ABYSS: A Trusted Architecture for Software Protection

Steve R. White
Liam Comerford

IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Abstract

ABYSS (A Basic Yorktown Security System) is an architecture
for the trusted execution of application software. It supports a
uniform security service across the. range of computing systems.
The use of ABYSS discussed in this paper is oriented towards
solving the software protection problem, especially in the lower
end of the market. Both cwrent and planned software
distribution channels are supportable by the architecture, and
the system is nearly transparent to legitimate users. A novel
use-once authorization mechanism, called a token, is introduced
as a solution to the problem of providing authorizations without
direct communication. Software vendors may use the system to
obtain technical enforcement of virtually any terms and
conditions of the sale of their software, including such things as
rental software. Software may be transferred between systems,
and backed up to guard against loss in case of failure. We
discuss the problem of protecting software on these systems, and
offer guidelines to its solution. ABYSS is shown to be a general
security base, in which many security applications may execute.

Introduction

As computers become a more important source of information
and services in our lives, problems of software and data security
become increasingly significant. The illicit duplication and use
of commercial software is only one example of these problems,
but it is increasingly worrisome in the low end of the software
market. It constitutes theft of the intellectual property of the
authors, in the same way as copyright and patent infringement,
and plagiarism. It can be an economic burden as well, since
many small software firms rely on sales of a single software
package as their only source of income. By disrupting the
software marketplace, theft inhibits the growth of this powerful
technology.

Since the inception of small computers, attempts have been
made to solve the problem of illicit duplication. Technical
methods have included writing the application software so that it
looks for an unusual, and supposedly uncopyable, feature on the
distribution diskette [Voel86], and the attachment of special
hardware devices for each application to be used in the system.

These technical methods have not succeeded because of two
complementary shortcomings. First, they are not an effective

CH2416-6/87/0000/0038501.00 © 1987 IEEE

DOCKET

_ ARM

38

barrier to duplication. Today’s low-end computers are both
logically and physically open systems. In fact, most commercial
computers of any kind are open, at least to those with operator
privileges. The user (or operator) is capable of examining every
memory location, and every processor cycle, of the system.
Once the behavior of the application is understood, it can be
changed to subvert the software protection measures. Similarly,
distribution media are completely open to examination and
modification. Second, existing technical methods have imposed
unacceptable burdens on the legitimate user. Users are often
prevented from making backup copies of their software, and
from installing their software on hard disks or file servers.

The trend in the software market today is to abandon
technical protection methods, and rely solely upon legal
protection. This is difficult at best in the widely distributed and
anonymous marketplace often addressed by low end software.
It is impossible in countries and cultures which have no history
of intellectual property law [Chur86]. So, the need for practical
technical protection measures continues, and grows.

A practical software protection system must overcome both of
the shortcomings outlined above. It must be extremely secure,
and ensure that the effort involved in illicitly duplicating an
application is at least as large as that involved in rewriting it
from scratch. It must also be extremely convenient for the
legitimate user, and flexible enough to support a broad spectrum
of computing environments and software distribution systems.
A variety of authors have explored ideas which go beyond the
more common diskette-based protection schemes, in an attempt
to meet the requirements of increased security and convenience.

Kent [Kent80] discusses a variety of secure system
architectures. He mentions the valuable idea of tamper-resistant
modules, which provide physical security, and uses cryptographic
techniques to protect applications from exposure. He does not
deal with the full spectrum of software distribution methods in
use today, nor with the problem of backing up the applications
onto another system should the first one fail.

Best [Best79]-[Best84b] presents a crypto-microprocessor
approach, in which application software exists in plaintext only
within the instruction decoder of the processor. Best's
architecture requires the use of a cryptosystem which is not as
secure as the modern cryptosystems often used for
communications and transactional security. It limits applications

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

OCKET
L M

to execution on a single system, and does not deal with the issue
of backup. It also requires a substantial restructuring of current
computing systems. In some versions of this scheme, a
processor per application is required, which is costly.

Arnold and Winkel [Arno85] deal with cryptographic security
effectively, but require substantial limitations on distribution
methods, the processor, and the execution environment.

Purdy, et al. [Purd82], and Simmons [Simm85], present a
protocol for distributing decryption keys for encrypted
applications. Their distribution method requires software
distributors to maintain a cryptographic facility, which may be a
burden in current retail store or mail-order distribution. They
also do not deal with the issue of backup.

Everett [Ever85] describes a system similar to the one
presented here. Since it requires a public key scheme for key
distribution, constantly-updated lists of authorized public keys
must be maintained by software vendors. Also, software
vendors must maintain cryptographic facilities. No provision is
made for backup. No scheme is described which would aliow
software, installed on one system, to be transferred to another
system.

Herzberg and Karmi [Herz84], and Herzberg and Pinter
[Herz86], present a protection system similar to the one
presented here, but they also require software distributors to
have a cryptographic facility. They do provide a means of
backing up applications in the event of a failure. Their backup
method relies on communication with the manufacturer when
backed up applications are installed, and on possession of an
unused processor on which to install them. This may be
problematic in many cases.

Goldreich [Gold86] extends Best’s scheme by presenting a
method for obscuring the pattern of memory accesses. This
increases the protection of Best’s scheme, but at the price of
additional performance degradation.

Overview of ABYSS

ABYSS (A Basic Yorktown Security System) is an
architecture for the trusted execution of application software,
and can be used as a uniform security service across the range of
computing systems. This paper is oriented towards a solution to
the problem of software protection, especially in the lower end
of the market. It addresses both security and ease-of-use
concerns. Both current and planned software distribution
methods are supportable. Users may back up applications at any
time, and install them onto any other system in the event of
failure, without the intervention of any other party at that time.
A general discussion of ABYSS and software protection can be
found in [Cina86].

The ABYSS architecture provides the software vendor with
tools to enforce the conditions under which the application may
be used. Software run under ABYSS executes exactly as it was
written, and cannot be modified arbitrarily by the user.

The only information which must be kept secret are certain
encryption and decryption keys. Aside from these, all of the

A R

39

details of both architecture and implementation may be made
public without compromising the integrity of the system.

Unprotected Processes Protected Processes
Unprotested High Protected
Part of Priviiege [™"] Partot
Application 1 Supervisor Appltoation 1
[— [*] Process -
ey ‘
Proteoted
Storege
Unprotected Part of
Part of Application
Application N
Authorization
Process
Figure 1. The Architecture of a Protected Pri Sy
Architecture of ABYSS

The architecture of the system presented here is shown in
Figure 1. Applications are partitioned into processes which are
protected, and processes which are not. Protected application
processes are executed within a secure computing environment
called a protected processor. The conditions under which an
application may execute are embodied in a logical object called a
Right-To-Execute. These conditions are enforced by the
protected processor. The movement of Rights-To-Execute into
and out of protected processors may require authorization from
externally-supplied authorization processes.

Protected Processors

A protected processor constitutes a minimal, but complete,
computing system. It contains a processor, a real-time clock, a
random or pseudo-random number generator, and sufficient
memory to store protected parts of applications while they
execute. It also contains secure memory for storage of
Rights-To-Execute. This storage retains its contents even when
the the system power is off.

The protected processor is a logically, physically, and
procedurally secure unit. It is logically secure, in that an
application cannot directly access the supervisor process, or the
protected part of any other application, to violate their
protection. It is physically secure (which is indicated by the
heavy box in Figure 1), in that it is contained in a
tamper-resistant package [Wein86] [Chau84] [Pric86]. It is
procedurally secure in that the services which move information,
and Rights-To-Execute in particular, into and out of the
protected processor cannot be used to subvert the protection.

It is possible for the protected processor to contain the only
processors and memory of the entire computing system. Such
systems consist of a protected processor, and various peripheral
devices such as secondary storage. Alternatively, the protected
processor may be part of a larger computing system, and interact
with it through the unprotected processes.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

©
L

CKET
M

A R

In addition to executing protected application processes, the
protected processor executes a supervisor process. The supervisor
process is responsible for ensuring the logical and procedural
security of the protected processor. It manages the system’s
communications resources, to ensure that messages are routed
correctly between the protected and unprotected parts of
applications. It executes at a higher privilege level than the
application processes, and restricts them to isolated protection
domains [Denn83] This isolation of application processes from
each other, and from their unprotected parts, protects an
application process from attacks originating in other application
processes, or in the unprotected parts of the computing system.

The supervisor process contains a cryptographic facility for
managing encryption/decryption keys. This facility decrypts the
protected parts of applications as they are loaded into the
protected processor. We place the cryptographic transformation
between primary memory (such as RAM) and secondary
memory (such as a disk). Best [Best79]-[Best84b] places this
transformation between primary memory and the instruction
decoder of the processor. Placing it closer to the instruction
decoder in the memory hierarchy forces a choice between
significant performance degradation of the application, and the
use of a cryptosystem with significantly less security than, say,
DES.

Placing the transformation between primary and secondary
memory, on the other hand, matches the bandwidth of the
cryptographic facility to the data transfer bandwidth, allows
efficient pipelining of the data to be decrypted, and allows
decrypted instructions to be used numerous times without being
decrypted each time. It also allows the efficient use of message
authentication or manipulation detection codes on parts of the
application.

Software Partitioning

For systems in which applications include unprotected
processes, it is necessary to partition the application into
protected and unprotected parts. The protected part is
encrypted when it is outside the protected processor, and only
decrypted when it is loaded into the protected processor. The
unprotected part is exposed to view.

The protected part executes securely on the protected
processor, in that it cannot be examined or modified by any
party external to the protected processor. It cannot be examined
externally while it is available for execution because of the
logical and physical security of the processor, which inhibit all
external access to the plaintext of the protected part. The
encrypted form of the protected part cannot be modified directly
because of the cryptographic techniques used to detect if it has
been tampered with. It cannot be modified by rewriting it in a
different way, because the partition is chosen so that the
protected part is difficult to reconstruct from knowing only the
unprotected part.

The partition is designed so that both parts of the application
must be present in order to execute the application. Eliminating
accesses to the protected part from the unprotected part results

40

in a nonfunctional application. This intertwining of the
protected and unprotected parts extends the logical protection of
the protected part to the entire application.

Rights-To-Execute

The software is separated from the right to execute it. Only
authorized users of an application have a Right-To-Execute for
that application. Rights-To-Execute are created by software
vendors, and are used by the supervisor to control the entire
range of actions that can be taken with respect to the
application.

A Right-To-Execute consists of:

« An encryption and/or decryption key for software packages.
This is required to decrypt the application before execution.

« Identifying information about the Right-To-Execute. This
can be used to aid the supervisor in searching for the
applicable Right-To-Execute.

« Information about how the Right-To-Execute may be used
by supervisor software. This allows the software vendor to
control what the supervisor may do with the
Right-To-Execute. For instance, the software vendor may
choose not to allow the Right-To-Execute to be transferred
to another protected processor once it is installed.

+ Information about how the supervisor may permit the
Right-To-Execute to be used by software decrypted under
its key. The software vendor may wish to allow the
application to change the information in the
Right-To-Execute, for instance.

+ Information about how the supervisor may permit the
Right-To-Execute to be used by non-supervisor software
which is not decrypted under its key. It may be useful to
allow other applications to report certain information about
the Right-To-Execute. For instance, a utility could
summarize information about all Rights-To-Execute owned
by a user.

» Additional information, at the discretion of software
decrypted under the above key. As will be seen later, the
application may store such things as an expiration date for its
Right-To-Execute, and be assured that the application will
not execute after that date.

Authorization Processes

Various supervisor services must be authorized to proceed.
For instance, the software vendor must authorize the installation
of the Right-To-Execute on a protected processor. Otherwise, it
could be installed on any number of protected processors.
Clearly, authorization processes must be difficult to forge, to
prevent illicit authorizations. Authorization processes may be
carried out in a number of ways. Brief descriptions of two of
these are given here for clarity in subsequent sections.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

OCKET
L M

Smart Cards: Smart cards are cards the size of a credit card,
which contain a microprocessor and memory. They can be
constructed to perform a subset of the actions of a protected
processor which deal with movement and storage of
Rights-To-Execute, but not with application execution. By
eliminating the memory in which applications reside during
execution, and the real-time clock, current smart cards can
contain sufficient cryptographic and storage facilities to
authorize supervisor services cryptographically, and to store a
limited number of Rights-To-Execute. They can then be used as
temporary repositories of Rights-To-Execute being transferred
between protected processors, and for a number of other useful
services.

Token Cards: Token cards have the same physical appearance
as smart cards, but contain a less expensive chip called a token.
The token is useful as a one-time-only authorization of
supervisor services.

Both smart cards and tokens must be physically secure, to
prevent information contained in them from being revealed.
Techniques for chip-level security applicable to smart cards and
tokens are discussed in [Pric86].

Tokens: Use-Once, Forgery-Resistant
Authorizations

We introduce a new authorization mechanism, called a token
process. The token process is capable of participating in a
query-response sequence with a cryptosystem exactly once.
Even if the query and response are carried out over insecure
channels, the response can still be obtained in such a way that it
is extremely improbable that an eavesdropper can forge the
behavior of a token process in a subsequent query-response
sequence. The token process can be carried out by any simple
computing system. It can also be carried out by a small piece of
hardware, called a foken, which is significantly less expensive
than hardware capable of cryptographic services such as DES.

How Tokens Operate

Tokens fulfill the following criteria.

« The queries, which are generated randomly by protected
processors, are sufficiently numerous that it is extremely
improbable that two queries will be the same. Since
different queries generate different responses, the response
from one query cannot be used as the response to a different

query.

» The responses are sufficiently numerous that it is extremely
improbable that a random guess at a response will be correct.

« The responses are sufficiently independent of each other,
that knowing the response to one query is not significantly
helpful in predicting the response to another query.

+ The query-response behavior of the token is completely
determined by data contained in the token. An encrypted
form of these data is delivered to the querying protected
processor. This can be done in conjunction with the

A R

41

Initial State
Query VDD
Response « @
1170 - - - 119
After Reading One Bit
Query ubbD
2 34 .- n
11l - M]gk-g
110131 --- [1]8@
Figure 2. How Tokens Work

query-response sequence, or independent of it. Once the
protected processor receives the token data and decrypts it,
it can predict the correct response to any query.

« The token data is erased from the token as it is read. This
means that a token can only respond to a single query.

Figure 2 shows a simple conceptual realization of tokens.
(This is intended to be representational. Real implementations
require a small amount of additional support circuitry.) It
consists of two shift registers connected to a multiplexor. The
registers are shifted left simultaneously in response to a signal on
the multiplexor’s query line. Each time they are shifted, one bit
from either the up or the down register appears on the output
line, depending upon the value of the query bit. At the same
time, nulls are shifted into both registers from the right. This
cycle is repeated until the token is completely discharged.

The token is loaded by the software vendor by loading
random binary strings into both the up and the down registers.
These constitute the token data 7,, and should be effectively
unique for each token j. (If an attacker possesses two tokens
known to have identical token data, the entire token data can be
revealed by querying only the up register of one token, and only
the down register of the other.) The software vendor encrypts
this data under a key 4, called the application key, chosen by the
software vendor for a particular application, to form E(T)."
The plaintext token data is protected by making the token
physically secure against tampering.

The token can then act as a one-time-only authorization from
the software vendor, to a protected processor which possesses
the application key 4. (The means by which the protected
processor obtains the application key are discussed later.) To do
this, the protected processor reads in and decrypts E(T) to
obtain the token data 7, . It then generates a random query Q,
which consists of a string of bits as long as either of the token’s
registers. The query is presented to the token to obtain the

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

©
L

CKET
M

A R

token’s response R. By construction, all of the token data are
jost when it is read, even though only half of the data are
revealed by the response.

The protected processor can use its knowledge of the
complete token data T, to simulate the token, and predict the
correct response R’ to the query Q. By comparing R to R’, it
can determine whether or not the token is a valid authorization,
prepared by a party which knows 4. Since all of the token data
is discharged when it is read, this can only be done once.

Tokens thus serve as counting devices for the software
vendor. A vendor who distributes N tokens is guaranteed that
there are only N authorizations in the hands of users.

In their ability to prove that they contain certain secret
information without revealing a significant fraction of it, tokens
resemble the interactive zero-knowledge proofs of [Gold85].
Tokens are much simpler, though, since they only need to
respond to a single query about their information.

Forging a Token

Suppose that an attacker has observed the query and response
sequence for a token. What is the probability that, armed with
this information, the attacker can respond as that token would
have to another query by a protected processor? If successful,
this would constitute a successful forgery of a token process, and
could produce an illicit authorization.

The query to which the attacker must respond is generated
randomly, so it will not have a statistically significant correlation
to the observed query. The probability of responding correctly
to each bit in the query is the probability that that bit in the
query is the same as the one previously observed (in which case
the attacker knows the correct response), plus the probability
that it is different, times the probability of guessing correctly.
For a token with » uncorrelated bits in each shift register,

n
p Yforgery = [p.rame query + (1 = Psame query) Peorrect guess] (1)
1f there are no statistically significant correlations present,
Psame query = :/1
Peorrect guess = ?)

80, pforgery = (%)n

A token with shift registers of length n = 128 can be
implemented on a very small chip, and gives
Dorgary < 1.02 x 10716,

Since it is a protected processor which generates the query to
a token, the protected processor can limit the frequency of
queries by controlling the amount of time it takes to generate a
query. This inhibits a high-speed “guessing” attack on tokens.
The average number of guesses required to come up with a
single correct response to a query for a given token is

42

1
log,(1 ~ Pforgepy)

3)

If the time to generate a query is required to be one second, the
average time required to forge a response for an n = 128 bit
token successfully is #,,,.,. > 108 years. Token forgery is covered
in more detail in [Stro86].

Secure Sessions Between Protected Processors

Tokens are useful authorization mechanisms when it is
impossible or inconvenient to establish a direct communication
channel between two protected processors. Where it is possible
to establish a such a channel, protected processors possessing an
encryption/decryption key in common can set up a
cryptographically secure channel between them, mediated by a
session key. There are a number of standard ways to do this.

A User’s View of the System

The services by which Rights-To-Execute are created, moved,
used in executing software, and backed up, are described in
detail in the next section. In this section, we illustrate the
simplicity of the system to those who use it, by showing a user’s
view of the system.

For concreteness, we take the case in which applications are
purchased through a retail store, as quite a bit of low-end
software is today. The applications are intended to be used on a
workstation which has an ABYSS architecture, and a
hypothetical user interface.

Software Purchase

Retail purchase can be virtually identical to today’s practices.
The user takes a WonderCalc package off of the shelf, pays for
it, and takes it home. No part of the application package need
be personalized to the user’s system, and the user may remain
anonymous. Any application package in the store may be
installed on any system, with no prior knowledge of the identity
of the system necessary.

Software Installation

The application paci(age contains documentation (hopefully?),
a floppy diskette, and a token card. The user inserts the diskette
into a drive and the token card into a slot used for just that
purpose, and types:

install wondercalc

The token card authorizes the installation of the right to
execute WonderCalc in the user’s protected processor. The
token is discharged, but the diskette is unchanged. The
WonderCalc software may be copied, put onto a hard disk, etc.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

