASS 25626 is provided from Sequential and Case Address Generator (SCAG) 25536. In general, SCAG
25536 generates address to select ssquential microinstructions within particular microinstruction
sequences. SCAG 25536 also generates microinstruction address for microinstruction Case operations. As
indicated in Fig. 255, outputs of SCAG 26536 and of SAS 25520 are bused together to comprise a single
NASS 25526 input. Selection between outputs of SCAG 25536 and SAS 25520 are provided by control
inputs (not shown for clarity of presentation) to SCAG 25536 and SAS 26520. Selection between NASS
25526's address inputs is controlled by Next Address Source Select Control Logic (NASSC) 25538, which
provides control inputs to NASS 25526. NASSC 25638 is effectively a multiplexer receiving control inputs
from TSTCON 20386 and TSTINT 20320. As will be described further below, TSTCON 20386 monitors
certain operating conditions or states within EU 10122 and provides correspanding inputs to NASSC 25538.
NASSC 25538 effectively decodes these control inputs from TSTCON 20386 to provide selection control
input to NASS 25526.

Having described overall structure and operation of NAG 20340, operation of NAG 20340 will be
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described in further detail next below.

Referring first to NASS 25526's address inputs provided from JMP output of mCRD 20346 and LBPAG
25528, this address source is provided to allow selection of a next microinstruction by a current
microinstruction. JMP output of mCRD 20346 allows a current microinstruction to direct a Jump to another
microinstruction within the same page of EUSITT 20344. NASS 25526's input through LBPAG 25528 is
provided from another portion of mCRD 20346's output specifying pages within EUSITT 20344. This input
through LBPAG 25528 allows execution of Long Branch operations, that is jJumps from a microinstruction in
one page of EUSITT 20344 to a microinstruction in another page. In addition, NASS 25526's input from JMP
output of mCRD 20346 and through LBPAG 25528 is utilized to execute an idle, or Standby, routine when
EU 10122 is not currently executing 8 microinstruction sequence requested by FU 10120. In this case, idle
routine directs TSTCON 20386 to monitor EU 10122 Dispatch Pointer inputs to EU 10122 from FU 10120. If
no EU 10122 Dispatch Pointers are present in COMQ 20342, or none are pending, TSTCON 20386 will direct
NASSC 25538 to provide control inputs to NASS 25526 to select NASS 25526's input from mCRD 20345 and
LBPAG 25528, Idle routine will continualty test for EU 10122 Dispatch pointer inputs until such a Dispatch
Painter is received into COMQ 20342. At this time, TSTCON 20386 will detect the pending Dispatch Pointer
and direct NASS 25538 to provide contral outputs to NASS 25526 to select NASS 26526's input from, in
general, SAS 25520, TSTCOND 20386 and NASSC 25538 will also direct NASS 25526 to select inputs from
SAS 25520 upon return from a called microinstruction to a previously interrupted microinstruction
sequence.

As described above, SAS 25520 receives starting addresses from COMQ 20342 and from SUBRA
25534. SAS 25520 will select the output of COAS 25512 or of CQAE 25516 as the input to NASS 25526 when
@ new microinstruction sequence is to be initiated to execute a user's program SOP or to service a JP 10114
Event. SAS 25520 will select an address output of SUBRA 25534 upon return from a called sub-routine to a
previously executing but interrupted sub-routine. SUBRA 25534, as described above, is effectively a stack
mechanism for storing addresses of currently executing microinstructions when those microinstruction
sequences are interrupted. SUBRA 25534 is an 11 bit wide by 8 word deep register with certain registers
dedicated for use in stacking Event Handling microinstruction sequences. Other portions of SUBRA 25534
are utilized for stacking of microinstruction sequences for executing SOPs, that is for stacking
microinstruction sequences wherein a first microinstruction sequence calls for a second microinstruction
sequence. SUBRA 25534 is not operated as a first-in-first out stack, but as a random access memory
wherein address inputs selecting registers and SUBRA 25534 are provided by micrainstruction control
outputs of mCRD 20346. Operations of SUBRA 25534 as a stack mechanism Is thereby controlled by the
microinstruction sequences stored in EUSITT 20344. As indicated in Fig. 255, addresses of current
microinstructions of interrupted microinstruction sequences are provided to date input of SUBRA 25534
from output of SCAG 25536, which will be described next below.

As descaibed above, SCAG 25536 generates sequential addresses to select sequential
microinstructions within microinstruction sequences and to generate microinstruction addresses for Case
operations. SCAG 25536 includes Next Address Register (NXTR) 256540, Next Address Arithmetic and Logic
Unit (NAALU) 25542, and SCASE 25518. NAALU 25542 is a 12 bit arithmetic and logic unit. A first eleven bit
input of NAALU 25542 is connected from output of ADRD 25522 and is thereby current address provided to
EUSITT 20344. A second four bit input to NAALU 25542 is provided from output of SCASE 25518. During
sequential execution of a microinstruction sequence, output of SCASE 25518 is binary zeros and carry input

of NAALU is forced to 1. Output of NAALU 25542 will thereby be and address one greater than the current
microinstruction address provided to EUSITT 20344 and will thereby be the address of the next sequential
microinstruction. As indicated in Fig. 255, SCASE 25518 receives an input from output of SCALER 20338,
This input is utilized during Case operations and allows a data sensitive number to be selected as SCASE
25518's output into second input of NAALU 25542, SCASE 25518's input from SCALER 20338 thereby
allows NAG 20340 to perform microinstruction Case operations wherein Case Values are determined by the -
contents of SCALER 20338,

Next address outputs of NAALU 25542 are loaded into NXTR 25540, which is comprised of tri-state
output registers. Next address outputs of NXTR 25540 are connected, in common with outputs of SAS
25520, to second input of NASS 25526 as described above. During normat execution of microinstruction
sequences, therefore, SCAG 25536 will, through NASS 25526 and ADRD 25522, select sequertial
microinstructions from EUSITT 20344. SCAG 25536 may also, as just described, provide next
microinstruction addresses in microinstruction Case operations.

In summary, NAG 20340 is capable of performing all usual microinstruction sequence addressing
operations. For example, NAG 20340 allows selection of next microinstructions by current
microinstructions, either for Jump operations or Long Branch operations, through NASS 25526°s input
from mCRD 20346's JMP or through LBPAG 25528. NAG 20340 may provide microinstruction sequence
starting addresses through COMQ 20342 and SAS 25520, or may provide return addresses to interrupted
and stacked microinstruction sequences through SUBRA 25534 and SAS 25520, NAG 20340 may
sequentially address microinstructions of a particular microinstruction sequence through operation of
SCAG 25536, or may perform mciroinstruction Case operations through SCAG 25536.
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2. Operand Buffer 20322

Having described structure and operation of EUCL 20310, structure and operation of OPB 20322 will be
described next betow. As previously described, OPB 20322 receives operands, that is data, from MEM
10112 and FU 10120 through MOD Bus 10144 and JPD Bus 10142. OPB 20322 may then perform certain
operand format transiations to provide data to MULT 20314 and EXP 20316 in the formats most efficiently
utilized by MULT 20314 and EXP 20316, As previously described, EU 10122 may perform arithmetic
operations on integer, packed and unpacked decimal, -and single or double precision fioating point
numbers.

In summary, therefore, OPB 20322 is capable of accepting integer, single and double precision floating
point, and packed and unpacked decimai operands from MEM 10112 and FU 10120 and providing
appropriate fields of those operands to MULT 20314 and EXP 20316 in the formats most efficiently utilized
by MULT 20314 and EXP 20316. in doing so, OPB 20322 extracts exponent and mantissa fields from single
and double precision floating point operands to provide exponent and mantissa fields of these operands to,
respectively, EXP 20316 and MULT 20314, and also unpacks, or converts, unpacked decimal operands to
packed decimat operands most efficiently utilized by MULT 20314.

Having described structure and operation of OPB 20322, structure and operation of MULT 20314 will be
described next below.

3. Muttiptier 20314 {Figs. 257, 258}

MULT 20314, as previously described, performs addition, subtraction, multiplication, and divisian
operations on mantissa fields of single and double precision floating point operands, integer operands, and
decimal operands. As described above with reference to OPB 20322, OPB 20322 converts unpacked decimal
operands to packed decimal operands to be operated upon by MULT 20314. MULT 20314 is thereby
effectively capable of performing all arithmetic operations on unpacked decimal operands.

a.a. Multiplier 20314 Data Paths and Memory (Fig. 267)

Referring to Fig. 257, a more detailed block diagram of MULT 20314’s data paths and memory is
shown. As previously described, majer elements of MULT 20314 include memory elements comprised of
MULTRF 20350 and CONST 20360, operand input and resuit output muttiplexing logic including MULTIM
20328 and MULTRM 20334, and arithmetic operation logic. MULT 20314’s operand input and result output
multiplexing logic and memory elements will be described first, followed by description of MULT 20314's
arithmetic operation logic. ]

As previously described, input data, including operands, is provided to MULT 20314's arithmetic
operation logic through MULTIN Bus 20354. MULTIN Bus 20354 may be provided with data from three
sources. A first source is CONST 20360 which is a 512 word by 32 bit wide Read Only Memory. CONST
20360 is utilized to store constants used in arithmetic operations. In particular, CONST 20360 stores 2one
fields for unpacked decimal, that is ASCI character, operands. As previously described, unpacked decimal

"operands are received by OPB 20322 and converted to packed decimal operands for more efficient

utilization by MULT 20314. As such, final result outputs generated by MULT 20314 from such operands are
in packed decimal format. As will be described below, MULT 20314 may be utilized to convert these packed
decimal results inta unpacked decimal results by insertion of zone fields. As indicated in Fig. 257, address
inputs are provided to CONST 20360 from EXPQ Bus 20325 and from output of mCRD 20346. Selection
between these address inputs is provided through CONST Address Multiptexer (CONSTAM) 25710. CONST
20360 addresses will, in general, be provided from EUCL 20310 but alternately may be provided from EXPQ
Bus 20325 for special operations.

Operand data is provided to MULTIN Bus 20354 through MULTIM 20328, which is a dual input, 64 bit
multiplexer. A first input of MULTIM 20328 is provided from OPQ Bus 20323 and is comprised of operand
information provided from OPB 20322. OPQ Bus 20323 is a 56 bit wide bus and operand data appearing
thereon may be comprised of 32 blt integer operands; 32 bit packed decimal operands, either provided
directly from OPB 20322 or as a result of OPB 20322's conversion of an unpacked decimal to a packed
decimal operand; 24 bit single precision operand mantissa fields; or 56 bit double precision floating point
operand mantissa fields. As previously described, certain OPQ Bus 20323 may be zero or sign extension
filled, depending upon the particular operand.

Second input of MULTIM 20328 is provided from MULTRF 20350. MULTRF 20350 is 3 16 word by 64 bit
wide random access memory. As indicated in Figs. 203 and 257, MULTRF 20350 Is connected between
output of RFR 20336, through FR Bus 20337, and to input of MULT 20314's arithmetic operation logic
through MULTIM 20328 and MULTIN Bus 20354, MULTRF 20350 may therefore be utilized as a scratch pad
memory for storing intermediate results of arithmetic operations, including reiterative aritbhmetic
operations. In addition, & portion of MULTRF 20350 is utilized, es in GRF 10354, as an EU 10122 Stack
Mechanism simifar to MIS 10368 and MOS 10370 in FU 10120. Operation of EU 10122 Stack Mechanism will
be described in a following descripion of EU 10122’s interfaces to MEM 10112 and FU 10120. Address
Inputs (ADR) of MULTRF 20350 are provided from Multiplier. Register File Address Multiplexer
{MULTRFAM) 25712. .
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MULTRFAM 25712 is a dual four bit multiplexer comprised, for example, of SN745258s. tn addition to
address inputs to MULTRF 20350, MULTRFAM 25712 provides address inputs to EXPRF 20380. As
previously described, MULTRF 20350 and EXPRF 20380 together comprise an EU 10122 general register file
similar to GRF 10354 and FU 10120. As such, MULTRF 20350 and EXPRF 20380 are addressed in parallel to
read and write paralls! entries from and to MULTRF 20350 and EXPRF 20380. Address inputs to MULTRFAM
25712 are provided, first, from outputs of mCRD 20346, thus providing microinstruction control of
addressing of MULTRF 20350 and EXPRF 20380. Second address input to MULTRFAM 26712 is provided
from output of Multiplier Register File Address Counter (MULTRFAC) 25714.

MULTRFAC 26714 Is a four bit counter and is used to generate sequential addresses to MULTRF 20350
and EXPRF 20380. Initial addresses are loaded into MULTRFAC 25714 from Muttiplier Register File Address
Counter Multiplexer (MULTRFACM) 25716. MULTRFACM 25716 is a dual four bit muttiplexer. Inputs to
MULTREACM 25716 are provided, first, from outputs of mCRD 20346. This input aliows microinstruction
selectlon of an initial address 10 be lpaded into MULTRFAC 25714 1o be subsequently used and generating
sequential MULTRF 20350 and EXPRF 20380 addresses. $Second address input to MULTRFACM 25716 is
provided from OPQ Bus 20323. MULTRFACM 25716's input from OPQ Bus 20323 allows a single address, or
a starting address of 8 sequence of addresses, to be selected through JPD Bus 10142 or MOD Bus 10144, for
example fram MEM 10112 or FU 10120,

Intermediate and final result outputs of MULT 20314 arithmetic logic are provided to data inputs of
MULTRF 20350 directly from FR Bus 20337 and from MULTRM 20334, inputs to MULTRM 20334, in tumn, are
provided from FR Bus 20337 and from output of CONSIZE 20352 and TSTINT 20320.

FR Bus 20337 is a 64 bit bus connected from 64 bit output of RFR 20338 and carries final and
intermediate results of MULT 20314 arithmetic operations. As will become apparent in a following
description of MULT 20314 arithmetic operation logic, RFR 20336 output, and thus FR Bus 20337, are 64 bits
wide. Sixty-four bits are provided to insure retention of all significant data bits of certain MULT 20314
arithmetic operation Intermediate results, in particular operations involving double precision floating point
64 bit mantissa fields. In addition, as will be described momentarily and has been previously stated, MULT
20314 may convert a final result in packed decimal format into a final result in unpacked decimal format. in
this operation, a single 32 bit, or one word, packed decimal result is converted into a 64 bit, or two word,
unpacked decimal format by insertion of zone fields.

As described above, two parallel data paths are provided to transfer information from FR Bus 20337
into MULTRF 20350. First path is directly from FR Bus 20337 and second path is through Unpacked Decimal
Multiplexer (UPDM) 25718 of MULTRM 20334. Direct path is utilized for thirty-two bits of information
comprising bits 0 to 23 and bits 56 to 63 of FR Bus 20337. Data path through UPDM 25718 may comprise
either bits 24 to 55 of FR Bus 20337, which are connected into a first input of UPDM 25718, or bits 40
through 55 which are connected to a second input of UPDM 25718. Single precision floating point numbers
are 32 bit numbers plus two or mare guard bits and are thus written into MULTRF 20350 through bits 0t0 23
of the direct path into MULTRF 20350 and through first input (bits 24 to 55) of UPDM 25718. Double
precision floating point numbers are 5 bits wide, plus guard bits, and thus utilize the direct path into
MULTRF 20350 and the path through first input of UPDM 25718. Bits 56 to 63 of direct path are utilized for
guard bits of double precision floating point numbers. Both integer and packed decimal numbers utilize
bits 24 through 55 of FR Bus 20337, and are thus written into MULTRF 20350 through first Input of UPDM
25718. As previously described, bits 0 to 23 of these operands are filled by sign extension.

a.a.a. Container Size Check

As stated above, MULTRM 20334 has an Input from CONSIZE 20352 As will be described below with
reference to TSTINT 20320, CONSIZE 20352 performs a “container size” check upon each store back of
results from EU 10122 to MEM 10112. CONSIZE 20352 compares the number of significant bits in a result to
be stored back to the logical descriptor describing the MEM 10112 address space that result is to be written
into. Where reiterative write operations to MEM 10112 are required to transfer a resultinto MEM 10112, that
is a string transfer, container size information may read from CONSIZE 20352 through Container Size Driver
(CONSIZED) 25720 and MULTRM 20334 and written into MULTRF 20350. This allows EU 10122, using
container size information stored in MULTRM 20350, to perform continuous container size checking during
8 string transfer of result from EU 10122 to MEM 10112, In addition, as will be described momentarily,
container size information may be read from CONSIZE 20352 to JPD Bus 10144,

b.b.b. Final Result Output Muttiplexer 20324
Referring finally to FROM 20324, as previously described FROM 20324 is utilized to transfer, in general,
results of EU 10122 arithmetic operations onto JPD Bus 10142 for transfer to MEM 10112 or FU 10120. As
indicated in Fig. 257, FROM 20324 is comprised of 24 bit Final Result Bus Driver (FRBD) 25722 and Result
Bus Driver (RBR) 25724, Input of FRBD 25722 is connected from FR Bus 20337 and allows data appearing
thereon to be transferred onto JPD Bus 10142. In particular, FRBD 25722 is utilized to transfer 24 bit
mantissa fields of single precision fioating point results onto JPD Bus 10142 in parallel with a

_eorresponding exponent field from EXP 20316. RBR 25724 input is connected from RSLT Bus 20388to allow

108

Petitioner Apple Inc. - Ex. 1025, p. 4006



1¢

15

20

25

30

35

Co " EP 0067 556 B1

output of UPDM 25718 1o be transferred onto JPD Bus 10142. RBR 25724, RSLT Bus 20388, and UPDM
25718 are used, in general, to transfer final results of EU 10122 operations from output of MULT 20314 onto
JPD Bus 10142. Final results transferred by this data path include integer, packed and unpacked decimal
results, and mantissa fields of double precision floating point results. Both unpacked decimal numbers and
mantissa fields of double precision fioating point numbers are comprised of two 32 bit words and are thus
transferred onto JPD Bus 10142 in two sequential transfer operations.

Having described structure and operation of MULT 20314's memory elements and input and output
circuitry, MULT 20314's arithmetic operation logic will be described next below.

4. Test and Interface Logic 20320 (Figs. 260—268)

As previously described, TSTINT 20320 includes CONSIZE 20352, ECPT 20328, TSTCOND 20384, and
INTRPT 20388. CONSIZE 20352, as previously described, performs *“container size”” check operations when
results of EU 10122 operations are to be written into MEM 10112, That is, CONSIZE 20352 compares size or
number of significant bits, of an EU 10122 resuilt to the capacity, or container size, of the MEM 10112
location that EU 10122 result is to be written into. As indicated, in Fig. 203, CONSIZE 20352 receives a first
input, that is the results of EU 10122 operations, from FR Bus 20337. A second input of CONSIZE 20357 is
connected to LENGTH Bus 20226 to receive length field of logical descriptors identifying MEM 10112
address space into which those EU 10122 results are to be written. CONSIZE 20362 includes logic circuitry,
for example a combination of Read Only Memory and Field Programmable Logic Arrays, for examining EU
10122 operation resuits appearing on FR Bus 20337 and determining the number of bits of data in those
results. CONSIZE 20352 compares EU 10122 resuit size to logical descriptor length field and, in particular, if
result size exceeds logical descriptor {ength, provides an alarm output to ECPT 20328, described below.

TSTCOND 20384, previously describad and which will be described further below, is an interface circuit
between FU 10120 and EU 10122. TSTCOND 20384 allows FU 10120 to specify and examine results of
cortain test operations performed by EU 10122 with respect to EU 10122 operations.

ECPT 20328 monitors certaln EU 10122 operations and provides outputs indicating when certain
“exceptions”” heve occurred. These exceptions include attempted divisions by zero, floating point exponent
underfiow or overflow, and integer container size fault.

INTRPT 20388 is again an interface between EU 10122 and FU 10120 allowing FU 10120 to interrupt EU
10122 operations. INTRPT 20388 allows FU 10120 to direct EU 10122 to execute certain operations to aid in

‘ handling of certain FU 10120 events previously described.

Operation of CONSIZE 20352, ECPT 20328, TSTCOND 20384, INTRPT 20388, and other features of EU
10122’s interface with FU 10120 will be described further below in the following description of operation of
that interface and of operation of certain EU 10122 internal mechanisms, such as FU 10120 Stack
Mechanisms.

a.a. FU 10120/EU 10122 Interface

As previously described, EU 10122 and FU 10120 are asychronous processors, each operating under its
own microcode control. EU 10122 and FU 10120 operate simultaneously and independently of each other
but are coupled, and their operations coordinated, by interface signals described below. Should EU 10122
not be able to respond immediately to a request from FU 10120, FU 10120 will idle until EU 10122 becomes
available; conversely, should EU 10122 not receive, or have present, operands or a request for operations
from FU 10120, EU 10122 will remain in idle state until operands and requests for operations are received
from FU 10120.

in normal aperation, EU 10122 manipulates operands under control of FU 10120, which in turn is under
control of SOPs of a user’s program. When FU 10120 requires arithmetic or logical manipulation of an
operand, FU 10120 dispatches a command, that is an Execute Unit Dispatch.Pointer (EUDP) to EU 10122. As
previously described, an EUDP is basically an initial address into EUSITT 20344. An EUDP identifies starting
location of a EU 10122 microinstruction sequence performing the required operation upon operands.
Operands are fetched from MEM 10112 under FU 10120 control, as- previously described, and are
transferred into OPB 20322. Those operands are then called from OPB 20322 by EU 10122 and transferred
into MULT 20314 and EXP 20316 as previously described. After the required operation is completed, FU
10120 is notified that a result is ready. At this point, FU 10120 may check certain test conditions, for
example through TSTCOND 20384, such as whether an integer or decimal carry bit is set or whether a
mantissa sign bit is set or reset. This test operation is utilized by FU 10120 for conditional branching and
synchronization of FU 10120 and EU 10122 gperations. Exception checking, by ECPT 20328, is also
performed at this time. Exception checking determines, for example, whether division by zero was
attempted or if a container size fault has occurred. in general, FU 10120 is not informed of exception errors
until FU 10120 requests exception checking. After resuits are transferred into FU 10120 or MEM 10112 by
EU 10122, EU 10122 goes to idle operation until a next operation is requested by FU 10120.

Having briefly described overall interface operation between FU 10120 and EU 10122, operation of that
interface, referred to as handshaking, will be described in greater detail next below. In general,
handshaking operation between EU 10122 and FU 10120 during normal operation may be regarded.as
following into six operations. These operations may include, for example, {oading of COMQ 20342, loading
of OPB 20322, storeback or transfer of results from EU 10122 to FU 10120 or MEM 10112, check of test
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conditions, exception checking, and EU 10122 idle operation. Handshaking between FU 10120 and EU
10122 will be described below for each of these classes of operation, in the order just referred to.

aa.a. Loading of Command Queue 20342 (Fig. 260)

Referring to Fig. 260, a schematic representation of EU 10122's interface with FU 10120 for purposes of
loading COMQ 20342 as shown. During normal SOP directed JP 10114 operation, 8 bit operation (OP) codes
are parsed from the instruction stream, as previousty described, and concatenated with dialect information
to address EUSDT 20266 also as previously described. EUSDT 20266 provides corresponding addresses,
that is EUDPs, to EUSITT 20344.

Dialect information specifies the S-Language currently being executed and, consequently, the group of
microinstruction sequences available in EUSITT 20344 for that S-Language. As previously described, FU
10120 may specify four S-Language dialects with up to 256 EU 10122 microinstruction sequences per
dialect, or B dialects with up to 128 microinstruction sequences per dialect.

EUDPs provided by EUSDT 20266 are comprised of a 9 bit address field, a 2 bit operand information
field, and a 1 bit flag field, as previously described. Address field is starting address of a microinstruction
sequence in EUSITT 20344 and EU 10122 will perform the operation directed by that microinstruction®
sequence. EUSITT 20344 requires 11 bits of address field and the 9 bit address field of EUDPs are mapped
into an 11 bit address field by left justification and zero filling. :

FU 10120 may also dispatch, or select, any EU 10122 microinstruction controlled operation from JPD
Bus 10142. Such EUDPs are provided from JPD Bus 10142 to data input of EUSITT 20344 and passed
directly through to mCRD 20346, Before a EUDP may be provided from JPD Bus 10142, however, FU 101 20
provides 8 check operation comparing that EUDP to a list of legal, or allowed, EUSITT 20344 addresses
stored in MEM 10112. A fault will be indicated if an EUDP provided through JPD Bus 10142 is not a legal
EUSITT 20344 address. Alternately, FU 10120 may effectively provide an EUDP, or EUSITT 20344
addresses, from a literal field in a FU 10120 microinstruction word, Such a FU 10120 microinstruction word
literal field may be effectively utilized as an SOP into EUSDT 20266.

Handshaking between EU 10122 and FU 10120 during load COMQ 20342 operations may proceed &s
illustrated in Fig. 260. A twelve bit EUDP may be placed on EUDIS Bus 20206 and Controtf Signal Load
Command Queue (LDCMQ) asserted. if COMQ 20342 is full, EU 10122 raises control signal Command Hold
{CMDHOLD) which causes FU 10120 to remsin in State MO until there is room in COMQ 20342. As_
previously described, COMQ 20342 is comprised of two, two word buffers wherein one buffer is utilized for
normal SOP operation and the other utilized for control of FU 10120 and EU 10122 internal mechanism
operation.

EUDPs are loaded into COMQ 20342 when state timing signals M1CPT and M1 are asserted. If a EUDP
being transferred into COMQ 20342 concems a double precision floating point operation, contro signal Set
Double Precision (SETDP) is asserted. SETDP is utifized to control OPB 20322, and because single precision
and precision floating point operations otherwise utilize the same SOP and thus would otherwise refer to
same EUSITT 20344 microinstruction sequence.

At this point, a EUDP has been loaded into COMQ 20342 and will be decoded to control FU 10120
operation by EUCL 20310 as previously described. Each particular EUDP will be cleared by that EUDPs
EUSITT 20344 microinstruction sequence after the requested microinstruction sequence has been
executed. .

b.b.b. Loading of Operand Bufter 20320 (Fig. 261}

Referring to Fig. 261, a diagramic representation of the interface and handshaking between EU 10122,
FU 10120 and MEM 10112 for loading OPB 20322 is shown. Control signal Ciear Queue Full (CLQF) from EU
10122 must be asserted by EU 10122 before FU 10120 initiates a request to MEM 10112 foran operand to be
transferred to EU 10122. CLOF clears and “EU 10122s OPB 20322 Full” condition in FU 10120. CLQF
indicates, thereby, that there is room in OPB 20322 to receive operands. f FU 10120 is in a "EU 10122's OPB
20322 Full” condition and further operand is required to be transferred to EU 10122, FU 10120 will remain in
State M1 until CLAF is asserted.

At the beginning of execution of a particular SOP, FU 10120 may transfer two operands to OPB 20322
without “EU 10122's OPB 20322 Full” condition occurring. This is because EU 10122is idle atthe beginning
of an SOP execution and generally immediately unloads a first operand from OPB 20322 before a second
operand arrives.

Control signal Job Processor Operand (JPOP) provided from FU 10120 must be non-asserted for
operands to be transferred from MEM 10112 to OPB 20322 through MOD Bus 10144. This is the normal
condition of JPOP. If JPOP is asserted, OPB 20322 is loaded with data from JPD Bus 10142. Data is strobed
into OPB 20322 from JPD Bus 10142 by control signals M1CPT and JPOP. Operands read from MEM 10112,
however, are transferred into OPB 20322 through MOD Bus 10144 when MEM 10112 asserts DAVEB to
indicate that valid data from MEM 10112 is available on MOD Bus 10144. DAVEB is also utilized to strobe
data on MOD Bus 10144 into OPB 20322. If control signal ZFILL from MEM 10112 is asserted at this point,
ZFILL is interpreted during integer operand operations to indicate that those operands are unsigned and
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should be left zero filled, rather than sign extended. ¥f data is being provided from JPD Bus 10142 rather
than from MEM 10112, that is if JPOP is asserted, bit 11 of current EUDP may be utilized to perform the
same function as ZFILL during loading of OPB 20322 from MOD Bus 10144.

Loading of OPB 20322 is controlled, in part, by bits 9 and 10 of EUDPs provided from FU 10120 through
EUDIS Bus 20206. Bit 9 indicates length of a first operand while bit 10 indicates length of a second operand.
Operand length, together with operand type specified in address portion of a EUDP, determines how a
particular operand is unioaded from OPB 20322 and transferred into MULT 20314 and EXP 20316.

At this point, both COMQ 20342 and OPB 20322 have been loaded with, respectively, EUDPs and
operands. It should be noted that operands are generally not transferred into OPB 20322 before a
corresponding EUDP is loaded into COMQ 20342. Operands and EUDPs may, however, be simultaneously
transferred into EU 10122. if other operands are required for a particular operation, those operands are
loaded into OPB 20322 as described above.

c.c.c. Storeback (Fg. 262) i
Referring to Fig. 262, a diagramic representation of a storeback, or transfar, of resuits to MEM 10112
from EU 10122 and handshaking performed therein is shown. When a final result of a EU 10122 operation is
available, EU 10122 asserts control signal Data Ready {DRDY). FU. 10120 thereupon responds with control
signal Transfer to JPD Bus 10742 (XJPD), which gates EU 10122°s result onto JPD Bus 10142. in normal
operation, that is execution of SOPs, FU 10120 causes EU 10122’s result to be stored back into a destination
in MEM 10112, as selected by a physical descriptor provided from FU 10120. Alternately, a result may be
transferred into FU 10120, 32 bits, or one word, at a time. . .
~ FU 10120 may, as described above and described further betow, check EU 10122 test conditions during
storeback of results. FU 10120 generates control signal Transfer Complete (XFRC) once the storeback
operation is completed. XFRC also indicates to EU 10122 that EU 10122's results and test conditions have
been accepted by FU 10120, so that EU 10122 need no longer assert these resuits and test conditions.

d.d.d. Test Conditions (Fig. 263) . .

Referring to Fig. 263, a diagramic representation of checking of EU10122 test conditions by FU 10120,
and handshaking therein, is shown. As previously described, test results indicating certain conditions and
operations of EU 10122 are sampled and stored in TSTCOND 20384 and may be examined by FU 10120.
When DRDY is asserted by EU 10122, FU 10120 may select, for example, one of 8 EU 10122 conditions to
test, as well as transferring results as described above. EU 10122 conditions which may be tested by FU
10120 are listed and described below. Such conditions, as whether a final result is positive, negative, or
z6r0, may be checked in order to facilitate conditional branching of FU 10120 operations as previously
described. FU 10120 specifies a condition to be tested through Test Condition Select signals (TEST(24)). FU
10120 asserts contro! signal EU Test Enable (EUTESTEN) to EU 10122 to gate the selected test condition.
That selected test condition then appears as Data Signa! Test Condition (TC) from EU 10122 to FU 10120. A
TC of logic 1 may, for example, indicate that the selected condition is false while a TC of logic O may
indicate that the selected condition is true. FU 10120 indicates that FU 10120 has sensed the requested test
condition, and that the test condition need no langer be ssserted by EU 10122, by asserting control signal
XFRC.

e.e.e. Exception Checking (Fig. 264)

Referring to Fig. 264, @ diagramic representation of exception checking of EU 10122 exceptions by FU
10120, and handshaking therein, is shown. As previcusly described, any EU 10122 exception conditions
may be checked by FU 10120 as FU 10120 is initiating storeback of EU 10122 resuits. Exception checking
may detect, for example, attempted division by zero, floating point exponent underflow or overflow, or a
container size fault. An sttempted division by zero or fioating point underflow or overflow may be checked
before storeback, that is without specific request by FU 10120. :

As previously described, a container size fault is detected by CONSIZE 20352 by comparing length of
result with size of destination container in MEM 10112. Container size exception checking occurs during -
store back of EU 10122 results, that is while FU 10120 is in State SB. Container size is automatically
performed by EU 10122 hardware, that is by CONSIZE 20352, only on results of less than 33 bits length. Size
checking of larger results, that is larger integers and BCD results, is performed by a microcode routine,
using CONSIZE 20352's output, as transfer of such larger results is executed as string transfer. Itis
unnecessary to perform container size check for either single or double precision floating point results as
these data types always occupy either 32 or 64 bits. Destination container size is provided to CONSIZE
20352 through LENGTH Bus 20226.

Control signal Length to Memory AON or Random Signals (LMAONRS) is generated by FU 10120 from
Type field of the logical descriptor corresponding to a particular EU 10122 result. LMAONRS indicates that
the results data type is an unsigned integer. LMAONRS determines the manner in which a required
container size of the EU 10122 result is determined. After receivng this information from LMAONRS, EU
10122 determines whether destination container size in MEM 10112 is sufficiently large to contain the EU
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10122 resutt. if that destination cantainer size is not sufficiently large, a container size fault is detected by
CONSIZE 20352, or through an EU 10122 microinstruction sequence.

Container size faults, as well as division by zero and exponent underflow and overflow faults, are
signaled to FU 10120 when FU 10120 asserts control signal Check Size (CKSIZE). At this time, EU 10122
asserts control signal Exception (EXCPT] if any of the above faults has occurred. If a fault has occurred, an
Event request to FU 10120 results. When an Event request is honored by FU 10120, FU 10120 may interrupt
EU 10122 and dispatch EU 10122 to a microinstruction routine that transfers those exception conditions
onto JPD Bus 10142. If a container size fault has caused that exception condition, EU 10122 may transfer to
FU 10120 the required container size through JPD Bus 10142,

f.£f. Idie Routine
Finally, when a current EU 10122 operation is completed, EU 10122 goes into an Idle loop
microinstruction routine. If necessary, FU 10120 may assert contro! signal Excute Unit Abort (EUABORT) to
force EU 10122 into Idle loop microinstruction routing untii EU 10122 is required for further operations.

g.g.g. EU 10122 Stack Mechanism (Figs. 265, 266, 267)

As previously described, EU 10122 may perform either of two classes of operations. First, EU 10122
may perform arithmetic operations in execution of SOPs of user’s programs. Second, EU 10122 may
operate as an arithmetic calculator assisting operation of FU 10120's internal mechanisms and operations,
referred.to as kernel operations. .

in kernel operation, EU 10122 acts as an arithmetic caleutator for FU 10120 during address generation,
address translation, and other kernel functions. in kerne! made, EU 10122 is executing microinstruction
sequences at request of FU 10120 keme! microinstruction sequences, rather than at request of an SOP. in
general, these kemel operations are vital to operation of JP 10114. FU 10120 may interrupt EU 10122
operations with regard to SOPs and initiate EU 10122 microinstruction sequences to perform kemel
operations.

When interrupted, EU 10122 saves EU 10122’s current operating state in a one level deep stack. EU
10122 may then accept an EUDP from that portion of COMQ 20342 utilized to receive and store EUDPs
regarding FU 10120's and EU 10122's internasl, or kernel, operations. When requesting kernel operations by
EU 10122, FU 10120 generally transfers operands to OPB 20322 through JPD Bus 10142, and receives EU
10122 final results through JPD Bus 10142. Operands may also be provided to EU 10122 through MOD Bus
10144, After EU 10122 has completed a requested kemel operstion, EU 10122 reloads operating state from
its internal stack and continues normal operation from the point normal operation was interrupted.

Should another interrupt from FU 10120 occur while a prior interrupt is being executed, EU 10122
moves current state and data, that is of first interrupt, to MEM 10112, EU 10122 requests FU 10120 store
state and date of first interrupt in MEM 10112 by requesting an “EU 10122 Stack Overfiow” Event. EU
10122's “normal”’ state, tbat is state and dats pertaining to the operation EU 10122 is executing at time of
occurrence of first interrupt, is stored in an EU 10122 internal stack and remains there. EU 10122 then
begins executing second interrupt. When EU 10122 has completed operations for second interrupt, state
from first interrupt is reloaded from MEM 10112 by EU 10122 requesting & *"EU 10122 Stack Underflow”
Event to FU 10120. EU 10122 then completes execution of first interrupt and reloads state and resumes
execution of normal opergtion, that is the operation being executed before the first interrupt.

EU 10122 is therefore capable of handling interrupts from FU 10120 during two circumstances. First
interrupt circumstance is comprised of interrupts occurring during normal operation, that is while
executing SOPs of user's programs. Second circumstance arises when interrupts occur during kemnel
operations, that is during execution of microinstruction sequences for handling interrupts. EU 10122
operation will be deseribed next betow for each of these circumstances, and in the order referred to.

Referring to Fig. 265, a diagramic representation of EU 10122's stack mechanisms, previously
described, is shown. Those portions of EU 10122's stack mechanisms residing within EU 10122 are
comprised of EU 10122's Current State Registers (EUCSRs) 26510 and EU 10122's Internal Stack (EUIS)
26512, EUCSR 26510 is comprised of EU 10122's internal registers which contain data and state of current
EU 10122 operation. EUCSR 26510 may be comprised, for example, of mCRD 20348, registers of TSTINT
20320, and the previously described registers within MULT 20314 and EXP 20316.

State and data contained in EUCSR 26510 is that of the operation currently being executed by EU
10122. This current state may, for example, be that of 8 SOP currently being executed by EU 10122, or that
of an interrupt, for example a fourth interrupt of a nested sequence of interrupts, requested by FU 10120,

EUIS 26512 is comprised of certain registers of MULTRF 20350 and EXPRF 20380. EUIS 26512 is utilized
to store and save current state of an SOP operation currently being executed by EU 10122 and which has
been interrupted. State and data of that SOP operation will remain stored in EUIS 26512 regardiess of the
number of interrupts which may occur on a nested sequence of interrupts requested by FU 10120. State
and data of the interrupted SOP operation will be returned from EUIS 26512 to EUCSR 26510 when all
interrupts have been completed.

Final portion of EU 10122's stack mechanism is that portion of EU 10122's internal stack (EUES) 26514
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residing in MEM 10112, EUES 26514 is comprised of certain MEM 10112 address locations used to store
state and data of successive interrupt operations of sequences of nested interrupts. Thatis, if a sequence of
four interrupts is requested by FU 10120, state and data of fourth interrupt will reside in EUCSR 26510 while
state and data of first, second, and third interrupts have been transferred, in sequence, into EUES 26514. In

" this respect, and as previously described operation of EU 10122's stack mechanisms is similar to that of, for

example, MIS 10368 and SS 10336 previously described with reference ta Fig. 103.

As described above, an interrupt may be requested of EU 10122 by FU 10120 either during EU 10122
normal operation, that is during execution of SOPs by EU 10122, or while EU 10122 is executing 2 previous
interrupt requested by FU 10120. Operation of EU 10122 and FU 10120 upon occurrence of an interrupt
during EU 10122 normal operation will be described next below.

Referring to Fig. 266, a diagramic representation of handshaking between EU 10122 and FU 10120
during an interrupt of EU 10122 while EU 10122.is operating in normal mode is shown and should be
referred o in conjunction with Fig. 265. For purposes of the following discussions, interrupte of EU 10122
operations by FU 10120 are referred to as nanointerrupts 1o distinguish from interrupts internal to FU
10120. :

FU 10120 interrupts normal operation of EU 10122 by assertion of control signal Nano-Interrupt
{NINTP) during State MO of FU 10120 operation, NINTP may be masked by EU 10122 during certain criticat
EU 10122 operations, such as arithmetic aperations. if NINTP is masked by EU 10122, FU 10120 wili remain
in State NW until EU 10122 acknowiedges the interrupt.

Upon receiving NINTP from FU 10120, EU 101225 transfers state and data of current SOP operation
from EUCSR 26510 to EUIS 26512. EU 10122 then asserts control signal Nano-Interrupt Acknowledge
{NIACK) to FU 10120 to acknowledge availability of EU 10122 to accept a nanointerrupt. FU 10120 will then
enter State M1 and place an EUDP on EUDIS Bus 20206. Loading of COMQ 20342 then proceeds as
previously described, with EU 10122 loading nanointerrupt EUDPs into the appropriate registers of COMQ
20342. COMQ 20342 is loaded as previously described and, if JPOP is asserted, data transferred into OPB
20322 from JPD Bus 10142. if JPOP is not asserted, data is taken into OPB 20322 from MOD Bus 10144, EU
10122 then proceeds to execute the required nanoimterrupt operation and storing back of results and
checking of test conditions proceeds as previously described for EU 10122 normal operation. In general,
exception checking is not performed. When EU 10122 has completed execution of the nenoimerrupt
operation, EU 10122 transfers state and data of the interrupted SOP operation from EUIS 26612 to EUCSR
26510 and resumes execution of that SOP. At this point, EU 10122 asserts control signal Nano-Interrupt
Trap Enable (NITE). NiTE is received and tested by FU 10120 to indicate end of nancinterrupt processing.

Referring to Fig. 267, a diagramic representation of interfaces between EU 10122, FU 10120, and MEM
10112 during nested, or sequential, EU 10122 interrupts for kernel operations, and handshaking therein, is
shown. During the following discussion, it is assumed that EU 10122 is already processing a nanointerrupt
for a kernel operation submitted to EU 10122 by FU 10120, FU 10120 may then submit a second, third, or
fourth, nanointerrupt to EU 10122 for a further kernel operation. FU 10120 will assert NINTP to request a
nanointerrupt of EU 10122. EU 10122’s normal mode state and date from a previously executing SOP
operation has been stored in, and remains in, EUIS 26512. Current state and data of currently executing
nanointerrupt operation in EUCSR 26510 will be transferred to EUES 26514 in MEM 10112 to aliow initiation
of pending nanointerrupt. EU 10122 will at this time assert NIACK and control signal Execute Unit Event
{EXEVT). EXEVT to FU 10120 informs FU 10120 that an EU 10122 Event has occurred, specificatly, and in
this case, EXEVT requests FU 10120 service of an EU 10122 Stack Overfiow. FU 10120 is thereby trapped to
an “EU 10122 Stack Overflow” Event Handler microinstruction sequence. This handler transfers current
state and data of interrupted nanointerrupt previously executing in EU 10122 into EUES 26514. State and
data of interrupted nanointerrupt is transferred to EUES 26514, one 32 bit word at a time. FU 10120 asserts
contro! signals XJPD to gate each of these state and data words onto JPD Bus 10142 and controls transfer
of these words into EUES 26514.

Processing of new nanointerrupt proceeds as described above with reference to interrupts occurring
during normal operation. If any subsequent nanointerrupts occur, they are handied in the same manner as
just described; FU 10120 signals a nanointerrupt to FU 10120, current EU 10122 state and data is saved by
FU 10120 in EUES 26514, and new nanointerrupt is processed. After a nested nanointerrupt, that is a
nanoimerrupt of a sequence of nanointerrupts, has been serviced, EU 10122 asserts control signal EU
10122 Trap {(ETRAP) to FU 10120 to request a transfer of a previous nanocinterrupt’s state and data from
EUES 26514 to EUCSR 26510. FU 10120 wi11 retrieve that next previous nanointerrupt state and data from
EUES 26514 through MOD Bus 10144 and wili transfer that data and state onto JPD Bus 10142. This state
and data is returned, one 32 bit word at a time, and is strobed into EU 10122 by JPOP from FU 10120.
Processing of that prior nanointerrupt will then resume. The servicing of successively prior nanointerrupts
will continue until all previous nanointerrupts have been serviced. Original state and data of EU 10122, that
is that of SOP operation which was initially interrupted, is then returned to EUCSR 26510 from EUIS 26512
and execution of that SOP resumed. At this time, EU 10122 asserts NITE 1o indicate end of EU 10122 kernel
operations in regard to nanointerrupts. )

Having described structure and operation of EU 10122, FU 10120 and MEM 10112, with respect to
servicing of kernel operation nanointerrupts by EU 10122, ioading of EU 10122’s EUSITT 20344 with
microinstruction sequences will be described next below.
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h.hhh  Loading of Execute Unit S-Interpreter Table 20344 (Fig. 268)

Referring to Fig. 268, & diagramic representation of interface and handshsking between EU 10122, FU
10120, MEM 10112, and DP 10118 during loading of microinstructions into EUSITT 20344 is shown. As
previously described, EUSITT 20344 contains ali microinstructions required for control of EU 10122 in
executing kems! nanointerrupt operations end in executing arithmetic operations in response to SOPs of
user's programs. EUSITT 20344 may store microinstruction sequences for interpreting arithmaetic SOPs of
user's programs for, for example, up to 4 different S-Language Dialects. In general, a capacity of storing
microinstruction sequencas for arithmetic operations in up to 4 S-Language Dialects is sufficient for most
requirements, so that EUSITT 20344 need be loaded with microinstruction sequences only at initialization
of CS 10110 operation. Should microinstruction sequences for arithmetic operations of more than 4 S-
Language Dialects be required, those microinstruction sequences may be loaded into EUSITT 20344 in the
manner as will be described below. )

As previousty described, a portion of the microinstructions stored in EUSITT 20344 is contained in
Read Onty Memories and is thus permanently stored in EUSITT 20344. Microinstruction sequences
permanently stored in EUSITT 20344 are, in general, those required for execution of kernel operations.
Microinstruction sequences permanently stored in EUSITT 20344 include those used to assist in writing
other EU 10122 microinstruction sequences into EUSITT 20344 as required. Certain microinstruction
sequences are stored in 8 Random Access Memory, referred to as the Writeable Control Store (WCS)
portion of EUSITT 20344, and include these for interpreting arithmetic operation SOPs of various S-
Language Dialects.

Writing of microinstruction sequences into EU 10122 is initialized by forcing EU 10122 into an idle state.
Initialization of EU 10122 is accomplished by FU 10120 asserting EUABORT or by DP 10118 asserting
control signal clear {CLEAR). Either EUABORT or CLEAR will ctear a current aperation of EU 10122 and force
EU 10122 into Idie state, wherein EU 10122 waits for further EUDPs provided from FU 10120. FU 10120 then
dispatches a EUDP initiating loading of EUSITT 20344 to EU 10122 through EUDIS Bus 20206. Load EUSITT
20344 EUDP specifies starting address of a two step microinstruction sequence in the PROM portion of
EUSITT 20344. This two step microinstruction sequence first loads zeros into SCAG 25636, which as
previously described provides read and write addresses to EUSITT 20344. EUSITT 20344 load
microinstruction sequence then reads a microinstruction from EUSITT 20344 to mCRD 20346. This
microinstruction specifies conditions for handshaking operations with FU 10120 so that loading of EUSITT
20344 may begin. At this time, and from this microinstruction word, EU 10122 asserts control signal DRDY
to FU 10120 to indicate that EU 10122 is ready to accept EUDPs from FU 10120 for directing loading of
EUSITT 20344. This initial microinstruction also generates a write enable control signa! for the WCS portion
of EUSITT 20344, inhibits ioading of mCRD 20346 from EUSITT 20344, end inhibits normal loading
operations of NXTR 25540 and SCAG 25536, This first microinstruction also directs NASS 25526 to accept
address inputs from SCAG 25536 and, finally, causes NITE to FU 10120 to be asserted to unmask
nanointerrupts from FU 10120.

FU 10120 then generates a read request to MEM 10112, and MEM 10112 transfers & first 32 bit word of a
EU 10122 microinstruction word onto JPD Bus 10142. Each such 32 bit word from MEM 10112 comprises
one half of a 64 bit microinstruction word of EU 10122. When FU 10120 receives DRDY from EU 10122, FU
10120 generates control signal Load Writeable Control Store {LDWCS). LDWCS in turn transfers a 32 bit
word on JPD Bus 10142 into a first address of the WCS portion of EUSITT 20344. A next 32 bit half word of 8
EU 10122 mieroinstruction word is then read from MEM 10112 through JPD Bus 10142 and transferred into
the second half of that first address within the WCS portion of EUSITT 20344. The address in SCAG 25636 is
then incremented to select & next address within EUSITT 20344 and the process just described repeated
automatically, including generation of DRDY and LDWCS, until loading of EUSITT 20344 is completed.

After loading of EUSITT 20344 is completed, the loading process is terminated when FU 10120 asserts
NINTP, or DP 10118 asserts Control Signal Load Compiete (LOADCRY}. Either NINTP or LOADCR releases
control of operation of NAG 20340 to allow EU 10122 10 resume normal operation. )

The above descriptions have described structure and operation of EU 10122, including: execution of
various arithmetic operations utilizing various operand formats; operation of EU 10122, FU 10120, and
MEM 10112 with regard to handshaking; loading of EUDPs and operands; storeback of results; checking of
test conditions and excaptions; EU 10122 Stack Mechanisms during normal and kernel operations; and
loading of EU 10122 microinstruction sequences into EUSITT 20344. 10S 10116 and DP 10118 will be
described next below, in that order.

D. VO System 10116 (Figs. 204, 205, 269)

Referring to Fig. 204, a partial biock diagram of 10S 10116 is shown. As previously described, 105 10116
operates as an interface between CS 10110 and the external world, for exemple, ED 10124. A primary
function of I0S 10116 is the transfer of data between CS 10110, thatis MEM 10112, and the external world.
in addition to performing transfers of data, IOS 10116 contrals access between various data sources and
sinks of ED 10124 and MEM 10112. As previously described, IOS 10116 directly addresses MEM 10112's
physical address space to write data into or read data from MEM 10112. As such, |0S 10116 also performs
address translation, a mapping operation required in transferring data between MEM 10112’s physical
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address space and address spaces of data sources and sinks in ED 10124,

As shown in Fig. 204, 10S 10116 includes Data Mover (DMOVR) 20410, Input/Output Control Pracessor
(I0CP) 20412, and one or more data channel devices. 10S 10116's data channe! devices may include
ECLIPSE® Burst Multiplexer Channel (EBMC) 20414, NOVA Data Channe! (NDC) 20416, and other data
channel devices as required for a particular configuration of a CS 10110 system. IOCP 20412 controls and
directs transfer of data between MEM 10112 and ED 10124, and controls and directs mapping of addresses
between ED 10124 and MEM 10112's physical address space. IOCP 20412 may be comprised, for example,
of a general purpose computer, such as an ECLIPSE® M600 computer available from Data General
Corporation of Westboro, Massachusetts.

EBMC 20414 and NDC 20416 comprise data channels through which data is transferred between ED
10124 and 10S 10116. EBMC 20414 and NDC 20416 perform actual transfers of data to and from ED 101 24,
under control of IOCP 20412, and perform mapping of ED 10124 addresses to MEM 10112 phy.sical
addresses, also under contro! of IOCP 20412. EBMC 20414 and NDC 20416 may respectively be comprised,
for exampie, of an ECUPSE® Burst Multiplexer Data Channel and a NOVA® Data Channel, also available
from Data General Corporation of Westboro, Massachusetts.

DMOVR 20410 comprises I0S 10116's interface to MEM 10112, DMOVR 20410 is the path through
which data and addresses are transferred between EBMC 20414 and NDC 20416 and MEM 10112.
Additionalty, DMOVR 20410 controls access between EBMC 20414, NDC 20416, and other 10S 10116 data
channels, and MEM 10112,

ED 10124, as indicated in Fig. 204, may be comprised of one ar more data sinks and sources. ED 10124
data sinks and sources may include commercially available disc drive units, line printers, communication
lengths, tape units, and other camputer systems, including other CS 10110 systems. In general, ED 10124
may include all such data devices as are generally interfaced with a computer system.

a. /O System 10116 Structure {Fig. 204)

" Referring first to the averall structure of 10S 10116, data input/output of ECLIPSE® Burst Multiplexer
Channel Adapter and Control Circuitry (BMCAC) 20418 of EBMC 20414 is connected to bi-directional BMC
Address and Data (BMCAD} Bus 20420. BMCAD Bus 20420 in turn is connected to data and address inputs
and outputs of data sinks and sources of ED 10124, .

Similarly, data and address inputs and outputs of NOVA® Data Channel Adapter Control Circuits
{NDCAC) 20422 in NDC 20416 is connected to bi-directional NOVA® Data Channel Address and Data
{NDCAD) Bus 20424. NDCAD Bus 20424 in turn is connected to address and data inputs and outputs of data
sources and sinks of ED 10124. BMCAD Bus 20420 and NDCAD Bus 20424 are paths for transfer of dats and
addresses between data sinks and sources of ED 10124 and 10S 10116’s data channels and may be
expanded as required:to include ather I0S 10116 data channe! devices and other data sink and source
devices of ED 10124.

Within EBMC 20414, bi-directional data input and output of BMCAC 20418 is connected to bi-directional
input and output of BMC Data Buffer (BMCDB) 20426. Data inputs and data outputs of BMCDB 20426 are
connected to, respectively, Data Mover Output Data (DMOD) Bus 20428 and Data Mover Input Data (DMID)
Bus 20430. Address outputs of BMCAC 20418 are connected to address inputs of Burst Multiplexer Channel
Address Translation Map (BMCATM) 20432 and address outputs of BMCATM 20432 are connected onto
DMID Bus 20430. A bi-directional control input and output of BMCATM 20432 is connected from bi-
directional 10 Control Processor Control {IOCPC) Bus 20434.

Referring to NDC 20416, as indicated in Fig. 204 data inputs and outputs of NDCAC 20422 are
connected, respectively, from DMOD Bus 20428 and to DMID Bus 20430. Address outputs of NDCAC 20422
are connected t0 address inputs of NOVA® Data Channel Address Translation Map (NDCATM) 20436.
Address outputs of NDCATM 20436 are, in turn, connected onto DMID Bus 20430. A bi-directional contro!
input and output af NDCATM 20436 is connected from IOCPC Bus 20434.

Referring to IOCP 20412, a bi-directional control input and output of IOCP 20412 is connected from
10CPC Bus 20434, Address and data output of IOCP 20412 is connected to NDCAD Bus 20424. An address
output of IOCP Address Translation Map (IOCPATM) 20438 within IOCP 20412 is connected onto DMID Bus
20430. Data inputs and outputs of IOCP 20412 are connected, respectively, to DMOD Bus 20428 and DMID
Bus 20430. A bi-directionat control input and output of IOCP 20412 is connected to a bi-directional contro!
input and output of DMOVR 20410.

Refarring finally to DMOVR 20410, DMOVR 20410 includes input Data Buffer {IDB) 20440, Output Data
Buffer {ODB) 20442, and Priority Resolution and Control (PRC) 20444. A data and address input of |DB 20440
is connected from DMID Bus 20430. A data and address output of DB 20440 is connected to IOM Bus 10130

to MEM 10112. A data output of ODB 20442 is connected from MIO Bus 10129 from MEM 10112, and a data
output of ODB 20442 is connected to DMOD Bus 20428. Bi-directional control inputs and outputs of IDB
20440 and ODB 20442 are connected from bi-directional control inputs and outputs of PRC 20444, A bi-
directional control input and output of PRC 20444 is connected from a bi-directional control input and
output of IOCP 20412 as described above. Another bi-directlonal control input and output of PRC 20444 is
connected to and from IOMC Bus 10131 and thus from a control input and output of MEM 10112. Having
described overall structure of 10S 101186, operation of 10S 10116 will be described next below.
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b. VO System 10116 Operation (Fig. 263)
1. Data Channel Devices

Referring first to EBMC 20414, BMCAC 20418 receives data and addresses from ED 10124 through
BMCAD Bus 20420. BMCAC 20418 transfers data into BMCDB 20426, where that data is held for subsequent
transmission to MEM 10112 through DMOVR 20410, as will be described below. BMCAC 20418 transfers
addresses raceived from ED 10124 to BMCATM 20432, BMCATM 20432 contains address mapping
information correlating ED 10124 addresses with MEM 10112 physical addresses. BMCATM 20432 thereby
provides MEM 10112 physical addresses corresponding to ED 10124 addresses provided through BMCAC
20418.

When, as will be described further below, EBMC 20414 is granted access to MEM 10112 to write data
into MEM 10112, data stored in BMCDB 20426 and corresponding addresses from BMCATM 20432 are
transferred onto DMID Bus 20430 to DMOVR 20410, As will be described below, DMOVR 20410 then writes
that data into those MEM 10112 physical address locations. When data Is to be read from MEM 1011210 ED
10124, data is provided by DMOVR 20410 on DMOD Bus 20428 and is transferred into BMCDB 20426.
BMCAC 20418 then reads that data from BMCDB 20426 and transfers that data onto BMCAD Bus 20420 to
£D 10124. During transfers of data from MEM 10112 to €D 10124, MEM 10112 does not provide addresses,
to be translated into ED 10124 addresses to accompany that data. Instead, those addresses are generated
and provided by BMCAC 20418, :

NDC 20416 operates in a manner similar to that of EBMC 20414 except that data inputs and outputs of
NDCAC 20422 are not buffered through a BMCDB 20426. :

As previously described, MEM 10112 has capacity to perform block transfers, that is sequential
transfers of four 32 bit words at a time. In general, such transfers are performed through EBMC 20414 and
are buffered through BMCDB 20426. That is, BMCDB 20426 allows single 32 bit wards to be received from
ED 10124 by EBMC 20414 and stored therein until a four word block has been recefved. That block may then
be transferred to MEM 10112. Similarly, a block may be received from MEM 10112, stored in BMCDB 20426,
and transferred one word at a time to ED 10124, In contrast, NDC 20416 may generally be utilized for singte
word transfers. . '

As indicated in Fig. 204, EBMC 20414, NDC 20416, and each data channel device of 10S 10116 each
contain an individual address translation map, for-example BMCATM 20432 in EBMC 20414 and NDCATM
20436 in NDC 20416. Address trans!ation maps stored therein are effectively constructed and controfled by
10CP 20412 for each data channel device. I0S 10116 may thereby provide an individual and separate
address translation map for each I0S 10116 data channel device. This aliows 10S 10116 to insure that no
two data channel devices, nor two groups of data sinks and sources in ED 10124, will mutually interfere by
writing into and destroying data in a common area of MEM 10112 physical address space. Altemately, 10S
10116 may generate address translation maps for two or mora data channel devices wherein thoss maps
share a common, or overiapping, area of MEM 10112's physical address space. This allows data stored in
MEM 10112 to be transferred between 10S 10116 data channel devices through MEM 10112, and thus to be
transferred between various data sink and source devices of ED 10124. For example, a first ED 101 24 data
source and a first I0S 10116 data channel may write data to be operated upon into a particular area of MEM
10112 address space. The results of CS 10110 operations upon that data may then be written into a
common area shared by that first data device and a second data device and read out of MEM 10112to a
second ED 10124 data sink by that second data channe! device. individual mapping of 10S 10116’s data
channel devices thareby provides total flexibility in partitioning or sharing of MEM 10112’s address space
through 10S 10116.

2. /O Control Processor 20412 :

As described above, IOCP 20412 is a general purpose computer whase primary function is overall
direction and contro! or data transfer between MEM 10112 and ED 10124. IOCP 20412 controls mapping of
addresses between 10S 10116's data channel devices and MEM 10112 address space. In this regard, I0CP
20412 generates address translation maps for |05 10116's data channel devices, such EBMC 20414 and
NDC 20416. |OCP 204712 loads these address translation maps into and contrals, for example, BUCATM
20432 of EBMC 20414 and NDCATM 20436 and NDC 20416 through IOCPC Bus 20434. 10CP 20412 also
provides certain control functions to DMOVR 20410, as indicated in Fig. 204. in addition to these functions,
1OCP 20412 is also provided with data and addressing inputs and outputs. These data addressing inputs
and outputs may be utilized, for example, to obtain information utilized by I0CP 20412 in generating and
controlling mapping of addresses between 10S 10116's data channel devices and MEM 10112, Also, these
data and address inputs and outputs allow 10CP 20412 to operate, in part, as a data channel device. As
previously described, IOCP 20412 has data and address inputs and outputs connected from and to DMID
Bus 20430 and DMOD Bus 20428. IOCP 20412 thus has access to data being transferred between ED 10124
and MEM 10112, providing IOCP 20412 with direct access to MEM 10112 address space. In addition, I0CP
20412 is provided with control and address outputs to NDCAD Bus 20424, thus allowing IOCP 20412 partial
contro! of certain data source and sink devices in ED 10124.
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3. Data Mover 20410 (Fig. 269)
a.a. Input Data Buffer 20440 and Output Data Buffer 20442

As described above, DMOVR 20410 comprises an interface between 10S 10116's data channels and
MEM 10112, DMOVR 20410 performs actual transfer of data between I0S 10116's data channe] devices and
MEM 10112, and controls access between I0S 10116's data channel devices and MEM 10112. IDB 20440
and ODB 20442 are data and address buffers allowing asynchronous transfer of data between I0S 10116
and MEM 10112, That is, ODB 20442 may accept data frorm MEM 10112 as that data becomes available and
then hold that data until an 10S 10116 data channel device, for example EBMC 20414, is ready 10 accept that
data. 1DB 20440 accepts data and MEM 10112 physical addresses from 10S 10118’s data channel devites.
IDB 20440 holds that data and addresses for subsequent transmission to MEM 10112 when MEM 10112 s
ready to accept data and addresses. IDB 20440 may, for example, accept a burst, or sequence, of data from
EBMC 20414 or single data words from NDC 20416 and subsequently provide that data to MEM 10112 in
block, or four word, transfers as previously described. Similarly, ODB 20442 may accept one or more block
transfefs or data from ODB 20442 and subsequently provide that data to NDC 20416 as single words, or to
DMID 20430 as a data burst. In addition, as previously described, a block transfer from MEM 10112 may not
appear as four sequential words. In such cases, ODB 20442 accepts the four words of a block transfer as
they appear on MIO Bus 10129 and assembles those words into a block comprising four sequential words
for subsequent transfer to ED 10124.

Transfer of data through IDB 20440 and ODB 20442 is controlled by PRC 20444, which exchanges
gont;t‘);‘sai.'gnais with OCP 20412 and has an interface, previously described, to MEM 10112 through IOMC

us .

b.b. Priority Resolution and Control 20444 (Fig. 269}

As previousty described, PRC 20444 controls access between 10S 10116 data channel devices and MEM
10112. This operation is performed by mesns of a Ring Grant Access Generator (RGAG) within PRC 20444,

Referring to Fig. 270, a diagramic representation of PRC 20444's RGAG is shown. In generai, PRC
20444's RGAG is comprised of a Ring Grant Code Generator (RGCG) 26910 and one or more data channel
request comparators. In Fig. 269, PRC 20444’s RGAC is shown as including ECLIPSE® Burst Multiplexer
Channe! Request Comparatar (EBMCRC)26912, NOVA® Data Channel Request Comparator {NDCRC) 26914,
Data Channel Device X Request Comparator (DCDXRC) 26916, and Data Channe! Device Z Request
Comparator {DCDZRC) 26918. PRC 20444's RGAG may include more or fewer request comparators as
required by the number of data channel devices within a particular {0S 10116.

As indicated in Fig. 269, Request Grant Code (RGC) outputs of RGCG 26910 are connected in paralle! to
first inputs of EBMCRC 26912, NDCRC 26914, DCDXRC 26816, and DCDZRC 26918. Second inputs of
EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and DCDZRC 26318 are connected from other portions of
PRC 20444 and receive indications that, respectively, EBMC 20414, NDC 20416, DCDX, or DCDZ has
submitted a request for a read or write access to MEM 10112 )

Request Grant Outputs {(GRANT) of EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and DCOZRC 26818
are in turn connected to other portions of PRC 20444 circuitry to indicate when read or write access to MEM
10112 has been granted in response to a request by a particular 10S 10116 data channel device. When
indication of such a grant is provided ta those other portions of PRC 20444, PRC 20444 proceeds to generate
appropriate controt signais to MEM 10112, through {OMC Bus 10131 as previously described, to IDB 20440
and ODB 20442, and to IOCP 20412. PRC 20444's control signals initiate that read or write request to that
10S 10116 data channel device. Grant outputs of EBMCRC 26912, NDCRC 26914, DCDXRC 26916, and

- DCOZRC 26918 are also provided as inputs to RGCG 26910 to indicate, as described further below, when a

particular 10S 10116 has requested and been granted access to MEM 10112.

As indicated in Fig. 269, a diagramic figure above RGCG 26910, RGCG generates a repeated sequence
of unigua RGCs. Herein indicated as numeric digits O to 15. Each RGC identifies, or defines, a particular
time slot during which a I0S 10116 data channel device may be granted access to MEM 10112 Certain
RGCs are, effectively, assigned to particuiar 10S 10116 data channel devices. Each such data channel device
may request access to MEM 10112 during its assigned RGC identified access slots. For example, EBMC
20414 is shown as being allowed access to MEM 10112 during those access slots identified by RGCs 0, 2, 4,
6, 8, 10, 12, and 14. NDC 20416 is indicated as being allowed access to MEM 10112 during RGC slots 3,7, 11,
and 15. DCDX is allowed access during slots 1 and 9, and DCDZ is allowed access during RGC slots § and
13.

As described above, RGCG generates RGCs 0 to 15 in a repetitive sequence. During occurrence of a
particular RGC, each request comparator of PRC 20444’s RGAG examines that RGC to determine whether
its associated data channel device is allowed access during that RGC slot, and whether that associated data
channel device has requested access to MEM 10112. If that associated data channel device Is allowed
access during that RGC slot, and has requested access, that date channel device is granted access as
indicated by that request comparator’s GRANT output. The request comparators GRANT output is also
provided as an input to RGCG 26910 to indicate to RGCG 26910 that access has been granted during that
RGC slot.

-if a particular data channel device has not claimed and has not been granted access to. MEM 10112
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during that RGC slot, RGCG 26910 will go directly to next RGC slot. in next RGC slot, PRC 20444’s RGAG
again determines whether the particular data channel device aliowed access during that slot has submitted
a request, and will grant access if such a request has been made. f not, RGCG 26910 will again proceed
directly to next RGC slot, and so on. in this manner, PRC 20444's RGAG insures that each data channel
device of 10S 10116 is aliowed access to MEM 10112 without undue delay. In addition, PRC 20444°s RGAG
prevents a single, or more than one, data channel device from monopolizing access to MEM 10112. As
described above, each data channel device is allowed access to MEM 10112 at least once during a particular
sequence of RGCs. At the same time, by not pausing within a particular RGC in which no request for access
to MEM 10112 has occurred, PRC 20444's RGAG effectively automatically skips over those data channel
devices which have not requested access to MEM 10112, PRC 20444's RGAG thereby effectively provides,
within a given time interval, more frequent access to those data channel devices which are most busy. in
addition, the RGCs assigned to particular I0S 10116 data channel devices may be reassigned as required to
adapt a particular CS 10110 to the data input and output requirements of & particular CS 10110
configuration. That is, if EBMC 20414 is shown to require less access to MEM 10112 then NDC 20416,
certain RGCs may be reassigned from EBMC 20414 to NDC 20416. Access to MEM 10112 by 10S 10116's
data channel devices may thereby be optimized as required.

Having described structure and operation of |0S 10118, structure and operation of DP 10118 will be
described next below.

E. Diagnostic Processor 10118 (Figs. 101, 205)

Referring to Fig. 101, as previously described, DP 10118 is interconnected with 10S 10116, MEM 10112,
FU 10120, and EU 10122 through DP Bus 10138. DP 10118 is also interconnected, through DPIO Bus 10136,
with the external world and in particular with DU 10134. {n addition to performing diagnostic and fault
monitoring and correction operations, DP 10118 operates, in part, to pravide control and display functions
allowing an operatar to interface with CS 10110. DU 10134 may be comprised, for example, of a CRT and
keyboard unit, or a teletype, and provides operators of CS 10110 with all contro! and display functions
which are conventionally provided by a hard console, that is a console containing switches and lights. For
example, DU 10134, through DP 10118, allows an operator to exercise control of CS 10110 for such
purposes as system initialization and startup, execution of diagnastic processes, fault monitoring end
identification, and control of execution of programs. As will be described further below, these functions are
accomplished through DP 10118's interfaces with 10S 10116, MEM 10112, FU 10120, and EU 10122,

DP 10118 is a general purpose computer system, for example a NOVA® 4 computer of Data General
Corporation of Westboro, Massachusetts. Interface of DP 10118 and DU 10134, and mutual operation of DP
10118 and DU 10134, wil! be readily apparent to one of ordinary skill in the art. DP 10118's interface and
operation, with 10S 10116, MEM 10112, FU 10120, and EU 10122 will be described further next below.

DP 10118, operating as a general purpose computer programmed specificially to perform the functions
described above, has, as will be described below, read and write access to registers of 10S 10116, MEM
10112, FU 10120 and EU 10122 through DP Bus 10138. DP 10118 may read data directly from and write data
directly into those registers. As will be described below, these registers are data and instruction registers
and are integral parts of CS 10110's circuitry during normal operation of CS 10110. Access to these registers
thereby allows DP 10118 to directly control or effect operation of CS 10110. In addition, and as also will be
described below, DP 10118 provides, in general, all clock signals to all portions of CS 10110 circuitry and
may control operation of that circuitry through control of these clock signals.

For purposes of DP 10118 functions, CS 10110 may be regarded as subdivided Iinto groups of
functionally related elements, for example DESP 20210 in FU 10120. DP 10118 obtains access to the
registers of these groups, and control of clocks therein, through scan chain circuits, as will be described
next below. I general, DP 10118 is provided with one or more scan chain circuits for each major functional
sub-element of CS 10110.

Referring to Fig. 205, a diagramic representation of DP 10118 and a typical DP 10118 scan chain is
shown. As indicated therein, DP 10118 includes a general purpose Central Processor Unit, or computer,
{DPCPUJ) 27910. A first interface of DPCPU 27010 is with DU 10134 through DPIO Bus 10136. DPCPU 27910
and DU 10134 exchange data and control signais through DPIO Bus 10136 in the manner to direct
operations of DPCPU 27010, and to display the resuits of those operations through DU 10134,

Associated with DPCPU 27010 is Clock Generator (CLKG) 27012. CLKG 27012 generates, in general, all
clock signals used within CS 10110,

DPCPU 27010 and CLKG 27012 are interfaced with the various scan chain circuits of CS 10110 through
DP Bus 10138. As describad above, CS 10110 may include one or more scan chains for each major sub-
element of CS 10110. One such scan chain, for example DESP 20210 Scan Chain (DESPSC) 27014 is
illustrated in Fig. 205.

Interface between DPCPU 27010 and CLKG 27012 and, for example, DESPSC 27014 is provided through
DP Bus 10138. As indicated in Fig. 205, DESPSC 27014 includes Scan Chain Clock Gates {SCCG) 27016 and
one or more Scan Chain Registers (SCRs) 27018 to 27024. -

SCCG 27016 receives clock signals from CLKG 27012 and contro! signals from DPCPU 27010 through
DP Bus 10138. SCCG 27016 in turn provides appropriate clock signals to the various registers and circuits
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of, for example, DESP 20210. Clock control signals provided by DPCPU 27010 to SCCG 27016 control, or
gate, the various clock signals to these registers and circuits of DESP 20210, thereby effectively allowing
DPCPU 27010 to control of DESP 20210.

SCRs 27018 to 27024 are comprised of various registers within DESP 20210. For example, SCRs 27018
to 27024 may Include the output buffer registers of AONGRF 20232, OFFGRF 20234, LENGRF 20236, output
registers of OFFALU 20242 and LENALU 20252, and registers within OFFMUX 20240 and BIAS 20246. Such
registers are indicated in the present description, as previously described, by arrows appended to ends of
those registers, with a first arrow Indicating an input and 8 second an output. in normal CS 10110
operstions, as previously described, SCRs 27018 to 27024 operate as parallel in, paralie! out buffer registers
through which data and Instructions are transferred. SCRs 27018 to 27024 are also capable of operating as
shift registers and, as indicated in Fig. 205, are connected together to comprise a single shift register circuit
having an input from DPCPU 27010 and an output to DPCPU 27010. Control inputs to SCRs 27018 to 27024
from DPCPU 27010 control operation of SCRs 27018 to 27024, that is whether these registers shall operate
as pardllel in, paralie! out registers, or as shift registers of DESPSC 27014’s scan chain. The shift register

- scan chain comprising SCRs 27018 to 27024 allows DPCFU 27010 to read the contents af SCRs 27018 to

27024 by shifting the content of these registers into DPCPU 27010. Converssly, DPCPU 27010 may write into
SCRs 27018 to 27024 by shifting information generated by DPCPU 27010 from DPCPU 27010 and through
the shift register scan chain to selected locations within SCRs 27018 to 27024.

Scan chain clock generator circuits and scan chain registers of each scan chain dircuit within €S10110
thereby allow DP 10118 to control operation of each major sub-etement of CS 10110. For example, to read
information from the scan chain registers therein, and to write information into these scan chain registers
as required for diagnostic, monitoring, and contro! functions.

Having described structure and operation of each major element of CS 10110, including MEM 10112,
FU 10120, EU 10122, IOS 10116, and DP 10118, certain operations of, in particular, FU 10120 will be
described further next below. The folfowing descriptions will further disclose operational features of JP
10114, end in particular FU 10120, by describing in greater detail certain operations therein by further
describing microcode control of JP 10114, ’

F. CS 10110 Micromachine Structure and Operation (Figs. 270—274)

a. Introduction
The preceding descriptions have presented the hardware structures and operation of FU 10120 and EU

10122. The following description will describe how devices in FU 10120, and certain EU 10122 devices,
function together as a microprogrammable computer, henceforth termed the FU micromachine. The FU
micromachine performs two tasks: it interprets SiNs, and it responds to certain signals generated by
dsvices in FU 10120, EU 10122, MEM 10112, and 105 10116. The signals to which the FU micromachine
responds are termed Event signals. In terms of structure and operation, the FU micromachine is
characterized by the following:

- Registers and ALUs specialized for the handling of logical descriptors.

— Registers organized as stacks for invocations of microroutines {microinstruction sequences).

— Maechanisms altowing micraroutine invocations by means of event signals from hardware.

— Mechanisms which allow an invoked microroutine to return either to the microinstruction following the
one which resulted in the invocation or to the microinstruction which resulted in the invocation.

— Mechanisms which aliow the contents of stack registers to be transferred to MEM 10112, thereby
creating a virtual microstack of limitless size. o C .

— Mechanisms which gusrantee response to an event signal within a predictable tength of time.

— The division of the devices comprising the micromachine into two groups: those devices which may be
used by all microcode and those which may be used only by KOS (Kernel Operating System,
previously described) microcode.

These devices and mechanisms allow the FU micromachine to be used in two ways: as a viral
micromachine and as a monitor micromachine. Both kinds of micromachine use the same devices in FU
10120, but perform different functions and have different logical properties. in the following discussion,
when the FU micromachine is being used as a virtual micromachine, it is said 1o be in virtual mode, and
when it is being used as a monitor micromachine, it is said to be in monitor mode. Both modes are
introduced here and explained in detail later.

When the FU micromachine is being used in virtual mode, it has the following properties:

it runs on an essentially Infinite micromachine stack belonging to a Process 610.

it can respond to any number of event signals in the MO cycle {state} of a single microinstruction.

A page fault may occur on the invocation of any microroutine or on return from any microroutine.

—~ When the FU micromachine is in virtusl mode, any microroutine may not run to completion, i.e.,
complete its execution in a predictable length of time, or complete it at all.

— it is executing a Process 610.

The last four properties are consequences of the first: Event signals result in invocations, and since the
micromachine stack is infinite, there is no limit to the number of invocations. The infinite micromachine
stack is realized by placing micromachine stack frames on Secure Stack 10336 belonging to a Pracess 610,
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and the virtual micromachine therefore always runs on a micromachine stack belonging to some Process
610. Furthermore, if the invocation of a microroutine or a return from a microroutine requires
micromachine frames to be transferred from Secure Stack 10336 to the FU micromachine, a page fault may
result, and Process 610 which is executing the microroutine may be removed from JP 10114, thereby
mraking the time required to execute the microroutine unpredictable. Indeed, if process 610 is stopped or
killed, the execution of the microroutine may never finish. As will be seen in descriptions below, the Virtual
Processor 612 is the means by which the virtual micromachine gains access to a Process 610's
micromachine stack.
When in monitor mode, the FU micromachine has the following properties:
— It has & micromachine stack of fixed size, the stack is always available to the FU micromachine, and itis
not associated with a Process 610.
— It can respond to only a fixed number of events during the M0 cycle of a single microinstruction.
— In monitor mode, invocation of a microroutine or return from a microroutine will not cause a page
fault.
— Microroutines executing on the FU micromachine when the micromachine is in monitor mode are
guaranteed to run to completion unless they themselves perform an action which causes them to give
up JP 10114.
— Microroutines executing in monitor mode need not be performing functions for a Process 810.
Again, the remaining properties are consequences of the first: because the monitor micromachine’s
stack is of fixed size, the number of events to which the monitor micromachine can respond is limited;
furthermore, since the stack is always directly accessible to the micromachine, microroutine invocations
and retums will not cause page faults, and microroutines rurning in monitor mode wili run to completion
uniess they themselves perform an action which causes them to give up JP 10114, Finally, the monitor
micromachine’s stack is not associated with a Process 610°s Secure Stack 10336, and therefore, the monitor
micromachine can both execute functions for Processes 610 and execute functions (which are related to no
Process 610, for example,} the binding and removal of Virtual Processors 612 from JP 10114, )
The description which follows first gives an overview of the devices which make up the micromachine,
continues with descriptions of invocations on the micromachine and micromachine programming, and
concludes with detailed discussions of the virtual and monitor modes and an overview of the relationship
between the micromachine and CS 10110 subsystems. The manner in which the micromachine performs
specific aperations such as SIN parsing, Name resolution, or address transiation may be found in previous
descriptions of CS 10110 components which the micromachine uses to perform the operations.

b. Overview of Davice Comprising FU Micromachine (Fig. 270)

Fig. 270 presents an overview of the devices comprising the micromachine. Fig. 270 is based on Fig.
201, but has been simplified to improve the clarity of the discussion. Devices and subdivisions of the
micromachine which appear in Fig. 201 have the numbers given them in that figure. When a device in Fig.
270 appears in two subdivisions, it is shared by those subdivisions.

Fig. 270 has four main subdivisions. Three of them are from Fig. 201: FUCTL 20214, which contains the
devices used to select the next microinstruction to be executed by the micromachine, DESP 20210, which
contains stack and global registers and ALUs for descriptor processing: and MEMINT 20212, which
contains the devices which translate Names into logical descriptors and logical descriptors into physical
descriptors. The fourth subdivision, EU Interface 27007, represents thase portions of EU 10122 which may
be manipulated by FU 10120 microcode. .

Fig. 270 further subdivides FUCTL 20214 and MEMINT 20212. FUCTL 20214 has four subdivisions:

— [-Stream Reader 27001, which contains the devices used to obtain SINs and parse them into SOPs and

Names. .

- SOP Decoder 27003, which translates SOPs into locations in FU microcode (FUSITT 11012), and in
some cases EU microcode {EUSITT 20344), which contain the microcode that performs the
corresponding SiNs.

— Microcode Addressing 27013, which determines the location of the next microinstruction to be
executed in FUSITT 11012

— Register Addressing 27011, which contains devices which generate addresses for GRF 10354 registers.

MEMINT 20212 also has three subdivisions:

— Name Translation Unit 27015, which contains devices which accelerate the translation of Names into
logical descriptors.

— Memoary Reference Unit 27617, which contains devices which accelerate the translation of logical
descriptors into physical descriptors.

— Protection Unit 27019, which contains devices which accelerate primitive access checks on memory
references made with logical descriptors. : .

. Fig. 270 also simplifies the bus structure of Fig. 202 by combining LENGTH Bus 20226, OFFSET Bus
20228, and AONR Bus 20230 into a single structure, Descriptor Bus (DB) 27021. In addition, intemal bus
connections have been reduced to those necessary for explaining the logical operation of the
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micromachine. The following discussion first describes those devices used by most microcode exeguﬂng
on FU 10120, and then describes devices used to perform special functions, such as Name transiation or
protection checking.

1. Devices used by Most Microcode .

The subdivisions of the micromachine which contain devices used by most microcode are_l\fhcrpcode
Addressing 27073, Register Addressing 27011, DESP 20210, and EU Interface 27007. In a({dltlon, most
microcode uses MOD Bus 10144, JPD Bus 10142, and DB Bus 27021, The discussion begins with the buses
and then describes the other devices in the above order.

a.a. MOD Bus 10144, JPD Bus 10142, and DB Bus 27021

MOD Bus 10144 is the only path by which data may be obtained from MEM 10112 Data on MOD Bus
10144 may have as its destination Instruction Stream Reader 27001, DESP 20210, or EU Interface 27007. In
the first case, the data on MOD Bus 10144 consists of SINs; in the second, it is data to be processed by FU
10120, and in the third, it is date to be processed by EU 10122. In the present embodiment, data to be
processed by FU 10120 is generally data which is destined for interna! use in FU 10120, for example in
Name Cache 10226. Data to be processed by EU 10122 is generally operands represented by Names in
SINs.

JPD Bus 10142 has two uses: it is the path by which data returns to MEM 10112 after it has been
processed by JP 10114, and it is the path by which data other than logical descriptors moves between the
subdivisions of the micromachine. For example, when CS 10110 is initialized, the microinstructions which
are loaded into FUSITT 11012 are transferred from MEM 10112 to DESP 20210 via MOD Bus 10144, and
from DESP 20210 to FUSITT 11012 via JPD Bus 10142

DB 27021 is the path by which logical descriptors are transferred in the micromachine. DB 27021

. connects Name Translation Unit 27015, DESP 20210, Protection Unit 27019, and Memory Reference Unit
27017. Typically, a logical descriptor is obtained from Name Translation Unit 27015, placed in a register in

DESP 20210, and then presented to Protection Unit 27019 and Memory Reference Unit 27017 whenever a
reference is made using a logical descriptor. However, DB 27021 is also used to transmit cache entries
fabricated in DESP 20210 to ATU 10228, Name Cache 10226 and Protection Cache 10234.

b.b. Microcode Addressing .

As discussed here, microcode addressing is comprised of the following devices: Timers 20296, Event
Logic 20284, RCWS 10358, BRCASE 20278, mPC 20276, MCWO 20292, MCW1 20290, SITTNAS 20286, and
FUSITT 11012. All of these devices have already been described in detail, and they are discussed here anly
as they affect microcode addressing. Other devices contained in Fig. 202, State Registers 20294, Repeat
;.:,oumet 20280, and PNREG 20282 are not directly relevant to microcode addressing, and are not discussed

ere.

As has aiready been described in detail, devices in Microcode Addressing 27013 are loaded from JPD
Bus 10142. The microcode addresses pravided by these devices and by FUSDT 11010 are transmitted
among the devices and to FUSITT 11012 by CSADR Bus 20204. There are six ways in which the next
microcode address may be obtained:

— Most commonly, the value in mPC 20276 is incremented, by 1 by a special ALU in mPC 20276, thus
yielding the address of the microinstruction following the current microinstruction.

— Hamicroinstruction specifies a call to a microroutine or a branch, the microinstruction contains a literal
which an ALU in BRCASE 20278 adds to the value in mPC 20276 to obtain the location of the next
microinstruction. :

— If a microinstruction specifies the use of a case value to calculate the location of the next
microinstruction, BRCASE 20278 adds a value calculated by DESP 20210 to the value in mPC 20716.
The value calculated by DESP 20210 may be obtained from a field of alogical descriptor, thus allowing
the micromachine to branch to different locations in microcode on the basis of type information
contained in the logical descriptor. On return from an invocation of @ microroutine, the location at
which execution of the microrautine in which the invocation occurred is to continue is obtained from
RCWS 10358.

— Atthe beginning of the execution of an SIN, the location at which the microcode for the SIN begins is
obtained from the SIN‘s SOP by means of FUSDT 11010.

— Certain hardware signals cause invocations of microroutines. Thers are two classes of such signals:
Event signals, which Event Logic 20284 transforms into invocations of certain microroutines, and JAM
signals, which are translated directly into locations in microcode.

The addresses obtained as described above are transmitted to SITTNAS 20286, which selects one of
the addresses as the Jocation of the next microinstruction ta be executed and transmits the location to
FUSITT 11012. As the location is transmitted 1o FUSITT 11012, itis also stored in mPC 20276. All addresses
except those far Jams are tranferrad to SITTNAS 20286 via CSADR Bus 20204. Addresses obtained from
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JAM signals are transferred by sepalate lines to SITTNAS 20286.
~ As will be explained in detail below, microroutine calls and returns also involve pushing and poppmg
micromachine stack frames and saving state contained in MCW1 20280.

Register Addressing 27011 controls access to micromachine registers contained in GRF 10354. As
explained in detail below, GRF 10354 contains both registers used for the micromachine stack and globa!
registers, that is, registers that are always accessible to all microroutines. The registers are grouped in
frames, and individual registers are addressed by frame number and register number. Register Addressing
27011 allows addressing of any frame and register in the GRs 10360 of GRF 10354, but allows addressing of
registers in only three frames of the SR's 10362: the current (top) frame, the previous frame (i.e., the frame
preceding the top frame), and the bottom frame, that is, the fowest frame in a virtual micromachine stack

- which is still contained in GRF 10354. The values provided by Register Addressing 27011 are stored in

MCWO 202S2. As will be explained in the discussion of microroutine invocations which follows, current and
previous are incremented on each invocation and decremented on each return.

c.c. Description Processor 20210 (Fig. 271)

DESP 20210 is a set of devices for storing and processing logical descriptors. The internal structure of
DESP 20210’s processing devices has already been explained in detail; here, the discussion deals primarily
with the structure and contents of GRF 10354, In a present embodiment of CS 10110, GRF 10354 contains
256 registers. Each register may contzin a single logical descriptor. Fig. 271 illustrates a Logical Descriptor
27116 in detail. In a present embodiment of CS 10110, a Logicat Descriptor 27116 has four main fields:
— RS Field 27101, which contains various flags which are explained in detail below.
~— AON Field 27111, which contains the AON portion of the address of the data item represented by the

Logical Descriptor 27116.

— OFF Feld 27113, which contains the offset portion of the address of the data item represented by
Logical Descriptor 27116.

— LEN Field 27115, which contains the length of the data item represented by the Logical Descriptor

T 27116,

RS Field 27101 has subfields as follows:

~— RTD Field 27103 and WTD Field 27105 may be set by microcode to disable certain Event signals
provided for debuggers by CS 10110. For details, see a following description of debugging aids in CS
10110.

— FlU Feld 27107 contains two blts.The fields are set from information in the Name Table Entry used to
construct the Logical Descriptor 27116. The bits determine how the data specified by the Logical
Descriptor 27116 is to be justified and filled when it is fetched from MEM 10112.

— TYPE Field 27109's four bits are also obtained from the Name Table Entry used to construct the Logical
" Descriptor 27116. The field’s settings vary from S-language to S-Language, and are used to
communicate S-language-specific type information to the S-Language’s S-Interpreter microcode.

The four fields of a Logical Descriptor 27116 are contained in three separately-accessible fields in a GRF
10354 register: one containing RS Field 27101 and AON Field 27111, one containing OFF Field 27113, and
one containing LEN Field 27115. In addition, each GRF 10354 register may be accessad as a whole. GRF
10354 is further subdivided into 32 frames of eight registers each. An individual GRF 10354 register is
addressed by means of its frame number and its register number within the frame. In a present
embodiment of CS 10110, half of the frames in GRF 10354 belong to SR's 10362 and are used for
micromachine stacks, and haf belong to GRs 10360 for storing *“global information”. In SR’s 10362, each
GRF 10354 frame contains information belonging to a single invocation of a microroutine. As previousty
explained, Register Addressing 27011 allows addressing of only three GRF 10354 frames in SR's tack 10362,
the current top frame in the stack, the previous frame, and the bottom frame. Registers are accessed by
specifying one of these three frames and a register number.

The global information contsined in GRs 10360, Is information which is not connected with a single
invocation. There are three broad categories of global information:

— Information belonging to Process 610 whose Virtual Processor 612 is currently bound to JP 10114,
Included in this information are the current values of Process 610's ABPs and the painters which KOS
uses to manage Process 610's stacks.

— information required for the operation of KOS. included in this |nformat|on are such items as pointers
to KOS data bases which occupy fixed locations in MEM 10112

-— Constants, that is, fixed values required for certain frequently performed operations.in FU 10120.
Remaining registers are available to microprogrammers as temporary storage areas for data which

cannot be stored in a microroutine’s stack frame. For example, data which is shared by several

microroutines may best be placed in 8 GR 10360. Addressing of registers in the GRs 10360 of GRF 10354

requires two values: a value of 0 through 15 to specify the frame and a value of 0 through 7 to specify the

register in the frame.

As previously discussed in detail, each of the three components AONP 20216, OFFP 20218, and LENP
20220 of DESP 20210 also contains ALUs, registers, and logic which allows operations to be performed on
individual fields of GRF 10354 registers. In particular, OFFP 20218 contains OFFALU 20242, which may be
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used as a general purpose 32 bit arithmetic and logical unit. OFFALU 20242 may further serve as a source
and destination for JPD Bus 10142, the offset portion of DB 27021, and NAME Bus 20224, and as @
destination for MOD Bus 10144, Consequently, OFFALU 20242 may be used to perform operations on data
on these buses and to transfer data from one bus to another. For example, when an SIN contains a literal
value used in address calculation, the literal value is transferred via NAME Bus 20224 to OFFALU 20242,
operated on, and output via the offset portion of DB 27021. -

dd. EU 10122 Interface
FU 10120 specifies what operation EU 10122 is to perform, what operands it is to perform it on, and
when it is finished, what is to be done with the operands. FU 10120 can use two devices in EU 10122 as
destinations for data, and one device as a source for data. The destinations are COMQ 20342 and OPB
20322. COMQ 20342 receives the location in EUSITT 20344 of the microcode which is to perform the
operation desired by the FU 10120. COMQ 20342 may receive the location in microcode sither from an FU
10120 microroutine or from an SIN’s SOP. in the first case, the location is transferred via JPD Bus 10142,
-and in the second, it is obtained from EUSDT 20266 and transferred via EUDIS Bus 20206. OPB 20322
receives the operands upon which the operation is to be performed. If the operands come directty from
MEM 10112, they are transferred to OPB 20322 via MOD Bus 10144; if they come from registers or devices
in FU 10120, they are transferred via JPD Bus 10142,
Result Register 27013 is a source for data. After EU 10122 has completed an operation, FU 10120
obtains the result from Result Register 27013. FU 10120 may then place the result in MEM 10112 or in any
device accessible from JPD Bus 10142. ’

2. Specialized Micromachine Devices

Each of the groups of specialized devices serves one of CS 10110's subsystems. I-Stream Reader 27001
is part of the S-Interpreter subsystem, Name Translation Unit 27015 is part of the Name Interpreter
subsystem, Memory Reference Unit 27017 is part of the Virtual Memory Management System, and
Protection Unit 27019 is part of the Access Control System, Here, these devices are explained only in the
context of the micromachine; for a complete understanding of their functions within the subsystems to
which they belong, see previous descriptions of the subsystems.

-a.a. [|-Stream Reader 27001
I-Stream Reader 27001 reads and parses a stream of SiNs {termed the I-Stream) from a Procedure

Object 604, 606, 608. The I-Stream consists of SOPs {(operation codes), Names, and literals. As previously
mentioned, in a present embodiment of CS 10110, the |-Stream read from a given Procedure 602 has a fixed
format: the SOPs are 8 bits long and the Names and literals all have a single length. Depending on the
procedure, the length may be 8, 12, or 16 bits. I-Stream Reader 27001 parses the I-Stream by breaking it up
into its constituent SOPs and Names and passing the SOPs and Names to appropriate parts of the
micromachine. -Stream Reader 27001 contains two groups of devices:

— PC Values 27006, which is made up of three registers which contain locations in the I-Stream. When
added to ABP PBP, the values contained in these registers specify locations in Procedure Object 801
containing the Pracedure 602 being executed. CPC 20270 contains the location of the SOP or Name
currently being interpreted; IPC 20272 contains the location of the beginning of the SIN currantly being
executed; EPC 20274, finally, is of interest only at the beginning of the execution of an SIN; at that time,
it contains the location of the last SIN to be executed.

— Parsing Unit 27005, which is made up of INSTB 20262, PARSER 20264, and PREF 20260. The
micromachine uses PREF 20260 to create Logical Descriptors 27116 for the I-Stream, which are then
placed on DB Bus 27021 and used in logical memory references. The data returned from these
references is placed in INSTB 20262, and parsed by PARSER 20264.

SOPs, Names, and literals obtained by PARSER 20264 are placed on NAME Bus 20224, which connects

PARSER 20264, SOP Decoder 27003, Name Translation Unit 27015, and OFFALU 20242.

b.b. SOP Decoder 27003
SOP Decoder 27003 decodes SOPs into locations in FU 10120 and EU 10122 microcode. SOP Decoder
27003 comprises FUSDT 11010, EUSDT 20266, Dialect Register (RDIAL) 24212, and LOPDCODE 24210.
FUSDT 11010 are further comprised of FUDISP 24218 and FALG 24220. The manner in which these devices

translate SOPs contained in SINs into locations in FUSITT 11012 and EUSITT 20344 has been previously
described.

c.c. Name Translation Unit 27015 )

Name Translation Unit 27015 accelerates the translation of Names into Logical Descriptors 27116. This
operation is termed name resolution. kt is comprised of two components: NC 10226 and Name Trap 20254.
NC 10226 contains copies of information from a Procedure Object 604’s Name Table 10350, and thereby
makes it possible to translate Nemes into Logical Descriptors 27116 without referring to Name Table 10350.
When a Name is presented to Name Transiation Unit 27015, it is latched into Name Trap 20254 for later use
by Name Translation Unit 27015 if required. As will be explsined in detail later, in the present embodiment,
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Name translation always begins with the presentation of a Name to NC 10226. if the Name has already
been transtated, the information required to construct its Logical Descriptor 27116 may be contained in NC
10226. if there is no information for the Name in NC 10226, Name Resolution Microcode obtains the Name
from Name Trap 20254, uses informstion from Name Table 10350 for the procedure being executed to
translate the Name, places the required information in NC 10226, and attempts the translation again. When
the translation succeeds, a Logical Descriptor 27116 corresponding to the Name is produced from the
information in Name Cache 10115, placed on DB Bus 27021, and ioaded into a GRF 10354 register.

d.d. Memory Reference Unit 27017

Memory Reference Unit 27017 performs memory references using Logical Descriptors 27116. Memory
Reference Unit 27017 receives a command for MEM 10112 and a Logical Descriptor 27116 describing the
data upon which the command is to be performed. In the case of a write operation, Memory Reference Unit
27017 also-recelves the data being written via JPD Bus 10142. Memory Reference Unit 27017 transiates
Logical Descriptor 27116 to a physical descriptor and transfers the physical descriptor and the command to
MEM 10112 via PD Bus 10146. A Memory Reference Unit 27017 has four components: ATU 10228, which
contains copies of information from KOS virtual memory management system tables, and thereby
accelerates logical-to-physical descriptor translation; Descriptor Trap 20256, which traps Logical
Descriptors 27116, Command Trap 27018, which traps memory commands; and Data Trap 20258, which
traps data on write operations. When a logical memory reference is made, a Logical Descriptor 27116 is
presented via DB Bus 27021 to ATU 10228, and at the same time, Logical Descriptor 27116 and the memory
command are trapped in Descriptor Trap 20256 and Command Trap 27018. On write operations, the data to

.be written is trapped in Data Trap 20258. i the information needed to form the physical descriptor is

present in ATU 10228, the physical descriptor is transferred to MEM 10112 via PD Bus 10146. If the
information needed to form the physical descriptor is not present in ATU 10228, an Event Signal from ATU
10228 invokes a microroutine which retrieves Logical Descriptor 27116 from Descriptor Trap 20256 and
uses information contained in KOS virtual memory management system tables to make an entry in ATU
10228 for Logical Descriptor 27116. When the microroutine returns, the logical memory reference is
repeated using Logical Descriptor 27116 from Descriptor Trap 20256, the memory command from
Command Trap 27018, and on write operations, the data in Data Trap 20258. As will be described in detail in
the discussion of virtual memory management, if the data referenced by a logical memory reference is not
present in MEM 10112, the logical memory reference causes a page fault.

e.e. The Protection Unit 27019
On each logical memory reference, Protection Unit 27019 checks whether the subject making the
reference has access rights which allow it to perform the action specified by the memory command on the
object being referenced. If the subject does not have the required access rights, a signal from Protection
Unit 27019 causes MEM 10112 to abort the logical memory reference. Protection Unit 27019 consists of
Protection Cache 10234, which contains copies of information from KOS Access Control System tabies, and
thereby speeds up protection checking, and shares Descriptor Trap 20256, Command Trap 27018, and Data

_Trap 20258 with Memory Reference Unit 27017. When a logical memory reference is made, the AON and

offset portions of the logical descriptor are presented to Protection Cache 10234. if Protection Cache 10234
contains protaction information for the object specified by the AON and offset and the subject performing
the memory reference has the required access, the memory reference may continue; if Protection Cache
10234 contains protection information and the subject does not have the required access, a signal from
Protection Cache 10234 aborts the memory reference. If Protection Cache 10234 does not contain the
required access information, a signal from Protection Cache 10234 aborts the memory reference and
invokes a microroutine which obtains the access information from KOS Access Controi System tables and
places it in Protection Cache 10234. When Protection Cache 10234 is ready, the memory access is repeated,
using the logical descriptor from Descriptor Trap 20256, the memory command from Command Trap
27018, and in the case of write operations, the data in Data Trap 20258.

ff. KOS Micromachine Devices

As mentioned in the above introduction to the micromachine, the devices making up the
micromachine may be divided into two classes: those which any microcode written for the micromachine
may manipulate, and those which may be manipulated exclusively by KOS microcode. The latter class
consists of certain registers in GRs 10360 of GRF 10354, the bottom frame of the portion of the virtual
micromachine stack in the stack portion (Stack Registers 10362) of GRF 10354, and the devices contained in
Protection Unit 27019 and Memory Reference Unit 27017. Bacause Protection Unit 27018 and Memory
Reference Unit 27017 may be manipulated onty by KOS micracode, non-KOS microcode may not use
Descriptor Trap 20256 or Command Trap 27018 as a source or destination, may not load or invalidate

" registers in ATU 10228 or Protection Cache 10234, and may not perform physical memory references, i.e.,

memory references which place physical descriptors directly on PD Bus 10146, instead of presenting logicai
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descriptors to Memory Referance Unit 27017 and Protection Unit 27019, Similarly, non-KOS microcode
may not specify KOS registers in the GRs 10360 of GRF 10354 or the bottom frame of the stack portion of
GRF 10354 when addressing GRF 10354 registers. Further, in embodiments aflowing dynamic loading of
FUSITT 11012, only KOS microcode may manlpulate the devices provided for dynamic loading.

In a present embodiment of CS 10110, the distinction between KOS devices and registers and devices
and registers accessible to all microprograms is maintained by the microbinder. The microbinder checks all
microcode for microinstructions which manipulate davices in Pratection Unit 27019, or Memory Reference
Unit 27017, or which address GRF 10354 registers reserved for KOS use. However, it is characteristic of the
micromachine that KOS devices are logically and physically separate from devices accessible to all
microprograms and, consequently, other embodiments of CS 10110 may use hardware devices to prevent
non-KOS microprograms from manipulating KOS devices.

¢. Micromachine Stacks and Microroutine Calls and Returns (Figs. 272, 273}
1. Micromachine Stacks {Fig. 272)

As previously mentioned, the FU micromachine is a stack micromachine The properties of the FU
micromachine’s stack depends on whether the FU micromachine is in virtual or monitor mode. In virtual
mode, the micromachine stack is of essentially unlimited size; if it contains more frames than allowed for
inside FU 10120, the top frames are in GRF 10354 and the remaining frames are in Secure Stack 10336
belonging to Process 610 being executed by the FU micromachine. In the following, the virtual mode
micromachine stack is termed the virtual micromachine stack. In monitor mode, the micromathine stack
consists of a fixed amount of storage; in a present embodiment of CS 10110, the monitor mode
micromachine stack is completely contained in the stack portion, SRs 10362, of GRF 10354; in other
embodiments of CS 10110, part or all of the moniter mode micromachine stack may be contained in an area
of MEM 10112 which has a fixed size and a fixed iocation known to the monitor micromachine. In yet other
embodiments of CS 10110, monitor mode micromachine stack may be of flexibie depth in a manner similar
to the virtual micromachine stack. In either mode, microroutines other than certain KOS microroutines
which execute state save and restore operations may access only two frames of GRF 10354 stack: the frame
upon which the microroutine is executing, called the current frame, and the frame upon which the
microroutine that invoked that microroutine executed, called the previous frame. KOS microroutines which
execute state save and restore operations may in addition access the bottom frame of that portion of the
virtual micromachine stack which Is contained in GRF 10354.

Fig. 272 illustrates stacks for the FU micromachine. Those portions of the micromachine stack which
are contained in the FU are contained in SR’s 10362 {of GRF 10354) and in RCWS 10368. Each register of
RCWS 10358 is permanently associated with a GRF frame in SRs 10362 of GRF 10354, and the RCWS 10368
register and the GRF frame together may contain one frame of a micromachine stack. As previously
describe, each register of GRF 10354 contains three fields: one for an AON and other information, one for
an offset, and one for a length. As illustrated in Fig. 251, each register in RCWS 10358 contains four fields:
— A one bit field which retains the value of the Condition Code register in MCW1 20280 at the time that

the invocation which created the next frame occurred.

— A field indicating what Event Signals were pending at the time that the invocation to which the RCWS
register belongs invoked another microroutine. -

— A flag indicating whether the microinstruction being executed when the invocation occurred was the
first microinstruction in an SIN.

— The address at which the execution of the invoking microroutine is to continue.

The uses of these fields will become apparent in the ensuing discussion.

The space available for micromachine stacks in SRs 10362 and RCWS 10358 is divided into two parts:
Frames 27205 reserved for MOS 10370 and Frames 27206 available for the MIS 27203. Frames 27206 may
contain no MIS Frames 27203, or be partially or completely occupied by MIS Frames 27203. Space which
contains no MIS Frames is Free Frames 27207. The size of the space reserved for Monitor Micromachine
Stack Frames 27205 is fixed, and Spaces 27203, 27205, and 27207 always come in the specified order.
Register Addressing 27011 handles addressing in Stack Portion 27201 of GRF 10354 and RCWS 10358 in
such fashion that the values for the locations of current, previous, and bottom frames specifying registers
in RCWS 10358 or frames in Stack Portion 27201 automatically “wrap around” when they are incremented
beyond the largest index value allowed by the sizes of the registers or decremented below the smallest
index value. Thus, though Spaces 27203, 27205, and 27207 always have the same relative order, their GRF
10354 frames and RCWS registers may be located anywhere in Stack Portion 27201 and RCWS 10358.

-

2. Microroutine Invocations and Returns

in CS 10110, microroutines may be invoked by other microroutines or by signails from CS.10110
hardware. The methods of invocation aside, microroutine invocations and returns resemble Inv.qcapons of
and returns from procedures written in high-level languages. In the following, the general principles of
microroutine invocations and returns are discussed, and thereafter, the sqecfﬁc_: meth_ods by which
microroutines may be invoked in CS 10110. The differences between invocations in monitor mode and
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invocations in virtual mode are explained in the detailed discussions of the two modes.

The microroutine which is currently being executed runs on the frame specified by Current Pointer
27215. When an invocation oceurs, either because the executing microroutine performs a call, or because a
signal which causes invocations has occurred, JP 10114 hardware does three thir.lgs: ) .

— It stores state information far the invoking microroutine in the RCWS 10368 register associated_wnh _the
current frama. The state information includes the location at which execution of the invoking
microroutine will resume, as well as other state information. :

— ltincrements Current Pointer 27215 and Previous Pointer 27213, thereby providing a frame for the new
invocation. . .

— It begins executing the first instruction of the newly invoked microroutine. ,

Because the newly-invoked microroutine can access registers of the invoking rplcrorouﬂn'e s frame, th_e
invoking microroutine can pass “arguments” to the invoked microroutin'e by plagmg values in re_glster§ in
its frame used by the invoked microroutine. However, the invoking mlgroroutnne eannot_specnf_y which
registers contain “arguments” on an invocation, so the invoked mlcu:orputme must lsnow which l,'?glstgrs of
the previous frame are used by the invoking microroutine. Since the only “arguments Whl?h a
microroutine has access to are those in the previous frame, a microroutine can pass arguments whlch. it
received from its invoker to a microroutine which it invokes only by copying the arguments from its
invoker's frame to its own frame; which then becomes the newly-invoked routine’s previous frame.

The return is the reverse of the above: Current Pointer 27215 and Previous Pointer 27213 are
decremented, thereby “popping off” the finished invocation’s frame and retuming to the invoker's frame.
The invoker then resumes execution at the location specified in the RCWS 10358 register and using the
state saved in the RCWS 10358. The saved state includes the value of the Condition Code in MCW1 20290 at
the time of the invocation and flags indicating various pending Events. The Condition Code field in MCW1
20290 is set to the saved value, and the pending event flags may cause Events to occur as described in
detall ‘below.

3. Means of Invoking Microroutines

In the micromachine, invocations may be produced either by commands in microinstructions or by
hardware signals. (n the following, invacations produced by commands in microinstructions are termed
Calls, while those produced by hardware signals are termed Event invocations and Jams. Invocations are
further distinguished from each other by the locations to which they return. Calls and Jams return to the
microinstruction following the microinstruction in which the invocation occurs; Event invocations return to
that microinstruction, which is then repeated.

in terms of implementation, the different return locations are a consequence of the point in the
micromachine cycle at which Calls, Jams, and Event invocations save a retumn location and transfer control
to the called routine. With Calls and Jams, these operations are performed in the M1 cycle; with Event
invocations, on the other hand, the Event signal during the M0 cycle causes the MO0 cycle to be followed by
a MA cycle instead of the M1 cycle, and the operations are performed in the MA cycle. in the M1 cycle, the
value in mPC 20276 is incrernented; in the MA cydle, it is not. Consequently, the return value saved in
RCWS 10358 on a Call or Jam is the incremented value of mPC 20276, while the return value saved on an
Event invocation is the unincremented value of mPC 20276. The following discussion will deal first with
Calls and Jams, and then with Event invocations.

A Call command in a microinstruction contains a literal value which specifies the offset from the
microinstruction containing the Call at which execution is to continue after the Call. When the
microinstruction with the Call command is executed in micromachine cycle M1, BRCASE 20278 adds the
aoffset contained in the command to the current value of mPC 20276 in order 1o obtain the location of the
invoked microroutine and sets SITTNAS 20286 to select the location provided by BRCASE 20278 as the
location of the next microinstruction. Then the Call command increments mPC 20276 and stores the
incremented value of mPC 20276 in the RCWS 10358 register associated with the current frame in SRs
10362 and increments Current Foiniter 27215 and Previous Pointer 27213 to provide a new frame in SRs
10362. The Jam works exactly like the Call, except that a hardware signal during micromachine cycle M1
causes the actions associated with the invocation to occur and provides the location of the invoked
microroutine directly to SITTNAS 20286.

With Events, Event Logic 20284 causes an invocation to occur during cycle MO and provides the
location of the invoked microroutine via CSADR 20293. Since the Event occurs during cycle MO, the location
stared in RCWS 10358 is the unincremented value of mPC 20276, and SITTNAS 20286 selects the location
provided by Event Logic 20284 as the location of the next microinstruction. Since the return from the Event
causes the microlnstruction during which the Event occurred to be re-executed, the microinstruction and
the microroutine to which it belongs may be said to be “unaware” of the Event’s occurrenca. The only
difference between the execution of 2 microinstruction during which an Event occurs and the execution of
the same microinstruction without the Event is the length of time required for the execution.
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4. Occurrence of Event Invocations (Fig. 273) X
As described previously, Event invocations are produced by Event Logic 20284. The location in
microcode to which Event Logic 20284 transfars contro} is determined by the following:

. — The operation being commenced by FU 10120. Certain Event invocations may occur only at the

beginning of certain FUU 10120 operations.

— The state of Event signal lines from hardware and internal registers in Event Logic 20284,

— The state of certain registers visible via MCW1 20290. Some of these registers enable Events and
others mask Events. Of the registers which enable Events, some are set by Event signals and others by
the microprogram.

— On returns from invocations of microroutines, the settings of certain bits in the RCWS 10358 register
belonging to the micromachine frame for the invocation that is being returned to.

Microprograms may use these mechanisms to disable Event signals and to delay an Event Invocation
from an Event signal for a single microinstruction or an indefinte period, and FU 10120 uses them to
automatically delay Event invocations resulting from certain Event signals. Using traditional programming
erminology, the mechanisms aliow a differential masking of Event signals. An Event signal may be
explicitty masked for a single microinstruction, it may be masked for a sequence of microinstructionss it
may be automatically masked until a certain operation occurs, or it may be automatically masked for a
certain maximum length of time. Event signals which occur while they are masked are not lost. In some
cases, the Event signal continues until it is serviced; in others, a register is set to retain the fact that the
Event signal occurred. When the Event signal is unmasked, the set register causes the Event signal to
reoccur. In some cases, finally, the Event signal is not retained, but recurs when the microinstruction which
caused it is repeated.

In the following, the relationship between FU 10120 operations and Event signals is first presented, and
then a detailed discussion of the enabling registers in MCW1 20290 and of the bits in RCWS 10358 registers
which control Event invocations. '

FU 10120 allows Event invocations resuiting from Event signals to be inhibited for a single
microinstruction; it also delays certain Event invocations for certain Event signals until the first
microinstruction of an SIN. Other Event signals occur only at the beginning of an SIN, at the beginning of a
Namespace Resolve or Evaluate operation, or at the beginning of a logical memory reference,

Event invocations may be delayed for a single microinstruction by setting a field of the
microinstruction itself. Setting this field delays aimost all Event invocations, and thereby guarantees that
an Event invocation will not occur during the microinstruction‘s M0 cycle.

Event signals refating to debugging occur at the beginnings of certain micromachine operations. Such
Event signals are called Trace Event signals. As will be explained in detail, in the discussion of the
debugger, Trace Event signals can occur on the first microinstruction of an SiN, at the beginning of an
Evaluate or Resolve operation, at the beginning of a logical memory reference, or at the beginning of a
microinstruction. IPM interrupt signals and interval Timer Overflow Event signals are automaticaily masked
until the beginning of the next SIN or until 8 maximum amount of time has elapsed, which ever occurs first.
The mechanisms involved here are explained in detail in the discussion of interrupt handling in the FU
10120 micromachine.

Tuming now to the registers used to mask and enable Event signals, Fig. 273 is a representation of the
masking and enabling registers in MCW1 20280 and of the field in RCWS 10358 registers which controls
Event invocations. Beginning with the registers in MCW1 20290, there are three registers which control
Event invocations: Event Mask Register {(EM) 27301, Events Pending Register (EP) 27308, and Trace Enable
Register (TE) 27319. Bits in EM 27301 mask certain Event signals as long as thay are set; bits in EP Register
27309 record the occurrence of certain Event signals while they are masked; when bits in TE Register 27319
are set, Trace Event signals occur before certain FU 10120 operations.

EM 27301 contains three one bit fields: Asynchronous Mask Field 27303, Monitor Mask Field 27305,
and Trace Event Mask Field 27307. As explained in detsil in the discussion of FU 10120 hardware, these bits
establish a hierarchy of Event masks. if Asynchronous Mask Field 27303 is set, only two Event signals are
masked: that resulting from an overflow of EGGTMR 25412 and that resulting from an overflow of EU
10122's stack. If Monitor Mask Field 27305 is set, those Events are masked, and additionally, the FU Steck
Overflow Event signal is masked. As will be explained in detail {ater, when the FU 10120 Stack Overflow
Event signal is masked, the FU micromachine is executing in monitor mode. if Trace Event Mask Field
27307 is set, Trace Trap Event signals are masked in addition to the above signals. Each of the fields in EM
27301 may be individually set and cleared by the microprogram.

Four Event signals set fields in EP 27309: the EGGTMR 25412 Runout signal sets ET Field 27311, the
INTTMR 25410 Runout signal sets IT Field 27313, the Non-Fatal Memory Error signal sets ME Field 2_731 5,
and the Inter-Pracess Message signal sets IPM Field 27317. Event invocations for all of these Event signals

_but the Egg Timer Runout signal occur at the beginning of an SIN; in these cases the fields in EP 27309

retain the fact that the Event signal has occurred until that time; the Event invocation for the Egg. 1'1mer
Runout signal oceurs as soon after the signal as the settings of mask bits in EM 27301 allow. :I'ha bn_m ET
Field 27311 retains the fact of the Egg Timer Runout signal until the masking allows the Eventinvocation to
occur. All of the fields in EP 27309 but ME Field 27315 may be reset by microcode..The microroutines
invoked by the Events must reset the appropriate fields; otherwise, they will be reinvoked when they
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return. ME Feld 27315 is automatically reset when the memory ervor is serviced.

TE Register Field 27319 enables tracing. Each bit in the repister enables a kind of Trace Event signal
when it is set. Depending on the kind of tracing, the Trace Event signal occurs at the beginning of an SIN, at
the beginning of a Resolve or Evaluate operation, at the beginning of a logical memory reference, or at the
beginning of a microinstruction. For details, see the following description of debugging.

Turning now to the registers contained in RCWS 10358, each RCWS Register 27322 contains eight
fields which control Event signals. The first field is FM Field 27323. FM Field 27323 reflects the value of a
register in Event Logic 20284 when the invocation to which RCWS Register 27322 belongs occurs. The
register in Event Logic 20284 is set only when the microinstruction currently being executed is the first
microinstruction of an SIN. Thus, FM Fiefd 27323 is set only in RCWS Registers 27322 belonging to Event
invocations which occur in the M0 cycle of the first microinstruction in the SIN, i.e., at the beginning of the
SIN. The value of the register in Event Logic 20284 is saved in FM Field 27323 because several Event
invocations may occur at the beginning of a single SIN. The Event invocations occur in arder of priarity:
when the one with the highest priority returns, the fact that FM Field 27323 is set causes the register in
Event Logic 20284 to again be set to the state which it has on the first microinstruction of an SIN. The
register’s state, thus set, causes the next Event invocation which must occur at the beginning of the SIN to,
take place. After all such invocations are finished, the first microinstruction enters its M1 cycle and resets
the register in Event Logic 20284. In its reset state, the register inhibits all Event invocations which may
occur only at the beginning of an SIN. & is again set at the beginning of the next SIN.

The remaining fields in RCWS Register 27322 which contro! Event Invocations are the fields in Return
Signals Field 27331. These fields allow the information that an Event signal has occurred to be retained
through Event invocations until the Event signa!'s Event invocation takes place. When an invocation occurs,
these fields are set by Event Logic 20284. On return from the invocation, the values of the fields are input
into Event Logic 20284, thereby producing Event signals. The Event signal with the highest priority resuits
in an Event invocation, and the remaining Event signals set fields in Return Signals Field 27331 belonging
to RCWS Register 27322 belonging to the invocation which is being executed when the Event signals occur.
Because the fields in Retumn Signals Field 27330 are input into Event Logic 20284, microcode invoked as a
consequence of Event signals which sets one of these fields must reset the field itself. Otherwise, the return
from the microcode will simply result in a reinvocation of the microcode. .

The seven fields in Return Signals Field 27330 have the following significance:

— When EG Field 27333 is set, an EU 10122 dispatch operstion produced an illegal location in EU 10122

microcode EUSITT 20344.
= When NT Fleld 27335, ST Field 27341, mT Field 27343, or m8B Feld 27345 is set, a trace signal has

occurred. These are explained in detail in the discussion of debugging.

— When ES Field 27337 is set, an EU 10122 Storeback Exception has accurred, i.e., an error occurred

when EU 10122 attempted to store the result of an operation in MEM 10112,

— When MRR Field 27339 is set, 2 condition such as an ATU 10228 miss or a Protection Cache 10234 miss
has occurred, and it is necessary 1o reattempt a memory reference.

d. Virtusi Micromachines and the Monitor Micromachine

As previously described, microcode being executed on FU 10120's micromachine can run in either
monitor mode or virtual mode. In this portion of the discussion, the distinguishing features and
applications of the two modes are explained in detail.

1. Virtual Mode
As previously mentioned, the chief distinction between virtual mode and monitor mode is MIS 10368.
The fact that MIS 10368 is of essentially unlimited size has the following conssquences for microroutines
which execute In virtual mode.
— An invocation of a2 microroutine executing in virtual mode may have as its consequence further
invocations to any depth.
— Any invocation of or return from a microroutine executing in virtual mode may cause a page fault.
The FU micromachine is in virtual mode when all bits in the Event Masks portion of MCW1 20290 are
cleared. In this state, no enabled Event signals are masked, and Event invocations may occur In any

" microinstruction which doses not itsetf mask them.

Because invocations may occur to any depth in virtual mode, microroutines executing in this mode
may be recursive. Such recursive microroutines are especially useful for the interpretation of Names.

.Often, as previously described, the Name Table Entry for a Name will contain Names which resolve to other

Names, and the virtual micromachine’s limitless stack allows the use of recursive Name Resolution
microroutines in such situations. Recursive microroutines may also be used for complex SINs. such as
Calils. ,

Because invocations can occur to any depth, any number of Events may occur while a microrout@ne is
executing in monitor mode. This in tum greatly simplifies Everit handling. If an Event signal ocecurs while an
Event with a given priority is being handied and the Event being signalled has a higher priority than the one
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being handied, the resuit is simply the invocation of the new Event’s handler. Thus, the order in which the
Event handiers finish corresponds exactly to the priorities of their Events: those with the highest finish first.

A page fault may occur on any microinvocation or retumn executed in virtusl mode because an
invocation in virtual mode which occurs when there are no more Free Frames 27207 on SRs 10362 causes
an Event signal which invokes a microroutine running in monitor mode. The microroutine transfers MIS
Frames 27203 from GRF 10354 to Secure Stack 10336 in MEM 10112, and the transfer may cause a page
fault, Simitarly, when a microreturn tekes place from the last frame on MiS Frames 27203 on SRs 10362, an

- Event signal occurs which invokes a microroutine that transfers additional frames from Secure Stack 10336

to GRF 10354, and this transfer, too, may cause a page fault.

The fact that page faults may oceur on microinvocations or microreturns in virtual mode has two
important consequences: microroutines which cannot tolerate page faults other than those explicitly
generated by the microroutine itself cannot execute in virtual mode, and because unexpected page faults
cause execution to become indeterminate, microroutines which must run to completion cannot execute in
virtual ' mode. For example, if the microroutine which handies page faults executed in virtual mode, its
invocation could cause a page fault, which would cause the microroutine to be invoked again, which would
cause another page fault, and so on through an infinite series of recursions.

2. Monitor Micromachine .

As previously described, the essentiat feature of monitor mode is MOS 10370. In a present
embodiment of CS 10110, this stack has a fixed minimum size, and Is always contained in GRF Registers
10354. The nature of MOS 10370 has four consequences for microroutines which execute in monitor mode:
— When the micromachine is in monitor mode, the depth of invocations is limited; recursive

microrautines therefore cannot be executed in monitor mode, and Event invocations must be limited.

— Invocations of microroutines or retums from microroutines in monitor mods never result in page
fauits. :

— Microroutines executing in monitor mode are guaranteed to run to completion if they do not suspend
the Process 610 which they are executing or perform a Call to scftware.

— When the micromachine is executing in monitor mode, it is guaranteed to return to virtual mode within
a reasonable period of time, either because a microroutine executing in monitor mode has run to
completion, or because the microroutine has suspended the Process 610 which it is executing, or has
made a Call to software. The result in both cases is the execution of a new sequence of SOPs, and thus
a return to virtual mode.
in a present embodiment of CS 10110, the FU micromachine is in monitor mode when a combination of

masking bits in MCW1 20280 is set which results in the masking of the FU Stack Overflow Eventand the Egg

Timer Overflow Event. As previausly described, these Events are masked if Fields 27303, 27305, or 27307 is

set. These Events and the consequences of masking them are explained in detail below.

The event signal for the FU Stack Overflow Event occurs on microinvocations for which there is no
frame available in MIS Frames 27203. If the Event signal is not masked, it causes the invocation of a
microroutine which moves MIS Frames from MIS Frames 27203 onto a Process 610’s Secure Stack 10336.
When the FU Stack Overflow Event is masked, all frames in SRs 10362 of GRs 10360 are available for
microroutine invocations and microroutine invocations will not result in page fautlts, but if the capacity of
SRs 10362 is exceeded, FU 10120 ceases operation.

The Egg Timer Overflow event signal occurs when Egg TMR 25412 runs out. As will be explained in
detail later, Egg TMR 25412 ensures that an Interval Timer Runout, an Inter-processor Message, or a Non-
fatal Memory Error will be serviced by JP 10114 within a reasonablie amount of time. If an Interval Timer
Runout Event signal or an Inter-processor Message Event signal occurs at a time when it is inefficient for
the RU micromachine to handle the Event, Egg TMR 25412 begins running. When Egg TMR 25412 runs out,
the Event is handled unless the micromachine is in monitor mode. If the Egg TMR 25412 Runout Event
signal occurs while the FU micromachine is in monitor mode, i.e., while the Event is masked, the Event
signal sets Field 27311 in MCW1 20280. When the FU micromachine reverts 1o virtual mode, i.e., when ail
Event Mask bits in MCW1 20290 are cleared, the Egg TMR 25412 Runout Event occurs, and the interval
Timer Runout Inter-processor Message Event handiers are invoked by Event Logic 20284.

€. Interrupt and Fault Handling
1. General Principles

Any computer system must be able to deal with occurrences which disrupt the normal execution of a
program. Such occurrences are generaily divided into two classes: faults and interrupts. A fault occursas a
consequence of an attempt to execute a machine instruction, and its accurrence is therefore synchronous
with the machine instruction. Typical fauits are floating point overflow faults and page faults. A floatin_g
point overflow fault occurs when a machine instruction attempts to perform a floating point arithmetic
operation and the resuit exceeds the capacity of the CS 10110's floating point hardware, that isEU10122. A
page fault occurs when a machine instruction in a computer system with virtual memory attempts to
reference data which is not presently available in the computer system’s primary memory, that is MEM
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10112. Since faults are synchronous with the execution of machine instructions and in many cases the
result of the execution of specific machine instructions, their occurrence is to some extent predictable.

The occurrence of an interrupt is not predictable. An interrupt occurs as a consequence of some action
taken by the computer system which has no direct connection with the execution of a machine instruction
by the computer system. For example, an VO interrupt occurs when data transmitted by an VO device (10S
10116} reaches the central processing unit {FU 10120), regardiess of the machine instruction the central
processing unit is currently executing.

In conventional systems, interrupts and faults have been handled as follows: if an interrupt or fauit
occurs, the computer system recognizes the occurrence before it executes the next machine instruction and
executes an interrupt-handling microroutine or Procadure 602 instead of the next machine instruction. if
the interrupt or fault cannot be handled by the Process 610 in which it occurs, the interrupt or fault results in
a process swap. When the interrupt handling routine is finished, Process 610 which faulted or was
interrupted can be returned to the CPU if it was removed and the next machine instruction executed.

While the above method works well with faults, the fact that interrupts are asynchronous causes
several problems:

— Machine instructions cannot require an indefinite amount of time ta execute, since interrupts cannot be
handled until the machine instruction during which they oceur is finished.

— It must be possible to remove a Process 610 from the CPU at any time, since the occurrence af an
interrupt is not predictable. This requirement greatly increases the difficuity of process management.

The method used for interrupt and fault handling in & present embodiment of CS 10110 is described

below.

2. Hardware Interrupt and Fauit Handling in CS 10110

in CS 10110, there are two levels of interrupts: those which may created and dealt with completely by
software, and those which may created by hardware signals. The former class of interrupts is deaft with in
the discussion of Processes 610; the latter, termed hardware interrupts, is discussed below.

In CS 10110, hardware interrupts and faults begin as invacations of micraroutines in FU 10120. The
invocations may be the resuht of Event signals or may be made by microprograms. For example, when 105
10116 places data in MEM 10112 for JP 10114, an Inter-processor Message Event signal results, and the
signal causes the invocation of Inter-processor Message Interrupt handler microcode. On the other hand, a
Page Fault begins as an invocation of Page Fault microcode by LAT microcode. The actions taken by the
microcode which begins handling the fault or interrupt depend on whether the fault or interrupt is handled
by the Process 610 which was being executed when the fault or Event occurred or by a special KOS Process
610.

In the first case, the Event microcode may perform a Microcode-to-Software Call to a high-level
language procedure which handles the Event. An example of an Event handled in this fashion is a floating
point overflow: when FU 10120 microcode determines that a floating point overflow has occurred, it
invokes microcode which may invoke a floating point overflow procedure provided by the high-level
language whose S-Language was being executed when the overflow occurred. In alternate embodiments
of CS 10110, the overflow procedure may aiso be in microcode.

In the secand case, the microcode handling the fault or interrupt puts information in tables used by a
KOS Process 610 which handles the fault or interrupt and then causes the KOS Process 610 to run at some
later time by advancing an Event Counter awaited by the Process 610. Event Counters and the operations
on them are explained in detail in a following description of Processes 610, Since the tables and Event
Counters manipulated by microcode are always present in MEM 10112, these operations do not cause page
faults, and can be performed in monitor mode. For example, when 10S 10116 transmits an IPM Event signal
to JP 10114 after I0S 10116 has loaded data into MEM 10112, the Event resulting from the Event signal
invokes microcode which examines a queue containing messages from 10S 10116, The messages in the
queue contain Event Counter locations, and the microcode which examines the queue advances those
Event counters, thereby causing Processes 610 which were waiting for the data returned by the VO
operation to recommence execution.

3. The Monitor Mode, Differential Masking and Hardware interrupt Handling

FU 10120 micromachine’s monitor mode and differential masking facilities allow a method of
hardware interrupt handling which overcomes two problems associated with conventional hardware
interrupt handling: an interrupt can be handled in a predictable amount of time regardiess of the amount of
time required to execute an SIN, and if the microcode which handles the interrupt executes in monitor
mode, the interrupt may be handied at any time without unpredictable consequences. There are two
sources of hardware interrupts in CS 10110: an Inter-Processor Message {IPM] and an Interval Timer 25410
Runout. An IPM occurs when 10S 10116 completes an /0 task for JP 10114 and signals completion of the
task via IOJP Bus 10132. An Interval Timer Runout occurs when a preset time at which CS 10110 must teke
some action is reached. For example, a given Process 610 may have a limit placed on the amount of time it
may execute on JP 10114. As is explained in a following description of process synchronization, the virtual

processor management system sets Interval Timer 25412 to run out when Process 610 has used all of the
time avsilable to it.
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Both IPMs and Interval Timer Runouts begin as Event signals. The immediate effect of the Event signal
is to set a bit in EP Field 27309 of MCW1. In principle, the set bit can cause invecation of the event
microcode for the Event on the next MO cycle in which the FU 10120 micromachine is in virtual mode. Since
microroutines running in monitor made are guaranteed to return the micromachine to virtual mode within
a reasonable length of time, and the Event invocation will occur when this happens, the Event is
guarantged to be serviced in a reasonable period of time. The microroutines invoked by the Events
themselves execute in monitor mode, thereby guaranteeing that no page faults will occur while they are
executing and that Process 610 which is executing on JP 10114 when the hardware interrupt occurs need
not be removed from JP 10114, :

While hardware interrupts are serviced in principle as described above, considerations of efficiency
require that as many hardware interrupts as possible be serviced when the size of the FU micromachine’s
stack is at a minimum, i.e., at the beginning of an SIN's execution. This requirement is achieved by means
of Egg TMR 25412 and ET Flag 27311 in MCW1 20280. As described above, when an IPM interrupt or an
Interval Timer 25410 Runout interrupt occurs, Field 27317 or 27313 respectively is set in MCW1 20290. At
the same time, Egg TMR 25412 begins running. If the current SIN‘s execution ends before Egg TMR 25412
runs out, the set Field in MCW1 20290 causes the Interval Timer Runout or Inter-processor Message Event
invocations to occur on the first microinstruction for the next SIN. If, on the other hand, the current SIN's
execution does not end before Egg TMR 25412 runs out, the Egg Timer Runout causes an Event signal. The
immediate result of this signal is the setting of ET bit 27311 in MCW1 20290, and the setting of ET bit 27311
in turn causes the Interval Timer Runout Event invocation and/or IPM Event invocation to take piace on the
next MO cycle to occur while the micromachine is in virtual mode. The above mechanism thus guarantees
that most hardware interrupts will be handled at the beg:nning of an SIN, but that hardware interrupts will
always be handled within a certain amount of time regardiess of the length of time required to execute an
SIN. ’

g- FU Micromachine and CS 10110 Subsystems

The subsystems of CS 10110, such as the object subsystem, the process subsystem, the S-interpreter
subsystem, and the Name Interpreter subsystem, are impiemented all or in part in the micromachine. The
description of the micromachine therefora closes with an overview of the relationship between these
subsystems and the micromachine. Detailed descriptions of the operation of the subsystems have been
presented previously.

The subsystems fall into three main groups: KOS subsystems, the Name Interpreter subsystem, and
the S-Interpreter subsystem. The relationship between the three is to some extent hierarchical: the KOS
subsystems provide the environment required by the Name Interpreter subsystem, and the Name
interpreter subsystem provides the environment required by the S-interpreter subsystem. For example, the
S-interpreter subsystem interprets SINs cansisting of SOPs and Names; the Name Interpreter subsystem
translates Names into logical descriptors, using values called ABPs to calculate the locations contained in
the logical descriptors. The KOS subsystems calculate the values of the ABPs, translate Logical Descriptors
27116 into physical MEM 10112 addresses, and check whether a Process 610 has access to an object which
it is referencing. .

In a present embodiment of CS 10110, the Name Interpreter subsystem and the S-Interpreter
subsystem are implemented complstely in the micromachine; in other embodiments, they could be
implemented in high-level languages or in hardware. The KOS subsystems are implemented in both the
micromachine and in high-level language routines. In alternate embodiments of CS 10110, KOS
subsystems may be embadied entirely in microcode, or in high-level language routines. Some high-level
language routines may execute in any Process 610, while others are executed only by special KOS
Pracesses 610. The KOS subsystems also differ fraom the others in the manner in which the user has access:
with the S-Interpreter subsystem and the Name interpreter subsystem, the subsystems come into play only
when SINs are executed; the subsystems are not directly visible to users of the system. Portions of the KOS
subsystems, on the other hand, may be explicitly invoked in high-leve! language programs. For example,
an invocation in a high-level language program may cause KOS to bind a Process 610 to a Virtual Processor
612. :

The foliowing will first list the functions performed by the subsystems, and then relate the subsystems
to the monitar and virtual micromachine modes and specific micromachine devices. KOS subsystemns
perform the following functions:

— Virtual memory managemsnt;

. = Virtual processor management;

— Inter-processor communication;

— Access Control;

— Object management; and,

— Process management.

The Name Interpreter performs the following functions:

— Fetching and parsing SOPs, and

— Interpreting Names.

The S-interpreter, finally, dispatches SOPs, i.e., locates the FU 10120 and EU 10122 microcode which
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executes the operation corresponding to a given SOP for a given S-Language.

Of these subsystems, the S-interpreter, the Name Interpreter, and the microcode components of the
KOS process and object manager subsystems execute on the virtual micromachine; the microcode
components of the remaining KOS subsystems execute on the monitor micromachine. As will be seen in
the discussions of these subsystems, subsystems which execute on the virtual micromachine may cause
Page Faults, and may therefore reference data iocated anywhere in memory; subsystems which execute on
the monitor micromachine may not cause Page Faults, and the data bases which these subsystems
manipulate must therefore always be present at known locations in MEM 10112,

The relationship betwsen subsystems and FU 10120 micromachine devices is the following:
Microcode for all subsystems uses DESP 20210, Microcode Addressing 27013, and Register Addressing .
27011, and may use EU Interface 27007. S-nterpreter microcode uses SOP Decoder 27003, and Name
Interpreter Microcode uses Instruction Stream Reader 27001, Parsing Unit 27005, and Name Translation
Unit 27015. KOS virtual memory management microcode uses Memory Reference Unit 27017, and
Protection Microcade uses Protection Unit 27019.

Having described in detail the structure and operation of CS 10110’s major subsystems, MEM 10112,
FU 10120, EU 10122, I0S 10116, and DP 10118, and the CS 10110 micromachine, CS 10110 operation will be
described in further detail next below. First, operation of CS 10110's Namespace, S-Interpreter, and Pointer
Systems will be described. Then, operation of CS 10110 will be described in further detall with respectto CS
10110’s Kemel Operating System.

3. Namespace, S-interpreters, and Pointers (Figs. 301—307, 274)

The preceding chapters have presented an overview of CS 10110, exsmined its hardware in detail, and
explained how the FU 10120 hardware functions as a8 micromachine which controls the activities of other
CS 10110 components. In the remaining portions of the specification, the means are presented by which
certain key features of CS 10110 are implemented using the hardware, the micromachine, tables in
memory, and high-level language programs. The present chapter presents three of these features: the
Pointer Resolution System, Namespace, and the S-interpreters.

The Pointer Resolution System transiates pointers, I.e., data items which contam location information,
into UID-offset addresses. Namespace has three main functions:

— It locates SINs and fetches them from CS 10110's memory into FU 10120.

— It parses SiINs into SOPs and Names.

— It translates Names into Logical Descriptors 27116 or values.

The S-interpreters decode S-operations received from namespace into locations in microcode contained in
FUSITT 11012 and EUSITT 20344 and then execute that microcode. If the S-operations require operands,
the S-interpreters use Namespace to translate the operands mto Logical Descriptors 27116 or values as
required by the operations.

Since Namespace depends on the Pointer Resolution System and the S-interpreters depend on

Namespace, the discussion of the systems begins with pointers and then deals with namespace and S-
interpreters.

A. Pointers and Pointer Resolution {Figs. 301, 302)

A pointer is a data item which represents an address, i.e., In CS 10110, a UiD-offset address. CS 10110
has two large classes of pointers: resolved pointers and unresolved pointers. Resolved pointers are
pointers whose values may be immediately interpreted es UlD-offset addresses; unresolved pointers are
pointers whose values must be interpreted by high level language routines or microcode routines to yield
UID-offset addresses. The act of interpreting an unresolved pointer is called resolving it. Since the manner
in which an unresolved pointer is resolved may be determined by a high-level language routine written by
a system user, unresolved pointers provide @ means by which users of the system may define their own
pointer types.

Both resolved and unresolved pointers have subclasses. The subclasses of resolved pointers are UID
pointers and object relative pointers. UID pointers contain a UID and offset, and can thus represent any CS
10110 address; object-relative pointers contain only an offset; the address's UID is assumed to be the same
as that of the object containing the object-relative pointer. An object-relative painter can therefore only
represent addresses in the object which contains the pointer.

The subclasses of unresolved pointers are ordinary unresoived pointers and associative pointers. The
difference between the two kinds of unresolved pointers is the manner in which they are resolved. Ordinary
unresolved pointers are always resolved by high-level language routines, while assaciative painters are
resolved the first time they are used in a Process 610 and a domain by high-level language routines, but are
subsequently resolved by means of a table called the Associated Address Table (AAT). This table is
accessible to microcode, and associative pointers may therefore be tmore quickly resolved than ordinary -
unresolved pointers.

The following discussion will first explain the formats used by all CS 10110 painters, and will then
explain how pointers are processed in FU 10120,
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a. Pointer Formats (Fig. 301)

Figure 301 represents a CS 10110 pointer. The figure has two parts: 3 representation of General Pointer .
Format 30101, which gives an overview of the fields which appear in all CS 10110 pointers, and a detailed
presentation of Flags and Format Field 30105, which contains the information by which the kinds of CS
10110 pointers are distinguished.

Turning first 1o General Pointer Format 30101, all CS 10110 pointers contain 128 bits and are divided
into three main fields:

— Offset Field 30103 contains the offset portion of a UID-offset address in resolved pointers and in
assoclative pointers; in other unresolved pointers, it may contain an offset from some point in an
object or other information as defined by the user.

~ Flags and Format Field 30105 contains flags and format codes which distinguish between kinds of
pointers. These flags and format codes are explained in detail below.

— UID field 30115 contains a UID in UID pointers and in some associative pointers; in objectrelative
pointers, and other associative pointers, its meaning is undefined, and in ordinary unresolved painters,
it may contain information as defined by the user.

Flags and Format Field 30105 contains four subfields:

— Fields 30107 and 30111 are reserved and must be set to 0.

~— NR Field 30109 indicates whether a pointer is resolved or unresolved. in resolved pointers, the field is
set to 0, and in unresolved pointers, it Is set to 1.

— Format Code Field 30113 indicates the kind of resolved or unresolved pointers. Format codes for the
present embodiment are explained below.

The values of Format Code Field 30113 may range irom 0 to 31. If Format Code Field 30113 has the
value 0, the pointer is a null pointer, i.e., a pointer which neither directly nor indirectly indicates an address.
The meanings of the other format codes depend on the value of NR Field 30109:

NR Field Value Format Code Value Meaning

0 1 UID pointer

0 2 Obiject-relative pointer

0 all other codes tiiegal

1 1 UID associative pointer

1 2 Object-refative
associative pointer

1 all other codes Ordinary unresoived
pointer

As indicated by the above tabie, the present embodiment has two kinds of associative pointer, UID
associstive pointers and object-relative associative pointers. Like a UID pointer, a UID associative pointer
contains a UID and an offset, and like an object-relative pointer, an object-relative associative pointer
contains an offset and takes the value of the UID from the object to which it belongs. However, as will be
explained in detail 1ater, the UID and offset which the associative pointers contain or represent are not used
as addresses. instead, the UID and offset are used-as tags to locate entries in the AAT, which associates an
associative pointer with a resolved pointer.

b. Pointers in FU 10120 (Fig. 302)
When a pointer is used as an address in FU 10120, the address information in the pointer must be

translated into a Logical Descnptor 27116 consisting of an AON, an offset, and a length field of 0; when a

Logical Descriptor 27116 in FU 10120 is used to form a pointer value in memory. the AON must be
converted back to a8 UID. The first conversion is termed pointer-to-descriptor conversion, and the second
descriptor-to-pointer conversnon. Both conversions are accomplished by microcodes executing in FU
10120.

What is involved in the trans!ation depends on the kind of pointer: if the pointer is a UID pointer, the
UID must be translated into an AON; if the pointer is an object-relative pointer, the AON required to fetch
the pointer is the pointer’s AON, so no translation is necessary. If the pointer is an unresolved pointer, it
must first be translated into a resolved pointer and then into a Logical Descriptor 27116. If the pointer is
associative, the translation to a resolved pointer may be performed by means of the ATT.

In the present embodiment, when other FU 10120 microcode calls pointer-to-descriptor microcode, the
calling microcode passes Logica!l Descriptor 27116 for the location of the pointer which is to be translated
as an argument to the pointer-to-description translation microcode. The pointer-to-descriptor microcode
retumns a Logical Descriptor 27116 produced from the value of the pointer at the location specified by
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Logical Descriptor 27116 which the pointer-to-descriptor microcode received as an argument.

The pointer-to-descriptor microcode first uses Logical Descriptor 27116 given it as an argument to
fetch the value of the pointer’s Offset Field 30103 from memory. It then saves Logical Descriptor 27116's
offset in the output register belonging to OFFALU 20242 and places the value of the pointer’s Offset Field
30103 in the offset field of Logical Descriptor 27116 which it received as an argument. The pointer-to-
descriptor micracode then saves Logical Descriptor 27116 indicating the pointer’s location by storing
Logical Descriptor 27116's AON and offset {obtained from OFFALU 20242} in a register in the GRF 10354
frame being used by the invocation of the pointer-to-descriptor microcode. Next, the microcode adds 40 to
the offset stored in OFFALU 20242, thereby obtaining the address of NR Field 30109, and uses the address
to fetch and read NR Field 30109 and Format Code Field 30113. The course of further processing is
determined by the values of these fields. tf NR Field 30108 indicates a resolved pointer, there are four cases,
as determined by the value of Format Code Field 30113:

— Format code field = 0: The pointer is a null pointer.

— Format code field = 1: The pointer is a UID pointer.

—. Format code field = 2: The pointer is an intra-object pointer.
— Any other value of the format code field: The pointer is invalid.

In the first case, the microcode sets all fields of the argument to O; in the second, it fetches the value of
UID Field 30115 from memory and invokes LAR microcode (expisined in the discussion of objects), which
translatas the UID to the AON associated with it. The AON is then loaded into the argument’s AON field. in
the third case, the AON of Logical Descriptor 27116 for the pointer’s location and the pointer's AON are the
same, so the argument already contains the transiated pointer. In the fourth case, the microcode performs
a call to a pointer fault-handling Procedure 602 which handles invalid pointer faults, passing saved Logical
Descriptor 27116 for the pointer as an argument. Procedure 602 which handles the fault must return a
resolved pointer to the microcode, which then converts it to a Logical Descriptor 27116 as described above.

¢. Descriptor to Pointer Conversion

Descriptor to pointer conversion is the reverse of painter to descriptor conversion with resolved
pointers. The operation must be performed whenever a resclved pointer is moved from an FU 10120
register into MEM 10112 The operation takes two arguments: a Logical Descriptor 27116 which specifies
the address to which the pointer is to be written, and a Logical Descriptor 27116 whose AON and offset
fields specify the location contained in the pointer. There are two cases: intra-object pointers and UID
pointers. Both kinds of pointers have values in Offset Field 30103, so the descriptor-to-pointer microcode
first writes the second argument’s offset to location specified by the first argument's Logical Descriptor
Z7116. The next step is to determine whether the pointer is an intra~object pointer or a UID pointer. To do
so, the microcode compares the arguments’ AONs. If they are the same, the pointer points to a location in
the object which contains it, and is therefore an intra-object pointer. Since UID Field 30115 of an intra-object
pointer is meaningless, the only step remaining for intra-object painters is to set Flags and Format Field
30105 to the binary representation of 2, which sets all bits but bit 46 to 0, and thereby identifies the pointer
as a resolved intra-object pointer.

With UID pointers, the descriptor-to-pointer microcode sets Flags and Format Field 30105 to 1, thereby
identifying the pointer as a resolved UID pointer, and calls a KOS LAR microroutine {explained in detail in
the discussion of objects) which converts the first argument’s AON to a UID and places the resuit UID in the
current frame. When the KOS AON to UID conversion microroutine returns, the descriptor-to-pointer
micracode writes the UID to the converted pointer’s UID Field 30115,

B. Namespace and the S-Interpreters (Figs. 303—307)

Namespace and the S-Imerpreter both interpret information contained in Procedure Objects 608.
Consequently, the discussion of these components of CS 10110 begins with an overview of those parts of
Procedure Object 606 relevant to Namespace and the S-interpreters, and then explains Namespace and the
S-interpreters in detail.

a. Procedure Object 606 Overview {Fig. 303)

Figure 303 represents those portions of Procedure Object 608. Fig. 303 expands infarmation contained
in Fig. 103; Fields which appear in both Figures have the number of Fig. 103. Portions of Procedure Object
608 which are not discussed here are dealt with later in the discussion of Calls and Returns. The most
important part of a Procedure Object 608 for these systems is Procedure Environment Descriptor (PED)
30203. A Procedure 602's PED 30303 contains the information required by Namespace and the S-interpreter
1o locate and parse Procedure 602's code and interpret its Names. A number of Procedures 602 in a
Procedure Object 808 may share s PED 30303. As will be seen in the discussion of Calls, the fact that a
Pracedure 602 shares a PED 30303 with the Procedure 602 that invokes it affects the manner in which the
Call is exscuted.

The fields of PED 30303 which are important to the present discussion are three fields in Header 30304:
K Field 30305, LN Feld 30307, and SIP Field 30309, and three of the remaining fields: NTP Fieid 30311, SOPP
Field 30313, and PBP Field 30315.
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— K Field 30305 indicates whether the Names in the SINs of Precedures 602 which share PED 30303 have

8, 12, or 16 bits.

— LN Field 30307 contains the Name which has the largest index of any in Procedure 602's Name Table

10350. .

— SIP Field 30309 is a UID pointer to the object which contains the S-interpreter for Procedure 602's S-

Language.

— NTP Field 30311 is an object-relative pointer to the beginning of Procedure 602’s Name Tabte 10350.

— SDPP Field 30313 is a pointer which is resolved to the location of static data used by Procedures 602 to
which PED 30303 belongs when one of Procedures 802 is invoked by a given Process 610. The resolved
pointer corresponding to SDPP 30313 is the SDP ABP.

— PBP Field 30315 contains the PBP ABP for invocations of Procedures 602 to which PED 30303 belongs.

The PBP ABP Is used to calculate iocations inside Procedure Object 608.

Other areas of interest in Procedure Object 608 are Literals 30301 and Static Data Prototype (SOPR)
30317. Literals 30301 contains literal values, i.., values in Procedure 602 which are known at compile time
and will not change during program execution. SDPR 30317 may contain any of the following: pointers to
external routines and to static data contained in other objects, information required to create static data for
a Procedure 602, and in some cases, the static data itself. Pointers in SDPR 30317 may be either resolved or
non-resolved. j

In the present embodiment, Binder Area 30323 Is also important. Binder Area 30323 contains
information which allows unresolved pointers contained in Procedure Object 608 to be resolved.
Unresolved pointers other than SDPP 30313 in Procedure Object 608 all contain locstions in Binder Area
30323, and the specified location contains the information required to resolve the pointer.

Fig. 303 contains arrows showing the locations in Procedure Object 608 pointed to by NTP Feld 30311,
SDPP Field 30313, and PBP Field 30315. NTP Fleld 30311 points to the beginning of Name Tables 10350, and
thus a Name's Name Table Entry can be located by adding the Name's value to NTP Feld 30311. PBP Field
30315 points to the beginning of Literats 30301, and consequently, the locations of Literals and the

. locations of SINs may be expressad as offsets from the value of PBP Field 30315. SOPP Field 30313 points to

the beginning of SDPR 30317. As will be explained in detail in the discussion of Calls, when a procedure 602
has static data, the SDP ABP is derived from SDPP Field 30313.

b. Namespace

The Namespace component of CS 10110 locates SINs belonging to a procedure &nd fetches them from
memory to FU 10120, parses SINs into SOPs and Names, and performs Resoive and Evaluation operations
on Names. The Resolve operation translates a Name into a Logical Descriptor 27116 for the data
represented by the Name, while the Evaluation operatlon obtains the data itself. The Evaluation operation
does so by performing a Resolve operation and then using the resulting Logical Descriptor 27116 to fetch
the data. Since the Evaluation and Resolve operations are the most complicated, the discussion begins with
them.

1. Name Resolution and Evaluation

Name Resolution and Evaluation translate Names into Logical Descriptors 27116 by means of
information contained in the Names’ NTEs, and the NTEs define locations in terms of Architectural Base
Registers. Consequently, the following discussion will first describe Name Table Entries and Architectural
Base Pointers and then the means by which Namaspacs translates the information contained in the Name
Table Entries and Architectural Base Pointers into Logical Descriptors Z7116.

2. The Name Table (Fig. 304)

As previously mentioned, Name Tables 10350 are contained in Procsdure Objects 608. Name Tables
10350 contain the information required to translate Names into Logical Descriptors 27116 for the operands
represented by the Names. Each Name has as its value the number of 8 Name Table Entry. A Name's Name
Table Entry is located by multiplying the Name's value by the size of a short Name Table Entry and adding
the product to the value in NTP Field 30311 of PED 30303 belonging to Procedure 602 which contains the
SIN.

The Name Table Entry contains length and type information for the data item specified by the Name,
and represents the data item’s location as a displacement from a known location, termed the base. The
base may be a location specified by an ABP, a location specified by another Name, or a location specified
by a pointer. In the latter case, the pointer's location may be specified in terms of an ABP or as a Name.

Fig. 304 is a detailed representation of a Name Table Entry (NTE) 30401. There are two kinds of NTEs
30401: Short NTEs 30403 and Long NTEs 30405. Short NTEs 30403 contain 64 bits; Long NTEs 30405
contain 128 bits. Names that represent scaler data items whose dispiacements may be expressed in 16 bits
have Short NTEs 30403; Names that represent scaler data items whose displacements require more than
16 bits and Names that represent array elements have Long NTEs 30405.

A Short NTE 30403 has four main fields, each 16 bits in length:

— Flags and Format Field 30407 contains flags and format information which specify how Namespace is

1o interpret NTE 30401.
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— Base Field 30425 indicates the base to which the displacement is to be added to obtain the location of
the data represented by the Name. Base Field 30425 may represent the location in four ways: by means
of an ABP by means of a Name, by means of a pointer located by means of an ABP, and by means of a
pointer located by means of a Name.

— Length Feld 30435 represents the length of the data. The length may be a literal value or a Name. i it is
a Name, the Name resolves to a location which contains the data item’s length.

— Displacement Field 30437 contains the displacement of the beginning of the data from the base
specified in Field 30426. The displacement is a signed integer value. .

Long NTEs 30405 have four additional fields, each 16 bits long: Two of the fields, Index Name Field
30441 and IES Field 30445 are used only in NTEs 30401 for Names that represent arrays.

— Displacement Extension Field 30439 is used in all Long NTEs 30405. If the displacement value in Field
30437 has less than 16 bits, Displacement Extension Field 30439 contains sign bits, i.e., the bits in the
field are set to 0 when the displacement is positive and 1 when the displacement is negative. When the
displacement value has more than 16 bits, Displacement Extension Field 30439 contains the most
significant bits of the displacement value as wel! as sign bits.

— Index Name Field 30441 contains a Name that represents a value used to index an element of an array.

— Field 30443 is resarved.

IES Field 30445 contains a Name or Literal that specifies the size of an element in an array. The value
represented by this field is used together with the value represented by Index Name Field 30441 to locate
an element of an array.

As may be seen from the above, the following fields may contain names: Base Field 30425, Length
Field 30435, Index Name Field 30441, and IES Field 30445, .

Two fields in NTE 30401 require further consideration: Flags and Format Field 30407 and Base Fleld
30425. Flags and Format Field 30407 has three subfields: Flags Field 30408, FM Field 30421, and Type Field
30423, Tuming first to Flags Field 30408, the six flags in the field indicate how Namespace is to interpret
NTE 30401. The flags have the following meanings when they are set:

— Long NTE Fag 30409: NTE 30401 is a Long NTE 30405.

— Length is a Name Flag 30411: Length Feld 30435 contains a Name.

— Base is 8 Name Flag 30413: Base Field 30425 contains a Name instead of the number of an ABP.

— Base indirect Flag 30415: Base Field 30425 represents a pointer, and the location represented by NTE
30401 is to be calculated by obtaining the pointer's value and adding the value contained in
Displacement Field 30437 and Displacement Extension Field 30439 to the pointer’s offset.

— Aray Flag 30417: NTE 30401 represents an array.

— IES is a Name Flag 30419: IES Field 30445 contains 8 Name that represents the IES value.

Several of these flags may be set in a given NTE 30401, For example, an entry for an array element that
was referenced via a pointer to the array which in turn was represented by a Name, and whaose IES value
was represented by a Name, would have Flags 30409, 30413, 30415, 30417, and 30419 set.

FM Field 30421 indicates how the data represented by the Name is to be formated when It is fetched
from memory. The value of FM Field 30421 is placed in FIU Field 27107 of Logical Descriptor 27116
produced from NTE 30401. The two bits allow for four possibilities:

Settiné Meaning

00 right justify, zero fill
01 right justify, sign fiil
10 left justify, zero fill
n left justify, ASCIl space fill
The four bits in Type Field 30423 are used by compilers for language-specific type information. The

value of Type Fleld 30423 is placed in Type Field 27109 of Logical Descriptor 27116 produced from NTE
30401.

Base Field 30425 may have either Base is an ABP Format 30427 or Base is a Name Format 30432. The

manner in which Base Field 30425 is interpreted depends on the setting of Base is a Name Flag 30413 and
Base Indirect Flag 30415. There are four possibilities:
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Field Settings
Base is 8 Name Base Indirect Meaning

0 0 ABP Format locates base
directly.

0 1 ABP Format locates a pointer
which is the base.

1 . 0 Base is Name Format locates
base when Name is resolved.

1 1 Base is Name Format locates
a pointer when Name is
resolve and the pointer is ‘e
the base.

As indicated by the above table, Base Fisld 30425 is interpreted as having Base is ABP Format 30427
when Base is a Name Flag 30411 is not set. In Base is ABP Format 30427, Base Field 30425 has two
subfields: ABP Field 30429 and Pointer Locator Field 30431. The latter field has meaning only when Base
Indirect Flag 30415 is set. ABP Field 30429 is a two-bit code which indicates the ABP. The settings and their
meanings are the following: .

Setting APB
00 . FP
01 Unused
10 SDP
11 . PBP

The ABPs are discussed below. When Base Indirect Flag 30415 is set to 1 and Base is a Name Flag
30413 is set to 0, the remaining 14 bits of the Base Field in ABP Format are interpreted as Pointer Locator
Feld 30413. When so interpreted, Pointer Locator Field 30413 contains a signed integer, which, when
multiplied by 128, gives the dispiacement of a pointer from the ABP specified in ABP Field 30429. The value
of this pointer is then the base to which the dlsplacement Is added.

Base Field 30425 is interpreted as having Base is a Name Format 30432 when Base is a Name Flag
30413 is set to 1. In Base is a Name Format 30432, Base Field 30425 contains a Name. if Base Indirect Flag
30415 is not set, the Name is resolved to obtain the Base. If Base Indirect Flag 30415 is set, the name is
evaluated to obtain a pointer value, and that pointer value is the Base.

3. Architectural Base Pointers (Figs. 305, 306)

If Base is a Name Flag 30413 belonging to a NTE 30401 is not set, Base Field 30425 spacifies one of the

three ABPs in CS 10110

— PBP specifies a location in Procedure Object 608 to which displacements may be added ta obtain the
locations of Literals and SiNs.

— SDP specifies a location in a Static Data Block for an invocation of a Procedure 602 to which
displacements may be added to obtain the locations of static data and linkage pointers to Procedures
602 contained in other Procedure Objects 608 and static data.

— FP specifies a location in the MAS frame belonging to Procedure 602°s current invocation to which
displacements may be added to obtain the location of local data and linkage pointers to arguments.
Each time a Process 610 invokes a Procedure 602, Call microcode saves the current values of the ABPs

on Secure Stack 10336, calculates the values of the ABPs for the new invocation, and places the resulting

" Logical Descriptors 27116 in FU 10120 registers, where they are accessible to Namespace microcode.

Call microcode calcuiates the ABPs as follows: PBP is obtained directly from PBP Field 30315 in FED
30303 belonging to the Procedure 602 being executed. All that is required to make it into a Logicai
Descriptor 27116 is the addition of the AON for Procedure Object 608's UID. -

SDP is obtained by performing a pointer-to-descriptor translation on SDPP Field 30313. FP, finally, is
provided by the pomon of Call microcode which creates the new MAS 502 frame for the invocation. As is
described in detail in the discussion of Call, the Call microcode copies linkage pointers to the invocation's
actual arguments onto MAS 502, sets FP to point to the location foliowing the last actual argument, and
then allocates storage for the invocation's local data. Positive displacements from FP thus specify locations
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in the local data, while negative offsets spec:fy linkage pointers.

a.a. Resolving and Evalusting Names (Fig. 305)

The primary operations performed by Namespace are resolvmg names and evaluatmg them. A Name
has bsen resolved when Namespace has used the ABPs and informstion contained in the Nams’s NTE
30401 to produce a Logical Descriptor 27116 for the Name; a name has been evaluated when Namespace
has resolved the Name, presented the resulting Logical Descriptor 27116 for the Name to memory, and
obtained the value of the data represented by the Name from memory.

The resolve operation has thras parts, which may be performed in any order:

— Obtaining the Base from Base Field 30425 of the Name's NTE 30401.
— Obtaining the displacement.
— Obtaining the length from Length Field 30435.

Obtaining the length is the simplest of the operations: if Length in a Name Flag 30411 is set, the length
is the value obtained by evaluating the Name contained in Length Field 30435; otherwise, Length Feld
30435 contains a fiteral value and the length is that literal’s value.

There are four ways in which the Base may be calculated. Which is used depends on the settings of

_Base is a Name Fiag 30413 and Base Indirect Flag 30415:

-~ Both Flags 0: the ABP specified in ABP Field 30429 is the Base.
— Base is a Name Flag 30413 O and Base Indirect Flag 30415 1: The Base is the location contained in the

pointer specified by ABP Field 30429 and pointer Locator Field 30431.

— Base is a Name Flag 30413 1 and Base Indirect Flag 30415 0: The Base is the location obtained by

resolving the Name in Base Field 30425.

— Baoth Flags 1: The Base is the location obtained by evaluating the Name in Base Field 30425.

The manner in which Namespace calculates the displacement depsnds on whether NTE 30401
represents a scaler data item or an array data item. In the first case, Namespace adds the value contained in
Displacement Field 30437 and Displacement Extension Field 30439 to the location abtained for the Base; in
the second case, Namespace evaluates Index Name Feld 30441 and IES Field 30445, multiplies the
resulting values together, and adds the product to the value in Displacernant Field 30437 in order to obtsin
the displacement.

if any field of a NTE 30401 contains a Narne, Namespace obtains the value or location represented by
the Name by performing a Resolve or Evaluation operation on it as required. As mentioned in the
discussion of NTEs 30401, flags in Flags Field 30408 indicate which fields of an NTE 30401 contain Names.
Since the NTE 30401 for a Name used in another NTE 30401 may itself contain Names, Namespaee
performs the Resolve and Evaluation operations recursively.

b.b. Impiementation of Name Evaluation and Name Resolve in CS 10110

In the present embodiment, the Name Evaluation and Resolve operations are carried out by FU 10120
microcode Eval and Resolve commands. Both commands require two pieces of information: a register in
the current frame of SR portion 10362 of GRF 10354 for receiving Logical Descriptor 27116 produced by the
operation, and the source of the Name which is to be resolved or evaluated. Both Resolve and Eval may
choase between three sources: Parser 20264, Name Trap 20254, and the low-order 16 bits of the output
register for OFFALU 20242. Resolve may specify current frame registers O, 1, or 2 for Logical Descriptor
27116, and Eval may specify current frame registers O or 1. At the end of the Resolve operation, Logical
Descriptor 27116 for the data represented by the Name is in the specified SR 10362 register and at the end
of the Evaluation operation, Logical Descriptor 27116 is in the specified SR 10362 register and the data’s
value has been transferred via MOD Bus 10114 to EU 10122's OPB 20322.

The execution of both Resolve and Eval cornmands always begin with the presentation of the Name to -
Name Cache 10226. The Name presented to Name Cache 10226 is tatched into Name Trap 20254, where itis
available for subsequent use by Name Resolve microcode.

If there is an entry for the Name in Name Cache 10226, 2 name cache hit occurs. For Names with NTEs
30401 fulfilling three conditions, the Name Cache 10226 entry for the Name is a Logical Descriptor 27116 for
the data item represented by the Name. The conditions are the following:

-~ NTE 30401 contains no Names.

— Length Field of NTE 30401 specifies a length of less than 256 bits.

~— |if Base is Indirect Flag 30415 is set, Pointer Displacement Field 30431 must have a negative va!ue,
indicating that the base is a linkage pointer.

Logical Descriptor 27116 can be encached in this case because neither the iocation nor the length of the
data represented by the Name can change during the life of an invocation of Procedure 602 to which the
Name belongs. If the Name Cache 10226 entry for the Name is a Logica! Descriptor 27116, the hit causes
Name Cache 10226 to place Logical Descriptor 27116 in the specified SR 10362 register. In all ather cases,
the Name Cache 10226 entry for the Name does not contain a Logical Descriptor 27116, and a hit causes
Name Cache 10226 to emit a JAM signal. The JAM signal invokes microcode which uses information stored
in Name Cache 10226 to construct Logical Descriptor 27116 for the data item represented by the Name.
JAMS are explained in detail below.

If there is no entry for the Name in Name Cache 10226, a Name Cache Miss occurs, and Name Cache
10226 emits 8 cache miss JAM signal. The Name Resolve microroutine invoked by the cache miss JAM
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signal constructs an entry in Name Cache 10226 from the Name's NTE 30401, using FU 10120’s DESP 20210
to perform the necessary calculations. When it is finished, the cache miss microcode leaves a Logical
Descriptor 27116 for the Name in the specified SR 10362 register and returns.

The Resolve operation is over when Logical Descriptor 27116 has been placed in the specified GRF
10354 register; the Evaluation operation continues by presenting Logical Descriptor 27116 to Memory
Reference Unit 27017, which reads the data represented by Logical Descriptor 27116 from memory and
places it on OPB 20322. The memory reference may result in Protection Cache 10234 misses and ATU 10228
misses, as wall as protection faults and page faults, but these are handied by means of event signals and
are therefore invisible to the Evaluation operation.

Name Cache 10226 produces 15 different JAM signals. The signal produced by a JAM depends on the
following: whether the operation is a Resolve or an Eval, which register Logical Descriptor 27116 is to be
placed in, whether a miss occurred, and in the case of a hit, which register in the Name Cache 10226 entry
for the Name was loaded {ast. From the point of view of the behavior of the microcode invoked by the JAM,
the last two factors are the most important. Their relation to the microcode is explained in detail below.

in the present embodiment, all entries in Name Cache 10226 are invalidated when a Procedure 602
calls another Procedure 602. The invalidation is required because Calls always change the value of FP and
may also change the values of SDP and PBP, thereby changing the meaning of NTEs 30401 using
displacements from ABPs. Entries for Names in invoked Procedure 602 are created and loaded into Name
Cache 10226 when the Names are evaluated or resolved and & cache miss occurs.

The following discussion will first present Name Cache 10226 as it appears to the microprogrammer
and then explain in detail how Name Cache 10226 is used to evaluate and resolve Names, how it is loaded,
and how it is flushed.

c.c. Name Cache 10226 Entries {Fig. 306)
The structure and the physical behavior of Name Cache 10226 was presented in the discussion of FU
10120 hardware; here, the.logical structure of Name Cache 10226 entries as they appesr to the

. microprogrammer is presented. To the microprogrammer, Name Cache 10226 appears as a device which,

when presented 8 Name on NAME Bus 20224, always provides the microprogrammer with a Name Cache
10226 entry for the Name consisting of four registars. The microprogrammer may read from or write to any
one of the four registers. When the microprogrammer writes to the four registers, the action taken by Name
Cache 10226 when a hit occurs on the Name associated with the four registers depends on which of the
registers has most recently been loaded. The means by which Name Cache 10226 assoclates 8 Name with
the four registers, and the means by which Name Cache 10226 provides registers when it is full are invisible
to the microprogrammer.

Fig. 306 illustrates Name Cache Entry 30601 for a Name. The four Registers 30602 in Name Cache Entry
306017 are numbered 0through 3, and each Register 30602 has an AON, offset, and length field like those in
GRF 10354 registers, except that some flag bits in GRF 10354 register AON fields are not included in
Register 30602 fields, and the length field in Register 30602 is 8 bits long. As is the case with GRF 10354
registers, the microprogrammer can read or write individual fields of Register 30602 or entire Register
30602. Name Cache Entry 30601 is connected via DB 27021 to DESP 20210, and consequently, the contents
of a GRF 10354 register may be obtained from or transferred to a Register 30602 or viceversa. When the
contents of a Register 30602 have been transferad to a GRF 10354 register, the contents may be processed
using OFFALU 20242 and other arithmetic-logical devices in DESP 20210.

d.d. Name Cache 10226 Hits

When a Name is presented to Name Cache 10226 and Name Cache 10226 has a Name Cache Entry
30607 containing information about the Name, a name cache hit occurs. On a hit, Name Cache 10226
hardware always loads the contents of Register 30602 0 of the Name’s Name Cache Entry 30601 into the
GRF 10354 register specified in the Resolve or Eval microcommand. in addition, a hit may result in the
invocation of microcode via a JAM:

— The JAM may invoke special microcode for resolving Names of array elements whose NTEs 30401
allow certain hardware accelerations of index calculations.
— The JAM may invoke general name resolution microcode which produces a Logical Descrlptor 27116

from the contents of Name Cache Entry 30601.

Whether the hit produces a JAM, and the kind of JAM it produces, are determined by the last Register
30602 to be loaded when Name Cache Entry 30601 was created by Name Cache Miss microcode. If Register
30602 0 was the last to be loaded, no JAM occurs; if Register 30602 1 was loaded last, the JAM for special
array Name resolution occurs; if Register 30602 2 or 3 was loaded last, the JAM for general Name
resolution occurs.

As may be inferred from the above, Name Cache 10226 hardware defines the manner in which Name
Cache Entries 30601 are loaded for the first two cases. In the first case, Name Cache Register 30602 O must
contain Logical Descriptor 27116 for the Name's data. As already mentioned, the Name’s NTE 30401 must
therefore describe data whose location and length does not change during an invocation and whose length
is less than 256 bits. Name Cache 10226 hardware also determines the form of Name Cache Entries 30601
for encachable arrays. An encachable array NTE 30401 is an array NTE 30401 which fills the following
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conditions: _

— The only Name contained in array NTE 30401 is in Index Name Field 30441. ]

— NTE 30401 for the index Name fills the conditions for scaler NTEs 30401 for which Logical Descriptors
27116 may be encached.

— The value in IES Feld 30445 is no grester than 128 and a power of 2, .

— Array NTE 30401 otherwise fills the conditions for scaler NTEs 30401 for which Logical Descriptors
27116 may be encached. .
In the present embodiment, the encachable array entry uses registers Q, 1,-and 2 of Name Cache Entry

30601 for the name: -

Register Contents
AON ~ OFFSET LENGTH
0 Logical D&scri;tor 27116 for the index Name
1 0 IES powér of 2 unused

2 Logical Descriptor 27116 for the al;ay

When a hit for this type of entry occurs, the resulting JAM signal does two things: it invokes
encachable array resolve microcode and it causes the index Name's Logical Descriptor 27116 to be
presented to Memory Reference Unit 27017 for a read operatian which returns the value of the data
represented by the index Name to an accumulator in OFFALYU 20242. The encachable array resolve
microroutine then uses the Name that caused the JAM, latched into Name Trap 20254, to locate Register

- 30602 2 of Name Cachs Entry 30601 for the Name, writes the contents of Register 30602 2 into the GRF

register specified by the Resolve or Eval microcommand, obtains the product of the IES vatue and the index
value by shifting the index value left the number of times specified by the [ES exponent in Register 30602 1,
adds the resutt to the offset field of the GRF 10354 register containing the array’s Logical Descriptor 27116,
thus obtaining Logical Descriptor 27116 for the desired array element, and returns. _
.For the other cases, the manner in which Name Cache Entries 30601 are loaded and processed to
obtain Logical Descriptors 27116 is determined by the microprogrammer. The JAM signal which results ifa
Name Cache Entry 30601 is neither a Logical Descriptor 27116 nor an encachable array entry merely
invokes a microroutine. The microroutine uses the Name latched inta Name Trap 20254 to locate the
Name’s Name Cache Entry 30601 and then reads tag values in Name Cache Entry 30601 to determine how
the information in Name Cache Entry 30601 is to be translated into a Logical Descriptor 27116. The contents
of Name Cache Entries 30601 for the other cases have two.general forms: one for NTEs 30401 with Base is
Indirect Flag 30415 set. and one for NTEs in which it is not set. The first general form looks like this:

Register Contents

AON OFFSET LENGTH
] ' ABP ACN tagflength unused
1 0 index name/IES unused
2 0 unused unused
3 0 data displacement unused

from loc. specified
by pointer

Register 30602 0 contains the AON of the ABP. Register 30602 0's offset field contains two items: the
tag, which contains Flags Field 30408 of NTE 30401 along with other information, and which determines
how Name Resolve microcode interprets the contents of Name Cache Entry 30601, and a value or Name for
the length of the data item. Register 30602 1 is used only if the Name represents a data item in an array. It
then contains the Name from index Field 30441 and the Name or value from |ES Field 30445, The offset field
of Register 30602 3 contains the sum of the offset indicated by NTE 30401‘s ABP and of the displacement
indicated by NTE 30401.

The second format, used for NTEs 30401 whose bases are obtained from pointers or by resolving a
Name, looks like this: : .
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Registers Contents
AON OFFSET LENGTH
0 _ 0 tagflength unused
1 0 ' index namefiES unused
2 0 FM and type bits/ unused
base field
3 [+] -. deta displacement unused

from loc. specified
by pointer or name

in this form, the location of the Base must be obtained either by evaluating a pointer or resolving a
Name. Hencs, there is no field specifying the Base’s AON. Otherwise, Registers 30602 0 and 1 have the
same contents as in the previous format. In Register 30602 2, the offset field contains Name Table Entry
30401’s FM Field 30421 and Type Field 30423 and Base Field 30425. The Offset Field of Register 30602 2
contains the value of Name Table Entry 30401 Displacement Fields 30437 and 30433.

As in Name Table Entries 30401, the index must be represented by a Name, and tength, IES, and Base
may be represented by Names. I a field of Name Cache Entry 30607 contains a Name, a fiag in the tag
indicates that fact, and Name Resolve microcode performs an Eval or Resolve operation on it as required to
obtain the value or location represented by the name. :

The microcode which resolves Name Cache Entries 30501 of the types just described uses the general
algorithms described in the discussion of Name Table Entries 30401, and is therefore not discussed further
here.

e.e. Name Cache 10226 Misses

When a Name is presented to Name Cache 10226 and there is no Name Cache Entry 30601 for the
Name, a name cache miss occurs. On a miss Name Cache 10226 hardware emits a JAM signal which
invokes name cache miss microcode. The microcode obtains the Name which caused the miss from Name
Trap 20254 and locates the Name’s NTE 30401 by adding the Name to the value of NTP 30311 from PED
30303 for Procedure 602 being executed. As will be explained in detall later, when a Procedure 602 is called,
the Call microcode places the AON and offset specifying the NTP’s location in a register in GR's 10360.
Using the information contained in the Name's NTE 30401, the Cache Miss microcode resolves the Name
and constructs a Name Cache Entry 30601 for it. As described above, the microcode determines the method
by which it resolves the Name and the form of the Name's Name Cache Entry 30601 by reading Flags Field
30408 in the Name’s NTE 30401. Since the descriptions of the Resolve operation, the micromachine, Name
Cache 10226, and the formats of Name Cache Entries 30601 are sufficient to allow those skilled in the art to
understand the operations performed by Cache Miss microcade, no further description of the microcode is
provided.

ff. Flushing Name Cache 10226

As described in the discussion of Name Cache 10226 hardware, hardware means, namely VALS 24068,
exist which allow Name Cache Entries 30601 to be invalidated. Name ‘Cache Entries 30601 may be
invalidated singly, or all entries in Name Cache 10226 may be invalidated by means of a single
microcommand. The latter operation is termed name cache flushing. In the present embodiment, Name
Cache 10226 must be flushed when Process 610 whose Virtual Processor 612 is bound to JP 10114 executes
a Call or a Return and whenever Virtual Processor 612 NO is unbound from JP 10114. Flushing is required
on Call and Return because Calls and Returns change the values of the ABPs and other pointers needed to
resolve Names. At a minimum, a Call produces a new MAS Frame 10412, and a Return returns to a previous
Frame 10412, thereby changing the value of FP. If the called Procedure 602 has a different PED 30303 from
that of the calling Procedure 602, the Call or Return may also change PBP, SDP, and NTP. Flushing is
required when a Virtual Processor 612 is unbound from JP 10114 because Virtual Processor 612 which is
next bound to JP 10114 is bound to 8 different Process 610, and therefore cannot use any information
belonging to Process 610 bound to the Previous Virtual Processor 612.

g.g. Fetching the |-Stream
As explained in the discussion of FU 10120 hardware, SiNs are fetched from memory by Prefetcher
20260. PREF 20260 contains a Logical Descriptor 27116 for a lacation in Code 10344 belonging to Procedure
602 which is currently being executed. On any MO cycle, PREF 20260 can place Logicat Descriptor 27116 on
DB 27021, cause Memory Reference Unit 27017 to fetch 32 bits at the location specified by Logical
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Descriptor 27116, and write them into INSTB 20262. When {NSTB 20262 is full, PREF 20260 stops fetching
SiNs until Namespace parsing operations, described below, have processed part of the contents of INSTB
20262, thereby creating space for more SiNs.

The fetching operation is automatic, and requires intervention from Namespace only when 8 SIN
&auses a branch, i.e., causes the next SIN to be executed to be some other SIN than the one immediately
following the current SIN. On a branch, Namespace must load PREF 20260 with the location of the next SIN
to be executed and cause PREF 20260 to begin fetching SiNs at that location, The operation which does this
is specified by the load-prefetch-for-branch microcommand. The microcommand specifies a sourcs for a
Logical Descriptor 27116 and transfers that Logical Descriptor 27116 via DB 27021 to PREF 20260. After
PREF 20260 has thus been loaded, it begins fetching SINs at the specified location. Since any SINs still in
INSTR 20262 have been rendered meaningless by the branch operation, the first SINs loaded into INSTB
20262 are simply written over INSTB 20262's prior contents. Fig. 274 contains an example of the use of the
load-prefetch-for-branch microcommand.

h.h. Parsing the kStream

" The kstream as fetched from MEM 10112 and stored in INSTB 20262 Is a sequence of SOPs and Names.
As already mentioned, the l-stream has a fixed format: in the present embodiment, SOPs are always 8 bits
long, and Names may be 8, 12, or 16 bits long. The length of Names used in a given procedure is fixed, and
is indicated by the value in K Field 30305 in the Procedure 602's PED 30303. The Namespace parsing
operations cbtain the SOPs and Names from the }-stream and place them on NAME Bus 20224. The SOPs
are transferred via this bus to the devices in SOP Decoder 27003, while the Names are transferred to Name
Trap 20254 and Name Cache 10226 for Resolve and Evaliation operations as described above. As the
parsing operations obtain SOPs and Names, they also update the three program counters CPC 20270, EPC
20274, and 1PC 20272. The values in these three counters are offsets from PBP which point to locstions in
Code 10344 belonging to Procedure 602 being executed. CPC 20270 points to the i-stream syllable currently
being parsed, so it is updated on every parsing opsration. EPC 20274 points to the beginning of the last SIN
executed by JP 10114, and (PC 20272 points to the beginning of the current SIN, so these program counters
are changed only at the beginning of the execution of an SIN, i.e., when a SOP is parsed.

As described in the discussion of FU 10120 hardware, in the current implementation, parsing consists
physically of reading 8 or 16 bits of data from a location in INSTB 20262 identified by a pointer for INSTB
20262 which is accessible only to the hardware. As data is read, the hardware increments the pointer by the
number of bits read, wrapping around and returning to the beginning of INSTB 20262 if it reaches the end.
At the same time that the hardware increments the pointer, it increments CPC 20270 by the seme number of
bits. As praviously mentioned, CPC 20270 contains the offset from PBP of the SOP or Name being currently
parsed, thus coordinating the reading of INSTB 20262 with the reading of Procedure 602’s Code 10344.

The number of bits read depends on whether Parser 20264 is reading an SOP or a Name, and in the
latter case, by the syllable size specified for the Name. The syliable size is contained in CSSR 24112.On a
Call to & Procedure 602 which has a different PED 30303 from that of the calling procedure, the Call
microcode loads the value comntained in K Field 30305 into CSSR 24112.

Namespace’s parsing operations are performed by separate microcommands for parsing SOPs and
Names. There is a single microcommand for parsing S-operations: parse-op-stage. The microcommand
obtains the next eight bits from INSTB 20262, places the bits onto NAME Bus 20224, and latches them into
LOPCODE Register 24212. It also updates EPC 20274 and IPC 20272 as required at the beginning of an SIN:
EPC 20274 is set to IPC 20272’s former value, and iPC 20272 is set to CPC 20270's value. At the end of the
operation, CPC 20270 is incremented by 8. Since the parsing of an SOP atways occurs as the first operation
in the interpretation of an SIN, the parse-op-stage command is generally combined with a dispatch fetch
command. As will be explained below, the latter command interprets the S-operation as an address in
FDISP 24218, and FDISP 24218 in turn produces an address in FUSITT 11012, The latter address is the
location of the beginning of the SIN microcode for the SIN. ‘

There are two microcommands for parsing Names: '

parse_k_load_epc and parse_k_dispatch_ebox. Both commands obtain a number of bits from INSTB 20262
and place them on NAME Bus 20214. With both microcommands, the syllable size, K, stored in CSSR 24112,
determines the number of bits obtained from INSTB 20262. Both commands also increment CPC by the .
value stored in CSSR 24112, In addition, parse_k_load_epc sets EPC to IPC's value, while
parse_k_dispatch_ebox also dispatehes EU 10122, i.e., interprets the SOP saved in LOPCODE 24210 as an
address in EDISP 24222, which in turn contains an address in EU EUSITT 20344, The EU EUSITT 20344
address is passed via EUDIS Bus 20206 to COMQ 20342 in EU 10122,

c. The S-Interpreters (Fig. 307}

€S 10110 does not assign fixed meanings to SOPs, While all SOPs are 8 bits long, a given B bit SOP
may have one meaning in one S-Language and a completely different meaning in another S-Language. The
semantics of an S-Langusge’s S-operations are determined completely by the S-interpreter for the S-
Language. Thus, in order to correctly interpret an S-operation, CS 10110 must know what S-interpreter it is
to use. The S-interpreter is identified by a UID pointer with offset 0 in SIP Field 30309 of PED 30303 for
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Procedure 602 that CS 10110 is currently executing. In the present embodiment, the UID is the UID of a
microcode object which contains FU 10120 microcode, When loaded into FUSITT 11012, the microcode
interprets SOPs as defined by the S-Language to which the SOP belongs. In other embadiments, the UID
may be the UID of a Procedure Object 608 containing Procedures 602 which interpret the S-Language’s
SOPs, and in still others, the S-interpreter may be contained in a PROM and the S-interpreter UID may not
specify an abject, but may serve solely to identify the S-interpreter.

When a Procedure 602 executes an SIN on JP 10114, CS 10110 must translate the value of SIP Pointer
30309 for Procedure 602 and the S-instruction’s SOP into a location in the microcode or highdevel language
code which makes up the S-interpreter. The location obtained by the translation is the beginning of the
microcode or high-level language code which implements the SIN. The translation of an SOP together with
SIP Painter 20309 into a location in the S-interpreter is termed dispatching. Dispatching in the present
embodiment involves two primary components: a table in memory which translates the value of SIP
Pointer 30309 into a small integer called the Dialect Number, and S-operation Decoder Portion 27003 of the
FU 10120 micromachine. The following discussion will first present the table and explain how an SIP
Pointer 30309 is translated into a Dialect Number, and then explain how the Dialect Numbar and the SOP
together are translated into locations in FUSITT 11012 and EUSITT 20344,

1. Translating SIP into a Dialect Number (Fig. 307)

in the present embodiment, all S-interpreters in CS 10110 are loaded into FUSITT 11012 when CS 10110
begins operation and each S-interpreter is always placed in the same location. Which S-interpreter is used
to interpret an S-Language is determined by a value stored in dialect register RDIAL 24212. Consequently,
in the present embodiment, a Call to a Procedurs 602 whose S-interpreter differs from that of the calling
Procedure 602 must translate the UID pointer contained in SIP Field 30309 into a Dialect Number.

Fig. 307 represents the table and microcode which performs this translation in the present
embodiment. S-interpreter Translation Table {STT] 30701 is a table which is indexed by small AONs. Each
STT Entry (STTE) 30703 has two fields: an AON Field 30705 and a Dialect Number Field 30708. Dialect
Number Field 30709 contains the Dialect Number for the S-interpreter object whose AON is in AON Field
30705.

When CS 10110 begins operation, each S-isiterpreter object is wired active and assigned an AON small
enough to serve as an index in STT 30701. By convention, a given S-interpreter object is always assigned
the same AON and the same Dialect Number. The AON is placed in AON Field 30705 of STTE 30703 indexed
by the AON, and the Diglect Number is placed in Dialect Number Field 30709. Since the S-interpreter
objects are wired active, these AONs will never be reassigned to other objects. )

On a Call which requires a new S-interpreter, Call microcode obtains the new SIiP from SIP Field 30308,
calls KOS LAR micracode to transiate its UID to its AON, uses the AON to locate the S-interpreter’s STTE
30703, and places the value of Dialect Number Field 30709 into RDIAL 21242.

Other embodiments may allow S-interpreters to be loaded into FUSITT 11012 at times other than
system initialization, and aliow $-interpreters to occupy different locations in FUSITT 11012 at different
times. In these embodiments, STT 30701 may be implemented in a manner similar to the implementations
of AST 10914 or MHT 10716 in the present embodiment.

2. Dispatching

Dispatching is accomplished by Dispatch Files 27004. These files translate the values provided by
RDIAL 24212 and the SOP of the S-instruction being executed into the location of microcode for the SIN
specified by the S-operation in the S-interpreter spacified by the value of RDIAL 24212. The present
embodiment has three dispatch files: FDISP 24218, FALG 24220, and EDISP 24222. FDISP 24218 and FALG

24220 translate S-operations into locations of microcode which executes on FU 10120; EDISP 24222

translates S-operations into locations of microcode which executes on EU 10122, The difference between
FDISP 24218 and FALG 24220 is one of speed: FDISP 24218 can translate an SOP in the same
microinstruction which performs a parse_op_stage command to load the SOP into LOPCODE 24210. FALG
24220 must perform the translation on a cycle foliowing the one in which the SOP is loaded into LOPCODE
24210. Typically, the location of the first portion of the microcode to execute an S-operation is contained in
an FDISP 24218 register, the location of portions executed later is contained in an FALG 24220 register, and
the location of microcode for the S-operation which executes on EU 10122 is contained in EDISP 24222.

In the present embodiment, the registers accomplish the translation from S-operation to microcode
location as follows: As mentioned in the discussion of FU 10120 hardware, each Dispatch File contains 1024
registers. Each register may contain an address in an S-intsrpreter. As will be seen in detail tater, the
address may be an address in an S-interpreter’s object, or it may be the address in FUSITT 11012 or EUSITT
20344 of a copy of microcade stored at an S-interpreter address. The registers in the Dispatch Files may be
divided into sets of 128 or 256 registers. Each set of registers translates the SOPs for a single S-Language
into locations in microcode. Which set of registers is used to interpret a given S-operation is decided by the
value of RDIAL 24212; which register in the set is used is determined by the value of the S-operation. The
value contained in the specified register is then the location of microcode which executes the S-instruction
specified by the S-operation in the S-Language specified by RDIAL 24212.

Logically, the register addressed by the concatenated value in turn contains a 16 bit address which is
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the location in the S-interpreter of the first microinstruction of microcode used to execute the S-instruction
specified by the S-operstion in the S-Language specified by the contents of RDIAL 24212. In the present
embodiment, the microcode referred to by the address may have been loaded into FUSITT 11012 and
EUSITT 20344 or it may be available only in memory. Addresses of microcode located in FUSITT 11012 and
EUSITT 20344 are only eight bits fong. Conseguently, if a Dispatch File 27004 contains an address which
requires more bits than that, the microcode specified by the address is in memory. As described in the
discussion of FU 10112 hardware, addresses larger than 8 bits produce an Event Signal, and microcode
invoked by the event signal fetches the microinstruction at the specified eddress in the S-interpreter from
memory and joads it into location 0 of FUSITT 11012. The event microcode then returns, and the
microinstruction at location 0 is executed. i the next microinstruction also has an address larger than 8 bits,
the event signal occurs again and the process described above is repeated. R

As previously mentioned, FDISP 24218 is faster than FALG 24220. The reason far the difference in
speed is that FDISP registers contain only 6 bits for addressing the S-interpreter. The present embodiment
assumes that all microcode addressed via FDISP 24218 is contained in FUSITT 11012. It concatenates 2 2610
bits with the six bits in the FDISP 24218 register to produce an 8 bit address for FUSITT 11012. FDISP 24218
registers can thus contain the location of every fourth FUSITT 11012 register between FUSITT register 256
and FUSITT register 448. The microcode loaded into these locations in FUSITT 11012 is microcode for
operations which are performed at the start of the SIN by many different SINs. For example, all SINs which
perform operations on 2 operands and assign the result to a location specified by a third operand must
parse and evaluate the first two operands and parse and resolve the third operand. Only after these
operations are done are SINs-specific operations performed. In the present embodiment, the micracode
which parses, resolves, and evaluates the operands is contained in a part of FUSITT 11612 which is
addressable by FDISP 24218, ' . :

As previously mentioned, in the present embodiment, FUSITT 11012 and EUSITT 20344 may be loaded
only when CS 10110 is initialized. The microcode loaded into FUSITT 11012 and EUSITT 20344 is produced
by the microbinder from the microcode for the various SINs. To achieve efficient use of FUSITT 11012 and
EUSITT 20344, microcode for operations shared by various S-interpreters appears only once in FUSITT
11012 and EUSITT 20344. While the SiNs in different S-Languages which share the microcode have
different registers in FDISP 24218, FALG 24220, or EDISP 24222 as the case may be, the registers for each of
the S-instructions contain the same location in FUSITT 11012 or EUSITT 20344,

4. The Kernel Operating System
A Introduction

Many of the unique properties of CS 10110 are produced by the manipulation of tables in MEM 10112
and Secondary Storage 10124 by programs executing on JP 10114. These programs and tables together
make up the Kernel Operating System (KOS). Having described CS 10110's components and the means by
which they cooperate to execute computer programs, this specification now presents a detailed account of
KOS and of the properties of CS 10110 which it produces. The discussion begins with a general intraduction
10 operating systems, then presents an overview of CS 10110's operating systems, an overview of the KOS,
and detailed discussions of the implementation of objects, access contro!, and Processes 610.

a. Operating Systems (Fig. 401)

In CS 10110, as in other computer systems, the operating system has two functions:

— |t controls the use of CS 10110 resources such as JP 10114, MEM 10112, and devices in 10S 10116 by
. programs being executed on CS 10110 ) -
— h defines how CS 10110 resources appear to users of CS 10110,

“The second function Is a consequence of the first: By controlling the manner in which executing
programs use system resources, the operating system in fact determines how the system appears to its
users. Figure 401 is a schematic representation of the relationship between User 40101, Operating System
40102, and System Resources 40103. When User 40101 wishes to use a System Resource 40103, User
40101 requests the use of System Resource 40103 from Operating System 40102, and Operating System
40102 in tum commands CS 10110 to provide the requested Resources 40103. For example, when a user
program wishes to use a peripheral device, it does not deal with the device directly, but instead calls the
Operating System 40102 procedure 602 that controis the device. While Operating System 40102 must take
into account the device’s complicated physicai properties, the user program that requested the device need
know nothing about the physical properties, but must only know what information the QOperating System
40102 Procedure 602 requires to perform the operation requested by the user program. For example, while
the peripheral device may require that a precise pattem of data be presented to It, the Operating System
40102 procedure 602 may only require the data itself from the user program, and may format the data as
required by the peripheral device. The Operating System 40102 Procedure 602 that controls the peripheral
device thus transforms a complicated physical interface to the device into @ much simpler logical interface.

1. Resources Controiled by Operating Systems {Fig. 402)

Operating Systems 40102 control two kinds of resources: physical resources and virtual'resources. The
physical resources in the present embodiment of CS 10110 are JP 10114, 10S 10116 and the periphera!
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devices associated with 10S 10116, MEM 10112, and Secondary Storage 10124. Virtual resources are
resources that the operating system iseif defines for users of CS 10110, As was explained above, in
controlling haw CS 10110’s resources are used, Operating System 40102 defines how CS 10110 appears to
the users. Instead of the physical resources controlled by Operating System 40102, the user sees a far
simpler set of virtual resources. The logical VO device interface that Operating System 40102 gives the user
of a physical #O device is such a virtual resource. Often, an Operating System 40102 wilt define sets of
virtual resources and multiplex the physical resources.among these virtual resources. For instance,
Operating System 40102 may define a sst of Virtual Processors 612 that carrespand to a smaller group of
physical processors, and a set of virtual memories that carrespond to a smaller group of physical
resources. When a user execttes a program, it runs on a Virtual Processor 612 snd uses virtual memory. it
seems to the user of the virtual processor and the virtual memory that he has sole access to a physical
processor and physical memory, but in fact, Operating System 40102 is multiplexing the physical
processors and memories among the Virtual Processors 612 and virtual memories.

Operating System 40102, too, uses virtual resources. For instance, the memory management portion
of an Operating System 40102 may use O devices; when it does so, it uses the virtual I/O devices defined
by the portion of the Operating System 40102 that manages the /O devices. One part of Operating System
40102 may also redefine virtual resources defined by other parts of Operating System 40102. Far instance,
one part of Operating System 40102 may define a set of primitive virtual VO devices and another part may
use these primitive virtual VO devices to define a set of high-level user-ariented IO devices. Operating
System 40102 thus turns the physical CS 10110 into a hierarchy of virtual resources. How a user of CS
10110 perceives CS 10110 depends entirely on the level at which he is dealing with the virtual resources.

The entity that uses the resources dsfined by Operating System 40102 is the process. A Process 610
may be defined as the activity resuiting from the execution of a program with its data by a sequential
processor. Whenever a user requests the execution of a program on CS 10110, Operating System 401 02
creates a Process 610 which then executes the Procedures 602 making up the user’s program. in physical
terms, a process 610 is a set of data bases in memory that contain the current state of the program
execution that the process represents. Operating Systern 40102 causes Process 610 to execute the program
by giving Process 610 access to the virtual resources which it requires to execute the pragram, by giving
the virtual resources access to those parts of Process 610's state which they require to perform their
aperations, and by giving these virtual resources access to the physical resources. The temparary
relationship of one resource to another or of a Process 610 to a resource is called a binding. When a Process
610 has accass to a given Virtual Processor 612 and Virtual processor 612 has access to process 610’s state,
process 610 is bound to Virtual Processor 612, and when Virtual Processor 612 has access to JP 10114 and
Virtual Processor 612's state is loaded into JP 10114 registers, Virtual processor 612 is bound to JP 10114,
and JP 10114 can exectite SINs contained in Procedures 602 in the program being executed by Process 610
bound to Virtual Processor 612. Binding and unbinding may occur many times in the course of the
execution of a program by a Process 610. For instance, if a Process 610 executes a reference to data and the
data is not present in MEM 10112, then Operating System 40102 unbinds Process 610’s Virtual Processor
612 from JP 10114 unti! the data is aveilable in MEM 10112, If the data is not available for an extended
period of time, or if the user for whom Process 610 is executing the program wishes to stop the execution of
the program for a while, Operating System 40102 may unbind process 610 from its Virtual Processor 612.
Virtual Processor 612 is then available for use by other Processes 610.

As mentioned above, the binding process invoives giving a first resource access to a second resource,
and using the first resource’s state in the second resource. To permit binding and unbinding, Operating
System 40102 maintains data bases that contain the current state of each resource and each Process 610.
State may be defined as the information that the aperating system must have to use the resource or
execute the Process 610. The state of a line printer, for instance, may be variables that indicate whether the
line printer is busy, free, off line, or out of order. A Process 610’s state is more involved, since it must
contain enough information to allow Operating System 40102 to bind Process 610 to a Virtual Processor
812, execute Process 610 for a while, unbind Process 610, and then rebind it and continue execution where
it was halted. A process 610’s state thus includes all of the data used by Process 610 up to the time that it

was unbound from a Virtual Processor 612, along with information indicating whether Process 610 is ready
to begin executing again.

Figure 402 shows the relationship between Processes 610, virtual, and physical resources in an
operating system. The figure shows a muiti-process Operating System 40102, that is, one that can
multiplex CS 10110 resources among several Processes 610. The Processes 610 thus appear to be
executing concurrently. The solid arrows in Figure 402 indicate bindings between virtual resources or
between virtual and physical resources. Each Process 610 is created by Operating System 40102 to execute
a3 user program. The program consists of Pracedures 602, and Process 610 executes Procedures 602 in the
order prescribed by the program. Processes 610 are created and managed by a component of Operating
System 40102 called the Process Manager. Process Manager 40203 executes a Process 610 by binding it to
a Virtual Processor 612, There may be more Processes 810 than there are Virtual Processors 612, In this
case, Operating System 40102 muitiplexes Virtual Processors 612 among Processes 610.

_Virtual Processors 612 are created and made available by another component of Operating System
40102, Virtual Processor Manager 40205. Virtual Processor Manager 40205 also n)ultiplexes JP 10114

145

Petitioner Apple Inc. - Ex. 1025, p. 4043



10

15

20

40

EP 0 067 556 B1

among Virtual Processors 612. i a Virtual Processor 612 is ready to run, Virtual Processor Manager 40205
binds it to JP 10114. When Virtual Processor 612 can run no longer, or when another Virtual Processor 612
requires JP 10114, Virtual Processor Manager 40205 unbinds running Virtual Processor 612 from JP 10114
and binds another Virtual Processor 612 to it.

Virtual Processors 612 use virtual memory and VO resources to perform memory access and input-
output. Virtual Memory 40206 is created and managed by Virtual Memory Manager 40207, and Virtual /O
Devices 40208 are created and managed by Virtual VO Manager 40208. Like Virtual Processor Manager
40205, Components 40207 and 40209 of Operating System 40102 multiplex physical resources among the
virtual resources. As described above, one set of virtual resources may use another set. One way in which
this can happen is indicated by the broken arrows in Figure 402. These arrows show a binding between
Virtual Memory 40206 and Virtual YO Device 40208. This binding occurs when Virtual Memory 40206 must
handle a reference to data contained on a peripheral device such as a disk drive. To the user of Virtual
Memory 40208, all data appears to be available in MEM 10110. In fact, however, the data is stored on
peripheral devices such as disk drives, and copied into MEM 10112 when required. When a Process 610
references data that has not been copied into MEM 10112, Virtual Memory 40206 must use 10S 10116 to
copy the data into MEM 10112. In order to do this, it uses a Vinual /O Device 40208 provided by Virtua! ¥O
Manager 40209.

b. The Operating System in CS 10110

" For the sake of darity, Operating System 40102 has been described &s though it existed outside of CS
10110. In fact, however, Operating System 40102 itseif uses the resources it controls. In the present
embodiment, parts of Operating System 40102 are embodied in JP 10114 hardware devices, parts are
embodied in microcode which executes on JP 10114, and parts are embodied in Procedures 602. These
Procedures 602 aro sometimes called by Processes 610 executing user programs, and sometimes by
special Operating System Processes 610 which do nothing but execute operations for Operating System
40102, .

The manner in which the components of Operating System 40102 interact may be illustrated by the
way in which CS 10110 handles a page fault, i.e., a reference to data which is not available in MEM 10110.
The first indication that there may be a page fault is an ATU Miss Event Signal. This Event Signal is
generated by ATU 10228 in FU 10120 when there is no entry in ATU 10228 for a Logical Descriptor 27116
used in B read or write operation. The Event Signal invokes Opersting System 40102 microcode, which
examines a table in MEM 10112 in order to find whether the data described by Logical Descriptor 27116 has
a copy in MEM 10112. K the table indicates that there is no copy, Operating System 40102 mierocode
communicates the fact of the page fault to an Operating System 40102 Virtual Memory Manager process
610 and removes Virtual Processor 612 bound to the Process 610 which was executing when the page fault
occurred from JP 10114. Some time later, Virtual Memory Manager Process 610 is bound to JP 10114.
Procedures 602 executed by Virtual Memory Manager Process 610 then initiate the VO operations required
to locate the desired data in Secondary Storage 10124 and copy it into MEM 10112. When the data is
available in MEM 10112, Operating System 40102 aliows Virtua! Processor 612 bound to Process 610 which
was executing when the page fault occurred to return 1o JP 10114. Virtual Pracessor 612 repeats the
memory reference which caused the page fault, and since the data is now in MEM 10112, the reference
succeeds and execution of Process 610 continues.

c. Extended Operating Systern and the Kemel Operating System {Fig. 403)

- In CS 10110, Operating System 40102 is made up of two component operating systems, the Extended
Operating System (EOS) and the Kernel Operating System (KOS). The KOS has direct access to the physical
resources. It definas a set of primitive virtual resources and multiplexes the physical resources among the
primitive virtual resources. The EOS has access to the primitive virtual resources defined by KOS, but notto
the physical resources. The EOS defines a set of user-level virtual resources and muitiplexes the primitive
virtual resources defined by KOS among the user level virtual resources. For example, KOS provides EOS
with Processes 610 and Virtual processors 612 and binds Virtual Processors 612 to JP 10114, but EOS
decides when a Process 610 is to be created and whsn a process 610 is to be bound to a Virtual processor

612,

Figure 403 shows the relationship between a user Process 610, EOS, KOS, and the physical resources
in CS 10110. Figure 403 shows three levels of interface between executing user Process 610 and JP 10114,
The highest level of interface is Procedure Level 40302. At this level, Process 610 interacts with CS 10110 by
calling Procedures 602 as specified by the program Process 610 is executing. The calls may be either calls
to User Procedures 40306 or calls to EOS Procedures 40307. When Pracess 610 is executing a procedure
602, Process 610 produces a stream of SINs. The stream contains two kinds of SINs, S-language SINs 40310
and KOS SINs 40311, Both kinds of SiNs interact with CS 10110 at the next level of interface, SIN-level
Interface 40308. SINs 40310 and 40311 are interpreted by Microcode 40312 and 40313, and
Microinstructions 40315 interact with CS 10110 at the lowest level of interface, JP 10114 Interface 40316. As
already explained in the discussion of the FU 10120 micromachine, certain conditions in JP 10114 resultin
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Event Signals 40314 which invoke microroutines in S-interpreter Microcode 40312 or KOS Microcode
40313. Only Procedure-Level Interface 40302 and SiN-level Interface 40308 are visible to users. Procedure-
level interface 40309 appears as calls in user Procedures 602 or as statements in user Procedures 602 which
compilers translate into calls to EOS procedures 802. SIN-level Interface 40309 appears as the Name Tables
10335 and SiINs in Procedure Objects 608 generated by compilers.

As Figure 403 indicates, EOS exists only at Pracedural Level 40302, whila KOS exists at Procedural
Level 40302, and SIN Leve! 40304, and within the microcode beneath SIN Level 40309. The only portion of
the operating system that is directly available to user Processes 610 is EQS Procedures 40307. EOS
Procedures 40307 may in turn call KOS procedures 40308, In many cases, an EOS Procedure 40307 will
contain nothing more than the call to a KOS Procedure 40308.

. User Pracedures 40306, EOS Procedures 40307, and KOS Procedures 40308 all contain S-tanguage
SiNs 40310. In addition, KOS Procedures 40308 only may contain special KOS SINs 40311. Special KOS
SiNs 40311 control functions that are not available to EOS Procedures 40307 or User Procedures 40306, and
KOS SINs 40311 may therefore not appear in Procedures 40306 or 40307. S-language SiNs 40310 are

* interpreted by S-interpreter Microcode 40312, while KOS SINs 40311 are interpreted by KOS Microcode

40313. KOS Microcode 40313 may also be called by S-interpreter Microcode 40313. Depending on the
hardware conditions that cause Event Signals 40314, Signals 40314 may cause the execution of either S-
interpreter Microcode 40312 or KOS Microcode 40313.

Figure 403 shows the system as it is executing a user Pracess 610. There are in addition special
Processes 610 reserved for KOS and EOS use. These Processes 610 work like user Processes 610, but carry
out operating system functions such as process management and virtual memory management. With one
exception, EOS Processes 610 call EOS Procedures 40307 and KOS Procedures 40308, while KOS Processes
610 call only KOS Procedures 40308. The exception is the beginning of Process 610 execution: KOS
performs the KOS-level functions required to begin executing 2 Process 610 and then calls EOS. EOS
performs the required EOS level functions and then calls the first User Procedure 40306 in the program
Process 610 is executing.

A description of how KOS handles page faults can serve to show how the parts of the system at the JP
10114—, SIN—, and procedure Levels work together. A page fault occurs when a Process 610 references a
deta item that has no copy in MEM 10112, The page fault begins as an Event Signal from ATU 10228. The
Event Signal invokes a microroutine in KOS Microcode 40313. if the microroutine confirms that the
referenced data item is not in MEM 10112, it records the fact of the page fault in some KOS tables in MEM
10112 and calls ancther KOS microroutine that unbinds Virtual Processor 612 bound to Process 610 that
caused the page fautt from JP 10114 and allows another Process 610's Virtual Processor 612 to run. Some
time atter the page fault, a special operating system Process 610, the Virtual Memory Manager Process 614,
runs and executes KOS Procedures 40309. Virtual Memory Manager Process 610 initiates the VO operation
that reads the data from Secondary Storage 10124 into MEM 10112. When [0S 10116 has finished the
operation, Process 610 that caused the page fault can run again and Virtual Memory Manager Process 610
performs an operation which causes Process 610°s Virtual Processor 612 to again be bound to JP 10114,
When Process 610 resumes execution, it again attempts to reference the data. The data is now in MEM
10112 and consequently, the page fault does not recur.

The division of Operating System 40102 into two hierarchically-related operating systems is
characteristic for CS 10110. Several advantages are gained by such a division:

— Each of the two operating systems is simpler than a single operating system would be. EOS can
concern itself mainly with resource allocation policy and high-level virtual resources, whiie KOS can
concem itself with low-level virtual resources and hardware control.

— Because each operating system is simpier, it is easier to verify that each system’s compaonents are
performing correctly, and the two systems are therefore more dependabte than a single system.

— Dividing Operating System 40102 makes it easier to implement different embodiments of CS 10110,
Only the interface provided by EOS is visible to the user, and conseguently, the user interface to the
system can be changed without altering KOS. In fact, a singie CS 10110 may have a number of EOSs,
and thereby present different interfaces to different users. Similarly, changes in the hardware affact the
implementation of the KOS, but not the interface that KOS provides EOS. A given EOS can therefore
run on more than one embodiment of CS 10110, -

— A divided operating systern is more secure than a si ngle operating system. Physical access to JP 101 14
is provided solely by KOS, and consequently, KOS can ensure that users manipulate only those
resources to which they have access rights.

All CSs 10110 will have the virtual resources defined by KOS, while the resources defined by EOS will
vary from one CS 10110 to another and even within a single CS 10110, Consequently, the remainder of the
discussion will concemn itself with KOS.

The relationship between the KOS and the rest of CS 10110 is governed by four principles:

— Only the KOS has access ta the resources it controls. User calls to EOS may result in EOS calls to KOS,
and S-language SINs may result in invocations of KOS microcode routines, but neither EOS nor user
programs may directly maniputate resources contralled by KOS. )

— The KOS is passive. It responds to calls from the EOS, to microcode invocations, and to Event Signals.

but it initiates no action on its own.
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— The KOS is invisible to all system users but the EQS. KOS does not affect the logicat behavior of a

Process 610 and is noticeable to users only with regard to the speed with which a Process 610 executes

on CS 10110.

As discussed above, KOS manages both physical and virtual resources. The physical resources and
‘some of the virtual resources are visible only within KOS; others of the virtual resources are provided to
EOS. Each virtual resource has two main parts: a set of data bases that contain the virtual resource’s state,
and a set of routines that manipulate the virtual resource. The set of routines for a virtual resource are
termed the resource's manager. The routines may be KOS Procedures 40308, or they may be KOS
Microcode 40313. As mentioned, in some cases, KOS uses separate Processes 610 to manage the
resources.

For the purposes of this specification, the resources managed by KOS fall into two main groups: those
associated with objects, and those associated with Processes 610. in the following, first those resources
associated with objects, and then those associated with Processes 610 are discussed. :

B. Objects and Object Management {Fig. 404}

The virtual resources termed objects are defined by KOS and manipulated by EQS and KOS. Objects as
seen by EOS have five properties: '

— Asingle UID that identifies the object throughout the object’s life and specifies what Logical Allocation

Unit (LAU) the object belongs to.

— A set of attributes that describe the object and limit access to it.

- Bit-addressable contents. | the present embodiment, the contents may range from 0 to (2**32) — 1 bits
in length. Any bit in the contents may be addrossed by an offset.

— Objects may be created.

— Objects may be destroyed.

All of the data and Procedures 602 in a CS 10110 are contained in abjects. Any process 610 executing
on a CS 10110 may use a UID-aff set address to attempt to access data or Procedures 602 in certain objects
on any CS 10110 accessible to the CS 10110 on which Process 610 is executing. The objects which may be
thus accessed by any Process 610 are those having UIDs which are guaranteed unique for &ll present and
future CS 10110. Objects with such unique UIDs thus form a single address spaca which is at least
potentially accessible to any process 810 executing on any CS 10110. As will be explained in detail later,
whether a Process 610 can in fact access an object in this single address space depends on whether Process
610 has access rights to the object. Other objects, whose UIDs are not unique, may be accessed onty by
Processes 610 executing on CSs 10110 or groups of CSs 10110 for which the non-unique UID is in fact
unique. No two objects accessible to a CS 10110 at a given time may have identical UiDs.

The following discussion of objects will first deal with objects as they are seen directly by EOS and
indirectly by user pragrams, and then deal with objects as they appear to KOS.

Figure 404 illustrates haw objects appear to EQS. The object has three parts: the UID 40401, the

* Attributes 40404, and the Contents, 40406. The object's contents reside in a Logical Aflocation Unit (LAU),

40405, UID 40401 has two parts: a LAU Identifier (LAUID) 40402 that indicates what LAU 40405 the objectis
on, and the Object Serial Number (OSN) 40403, which specifies the object in LAU 40405.

The EOS can create an object on a LAU 40405, and given the object’s UID 40401, can destroy the object.
In addition, EOS can read and change an object’s Attributes 40404. Any Process 610 executing on a CS
10110 may reference information in an object by specifying the object’s UID 40401 and the bit in the object
at which the information begins. At the highest level, addresses in CS 10110 thus consist of a UID 40401
specifying an object and an offset specifying the number of bits into the object at which the information
begins. As will be explained in detail below, KOS translates such UiD-offset addresses into Intermediate
forms called AON-offset addresses for use in JP 10114 and into page number-displacement addresses for
use in referencing information which has been copied into MEM 10112,

The physical implementation and mampulatlon of objects is restricted solely to KOS. For mstanoe,
objects and their attributes are in fact stored in Secondary Storage 10124. When a program references a
portion of an object, KOS copies that portion of the object from Secondary Storage 10124 into MEM 10112,
and if the portion in MEM 10112 is changed, updates the copy of the object in Secondary Storage 10124.
EOS and user programs cannot control the location of an object in Secondary Storage 10124 or the location
of the copy of a portion of an object in MEM 10112, and therefore can access the abject only by means of
KOS.

While EOS cannot control the physical implementation of an cbject, it can provide KOS wnth
information that allows KOS to manage objects more effectively. Such information is termed hints. For
instance, KOS generally copies a portion of an object into MEM 10112 only if a Process 610 references
information in the object. However, EOS schedules Process 610 execution, and therefore can predict that
certain objects wiil be required in the near future. EOS can pass this information an to KOS, and KOS can
use the information to decide what portions of objects to copy into MEM 10112.

a. Objects and User Programs (fig. 405)

As stated above, user programs manipulate objects, but the objects are generally not directly visible to
user programs. Instead, user programs use symbols such as variable names or other references to referto
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data stored in objects or file names to refer to the objects themselves. The discussion of Namespace has
already illustrated how CS 10110 compilers translate variable names appearing in statements in
Procedures 602 into Names, i.e.. indexes of NTEs 30401, how Name Resolve microcode resolves NTE 30401
into Logical Descriptors 27116, and how ATU 10228 translates Logical Descriptors 27116 into locations in
MEM 10112 containing copies of the portions of the objects in which the data represanted by the variables
resides. '

The translation of filenames to UIDs 40407 is accomplished by EOS. EOS maintains a filename
translation table which establishes a relationship between s system filename called s pathname and the
UID 40401 of the object containing the file's data, and thereby associates the pathname with the object. A
Pathname Is a sequence of ASCHl characters which identifies a file to a user of CS 10110. Each pathname in
a given CS 10110 must be unique. Figure 405 shows the filename translation table. Referring to that figure,
when a user gives pathname 40501 to the EOS, EOS uses Filename Translation Table 40503 to translate
pathname 40501 into UID 40401 for object 40504 containing the file. An object in CS 10110 may thus be
identified in two ways: by means of its UID 40401 or by means of a Pathname 40501. While an object has
only a singte UID 40401 throughout its life, the object may have many Pathnames 40507, All that is required
to change an object’s pathname 40501 is the substitution of one Pathname 40501 for another in the object’s
Entry 40502 in Filename Translation Table 40503. One consequence of the fact that an object may have
different Pathnames 40501 during its life is that when a program uses a Pathname 40501 to identify an
object, a user of CS 10110 may make the program process a different object simply by giving the object
which formerly had Pathname 40501 which appears in the program a new Pathname 40501 and giving the
next object to be processed the Pathname 40501 which appears in the program.

In the present embodiment, an object may contain only a single file, and consequently, a Pathname
40501 always refers to an entire object. in ather embodiments, a Pathname 40501 may refer 1o a portion of
an object, and in such embodiments, Filename Translation Table 40503 will associate a Pathname 40501
with a UlD-offset address specifying the beginning of the file.

. b. UIDs 40401 (Fig. 406)

UIDs 40401 may identify objects and other entities in CS 10110. Any enthty identified by a UID 40401 has
only a single UID throughout its life. Figure 406 is a detailed representation of a CS 10110 UID 40401, UID
40401 is 80 bits long, and has two fields. Field 40402, 32 bits long, is the Logical Allocation Unit Jdentifier
(LAUID). it specifies LAU 40405 containing the object. LAUID 40402 is further subdivided into two subfields:
LAU Group Number (LAUGN) 40607 and LAU Serial Number (LAUSN} 40605. LAUGN 40607 specifies a
group of LAUs 40405, and LAUSN 40605 specifies a LAU 40405 in that group. Purchasers of CS 10110 may
obtain LAUGNSs 40607 from the manufacturer. The manufacturer guarantees that he will essign LAUGN
40507 given the purchaser to no other CS 10110, and thus these LAUGNSs 40607 may be used to form UiDs
40401 which will be unique for all CSs 10110. Field 40604, 48 bits long, is the Object Serial Number (OSN). it
specifias the objact in LAU 40405.

UIDs 40401 are generated by KOS Procedures 602

There are two such procedures 602, one which generates UiDs 40401 which identify objects, and
another which generates UiDs 40401 which identify other entities in CS 10110. The former Procedure 602 is
called Generate Object UID, and the latter Generate Non-object UID. The Generate Object UID Procedure
602 is called only by the KOS Create Object Procedure 602. Create Object Procedure 602 provides Generate
Object UID Pracedure 602 with a LAUID 40402, and Generate Object UID Procedure 602 returns a UID 40401
for the object. In the present embodiment, UID 40401 is formed by taking the current value of the
architectural clock, contained in a location in MEM 10112, forming an OSN 40403 from the architectural
clock’s current value, and concatenating OSN 40403 to LAUID 40402

Generate Non-object UID Procedure 602 may be invoked by EOS to provide a UID 40401 which does
not specify an object. Non-object UIDs 40401 may be used in CS 10110 wherever a unique tabel is required.
For example, as will be explained in detail later, all Virtual processors 612 which are available to CS 10110
have non-object UiDs 40401. All such non-object UIDs 40401 have a single LAUSN 40607, and thus, EOS
need only provide a LAUGN 40605 as an argument. Generate Non-object UID Procedure 602 concatenates
LAUGN 40605 with the speciat LAUSN 40607, and LAUID 40402 thus produced with an OSN 40403 obtained
from the architectural clock. In other embodiments, OSNs 40403 for both object and non-object UiDs 40401
may be generated by other means, such as counters.

CS 10110 also has a special UID 40401 called the Null UID 40401. The Null UID 40401 contains nothing
but 0 bits, and is used in situations which require a UID value which cannot represent an entity in CS 10110.

¢. Object Attributes . -
What a program can do with an obiject is determined by the object’s Attributes 40404, There are two
kinds of Attributes 40404: Object Attributes and Control Attributes. Object Attributes describe the object’s
contents; Control Attributes control access to the object. Objects may have Attributes 40404 even though
they have no Contents 40406, and in some cases, objects may even exist solely for their Attributes 40404,
For the purposes of this discussion, there are two kinds of Object Attributes: the Size Attribute and the

Type Attributes.
An object’s Size Attribute indicates the number of bits that the object currently contains. On each
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reference to an object's Contants 40406, KOS checks to make sure that the data accessed does not extend
beyond the end of the object. If it does, the reference is aborted. .

The Type Attributes.indicate what kind of information the object contains and how that information
may be used. There are three categories of Type Attributes: the Primitive Type Attributes, the Extended
Type Attribute, and the Domain of Execution attribute. An object’s Primitive Type Attribute indicates
whether the object is a data object, a Procedure Object 608, an Extended Type Manager, or an S-interpreter.
"As their names imply, data objects contain data and Procedure Objects 608 contain Procedures 602.
Extended Type Managers (ETMs) are a special type of Procedure Object 608 whose Procedures 608 may
perform operations solely on objects called Extended Type Objects. Extended Type Objects (ETOs) are
objects which have an Extended Type Attribute in addition to their Primitive Type Attribute; for details, see
the discussion of the Extended Type Attribute below. S-interpreters are objects that contain interpreters for
S-languages. In the present embodiment, the interpreters consist of dispatch tables and microcode, but in
other embodiments, the interpreters may themselves be written in high-level languages. Like the Length
Attribute, the Primitive Type Attributes allow KOS to ensure that a program is using an object correctly. For
instance, when the KOS executes a call for a Procedure 602 it checks whether the object specified by the call
is a Procedure Object 608. If it is not, the call fails.

d. Attributes and Access Control

The remaining Object Attributes and the Control Attributes are all part of €S 10110's Access Control
System. The Access Control System is discussed in detail later; here, it is deait with only to the extent
required for the discussion of objects. in CS 10110, an access of an object occurs when a Process 610
fetches SINs contained in a Procedure Object 608, reads dats from an object, writes data to an object, or in
some cases, when Process 610 transfers control to a Procedure 602. The Access Control System checks
whether a Process 610 has the right to perform the access it is attempting. There are two kinds of access in
CS 10110, Primitive Access and Extended Access. Primitive Access is access which the Access Control
System checks on every reference to an object by a Process 610; Extended Access is access that is checked
only on user request. Primitive access checks are perforrmed on every object; extended access checks may
be performed only on ETOs, and may be performed only by Procedures 602 contained in ETMs.

The means by which the Access Control System checks a Process 610's access to an object are Process
610’s subject and the object's Access Controf Lists (ACLs). Each Process 610 has a subject made up of four
UiDs 40401. These UlDs 40401 specHy the following:

— The user for whom Process 610 was created. This UID 40401 is termed the principal component of the
subject. :

— Process 610 itself. This UID 40401 is termed the process component.

— The domain in which Pracess 610 is currently executing. This UID 40401 is termed the domain
component. -

— A user-defined subgroup of subjects. This UID 40401 is termed the tag component.

A domain is a group of objects which may potentially be accessed by any Process 610 which is
executing a Procedure 602 in one of a group of Procedure Objects 608 or ETMs. Each Procedure Object 608
or ETM has a Domain of Execution (DOE) Attribute. This attribute is a UID 40401, and while a Process 610 is
executing a Procedure 802 in that Procedure Object 608 or ETM, the DOE attribute UID 40401 is the domain
component in Process 610's subject. The DOE sttribute thus defines a group of objects which may be
accessed by a Process 610 executing Procedures 602 from Procedure Object 608, The group of objects is
called Procedure Object 608's domain. As may be seen from the above definition, a subject’s domain
component may change on any call to or return from a Procedure 602. The tag component may change
whenever the user desires. The principal component and the process component, on the other hand, do nat
change for the life of Process 610. .

The ACLs which make up the other half of the Access Control System are attributes of objects. Each
ACL cansists of a series of Entries (ACLE), and each ACLE has two parts: a Subject Tempiate and a set of
Access Privileges. The Subject Template defines a group of subjects, and the set of Access Privileges define
the kinds of access that subjects belonging to the group have to the object. To check whether an access to
an object is iegal, the KOS examines the ACLs. It allows access only if it finds an ACLE whose Subject
Template matches the current subject of Process 610 which wishes to make the access and whose set of

. Access Privileges includes the kind of access desired by Process 610. For example, a Procedure Object 608

may have an ACL with two entries: one whose Subject Template allows any subject access, and whose set
of Access Privileges allows only Execute Access, and another whose Subject Template allows only a single
subject access and whose set of Access Privileges allows Read, Write, and Execute Access. Such an ACL
allows any user of CS 10110 to execute the Procedures 602 in Procedure Object 608, but only a specified
Process 610 belonging to a specified user and executing a specified group of Procedures 602 may examine
or modify the Procedures 602 in the Procedure Object 608. } )

There are two kinds of ACLs. All objects have Primitive Access Contro} Lists (PACLs); ETOs may in
addition have Extended Accass Control Lists (EACLs). The subject portion of the ACLE is the same in all
ACLs; the two kinds of list differ in the kinds of access they control. The access controlled by the PACL is
defined by KOS and is checked by KOS on every attempt to gain such access; the access controlied by the
EACL is defined by the user and is checked only when the user requests KOS to do so.
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e. Implementation of Objects

1. Introduction (Fig. 407, 408)

The user of a CS 10110 need only concamn himself with objects as they have just been described. In
aorder for a Process 610 to reference an object, the object's LAU 40405 must be accessible from CS 10110
upon which Process 610 is running, Process 610 must know the object’s UID 40401, and Process 610's
current subject must have the right to access the object in the desired manner. Process 610 need know
neither how the object’s Contents 40406 and Attributes 40404 are stored on CS 10110’s physical devices nor
the methods CS 10110 uses to make the object’s Contents 40406 and Attributes 40404 available to Process
610.

““The KOS, on the other hand, must imptement objects on the physical devices that make up CS 10110.In
so doing, it must take into account two sets of physical limitations:

— In logical terms, all CSs 10110 have a single logicel memory, but the physical implementation of
memory in the system is hierarchical: a given CS 10110 has rapid access to a relatively small MEM
10112, much slower access to a relatively large amount of slow Secondary Storage 10124, and very
slow access to LAUs 40405 on other accessible CSs 10110.

—  UIDs 40401, and even more, subjects, are too large to be handled efficiently on JP 10114’s inmternal data
paths and in JP 10114’s registers.

The means by which the KOS overcomes these physical limitations will vary from embodiment to
embodiment. Here, there are presented first an overview and then a detailed discussion of the means used
In the present embodiment.

The physical limitations of the memory are overcome by means of a Virtual Memory system. The
Virtual Memory System creates a one-evel logical memory by automatically bringing copies of those
portions of objects required by executing Processes 610 into MEM 10112 and automatically copying altered
portions of objects from MEM 10112 back to Secondary Storage 10124, Objects thus reside primarily in
Secondary Storage 10124, but copies of portions of them are mads available in MEM 10112 when a Process
610 makes a reference to them. Besides bringing portions of objects into MEM 10112, when required, the
Virtual Memory System keeps track of where in MEM 10112 the portions are located, and when a Process
610 referencas a partion of an object that is in MEM 10112, the Virtual Memory System translates the
reference into a physical location in MEM 10112,

- JP 10114's need for smaller object identifiers and subject identifiers is satisfied by the use of internal
identifiers called Active Object Numbers (AONs) and Active Subject Numbers (ASNs) inside JP 10114. Each
time a UID 40401 is moved from MEM 10112 into JP 10114's registers, it is transiated into an AON, and the
reverse translation takes place each time an AON is moved from a JP 10114’s registers to MEM 10112
Similarly, the current subjects of Processes 610 which are bound to Virtual Processors 612 are translated
from four UIDs 40401 into small integer ASNs, and when Virtual Processor 612 is bound to JP 10114, the
ASN for the subject belonging to Virtual Processor 612's process 610 is placed in a JP 10114 register. The
translations from UID 40401 to AON and vice-versa, and from subject to ASN are performed by KOS.

When KOS transiates UIDs 40401 to AONs and vice-verss, it uses AOT 10712. An AOT 10712 Entry
(AOTE) for an object contains the object’s UID 40401, and the AOTE’s index in AOT 10712 is that object’s
AON. Thus, given an object’s AON, KOS can use AOT 10712 to determine the object’s UID 40401, and given
an obect's UID 40401, KOS can use AOT 10712 to determine the object’s AON. If the object has not been
referenced recently, there may be no AOTE for the object, and thus no AON for the object’s. UID 40401.
Objects that have no AONs are called inactive objects. {f an attempt to convert a UID 40401 to an AON
roveals that the object is inactive, an Inactive Object Fault results and KOS must activate the object, that is,
it must assign the object an AON and make an AOTE for it.

KOS uses AST 10914 to transiate subjects intc ASN's. When a Process 610's subject changes, AST
10914 provides Process 610 with the new subject’s ASN. A subject may presently have no ASN associated
with it. Such subjects are termed inactive subjects. If a subject is inactive, an attempt to translate the subject
1o an ASN causes KOS to activate the subject, that is, to assign the subject an ASN and make an entry for
the subject in AST 10914.

in order to achieve efficient execution of pragrams by Processes 610, KOS accalerates information that
is frequently used by executing processes 610. There are two stages of acceleration:

— Tables that contain the information are wired into MEM 10112, that is, the Virtual Memory System
never uses MEM 10112 space reserved for the tables for other purposes. :

— Special hardware devices in JP 10114 contain portions of the information in the tables.

MHT 10718, AGT 10712, and AST 10914 are examples of the first stage of acceleration. As previously
mentioned, these tables are always present in MEM 10112. Address Translation Unit {ATU) 10228 is an
example of the second stage. As previously explained, ATU 10228 is a hardware cache that contains copies
of the most recently used MHT 10716 entries. Like MHT 10716, it translates AON offset addresses into the
MEM 10112 locations that contain copies of the data that the UiD-offset address corresponding to the AON-
offset address refers to ATU 10228 is maintained by KOS Logical Address Translation (LAT) microcode.

Figure 407 shows the relationship between ATU 10228, MEM 10112, MHT 10716, and KOS LAT
microcode 40704. When JP 10114 makes a memory reference, it passes AON-offset Address 40705 to ATU
10228, if ATU 10228 contains a copy of MHT 10716's entry for Address 40705, it immediately produces the
corresponding MEM 10112 Address 40706 and transmits the address to MEM 10112. if there is no copy,
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ATU 10228 produces an ATU Miss Event Signal which invokes LAT microcode 40704 in JP 10114. LAT
microcode 40704 obtains the MHT entry that comresponds to the AON-offset address from MHT 10716,
places the entry in ATU 10228, and returns. JP 10114 then repeats the reference. This time, there is an entry
for the reference, and ATU 10228 translates the AON address into the address of the copy of the data
contained in MEM 10112,

The relationship between KOS table, hardware cache, and microcode just described is typical for the
present embodiment of CS 10110, The table (in this case, MHT 10716}, is the primary source of information
and is maintained by the Virtuali Memory Manager Process, while the cache accelerates portions of the
table and is maintained by KOS microcade that is invoked by event signals from the cache.

AOT 10712, AST 10914, and MHT 10716 share another characteristic that is typical of the present
embodiment of CS 10110: the tables are constructed in such a fashion that the table entry that performs the
desired translation is located by means of a hash function and a hash table. The hash function translates
the {arge UID 40401, subject, or AON into a small integer. This integer is the index of an entry in the hash
table. The contents of the hash table entry is an index into AOT 10712, AST 10914, or MHT 10716, as the
case may be, and these tables are maintained in such a fashion that the entry corresponding to the index
provided by the hash table is either the emtry that can perform the desired translation or contains
information that allows KOS to find the desired antry. The entries in the tables furthermore contain the
values they translate. Consequently, KOS can hash the value, find the entry, and then check whether the
entry is the one for the hashed value, If it is not, KOS can quickly go from the entry {ocated by the hash table
to the correct entry.

Figure 408 shows how hashing works in AST 10914 in the present ernbodiment. In the present
embodiment, Subject 40801, i.e., the principal, process, and domain components of the current subject, are
input into Hash Function 40802. Hash Function 40802 produces the index of an entry in ASTHT 10710.
ASTHT Entry 40504 in turn contains the index of an Entry {ASTE} 40806 in AST 10914 These ASTE 40806
indexes are ASNs. ASTE 40B06 contains the principal, process, and domain components of some subject
and a link field pointing to ASTE 40806’. ASTE 40806' has 0 in its link field, which indicates that it is the last
link in the chain of ASTES begining with ASTE 40806. |f the hashing of a subject yields ASTE 40806, KOS
compares the subject in ASTE 40806 with the hashed subject; if they are identical, ASTE 40806's index in
AST 10914 is the subject’s ASN. If they are not identical, KOS uses the link in ASTE 40808 to find ASTE
4080€". It compares the subject in ASTE 40806’ with the hashed subject; if they are identical, ASTE 40806"'s
AST index is the subject's ASN; otherwise, ASTE 40806’ is the last entry in the chain, and consequently,
there is no ASTE 40806 and no ASN for the hashed subject.

In the following, we will discuss the implementation of objects in the present embodiment in detail,
beginning with the implementation of objects in Secondary Storage 10124 and proceeding then to CS
10110’s Active Object Management System, the Access Control System, and the Virtual Memory System,

2. Objects in Secondary Storage 10124 {Figs. 409, 410}

As described above, objects are collected into LAUs 40405. The objects belonging to a LAU 40405 are
stored in Secondary Storage 10124, Each LAU 40405 contains an object whose contents are a table called
the Logical Allocation Unit Directory {LAUD). As its name implies, the LAUD Is a directory of the objects in
LAU 40405. Each object in LAU 40405, including the object containing the LAUD, has an entry in the LAUD.
Figure 409 shows the relationship between Secandary Storage 10124, LAU 40405, the LAUD, and objects.
LAU 40405 resides on a number of Storage Devices 40304. LAUD Object 40802’ in LAU 40405 contains
LAUD 40903. Two LAUDEs 40906 are shown. One contains the attributes of LAUD Object 40802 and the
focation of its contents, and the other contains the attributes of LAUD Object 40902 containing LAUD 40903
and the location of its contents.

KOS uses a table called the Active LAU Table (ALAUT) to locate the LAUD belonging to LAU 40405,
Figure 410 illustrates the relationship between ALAUT 41001, ALAUT Entries 41002, LAUs 40405, and LAUD
Objects 40902, Each LAU 40405 accessible to CS 10110 has an Entry (ALAUTE) 41002 in ALAUT 41001.
ALAUTE 41002 for LAU 40405 includes LAU 40405's LAUID 40402 and UID 40401 of LAU 40705's LAUD
Object 40802'. Hence, given an object’'s UID 40401, KOS can use UID 40401's LAUID 40402 to locate

" ALAUTE 41002 for the object’s LAL 40405, and can use ALAUTE 41002 to locate LAU 40405's LAUD 40903,

Once LAUD 40903 has been found, OSN portion 40402 of the object's UID 40401 provides the proper
LAUDE 40906, and LAUDE 40806 contains object’s attributes and the location of its contents.

LAUD 40903 and the Procedures 602 that manipulate it belong to a part of KOS termed the Inactive
Object Manager. The following discussion of the Inactive Object Manager will begin with the manner in
which an object’s contents are represented on Secondary Storage 10124, will then discuss LAUD 40903 in
detail, and conclude by discussing the operations performed by Inactive Object Manager Procedures 602.

a.a. Representation of an Object's Contents on Secondary Starage 10124
In general, the manner in which an object's contents are represented on Secondary Storage 10124
depends completely on the Secondary Storage 10124, If a LAU 40405 is made up of disks, then the object’s
contents will be stored in disk blocks. As long as KOS can locate the object's contents it makes no
difference whether the storage is contiguous or non-contiguous.
In the présent embodiment, the objects’ contents are stored in files created by the Data General
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Advance Operating System (AOS) procedures executing on I0S 101 16 These procedures manage files that
contain objects’ contents for KOS. In future CSs 10110, the representation of an object’s contents on
Secondary Storage 10124 will be managed by a portion of KOS.

b.b. LAUD 40903 (fig. 411, 412}

Figure 411 is a conceptual iliustration of LAUD 40503, LAUD 40903 has three parts: LAUD Header
41102, Master Directory 41105, and LAUD Entries {LAUDESs) 40906. LAUD Header 41102 and Master
Directory 41105 occupy fixed locations in LAUD 40903, and can therefore always ba located from the UID
40401 of LAUD 40803 given in ALAUT 41001. The locations of LAUDEs 40908 are not fixed, but the entry for
an individual object can be located from Master Directory 41105.

Turmning first to LAUD Header 41102, LAUD Header 41102 contains LAUID 40402 belonging to LAU
40405 to which LAUD 40903 belongs and OSN 40403 of LAUD 40903. As will be explained in greater detail
below, KOS can use OSN 40403 to find LAUDE 40806 for LAUD 40803.

Turning now to Master Directory 41105, Master Directory 41 105 transtates an object’s OSN 40403 into
the location of the object’s LAUDE 40906. Master Directory 41105 contains one Entry 41108 for each object
in LAU 40505. Each Entry has two fields: OSN Field 41106 and Offset Field 41 107. OSN Field 41106 contains
OSN 40403 for the object to which Entry 41108 belongs; Offset Field 41107 contains the offset of the
object’s LAUDE 40806 in LAUD 40803. KOS orders Entries 41108 by increasing OSN 40403, and can
therefore use binary search means to find Entry 41108 containing a given OSN 40403. Once Entry 41108 has
been located, Entry 41108’s Offset Field 41107, combined with LAUD 40903's OSN 40403, yields the UID
offset address of the object's LAUDE 40906. :

Once KOS knows the location of LAUDE 40906 it can determine an object’s Attributes 40404 and the

- location of its Contents 40406. Figure 411 gives only an averview of LAUDE 40906's general structure.
LAUDE 40306 has three components: a group of flelds of fixed size 41109 that are present in every LAUDE
409086, and two variable sized components, one, 41139, containing entries belonging to the object’'s PACL,
and another, 41141, containing the object’s EACL.

As the preceding descriptions of the LAUD’s components imply, the number of LAUDEs 40306 and
Master Directory Entries 41108 varies with the number of abjects in LAU 40405. Furthermore, the amount of
space required for an object’s EACL and PACL varies from object to object. KOS deals with this problem by
including Free Space 41123 in each LAUD 40903. When an object is created, or when an object’s ACLs are
expanded, the Inactive Object Manager expands LAUD 40303 only if there is no available Free Space 41123;
if there is Free Space 41123, the Inactive Object Manager takes the necessary space from Free Space 41123;
when an object is deleted or an object’s ACLs shortened, the inactive Object Manager returns the unneeded
space to Free Space 41123,

Figure 412 is a detailed representation of a single LAUDE 40806. Figure 412 presents those fields of
LAUDE 40806 which are common to all embodiments of CS 10110; fields which may vary from
embodiment to embodiment are ignored. Starting at the top of Figure 412, Structure Version Fleld 41209
contains information by which KOS can determine which version of LAUDE 40906 it is dealing with. Size
Field 41211 contains the Size Attribute of the object to which LAUDE 40306 belongs. The Size Attribute
specifies the number of bits currently contained in the object. Lock Field 41213 is a KOS lock. As will be
explained in detail in the discussion of Processes 610, Lock Field 41213 allows only one Process 610 to read
or write LAUDE 40306 at a time, and therefore keeps one Process 610 from altering LAUDE 40906 while ‘
another Process 610 is reading LAUDE 403086. File Identifier 41215 comtains a system identifier for the file

_ which contains the Contents 40406 of the object to which LAUDE 40905 belongs. The form of File Wdentifier
41215 may vary from embodiment to embodiment; in the present embodiment, it is an AOS system file
identifier. UID Field 41217 contains UID 40401 belonging to LAUDE 40306's object. Primitive Type Field
41219 contains a valus which specifies the object's Primitive Type. The object may be a data object, a
Procedure Object 608, an ETM, or an S-interpreter object. AON Field 41221 contains a valid value only when
LAUDE 40306's object is active, i.e., has an entry in AOT 10712. AON Field 41221 then contains the object’s
AON. if the object is an ETO, Extended Type Attribute Field 41223 contains the UID 40401 of the ETO’s ETM.
Otherwise, it contains a Null UID 40401. Similarly, if the object is a Procedure Object 608 or an ETM, Domain
of Execution Attribute Field 41225 contsins the object’s Domain of Execution Attribute.

The remaining parts of LAUDE 40306 belong to the Access Contro! System and will be explained in
detail in that discussion. Attribute Version Number Field 41227 contains a value indicating which version of
ACLEs this LAUDE 40906 contains, PACL Size Field 41229 and EACL Size Field 41231 contain the sizes of the
respective ACLs, PACL Offset Field 41233 and EACL Offset Field 41235 contain the offsets in LAUD 40803 of
additional PACLEs 41139 and EACLEs 41141, and fixed PACLEs 41237 contains the portion of the PACL
which is always included in LAUDE 40906. :

3. Active Objects {fig. 413)

An active object is an object whose UID 40401 has an AON associated with it. In the present
embodiment, each CS 10110 has a set of AONs’ KOS associates these AONs with UiDs 40401 in such
fashion that at any given moment, an AON ina CS 10110 represents a single UID 40401. Inside FU 10120,
AONs are used to represent UIDs CS 10110. In the present embodiment, the AON is represented by 14 bits.
A 112-bit UID-offset address (80 bits for UID 40401 and 32 for the offset) is thus represented inside FU 10120
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by a 46-bit AON-offset address (14 bits for the AON and 32 bits for the offsat).

A CS 10110 has far fewer AONs than there are UiDs 40401. KOS multipiexes a CS 10110's AONs among
those objects that are being referenced by CS 10110 and therefore require AONs as well as UlDs 40401.
While a given AON represents only a single UID 40401 at any given time, at different times, a UID 40401
may have different AONs associated with it.

Figure 413 provides 8 conceptual representation of the relationship between AONs and UIDs 40401.
Each CS 10110 has potential access to 2**80 UIDs 40401. Some of these UIDs, however, represent entities
other than objects, and others are never associated with any entity. Each CS 10110 also has a set of AONs
41303 available to it. In the present embodiment, this set may have up to 2**14 values. Since the AONS are
only used internally, each CS 10110 may have the same set of AONs 41303. Any AON 41304 in set of AONs
41303 may be associated with a single UID 40401 in set of object UiDs 41301. At different times, an AON
41304 may be associated with different UiDs 40401.

As mentioned above, KOS associates AONs 41304 with UIDs 40401. it does so by means of AOT 10712.
Each AOT entry (AOTE) 41306 in AOT 10712 associates a UID 40401 with an AON 41304, AON 41304 is the
index of AOTE 41306 which contains UiD 40401. Untif AOTE 41306 is changed, the AON 41304 which is the
index of AOTE 41306 containing UID 40401 represents UID 40401. AOT 10712 alsc allows UIDs 40401 to be_
translated into AONs 41303 and vice-versa. Figure 413 illustrates the process for UID-offsst Address 41308
and AON-offset Address 41309, AOTE 41306 associates AON 41304 in AON-offset Address 41309 with UID
40401 in UlD-offset Address 41308, and Addresses 41308 and 41309 have the same Offset 41307.
Cansequently, AON-offset Address 41309 represents UlD-offset Address 41308 inside JP 10114, Since both
addresses use the same Offset, Address 41309 can be translated into address 41308 by transiating Address
41309’s AON 41304 into Address 41308's UID 40401, and Address 41308 can be transiated into Address
41309 by the reverse process. In both cases, the translation is performed by finding the proper AQOTE 41306.

The process by which an object becomes active is called object activation. A UID-offset Address 41308

" cannot be transiated into an AON-offset Address 41309 unless the object to which UID 40401 of UID-offset

Address 41308 belongs is active. If a Process 610 attempts 1o perform such a translation using a UID 40401
belonging 10 an inactive object, an Inactive Object Fault occurs. KOS handies the fault by removing Process -
610 that attempted the translation from JP 10114 until a special KOS Process cailed the Object Manager
Process has activated the object. After the object has been activated, Process 610 may retum to JP 10114
and complete the UID 40401 to AON 41304 transtation.

The portion of KOS that manages active objects is called the Active Object Manager (AOM). Parts of the
AOM are Procedures 602, and parts of it are microcode routines. The high-level language components of
the AOM may be invoked only by KOS processes 610. KOS Active Object Manager Process 610 performs
most of the functions involved in active object management.

a.a. UID 40401 to AON 41304 Translation

Generally speaking, in'CS 10110, addresses stored in MEM 10112 and Secondary Memory 10124 are
stored as UID offset addresses. The only form of address that FU 10120 can translate into a location in MEM
10112 is the AON-offset form. Consequently, each time an address is loaded from MEM 10112 into a FU
10120 register, the address must be translated from a UiD-offset address te an AON-offset address. The
reverse translation must be performed each time an address is moved from a FU 10120 register back into
memory.

Such trans!ations may occur at any time. For example, a running Virtual Processor 612 performs such a
translation when the Process 610 being executed by Virtual Processor 612 carries out an indirect memory
reference. An indirect memory reference is a reference which first fetches a pointer, that is, a deta item
whose value is the address of another data item, and then uses the address contained in the pointer to fetch
the data itself. In CS 10110, pointers represent UID-offset-addresses. Virtual Processor 612 performs the
indirect memory reference by feiching the pointer from MEM 10112, placing It in FU 10120 registers,
translating UID 40401 represented by the pointer into AON 41304 associated with it, and using the resulting
AON-offset address to access the data st the location specified by the address.

Most such translations, however, occur when Virtual Processor 612 state is saved or restored. For
instance, when one Process 610's Virtual Processor 612 is removed from JP 10114 and another Process
610's Virtual Pracessor 612 is bound ta JP 10114, the state of Virtual Processor 612 being removed from JP
10114 is stored in memory, and the state of Virtua! Processor 612 being bound to JP 10114 is moved into JP
10114’s registers. Because only UlD-offset addresses may be stored in memory, all of the AON-offset
addresses in the state of Virtual Processor 612 which is being removed from JP 10114 must be trans!ated
into UiD-offset addresses. Similarly, all of the DID-offset addresses in the state of Virtual Processor 612
being bound to JP 10114 must be transiated into AON-offset addresses before they can be loaded into FU
10120 registers.

C. The Access Control System

As mentioned in the introduction to objects, each time a process 610 accesses data or SINs in an object,
the KOS Access Control System checks whether Process 610°s current subject has the right to perform the
kind of access that Process 610 is attempting. If Process 610°s current subject does not have the proper
access, the Access Control System aborts the memory operation which Process 610 was attempting to
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carry out. The following discussion presents details of the implementation of the Access Control System,
beginning with subjects, then proceeding to subject templates, and finally to the means used by KOS to
accelerate access checking. ’

a. Subjects .

A Process 610's subject is part of process 610's state and is contained along with ather state belonging
to Process 610 in an object called a Process Object. Process Objects are dealt with at length in the detailed
discussion of Processes 610 which follows the discussion of objects. While a subject has, as mentioned
above, four components, the principal component, the process component, the domain component, and
the tag component, the Access Control System in the present embodiment of CS 10110 assigns values to
only the first three components and ignores the tag component when checking access.

In the present embodiment, the UlDs 40401 which make up the components of a Process 610°s subject
are the UIDs 40401 of objects containing information about the entities represented by the UiDs 40401. The
principal component’s UID 40401 represents an object called the Principal Object. The Principal Object

- contains information about the user for whom Process 610 was created. For example, the information

might concern what access rights the user had to the resources of CS 10110, or it might contain records of
his use of CS 10110. The process companent’s UID 40401 represents the Process Object, while the domain
component's UID 40401 represents an object calied the Domain Object. The Domain Object contains
information which must be accessible to any Process 610 whose subject has the Domain Object’s UID
40401 as its domain compaonent. Other embodiments of CS 10110 will use the tag component of the
subject. In these embodiments, the tag component’s UID 40401 s the UID 40401 of a Tag Object containing
at least such information as a list of the subjects which make up the group of subjects represented by the
tag component’s UID. .

b. Domains

As stated above, the subject’s domain component is the domain of execution attribute belonging to the
Procedure Object 608 or ETM whose code is being executed when the access request is mads. The domain
component of the subject thus gives Process 610 to which the subject belongs potential access to the group
of objects whose ACLs have ACLEs with subject templates containing domain components that match the
DOE attribute. This group of objects is the domain defined by the Procedure Object 608 or ETM's DOE
attribute. When a Process 610 executes a Procedure 602 from a Procedure Object 608 or ETM with a given
DOE attribute, Process 610 is said to be executing in the domain defined by that DOE attribute. As may be
inferred from the above, different Procedure Objects 608 or ETMs may have the same DOE attribute, and
objects may have ACLEs which make them members of many different domains.

in establishing a relationship between a group of Procedure Objects 608 and another group of objects,
a domaln allows a programmer using CS 10110 to ensure that a given object is read, executed, or modified
only by a certain set of Procedures 602. Domains may thus be used to construct protected subsystems in
€S 10110. One example of such a protected subsystem is KOS itself: the objects in CS 10110 which contain
KOS tables all have ACLs whose domain template components match only the DOE which represents the
KOS domain. The only Procedure Objects 608 and ETMs which have this DOE are those which contain KOS
Procedures 602, and consequently, only KOS Procedures 602 may manipulate KOS tables.

Since an cbject may belong to more than one domain, a programmer may use domains to establish
hierarchies of access. For example, if some of the objects in a first domain belong both to the first domaein
and a second domain, and the second domain'’s objects all also belong to the first domain, then Procedures
602 contained in Procedure Objects 608 whose DOEs define the first domain may access any object in the
first damain, including those which also belong to the second domain, while those from Procedure Objects
608 whose DOEs define the second domain may access only those objects in the second domain.

c. Access Control Lists

As previously mentioned, the Access Control System compares the subject belonging to Process 610
making an access to an object and the kind of access Process 610 desires to make with the object’s ACLs to
determine whether the access is legal. The following discussion of the ACLs wilt first deal with Subject
Templates, since they are common to all ACLs, and then with PACLs and EACLs.
1. Subject Templates {Fig. 416) )

Figure 416 shows Subject Templates, PACL Entries (PACLESs), and EACL Entries (EACLEs). Turning first
1o the Subject Templates, Subject Template 41601 consists of four components, Principal Template 41606,

-Process Template 41607, Domain Template 41609, and Tag Template 41611. Each template has two fields,

Flavor Field 41603, and UID Field 41605. Flavor Field 41603 indicates the way in which the template to which
it belongs is to match the corresponding component of the subject for Process 610 attempting the access.
Flavor Field 41603 may have one of three values: match any, match one, match group. If Flavor Field 41603
has the vaiue match any, any subject component UID 40401 matches the template, and the Access Control
System does not examine UID Field 41605. if Flavor Field 41603 has the value match one, then the
corresponding subject component must have the same UID 40401 as the one contained in UID Field 41605.
If Flavor Field 41603 has the value match group, finally, then UID Field 41605 contains a UID 40401 of an
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object containing information about the group of subject companents which the given subject component
may match.

2. Primitive Access Control Lists {PACLs)}

PACLs are made up of PACLEs 41613 as illustrated in Figure 416. Each PACLE 41613 ha's two parts: a
subject template 41601 and an Access Mode Bits Field 41615, The values in Access Mode Bits Fie!d 41615
define 11 kinds of access. The eleven kinds fall into two groups: Primitive Data Access and Primitive Non-
data Access. Primitive Data Access controls what the subject may do with the object’s Contents 40406;
Primitive Non-data Access controls what the subject may do with the object’s Attributes 40404.

There are three kinds of Primitive Data Access: Read Access, Write Access, and Execute Access. if a
subject has Read Access, it can examine the data contained in the object; if the subject has Write Access, it
can siter the data contained in the object; if it has Execute Access, it can treat the data in the object as a
Procedure 602 and attempt to execute it. A subject may have none of thess kinds of access, or any
combination of the kinds. On every reference to an abject, the KOS checks whether the subject performing
the reference has the required Primitive Data Access.

Primitive Non-data Access to an object is required only to set or read an object’s Attributes 40404, and
is checked anly when these operations are performed. The kinds of Non-data Access correspond to the

" kinds of Attributes 40404:

Attributes Kind of Access

Object Attributes get object attribhutes
set object attributes

Primitive Control _ get primitive control
attributes

Attributes set primitive control
attributes

Extended Control get extended control

Attributes attributes
set extended control
attributes

ETM Access use as ETM

’ create ETO

The access rights for object attributes allow a subject to get and set the object attributes described
previously. The access rights for primitive and extended control attributes allow a subject to get and set an
object’s PACL and EACL respectively.

An abject may have any number of PACLEs 41813 in its PACL. The first five PACLEs 41613 in an abject's
PACL are contained in fixed PACLE Field 41237 of LAUDE 40906 for the object; the remainder are stored in
LAUD 40903 at the location specified in PACL Offset Field 41233 of LAUDE 40806.

3. APAM 10918 and Protection Cache 10234 {Fig. 421) .

Primitive non-data access rights are checked only when users invoke KOS routines that require such
accass rights, and extended access rights are checked only when users request such checks. Primitive data
access rights, on the other hand, are checked every time a Virtual Processor 612 makes a memary reference
while executing a Process 610. The KOS implementation of primitive data access right checking therefore
emphasizes speed and efficiency. There are two parts to the implementation: APAM 10918 in MEM 10112,
and Protection Cache 10234 in JP 10114. APAM 10918 is in a location in MEM 10112 known to KOS
microcode. APAM 10918 contains primitive data access information copied from PACLEs 41613 which
belong to active objects and whose Subject Template 41601 matches an active subject. Protection Cache
10234, in tum, contain copies of the information in APAM 10818 for the active subject of Process 610 whaose
Virtual Processor 612 is currently bound to JP 10114 and active objects referenced by Process 610. A
primitive data access check in CS 10110 begins with Protection Cache 10234, and if the information is not
contained in Protection Cache 10234, proceeds to APAM 10918, and if it is not there, finally, to the object’s
PACL. The discussion which follows begins with APAM 10918.

Figure 421 shows APAM 10918. APAM 10918 is organized as 8 two-dimensional array. The array’s row
indexes are AONs 41304, and its column indexes are ASNs. There is a row for each AON 41304 in CS 10110,
and a column for each ASN. In Figure 421, only a single row and column are shown. Any primitive data
access information in APAM 10918 for the object represented by AON 41304 j is contained in Row 42104,
while Column 42105 contains any primitive data access information in APAM 10918 for the subject
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represented by ASN k. APAM Entry (APAME) 42106 isat the intersection of Row 42104 and Column 42105,

and thus contains the primitive data access information from that PACLE 41613 belonging to the object

represented by AON 41304 j whose Subject Template 41601 matches the subject represented by ASN k.
An expanded view of APAME 42106 is presented beneath the epresentation of APAM 10318. APAME

42106 contains four 1-bit fields. The bits represent the kinds of primitive data access that the subject

represented by APAME 42106's column index has to the object represented by APAME 42106's row index.

— Field 42107 is the Valid Bit. If the Valid Bit is set, APAME 42106 contains whatever primitive data sccess
information is available for the subject represented by the column and the object represented by the
row. The remaining fields in APAME 42106 are meaningful only if Valld Bit 42107 is set.

- Field 42109 is the Execute Bit. I it is set, APAME 42106's subject has Execute Access to APAME 42106's

object.

— Field 42111 is the Read Bit. If it is set, APAME 42106's subject has Read Access 1o APAME 42106's
object.

— Field 42113 is the Write Bit. if it is set, APAME 42106's subject has Write Access to APAME 42106’s
objsct.

Any combination of bits in Fields 42109 through 42113 may be set. If all of these fields are set to O,
APAME 42106 indicates that the subject it represents has no access to the object it represents.

KOS sets APAME 42106 for an ASN and an AON 41304 the first time the subject represented by the
ASN references the object represented by AON 41304. Until APAME 42106 is set, Valid Bit 42107 is set to O.
When APAME 42106 is set, Valid Bit 42107 is set to 1 and Fields 42109 through 42113 are set according to
the primitive data sccess information in the object’s PACLE 41613 whose Subject Template 41601 matches
the subject. When an object is deactivated, Valid Bits 42107 in all APAMEs 42106 in the row belonging to the
object’'s AON 41304 are set to 0; similarly, when a subject is deactivated, Valid Bits 42107 in all APAMEs
42106 in the column belonging to the subject’'s ASN are set to 0.

4. Protectian Cache 10234 and Protection Checking (Fig. 422)

The final stage in the acceleration of protection information Is Protection Cache 10234 in JP 10114. The
details of the way in which Protection Cache 10234 functions are presented in the discussion of the
hardware; here, there are discussed the manner in which Protection Cache 10234 performs access checks,
the relationship between protection Cache 10234, APAM 10818, and AOT 10712, and the manner in which
KOS protection cache microcade maintains Protection Cache 10234.

FRgure 422 is a block diagram of Protection Cache 10234, AOTE 10712, APAM 10918, and KOS
Microcode 42207 which maintains Protection Cache 10234. Each time JP 10114 makes 8 memory reference
using a Logical Descriptor 27116, it simultaneously presents Logical Descriptor 27116 and a Signal 42208
indicating the kind of memory operation to Protection Cache 10234 and ATU 10228. Entries 42215 in
Protection Cache 10234 contain primitive data access and length information for objects previously
referenced by the current subject of Process 610 whose Virtual Processor 612 is currently bound to JP
10114, On every memory reference, Protection Cache 10234 emits a Valid/invalid Signal 42205 to MEM
10112. i Protection Cache 10234 contains no Entry 42215 for AON 41304 contalned in Logical Descriptor
27116's AON field 27111, i Entry 42215 indicates that the subject does not have the type of access required
by process 610, or if the sum of Logical Descriptor 27116°s OFF field 27113 and LEN field 27115 exceed the
object’s current size, Protection Cache 10234 emits an Invalid Signal 42205, This signal causes MEM 10112
to abort the memory reference. Otherwise, Protection Cache 10234 emits a Valid Signal 42205 and MEM -
10112 executes the memory reference.

When Protection Cache 10234 emits an Invalid Signal 42205, it latches Logical Descriptor 27116 used to
make the reference Inta Descriptor Trap 20256, the memory command into Command Trap 27018, and if it
was a write operation, the data into Data Trap 20258, and at the same time emits one of two Event Signals
to KOS microcode. lilegal Access Event Signal 42208 occurs when Process 610 making the reference does
not have the proper access rights or the data referenced extends beyond the end of the object. lilegal
Access Event Signal 42208 invokes KOS micracade 42215 which performs a Microcode to Software Call
42217 (described In the discussion of Calls) to KOS Access Contro! System Procedures 602 and passes the
contents of Descriptor Trap 20256, Command Trap 27018, the ASN of Process 610 (cantained in a register
MGR'’s 10360), and if necessary, Data Trap 20258 to these Procedures 602. These procedures 602 inform
EOS of the protection violation, and EOS can then remedy it.

Cache Miss Event Signal 42206 occurs when there is no Entry 42215 for AON 41304 in protection Cache
10234. Cache Miss Event Signal 42206 invokes KOS Protection Cache Miss Microcade 42207, which
constructs missing Protection Cache Entry 42215 from information obtained from AOT 10712 and APAM
10918. If APAM 10918 contains no entry for the current subject's ASN and the AON of the object being
referenced, protection Cache Miss Microcode 42207 performs a Microcode-to-software Call to KOS Access
Control System Procedures 602 which go to LAUDE 40906 for the object and copy the required primitive
data access information from the PACLE 41613 belonging to the object whose Subject Template 41601
matches the subject attempting the reference into APAM 10918. The KOS Access Control System
Procedures 602 then return to Cache Miss Microcode 42207, which itself returns. Since Cache Miss
Microcode 41107 was invoked by an Event Signal, the return causes JP 10114 to reexecute the memory
reference which caused the protection cache miss. If protection Cache 10234 was loaded as a result of the
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last protection cache miss, the miss does not recur; if Protection Cache 10234 was not loaded because the
required information was not in APAM 10918, the miss recurs, but since the information was placed in
APAM 10918 as a result of the previous miss, Cache Miss Microcode 42207 can now construct an Entry
42215 in Protection Cache 10234. When Cache Miss Microcode 42207 returns, the memory reference is
again attempted, but this time Protection Cache 10234 contains the information and the miss does not
recur.

Cache Miss Microcode 42207 creates a new Protection Cache Entry 42215 and loads it into Protection
Cache 10234 as follows: Using AON 41304 from lLogical Descriptor 27116 latched into Descriptor Trap
20256 when the memory reference which caused the miss was executed and the current subject’'s ASN,
contained in GR's 10360, Cache Miss Microcode Jocates APAME 42106 for the subject represented by the
ASN and the abject represented by AON 41304 and copies the contents of APAME 42106 into a JP 10114
register which may serve as a source for JPD Bus 10142, It also uses AON 41304 to locate AOTE 41306 for
the object and copies the contents of Size Field 41519 into another JP 10114 registar which Is a source for
JPD Bus 10142. It then uses three special microcommands, executed in successive microinstructions, to
load Protection Cache Entry 42215, The first microcommand loads Protection Cache Entry 42215's TS 24010
with AON 41304 of Logical Descriptor 27116 latched into Descriptor Trap 20256; the second loads the
object’s size into Protection Cache 10234's EXTENT field, and the third loads the contents of APAME 42106
in the same fashion.

Ancther microcommand invalidates all Entries 42215 in Protection Cache 10234. This operation, catied
flushing, is performed when an object is deactivated or when the current subject changes. The current
subject changes whenevar a Virtual Pracessor 612 is unbound from JP 10114, and whenever a Process 610
performs a call to or a return from a Procedure 602 executing in a domain different from that in which the
calling Procedure 602 or the Procedure 602 being returned to executes in. In the cases of the Call and the
unbinding of Virtual Processor 612, the cache flush is performed by KOS Call and dispatching microcode: in
the case of object deactivation, it is performed by a KOS procedure using a special KOS SIN which invokes
Cache Flush Microcode.

D. Processes

1. . Synchronization of Processes 610 and Virtual Processors 612
Since Processes 610 and the Virtual Processors 612 to which they are bound may execute concurrently

on CS 10110, KOS must provide means for synchronizing Processes 610 which depend on each other. For

example, if process 610 A cannot proceed until Process 610 B has performed some operation, there must
be a mechanism for suspending A’s execution until B is finished. Generaily speaking, four kinds of
synchronization are necessary:

-— One Process 610 must be able to halt and wait for another Process 610 to finish a task before it
proceeds.

— One Process 610 must be able to send another Process 610 a message and wait for a reply before it
proceeds.

— When processes 610 share a data base, one Process 610 must be able to exclude other Processes 610
from the data base until the first Process 610 is finised using the data base.

— One Process 610 must be able to interrupt anather Process 610, i.e., asynchronously cause the second
Process 610 to perform some action.

KOS has imernal mechanisms for each kind of synchronization, and in addition supplies
synchromzanon mechanisms to EQS. KOS uses the internal mechanisms to synchronize Virtual Processors
612 and KOS Processas 610, while EOS uses the mechanisms supplied by KOS to synchronize 21l other
Processes 610. The internal mechanisms are the following:

— Event counters, Await Entries, and Await Tables. As will be explained in dstail below, Event Counters
and Await Entries allow one Process 610 to halt and wait for another Process €10 to comiplete an
operation. Event counters and Await Entries are also used to implement process interrupts. Await
Entries are organized into Await Tables.

~— Message Queues. Message Queues allow one Process 610 to send a message to another and wait for a
reply. Message Queues are implemented with Event Counters and queue data structures.

— Locks. Locks allow one Process 610 to exclude other Processes 610 from a data base or a segment of
code. Locks are implemented with Event Counters and devices called Sequencers.

KOS makes Evenit Counters, Await Entries, and Messege Queues available to EOS. It does not provide
Locks, but it does provide Sequencers, so that EOS can constriset its own Locks. The following discussion
will define and explain the logical properties of Event Counters, Await Entries, Message Queues,
Sequencers, and Locks. Their implementation in the present embodiment will be described along with the
implementation of Processes 610 and Virtual Processors 612.

a. Event Counters 44801, Await Entries 44804, and Await Tables {Fig. 448, 449}

Event Counters, Await Entries, and Await Tables are the fundamental components of the KOS
Synchronization System. Figure 448 iliustrates Event Counters and Await Entries in the present
embodiment. Figure 449 gives a simplified representation of Process Event Table 44705, the present
embodiment’s Await Tables. Turning first to Figure 448, Event Counter 44801 is an area of memory which
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contains a value that may only be increased. In one of the present embodiment, Event Counterss 44801 for
KOS systems which may not page fault are always present in MEM 10112; other Event Counters 44801 are
stored in Secondary Storage 10124 unless a Process 610 has referenced themn and thereby caused the VMM
System to foad them into MEM 10112. The value contained in an Event Counter 44801 is termed an Event
Counter Value 44802. In the present embodiment, EventCounter 44801 contains 64 bits of data, of which 60
make up Event Counter Value 44802. Event Counter 44801 may be referred to either as a variable or by
means of a 128-bit UID pointer which contains Event Counter 44801’s location. The UID pointer is termed an
Event Counter Name 44803,

Await Entry 44804 is a component of entries in Await Tables. in the present embodiment, there are two
Await Tables: Process Event Table 44705 and Virtual Processor Await Table (VPAT) 45401, VPAT 45401 is
always present in MEM 10112, As already mentioned, Figure 449 illustrates PET 44705, Both PET 44705 and
UPAT 45401 will be described in detail later. Each Await Entry 44804 contains an Event Counter Name
44803, an Event Counter Value 44802, and a Back Link 44805 which identifies a Process 610 or a Virtua!
Processor 612. Await Entry 44804 thus establishes a relationship between an Event Counter 44801, an Event
Counter Value 44802, and a Process 610 or Virtual processor 612,

Turning now to Figure 449, in the present embodiment, all Await Entries 44804 for user Processes 610
are contained in PET 44705. PET 44705 also contains other information. Figure 449 presents only those
parts of PET 44705 which illustrate Await Entries 44804. PET 44705 is structured to allow rapid location of
Await Entries 44804 belonging to a specific Event Counter 44801. PET entries (PETESs) 44309 contain links
which allow them to be combined into lists in PETE 44705. There are four kinds of lists in PET 44705:

— Event counter lists: these lists link all PETEs 44909 for Event Counters 44801 whose Event Counter

Names 44803 hash to a single value.

— Await lists: These lists link all PETEs 44909 for Event Counters 44801 which a given Process 610 is
awaiting.
— Interrupt lists: These lists link all PETEs 44909 for Event Counters 44801 which will cause an interrupt to

occur for a given Process 610.

— The Free list: PETEs 44909 which are not being used in one of the above lists are on a free list.

Each PETE 44309 which is on an await list or an interrupt List is also on an event counter list.

Tuming first to the event counter lists, all PETEs 44909 on a given event counter list contain Event

" Counter Names 44803 which hash to a single value. The value is produced by Hash Function 44901, and

then used as an index in PET Hash Table (PETHT) 44303, That entry in PETHT 44803 contains the index in
PET 44705 of that PETE 44309 which is the head of the event counter list. PETE List 44904 represents one
such event counter list. Thus, given an Event Counter Name 44803, KOS can quickly find all Await Entries
44804 belonging to Event Counter 44801.

in the present embodiment, the implementation of Event Counters 44801 and tables with Await Entries
44804 involves both Processes 610 and Virtual Processors 612 to which Processes 610 are bound. As will be
explained later, a large number of Event Counters 44807 and Await Entries 44804 beionging to Processes
610 are multiplexed onto a small number of Event Counters 44801 and Await Entries 44804 belonging to the
Processes’ Virtual Processors 612. Await entries 44804 for Event Counters 44801 belonging to Virtual
Processors 612 are contained in VPAT 45401.

b. Synchronization with Event Counters 44801 and Await Entries 44804

. The simplest form of Process 610 synchronization provided by KOS uses only Event Counters 44801
and Await Entries 44804. Coordination takes place like this: A Process 610 A requests KOS to perform an
Await Operation, i.e., to establish one or more Await Entries 44804 and to suspend Process 610 A until one
of the Await Entries is satisfied. In requesting the Await Operation, Process 610 A defines what Event
Counters 44801 it is awaiting and what Event Counter Values 44802 these Event Counters 44801 must have
for their Await Entries 44804 to be satisfied. After KOS establishes Await Entries 44804, it suspends Process
610 A. While process 610 A is suspended, other Processes 610 request KOS to perform Advance Operations
on the Event Counters 44801 specified in Process 610 A’s Await Entries 44804, Each time a Process 610
requests an Advance Operation on an Event Counter 44801, KOS increments Event Counter 44801 and
checks Event Counter 44801's Await Entries 44804, Eventually, one Event Counter 44801 satisfies one of
Process 610 A’s Await Entries 44804, i.e., reaches a value equal to or greater than the Event Counter Value
44802 specified in its Await Entry 44804 for process 610 A. At this point, KOS allows process 610 A to
resume execution. As process 610 A resumes execution, it deletes all of its Await Entries 44804.

E. Virtual Processors 612 {fig. 453}

As previously stated, a Virtual processor 612 may be logically defined as the means by which a Process
610 gains access to JP 10114. In physical terms, a Virtual Pracessor is an area of MEM 10112 which contains
the information that the KOS microcode which binds Virtual Processors 612 to JP 10114 and unbinds them
from JP 10114 requires to perform the binding and unbinding operations. Figure 453 shows a Virtual
Processor 612. The area of MEM 10112 belonging to a Virtual Processor 612 is Virtual processor 612's
Virtual Processor State Block (VPSB) 614. Each Virtual Processor 612 in a CS 10110 has 8 VPSB 614.
Together, the VPSBs 614 make up VPSB Array 45301. Within the Virtual Processor management system,
each Virtual Processor 612 is known by its VP Number 45304, which is the index of the Virtual Processor
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612’s VPSB 614 in VPSB Array 45301, Virtual Processors 612 are managed by means of lists contained in
Micro VP Lists (MVPL]) 45309. Each Virtual processor 612 has an Entry (MVPLE) 45321 in MVPL 45309, and
as Virtual Processor 612 changes state, virtual processor management microcode moves it from one list to
another in MVPL 45308,

VPSB 614 contains two kinds of information:

information from Process Object 301 belonging to Process 610 which s bound to VPSB 614's Virtual
Processor 612, and information used by the Virtual Processor Management System to manage Virtual
Processor 612. The most important information from Process Object 901 is the following:

— Process 610's principal and process UiDs 40401.
— AONs 41304 for Process 610's Stack Objects 44703. (VPSB 614 uses AONs 41304 because KOS

guarantees that AONs 41304 belonging to Stack Objects 44703 will not change as long as a Process 610

is bound to a Virtual Processor 612.}

Given AON 41304 of Process 610°s SS object 103386, the Virtual Processor Management System can
locate that:portion of Process 610’s state which is moved into registers belonging to JP 10114 when process
610's Virtual Processor 612 is bound to JP 10114, Similarly, when Virtual Processor 612 is unbound from JP
10114, the virtual processor management system can move the contents of JP 10114 registers into the
proper location in SS Object 10336.

a. Virtual Processor Managment (Fig. 453)

EQS can perform six operations on Virtual Processors 612:

Request VP allows EOS 1o request a Virtual Processor 612 from KOS.

Release VP allows EOS to retum a Vintual Processor 612 to KOS.

Bind binds a Process 610 to a Virtual Processor 612.

Unbind unbinds a.process 610 from a Virtual Processor 612,

Run allows KOS to bind Process 610°s Virtual Processor 612 to JP 10114. . '
Stop prevents KOS from binding process 610°s Virtual Processor 612 to JP 10114,

As can be seen from the above list of operations, EOS has no direst influence over the actual binding of
a Virtual Processor 612 to JP 10114. This operation is performed by a component of XOS microcode called
the Dispatcher. Dispatcher microcode is executed whenever one of four things happens:

Process 610 whose Virtual Processor 612 is currently bound to JP 10114 executes an Await Operation.
— Process 610 whase Virtual Processor 612 is currently bound to JP 10114 executes an Advance

Operation which satisfies an Await Entry 44801 for some other Process 610.

— Either Interval Timer 25410 or Egg Timer 25412 overflows, causing an Event Signal which invokes

Dispatcher microcode.

— 10JP Bus 10132 is activated, causing an Event Signai which invokes Dispatcher microcode. I0S 10116

activates J0JP bus 10132 when it loads data into MEM 10112 for JP 10114.

When Dispatcher microcade is invoked by one of these events, it examines lists in MVPL 45309 to
determine which Virtual Processor 612 is to run next. For the purposes of the present discussion, only two
lists are important: the running list and the eligible list. In the present embodiment, the running list, headed
by Running List Head 45321, contains only a single MVPLE 45321, that representing Virtual Processor 612
currently bound to JP 10114. In embodiments with multiple JPs 10114, the running list may have more than
one MVPLE 48321. The eligible list, headed by Eligible List Head 45313, contains MVPLEs 45321
representing those Virtual Processors 612 which may be bound to JP 10114. MVPLEs 45321 an the ehgxble
list are ordered by priorities assigned Processes 610 by EOS. Whenever KOS Dispatcher microcode is
invoked, it compares the priority of Process 610 whose Virtual Processor 612's MVPLE 45321 is on the
running list with the priority of Process 610 whose Virtual Processor 612's MVPLE 45321 is at the head of
the eligible list. if the latter Process 610 has a higher priority, KOS Dispatcher microcode places MVPLE
45321 belonging to the former Process 610's Virtual Processor 612 on the efigible list and MVPLE 45321
belonging to the latter Process 610°s Virtual Processor 612 onto the running list. Dispatcher microcode then
swaps Processes 610 by moving state in JP 10114 belonging to the former Process 610 onto the former
Process 610°s SS object 10336 and moving JP 10114 state belonging to the latter Process 610 from the latter
Process 610's SS object 10336 inta JP 10114.

b. Virtual Processors 612 and Synchronization (Fig. 454)

When a synchronization operation is performed on a Process 610, one of the consequences of the
operation is a synchronization operation on a Virtua!l Processor 612. For example, an Advance Operation
which satisfies an Await Entry 44804 for a Process 610 causes an Advance Operation which satisfies a
second Await Entry 44804 for Process 610’s Virtual Processor 612. Similarly, a synchronization operation
perfarmed on a Virtual Processor 612 may have a synchronization operation on Virtual Processor 612's
Process 610 as a consequence. For example, if a Virtual Processor 612 performs an operation involving file
/O, Virtual Processor 612’s Process 610 must await the completion of the V0 operation.

Figure 454 illustrates the means by which process level synchronization operations result in virtual
processor-fevel synchronization operations and vice-versa. The discussion first describes the oomponents
which transmit process-level synchronization operations to Virtua! Processors 6§12 and the manner in which
these components operate. Then it describes the components which transmit virtual processor-level
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synchronization operations to Processes 610 and the operation of these components.

The first set of components is made up of VPSBA 45301 and VPAT 45401. VPSBA 45301 is shown here
with two VPSBs 614: one belonging to a Virtual Processor 612 bound to a user Process 610 and one
belonging to a Virtual Processor 612 bound to the KOS Pracess Manager process 610. VPAT 45401 is a
virtual processor-level table of Await Entries 44804. Each Await Entry 44804 is contained in a VPAT Entry
{VPATE) 45403, Each Virtual Processor 612 bound to a Process 610 has a VPAT Chunk 45402 of four VPATEs
45403 in VPAT 45401, and can thus await up to four Event Counters 44801 at any given time. The location of
a Virtual processor 612's VPAT Chunk 45402 is kept in Virtus! Processor 612's VPSB 614. When an Advance
Operation satisfies any of the Awalt Entries 44804 belonging to a Virtual Processor 612, all in Virtual
Processor 612's VAT Chunk 45402's Await Entries 44804 are deleted. As in PET 44705, VPATES 45403
containing Await Entries 44804 which are awaiting a given Event Counter 44801 are linked together in a list.

VPATEs 45403 for Virtual Processors 612 bound to user Processes 610 may contain Await Entries 44804
for user Process 610's Private Event Counter 45405. Private Event Counter 45405 is contalned in Process
610's Process Object 901. it is advanced each time an Await Entry 44804 in @ PETE 44909 on a PET List
belonging to Process 610 is satisfied.

The components operate as follows: When KOS performs an Await Operation on Process 610, it makes
Await Entries 44804 in both PET 44705 and VPAT 45401 and puts Process 610°s VP 612 on the suspended list
in MVPL 48309, As previously described, an Await Entry 44804 in PET 44705 awaits an Event Counter 44801

_ specified in the Await Operation which created Await Entry 44804, Await Entry 44804 in VPAT 45401 awaits

Process 610°s Private Event Counter 45405. Each time an Await Entry 44804 belonging to Process 610 in PET
44705 is satisfied, Process 610's Private Event Counter 45405 is advanced. The advance of Private Event
Counter 45405 satisfles Await Entry 44801 for Process 610°s Virtual processor 612 in VPAT 45401, and
consequently, KOS deletes Virtual Processor 612's VPATEs 45403 and moves Virtual Processor 612's
MVPLE 45321 in MVPL 45309 from the suspended list to the eligible list.

The components which allow 8 Virtual Processor 612 to transmit a synchronization operation to a

- process 610 are the following: Outward Signals Object (0SQ) 45408, Muttiplexed Qutward Signals Event

Counter 45407, and PET 44705. 0SO 45409 contains Event Counters 44801 which KOS FU 10120 microcode

* advances when it perfoms operations which user Processes 610 are awaiting. Event Counters 44801 in OSO

45409 are awaited by Await Entries 44804 in PET 44705. Each time KOS FU 10120 microcode advances an
Event Counter 44801 in OSO 45409, it also advances Multiplexed Outward Signals Event Counter 45407, It
is awaited by an Await Emtry 44804 in VPAT 45401 belonging to Virtual Processor 612 bound to KOS
Process Manager Process 610. When Virtual Processor 62 bound to KOS Process Manager Process 610 is
again bound to JP 10114, KOS Process Manager Process 610 examines el PETES 44909 belonging to the
Event Counters 44801 in 0S0 45423. If an advance of an Event Counter 44801 in OSO 44801 satisfied a PETE
44909 Process 610, that Process 610°s Private Event Counter 45405 is advanced as previously described,
and Process 610 may again execute.

A user V0 operation illustrates how the components work together. Each user 0 channel has an Event
Counter 44801 in OSO 45409. When a Process 610 performs a user VO operation on a channel, the EOS /O
routine establish an Await Entry 44804 in the PET 44705 list belonging to Process 610 for the channel’s
Event Counter 44801 in OSO 45403, When the I/Q operation is complete, 10S 10116 places a message to JP
10114in an area of MEM 10112 and sctivates IOJP Bus 10132. The activation of IOJP Bus 10132 causes an
Event Signal which invokes KOS microcode. The microcode examines the message from I0S 10116 to
determine which channel is involvad, and then advances Event Counter 44801 for that channel in OSO
45409 and Muitiplexed Outward Signals Event Counter 45407. The latter advance satisfies an Await Entry
44804 for Process Manager Process 610's Virtual Processor 612 in VPAT 45401, and Process Manager
Process 610 begins executing. Process Manager Process 610 examines OSO 45408 to determine which
Event Counters 44801 in OSO 45409 have bsen advanced since the last time process manager Process 610
executed, and when it finds such an Event Counter 44801, it examines the Event Counter Chain in PET
44705 for that Event Counter 44801. If it finds that the advance satisfied any Await Entries 44804 in the Event -
Counter Chain, it advances Private Event Counter 45405 belonging ta Process 610 specified in Await Entry
44804, thereby causing that Procass 610 to resume execution as previously described.

F. Process 610 Stack Manipulation

This section of the specification for CS 10110 describes the manner in which Process 610's MAS 502
and SS 504 are manipulsted. As previousiy mentioned, in CS 10110, a Process 610’s MAS 502 and SS 504
are contained in several objects. In the present embodiment, there are five objects, one for each domain’s
portion of the Macro Stack (MAS) (MAS Objects 10328 through 10324) and one for the Secure Stack (SS)
(SS Object 10336). In other embodiments, a Process 610's MAS 502 may contain objects for user-defined
domains as well. Though a Pracess 610°s MAS 502 and SS 504 are contained in many objects, they function
as a single logica! stack. The division into several objects is a consequence of two things: the domain
component of the protection system, which requires that an object referenced by a Procedure 602 have
Procedure 602's domain of execution, and the need for a location inaccessible to user programs for
micromachine state and state which may be manipulated only by KOS.

Stack manipulation takes place under the following circumstances:
— When a procedure 602 is invoked or a Return SIN is executed. Procedure 602 invocations are
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performed by means of a Call SIN. Call causes a transfer of control to the first SIN in the invoked
Procedure 602 and the Retumn SIN causes a transfer of control back to the SIN in the invoking Procedure
602 which follows the Call SIN.

— When a non-local Go To SIN is executed. The non-local Go To causes a transfer of control to an
arbitrary position in some Pracedure 602 which was previously invoked by Process 610 and whose
invocation has not yet ended.

— When a condition.arises, i.e., an execution of a statement in a program puts the executive Process 610
into a state which requires the execution of a previously established Handler Procedure 602.

— When a Process 610 is interrupted, i.e., when an Interrupt Entry 45718 for Process 610 is satisfied.
Most of the mechanisms involved in stack manipulation are used in Call and Return; these operations

are therefore dealt with in detail and the other operations only as they differ from Call and Return. The

discussion first introduces Call and Return, then explains the stacks in detaif, and finally analyzes Cati and

Return and the other operations in detail.

1. Introduction to Call and Return

As a Process 610 executes a program, it executes Cali and Return SINs. A Call SIN begins an invocation
of a procedure 602, and a Return SIN ends the invocation. Generally speaking, a Call SIN does the
following:

— It saves the state of Process 610's execution of Procedure 602 which contains the Call SIN. Included in
this state is the information required to continue Procedure 602s execution after the Call SIN is
finished. This portion of the state is termed calling Procedure 602's Macrostate.

— It creates the state which Process 610 requires to begin execution called Procedure 602.

— ft transfers control to the first SiN in the called Procedure 602's code.

The Return SIN does the opposite: it releases the state of called Procedure 602, restores the saved state
of calling Procedure 602, and transfers control to the SIN in the calling Procedure 602 foliowing the Cait SIN.
An invocation of a Procedure 602 iasts from the execution of the Call SIN which transfers control to the
Procedure 602 to the execution of the Return SIN which transfers control back to Procedure 802 which
contalned the Call SIN. The state belonging to a given invocation of a Procedure 602 by a Process 610 is
called Procedure 602's invocation state.

While Calls and Returns may be implemented in many different fashions, it is advantageous to
implement them using stacks. When a Calt creates invocation state for a Procedure 602, that invocation
state is added to the top of Process 610°s stack. The area of a stack which contains the invocation state of a
Procadure 602 is called & frame. Since a called Procedure 602 may call another procedure 602, and that
another, a stack may have any number of frames, each frame containing the invocation state resulting from
the invocation of a Procedure 602 by Process 810, and each frame lasting as long as the invocation it
represents. When called Procedure 602 returns to its caller, the frame upon which it executes is released
and the caller resumes exeacution on its frame. Procedure 602 being currently executed by a Process 610
thus always runs on the top frame of Process 610's MAS 502.

Calls and Returns in CS 10110 behave logically like those in ather computer systems using stacks to
preserve process 610 state. When a Process 610 executes a Call SIN, the SIN saves as Macrostate the
current values of the ABPs, the location of the SIN at which the execution of calling Procedure 602 is to
continue, and information such as a pointer to calling Procedure 602's Name Table 10350 and UID 40401
belonging to the S-interpreter abject which contains the S-interpreter for Procedure 602's S-language. The
Call SIN then creates a stack frame for called Procedure 602, obtains the proper ABP values, the location of
called Procedure 602°’s Name Tabie 10350 and UID 40401 belonging to its S-interpreter object, and begins
executing newly-invoked Procedure 602 on the newly-created stack frame. The Return SiN deletes the stack
frame obtains the ABP values and name interpreter information from the Macrostate saved during the Call
SIN and then transfers control to the SIN at which execution of calling Procedure 602 is to continue.

However the manner in which Call and Return are implemented is deeply affected by CS 10110's
Access Control System Broadly speaking thers are two classes of Calis and Returns in CS 0110: those
which are mediated by KOS and those which are not. In the following discussion, the former class of Cails
and Retumns are termed Mediated Calls and Returns, and the latter are called Neighborhood Calls and
Returns. Most Calls and Returns executed by CS 10110 are Neighborhood Calls and Returns; Mediated
Calls and Returns are typically executed when a user procedure 602 calls EOS Procedures 602 and these in
turn call KOS Procedures 602. The Mediated Call makes CS 10110 facilities available to user Processes 610
while protecting these CS 10110 facilities from misuse and therefore generally serves the same purpose as
systern calls in the present art. As will be seen in the ensuing discussion, Mediated Call requires more CS
10110 overhead than Neighborhood Call but the extra overhead is less than that generally required by
system calls in the present art.

Mediated Calls and Returns invcive S-interpreter, Namespace, and KOS microcode. S-interpreter and
Namespace microcode interpret the Names involved in the call and only modifies those portions of
Macrostate accessible to the S-interpreter. The remaining Macrostate is modified by KOS microroutines
invoked in the course of the Call SIN. A Mediated Call may be made to any Procedure 602 contained in an
object to which Process 610's subject has Execute Access at the time the invocation occurs. Mediated Calls
and Returns must be made in the following situations:
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-— " When called Procedure 602 has a different Procedure Environment Descriptor (PED) 30303 from that

used by calling Procedure 602. Such Calls are termed Cross-PED Calls.

— When called Procedure 602 is in a different Pracedure Object 608 from calling Procedure 602. Such
Calls are termed Cross-Procedure Object Calls.

— When called Procedure 602's Pracedure Object 608 has a different Domain of Execution (DOE) Attribute
from that of calling Procedure 602's Procedure Object 608, and therefore must place its Invgcation
State on a different MAS object from that used by calling Procedure 602. Such Calls are termed Cross-
Domain Calls.

In all of the above Calls, the information required to complete the Call is not available to the S
interpreter and consequently. KOS mediation Is required to complete the Call. Neighborhood Calls and
Returns only modify two components of Macrostate: the painter to the current SIN and the FP ABP. Both of
these components are available to the S-interpreter as long as calied Procedure 602 has the same PED
30303 i.e., uses the same Name Tabe 10350 and S-interpreter or the calling Procedure 602 and has Names
with the same syllable size as calling Procedure 602, The Call and Return SINs are spacific to each S-
language, but they resembie each other In their general behavior. The following discussion will deal
exclusively with this general behavior and will concentrate on Mediated Calls and Returns. The discussion
first describes MAS 502 and SS 504 belonging to a Process 610 and those parts of Procedure Object 608
involved in Calls and Returns, and then describes the implementation of Calls and Returns.

2. Macro Stacks {MAS) 502 (Fig. 467) '

Figure 467 gives an overview of an object belonging to a Process 610's MAS 502. The description of
this Figure will be followed by descriptions of other Figures containing detailed representations of portions
of MAS gbjacts. ,

At a minimum MAS Object 46703 comprises KOS MAS Header 10410 together with Unused Storage
46727 reserved for the other elements comprising MAS Object 46703. If Process 610 has not yet returned
from an invocation of a Procedure 602 contained in a Procedure Object 608 whose DOE is that required for
::::ess to MAS Object 46703. MAS ohject 46703 further comprises a Stack Base 46703 and at least one MAS

me 46709.

Each MAS Frame 46709 represents one mediated Invocation of a procedure 602 contained in a
Pracedure Objece 608 with the DOE attribute required by MAS 46703, and may in addition represent
neighborhood invocations of Procedures 602 which share that Procedure 602's Procedure Object 608. The
topmost MAS Frame 46709 represents the most recent group of invocations of Procedures 602 with the
DOE attribute required by MAS Object 46703 and the bottom MAS Frame 46709 the earliest group of
invocations from which Process 610 has not yet returned. Frames for invocations of Procedures 602 with
other domains of execution are contained in other MAS Objects 46703. As will be explained in detail below
MAS Frames 46709 in different MAS objects 46703 are linked by pointers.

MAS Domain Stack Base 46703 has two main parts: KOS MAS Header 10410 which contains
information used by KOS microcode which manipulates MAS Object 46703, and Perdomain Information
46707, which contains information about 46703's domain and static information, i.e., information which
lasts longer than an invocation used by Procedures 602 with MAS Frames 46708 on MAS Object 46703.
MAS Frame 46709 also has two main parts, a KOS Frame Header 10414 which contains information used by
KOS to manipulate Frame 46709 and S-interpreter Portion 46713 which contains information available to
the S-interpreter when it executes the group of Procedures 602 whose invocations are represented by
Frame 46709.

When making Calls and Returns, the S-interpreter and KOS microcode use a group of pointers to
locations in MAS Object 46703. These pointers comprise the following:

— MAS Object UID 46715 the UID 40401 of AS Object 46703.
— First Frame Offset (FFO) 46719 which locates the beginning of KOS Frame Header 10414 belonging to

the first MAS Frame 46709 in MAS Object 46703.

"— Frame Header Pointer (FHP) 46702 which locates the beginning of the topmost KOS Frame Header

10414 in MAS Object 46703.

— Stack Top Offset (STO) 46704 a 32-bit offset from Stack UID 46715 which marks the first bit in Unused
Storage 46727,
As will be seen presently all of these pointers are contained in fields in KOS MAS Header 46705.

a.a. MAS Base 10410 (Fig. 468)
Figure 468 is a detailed representation of MAS Domain Stack Base 10410 Tuming first to the detailed
representation of KOS MAS Header 46705 contained therein, there are the following fields:
— Format Information Field 46801 containing information about the format of KOS MAS Header 46705.
— Flags Field 46803. Of these flags, only one is of interest to the present discussion: Domain Active Flag
46804. This flag is set to TRUE when Process 610 to which MAS Object 46703 belongs is executing the
Invocation of Procedure 602 whose invocation record makes up the topmost MAS Frame 46709
contained in MAS Object 46703 to which KOS MAS Header 46705 belongs.
— PFO Field 46805: All MAS Headers 45705 and Frame Headers 46709 have fields containing offsets
locating the previous and following headers in MAS Object 46703. In a Stack Header 46705 there is no

163

Petitioner Apple Inc. - Ex. 1025, p. 4061



10

15

25

EP 0067 556 Bt

previous header and this field is set to 0. :

- _FFO Field 46805: The field locating the following header In a Stack Header 46705 this field contains FFO
46719 since the next header is the first Frame Header in MAS Object 46703

— STO Field 46807: the field containing STO offset 46704. '

— Process ID Field 46809: UID 40401 belonging to Process Object 301 for Process 610 to which MAS
Object 46703 belongs. '

— Domain Environment Information pointer Field 46811: The pointer contained in the field locates an -
area which contains domain-specific information. In the present embodiment. the area is part of MAS
Stack Base 10410; however, in other embodiments, it may be contained in a separate object.

— Signaller Pointer Feld 46813: The pointer contained in the field iocates a Procedure 602 which KOS
Invokes when a Process 610's execution causes a condition to arise while it is executing in the domain
to which MAS object 46703 belongs.

— AAT Pointer Field 30211: The pointer in Field 30211 locates AAT 30201 for MAS Object 46703. AAT
30201 is described in detail in Chapter 3.

— Frame Label Sequencer Field 46819: This field contains a Sequencer 45102. Sequencer 45102 is used to
generate labels used to locate MAS Frames 46709 when a non-local GOTO is executed. .
Tuming now to the detailed representation of Domain Environment Information 46821 located by

Domain Environment Information Pointer Field 46811 there are the following fields:

— KOS Formst Information Field 46823,

— Flags Field 46825 containing the following flags:

— Pending Interrupt Flag 46827, set to TRUE when Process 610 has an interrupt pending for the
domain to which MAS Object 46703 belongs.

— Domain Dead Flag 46829, set to TRUE when Process 610 can no longer execute Procedures 602
with domains of execution equal 10 that to which MAS Object 46703 belongs.

— Invoks Verify on Entry Flag 46833 and Invoke Verify on Exit Flag 46835, The former fiag is set to
TRUE when KOS is to invoke a Procedure 602 which checks the domain’s data bases before a
Procedure 602 is aliowed to execute on the domain‘'s MAS Object 46703; the latter is set to TRUE
when KOS is to invoke such a Procedure 602 on exit from a Procedure 602 with the domain as its
DOE.

~ Default Handler Non-nutl Alag 46835 is set to TRUE when there is a default clean-up handler for the
domain. Clean-up handlers are described later.

— Interrupt Mask Field 46839 determines what interrupts set for Process 610 in MAS object 46703's
domain will be honored.

— Domain UID Field 46841 contains UID 40401 for the domain to which MAS Object 46703 belongs.

— Fields 46843 through 46849 are pointers to Procedures 602 or tables of pointers to Procedures 602.
The Procedures 602 so located handle situations which arise as MASs 502 are manipulated. The
use of these fields will become clear as the operations which require their use are explained.

b.b. Per-domain-Data Area 46853 (Fig. 468}
Per-domnain Data Area 46853 contains data which cannot be kept in MAS Frames 46709 belonging to
invocations of Procedures 602 executing in MAS Obiject 46703's domain, but which must be available to

.these invocations Per-Domain Data Area 46853 has two components: Storage Area 46854 and AAT 30201.

Storage Area 46854 contains static data used by Procadures 602 with invocations on MAS Object 46703 and
data used by S-interpreters which are used by such procedures 602. Associated Address Tebie (AAT) 30201
is used to locate data in Storage Area 46854. A detailed discussion of AAT 30201 is contained in Chapter 3.

Two kinds of data is stored in Storage Area 46854: static data and S-interpreter data.

Static data is stored in Static Data Block 46863. Static Data Block 46863 comprises two parts: Linkage
Pointers 46865 and Static Data Storage 46867 Linkage Pointers 48865 are pointers to static data not
contalned in Static Data Storage 46867 for example, data which lasts longer than Process 610 and pointers
to External Procedures 602 which the Procedure 602 to which Static Data Storage 46867 belongs invokes.
Static Data Storage 46867 contains storage for static data used by the Procedure 602 which does not last
longer than Process 610 executing the Pracedure 602. )

S-imterpreter data is data required by S-interpreters used by Procedures 602 executing on MAS object
46703.

The S-interpreter data is stored in S-interpreter Environment Block (SEB) 46864 which, like Static Data
Block 46864 is located via AAT 30201: The contents of SEB 46864 depend on the S-interpreter.

cc. MAS Frame 46709 Detail (fig. 469) ' Co

Figure 469 represents a typical frame in MAS Object 46703. Each MAS Frame 46709 contains a
Mediated Frame 46947 produced by a Mediated Call of a Procedure 602 contained in 2 Procedure Object
608 whase DOE attribute is the one required for execution on MAS object 46703. Mediated Frame 46947
may be followed by Neighborhood Frames 46945 produced by Neighborhood Calis of Procedures 602.
Mediated Frame 46947 has two parts, a KOS Frame Header 10414 which is manipulated by KOS microcode,
and an S-interpreter portion which is manipulated by S-interpreter and Namespace microcode.
Neighborhood Frames 46945 have no KOS Frame Headers 10414, As will bscome clear upon closer
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examination of Figure 469. Mediated Frames 46947 in the present embodiment contain no Macrostate. In

the present embodiment, Macrostate for these frames is kept on SS Object 10336; however in other

embodiments, Macrostate may be stored in Mediated Frames 46947. Neighborhood Frames 46345 contain
those portions of the macrostate which may be manipulated by Neighborhood Call; the location of this
macrostate depends on the Neighborhood Call SIN,

‘ Turning now to KOS Frame Header 10414, there are the following fields:

— KOS Format Information Field 46801 containing information about MAS Frame 46709's format.

— Flags Field 46302. This field contsins the following flags:

—  Result of Cross-domain Cali Flag 46903, This Flag is TRUE if MAS Frame 46709 which precedes this

MAS Frame 46709 is in another MAS Object 46703.
~— 1is Signaller Flag 46905. This flag is TRUE if this MAS Frame 46709 was created by the invocation of
a Signaller Procedure 602. .
— Do Not Return Flag 46307: This flag is TRUE if Process 610 is not to return to the invocation for
-which this MAS Frame 46709 was created.
— Flags 46909 through 46315 indicate whether various lists used in condition handling and non-local
GOTOs are present in the MAS Frame 45709,

— Previous Frame Offset Field 46917, Next Frame Offset-Field 46919. and Frame Top-Offset Field 46321
are offsets which give the location where Header 10414 for the previous MAS Frame 46709 in MAS
Object 46703 begins. the location where the header for the next MAS Frame 46709 in MAS Object
46703 begins, and the location of the first bit beyond th