WO 98/09209 ' PCT/US97/15243

[d1}

10

15

20

non-VDE aware application such as 608b could access only the -

part of API 682 that provides an interface to other OS functions

606, and therefore could not access any VDE functions.

Thié “translation“ feature of redirector 684 provides
“transparency.” It allows VDE functions to be provided to the
application 608(b) in a "transparent* way without réquiring the
'application to become invbliled In the complexity and details
associated with generating the one or more calls to VDE
functions 604. This aspect of the "transparencv® features of ROS
602 has at least two important advantages:

(a) it allows applications not writtén specifically for VDE

functions 604 ('non-VDE aware applications*) to

nevertheless access critical VDE functions: and

(b) it reduces the complexity of the interface between an

application and ROS 602.

Since the second advantage (reducing complexity) makes it

easier for an application creator to produce applications, even
"VDE aware* applications 608a(2) may be designed so that some
calls invoking VDE functions 604 are requested at the level of an

"other OS functions“ call and then "translated® by redirector 684

into a VDE function call (in this sense, redirector 684 may be

considered a part of API 682). Figure 11C shows an example of

- 270 -

Petitioner AppleInc. - Exhibit 1006, p. 1001

[é]]

10

15

20

WO 98/09209 PCT/US97/15243

this. Other calls invoking VDE functions 604 may be passed

directly without translation by redi;ector 684.

Referring again to Figure 10, ROS 620 may also include an
"interceptor* 692 that transmits and/or receives one or more real
time data feeds 694 (this may be provided over cable(s) 628 for
example), and routes one of more such data feeds appropriately
while providing "translation® functions for real time data sent
and/or réceived by electronic appliance 600 to allow
"transparency” for this tvpe of informétion analogous to the
transparency provided by redirector 684 (and/or it may generate

one or more real time data feeds).

Secure ROS Components and Component Assemblies

'As discussed above, ROS 602 in the preferred embodiment
is a component-based architecture. ROS VDE functions 604 may
be based on segmented. independently loadabie executable
"component assemblies” 690. These component assemblies 630
are independently securely deliverable. The component
assemblies 690 provided by the preferred embodiment comprise
code and data elements that are themselves independently

deliverable. Thus, each component assembly 690 provided by the

* preferred embodiment is comprised of independently securely

deliverable elements which may be communicated using VDE

-271 -

Petitioner Apple Inc. - Exhibit 1006, p. 1002

10

15

20

WO 98/09209 ’ PCT/US97/15243

secure communication techniques, between VDE secure

subsystems.

These component assemblies 690 are the basic functional
unit provided by ROS 602. The component assemblies 690 are
executed to perform operating system or application tasks. Thus,
some component assemblies 690 may be considered to be part of
the ROS operating system 602, while other component
assemblies may be considered to be ”applicétions;‘ that run under
the support of the operating system. As with any system
Incorporating "applications® and ”opefaring systems,“ the
boundary between these aspects of an overall system can be
ambiguous. For example. commonly used "application* functions
(such as determining the structure and/or other attributes of a
content éonta’mer) may be incorporated into an operating system.
Furthermore, "operating system* functions (such as task
mahagement, or memory allocation) may be modified and/or
replaced by an application. A common thread in the preferred
embodiment’s ROS 602 is that component assemblies 690
provide functions needed for a user to fulfill her intended
activities, some of which may be "application-like* and some of

which may be "operating system-like.“

-272 -

Petitioner Apple Inc. - Exhibit 1006, p. 1003

10

15

20

WO 98/09209 PCT/US97/15243

Components 690 are prefe'rably designed to be easily
separable and individually loadable. ROS 602 assembles these
elements together into an executable component assembly 690
prior to loading and executing the component assembly (e.g., in a
secure operating environment such as SPE 503 and/or HPE 635).

ROS 602 provides an element identification and referencing

mechanism that includes information necessary to automatically

assemble elements into a component assembly 690 in a secure

manner prior to, and/or during, execution.

ROS 602 application structures and control parameters
used to form component assemblies 690 can be provided by
different parties. Because the components forming component
assemblies 690 are independently securely deliverable, they may
be delivered at different times and/or by different parties
(“delivery” may take place within a local VDE secure subsystem,
that is submission through the use of such a secure subsystem of
control information by a chain of content control information
handling participant for the preparation of a modified control
information set constitutes independent, secure delivery). For
example, a content creator can produce a ROS GOé application
that defines the circumstances required for licensing content
contained within a VDE object 300. This application may

reference structures provided by other parties. Such references

-273 -

Petitioner Apple Inc. - Exhibit 1006, p. 1004

(@1}

10

20

WO 98/09209 _ PCT/US97/15243

might, for example. take the form of a control path that uses
content creator structures to meter user activities; and
structures created/owned by a financial provider to handle
financial pérts of a content distribution transaction (e.g.,
defining a credit budget that must be present in a control
structure to establish creditworthiness, audit processes which
must be performed by the licensee, etc.). As another example, a
distributor may give one user more favorable éricing than
another user by delivering different data elements defining
pricing to different users. This attribute of supporting multiple
party securely. independently deliverable control information is
fundamental to enabling electronic commerce. that is. defining of
a content and/or appliance control informarion set that
represents the requirements of a collection of independent
parties such as content creators, other content providers,

financial service providers, and/or users.

In the preferred embodiment, ROS 602 assembles securely
independently deliverable elements into a component assembly
690 based in part on context parameters (e.g., object, user).

Thus, for example, ROS 602 may securely assemble different
elements together to form different component assemblies 690
for different users performing the same task on the same VDE

object 300. Similarly, ROS 602 may assemble differing element

-274 -

Petitioner Apple Inc. - Exhibit 10086, p. 1005

10

20

WO 98/09209 h PCT/US97/15243

sets which may include, that is reuse, one or more of the same
components to form different component assemblies 690 for the

same user performing the same task on different VDE objects

300.

The component assembly organization provided by ROS
602 is "recursive® ‘in that a component assembly 690 may
compﬁ;e_ one or more componént "subassemblies” that are
themselves independgntly loadable a.ﬂd executable component
assemblies 690. These component "subassemblies® may, in tufn,
be fnade of one or more corﬁponent "sub-sub-assemblies.“ In the
general case. a component assembAl_v 690 mav include N levels of
component subassemblies. |

Thus, for example. a component assembly 690(k) that may
includes a component subassembiv 630(k + 1). Component
subassembly 690(k + 1), in turn, may include a component sub-
sub-assembly 690(3), ... and so on to N-level subassembly 690(k +
N). The ability of ROS 602 to build component assemblies 690

out of other component assemblies provides great advantages in

terms of, for example, code/data reusability, and the ability to

- allow different parties to manage different parts of an overall

component.

-275 -

Petitioner Apple Inc. - Exhibit 1006, p. 1006

WO 98/09209

10

15

20

PCT/US97/15243

Each component assembly 690 in the preferred
embodiment is made of distinct components. Figures 11D-11H
Are abstract depictions of various distinct components that may
be assembled té form a component assembly 690(k) showing
Figure 111. These same components can be combined in
different ways (e.g., with more or less components) to form
different component assemblies 690 provi&ing completely
different functional behavior. Figure 11J is an abstract depiction
of the same components being put togethér in a different way
(e.g., with additional components) to form a different component
assembly 690(j). The component assemblies 690(k) and 690(j)
each include a common feature 691 that interlocks with a
"channel” 594 defined by ROS 602. This "channel 594
assembles component assemblies 690 and interfaces them with

the (rest of) ROS 602.

ROS 602 generates component assemblies 690 in a secure
manner. As shown graphically in Figures 111 and 11J , the
different elements comprising a component assembly 690 may be
“interlocking® in the sense that they can only go together in ways
that are intended by the VDE participants who created the
elements and/or specified the component assembli“es. ROS 602
includes security protections that can Prevent an unauthorized

person from modifying elements, and also prevent an

- 276 -

Petitioner Apple Inc. - Exhibit 1006, p. 1007

10

15

20

WO 98/09209

unauthorized person from substituﬁng elements. One can
picture an unauthorized person making a new element having
the same “shape® as the one of the elements shown in Figures
11D-11H, and then attempting to substitute the new element in
place of the original element. Suppose one of the elements
shown in Figure 11H establishes the price for using content
within a VDE object 300. If an unauthorized person could
substitute her own “price” element for the price element intende;i
by the VDE content distributor, then the person could establish a
price of zero instead of the price the content .distributor intended
to charge. Similarly, if the element establishes an electronic
credit card, then an ability to substitute a different element
could have disastrous consequences in terms of allowing a person
to charge her usage 1o someone else’s (or a non-existent; credit
card. These are merely a few simple examples demonstrating
the importance of ROS 602 ensuring that certain component
assemblies 690 are formed in a secure manner. ROS 602
provides a wide range of protections against a wide range of
"threats“ to the secure handling and execution of component

assemblies 690.

In the preferred embodiment, ROS 602 assembles
component assemblies 690 based on the following types of

elements:

-277 -

Petitioner Apple Inc. - Exhibit 1006, p 1008

PCT/US97/15243

WO 98/09209 PCT/US97/15243

e

10

15

20

Permissions Records ("PERC*“s) 808;
Method "Cores* 1000:
Load Modules 1100:;

- Data Elements (e.g., User Data Elements ("UDEs*) 1200

and Method Data Elements ("MDEs*) 1202); and

Other component assemblies 690

Briefly, a PERC 808 provided by the preferred
embodiment is a record corresponding to a VDE object 300 that
identifies to ROS 602. among other things, the elements ROS is
to assemble together to form a component assembly 690. Thus
PERC 808 in effect contains a "list of assembly instructions® or a
"plan® specifving what elements ROS 602 is 1o assemble together
into a component assembly and how the elements are to be
connected together. PERC 808 rné_v 1tself contain data or other

elements that are to become part of the component assembly 690.

The PERC 808 may reference one or more method "cores“
1000°. A method core 1000’ may define a basic "method* 1000

(e.g., "control,“ "billing “ "metering “ etc.)

In the preferred embodiment, a "method“ 1000 is a
collection of basic instructions, and information related to basic

instructions, that provides context, data, requirements, and/or

- 278 -

Petitioner Apple Inc. - Exhibit 1006, p. 1009

10

15

20

WO 98/09209 PCT/US97/15243
relationships for use in performing, and/or preparing to perform,
basic instructions in relation to the operation of one or more |
electronic appliances 600. Basic instructions may be éompn’sed

of, for example:

. machine code of the type commonly usedlin the
programming of computers; pseudo-code for use by
an interpreter or other instruction processing
program operating on a computer;

. a sequence of electronically represented logical
operations for use with an electronic appliance 600:

. or other electronic representations of instructions,
source code, object code. and/or pseudo code as those

terms are commonly understood in the arts.

Information relating to said basic instructions may
comprise, for example, data associated intrinsically with basic
instructions such as for example, an identifier for the combined
basic instructions and intrinsic data, addresses, constants,
and/or the like. The information may also, for example, include

one or more of the following:

- 279 -

Petitioner Apple Inc. - Exhibit 1006, p. 1010

10

20

WO 98/09209

PCT/US97/15243

information that idehtiﬁes associated basic
Instructions and said intrinsic data for access,
correlation and/or validation purposes;

required and/or optional parameters for use with

basic instructions and said intrinsic data;

information defining relationships to other methods;

data elements that may comprise data values, fields

of information, and/or the like;

information specifying and/or defining relationships
among data eléments, basic instructions and/or
intrinsic data:

information specifying relationships to external data
elerments:

information specifying relationships between and
among internal and external data elements,

methods, and/or the like, if any exist; and

additional information required in the operation of
basic instructions and intrinsic data to complete, or
attempt to complete, a purpose intended by a user of
a method, where required, including additional

instructions and/or intrinsic data.

- 280 -

Petitioner Apple Inc. - Exhibit 1006, p. 1011

10

15

20

WO 98/09209

PCT/US97/15243

Such information associated Qith a method may be stored,
in part or whole, separately from basic instructions and intrinsic
data. When these cornponents are stored separately, a method
may nevertheless include and encompass the other information N
and one or more sets of basic instructions and intrinsic data (the
latter being included because of said other information’s
reference to one or more sets of basic instructions and intrinsic
data), whether or not said one or more sets of basic instructions

and intrinsic data are accessible at any given point in time.

Method core 1000’ may be parameterized by an "event
code® to permit it to respond to different events in different ways.
For example. a METER method may respond to a "use” event by
storing usage information in a meter data structure. The same
METER method may respond to an "administrative event by

reporting the meter data structure to a VDE clearinghouse or

__other VDE participant.

In the preferred embodiment, method core 1000’ may
"contain,” either explicitly or by reference, one or more "load
modules“ 1100 and one or more data elements (UDEs 1200,
MDEs 1202). ‘in the preferred embodiment, a "load module* 1100
1s a portion of a method that reflects basic instructions and

intrinsic data. Load modules 1100 in the preferred embodiment

-281 -

Petitioner Apple Inc. - Exhibit 1006, p. 1012

10

15

20

WO 98/09209

PCT/US97/15243

contain executable code. and may also contain data elements
("DTDs" 1108) associated with the executable code. In the
preferred embodiment, load modules 1100 supply the program
instructions that are actually "executed® by hardware to perform
the process defined by the method. Load modules 1100 may

contain or reference other load modules.

Load modules 1100 in the preferred embodiment are
modular and "code pure” so that-individual load modules may be
reenterable and reusable. In order for components 690 to be
dynamically updatable. tbey may be individually addressable
within a global public name space. In view of these design goals,
load modules 1100 are preferably small, code (and code-like)
pure modules that are individually named and addressable. A
single method may provide different load modules 1100 that
perform the same or similar functions on different platforms,
thereby making the method scalable and/or portable across a

wide range of different electronic appliances.

UDEs 1200 and MDEs 1202 may store data for input to or
output from executable component assembly 690 (or data
describing such inputs and/or outputs). In the pfeferred
embodiment, UDEs 1200 may be user dependent, whereas MDEs

1202 may be user independent.

-282 -

Petitioner Apple Inc. - Exhibit 1006, p. 1013

10

15

20

WO 98/09209 PCT/US97/15243

The component assembly example 690(k) shown in Figure
11E comprises a method core 1000’, UDEs 1200a & 1200b, an
MDE 1202, load modules 1100a-1100d, and a further component
assembly 690(k+1). As mentioned above, a PERC 808(k) defines,
among other things, the "assembly instructions” for component
assembly 690(k), and may contain or reference parts of some‘ or
all of the components that are to be assembled to create a

component assembly.

One of the load modules 1100b shown in this example is
itself comprised of plural load modules 1100c, 1100d. Some of

the load modules (e.g., 1100a, 1100d) in this example include one

or more "DTD* data elements 1108 (e.g., 1108a, 1108b). "DTD“

data elements 1108 may be used, for example, to inform load
module 1100a of the data elements included in MDE 1202 and/or
UDEs 1200a, 1200b. Furthermore, DTDs 1108 may be used as
an aspect of forming a portion of an application used to inform a
user as to the information required and/or manipulated by one or
more load modules 1100, or other component elements. Such an
application program may also include functions for creating
and/or manipulating UDE(s) 1200, MDE(s) 1202, or other

component elements, subassemblies, etc.

- 283 -

Petitioner Apple Inc. - Exhibit 1006, p. 1014

WO 98/09209 PCT/US97/15243

Components within component assemblies 690 may be
"reused” to form different component assemblies. As mentioned
above, figure 11F is an abstract depiction of one example of the

Same components used for assembling component assembly

(9]

690(k) to be reused (e.g., with some additional components
specified by a different set of "assembly instructions® provided in
a different PERC 808(1)) to form a different component assembly
690(1). Even though component assembly 690(1) is formed froxﬁ
some of the same components used to form component assembly
10 690(k) these two component assemblies may perform completely

different processes in complete different ways.

As mentioned above, ROS 602 provides several layers of
security to ensure the security of component assemblies 690,
15 One important security layer involves ensuring that certain
component assemblies 690 are formed. loaded and executed only
in secure execution space such as provided within an SPU 500.
Components 690 and/or elements comp_rising them may be stored
on external media encrypted using local SPU 500 generated

20 and/or distributor provided keys.

ROS 602 also provides a tagging and sequencing scheme
that may be used within the loadable component assemblies 690

to detect tampering by substitution. Each element comprising a

- 284 -

Petitioner Apple Inc. - Exhibit 1006, p. 1015

W

10

15

20

WO 98/09209 PCT/US97/15243

‘component assembly 690 may be loaded into an SPU 500,
decrypted using encrypt/decrypt engine 522, and then
tested/compared to ensure that the proper element has been
loaded. Several independent comparisons may be used to ensure
there has been no unauthorized substitution. For example, the
public and private copies of the element ID may be compared to
ensure that they are the same, thereby preventing gross
substitution of elements. In addition, a validation/correlation
tag stored under the encrypted layer of the loadable element may
be 6ompared to make sure it matches one or more tags proﬁded
by a requesting process. This prevents unauthorized use of
information. As a third protection, a device assigned tag (e.g., a
sequence number: stored under an encryption laver of a loadable
element may be checked to make sure it matches a corresponding
tag value expected by SPU 500. This prevents substitution of
older elements. Validation/correlation tags are typically passed
only in secure wrappers to prevent plaintext exposure of this

information outside of SPU 500.

The secure component based architecture of ROS 602 has
important advantages. For example, it accommodates limited
resource execution environments such as proﬁded by a lower
cost SPU 500. It also provides an extremely high level of

configurability. In fact, ROS 602 will accommodate an almost

- 285 -

Petitioner Apple Inc. - Exhibit 1006, p. 1016

10

15

20

‘WO 98/09209 PCT/US97/15243

unlimited diversity of content types, content provider objectives,
transacﬁon tvpes and client requirements. In addition, the
ability to dynamically assemble iﬁdependently deliv‘erable
components at execution time based on particular objecﬁs and
users provides a high degree of flexibility, and facﬂitates or
enables a distributed database, processing, and execution

environment.

One aspect of an advantage of the component-based
architecture provided by ROS 602 relates to the ability to "stage*
functionality and capabilities over time. As designed,
implementation of ROS 602 is a finite task. Aspects of its wealth
of fu_.nctionality can remain unexploited until market realities
dictate the implementation of corresponding VDE application
functionality. As a result, initial product implementation
investment and complexity may be limited. The process of
"surfacing” the full range of capabilities providedAby ROS 602 in
terms of authoring, administrative, and artificial intelligence
applications may take place over time. Moreover, already- .
designed ﬁmctionality of ROS 602 may be changed or enhanced

at any time to adapt to changing needs or requirements.

- 286 -

Petitioner Apple Inc. - Exhibit 1006, p. 1017

- WO 98109209

10

15

20

25

PCT/US97/15243

More Detailed Diacusaion of Righta ‘Operating Systém 602
Architecture

Figure 12 shows an example of a detailed architecture of
ROS 602 shown in Figure 10. ROS 602 may include a file system
687 that includes a commercial database manager 730 and
external object repositories 728. Commercial database manager
730 may maintain secure database 610. Object repository 728

may store, provide access to, and/or maintain VDE objects 300.

Figure 12 also shows that ROS 602 may provide one or
more SPEs 503 and/or one or more HPEs 655. As discugsed
above, HPE 655 mayv "emulate“ an SPU 500 device, and such
HPEs 655 may be integrated in lieu of (or in addition to) physical
SPUs 500 for systems that need higher throughp'ut. Some
security may be lost since HPEs 655 are typically protected by
operating system security and may not provide truly secure
processing. Thus, in the preferred embodiment, for high security
applications at least, all secure processing should take place
within an SPE 503 having an execution space within a physical
SPU 500 rather than a HPE 655 using software operating

elsewhere in electronic appliance 600.

As mentioned above, three basic components of ROS 602

are a kernel 680, a Remote Procedure Call (RPC) manager 732

- 287 -

Petitioner Apple Inc. - Exhibit 1006, p. 1018

WO 98/09209 PCT/US97/15243

(4]

10

15

20

and an object switch 734. These components, and the way they

interact with other portions of ROS 602, will be discussed below.

"Kernel 680

Kernel 680 manages the basic hardware resources of
electronic appliance 600, and controls the basic tasking provided
by ROS 602. Kémel 680 in the preferred embodiment may
include a memory manager 680a, a task manager 680b, and an
/O manager 680c. Task manager 680b may initiate and/or
manage initiation of executable tasks and schedule them to be
executed by a processor on which ROS 602 runs (e.g., CPU 654
shown in Figure 8). For example, Task manager 680b may
include or be associated with a "bootstrap loader* that loads
other parts of ROS 602. Task manager 680b may manage all
tasking related to ROS 602, including tasks associated with
application program(s) 608. Memory manager 680a may manage
allocation, deallocation, sharing and/or use of memory (e.g., RAM
656 shown in Figure 8) of electronic appliance 600, and may for
example provide virtual memory capabilities as required by an
electronic appliance and/or associated application(s). /O
manager 680c may manage all input to and output from ROS
602, and may interact with drivers and other hardware
managers that provide communi;:ations and interactivity with

physical devices.

- 288 -

Petitioner Apple Inc. - Exhibit 1006, p. 1019

10

15

20

WO 98/09209 PCT/US97/15243

RPC Manager 732

ROS 602 in a preferred embodiment is designed around a
"services based* Remote Procedure Call architecture/interface.
All functions performed by ROS 602 may use this common
interface to request services and share information. For
example, SPE(s) 503 provide processing for one or more RPC
based services. in addition to supporting SPUs 500, the RPC
interface permits the dynamic integration of external services
and proxﬁ'des an array of configuration options using existing
operating system components. ROS 602 also communicates with
external services through the RPC interface to seamlessly
provide distributed and/or remote processing. In smaller scale
instances of ROS 602. a sirﬁpler message passing IPC protocol
may be used to conserve resources. This may limit the
configurability of ROS 602 services. but this possible limitation

may be acceptable in some electronic appliances.

The RPC structure allows services to be called/requested
without the calling process having to know or specify where the
service is physically provided, what system or device will service
the request, or how the service request will be fulfilled. This
feature supports families of services that may be scaled and/or
customized for specific applications. Service requests can be

forwarded and serviced by different processors and/or different

- 289 -

Petitioner Apple Inc. - Exhibit 1006, p. 1020

(9]

10

15

20

WO 98/09209 . PCT/US97/15243

sites as easily as they can be forwarded and serviced by a local
service system. Since the same RPC interface is used by ROS
602 in the preferred embodiment to request services within and
outside of the operating system, a request for distributed and/or

remote processing incurs substantially no additional operating

. system overhead. Remote processing is easily and simply

Integrated as part of the same service calls used by ROS 602 for

requesting local-based services. In addition, the use of a

~ standard RPC interface {"RSI“) allows ROS 602 to be

modularized. with the different modules presenting a
standardized interface to the remainder of the operating svstem.
Such modularization and standardized interfacing permits
different vendors-operating system programmers to create
different portions of the operating system independently, and ._
also allows the functionality of ROS 602 to be flexibly updated
and/or changed based on different requirements and/or

platforms.

RPC manager 732 manages the RPC interface. It receives
service requests in the form of one or more "Remote Procedure
Calls* (RPCs) from a service requestor, and routes the service
requests to a service provider(s) that can service the request. For
example, when rights operating system 602 receives a request

from a user application via user API 682, RPC manager 732 may

- 290 -

Petitioner Apple Inc. - Exhibit 1006, p. 1021

10

15

20

WO 98/09209

route the service request to an appropriate service through the
"RPC service interface* ("RSI“). The RSI is an interface between
RPC manager 732, service requestors, and a resource that will

accept and service requests.

The RPC interface (RSI) is used for several major ROS 602

subsystems in the preferred embodiment.

RPC services provided by ROS 602 in the preferred

!
embodiment are divided into subservices, 1.e.. individual
instances of a specific service each of which may be tracked
individually by the RPC manager 732. This mechanism permits
multiple instances of a specific service on higher throughput
systems while maintaining a common interface across a
spectrum of impiementations. The subservice concept extends to

supporting multiple processors, multiple SPEs 503, multiple

HPEs 655, and multipie communications services.

The preferred embodiment ROS 602 provides the following
RPC based service providers/requestors (each of which have an
RPC interface or "RSI“ that communicates with RPC manager
732):

SPE device driver 736 (this SPE device driver is connected

to an SPE 503 m the preferred embodiment);

-291-

Petitioner Apple Inc. - Exhibit 1006, p. 1022

PCT/US97/15243

WO 98/09209 - PCTNUS97/15243

HPE Device Driver 738 (this HPE device driver is
connected to an HPE 738 in the preferred
embodiment);

Notification Service 740 (this notification service is

5 connected to user notification interface 686 in the
preferred embodiment); | |
API Service 742 (this API service is connected to usér API
682 in the preferred embodiment;
Redirector 684;

10 . Secure Database (File) Manager 744 (this secure database
or ﬁlé manager 744 may connect to and interact
with commercial database manager 730 and secure
files 610 through a cache manager 746, a database
interfa;e 748, and a database driver 750);

15 Name Services Manager 752;

Outgoing Administrative Objects Manager 754;

Incoming Administrative Objects Manager 756;

a Gateway 734 to object switch 734 (this is a path used to
allow direct communication between RPC manager

20 732 and Object Switch 734); and

Communications Manager 776.

The types of services provided by HPE 655, SPE 503, User
Notification 686, API 742 and Redirector 684 have already been

-292 -

Petitioner Apple Inc. - Exhibit 1006, p. 1023

WO 98/09209 PCT/US97/15243

described above. Here is a brief description of the type(s) of

services provided by OS resources 744, 752, 754, 756 and 776:
Secure Database Manager 744 services requests for access

to secure database 610;

5 Name Services Manager 752 services requests relating to

user, host, or service identification;
Outgoing Administrative Objects Manager 754 services
requests relating to outgoing administrative objects;
Wmmmmw services
10 | requests relaAting to incoming administrative objects;

and

Communications Manager 776 services requests relating

to communications between electronic appliance 600

and the outside world.

15
Object Switch 734
Object switch 734 handles, controls and communicates
kboth locally and remotely) VDE objects 300. In the preferred
embodiment, the object switch ma& include the followingl
20 elements:

a stream router 758;
a real time stream interface(s) 760 (which may be
connected to real time data feed(s) 694);

a time dependent stream interface(s) 762;

-293 -

Petitioner Apple Inc. - Exhibit 1006, p. 1024

WO 98/09209 PCT/US97/15243

10

15

20

a intercept 692;
. a container manager 764;

one or more routing tables 766; and

buffering/storage 768.
Stream router 758 routes to/from "real time* and "time
independent“ datva streams handled respectively by real time
streaxﬁ interface(s) 760 and time dependent stream interface(s)
762. Intercept 692 intercepts /O requests that involve real-time
information streams such as, for example, real time feed 694.
The routing performed by stream router 758 may be determined
by routing tables 766. Buffering/storage 768 provides temporary
store-and-forward, buffering and related services. Container
manager 764 may 1typically in conjunction with SPE 503)
perform processes on VDE objects 300 such as constructing,

deconstructing, and locating portions of objects.

Object switch 734 communicates through an Object Switch
Interface ("OSI“) with other parts of ROS 602. The Object
Switch Interface may resemble, for example, the interface for a
Unix socket in the preferred embodiment. Each of the "OSI*
interfaces shown in Figure 12 have the ability to communicate

with object switch 734.

-294 -

Petitioner Apple Inc. - Exhibit 1006, p. 1025

WO 98/09209 PCT/US97/15243
ROS 602 includes the following object switch service
providers/resources {(each of which can communicate with the
object switch 734 through an "OSI):
Outgoing Administrative Objects Manager 754;

Incoming Administrative Objects Manager 756:

n

Gateway 734 (which may translate RPC calls into object
switch calls and vice versa so RPC manager 732 may
communicate with object sﬁtch 734 or any other
element having an OSI to, for example, provide

10 | and/or request services);

External Services Manager 772;

Object Submittal Manager 774; and

Communications Manager 776.

15 Briefly,

Qbject Repository Manager 770 provides services relating

to access to object repository 728;

External Services Manager 772 provides services relating

to requesting and receiving services externally, such

20 as from a network resource or another site;

Object Submittal Manager 774 provides services relating

to how a user application may interact with object

switch 734 (since the object submittal manager

- 295 -

Petitioner Apple Inc. - Exhibit 1006, p. 1026

WO 98/09209 PCT/US97/15243

provides an interface to an application program 608,
it could be considered part of user API 682); and

Communications Manager 776 provides services relating

to communicating with the outside world.

In the preferred embodiment, communications manager

776 may include a network manager 780 and a mail >gateway
(manager) 782. Mail gateway 782 may include one or more mail
filters 784 to, for example, automatically route VDE related

10 electronic mail between object switch 734 and the outside world
electronic mail services. External Services Manager 772 may
interface to communications manager 776 through a Service
Transport Layer 786. Service Transport Layer 786a may enable .
External Services Manager 772 to communicate with external

15 computers and systems usiné various protocols managed using

the service transport layer 786.

The characteristics of and interfaces to the various
subsystems of ROS 680 shown in Figure 12 are described in more
20 detail below.

RPC Manager 732 and Its RPC Services Interface
As discussed above, the basic system services provided by

ROS 602 are invoked by using an RPC service interface (RSI).
- 296 -

Petitioner Apple Inc. - Exhibit 1006, p. 1027

WO 98/09209

@1}

10

15

20

PCT/US97/15243

This RPC service interface provides a generic, standardized
interface for different services systems and subsystems provided

by ROS 602.

RPC Manager 732 routes RPCs requesting services to an
appropriate RPC service interface. In the preferred embodiment,
upon receiving an RPC call, RPC manager 732 determines one
or more service managers that are to service the request.i RPC
manager 732 then routes a service request to the appropriate

service(s) (via a RSI associated with a service) for action by the

- appropriate service manager(s).

For example, if a SPE 503 is to service a request, the RPC
Manager 732 routes the request to RSI 736a, which passes the
request on to SPE device driver 736 for forwarding to the SPE.
Similarly, if HPE 655 is to service the request, RPC Manager 732
routes the request to RSI 738a for forwarding to a HPE. In one
preferred embodiment, SPE 503 and HPE 655 may perform
essentially the same services so that RSIs 736a, 738a are
different instances of the same RSI. Once é service request has
been received by SPE 503 (or HPE 655), the SPE (or lHPE)
typically dispatches the request internally using its own internal
RPC manager (as will be discussed shortly). Processes within

SPEs 503 and HPEs 655 can also generate RPC requests. These

- 297 -

Petitioner Apple Inc. - Exhibit 1006, p. 1028

10

20

WO 98/09209 PCT/US97/15243

requests may be processed internally by a SPE/HPE. or if not
internally serviceable. passed out of the SPE/HPE for dispatch
by RPC Manager 732. |

Remote (and local) procedure calls may be dispatched by a
RPC Manager 732 using an "RPC Services Table.* An RPC
Services Table describes where requests for specific services are
to be routed for processing. Each row of an RPC Services ATable
in the préferred embodiment contains a services ID, the location
of the service. and an address to which control will be passed to
service a request. An RPC Services Table may also include |
control information that indicates which instance of the RPC
dispatcher controls the service. Both RPC Manager 732 and any
attached SPEs 503 and HPEs 655 may have symmetric copies of
the RPC Services Table. If an RPC service is not found in the
RPC services tables, it is either rejected or passed to external |

services manager 772 for remote servicing.

Assuming RPC manager 732 finds a row corresponding to
the request in an RPC Services Table, it may dispatch the
request to an appropriate RSI. The receiving RSI accepts a
request from the RPC manager 732 (which may have looked up

the request in an RPC service table), and processes that request

- 298 -

Petitioner Apple Inc. - Exhibit 1006, p. 1029

10

15

20

WO 98/09209

in accordance with internal priorities associated with the specific

service.

In the preferred embddiment, RPC Service Interface(s)

-

“supported by RPC Manager 732 may be standardized and

published to support add-on service modules developed by third
party vendors, and to facilitate scalability by making it easier to
program ROS 602. The preferred embodiment RSI closely
follows the DOS and Unix device driver models for block devices
S0 tk;at common code may be developed for many platforms with
minimum effort. An example of one possible set of common entry

points are listed below in the table.

Interface call Description

SVC_LOAD Load a service manager and return
its status.

SVC_UNLOAD Unload a service manager.

SVC_MOUNT Mount (load) a dynamically loaded
subservice and return its status.

SVC_UNMOUNT Unmount (unload) a dynamically
loaded subservice.

SVC_OPEN Open a mounted subservice.

- SVC_CLOSE Close a mounted subservice.
SVC_READ Read a block from an opened
' subservice.
- 299 -

Petitioner Apple Inc. - Exhibit 1006, p. 1030

PCT/US97/15243

10

20

WO 98/09209 PCT/US97/15243

SVC_WRITE Write a block to an opened
subservice.
SVC_IOCTL Control a subservice or a service
' manager.
Load

In the preferred embodiment, services (and the associated
RSIs they present to RPC manager 732) may be activated during
boot by an installation boot process that issues an RPC LOAD.
This process reads an RPC Services Table from a configuration
file, loads the service module if it is run time loadable (as
opposed to being a kernel linked device driver), and then calls

the LOAD entry point for the service. A successful return from

‘the LOAD entry point will indicate that the service has properly

loaded and is ready to accept requests.

RPC LOAD Call Example: SVC_LOAD (long service_id)

| This LOAD interface call is called by the RPC manager
732 during rights operating system 602 initialization. It permits
a service manager to load any dynamically loadable components
and to initialize any device and memory required by the service.
The service number that the service is loaded as is passed in as

service_id parameter. In the preferred embodiment, the service

- 300 -

Petitioner Apple Inc. - Exhibit 1006, p. 1031

[¥/]

10

15

20

WO 98/09209 PCT/US97/15243

returns 0 is the initialization process was completed successfully

or an error number if some error occurred.

Mount

Once a service has been loaded, it may not be fully
functional for all subservices. Some subservices (e.g.,
communications based services) may require the establishment
of additional connections, or they may require additional

modules to be loaded. If the service is defined as "mountable,” a

* RPC manager 732 will call the MOUNT subservice entry point

with the requested subservice ID prior to opening an instance of

a subservice.

RPC MOUNT Call Example:

SVC_MOUNT (long service_id, long subservice_id, BYTE
*buffer)

This MOUNT interface call instructs a service to make a
specific subservice‘ ready. This may include services related to
networking, communications, other system services, or external
resources. The service_id and subservice_id- parameters may
be specific to the specific service being requested. The buffer
parameter is a memory address that references a controlll

structure appropriate to a specific service.

-301 -

Petitioner Apple Inc. - Exhibit 1006, p. 1032

WO 98/09209 PCT/US97/15243
Open
Once a service is loaded and "mounted,“ specific instances
of a service may be "opened” for use. "Opening“ an instance of a
service may allocate memory to store control and status
5 information. For example, in a BSD socket based network
connection, a LOAD call will initialize the software and protocol
control tables, a MOUNT call will specify networks and
hardware resources. and an OPEN will actually open a socket to
a reméte.'mstallation.
10
Some serices. such as cpmmercial database manager 730
that underlies the secure database service, may not be
"mountable.” [n this casei. a LOAD call will make a connection to
a database manager 720 and ensure that records are readable.
15 An OPEN call may create instances of internal cache manager

746 for various classes of records.

RPC OPEN Call Example: _
~ SVC_OPEN (long service_id, long subservice_id, BYTE
20 *buffer, int (*receive) (long request_id))
This OPEN interface call instructs a service to open a -
specific subservice. The service_id and subsembe_z'a

parameters are specific to the specific service being requested,

-302 -

Petitioner Apple Inc. - Exhibit 1006, p. 1033

10

15

20

PCT/US97/15243

WO 98/09209

and the buffer parameter is a memory address that references a

control structure appropriate to a specific service.

The optional receive parameter is the address of a
notification callback function that is called by a service whenever
a message is ready for the service to retrieve it. One call to this
address is made for each incoming message received. If the
caller passes a NULL to the interface, the software will not

generate a callback for each message.

Close, Unmount and Unload A _
The converse of the OPEN, MOUNT, and LOAD calls are
CLOSE, UNMOUNT, and UNLOAD. These interface calls

release any allocated resources back to ROS 602 (e.g., memory

manager 680a).

RPC CLOSE Call Example: SVC_CLOSE (long sve_handle)

This LOAD interface call closes an open service "handle.
A service "handle“ describes a service and subservice that a user
wants to close. The call returns 0 if the CLOSE request succeeds

(and the handle is no longer valid) or an error number.

-303 -

Petitioner Apple Inc. - Exhibit 1006, p. 1034

10

15

20

WO 98/09209 PCT/US97/15243

RPC UNLOAD Call Example: SVC_UNLOAD (void)

This UNLOAD interface call is called by a RPC manager
732 during shutdown or resource reallocation of rights operating
system 602. It permits a service to close any open connections,
flush buffers, and to release any operating system resources that

it may have allocated. The service returns 0.

RPC UNMOUNT Call Example: SVC_UNMOUNT (long
service_id, long subservice_id)

This UNMOUNT interface call instructs a service to
deactivate a specific subservice. The service_id and
subservice_id parameters are specific to the specific service
being requested, and must have been previously mounted using-
the SVC_MOUNT!) request. The call releases all system

resources associated with the subservice before it returns.

Read and Write

The READ and WRITE calls provide a basic mechanism
for sending information to and receiviﬁg respbnses from a
mounted and opened service. For example, a service has
requests written to it in the form of an RPC request, and makes
its response available to be read by RPC Manager 732 as they

become available.

-304 -

Petitioner Apple Inc. - Exhibit 1006, p. 1035

10

15

20

WO 98/09209 PCT/US97/15243

RPC READ Call Example:
SVC_READ (long svc_handle, long request_id, BYTE
*buffer, long size)

This READ call reads a message response from a service.

. The svc_handle and request_id parameters uniquely identify a

request. The results of a request will be stored in the user
specified buffer up to size bytes. If the buffer is too small, the
first size bytes of the message will be stored in the buffer and an

error will be returned.- -

If a message response was returned to the caller’s buffer
correctly, the function will return 0. Otherwise, an error message

will be returned.

RPC WRITE Call Example:
SVC_write (long service_id, long subservice_id, BYTE

*buffer, long size, int (*receive) (long request_id)

* This WRITE call writes a message to a service and
subservice specified by the service_id/subservice_id parameter
pair. The message is stored in buffer (and usually conforms to
the VDE RPC message format) and is size bytes long. The
function returns the request id for the message (if it was
accepted for sending) or an error number. If a user specifies the

receive callback functions, all messages regarding a request will

-305 -

Petitioner Apple Inc. - Exhibit 1006, p. 1036

10

15

20

WO 98/09209

. PCT/US97/15243
be sent to the request specific callback routine instead of the

generalized message callback.

Input/Output Control

The IOCTL ("Input/Output ConTroL*) call proviﬂes a
mechanism for querying the status of and controlling a loaded
service. Each service tvpe will respond to specific general IOCTL
requests, all required class [OCTL requests, and service specific

IOCTL requests.

RPC IOCTL Call Example: ROI_SVC_IOCTL (long service_id,
long subservice_id.
int command. BYTE *buffer)

~N

This IOCTL function provides a generalized control
interface for a RSI. A user specifies the service_id parameter
and an optional subservice_id parameter that they wish to
control. They specify the control command parameter(s), and a
buffer into/from which the command parameters may be
written/read. An example of a list of commands and ﬁhe

appropriate buffer structures are given below.

- 306 -

Petitioner Apple Inc. - Exhibit 1006, p. 1037

10

15

20

WO 9809209 PCT/US97/15243

Command Structure Description

GET_INFO SVC_INFO Returns information
about a
service/subservice.

GET_STATS | SVC_STATS | Returns current statistics
about a
service/subservice.

CLR_STATS None Clears the statistics
about a
service/subservice.

* * * * *

Now that a generic RPC Service Interface provided by the
preferred embodiment has been described, the following

description relates to particular examples of services provided by

ROS 602.

SPE Device Driver 736

SPE device driver 736 provides an inAterface between ROS
602 and SPE 503. Since SPE 503 in the preferred embodiment
runs within the confines of an SPU 500, one aspect of this device
driver 736 is to provide low level communications services with
the SPU 500 hardware. Another aspect of SPE device driver 736

is to provide an RPC service interface (RSI) 736a particular to

- 307 -

Petitioner Apple Inc. - Exhibit 1006, p. 1038

10

15

20

WO 98/09209 PCT/US97/15243

SPE 503 (this same RSI may be used to commum'caﬁe with HPE
655 through HPE device driver 738).

SPE RSI 736a and driver 736 isolates calling processes
within ROS 602 (or external to the ROS) from the detailed
service provided by the SPE 503 by providing a set of basic
interface points providing a concise function set. This has
several advantages. For example, it permits a full line of scaled
SPUs 500 that all provide common functionality to the outside
world but which lma_v differ in detailed internal strucfure and
architecture. SPU 500 characteristics such as the amount of
memory resident in the device, processor speed, and the number
of services supported within SPU 500 may be the decision of the
specific SPU manufacturer, and in any event may differ from oﬁe
SPU configuration to another. To maintain compatibility, SPE
device driver 736 and the RSI 736a it provides conform to a baﬁic

_common RPC interface standard that "hides“ differences between

detailed configurations of SPUs 500 and/or the SPEs-503 they

may support.

To provide for such compatibility, SPE RSI 736a in the
preferred embodiment follows a simple block based standard. In
the preferred embodiment, an SPE RSI 736a may be modeled

after the packet interfaces for network Ethernet cards. This

- 308 -

Petitioner Apple Inc. - Exhibit 1006, p. 1039

10

15

20

PCT/US97/15243

WO 98/09209

standard closely models the block mode interface characteristics |

of SPUs 500 in the preferred embodiment.

An SPE RSI 736a allows RPC calls from RPC manager 732
to access specific serviées provided by an SPE 736. To do this,
SPE RSI 736a provides a set of "service notification address
interfaces.“ These provide interfaces to individual services
provided by SPE 503 to the outside world. Any calling process
within ROS 602 may access these SPE-provided services by
directing an RPC call to SPE RSI 736a and specifying a
corresponding "service notification address® in an RPC call. The
specified "service notification address“ causes SPE 503 to
internally route an RPC call to a éarticular service within an
SPE. The following is a listing of one example of a SPE service
breakdown for which individual service notification addresses
may be provided:

Channel Services Manager

Authentication Manager/Secure Communications Manager

Secure Database Manager

The Channel Services Manager is the principal service

provider and access point to SPE 503 for the rest of ROS 602.

Event processing, as will be discussed later, is primarily

managed (from the point of view of processes outside SPE 503)

- 309 -

Petitioner Apple Inc. - Exhibit 1006, p. 1040

10

15

20

WO 98/09209) PCT/US97/15243

by this service. The Authentication Manager/Secure
Communications Manager may provide login/logout services for
users of ROS 602, and provide a direct service for managing
communications (typically encrypted or otherwise protected)
related to component assemblies 690, VDE objects 300, etc.
Requests for display of information (e.g., value remaining in a
financial budget) may be provided by a direct service request to a
Secure Database Manager inside SPE 503. The instances of
Authentication Manager/Secure Communications Manager and
Secure Database Manager. if available at all, may provide only a
subset of the information and/or capabilities available to
processes operating inside SPE 503. As stated above, most
(potentially all) service requests entering SPE are routed to a
Channel Services Manager for processing. As will be discussed
in more detail later on, most control structures a.nd 'event |
processing logic is associated with component assemblies 690

under the management of a Channel Services Manager.

The SPE 503 must be accessed through its associated SPE
driver 736 in this examéle. Generally, calls to SPE driver 736
are made in response to RPC calls. In this example, SPE driver
RSI 736a may translate RPC calls directéd to control or ascertain

information about SPE driver 736 into driver calls. SPE driver

- 310 -

Petitioner Apple Inc. - Exhibit 1006, p. 1041

10

15

WO 98/09209

PCT/US97/15243

RSI 736a in conjunction with driver 736 may pass RPC calls

directed to SPE 503 through to the SPE,

The following table shows one example of SPE device

driver 736 calls:
Lntry Point Description
SPE_info() Returns summary information

about the SPE driver 736 (and SPE
503)

BPE_initialize_interface()

Initializes SPE driver 736, and sets
the default notification address for
received packets.

SPE_terminate_interface()

Terminates SPE driver 736 and
resets SPU 500 and the driver 736.

S5PE_reset_interface()

Resets driver 736 without resetting

SPE_get_stats()

SPU 500.

Return statistics for notification
addresses and/or an entire driver
736.

SPE_clear_stats()

Clears statistics for a specific
notification address and/or an
entire driver 736.

SPE_set_notify() | .

Sets a notification address for a
specific service ID.

SPE_get_notify()

Returns a notification address for a
specific service ID.

SPE_tx_pkt()

Sends a packet (e.g., containing an
RPC call) to SPE 503 for

processing.

-311-

Petitioner Apple Inc. - Exhibit 1006, p. 1042

10

15

20

25

WO 98/09209 PCT/US97/15243
' The following are more detailed examples of each of the

SPE driver calls set forth in the table above.

Example of an "SPE Information‘Driver Call: SPE._info (void)

This function returns a pointer to an SPE_INFO data
structure that defines the SPE device driver 736a. This data
structure may provide certain information about SPE device
driver 736, RSI 736a and/or SPU 500. An example of a
SPE_INFO structure is described below:

Version Number/ID for SPE
Device Driver 736

Version Number/ID for SPE
Device Driver RSI 736

Pointer to name of SPE Device
Driver 736

Pointer to ID name of SPU 500

Functionality Code Describing
SPE Capabilities/functionality

Example of an SPE "Initialize Interface*Driver Call:

SPE_initialize_interface (int (fen *receiver)(void))

.312-

Petitioner Apple Inc. - Exhibit 1006, p. 1043

10

15

20

WO 98/09209 PCT/US97/15243
A receiver function passed in by way of a parameter will be’
called for all packets received from SPE 503 unless their
destination service is over-ridden using the set_notif57) call. A
réceiver function allows ROS 602 to specify a format for packet

communication between RPC manager 732 and SPE 503.

This function returns "0“ in the preferred embodiment if
the initialization of the interface succeeds and non-zero if it fails.
If the function fails, it will return a code that describes the

reason for the failure as the value of the function.

Example of an SPE "Terminate InterfaceDriver Call:
SPE_terminate_interface (void)

In the preferred embodiment, this function shuts down T
SPE Driver 736, clears all notification addresses, and terminates
all outstanding requests betwéen an SPE and an ROS RPC
manager 732. It also resets an SPE 503 (e.g., by a warm reboot.

of SPU 500) after all requests are resolved.

Termination of driver 736 should be performed by ROS
602 when the operating system is starting to shut down. It may
also be necessary to issue this call if an SPE 503 and ROS 602
get So far out of synchronization that all processing in an SPE

must be reset to a known state.

-313 -

Petitioner Apple Inc. - Exhibit 1006, p. 1044

10

15

20

25

WO 98/09209 ' PCT/US97/15243

Example of an SPE "Reset Interface*Driver Call:
SPE_reset_interface (void)

This function resets driver 736, terminates all outstanding
requests between SPE- 503 and an ROS RPC manager 732, and
clears all statistics counts. It does not reset the SPU 500, but

simply restores driver 736 to a known stable state.

Example of an SPE "Get StatisticaDriver Call: SPE_get_stats
(long service_id)

This function returns statistics for a specific service
notification interface or for the SPE driver 736 in general. It
returns a pointer to a static buffer that contains these statistics
or NULL if statistics are unavailable (either because an interface
is not initialized or because a receiver address was not specified).
An example of the SPE_STATS structure may have the following
definition: |

Service id
gﬁckets X
packets tx
bytes rx .
bytes tx

- 314 -

Petitioner Apple Inc. - Exhibit 1006, p. 1045

10

15

20

WO 98/09209 PCT/US97/15243

, ﬂ # errors tx ‘
q # reguests tX | |
req tx completed
reg tx cancelled

#reqrx

req rx completed
L_# reg' rx cancelled

If a user specifies a service ID, statistics associated with
packets sent by that service are returned. If a user specified 0 as
the parameter, the total packet statistics for the intérface are

returned.

- Examﬁle of an SPE "Clear Statistica®Driver Call:
SPE_clear_stats (long service_id)

This function clears statistics associated with the SPE
service_id specified. If no service_id is specified (i.e., the caller
passes in 0), global statistics will be cleared. The function
returns 0 if statistics are successfully cleared or an error number

if an error occurs.

-315-

Petitioner Apple Inc. - Exhibit 1006, p. 1046

10

15

20

WO 98/09209 PCT/US97/15243

Example of anb SPE "Set Notification Address"Driver Call:
SPE_set_notify (long service_id, int (fen*receiver) (void))

This function sets a notification address (receiver) for a
specified service. If the notification address is set to NULL, SPE
device driver 736 will send notifications for packets to the

specified service to the default notification address.

Example of a SPE "Get Notification Address™Driver Call:
SPE_get_notify (long service_id)
This function returns a notification address associated

with the named service or NULL if no specific notification

address has been specified.

Example of an SPE "Send Packet*Driver Call:
send_pkt (BYTE *buffer, long size, int (far *receive) (void))
This function sends a packet stored in buffer of "length“
size. It returns 0 if the packet is sent successfully, or returns an

error code associated with the failure.

Redirector Service Maﬁager 684

The redirector 684 is a piece of systems integration
software used principally when ROS 602 is provided by "adding
on“ to a pre-existing operating system or when "transparent”

operation is desired for some VDE functions, as described earlier.

-316 -

Petitioner Apple Inc. - Exhibit 1006, p. 1047

10

15

20

PCT/US97/15243

WO 98/09209

In one embodiment the kernel 680, part of communications

manager 776, file system 687, and part of API service 742 may

-be part of a pre-existing operating system such as DOS,

Windovés, UNIX, Macintosh System, 0S9, PSOS, 0S/2, or other
operating system platform. The remainder of ROS 602
subsystems shown in Figure 12 may be provided as an "add on“
to a preexisting operating system. Once these ROS subsystems
have been supplied .and "added on,“ the integrated whole

comprises the ROS 602 shown in Figure 12.

.In a scenario of this type of integration, ROS 602 will
continue to be supported by a preeﬁsting OS kernel 680, but
may supplement (or even substitute) many of its functions by
providing additional add-on pieces such as, for example, a virtual

memory manager.

Also in this integration scenario, an add-on portion of API

;emc; ;742 that integrates readily with a preexisting API service
is provided to support VDE function calls. A pre-existing API
service integrated with an add-on portion supports an enhanced
set of operating system calls including both calls to VDE
functions 604 and calls to functions 606 other than VDE

functions (see Figure 11A). The add-on portion of API service

- 317 -

Petitioner Apple Inc. - Exhibit 1006, p. 1048

10

15

20

WO 98/09209 | PCT/USY/15243

742 may translate VDE function calls into RPC calls for routing

by RPC manager 732.

ROS 602 may use a standard communications manager
776 provided by the preexisting operating system, or it may
provide "add ons“ and/or substitutions to it that may be readily
integrated into it. Redirector 684 may provide this integration

function.

* This leaves a requirement for ROS 602 to integrate with a
preexisting file system 687. Redirector 684 provides this

integration function.

In this integration scenario, file system 687 of the
preexisting operating system is used for all accesses to secondary
storage. However, VDE objects 300 may be stored on secondary
storage in the form of external object repository 728, file system
687, or remotely accessible through communications manager
776. When object switch 734 wants to access external object |
repository 728, it makes a requést to the object repository
manager 776 that then routes the request to object repository
728 or to redirector 692 (which in turn éccesses the object in file
system 687). |

-318-

Petitioner Apple Inc. - Exhibit 1006, p. 1049

10

15

20

WO 98/09209) PCT/US97/15243

Generally, redirector 684 maps VDE object repository 728
content into preexisting calls to file system 687. The redirector
684 provides preexisting OS level information about a VDE
object 300, including mapping the object. into a preexisting OS’s
name space. This permits seamless access to VDE protected
content using "normal* file system 687 access techniques

provided by a preexisting operating system.

In the integrarion scenarios discussed above, each
preexisting target (S fiie system 687 has different interface
requirements by which the redirector me}__rc_banism 684 may be
"hooked.” In general. since all commercially viable operating
svstems today provide support for network based volumes, file
systemns, and other devices (e.g., printers. modems, etc.), the
redirector 684 may use low level network and file access "hooks*
to integrate with a preexisting operating svstem. "Add-ons“ for
supporting VDE functions 602 may use these existing hooks to

integrate with a preexisting operating system.

User Notification Service Manager 740

User Notification Service Manager 740 and associated user
notification exception interface ("pop up“) 686 provides ROS 602
with an enhanced ability to communicate with a user of

electronic appliance 600. Not all applications 608 may be

-319 -

Petitioner Apple Inc. - Exhibit 1006, p. 1050

WO 98/09209 . PCT/US97/15243

designed to respond to messaging from ROS 602 passed through |
API 682, and it may in any event be important or desirable to
give ROS 602 the ability to communicate with a user no matter
what state an application is in. User notification services
5 manager 740 and interface 686 provides ROS 602 with a

mechanism to communicate directly with a user, instead of or in
addition to passing a return call through API 682 and an |
application 608. This is similar, for example, to the ability of the
Windows operating system to djspléy a user message in a "dialog

10 box“ that displays “on top of* a running app'lican'on urespective

of the state of the application.

The User Notification 686 block in the preferred
embodiment may be implemented as application code. The
15 implementation of interface 740a is preferably built over
notification service manager 740. which may be implemented as

part of API service manager 742. Notification services manager

740 in the preferred embodiment provides notification support to

disp.atch specific notifications to an appropriate user process via
20 the appropriate API retufn, or by another path. This mechanism

permits notifications to be routed to any authorized process—not

Jjust back to a process that specified a notification mechanism.

- 320 -

Petitioner Apple Inc. - Exhibit 1006, p. 1051

PCT/US97/15243

WO 98/09209

10

15

20

API Service Manager 742

The preferred embodiment AP Servicé Manager 742 is
implemented as a serviée interface to the RPC service manager
732. All user API requests are built on top of this basic interface.
The API Serv-ice Manager 742 preferably provides a service

instance for each running user application 608.

Most RPC calls to ROS functions supported by API Service
Ma.nagér 742 in the preferred embodiment may map directly to
service calls with some additional parameter checking. This
mechanism permits developers to create their own extended API

libraries with additional or changed functionality.

In the scenario discussed above in which ROS 602 is
formedrby integrating "add ons* with a preexisting operating
systexr;, the API service 742 code may be shared (e.g., resident in
a host environment like a Windows DLL), or it may be directly
linked with an applications’s code— depending on an application
programmer’s implementation decision, and/or the type of
electronic appliance 600. The Notification Service Manager 740
may be implemented within API 682. These components
interface with Notification Service component 686 to provide a

transition between system and user space.

- 321 -

Petitioner Apple Inc. - Exhibit 1006, p. 1052

WO 98/09209 ’ . PCT/US97/15243

v Secﬁre Database Service Manager ("SDSMJ 744
There are at least two ways that may be used for
managing setI:ure database 600:
. a commercial database approach, and
3 . a site record number approach.
Which way is chosen may be based on the number of records that

a VDE site stores in the secure database 610.

The commercial database approach uses a commercial
10 database to store securely wr\appered records in a commercial |
database. This wav mav he preferred when there are a large
number of records ﬁhat are stored in the secure database 610
This way provides high speed access, efficient updates, and easy
integration to host svstems at the cost of resource usage (most

15 commercial database managers use many system resources).

The site record number approach uses a "site record
number“ ("SRN*) to locate records in the system. This scheme is
preferred when the number of records stored in the secure

20 database 610 is small and is not expected to change extensively
over time. This way provides efficient resources use with limited
update capabilities. SRNs permit further grouping of similar

data records to speed access and increase performance.

-322 -

Petitioner Apple Inc. - Exhibit 1006, p. 1053

10

15

20

WO 98/09209 PCT/US97/15243

Since VDE 100 1is highly scalable, different electronic
appliances 600 may suggest one way more than the other. For
examble, in limited emﬁronmenté like a set top, PDA, or other
low end électrom’c appliance, the SRN scheme may be preferred
because it limits the amount of resources (memory and
processor) required. When VDE is deployed on more capable
electronic appliances 600 such as desktop computers, servers and
at clearinghouses. the commercial database scheme may be more
desirable because it provides high performance in environments

where resources are not limited.

One difference between the database records in the two
approaches is whether the récords are specified using a full VDE
ID or SRN. To translate between the two schemes, a SRIN
reference may be replaced with a VDE ID database reference
v_vherever it occurs. Similarly, VDE IDs that are used as indices
or references to other iterns may be replaced by the appropriate

SRN value.

In the preferred embodiment, a commercially available
database manager 730 is used to maintain secure database 610.
ROS 602 interacts with commercial database manager 730
through a database driver 750 and a database interface 748. The

database interface 748 between ROS 602 and external, third

-323 -

Petitioner Apple Inc. - Exhibit 1006, p. 1054

WO 98/09209 - PCT/US97/15243

[9]]

10

15

20

party database vendors’ commercial database manager 730 may
be an open standard to permit any database vendor to implement

a VDE compliant database driver 750 for their products.

ROS 602 may encrypt each secure database 610 record so
that a VDE-provided security layer is "on top of* the commercial
database structure. In other words, SPE 736 may write secure
records in sizes and formats that may be stored within a
database record structure supported by co@ercid database .
manager 730. Commercial database manager 730 may then be
used to organize. store. and retrieve the records. In some
embodiments. it may be desirable to use a proprietary and/or
newly created database manager in place of comfnercial database
manager 730. However, the use of commercial database
manager 730 may provide certain advantages such as, for
example, an ability to use already existing database

management product(s).

The Secure Database Services Manager (”SDSM“) 744
makes calls to an underlying commercial database manager 730
to obtain, modify, and store records in secure data.base 610. In
the preferred embodiméﬁt, "SDSM* 744 provides a layer "on top
of* the structure of commercial datébase manager 730. For

example, all VDE-secure information is sent to commercial

- 324 -

Petitioner Apple Inc. - Exhibit 1006, p. 1055

WO 98/09209 PCT/US97/15243

database manager 730 in encrypted form. SDSM 744 in
_ conjunction with cache manager 746 and database interface 748
may provide record management, caching (using cache manage;_
7146), and related services (on top of) commercial database
5 systems 730 and/or record managers. Database Interface 748

and cache manager 746 in the preferred embodiment do not
present their own RSI, but rather the RPC Manager 732
communicates to them through the Secure Database Ma.nager
RSI744&

10 |
Name Services Manager 752

The Name Services Manager 752 supports three

subservices: user name services, host name services, and
services name services. User name ;ervices provides mapping ~

15 ~ and lookup between user name and user ID numbers, and may
also support other aspects of user-based resource and
information security. Host name services provides mapping and
lookup between the names (and other information, such as for
example address, communications connection/routiﬁg

20 information, etc.) of other processing resources (e.g., other host
electronic appliances) and VDE ﬁode IDs. Services name service
provides a mapping and lookup between services names and

other pertinent information such as connection information (e.g.,

- 325 -

Petitioner Apple Inc. - Exhibit 1006, p. 1056

WO 98/09209 : : h PCT/US97/15243

remotely available service routing and contact information) and

service IDs.

Name Services Manager 752 in the preferred embodiment
5 is connected to External Services Manager 772 so that it may
provide external service routing information directly to the
external services manager. Name services manager 752 is also
connected to secure database manager 744 to permit ti:e name
services manager 732 to access name sérvjcés records stored

10 within secure database 610

External Services Manager 772 & Services Transport Layer 786
The External Services Manager 772 provides protocol

support cépabilities to interface to external service providers.

15 External services manager 772 may, for example, obtain external
service routing information from name services manager 752,
and then initiate contact to a particular external service (e.g.,
another VDE electronic appliance 600, a financial clearinghouse,
etc.) through communications manager 776. External services

20 manager 772 uses a service transport layer 786 to supply
communications protocols and other information necessary to

provide communications.

-326 -

Petitioner Apple Inc. - Exhibit 1006, p. 1057

WO 98/09209 © PCTNUS97/15243

10

20

There are several imporcant-examples of the use of
External Services Manager 772. Some VDE objects may have
some or all of their content stored at an Object Repository 728 on
an electronic appliance 600 other than the one opefated by a user
who has, or wishes to obtain, some usage rights to such VDE
objects. In this case, External Services Manager 772 may
manage a connection to the electronic appliance 600 wheré the
VDE objects desired (or their content) is stored. In addition, file
system 687 mayv be a network file system (e.g., Netware,
LANtastic. NFS. etc.> that allows access to VDE objects using

redirecter 684.)bject switch 734 also supports this capability.

If External Services Manager 772 is used to access VDE
objects, many different techniques are possible. For example, the
VDE objects may be formatted for use with the World Wide Web
protocols (HTML. HTTP, and URL) by including relevant
headers, content tags, host ID to URL conversion (e.g., using
Name Services Manager 752) and an HTTP-aware instance of

Services Transport Layer 786.

In other examples, External Services Manager 772 may be
used to locate, connect to, and utilize remote event processing
services; smart agent execution services (both to provide these

services and locate them); certification services for Public Keys;

- 327 -

Petitioner Apple Inc. - Exhibit 1006, p. 1058

WO 98/09209 . PCT/US97/15243

10

20

rémote Name Services: and other remote functions either
supported by ROS 602 RPCs (e.g., have RSIs), or using protocols

supported By Services Transport Layer 786.

Outgoing Administrative Object Manager 754

Outgoing administrative object manager 754 receives
administrative objects from object switch 734, object repository
manager 770 or other source for transmission to another VDE
electrohic appliance. QOutgoing ad'nﬁnistrati% object manager
734 takes care of sending the outgoing object to its proper
destinatior. Outzoing administrative object manager 754 may
obtain routing mforrn;uonfrom nafne sérvices manager 752, and
may use communications service 776 to send the object.
Outgoing administrative object manager 754 typically maintains
records (in concert with SPE 503) in Secure database 610 (e.g.,»
shipping téble 444) that reflect when objects have been
successfully transmitted, when an object should be tranémitted,'

and other information related to transmission of objecté.

Incoming Administrative Object Manager 756

Incoming administrative object manager 756 receives
administrative objects from dther VDE électrom’c appliances 600
via communications manager 776. It may route the object to

object repository manager 770, object switch 734 or other

-328 -

Petitioner Apple Inc. - Exhibit 1006, p. 1059

WO 98/09209 ' - PCT/US97/15243

destination. Incoming administrative object manager 756
typically maintains records (in concert with SPE 503) in secure
database 610 (e.g., receiving table 446) that record which objects

have been received. objects expected for receipt, and other

(9]

information related to received and/or expected objects. -

Object Repository Manager 770
Object repository mana‘ger'770 is a form of database or file

ma.nagér.__ It manages the storage of VDE objects 300 in object
10 repository 728, in a database, or in the file system. 687. Object

repositofy manager 0 may also provide the ability to browse

and/or se;':lrch information related to objects (such as summaries

of content, abstracts. reviewers' commentary, schedules,

promotional materials. etc.), for example, by using

15 INFORMATION methods associated with VDE objects 300.

Object Submittal Manager 774
Object submittal manager 774 in the preferred
embodiment provides an interface between an application 608
20 and object switch 734, and thus may be considered in some
respects part of API 682. For example, it may allow a user
application to create new VDE 6'bjec£s 300. It may also allow
incoming/outgoing administrative object managers 756, 754 to

create VDE objects 300 (administrative objects).

- 329 -

Petitioner Apple Inc. - Exhibit 1006, p. 1060

WO 98/09209 . PCT/US97/15243

10

20

Figure 12A shows how object. submittal manager 774 may
be used to communicate with a user of electronic appliance 600
to help to éreate a new VDE object 300. Figure 12A shows that
object creation may occur in two stages in the preferred
embodiment: an object definition stage 1220, and an object
creation stage 1230. The role of object submittal manager 774 is
ind;cated by.the two different "user linput“ depictions (774(1), .

774(2)) shown in Figure 124,

In one of its roles or instances. object submittal manager
774 provides a user interface 774a that allows the user to create
an object configuraton file 1240 specifving certain
characteristics of a VDE object 300 to be created. This user
Interface 774a may. fqr example. allow the user to specify that
she wants to create an object, allow the user to designate the
content the object will contain, and allow the user to specify
certain other aspects of the information to be contained within
the object (e.g., rules and control information, identifying

information, etc.).

Part of the object definition task 1220 in the preferred

embodiment may be to analyze the content or other information

_ to be placed within an object. Object definition user interface

774a may issue calls to object switch 734 to analyze "content“ or

-330 -

Petitioner Apple Inc. - Exhibit 1006, p. 1061

WO 98/09209 PCT/US97/15243

other information that is to be included within the object to be
created in order to define or organize the content into "atomic
elemenfs“ specified by tvhe user. As explained elsewhere herein,
such "atomic element” organizations might, for example, break
5 up the content into paragraphs, pages or other subdivisions
specified by the user. and might be explicit (e.g., inserting a
control character between each "atomic element“) or implicit.
Object switch 734 may receive static and dynamic content (e.g.,
by wayv }of time independent stream interface 762 and real time
10 stream interface 160 and is capable of accessing and retrieving

stored content or other information stored within file system 687.

The result of object deﬁnitidn 1240 may be an object

configuration file 1240 specifying certain parameters relating to
15 the object to be created. Such parameters may include, for

example, map tables, key management specifications, and event

method parameters. The object construction stage 1230 may

take the object configuration file 1240 and the information or

content to be included within the new object as input, construct
20 an object based on these inputs, and store the object within

object repository 728.

Object construction stage 1230 may use information in

object configuration file 1240 to assemble or modify a container.

-331-

Petitioner Apple Inc. - Exhibit 1006, p. 1062

WO 98/09209 PCT/US97/15243

This process typically involves communicating a series of events
to SPE 503 to create one or more PERCs 808, public headers,
private headers, and to encrypt content, all for storage in the
new object 300 (or within secure database 610 within records

G| associated with the new object).

The object configuration file 1240 may be passed to
container manager 764 within obj'ect switch 734. Container
mahagér 734 1s responsible for constructing an object 300 based

10 on the object configuration file 1240 and further user input. The
user may interact with the object construction 1230 through
another instance 774/2; of object submittal manager 774. In this
further user interaction provided by object submirttal manager
774, the user may specify permissions. rules and/or control

15 information to be applied to or associated with the new object
300. To specify permissions. rules and control information,

object submittal manager 774 and/or container manager 764

within object switch 734 generally will, as mentioned above, need
to fssﬁe calls to SPE 503 (e;g., thrdugh gateway 734) to cause the
20 SPE to obtain appropriate information from secure database 610,
generate appropriate database items, and store the database
if:ems into the secure database 610 and/or provide them in
encrypted, protected form to the object switch for incorpcration

into the object. Such information provided by SPE 503 may

-332-

Petitioner Apple Inc. - Exhibit 1006, p. 1063

10

20

WO 98/09209

PCT/US97/15243

include, in addition to encrypted content 6r other information,
one or more PERCs 808, one or more method cores 1000, one or
more load modules 1100, one or more data structures such as
UDEs 1200 and/or MDEs 1202, along with various key blocks,
tags, public and private headers. and error correction

information.

The container manager 764 may, in cooperation with SPE
503. coﬁstmct an object container 302 based at least in part on
parameters about new object content or other information as
specified by object configuration file 1240. Container manager
764 may then insert into the container 302 the content or other
information tas encrypted by SPE 503) to be included in the new
object. Container manager 764 may also insert appropriate
permissions, rules and/or control information into the container
302 (this permissions, rules and/or control information may be
defined at least in part by user interaction through object
submittal manager 774, and may be processed at least in part by
SPE 503 to create secure data control structures). Container
manager 764 may then write the new object to object repository
687, énd the user or the electronic appliance may "register” the
new object by including appropriate information within secure

database 610.

- 333 -

Petitioner Apple Inc. - Exhibit 1006, p. 1064

WO 98/09209 PCT/US97/15243

[4]]

10

20

Communications SuBaystem 776

Communications subsystem 776, as discussed above, may

-be a conventional communications service that provides a

network manager 7380 and a mail gateway manager 782. Ma1l
filters 784 may be provided to automatically route objects 300
and other VDE information to/from the outside world.
Communications subsvstem 776 may support a real time.c_ontent

feed 684 from a cable. satellite or other telecommunications link.

Secure Processing Environment 503

‘As' discussed above in connection with Figure 12, each
electronic appliance 600 in the preferred embodiment includes
one or more SPEs 503 and‘or one or more HPEs 655. These
Secure processing environments each provide a protected
execution space for performing tasks in a secure manner. They
may fulfill service requests passed to them by ROS 602, and they
may themselves generate service requests to be satisfied by other
services within ROS 602 or by services provided by another VDE

electronic appliance 600 or computer.

In the preferred embodiment, an SPE 503 is supported by
the hardware resources of an SPU 500. An HPE 655 may be
supported by general purpose processor resources and rely on

software techniques for security/protection. HPE 655 thus gives

-334 -

Petitioner Apple Inc. - Exhibit 1006, p. 1065

WO 98/09209 ' PCT/US97/15243

10

15

20

 ROS 602 the capability of assernbling and executing certaih

component assemblies 690 on a generai purpose CPU such as a
microcomputer. minicomputer. mainframe computer or
supercomputer processor. In the preferred embodiment, the
overall software architecture of an SPE 503 may be the same as
the software architecture of an HPE 655. An HPE 655 can
"emulate* SPE 503 and associated SPU 500, i.e., each may
include services and resources needed to support an identical set
of service requests from ROS 602 (although ROS 602 may be
restricr:ed from sendinz to an HPE certain highly secure tasks to

be executed onlv within an SPU 500).

Some electronic 2ppliance 600 configurations might
include both an SPE 503 and an HPE 655. For example, the
HPE 655vcou.ld perform tasks that need lesser (or no) security
protections, and the SPE 503 could perform all tasks that require
a high degree of security. This ability to provide serial or
concurrent processing using multiple SPE and/or HPE
arrangements provides additional flexibility, and may overcome
limitations imposed by limited resources that can practically or
cost-effectively be provided within an SPU 500. The cooperation
of an SPE 503 and an HPE 655 may, in a particular application,
lead to a more efficient and cost effective but nevertheless secure

overall processing environment for supporting and providing the

- 335 -

Petitioner Apple Inc. - Exhibit 1006, p. 1066

WO 98/09209

10

15

20

PCT/US97/15243

Ssecure processing required by VDE 100. As one example, an
HPE 6355 could provide overall Processing for allowing a user to
manipulate released object 300 ‘contents,’ but use SPE 503 to
access the secure object and release the information from the

object.

Figure 13 shows the software architecture of the preferred

.embodim'ent Secure Processing Envirqnment (SPE) 503. This

a.rch‘itecture may also apply to the preferred embodiment Host
Processing Environment tHPE) 655. "Protected Processing |
Environmert* ("PPE*, 650 may refer generallv to SPE 503 and/or
HPE 655. Hereinafter. unless context indicates otherwise,
references to anv of "PPE 650,“ "HPE 655" and "SPE 503“ may

refer to each of them.

As shown in Figure 13, SPE 503 (PPE 650)A'mcludes the
following service managers/major ﬁmctional blocks in the
preferred embodiment:

Kernel/Dispatcher 552

. Channel Services Manager 562

. SPE RPC Manager 550

. Time Base Manager 554

. Encryption/Decryption Manager 556
. Key and Tag Manager 558

- 336 -

Petitioner Apple Inc. - Exhibit 1006, p. 1067

PCT/US97/15243

WO 98/09209
. Summary Services Ménager 560
. Authentication Manager/Service Commﬁnications
Manager 564
. Random Value Generator 565
5 . Secure Database Manager 566

10

15

20

. Other Services 592.

Each of the major functional blocks of PPE 650 is

discusséd in déta.il below.

1. SPE Kernel/Dispatcher 552

The Kernel Dispatcher 552 pfovides an operating svstem
"kernel“ that runs on and manages the hardware resources of
SPU 500. This operating system "kernel“ 532 provides a self- _

contained operating system for SPU 500: it is also a part of

~ overall ROS 602 (which may include mulitiple OS kernels,

including one for each SPE and HPE ROS is
controlling/managing). Kernel/dispatcher 552 provides SPU task
and memory management, supports internal SPU hardware
interrupts, provides certain "low level services,“ manages "DTD*“
data structures, and manages the SPU bus vinterface unit 530.
Kernel/dispatcher 552 also includes a load module execution
manager 568 that can load programs into secure execution space

for execution by SPU 500.

- 337 -

Petitioner Apple Inc. - Exhibit 1006, p. 1068

WO 98/09209

10

20

PCT/US97/15243

v Ixi the preferred embodiment, kefnel/dispatcher 552 may

include the following séftware/functional components:

load module execution manager 568

task manager 576

memory manager 578

virtual memory manager 580

"low level“ services manager 582

iptemal interrupt handlers 584

BIU handler 586 (may not be present in HPE 653)

Service interrupt queues 588

DTD Interpreter 590.

At least parts of the kernel/dispatcher 552 are preferably
stored in SPU firmware loaded into SPU ROM 532. An example
of a memory map of SPU ROM 532 is shown in Figure 14A. This
memory map shows the various components of kernel/dispatcher
552 (as well as the other SPE4services shown in Figure 13)
residing in SPU ROM 532a and/or EEPROM 532b. The Figure
14B example of an NVRAM 534b memory map shows the task
manager 576 and other informatiqn loaded into NVRAM.

One of the functions performed by kernel/dispatcher 552 is
to receive RPC calls from ROS RPC manager 732. As ex'plaihed
above, the ROS Kernel RPC manager 732 can route RPC calls to

- 338 -

Petitioner Apple Inc. - Exhibit 1006, p. 1069

10

15

20

WO 98/09209 ' PCT/US97/15243

the SPE 503 (via SPE Device Driver 736 and its associated RSI
736a) for action by the SPE. The SPE kernel/dispatcher 552
receives these calls and either handles them or passes them on to
SPE RPC manager 550 for routing internally to SPE 503. SPE
503 based processes can also generate RPC requests. Some of
these requests can be processed internally by the SPE 503. If
they are not inte rnally serviceable, they may be passéd out of the
SPE 503 through SPE kemel/dispatpher 552 to ROS RPC

manager 732 for routing to services external to SPE 503,

A. Kernel/Dispatcher Task Management

Kernel dispatcher task manager 576 schedules and
oversees t.asks.‘exec‘u'tmg within SPE 503 (PPE 650). SPE 503
supports many types of tasks. A "channel” (a special type of task
fhét controls execution of component assemblies 690 in the
preferred embodiment! is treated by task manager 576 as one
type of task. Tasks are submitted to the task manager 576 for
execution. Task manager 576 in turn ensures that the SPE
503/SPU 500 resources necessary to execute the tasks are made
available, and then arranges for the SPU microproceséor 520 to |

execute the task.

Any call to kernel/dispatcher 552 gives the kernel an

opportunity to take control of SPE 503 and to change the task or

.339.

Petitioner Apple Inc. - Exhibit 1006, p. 1070

WO 98/09209 PCT/US97/15243

: taéks that are currently executing. Thus, in the ptefe.rred
embodiment kernel/dispatcher task manager 576 may (in
conjti.nctioh with virtual memory manager 580 and/or memory

-manager 578) "swap out" of the execution space any or all of the

5 tasks that are currently active, and ”sWap in* additional or

different tasks.

SPE tasking managed by task manager 576 may be either
"single .tasking“ {meaning that only one task may be active at a
10 time) or "multi-tasking" ‘meaning that multiple tasks may be
active at once!. SPE 203 may support single tasking or multi-
tasking in the preferred embodiment. For example. "high end“
implementations of SPE 503 (e.g., in server devices) should
preferably include multi-tasking with "preemptive schedu.lmg‘
15 Desktop apphcanons may be able to use a simpler SPE 503,
although they may still require concurrent execution of several
tasks. Set top applications may be able to use a relatively simple
implementation of SPE 503, suppdrting execution of only one
task at a time. For example, a typical set top implementation of
20 SPU 500 may perform simple metering, budgeting and billing
| using subsets of VDE methods combined into single "aggregate“
load modules to-permit the various methods toexecutein a |
single tasking environment. However, an execution environment

that supports only single tasking may limit use with more

- 340 -

Petitioner Apple Inc. - Exhibit 1006, p. 1071

10

15

20

WO 98/09209 ‘ PCT/US97/15243

complex control structures. Such single tasking versions of SPE

- 503 trade flexibility in the number and types of metering and

budgeting operations for smaller run time RAM size
requirements. Such implementations of SPE 503 may
(depending upon memory limitations) also be limited to meteriz;g
a single object 300 at a time. Of course, variations or
combinations are possible to increase capabilities beyond a
simple single tasking environment without incurring the

additional cost required to support "full multitasking.“

In the preferred embodiment, each task in SPE 503 is
represented by a "swap block.* which may be considered a "task*

in a traditional mulititasking architecture. A "swap block" in the

pref'e-rred emnbodiment is a bookkeeping mechanism used by task

manager 376 to keep track of tasks and subtasks. It corresponds
t0 a chunk of code and associated references that "fits* within the
secure execution environment provided by SPU 500. In the
preferred embodiment, it contains a list of references to shared
data elements (e.g., load modules 1100 and UDEs 1200), private
data elements (e.g., method data and local stack), and swapped
process “context” information (e.g., the register set for the

procéss when it is not processing). Figure 14C shows an example
of a snapshot of SPU RAM 532 storing several examples of "swap

blocks® for a number of different tasks/methods such as a

-341 -

Petitioner Apple Inc. - Exhibit 1006, p. 1072

10

20

WO 98/09209 PCT/US97/15243

"channel* task, a "control* tasli,. an "event" task, a "meter® task, a |
"budget” task, and a "billing task. Depending on the size of SPU
RAM 532, "swap blocks“ may be swapped out of RAM and stored
temporarily on secondary storage 652 until their execution can

be continued. Thus. SPE 503 operating in a multi-tasking mode
may have one or more tasks "sleeping.“ In the simplest form,
this involves an active task that is currently processing, and
another task (e.g., a control task under which the active task
may be running: that is "sleeping” and is "swapped out® of active

execution space. Kernel dispatcher 522 may swap out tasks at

any time.

Task manager 576 may use Memorv Manager 578 to help
1t perform this swapping operaﬁon. Tasks may be swapped out
of the secure execution space by reading appropriate information
from RAM and other storage internal to SPU 500, for example,
and writing a "swap block® to secondary storage 652. Kernel 552
may swap a task back into the secure execution space by reading
the swap bl_ock from secondary storage 652 and writing the
appropriate information back into SPU RAM 532. Because
secondary storage 652 is ﬁot secure, SPE 503 must encrypt and
cryptographically seal (e.g., usiné a one-way hash function
initialized with a secret value known only inside the SPU 500)

each swap block before it writes it to secondary storage. The

-342 -

Petitioner Apple Inc. - Exhibit 1006, p. 1073

WO 98/09209 PCT/US97/15243

SPE 503 must decrypt and verify the cryptographic seal for each
swap block read from secondary storage 652 before the swap
block can be returned to the secure execution space for further

execution.

Loading a “swap block“ into SPU memory may require one
or more “paging operations* to possibly first save, and then flush,
any "dirty pages” (i.e., pages changed By SPE 503) associated
with the previously loaded swap blocks, .and to load a.ll reéui.red

10 pages for the new swap block context.

Kernel dispatcher 522 preferably manages the "swap
blocks” using service interrupt queues 588. These service
interrupt queues 338 allow kemel/dis‘patcher 552 to track tasks

15 (swap blocks) and their status (running, "swapped out,” or
"asleep®). The kernel/dispatcher 552 in the preferred

embodiment may maintain the following service interrupt

mqueues 588 to help it manage the "swap blocks®:
RUN queue
20 SWAP queue
SLEEP queue.
Those tasks that are completely loaded in the execution space
and are waiting for a.nd/dr using execution cycles from

microprocessor 502 are in the RUN queue. Those tasks that are

- 343 -

Petitioner Apple Inc. - Exhibit 1006, p. 1074

WO 98/09209 ’ PC;‘NS97/15243

10

15

20

"swapped* out (e. g.,. because they are waiting for other
swappable components to be loaded) are referenced in the SWAP
queue. Those tasks that are "asleep“ (e.g., because they are
"blocked“ on some resource other than processor cycles or are not
needed at the moment) are referenced in the SLEEP queue.
Kernel/dispatcher task manager 576 may, for example,
transition tasks between the RUN and SWAP queueé based upon
a "round-robin* scheduling algorithm that selects the next task
wajtiné for service, Swaus in any pieces that need to be paged in,
and executes the task. Kemél/_dispa_tcher 552 task manager 576
may transition tasks between the SLEEP queue and the "awake*

(i.e., RUN or SWAP) queues as needed.

When two or more tasks Lry to write to the same data

structure in a multi-tasking environment, a situation exists that

may result in "deadly embrace® or "task staﬁation.“ A "multi-
threaded* tasking arrangement may be used to preveﬁt "deadly
embrace” or "task starvation® from happening. The preferred
embodiment kernel/dispatcher 552 may support "single

threaded“ or "multi-threaded* tasking.

In single threaded applications, the kemel/dispatcher 552
"locks* individual data structures as they are loaded. Once

locked, no other SPE 503 task may load them and will "block“

-344 -

Petitioner Apple Inc. - Exhibit 1006, p. 1075

10

15

20

WO 98/09209

| PCT/US97/15243

waiting for the data étructure to become available. Using a
single threaded SPE 503 may, as a practical matter, limit the
ability of outside vendors to create load modules 1100 since there
can be no assurance that they will not cause a "deadly embrace“
with other VDE processes about which outside vendors may
know little or nothing. Moreover, the context swapping of a
partially updated record might destroy the intevgn'ty of the
system, permit unmetered use, and/or lead to deadlock. In
addition, such "locking® imposes a potentially indeterminate
delay into a typically time cﬁtical process, may limit SPE 503

throughput, and may increase overhead.

This issue notwithstanding, there are other significant
processing issues related to building single-threaded versions of
SPE 503 that may limit its usefulness or capabilities under some
circumstances. For example, multiple concurrently executing
tasks may not be able to process using the same often-needed
data structure“in a single-threaded SPE 503. This may
effectively limit the number of concurrent tasks to one.
Additionally, single-threadedness may eliminate the capability of
producing accurate summary budgets based on a number of
concurrent tasks since multiple concurrent tasks may not be able
to effectively share the same summary budget data structure.

Single-threadedness may also eliminate the capability to support

- 345 -

Petitioner Apple Inc. - Exhibit 1006, p. 1076

10

15

20

WO 98/09209 PCT/US97/15243

audit processing concurrently with other processing. For
example, real-time feed processing might have to be shut down
in order to audit budgets and meters associated with the

monitoring process.

One way to provide a more workable "single-threaded“
capability is for kernel/dispatcher 552 to use virtua.l page
handling algorithms to track "dirty pages® as data areas are
Writtern'to. The “dirty pages® can be swapped in and out with the
task swap block as part of local data associated with the swap-
block. When a task exits. the "dirty pages“ can be merged with
the current data structure tpossibly updated bv another task for
SPU 500) using a three-way merge algorithm (i.e., merging the
original data structure. the current data structure, and the "dirty
pages® to form a new current data structure. During the update
process, the data structure can be locked as the pages are
compared and swapped. Even though this virtual paging solution

”mightb be workable for allowing single threading in-some
applications, the. vendor limitations mentioned above may limit
the use of such single threaded implementations in some cases to
dedicated hardware. Any implementation that supports multiple
users (e.g., "smart home" set tops, many desk tops and certain
PDA applications, etc.) may hit limitations of a single threaded

device in certain circumstances.

- 346 -

Petitioner Apple Inc. - Exhi‘bit 1006, p. 1077

10

15

20

WO 98/09209

PCT/US97/15243

It is preferable -w'nen these limitations are unacceptable to
use a full "multi-threaded” data structure write capabilities. For
example, a type of "two-phase commit* processing of the type
used by database vendors may be used to allow data structure
sharing between processes. To implement this "two-phase
commit® process. each swap block may contain page addresses for
additional memory blocks that will be used to store changed
information. A change page is a local copy of a piece of a data
element that has been written by an SPE process. The changed
page(s) references associated with alspeciﬁc data structure are

stored locally to the swap block in the preferred embodiment.

For exampie. SPE 503 may support two (change pages) per
data structure. This limit is easily alterable by changing the size
of the swap block structure and allowing the update algorithm to
process all of the changed pages. The "commit“ process can be
invoked when a swap block that references changed pages is
about to be discarded. The commit process takes the original
data element that was originally loaded (e.g., UDEO), the current
data element (e.g., UDE) and the changed pages, and merges
them to create a new copy of the data element (e.g., UDEM_I).

Differences can be resolved by the DTD interpreter 590 using a

DTD for the data element. The original data element is

- 347 -

Petitioner Apple Inc. - Exhibit 1006, p. 1078

WO 98/09209 _) PCT/US97/15243

discarded (e.g., as determined by its DTD use count) if no other

swap block references it.

B. Kernel/Diapatcher Memory Management
5 Memory manager 578 and virtual memory manager 580 in
the preferred embodiment manage ROM 532 and RAM 534
memory within SPU 500 in the preferred embodiment. Virtual
memory manager 5580 prbvides a fully "virtual“ memory system
-to incfease the ambunt of "virtual“ RAM available in the SPE
10 Secure execution space bevond the amount of physical RAM 534a
provided by SPU 500. Memory manager 578 manages the
memory in the secure execution space. controlling how it is
accessed. allocated and deallocated. SPU MMU 540. if present,
supports virtual memory manager 580 and memory manager 378
15 in the preferred embodiment. In some “minimal® configurations
of SPU 500 there may be no virtual memorv capability and all
memory management functions will be handled by memory
manager 578. Memory management can also-be used to help
enforce the security provided by SPE 503. In some classes of
20 : SPUs 500, for example, the kernel memory manager 578 may
use hardware memory management unit (MMU) 540 to provide
page level protection within the SPU 500 Such a hardware-

based memory management system provides an effective

- 348 -

Petitioner Apple Inc. - Exhibit 1006, p. 1079

10

15

20

PCT/US97/15243

WO 98/09209

mechanism for protecting VDE component assemblies 690 from

compromise by "rogue® load modules.

- In addition. memory management provided by memory
manager 578 operating at least in part based on hardware-based
MMU 540 may securely implement and enforce a memory
architecture providing multiple protection domains. In such an
architecture, memory is divided into a plurality of domains that
are la.x_'gély 1solated from each other and share only specific
meﬁow areas under the control of the memory manager 578. An
executing process cannot access memory outside its domain and
can only communicate with other processes through services
provided by and mediated by privileged kerneifdispaccher
software 552 within the SPU 500. Such an architecture is more.
secure if it is enforced at least in part by hardware within MMU
540 that cannot be modified by anv software-based process

executing within SPU 500.

In the preferred embodiment, access to services
implemented in the ROM 532 and to physical resources such as
NVRAM 534b and RTC 528 are mediated by the combination of
privileged kernel/dispatcher software 552 and hardware within

MMU 540. ROM 532 and RTC 528 requests are privileged in

- 349 -

Petitioner Apple Inc. - Exhibit 1006, p. 1080

WO 98/09209 - - PCTNUS97/15243

Ot

10

15

20

order to protect access to critical system component routines

(e.g., RTC 528).

Memory manager 578 is responsiblé for é.llocating and
deallocating memory; supervising sharing of memory resources
between processes: and enforcing memory access/use restriction.
The SPE kernel/dispatcher memory nia.nager 578 .typically
initially allocates all memory to -kernel 552, a;nd may be
con.ﬁgu.red to perr'nit-only process-level access to pages as they .
are loaded by a specific process. In one exampie SPE operating
system configuration. memory manager 578 allocates memory
using a simplified allocation mechanism. A list of each memory
page accessible in SPE 503 may be represented using a bit map
allocation vector. for example. In a memory block, a group of
contiguous memory pages may start at a specific page mxxnberT
The size of the block is measured by the number of memory
pages it spans. Memory allocation may be recorded by

setting/clearing the appropriate bits in the allocation vector.

To assist in memory management functions, a "dope
vector may be prepended to a memory block. The "dope vector®
may contain information allowing memory manager 578 to
manage that memory block. In its simplest form, a memory

block may be structured as a "dope vector“ followed by the actual

- 350 -

Petitioner Apple Inc. - Exhibit 1006, p. 1081

10

15

20

WO 98709209 PCT/US97/15243

memory area of the block. This "dope vector” may include the
block number, support for dynamic paging of data elements,_a.nd
a marker to detect memory overwrites. Memory manager 578
may track memory blocks by their block number and convert the
block number to an address before use. All accesses to the
memory area can be automatically offset by the size of the "dope
vector” during conversion from a block memory to a physical
address. "Dope vectors* can also be used by virtual memory

manager 580 to help manage virtual memory.

The ROM 332 memory management task performed by
memory manager 578 is relatively simple in the preferred
embodiment. I ROM 532 pages may be flagged as "read only*
and as "non-pagable.” EEPROM 532B memory management
may be slightly more complex since the "burn count* for each
EEPROM page mayv need to be retained. SPU EEPROM 532B
may need to be protected from all uncontrolled writes to conserve
the limited writable lifetime of certain types of this memory.
Furthermore, EEPROM pages may in some cases not be the

same size as memory management address pages.

SPU NVRAM 534b is preferably battery backed RAM that
has a few access restrictions. Memory manager 578 can ensure

control structures that must be located_in NVRAM 534b are not

-351-

Petitioner Apple Inc. - Exhibit 1006, p. 1082

WO 98/09209 PCTU S97{l 5243

relocated during "garbage collection“ processes. As discussed
above, memory manager 578 (and MMU 540 if present) may
protect NVRAM 534b and RAM 534a at a page level to prevent

tampering by other processes.

Virtual memory nﬁanager 580 provides paging for
programs and data between SPU external memory and SPU
internal RAM 534a. Itis likely that data structures and
executaBle processes will exceed the limits of any SPU 500

10 interna_l fnemory. For example. PERCs 808 and other
fundamental control structures may be fairly large, and "bit mép
meters” may be. or become. very large. This eventuality rﬁay be
addressed in two ways:

(1) subdividing load modules 1100: and

15 (2) supporting virtual paging.

Load modules 1100 can be "subdivided* in that in many
instances they can be bquen up into separate componehts only a
subset of which must be loaded for execution. Load modules
20 1100 are the smallest pagable executable element in this
example. Such load modules 1100 can be broken up into
separate componeﬁts (e.g., executable code and plural data
description blocks), only one of which must be loaded for simple

load modules to execute. This Structure permits a load module

- 352 -

Petitioner Apple Inc. - Exhibit 1006, p. 1083

10

15

20

WO 98/09209

PCT/US97/15243

1100 to initially load only the executable code and to load the
data description blocks into the other system pages on a demand
basis. Many load modules 1100 that have executable sections
that are too large to fit into SPU 500 can be restructured into
two or more smaller independent load modules. Large load
modules may be manually "split* into multiple load modules that

are "chained“ together using explicit load module references.

Although "demand paging” can be used to relax some of
these restrictions. ,the preferred embodiment uses virtual paging
to manage large data structures and executables. Virtual
Memory Manager 580 "swaps* information (e.g., executable code
and/of data structures: into and out of SPU RAM 534a. and
provides other related virtual memory management services to
allow a full virtual memory management capability. Virtual
memory management may be important to allow limited resource

SPU 500 configurations to execute large and/or multiple tasks.

C. SPE Load Module Execution Manager 568

The SPE (HPE) load module execution manager ("LMEM*)
568 loads executables into the memory managed by memory
mé.nager 578 and executes them. LMEM 568 provides
mechanisms for tracking load modules that are currently loaded

inside the protected execution environment. LMEM 568 also

- 353 -

Petitioner Apple Inc. - Exhibit 1006, p. 1084

WO 98/09209 , PCT/US97/15243

provides access to basic load modulesA and code fragments stored
within, and thus always available to, SPE 503. LMEM 568 may
be called, for example. by load modules 1100 that want to

execute other load modules.

[9]]

In the preferred embodiment, the load module execution
manager 568 includes a load module executor ("program loader‘f)
970, one or more internal load modules 572, and library routines
974. Ldad module executor 5370 loads executables into memory
10 (e.g., after receiving a memory allocation from memory manager
578) for execution. Internal load module library 572 may provide
a set of commonly used basic load modules 1100 (stored in ROM
532 or NVRAM 3534b. for example). Library routines 574 may
provide a set of commonly used code fragments/routines (e.g.,

15 bootstrap routines) for execution by SPE 503.

Library routines 574 may provide a scandé.rd set of library
functions in ROM 532. A standard list of such library functions .
along with their entry points and parameters may be used. Load
20 modules 1100 may call these routines (e.g., using an interrupt
reserved for this purpose). Library calls may reduce the size of
load modules by moving commonly used code into a céntral
location and permitting é higher d'eg'ree of code reuse. All load

modules 1100 for use by SPE 503 are preferably referenced by a

- 354 -

Petitioner Apple Inc. - Exhibit 1006, p. 1085

PCT/US97/15243

WO 98/09209

10

20

load module execution manager 568 tﬁat maintains and Scans a
list of available load modules and selects the appropriate load
module for execution. If the load module is not present within
SPE 503, the task is "slept* and LMEM 568 may request that the
load module 1100 be loaded from secondary storage 562. This
request may be in the form of an RPC call to secure database
manager 566 to retrieve the load module and associated data
structures, and a call to encrypt/decrypt manager 556 to decrypt
the load. module before storing it in memory allocated by memory.

manager 578.

In somewhat more detail. the preferred embodiment
executes a load module 1100 by passing the load module
execution manager 3568 the name (e.g., VDE ID) of the desired
load module 1100. LMEM 3568 first searches the list of "in
memory* and "built-in* load modules 572. Ifit cannoF find the

desired load module 1100 in the list, it requests a copy from the

secure database 610 by issuing an RPC request that may be

handled by ROS secure database manager 744 shown in Figure

-12. Load module execution manager 568 may then request

memory manager 578 to allocate a memory page to store the load

module 1100. The load module execution manager 568 may copy
the load module into that memory page, and queue the page for

decryption and security checks by encrypt/decrypt manager 556

- 355 -

Petitioner Apple Inc. - Exhibit 1006, p. 1086

WO 98/09209 PCT/US97/15243

10

15

20

and kéy and tag manager 558. Once the page is decrvpted and
checked, the load module exeéution managef 568 checks the
validation tag and inserts the load module into the list of paged
in modules and returns the page address to the caller. The caller
may then call the load moduie 1100 directly or allow the load

module execution module 570 to make the call for it.

_Figufe 15a shows a detailed example of a possible format
for a channe] header 396 and a channel 594 containing channel
detail records 5941+, 5394(2), . . . 594(N). Channel header 596
may include a channel ID field 597(1:, a user ID field 597(2). an
object ID field 587/3. a field containing a‘-re_fert-ance or other
identification to a “right* (i.e, a collection of events supported‘ by
methods referenced in a PERC 808 and/or "user rights table“
464) 597(4), an event queue 597(5, and one or more flelds 598
that cross-reference particular event codes with channel detail
records ("CDRs*“). Channel header 596 may also include a "jump*
or reference table 599 that permits addressing of elements
within an associated component assembly or assemblies 690.
Each CDR 594(1), . . . 594(N) corresponds to a specific event
(event code) to which channel 594 may respond. In the preferred
embodiment, these CDRs may include explicitly and/or by
reference each method core 1000’ (or fragment thereof), joad

module 1100 and data structure(s), (e.g., URT, UDE 1200 and/or

- 356 -

Petitioner Apple Inc. - Exhibit 1006, p. 1087

10

15

20

PCT/US97/15243

WO 98/09209

MDE 1202) needed to process the corresponding event. In the
preferred embodiment, one or more of the CDRs (e.g., 594(1))
may reference a control method and a URT 464 as a data

structure.

Figure 15b shows an example of program control steps
performed by SPE 503 to "open” a channel 594 in the preferred
embodiment. In the preferred embodiment, a channel 594
provides event processing for a particular VDE object 300, a
particular authoﬁzed user, and a particular "right“ (i.e., type of
event). These three parameters may be passed to SPE 503. Part
of SPE kernel/dispatcher 552 executing within a "channel 0
constructed by low level services 582 during a "bootstrap“ routine
may respond initially to this "open channel“ event by allocating
an available channel supported by the processing resources of
SPE 503 (block 1125). This "channel 0“ "open channel“ task may
then issue a series of requests to secure database manager 566 to
obtain the "blueprint“ for constructing one or more component
assemblies 690 to be associated with channel 594 (block 1127).
In the preferred embodiment, this "blueprint” may comprise a
PERC 808 and/or U’R’I‘ 464. In may be ;btamed by using the
"Object, User, Right“ parameters passed to the "open channel®
routine to "chain“ together object registration table 460 records,

user/object table 462 records, URT 464 records, and PERC 808

- 357 -

Petitioner Apple Inc. - Exhibit 1006, p. 1088

9]

10

20

WO 98/09209 ' L PCT/US97/15243

~records. This "open channel” task may preferably place calls to
key and tag manager 558 to validate and correlate the tags
associated with these various records to ensure that they are
authentic and match. The preferred embodiment process then
may write appropriate information to channel header 596 (block
1129). Such information may include, for example, User ID,
Object ID. and a reference to the "right“ that the channel will
process. The preferred embodiment process may next use the
"blueprint” to access (e.g, the secure database manager 566
and/or from load module execution manager library(ies) 568) the
appropnate "control method® that may be used to, in effect,
supervise execution of all of the other methods 1000 within the
channel 594 (block 1131.. The process may next "bind“ this
control method to the channel (block 1133), which step may
include binding information from a URT 464 ints <he channel as
a data structure for the control method. The process méy then

_Pass an "initialization event into channel 554 (block 1135). This
"initialization“ event may be createci by the channel services
manager 562, the process that issued the original caﬂ requesting
a service being fulfilled by the channel being built, or the control
method just bound to the channel could itself possibly generate

an initialization event which it would in effect pass to itself.

- 358 -

Petitioner Apple Inc. - Exhibit 1006, p. 1089

10

15

20

WO 98/09209 ‘ PCT/US97/15243

In response to this "initialization“ event, the control
method may construct the channel detail records 594(1), . . .
594(N) used to handle further events other than the
"initialization“ event. The control method executing "within® the
channel may access the various componenté it needs to construct
associated compoﬁent assemblies 690 based on the "blueprint“
accessed at step 1127 (block 1137). Each of these components is
bound to the channel 594 (block 1139) by constructing an
associated channel detail record specifying the method core(s)
1000°, load module(s) 1100, and associated data structure(s)
(e.g., UDE(s) 1200 and/or MDE(s) 1202) needed to respond to the
event. The number of channel detail records will depend on the
number of events that can be serviced by the "right,“ as specified
by the "blueprint® (i.e., URT 464). During this process, the
control method will construct "swap blocks*“ to, in effect, set up
all required tasks and obtain necessary memory allocations from
kernel 562. The control method will, as necessary, issue calls to
secure database manager 566 to retrieve necessary components
from secure database 610, issue calls to encrypt/decrypt manager
556 to decrypt retrieved encrypted information, and issue calls to
key and tag manager 558 to ensure that all retrieved components
are validated. Each of the various component assemblies 690 so
constructed are "bound* to the channel through the channel

header event code/pointer records 598 and by constructing

- 359 -

Petitioner Apple Inc. - Exhibit 1006, p. 1090

WO 98/09209 PCT/US97/15243

appropriate swap blocks referenced by channel detail records
594(1), . . . 594(N). When this process is complete, the channel
594 haé been completely constructed and is“read‘y‘to respond to
further events. As a last step, the Figure 15b process may, if .
5 desired, deallocate the "initialization* event task in order to free

up resources.

Once a channel 594 has been constructed in thls fashioﬁ, it

will respond to events as tHey arrive. Channel services manager

10 562 1s responsible for dispatching events to channel 594. ‘Each
time a new avent arrives te.g., via an RPC call), channel services
manager 562 examines the event to determine whether a
channel alreadyv éxists that is capable of processing it. Ifa
channel does exist, then the cha.nnel services manager 562

15 passes the event to that channel. To process the event, it may be
necessary for task manager 576 to “swap in* certain "swappable
blocks“ defined by the channel detail records as active tasks. In
this way, executable component assemblies 690 formed during
the channel 6pen process shown in F igure 15b are placed into

20 active secure execution space, the particular component
assembly that is activated being selected in response to the
received event code. The éctivated task will then perform its

desired function in response to the event.

- 360 -

Petitioner Apple Inc. - Exhibit 1006, p. 1091

WO 98/09209 PCT/US97/15243

To destroy a channel. the various swap blocks defined by
thé channel detail records are destroyed, the identification
~ information in the channel header 596 is wiped clean, and the
channel is made available for re-allocation by the "channel 0

"open channel“ task.

(3]

D. SPE Interrupt Handle.ra 584
As shown in Figure 13, kermel/dispatcher 552 also provides
internal interrupt handler(s) 584. These help to manage the
10 resources of SPU 500. SPU 500 preferablv éxecutes n eiti)er
“interrupt” or "polling” mode for all significant components. In
polling mode, kernel’dispatcher 532 may poll each of the |
sections/circuits within SPU 500 and emulate an interrupt for
them. The following interrupts are preferably sﬁpported by SPU
| 15 500 in the preferred embodiment:

. "tick“ of RTC 528

. interrupt from bus interface 530
. power fail interrupt
. watchdog timer interrupt
20 . interrupt from encrypt/decrypt engine 522

. memory interrupt (e.g., from MMU 540).

When an interrupt occurs, an interrupt controller within

microprocessor 520 may cause the microprocessor to begin

- 361 -

Petitioner Apple Inc. - Exhibit 1006, p. 1092

WO 98/09209 PCT/US97/15243

10

20

- executing an appropriate interrupt handler. An Interrupt

handler is a piece of software/firmware provided by

kernel/dispatcher 552 that allows microprocessor 520 to perform

.particular functions upon the occurrence of an interrupt. The

interrupts may be "vectored” so that different interrupt sources

may effectively cause different interrupt handlers to be executed.

A "timer tick* interrupt is generated when the rezl-time

RTC 528 "pulses. The timer tick interrupt is processed by a

timer tick interrupt handler to calculate internal device

date/time and to generate timer events for channel processing.

The bus interface unit 530 may generate a.series of
interrupts. In the preferred embodiment. bus interface 530,
modeled after a USART. generates interrupts for various
conditions (e.g., "receive buffer full,“ "transmitter buffer empty,“
and "status word change®). Kernel/dispatcher 552 services the
transmitter buffer empty interrupt by sending the next character

from the transmit queue to the bus interface 530.

Kernel/dispatcher interrupt handler 584 may service the

received buffer full interrupt by reading a character, appending
it to the current buffer, and processing the buffer based on the
state of the service engine for the bus interface 530.

Kernel/dispatcher 552 preferably processes a status word change

- 362 -

Petitioner Apple Inc. - Exhibit 1006, p. 1093

PCT/US97/15243

WO 98/09209

10

15

20

interrupt and addresses the appropriate send/receive buffers

accordingly.

SPU 500 generates a power fail interrupt when it detects
an imminent power fail condition. This may require immediate
action to prevent loss of information. For examplé, in the
preferred embodiment, a power fail interrupt moves all recently
written information (i.e., "dirty pages) into non-volatile NVRAM
534b, marks all swap blocks as "swapped out,“ and sets the
appropriate power fail flag to facilitate recovery processing.
Kernel/dispatcher 552 may then periodically poll the "power fail
bit“ in a status word until the data is cleared or the power is

removed completely.

SPU 500 in the example includes a conventional watchdog
timer that generates watchdog timer Interrupts on a regular
basis. A watchdog timer interrupt handler performs internal
device checks to ensure that tampering is not occurring. The
internal clocks of the watchdog timer and RTC 528 are compared
to ensure SPU 500 is not being paused or probed, and other
internal checks on the operation of SPU 500 are made to detect

tampering.

-363 -

Petitioner Apple Inc. - Exhibit 1006, p. 1094

| WO 98/09209 PCT/U $97l 15243

The encryption/decryption engine 522 generates an
interrupt when a block of data has been processed. The kernel
interrupt handler 584 adjusts the processing status of the block

- being encrypted or decrypted, and passes the block to the next
5 stage of processing. The next block scheduled for the encryption
service then has its key moved into the encrypt/decrypt engine

522, and the next cryptographic process started.

A memory management unit 540 interrupt is generated
10 when a task attempts to access memory outside the areas
assigned to it. A memory management interrupt handler traps
the request. and takes the necessary action (e.g., by initiating a
control transfer to memory manager 578 and/or virtual memory
manager 580). Generally, the task will be failed, a page fault._
15 exceptibn will be generated, or appropriate virtual memory

page(s) will be paged in.

E. Kernel/Dispatcher Low Level Services 582
Low level services 582 in the preferred embodiment
20 provide "low level“ functions. These functions in the preferred
embodiment may include, for example, power-on initialization,
device POST, and failure recovery routines. Low level services
582 may also in the preferred eﬁ:bodiment provide (either by

themselves or in combination with authentication

- 364 -

Petitioner Apple Inc. - Exhibit 1006, p. 1095

10

20

WO 98/09209 PCT/US97/15243

manager/service communications manager 564) download
response-challenge and authentication communication protocols,
and may provide for certain low level management of SPU 500
memory devices such as EEPROM and FLASH memory (either
alone or in combination with memory manager 578 and/or

virtual memory manager 580).

F. Kernel/Dispatcher BIU handler 586

BIU handler 586 in the preferred embodiment manages
the bus interface unit 530 (if present). It may, for ekample,
maintain read and write buffers for the BIU 530, provide BIU

startup initialization, etc.

G. Kernel/Dispatcher DTD Interpreter 590

DTD interpreter 590 in the preferred embodiment handles
data formatting issues. For example, the DTD interpreter 590
may automatically open data structures such as UDEs 1200

based on formatting instructions contained within DTDs.

The SPE kernel/dispatcher 552 discussed above supports

-all of the other services provided by SPE 503. Those other

services are discussed below.

- 365 -

Petitioner Apple Inc. - Exhibit 1006, p. 1096

WO 98/09209

[$1]

10

15

20

PCT/US97/15243

II. SPU Channel Services Manag;ar 562

"Channels* are the basic task processing mechanism of
SPE 503 (HPE 655) in the preferred embodiment. ROS 602
provides an event-driven interface for "methods.“ A "channel*
allows cornponent assemblies 630 to service events. A "channel®
is a conduit for passing “events“ from services supported by SPE
503 (HFE 635) to the various methods and load modules that

have been specified to pi'ocess these events, and also supports

_ the assembly of component assemblies 690 and interaction

between component assemblies. In more detail, "channel“ 594 is
a data structure maintained by channel manager 593 that
"binds“ together one or more load modules 1100 and data
structures (e.g.,, UDEs 1200 and/or MDEs 1202) into a
component assembly 690. Channel services manager 562 causes
load module execution manager 569 to load the component
assembly 690 for execution, and may also be responsible for
passing events into the channel 594 for response by a component
assembly 690. In the preferred embodiment, event processing is

handled as a message to the channel service manager 562.

Figure 15 is a diagram showing how the preferred
embodiment channel services manager 562 constructs a
”cha.nnel“ 994, and also shows the relationship between the

channel and component assemblies 690. Briefly, the SPE

- 366 -

Petitioner Apple Inc. - Exhibit 1006, p. 1097

10

20

PCT/US97/15243

WO 98/09209

channel manager 562 establishes a "channel* 594 and an
associated "channel headér“ 996. The channel 594 and its
header 596 comprise a data structure that "binds* or references
elements of one or more component assemblies 690. Thus, the
channel 594 is the mechanism in the preferred embodiment that
collects together or assembles the elements shown in Figure 11E
into a component assembly 690 that may be used for event

processing.

" The channel 594 is set up by the channel services manager
562 in response to the occurrence of an event; Once the channel
1s created, the channel services manager 562 may issue function
calls to load module execution manager 568 based on the channel
594. The load module execution manager 568 loads the load
modules 1100 referenced by a channel 594, and requests
execution services by the kernel/dispatcher task manager 576.

The kernel/dispatcher 552 treats the event processing request as

a task, and executes it by executing the code within the load

modules 1100 referenced by the channel.

The channel services manager 562 may be passed an
identification of the event (e.g., the "event code“). The channel
services manager 562 parses one or more method cores 1000’

that are part of the component assembly(ies) 690 the channel

- 367 -

Petitioner Apple Inc. - Exhibit 1006, p. 1098

WO 98/09209 . - PCT/US97/15243

services manager is to assemble. It pérforms this parsing to
determine which method(s) and data structure(s) are invbked by
the type of event. Chémel manager 562 then issues calls (e.g.,
to secure database manager 566) to obtain the methods and data

5 structure(s) needed to build the component assembly 690. These
called-for method(s) and data structure(s) (e.g., load médules
1100, UDEs 1200 and/or MDEs 1202) are each decrypted using
encrypt/decrypt manager 556 (if necessary), and are then each
vaJidatéd using key and tag manager 558. Channei manager

10 562 constructs any necessary "jump table“ references to, in effect,
"link“ or "bind“ the elements into a single cohesive executable so
the load module(s) can reference data structures and any other
load module(s; in the component assembly. Channel manager
562 may then issue calls to LMEM 568 to load the ~::acutable as

15 an active task.

Figure 15 shows that a channe! 59« way reference another
channel. An arbitrary number of channels 594 may be created
by channel manager 594 to interact with one another.

20

"Channel header“ 596 in the preferred embodiment is (or
references) the data structure(s) and associated control
program(s) that queués events from channel event sources,

processes these events, and releases the appropriate tasks

- 368 -

Petitioner Apple Inc. - Exhibit 1006, p. 1099

WO 98/09209

PCT/US97/15243

specified in the "channel detail record® for processmg. A

"channel detail record“ in the preferred embodiment links an

event to a "swap block* (i.e., task) associated with that event.

The "swap block“ may reference one or more load modules 1100,

5 UDEs 1200 and private data areas required to properly process

the event. One swap block and a corresponding channe] detail

item is created for each different event the channel can respond

to.

10 In the preferred embodiment, Channel Services Manager

562 may support the following (internal) calls to support the

creation and maintenance of channels 562:

Call Name

Source

Description

15 'Write Event*

Write

Writes an event to the channe] for
response by the channel. The
Write Event call thus permit the
caller to insert an event into the
event queue associated with the
channel. The event will be
processed in turn by the channel
594.

- 369 -

Petitioner Apple Inc. - Exhibit 1006, p. 1100

WO 98/09209 4 ' PCT/US97/15243

'Bind Item* [octl Binds an item to a channel with
the appropriate processing
algorithm. The Bind [tem call
permits the caller to bind a VDE
item ID to a channel (e.g., to create
one or more swap blocks associated
with a channel). This call may
manipulate the contents of
individual swap blocks.

'Unbind Item“ [Jocti Unbinds an item from a channel

: with the appropriate processing
algorithm. The Unbind Item call
permits the caller to break the
binding of an item to a swap block.
This call may manipulate the
contents of individual swap blocks.

5 SPE RPC Manager 550
As described in connection with F igure 12, the architecture
—of ROS 602 is based on remote procedure Acalls in the preferred
embodiment. ROS 602 includes an RPC Manager 732 that
passes RPC calls betweén services each of which present an RPC
10 service interface ("RSI“) to the RPC manager. In the preferred
embodiment, SPE 503 (HPE 655) is also built around the saxﬁe
RPC coﬁcept. The SPE 503 (HPE 655) may include a number of
internal modular service providers each presenting a.n RSIto an

RPC manager 550 internal to the SPE (HPE). These internal

-370 -

Petitioner Apple Inc. - Exhibit 1006, p. 1101

10

15

20

PCT/US97/15243

WO 98/09209

service providers may communicate with each other and/or with
ROS RPC manager 732 (and thus, with any other service
provided by ROS 602 and with external services), using RPC

service requests.

RPC manager 550 within SPE 503 (HPE 655) is not the
same as RPC manager 732 shown in Figure 12, but it performs a
similar function within the SPE (HPE): it receives RPC requests |
and passés them to the RSI presented by the service that is to
fulfill the request. In the preferred embodiment, requests are
passed between ROS RPC manager 732 and the outside world
(i.e., SPE device driver 736) via the SPE (HPE)
Kernel/Dispatcher 552. Kernel/Dispatcher 552 may be able to
service certain RPC requests itself, but in general it passes
received requests to RPC manager 550 fér routing to the
appropriate service internal to the SPE (HPE). [n an alternate
embodiment, requests may be passed directly between the HPE,
SPE, AP, Notification interface, and other external services
instead of routing them through the ROS RPC manager 732.
The decision 6n which embodiment to use is part of the

scalability of the system; some embodiments are more efficient

. than others under various traffic loads and system

configurations. Responses by the services (and additional service

requests they may themselves generate) are provided to RPC

-371 -

Petitioner Apple Inc. - Exhibit 1006, p. 1102

WO 98/09209 ' PCT/US97/15243

10

20

Manager 550 for routing to other service(s) internal or external

to SPE 503 (HPE 655).

SPE RPC Manager 550 énd its integrated service manager
uses two tables to dispatch remote procedure calls: an RPC
services table, and an optional RPC dispatch table. The RPC
services table describes where requests for specific services are to
be routed for processing. ‘In the preferred embodiment, this table
is constﬁcted in SPU RAM 534a or NVRAM 534b,‘ and lists each
RPC service “registered” within SPU 500. Each row of the RPC
services table contains a service ID, 1ts location and address, and
a control byte. In simple implementations. the control byte
indicates only that the service is provided internally or

externally. In more complex implementations, the control byte

can indicate an instance of the service le.g., each service may

have multiple "instances” in a multi-tasking environment). ROS
RPC manager 732 and SPE 503 may have symmetric copies of
the RPC services table in the preferred embodiment. If an RPC
service is noﬁ found in the RPC services table, SPE 503 may

either reject it or pass it to ROS RPC manager 732 for service.

The SPE RPC manager 550 accepts the request from the
RPC service table and processes that request in accordance with

the internal priorities associated with the specific service. In

-372 -

Petitioner Apple Inc. - Exhibit 1006, p. 1103

10

15

20

WO 98/09209

PCT/US97/15243

SPE 503, the RPC service table is extended by an RPC dispatch

- table. The preferred embodiment RPC dispatch table is

‘organized as a list of Load Module references for each RPC

service supported internally by SPE 503. Each row in the table
contains a load module ID that services the call, a control byte
that indicates whether the call can be made from an external
éaller, and whether the load module needed to service the call is
permanently resident in SPU 500. The RPC dispatch table may
be constructed in SPU ROM 532 (or EEPROM) when SPU
firmware 508 is loaded into the SPU 500. If the RPC dispatch
table is in EEPROM. it flexibly allows for updates to the services

without load module location and version control issues.

In the preferred embodiment, SPE RPC manager 550 first
references a service request against the RPC service table to

determine the location of the service manager that may service

‘the request. The RPC manager 550 then routes the service

request to the appropriate service manager for action. Service
requests are handled by the service manager within the SPE 503
using the RPC dispatch table to dispatch the recjuest. Once the
RPC manager 550 locates the service reference in the RPC
dispatch table, the load module that services the request is called
and loaded using the load module execution manager 568. The

load module execution manager 568 passes control to the

-373 -

Petitioner Apple Inc. - Exhibit 1006, p. 1104

10

15

20

WO 98/09209

requested load module after performing all required context
configuration. or if necessary may first issue a request to load it

from the external management files 610. |

SPU Time Base Manager 554

The time base manager 554 supports calls that relate to
the real time clock ("RTC*) 528. In the preferred embodiment,
the time base manager 554 is always loaded and ready to

respond to time based requests.

The table below lists examples of basic calls that may be

supported by the time base manager 554:

Call Name Description

[ndependent requests

et Time Returns the time (local. GMT. or ticks).

Set time Sets the time in the RTC 528. Access to this
command may be restricted to a VDE
administrator.

Adjust time Changes the time in the RTC 528. Access to
this command may be restricted to a VDE

administrator.
Set Time Set GMT / local time conversion and the
Parameter current and allowable magnitude of user

adjustments to RTC 528 time.

Channel Services Manager Requests

-374 -

Petitioner Apple Inc. - Exhibit 1006, p. 1105

PCT/US97/15243

WO 98/09209

n

10

15

20

Call Name Description

PCT/US97/15243

Bind Time Bind timer services to a channel as an event
source.

[Jnbind Time; Unbind timer services from a channel as an

] event source.

Bet Alarm Sets an alarm notification for a specific time.
The user will be notified by an alarm event at
the time of the alarm. Parameters to this
request determine the event, frequency, and
requested processing for the alarm.

Clear Alarm | Cancels a requested alarm notification.

SPU Encryption/Decryption Manager 556

The Encryption/Decryption Manager 556 supports calls to
the various encryption/decryption techniques supported bv SPE
503/HPE 655. It may be supported by a hardware-based
encryption/decryption engine 522 within SPU 500. Those
encryption/decryption technologies not supported by SPU
encrypt/decrypt engine 522 may be provided by encrypt/decrypt .
manager 556 in software. The primary bulk
encryption/decryption load modules preferably are loaded at all
times, and the load modules necessary for other algorithms are
preferably paged in as needed. Thus, if the primary bulk
encfyption/decrypﬁon algorithm is DES, only the DES load
modules need be permanently resident in f.he RAM 534a of SPE

503/HPE 655.

- 375 -

Petitioner Apple Inc. - Exhibit 1006, p. 1106

10

20

25

30

WO 98/09209

PCT/US97/15243

The following are examples of RPC calls supported by |

Encrypt/Decrypt Manager 556 in the preferred embodiment:

Call Name Description
PXK Encrypt Encrypt a block using a PK (public key)
algorithm. '

PK Decrypt Decrvpt a block using a PK algorithm.

DES Encrypt a block using DES.

Encrvpt |

DES | Decryvpt a block using DES.

Decrvpt

RC-4 Encrypr a block using the RC-4 (or other bulk
Encrvpt encrvption) algorithm.

RC-4 :' Decrvpt a block using the RC-4 (or other bulk

Decrvpt ‘ encrvption) algorithm.

Initialize Initialize DES instance to be used.

DES ' '

Instance

Initialize Initialize RC-4 instance to be used.

RC-4

Instance

Initialize Initialize MD5 instance to be used.

MD5

Instance

Process MD5 | Process MD5 block.

Block

The call parameters passed may include the key to be

used; mode (encryption or decryption); any needed Initialization _

- 376 -

Petitioner Apple Inc. - Exhibit 1006, p. 1107

10

15

20

25

WO 98/09209 PCT/US97/15243

Vectors; the desired cryptographic operating (e.g., type of
feedback); the identification of the cryptographic instance to be

used; and the start address, destination address, and length of

| the block to be encrypted or decrypted.

SPU Key and Tag Manager 558

The SPU Key and Tag Manager 558 supports calls for key
storage. key and management file tag look up, key convolution,
and the generation of random keys, tags, and transaction |

numbers.

The following table shows an example of a list of SPE/HPE

key and tag manager service 538 calls:

Call Name | Description

Key Requests

Cet Kev . | Retrieve the requested kev.

Bet Kev Set (store} the specified kev.

Senerate Kev Generate a kev (pair) for a specified algorithm.

(renerate Convoiuted Kev Generate a key using a specified convolution
algorithm and algorithm parameter block.

yet Convolution Return the currently set (default) convolution
'Eg@hm parameters for a specific convolution algorithm.
et Convolution Algorithm| Sets the convolution parameters for a specific

convolution algorithm (calling routine must
provide a tag to read returned contents).

ag Requests
pret Tag Get the validation (or other) tag for a specific
VDE Item ID.
Bet Tag Set the validation (or other) tag for a specific
VDE Item ID to a known value.]
- 377 -

Petitioner Apple Inc. - Exhibit 1006, p. 1108

10

15

20

WO 98/09209 PCT/US97/15243

Calculate Hash Block Calculate the "hash block number* for a spectfic

umber VDE Item ID.

pet Hash Parameters Set the hash parameters and hash algorithm.
Forces a resvnchronization of the hash table.

et Hash Paramerers Retrieve the current hash
parameters/algorithm.

Pynchronize Management | Synchronize the management files and rebuild

Files the hash block tables based on information
found in the tables. Reserved for VDE
administrargr

Keys and tags may be securely generated within SPE 503
(HPE 655) in the preferred embodiment. The key generatlon
algorithm is typically :pecxﬁc to each type of encryption
supported. The generated keyvs may be checked for cryptographic
weakness Lefore they are used. A reqﬁest for Key and Tag
Manager 558 to generate a key, tag and/or transaction number
preferably takes a length as its Input parameter. It generates a
randpm number (or other appropriate key value) of the requested

length as its output.

The key and tag manager 558 may support calls to retrieveA
specific keys from the key storage areas in SPU 500 and any
keys stored external to the SPU. The basic format of the calls is
to request keys by key type and key number. Many of the keys
are periodically updated through contact with the VDE
administrator, and are kept within SPU 500 in.NVRA.M 534b or

-378 -

Petitioner Apple Inc. - Exhibit 1006, p. 1109

10

15

20

WO 98/09209 " PCT/US97/15243

EEPROM because these memories are secure, updatable and

non-volatile.

SPE 503/HPE 655 may support both Public Key type keys
and Bulk Encryption type keys. The public key (PK) encryption
type keys stored by SPU 500 and managed by key and tag
manager 558 may include, for example, a device public key, a
device private key, a PK certificate, and a public key for the
certiﬁcét‘e. Generally, public keys and certificates can be stored
éﬁemﬂly in non-secured memory if desired, but the device
private key and the public key for the certificate should only be
stéred internally in an SPU 500 EEPROM or NVRAM 534b.
Some of the types of bulk encryption keys used by the SPU 500
may include, for example, general-purpose bulk encryption keys,
administrative object private header keys, stationary object
private header kevs, traQel'mg object private header keys,

download/initialization keys, backup keys, trail keys, and

' management file keys.

As discussed above, preferred embodiment Key and Tag

Manager 558 supports reqixests to adjust or convolute keys to

- make new keys that are produced in a deterministic way

dependent on site and/or time, for example. Key convolution is

an algorithmic process that acts on a key and some set of input

-379 -

Petitioner Apple Inc. - Exhibit 1006, p. 1110

10

15

20

WO 98/09209 PCT/US97/15243

pé.rameter(s) to yield a new key. It can Be used, for example, to
increase the number of keys avaﬂable for use without incurring
additional key storage space. It may also be used, for example,
as a process to "age" keys by incorporating the value of real-time
RTC 528 as parameters. It can be used to make keys site specific

by incorporating aspects of the site ID as parameters.

Key and Tag Manager 558 also provides services relating

to tag géneration and management. In the preferred

embodiment, transaction and access tags are preferably stored
by SPE 503 (HPE 653 in protected memory (e.g., within the
NVRAM 534b of SPU 500). These tags may be generated by key

-

and tag manager 358. They are used to, for example. check
access rights to. validate and correlate data elements. For
example, they may be used to ensure components of the secured
data structures are not tampered with outside of the SPU 500.

Key and tag manager 558 may also support a trail transaction

tag and a communications transaction tag.

SPU Summary Services Manager 560

SPE 503 maintains an audit trail in reprogrammable non-
volatile memory withiﬁ the SPU 500 and/or in secure database
610. This audit trail may consist of an audit summa.ry of budget

activity for financial purposes, and a security summary of SPU

- 380 -

Petitioner Apple Inc. - Exhibit 1006, p. 1111

10

15

20

25

WO 98/09209

PCT/US97/15243

use. When a request is made to the SPU, it logs the request as
having occurred and then notes whether the request succeeded
or failed. All successful requests may be summed and stored by
type in the SPU 500. Failure information, including the
elements listed below, may be saved along with details of the

failure:

Control Information Retained in
an SPE on Access Failures

Object ID
User ID
Tvpé of failure
Time of failure

This information may be analyzed to detect cracking attempts or
to determine patterns of usage outside expected (and budgeted)
norms. The audit trail histories in the SPU 500 may be retained
until the audit is reported to the appropriate parties. This will
allow both legitimate failure analysis and attempts to

cryptoanalyze the SPU to be noted.

Summary services manager 560 may store and maintain
this internal summary audit information. This audit
information can be used to check for Security breaches or other

aspects of the operation of SPE 503. The event summaries may

-381-

Petitioner Apple Inc. - Exhibit 1006, p. 1112

10

15

20

WO 98/09209 o . . PCT/US97/15243

be maintained, analyzed and used by SPE 503 (HPE 655) or a
VDE administrator to determine and potentially limit abuse of
electronic appliance 600. In the prefefred embodiment, such

parameters may be stored in secure memory (e.g., within the

NVRAM 534b of SPU 500).

There are two basic structures for which summary services
are used in the preferred embodiment. One (the "event summary
data stl;ucture“) is VDE administrator specific and keéps track of
events. The event summary structure may be maintained and
audited during periodic contact with VDE administrators. The
other is used by V'DE administrators and/or distributors for
overall budget. A VDE administrator may register for event
summaries and an overall budget summary at the time an
electronic appliance 600 is initialized. The overall budget
summary may be reported to and used vlby a VDE administrator

in determining distribution of consﬁmed budget (for example) in

m——

the case of corruption of secure management files 61Q.
Participants that receive appropriate permissions can register
their processes (e.g., specific budgets) with summary services
manager 560, which may then reserve protected memory space
(e.g., W'ithin’NVRAM 534b) and keep desired use and/or access
parameters. Access to and rxiodiﬁcation of each summary can be

controlled by its own access tag.

- 382 -

Petitioner Apple Inc. - Exhibit 1006, p. 1113

WO 98/09209 _ PCT/US97/15243

The following table shows an example of a list of PPE

summary service manager 560 service calls:

Call Name Description
5 Create summary Create a summary service if the user
info has a "ticket“ that permits her to

request this service.

Get value Return the current value of the

. summary service. The caller must
present an appropriate tag (and/or
"ticket®) to use this request.

Set value Set the value of a summary service.

Increment Increment the specified summary
servicele.g., a scalar meter summary
data area). The caller must present
an appropriate tag tand/or “ticket“) to
use this request.

10 Destroy Destroy the specified summary service
if the user has a tag and/or "ticket*
that permits them to request this
service.

In the preferred embodiment, the event summary data
structure uses a fixed event number to index into a look up table.
15 The look up table contains a value that can be configured as a
countér or a counter plus limit. Counter mode may be used by
VDE admin.istratozjs to determine device usage. The limit mode
may be used to limit tampering and attempts to misuse the

electronic appliance 600. Exceeding a limit will result in SPE

- 383 -

Petitioner Apple Inc. - Exhibit 1006, p. 1114

10

WO 98/09209 PCT/US97/15243

503 (HPE 655) refusing to service user requests until it is reset
by a VDE administrator. Calls to the system wide event
summary process may preferably be built into all load modules

that process the events that are of interest.

. The following table shows examples of events that may be
separately metered by the preferred embodiment event summary

data structure:

Event Type

i
]

Successful i Initialization completed successfully.
l

Events User authentication accepted.

Communications established.

Channel loads set for specified values.

Decryption completed.

Kev information updated.

New budget created or existing budget
updated. '

New billing information generated or
existing billing updated.

New meter set up or existing meter
updated.

New PERC created or existing PERC
updated.

New objects registered.

Administrative objects successfully
processed.

Audit processed successfully.

- 384 -

Petitioner Apple Inc. - Exhibit 1006, p. 1115

WO 98/09209 PCT/US97/15243

All other events.
Failed Events Initialization failed.
Authentication failed.

Communication attempt failed.

Request to load a channel failed.

Validation attempt unsuccessful.

Link to subsidiary item failed
correlation tag match.

Authorization attempt failed.

Decryption attempt failed.

Available budget insufficient to complete
requested procedure.

Audit did not occur.

Administrative object did not process
correctlv.

Other failed events.

Another, "overall currency budget* summary data
structure maihtained by the preferred embodiment summary
services manager 560 allows registration of VDE electronic
appliance 600. The first entry is used for an overall currency
budget consumed value, and is registered by the VDE
administrator that first initializes SPE 503 (HPE 655). Certain
currency consuming load modules and audit load modules that
complete the auditing process for consumed currency budget may
call the summary services manager 560 to update the currency

consumed value. Special authorized load modules may have

- 385 -

Petitioner Apple Inc. - Exhibit 1006, p. 1116

WO 98/09209

10

15

20

access to the overall currency summary, while additional

summaries can be registered for by individual providers.

SPE Authentication Manager/Service Communications
Manager 564

The Authentication Manager/Service Communications
Manager 564 supports calls for user password validation and
"ticket® genevration and validation. It may also support secure

communications between SPE 503 and an external node or

~device (e.g., a VDE administrator or distributor). It may support

the following examples of authentication-related service requests

in the preferred embodiment:

PCT/US97/15243

Call Name Description

User Services

Create User Creates a new user and stores Name Services
Records (NSRs) for use by the Name Services
Manager 752.

Authenticate Authenticates a user for use of the system.

User This request lets the caller authenticate as a

specific user ID. Group membership is also
authenticated by this request. The
authentication returns a "ticket for the user.

Delete User Deletes a user’s NSR and related records.

Ticket Services

Generate Generates a "ticket“ for use of one or more
Ticket services.

- 386 -

Petitioner Apple Inc. - Exhibit 1006, p. 1117

WO 98/09209

10

15

20

25

PCT/US97/15243

Authenticate Authenticates a "ticket.“ '
Ticket |
Not included in the table above are calls to the secure

—

communications service. The secure communications service
provided by manager 564 may provide (e.g., in conjunction with
low-level sérvices manager 582 if desired) secure
communications based on a public key (or others) challenge-
response protocol. This protocol is discussed in further detail
elsewhere in this docurﬁent. Tickets identifv users with respect
to the electronic appliance 600 in the case where the appliance
may be used by multiple users. Tickets may be requested by and
returned to VDE software applications through a ticket-granting
protocol (e.g., Kerberos). VDE components may require tickets to

be presented in order to authorize particular services.

SPE Secure Dat#base Manager 566

Secure database manager 566 retrieves, maintains and
stores secure database records within secure database 610 on
memory external to SPE 503. Many of these secure database
files 610 are in encrypted form. All secure information retrieved
by secure database manager 566 therefore must bé decrypted by
encrypt/decrypt manager 556 before use. Secure information

(e.g., records of use) produced by SPE 503 (HPE 655) which must

- 387 -

Petitioner Apple Inc. - Exhibit 1006, p. 1118

WO 98/09209 PCT/US97/15243

[9]]

10

20

be stored external to the secure execution environment are also
encrypted by encrypt/decrypt manager 556 before they are stored

via secure database manager 566 in a secure database file 610.

For each VDE item loaded into SPE 503, Secure Database
manager 566 in the preferred embodiment may search a master
list for the VDE item ID, and then check the corresponding
transaction tag against the one in the item to ensure that the
item pfovided is the current item. Secure Database Manager
566 may maintain list of VDE item ID and transaction tagsin a
"hash structure” that can be paged into SPE 503 to quickly locate
the appropriate VDE item ID. In smaller svstems, a look up
table approach may be used. In either case, the list should be
structured as a pagable structure that allows VDE item ID to be

located quickly.

The "hash based* approach may be used to sort the list
into "hash buckets“ that may then be accessed to provide more
rapid and efficient location of items in the list. In the "hash
based“ approach, the VDE item IDs are "hashed through a
subset of the full item ID and organized as pages of the "hashed“
table. Each "hashed“ page may contain the rest of the VDE item
ID and _cufrent transaction tag for each item associated with that

page. The "hash“ table page number may be derived from the

- 388 -

Petitioner Apple Inc. - Exhibit 1006, p. 1119

10

15

20

25

WO 98/09209 PCT/US97/15243

components of the VDE item ID, such as distribution ID, ifem
ID, site ID, user ID, transaction tag, creator ID, type and/or
version. The hashing algorithm (both the algorithm itself and
the parameters to be hashed) may be configurable by'a VDE
administrator on a site by site basis to provide optimum hash

page use. An example of a hash page structure appears below:

Field

Hash Page Header
Distributor ID
Item ID

Site ID

User ID
Transaction Tag
Hash Page Entry
Creator ID

Item ID

Tvpe

Version

Transaction Tag

In this example, each hash page may céntain all of the
VDE item IDs and transaction tags for items that have identical
distributor ID, itern ID, and user ID fields (site ID will be fixed
for a given electronic appliance 600). These four pieces of

information may thus be used as hash algorithm parameters.

- 389 -

Petitioner Apple Inc. - Exhibit 1006, p. 1120

WO 98/09209 PCT/US97/15243

10

20

The "hash” pages may themselves be frequently updated,
and should carry transaction tags that are checked each time a
"hash“ page is loaded. The transaction tag may also be updated

~each time a "hash* page is written out.

As an alternative to the hash-based approach, if the
number of updatable items is kepf small (such as in a dédicated
consumer electronic appliance 600), then assigning each
updafable item a unique sequential site record number as part of
its VDE item ID may allow a look up table approach to be used.
Only a small number of bytes of transaction tag are needed per
itern, and a table transaction tag for all frequently updatable
items can be kept in ;;rotected memory such as SPU NVRAM

534b.

Random Value Generator Manager 565

Random Value Generator Ménager 565 may generate
random values. If a hardware-based SPU random value
generator 542 is present, the Random Value Generator Manager

565 may use it to assist in generating random values.

Other SPE RPC Services 592
Other authorized RPC services may be included in SPU

500 by having them "register® themselves in the RPC Services

- 390 -

Petitioner Apple Inc. - Exhibit 1006, p. 1121

10

15

20

WO 98/09209 PCT/US97/15243

Table and adding their entries to the RPC Dispatch Table. For
example, one or more component assemblies 690 may be used to
provide additional services as an integral part of SPE 503 and its
associated operating system. Requests to services not registered
in these tables will be passed out of SPE 503 (HPE 655) for

external servicing.

SPE 503 Performance Considerations

Performance of SPE 503 (HPE 655) is a function of:

. complexity of the component assemblies used

. number of simultaneous component assembly operations
. amount of internal SPU memory available

. speed of algorithm for block encryvption/decryption

The complexity of component assembly processes along
with the number of simultaneous component assembly processes
is perhaps the primary factor in determining performaince.
These factors combine to determine the amount of code and data
and must be resident in SPU 500 at any one time (the minimum
device size) and thus the number of device size "chunks* the
processes must be broken down into. Segmentation inherently
increases run time size over simpler models. Of course, feature
limited versions of SPU 500 may be implemented using

significantly smaller amounts of RAM 534. "Aggregate” load

-391 -

Petitioner Apple Inc. - Exhibit 1006, p. 1122

10

15

20

WO 98/09209 PCT/US97/15243

modules as described above may remove flexibility in configuring
VDE structures and also further limit the ability of participants
to iﬁdividually update otherwise separated elements, but may
result in a smaller minimum device size. A very simple metering
version of SPU 500 can be constructed to operate with minimal

device resources.

The amount of RAM 534 internal to SPU 500 has more
impact on the performance of the SPE 503 than perhaps any
oti:er aspect of the SPU. The flexible nature of VDE processes
allows use of a large number of load modules, methods and user
data elements. It is impractical to store more than a small
number of these items in ROM 532 within SPU 500. Most of the
code and data structures needed to support a specific VDE
process will need to be dynamically ioaded into the SPU 500 for
the specific VDE process when the process is invoked. The
operating system within SPU 500 then may page in the
necessary VDE items to perform the procesé. The amount of
RAM 534 within SPU 500 wiil directly determine how large any
single VDE load module plus its required data can be, as well as
the number of page swaps that will be necessary to run a VDE
process. The SPU I/O speed, encryption/decryption speed, and
the amount of internal memory 532, 534 will directly affect the

number of page swaps required in the device. Insecure external

-392-

Petitioner Apple Inc. - Exhibit 1006, p. 1123

10

15

20

WO 98/09209 PCT/US97/15243

memory may reduce the wait time for swapped pages to be
loaded into SPU 500, but will still incur substantial

encryption/decryption penalty for each page.

In order to maintain security, SPE 503 must encrypt and
cryptographically seal each block being swapped out to a storage
device external to a supporting SPU 500, and must similarly
decrypt, verify the cryptographibc seal for, and validate eéch block
as it is swapped into SPU 500. Thus, the data moverﬁent and
encryption/decryption overhead for each swap block has a very

large impact on SPE performance.

The performance of an SPU microprocessor 520 may not
significantly impact the performance of the SPE 503 it supports
if the processor is not responsible for moving data through the

encrypt/decrypt engine 522.

N VDE Secnre Database 610

VDE 100 stores separately deliverable VDE elements in a
secure (e.g., encrypted) database 610 distributed to each VDE
electronic appliance 610. The database 610 in the preferred
embodimernt may store and/or manage three basic classes of VDE
items:

VDE objects,

-393 -

Petitioner Apple Inc. - Exhibit 1006, p. 1124

WO 98/09209 PCT/US97/15243

VDE process elements, and

VDE data structures.

The following table lists examples of some of the VDE

5 items stored in or managed by information stored in secure
database 610:
Class Brief Description
Dbjects Content Objects Provide a container for
content.
Administrative Provide a container for
Objects information used to keep
VDE 100 operating.
Traveling Objects Provide a container for
content and control
information.
Smart Objects Provide a container for
(user-specified) processes
and data.
ocess Method Cores Provide a mechanism to
10 lements A relate events to control

mechanisms and

permissions.
Load Modules Secure (tamper-resistant)
("LMs*) executable code.
Method Data Independently deliverable
Elements ("MDEs*) data structures used to
control/customize
methods.
.Eata Permissions Records | Permissions to use
btructures | ("PERCs*) objects; "blueprints“ to
build component
assemblies.

-394 -

Petitioner Apple Inc. - Exhibit 1006, p. 1125

WO 98/09209 PCT/US97/15243

lass ' Brief Description

User Data Elements | Basic data structure for

("UDEs*) storing information used
in conjunction with load
modules.

Administrative Data | Used by VDE node to

Structures maintain administrative
information

Each electronic applfance 600 may have an instance of a

secure database 610 that securely maintains the VDE items.

(9]

Figure 16 shows one example of a secure database 610. The
secure database 610 shown in this example includes the
following VDE-protected items:

. one or more PERCs 808; A

. methods 1000 (including static and dynamic method
10 "cores” 1000, and MDEs 1202);
. Static UDEs 1200a and Dynamic UDEs 1200b; and

. load modules 1100.

Secure database 610 may also include the following
15 additional data structures used and maintained for
aMsﬁaﬁve purposes:
. an "object registry“ 450 that references an object
storage 728 containing one or more VDE objects;

. name service records 452; and

- 395 -

Petitioner Apple Inc. - Exhibit 1006, p. 1126

WO 98/09209 ' PCT/US97/15243

. configuration records 454 (including site
configuration records 456 and user configuration

records 458).

5 Secure database 610 in the preferred embodiment does not
include VDE objects 300, but rather references VDE objects
stored, for example. on file system 687 and/or in a separate object
repository 728. Nevertheless, an appropriate ”Starting point“ for
underst;mding VDE-protected information may be a discussion’

10 of VDE objects 300.

VDE Objects 300
VDE 100 provides a media independent container model
for encapsulating content. Figure 17 shows an example of a
15 "logical“ structure or format 800 for an object 300 provided by the

preferred embodiment.

The generalized "logical object* structure 800 shown in
Figure 17 used by the preferred embodiment supports digital
20 content delivery over any currently used media. "Logical object“
in the preferred embodiment may refer collectively to: content; -
computer software and/or methods used to manipulate, record,
and/or otherwise control use of said content; and permissions,

limitatiens, administrative control information and/or

- 396 -

Petitioner Apple Inc. - Exhibit 1006, p. 1127

10

15

20

WO 98/09209

PCT/US97/15243

requirements applicable to said content, and/o»r said computer
software and/or methods. Logical objects may or may not be
stored, and may or may not be present in, or accessible to, any
given electronic appliance 600. The content portion of a logical
object may be organized as information contained in, not

contained in, or partially contained in one or more objects.

Briefly, the Figure 17 "logical object“ structure 800 in the
preferred- embodiment includes a public header 802, private
header 804, a ;’pr'ivate body* 806 containing one or more methods
1000, permissions record(s) (PERC) 808 (which may include one
or more key blocks 810), and one or more data blocks or areas
812. These elements may be "packaged* within a "container*
302. This generalized, logical object structure 800 is used in the
preferred embodiment for different types of VDE objects 300

categorized by the type and location of their content.

The "container* concept is a convenient metaphor used to
give a name to the collection of elements required to make use of
content or to perform an administrative-type activity. Container
302 typically includes identifying information, control structures
and content (e.g., a property or administrative data). The term
"container” is often (e.g., Bento/OpenDoc and OLE) used to

describe a collection of information stored on a computer

- 397 -

Petitioner Apple Inc. - Exhibit 1006, p. 1128

WO 98/09209] PCT/US97/15243

10

15

20

system’s secondary storage system(s) or accessible to a computer
system over a communications network on a "server’s“ secondary

storage system. The "container* 302 provided by the preferred

embodiment is not so limited or restricted. In VDE 100, there is

no requirement that this information is stored together, received
at the same time, updated at the same time, used for only a
single object, or be owned by the same entity. Rather, in VDE
100 the container concept is extended and generalized to include
real-pirﬁe content and/or online interactive content passed to an
electronic appliance over a cable,iby broadcast, or communicated

by other electronic communication means.

Thus, the “complete* VDE container 302 or logical object |
structufe 800 may not exist at the user’s location (or any other
location, for that matter) at any one time. The "logical object“
may exist over a particular period of time (or periods of time),
rather than all at once. This concept includes the notion of a
"virtual container“ where important container elements may
exist either as a plurality of locations and/or over a sequence of
time periods (which may or may not overlap). Of course, VDE
100 éontainers can also be stored with all required control
structures and content together. This represents a continuum:

from all content and control structures present in a single

- 398 -

Petitioner Apple Inc. - Exhibit 1006, p. 1129

10

20

WO 98/09209 PCT/US97/15243

container, to no locally accessible content or container specific

control structures.

- Although at least some of the data representing the object
is typically encrypted and thus its structure is not discernible,

within a PPE 650 the object may be viewed logically as a

"container“ 302 because its structure and components are

automatically and transparently decrypted.

A container model merges well with the event-driven
processes and ROS 602 provided by the preferred embodiment.

Under this model. content is easily subdivided into small, easily

manageable pieces. but is stored so that it maintains the

structural richness inherent in unencrypted content. An object
oriented container model (such as Bento/OpenDoc or OLE) also
provides many of the necessary "hooks* for inserting the
necessary operating system integration components, and for

defining the various content specific methods.

In more detail, the logical object structure 800 provided by
the preferred embodiment includes a public (or unencrypted)
header 802 that identifies the object and fnay also identify one or
more owners of rights in the object and/or one or more

distributors of the object. Private (or encrypted) header 804 may

- 399 -

Petitioner Apple Inc. - Exhibit 1006, p. 1130

10

15

20

WO 98/09209 _ PCT/US97/15243

include a part or all of the information in the public header and

further, in the preferred embodiment, will include additional

~data for validating and identifying the object 300 when a user

attempts to register as a user of the object with a service
clearinghouse, VDE administrator, or an SPU 500.
Alternatively, information identifying one or more rights owners
and/or distributors of the objecf may be located in encrypted form -
within encrypted header 804, along with any of said additional
validating and identifying data.

Each logical object structure 800 may also include a
“private body" 806 containing or referencing a set of methods
1000 (i.e., programs or procedures) that control use and
distribution of the object 300. The ability to optionally

incorporate different methods 1000 with each object is important

to making VDE 100 highly configurable. Methods 1000 perform

the basic function of defining what users (including, wheré
appropriate, distributors, client administrators, etc.), can and
cannot do with an object 300. Thus, one object 300 may come
with relatively simple methods, such as allowing unlimited
viewing within a fixed period of time for a fixed fee (such as the
newsstand price of a newspaper for viewing the newspaper for a

period of one week after the paper’s publication), while other

- 400 -

Petitioner Apple Inc. - Exhibit 1006, p. 1131

WO 98/09209

10

15

20

PCT/US97/15243

objects may be controlled by much more complicated (e.g., billing

and usage limitation) methods. .

Logical object structure 800 shown in Figure 17 may also
include one or more PERCs 808. PERCs 808 govern the use of an
object 300, specifying methods or combinations of methods that
must be used to access or otherwise use the object or its contents.
The permission records 808 for an object may include key
block(s) 810, which may store decfyption keys for accessing the

content of the encrypted content stored within the object 300.

" The content porr.ioh of the object is typically divided into
portions called data blocks 812. Data blocks 812 may contain
any sort of electronic information, such as, "content,” including
computer programs, images, sound, VDE administrative
information, etc. The size and number of data blocks 812 may be
selected by the creator of the property. Data blocks 812 need not
all be the same size (size may be influenced by content usage;
database format, operating system, security and/or other
considerations). Security will be enhanced by using at least one
key block 810 for each data block 812 in the object, although this
is not required. Key blocks 810 may also span portions of a
plurality of data blocks 812 in a consistent or pseudo-random

manner. The spanning may provide additional security by

- 401 -

Petitioner Apple Inc. - Exhibit 1006, p. 1132

WO 98/09209 , ‘ PCT/US97/15243

applying one or more keys to fragmented or seemingly random
pieces of content contained in an object 300, database, or other
information entity.

5 Many objects 300 that are distributed by physical media
and/or by "out of channel“ means (e.g., redistributed after receipt
by a customer to another customer) might not include key blocks
810 in the same object 300 that is used to transport the content
protected by the key blocks. This ié because VDE objects may

10 contain data that can be electronicél]y copied outside the
confines of a VDE node. If the content is encrypted, the copies
will also be encrypted and the copier cannot gain access to the
content unless she has the appropriate decryption key(s). For
objects in which maintaining security is particu.l_arly lmportant,

15 the permission records 808 and key blocks 810 will frequently be
distributed electronicé.liy, using secure communications
techniques (discussed below) that are controlled by the VDE -
nodes of the sender and receiver. Asa result, permission records
808 and key blocks 810 will frequently, in the preferred

20 embodiment, be stored only on electronic appliances 600 of
registered users (and may themselves be delivered to the user as
part of a registration/initialization process). In this instance,
Permission records 808 and key blocks 810 for each property can

be encrypted with a private DES kéy that is stored only in the

- 402 -

Petitioner Apple Inc. - Exhibit 1006, p. 1133

10

15

20

WO 98/09209 PCT/US97/15243

secure memory of an SPU 500. making the key blocks unusable
on any other user's VDE node. Alternately, the key blocks 810
can be encrypted with the end user’s public key, making those
key blocks usable only to the SPU 500 that stores the
corresponding private key (or other, acceptably secure,

encryption/security techniques can be employed).

In the preferred embodiment, thg one or more keys used to
encrypt each permission record 808 or other management
information record will be changed everv time the record is
updated (or after a certain one or more events). In this event,
the updated record is re-encrypted with new one or more keys.
Alternately, one or more of the keys used to encrypt and decrypt
management information may be "time aged keys that
automatically become invalid after a period of time.
Combinations of time aged and other event triggered kevs may
also be desirable: for example keys may change after a certain
number of accesses, and/or after a certain duration of time or
absolute point in time. The techniques may also be used
together for any given key or combination of keys. The preferred
embodiment procedure for constructing time aged keys is a
one-way convolution algorithm with input parameters including
user and site information as well as a specified portion of the real

time value provided by the SPU RTC 528. Other techniques for

-403 -

Petitioner Apple Inc. - Exhibit 1006, p. 1134

WO 98/09209 ' PCT/US97/15243

time aging may also be used. including for example techniques
that use only user or site information. absolute points in time,
and/or duration of time related to a subset of activities related to
using or decrypting VDE secured content or the use of the VDE

5 system.

VDE 100 supports many different types of ”objecté“ 300

having the ‘logical object structure 800 shown in Figure 17.
Object‘sArnay be classified in one sense based on whether the

10 prdtcction information is bound together with the protected
informatior.. For example. a container that is bound by its
control(s) to a specific V'DE node is called a "stationary object*
(see Figure 13: A container that is not bound by its control
information to a specific VDE node but rather carries sufficient

15 control and»permissions Lo permit its use. in whole or in part, at

any of several sites is called a "Traveling Object” (see Figure 19).

Objects may be classified in another sense based on the
nature of the information they contain. A container with
20 information content is called a "Content Object” (see Figure 20).
A container that contains transaction information, audit trails,
VDE structures, and/or other VDE control/administrative
information is called an "Administrative Object® (see Figure 21).

Some containers that contain executable code operating under

-404 -

Petitioner Apple Inc. - Exhibit 1006, p. 1135

WO 98/09209 PCT/US97/15243

VDE control (as opposed to being VDE control information) are
called "Smart Objects.“ Smart Objects support user agents and
provide control for their execution at remﬁte sites. There are
other categories of objects based upon the location, type and

5 access mechanism associated With their content, that can include
combinations of the types mentioned above. Some of these
objects supported by VDE 100 are described below. Some or all
of the data blocks 812 shown in Figure 17 may include
"embedded* content. administrative, stationary, traveling and/or

10 other objects.

1. Stationary Objects
Figure 18 shows an example of a "Stationary Object"
structure 850 provided by the preferred embodiment.
15 "Stationary Object” structure 850 is intended to be used only at
specific VDE electronic appliance/installations that have received

explicit permissions to use one or more portions of the stationary

Mobject. »Therefore, stationary object structure 850 does not
contain a permissions record (PERC) 808; rather, this
20 permissions record is supplied and/or delivered separately (e.g.,
at a different time, over a different path, and[or by a different
party) to the appliance/installation 600. A common PERC 808

| may be used with many different stationary objects.

- 405 -

Petitioner Apple Inc. - Exhibit 1006, p. 1136

10

15

20

WO 98/09209 | PCT/US97/15243

As shown in Figure 18, public header 802 is prefefably
"plaintext* (i.e., unencrypted). Private heéder 804 is preferably
encrypted using at least one of many “private header keys.“
Private header 804 preferably also includes a copy of
identification elements from public header 802, so that if the
identification information in the plaintext public header is
tampered with, the system can determine precisely what the
tamperer attempted to alter. Methods 1000 may be cbntained n
a sectioﬁ called the “private BOdy“ 806 in the form of object local
methods, load modules. and/or user data elements. This private
body (method; section 806 is preferably encrypted using one or
more private body kevs contained in the separate permissions
record 808. The data blocks 812 contain content (information or
administrative) that may be encrypted using one of more content

keys also provided in permissions record 808.

2. Traveling Objects

Figure 19 shows an example of a "traveling object*
structure 860 provided by the preferred embodiment. Traveling
objects are objects that carry with them sufficient information to
enable at least some use of at least a portion of their content

when they arrive at a VDE ndde;

- 406 -

Petitioner Apple Inc. - Exhibit 1006, p. 1137

10

15

20

WO 98/09209 ’ PCT/US97/15243

Traveling object strﬁcture 860 may be the same as
stationary object structure 850 shown in Figure 18 except that
the traveling object structure includes a permissions record
(PERC) 808 within private header 804. The inclusion of PERC
808 within traveling object structure 860 permits the traveling
object to be used ai any VDE electronic appliance/participant 600

(in accordance with the methods 1000 and the contained PERC

808).

"Traveling” objects are a class of VDE oi)jects 300 that can
specifically support "out of channel“ distribution. Therefore, they
include key blockts: 810 and are transportable from one
electronic appliance 600 to another. Traveling objects may come
with a quite limited usage related budget so that a user may use,
in wiuie or part. condeiil (such as a cdmputer program, game, Or
database) and evaluate whether to acquire a license or further
license or purchase object content. Alternatively, traveling object
PERCs 808 may contain or reference budget records with, for
example:

(a) budget(s) reflecting previously purchased rights or

credit for future licensing or purchasing and
enabling at least one or moré types of object content

usage, and/or

- 407 -

Petitioner Apple Inc. - Exhibit 1006, p. 1138

(94

10

15

20

WO 98109209 PCT/US97/15243

(b) budget(s) that employ (and may debit) available
credit(s) stored on and managed by the local VDE

node in order to enable object content use, and/or

(c) budget(s) reflecting one or more maximum usage
criteria before a report to a local VDE node (and,
optionally. also a report to a clearinghouse) is
required and which may be followed by a reset
allowing further usage, and/or modification of one or

more ot the original one or more budget(s).

As with standard VDE objects 300, a user may be required
to contact a clearinghouse service to acquire additional budgets if
the user wishes to continue to use the traveling object after the
exhaustion of an available budget(s) or if the traveling object (or
a copy thereof’ is moved to a different electronic appliance and

the new appliance does not have a available credit budget(s) that

corresponds to the requirements stipulated by permissions

record 808.

For example, a traveling object PERC 808 may include a
reference to a required budget VDE 1200 or budget options that
may be found and/or are expected to be available. For example,

the budget VDE may reference a consumer’s VISA, MC, AMEX,

- 408 -

Petitioner Apple Inc. - Exhibit 1006, p. 1139

10

15

20

WO 98/09209 ‘ ‘ PCTNUS97/15243

or other "generic* budget that may be object independent and
may be applied towards the use of a certain or classes of

* traveling object content (for example any movie object from a
class of traveling objects that might be Blockbuster Video
rentals). The budget VDE itself may stipulate one or more
classes of objects it may be used with, while an object may
specifically reference a certain one or more generic budgets.
Under such circumstances, VDE providers will typically make
information available in such a manner as to »allow correct

referencing and to enable billing handling and resulting

payments.

Traveling objects can be used at a receiving VDE node
electronic appliance 600 so long as either the appliance carries
the correct budget or budget type (e.g. sufficient credit available
from a clearinghouse such as a VISA budget) either in general or
for specific one or more users or user classes, or so long as the
traveling object itself carries with it sufficient budget allowance
Or an appropriate authorization (e.g., a stipulation that the
traveling object may be used on certain one or more installations
or installation classes or users or user classes where classes
correspond to a specific subset of installations or users who are
represented by a predefined class identifiers stored in a secure

database 610). After receiving a traveling object, if the user

- 409 -

Petitioner Apple Inc. - Exhibit 1006, p. 1140

10

20

WO 98/09209 ' _ PCT/US97/15243

(and/or installation) doesn't have the appropriate budget(s)
and/or authorizations, then the user coujd be informed by the
electronic appliance 600 (using information stored in the
traveling object) as to which one or more parties the user could
contact. The party or parties might constitute a list of
alternative cleaﬁnghouse providers for the traveling object from

which the user selects his desired contact).

As mentioned above. traveling objec-:ts enable objects 300 to
be distributed "Out-Of-Channel:“ that 1s. the object may be
distributed by an unauthorized or not explicitly authorized
individual to another individual. "Out of channel“ includes paths
of distribution that allow. for example, a user to directly
redistribute an object to another individual. For example, an
object provider might allow users to redistribute copies of an
dbject to their friends and associates (for example by physical
delivery of storage media or by deliverv over a computer
network) such that if a friend or associate satisfies any certain

criteria required for use of said object, he may do so.

For example, if a software program was distributed asa
traveling object, a user of the program who wished to supply it or
a usable copy of it to a friend would normally be free to do so.

Traveling Objects have great potential commercial significance,

-410 -

Petitioner Apple Inc. - Exhibit 1006, p. 1141

WO 98/09209 PCT/US97/15243

since useful content could be primarily distributed by users and
through bulletin boards. which would fequire little or no
distribution overhead apart from registration with the "original“

“content provider and/or clearinghouse.

The "out of channel” distribution may also allow the
provider to receive payment for usage and/or elsewise maintain
at least a degree of control over the redistributed object. Such
certain criteria might involve. for example. the registered

10 presence at a user's VDE node of an authorized third party
financial relationship. such as a credit card. along with sufficient

available credit for zaid usage.

Thus, if the user had a VDE node. the user might be able
15 to use the traveling object if he had an appropriate, available
budget available on his VDE node {and If necessary, allocated to
him), and/or if he or his VDE node belonged to a specially
authorized group of users or installations and/or if the traveling
object carried its own budget(s).
20
Since the content of the traveling object is encrypted, it
can be used only under authorized circumstances unless the
traveling object private header key used with the object is

broken—a potentially easier task with a traveling object as

-411-

Petitioner Apple Inc. - Exhibit 1006, p. 1142

WO 98/09209 PCT/US97/15243

compared to. for example. permissions and/or budget information
since many objects mav share the same key, giving a
cryptoanalyst hoth more information in cyphertext to analyze

and a greater incentive to perform cryptoanalysis.

In the case of a "traveling object.“ content owners may
distribute information with'some or all of the key blocks 810
included in the object 300 in wﬁich the content is encapsulated.
. Putting kevs in distributed objects 300 increases the exposure to
10 attempts to defeat ecunty mechanisms by breaking or

cryptoanalyzing the encrvption aigorithm with which the private

encrypuion'. This hreaking of security would normally require
considerable skilll and time. but if broken. the algorithm and key

15 - could be published so as to allow large numbers of individuals
who possess objects that are protected with the same kevis) and
algorithm(s) to ulegally use protected information. As a result,
placing keys in distributed objects 300 may be limited to content
that is either “time sensitive“ (has feduced value after the

20 .passage of a certain peﬁod of time), or which is somewhat
limited in value, or whe;'e the commercial value of placing keys
in objects (for example convenience to end-users, lower cost of
eliminating the telecommunication or other means for delivering

keys and/or permissions information and/or the ability to

-412 -

Petitioner Apple Inc. - Exhibit 1006, p. 1143

10

20

WO 98/09209

PCT/US97/15243

supporting objects going "out-of-channel“) exceeds the cost of
vulnerability to sophisticated hackers. As mentioned elsewhere,
the security of keys may be improved by employiﬁg convolution
techniques to avoid storing "true* keys in avtraveling object,
although in most cases using a shared secret provided to most or
all VDE nodes by a VDE administrator as an input rather than
site ID and/or time in order to allow objects to remain

independent of these values.

As shown in Figure 19 and discussed above, a traveling
object contains a permissions record 808 that preferably provides
at least some budget (one. the other, or both. in a general case).
Permission records 808 can, as discussed above. contain a kev
block(s) 810 storing important key information. PERC 808 may
also contain or refer to budgets containing potentially valuable
quantities/values. Such budgets may be stored within a
traveling object itself. or they may be delivered sepérately and
protected by highly secure communications keys and
administrative object keys and management database

techniques.

The methods 1000 contained by a traveling object will
typically include an installation procedure for "self registering”

the object using the permission records 808 in the object (e.g., a

-413 -

Petitioner Apple Inc. - Exhibit 1006, p. 1144

WO 98/09209 ' . PCT/US97/15243

Ut

10

15

20

REGISTER method). This may be especially useful f;)r objects
that have time limited value, objects (or properties) for which the
end user is either not charged or is charged only a nominal fee
(e.g., objects for which advertisers and/or information publishers
are charged based on the number of end users who actually
access published information), and objects that require widely
available budéets and may particularly benefit from
out-of—ch’annel distribution (e.g., credit card derived budgets for
objects containing properties sﬁch as movies, software programs,
games, etc.). Such traveling objects may be supplied with or

without contained budget UDEs.

One use of traveling objects is the pﬁblishing of software,
where the contained permission reéord(s) may allow potential
customers to use the software m a demonstration mode, and
possibly to use the full program features for a limited time before
having to pay a license fee, or before having to pay more than an
initial trial fee. For example, using a time based billing method
and budget records with a small pre-installed time budget to
allow full use of the program for a short period of time. Various
control methods may be used to avoid misuse of object contents.
For example, by setting the mnnmum registration interval for

the traveling object to an appropriately large period of time (e.g.,

-414 -

Petitioner Apple Inc. - Exhibit 1006, p. 1145

10

20

WO 98/09209 PCT/US97/15243

a month, or six months or a vear), users are prevented from

re-using the budget records in the same traveling object.

Another method for controlling the use of traveling objects
is to include time-aged keys in the permission records that are
incorporated in the traveling object. This is useful generally for
traveling objects to ensure that they will not be used beyond a
certain date without re-registration, and is particularly useful
for travéling objects that are electronically distributed by
broadcast, netwdrk. or telecommunications tincluding both one
and two way cable:. since the date and time of delivery of such
traveling objects awing keys can be set to accurately correspond

to the time the user came into possession of the object.

Traveling objects can also be used to facilitate "moving“ an
object from one electronic appliance 600 to another. A user could
move a traveling object. with its incorporated one or more
permission records 808 from a desktop computer, for example, to
his notebook computer. A traveling object might register its user
within itself and thereafter only be useable by that one user. A
traveling object might maintain separate budget information,
one for the basic distribution budget record, and another for the

"active“ distribution budget record of the registered user. In this

-415 -

Petitioner Apple Inc. - Exhibit 1006, p. 1146

WO 98/09209 PCT/US97/15243

10

20

way, the object could be copied and passed to another potential

user, and then could be a portable object for that user.

Traveling objects can come in a container which contains
other objects. For example, a traveling object container can
includé one or mdre content objects and one or more
administrative objects for registering the cdntent object(s) in an
end user’s object registry and/or for providing mechanisms' for
enforcihg permissions and/or other security functions. Contained
administrative object: 5 may be used to install necessary
permission records and or budget informafion in the end user's

electronic appliance.

Content Objects

Figure 20 shows an example of a VDE content object
structure 880. Generally, content objects 880 include or provide
information content. This “content“ may be any sort of electronic
information. For example, content may include: corhputer
software, movies, books, music, information databases,
multimedia information, virtual reality information, machine
instructions, computer data files, communications messages
and/or signals, and other information, at least a portion of which
is used and/or manipulated by one or more electronic appliances.

VDE 100 can also be configured for authenticating, contrblling,

-416 -

Petitioner Apple Inc. - Exhibit 1006, p. 1147

10

15

20

WO 98/09209 PCT/US97/15243

and/or auditing electAronic commercial transactions and
communications such as inter-bank transactions, electronic
purchasing communications, and the transmission of, auditing .
of, and secure commercial archiving of, electronically signed,
contracts and other legal documents; the information used for
these transactions may also be termed "content.* As mentioned
above, the content need not be physically stored within the object
container but may instead be provided separately at a different

time (e.g., a real time feed over a cable).

| Content object structure 880 in the particular example
shown in Figux:e 20 is a type of stationary object because it does
not include a PERC 808. In this example, content object
structure 880 includes, as at least part of its content 812, at least
one embedded content object 882 as shown in Figﬁre SA.
Content object structure 880 may also include an .administrative

object 870. Thus, objects provided by the preferred embodiment

may include one or more "embedded” objects. S

‘ Administratiye Objects
Figure 21 shows an example of an administrative object
structure 870 provided by the preferred embodiment. An
"administrative object* generally contains permissions,

administrative control information, computer software and/or

-417 -

Petitioner Apple Inc. - Exhibit 1006, p. 1148

WO 98/09209 : ‘ PCT/US97/15243

4]}

10

20

methods associated with the operation df VDE 100.
Administrative objects may also or alternatively contain records
of use, and/or other inform’atioﬁ used in, or related to, the
operation of VDE 100. An admin_istl_'ative object may be
distinguished from a content object by the absence of VDE
protected ”cdntent“ for release to an end user for example. Since
objects may contain other objects, it is possible for a single object
to contain one or more conﬁent containing objects and one or
more administrative objects. Administrative objects may be used
to tra;ismit information between electronic appliances for
update, usage reporting, billing and/or coﬁtrol purposes. They
contain information that helps to administer VDE 100 and keep
it operating properly. Administrative objects .generally are sent
between two VDE nodes, for example, a VDE clearinghouse
service, distributor, or client administrator and an end user's

electronic appliance 600.

Administrative object structure 870 in this example
includes a public header 802, private header 804 (including a
"PERC* 808) and a "private body* 806 containing methods 1000.
Administrative object structure 870 in this particular example -
shown in Figure 20 is a type of traveling object because it
contains a PERC 808, but the administrative object could exclude

the PERC 808 and be 2 stationary object. Rather than storing

-418 -

Petitioner Apple Inc. - Exhibit 1006, p. 1149

10

15

20

WO 98/09209 PCT/US97/15243

information content. administrative object structure 870 stores
"administrative information content“ 872. Administrative
information content 872 may, for example, comprise a number of
records 872a, 872b. . . . 872n each corresponding to a different
"event.“ Each record 872a. 872b, . .. 872n may include an
"event” field 874, and may optionally include a parameter field
876 a.nd/or a data field 878. These administrative content
records 872 mav be used by VDE 100 to define events that may
be processed during the coursé of transactions, €.g., an event
designed to add a record to a secure database might include
parameters 836 indicating how and where the record should be
stored and data field 878 containing the record to be added. In
another example. a collection of events may describe a financial
transaction between the creator(s) of an administrative object
and the recipientis), such as a purchase, a purchase order, or an
invoice. Each event record 872 may be a set of instructions to be
executed by the end user’s electronic appliance 600 to make an
addition or modification to the end user’'s secure database 610,
for example. Events can perform many basic management
functions, for example: add an object to the object registry,
including providing the associated user/group record(s), rights
records, permission récord and/or method records; delete audit
recqrds (by "rolling up“ the audit trail information into, for

example, a more condensed, e.g. summary form, or by actual

-419 -

Petitioner Apple Inc. - Exhibit 1006, p. 1150

10

20

WO 98/09209 | o PCT/US97/15243

deletion); add or update permissions records 808 for previously
registered objects: add or update budget records; add or update

user rights records: and add or update load modules.

In the preferred embodiment. an administrative object
may be sent. for example. by a distributor, client administrator,
or, perhaps, a clearinghouse or other financial service prbvider,
to an end user, or. alternatively, for example, by an object creator

to a distributor or service clearinghouse. Administrative objects,

- for example. may increase or otherwise adjust budgets and/or

permissions of the receiving VDE node to which the
administrative object 15 being sent. Si.milarllv, administrative
objects containinz audit information in the data area 878 of an
event record 872 can be sent from end users to distributors,
and/or clearinghouses and/or client administrators, who might

themselves further transmit to object creators or to other

_participants in the object's chain of handling.

Methods
Methods 1000 in the preferred embodiment support many
of the operations that a user encounters In using objects and
communicating with a distributor. They may also specify what
method fields are displayable to a user (e.g., use events, user

request events, user response events, and user display events).

- 420 -

Petitioner Apple Inc. - Exhibit 1006, p. 1151

WO 98709209 o PCT/US97/15243

10

15

20

Additional-ly, if distribution éépabﬂities are supported in the
method, then the method may support distribution activities,
distributor communications with a user about a method, method
modification, what method fields are displayable to a distributor,
and any distribution database checks and record keeping (e.g.,
distribution events, distributor reqﬁest events, and distributor

response events).

Given the generality of the e?cisr.ing rﬁethod structure, and
the diverse array of possibilities for assembling methods, a
generalized structure may be used for establishing relationships
between methods. Since methods 1000 may be independent of
an object that requires them during any given session, it is not
possible to define the relationships within the methods
theinselves. "Control methods* are used in the preferred
embodiment to define relationships between methods. Control
methods may be object specific, and may accommodate an

individual object’s requirements duri.ng‘ each session.

A control method of an objgct establishes relationships
between other methods. These relationships are parameterized
with explicit method identifiers when a i;ecord set reflecting
desired method options for each required method is constructed

during a registration process.

- 421 -

Petitioner Apple Inc. - Exhibit 1006, p. 1152

WO 98/09209 PCT/US97/15243

An "aggregate method in the preferred embodiment
represents a collection of methods that may be treated as a single
unit. A collection of methods that are related to a specific
property, for example, may be stored in an aggregate uﬁethod.

5 This type of aggregation is useful from an implementation point
of view because it may reduce bookkeeping overhead and may
improve overail database efficiency. In other cases, methods
may be aggregated because they are logically coupled. For
example, two budgets may be linked together because one of the

10 budgets represents an overall limitation, and a second budget

| represents the current limitation available for use.. This would

arise if, for exampie. a large budget is released in small amounts

over time.

15 For example, an aggregate method that includes meter,
billing and budget processes can be used instead of three
separate methods. Such an aggregate method may referénce a
single "load module“ 1100 that performs all of the functions_of
the three separate load modules and use only one user data

20 element that contains meter, billing and budget data. Using an
aggregate method instead of three separate methods may
minimize overall memory requirements, database searches,
decryptions, and the number of user data element vwrit'es back to

a secure database 610. The disadvantage of using an aggregate

-422 -

Petitioner Apple Inc. - Exhibit 1006, p. 1153

WO 98/09209 PCT/US97/15243

method instead of three separate methods can be a loss of some
flexibility on the part of a provider and user in that various

functions may no longer be independently replaceable.

3 ‘ Figure 16 shows methods 1000 as being part of secure

database 610.

A "method" 1000 provided by the preferred embodiment is
a collecti.on of basic instructions and information related to the
10 basic instructions. that provides context, data, réquirements
and/or relationships for use in performing, and/or preparing to
perform, the basic instructions in relation to the operation of one
or more electronic appliances 600. As shown in Figure 16,
methods 1000 in the preferred embodiment are represented in
15 secure database 610 byv:
. method “cores” 1000,
. Method Data Elements (MDEs) 1202;
. User Data Elements (UDEs) 1200;. and
. ‘Data Description Elements (DTDs).
20
Method "core” 1000 in the preferred embodiment may
contain or reference one or more data elements such as MDEs
1202 and UDEs 1200. In the preferred embodiment, MDEs 1202

and UDEs 1200 may have the same general characteristics, the

- 423 -

Petitioner Apple Inc. - Exhibit 1006, p. 1154

10

20

WO 98/09209

PCT/US97/15243

main difference Between these two types of data elements being
that a UDE is preferably tied to a particular method as wel] asa
particular user or group of users. whereas an MDE may be tied
to a particular method but may be user independent. These
MDE and UDE data structures 1200, 1202 are used in the
preferred embodiment to provide input data to methods 1000, to
receive data outputted by methods, or both. MDEs 1202 and
UDESs 1200 may be delivered independently of method cores
1000’ that reference them. or the data structures may be

delivered as part of the method cores. For example, the method

~core 1000" in the preferred embodiment rnay contain one or more

MDEs 1202 and.or UDEs 1200 (or portions thereof). Method core
1000’ may, alternately or in addition, reference one or more
MDE and/or UDE data structures that are delivered

independently of method core(s) that reference them.

Method cores 1000’ in the preferred embodiment also
reference one or more "load modules” 1100. Load modules 1100
in the preferred embodiment comprise executable code, and may
also iqclude or reference one or more data structures called "data
descriptor* ("DTD*) information. This "data descriptor*
information méy, fo.r example, provide data input information to

the DTD interpreter 590. DTDs may enable load modules 1100

-424 .

Petitioner Apple Inc. - Exhibit 1006, p. 1155

10 -

15

20

WO 98/09209 PCT/US97/15243

to access (e.g., read from and/or write to) the MDE and/or UDE

data elements 1202, 1200.

- Method cores 1000’ may also reference one or more DTD
and/or MDE data structures that contain a textual description of
their operations suitable for inclusion as part of an electronic
contract. The references to the DTD and MDE data structures
may occur in the private header of the method core 1000{, Or may

be speciﬁed as part of the event table described below.

Figure 22 shows an example of a format for a method core
1000’ provided by the preferred embodiment. A method core
1000’ in the prefefred embodiment contains a method eve;xt |
table 1006 and a method local data area 1008. Method event _
table 1006 lists "events.“ These "events*“ each reference "load
modules” 1100 and/or PERCs 808 that control processing of an
event. Associated with each event in the list is any static data - -
necessary to parameterize the load module 1000 or permissions
record 808, and reference(s) into method user data area 1008
that are needed to support that event. The data that
parameterizes the load module 1100 can be thought of, in part,
as a specific function call to the load module, and the data
elements corresponding to it may be thought of as the input

and/or output data for that specific function call.

- 425 -

Petitioner Apple Inc. - Exhibit 1006, p. 1156

WO 98/09209 PCT/US97/15243

Method cores 1000’ can be specific to a single user, or they
may be shared across a number of users (e.g., depending upon
the uniqueness of the method core and/or the specific user data
element). Specifically, each user/group may have its own UDE

5 ' 1200 and use a shared method core 1000°. This structure allows
for lower database overhead than when associating an entire
method core 1000 with a user/group. To enable a user to use a
method, the user may be sent a method core 1000’ specifying a
UDE 1200. Ifthat méthod core 100‘0' already exists in the site’s
10 secure database 610, only the UDE 1200 may need to be added.
Alternately, the method may create any required UDE 1200 at

registration time.

The Figure 22 example of a format for a method core 1000’
15 provided by the preferred embodiment includes a public
(unencrypted) header 802, a private (encrypted) header 804,

method event table 1006, and a method local data area 1008.

An example of a possible field layout for method core 1000’

20 public header 802 is shown in the following table:

- 426 -

Petitioner Apple Inc. - Exhibit 1006, p. 1157

WO 98/09209 ’ PCT/US97/15243

}Eeld Type Deacription
‘Llethod ID Creator ID Site ID of creator of this
method. '
Distributor ID Distributor of this method
(e.g., last change).
Tvpe ID Constant, indicates method
”typé-“
Method ID Unique sequence number
. . for this method.
Version ID Version number of this
method.
Dther Class ID ID to support different
5 tlassification method "classes.
Information
Type ID ID to support method type

compatible searching.

IDescriptive Description(s) ‘Textual description(s) of the

[Information method.
Event Summary of event classes
Summary (e.g., USE) that this method
____|_supports.
10
- 427 - |

Petitioner Apple Inc. - Exhibit 1006, p. 1158

WO 98/09209

U

10-

15

PCT/US97/15243

An example of a possible field layout for private header

804 is shown below:

”Field Type

Description

and "Other Classification

”Copy of Public Header 802 Method ID

Method ID from
Public Header

Reference Tags '

Validation tag

Correlation tag

Information*
Descriptive # of Events # of events supported
Information in this method.
| Access and Access tag | Tags used to

determine if this
method is the
correct method
under management
by the SPU; ensure
that the method
core 1000’ is used
only under
appropriate
clrcumstances.

Data Stnicture Reference

Optional Reference to
DTD(s) and/or
MDE(s)

Check Value

Check value for

Private Header and
method event table.

Check Value for Pﬁblic Header

Check Value for
Public Header

- 428 -

Petitioner Apple Inc. - Exhibit 1006, p. 1159

10

15

20

WO 98/09209

PCT/US97/15243

Referring once again to Figure 22, method event table
1006 may in the preferred embodimenf include from 1to N
method event records 1012. Each of these method event records
1012 corresponds to a different event the method 1000
represented by method core 1000’ may respond to. Methods
1000 in the preferred embodiment may have completely different
behavior depending upon the event they respond to. For
example, an AUDIT method may store information in an audit
trail UDE 1200 in response to an event correspondmg to a user’s
use of an object or other resource. This same AUDIT method
may report the stored audit trail to a VDE administrator or other
participant in response to an administrative event such as, for
example, a timer expiring within a VDE node or a request from
another VDE participant to report the audit trail. In the
preferred embodiment. each of these different events may be

represented by an “event code.“ This "event code" may be passed

as a parameter to a method when the method is called, and used

to "look up“ the appropriate method event record 1012 within
method event table 1006. The selected method event record
1012, in turn, specifies the appropriate information (e.g., load
module(s) 1100, data element UDE(s) and MDE(s) 1200, 1202,
and/or PERC(s) 808) used to construct a component assembly

690 for execution in response to the event that has occurred.

- 429 -

Petitioner Apple Inc. - Exhibit 1006, p. 1160

10

15

20

WO 98/09209 o PCT/USY7/15243

Thus, in the preferred embodiment, each method event
record 1012 may include an event field 1014, a LM/PERC
reference field 1016, and any number of data reference fields
1018. Event fields 1014 in the preferred embodiment may
contain a "event code or other information identifying the
corresponding event. The LM/PERC reference field 1016 may
provide a reference into the secure database 610 (or other
"pointer* infonna.tion} identifying a load module 1100 and/or a
PERC 808 providing tor referencing) executable code to be loaded
and executed to perform the method in response to the event.
Data reference fields 1018 may include information referencing a
UDE 1200 or a MDE 1202. These data structures may be
contained in the method local data area 1008 of the method core
1000°, or they may be stored within the secure database 610 as

indepéndent deliverables.

The following table is an example of a possible more

detailed field layout for a method event record 1012:

Field Type Description

Event Field 1014 Identifies corresponding
: ’ event.
Access tag Secret tag to grant access to
this row of the method
event record.

- 430 -

Petitioner Apple Inc. - Exhibit 1006, p. 1161

PCT/US97/15243

WO 98/09209
20 Field Type | Description

LM/PERC | DB IDor Database reference (or local

Reference offset/size pointer).

Field 1016 | Correlation tag | Correlation tag to assert
when referencing this
element.

of Data Element Reference - Count of data reference

5] Fields fields in the method event
record. '

Data UDE ID or Database 610 reference (or

Reference offset/size local pointer).

Field 1 Correlation tag | Correlation tag to assert
when referencing this.
element.

10 Data UDE ID or Database 610 reference (or
' Reference offsevsize local pointer).

Field n Correlation tag | Correlation tag to assert
when referencing this

element.

15 Load Modules
Figure 23 is an example of a load module 1100 provided by
the preferred embodin;ent. In general, load modules 1100
represent a collection of basic functions that are used for control
operations.
20
Load mociule 1100 containé code and static data (that is
functionally the equivalent of code), and is used to perform the

basic operations of VDE 100. Load modules 1100 will generally

- 431 -

Petitioner Apple Inc. - Exhibit 1006, p. 1162

" 'WO 98/09209 ’ PCT/US97/15243

10

15

20

be shared by all the control structures for all objects in the
system, though proprietary load modules are also permitted.
Load modules 1100 may be passed between VDE participants in
admixﬁstran've object structures 870, and are usually stored in
secure database 610. They a.ré always encrypted and
authenticated in both of these cases. When a method core 1000°
references a load module 1100, a load module is loaded into the

SPE 503, decrypted, and then either passed to the electronic

- appliance microprocessor for ‘executing in an HPE 655 (if that is

where it ekecutesy. or kept in the SPE (if that is where it
executes). If no SPE 503 is present. the load module may be

-decrypted by the HPE 655 prior to its execution.

Load module creation by parties is preferably controlled by
a certification process or a ring based SPU architecture. Thus,
the process of creating new load modules 1100 is itself a
—controlled process, as is the process of replacing, ubdating or

deleting load modules already stored in a secured database 610.

A load module 1100 is able to perform its function only
when executed in the protected environment of an SPE 503 or an
HPE 6355 because only then can it gain access to the protected
elements (e.g., UDEs 1200, other load modules 1100) on which it

operates. Initiation of load module execution in this

-432 -

Petitioner Apple Inc. - Exhibit 1006, p. 1163

10

15

20

WO 98/09209 PCT/US97/15243

environment is strictly controlled by a combination of access
tags, validation tags, encryption keys, digital signatures and/or
correlation tags. Thus, a load module 1100 may only be
referenced if the caller knows its ID and asserts the shared
secret correlation tag specific to that load module. The
decrypting SPU may match the identification token and local
access tag of a load module after decryption. These techniques
make the physical replacement of any load module 1100
detectable at the next physical access of the load module.
Furthermore, load modules 1100 may be made "read only“ in the
preferred embodiment. The read-only nature of load modules
1100 prevents the write-back of load modules that have been

tampered with in non-secure space.

Load modules are not necessarily directly governed by
PERCs 808 that control them, nor must they contain any
time/date information or expiration dates. The only control
consideration in the preferred embodiment is that one or more
methods 1000 reference them using a correlation tag (the value
of a protected object created by the load module’s owner,
distributed to authorized parties for inclusion in their methods,
and to which access and use is controlled by one or more PERCs
808). If a method core 1000’ references a load module 1100 and

asserts the proper correlation tag (and the load module satisfies

- 433 -

Petitioner Apple Inc. - Exhibit 1006, p. 1164

10

WO 98/09209 _ _ PCT/US97/15243

the internal tamper checks for the SPE 503), then that load

module can be loaded and executed, or it can be ac¢quired from,

shipped to, updated, or deleted by, other systems.

As shown in Figure 23, load modules 1100 in the preferred
embodiment may be constructed of a public (unencrypted) header
802, a private (encrypted) header 804, a private body 1106
containing the encrypted exeéutable code, and one or more data
description elements ("DTDs“) 1108. The DTDs 1108 may be
stored within a load module 1100, or thev may be references to

static data elements stored in secure database 610.

The following is an example of a possible field layout for

load module public header 802:

Field Type Description

LMID ' VDE ID of Load Module.

Creator ID Site ID of creator of this load
module.

Type ID Constant indicates load
module type.

-434 - »

Petitioner Apple Inc. - Exhibit 1006, p. 1165

WO 98/09209 PCT/US97/15243

Field Type Description

LM ID Unique sequence number for
this load module, which
uniquely identifies the load
module in a sequence of load
modules created by an
authorized VDE participant.

Version ID Version number of this load
module.

Other- Class ID ID to support different load
classificatio module classes.

0 _
Tvpe ID ID to support method type

information i)
compatible searching.

Descriptive Description | Textual description of the
Information load module.

Execution Value that describes what
space code execution space (e.g., SPE or
HPE) this load module.

Many load modules 1100 contain code that executes in an
SPE 503. Some load modules 1100 contain code that executes in
an HPE 655. This allows methods 1000 to execute in whichever
environment is appropriate. For example, an INFORMATION
method 1000 can be built to execute only in SPE 503 secure
space for government classes of security, or in an HPE 655 for
commercial applications. As described above, the load module

public header 802 may contain an "execution space code” field

- 435 -

Petitioner Apple Inc. - Exhibit 1006, p. 1166

WO 98/09209

10

15

20

that indicates where the load niodule 1100 needs to execute.
This funztionality also allows for different SPE instruction sets
as well as different user blatforms, and allows methods to be
constructed without dependencies on the underlying load module

instruction set.

Load modﬂes 1100 operate on three major data areas: the
stack, load module parametérs, and data structures. The stack
and exe-cution memory size required to execute the load module
1100 are preferabl_v described in private header 804, as are the
data descriptions from the stack image on load module call,
return, and any return data areas. The stack and dynamic areas
are described using the same DTD mechanism. The following is

an example of a poSsible layout for a load module private header

1104:
Field Type Description
Copy of some or all of information from Object ID from Public Header.
public header 802
Other Check Value Check Value for Public Header.
classification
information
Descriptive LM Size Size of executable code block.
Information :
LM Exec Size Executable code size for the load
module.
LM Exec Stack Stack size required for the load
_ | module.
- 436 -

Petitioner Apple Inc. - Exhibit 1006, p. 1167

PCT/US97/15243

WO 98/09209 PCT/US97/15243

Executon space code Code that describes the execution
space for this load module.

Access and Access tag _ Tags used to determine if the load

reference tags module is the correct LM requested
Validation tag by the SPE.

Correladon tag Tag used to determine if the caller
of the LM has the right to execute
this LM.

Digital Signature Used to determine if the LM
executable content is intact and
was created by a trusted source
(one with a correct certificate for
creating LMs).

' ‘ E
Datarecord : DTD count Number of DTDs that foilow the
. f|deseriptor code block.

5 information

! DTD 1 reference - If locally defined, the physical size
and offset in bytes of the first DTD
l defined for this LM.

i If publicly referenced DTD. this is
the DTD ID and the correlation tag
10 permit access to the record. -~

DTD N reference If locally defined, the physical size
and offset in bytes of the Nth DTD
defined for this LM.

If publicly referenced DTD, this is
the DTD ID and the correlation tag
to permit access to the record.

Check Value Check Value for entire LM.

]

Each load module 1100 also may use DTD 1108
10 _ information to provide the information necessary to support

building methods from a load module. This DTD information

-437 -

Petitioner Apple Inc. - Exhibit 1006, p. 1168

WO 98/09209 . PCT/US97/15243

n

10

15

20

contains the definition expressed in a language such as SGML
for the names and data types of all of the method data ﬁelds that
the load module supports, and the acceptable ranges of values
that can be placed in the fields. Other DTDs may describe the
function of the load module 1100 in English for inclusion in an

electronic contract, for example.

The next section of load module 1100 is an encrypted
executéble body 1106 that contains one o.r‘ more blocks of -
encrypted code. Load modules 1100 are preferably coded in the
"native” instruction set of their execution environment for
efficiency and compactness. SPU 500 and platform providers
may provide versions of the standard load modules 1100 in order
to make their products cooperate with the content in distribution

mechanisms contemplated by VDE 100. The preferred

embodiment creates and uses native mode load modules 1100 in

iieu of an interpreted or "p-code® solution to optimize the
performance of a limited resource SPU. However, when
sufficient SPE (or HPE) resources exist and/or platforms have
sufficient resources, these other implementation approaches may

improve the cross platform utility of load module code.

-438 -

Petitioner Apple Inc. - Exhibit 1006, p. 1169

WO 98/09209 PCT/US97/15243

The following is an example of a field layout for a load

module DTD 1108:

lL‘ield Type Description
5 DTD ID l Uses Obiect ID from Private Header.
Creator ID Site ID of creator of this DTD.
Tvpe [D Constant. 7
DTD ID Unique sequence number for this
DTD.
Version [D Version number of this DTD.
Descriptive l‘bTD Size Size of DTD block.
nformation ’
Access and Access tag Tags used to determine if the DTD is
reference tags 5 the correct DTD requested by the SPE.
VMalidation tag .
Correlation tag | Tag used to determine if the caller of
| this DTD has the right to use the DTD.

10 DTD Body !DTD Data Definition 1

DTD Data Definition 2

DTD Data Definition N

Check Value Check Value for entire DTD record.

Some examples of how load modules 1100 may use DTDs
1108 include: |

15 . Increment data element (defined by name in DTD3)
value in data area DTD4 by value in DTD1

-439 -

Petitioner Apple Inc. - Exhibit 1006, p. 1170

10

15

20

25

30

WO 98/09209 PCT/US97/15243

« Set data element (defined by name in DTD3) value
in data area DTD4 to value in DTD3

. Compute atomic element from event in DTD1 from
table in DTD3 and return in DTD2

. Compute atomic element from event in DTD1 from
equation in DTD3 and return in DTD2

. Create load module from load module creation
template referenced in DTD3

- Modify load module in DTD3 using content in DTD4

. Destroy load module named in DTD3

Commonly used load modules 1100 may be built into a

SPU 500 as space permits. VDE processes that use built-in load

‘modules 1100 will have significantly better performance than -

processes that have to find, load and decrypt external load
modules. The most useful load modules 1100 to build into a SPU
might include scaler meters, fixed price billing, budgets end load
modules for aggregaﬁe methods that perform these three

processes.

User Data Elements (UDEs) 1200 and Method Data Elements
(MDEs) 1202

Ueer Data Elements (UDEs) 1200 and Method Data

Elements (MDESs) 1202 in the preferred embodiment store data.

-440 -

Petitioner Apple Inc. - Exhibit 1006, p. 1171

10

15

20

WO 98/09209

PCT/US97/15243

There are many types of UDEs 1200 and MDEs 1202 provided by
the preferred embodiment. In the preferred embodiment, each of
these different types of data structures shares a common overall
format including a common header definition and naming
scheme. Other UDEs 1200 that share this common structure
include "local name seryic_es records” (to be explained shortly)
and account information for connecting to other VDE
participants. These elements are not necessaﬁly associated with

an individual user, and may therefore be considered MDEs 1202.

~ All UDEs 1200 and all MDEs 1202 provided by the preferred

embodiment may, if desired, (as shown in Figure 16) be stored in
a common physical table within secure database 610, and
database access processes may commonly be used to access all of

these different types of data structures.

In the preferred embodiment, PERCs 808 and user rights
table records are types of UDE 1200. There are many other
types of UDEs 1200/MDEs 1202, including for example, meters,
meter trails, budgets, budget trails, and audit trails. Different
forn_lats for these different types of UDEs/MDEs are defined, as
described above, by- SGML definitions contained within DTDs
1108. Methods 1000 use these DTDs to appropriately access

UDEs/MDEs 1200, 1202.

-441 -

Petitioner Apple Inc. - Exhibit 1006, p. 1172

10

15

20

WO 98/09209

PéTfUS97/15243
- Secure database 610 stores two types of items: static and
dynamic. Static data structures and other items are used for
information that is essentially static information. This includes
load modules 1100, PERCs 808, and many components of
methods. These items are not updated frequently and contain
expiration dates that can be used to prevent "old“ copies of the
information from being substituted for newly received items. _
These items may be encrypted with a site specific secure

database file key when they are stored in the secure database

| 610, and then decrypted using that key when they are loaded

into the SPE.

Dynamic items are used to Support secure items that must

‘be updated frequently. The UDEs 1200 of many methods must

be updated and written out of the SPE 503 after each use.
Meters and budgets are common examples of this. Expiration
dates cannot be used effectively to prevent substitution of the
Previous copy of a budget UDE 1200. To secure these frequently
updated items, a transaction tag is generated and i-nclud.ed in the
encrypted item each time that item is updated. A list of all VDE
item IDs and the current transaction tag for each item is |

maintained as part of the secure database §10.

-442 -

Petitioner Apple Inc. - Exhibit 1006, p. 1173

10

15

20

WO 98/09209

PCT/US97/15243
Figure 24 shows an example of a user data element
("UDE*) 1200 provided by the preferred embodiment. As shown
in F igure 24, UDE 1200 in the preferred embodiment includes a
public header 802, a private header 804, and a data area 1206. -
The layout for each of these user data elements 1200 is generally
defined by an SGML data definition contained within a DTD
1108 associated with one or more load modules 1100 that operate

on the UDE 1200.

UDESs 1200 are preferably encrypted using a site specific

-key once they are loaded into a site. This site-specific key masks

a validation tag that may be derived from a cryptographically
strong pseudo-random sequence by the SPE 503 and updated
each time the record is written back to the secure database 610.
This technique provides reasonable asvs.ur:mce that the UDE
1200 has not been tampered with nor substituted when it is

requested by the system for the next use.

Meters and budgets are perhaps among the most common
data structures in VDE 100. They are used to count and record
events, and also to limit events. The data structures for each
meter and budget are determined by the content provider or a
distributor/redistributor aqthorized to change the information.

Meters and budgets, however, generally have common

- 443 -

Petitioner Apple Inc. - Exhibit 1006, p. 1174

10

15

WO 98/09209

PCT/US97/15243

information stored in a common header format (e.g., user ID, site

ID and related identification information).

The content provider or distributor/redistributor may

specify data structures for each meter and budget UDE.

Although these data structures vary depending upon the

particular application, some are more common than others. The

following table lists some of the more commonly occurring data

structures for METER and BUDGET methods:

Petitioner Apple Inc. - Exhibit 1006, p. 1175

|l("ield type Format Typical Description or
' Use Use
Ascending Use | byte. short. long, or Meter/Budget Ascending count of
Counter unsigned versions of hses.
the same widths
Descending Use | byte. short, long, or Budget Descending count of
Counter unsigned versions of permitted use; eg.,
the same widths remaining budget.
Counter/Limit | 2, 4 or 8 byte integer Meter/Budget Lsage iimits since a
1 ' split into two related Epecific time;
bytes or words generally-used in
rompound meter
fdata structures.
Bitmap Array bytes Meter/Budget Bit indicator of use
br ownership.
rlide bitmap Array of bytes Meter/Budget Indicator of use or
pwnership that may
Bge with time.
kLast Use Date time t Meter/Budget Date of last use.
- 444 .

10

15

20

WO 98/09209

L‘ield type Format Typical . Description or
Use -~ [Use -

Btart Date time_t ' Budget E-z‘ate of first
owable use.

f.xpiration Date | time_t Meter/Budget Expiration Date.

L.ast Audit Date | time t Meter/Budget Date of last audit.

Next Audit time_t r‘deter/Budget Date of next

Date required audit.

uditor VDE ID Meter/Budget VDE ID of
) Lanthorized auditor.

The information in the table above is not complete or

comprehensive, but rather is intended to show some examples of

- types of information that may be stored in meter and budget

related data structures. The actual structure of particular
metefs and budgets is determined by one or more DTDs 1108
associated with the load modules 1100 that create and
manipulate the data structure. A list of data types permitted by
the DTD interpreter 590 in VDE 100 is extensible by properly

authorized parties.

Figure 25 shows an example of one particularly
advantageous kind of UDE 1200 data area 1206. This data area
1206 defines a "map* that may be used to record usage
information. For example, a meter method 1000 may maintain

one or more "usage map“ data areas 1206. The usage map may

-445 -

Petitioner Apple Inc. - Exhibit 1006, p. 1176

. PCT/US97/15243

10

15

20

WO 98/09209 PCT/US97/15243

be a "usage bit map* in the sense that it stbres one or more bits
of information (i.e., a single or multi-dimensional bit image)
corresponding to each of several types or categories of usage.
Usage maps are an efficient means for referencing prior usage.
For example, a usage map data area may be used by a meter
method 1000 to record all applicable portions of information

content that the user has paid to use, thus supporting a very

efficient and flexible means for allowing subsequent user usage

of the same portions of the infoﬁnat,ion content. This may enable
certain VDE related security functiéns éuch as “contiguousness,*“
"logical relatedness,“ randomization of usage, and other usage
types. Usage-maps may be analyzed for other usage patterns
(e.g., quantity discounting, or for enabling a user to reaccess
information content for which the user previously paid for

unlimited‘ usage).

The "usage map* concept providéd by the preferred

- embodiment may be tied to the concept of "atomic elements.“ In

the preferred embodiment, usage of an object 300 may be
metered in terms of "atomic elements.“ In the preferred
embodiment, an "atomic element in the metéring context defines
a unit of usage that is "sufficiently significant to be recorded in
a meter. The definition of what constitutes an "atomic element”

is determined by the creator of an object 300. For instance, a

- 446 -

Petitioner Apple Inc. - Exhibit 1006, p. 1177

10

15

20

PCT/US97/15243

WO 98/09209

"byte“ of information content contained in an object 300 could be -
defined as an "atomic element,“ or a record of a database could be
defined as an "atomic element,” or each chapter of an
electronically published book could be deﬁned as an “atomic

element.“

An object 300 can have multiple sets of overlapping atomic
elements. For example, an access to any database in a plurality
of databases may be defined as an "atomic element *
Simultaneously, an access to any record, field of records, sectors
of informations, and/or bytes contained in any of the plurality of
databases might also be defined as an "atomic element.“ In an
electronically published newspaper, each hundred words of an
article could be defined as an "atomic element,” while articles of
more than a certain length could be defined as another set of
"atomic elements.“ Some portions of a newspaper (e.g.,
advertisements, the classified section, etc.) might not be mapped

into an atomic element.

The preferred embodiment provides an essentially
unbounded ability for the object creator to define atomic element
types. Such atomic element definitions may be very flexible to
accommodate a wide variety of different content usage. Some

examples of atomic element types supported by the preferred

-447 -

Petitioner Apple Inc. - Exhibit 1006, p. 1178

10

15

20

WO 98/09209 PCT/US97/15243

embodiment include bytes, records, ﬁles; sectors, obfects, a
quantity of bytes, contiguous or relatively contiguous bytes (or
other predefined unit types), logically felated bytes containing
content that has some logical relationship by topic, location or
other user specifiable logic of relationship, etc. Content creators

preferabiy may flexibly define other types of atomic elements.

The preferred embodiment of the present invention
provides EVENT methods to provide a mapping between usage
events and atomic elements. Generally, there may be an EVENT
method for each different set of atomic elements defined for an

object 300. In many cases, an object 300 will have at least one

type of atomic element for metering relating to billing, and at

least one other atomic element type for non-billing related

metering (e.g., used to, for example, detect fraud, bill advertisers,

and/or collect data on end user usage activities).

In the preferred embodiment, each EVENT method in a
usage related context performs two functions: (1) it maps an
accessed event into a set of zero or more atomic elements, and (2)
it provides information to one or more METER methods for
metering object usage. The definition used to define this
mapping between access events and atomic elements may be in

the form of a mathematical definition, a table, a load module, etec.

- 448 -

Petitioner Apple Inc. - Exhibit 1006, p. 1179

10

15

20

PCT/US97/15243

WO 98/09209

When an EVENT method maps an access request into "zero“
atomic elements, a user accessed event is not mappéd into any
atomic element based on the particular atomic element definition
that applies. This can be, for example, the object owner is not
interested in metering usage based on such accesses (e.g.,
because the object owner deems such accesses to be insignificant

from a metering standpoint).

A ”ﬁsage map“ may employ a "bit map image*“ for storage
of usage history information in a highly efficient manner.
Individual storage elements in a usage map may correspond to
atomic elements. Different elements within a usage map may
correspond to different atomic elements (e.g., one map element
may correspond to number of bytes read, another map element
may correspond to whether or not a particular chapter was
opened, and yet another map element may correspond to some

other usage event).

One of the characteristics of a usage map provided by the
preferred embodiment of the present invention is that the
significance of a map element is specified, at least in part, by the
position of the element within the usage map. Thus, in a usage
map provided by the preferred embodiment, the information

indicated or encoded by a map element is a function of its

- 449 -

Petitioner Apple Inc. - Exhibit 1006, p. 1180

10

15

20

WO 98/09209

PCT/US97/15243

position (either physically or logically) within the map structure.
As one simple example, a usage map for a twelve-chapter novel
could consist of twelve elements, one for each chapter of the
novel. When the user opens the first chapter, one or more bits
within the element corresponding to the first chapter could be
changed in value (e.g., set to "one*). In this simple example
where the owner of the content object containing the novel was
interested only in metering which chapters had been opened by
the user, the usage map element corresponding to a chapter
could be set to "one“ the first time the user opened that
corresponding chapter, and could remain "one* no matter how
many additional times the user opened the chapter. The object
owner or other interested VDE participant would be able to
rapidly and efficiently tell which chapter(s; had been opened by
the user simply by examining the compact usage map to

determine which elements were set to “one.*

Suppose that the content object owner wanted to know
how many times the user had opened each chapter of the novel.
In this case, the usage map might comprise, for a twelve-chapter
novel, twelve elements each of which has a one-to-one
correspondence with a different one of the twelve chapters of the
novel. Each time a user opens a particular chapter, the

corresponding METER method might increment the value

- 450 -

Petitioner Apple Inc. - Exhibit 1006, p. 1181

10

15

20

PCT/US97/15243

WO 98/09209

contained in the corresponding usage map element. _In this way, -
an account could be readily maintained for each of the chapters

of the novel.

The position of elements within a usage map may encode a
multi-variable function. For example, the elements within a
usage map may be arranged in a two-dimensional array as
shown in Figure 25B. Different array coordinates could
correspond to independent variables such as, fobr example, atomic
elements and tsime. Suppose, as an example, that a content
object owner distributes an object containing a collection of audio
recordings. Assume further that the content object owner wants
to track the number of times the user listens to each recording
within the collection, and also wants to track usage based on
month of the year. Thus, assume that the content object owner
wishes to know how many times the user during the month of
January listened to each of the recordings on a recording-by-
recording basis, similarly wants to know this same information
for the month of February, March, etc. In this case, the usage
map (see Figure 25B) might be defined as a two-dimensional
array of elements. One dimension of the array might encode
audio recording number. The other dimension of the array might
encode month of the year. During the month of January, thé

corresponding METER method would increment elements in the

-451-

Petitioner Apple Inc. - Exhibit 1006, p. 1182

10

15

20

WO 98/09209 . PCT/US97/15243

array m the "January“ column of the aﬁay, selecting whiéh
element to increment as a function of recordi:hg number. When
January comes to an end, the METER method might cease
writing into the array elements in the January column, and
instead write values into a further set of February array
elements—once again selecting the particular array element in
this column as a function of recording number. This concept may

be extended to N dimensions encoding N different variables.

Usage map meters are thus an efﬁéient means for
referencing prior usage. They may be used to enable certain
VDE related security functions such as testing for
contiguousness (including relative contiguousness), logical
relatedness (including relative logical relatedness), usage
randomization, and other usage patterns. For example, the
degree or character of the "randomness® of content usage by a
user might serve as a potential indicator of attempts to
circumvent VDE content budget limitations. A user or groups of
users might employ multiple sessions to extract content in a
manner which does not violate contiguousness, logical
relatedness or quantity limitations, but which néverthelesS
enables reconstruction of a material portion or all of a given,
valuable unit of content. Usage maps can be analyzed to

determine other patterns of usage for pricing such as, for

- 452 -

Petitioner Apple Inc. - Exhibit 1006, p. 1183

10

15

20

PCT/US97/15243
example, quantity discounting after usage of a certain quantity

WO 98/09209

of any or certain atomic units, or for enabling a user to reaccess
an object for which the user previously paid for unlimited
accesses (or unlimited accesses over a certain time duration).
Other useful analyses might include discounting for a given

atomic unit for a plurality of uses.

A further example of a map meter includes storing a

- record of all applicable atomic elements that the user has paid to

use (or alternatively, has been metered as having used, though
payment may not yet have been required or made). Such a usage
map would support a very efficient and flexible way to allow

subsequent user usage of the same atomic elements.

A further usage map could be maintained to detect
fraudulent usage of the same object. For example, the object
might be stored in such a way that sequential access of long
blocks should never occur. A METER method could then record
all applicable atomic elements accesses during, for example, any
specified increment of time, such as ten minutes, an hour, a day,
a month. a year, or other time duration). The usage map could
be analyzed at the end of the specified time increment to check
for an excessively' long contiguous set of accessed blocks, and/or

could be analyzed at the initiation of each access to applicable

- 453 -

Petitioner Apple Inc. - Exhibit 1006, p. 1184

10

15

20

WO 98/09209 PCT/US97/15243

- atomic elements. After each time duration based analysis, if no
fraudulent use is detected, the usage map could be cleared (or
partially cleared) and the mapping process could begin m whole
or in part anew. If a fraudulent use pattern is suspected or
detected, that information might be recorded and the use of the
object could be halted. For example, the user might bé required
to contact a content provider who might then further analyze the
usage information to determine whether or not funher access

should be permitted.

Figure 25c shows a particular type of "wide bit map*“ usage
record 1206 wherein each entry in the usage record corresponds
to usage during a particular time period e.g.. current month
usage, last month’s usage, usage in the month before last, etc.).
The usage record shown thus comprises an array of ”ﬂags“ or
fields 1206, each element in the array being used to indicate
usage in a different time period in this particular example.
When a time period ends, all elements 1206 in the array may be
shifted one position, and thus usage information (or the purchast;.'
of user access rights) over a series of time periods can be
reflected by a series of successive array elements. In the specific
example shown in Figure 25¢, the entire wide array 1206 is
shifted by one array position each month, with the oldest array

element being deleted and the new array element being "turned*

- 454 -

Petitioner Apple Inc. - Exhibit 1006, p. 1185

10

15

20

WO 98/09209 PCT/US97/15243

i1_1 a new array map corresponding to the current time period. In
this example, record 1302 tracks usage access rights and/or other
usage related activities during the present calendar month as
well for the five immediately prior calendar months.
Corresponding billing and/or billing method 406 may inspect the
map, determine usage as related to billing and/or security
monitoring for current usage based on a formula that employs
the usage data stored in the record, and updates the wide record
to indicate the applicable array elements for which usage
occurred or thé like. A wide bit map may also be used for many
other purposes such as maintaining an element by element count
of usage, or the contiguousness, relatedness, etc. function

described above, or some combination of functionality.

Audit trail maps may be generated at any frequency
determined by control, meter, budget and billing methods and

load modules associated with tho‘se methods. Audit trails have a

" similar structure to meters and budgets and they may contain

user specific information in addition to information about the
usage event that caused them to be created. Like meters and
budgets, audit trails have a dynamic format that is defined by

the content provider or their authorized designee, and share the

- basic element types for meters and budgets shown in the table

above. In addition to these types, the following table lists some

- 455 -

Petitioner Apple Inc. - Exhibit 1006, p. 1186

10

15

20

25

WO 98/09209

PCT/US97/15243

examples of other significant data fields that may be found in

audit trails:

ield type ’Format Typical Use | Description of Use
[Jse Event ID lunsigned long Meter/Budget/ Event [D that started a
Billing processing sequence.
nternal unsigned long Meter/Budget/ Transaction number to
Bequence Billing help detect audits that
Number have been tampered
with,
Atcmic . Unsigned Meter/Billing Atomic element(s) and
Elementts) integerts) of ID of object that was
Object ID pppropriate used.
width
Personal User [Character or Budgev/Billing Personal information
nformation pther about user.
nformation
.{se Date/Time time_t Meter/Budget/ Date/time of use.
Billing
Site ID/User VDE ID Meter/Budget’ VDE ID of user.
ID Billing

Audit trail records may be automatically combined into

single records to conserve header space. The combination

process may, for example, occur under control of a load module

that creates individual audit tra.1l records.

| Permissions Record Overview

Figure 16 also shows that PERCs 808 may be stored as

part of secure database 610. Permissions records ("PERCs“) 808

- 456 -

Petitioner Apple Inc. - Exhibit 1006, p. 1187

10

15

20

WO 9809209 PCT/US97/15243

are at the highest level of the data driven control hierarchy
provided by the preferred embodiment of VDE 100. Basically,
there is at least one PERC 808 that corresponds to each

information and/or transactional content distributed by VDE

100. Thus, at least one PERC 808 exists for each VDE object 300

in the preferred embodiment. Some objects may have multiple
corresponding PERCs 808. PERC 808 controls how access and/or
manipulation permissions are distributed and/or how content
and/or other information may otherwise be used. PERC 808 also
specifies the ”riéhts“ of each VDE participant in and to the

content and/or other information.

In the preferred émbodiment, no end user may use or
access a VDE object unless a permissions record 808 has been
delivered to the end user. As discussed abdve, a PERC 808 may
be deliyered as part of a traveling object 860 or it may be
delivered separately (for example, within an administrative
object). An electronic appliance 600 may not access an object
unless a corresponding PERC 808 is present, and may only use
the object and related information as permitted by the control

structures contained within the PERC.

- 457 -

Petitioner Apple Inc. - Exhibit 1006, p. 1188

10

15

20

WO 98/09209 PCT/US97/15243

Briefly, the PERC 808 stores information concerning the
methods, method options, decryption keys and rights with

respect to a corresponding VDE objéct- 300.

PERC 808 includes control structures that define high
level categories or classifications of operations. These high level
categories are referred to as "rights.“ The "right“ control
structures, in turn, provide internal control structures that
reference "methods* 1000. The internal structure of preferred
embodiment PERC 808 organizes the "metﬁods“ that are
required to perform each allowable operation on an object or
associated control structure (including operations performed on
the PERC itself). For example, PERC 808 contains decryption
keys for the object. and usage of the keys is controlled by the
methods that are required by the PERC for performing
operations associated with the e#ercise of a "right.“
NPERC 808 for an object is typically created when the object
is created, and future substantive modifications of a PERC, if
allowed, are controlled by methods associated with operations
using the distribution right(s) defined by the same (or different)

PERC.

- 458 -

Petitioner Apple Inc. - Exhibit 1006, p. 1189

WO 98/09209 PCT/US97/15243

Figure 22 shows the internal structures present in an
example of a PERC 808 provided by the preferred embodiment.
All of the structures shown represent (or reference) collections of
methods required to process a corresponding object in some
5 specific way. PERCs 808 are organized as a hierarchical
structure, and the basic elements of the hierarchy are as follows:
"rights“ records 906
"control sets* 914
"required method“ recorﬁs 920 and

10 _ "required method options* 924.

There are other elements that may be included in a PERC
808 hierarchy that describe rules and the rule options to support
the negotiation of rule sets and control information for smart
15 objects and for the protection of a user's personal information by
a privacy filter. These alternate elements may include:
optional rights records
optional control sets
optional method records
20 permitted rights records
permitted ﬁghts control sets
permitted method records
required DTD descriptions

optional DTD descriptions

- 459 -

Petitioner Apple Inc. - Exhibit 1006, p. 1190

10

15

20

WO 98/09209 PCT/US97/15243

permitted DTD descriptions
These alternate fields can control other processés that may, in
part, base negotiations or decisions regarding their operation on
the contents of these fields. Rights negotiation, smart object

control information, and related processes can use these fields for

more precise control of their operation.

The PERC 808 shown in F igure 26 includes a PERC
header 900, a CS0 ("control set 0%) 902, private body keys 904,
and one or more rights sub-recbrds 906. Control set 0 902 in the
preferred embodiment contains information that is common to
one or more "rights“ associated with an object 300. For example,
a particular "event“ method or methods might be the same for »
usage rights, extraction rights and/or other rights. In that case,
"control set 0“ 902 may reference this event that is common
across multiple "rights.“ The provision of "control set 0“ 902 is
actualiy an optimization, since it would be possible to store
different instances of a commonly-used event within each of

plural "rights“ records 906 of a PERC 808.

Each rights record 906 defines a different ”right“'
corresponding to an object. A ”right“ record 906 is the highest
level of organization present in PERC 808. There can be several

different rights in a PERC 808. A "right® represents a major

- 460 -

Petitioner Apple Inc. - Exhibit 1006, p. 1191

10

15

20

WO 98/09209

PCT/US97/15243
functional partitioning desired by a participant of the basic

architecture of VDE 100. For example, the right to use an object
and the right to distribute rights to use an object are major
functional groupings within VDE 100. Some examples of
possible rights include access to content, permission to distribute
rights to access content, the ability to read and process audit
trails related to content and/or control structures, the right to
perform transactions that may or may not be related to content
and/or related control structures (such as banking transactions,
catalog purchases, the collection of taxes, EDI transactions, and
such), and the ability to change some or all of the internal
structure of PERCs created for distribution to other users.
PERC 808 contains a rights record 906 for each type of right to

object access/use the PERC grants.

Normally, for VDE end users, the most frequently granted
right is a usage right. Other types of rights include the
"extraction right,” the "audit right“ for accessing audit trail
information of end users, and a "distribution right* to distribute
an object. Each of these different types of rights may be
embodied in a different rights record 906 (or alternatively,
different PERCs 808 corresponding to an object may be used to

grant different rights).

- 461 -

Petitioner Apple Inc. - Exhibit 1006, p. 1192

WO 98/09209 PCT/US97/15243

Each rights record 906 includes a rights record header 908,
a CSR ("control set for right) 910, one or more "right keys“ 912,
and one or more "control sets* 914, Each "rights“ record 906
contains one or more control sets 914 that are either required or
selectable options to control an object in the exercise of that
“right.“ Thus, at the next level, inside of a ”right“ 906, are control
sets 914. Control sets 914, in turn, each includes a control set
header 916, a control method 918, and one or more required
methods records 920. Required methods records 920, in turn,
each includes a required method header 922 and bne Or more

required method options 924.

Control sets 914 exist in two tvpes in VDE 100: common
required control sets which are given designations "control set 0“
or “control set for right,” and a set of contro} set options. "Control
set 0“ 902 contains a list of required methods that are common to
all control set options, so that the common required methods do
not have to be duplicated in each control set option. A "control
set for right* ("CSR“) 910 contains a similar list for control sets
within a given right. "Control sét 0% and any "control sets for
rights“ are thus, as mentioned above, optimizations; the same
functionality for the control sets can be accomplished by listing
all the common required methods in each control set option and

omitting "control set 0“ and any “control sets for rights.*

- 462 -

Petitioner Apple Inc. - Exhibit 10086, p. 1193‘

10

15

20

PCT/US97/15243

One of the control set options, "control set 0“ and the

WO 98/09209

appropriate “control set for right* together form a complete

control set necessary to exercise a right.

Each control set option contains a list of required methods
1000 and represents a different way the right may be exercised.
Only one of the possible complete control sets 914 is used at any

one time to exercise a right in the preferred embodiment.

Each control set 914 contains as many required methods
records 920 as necessary to satisfy all of the requirements of the
creators and/or distributors for the exercise of a right. Multiple
ways a right may be exercised, or multiple control sets that
govern how a given right is exercised. are both supported. As an
example, a single control set 914 might .require multiple meter
and budget methods for reading the object’s content, and also
require dif’ferent meter and budget methods for printing an
object’s content. Both reading and printing an object’s content
can be controlled in a single control set 914.

Alternatively, two different control set‘options could
support reading an object’s content by using one control set
option to support metering and budgeting the number of bytes

read, and the other control set option to support metering and

- 463 -

Petitioner Apple Inc. - Exhibit 1006, p. 1194

WO 98/09209 PCT/US97/15243

budgeting the number of paragraphs read. One or the other of

these options would be active at a time.

Typically, each control set 914 will reference a set of
5 r;lated methods, and thus different control sets can offer a
diﬁ‘ereht set of method op;ions. For example, one control set 914
may represent one distinct kind of metering methodology, and
énother control set may represent another, entirely different
distinct Iﬁetering methodology.
10
At the next level inside a contfol set 914 are the required
methods records 9‘.20j Methods records 920 contain or reference
methods 1000 in the preferred embodiment. Methods 1000 are a
collection of "events,” references to load modules associated with
15 these events, static data, and references to a secure database 6.1~O
for automatic retrieval of any other separately deliverable data
elements that may be required for processling events (e.g.,
UDEs); A controi set 914 contains a list of required methods that
must be used to exercise a specific right (i.e., process events
20 associateAcvi with a right). A required method record 920 listed in
a control set 914 indicates that a method must exist to exercise
the right that the control set supports. The required methods

may reference "load modules® 1100 to be discussed below.

- 464 -

Petitioner Apple Inc. - Exhibit 1006, p. 1195

10

15

20

PCT/US97/15243

WO 98/09209

Briefly, load modules 1100 are pieces of executable code that may .

be used to carry out required methods.

- Each control set 914 may have a control method record 918
as one of its required methods. Tﬁe referenced control method
may define the relationships between some or all of the various
methods 1000 defined by a control set 906. For example, a
control method may indicate which required methods are
funétionally grouped together to process particular events, and
the order for processing the required methods. Thus, a control
method may specify that required method referenced by record
920(a)(1)(1) is the first to be called and then its output is to go to
required method referenced by record 920(a)(1)(ii) and so on. In
this way, a meter method may be tied to one or more billing
methods and then the billing methods may be individually tied

to different budget methods, etc.

Required method records 920 specify one or more required
method options 924. Required method options are the lowest
level of control structure in a preferred embodiﬁént PERC 808.
By parameterizing the required methods and specifying the |
required method options 924 independently of the required
methods, it becomes possible to reuse required methods in many

different circumstances.

- 465 -

Petitioner Apple Inc. - Exhibit 1006, p. 1196

10

15

20

WO 98/09209 PCT/US97/15243

For example, a required method reco;‘d 920 may indicate
that an actual budget method ID must be chosen from the list of
budget-method IDs in the required method option list for that
required method. Required method record 920 in this case does
not contain any method IDs for information about the type of

method required, it only indicates that a method 1s required.

- Required method option 924 contains the method ID of the

method to be used if this required method option is selected. As
a further optimization, an actual method ID may be stored if
only one option exists for a specific required method. This allows

the size of this data structure to be decreased.

PERC 808 also contains the fundamental decryption kevs
for an object 300, and any other keys used with "rights“ (for
encoding and/or decoding audit trails. for example). It may
contain the keys for the object content or kevs to decrypt portions
of the object that contain other keys that thcﬁ can be used to
decrypt the content of the object. Usage bf the keys is controlled

by the control sets 914 in the same "right 906 within PERC 808.

In more detail, Figure 26 shows PERC 808 as including
private body keys 904, and right keys 912. Private body keys

904 are used to decrypt information contained within a private

- 466 -

Petitioner Apple Inc. - Exhibit 1006, p. 1197

10

15

20

WO 98/09209 PCT/US97/15243

body 806 of a corresponding VDE object 300. Such information
may include, for example, methods 1000,'load modules 1100
and/or UDEs 1200, for example. Right keys 912 are keys used to
exercise a right in the preferred embodiment. Such right keys
912 may include, for example, decryption keys that enablé a
method specified by PERC 808 to decrypt content for release by a
VDE node to an end user. These right keys 912 are, in the
preferred embodiment, unique to an object 300. Their usage is

preferably controlled by budgets in the preferred émbodiment.

Detailed Example of a PERC 808
Figures 26A and 26B show one example of a preferred

embodiment PERC 808. In this example, PERC header 900

includes:
a site record number 926,
a_ﬁeld 928 specifying the length of the private body
key block,
T a field 930 specifying the length of the PERC,

an expiration date/time field 932 specifying the
expiration date and/or time for the PERC,

a last modification date/time field 934 specifying the
last date and/or time the PERC 808 was

modified,

Petitioner Apple Inc. - Exhibit 1006, p. 1198

10

15

20

WO 98/09209

PCT/US97/15243

the original distributof ID field 936 that épeciﬁes
who originally distributed the PERC and/or
corresponding object,

a last distributor field 938 that specifies who was
the lést distributor of the PERC and/or the
object,

an object ID field 940 identifying the corresponding
VDE‘object 300,

a field 942 that specifies the class and/or type of
PERC é.nd/or the instance ID for the record
class to differentiate the PERCs of the same
type that may differ in their particulars,

a fleld 944 specifying the number of "rights“ sub-
records 906 within the PERC, and

a validation tag 948.

The PERC 808 shown in Figures 26a, 26b also has private body

keys stored in a private body key block 950. |

This PERC 808 includes a control set 0 sub-record 914 (0)

that may be used commonly by all of rights 906 within the

PERC. This control set 0 record 914(0) may include the following

fields :'

a length field 952 specifying the length of the control

set O record

- 468 -

Petitioner Apple Inc. - Exhibit 1006, p. 1199

10

15

20

WO 98/09209 _ PCT/US97/15243

a field 954 specifying t;he number of required
method records 920 within the control set

an aécess tag field 956 specifying an access tag fo
control modification of the record and

one or more required method records 920.

Each required method record 920, in turn méy include:

a length field 958 specifying the length of the
required method record

a field 960 specifying the number of method option
records within the required method record 920

an access tag field 962 specifying an access tég to
control modification of the record and

one or more method option recoras 924,

Each method option sub-record 924 may include:
a length field 964 specifying the length of the
- method option record |

a length field 966 specifying the length of the data
area (if any) corresponding to the method
option record » |

a method ID field 968 specifying a method ID (e.g.,
type/owner/class/instance)

a correlation tag field 970 specifying a correlation
tag for correlating with the method specified

in field 968 -

- 469 -

Petitioner Apple Inc. - Exhibit 1006, p. 1200

10

15

20

WO 98/09209 PCT/US97/15243

an access tag field 972 specifying an access tag to
control modification of this record

a method-specific attributes field 974

a data area 976 and

a check value field 978 for validation purposes

In this example of PERC 808 also includes one or more
rights records 906, and an overall check value field 980 Figﬁre
23b is an example of one of right records 906 shown in Figure
16a. In this pérticular example. rights record éOGa includes a
rights record header 908 comprising:

a length field 982 specifying the length of the rights
key block 912

a length field 984 specifying the length of the rights
record 908

an expiration date/time field 986 specifying the
‘expiration date a.nd/br time for the rights
record _

a right ID field 988 identifying a right

a number field 990 specifying the number of control
sets 914 within the rights record 906, and

an access tag field 992 specifying an access tag to

control modification of the right record.

- 470 -

Petitioner Apple Inc. - Exhibit 1006, p. 1201

10

15

20

WO 98/09209 PCT/US97/15243
This example of rights record 906 includes:

a control set for this right (CSR) 910
a rights key block 912
one or more control sets 914, and

a check value field 994.

Object Registry

Referring once again to Figure 16, secure database 610
provides data structures that support a "lookup“ mechanism for
“registered” objects. This "lookup“i mechanism permits electronic
appliance 600 to associate, in a secure way, VDE objects 300
with PERCs 808. methods 1000 and load modules 1100. In the
preferred embodiment, this lookup mechanism is based in part

on data structures contained within object registry 450.

In one embodiment, object registry 450 includes the
following tables:
. an object registration table 460;
. a subject table 462;
. a User Rights Table ("URT“) 464;
. an Administrative Event Log 442;
. a shipping table 444, and

. a receiving table 446.

-471 -

Petitioner Apple Inc. - Exhibit 1006, p. 1202

10

15

20

WO 98/09209 : PCT/US97/15243

Object registry 460 in the example embodiment is a
databése of information concerning registered VDE objects 300
and the rights of usefs and user groups with regard to those
objects. When electronic appliance 600 receives an object 300
containing a new budget or load module 1100, the electronic
appliance usually needs to add the information contained by the
object to secure database 610. Moreover, when any new VDE
object 300 arrives at an electronic appliance 600, the eléctronic
appliance must "register” the object within object registry 450 so
that it can be accessed. The lists and records for a new object
300 are built in the preferred embodiment when the object is
"registered” by the electronic appliance 600. The information for
the object may be obtained from the object’s encrypted private
header, object body, and encrypted name services record. This
information may be extracted or derived from the object 300 by
SPE 503, and then stored within secure database 610 as

encrypted records.

In one embodiment, object registration table 460 includes
information identifying objects within object storage (repository)
728. These VDE objects 300 stored within object storage 728 are
not, in the example embodiment, necessarily part of secure
database 610 since the objects typically incorporate their own

security (as necessary and required) and are maintained using

-472 -

Petitioner Apple Inc. - Exhibit 1006, p. 1203

10

15

20

WO 98/09209

PCT/US97/15243

different mechanisms than the ones used to maintain the secure
databése. Even though VDE objects 300 may not strictly be part
of secure database 610, object registry 450 (and in particular,
object registration table 460) refers to the objects and thus
"incorporates them by reference“ into the secure database. In
the preferred embodiment, an electronic appliance 600 may be

disabled from using any VDE object 300 that has not been

~appropriately registered with a corresponding registration record

stored within object registration table 460.

Subject table 462 in the example embodiment establishes
correspondence between objects referred to by object registration
table 460 and users (or groups of users) of electronic appliance
600. Subject table 462 provides many of the attributes of an

access control list ("ACL"), as will be explained below.

User rights table 464 in the example embodiment provides
permissioning and other information specific to particular users
or groups of users and object combinations set forth in subject
table 462. In the example embodiment, permissions records 808
(also shown in Figure 16 and being stored within secure
database 610) may provide a universe of permissioning for a
particular object-user combination. Records within user rights

table 464 may specify a sub-set of this permissioning universe

-473 -

Petitioner Apple Inc. - Exhibit 1006, p. 1204

10

15

20

WO 98/89209 PCT/US97/15243

based on, for example, choices made by users during interaction

at time of object registration.

Administrative event log 442, shipping table 444, and
receiving table 446 provide information about receipts and
deliveries of VDE objects 300. These data structures keep track
of administrative objects sent or received by electronic appliance

600 including, for example, the purpose and actions of the

~ administrative objects in summary and detailed form. _Brieﬂy,

shipping table ‘444 incudes a shipping record for each
administrative object sent (or scheduled to be sent) by electronic
appliance 600 to another VDE participant. Receiving table 446
in the preferred embodiment includes a receiving record for each
administrative object received (6r scheduled to be received) by
electronic appliance 600. Administrative event log 442 includes
an event log record for each shipped and each received
administrative object, and may include details concerning each

distinct event specified by received administrative objects.

Administrative Object Shipping and Receiving

Figure 27 is an example of a detailed format for a shipping

-table 444. In the preferred embddiment, shipping table 444

includes a header 444A and any number of shipping records 445.

Header 444A includes information used to maintain shipping

-474 -

Petitioner Apple Inc. - Exhibit 1006, p. 1205

10

15

20

WO 98/09209 PCT/US97/15243

table 444. Each shipping record 445 within shipping table 444
provides details concerning a shipping event (i.e., either a
completed shipmént of an administrative object to another VDE

participant, or a scheduled shipment of an administrative

object).

In the example embodiment of the secure database 610,
shipping table header 444A may include a site record number
444A(1), a user (or group) ID 444A(2), a series of reference ﬁelds
444A(3)-444A(06), validation tags 444A(7)-444A(8), and a check
valuc;ﬁeld 444A(9:. The fields 444A(3)-444A(6) reference certain
recent IDs that designate lists of shipping records 445 within
shipping table 444. For example, field 444A(3) may reference to
a "first* shipping record representing a completed outgoing
shipment of an administrative object. and field 444A(4) may
reference to a "last” shipping record representing a completed
outgoing shipment of an administrative object. In this example,
"first” and "last“ may, if desired, refer to time or order of
shipment as one example. Similarly, fields 444A(5) and 444A(6)
may reference to "first“ and "last“ shipping records for scheduled
outgoing shipments. Validatign tag 444A(7) n;ay provide
validation from a name services record within name services
record table 452 associated with the user (group) ID in the

header. This permits access from the shipping record back to the

-475 -

Petitioner Apple Inc. - Exhibit 1006, p. 1206

10

15

20

WO 98/09209 PCT/US97/15243

name services record that descri.bes the sender of the object
described by the shipping records. Validation tag 444A(8)
provides validation for a "first“ outgoing shipping record
referenced by one or more of pointers 444A(3)-444A(6). Other
v;lidation tags may be provided for validation of scheduled

shipping record(s).

Shipping record 444(\1) shown includes a site record
number 445(1)(A). It also includes first and last scheduled
shipment date/times 445(1)B), 445(1)(C) providing a window of
time used for scheduling administrative object shipments. Field
445(1XD) may specify an actual date/time of a completed
shipment of an administrative object. Field 445(1XE) provides
an ID of an administrative object shipped or to be shipped, and
thus identifies which administrative object within object storaé;a
728 pertains to this particular shipping record. A reference field
445(1XG) references a name services record within name services
record table 452 specifying the actual or intended recipient of the
administrative object shipped or to be shipped. This information
within name services record table 452 may, for example, provide
routing information sufficient to permit outgoing administrative
objects manager 754 shown in Figure 12 to inform object switch
734 to ship the administrative object to the intended récipient. A

field 445(1)(H) may specify (e.g., using a series of bit flags) the

- 476 -

Petitioner Apple Inc. - Exhibit 1006, p. 1207

10

15

20

WO 98/09209 PCT/US97/15243

purpose of the administrative object shipment, and a field
445(1)XI) may specify the status of the shipment. Reference
fields 445(1)(J), 445(1)K) may reference "previous“ and "next“
shipping records 445 in a linked list (in the preferred
embodiment, there may be two linked lists, one for completed
shipping records and the other for scheduled shipping records).
Fields 445(1)L) - 445(1)(P) may provide validation tags
respectively from header 444A, to a record within administrative
event log 442 pointed to by pointer 445(1)(F); to the name
services record referenced by field 445(1)(G); from the previous
record referenced by 445(1)(J); and to the next record referenced
by field 445(1XK). A check value field 445(1)Q) may be used for

validating shipping record 445.

Figure 28 shows an example of one possible detailed
format for a receiving table 446. In one embodiment, receiving
table 446 has a structure that is similar to the structure of the
shipping table 444 shown in Figure 27. Thus, for example,
receiving table 446 may include a header 446a and a plurality of
receiving records 447, each receiving record including details
about a particular reception or scheduled reception of an
administrative object. Receiving table 446 may include two
linked lists, one for completed receptions and another for

schedule receptions. Receiving table records 447 may each

- 477 -

Petitioner Apple Inc. - Exhibit 1006, p. 1208

10

15

20

WO 98/09209 PCT/US97/15243

reference an entry within name services record table 452
specifying an adminiﬁtrative object sender, and may each point
to an entry within administrative event log 442. Receiving
records 447 may also include additional details about scheduled
and/or completed reception (e.g., scheduled or actual date/time of

reception, purpose of reception and status of reception), and they

may each include validation tags for validating references to

other secure database records.

Figure 29 shows an example of a detailed format for an
administrative event log 442. In the preferred embodiment,
administrative event log 442 includes an event log record
442(1) ... 442(N) for each shipped administrative object and for
each received administrative object. Each administrative event
log record may include a header 443a and from 1 to N sub-
records 442(J)(1) . . . 442(JXN). In the preferred embodiment,
header 443a may include a site record number field 443A(1), a
record length field 443A(2), an administrative object ID field
443A(3), a field 443A(4) specifying a number of events, a
validation tag 443A(5) from shipping table 444 or receiving table
446, and a check sum field 443A(6). The number of events
specified in field 443A(4) corresponds to the number of sub-

records 442(JX(1) . . . 442(J)N) within the administrative event

log record 442(J). Each of these sub-records specifies

-478 -

Petitioner Apple Inc. - Exhibit 1006, p. 1209

10

15

20

WO 98/09209 PCT/US97/15243

information about a particular "event* affécted or corresponding
to the administrative object specified within field 443(A)(3).
Administrative events are retained in the administrative event
log 442 to permit the reconstruction (and preparation for |
construction or processing) of the administrative objects that
have been sent from or received by the system. This permits lost

administrative objects to be reconstructed at a later time.

Each sub-record may include a sub-record length field
442(JX1Xa), a data area length field 442(J)1)b), an event ID
field 442(J)(1)(c}, a record type field 442(J)1)d), a record ID field
442(J)(1)e), a data area field 442(JX 1)), and a check value field
442(JX1)g). The data area 442(J)1)f) may be used to indicate
which information within secure database 610 is affected by the
event specified in the event ID field 442(J)(1)¢), or what new
secure database item(s) were added, and may also specify the

outcome of the event.

The object registration table 460 in the preferred
embodiment includes a record corresponding to each VDE iject
300 within object storage (repository) 728. When a new object
arrives or 1s detected (e.g., by redirector 684), a preferred
embodiment electronic appliance 600 "registers“ the object by

creating an appropriate object registration record and storing it

-479 -

Petitioner Apple Inc. - Exhibit 1006, p. 1210

10

15

20

WO 98/09209 PCT/US97/15243

in the object registration table 460. In the preferred
embodiment, the object registration table stores information that
is ﬁser-independent, and depends only on the objects that are
registered at a given VDE electronic appliance 600. Registration
activities are typically managed by a REGISTER method

associated with an object.

In the éxample, subject table 462 associates users (or
groups of users) with registered objects. The example subject
table 462 performs the function of an access control list by

specifying which users are authorized to access which registered

VDE objects 300.

As described ébdve, secure database 610 stores at least one
PERC 808 corresponding to each registered VDE object 300.
PERCS 808 specify a set of rights that may be exercised to use or
access the corresponding VDE object 300. The preferred
embodiment allows user to "customize® their access rights by
selecting a subset of rights authorized by a corresponding PERC
808 and/or by specifying parameters or choices that correspond
to some or all of the rights granted by PERC 808. These user
choices are set forth in a user rights table 464 in the preferred
embodiment. User rights table (URT) 464 includes URT records,

each of which corresponds to a user (or group of users). Each of

- 480 -

Petitioner Apple Inc. - Exhibit 1006, p. 1211

10

15

20

WO 98/09209 PCT/US97/15243

these URT records specifies user choices for a corresponding
VDE object 300. These user choices may, either independently or
in combination with a PERC 808, reference one or more methods
1000 for exercising the rights granted to the user by the PERC
808 in a way specified by the choices contained within the URT

record.

Figure 30 shows an example of how these various tables
may interact with one another to provide a secure database
lookup mechanism. Figure 30 shows object registration table
460 as having a plurality of object registration records 460(1),
460(2), These records correspond to VDE objects 300(1),
300(2), . . . stored within object repository 728. Figure 31 shows
an example format for an object registration record 460 provided
by the preferred embodiment. Object registration record 460(N)
may include the following fields:

site record numbe;‘ field 466(1)

object type field 466(2)

creator ID field 466(3)

object ID field 466(4)

a reference field 466(5) that references subject
table 462

an attribute field 466(6)

a minimum régistration interval field 466(7)

- 481 -

Petitioner Apple Inc. - Exhibit 1006, p. 1212

10

15

20

WO 98/09209 PCT/US97/15243

a tag 466(8) to a subject table record, and

a check value field 466(9).

The site record number field 466(1) specifies the site
record number for this object registration record 460(N). In one
embodiment of secure database 610, each record stored within
the secure database is identified by a site record number. This
site record number may be used as part of a database lookup
process in order to keep track of all of the records within the

secure database 610.

Object type field 466(2) may specify the type of registered
VDE object 300 (e.g., a content object, an administrative object,

etc.).

Creator ID field 466(3) in the example may identify the

creator of the corresponding VDE object 300.

Object ID field 466(4) in the example uniquely identifies

the registered VDE object 300.

Reference field 466(5) in the preferred embodiment
identifies a record within the subject table 462. Through use of

this reference, electronic appliance 600 may determine all users

- 482 -

Petitioner Apple Inc. - Exhibit 1006, p. 1213

10

15

20

WO 98/09209

PCT/US97/15243
(or user groups) listed in subject table 462 authorized to access

the corresponding VDE object 300. Tag 466(8) is used to validate
that the subject table records accessed using field 466(5) is the
proper record to be used with the object registration record

460(N).

Attribute field 466(6) may store one or more attributes or

attribute flags corresponding to VDE object 300.

| ~ Minimum registration iﬁterval field 466(7) may specify
how often the end user may re-register as a user of the VDE
object 300 with a clearinghouse service, VDE administrator, or
VDE provider. One reason to prevent frequent re-registration is
to foreclose users from reusing budget quantities in traveling
objects until a specified amount of time has elapsed. The
minimum registration interval field 466(7) may be left unused

when the object owner does not wish to restrict re-registration.

Check value field 466(9) contains validation information
used for detecting corruption or modification of record 460(N) to
ensure security and integrity of the record. In the preferred
embodiment, many or all of the‘ fields within record 460(N) (as
with other records within the secure database 610) may be fully

or partially encrypted and/or contain fields that are stored

-483 -

Petitioner Apple Inc. - Exhibit 1006, p. 1214

10

15

20

WO 98/09209 . PCT/US97/15243

redundantly in each record (once in unencrypted form and once
in encrypied form). Encrypted and unencrypted versions of the
same fields may be cross checked at various times to detect

corruption or modification of the records.

As mentioned above, reference field 466(5) references
subject table 462, and in particular, references one or more
user/object records 460(M) within the subject table. Figure 32
shows an example of a format for a user/object record 462(M)
prov1ded by the example. Record 462(M) may include a header
468 and a subject record portion 470. Header 468 may include a
field 468(6) referencing a "first“ subject record 470 contained
within the subject registration table 462. This "first“ subject
record 470(1) may, in turn, include a reference field 470(5) that
references a "next“ subject record 470(2) within the subject
registration table 462, and so on. This "linked list“ structure
perrhits a single object registration record 460(N) to reference to

from one to N subject records 470.

Subject registration table header 468 in the example
includes a site record number field 468(1) that may uniquely
identify the header as a record within secure database 610.
Header 468 may also include a creator ID field 468(2) that may

be a copy of the content of the object registration table creator ID

- 484 -

Petitioner Apple Inc. - Exhibit 1006, p. 1215

10

15

20

WO 98/09209 PCT/US97/15243

field 466(3). Similarly, subject registration table header 468 may .
include an object ID field 468(5) that may be a copy of object ID
field 466(4) within object registration table 460. These fields
468(2), 468(5) make user/object registration records explicitly

correspond to particular VDE objects 300.

Header 468 may also include a tag 468(7) that permits
validation. In one example arrangement, the tag 468(7) within
the user/object registration header 468 may be the same as the
tag 466(8) within the object registration record 460(N) that
points to the user/object registration header. Correspondence
between these tags 468(7) and 466(8) permits validation that the
object registration record and user/object registration header

match up.

User/object header 468 also includes an original
distributor ID field 468(3) indicating the original distributor of
the corresponding VDE object 300, and the last distributor ID
field 468(4) that indicates the last distributor within the chain of
handling of the object prior to its receipt by electronic appliance

600.

- 485 -

Petitioner Apple Inc. - Exhibit 1006, p. 1216

10

15

.20

WO 98/09209 PCT/US97/15243

Header 468 also includes a tag 468(8) allowing validation
between the header and the "first* subject record 470(1) which

field 468(6) references

Subject record 470(1) includes a site record number 472(1),
a user (or user group) ID field 472(2), a user (or user group)
attributes field 472(3), a field 472(4) referencing user rights table
464, a field 472(5) that references to the "next* subject record
470(2) (if there is one), a tag 472(6) used to validate with the
header tag 468(8), a tag 472('7) used to validate with a
corresponding tag in the user rights table record referenced by
field 472(4), a tag 472(9) used to validate with a tag in the "next*
subject record referenced to by field 472(5) and a check value

field 472(9).

User or user group ID 472(2) identifies a user or a user
group authorized to use the object identified in field 468(5).
Thus, the fields 468(5) and 472(2) together form the heart of the
access control list provided by subject table 462. User attributes

field 472(3) may specify attributes pertaining to use/access to

- object 300 by the user or user group specified in fields 472(2).

Any number of different users or user groups may be added to

the access control list (each with a different set of attributes

- 486 -

Petitioner Apple Inc. - Exhibit 1006, p. 1217

0

15

20

WO 98/09209

472(3)) by providing additional subject records 470 in the "linked

list“ structure.

Subject record reference field 472(4) references one or
m;re records within user rights table 464. Figure 33 shows an
example of a preferred format for a user rights table record
464(k). User rights record 464(k) may include a URT header
474, a record rights header 476, and a set of user choice records
478. U'RT”header 474 fnay include a site record number field, a
field 474(2) specifving the number of rights records within the

URT record 464(k), a field 474(3) referencing a "first® rights

record (i.e., to rights record header 476), a tag 474(4) used to

validate the lookup from the subject table 462, a tag 474(5) used
to validate the lookup to the rights record header 476, and a

check value field 474(6).

Rights record header 476 in the preferred embodiment
may include site record number field 476(1), a right ID field
476(2), a field 476(3) referencing the "next“ rights record 476(2),
a field 476(4) referencing a first set of user choice records 478(1),
a tag 476(5) to allow validation with URT header tag 474(5), a
tag 476(6) to allow validation with a user choice record tag
478(6), and a check value field 476(7). Right ID field 476(2) may,

for example, specify the type of right conveyed by the rights

- 487 -

Petitioner Apple Inc. - Exhibit 1006, p. 1218

PCT/US97/15243

10

15

20

WO 98/09209 ' PCT/US97/15243

record 476(e.g., right to use, right to distribute, right to read,

right to audit, etc.).

The one or more user choice records 478 ;efe}'enced by
rights record header 476 sets forth the user choices
corresponding to access and/or use of the corresponding VDE
object 300. There will typically be a rights record 476 for each
right authorized to the corresponding user or user group. These
rights govern use of the VDE object 300 by that user or user
group. For instance, the user may have an "access” right, and an
“extraction® right, but not a "copy* right. Other rights controlled
by rights record 476 (which is derived from PERC 808 using a
REGISTER method in the preferred embodiment') include
distribution rights, audit rights, and pricing rights. When an
object 300 is registered with the electronic éppliance 600 and is
registered with a particular user or user group, the user may be
permitted to select among various usage methods set forth in
PERC 808. For instance, a VDE object 300 might have two
required meter methodologies: one for billing purposes, and one
for accumulating data concerning the promotional materials
used by the user. The user might be given the choice of a variety
of meter/billing methods, such as: payment by VISA or
MasterCard; choosing between billing based upon the quantity of

material retrieved from an information database, based on the

- 488 -

Petitioner Apple Inc. - Exhibit 1006, p. 1219

10

15

20

WO 98/09209 PCT/US97/15243

time of use, and/or both. The user might be offered a discount on
time and/or quantity billing if he is willing to allow certain
details concerning his retrieval of ccntent to be provided to third
parties (e.g., for demographic purposes). At the time of
registration of an object and/or user fo‘r the object, the user would
be asked to select a particular meter methodology as the "active
metering method“ for the first acquired meter. A VDE
distributor might narrow the universe of available choices for the
user to a subset of the original selection array stipulated by
PERC 808. These user selection and configuration settings are
stored within user choice records 480(1), 480(2), 480(N). The
user choice records need not be explicitly set forth within user
rights table 464, instead, it is possible for user choice records 480
to refer (e.g., by site reference number) to particular VDE
methods and/or information parameterizing those methods.

Such reference by user choice records 480 to method 1000 should
be validéted by validation tags contained within the user choice
records. Thus, user choice records 480 in the preferred
embodiment may select one or more methods 1000 for use with
the corresponding VDE object 300 (as is shown in Figure 27).
These user choice records 480 may themselves fully define the
methods 1000 and other information used to build appropriate
components assemblies 690 for implementing the methods.

Alternatively, the user/object record 462 used to reference the

- 489 -

Petitioner Apple Inc. - Exhibit 1006, p. 1220

10

15

20

WO 98/09209 PCT/US97/15243

user rights record 464 may also reference the PERC 808
corresponding to VDE object 300 to provide additional
information needed to build the component assembly 690 and/or
otherwise access the VDE object 300. For example, PERC 808
may be accessed to obtain MDEs 1202 pertaining to the selected
methods, private body and/or rights keys for decrypting and/or
encrypting object contents, and may also be used to provide a
checking capability ensuring that the user rights record conveys
only those rights authorized by a current authorization embodied

within a PERC.

In one embodiment provided by the present invention, a
conventional database engine may be used to store and organize
secure database 610, and the encryption layvers discussed above
may be "on top of* the conventional database structure. |
However, if such a conventional database engine is unable to
organize the records in secure database 610 and support the
security considerations outlined above, then electronic appliance
600 may maintain separate indexing structures in encrypted
form. These separate indexing structures can be maintained by
SPE 503. This embodiment would réquire SPE 503 to decrypt
the index and search decrypted index blocks to find appropriate
“site record IDs“ or other pointers. SPE 503 might then request

the indicated record from the conventional database engine. If

-490 -

Petitioner Apple Inc. - Exhibit 1006, p. 1221

10

15

20

WO 98/09209 PCT/US97/15243

the record ID cannot be checked against a record list, SPE 503
might be required to ask for the data file itself so it can retrieve
the desired record. SPE 503 would then perform appropriate
authentication to ensure that the file has not been tampered
with and that the proper block is returned. SPE 503 should not
simply pass the index to the conventional database engine
(unless the database engine is itself secure) since this would

allow an incorrect record to be swapped for the requested one.

Figure 34 is an example of how the site record numbers
described above may be used to access the various data
structures within secure database 610. In this example, secure
database 610 further includes a site record table 482 that stores
a plurality of site record numbers. Site record table 482 may
store what is in effect a "master list* of all records within secure
database 610. These site record numbers stored by site record

table 482 permit any record within secure database 610 to be

accessed. Thus, some of the site records within site record table
482 may index records with an object registration table 460,
other site record numbers within the site record table may index
records within the user/object table 462, still other site regord
numbers within the site record table may access records within
URT 464, and still other site record numbers within the site

record table may access PERCs 808. In addition, each of method

- 491 -

Petitioner Apple Inc. - Exhibit 1006, p. 1222

10

15

20

WO 98/09209 PCT/US97/15243

cores 1000’ may also include a site record number so they may be -

accessed by site record table 482.

Figure 34A shows an example of a site record 482(j) within

site record table 482. Site record 482(j) may include a field

484(1) indicating the type of record, a field 484(2) indicating the
owner or creator of the record, a "class “ field 484(3) and an
"instance” field 484(4) providing additional information about
the record to which the site record 482(J) points; a spéciﬁc
descriétor field 484(5) indicating some specific descriptor (e.g.,
object ID) associated with the record: an identification 484(6) of
the table or other data structure which the site record references:
a reference and/or offset within that data structure indicating
where the record begins; a validation tag 484(8) for validating
the record Being looked up, and a check value field 484(9). Fields
484(6) and 484(7) together may provide the mechanism by which
the record referenced to by the site record 484()) is actually

physically located within the secure database 610.

Updating Secure Database 610

Figure 35 show an example of a process 1150 which can be
used By a clearinghouse, VDE administrator or other VDE
participant to update the secure database 610 maintained by an

end user’s electronic appliance 600. For example, the process

- 492 -

Petitioner Apple Inc. - Exhibit 1006, p. 1223

10

15

20

WO 98/09209 PCT/US97/15243

1500 shown in Figure 35 might be used to collect "audit trail*
records within secure database 610 and/or provide new budgets
and permissions (e.g., PERCs 808) in response to an end user’s

request.

Typically, the end user’s electronic appliance 600 may
initiate communications with a clearinghouse (Block 1152). This
contact may, for example, be established automatically or in
response to a user command. It may be initiated across the
electronic highway 108, or across other communications
networks such as a LAN, WAN, two-way cable or using portable
media exchange between electronic appliances. The process of
exchanging administrative information need not occur in a single
"on line“ session, but could instead occur over time based on a
number of different one-way and/or two-way communications
over the same or different conﬁmﬁnications means. However, the
process 1150 shown in Figure 35 is a specific example where the
end user’s electronic appliance 600 and the other VDE
participant (e.g., a clearinghouse) establish a two-way real-time
interactive communications exchange across a telephone line,

network, electronic highway 108, etc.

The end user’s electronic appliance 600 generally contacts

a particular VDE administrator or clearinghouse. The identity of

- 493 -

Petitioner Apple Inc. - Exhibit 1006, p. 1224

10

15

20

WO 98/09209 PCT/US97/15243

the particular clearinghouse is based on the VDE object 300 the
user wishes to access or has already accessed. For example,
suppose the user has already accessed a particular VDE object
300 and has run out of budget for further access. The user could
issue a request which will cause her electronic appliance 600 to
automatically contact the VDE administrator, distributor and/or
financial clearinghouse that has responsibility fpr that particular
object. The identity of the appropriate VDE participants to
cqntact is -provided in the example by information within UDEs
1200, MDEs 1202, the Object Registration Table 460 and/or |
Subject Table 462, for example. Electronic appliance 600 may
have to contact multiple VDE participants (e.g., to distribute
audif records to one participant, obtain additional budgets or
other permissions from ahother participant. etc.). The contact
1152 may in one example be scheduled in accordance with the
Figure 27 Shipping Table 444 and the Figure 29 Administrative
Event Log 442.

Once contact is established, the end user’s electronic
appliance and the clearinghouse typically authénticate one
another and agree on a session key to use for the real-time
information exchange (Block 1154). Once a secure connection is
established, the end user’s electronic appliance may determine

(e.g., based on Shipping Table 444) whether it has any

-494 -

Petitioner Apple Inc. - Exhibit 1006, p. 1225

10

15

20

WO 98/09209

PCT/US97/15243
administrative object(s) containing audit information that it is

supposed to send to the clearinghouse (decision Block 1156).
Audit information pertaining to several VDE objects 300 may be
placed within the same administrative object for transmission, or
different administrative objects may contain audit information
about different objects. Assuming the end user’s electronic |
appliance has at least one such administrative object to send to
this particular clearinghouse ("yes“ exit to decision Block 1156),
the electronic appliance sends that administrative object to the
clearinghouse via the now-established secure real-time
communications (Block 1158). In one specific example, a single
administrative object may be sent an administrative object
containing audit information pertaining to multiple VDE objects,
with the audit information for each different object
compromising a separate "event“ within the administrative

object.

The clearinghouse may receive the administrative object
and process its contents to determine whether the contents are
"valid“ and "legitimate.“ For example, the clearinghouse ﬁnay
analyze the contained audit information to determine whether it
indicates misuse of the applicablé VDE object 300. The
clearinghouse may, as a result of this analysis, may generate one

or more responsive administrative objects that it then sends to

- 495 -

Petitioner Apple Inc. - Exhibit 1006, p. 1226

10

15

20

WO 98/09209 PCT/US97/15243

the end usef’s electronic appliance 600 (Block 1160). The end
user’s electronic appliance 600 may process events that update
its secure database 610 and/or SPU 500 contents based on the
administrative object received (Block 1162). For example, if the
audit information received by the clearinghouse is legitimate,
then the clearinghouse may send an administrative object to the
end user’s electronic appliance 600 requesting the electronic |
appliance to delete and/or cbmpress the audit information that
has been transferred. Alternatively or in addition, the
clearinghouse may request additional information from the end-
user electronic appliance 600 at this stage (e.g., retransmission
of certain information that was corrupted during the initial
transmission, transmission of additional information not earlier
transmitted, etc.). If the clearinghouse detects misuse based on
the received audit information, it may transmit an
administrative object that revokes or otherwise modifies the end

user’s right to further access the associated VDE objects 300.

The clearinghouse may, in addition or alternatively, send
an administrative object to the end user’s electronic appliance

600 that instructs the electronic appliance to display one or more

-messages to the user. These messages may inform the user

about certain conditions and/or they may request additional

information from the user. For example, the message may

- 496 -

Petitioner Apple Inc. - Exhibit 1006, p. 1227

10

15

20

PCT/US97/15243

WO 98/09209

instruct the end user to contact the clearinghouse directly by
telephone or otherwise to resolve an indicated problem, enter a
PIN, or it may instruct the user to contact a new service
company to re-register the associated VDE object. Alternatively,
the message may tell the end user that she needs to acquire new
usage permissions for the object, and may inform the user of cost,

status and other associated information.

During the same or different communications exchange,
the same or different clearinghouse may handle the end user’s
request for additional budget and/or permission pertaining to
VDE object 300. For example, the end user’s electronic appliance
600 may (e.g., in response to a user Input request to access a
particular VDE object 300) send an administrative object to the
clearinghouse requesting budgets and/or other permissions
allowing access (Block 1164). As mentioned above, such requests
may be transmitted in the form of one or more administrative
objects, such as, for example, a single administrative object
having multiple "events“ associated with multiple requested
budgets and/or other permissions for the same or different VDE
objects 300. The clearinghouse may upon receipt of such a
request, check the end user’s credit, financial records, business
agreements and/or audit histories to determine whether the

requested budgets and/or permissions should be given. The

- 497 -

Petitioner Apple Inc. - Exhibit 1006, p. 1228

10

15

20

WO 98/09209 PCT/US97/15243

clearinghouse may, based on this analysis, send one or more
responsive administrative objects which cause the end user’s
electronic appliance 600 t'o update its secure database in
response (Block 1166, 1168). This updating might, for example,
comprise replacing an expired PERC 808 with a fresh one;
modifying a PERC to provide additional (or lesser) rights, etc.
Steps 1164-1168 may be repeated multiple times in the same or
different communications session to provide further updates to

the end user’s secure database 610.

Figure 36 shows an example of how a new record or
element may be inserted into secure database 610. The load
process 1070 shown in Figure 35 checks each data element or
item as it is loaded to ensure that it has not been tampered with,
replaced or substituted. In the process 1070 shown in Figure 35,
the first step that is performed is to check to see if the current
user of electronic appliance 600 is authorized to insert the item
into secure database 610 (block 1072). This test may involve, in
the preferred embodiment, loading (or using already loaded)
aﬁpropriate methods 1000 and other data structures such as
UDEs 1200 into an SPE 503, which then authenticates user
authorization to make the change to secure database 610 (block
1074). If the user is approved as being authorized to make the

change to secure database 610, then SPE 503 may check the

- 498 -

Petitioner Apple Inc. - Exhibit 1006, p. 1229

10

15

20

WO 98/09209

PCT/US97/15243
integrity of the element to be added to the secure database by

decrypting it (block 1076) and determining whether it has
become damaged or corrupted (block 1078). The element is
checked to ensure that it decrypts properly using a
pr;determined management file key, and the check value may be
validated. In addition, the public and private header ID tags (if
present) may be compared to ensure that the proper element has
been provided and had not been substituted, and the unique
4element tég ID compared against the predetermined element
tag. If any of these tests fail, the element may be automatically
rejected, error corrected, etc. Assuming the element is found to
have integrity, SPE 503 may re-encrvpt the information (block
1080) using a new key for example (see Figure 37 discussion
below). In the same process step an appropriate tag is preferably
provided so that the information becomes encrypted within a -
security wrapper having appropriate tags contained therein
(block 1082). SPE 503 may retain appropriate tag information so
that it can later validate or otherwise authenticate the item
when it is again read from secure database 610 (block 1084).

The now-secure element within its security wrapper may then be

stored within secure database 610.

Figure 37 shows an example of a process 1050 used in the

preferred embodiment database to securely access an item stored

- 499 -

Petitioner Apple Inc. - Exhibit 1006, p. 1230

10

20

WO 98/09209 ' PCT/US97/15243

in secure database 610. In the preferred embodiment, SPE 503
first accesses and reads in the item from secure database 610
records. SPE 503 reads this information from secure database
610 in encrypted form, and may "unwrap*“ it (block 1052) by
decrypting it (block 1053) based on access keys internally stored
within the protected memory of an SPU 500. In the preferred
embodiment, this "unwrap* process 1052 involves sending blocks
of information to encrypt/decrypt engine 522 along with a
management file kev and other necessary information needed to
decrypt. Decrypt engine 522 may return "plaintext information
that SPE 503 then éhecks to ensure that the security of the
object has not been breached and that the object is the proper
object to be used (block 1054). SPE 503 may then check all
correlation and access tags to ensure that the reéd-in element
has not been substituted and to guard against other security
threats (block 1054). Part of this "checking” process involves
checking the tags obtained from the secure database 610 with
tags contained within the secure memory or an SPU 500 (block
1056). These tags stored within SPU 500 may be accessed from
SPU protected memory (block 1056) and used to check further

the now-unwrapped object. Assuming this "checking® process

1054 does not reveal any improprieties (and block 1052 also

indicates that the object has not become corrupted or otherwise

damaged), SPE 503 may then access or otherwise use the item

- 500 -

Petitioner Apple Inc. - Exhibit 1006, p. 1231

10

15

20

WO 98/09209 PCT/US97/15243

(block 1058). Once use of the item is completed, SPE 503 may
need to store the item back into secure database 610 if it has
changed. If the item has changed, SPE 503 will send the item in
its changed form to encrypt/decrypt engine 522 for encryption
(block 1060), providing the appropriate necessary information to
the encrypt/decrypt engine (e.g., the appropriate same or
different management file key and data) so that the object is
appropriately encrypted. A unique, new tag and/or encryption. -
key may be used at this stage to uniquely tag and/or encrypt the
item security wrapper (block 1062; see also detailed Figure 37
discussion below). SPE 503 may retain a copy of the key and/or
tag within a protected memory of SPU 500 (block 1064) so that
the SPE can decrypt and validate the object when it is again read

from secure database 610.

The keys to decrypt secure database 610 records are, in the
preferred embodiment, maintained solely within the protected
memory of an SPU 500. Each index or record update that leaves
the SPU 500 may be time stamped, and then encrypted with a
unique key that is determined by the SPE 503. For example, a
key identification number may be placed "in plain view* at the
front of the records of secure database 610 so the SPE 503 can
determine which key to use the next time the record is retrieved.

SPE 503 can maintain the site ID of the record or index, the key

- 501 -

Petitioner Apple Inc. - Exhibit 1006, p. 1232

10

15

20

WO 98/09209 : PCT/US97/15243

identification number associated with it, and the actual keys in
the list internal to the SPE. At some point, this internal list may
fill up. At this poin’;, SPE 503 may call a maintenance routine
that re-encrypts items within secure database 610 containing
changed information. Some or all of the items within the data
structure containing changed information may be read in,
decrypted, and then re-encrypted with the same key. These
items may then be issued the same key identification number.
The items may then be written out of SPE 503 back into secure
database 610. SPE 503 may then clear the internal list of item
IDs and corresponding key identification numbers. It may then
begin again the process of assigning a different key and a new
key identification number to each new or changed item. By
using this process, SPE 503 can protect the data structures
(including the indexes) of secure database 610 against
substitution of old items and against substitution of indexes for

current items. This process also allows SPE 503 to validate

retrieved item IDs against the encrypted list of expected IDs.

Figure 38 is a flowchart showing this process in more
detail. Whenever a secure database 610 item 1s updated or
modified, a new encryption key can be generated for the updated
item. Encryption using a new key is performed to add security

and to prevent misuse of backup copies of secure database 610

- 502 -

Petitioner Apple Inc. - Exhibit 1006, p. 1233

10

15

20

WO 98/09209 PCT/US97/15243

records. The new encryption key for each updated secure

database 610 record may be stored in SPU 500 secure memory

with an indication of the secure database record or record(s) to

which it applies.

SPE 503 may generate a new encryption/decryption key
for each new item it is going to store within secure database 610
(block 1086). SPE 503 may use this new key to encrypt the
record prior to storing it in the secure database (block 1088).
SPE 503 make sure that it retains the key so that it can later
read and decrypt the record. Such decryption keys are, in the
preferred embodiment, maintained within protected non-volatile
memory (e.g., NVRAM 534b) within SPU 500. Since this
protected memory has a limited size, there may not be enough
room within the protected memory to storc a new key. This
condition is tested for by decision block 109(_) in the preferred
embodiment. If there is not enough room in memory for the new
key (or some other event such as the number of keys stored in
the memory exceeding a predetermined number, a timer has
expired, etc.), then the preferred embodiment handles the
situation by re-encrypting other records with secure database
610 with the same new key in order to reduce the number of (or
change) encryption/decryption keys in use. Thus, one or more

secure database 610 items may be read from the secure database

- 503 -

Petitioner Apple Inc. - Exhibit 1006, p. 1234

10

15

20

WO 98/09209 PCT/US97/15243

(block 1092), and decrypted using the 6ld key(s) used to encrypt

them the last time they were stored. In the preferred
embodiment, one or more "old keys“ are selected, and all secure
database items encrypted using the old key(s) are read and
decrypted. These records may now be re-encrypted using the
new key that was generated at block 1086 for the new record
(block 1094). The old key(s) used to decrypt the other record(s)
may now be removed from thé SPU protected memory (block |
1096), and the new key stored in its place (block 1097). The old
kéy(s) cannot be removed frpm secﬁre memory by block 1096
unless SPE 503 is assured that all records within the secure
database 610 that were encrypted using the old key(s) have been
read by block 1092 and re-encrypted by block 1904 using the new
key. All records encrypted (or re-encrypted) using the new key
may now be stored in secure database 610 (block 1098). If
decision block 1090 determines there is room within the SPU 500
protected memory to store the new key, then the operations of
blocks 1092, 1094, 1096 are not needed and SPE 503 may
instead simply store the new key within the protectéd memory
(block 1097) and store the new enci'ypted records into secure

database 610 (block 1098).

The security of secure database 610 files may be further

improved by segmenting the records into "compartments.“

- 504 -

Petitioner A'pple Inc. - Exhibit 1006, p. 1235

10

15

20

WO 98/09209

. PCT/US97/15243
Different encryption/decryption keys may be used to protect
different "compartments.“ This strategy can be used to limit the
amount of information within secure database 610 that is
encrypted with a single key. Another technique for increasing
security of secure database 610 may be to encrypt different
portions of the same records with different keys so that more

than one key may be needed to decrypt those records.

Backup of Secure Database 610.

Secure database 610 in the preferred embodiment is
backed up at periodic or o;her time intervals to protect the
information the secure database contains. This secure database
information may be of substantial value to many VDE
participants. Back ups of secure database 610 should occur
without significant inconvenience to the user, and should not

breach any security.

————

The need to back up secure database 610 méy be checked
at power on of electronic appliance 600, when SPE 503 is
initially invoked, at periodic time intervals, and if "audit roll up“
value or other summary services information maintained by SPE
503 exceeds a user set or other threshold, or triggered by criteria
established by one or more content publishers and/or distributors

and/or clearinghouse service providers and/or users. The user

- 505 -

Petitioner Apple Inc. - Exhibit 1006, p. 1236

10

20

WO 98/09209 ' PCT/US97/15243

may be prompted to backup if she has failed to do so by or at
some certain point in time or after a certain duration of time or
quantity of usage, or the backup may proceed automatically

without user intervention.

Referring to Figure 8, backup storage 668 and storage

media 670 (e.g., magnetic tape) may be used to store backed up

-information. Of course, any non-volatile media (e.g., one or more

floppy diskettes, a writable optical diskette, a hard drive, or the

like) may be used for backup storage 668.

There are at least two scenarios to backiné up secure
database 610. The first scenario is "site specific, and uses the
security of SPU 500 to support restoration of the backed up
information. This first method is used in case of damage to
secure database 610 due for example to failure of secondary
storage device 652, inadvertent user damage to the files, or other
occurrences that may damage or corrupt some or all of secure
database 610. This first, site specific scenario of back up
assumes that an SPU 500 still functions properly and is

available to restore backed up information.

The second back up scenario assumes that the user’s SPU

500 is no longer operational and needs to be, or has been,

- 506 -

Petitioner Apple Inc. - Exhibit 1006, p. 1237

10

15

20

WO 98/09209 . - PCT/US97/15243

replaced. This second approach permits an authorized VDE
administrator or other authorized VDE participant to access the
stored back up information in order to prevent loss of critical

data and/or assist the user in recovering from the error.

Both of these scenarios are provided by the example of
program control steps performed by ROS 602 shown in Figure
39. Figure 39 shows an example back up routine 1250 performed
by an electronic appliance 600 to back up secure database 610
(and other information) onto back up storage 668. Once a back
up has been initiated, as discussed above, back up routine 1250
generates one or more back up keys (block 1252). Back up
routine 1250 then reads all secure database items, decrypts each
item using the original key used to encrypt them before they
were stored in secure database 610 (block 1254). Since SPU 500
is typically the only place where the keys for deerypting this
information within an instance of secure database 610 are
stored, and since one of the scenarios provided by back up
routine 1250 is that SPU 500 completely failed or is destroyed,
back up routine 1250 performs this reading and decrypting step
1254 so that recovery from a backup is not dependent on
knowledge of these keys within the SPU. Instead, back up
routine 1250 encrypts each secure database 610 item with a

newly generated back up key(s) (block 1256) and writes the

- 507 -

- Petitioner Apple Inc. - Exhibit 1006, p. 1238

10

15

20

WO 98/09209 PCT/US97/15243

encrypted item to back up store 668 (block 1258). This process
continues until all items within secure database 610 have been
read, decrypted, encrypted with a newly generated back up

key(s), and written to the back up store (as tested for by decision
block 1260).

The preferred embodiment also reads the summary
services audit information stored within the protected memory of
SPU 500 by SPE summary services manager 360, encrypts this
information with the hew]y gen’érated back up key(s), and WwTites

this summary services information to back up store 668 (block
1262).

Finally, back up roufine 1250 saves the back up key(é)
generated by block 1252 and used to encrypt in blocks 1256, 1262
onto back up store 668. It does this in two secure ways in order
to cover both of the restoration scenarios discussed above. Back
up routine 1250 may encrypt the back up key(s) (along with
other information such as the time of back up and other
appropﬁate information to identify the back up) with a further
key or keys such that only SPU 500 can deci‘ypt (block 1264).
This encrypted information is then Written to back up store 668
(block 1264). For example, this step may include multiple

encryptions using one or more public keys with corresponding

- 508 -

Petitioner Apple Inc. - Exhibit 1006, p. 1239

10

15

20

WO 98/09209

PCT/US97/15243
private keys known only to SPU 500. Alternatively, a second

back up key generated by the SPU 500 and kept only in the SPU
may be used for the final encryption in place of a public key.

Block 1264 preferably includes multiple encryption in order to

make it more difficult to attack the security of the back up by

“cracking® the encryption used to protect the back up keys.
Although block 1262 includes encrypted summary services
information on the back up, it preferably does not include SPU
device private keys, shared keys, SPU&code and other internal
security information to prevent this information from ever

becoming available to users even in encrypted form.

The information stored by block 1264 is sufficient to allow
the same SPU 500 that performed (or at least in part performed)
back up routine 1250 to recover the backed up information.
However, this information is useless to any device other than
that same SPU because only that SPU knows the particular keys
used to protect the back up keys. To cover the other possible
scenario wherein the SPU 500 fails in a non-recoverable way,
back up routine 1250 provides an additional step (block 1266) of
saving the back up key(s) under protection of one or more further
set of keys that may be read by an authorized VDE
administrator. For example, block 1266 may encrypt the back up

keys with an "download authorization key“ received during

- 509 -

Petitioner Apple Inc. - Exhibit 1006, p. 1240

10

15

20

WO 98/09209

PCT/US97/15243

initialization of SPU 500 from a VDE administrator. This
encrypted version of back up keys is also written to back up store
668 (block 1266). It can be used.to support restoration of the
back up files in the event of an SPU 500 failure. More
specifically, a VDE administrator that knows the download
authorization (or other) keys(s) used by block 1266 may be able
to recover the back up key(s) in the back up store 668 and
Proceed to restore the backed up secure database 610 to the same

or different electronic appliance 600.

In the preferred embodiment, the information saved by

‘routine 1250 in back up files can be restored only after receiving

a back up authorization from an authorized VDE administrator.
In most cases, the restoration process will simply be a restoration
of secure database 610 with some adjustments to account for any
usage since the back up occurred. This may require the user to
contact additional providers to transmit audit and billing data
and receive new budgets to reflect activity since the last back up.
Current sunimary services information maintained w*ithin SPU
900 may be compared to the Summary services information
stored on the back up to determine or estimate most recent usage

activity.

- 5810 -

Petitioner Apple Inc. - Exhibit 1006, p. 1241

10

15

20

WO 98/09209 PCT/US97/15243

In case of an SPU 500 failure, an authorized VDE
administrator must be contacted to both initialize the
replacement SPU 500 and to decrypt the back up files. These
processes allow for both SPU failures and upgrades to new SPUs.

In the case of restoration, the back up files are used to restore

_ the necessary information to the user’s system. In the case of

upgrades, the back up files may be used to validate the upgrade

process.

The back up files may in sdme 1nstances be used to
transfer management information between electronic appliances
600. However, the preferred embodiment may restrict some or
all information from being transportable between electronic
appliances with appropriate authorizations. Some or all of the
back up files may be packaged within an administrative object\

and transmitted for analysis, transportation, or other uses.

As a more detailed example of a need for restoration from
back up files, suppose an electronic appliance 600 suffers a hard

disk failure or other accident that wipes out or corrupts part or

-all of the secure database 610, but assume that the SPU 500 is

still functional. SPU 500 may include all of the information (e.g.,
secret keys and the like) it needs to restoi‘e the secure database

610. However, ROS 602 may prevent secure database

-511-

Petitioner Apple Inc. - Exhibit 1006, p. 1242

10

15

20

WO 98/09209 PCT/US97/15243

restoration until a restoration authorization is received from a
VDE adniinistrator. A restoration authorization may comprise,
for example, a ”secret‘ value“ that must match a value expected
by SPE 503. A VDE administrator may, if desired, only provide
this restoration authorization after, for example, summary
services information stored within SPU 500 is transmitted to the
administrator in an administrative object for analysis. In some
circumstances, a VDE administrator may require that a copy
(partial or complete) of the back up files be transmitted to it
within an administrative object to check: for indications of
fraudulent activities by the user. The restoration process, once
authorized, may require adjustment of restored budget records
and the like to reflect activity since the last back up, as

mentioned above.

Figure 40 is an example of program controlled "restore®
routine 1268 performed by electronic appliance 600 to restore
secure database 610 based on thé back up provided by the
routine shown in Figure 38. This restore may be used, for
example, in the event that an electronic appliance 600 has failed
but can be recovered bor "reinitialized® through contact with a
VDE administrator for example. Since the preferred
embodiment does not permit an SPU 500 to restore from backup

unless and until authorized by a VDE administrator, restore

- 512 -

Petitioner Apple Inc. - Exhibit 1006, p. 1243

10

15

20

WO 98/09209 PCT/US97/15243

routine 1268 begins by establishing a secure communication with’
a VDE administrator that can authorize the restore to occur
(block 1270). Once SPU 500 and the VDE administrator
authenticate one another (part of block 1270), the VDE
administrator may extract "work in progress“ and summary
values from the SPU 500’s internal non-volatile memory (block
1272). The VDE administrator may use this extracted
information to help determine, for exami:)le, whether there has -
been a security violation, and also permits a failed SPU 500 to
effectively "dump*“ its contents to the VDE administrator to
permit the VDE administrator to handle the contents. The SPU
500 may encrypt this information and provide it to the VDE
administrator packaged in one or more administrative objects.
The VDE administrator may then request a copy of some or all of
the current backup of secure database 610 from the SPU 500
(block 1274). This information may be packaged by SPU 500 into
one or more administrative objects, for example, and sent to the
VDE administrator. Upon receiving the information, the VDE
administrator may read the summary services audit information
from the backup volume (i.e., information stored by Figure 38
block 1262) to determine the summary values and other
information stored at time of backup. The VDE administrator
may also determine the time and date the backup was made by

reading the information stored by Figure 38 block 1264.

- 513 -

Petitioner Apple Inc. - Exhibit 1006, p. 1244

WO 98/09209 PCT/US97/15243

The VD.E administrator may at this point restore the
summary values and other information within SPU 500 based on
the information obtained by block 1272 and from the backup

A{block 1276). For example, the VDE administrator may reset
5 SPU internal smninary values and counters so that they are
consistent with the last backup. These values may be adjusted
by the VDE administrator based on the "work in progress*
recovefgd by block 1272, the amount of time that has passed
since the backup, etc. The goal may typically be to attempt to
10 provide internal SPU values that are equal to what they would

have been had the failure not occurred.

The VDE administrator may then authorize SPU 500 to
recover its secure database 610 from the backup files (block)
15 1278). This restoration process replaces all secure database 610
records with the records from the backup. The VDE
administrator may adjust these records as neéded by passing

commands to SPU 500 during or after the restoration process.

20 ‘The VDE administrator may then compute bills based on
the recovered values (block 1280), and perform other actibns to
recover from SPU downtime (block 1282). Typically, the goal is
to bill the user and adjust other VDE 100 values pertaining to

the failed electronic appliance 600 for usage that occurred

- 514 -

Petitioner Apple Inc. - Exhibit 1006, p. 1245

10

15

20

WO 98/09209 PCT/US97/15243

subsequent to the last backup but prior to the failure. This
process may involve the VDE administrator obtaining, from
other VDE barticipants, reports and other information
pertaining to usage by the electronic appliance prior to its failure
and comparing it to the secure database backup to determine

which usage and other events are not yet accounted for.

In one alternate embodimént, SPU 500 may have
su.fﬁciex;t internal. non-volatile memory to allow it to store some
or all of secure database 610. In this embodiment, the additiona.lv
memory may be provided by additional one or more integrated
circuits that can be contained within a secure enclosure, such as
a tamper resistant metal container or some form of a chip pack
containing multiple integrated circuit components, and which
impedes and/or evidences tampering attempts, and/or disables a
portion or all of SPU 500 or associated critical key and/or other
control information in the event of tampering. The same back up
routine 1250 shown in Figure 38 may be used to back up this
type of information, the only difference being that block 1254
may read the secure database item from the SPU internal
memory and may not need to decrypt it before encrypting it with

the back up key(s).

- 515 -

Petitioner Apple Inc. - Exhibit 1006, p. 1246

WO 98/09209 PCT/US97/15243

Event-Driven VDE Processes

As discussed above, processes pi'ovided by/under the
preferred embodiment rights operating system (ROS) 602 may be
"event driven.“ This "event driven* capability facilitates

5 integration and extendibility.

An "event“is a happehing at a point in time. Some
examples of "events are a user striking a key of a keyboard,
arrival of a message or an object 300, expiration of a timer, or a

10 request from another process.

In the preferred embodiment. ROS 602 responds to an

“event“ by performing a process in response to the event. ROS
602 dynamically creates active processes and tasks in response

15 to the occurrence of an event. For example, ROS 602 may create
and begin executing one or more component assemblies 690 for
performing a process or Processes in response to occurrence of an
event. The active processes and tésks may terminate once ROS
602 has responded to the event. This ability to dynamically

20 create (and end) tasks in response to events provides great
flexibility, and also permits limited execution resources such as
those provided by an SPU 500 to perform a virtually unlimited

variety of different processes in different contexts.

- 516 -

Petitioner Apple Inc. - Exhibit 1006, p. 1247

10

15

20

WO 98/09209 : : PCT/US97/15243

Since an "event“ may be any type of happening, there are
an unlimited number of different events. Thus, any attempt to
categorize events into different types will necessarily be a
generalization. Keeping this in mind, it is possible to categorize
events provided/supported by the preferred embodiment into two

broad categories:

. user-initiated events; and

. system-initiated events.

Generally, "user-initiated“ events are happenings
attributable to a user (or a user application). A common “user-
initiated“ event is a user’s request (e.g., by pushing a keyboard
button, or transparently using redirector 684) to access an object

300 or other VDE-protected information.

"System-i_nitiated“ events are generally happenings not

“attributable to a user. Examples of system initiated events

include the expiration of a timer indicating that information
should be backed to non-volatile memory, receipt of a message
from another electronic appliance 600, and a service call
generated by another process (which may have been started to
respond to a system-initiated event and/or a user-initiated

event).

- 817 -

Petitioner Apple Inc. - Exhibit 1006, p. 1248

10

15

20

WO 98/09209 PCT/U S97/ 15243

ROS 602 provided by the preférred embodiment responds

to an event by specifying and beginning processes to process the

event. These processes are, in the preferred embodiment, based

on methods 1000. Since there are an unlimited number of

“different types of events, the preferred embodiment supports an

unlimited number of different processes to process events. This
ﬂexibility' is suppbrted by the dynamic creation of component
assemblies 690 from independently deliverable modules such as
method cores 1000’, load modules 1100, and data-_structures such
as UDEs 1200. Even though any categoﬁzat:ion of the unlimited
potential types of processes supported/provided by the preferred
embodiment will be a generalization, it is possible to generally

classify processes as falling within two categories:

. processes relating to use of VDE protected information;
and
. processes relating to VDE administration.

*Use“and "Administrative"Processes

"Use“ processes relate in some way to use of VDE-
protected information. Methods 1000 provided by the preferred
embodiment may provide processes for creating and maintaining
a chain of control for use of VDE-protected information. One

specific example of a "use“ type process is processing to permit a

-518-

Petitioner Apple Inc. - Exhibit 1006, p. 1249

o

10

15

20

WO 98/09209 PCT/US97/15243

user to open a VDE object 300 and access its contenfs. A method
1000 may provide detailed use-related processes such as, for
example, releasing content to the user as requested (if
permitted), and updating xlneters,’budgets, audit trails, etc. Use-
related processes are often user-initiated, but some use processes
may be system-initiated. Events that trigger a VDE use-related

process may be called "use events.*

An "administrative* process helps to keep VDE 100
working. It provides processing that h‘elps.support the
transaction management “infrastructure” that keeps VDE 100
running securelv and efficiently. Administrative processes may,
for example, provide proceSsing relating to some aspect of
creating, modifying and/or destroying VDE-protected data
structures that establish and maintain VDE's chain of handling
and control. For example, "administrative” processes may store,
update, modify or destroy information contained within a VDE
electronic appliance 600 secure database 610. Administrative
processes also may provide communications services that
establish, maintain and support secure communications between
different VDE electronic appliances 600. Events that trigger

administrative processes may be called "administrative events.“

- 519 -

Petitioner Apple Inc. - Exhibit 1006, p. 1250

10

15

20

WO 98/09209 PCT/US97/15243

Raeciprocal Methods

Some VDE processes are paired based on the way they
interact together. One VDE process may "request” processing
services from another VDE process. The process that requests
processing services may be called a "request process.* The
"request” constitutes an "event because it triggers processing by
the other VDE process in the pair. The VDE process that
responds to the "request event® may be called a "response
process.“ | The "request process and “response process“ may be

called "reciprocal processes.*

The "request event* may comprise, for example, a message
issued by one VDE node electronic appliance 600 or proéess for
certain information. A corresponding “response process* may
respond’to the "request event* by, for example, sending the
information requested in the message. This response may itself

constitute a "request event* if it triggers a further VDE “response

process.“ For example, receipt of a message in response to an
earlier-generated request may trigger a "reply process.“ This
"reply process® is a special type of "response process“ that is
triggéred in response to a "reply” from another "response
process.“ There may be any number of "request” and "response“

process pairs within a given VDE transaction.

- 520 -

Petitioner Apple Inc. - Exhibit 1006, p. 1251

10

15

20

WO 98/09209 _ PCT/US97/15243

A "request process“ and its paired "response process“ may

be performed on the same VDE electronic appliance 600, or the

two processes may be performed on different VDE electronic

appliances. Communication between the two processes in the
pair may be by way of a secure (VDE-protected) communication,

an "out of channel“ communication, or a combination of the two.

Figures 41a-41d are a set of examples that show how the
chain of handling and control is enabled using "reciprocal
methods.“ A chain of handling and control is constructed, in

part, using one or more pairs of "reciprocal events“ that

cooperate in request-response manner. Pairs of reciprocal events

may be managed in the preferred embodiment in one or more
"reciprocal methods.“ As mentioned above, a "reciprocal
method“ is a method 1000 that can respond to one or more
"reciprocal events.“ Reciprocal methodsvcontain the two halves of
a cooperative process that may be securely executed at physically
and/or temporally distant VDE nodes. The reciprocal processes
may have a flexibly defined information passing protocols and
information content structure. The reciprocal methods may, in
fact, be bé.sed on the same or different method core 1000’
operating in the same or diﬁ'ereﬁt VDE nodes 600. VDE nodes

600A and 600B shown in Figure 41a may be the same physical

- 521 -

Petitioner Apple Inc. - Exhibit 1006, p. 1252

10

15

20

WO 98/09209 PCT/US97/15243

electronic appliance 600 or may be separate electronic

appliances.

Figure 41a is an example of the operation of a single pair

of reciprocal events. In VDE node 600A, method 1000a is

processing an event that has a request that needs to be processed
at VDE node 600B. The method 1000a (e. g., based on a
component assembly 690 mclud.mg its assoc'ated load modules
1100 and data) that responds to this "request“ event is shown in
Figure 41a as 1450. The process 1450 creates a request (1452)
and, optionally, some information or data that will be sent to ti‘xe
other VDE node 1000b for processing by a process associated
with the reciprocal event. The request and other information
may be transmitted by any of the transport mechanisms

described elsewhere ir: this disclosure.

Receipt of the request by VDE node 600b comprises a
reSponse event at that node. Upon receipt of the request, the
VDE node.60.0b may perform a "reciprocal“ process 1454 defined
by the same or different method 1000b to respond to the response
event. The reciprocal process 1454 may be. based on a component
assembly 690 (e.g., one or more load modules 1100, data, and

optionally other methods present in the VDE node 600B).

-522 -

Petitioner Apple Inc. - Exhibit 1006, p. 1253

10

15

20

WO 98/09209 PCT/US97/15243

Figure 41b extends the concepfs preseqted in Figure 41a to
'include a response from VDE node 600B back to VDE node. 600A.
The procesé starts as described for Figure 41a through the
receipt and processing of the request event and information 1452
by the respoﬁse process 1454 in VDE node 600B. The response
process 1454 may, as part of its processing, cooperate with
another request process (1468) to send a response 1469 back to
the initiating VDE node 600A. A corresponding reciprocal
process 1470 provided by method 1000A may respond to gnd
process this request event 1469. In this manner, two or rﬁore

- VDE nodes 600A. 600B may cooperate and pass configurable
information and requests between methods 1000A, 1000B
executing in the nodes. The first and second request-response
sequences [(1450, 1452, 1454) and (1468. 1469, 1470)] may be
separated by temporal and spatial distances. For efficiency, t}:e
request (1468) and response (1454) processes may be based on
the same method 1000 or they may be implemented as two
methods in the same or different method core 1000°. A method
1000 may be parameterized by an "event code” so it may provide
different behaviors/results for different events, or different

methods may be provided for different events.

Figure 41c shows the extension the control mechanism

described in Figures 41a-41b to three nodes (600A, 600B, 600C).

- 5923 -

Petitioner Apple Inc. - Exhibit 1006, p. 1254

10

15

20

WO 98/09209 PCT/US97/15243

Each request-response pair operates 1in the manner as described
for Figure 41b, with several pairs linked together to form a chain

of control and handling between several VDE nodes 600A, 600B,

: GQOC. This mechanism may be ‘used to extend the chain of

handling and control to an arbitrary number of VDE nodes using
any configuration of nodes. For example, VDE node 600C might
communicate directly to VDE node 600A and communicate
directly to VDE 600B, which in turn commu.rﬁcates with VDE
node 600A. Alternately, VDE node 600C might communicate
directly with VDE node 600A, VDE node 600A méy communicate
with VDE node 600B, and VDE nodé 600B may communicate
with VDE node 600C. |

A method 1000 may be parameterized with sets of events
that specify related or cooperative functions. Events may be
logically grouped by function (e.g., use, distribute), or a set of
reciprocal events that specify processes that may operate in
conjunction with each other. Figure 41d illustrates a set of
"reciprocal events® that support cooperative processing between
several VDE nodes 102, 106, 112 in a content distribution model
to suppoﬁ: the distribﬁtion of budget. The chain of handling and
control, in this example, is enabled by using a set of "reciprocal
events” specified within a BUDGET method. Figure 41d is an

example of how the reciprocal event behavior within an example

- 524 -

Petitioner Apple Inc. - Exhibit 1006, p. 1255

10

15

20

WO 98/09209 PCT/US97/15243

BUDGET method (1510) work in cooperation to establish a chain

of handling and control between several VDE nodes. The

example BUDGET method 1510 responds to a "use® event 1478

by performing a "use“ process 1476 that defines the mechanism
by which processes are budgeted. The BUDGET method 1510
uﬁght, for example, specify a use process 1476 that compares a
meter count to a budget value and fail the bperaﬁon if the meter
count exceeds the budget value. It might also write an audit
trail that describes the results of said BUDGET decisions.
Budget method 1510 may respond to a "distribute“ event by
performing a distribute process 1472 that defines the process
and/or control information for further distribution of the budget.
It may respond to a "request” event 1480 by performing a request
process 1480 that specifies how the user might request use
and/or distribution rights from a distributor. It may respondtoa
"response“ event 1482 by performing a response process 1484
that specifies the manner in which a distributor would respond
to requests from other users to whom they have distributed some
(or all) of their budget to. It may respond to a "reply“ event 1474
by performing a reply process 1475 that might specify how the
user should respond to message regranting ;>r denying (more)

budget.

- 525 -

Petitioner Apple Inc. - Exhibit 1006, p. 1256

10

15

20 . -

WO 98/09209 - PCT/US97/15243

Control of event processing, reciprocal events, and their
associated methods and method components is provided by
PERCs 808 in the preferred embodiment. These PERCs (808)
ight reference administrative methods that govern the
creation, modification, and distribution of the data structures
and administrative methods that permit access, modification,

and further distribution of these items. In this way, each link in

~ the chain of handling and control might, for example, be able to

customize audit information, alter th-e budget requirements for
using the content, and/or control further distribution of these
rights in a manner specified by prior members along the

distribution chain.

In the example shown in Figure 414, a distributor ata-.
VDE distributor node (106) might request budget from a content
creator at another node (102). This request may be made in the
context of a secure VDE communication or it may be passed in
an "out-of-channel“ communication (e.g. a telephone call or

letter). The creator 102 may decide to grant budget to the

- distributor 106 and processes a distribute event (1452 in

BUDGET method 1510 at VDE node 102). A result of processing
the distribute event within the BUDGET method might be a
secure communication (1454) between VDE nodes 102 and 106

by which a budget granting use and redistribute rights to the

- 526 -

Petitioner Apple Ihc. - Exhibit 1006, p. 1257

n

10 -

15

20

WO 98/09209 PCT/US97/15243

distributor 106 may be transferred from the creator 102 to the
distributor. The distributor’s VDE node 106 may respond to the
x;eceipt of the budget informafion by process'mé the
communication using the reply process 1475B of the BUDGET
method 1510. The reply event processing 1475B might, for
example, install a budget and PERC 808 within the distributor’s

VDE 106 node to permit the distributor to access content or

processes for which access is control at least in part by the

budget and/or PERC. At some point, the distributor 106 may |
also desire to use the content to which she has been granted

rights to access.

After registering to use the content object, the user 112

would be required to utilize an array of "use” processes 1476C to,

- for example, open, read, write, and/or close the content object as

part of the use process.

Once the distributor 106 has used some or all of her
budget, she may desire to obtain additional budget. The
distributor 106 might then initiate a process using the BUDGET
method request process (1480B). Request process 1480B might
initiate a communication (1482A_B) with the content creator VDE
node 102 requesting more budget and perhaps providing details

of the use activity to date (e.g., audit trails). The content creator

- 927 -

Petitioner Apple Inc. - Exhibit 1006, p. 1258

10

15

20

WO 98/09209 ' PCT/US97/15243

102 processes the 'get more budget’ request event 1482AB using

the response process (1484A) within the creator's BUDGET

" method 1510A. Response process 1484A might, for example,

make a determination if the use information indicates proper use -
of the content, and/or if the distributor is credit worthy for more
budget. The BUDGET method response process 1484A might

also initiate a financial transaction to transfer funds from the

 distributor to pay for said use, or use the distribute process

1472A to distribute budget to the distributor 106. A response to
the distributor 106 granting more budget (or denying more
budget) might be sent immediately as a response to the request
communication 1482AB, or it might be sent at a later time as
part of a separate communication. The response comr;nunication.
upen being received at the distributor's VDE node 106, might be
processed using the reply process 1475B within the distributors
copy of the BUDGET method 1510B. The reply process 1475B

might then process the additional budget in the same manner as

described above.

- The chain of handling and control may, in addition to
posting budget information, also pass control informatiqn that
governs the manner in which said budget may be utilized. For
example, the control information specified in the above example

may also contain control information describing the process and

- 528 -

Petitioner Apple Inc. - Exhibit 1006, p. 1259

10

15

20

WO 98/09209

limits that apply to the distributor’s redistribution of the right to

PCT/US97/15243

use the creator’s content object. Thus, when the distributor

responds to a budget request from a user (a communication

between a user at VDE node 112 to the distributor at VDE node

106 similar in nature to the one described above between VDE

nodes 106 and 102) using the distribute process 1472B within

the distributor’s copy of the BUDGET method 1510B, a

distribution and request/response/reply process similar to the

one described above might be initiated.

Thus, in this example a single method can provide

“multiple dynamic behaviors based on different ”triggering“

events. For example, single BUDGET method 1510 might

support any or all of the events listed below:

vent Type Event Process Description
[Use" Events lise budget Use budget.
Request Events request more budget Request more money for
Processed by budget.
“User Node request audit by auditor Request that auditor #1 audit
Request Process 1 the budget use.”
,480¢: equest budget deletion Request that budget be

deleted from system.

request method updated

Update method used for
auditing.

request to change auditors

Change from auditor 1 to
auditor 2, or vice versa.

request different audit
interval

Change time interval between
audits.

request ability to provide
budget copies

Request ability to provide

- 529 -

Petitioner Apple Inc. - Exhibit 1006, p. 1260

copies of a budget.

10

15

WO 98/09209

PCT/US97/15243

[Event Type

vent

Process Deacription

equest ability to
distribute budget

Request ability to distribute a
budget to other users.

Fequest account status

Request informadon on
current status of an account.

Request New Method

Request new method.

Request Method Update

Request update of method.

Reguest Method Deletion

Request deletion of method.

Response Events -

receive more budget

Allocate more money to

Processed by budget.
[Jser Node receive method update Update method.
Request Process fpeceive auditor change Change from one auditor to
T480C another.
receive change to audit Change interval between
interval audits,
receive budget deletion Delete budget.
provide audit to auditor #1 | Forward audit information to
auditor #1.
provide audit to auditor #2 | Forward audit information to
auditor #2.
Feceive account status Provide account status.
Receive New Receive new budget.
Receive Method Update Receive updated informaton.
Receive More Receive more for budget.
Sent Audit Send audit information.
Perform Deletion Delete information.
Distribute Create New Create new budget.
Events Provide More Provide more for budget.
Audit Perform audit.
Delete Delete information.
Reconcile Reconcile budget and
auditing.
Copy Copv budget.
Distribute Distribute budget.
Method Modification Modify method.
Displav Method Display requested method.
quest” Events [Delete Delete informaton.
cessed by Get New Get new budget.
Distributor Node [Get More Get more for budeet.
Request Process [Get Updated Get updated information.
1484B Get Audited Get audit information.

- 530 -

Petitioner Apple Inc. - Exhibit 1006, p. 1261

10

15

20

25

WO 98/09209 PCT/US97/15243

{Event Type - Fivent Procsss Description
'Resppnse Provide New to user Provide new budget to user.
Lvents* Provide More to user Provide more budget to user.
Processed by Provide Update to user Provided updated budget to
Distributor Node .

user,
?.:;:;st Process Audit user Audit a specified user.

f Delete user’'s method Delete method belonging to

118y

Examples of Reciprocal Method Processes

A. BUDGET

Figures 42a. 42b, 42c and 42d, respectively, are flowcharts .
of examplé process control stéps performed by a representative
example of BUDGET method 2250 provided by the preferred
embodiment. In the preferred embodiment. BUDGET method
2250 may operate in any of four different modes:

. use (see Figure 42a)

. administrative request (see Figure 42b)

. administrative responsé (see F 1gure 42¢)

. administrative reply (see Figure 42d).
In general, the "use* mode of BUDGET method 2250 is invoked
in response to an event relating to the use of an object or its
content. The "administrative request“ mode of BUDGET method
2250 is invoked by or on behalf of the user in response to some
user action that requires contact with a VDE financial provider,

and basically its task is to send an administrative request to the

- 531 -

Petitioner Apple Inc. - Exhibit 1006, p. 1262

10

15

20

WO 98/09209 PCT/US97/15243

VDE financial provider.. The "administrative response;‘ rrgode of
BUDGET method 2250 is performed at the VDE financial
provider in response to receipt of an administrative request sent
from a VDE node to the VDE financial provider by the
"administrative request” invocation of BUDGET method 2250
shown in Figure 42b. The "administrative response” invocation
of BUDGET method 2250 results 1n the transmission of an
administrative object from VDE financial provider to the VDE
user node. Finally, the ”a@ministrative reply* invocation of
BUDGET method 2250 shbwn in Figure 42d is performed at the
user VDE node upon receipt of the administrative object sent by
the "administrative response” invocation of the method shown in

Figure 42c.

In the preferred embodiment, the same BUDGET method
2250 performs each of the four different step sequences shown in

Figures 42a-42d. In the preferred embodiment, different event

codes may be passed to the BUDGET method 2250 to invoke
these various different modes. Of course, it would be possible to
use four separate BUDGET methods instead of a single
BUDGET method with four different "dynamic personalities,*
but the preferred embodiment obtam$ certain advantages by

using the same BUDGET method for each of these four types of

" invocations.

- 532 -

Petitioner Apple Inc. - Exhibit 1006, p. 1263

10

15

20

WO 98/09209 . PCT/US97/15243

Looking at Figure 42a, the "use“ invocation of BUDGET
method 2250 first primes the Budget Audit Trail (blocks 2252,
2254). It then obtains the DTD for the Budget UDE, which it
uses to obtain and read the Budget UDE blocks 2256-2262).
BUDGET method 2250 in this "use“ invocation may then
determine whether a Budget Audit date has expired, and
terminate if it has ("yes® exit to decision block 2264; blocks 2266,
2268). So long as the Budget Audit date has not expired, the
method may then update the Budget using the atomic element
and event counts (and possibly other information) (blocks 2270,
2272), and may then save a Budget User Audit record in a
Budget Audit Trail UDE (blocks 2274, 2276) before terminating

(at terminate point 2278).

Looking at Figure 42b, the first six steps (blocks 2280-
2290) may be performed by the user VDE node in response to
some user action (e.g., request to access new information, request
for a new budget, etc.). This "administrative req‘uest“ invocation
of BUDGET method 2250 may prime an audit trail (blocks 2280,
2282). The method may then place a request for administrative
processing of an appropriate Budget onto a request queue (blocks
2284, 2286). Finally, the method may save appropriate audit
trail information (blocks 2288, 2290). Sometime later, the user

VDE node may prime a communications audit trail (blocks 2292,

- 533 -

Petitioner Apple Inc. - Exhibit 1006, p. 1264

10

15

20

WO 98/09209 PCTIUS9‘7/15243

2294), and may then write a Budget Administrative Request into
an administrative object (block 2296). This step may obtain
information from the secure database as needed from such
sources such as, for example, Budget UDE; Budget Audit Trail
UDE(s); and Budget Administrative Request Record(s) (block
2298), |

Block 2296 may then communicate the administrative

‘object to a VDE financial provider, or alternatively, block 2296

may pass administrative object to a separate communications
process or method that arranges for such communications to
occur. If desired, method 2250 may then save a communications
audit trail (blocks 2300, 2302) before terminating (at termination _

point 2304).

Figure 42c is a flowchart of an example of process control
steps performed by the example of BUDGET method 2250
provided by the preferred embodiment operating in an
"administrative response“ mode. Steps shown in Figure 42c
would, for example, be performed by a VDE ﬁnanéial provider
who has received an administrative object containing a Budget
administrative request as created (and communicated to a VDE

administrator for example) by Figure 42b (block 2296).

- 534 -

Petitioner Apple Inc. - Exhibit 1006, p. 1265

WO 98/09209 . PCT/US97/15243

10

15

20

Upon receiving the administrative object, BUDGET
method 2250 at the VDE financial provider site may prime a
budget communications and response audit trail (blocks 2306,
2308), and may then unpack the administrative object and
retrieve the budget request(s), audit trail(s) and record(s) it
contains (block 2310). This information retrieved from the
administrative object may be written by the VDE financial
provider into its secure database (block 2312). The VDE
financial provider méy then ref:rieve the budget request(s) a.f‘ld
determine the response method it needs to execute to process the
request (blocks 2314, 23 16). BUDGET method 2250 may send
the event(s) contained in the request record(s) to the appropriate
response method and may generate response records and
response requests based on the RESPONSE method (block 2318).
The process performed by block 2318 may satisfy the budget
request by writing appropriate new response records into the
VDE financial provider’s secure database (block 2320). BUDGET
method 2250 may then write these Budget administrative
response records into an administrative object (blocks 2322,
2324), which it may then communicate back to the user node
that initiated the budget réquest. BUDGET method 2250 may
then save communications and response processing audit trail
information into appropriéte audit trail UDE(s) (blocks 2326,

2328) before terminating (at termination point 2330).

- 535 -

Petitioner Apple Inc. - Exhibit 1006, p. 1266

10

15

20

WO 98/09209 | PCT/US97/15243

Figure 42d is a flowchart of an example of program control
steps performed by a representative example of BUDGET
nﬁethod 2250 operating in an "administrative reply“ mode. Steps
shown in Figure 42d rm'ghi be performed, for example, by a VDE
user node upon receipt of an administrative object containing
budget-related information. BUDGET method 2250 may first
prime a Budget administrative and communications audit trail
(blocks 2332, 2334). BUDGET method 2250 may thep extract
records and requests from a receij/ed adfninistrative object and
write the reply record to the VDE secure database (blocks 2336,
2338). The VDE user node may then save budget administrative
ahd communications audit trail information in an appropriate

audit trail UDE(s) (blocks 2340, 2341).

Sometime later, the VDE user node may retrieve the reply
record from the secure database and determine what method is
required to process it (blocks 2344, 2346). The VDE user node
may, optionally, prime an audit trail (blocks 2342, 2343) to
record the results of the processing of the reply event. The
BUDGET method 2250 may then send event(s) contained in the
reply record(s) to the REPLY method, and may generate/update
the secure database records as necessary to, for example, insert
new budget records, delete old budget records and/or apply

changes to budget records (blocks 2348, 2350). BUDGET method

- 536 -

Petitioner Apple Inc. - Exhibit 1006, p. 1267

10

15

20

WO 98/09209

PCT/US97/15243

2250 may then delete the reply record from the secure data base
(blocks 2352, 2353) before writing the audit trail (if required)
(blocks 2354m 2355) terminating (at terminate point 2356).
B. REGISTER

Figures 43a-43d are flowcharts of an example of program
control steps performed by a representative example of a
REGISTER method 2400 provided by the preferred embodiment.
In this e#ample, the REGISTER method 2400 performs the
example steps shown in Figure 43a when operating in a "use®
mode, performs the example steps shown in Figure 43b when
operating in an "administrative request“ mode, performs the
steps shown in Figure 43c when operating in an "administrative
response” mode, and performs the steps shown in Figure 43d -

when operating in an "administrative reply“ mode.

The steps shown in Figure 43a may be, for example,
performed at a user VDE node in response to some action by or

on behalf of the user. For example the user may ask to access an

object that has not yet been (or is not now) properly registered to

- her. In response to such a user request, the REGISTER method

2400 may prime a Register Audit Trail UDE (blocks 2402, 2404)
before determining whether the object being requested has

already been registered (decision block 2406). If the object has

- 537 -

Petitioner Apple Inc. - Exhibit 1006, p. 1268

10

15

20

WO 98/09209 PCT/US97/15243

already been registered ("yes* exit to deéision block 2406), the
REGISTER method may terminate (at termination point 2408).
If the object is not already registered ("no“ exit to decision block
2406), then REGISTER mgthod 2400 may access the VDE node
secure database PERC 808 and/or Register MDE (block 2410).
REGISTER method 2400 may extract an appropriate Register
Record Set from this PERC 808 and/or Register MDE (block
2412)‘, and determine whether all of the required elements are
present i:hat are needed to register the object (decision block
2414). If some piece(s) is missing ("no“ exit to decision block
2414), REGISTER method 2400 may queue a Register request
record to a communication manager and then suspend the
REGISTER method until the queued request is satisfied (blocks
2416, 2418). Block 2416 may have the effect of communicating a
register request to a VDE distributor, for example. When the
request is satisfied and the register request record has been
received (block 2420), then the test of decision block 2414 is
satisfied ("yes* exit to decision block 2414), and REGISTER
method 2400 may procéed. At this stage, the REGISTER method
2400 may allow the user to select Register options from the set of
method options éllowed by PERC 808 accessed at block 2410
(block 2422). As one simple example, the PERC 808 may permit
the user to pay by VISA or MasterCard but not by American

Express; block 2422 may display a prompt asking the user to

- 538 -

Petitioner Apple Inc. - Exhibit 1006, p. 1269

10

15

20

WO 98/09209 PCT/US97/15243

select between paying using her VISA card and paying using her
MasterCard (block 2424). The REGISTER method 2400
preferably validates the user selected registration options and
requires the user to select different options if the initial user
options were invalid (block 2426, "no“ exit to decision block
2428). Once the user has made all required registration option
selections and those selections have been validated ("yes“ exit to
decision block 2428), the REGISTER method 2400 may write an
User Registration Table (URT) corresponding to this object and
this user which embodies the user registration selections rﬁade
by the user along with other registration information required by
PERC 808 and/or the Register MDE (blocks 2430, 2432).
REGISTER method 2400 may then write a Register audit record
into the secure database (blocks 2432, 2434) before terminating

(at terminate point 2436).

Figure 43b shows an example of an "administrative
reqﬁest“ mode of REGISTER method 2400. This Administrative
Request Mode may océm on a VDE user system to generate an
appropriate administrative object for communication to a VDE
distributor of other appropriate VDE participant requesting-
registration information. Thus, for example, the steps shown in
Figure 43b may be performed as part of the "queue register

request record” block 2416 shown in Figure 43a. To make a

-939 -

Petitioner Apple Inc. - Exhibit 1006, p. 1270

- WO 98/09209 PCT/US97/15243

10

15

20

Register adminisfrative request, REéISTER method 2400 may
first prime a communications audit trail (blocks 2440, 2442), and
then access the secure database to obtain data about registration
(block 2444). This secure database access may, for example,
allow the owner and/or publisher of the object being registered t6
find out demographic, user or other information about the user.
As a specific example, suppose that the object being registered is
a spreadsheet software program. The distributor of the object |
may want to know what other software the user has registered.
For example, the distributor may be willing to give preferential
pricing if the user registers a ”suite“ of multiple software
products distributed by the sa.rﬁe distributor. Thus, the sort of
information solicited by a "user registration“ card enclosed with
most standard software packages may be solicited and
automatically obtained by the preferred embodiment at
registration time. In order to protect the privacy rights of fhe
user, REGISTER method 2400 may pass such user-specific data
through a privacy filter that may be at least in part customized
by the user so the user can prevent certain information from
being revealed to the outside world (block 2446). The
REGISTER method 2400 may write the resulting information
along with appropriate Register Request information identifying
the objecf and other appropriate parameters into an

administrative object (blocks 2448, 2450). REGISTER method

-540 -

Petitioner Apple Inc. - Exhibit 1006, p.' 1271

10

15

20

WO 98/09209 . PCT/US97/15243

2400 may then pass this administrative objectto a -
communications handier. REGISTER method 2400 may then
save a communications audit trail (blocks 2452, 2454) before

terminating (at terminate point 2456).

Figure 43c includes REGISTER method 2400 steps that
may be performed by a VDE distributor node upon receipt of
Register Administrative object sent by block 2448, Figure 43b.
REGISTER method 2400 in this "administrative response“ mode
may prime appropriate audit trails (blocks 2460, 2462), and then
may unpack the received administrative object and write the
associated register request(s) conﬁguratioﬁ information into the
secure database (blocks 2464, 2466). REGISTER method 2400
may then retrieve the administrative request from the secure
database and determine which response method to run to process
the request (blocks 2468, 2470). If the user fails to provide

sufficient information to register the object, REGISTER method

2400 may fail (blocks 2472, 2474). Otherwise, REGISTER

method 2400 may send event(s) contained in the appropriate
request record(s) to the appropriate response method, and
generate and write response recor&s and respoﬁse requests (e.g.,
PERC(s) and/or UDESs) to the secure database (blocks 2476,
2478). REGISTER method 2400 may then write the appropriate

Register administrative response record into an administrative

- 541 -

Petitioner Apple Inc. - Exhibit 1006, p. 1272

10

15

20

WO 98/09209 . PCT/US97/15243

object (blocks 2480, 2482). Such information may inciude, for
example, one or more replacement PERC(s) 808, methods,
UDEC(s), etc. (block 2482). This enables, for example, a
distributor to distribute limited right permissions giving users
only enough information to register an object, and then later,
upon registrétion, replacing the limited right permissions with
wider permissioning Scope granting the user more complete

- access to the objects. REGISTER method 2400 may then save
the communications and response processing audit trail (blocks

2484, 2486), before terminating (at terminate point 2488).

Figure 43d shows steps that may be performed by the VDE
user node upon receipt of the administrative object
generated/transmitted by Figure 43c block 2480. The steps
shown in Figure 43d are very similar to those shown in Figure

42d for the BUDGET method administrative reply process.

C. AUDIT

Figures 44a-44c are flowcharts of examples of program
control steps performed by a representative example of an
AUDIT method 2520 provided by the preferred embo&iment. As
in the examples above, the AUDIT method 2520 provides three
different operational modes in this preferred embodiment

example: Figure 44a shows the steps performed by the AUDIT

- 542 -

Petitioner Apple Inc. - Exhibit 1006, p. 1273

(9]

10

15

20

WO 98/09209 PCT/US97/15243
method in an "administrative request® mode; Figure 44b shows
steps performed by the method in the "administrative response*
mode; and Figure 44c shows the sfeps performed by the method

in an "administrative reply* mode.

The AUDIT method 2520 operating in the "administrative
request” mode as shown in Figure 44a is typically performed, for
example, at 2a VDE user node based upon some request by or on
behalf of the user. For ez;cample, the user may have requested an
atidit, or a timer may have expired that initiates communication
of audit information tb a VDE content provider or other VDE
participant. In the preferred embodiment, different audits of the
same overall process may be performed by different VDE
participants. A particular "audit” method 2520 invocation may
be initiated for any one (or all) of the involved VDE participants.
Upon invocation of AUDIT method 2520, the method may. prime
an audit administrative audit trail (thus, in the preferred
embodiment, the audit processing may itself be audited) (blocks
2522, 2524). The AUDIT method 2520 may then queue a request-
for administrative processing (blocks 2526, 2528), and then may
save the audit administrative audit trail in the secure database
(blocks 2530, 2532). Sometime later, AUDIT method 2520 may
prime a communications audit trail (blocks 2534, 2536), and may

then write Audit Administrative Request(s) into one or more

- 543 -

Petitioner Apple Inc. - Exhibit 1006, p. 1274

10

15

20

WO 98/09209 - PCT/US97/15243

administrative object(s) based on specific UDE, audit trail
UDE(s), and/or administxjative record(s) stored in the secure
database (blocks 2538, 2540). The AUDIT method 2520 may
then save appropriate information into the communications
audit trai (blocks 2542, 2544) before terminating (at terminate
point 2546).

Figure 44b shows example steps perfofmed by a VDE
content provider, financial provider or other auditing VDE node
upon receipf of the. administrative object generated and
communicated by Figure 44a block 2538. The AUDIT method
2520 in this "administrative response” mode may first prime an
Audit communications and response audit trail (blocks 2550,
2552), and may _then unpack the received administrative object
and retrieve its contained Audip request(s) audit trail(s) and

audit record(s) for storage into the secured database (blocks

2554, 2556). AUDIT method 2520 may then retrieve the audit

request(s) from the secure database and determine.-the response
method to run to process the request (blocks 2558, 2560). AUDIT
method 2520 may at this stage send event(s) contained in the

request record(s) to the appropriate response method, and

generate response record(s) and requests based on this method

(blocks 2562, 2564). The processing block 2562 may involve a

communication to the outside world.

- 544 -

Petitioner Apple Inc. - Exhibit 1006, p. 1275

10

15

20

WO 98/09209 PCT/US97/15243

_ For example, -AUDIT method 2520 at this point could call
an external process to perform, for example, an electronic funds
transfer against the user’s bank account or some other bank
account. The AUDIT administrative response can, if desired, call
an external process that interfaces VDE to one or more existing
computer systems. The external process could be passed the
user’s account number, PIN, dollar amount, or any other
information configured in, or associated with, the VDE audit
trail beixig processed. The external process can communicate
with non-VDE hosts and use the information passed to it as part
of these communications. For example, the external process
could generate automated clearinghouse (ACH) records in a file
for submittal to a bank. This mechanism would provide the

ability to automatically credit or debit a bank account in any

financial institution. The same mechanism could be used to

communicate with the existing credit card (e.g. VISA) network by

submitting VDE based charges against the charge account.

Once the apbropriate Audit response record(s) have been
genérated, AUDIT method 2520 may write an Audit
administrative record(s) into an administrative object for
communication bgck to the VDE user node that generated the
Audit request (blocks 2566, 2568). The AUDIT method 2520 may

then save communications and response processing audit

- 545 -

Petitioner Apple Inc. - Exhibit 1006, p. 1276

10

15

20

WO 98/09209 PCT/US97/15243

informationA in appropriate audit trail(s) (blocks 2570, 2572)

before terminating (at terminate point 2574).

Figure 44c¢ shows an example of steps that may be
performed by the AUDIT method 2520 back at the VDE user
node upon receipt of the administrative object generated and
sént by Figure 44b, block 2566. The steps 2580-2599 shown in
Figure 44c are similar to the.steps shown in Figure 434 for the
REGISTER method 2400 in the "administrative reply“ mode.

Briefly, these steps involve receiving and extracting appropﬁate

- response records from the administrative object (block 2584), and

then processing the received information appropriately to update
secure database records and perform any other necessary actions

(blocks 2595, 2596).

Examples of Event-Driven Content-Based Methods

VDE methods 1000 are designed to provide a very flexible
and highly modular approach to secure processing. A complete
VDE process to service a "use event“ may typically be
constructed as a combination of methods 1000. As cne example,
the typical process for reading content or other information from
an object 300 may involve the following methods:

. an EVENT method

. a METER method

- 546 -

Petitioner Apple Inc. - Exhibit 1006, p. 1277

(9]

10

15

20

WO 98/09209 PCT/US97/15243

. a BILLING method
. a BUDGET method.

'Figure 45 is an example of a sequential seri_es of methods
performed by VDE 100 in response to an event. In this example,
when an event occurs, an EVENT method 402 may "qualify“ the
event to determine whether it is significant or not. Not all |
events are significant. For example, if the EVENT method 1000
in a control process dictates that usage is to be metered based '
upon‘number of pages read, then user request ”events;‘ for .
reading less than a page of information may be ignored. In
a.nbther example. if a system event represents a request to read a
certain number of bytes, and the EVENT method 1000 is part of
a control process designed to.méter paragraphs. then the EVENT
method may evaluate the read request to determine how many
paragraph$ are represented in the bytes requested. This process
may involve mapping to "atomic elements“ to be discussed in

more detail below.

EVENT method 402 filters out events that are not
significant with regard to the specific control method involved.
EVENT method 402 may pass on qualified events to a METER
process 1404, which meters or discards the event based on its

own particular criteria.

- 547 -

Petitioner Apple Inc. - Exhibit 1006, p. 1278

10

15

20

WO 98/09209

~ PCT/US97/15243

In addition, the preferred embodiment provides an
optimization called "precheck.* EVENT method/process 402 may
perform this "precheck® based on metering, billing and budget
information to determine whether processing based on an event
will be allowed. Suppose, for example, that the user has already
exceeded her budget with respect to accessing certain
information content so that no further access is permitted.

Although BUDGET method 408 could make this determination,

.records and processes performed by BUDGET method 404 and/or

BILLING method 406 might have to be "undone“ to, for example,
prevent the user from being charged for an access that was ‘

actually denied. It may be more efﬁcient'to perform a "precheck*
within EVENT method 402 so that fewer transactions have to be

"undone.“

METER method 404 may store an audit record in a meter
"trail“ UDE 1200, for example, and may also record information
related to the event in a meter UDE 1200. For example, METER
method 404 may increment or decrement a "meter* value within
a meter UDE 1200 each time content is accessed. The two
different data structures (meter UDE and meter trail UDE) may
be maintained to permit record keep'mg_for reporﬁng purposes to
be maintained separately from record keeping for internal

operation purposes, for example.

- 548 -

Petitioner Apple Inc. - Exhibit 1006, p. 1279

10

15

20

WO 98/09209

PCT/US97/15243

Once the event is metered by METER method 404,. f:he
metered event may be processed by a BILLING methqd 406.
BILLING method 406 determines how much budget is consumed
by the event, and keeps records that are useful for reconciliation
of meters and budgets. Thus, for example, BILLING method 406
may read budget information from a budget UDE, record billing
information in a billing UDE, and write one or more audit
records in a billing trail UDE. While some billing trail
information may duplicaté meter and/or budget trail
mfonnafion; the billing trail im"ormai:ion 1S useﬁll, for example,
to allow a content creator 102 to expect a payment of a certain
size, and serve as a reconciliation check to reconcile meter trail
information sent to creator 102 with budget trail information

sent to, for example, an independent budget provider.

BILLING method 406 may then pass the event on to a
BUDGET method 408. BUDGET method 408 sets limits and
records transactional informatioﬁ associated with those limits.
For example, BUDGET method 408 may store budget

information in a budget UDE, and may store an audit record in a

- budget trail UDE. BUDGET method 408 may result in a "budget

remaining* field in a budget UDE being decremented by an

amount specified by BILLING method 406.

- 949 -

Petitioner Apple Inc. - Exhibit 1006, p. 1280

WO 98/09209 PCT/US97/15243

The information content may be rejeased, or other action
taken, once the various methods 402, 404, 406, 408 have

processed the event.

5 | As meﬁtioned above, PERCs 808 in the preferred

embodiment may be provided with "control methods“ that in
effect ”_oversee“ performance of the other required methods in a
control process. Figure 46 shows how the required
methods/processes 402, 404, 406, and 408 of Figure 45 can be |

10 organized and controlled by a control method 410. Control
method 410 may call, dispatgh events, or otherwise invoke the
other methods 402, 404, 406, 408 and otherwise supervise the

processing performed in response to an "event.“

15 Control methods operate at the level of control sets 906
within PERCs 808. They provide structure, logic, and flow of
control between disparate écquired methods 1000. This
mechanism permits the content provider to create any desu'ed
chain of processmg, and also allows the spec1ﬁc chain of

20 processing to be modlﬁed (within permitted limits) by
downstream redistributors. This control structure concept

provides great flexibility.

- 550 -

Petitioner Apple Inc. - Exhibit 1006, p. 1281

oV

10

15

20

WO 98/09209 ' PCT/US97/15243

Figure 47 shows an example of an "aggregate” method 412
which collects METER method 404, BUDGET method 406 and
BILLING method 408 into an "aggregate* processing flow.
Aggregate method 412 may, for example, combine various
elements of metering, budgeting and bi.lling7 into a single method
1000. Aggregate method 412 may provide increased efficiency as
a result of processing METER method 404, BUDGET method 406
and BILLING method 408 aggregately, but may decrease)

flexibility because of decreased modularity.

Many different methods can be in effect simultaneously.
Figure 48 shows an example of preferred embodiment event
processing using multiple METER methods 404 and multiple

BUDGET methods 1408. Some events may be subject to many

different required methods operating independently or

cuxx;ulatively. For example, in the example shown in Figure 48,
meter method 404a may maintain meter trail and meter
information records that are independent from the meter trail
and meter information records maintained by METEvR.method
404b. Sixm'larly, BUDGET method 408a may maintain records_
independently of those records maintained>by BUDGET method
408b. Some events may bypass BILLIN G method 408 while

nevertheless being processed by meter method 404a and

Petitioner Apple Inc. - Exhibit 1006, p. 1282

WO 98/09209 PCT/US97/15243

BUDGET method 408a. A variety of different variations are

possible.

"REPRESENTATIVE EXAMPLES OF VDE METHODS
5 Although methods 1000 can have virtually unlimited
variety and some may even be user-defined, certain basic "use*
type ﬁxethods are preferably used in the preférred embodiment to
control most of the more fundamental object manipui_ation and
- other fuﬁctions provided by VDE 100. For example, the
10 following high level methods would typically be provided for
object manipulation:
. OPEN method
. READ method
. WRITE method
15 . CLOSE method.

An OPEN method is used to control opening a container so
its contents may be accessed. A READ method is used to control
the access to contents in a container. A WRITE method is ﬁsed

20 ~ to control the insertion of contents into a container. A CLOSE

method is used to close a container that has been opened.

- 552 -

Petitioner Apple Inc. - Exhibit 1006, p. 1283

10

15

20

WO 98/09209

PCT/US97/15243

Subsidiary methods are provided to perform some of the

steps required by the OPEN, READ, WRITE and/or CLOSE

methods. Such subsidiary methods may include the following:

- ACCESS method

PANIC method

ERROR method
DECRYPT method
ENCRYPT method
DESTROY content method

" INFORMATION method

OBSCURE method
FINGERPRINT method
EVENT method.
CONTENT method
EXTRACT method
EMBED method
METER method
BUDGET method
REGISTER method
BILLING method
AUDIT method

An ACCESS method may be used to physically access

content associated with an opened container (the content can be

- 553 -

Petitioner Apple Inc. - Exhibit 1006, p. 1284

(]}

10

15

20

WO 98/09209 PCT/US97/15243

'z‘mywhere). A PANIC method may be used to disable at least a

portion of the VDE node if a security violation is detected. An
ERROR method may be used to handle error conditions. A
DECRYPT method is used to decrypt encrypted in'formation; An
ENCRYPT method is used to encrypt informuation. A DESTROY
content method is used to destroy the ability to access specific
content within a container. An INFORMATION method is used
to provide pubhc information about the contents of a container.
An OBSCURE method is used to devalue content read from an
opened container (e.g., to write the word "SAMPLE* over a
displaygd image). A FINGERPRINT method is used to mark
content to show who has released it from the secure container.
An event method is used to convert events into different events

for response by other methods.

Open
Figure 49 is a flowchart of an example of preferred
embodiment process control steps for an example of an OPEN

method 1500. Different OPEN methods provide different

- detailed steps. However, the OPEN method shown in Figure 49

is a representative example of a relatively full-featured “open*
method provided by the preferred embodiment. Figure 49 shows

a macroscopic view of the OPEN method. Figures 49a-49f are

- 554 -

Petitioner Apple Inc. - Exhibit 10086, p. 1285

n

10

15

20

WO 98/09209 PCT/USY97/15243

together an example of detailed progré.m controlled steps -

‘performed to implement the method shown in Figure 49.

The OPEN method process starts with an "open event.“
This open event may be generated by a user application, an
operating system intercept or various other mechanisms for
capturing or intercepting control. For example, a user
application may issue a request for access tb a particular content
stored within the VDE container. As another example, another

method may issue a command.

In the example shown, the open event is processed by a
control method 1502. Control method 1502 may call other
methods to process the event. For example, control method 1502
may call an EVENT method 1504, a METER method 1506, a
BILLING method 1508, and a BUDGET method 1510. Not all
OPEN control methods necessarily call of these additional

methods, but the OPEN method 1500 shown in Figure 49 is a

representative example.

Control method 1502 passes a description of the open
event to EVENT method 1504. EVENT method 1504 may
determine, for example, whether the open event is permitted and

whether the open event is significant in the sense that it needs to

-555-

Petitioner Apple Inc. - Exhibit 1006, p. 1286

10

15

20

WO 98/09209 ' PCT/US97/15243

be processed by METER method 1506, BILLING method 1508,
and/or BUDGET method 1510. EVENT method 1504 may
maintain audit trail information within an audit trail UDE, and

may determine permissions and significance of the event by

- using an Event Method Data Element (MDE). EVENT method

1504 may also map the open event into an "atomic element® and
count that may be processed by METER method 1506, BILLING
method 1508, and/or BUDGET method 1510.

In OPEN method 1500, once EVENT method 1504 has
been called and retumns successfully, control method 1502 then
may call METER method 1506 and pass the METER method, the
atomic element and count returned by EVENT method 1504.
METER method 1506 may maintain audit trail information in a
METER method Audit Trail UDE, and may also maintain meter
information in a METER method UDE. In the preferred

embodiment, METER method 1506 returns a meter value to

control mefhod 1502 assuming successful completion.

In the prefen'ed embodiment, control method 1502 upon
receiving an indication that METER method 1506 has completed
successfully, then calls BILLING method 1508. Control method
1502 may pass to BILLING method 1508 the meter value
provided by METER method 1506. BILLING m