
Petitioner Apple Inc. - Exhibit 1006, p. 1001

wo 98/09209 _ ' PCFIUS97/15243

non-VDE aware application such as 608b could access only the ‘

part of API 682 that provides an interface to other OS functions

f 606, and therefore could not ‘access any VDE functions.

This ”translation“ feature of redirector 684 providesUl

”transparency.“ It allows VDE functions tobe provided to the

application 608(b) in a "transparent‘‘ way without requiring the

‘application to become involved in the complexity and details

associated with generating the one or more calls to VDE

10 . functions 604. This aspect of the ”transparenc_v“ features of ROS

602 has at least two important advantages:

(a) it allows applications not Written specifically for VDE

functions 604 ("non-VDE aware applications“) to

nevertheless access critical VDE functions; and

15 (b) it reduces the complexity of the interface between an

application and ROS 602.

Since the second advantage (reducing complexity) makes it-———3._

easier for an application creator to produce applications, even

"VDE aware“ applications 608a(2) may be designed solthat some

20 calls invoking VDE functions 604 are requested at the level of an

"other OS‘ functions“ call and then "translated" by redirector 684

into a VDE function. call (in this sense, redirector 684 may be

considered a part of API 682). Figure 11C shows an example of

-270-

Petitioner Apple Inc. —v Exhibit 1006, p. 1001

Petitioner Apple Inc. - Exhibit 1006, p. 1002

WO 98/09209 PCT/US9'H15243

this. ‘Other calls invoking VDE functions 604 may be passed

directly without translation by redirector 684.

Referring again to Figure 10, ROS 620 may also include an

“interceptor” 692 that transmits and/or receives one or more realon

time data feeds 694 (this may be provided over cable(s) 628 for

example), and routes one or more such data feeds appropriately

while providing "translation“ functions for real time data sent

and/or received by electronic appliance 600 to allow _

10 ”transparency“ for this type of information analogous to the

transparency provided by redirector 684 (and/or it may generate

one or more real time data feeds).

Secure ROS Components and Component Assemblies

15 ‘As discussed above, ROS 602 in the preferred embodiment

is a component-based architecture. ROS VDE functions 604 may

be based on segmented. independently loadable executable

"component assemblies“ 690; These component assemblies 690

are independently securely deliverable. The component

20 assemblies 690 provided by the preferred embodiment comprise

code and data elements that are themselves independently

deliverable. Thus, each component assembly 690 provided by the

' preferred embodiment is comprised of independently securely

deliverable elements which may be communicated using VDE

-271-

Petitioner Apple Inc. — Exhibit 1006, p. 1002

Petitioner Apple Inc. - Exhibit 1006, p. 1003

wo 93,092.39 0 PCIIUS97/15243

secure communication techniques. between VDE secure

subsystems.

These component assemblies 600 are the basic functional

5 unit provided by ROS 602. The component assemblies 690 are

executed to perform operating system or application tasks. Thus,

some component assemblies 690 may be considered be pa.rt of

the ROS operating system 602, while other component

assemblies may be considered to be "applications“ that run under

p 10 the support of the operating system. As with any system

incorporating "applications“ and "operating systems,“ the

boundary between these aspects of an overall system can be

ambiguous- For example. commonly used "application“ functions

(such as determining the structure and/or other attributes of a

15 content container) may be incorporated into an operating system.

Furthermore, ”operating system“ functions (such as task

management, or memory allocation) may be modified and/or

replaced by an application. A common thread in the preferred

embod.iment’s ROS 602 is that component assemblies 690

20 provide functions needed for a user to fulfill her intended

activities, some of which may be "application-like“ and some of

which may be "operating system-like.“

-272-

Petitioner Apple Inc. — Exhibit 1006, p. 1003

Petitioner Apple Inc. - Exhibit 1006, p. 1004

WO 98/09209 PCT/US97Il5243

Components 690 are preferably designed to be easily

separable and individually loadable. ROS 602 assembles these

elements together into an executable component assembly 690

prior to loading and executing the component assembly (e.g., in a

0| secure operating environment such as SPE 503 and/or HPE 655).

ROS 602 provides an element identification and referencing

(mechanism that includes information necessary to automatically

assemble elements into a component assembly 690 in a secure

manner prior to. and/or during, execution.

10

ROS 602 application structures and control parameters

used to form component assemblies 690 can be provided by

different parties. Because the components forming component

assemblies 690 are independently securely deliverable. they may

15 be delivered at different times and/or by different parties

(“delivery" may take place within a local VDE secure subsystem,

that is submission through the use of such a secure subsystem of

control information by a chain of content control information

handling participant for the preparation of a modified control

20 information set constitutes independent, secure delivery). For

example, a content creator can produce a ‘R05 600 application

that defines the circumstances required for licensing content

contained within a VDE object 300. This application may

reference structures provided by other parties. Such references

-273-

Petitioner Apple Inc. — Exhibit 1006, p. 1004

Petitioner Apple Inc. - Exhibit 1006, p. 1005

WO 98/092053 , ‘ PCT/US97/15243

might, for example. take the form of a control path that uses

content creator structures to meter user activities; and

structures created/owned by a financial provider‘ to handle

financial parts of a content distribution transaction (e.g.,

OI defining a credit budget that must be present in a control

structure to establish creditworthiness, audit processes which

must be performed by the licensee, etc.). As another example, a

distributor may give one usernmore favorable pricing than

another user by delivering different data elements defining

10 pricing to different users. This attribute ofsupporting multiple

party securely. independently deliverable control in.forrnation is

fundamental to enabling electronic commerce. that is. defining of

a content andjor appliance control information set that

represents the requirements ofa collection ofindependent

15 parties such as content creators. other content providers,

financial service providers, and/or users.

In the preferred embodiment. ROS 602 assembles securely

independently deliverable elements into a component assembly

20 690 based in part on context parameters (e.g., object, user).

Thus", for example, ROS 602 may securely assemble different

elements together to form different component assemblies 690

for different users performing the same task on the same VDE

object 300. Similarly, ROS 602 may assemble differing element

-274-

Petitioner Apple Inc. — Exhibit 1.006, p. 1005

Petitioner Apple Inc. - Exhibit 1006, p. 1006

W0 98109209 ' A rcrrussv/15243

sets which may include, that is reuse, one or more of the same

components to form different component assemblies 690 for the

same user performing the same task on different VDE objects

300.

The component assembly organization provided by ROS

602 is ”recursive“ in that a component assembly 690 may

comprise one or more component ”subassemblies“ that are

themselves independently loadable and executable component
10 assemblies 690. These component ”subassemblies“ may, in turn,

be made of one or more component ”sub-sub-assemblies.“ In the

general case. a component assembly 690 may include N levels of

component subassemblies. I

15 Thus, for example. a component assembly 690(k) that may

includes a component subassembly 690(k + 1). Component

subassembly 6900: + 1), in turn, may include a component sub- _

sub-assembly 690(3), and so on to N-level subassembly 690(k +

N). The ability of ROS 602 to build component assemblies 690

20 out of other component assemblies provides great advantages in

terms of, for example, code/data reusability, and the ability to

~ allow different parties to manage different parts of an overall

component.

-275-

Petitioner Apple Inc. — Exhibit. 1006, p. 1006

Petitioner Apple Inc. - Exhibit 1006, p. 1007

W0 9s,09209 PCT/US97/1 5243

Each component assembly 690 in the preferred

embodiment is made of distinct components. Figures 11D-11H

are abstract depictions of various distinct components that may

be assembled to form a component assembly 690(k) showing
OI

Figure 111. These same components can be combined in

different ways (e.g., with more or less components) to form

diflerent component assemblies 690 providing completely

different functional behavior. Figure 1’1J is abstract depiction

of the same components being put together in a different way

10 (e.g., with additional components) to form a different component

assembly 6900'). The component assemblies 690(k) and 6900)

each include a common feature 691 that interlocks with a

“channel” 594 defined by ROS 602. This "channel" 594

assembles component assemblies 690 and interfaces them with

15 the (rest 00 ROS 602.

ROS 602 generates component assemblies 690 in a secure

manner. As shown graphically in Figures 111 and 11J, the

different elements comprising a component-assembly 690 may be

20 I ”interlocking“ in the sense that they can only go together in ways
that are intended by the VDE participants who created the

elements and/or specified the component assemblies. ROS 602

includes security protections that can prevent an unauthorized

person from modifying elements, and also prevent an

-2'l6-

Petitioner Apple Inc. — Exhibit 1006, p. 1007

Petitioner Apple Inc. - Exhibit 1006, p. 1008

wo 93/09109 PC!‘/US97/15243

unauthorized person from substituting elements. One can

picture an unauthorized person making a new element having

the same ”shape"‘ as the one of the elements shown in Figures

11D-11H, and then attempting to substitute the new element in

_ 5 place of the original element. Suppose one of the elements

shown in Figure 11H establishes the price for using content

within a VDE object 300. If an unauthorized person could

substitute her own "price“ element for the price element intended

by the VDE content distributor, then the person could establish a

10 price of zero instead of the price the content ‘distributor intended

to charge. Similarly, if the element establishes an electronic

credit card, then an ability to substitute a different element

could have disastrous consequences in terms of allowing a person

to charge her usage to someone else's (or a non-existent; credit

15 card. These are merely a few simple examples demonstrating

the importance of ROS 602 ensuring that certain component

assemblies 690 are formed in a secure manner. ROS 602

provides a wide range of protections against a wide range of

”threats“ to the secure handling and execution of component

20 assemblies 690.

In the preferred embodiment, ROS 602 assembles

component assemblies 690 based on the following types of

elements:

-277-

Petitioner Apple Inc. — Exhibit 1006, 1008

Petitioner Apple Inc. - Exhibit 1006, p. 1009

WO 98109209 PCT/US97l15243

Permissions Records ("PERC“s) 808;

Method ”Cores“ 1000;

Load Modules 1100;

Data Elements (e.g.. User Data Elements (”UDEs“) 1200

(II
and Method Data Elements (”MDEs“) 1202); and

Other component assemblies 690.

Briefly, a PERC 808 provided by the preferred

embodiment is a record corresponding to a object 300 that ,

10 identifies to ROS 602. among other things, the elements ROS is

to assemble together to form a component assembly 690. Thus

PERC 808 in effect contains a “list of assembly instructions“ or a

”plan“ specifying what elements ROS 602 is to assemble together

into a component assembly and how the elements are to be

15 connected together. PERC 808 may itself contain data or other

elements that are to become part of the component assembly 690.

The PERC 808 may reference one or more method ”cores“

1000’. A method core 1000’ may define a basic ”method“ 1000

20 (e.g., "control," ”billing,“ ”metering,“ etc.)

In the preferred embodiment, a ”method“ 1-000 is a

collection of basic instructions, and information related to basic '

instructions, that provides context, data, requirements, and/or

- 278_ -

Petitioner Apple Inc. — Exhibit 1006, p. 1009

Petitioner Apple Inc. - Exhibit 1006, p. 1010

wo 93/09209 PCT/US97Il5243

relationships for use in performing, and/or preparing to perform, ‘ '

basic instructions in relation to the operation of one or more

electronic appliances 600. Basic instructions may be comprised

of, for example:

5

- machine code of the type commonly usedlin the

programming of computers; pseudo-code for use by ,

an interpreter or other instruction processing

program operating on a computer;

10 - a sequence of electronically represented logical

operations for use with an electronic appliance 600;

- or other electronic representations of instructions,

source code. object code. and/or pseudo code as those

terms are commonly understood in the arts.

15

Information relating to said basic instructions may

comprise, for example, data associated intrinsically with basic

instructions such as for example, an identifier for the combined

basic instructions and intrinsic data, addresses, constants,

20 and/or the like. The information may also, for example, include

one or more of the following:

-279-

Petitioner Apple Inc. — Exhibit 1006, p. 1010

Petitioner Apple Inc. - Exhibit 1006, p. 1011

WO 98/09209 PCT/US97Il5243

- information that identifies associated basic

instructions and said intrinsic data for access,

correlation and/or validation purposes;

- required and/or optional parameters for use with

U1 basic instructions and said intrinsic data;

- information defining relationships to other methods;

- T data elements that may comprise data values, fields

of information, and/or the like;

- information specifying and/or defining relationships

10 among data elements, basic instructions and/or

intrinsic data:

- information specifying relationships to external data

elements:

- information specifying relationships between and

15 among internal and external data elements,

methods, and/or the like. if any exist; and

- additional information required in the operation of

basic instructions and intrinsic data to complete, or

20 attempt to complete, a purpose intended by a user of

a method, where required, including additional

instructions and/or intrinsic data.

-280-

Petitioner Apple Inc. — Exhibit 1006, p. 1011

Petitioner Apple Inc. - Exhibit 1006, p. 1012

wo 98/09209 PCUUS97/1524.3

Such information associated with a method may be stored,

in part or whole, separately from basic instructions andintrinsic

data. When these components are stored separately, a method

may nevertheless include and encompass the other information-_

and one or more sets of basic instructions and intrinsic data (theDI

latter being included because of said other information’s

reference to one or more sets of basic instructions and intrinsic

data), whether or not said one or more sets of basic instructions

and intrinsic data are accessible at any given point in time.

10

Method core 1000’ may be parameterized by an "event

code“ to permit it to respond to different events in different ways.

For example. a METER method may respond to a "use“ event by

storing usage information in a meter data structure. I The same

15 METER method may respond to an “administrative” event by

reporting the meter data structure to a VDE clearinghouse or

other VDE participant.

In the preferred embodiment, method core 1000’ may

20 "contain," either explicitly or by reference, one or more "load

modules“ 1100 and one or more data elements (UDEs 1200,

MDEs 1202). in the preferred embodiment, a "load module“ 1100

is a portion of a method that reflects basic instructions and

intrinsic data. Load modules 1100 in the preferred embodiment

-281-

Petitioner Apple Inc. — Exhibit 1006, p. 1012

Petitioner Apple Inc. - Exhibit 1006, p. 1013

WO 98109209 PC'l'lUS97l15243

contain executable code, and may also containdata elements

(”DTDs“ 1108) associated with the executable code. In the

preferred embodiment. load modules 1100 supply the program

instructions that are actually ”executed“ by hardware to perform

5 the process defined by the method. Load modules 1100 may

contain or reference other load modules.

Load modules 1100 in the preferred embodiment are

modular and "code pure“ so thatindividual load modules may be

10 reenterable and reusable. In order for components 690 to be

dynamically updatable. they may be individually addressable

within a global public name space. In view ofthese design goals,

load modules 1100 are preferably small. code land code—like)

pure modules that are individually named and addressable. A

15 single method may provide different load modules 1100 that

perform the same or similar functions on different platforms,

thereby making the method scalable and/or portable across a

wide range of different electronic appliances.

20 UDEs 1200 and MDEs 1202 may store data for input to or

output from executable component assembly 690 (or data

describing such inputs and/or outputs). In the preferred

embodiment, UDEs 1200 may be user dependent, whereas MDEs
1202 may be user independent.

-282-

Petitioner Apple Inc. — Exhibit 1006, p. 1013

Petitioner Apple Inc. - Exhibit 1006, p. 1014

WO 98109209 PCT/US97/15243

The component assembly example 690(k) shown in Figure

11E comprises a method core 1000’, UDEs 1200a & 1200b, an

MDE 1202, load modules 1100a-1100d, and a further component

assembly 690(k+1). As mentioned above, a PERC 808(k) defines,

5 among other things, the "assembly instructions“ for component

assembly 690(k), and may contain or reference parts of some or

all of the components that are to be assembled to create a

component assembly.

10 One of the load modules 1100b shown in this example is

itself comprised of plural load modules 1100c, 1100d. Some of

the load modules 4e.g., 1100a, 1l00d‘J in this example include one i

/or more ”DTD“ data elements 1108 (e.g., 1108a, 1108b). ”DTD“

data elements 1108 may be used, for example, to inform load

15 . module 1100a of the data elements included in MDE 1202 and/or

UDEs 1200a, 1200b. Furthermore, DTDs 1108 may be used as

an aspect of forming a portion of an application used to inform a

user as to the information required and/or manipulated by one or

more load modules 1100, or other component elements. Such an

20 application program may also include functions for creating

and/or manipulating UDE(s) 1200, MDE(s) 1202, or other

component elements, subassemblies, etc.

-2233.

Petitioner Apple Inc. — Exhibit 1006, p. 1014

Petitioner Apple Inc. - Exhibit 1006, p. 1015

WO 98109209 PCTIUS97/1 5243

Components within component assemblies 690’ may be

’’reused‘‘ to form difierent component assemblies. As mentioned

above. figure 11F is an abstract depiction of one example of the

same components used for assembling component assembly

OI
690(k) to be reused (e.g., with some additional components

specified by a different set of "assembly instructions“ provided in

a diflerent PERC 808(1)) to form a diflerent component assembly

690(1). Even though component assembly 690(1) is formed from

some of the same components used to form component assembly
10 690(l£), these two component assemblies may perform completely

different processes in complete different ways.

As mentioned above, ROS 602 provides several layers of

security to ensure the security of component assemblies 690.

15 One important security layer involves ensuring that certain

component assemblies 690 are formed, loaded and executed only

in secure execution space such as provided within an SPU 500.

Components 690 and/or elements comprising them may be stored

on external media encrypted using local SPU 500 generated

20 and/or distributor provided keys.

ROS 602 also provides a tagging and sequencing scheme

that may be used within the loadable component assemblies 690

to detect tampering by substitution. Each element comprising a

-284-

Petitioner Apple Inc. — Exhibit 1006, p. 1015

Petitioner Apple Inc. - Exhibit 1006, p. 1016

WO 98/09209 PCT/US97/15243

"component assembly 690 may be loaded into an SPU 500,

decrypted using encrypt/decrypt engine 522, and then

tested/compared to ensure that the proper element has been

loaded. Several independent comparisons may be used to ensure

there has been no unauthorized substitution. For example, the01

public and private copies of the element ID may be compared to

ensure that they are the same, thereby preventing gross

substitution of elements. In addition. a validation/correlation

tag stored under the encrypted layer of the loadable element may

10 be compared to make sure it matches one or more tags provided

by a requesting process. This prevents unauthorized use of

information. As a third protection, a device assigned tag (e.g., a

sequence number stored under an encryption layer of a loadable

element may be checked to make sure it matches a corresponding

15 tag value expected by SPU 500. This prevents substitution of

older elements. Validation/correlation tags are typically passed

only in secure wrappers to prevent plaintext exposure of this

information outside of SPU 500.

20 . The secure component based architecture of ROS 602 has

important advantages. For example, it accommodates limited

resource execution environments such as provided by a lower

cost SPU 500. It also provides an extremely high level of

configurability. In fact, ROS 602 will accommodate an almost

-285-

Petitioner Apple Inc. — Exhibit 1006, p. 1016

Petitioner Apple Inc. - Exhibit 1006, p. 1017

WO 98/09209 PCTIUS97115243

unlimited diversity of content types, content provider objectives,

transaction types and client requirements. In addition, the

ability to dynamically assemble independently deliverable

components at execution time based on particular objects and

5 users provides a high degree of flexibility, and facilitates or

enables a distributed database, processing, and execution

environment. I

One. aspect of an advantage of the component-based

10 architecture provided by R08 602 relates to the ability to ”stage“

functionality and capabilities over time. As designed,

implementation of ROS 602 is a finite task. Aspects of its wealth

of functionality can remain unexploited until market realities

dictate the implementation of corresponding application

15 functionality. As a result. initial product implementation

investment and complexity may be limited. The process of

”surfacing“ the fullrange of capabilities providediby ROS 602 in

terms of authoring," administrative, and artificial intelligence

applications may take place over time. Moreover, already- .

20‘ designed functionality of ROS 602 may be changed or enhanced

at any time to adapt to changing needs or requirements.

-286-

Petitioner Apple Inc. — Exhibit 1006, p. 1017

Petitioner Apple Inc. - Exhibit 1006, p. 1018

, WO 98/09209 PCT/US97ll5243

More Detailed Discussion of Rights ‘Operating System 602
Architecture ’

Figure 12 shows an example of a detailed architecture of

5 ROS 602 shown in Figure 10. ROS 602 may include a file system

687 that includes a commercial database manager 730 and

external object repositories 728. Commercial database manager

730 may maintain secure database 610. Object repository 728

may store, provide access to, and/or maintain VDE objects 300.

10

Figure 12 also shows that ROS 602 may provide one or

more SPES 503 and/or one or more HPES 655. As discussed

above, HPE 655 may "emulate“ an SPU 500 device, and such

HPES 655 may be integrated in lieu of(or in addition to) physical

15 Sl’Us 500 for systems that need higher throughput. Some

security may be lost since HPEs 655 are typically protected by

operating system security and may not provide truly secure

processing. Thus, in the preferred embodiment, for high security

applications at least, all secure processing should take place

20 within an SPE 503 having an execution space within a physical

SPU 500 rather than a HPE 655 using software operating

elsewhere in electronic appliance 600.

As mentioned above, three basic components of R05 602

25 are a kernel 680, a Remote Procedure Call (RPC) manager 732

-287-

Petitioner Apple Inc. — Exhibit 1006, p. 1018

Petitioner Apple Inc. - Exhibit 1006, p. 1019

wo 93/09209 PCTIUS97/15243

and an object switch 734." These components, _and the way they

interact with other portions of ROS 602, will be discussed below.

' Kernel 680

(II Kernel 680 manages the basic hardware resources of

electronic appliance 600, and controls the basic tasking provided

by ROS 602. Kernel 680 in the preferred embodiment may

include a memory manager 680a, a task manager 680b, and an

I/O manager 680C. Task manager 680b may initiate and/or

10 manage initiation-of executable tasks and schedule them to be

executed by a processor on which ROS 602 runs (e.g., CPU 654

shown in Figure 8). For example. Task manager 680b may

include or be associated with a ”bootstrap loader“ that loads

other parts of ROS 602. Task manager 680b may manage all

15 tasking related to ROS 602, including tasks associated with

application prog'ram(s) 608. Memory manager 680a may manage

allocation, deallocation, sharing and/or use of memory (e.g., RAM

656 shown in Figure 8) of electronic appliance 600, and may for

example provide virtual memory capabilities as required by an

20 electronic appliance and/or associated application(s). I/O

manager 680c may manage all input to and output from ROS

602, and may interact with drivers and other hardware

managers that provide communications and interactivity with

physical devices-.

-288-

Petitioner Apple Inc. — Exhibit 1006, p. 1019

Petitioner Apple Inc. - Exhibit 1006, p. 1020

WO 98109209 PCI‘IUS9‘lI15243

RPC Manager 702

ROS 602 in a preferred embodiment is designed around a

"services based“ Remote Procedure‘ Call architecture/interface.

All functions performed by ROS 602 may use this common

5 interface to request services and share information. For

example, SPE(s) 503 provide processing for one or more RPC

based services. In addition to supporting SPUs 500, the RPC

interface permits the dynamic integration of external services

and provides an array of configuration options using existing

10 operating system components. ROS 602 also communicates with

external services through the RPC interface to seamlessly

provide distributed and/or remote processing. In smaller scale

instances of ROS 602. a simpler message passing IPC protocol

may be used to conserve resources. This may limit the

15 configurability of ROS 602 services. but this possible limitation

may be acceptable in some electronic appliances.

The RPC structure allows services to be called/requested

without the calling process having to know or specify where the

20 service is physically provided, what system or device will service

the request, or how the service request will be fulfilled. This

feature supports families of services that may be scaled and/or

customized for specific applications. Service requests can be

forwarded and serviced by different processors and/or different

-289-

Petitioner Apple Inc. — Exhibit 1006, p. 1020

Petitioner Apple Inc. - Exhibit 1006, p. 1021

WO 98109209 . PCT/US97l15243

sites as easily as they can be forwarded and serviced by a local

service system. Since the same RPC interface is used by ROS

602 in the preferred embodiment to request services within and

outside of the operating system. a request for distributed and/or

OI
remote processing incurs substantially no additional operating

, system overhead. Remote processing is easily and simply

integrated as part of the same service calls used by ROS 602 for

requesting local-based services. In addition, the use ofa

A standard RPC interface t”RSI“) allows R08 602 to be

10 modularized. with the different modules presenting a

standardized interface to the remainder of the operating system.

Such modularization and standardized interfacing permits

diflerent vendorsxoperating system programmers to create

different portions of the operating system independently, and

15 also allows the functionality of ROS 602 to be flexibly updated

and/or changed based on different requirements and/or

platforms.

RPC manager 732 manages the RPC interface. It receives

20 service requests in the form of one or more "Remote Procedure

Calls“ (RPCS) from a service requestor, and routes the service

requests to a service provider(s) that can service the request. For

example, when rights operating system 602 receives a request

from a user application via user API 682, RPC manager 732 may

-290-

Petitioner Apple Inc. — Exhibit 1006, p. 1021

Petitioner Apple Inc. - Exhibit 1006, p. 1022

W0 93/0920!’ ' PC'l‘IUS97Il5243

route the service request to an appropriate service through the

"RPC service interface“ (“RSI”). The RSI is an interface between

RPC manager 732, service requestors, and a resource that will

accept and service requests.

The interface (RSI) is used for several major ROS 602

subsystems in the preferred embodiment.

RPC services provided by R08 602 in the preferred 7

10 embodiment are divided into subservices, i.e.. individual

instances of a specific service each of which may be tracked

individually by the RPC manager 732. This mechanism permits

multiple instances of a specific service on higher throughput

systems while maintaining a common interface across a

15 spectrum of implementations. The subservice concept extends to

supporting multiple processors, multiple SPES 503, multiple

I-IPES 655, and multiple communications services.

The preferred embodiment ROS 602 provides the following

20 RPC based service providers/requestors (each of which have an

RPC interface or "RSI“ that communicates with RPC manager

732%

SPE device driver 736 (this SPE device driver is connected

to an SPE 503 the preferred embodiment);

-291-

Petitioner Apple Inc. — Exhibit 1006, p. 1022

Petitioner Apple Inc. - Exhibit 1006, p. 1023

WO 98/09209 ‘ PCTIUS97I15243

HPE Device Driver 738 (this HPE device driver is

connected to an HPE 738 in the preferred

embodiment):

Notification Service 740 (this notification service is

5 connected to user notification interface 686 in the

preferred embodiment);

API Service 742 (this API service is connected to user API_

682 in the preferred embodiment;

Redirector 684;

10 » Secure Database (File) Manager 744 (this secure database

or file manager 744 may connect to and interact

with commercial database manager 730 and secure

files 610 through a cache manager 746, a database

interface 748, and a database driver 750);

15 Name Services Manager 752;

Outgoing Administrative Objects Manager 754;

Incoming Adrninistrative Objects Manager 756;

a Gateway 734 to object switch 734 (this is a path used to

allow direct communication between RPC manager

20 732 and Object Switch 734); and

Communications Manager 776.

The types of services provided by HPE 655‘, SPE 503, User

Notification 686, API 742 and Redirector 684 have already been

-292-

Petitioner Apple Inc. — Exhibit 1006, p. 1023

Petitioner Apple Inc. - Exhibit 1006, p. 1024

WO 98109209 PCTIUS97Il5243

described above. Here is a brief description of the typels) of 4

services provided by OS resources 744, 752, 754, 756 and 776:

5£mm services requests for access

to secure database 610;

5 flservices requests relating to

user, host, or service identification; _

Qm.gging Admin’ i§1;1:a1;1've Qbjegts Manage: Z551 services

requests relating to outgoing administrative objects;

Inggmjngu Aglmjgjstggtjve Qbjegts Manage]; .Z5§ services

10 I requests relating to incoming administrative objects;

and

Qgmmuniggtigns Manager 776 services requests relating

to communications between electronic appliance 600

and the outside world.

15

"Object Switch 734

Object switch 734 handles. controls and communicates

iboth locally and remotely) VDE objects 300. In the_preferred

embodiment, the object switch may include the following
20 elements:

a stream router 758;

a real time stream interface(s) 760 (which may be

connected to real time data feed(s) 694);

a time dependent stream interface(s) 762;

-293-

Petitioner Apple Inc. — Exhibit 1006, p. 1024

Petitioner Apple Inc. - Exhibit 1006, p. 1025

W0 93/09209 PCT/US9'I/15243

a intercept 692;

. a container manager 764;

one or more routing tables 766; and

buffering/storage 768.

5 Stream router 758 routes to/from "real time“ and ”time

independent“ data streams handled respectively by real time

stream interfacels) 760 and time dependent stream inter-face(s)

762. Intercept‘692 intercepts I/O requests that involve real-time

information streams such as, for example, real time feed 694.

10 The routing performed by stream router 758 may be determined

by routing tables 766. Buffering/storage 768 provides temporary

store-and-forward, buffering and related services. Container

manager 764 may It_vpica.lly in conjunction with SPE 503)

perform processes on VDE objects 300 such as constructing,

15 deconstructing, and locating portions of objects.

Object switch 734 communicates through an Object Switch

Interface (”OSI“) with other parts of ROS 602. The Object

Switch Interface may resemble, for example. the interface for a

20 Unix socket in the preferred embodiment. Each of the ”OSI“

O interfaces shown in Figure 12 have the ability to communicate

with object switch 734.

-294 ~

Petitioner Apple Inc. — Exhibit 1006, p. 1025

Petitioner Apple Inc. - Exhibit 1006, p. 1026

WO 98109209 PCFIUS97/15243

ROS 602 includes the following object switch service

providers/resources (each of which can communicate with the

object switch 734 through an "OSI“):

Outgoing Administrative Objects Manager 754;

U! Incoming Administrative Objects Manager 756;

Gateway 734 (which may translate RPC calls into object

switch calls and vice versa so RPC manager 732 may

communicate with object svvitch 734 or any other

element having an OSI to, for example, provide

10 0 and/or request services);

External Services Manager 772;

Object Submittal Manager 774; and

Communications Manager 776.

. 15 Briefly,

 provides services relating

to access to object repository 728;

E provides services relating

to requesting and receiving services externally, such

20 as from a network resource or another site;

m provides services relating

to how a user application may interact with object

switch 734 (since the object submittal manager

-295-

Petitioner Apple Inc. — Exhibit 1006, p. 1026

Petitioner Apple Inc. - Exhibit 1006, p. 1027

WO 98/09209 PCI‘/US97/15243

provides an interface to an application program 608,

it could be considered part of user API 682); and

mm provides services relating

to communicating with the outside world.

In the preferred embodiment, communications manager

776 may include a network manager 780 and a mail gateway

(manager) 782. Mail gateway _782 may include-one or more mail

filters 784 to, for example, automatically route VDE related

10 electronic mail between object switch 734 and the outside world

electronic mail services. External Services Manager 772 may

interface to communications manager 776 through a Service

Transport Layer 786. Service Transport Layer 786a may enable .

External Services Manager 772 to communicate with external

15 computers and systems using various protocols managed using

the service transport layer 786.
.7‘-?——.

The characteristics of and interfaces to the various

subsystems of ROS 680 shown in Figure 12 are described in more

20 detail below.

RPC Manager 732 and Its RPC Services Interface

As discussed above, the basic system services provided by

ROS 602 are invoked by using an RPC service interface (RSI).

- 296 -

Petitioner Apple Inc. — Exhibit 1006, p. 1027

Petitioner Apple Inc. - Exhibit 1006, p. 1028

wo ggmggog PCT/US97l15243

This RPC service interface provides a generic, standardized

interface for different services systems and subsystems provided

by ROS 602. _

UI RPC Manager 732 routes RPCs requesting services to an

appropriate RPC service interface.‘ In the preferred embodiment,

upon receiving an RPC call, RPC manager 732 determines one

or more service managers that are to service the request.‘ RPC

manager 732 then routes a service request to the appropriate,

10 service(s) (via a RSI associated with a service) for action by the

' appropriate service manageiis).

For example, if a SPE 503 is to service a request, the RPC

Manager 732 routes the request to RSI 736a, which passes the

15 request on to SPE device driver 736 for forwarding to the SPE.

Similarly, if HPE 655 is to service the request, RPC Manager 732

routes the request to RSI 738a for forwarding to a I-PE. In one

preferred embodiment, SPE 503 and HPE 655 may perform

essentially the same services so that RSIs 736a, 738a are

20 diflerent instances of the same RSI. Once a service request has

been received by SPE 503 (or 655), the SPE (or II-IPE)

typically dispatches the request internally using its own internal

RPC manager (as will be discussed shortly). Processes within

SPEs 503 and HPES 655 can also generate RPC requests. These

-297-

Petitioner Apple Inc. — Exhibit 1006, p. 1028

Petitioner Apple Inc. - Exhibit 1006, p. 1029

_10

20

WO 98109209 PC!‘/US97/15243

requests may be processed internally by a SPE/HPE. or if not

internally serviceable. passed out of the SPE/HPE for dispatch
by RPC Manager 732. .

Remote (and local) procedure calls may be dispatched by a

RPC Manager 732 using an "RPC Services Table.“ An RPC‘

‘Services Table describes where requests for specific services are

to be routed for processing. Each row of an RPC Services Table

in the preferred embodiment contains a services ID, the location

of the service. and an address to which control will be passed to

service a request. .-kn RPC Services Table may also include i

control information that indicates which instance ofthe RPC

dispatcher controls the service. Both RPC Manager 732 and any

attached SPEs 503 and HPES 655 may have symmetric copies of

the RPC_Services Table. Ifan RPC service is not found in the

RPC services tables, it is either rejected or passed to external ‘

services manager 772 for remote servicing.

Assuming RPC manager 732 Finds a row corresponding to

the request in an RPC Services Table, it may dispatch the

request to an appropriate RSI. The receiving RSI accepts a

request from the RPC manager 732 (which may have looked up

the request in an RPC service table), and processes that request

-298-

Petitioner Apple Inc. — Exhibit 1006, p. 1029

Petitioner Apple Inc. - Exhibit 1006, p. 1030

WO 98/09209 PCTIUS97I15243

in accordance with internal priorities associated with the specific

service.

I In the preferred embodiment, RPC Service Interface(s)

5 ' supported by RPC Manager 732 may be standardized and

published to support add-on service modules developed by third

party vendors, and to facilitate scalability by maldng it easier to

program 602. The preferred embodiment RSI closely

follows the DOS and Unix device driver models for block devices

10 so that common code may be developed for many platforms with

minimum effort. An example of one possible set of common entry

points are listed below in the table.

Interface call Deacri - tion

15 _ SVC_LOAD Load a service manager and return

its status.

SVC_UNLOAD l Unload a service manaer.

SVC_MOUNT Mount (load) a dynamically loaded

subservice and return its status.

SVC_UNMOUNT Unmount (unload) a dynamically

loaded subservice.

SVC_OPEN
20 0 ' SVC CLOSE Close a mounted subservice.

SVC_READ Read a block from an opened

0 subservice.

-299-

Petitioner Apple Inc. — Exhibit 1006, p. 1030

Petitioner Apple Inc. - Exhibit 1006, p. 1031

10

20

W0 98/09209 PC!‘/US9'/715243

Write a block to an opened
subservice.

Control a subservice or a service

manazer.

Load

In the preferred embodiment, services (and the associated

R.SIs they present to RPC manager 732_) may be activated dining

boot by an installation boot process that issues an RPC LOAD.

This process reads an RPC Services Table from a configuration

file, loads the service module if it is run time loadable (as

opposed to being a kernel linked device driver), and then calls

the LOAD entry point for the service. A successful return from

the LOAD entry point will indicate that the service has properly

loaded and is ready to accept requests.

RPC LOAD Call Example: SVC_LOAD (long service_id)

I This LOAD interface call is called by the RPC manager

732 during rights operating system 602 initialization. It permits

a service manager to load any dynamically loadable components

and to initialize any device and memory required by the service.

The service number that the service. is loaded as is passed in as

5ervz'ce_1'a' parameter. In the preferred embodiment, the service

-300-

Petitioner Apple Inc. — Exhibit 1006, p. 1031

Petitioner Apple Inc. - Exhibit 1006, p. 1032

OI

10

15

20

PCl'IUS97I15243WO 98109209

returns 0 is the initializ_ati'on process was completed successfully

or an error number if some error occurred.

Mount

Once a service has been loaded, it may not be fully

functional for all subservices. Some subservices (e.g.,

communications based services) may require the establishment

of additional connections, or they may require additional

modules to be loaded. If the service is defined as ”mountable,“ a

‘ RPC manager 732 will call the MOUNT subservice entry point

with the requested subservice ID prior to opening an instance of

a subservice.

RPC MOUNT Call Example:

SVC_MOUNT (long service_id, long subservice_id, BYTE

*bufier)

This MOUNT interface call instructs a" service to make a

specific subservice ready. This may include services related to

networking, communications, other system services, or external

resources. The serw'ce_1'd and subsem'ce_id- parameters may

be specific to the specific service being requested. The buflér

parameter is a memory address that references a control

structure appropriate to a specific service.

-301-

Petitioner Apple Inc. — Exhibit 1006, p. 1032

Petitioner Apple Inc. - Exhibit 1006, p. 1033

W0 98,0920, PCI‘/US97Il52-13

Open

Once a service is loaded and ”mounted,“ specific instances

of a service may be "opened“ for use. ”Opening“ an instance of a

service may allocate memory to store control and status

information. For example, in a BSD socket based networkUI

connection, a LOAD call will initialize the software and protocol

control tables, a MOUNT call will specify networks and

hardware resources. and an OPEN will actually open a socket to

a remote installation.

10

Some services. such as commercial database manager 730

that underlies the secure database service, may not be

"mountable." In this case‘. a LOAD call will make a connection to

a database manager 730 and ensure that records are readable.“

15 An OPEN call may create instances of internal cache manager

746 for various classes of records.

RPC OPEN Call Example:

H SVC_OPEN (long service__id, long subservice_id, BYTE

20 *bu.ffer, int (*receive) (long request_id))

This OPEN interface call instructs a service to open a .

specific subservice. The serv1'ce_1'a’ and subserwbe_1'd

parameters are specific to the specific service being requested,

-302-

Petitioner Apple Inc. — Exhibit 1006, p. 1033

Petitioner Apple Inc. - Exhibit 1006, p. 1034

W0 98,0920, _ ' PCTlUS97I1524_3

and the bufler parameter is a memory address that references a

control structure appropriate to a specific service.

The optional receive parameter is the address of a

5 notification callback function that is called by a service whenever

a message is ready for the service to retrieve it. One call to this

address is made for each incoming message received. If the

caller passes a NULL to the interface, the software will not

generate a callback for each message.

10

Close, Unmount and Unload

The converse of the OPEN, MOUNT, and LOAD calls are

CLOSE, UNMOUNT, and UNLOAD. These interface calls

release any allocated resources back to ROS 602 (e.g., memory

15 manager 680a).

Rpc CLOSE Call Example: SVC_CLOSE (long svc_handle)

This LOAD interface closes an open service ”handle.‘-‘

A service ”handle“ describes a service and subservice that a user

20 Wants to close. The call returns 0 if the CLOSE request succeeds

(and the handle is no longer valid) or an error number.

4303-

Petitioner Apple Inc. — Exhibit 1006, p. 1034

Petitioner Apple Inc. - Exhibit 1006, p. 1035

wo 93/09209 . PCT/US97I15243

RPC UNLOAD Call Example: SVC_UNLOAD (void) '

This UNLOAD interface call is called by a RPC manager

732 during shutdown or resource reallocation of rights operating

system 602. It permits a service to close any open connections,

5 flush buffers, and to release any operating system resources that

it may have allocated. The service returns 0.

RPC .UNMOUNT Call Example: SVC_UNMOUNT (long
service_id, long subservice_id)

10 This UNMOUNT interface call instructs a service to

deactivate a specific subservice. The senr1'ce__1'd and

subse-rv1'ce_1'd parameters are specific to the specific service

being requested, and must have been previously mounted using-

the SVC_M0£UVT/) request. The call releases all system

15 resources associated with the subservice before it retums.-

Read and Write

The READ and WRITE calls provide a basic mechanism

for sending information to and receiving responses from a

20 mounted and opened service. For example, a service has

requests written to it in the form of an RPC request, and makes

its response available to be read by RPC Manager 732 as they

become available.

-304-

Petitioner Apple Inc. — Exhibit 1006, p. 1035

Petitioner Apple Inc. - Exhibit 1006, p. 1036

WO 98109209 PCT/US97]15243

RPC READ can Example:

SVC_R_EA_D (long svc_ha.ndle, long request_id, BYTE

*bufi'er, long size)

This READ call reads a message response from a service.

5 l . The svc_band1e and request_1'd parameters uniquely identify a

request. The results of a request will be stored in the user

specified bufier up to szke bytes. If the bufl'er is too small, the

first size bytes of the message will be stored in the buffer and an

error will be retumed: - .

l0

If a message response was returned to the caller’s buffer

correctly, the function will return 0. Otherwise, an error message

will be returned.

15 RPC WRITE Call Example:

SVC_write (long service_id. long subservice_id, BYTE

*buifer, long size, int (*receive) (long request_id)

I This WRITE call writes a message to a service and

subservice specified by the serv1'ce_1'd/subserv1'ce_id parameter

20 pair. The message is stored in bufl'er (and usually conforms to

the VDE RPC message format) and is size bytes long. The

function returns the request id for the message (if it was

accepted for sending) or an error number. If a user specifies the

receive callback functions, all messages regarding a request will

-305-

Petitioner Apple Inc. — Exhibit 1006, p. 1036

Petitioner Apple Inc. - Exhibit 1006, p. 1037

W0 98,0920’ ‘ . PCT/US97Il5243

be sent to the request specific callback routine instead of the

generalized message callback.

Input/Output Control

The IOCTL ("Input/Output ConTroL“) call provides a

mechanism for querying the status of and controlling a loaded

service. Each service type will respond to specific general IOCTL

requests, all required class IOCTL'requests, and service specific

IOCTL requests.

10

RPC IOCTL Call Example: ROI_SVC_IOCTL (long service__id,
long subservice_id.

int command. BYTE *buffer')

\

15 This IOCTL function provides a generalized control

interface for a RSI. A user specifies the se-rV1'ce_1'd parameter

and an optional subserv1'ce_1'a’ parameter that thev wish to

control. They specify the control command parameter(s), and a

bufiier into/from which the command parameters may be
20

written/read. An example of a list of commands and the

appropriate bufler structures are given below.

-306-

Petitioner Apple Inc. — Exhibit 1006, 10- 1037

Petitioner Apple Inc. - Exhibit 1006, p. 1038

wo 98109209 PCl‘IUS97Il5243

GET_INFO SVC_INFO

Returns information

about a

 service/subservice.

Returns current statistics

about a

service/subservice.

GET_STATS SVC_STATS

CLR_STATS None

Now that a generic RPC Service Interface provided by the

 Clears the statistics

about a

service/subservice.

10 preferred embodiment has been described, the following

description relates to particular examples of services provided by

ROS 602.

SPE Device Driver 736

15 SPE device driver 736 provides an interface between ROS

602 and SPE 503. Since SPE 503 in the preferred embodiment

runs within the confines of an SPU 500, one aspect of this device

driver 736 is to provide low level communications services with

the SPU 500 hardware. Another aspect of SPE device driver 736

20 is to provide an RPC service interface (RSI) 736a particular to

-307-

Petitioner Apple Inc. — Exhibit 1006, p. 1038

Petitioner Apple Inc. - Exhibit 1006, p. 1039

10

15

20

W0 PCT/US97]15243

SPE 503 (this same RSI may be used to communicate with HPE

655 through HPE device driver 738).

SPE RSI 736a and driver 736 isolates calling processes

within ROS 602 (or external to the ROS) firom the detailed

service provided by the SPE 503 by providing a set of basic

interface points providing a concise function set. This has

several advantages. For example, it permits a full line of scaled

SPUs 500 that all provide common fiinctionality to the outside

world but which may differ in detailed internal structure and

architecture. SPU 500 characteristics such as the amount of

memory resident in the device, processor speed, and the number

of services supported within SPU 500 may be the decision of the

specific SPU manufacturer, and in any event may difi'er from one

SPU configuration to another. To maintain compatibility, SPE

device driver 736 and the RSI 736a it provides conform to a basic

_c_oln_mon RPC interface standard that ”hides“ differences between

detailed configurations of SPUs 500 and/or the SPEs-503 they

may support.

To provide for such compatibility, SPE RSI 736a in the

preferred embodiment follows a simple block based standard. In

the preferred embodiment, an SPE RSI 736a may be modeled

afiser the packet interfaces for network Ethernet cards. This

-308-

Petitioner Apple Inc. — Exhibit 1006, p. 1039

Petitioner Apple Inc. - Exhibit 1006, p. 1040

10

15

20

PCl'lUS97l15243WO 98109209

standard closely models the block mode interface characteristics '

of SPUs 500 in the preferred embodiment.

An spa RSI 7364 allows RPC calls from RPC manager 732

to access specific services provided by an SPE 736. To do this,

SPE RSI 736a provides a set of "service notification address

interfaces.“ These provide interfaces to individual services

provided by SPE 503 to the outside world. Any calling process

Within ROS 602 may access these SPE-provided services by

directing an RPC call to SPE RSI 736a and specifying a

corresponding ”service notification address“ in an RPC call. The

specified "service notification address“ causes SPE 503 to

internally route an RPC call to a particular service within an

SPE. The following is a listing of one example of a SPE service

breakdown for which individual service notification addresses

may be provided:

Channel Services Manager

Authentication Manager/Secure Communications Manager

Secure Database Manager

The Channel Services Manager is the principal service

provider and access point to SPE 503 for the rest of ROS 602.

Event processing, as will be discussed later, is primarily

managed (from the point of view of processes outside SPE 503)

-309-

Petitioner Apple Inc. — Exhibit 1006, p. 1040

Petitioner Apple Inc. - Exhibit 1006, p. 1041

W0 98,0920, K PCT/US97I15243

by this service." The Authentication Manager/Secure

Communications Manager may provide login/logout services for

users of R08 602, and provide a direct service for managing

communications (typically encrypted or otherwise protected)

5 related to component assemblies 690, objects 300, etc.

Requests for display of information (e.g., value remainingiin a

financial budget) may be provided by a direct service request to a

Secure Database Manager inside SPE 503. The instances of

Authentication Manager/Secure Communications Manager and

10 Secure Database Manager. if available‘ at all, may provide only a

subset of the information and/or capabilities available to

processes operating inside SPE 503. As stated above, most

(potentially all) service requests entering SPE are routed to a

Channel Services Manager for processing. As will be discussed

15 in more detail later on, most control structures and event

processing logic is associated with component assemblies 690

under the management of a Channel Services Manager.

The SPE 503 must be accessed through its associated SPE

20 driver 736 in this example. Generally, calls to SPE driver 736

are made in response to RPC calls. In example, SPE driver

RSI 736a may translate RPC calls directed to control or ascertain

information about SPE driver 736 into driver calls. SPE driver

-310-

Petitioner Apple Inc. — Exhibit 1006, p. 1041

Petitioner Apple Inc. - Exhibit 1006, p. 1042

wo 98109209 rcr/Us97/15243

RSI 736a in conjunction with driver 736 may pass RPC calls

directed to SPE 503 through to the SPE.

The following table shows one example of SPE device

5 . driver 736 calls:

Returns summary information

about the SPE driver 736 (and SPE

503)

~-PE_initia1ize_interface() Initializes SPE driver 736, and sets

the default notification address for

received ackets.

PE_terrninate_interface() Terminates SPE driver 736 and
V resets SPU 500 and the driver 736.

10 -Resets driver 736 without resettingSPU 500.

--PE_get_stats() Return statistics for notification
addresses and/or an entire driver

736.

--1i’E__c1ear_stats() Clears statistics for a specific
notification address and/or an

entire dn'ver 736.

PE__set_notify() A . Sets a notification address for a

I snecific service ID.
PE_get__noti.fy() i Returns a notification address for a

! secific service ID.
1

15 PE_tx_pkt() Sends a packet (e.g., containing an
RPC call) to SPE 503 for

-311-

Petitioner Apple Inc. — Exhibit 1006, p. 1042

Petitioner Apple Inc. - Exhibit 1006, p. 1043

10

15

20

25

WO 98/09209 PCI‘lUS97I15243

’ The following are more detailed examples of each of the

SPE d.rive_r calls set forth in the table above.

Example of ‘SPE Inforrnation‘Driver Call: SPE_info (void)

This function returns a pointer to an SPE_lNFO data

structure that defines the SPE device driver 736a. This data

SPE_INI'_‘O structure is described below:

 Version Number/ID for SPE

Device Driver 736

 Version Number/ID for SPE

Device Driver RSI 736

 Pointer to name of SPE Device

Driver 736

r__

J Pointer to ID name of SPU 500
——" "‘*"—‘—_'

Functionality Code Describing
SPE Capabilities/functionality

Example of an SPE ‘Initialize Interface'Driver Call:

SPE_initiah'ze_interface (int (fcn *receiver)(void))

"-312-

Petitioner Apple Inc. — Exhibit 1006, 10- 1043

Petitioner Apple Inc. - Exhibit 1006, p. 1044

10

315

20

W098/09209 PcrIUs97/15243

A receiver function passed in by way of a parameter will be"

called for all packets received from SPE 503 unless their

destination service is over-ridden using the set_noh'f_"y{) call. A

receiver function allows ROS 602 to specify a format for packet

communication between RPC manager 732 and SPE 503.

This function returns ”0“ in the preferred embodiment if

the initialization of the interface succeeds and non—zero if it fails.

If the function fails, it will retmm a code that describes the

reason for the failure as the value of the function.

Example of an SPE ‘Terminate Interface'Driver Call:

SPE_terminate_interface (void)

In the preferred embodiment, this function shuts down '

SPE Driver 736, clears all notification addresses, and terminates

all outstanding requests between an SPE and an ROS R.PC

manager 732. It also resets an SPE 503 (e.g., by a warm reboot.

of SPU 500) after all requests are resolved.

Termination of driver 736 should be performed by ROS

602 when the operating system is starting to shut down. It may

also be necessary to issue this call if an SPE 503 and ROS 602

get so far out of synchronization that all processing in an SPE

must be reset to a known state.

-313-

Petitioner Apple Inc. — Exhibit 1006, p. 1044

Petitioner Apple Inc. - Exhibit 1006, p. 1045

10

15

20

25

WO 98109209 PCI‘/US97I15243

Example of an SPE 'Reset Interface‘Driver Call:

SPE_reset_interface void)

This function resets driver 736, terminates all outstanding

requests between SPE. 503 and an ROS RPC manager 732, and

clears all statistics counts. It does not reset the SPU 500, but

simply restores driver 736 to a known stable state.

Example of an SPE ‘Get Statistics'D1-iver Call: SPE_get_stats

(long service_id)

This function returns statistics for a specific service

notification interface or for the SPE driver 736 in general. It

returns a pointer to a static buffer that contains these statistics

or NULL if statistics are unavailable (either because an interface

is not initialized or because a receiver address was not specified).

An ‘example of the SPE_STATS structure may have the following

definition: .

-314-

Petitioner Apple Inc. — Exhibit 1006, p. 1045

Petitioner Apple Inc. - Exhibit 1006, p. 1046

wo 98/09209 PCI‘IUS9‘7ll5243

J

10 If a user specifies a service ID, statistics associated with

packets sent by that service are returned. Ifa user specified 0 as

the parameter, the total packet statistics for the interface are

returned.

15 Example of an SPE ‘Clear Statistica"Driver Call:

SPE_clea.r_stats (long service_id)

This function clears statistics associated with the SPE

service_id specified. If no service_id is specified (i.e., the caller

passes in 0), global statistics will be cleared. The function

20 returns 0 if statistics are successfully cleared or an error number

if an error occurs.

-315-

Petitioner Apple Inc. — Exhibit 1006, p. 1046

Petitioner Apple Inc. - Exhibit 1006, p. 1047

wo 98/09209 PC!‘/US97Il5243

Example of an SPE ‘Set Notification Add:-ese'Driver Call:

SPE__set_notify (long service_id, int (fcg1*receiver) (voidl)

This function sets a notification address (receiver) for a

specified service. the notification address is set to NULL, SPE

5 device driver 736 will send notifications for packets to the

specified service to the default notification address.

Example of a SPE ‘Get Notification Address'Driver Call:

SPE__get_notify (long service_id)

10 _ This function returns _a notification address associated

with the named service or NULL if no specific notification

address has been specified.

Example of an SPE ‘Send Packet"Driver Call:

15 send_pkt (BYTE *bufier, long size, int (far "‘receive) (void))

This function sends a packet stored in buffer of "length"

size. It 0 if the packet is sent successfully, or returns an

en'or code associated with the failure.

20 Redirector Service Manager 684

The redirector 684 is a piece of systems integration

sofiware used principally when ROS 602 is provided by "adding

on“ to a pre-existing operating system or when ”transparent“

operation is desired for some VDE functions, as described earlier.

-316-

Petitioner Apple Inc. — Exhibit 1006, p. 1047

Petitioner Apple Inc. - Exhibit 1006, p. 1048

WO 98/09209 PCI‘/US97/15243

In one embodiment the kernel 680, part of communications

manager 776, file system 687, and part ofAPI service 742 may

. be part of a pre-existing operating system such as DOS,

Windows, UNIX, Macintosh System, os9, PSOS, os/2, or other

5 operating system platform. The remainder of ROS 602

subsystems shown in Figure 12 may be provided as an "add on“

to a preexisting operating system. Once these ROS subsystems

have been supplied ‘and "added on,“ the integrated whole

comprises the ROS 602 shown in Figure 12.

10 A I

,In a scenario of this type of integration, ROS 602 will

continue to be supported by a preexisting OS kernel 680, but

may supplement (or even substitute) many of its functions by

providing additional add-on pieces such as, for example, a virtual

15 memory manager.

Also in this integration scenario, an add-on portion of API

“service -742 that integrates readily with a preexisting API service

is provided to support VDE function calls. A pre-existing API

20 service integrated with an add-on portion supports an enhanced

set of operating system calls including both calls to VDE

functions 604 and calls to functions 606 other than VDE

functions (see Figure 11A). The add-on portion_of API service

-317-

Petitioner Apple Inc. — Exhibit 1006, p. 1048

Petitioner Apple Inc. - Exhibit 1006, p. 1049

10

15

20

7 wo9s1o92o9 PCl‘IUS97IlS243

742 may translate VDE function calls into RPC calls for routing

by RPC manager 732.

provide "add ons“ and/or substitutions to it that may be readily

integrated into it. Redirector 684 may provide this integration

function.

' This leaves a requirement for ROS 602 to integrate with a

preexisting file system 687. Redirector 684 provides this

integration function.

In this integration scenario, file system 687 of the

preexisting operating system is used for all accesses to secondary

storage. However, VDE objects 300 may be stored on secondary

storage in the form of external object repository 728, file system

687, or remotely accessible through communications manager

776. When object switch 734 wants to access external object

repository 728, it makes a request to the object repository

manager 770 that then routes the request to object repository

728 or to redirector 692 (which in turn accesses the object in file
system 687). A

-318-

Petitioner Apple Inc. — Exhibit 1006, p. 1049

Petitioner Apple Inc. - Exhibit 1006, p. 1050

wo 93/09209 ~ PCTIUS97/15243

Generally, redirector 684 maps VDE object repository 728

content into preexisting calls to file system 687. The redirector

684 provides preexisting OS level information about a VDE

object 300, including mapping the object into a preexisting OS's

5 name space. This permits seamless access to VDE protected

content using "normaJ“ file system 687 access techniques

provided by a preexisting operating system.

In the integration scenarios discussed above, each

10 preexisting target 05 file system 687 has different interface

requirements by w'nich the redirector mechanism 684 may be

”hool(ed.“ In general. since all commercially viable operating

systems today provide support for network based volumes. file

systems, and other devices le.g., printers. modems, etc.), the

15 redirector 684 may use low level network and file access "hooks“

to integrate with :1 preexisting operating system. "Add-ons“ for

supporting VDE functions 602 may use these existing hooks to

integrate with a preexisting operating system.

20 User Notification Service Manager 740

User Notification Service Manager 740 and associated user

notification exception interface ("pop up“) 686 provides ROS 602

with an enhanced ability to communicate with a user of

electronic appliance 600. Not all applications 608 may be

-319-

Petitioner Apple Inc. — Exhibit 1006, p. 1050

Petitioner Apple Inc. - Exhibit 1006, p. 1051

WO 98/09209 I PCT/US97ll5243

designed to respond to messaging from ROS 602 passed through

API 682, and it may in any event be important or desirable to

give ROS 602 the ability to communicate with a user no matter

what state an application is in. User notification services

Ul
manager 740 and interface 686 provides ROS 602 with a

mechanism to communicate directly with a user, instead of or in

addition to passing a return call through API 682 and an

application 608. This is similar, for example, to the ability of the

Windows operating system to display a usermessage in a "dialog

10 box“ that displays. "on top of” a running application irrespective

of the state of the application.

The User Notification 686 block in the preferred

embodiment may be implemented as application code. The

15 implementation of interface 740a is preferably built over

notification service manager 740. which may be implemented as

part of API service manager 742. Notification services manager

740 in the preferred embodiment provides notification support to

dispatch specific notifications to an appropriate user process via

20 the appropriate API return, or by another path. This mechanism

permits notifications to be routed to any authorized process—not

just back to a process that specified a notification mechanism.

-320-

Petitioner Apple Inc. — Exhibit 1006, p. 1051

Petitioner Apple Inc. - Exhibit 1006, p. 1052

OI

W0 gsmgzog PCT/US97/15243

API Service Manager 742

The preferred embodiment API Service Manager 742 is

implemented as a service interface to the RPC service manager

732. All user API requests are built on top of this basic interface.

The API Service Manager 742 preferably provides a service

instance for each running user application 608.

Most RPC calls to ROS functions supported by API Service

Manager 742 in the preferred embodiment may map directly to

10 service calls with some additional parameter checking. This

mechanism permits developers to create their own extended API

libraries with additional or changed functionality.

In the scenario discussed above in which ROS 602 is

15 formedpby integrating "add ons“ with a preexisting operating

system, the API service 742 code may be shared (e.g., resident in

a host environment like a Windows DLL), or it may be directly

linked with an applications’s code— depending on an application

programmer’s implementation decision, and/or the type of

20 electronic appliance 600. The Notification Service Manager 740

may be implemented within 682. These components

interface with Notification Service component 686 to provide a

transition between system and user space.

- 321 -

Petitioner Apple Inc. — Exhibit 1006, p. 1052

Petitioner Apple Inc. - Exhibit 1006, p. 1053

V Secure Database Service Manager ('SDSM1 744 I

There are at least two ways that may be used for

managing secure database 600:

- a commercial database approach, and

UI
- a site _record number approach.

W_hich way is chosen may be based on the number of records that

a VDE site stores in the secure database 610.

The commercial database approach uses a commercial

10 database to store securely wrappered records in a commercial

database. This way may be preferred when there are a large

number of records that are stored in the secure database 610.

This way provides high speed access, efficient updates, and easy

integration to host systems at the cost of resource usage (most

15 commercial database managers use many system resources).

The site record number approach uses a "’site record

number“ (”SRN“) to locate records in the system. This scheme is

preferred when the number of records stored in the secure

20 database 610 is small and is not expected to change extensively

over time. This way provides efiicient resources use with limited

update capabilities. SRNs permit further grouping of similar

data records to speed access and increase performance.

-322-

Petitioner Apple Inc. — Exhibit 1006, p. 1053

Petitioner Apple Inc. - Exhibit 1006, p. 1054

10'

15

20

WO 98109209 PCT/US97/15243

Since VDE 100 -is highly scalable, different electronic

appliances 600 may suggest one way more than the other. For

example, in limited environments like a set top, PDA, or other

low end electronic appliance, the SRN scheme may be preferred

because it limits the amount of resources (memory and

processor) required. When VDE is deployed on more capable

electronic appliances 600 such as desktop computers, servers and

at clearinghouses. the commercial database scheme may be more

desirable because it provides high performance in environments

where resources are not limited.

One diffe rencc between the database records in the two

approaches is whether the records are specified using a full VDE

ID or SRN. To translate between the two schemes, a SRN

reference may be replaced with a VDE ID database reference

wherever it occurs. Similarly, VDE IDs that are used as indices

or references to other items may be replaced by the appropriate

SRN value.

In the preferred embodiment, a commercially available

database manager 730 is used to maintain secure database 610.

ROS 602 interacts with commercial database manager 730

through a database driver 750 and a database interface 748. The

database interface 748 between ROS 602 and external, third

-323-

Petitioner Apple Inc. — Exhibit 1006, p. 1054

Petitioner Apple Inc. - Exhibit 1006, p. 1055

wo 93109209 I ' PCTlUS97ll5243

party database vendors’ commercial database manager 730 may

be an open standard to permit any database vendor to implement

a VDE compliant database driver 750 fortheir products.

ROS 602 may encrypt each secure database 610 record so0!

that a VDE-provided security layer is "on top of" the commercial

database structure. In other words, SPE 736 may write secure

records in sizes and formats that may be stored within a

database record structuresupported by commercial database .

10 manager 730. Commercial database manager 730 may then be

used to organize. store. and retrieve therecords. In some

embodiments. it may be desirable to use a proprietary and/or

newly created database manager in place of commercial database

manager 730. . However, the use of commercial database

15 manager 730 may provide certain advantages such as. for

example, an ability to use already existing database

management product(s).

The Secure Database Services Manager (”SDSM“) 744
20 makes calls to an underlying commercial database manager 730

to obtain, modify, and store records in secure database 610. In

the preferred embodiment, ”SDSM“ 744 provides a layer "on top
of“ the structure of commercial database manager 730. For

example, all VDE-secure information is sent to commercial

-324-

Petitioner Apple Inc. — Exhibit 1006, p. 1055

Petitioner Apple Inc. - Exhibit 1006, p. 1056

W0 98,05,209 PCTIUS97/15243

database manager 730 in encrypted form. SDSM 74-4 in

_ conjunction withcache manager 746 and database interface 748

may provide record management. caching (using cache manager_

-'746), and related services (on top of) commercial database

5 systems 730 and/or record managers. Database Interface 748

and cache manager 746 in the preferred embodiment do not

present their own RSI, but rather the RPC Manager 732

communicates to them through the Secure Database Manager

RSI 74-4a.

10

Name Services Manager 752

The Name Services Manager 752 supports three

15 ’ and lookup between user name and user ID numbers, and may

also support other aspects of user-based resource and

information security. Host name services provides mapping and

lookup between the names (and other information, such as for

example address, communications connection/routing

20 information, etc.) of other processing resources (e.g., other host

electronic appliances) and VDE node IDs._ Services name service

provides a mapping and lockup between services names and

other pertinent information such as connection information (e.g.,

'-325-

Petitioner Apple Inc. — Exhibit 1006, p. 1056

Petitioner Apple Inc. - Exhibit 1006, p. 1057

wo 98/09209 -PCT/US97/15243

remotely available service routing and contact information) and

service IDs.

Name Services Manager 752 in the preferred embodiment

is connected to External Services Manager 772 so that it may

provide external service routing information directly to the

external services manager. Name services manager 752 is also

connected to secure database manager 744 to permit the name

services manager 752 to access name services records stored

10 within secure database 610.

External Services Manager 772 & Services Transport Layer 786

The External _Services Manager 772 provides protocol

support capabilities to interface to external service providers.
External services manager 772 may, for example, obtain external

[service routing information from name services manager 752,

and then initiate contact to a particular external service (e.g_,

another VDE electronic appliance 600, a financial clearinghouse,

etc.) through communications manager 776. External services

20
manager 772 uses a service transport layer 786 to supply

communications protocols and other information necessary to
provide communications.

-326-

Petitioner Apple Inc. — Exhibit 1006, p. 1057

Petitioner Apple Inc. - Exhibit 1006, p. 1058

WO 98109209 ' PCTIUS97l15243

There are several importantexamples of the use of

External Services Manager 772. Some VDE objects may have

some or all of their content stored at an Object Repository 728 on

an electronic appliance 600 other than the one operated by a user

5 who has, or wishes to obtain. some usage rights to such VDE

objects. In this case. External Services Manager 772 may

manage a connection to the electronic appliance 600 where the _
VDE objects desired (or their content) is stored. In addition, file

system 687 may be a network file system (e.g., Netware,

10 LANtastic. NFS. etc. I that allows access to VDE objects using

redirecter 684. Object sxvitch 734 also supports this capability.

If External Services Manager 772 is used to access VDE

objects, many different techniques are possible. For example, the

15 VDE objects may be formatted for use with the World Wide Web

protocols (HTML. HTTP, and URL) by including relevant

headers, content tags, host ID to URL conversion (e.g., using

Name Services Manager 752) and an HTTP-aware instance of

Services Transport Layer 786.

20 V _

In other examples, External Services Manager 772 may be

used to locate, connect to, and utilize remote event processing

services; smart agent execution services (both to provide these

services and locate them); certification services for Public ‘Keys;

-327-

Petitioner Apple Inc. — Exhibit 1006, p. 1058

Petitioner Apple Inc. - Exhibit 1006, p. 1059

wougg/Q9209 - p PCT/US97Il524’3

remote Name Services: and other remote functions either

supported by ROS 602 RPCs (e.g., have RSIS), or using protocols

supported by Services Transport Layer 786.

5 Outgoing Administrative Object Manager 754

Outgoing administrative object manager 754 receives

administrative objects from object switch 734, object repository

manager 770 or other source for transmission to another VDE

electronic appliance. Outgoing administrative object manager
10 754 takes care of sending the outgoing object to its proper

destination. Outgoing administrative object manager 754 may

obtain routing nanie services manager 752, and

may use communications service 776 to send the object.

Outgoing administrative object manager 754 typically maintains

15 records (in concert with SPE 503’) in secure database 610 (e.g.7
shipping table 444) that reflect when objects have been

successfully transmitted, when an object should be transmitted;

and other information related to transmission of objects.

20 Incoming Administrative Object Manager 756

Incoming administrative object manager 756 receives

administrativeobjects from other VDE electronic appliances 600'

via communications manager 776. It may route the object to

object repository manager 770, object switch 734 or other

-328-

Petitioner Apple Inc. — Exhibit 1006, p. 1059

Petitioner Apple Inc. - Exhibit 1006, p. 1060

I wo 98/09209 i ' PCTIUS97I15243

destination. Incoming administrative object manager 756

typically maintains records (in concert with SPE 503) in secure

database 610 (e.g., receiving table 446) that record which objects

have been received, objects expected for receipt, and other

-U! information related to received and/or expected objects. ~

Object Repository Manager 770

Object repository manager'770 is a form of database or file

manager.__ It manages the storage" of VDE objects 300 in‘ object

10 repository 728, in a database, or in the file system. 687. Object

repository manager 770 may also provide the ability to browse

and/or search information related to objects (such as summaries

of content, abstracts. reviewers‘ commentary, schedules,

promotional materials. etc.), for example, by using

15 INFORMATION methods associated with VDE objects 300.

Object Submittal Manager 774

Object submittal manager 774 in the preferred

embodiment provides an interface between an application 608

20 and object switch 734, and thus may be considered in some

respects part of API 682. For example, it may allow a user

application to create new VDE objects 300. It may also allow

incoming/outgoing administrative object managers 756, 754 to

create VDE objects 300 (administrative objects).

-329~

Petitioner Apple Inc. — Exhibit 1006, p. 1060

Petitioner Apple Inc. - Exhibit 1006, p. 1061

WO 98/09209 . PCT/US97Il5243

Figure 12A shows how object submittal manager 774 may

be used to communicate with a user of electronic appliance 600

to help to create a new VDE object 300. Figure 12A shows that

object creation may occur in two stages in the preferred
0:

embodiment: an object definition stage 1220, and an object

774(2)) shown in Figure 12A.

10 In one of its roles or instances. object submittal manager

774 provides a user interface 774a that allows the user to create

an object configuration file 1240 specifying certain

characteristics of a VDE object 300 to be created. This user

interface 774a may. for example. allow the user to specify that

15 she wants to create an object, allow the user to designate the

content the object will contain, and allow the user to specify

certain other aspects of the information to be contained Within

the object (e.g., rules and control information, identifying

information, etc.).

20 i

. Part of the object definition task 1220 in the preferred
embodiment may be to analyze the content or other information

_ to be placed within an object. Object definition user interface

774a may issue calls to object switch 734 to analyze ”content“ or

-330-

Petitioner Apple Inc. — Exhibit 1006, p. 1061

Petitioner Apple Inc. - Exhibit 1006, p. 1062

wo 98,092!” PCT/US97Il5243

other information that is to be included within the object to be

created in order to define or organize the content into "atomic

elements“ specified by the user. As explained elsewhere herein,

such ‘atomic element“ organizations might, for example, break

5 up the content into paragraphs. pages or other subdivisions

specified by the "user. and might be explicit (e.g., inserting a

control character between each "atomic element“) or implicit.

Object switch 734 may receive static and dynamic content (e.g.,

by way of time independent stream interface 762 and real time

10 stream interface 760.». and is capable of accessing and retrieving

stored content or other information stored within file system 687.

The result olobject definition 1240 may be an object

configuration file 1240 specifying certain parameters relating to

15 the object to be created. Such parameters may include, for

example, map tables, key management specifications, and event

method parameters. The object construction stage 1230 may

take the object configuration file 1240 and the information or

content to be included within the new object as input, construct

20 an object based on these inputs, and store the object within

object repository 728.

Object construction stage 1230 may use information in

object configuration file 1240 to assemble or modify a container.

-331 -V

Petitioner Apple Inc. — Exhibit 1006, p. 1062

Petitioner Apple Inc. - Exhibit 1006, p. 1063

W0 mono, p Pcfr/US97/15243

This process typically involves communicating a series of events

to SPE 503 to create one or more PERCS 808, public headers,

private headers. and to encrypt content, all for storage in the

new object 300‘(or within secure database 610 within records
OI

associated with the new object).

‘The object configuration file 1240 may be passed to
container manager 764 within obiect switch 734. Container

manager 734 is responsible for constructing an object 300 based

10 on the object configuration file 1240 and further user input. The

user may interact with the object construction 1230 through

another instance 77-}! 2; of object submittal manager 77-}. In this

further user interaction provided by object submittal manager

774, the user may specify permissions. rules and/or control

15 information to be applied to or associated with the new object

300. To specify permissions. rules and control information.

object subrnittal manager 774 and/or container manager 764

within object switch 734 generally Will. as mentioned‘ above, need

to issue calls to SPE 503 (e.g., through gateway 734) to cause the

20 SPE to obtain appropriate information from secure database 610,

generate appropriate database items, and store the database

items into the secure database 610 and/or provide them in

encrypted, protected form to the object switch for incorporation

into the object. Such information provided by SPE 503 may

-332-

Petitioner Apple Inc. — Exhibit 1006, p. 1063

Petitioner Apple Inc. - Exhibit 1006, p. 1064

wo 98/09209 PCTIUS97/15243

include, in addition to encrypted content or other information,

one or more PERCs 808, one or more method cores 1000’, one or

more load modules 1100, one or more data structures such as

UDE5 1200 and/or MDEs 1202, along with various key blocks,

5 tags, public and private headers. and error correction

information.

The container manager 764 may, in cooperation with SPE

503. construct an object container 302 based atleast in part on

10 parameters about new object content or other information as

specified by object configuration file 1240. Container manager

764 may then insert into the container 302 the content or other

information was encrypted by SPE 503) to be included in the new

object. Container manager 764 may also insert appropriate

15 permissions, rules and/or control information into the container

302 (this permissions, rules and/or control information may be

defined at least in part by user interaction through object

submittal manager 774, and may be processed at least in part by

SPE 503 to create secure data control structures). Container

20 manager 764 may then write the new object to object repository

687, and the user or the electronic appliance may ”register“ the

new object by including appropriate information within secure

database 610.

-333-

Petitioner Apple Inc. — Exhibit 1006, p. 1064

Petitioner Apple Inc. - Exhibit 1006, p. 1065

WO 98109209 PCI‘/US97I15243

Communications Subsystem 76

Communications subsystem 776, as discussed above, may

.be a conventional communications service that provides a

network manager 780 and a mail gateway manager 782. Mail
OI

filters 784 may be provided to automatically route objects 300

and other VDE information to/from the outside world.

Communications subsystem 776 may support a real time content

feed 684 from a cable. satellite or other telecommunications link.

10 Secure Processing Environment 503

As discussed above in connection vvith Figure 12, each

electronic appliance 600 in the preferred embodiment includes

one or more 51313;‘ .303 andior one or more HPES 655. These

secure processing environments each provide a protected

execution space for performing tasks in a secure manner. They

may fulfill service requests passed to them by ROS 602, and they

may themselves generate service requests to be satisfied by other

services within ROS 602 or by services provided by another VDE

electronic appliance 600 or computer.

20

In the preferred embodiment, an SPE 503 is supported by

the hardware resources of an SPU 500. An HPE 655 may be

supported by general purpose processor resources and rely on

software techniques for security/protection. HPE 655 thus gives

-334-

Petitioner Apple Inc. — Exhibit 1006, p. 1065

Petitioner Apple Inc. - Exhibit 1006, p. 1066

wo 9s/09209 I PC'I‘lUS97l15243

5 R08 602 the capability of assembling and executing certain

component assemblies 690 on a general purpose CPU such as a

microcomputer. minicomputer. mainframe computer or

supercomputer processor. In the preferred embodiment, the

overall software architecture of an SPE 503 may be the same asOI

the sofiware architecture ofan HPE 655. An HPE 655 can

”emulate“ SPE 503 and associated SPU 500, i.e., each may

include services and resources needed to support an identical set

of service requests from ROS 602 (although ROS 602 may be

10 restricted from sending to an HPE certain highly secure tasks to

be executed only within an SPU 500).

Some electronic appliance 600 configurations might

include both an SPE 503 and an HPE 655. For example, the

15 HPE 655lcould perform tasks that need lesser (or no) security

protections, and the SPE 503 could perform all tasks that require

a high degree of security. This ability to provideserial or

concurrent processing using multiple SPE and/or HPE

arrangements provides additional flexibility, and may overcome

20 limitations imposed by limited resources that can practically or

cost-efiectively be provided within an SPU 500. The cooperation

of an SPE 503 and an HPE 655 may, in a particular application,

lead to a more efficient and cost efiective but nevertheless secure

overall processing environment for supporting and providing the

-335-

Petitioner Apple Inc. — Exhibit 1006, p. 1066

Petitioner Apple Inc. - Exhibit 1006, p. 1067

W0 9 8 no 9209 PCTIUS97/15243

secure processing required by VDE 100. As one example, an

HPE 655 could provide overall processing for allowing a user to

manipulate released object 300 ’contents,’ but use SPE 503 to

10 Processing Environment «I-IPE) 655. "Protected Processing

Environment‘ /"PPE“2 650 may refer generally to SPE 503 and/or

references to any of"PPE 650,“ "I-{PE 655“ and "SPE 503" may

15

As shown in Figure 13, SPE 503 (PPE 65O)A'mcludes the

following service managers/major functional blocks in che
preferred embodiment:

Kernel/Dispatcher 552

20 -
Channel Services Manager 562

- SPE RPC Manager 550

- A Time Base Manager 554

- Encryption/Decryption Manager 556

° Key and Tag Manager 558

-336-

Petitioner Apple Inc. — Exhibit 1006, p. 1067

Petitioner Apple Inc. - Exhibit 1006, p. 1068

PCI‘fUS97I15243WO 98/09209

4 Summary Services Manager 560

0 Authentication Manager/Service Communications

Manager 564

.0 Random Value Generator 565

On
0

Secure Database Manager 566

- Other Services 592.

Each of the major functionalblocks of PPE 650 is

discussed in detail below.

10

I. SPE Kernel/Dispatcher 552

The Kernel,-Dispatcher 552 provides an operating system

”kernel“ that runs on and manages the hardware resources of

SPU 500. This operating system ”kernel“ 552 provides a self-___

15 contained operating system for SPU 500: it is also a part of

‘ overall R08 602 (which may include multiple OS kernels,

including one for each SPE and HPE ‘ROS is

controlling/managing‘). Kernel/dispatcher 552 provides SPU task

and memory management, supports internal SPU hardware

20 interrupts, provides certain "low level services,“ manages ”DTD“

data structures, and manages the SPU bus interface unit 530.

Kemel/dispatcher 552 also includes a load module execution

manager 568 that can load programs into secure execution space

for execution by SPU 500.

-337-

Petitioner Apple Inc. — Exhibit 1006, p. 1068

Petitioner Apple Inc. - Exhibit 1006, p. 1069

WO 98109209

10

20

PCFIUS97]15243

i In the preferred embodiment, kernel/dispatcher 552 may
include the following software/fimctional components:

load module execution manager 568

task manager.576

memory manager 578

virtual memory manager 580

"low level“ services manager 582

internal interrupt handlers 584 .

BIU handler 586 (may not be present in HPE 655)

Service interrupt queues 588

DTD Interpreter 590,

At least parts of the kernel/dispatcher 552 are preferably

stored in SPU firmware loaded into SPU ROM 532. An example

ofa memory map of SPU ROM 532 is shown in Figure MA. This

memory map shows the various components of kernel/dispatcher

552 (as well as the other SPElservices shown in Figure 13)

residing in SPU ROM 532a and/or EEPROM 532b, The Figure

14B example of an NVRAM 534b memory map shows the task

manager 576 and other information loaded into NVRAM.

One of the functions performed by kernel/dispatcher 552 is

to receive RPC calls from ROS RPC manager 732. As explained

above, the ROS Kernel RPC manager 732 can route RPC calls to

-333-

Petitioner Apple Inc. — Exhibit 1006, 10- 1069

Petitioner Apple Inc. - Exhibit 1006, p. 1070

wo 93/09209 V PCTlUS97I15243

the SPE 503 (via SPE Device Driver 736 and its associated RSI

736a) for action by the SPE. The SPE kernel/dispatcher 552

receives these calls and either handles them or passes them on to

SPE RPC manager 550 for routing internally to SPE 503. SPE

5 503 based processes can also generate RPC requests. Some of

these requests can be processed internally by the SPE 503. If

they are not internally serviceable, they may be passed out of the

SPE 503 through SPE kernel/dispatcher 552 to ROS RPC

manager 732 for routing to services external to SPE 503.

10

A. Kernel/Dispatcher Task Management

Kernel dispatcher task manager 576 schedules and

oversees tasks-executing within SPE 503 (PPE 650).. SPE 503

supports many t_\"peS of tasks. A ”_channel“ (a special type of task

15 that controls execution of component assemblies 690 in the

preferred embodiment) is treated by task manager 576 as one

type of task. Tasks are submitted to the task manager 576 for

execution. Task manager 576 in turn ensures that the SPE

503/SPU 500 resources necessary to execute the tasks are made

20 available, and then arranges for the SPU microprocessor 520 to 2

execute the task.

Any call to kemel/dispatcher 552 gives the kernel an

opportunity to take control of\SPE 503 and to change the task or

.339!

Petitioner Apple Inc. — Exhibit 1006, hp. 1070

Petitioner Apple Inc. - Exhibit 1006, p. 1071

WO 98/09209 PCT/US97/15243

- tasks that are currently executing. Thus, in the preferred

embodiment kernel/dispatcher task manager 576 may (in

conjunction With virtual memory manager 580 and/or memory

-—manager 578) "swap out“ of the execution space any or all of the

5 ' tasks that are currently active, and ”svvap in“ additional or

different tasks.

SPE tasking managed by task manager 576pmay be either

”single tasking“ l" meaning that only one task may be active at a

10 time; or "multi-tasking" ‘meaning that multiple tasks may be

active at once). SPE 503 may support single tasking or multi-

tasking in the preferred embodiment. For example. "high end“

implementations oI"SPE 503 (e.g., in server devices) should

preferably include multi-tasking with ”preemptive schedulingfi‘

15 Desktop applicationsmay be able to use a simpler SPE 503, i

although they may still require concurrent execution of several

tasks. Set top applications may be able to use a relatively simple

implementation of SPE 503, supporting execution of only one

task at a time. For example, a typical set top implementation of

20 SPU 500 may perform simple metering, budgeting and billing

A using subsets of VDE methods combined into single ”aggregate“

load modules to~permit the various methods to execute in a i

single tasking environment. However, an execution environment

that supports only single tasking may limit use with more

-340-

Petitioner Apple Inc. — Exhibit 1006, p. 1071

Petitioner Apple Inc. - Exhibit 1006, p. 1072

wo 98/09209 ‘ PCl‘IUS97Il5243

complex control structures. Such single tasking Versions Of SPE

- 503 trade fleinbility in the number and types of metering and

budgeting operations for smaller run time RAM size

requirements. Such implementations of SPE 503 may

5 (depending upon memory limitations) also be limited to metering

a single object 300 at a time. Of coursepvariations or

combinations are possible to increase capabilities beyond a

simple single tasking environment Without incurring the

additional cost required to support ”full multitasking.“

10 l 1

In the preferred embodiment, each task in SPE 503 is

represented by a "swap block,“ which may be considered a ”task“

in a traditional rnultitasking architecture. A "swap block“ in the

‘preferred embodiment is a bookkeeping mechanism used by task

15 H manager 576 to keep track of tasks and subtasks. It corresponds

to a chunk of code’ and associated references that ”fits“ within the

secure execution environment provided by SPU 500. In the

preferred embodiment, it contains a list of references to shared

data elements (e.g., load modules 1100 and UDEs 1200), private

20 data elements (e.g., method data and local stack), and swapped

process ”context“ information (e.g., the register set for the

process when it is not processing). Figure 14C shows an example

of a snapshot of SPU RAM 532 storing several examples of "swap

blocks“ for a number of different tasks/methods such as a

-341-

Petitioner Apple Inc. — Exhibit 1006, p. 1072

Petitioner Apple Inc. - Exhibit 1006, p. 1073

WO 98109209 PCI'IUS97Il5243

"channel“ task, a ”control“ task,‘ an ”event“ task, a ”meter‘‘ task, a I

"budget“ task, and a ”billing“ task. Depending on the size of SPU

RAM 532, "swap blocks“ may be swapped out of RAM and stored

temporarily on secondary storage 652 until their execution can

0! be continued. Thus. SPE 503 operating in a multi-tasking mode

may have one or more tasks "sleeping.“ In the simplest form,

this involves an active task that is currently processing, and

another task (e.g.. a control task under which the active task

may be running.» thatis '’sleeping‘‘_ and is "’swapped out“ of active- \

10 execution space. Kcmebdispatcher 522 may swap out tasks at

any time.

Task manager 576 may use iVIernor_v Manager 578 tolhelp

it perform this swapping operation. Tasks may be swapped out

15 V of the secure execution space by reading appropriate information

from RAM and other storage internal to SPU 500, for example,

and writing a "swap block“ to secondary storage 652. Kernel 552

may swap a task back into the secure execution space by reading

the swap block from .seconda.ry storage 652 and writing the

20 appropriate information back into SPU RAM 532. Because

secondary storage 652 is not secure, SPE 503 must encrypt and

cryptographically seal (e.g., using a one-way hash function

initialized with a secret value known only inside the SPU 500)

each swap block before. it writes it to secondary storage. The

-342-

Petitioner Apple Inc. — Exhibit 1006, p. 1073

Petitioner Apple Inc. - Exhibit 1006, p. 1074

WO 98/09209 PCI'fUS9'lIl 5243

SPE 503 must decrypt and verify the cryptographic seal for each

swap block read from secondary storage 652 before the swap

block can be returned to the secure execution space for further

execution.

Loading a "swap block“ into SPU memory may require one 2

or more "paging operations“ _to possibly first save, and then flush,

any-"dirty pages" (i.e., pages changed by SPE 503) associated

with the previously loaded swap blocks, and to load required

10 pages for the new swap block context.

Kernel dispatcher 522 preferably manages the ”swap

blocks“ using service interrupt queues 588. These service

interrupt queues 588 allow kernel/dispatcher 552 to track tasks

15 (swap blocks) and their status (running, "swapped out,“ or

”asleep“). The kernel/dispatcher 552 in the preferred

embodiment may maintain the following service interrupt

Wiqueues 588 to help it manage the "swap blocks“:

RUN queue

20 2 SWAP queue

SLEEP queue.

Those tasks that are completely loaded in the execution space

and are waiting for and/or using execution cycles from

microprocessor 502 are in the RUN queue. Those tasks that are

-343-

Petitioner Apple Inc. — Exhibit 1006, p. 1074

Petitioner Apple Inc. - Exhibit 1006, p. 1075

W0 93/09209 PC>I'/US97/15243

”swapped“ out (‘e.g., because they are waiting for other

swappable components to be loaded) are referenced in the SWAP

needed at the moment) are referenced in the SLEEP queue.

Kernel/dispatcher task manager 576 may, for example,

transition tasks between the RUN and SWAP queues based upon

a "round-robin“ scheduling algorithm that selects the next task

waiting for service. swaps in any pieces that need to be paged in,
10 and executes the task. Kernel/dispatcher 552 task manager 576

may transition tasks between the SLEEP queue and the "awake“

(i.e., RUN or SW.-KP! queues as needed.

When two or more tasks try to write to the same data

15 structure in a multi-tasking environment. a situation exists that

may result in “deadly embrace“ or "’task starvation.“ A "multi-

threaded“ tasking arrangement may be used to prevent ”deadly

20 threaded“ or ”multi-threaded“ tasking.

In single threaded applications, the kemel/dispatcher 552

"locks“ individual data structures as they are loaded. Once

locked, no other SPE 503 task may load them and will "block“

-344-

Petitioner Apple Inc. — Exhibit 1006, p. 1075

Petitioner Apple Inc. - Exhibit 1006, p. 1076

wo 98/09209 I PCT/US97/15243

waiting for the data structure to become available. Using a

single threaded SPE 503 may, as a practical matter, limit the

ability of outside vendors to create load modules 1100 since there

can be no assurance that they will not cause a ”deadly embrace“

5 with other VDE processes about which outside vendors may

know little or nothing. Moreover, the context swapping of a

partially updated record might destroy the integrity of the

system,‘ permit unmetered use, and/or lead to deadlock. In

addition’, such ”locking“ imposes a potentially indeterminate

_1O A delay into a typically time critical process, may limit SPE 503

throughput, and may increase overhead.

This issue notwithstanding, there are other significant

processing issues related to building single-threaded versions of

15 SPE 503 that may limit its usefulness or capabilities under some

circumstances. For example, multiple concurrently executing

tasks may not be able to process using the same often-needed

data structurein a single-threaded SPE 503. This may

efiectively limit the number of concurrent tasks to one.

20 Additionally, single-threadedness may eliminate the capability of

producing accurate summary budgets based on a number of

concurrent tasks since multiple concurrent tasks may not be able

to efiectively share the same summary budget data structure.

Single-threadedness may also eliminate the capability to support _

-345-

Petitioner Apple Inc. — Exhibit 1006, p. 1076

Petitioner Apple Inc. - Exhibit 1006, p. 1077

WO 98109209 PCTIUS97]15243

audit processing concurrently With‘ other processing. For

example, real-time feed processing might have to be shut down

in order to audit. budgets and meters associated with the

monitoring process.

One way to provide a more workable "single-threaded“

capability is for kernel/dispatcher 552 to use virtual page

handling algorithms to track "dirty pages“ as data areas are

Writtento. The "dirty pages“ can be swapped in and out with the

10 task swap block as part of local data associated with the swap‘

block. When a task exits. the "dirty pages“ can be merged with

the current data structure (possibly updated by another task for

SPU 500) using L1 three-way merge algorithm (i.e., merging the

original data structure. the current data structure, and the "dirty

15 - pages“ to form a new current data structure). During the update

process, the data structure can be locked as the pages are

compared and swapped. Even though this virtual paging solution

“might be workable for allowing single threading insome

applications, the vendor limitations mentioned above may limit

20 the use of such single threaded implementations in some cases to

dedicated hardware. Any implementation that supports multiple

users (e.g., "smart home“ set tops, many desk tops and certain

PDA applications, etc.) may hit limitations of a single threaded

device in certain circumstances.

-346-

Petitioner Apple Inc. — Exhibit 1006, p. 1077

Petitioner Apple Inc. - Exhibit 1006, p. 1078

W0 93E/09109 PC!‘IUS97I15243

It is preferable -when these limitations are unacceptable to

use a full "multi-threaded“ data structure write capabilities. For

example, a type of "two-phase commit“ processing of the type

used by database vendors may be used to allow data structure

5 sharing between processes. To implement this "two-phase

commit“ process. each swap block may contain page addresses for

additional memory blocks that will be used to store changed

information. A change page is a local copy of a piece of a data

element that has been written by an SPE process. The changed

10 pagelsl references associated with a/specific data structure are

stored locally to the ;<.wap block in the preferred embodiment.

For example. SPE 503 may support two (change pages) per

data structure. This limit is easily alterable by changing the size

15 of the swap block structure and allowing the update algorithm to

process all of the changed pages. The "comm.it“ process can be

invoked when a swap block that references changed pages is

about to be discarded. The commit process takes the original

data element that was originally loaded (e.g., UDEO), the current

20 data element (e.g., UDED) and the changed pages, and merges

them to create a new copy of the data element (e.g., UDEM1).

Differences can be resolved by the DTD interpreter 590 using a

DTD for the data element. The original data element is

-347-

Petitioner Apple Inc. — Exhibit 1006, p. 1078

Petitioner Apple Inc. - Exhibit 1006, p. 1079

WO 98109209 PCTIUS9‘7/15243

discarded (e.g., as determined by its DTD use count) if no other

swap block references it.

B. Kernel/Dispatcher Memory Management
OI

Memory manager 578 and virtual memory manager 580 in

the preferred embodiment manage ROM 532 and RAD/I 534

memory within SPU 500 in the preferred embodiment. Virtual 1

memory manager 580 provides a fully “virtual” memory system

.to increase the amount of"virtual“ RAIVI available in the SPE

10 secure execution space beyond the amount of physical RAM 534a

provided by SPU 500. Memory manager 578 manages the

memory in the secure execution space. controlling how it is

accessed. allocated and deallocated. SP1.’ .\IMU 540. ifpresent,

supports virtual memory manager 580 and memory manager 578

in the preferred embodiment. In some configurations

of SPU 500 there may be no virtual memory capability and all

memory management functions will be handled by memory

manager 578. Memory management can also-be used to help

enforce the security provided by SPE 503. In some classes of

20 ' SPUS 500, for example, the kernel memory manager 578 may
use hardware memory management unit (MMU) 540 to provide

page level protection within the SPU 500. Such a hardware-

based memory management system provides an effective

-- 348 -

Petitioner Apple Inc. — Exhibit 1006, 10- 1079

Petitioner Apple Inc. - Exhibit 1006, p. 1080

3W0 gsmgzog PCTM897]1524

mechanism for protecting VDE component assemblies 690 from

compromise by ”rogue“ load modules.

., In addition. memory management provided by memory

manager 578 operating at least part based on hardware-based

MMU 540 may securely implement and enforce a memory

architecture providing multiple protection domains. In such an

architecture; memory is divided into a plurality of domains that

are largely isolated from each other and share only specific

10 memory areas under the control of the memory manager 578. An

executing process cannot access memory outside its domain and

can only communicate with other processes through services

provided by and mediated by privileged kernel/dispatcher

software 552 within the SPU 500. Such an architecture is more

15 secure ifit is enforced at least in part by hardware within MMU

540 that cannot be modified by any software—based process

executing within SPU 500.

In the preferred embodiment, access to services

20 implemented in the ROM 532 and to physical resources such as

NVRAM 534b and RTC 528 are mediated by the combination of

privileged kemel/dispatcher software 552 and hardware within

MMU 540. ROMV 532 and RTC 528 requests are privileged in

-349-

Petitioner Apple Inc. — Exhibit 1006, p. 1080

Petitioner Apple Inc. - Exhibit 1006, p. 1081

W0 98,0920, . h PCTIUS97/15243

order to protect access to critical system component routines

<e.g., RTC 523).

Memory manager 578 is responsible for allocating and
on

deallocating memory; supervising sharing of memory resources

between processes: and enforcing memory access/use restriction.

The SPE kernel/dispatcher memory manager 578 typically

initially allocates all memory to ‘kernel 552, and may be
configured to permitlonly process-level access to pages as they .

10 are loaded by a specific process. ln one example SPE operating

system configuration. memory manager 578 allocates memory

using a simplified allocation mechanism. A list of each memory

page accessible in SPE 503 may be represented using a bit map

allocation vector. for example. In a memory block, a group of

15 contiguous memory pages may start at a specific page number.

The size of the block is measured by the number of memory

pages it spans. Memory allocation may be recorded by

setting/clearing the appropriate bits in the allocation vector.

20 To assist in memory management functions, a "dope

vector“ may be prepended to a memory block. The “dope vector“

may contain information allowing memory manager 578 to

manage that memory block. In its simplest form, a memory

block may be structured as a "dope vector“ followed by the actual

-350-

p Petitioner Apple Inc. — Exhibit 1006, p. 1081

Petitioner Apple Inc. - Exhibit 1006, p. 1082

wo 93/09209 PCT/US97Il5243

memory area of the block. This "dope vector“ may include the

block number. support for dynamic paging of data elements, and

a marker to detect memory overwrites. Memory manager 578

may track memory blocks by their block number and convert the

5 block number to an address before use. All accesses to the

memory area can be automatically offset by the size of the "dope

vector“ during conversion from a block memory to a physical

address. "Dope vectors" can also be used by virtual memory

manager 580 to help manage virtual memory.

10

I The ROM 53?. memory management task performed by

memory manager 578 is relatively simple in the preferred

embodiment. .-‘~.ll R031 532 pages may be flagged as "read only“

and as "non-pagable." EEPROM 532B memory management

15 may be slightly more complex since the "burn count“ for each

EEPROM page may need to be retained. SPU EEPROM 532B

may need to be protected from all uncontrolled writes to conserve

the limited writable lifetimerof certain types of this memory.

Furthermore, EEPROM pages may in some cases not be the

20 same size as memory management address pages.

SPU NVRAM 534b is preferably battery backed RAM that

has a few access restrictions. Memory manager 578 can ensure

control structures that must be locatedin NVRAM 534b'are not

-351-

Petitioner Apple Inc. — Exhibit 1006, p. 1082

Petitioner Apple Inc. - Exhibit 1006, p. 1083

10

20

W0 98/0920!‘

relocated during "garbage collection“ processes, As discussed

above, memory manager 578 (and MMU 540 if present) may

protect NVRAM 534b and RAM 534a at a page level to prevent

tampering by other processes.

Virtual memory manager 580 provides paging for

(1) subdividing load modules 1100; and

(2) supporting virtual paging.

Load modules 1100 can be "subdivided“ in that in many

example. Such load modules 1100 can be broken up into

separate components (e.g., executable code and plural data

description blocks), only one of which must be loaded for simple
load modules to execute. This structure permits a load module

~352-

Petitioner Apple Inc. — Exhibit 1006, p. 1083

PCT/US97/15243 ’

Petitioner Apple Inc. - Exhibit 1006, p. 1084

wo 98/09209 1>crrus97/15243

1100 to initially load only the executable code and to load the

data description blocks into the other system pages on a demand

basis. Many load modules 1100 that have executable sections

that are too large to fit into SPU 500 can be restructured into

5 two or more smaller independent load modules. Large load

modules may be manually ”split“ into multiple load modules that

are ”cha.ined“ together using explicit load module references.

Although "demand paging“ can be used to relax some of

10 these restrictions. the preferred embodiment uses virtual paging

to manage large data structures and executables._ Virtual

Memory Manager 580 "swaps“ information (e.g., executable code

and/or data structures: into and out of SPU RAM 534a, and

provides other related virtual memory management services to

15 allow a full virtual memory management capability. Virtual

memory management may be important to allow limited resource

SPU 500 configurations to execute large and/or multiple tasks.

C. SPE Load Module Execution Manager 668

20 The SPE (HPE) load module execution manager ("LMEM")

568 loads executables into the memory managed by memory

manager 578 and executes them. LMEM 568 provides
mechanisms for tracking load modules that are currently loaded

inside the protected execution environment. LMEM 568 also

-353-

Petitioner Apple Inc. — Exhibit 1006, p. 1084

Petitioner Apple Inc. - Exhibit 1006, p. 1085

WO 98/09209 p PCTIUS97/15243

provides access to basic load modules and code fragments stored

within, and thus always available to, SPE 503. LMEM 568 may

be called, for example. by load modules 1100 that want to

execute other load modules.

on

In the preferred embodiment, the load module execution

manager 568 includes a load module executor (”«.prog1"am loader“)

570, one or more internal load modules 572, and library routines

574. Load module executor 570 loads executables into memory
10 (e.g., after receivingva memory allocation from memory manager

578) for execution. Internal load module library 572 may provide

a set of commonly used basic load modules 1100 (stored in ROM

532 or NVR.A_\l 5.'34b. for example). Library routines 574 may

provide a set of commonly used code fragments/routines (e.g.,

15 bootstrap routines; for execution by SPE 503.

Library routines 574 may provide a standard set of library

functions in ROM 532. A standard list of such library functions _

along with their entry points and parameters may be used. Load

20 modules 1100 may call these routines (e.g., using an interrupt

reserved for this purpose). Library calls may reduce the size of

load modules by moving commonly used code into a central

location and permitting a higher degree of code reuse. All load

modules 1100 for use by SPE 503 are preferably referenced by a

-354-

Petitioner Apple Inc. — Exhibit 1006, p. 1085‘

Petitioner Apple Inc. - Exhibit 1006, p. 1086

P(I'l'IU 97115243WO 98109209 S

load module execution manager 568 that maintains and scans a

list of available load modules and selects the appropriate load

module for execution. If the load module is not present within

SPE 503, the task is "slept" and LMEM 568 may request that the

5 load module 1100 be loaded from secondary storage 562. This

request may be in the forth of an RPC call to secure database

manager 566 to retrieve the load module and associated data

structures, and a call to encrypt/decrypt manager 556 to decrypt

the load. module before storing it in memory allocated by memory.
10 manager 578.

In somewhat more detail. the preferred embodiment

executes a load module 1100 by passing the load module

execution manager 568 the name (e.g., VDE ID) of the desired

15 load module 1100. LMEM 568 first searches the list of ”in

memory“ and "built-in" load modules 572. If it cannot find the

desired load module 1100 in the list, it requests a copy from the

0 secure database 610 by issuing an RPC request that'm‘ay be

handled by ROS secure database manager 744 shown in Figure

20 - 12. Load module execution manager 568 may then request

A memory manager 578 to allocate a memory page to store the load

module 1100. The load module execution manager 568 may copy

the load module into that memory page, and queue the page for

decryption and security checks by encrypt/decrypt manager 556

-355-

Petitioner Apple Inc. — Exhibit 1006, p. 1086

Petitioner Apple Inc. - Exhibit 1006, p. 1087

WO 98109209 A PCT/US97Il5243

key and tag manager 558. Once the page is decrypted and
checked. the load module execution manager 568 checks the

validation tag and inserts the load module into the list of paged

in modules and returns the page address to the caller; The caller

5 may then call the load module 1100 directly or allow the load

module execution module 570 to make the call for it.

l“igure 15a shows a detailed example of a possible format

for a channel header 596 and a channel 594 containing channel

10 detail records 594t 1 594(2). . . . 594(N). Channel header 596

may include a channel ID field 59m a user ID field 597(2), an

object ID field 597735. a field containing alrelerence or other

identification to a "right" (Le, a collection of events supported by

methods referenced in a PERC 808 andjor "user rights table“

15 464) 597(4), an event queue 597(5):, and one or more fields 598

that cross-reference particular event codes with channel detail

records ("CDRs“). Channel header 596 may also include a ”_jump“

or reference table 599 that permits addressing of elements

Within an associated component assembly or assemblies 690.

20 Each CDR 594(1), . . . 594(N) corresponds to a specific event

(event code) to which channel 594 may respond. In the preferred

embodiment, these CDRs may include explicitly and/or by

reference each method core 1000’ (or fragment thereof), load

module 1100 and data structure(s). (e.g., URT, UDE 1200 and/or

-356-

Petitioner Apple Inc. — Exhibit 1006, p. 1087

Petitioner Apple Inc. - Exhibit 1006, p. 1088

W0 98,092,”, Pcr/US97/15243

MDE 1202) needed to process the corresponding event. In the

preferred embodiment, one or more of the CDRS (e.g., 594(1))

may reference a control method and a URT 464 as a data

structure.

Figure 15b shows an example of program control steps

performed by SPE 503 to ”open“’a channel 594 in the preferred

embodiment. In the preferred embodiment, a channel 594

provides event processing for a particular VDE object 300, a

10 particular authorized user, and a particular ”right“ (i.e., type of

event). These three parameters may be passed to SPE 503. Part

of SPE kemel/dispatcher 552 executing within a "channel 0“

constructed by low level services 582 during a ”bootstrap“ routine

may respond initially to‘ this ”open channel“ event by allocating

15 I an available channel supported by the processing resources of

SPE 503 (block 1125). This "channel 0“ "open charmel“ task may

then issue a series of requests to secure database manager 566 to

obtain the ”blueprint“ for constructing one or more component

assemblies 690 to be associated with channel 594 (block 1127).

20 In the preferred embodiment, this ”blueprint“ may comprise a

PERC 808 and/or IIRT 464. In may be obtained by using the

”Object, User, Right“ parameters passed to the “open channel“

routine to ”chain“ together object registration table 460 records,

user/object table 462 records, URT 464 records, and PERC 808

-357-

Petitioner Apple Inc. — Exhibit 1006, p. 1088

Petitioner Apple Inc. - Exhibit 1006, p. 1089

we 93,0920; ' , PCI‘/US97/15243

A records. This ”open channel“ task may preferably place calls to

key and tag manager 558 to validate and correlate the tags

associated vvith these various records to ensure that they are

authentic and match. The preferred embodiment process then

may write appropriate information to channel header 596 (block
U!

1129). _Such information may include, for example, User ID,

Object ID, and a reference to the ”right“ that the cha.nnel will

process. The preferred embodiment process may next use the

”blueprint“ to access te.g, the secure database manager 566

10 and/or from load module execution manager library(ies) 568) the

appropriate "control method“ that may be used to, in effect,

superviseexecution of all of the other methods 1000 Within the

channel 594 (block 1131 :. The process may next ”bind“ this

control method to the channel (block 1133), which step may

15 include binding information from a URT 464 into the channel as

a data structure for the control method. The process may then

”initialization“ event into channel 594 (block 1135). This

"initialization" event may be created by the channel'sérvices

manager 562, the process that issued the original call requesting

20 a service being fulfilled by the channel being built, or the control

method just bound to the channel could itself possibly generate

an initialization event which it would in effect pass to itself.

-358-

Petitioner Apple Inc. — Exhibit 1006, p. 1089

Petitioner Apple Inc. - Exhibit 1006, p. 1090

WO 98/09209 ‘ PCT/US97I15243

In response to this ”initiaIization“ event, thencontrol

method may construct the charmel detail records 594(1), . . .

594(N) used to handle further events other than the

”initialization“ event. The control method executing ”within“ the

5 channel may access the various components it needs to construct

associated component assemblies 690 based on the "blueprint"

accessed at step 1127 (block 1137). Each of these components is

bound to the channel 594 (block 1139) by constructing an

associated channel detail record specifying the method core(s)

10 1000’, load module(s) 1100, and associated data structure(s)l

(e.g., UDE(s) 1200 and/or MDE(s) 1202) needed to respond to the

event. The number of channel detail records will depend on the

number of events that can be serviced by the "right," as specified

by the ”blueprint“ (i.e., URT 464). During this process, the

15 control method will construct ”swap blocks“ to, in effect, set up

all required tasks and obtain necessary memory allocations from

kernel 562. The control method will, as necessary, issue calls to

secure database manager 566 to retrieve necessary components

from secure database 610, issue calls to encrypt/decrypt manager

20 556 to decrypt retrieved encrypted information, and issue calls to

key and tag manager 558 to ensure that all retrieved components

are validated. Each of the various component assemblies 690 so

constructed are ”bound“ to the channel through the channel

header event code/pointer records 598 and by constructing

-359-

Petitioner Apple Inc. — Exhibit 1006; p. 1090

Petitioner Apple Inc. - Exhibit 1006, p. 1091

WO 98/09209 PCI‘/US97/15243

appropriate swap blocks referenced by channel detail records

594(1), . . . 594(N). VVhen this process is complete, the channel

594 has been completely constructed and isyreadyéto respond to
further events. As a last step, the Figure 15b process may, if .

desired, deallocate the ”initialization“ event task in order to free

up resources.

Once a channel 594 has been constructed in this fashion, it

10 _ -

time a new event arrives ie.g., via an RPC call), channel services

‘manager 562 examines the event to determine whether a

channel already exists that is capable of processing it. Ifa

channel does exist. then the channel services manager 562

15 passes the event to that channel. To process the event, it may be

this way, executable component assemblies 690 formed during

the channel open process shbwn in igure 15b are placed into

20 active secure execution space, the particular component

assembly that is activated being selected in response to the

received event code. The activated task will then perform its

desired function in response to the event.

-360-

Petitioner Apple Inc. — Exhibit 1006, p. 1091

Petitioner Apple Inc. - Exhibit 1006, p. 1092

W0 98/09209 IUS97/15243

To destroy a channel, the various swap blocks defined by

the channel detail records are destroyed, the identification

' information in the channel header 596 is wiped clean, and the

channel is made available for re-allocation by the "channel 0“

“open channel“ task.U!

D. SPE Interrupt Handlers 584

As shown in Figure 13, kernel/dispatcher 552 also provides

internal interrupt handlerls) 584. These help to manage the .

10 resources of SPU 500. SPU 500 preferably executes in either

"interrupt“ or "polling" mode for all significant components. In

polling mode, kemeljdispatcher 552 may poll each of the A

sections/circuits W‘lthin SPU 500 and emulate an interrupt for

them. The following interrupts are preferably supported by SPU

15 500 in the preferred embodiment:

- "tick“ of RTC 528

5 interrupt from bus interface 530

- power fail interrupt

- watchdog timer interrupt

20 - interrupt from encryptldecrypt engine 522

- memory interrupt (e.g., from MM'U 540).

When an interrupt occurs, an interrupt controller within

microprocessor 520 may cause the microprocessor to begin

-361-

Petitioner Apple Inc. — Exhibit 1006, p. 1092

Petitioner Apple Inc. - Exhibit 1006, p. 1093

WO 98109209

10

20

PCI'IUS97I15243

' executing an appropriate interrupt handler. An interrupt

handler is a piece of software/firmware provided by

kernel/dispatcher 552 that allows microprocessor 520 to perform

itparticular functions upon the occurrence of an interrupt. The

interrupts may be "vectored“ so that difierent interrupt sources

may effectively cause different interrupt handlers to be executed.

A "timer tick“ interrupt is generated when the real-time

RTC 528 "pulses.‘ The timer tick interrupt is processed by a

timer tick interrupt handler to calculate internal device

date/time and to generate timer events for channel processing.

The bus interface unit 530 may generate aiseries of

interrupts. In the preferred embodiment. bus interface 530,

modeled after a USART. generates interrupts for various

conditions (e.g., ”receive buffer full,“ "transmitter buffer empty,“

and "status word change“). Kemel/dispatcher 552 services the

transmitter buffer empty interrupt by sending the next character

from the transmit queue to the bus interface 530.

.KerneI/dispatcher interrupt handler 584 may service the

received buffer full interrupt by reading a character, appending

it to the current buffer, and processing the buffer based on the

state of the service engine for the bus interface 530.

Kemel/dispatcher 552 preferably processes a status word change

-362-

Petitioner Apple Inc. — Exhibit 1006, p. 1093

Petitioner Apple Inc. - Exhibit 1006, p. 1094

WO 98/09209 PCTIUS97/15243

interrupt and addresses the appropriate send/receive buffers

accordingly.

SPU 500 generates a power fail interrupt when it detects

5 an imminent power fail condition. This may require immediate

action to prevent loss of information. For example, in the

preferred embodiment, a power fail interrupt moves all recently__

written information (i.e., "dirty pages“) into non-volatile NVRAM

534b, marks all swap blocks as ”swapped out,“ and sets the

10 appropriate power fail flag to facilitate recovery processing.

Kernel/dispatcher 552 may then periodically poll the "power fail

bit“ in a status word until the data is cleared or the power is

removed completely.

15 SPU .500 in the example includes a conventional watchdog

device checks to ensure that tampering is not occurring. The

internal clocks of the watchdog timer and RTC 528 are compared

20 to ensure SPU 500 is not being paused or probed, and other

internal checks on the operation of SPU 500 are made to detect

tampering.

-363 -'

Petitionei‘ Apple Inc. — Exhibit 1006, p. 1094

Petitioner Apple Inc. - Exhibit 1006, p. 1095

wo 98/09209 _ rcr/us97/15243

The encryption/decryption engine 522 generatesuan

interrupt when a block of data has been processed. The kernel

interrupt handler 584 adjusts the processing status of the block

(being encrypted or decrypted, and passes the block to the next

5 V stage of processing. The next block scheduled for the encryption

service then has its key moved into the encrypt/decrypt engine

522, and the next cryptographic process started.

A memory management unit 540 interrupt is generated

10 when a task attempts to access memory outside the areas

assigned to it. A memory management interrupt handler traps

the request. and takes the necessary action (e.g., by initiating a

control transfer to memory manager 578 and/or virtual memory

manager 580). Generally, the task will be failed, a page fault_-_

15 exception will be generated, or appropriate virtual memory
page(s) will be paged in.

E. Kernel/Dispatcher Low Level Services 582

Low level services 582 in the preferred embodiment

20 provide ”low level“ functions. These functions in the preferred

embodiment may include, for example, power-on initialization,

device POST, and failure recovery routines. Low level services

582 may also in the preferred embodiment provide (either by

themselves or in combination with authentication

-364-

Petitioner Apple Inc. — Exhibit 1006, p. 1095

Petitioner Apple Inc. - Exhibit 1006, p. 1096

W0 98I09209 PCT/US97ll5243

manager/service communications manager 564) download

response-challenge and authentication communication protocols,

and may provide for certain low level management of SPU 500

memory devices such as EEPROM and FLASH memory (either

alone or in combination with memory manager 578 and/orUI

virtual memory manager 580).

F. Kernel/Dispatcher BIU handler 586

Bl'U handler 586 in the preferred embodiment manages

0 10 the bus interface unit 530 (if present). It may, for eicample,

maintain read and write buffers for the BIU 530, provide BTU

startup initialization, etc.

G. Kernel/1.)ispatcher DTD Interpreter 590

15 0 DTD interpreter 590 in the preferred embodiment handles

data formatting issues. For example, the DTD interpreter 590

may automatically open data structures such as UDES 1200

based on formatting instructions contained within DTDs.

20 The SPE kernel/dispatcher 552 discussed above supports

-all of the other services provided by SPE 503. Those other

services are discussed below.

-365-

Petitioner Apple Inc. — Exhibit 1006, p. 1096

Petitioner Apple Inc. - Exhibit 1006, p. 1097

WO 98/09209 - _ PCTfUS97ll5243

II. SPU Channel Services Manager 562

"Channels“ are the basic task processing mechanism of

SPE 503 (HPE 655) in the preferred embodiment. ROS 602

provides an event-driven interface for ”methods.“ A ”channel“

allovvs component assemblies 690 to service events. A "channel"(II

is a co_nduit for passingfevents“ from services supported by SPE

503 (HPE 655) to the various methods and load modules that

have been specified to process these events, and also supports

_ the assembly of component assemblies 690 and interaction

10 between component assemblies. In more detail, "channel" 594 is

a data structure maintained by channel manager 593 that

’’binds‘‘ together one or more load modules 1100 and data

structures (e.g., L'DEs 1200 and/or MDES 1202) into a

component assembly 690. Channel services manager 562 causes

15 load module execution manager 569 to load the component

assembly 690 for execution, and may also be responsible for

passing events into the channel 594 for response by a component

assembly 690. In the preferred embodiment, event processing is

handled as a message to the channel service manager 562.

20

Figure 15 is a diagram showing how the preferred

embodiment channel services manager 562 constructs a

”channel“ 594, and also shows the relationship between the

channel and component assemblies 690. Briefly, the SPE

-366-

Petitioner Apple Inc. — Exhibit 1006, p. 1097

Petitioner Apple Inc. - Exhibit 1006, p. 1098

W0 98,0921” PCI'IUS97Il52-13

channel manager 562 establishes a ”channel“ 594‘ and an

associated ”channel header“ 596. The channel 594 and its

header 596 comprise a data structure that ”binds“ or references

elements of one or more component assemblies 690. Thus, the

5 channel 594 is the mechanism in the preferred embodiment that

collects together or assembles the elements shown in Figure 11E

into a component assembly 690 that may be used for event

processing.

10 I The channel 594 is set up by the channel services manager

562 in response to the occurrence of an event; Once the channel

is created, the channel services manager 562 may issue function

calls to load module execution manager 568 based on the channel

594. The load module execution manager 568 loads the load

15 modules 1100 referenced by a channel 594, and requests

execution services by the kernel/dispatcher task manager 576.

The kernel/dispatcher 552 treats the event processing request as

H a taslgland executes it by executing the code Within-the load

modules 1100 referenced by the channel.

20

The channel services manager 562 may be passed an

identification of the event (e.g., the ”event code“). The channel

services manager 562 parses onelor more method cores 1000’

that are part of the component assembly(ies) 690 the channel

-367-

Petitioner Apple Inc. — Exhibit 1006, p. 1098

Petitioner Apple Inc. - Exhibit 1006, p. 1099

wo 98l09209 . 6 ' PCl‘IUS97ll5243

services manager is to assemble. It performs this parsing to

determine which.method(s) and data structure(s) are invoked by

the type of event. Channel manager 562 then issues calls (e.g.,
to secure database manager 566) to obtain the methods and data

structure(s) needed to build the component assembly 690. These

called-formethod(s) and data structure(s) (e.g., load modules

1100, UDEs 1200 and/or MDEs 1202) are each decrypted using

encrypt/decrypt manager 556 (if necessary), and are then each

validated using key and tag manager 558. Channel manager

10 562 constructs any necessary "jump table“ references to, ineffect,

"link“ or ”bind“ the elements into a single cohesive executable so

the load modulelsl can reference data structures and any other

load module(s; in the component assembly. Channel manager

562 may then issue calls to LMEM 568 to load the .°::.-acutable as

-15 an active task.

Figure 15 shows that a channel 594 may reference another

channel. An arbitrary number of channels 594 may be created

by channel manager 594 to interact witheone another.

20

"Channel header“ 596 in the preferred embodiment is (or

references) the data structure(s)" and associated control

progra.m(s) that queues events from channel event sources,

processes these events, and releases the appropriate tasks

-368-

Petitioner Apple Inc». — Exhibit 1006, 10- 1099

Petitioner Apple Inc. - Exhibit 1006, p. 1100

PCT/US97]15243WO 98/09209

10

15

specified in the ”channel detail record“ for processing. A

"channel detail record“ in the preferred embodiment links an

event to a ”swap block“ (i.e., task) associated with that event.

The ”swap block“ may reference one or more load modules 1100,

UDEs 1200 and private data areas required to properly process

the event. One swap block and a corresponding channel detail

item is created for each different event the channel can respond
to.

In the preferred embodiment, Channel Services Manager

562 may support the following (internal) calls to support the

creation and maintenance of channels 562:

Writes an event to the channel for

response by the channel. The

_Vl_7n‘;e_E;/‘en; call thus permit the

caller to insert an event into the

event queue associated with the

channel. The event will be

processed in turn by the channel
594.

Q369-

Petitioner Apple Inc. — Exhibit 1006, p. 1100

Petitioner Apple Inc. - Exhibit 1006, p. 1101

W0 gsmgzog ‘ ’ PCT/US97/15243

Binds an item to a channel with

the appropriate processing

algorithm. The Bindltgm call

permits the caller to bind a VDE

item ID to a channel (e.g., to create

one or more swap blocks associated

with a channel). This call may
manipulate the contents of

individual swap blocks.

Unbinds an item from a channel

with the appropriate processing

algorithm. The flnbj.nd_II@_m call

permits the caller to break the

binding of an item to a swap block.

This call may manipulate the

contents of individual swap blocks.

5 SPE RPC Manager 550

As described in connection with Figure 12, the architecture

of R_O_S 602 is based on remote procedure calls in the preferred

embodiment. R08 602 includes an RPC Manager 732 that

passes RPC calls between services each of which present an RPC

10 service interface ("RSI“) to the RPC manager. In the preferred

embodiment, SPE 503 (HPE 655) is also built around the same

RPC concept. The SPE 503 (HPE 655) may include a number of

internal modular service providers each presenting an RSI to an

RPC manager 550 internal to the SPE (HPE). These internal

-370-

Petitioner Apple Inc. — Exhibit 1006, p. 1101

Petitioner Apple Inc. - Exhibit 1006, p. 1102

W0 98/09209 PCTIUS97ll5243

service providers may communicate with each other and/or with

ROS RPC manager 732 (and thus, with any other service

provided by ROS 602 and with external services), using RPC

service requests.

RPC manager 550 within SPE 503 (HPE 655) is not the

same as RPC manager 732 shown in Figure 12, but it performs a

similar function within the SPE (HPE): it receives RPC requests _
and passes them to the RSI presented by the service that is to

10 fulfill the request._ In the preferred embodiment, requests are

passed between ROS RPC manager 732 and the outside world

(i.e., SPE device driver 736) via the SPE (HPE)

Kernel/Dispatcher 552. Kernel/Dispatcher 552 may be able to

service certain RPC requests itself, but in general it passes

15 received requests to RPC manager 550 for routing to the

appropriate service internal to the SPE (HPE). In an alternate

embodiment, requests may be passed directly between the HPE,

SPE, API, Notification interface, and other external services

instead of routing them through the ROS RPC manager 732.

20 The decision on which embodiment to use is part of the

scalability of the system; some embodiments are more efiicient

_ than others under various traffic loads and system

configurations. Responses by the services (and additional service

requests they may themselves generate) are provided to RPC

-371-

Petitioner Apple Inc. — Exhibit 1006, 10- 1102

Petitioner Apple Inc. - Exhibit 1006, p. 1103

W0 98/09209 I PCT/US97/15243

Manager 550 for routing to other service(s) internal or external

to SPE 503 (HPE 655].

SPE Manager 550 and its integrated service manager

5 uses two tables to dispatch remote procedure calls: an RPC

services table, and an optional RPC dispatch table. TheiRPC

services table describes where requests for specific services are to

be routed for processing. "In the preferred embodiment, this table

is constructed in SPU R.-LNI 534a or NVRAM 534b,‘ and lists each
10 RPC service "registered" within SPU 500. Each row of the RPC

services table contains a service ID, its location and address, and

a control byte. In simple implementations. the control byte

indicates only that the service is provided internally or

externally. In more complex implementations, the control byte

15 can indicate an instance of the service (e.g., each service may

have multiple "instances“ in a multi-tasking environment). ROS

RPC manager 732 and SPE 503 may have symmetric copiesof
the RFC services table in the preferred embodiment. If an RPC

service is not found in the RPC services table, SPE 503 may

20 either reject it or pass it to ROS RPC manager 732 for service.

The SPE RPC manager 550 accepts the request from the

RPC service table and processes that request in accordance with

the internal priorities associated with the specific service. In

-372-

Petitioner Apple Inc. — Exhibit 1006, p. 1103

Petitioner Apple Inc. - Exhibit 1006, p. 1104

WO 98/09209 PCI'IUS97/15243

SPE 503, the RPC service table is extended by an-RPC dispatch

. table. The preferred embodiment RPC dispatch table is

‘organized as a list of Load Module references for each RPC

service‘ supported internally by SPE 503. Each row in the table

5 " contains a load module ID that services the call, a control byte

that indicates whether the call can be made from an external

caller, and whether the load module needed to service the call is

permanently resident in SPU 500. The RPC dispatch table may

be constructed in sPU ROM 532 (or EEPROM) when SPU

10 firmware 508 is loaded into the SPU 500. If the RPC dispatch

table is in EEPROM. it flexibly allows for updates to the services

without load module location and version control issues.

In the preferred embodiment, SPE RPC manager 550 first

15 references a service request against the RPC service table to

determine the location of the service manager that may service

‘ the request. The RPC manager 550 then routes the service

request to the appropriate service manager for action. Service

requests are handled by the service manager within the SPE 503

420 using the RPC dispatch table to dispatch the request. Once the

RPC manager 550 locates the service reference in the RPC

dispatch table, the load module that services the request is called

and loaded using the load module execution manager 568. The

load module execution manager 568 passes control to the

-373-

Petitioner Apple Inc. — Exhibit 1006, p. 1104

Petitioner Apple Inc. - Exhibit 1006, p. 1105

wo 93/09209 It PCT/US97I15243

requested load module after performing all required context

configuration. or if necessary may first issue a request to loadit

from the external management files 610. _

5 SPU Time Base Manager 554

The time base manager 554 supports calls that relate to

the real time clock (”RTC“) 528. In the preferred embodiment,

the time base manager 554 is always loaded and ready to

respond to time based requests.

10

The table below lists examples of basic calls that may be

supported by the time base manager 554:

15
Sets the time in the RTC 528. Access to this

command may be restricted to a VDE

administrator.

Changes the time in the RTC 528. Access to

this command may be restricted to a VDE

administrator.

Set GMT / local time conversion and the

current and allowable magnitude of user
ad'ustments to RTC 528 time.

20

 hannel Services Mann ; er Re - ueata

-374-

Petitioner Apple Inc. — Exhibit 1006, p. 1105

Petitioner Apple Inc. - Exhibit 1006, p. 1106

wo 93/09209 PCIIUS97/15243

 Descri - tion

 Bind timer services to a channel as an event

source.

 Unbind timer services from a channel as an

event SOUTCB.

nbind Time

 Sets an alarm notification for a specific time.

The user will be notified by an alarm event at

the time of the alarm. Parameters to this

request determine the event, frequency, and

rocessin for the alarm.

re uested

 lear Alarm l Cancels a reuested alarm notification.
OI

SPU Encryption/Decryption Manager 556

The Encryption/Decryption Manager 556 supports calls to

the various encr}."ption/decryption techniques supported by SPE

10 503/HPE 655. It may be supported by a hardware-based

encryption/decryption engine 522 within SPU 500. Those

encryption/decryption technologies not supported by SPU

encrypt"decrypt engine 522 may be provided by encryptjdecrypt .

manager 556 in software. The primary bulk

15 encryption/decryption load modules preferably are loaded at all

times, and the load modules necessary for other algorithms are

preferably paged in as needed. Thus. if the primary bulk

encryption/decryption algorithm is DES, only the DES load

modules need be permanently resident in the RAM 534a of SPE

20 v 503/HPE 655.

-375-

Petitioner Apple Inc. — Exhibit 1006, p. 1106

Petitioner Apple Inc. - Exhibit 1006, p. 1107

WO 98/09209 . ‘ PCTIUS97/15243

The following are examples of RPC calls supported by I

Encrypt/Decrypt Manager 556 in the preferred embodiment:

5 Call Name Descri - tion

PK Encrypt Encrypt a block using a PK (public key)
algorithm. '

PK Dec t I Dec t a block usin a PK alorithm.

DES Encrypt a block using DES.

10 DES Decrypt a block using DES.
Dec I .

Encrypt a block using the RC-4 (or other bulk

.-tion) alorithm.

Decrypt a block using the RC-4 (or other bulk

15 encrvotion) algorithm.

Initialize Initialize DES instance to be used.

DES '

Instance

Initialize Initialize RC-4 instance to be used.

20 RC-,4

Instance

Initialize MD5 instance to be used.

Block25

The call parameters passed may include the key to be

30 used; mode (encryption or decryption): any needed Initialization ‘

~376-

Petitioner Apple Inc. — Exhibit 1006, p. 1107

Petitioner Apple Inc. - Exhibit 1006, p. 1108

wo gsmgzog PCT/US97l15243

Vectors; the desired cryptographic operating (e-3.. type 0f

feedback); the identification of the cryptographic instance to be

used; and the start address, destination address, and length of

V the block to be encrypted or decrypted.

5

SPU Key and Tag Manager 558

The SPU Key and Tag Manager 558 supports calls for key

storage, key. and management file tag look up, key convolution,

and the generation of random keys, tags, and transaction

10 numbers.

The following table shows an example ofa list of SPE/HPE

key and tag manager service 558 calls:

15 I Deccriticn

l Retrieve the reauested kev.

et Kev I Set (store) the specified kev.

nerate Kev I Generate a kev 1' air) for a specified alorithm.

20 nerate Convoluted Key Generate a key using a specified convolution
alorithm and algorithm arameter block.

t Convolution Return the currently set (default) convolution

- orithm arameters for a s ecific convolution alorithm.

-. ’ ' Sets the convolution parameters for a specific

convolution algorithm (calling routine must
rovide a tag to read returned contents).

«
25

I t Tag Get the validation (or other) tag for a specific;
-Set the validation (or other) tag for a specificl VDE Item ID to a known value. ‘

-377-

Pctitioner Apple Inc. — Exhibit 1006, p. 1108

Petitioner Apple Inc. - Exhibit 1006, p. 1109

W0 98I09209 PCT/US97/15243

I Calculate the "hash block number“ for a specific. VDE Item ID.

U et the hash parameters and hash algorithm.
Forces a resynchronization of the hash table.

1: Hash Parameters [Retrieve the current hash- arameters/al - orithm.

Synchronize the management files and rebuild

the hash block tables based on information

found in the tables. Reserved for VDE

 at Hash Parameters

Keys and tags may be securely generated within SPE 503

10 (HPE 65a) in the preferred embodiment. The key generation

algorithm is typically specific to each type of encryption)
supported. The generated keys may be checked for cryptographic

weakness before they are used. A request for Key and Tag

Manager 558 to generate a key, tag and/or transaction number

15 preferably takes a length as its input parameter. It generates a

random number (or other appropriate key value) of the requested

length as its output.

The key and tag manager 558 may support calls to retrieve

20 specific keys from the key storage areas in SPU 500_ and any

keys stored external to the SPU. The basic format of the calls is

to request keys by key type and key number. Many of the keys

are periodically updated through contact with the VDE

administrator, and are kept within SPU 500 in.NVRA.M 534b or

-378-

Petitioner Apple Inc. — Exhibit 1006, p. 1109

Petitioner Apple Inc. - Exhibit 1006, p. 1110

W0 98109209 i '5 PC‘l‘IUS97l15243

EEPROM because these memories are secure, updatable and

non-volatile.

SPE 503/HPE 655 may support both Public Key type keys

.5 and Bulk Encryption type keys. The public key (PK) encryption

type keys stored by SPU 500 and managed by key and tag

manager 558 may include. for example, a device public key, a

device private key, a PK certificate, and a public key for the

certificate. Generally, public keys and certificates can be stored

10 eitternally in non-secured memory if desired, but the device

private key and the public key for the certificate should only be

stored intemally in an SPU 500 EEPROM or NVRAM 534b.

Some of the types of bulk encryption keys used by the SPU 500

may include, for example, general-purpose bulk encryption keys,

15 administrative object private header keys, stationary object

private header keys, traveling object private header keys,

download/initialization keys, backup keys, trail keys, and

I management file keys.

20 As discussed above, preferred embodiment Key and Tag

Manager 558 supports requests to adjust or convolute keys to

' make new keys that are produced in a deterministic way

dependent on site and/or time, for example. Key convolution is

an algorithmic process that acts on a key and some set of input

-379-

Petitioner Apple Inc. — Exhibit 1006, p. 1110

Petitioner Apple Inc. - Exhibit 1006, p. 1111

W0 98109209 PCT/US97ll5243

parameter(s) to yield a new key. It can be used, for example, to

increase the number of keys available for use without incurring

additional key storage space. It may also be used, for example,

as a process to ”age“ keys by incorporating the value of real-time

5 RTC 528 as parameters. It can be used to make keys site specific

by incorporating aspects of the site ID as parameters.

Key and Tag Manager 558 also provides services relating

to tag generation and management. In the preferred

10 embodiment, transaction and access tags are preferably stored

by SPE 503 (HPE 655': in protected memory (e.g., within the

NVRAM 534b of SPU 500). These tags may be generated by key

and tag manager 558. They are used to, for example. check

access rights to. validate and correlate data elements. For

15 example, they may be used to ensure components of the secured

data structures are not tampered with outside of the SPU 500.

Key and tag manager 558 may also support a trail transaction

tag and a communications transaction tag.

20 SPU Summary Services Manager 560

SPE 503 maintains an audit trail in reprogrammable non-

volatile memory within the SPU 500 and/or in secure database

610. This audit trail may consist of an audit of budget

activity for financial purposes, and a security summary of SPU

-380-

Petitioner Apple Inc. — Exhibit 1006, p. 1111

Petitioner Apple Inc. - Exhibit 1006, p. 1112

W0 98/09209 PCT/US97I15243

use. When a request is made to the SPU, it logs the request as

having occurred and then notes whether the request succeeded

or failed. All successful requests may be summed and stored by

type in the SPU 500. Failure information, including the

5 elements listed below, may be saved along with details of the

Control Information Retained in

an SPE on Access Failures

failure:

10

T ‘ e of failure

15 ‘

This information may be analyzed to detect cracking attempts or

to determine patterns of usage outside expected (and budgeted)

norms. The audit trail histories in the SPU 500 may be retained

20 until the audit is reported to the appropriate parties. This will

allow both legitimate failure analysis and attempts to

cryptoanalyze the SPU to be noted.

Summary services manager 560 may store and maintain

25 this internal summary audit information. This audit

information can be used to check for security breaches or other

aspects of the operation of SPE 503. The event summaries may

-381-

Petitioner Apple Inc. — Exhibit 1006, p. 1112

Petitioner Apple Inc. - Exhibit 1006, p. 1113

wo 98/09209 _ A . . rcr/us97/15243

be maintained, analyzed and used by SPE 503 (HPE 655) or a

VDE administrator to determine and potentially limit abuse of

electronic appliance 600. In the preferred embodiment, such

parameters may be stored in secure memory (e.g., within the

5 NVRAM 534b of SPU 500).

There are two basic structures for which summary services

are used in the preferred embodiment. One (the “event summary"

data structure“) is VDE administrator specific and keeps track of

10 events. The event summary structure may be maintained and

audited during periodic contact with VDE administrators. The

other is used by VDE administrators and/or distributors for

overall budget. A VDE administrator may register for event

summaries and an overall budget summary at the time an

15 electronic appliance 600 is initialized. The overall budget

summary may be reported to and used by a VDE administrator

in determining distribution of consumed budget (for example) in

in the case of corruption of secure management files 61.0.

Participants that receive appropriate permissions can register

20 their processes (e.g., specific budgets) with summary services

manager 560, which may then reserve protected memory space

(e.g., within NVRAM 534b) and keep desired use and/or access, .

parameters. Access to and modification of each summary can be

controlled by its own access tag.

-382-

Petitioner Apple Inc. — Exhibit 1006, p. 1113

Petitioner Apple Inc. - Exhibit 1006, p. 1114

10

15

WO 98/09209

The following table shows an example of a list of PPE

summary service manager 560 service calls:

Create a summary service if the user

has a_ "ticket“ that permits her to

reuest this service.

Create summary

info

 Return the current value of the

. summary service. The caller must

present an appropriate tag (and/or

"ticket“). to use this re

 uest.

 Set value l Set the value of a summarv service.

 Increment Increment the specified -summary

 service(e.g., a scalar meter summary

data area). The caller must present

 an appropriate tag (and/or "’ticket“) to '
 use this reuest.

 Destroy the specified summary service

if the user has a tag and/or "ticket“

 that permits them to request this

 service.

In the preferred embodiment, the event summary data

structure uses a fixed event number to index into a look up table.

The look up table contains a value that can be configured as a

counter or a counter plus limit. Counter mode may be used by

VDE administrators to determine device usage. The limit mode

may be used to limit tampering and attempts to misuse the

electronic appliance 600. Exceeding a limit will result in SPE

-383 -

Petitioner Apple Inc. — Exhibit 1006, p. 1114

PC!‘/US97I15243

Petitioner Apple Inc. - Exhibit 1006, p. 1115

10

WO 98109209 PCT/US97/15243

503 (HPE 655l refusing to service user requests until it is reset

by a VDE administrator. Calls to the system wide event

summary process may preferably be built into all load modules

that process the events that are of interest.

_ The following table shows examples of events that may be

separately metered by" the preferred embodiment event summary

data structure:

Event -

Successful l

Events

Initialization completed successfullv.

User authentication acce ted.

Communications established.

Channel loads set for specified values.

Dec tion comleted.

Kev information updated.

New budget created or eidsting budget
udated. 1

New billing information generated or

existin billing u dated.

New meter set up or existing meter
11 dated.

New PERC created or existing PERC
' u dated.

New ob'ects re ; 'stered.

Administrative objects successfully 1
rocessed.

Audit rocessed successfull .

1-384-

Petitioner Apple Inc. — Exhibit 1006, p. 1115

Petitioner Apple Inc. - Exhibit 1006, p. 1116

10

wo 93/09209 PCTlUS97I!5243

l All other events.

Failed Events Initialization failed.

correlation ta - match.

Dec tion attem t failed. '

Available budget insufiicient to complete
reuested rocedure.

Audit did not occur.

Administrative object did not process
correctlv.

Other failed events.

Another, "overall currency budget“ summary data

structure maintained by the preferred embodiment summary

services manager 560 allows registration of VDE electronic

appliance 600. The first entry is used for an overall currency

budget consumed value, and is registered by the VDE

administrator that first initializes SPE 503 (HPE 655). Certain

currency consuming load modules and audit load modules that

complete the auditing process for consumed currency budget may

call the summary services manager 560 to update the currency

consumed value. Special authorized load modules may have

-385-

Petitioner Apple Inc. — Exhibit 1006, p. 1116

Petitioner Apple Inc. - Exhibit 1006, p. 1117

wo 9s/09209 G rcr/us97/15243

access to the overall currency summary, while additional

summaries can be registered for by individual providers.

SPE Authentication Manager/Service Communications

Manager 564OI

The Authentication Manager/Service Communications.

Manager 564 supports calls for user password validation and

"’ticket“‘ generation and validation. It may also support secure

10 communications between SPE 503 and an extemal node or

‘ device (e.g., a VDE administrator or distributor). It may support

the following examples of authentication-related service requests

in the preferred embodiment:

Call Name l Deecri tion

Create User Creates a new user and stores Name Services

Records (NSRSJ for use by the Name Services

Mana - er 752.

Authenticates a user for use of the system.

This request lets the caller authenticate as a

specific user ID. Group membership is also

authenticated by this request. The

authentication returns a ”ticket“ for the user.

Deletes a user's NSR and related records.

15

Authenticate

User

20

Ticket Services .

Generate Generates a ”ticket“ for use of one or more
Ticket services.

-386-

Petitioner Apple Inc. — Exhibit 1006, p. 1117

Petitioner Apple Inc. - Exhibit 1006, p. 1118

wo 98,05,209 PCTIUS97/15243

Authenticate Authenticates a “ticket.”
Ticket

5 / Not included in the table above are calls to the secure

communications service. The secure communications service

provided by manager 564 may provide (e.g., in conjunction with

low-level services manager 582 if desired) secure

communications based on a public key (or) others) challenge-

10 response protocol. This protocol is discussed in further detail

elsewhere in this document. Tickets identify users with respect

to the electronic appliance 600 in the case where the appliance

may be used by multiple users. Tickets may be requested by and

returned to VDE software applications through a ticket-granting

15 protocol (e.g., Kerberosi. VDE components may require ticketsxto
be presented in order to authorize particular services.

SPE Secure Database Manager 566

Secure database manager 566 retrieves, maintains and

20 stores secure database records Within secure database 610 on

memory external to SPE 503. Many of these secure database

files 610 are in encrypted form. All secure information retrieved

by secure database manager 566 therefore must be decrypted by

encrypt/decrypt manager 556 before use. Secure information

25 (e.g., records of use) produced by SPE 503 (HSPE 655) which must

-387-

Petitioner Apple Inc. — Exhibit 1006, p. 1118

Petitioner Apple Inc. - Exhibit 1006, p. 1119

WO 98/09209 PCl‘lUS97I15243

be stored external to the secure execution environment are also

encrypted by encrypt/decrypt manager 556 before they are stored

via secure database manager 566 in a secure database file 610.

C)!
For each VDE item loaded into SPE 503, Secure Database

manager 566 in the preferred embodiment may search a master

list for the VDE item ID, and then check the corresponding

transaction tag against the one in the item to ensure that the

item provided is the current item. Secure Database Manager

10 566 may maintain list ofVDE item ID and transaction tags in a

"hash structure“ that can be paged into SPE 503 to quickly locate

the appropriate VDE item ID. In smaller systems, a look up

table approach may be used. In either case, the list should be

structured as a pagable structure that allows VDE item ID to be

15 located quickly.

The ”hash based“ approach may be used to sort the list

into "hash buckets“ that may then be accessed to provide more

rapid and efficient location of items in the list. In the "hash

20 based“ approach, the VDE item IDs are ”ha'.shed“ through a

subset of the full item ID and organized as pages of the ”hashed“

table. Each ”hashed“ page may contain the rest of the VDE item

ID and current transaction tag for each item associated with that

page. The "hash“ table page number may be derived from the

-388-

Petitioner Apple Inc. — Exhibit 1006, p. 1119

Petitioner Apple Inc. - Exhibit 1006, p. 1120

wo 93/09209 PCT/US97Il5243

components of the VDE item ID, such as distribution ID, item

ID, site ID, user ID, transaction tag, creator ID, type and/or

version. The hashing algorithm (both the algorithm itself and

the parameters to be hashed) may be configurable byva VDE

5 administrator on a site by site basis to provide optimum hash

page use. An example of a hash page structure appears below:

Hash Pae Header '

10

Distributor ID

15

20

In this example, each hash page may contain all of the

25 VDE item IDs and transaction tags for items that have identical

distributor ID, item ID, and user ID fields (site ID Will be fixed

for a given electronic appliance 600). These four pieces of

information may thus be used as hash algorithm parameters.

-389-

Petitioner Apple Inc. — Exhibit 1006, p. 1120

Petitioner Apple Inc. - Exhibit 1006, p. 1121

wo 93/09209 _ PCl‘lUS97ll5243

The ”hash"‘ pages may themselves be frequently updated,

and should carry transaction tags that are checked each time a

”hash“ page is loaded. The transaction tag may also be updated

’each time a "hash“ page is written out.

As an alternative to the hash-based approach, if the

number of updatable items is kept small (such as in a dedicated

consumer electronic appliance 600). then assigning each

updatable item a unique sequential site record number as of
10 its VDE item ID may allow a look up table approach to be used.

Only a small number of bytes of transaction tag are needed per

item, and a table transaction tag for all frequently updatable
items can be kept in protected memory such as SPU NVRAM
534b.

Random Value Generator Manager»565

Random Value Generator Manager 565 may generate

random values. If a hardware-based SPU random value

generator .542 is present, the Random Value Generator Manager

20 565 may use it to assist in generating random values.

Other SPE RPC Services 592

Other authorized RPC services may be included in SPU

500 by having them ”register“ themselves in the RPC Services

-390-

Petitioner Apple Inc. — Exhibit 1006, p. 1121

Petitioner Apple Inc. - Exhibit 1006, p. 1122

W0 98/09209 PCTIUS97]1 5243

Table and adding their entries to the izpc Dispatch Table. For

example, one or more component assemblies 690 may be used to

provide additional services as an integral part of SPE 503 and its

associated operating system. Requests to services not registered

5 in these tables will be passed out of SPE 503 (HPE 655) for

external servicing.

SPE 503 Performance Considerations

Performance ofSPE 503 (HPE 655) is a function of:

10 - complexity of the component assemblies used

- number of simultaneous component assembly operations

- amount of internal SPU memory available

- speed of algorithm for block encryption/decryption

15 The complexity of component assembl_v.processes along

with the number of simultaneous component assembly processes

is perhaps the primary factor in determining performance.

These factors combine to determine the amount of code and data

and must be resident in SPU 500 at any one time (the minimum

20 device size) and thus the number of device size ”chu.nks“ the

processes must be broken down into. Segmentation inherently

increases ru.n time size over simpler models. Of course, feature

limited versions of SPU 500 may be implemented using

significantly smaller amounts of RAM 534. ”_Aggregate“ load

-391-

Petitioner Apple Inc. — Exhibit 1006, p. 1122

Petitioner Apple Inc. - Exhibit 1006, p. 1123

WO 98/09209 PCT/US97/15243

modules as described above may remove flexibility in C01’!-fi8'U-11.118

VD_E structures and also further limit the ability of participants

to individually update otherwise separated elements, but may

result in a smaller minimum device size. A very simple metering

5 version of SPU 500 can be constructed to operate with minimal

device resources.

The amount of RAM 534 internal to SPU 500 has more

impact on the perfonnance of the SPE 503 than perhaps any

10 other aspect of the SPU. The flexible nature of VDE processes

allows use ofa large number ofload modules, methods and user

data elements. It is impractical to store more than a small

number of these items in ROM 532 within SPU 500. Most of the

code and data structures needed to support a specific VDE

15 process will need to be dynamically loaded into the SPU 500 for

the specific VDE process when the process is invoked. The

operating system within SPU 500 then may page in the

necessary VDE items to perform the process. The amount of

RAM 534 within SPU 500 will directly determine how large any

20 single VDE load module plus its required data can be, as well as

the number of page swaps that will be necessary to run a VDE

process. The SPU I/Olspeed, encryption/decryption speed, and

the amount of internal memory 532, 534 will directly aflect the

number of page swaps required in the device. Insecure external

-392-

Petitioner Apple Inc. — Exhibit 1006, p. 1123

Petitioner Apple Inc. - Exhibit 1006, p. 1124

W0 98/09209 PCI‘IUS97Il5243

memory may reduce the wait time for swapped pages to be

loaded into SPU 500, but will still incur substantial

encryption/decryption penalty for each page.

5 In order to maintain security, SPE 503 must encrypt and

- cryptographically seal each block being swapped out to a storage

device external to a supporting SPU 500, and must similarly

decrypt, verify the cryptographic seal for, and validate each block

as it is swapped into SPU 500. Thus, the data movement and

10 encryption/decryption overhead for each swap block has a very

large impact on SPE performance.

The performance ofan SPU microprocessor 520 may not

significantly impact the performance of the SPE 503 it supports

15 if the processor is not responsible for moving data through the

encrypt/decrypt engine 522.-

‘ l Secure Database 610

VDE 100 stores separately deliverable VDE elements in a

20 secure (e.g., encrypted) database 610 distributed to each VDE

electronic appliance 610. The database 610 in the preferred

embodiment may store and./or manage three basic classes of VDE

items:

VDE objects,

-393-

Petitioner Apple Inc. — Exhibit 1006, p. 1124

Petitioner Apple Inc. - Exhibit 1006, p. 1125

WO 98109209 PCT/US97!15243

VDE process elements, and

VDE data structures.

The following table lists examples of some of the VDE

items stored in or managed by information stored in secure

database 610:

Content Objects Provide a container for

content.

Administrative Provide a container for

Objects

 information used to keep

VDE 100 0

Provide a container for

- erating.

 Traveling Objects

content and control

information.

 Smart Objects Provide a container for

(user-specified) processes

and data.

 Method Cores Provide a mechanism to

relate events to control

 mechanisms and

 - ermissions.

Load Modules Secure (tamper-resistant)
(”LMs“)

Method Data

Elements (”MDEs“)

executable code.

Independently deliverable

data structures used to

control/customize

methods.

Permissions to use

objects; "blueprints“ to

build component

assemblies.

Permissions Records

("PERCs“)

-394-

Petitioner Apple Inc. — Exhibit 1006, p. 1125

Petitioner Apple Inc. - Exhibit 1006, p. 1126

WO 98/09209 PCT/US97!15243

lass Brief Deacri - tion

User Data Elements Basic data structure for

("UDEs“) storing information used

in conjunction with load Administrative Data Used by VDE node to

Structures

Each electronic appliance 600 may have an instance of a

secure database 610 that securely maintains the VDE items.

01 Figure 16 shows one example of a secure database 610. The

secure database 610 shown in this example includes the

following VDE-protected items:

- one or more PERCS 808; 1

- methods 1000 (including static and dynamic method

10 ”cores“ 1000, and MDES 1202);

- Static UDEs 1200a and Dynamic UDES 1200b; and

- load modules 1100.

Secure database 610 may also include the following

15 additional data structures used and maintained for

administrative purposes:

0 an "object registry“ 450 that references anobject

storage 728 containing one or more VDE objects;

- name service records 452; and

-395-

Petitioner Apple Inc. — Exhibit 1006, p. 1126

Petitioner Apple Inc. - Exhibit 1006, p. 1127

wo 93109209 ' PCT/US97I15243

- configuration records 454 (including site

configuration records 456 and user configuration

records 458).

5 Secure database 610 in the preferred embodiment does not

include VDE objects 300, but rather references VDE objects

stored. for example. on file system 687 and/or in a separate object

repository 728. Nevertheless, an appropriate "starting point“ for

understanding VDE-protected information may be a discussion’
10 of VDE objects 300.

VDE Objects 300

VDE 100 provides a media independent container model

for encapsulating content. Figure 17 shows an example of a

15 '’logical‘‘ structure or format 800 for an object 300 provided by the
preferred embodiment.

The generalized "logical object“ structure 800 shown in

Figure 17 used by the preferred embodiment supports digital

20 content delivery over any currently used media. “Logical object“

in the preferred embodiment may refer collectively to: content; '

limitations, administrative control information and/or

-396-

Petitioner Apple Inc. — Exhibit 1006, p. 1127

Petitioner Apple Inc. - Exhibit 1006, p. 1128

wo 93/09209 PCTlUS97IlS2d3

requirements applicable to said content, and/or said computer

software and/or methods. Logical objects may or may not be

stored, and may or may not be present in, or accessible to, any

given electronic appliance 600. The content portion of a logical

5 object may be organized as information contained in, not

contained in, or partially contained in one or more objects.

Briefly, the Figure 17 "logical object“ structure 800 in the

preferred. embodiment includes a public header 802,‘ private

10 header 804, a 'v’p1-ivate body“ 806 containing one or more methods

1000, permissions recordfs) (PERC) 808 (which may include one

or more key blocks 810), and one or more data blocks or areas

812. These elements may be ”packaged“ within a '’container‘‘

302. This generalized. logical object structure 800 is used in the

15 preferred embodiment for different types of VDE objects 300

categorized by the type and location of their content.

The “container” concept is a convenient metaphor used to

give a name to thecollection of elements required to make use of

20 content or to perform an administrative-type activity. Container

302 typically includes identifying information, control structures

andvcontent (e.g., a property or administrative data). The term

"container" is often (e.g., Bento/OpenDoc and OLE) used to

describe a collection of information stored on a computer

-397-

Petitioner Apple Inc. — Exhibit 1006, p. 1128

Petitioner Apple Inc. - Exhibit 1006, p. 1129

wo 93/09209 H PC'I‘IUS97Il5243

system’s secondary storage systemls) or accessible to a computer

system over a communications network on a ”servex"s“ secondary

storage system. The "’container“ 302 provided by the preferred

I embodiment is not so limited or restricted. In VDE 100, there is

5 no requirement that this information is stored together, received

at the same time, updated at the same time, used for only a

single object, or be owned by the same entity. Rather, in VDE

100 the container concept is extended and generalized to include

real-time content and/'or online interactive content passed to an

10 electronic appliance over a cable, by broadcast, or communicated

by other electronic communication means.

Thus, the 'complete“ VDE container 302 or logical object ,

structure 800 may not exist at the user's location (or any other

15 location, for that matter) at any one time. The "logical object“

may exist over a particular period of time (or periods of time),

rather than all at once. This concept includes the notion of a

"virtual container“ where important container elements may

exist either as a plurality of locations and/or over a sequence of

20 time periods (which may or may not overlap). Of course, VDE

T 100 containers can also be stored with all required control

structures and content together. This represents a continuum:

from all content and control structures present in a single

-398-

Petitioner Apple Inc. — Exhibit 1006, p. 1129

Petitioner Apple Inc. - Exhibit 1006, p. 1130

WO 98/09209 PCTIUS97I15743

container, to no locally accessible content or container specific

control structures.

’ Although at least some of thepdata representing the object

5 is typically encrypted and thus its structure is not discernible,

within a PPE 650 the object may be viewed logically as a

_”container“ 302 because its structure and components are

automatically and transparently decrypted.

10 A container model merges well with the event-driven

processes and R08 602 provided by the preferred embodiment.

Under this model, content is easily subdivided into srnall, easily

I manageable pieces. but is stored so that it maintains the

structural richness inherent in unencrypted content. An object,‘

15 oriented containerwmodel (such as Bento/OpenDoc or OLE) also

provides many of the necessary ”hooks“ for inserting the

necessary operating system integration components, and for

defining the various content specific methods.

20 In more detail, the logical object structure 800 provided by

the preferred embodiment includes a public (or unencrypted)

header 802 that identifies the object and may also identify one or

more owners of rights in the object and/or one or more

distributors of the object. Private (or encrypted) header 804 may

-399-

Petitioner Apple Inc. — Exhibit 1006, p. 1130

Petitioner Apple Inc. - Exhibit 1006, p. 1131

wo 9s/09209 _ PCTIUS97l1§243

include a part or all of the information in the public header and

further, in the preferred embodiment, will include additional
' data for validating and identifying the object 300 when a user

attempts to register as a user of the object with a service

5 - ' clearinghouse, VDE administrator, or an SPU 500.

Alternatively, ‘information identifying one or more rights owners

and/or distributors of the object may be located in encrypted form -

within encrypted header 804, along with any of said additional

validating and identifying data.

10 ‘

Each logical object structure 800 may also include a

”private body“ 806 containing or referencing a set of methods

1000 (i.e., programs or procedures) that control use and

distribution of the object 300. The ability to optionally

15 incorporate different methods 1000 with each object is important

‘ to making VDE 100 highly configurable. Methods 1000 perform

the basic function of defining what users (including, where

appropriate, distributors, client administrators, etc.). can and

cannot do with an object 300. Thus, one object 300 may come

20 with relatively simple methods, such as allowing unlimited

viewing within a fixed period of time for a fixed fee (such as the

newsstand price of a newspaper for viewing the newspaper for a

period of one week after the paper‘s publication), while other

-400-

Petitioner Apple Inc. — Exhibit 1006, p. 1131

Petitioner Apple Inc. - Exhibit 1006, p. 1132

WO 98/09209 PCl"lUS9‘7ll5243

objects may be controlled by much more complicated (e.g., billing

and usage limitation) methods. _

Logical object structure 800 shown in Figure 17 may also

5 include one or more PERCS 808. PERCS 808 govern the use of an

object 300, specifying methods or combinations of methods that

must be used to access or otherwise use the object or its contents.

The permission records 808 for an object may include key

block(s) 810, which may store decryption keys for access_ing the

_ 10 content of the encrypted content stored within the object 300.

' The content portion of the object is typically divided into

portions called data blocks 812. Data blocks 812 may contain

any sort of electronic information, such as, ”content,“ including

15 computer programs, images, sound, VDE administrative

information, etc. The size and number of data blocks 812 may be

selected by the creator of the property. Data blocks 812 need not

all be the same size (size may be influenced by content usage,

database format, operating system, security and/or other

20 considerations). Security will be enhanced by using at least one

key block 810 for each data block 812 in the object, although this

is not required, Key blocks 810 may also span portions of a

plurality of data blocks 812 in a consistent or pseudo-random

manner. The spanning may provide additional security by

-401-

Petitioner Apple Inc. — Exhibit 1006, p. 1132

Petitioner Apple Inc. - Exhibit 1006, p. 1133

WO 98109209 I - PCT/US97/15243

applying one or more keys to fragmented or seemingly random

pieces of content contained in an object 300, database, or other

information entity.

_ 5 Many objects 300 that are distributed by physical media

and/or by ”out of channel“ means (e.g., redistributed after receipt

by a customer to another customer) might not include key blocks

810 in the same object 300 that is used to transport the content

protected by the key blocks. This is because VDE objects may

10 contain data that can be electronically copied outside the

confines of a VDE node. If the content is encrypted, the copies

will also be encrypted and the copier cannot gain access to the

content unless she has the appropriate decryption keyfs). For

objects in which maintaining security is particularly important,

15 the permission records 808 and key blocks 810 will frequently be

distributed electronically, using secure communications

techniques (discussed below) that are controlled by the VDE ’ '

nodes of the sender and receiver. As a result, permission records

808 and key blocks 810 will frequently, in the preferred

20 embodiment, be stored only on electronic appliances 600 of

registered users (and may themselves be delivered to the user as

part of a registration/initialization process). In this instance,

permission records 808 and key blocks 810 for each property can

be encrypted with a private DES key that is stored only in the

-402-

Petitioner Apple Inc. — Exhibit 1006, p. 1133

Petitioner Apple Inc. - Exhibit 1006, p. 1134

wo 93/99209 PCTlUS97ll5243

secure memory of an SPU 500, making the key blocks unusable

on any other user‘s VDE node. Altemately, the key blocks 810

can be encrypted with the end users public key, making those

key blocks usable only to the SPU 500 that stores the

5 _ corresponding private key (or other, acceptably secure,

encryption/security techniques can be employed).

In the preferred embodiment, the one or more keys used to

encrypt each permission record 808 or other management

10 information record will be changed every time the record is

updated (or after a certain one or more events). In this event,

the updated record is re-encrypted with new one or more keys.

Alternately, one or more of the keys used to encrypt and decrypt

management information may be ”time aged“ keys that

15 automatically become invalid after a period of time.

Combinations of time aged and other event triggered keys may

also be desirable; for example keys may change after a certain

number of accesses, and/or after a certain duration of time or

absolute point in time. The techniques may also be used

20 together for any given key or combination of keys. The preferred

embodiment procedure for constructing time aged keys is a

one-way convolution algorithmwith input parameters including

user and site information as well as a specified portion of the real

time value provided by the SPU RTC 528. Other techniques for

-403-

Petitioner Apple Inc. — Exhibit 1006, p. 1134

Petitioner Apple Inc. - Exhibit 1006, p. 1135

W0 98/059209

10

20

PCT/US97/15243

time aging may also be used. including for example techniques

that use only user or site information. absolute points in time,

and/or duration of time related to a subset of activities related to

using or decrypting VDE secured content or the use of the VDE

system.

VDE 100 supports many different types of ”objects“ 300

having the logical object structure 800 shown in Figure 17.

Objectsmay be classified in one sense based on whether the

protection information is bound together with the protected

information. For example. a container that is bound by its

controllsl to a specific VDE node is called a "stationary object“

(see Figure 15:. .-\ container that is not bound by its control

information to a specific VDE node but rather carries sufficient

control and permissions to permit its use. in whole or in part, at

any of several sites is called a ”Traveling Object“ (see Figure 19).

Objects may be classified in another sense based on the

nature of the information they contain. A-container with

information content is called a "Content Object“ (see Figure 20).

A container that contains transaction information, audit trails,

VDE structures, and/or other VDE control/administrative

information is called an "Administrative Object“ (see Figure 21).

Some containers that contain executable code operating under

-404-

Petitioner Apple Inc. — Exhibit 1006, p. 1135

Petitioner Apple Inc. - Exhibit 1006, p. 1136

wo 98109209 PCI'fUS97Il5243

VDE control (as opposed to being control information) are

called ”Smart Objects.“ Smart Objects support user agents and

providecontrol for their execution at remote sites. There are

other categories of objects based upon the location, type and

5 access mechanism associated vvith their content, that can include

combinations of the types mentioned above. Some of these

objects supported by VDE 100 are described below. Some or all

of the data blocks 812 shown in Figure 17 may include

"embedded" content. administrative, stationary, traveling and/or

10 other objects.

1. Stationary Objects

Figure 18 shows an example ofa "Stationary Object“

structure 850 provided by the preferred embodiment.

15 "Stationary Object“ structure 850 is intended to be used only at

specific VDE electronic appliance/installations that have received

explicit permissions to use one or more portions of the stationary

Nzobject. iTherefore, stationary object structure 850 does not

contain a permissions record (PERC) 808; rather, this

20 permissions record is supplied and/or delivered separately (e.g.,

at a different time, over a different path, and/or by a difierent

party) to the appliance/installation 600. A common PERC 808

I may be used with many different stationary objects.

- 405 Q

Petitioner Apple Inc. — Exhibit 1006, p. 1136

Petitioner Apple Inc. - Exhibit 1006, p. 1137

wo 98/09209 PCT/US97/15243

As shown in Figure 18, public header 802 is preferably

”plaintext“ (i.e., unencrypted). Private header 804 is preferably

encrypted using at least one of many "private header keys.“

Private header 804 preferably also includes a copy of
(II

identification elements from public header 802, so that if the

identification information in the plaintext public header is

tampered with, the system can determine precisely what the

tamperer attempted to alter. Methods 1000 may be contained in

a section called the "private body“ 806 in the form of object local

10 methods, load modules. and/or user data elements. This private

body (method: section 806 is preferably encrypted using one or

more private body keys contained in the separate permissions

record 808. The data blocks 812 contain content (information or

administrative) that may be encrypted using one or more content

15 keys also provided in permissions record 808.

2. Traveling Objects

Figure 19 shows an example of a ”traveling object“

structure 860 provided by the preferred embodiment. Traveling

20 objects are objects that carry with them suflicient information to

enable at least some use of at least a portion of their content

when they arrive at a VDE node:

-406-

Petitioner Apple Inc. — Exhibit 1006, p. 1137

Petitioner Apple Inc. - Exhibit 1006, p. 1138

10

15

20

WO 98109209 PCTlUS97I15243

Traveling object structure 860 may be the same as

stationary object structure 850 shown in Figure 18 except that

the traveling object structure includes a permissions record

(PERC) 808 within private header 804. The inclusion of PERC

808 within traveling object structure 860 permits the traveling

object to be used at any VDE electronic appliance/participant 600

(in accordance with the methods 1000 and the contained PERC

808).

”Traveling“ objects are a class of VDE objects 300 that can

specifically support "out of channel“ distribution. Therefore, they

include key blockls! S10 and are transportable from one

electronic appliance 600 to another. Traveling objects may come

with a quite limited usage related budget so that a user may use,

in whole or part. cornea‘: (such as a computer program, game, or

database) and evaluate Whether to acquire a license or further

license or purchase object content. Alternatively, traveling object

PERCS 808 may contain or reference budget records with, for

example:

(a) ' budget(s) reflecting previously purchased rights or

credit for future licensing or purchasing and

enabling at least one or more types of object content

usage, and/or

-407-

Petitioner Apple Inc. — Exhibit 1006, p. 1138

Petitioner Apple Inc. - Exhibit 1006, p. 1139

WO 98109209 PCT/US97Il5243

(b) budget(s) that employ (and may debit) available

credit(s) stored on and managed by the local VDE

node in order to enable object content use, and/or

OI (c) budgett s) reflecting one or more maximum usage

criteria before a report to a local VDE node (and,

optionally. also a report to a clearinghouse) is

required andwhich may be followed by-a reset

allowing further usage, and/ormodification of one or

10 more of the original one or more budgetts).

As with standard VDE objects 300, a user may be required

to contact a clearinghouse service to acquire additional budgets if

the user wishes to continue to use the-traveling object after the

15 exhaustion ofan available budget('s) or ifthe traveling object (or

a copy thereof) is moved to a different electronic appliance and

the new appliance does not have a available credit budgetis) that

corresponds to the requirements stipulated by permissions

record 808.

20

For example, a traveling object PERC 808 may include a

reference to a required budget VDE 1200 or budget options that

may be found and/or are expected to be available. For example,

the budget VDE may reference a consumer’s VISA, MC, AMEX,

-408-

Petitioner Apple Inc. — Exhibit 1006, p. 1139

Petitioner Apple Inc. - Exhibit 1006, p. 1140

WO 98109209 ‘ PCI'IUS97/15243

or other ”generic“ budget that may be object independent and

may be applied towards the use of a certain or classes of

‘ traveling object content (for example any movie object from a

class of traveling objects that might be Blockbuster Video

5 rentals). The budget VDE itself may stipulate one or more

classes of objects it may be used with, while an objectmay

specifically reference a certain one or more generic budgets.

Under such circumstances, VDE providers will typically make

information available in such a manner as "to allow correct

10 referencing and to enable billing handling and resulting

payments.

Traveling objects can be used at a receiving VDE node

electronic appliance 600 so long as either the appliance carries

15 the correct budget or budget type (e.g. sufficientcredit available

from a clearinghouse such as a VISA budget) either in general or

for specific one or more users or user classes, or so long as the

traveling object itself carries with it sufiicient budget allowance

or an appropriate authorization (e.g., a stipulation that the

20 traveling object may be used on certain one or more installations

or installation classes or users or user classes where classes

correspond to a specific subset of installations or users who are

represented by a predefined class identifiers stored in a secure

database 610). Afier receiving a traveling object, if the user

-409-

Petitioner Apple Inc. — Exhibit 1006, p. 1140

Petitioner Apple Inc. - Exhibit 1006, p. 1141

wo 93/09209 ' _ PCTlUS97l15243

(and/or installation) doesn't have the appropriate budget(s)

and/or authorizations, then the user could be informed by the

electronic appliance 600 (using information stored in the

traveling object) as to which one or more parties the user could

5 contact. The party or parties might constitute a list of

alternative clearinghouse providers for the traveling object from

which the user selects his desired contact).

As mentioned above. traveling objects enable objects 300 to

10 ' be distributed "Out-Of-Channelz“ that is, the object may be

distributed by an unauthorized or not explicitly authorized

individual to another individual. "Out of channel“ includes paths

of distribution that allow. for example, a user to directly

redistribute an object to another individual. For example, an

15 object provider might allow users to redistribute copies of an

object to their friends and associates (for example by physical

delivery of storage media or by delivery over a computer

network) such that if a friend or associate satisfies any certain

criteria required for use of said object, he may do so.

20

For example, if a software program was distributed as a

traveling object, a user of the program who wished to supply it or

a usable copy of it to a friend would normally be free to do so.

’I‘r-aveling Objects have great potential commercial significance,

-410-

Petitioner Apple Inc. — Exhibit 1006, p. 1141

Petitioner Apple Inc. - Exhibit 1006, p. 1142

WO 98/09209 PCI‘IUS97Il5243

since useful content could be primarily distributed by users and

through bulletin boards. which would require little or no

distribution overhead apart from registration with the "original“

“content provider and/or clearinghouse.

The "out of channel“ distribution may also allow the

provider to receive payment for usage and/or elsewise maintain

at leasta degree ofcontrol over the redistributed object. Such

certainicriteria might involve. for example. the registered

10 presence at a user's VDE node ofan authorized third party

financial relationship. such as a credit card. along with sufficient

available credit for .~:;1id usage.

Thus, ifthe user had a VDE node. the user might be able

15 to use the traveling object if he had an appropriate, available

budget available on his VDE node ("and ifnecessary, allocated to

him), and/or if he or his VDE node belonged to a specially

authorized group of users or installations and/or if the traveling

object carried its own budgetis).

20

Since the content of the traveling object is encrypted, it

can be used only under authorized circumstances unless the

traveling object private header key used with the object is

broken—a potentially easier task with a traveling object as

-411-

Petitioner Apple Inc. — Exhibit 1006, p. 1142

Petitioner Apple Inc. - Exhibit 1006, p. 1143

wo 9s/09209 1>c'rrus97/15243

compared to. for example. permissions and/or budget information

since many objects may share the same key, giving a

cryptoanalyst both more information in cyphertext to analyze

anda greater incentive to perform cryptoanalysis.

OI

In the case of a "traveling object.“ content owners may

-distribute information withsome or all of the key blocks 810

included in the object 300 in which the content is encapsulated.

V '. Putting keys in distributed objects 300 increases the exposure to

10 attempts to ‘defeat security mechanisms by breaking or

cryptoanalyzinc the L-‘.'1CT}'ptlOn algorithm with which the private

header is protcctud w;-.1‘. by determiningthe key for the headers

encryption-. Ti-ii.~. ':7reaking ofsecurity would normally require

considerable skill and time. but ifbroken. the algorithm and key
15 . could be published so as to allow large numbers of individuals

who possess objects that are protected with the same keyis) and

algorithmisi to illegally use protected information. As a result,

placing-keys in distributed objects 300 may belimited to content

that is either "time sensitive“ (has reduced value after the

20 .passage of a certain period of time), or which is somewhat

limited in value, or where the commercial value of placing keys

in objects (for example convenience to end-users, lower cost of

eliminating the telecommunication or other means for delivering

keys and/or permissions information and/or the ability to

-412-

Petitioncr Apple Inc. — Exhibit 1006, p. 1143

Petitioner Apple Inc. - Exhibit 1006, p. 1144

W0 98/09209 PCTIUS97I15243

supporting objects going "out-of-channel“) exceeds the cost of

vulnerability to sophisticated hackers. As mentioned elsewhere,

the security of keys may be improved by employing convolution

techniques to avoid storing ”true“ keys in atraveling object,

although in most cases using a shared secret provided to most or
0!

all VDE nodes by a VDE administrator as an input rather than

site ID and/or time in order to allow objects to remain

independent of these values.

10. As shown in Figure 19 and discussed above, a traveling

object contains :1 permissions record 808 that preferably provides

at least some budget tone. the other, or both. in a general case).

Permission records 808 can. as discussed above. contain a key

block(s) 810 storing important key information. PERC 808 may

15 also contain or refer to budgets containing potentially valuable

quantities/values. Such budgets may be stored within a

traveling object itself. or they may be delivered separately and

protected by highly secure communications keys and

administrative object keys and management database

20 techniques.

The methods 1000 contained by a traveling object will

typically include an installation procedure for ”self registering“

the object using the permission records 808 the object (e.g., a

-413-

Petitioner Apple Inc. — Exhibit 1006, p. 1144

Petitioner Apple Inc. - Exhibit 1006, p. 1145

WO 98/09209 - _ PC1'IUS97/15243

REGISTER method). This may be especially useful for objects

that have time limited value, objects (or properties) for which the

end user is either not charged or is charged only a nominal fee

(e.g., objects for which advertisers and/or information publishers
U!

are charged based on the number of end users who actually

access published information). and objects that require widely

available budgets and may particularly benefit from

out-of-c'h'annel distribution (e.g.. credit card derived budgets for

objects containing properties such as movies, software programs,

' 10 games, etc.). Such traveling objects may be supplied with or

without contained budget UDES.

One use of traveling objects is the publishing of software,

where the contained permission record(s) may allow potential

15 customers to use the software a demonstration mode, and

possibly to use the full program features for a limited time before

having to pay a license fee, or before having to pay more than an

initial trial fee. For example, using a time based billing method

and budget records with a small pre-installed time budget to

20 allow full use of the program for a short period of time. Various

control methods may be used to avoid misuse of object contents.

For example, by setting the registration interval for

the traveling object to an appropriately large period of time (e.g.,

-414-

Petitioner Apple Inc. — Exhibit 1006, p. 1145

Petitioner Apple Inc. - Exhibit 1006, p. 1146

WO 98109209 PCT/US97/15243

a month, or six months or a year), users are prevented from

re-using the budget records in the same traveling object.

Another method for controlling the use of traveling objects

U! is to include time-aged keys in the permission records that are

incorporated in the traveling object. This is useful generally for

traveling objects to ensure that they will not be used beyond a

certain date without re-registration, and is particularly useful

for traveling objects that are electronically distributed by

10 broadcast, network. or telecommunications (including both one

and two way cable since the date and time ofdelivery of such

traveling objects aging iteys can be set to accurately correspond

to the time the user came into possession of the object.

15 Traveling objects can also be used to facilitate ”moving“ an

object from one electronic appliance 600 to another. A user could

move a traveling object. with its incorporated one or more

permission records 808 from a desktop computer, for example, to

his notebook computer. A traveling object might register its user

20 within itself and thereafter only be useable by that one user. A

traveling object might maintain separate budget information,

one f-‘or the basic distribution budget record, and another for the

“active” distribution budget record of the registered user. In this

- 415 -

Petitioner Apple Inc. — Exhibit 1006, p. 1146

Petitioner Apple Inc. - Exhibit 1006, p. 1147

OI

10

20

WO 98109209
PCTIUS97/15243

way, the object could be copied and passed to another potential

user, and then could be a portable object for that user.

Traveling objects can come in a container which contains

other objects. For example, a traveling object container can

include one or more content objects and one or more

ad.ministrative objects for registering the content object(s) in an__

end users object registry and/or for providing mechanisms for

enforcing permissions and/or other security functions. Contained

administrative object-. 5~ may be used to install necessary

permission records and or budget information in the end user's

electronic appliance.

Content Objects

Figure 20 shows an example of a VDE content object

structure 880. Generally, content objects 880 include or provide

information content. This "'content“ may be any sort of electronic

information. For example, content may include: computer

sofizware, movies, books, music, information databases,

multimedia information, virtual reality information, machine

instructions, computer data files, communications messages

and/or signals, and other information, at least a portion of which

is used and/or manipulated by one or more electronic appliances.

VDE 100 can also be configured for authenticating, controlling,

-416-

Petitioner Apple Inc. — Exhibit 1006, 10- 1147

Petitioner Apple Inc. - Exhibit 1006, p. 1148

WO 98109209 PCT/US97/15243

and/or auditing electronic commercial transactions and

communications such as inter-bank transactions, electronic

purchasing communications, and the transmission of, auditing .

of, and secure commercial archiving of, electronically signed,

5 contracts and other legaJ documents; the information used for

these transactions may also be termed ”content.“ As mentioned

above, the content need not be physically stored within the object

container but may instead be provided separately at a different

time (e.g;, a real time feed over a cable).

10

Content object structure 880 in the particular example

shown in Figure 20 is a type of stationary object because it does

not include a PERC 808. In this example, content object

structure 880 includes, as at least part of its content 812, at least

15 one embedded content object 882 as shown in Figure 5A.

Content object structure 880 may also include an administrative

object 870. Thus, objects provided by the preferred embodiment

may include one or more ”embedded“ objects. -

20 ' Administrative Objects

Figure 21 shows an example of an administrative object

structure 870 provided by the preferred embodiment. An

”administrative object“ generally contains permissions,

administrative control information, computer software and/or

-417-

Petitioner Apple Inc. — Exhibit 1006, p. 1148

Petitioner Apple Inc. - Exhibit 1006, p. 1149

wo 9s/09209 - A PC!‘/US97/15243

methods associated with the operation of VDE 100.

Administrative objects may also or alternatively contain records

of use,iand/or other information "used in, or related to, the

operation of VDE 100. An administrative object may be
OI

distinguished from a content object by the absence of VDE

protected ”content“ for release to an end user for example. Since

objects may contain other objects, it is possible for a single object

to contain one or more content containing objects and one or

more administrative objects. Administrative objects may be used

10 to transmit information between electronic appliances for

update, usage reporting, billing and/or control purposes. They

contain information that helps to administer VDE 100 and keep

it operating properly. Administrative objects ‘generally are sent

between two VDE nodes, for example, a VDE clearinghouse

15 service, distributor, or client administrator and an end users

electronic appliance 600.

Administrative object structure 870 in this example

includes a public header 802, private header 804 (including a

20 ”PERC“ 808) and a "private body“ 806 containing methods 1000.

Administrative object structure 870 in this particular example

shown in Figure 20 is a type of traveling object because it

contains a PERC 808, but the administrative object could exclude

the PERC 808 and be a stationary object. Rather than storing

-418-

Petitioner Apple Inc. — Exhibit 1006, p. 1149

Petitioner Apple Inc. - Exhibit 1006, p. 1150

wo 93/09209 PCI‘IUS97Il5243

information content. administrative object structure 870 stores

"administrative information content“ 872. Administrative

information content 872 may, for example, comprise a number of

records 872a, 872b. . . . 872n each corresponding to a different

5 ”event.“ Each record 872a. 872b, . . . 872n may include an

”event“ field 874, and may optionally include a parameter field

876 and/or a data field 878. These administrative content

records 872 may be used by VDE 100 to define events that may

be processed during the course of transactions. e.g., an event

10 designed to add a record to a secure database might include

parameters 896 indicating how and where the record should be

stored and data field 878 containing the record to be added. In

another example. :1 collection of events may describe a financial

transaction between the creatoris) of an administrative object

15 and the recipients .1, such as a purchase. a purchase order, or an

invoice. Each event record 872 may be a set of instructions to be

executed by the end user’s electronic appliance 600 to make an

addition or modification to the end users secure database 610,

for example. Events can perform many basic management

20 functions, for example: add an object to the object registry,

including providing the associated user/group record(s). rights

records,‘ permission record and/or method records; delete audit

records (by "rolling up“ the audit trail information into, for

example, a more condensed, e.g. summary form, or by actual

-419-

Petitioner Apple Inc. — Exhibit 1006, p. 1150

Petitioner Apple Inc. - Exhibit 1006, p. 1151

wo 93/99209 V ' ' PCI‘IUS97I15243

deletion): add or update permissions records 808 for previously

registered objects: add or update budget records; add or update

user rights records: and add or update load modules.

C)!
In the preferred embodiment. an administrative object

may be sent. for example. by a distributor, client administrator,

or, perhaps, a clearinghouse or other financial service provider,

to an end user. or. alternatively, for example, by an object creator

to a distributor or service clearinghouse. Administrative objects,

10 .. for example. may increase or otherwise adjust budgets and/or

permissions of the receiving VDE node to which the

administrative Ob_lCL‘t is being sent. Similarly, administrative

objects containinzz audit information in the data area 878 ofan

event record 872 can be sent from end users to distributors,

15 and/or clearinghouses and/or client administrators, who might

themselves further transmit to object creators or to other

___part__i_cipants in the object's chain of handling.

Methods

20 I Methods 1000 in the preferred embodiment support many

of the operations that a user encounters in using obiects and

communicating with a distributor. They may also specify what

method fields are displayable to a user (eg, use events, user

request events, user response events, and user display events).

-420-

Petitioner Apple Inc. — Exhibit 1006, p. "1151

Petitioner Apple Inc. - Exhibit 1006, p. 1152

wo 93/09209 " 1>crrus97/15243

Additionally, if distribution capabilities are supported in the

method, then the method may support distribution activities,

distributor communications with a user about a method, method

modification, what method fields are displayable to a distributor,

5 and any distribution database checks and record keeping (e.g.,

distribution events, distributor request events, and distributor

response events).

Given the generality of the existing method structure, and

10 the diversearray of possibilities for assembling methods, a

generalized structure may be used for establishing relationships

between methods. Since methods 1000 may be independent of

an object that requires them during any given session, it is not

possible to define the relationships within the methods

15 themselves. "Control methods“ are used in the preferred

embodiment to define relationships between methods. Control

methods may be object specific, and may accommodate an

individual object’s requirements during‘ each session.

20 A control method of an object establishes relationships

between other methods. These relationships are parameterizeid '

with explicit method identifiers when a record set reflecting

desired method options for each required method is constructed

during a registration process.

-421-

Petitioner Apple Inc. — Exhibit 1006, p. 1152

Petitioner Apple Inc. - Exhibit 1006, p. 1153

W0 93/09299 PCTIUS97/15243

An "aggregate method“ in the preferred embodiment

represents a collection of methods that may be treated as a single

unit. A collection of methods that are related to a specific

property, for example, may be stored in an aggregate method.

OI
This type of aggregation is useful from an implementation point

of view because it may reduce bookkeeping overhead and may

improve overall database efiiciency. In other cases, methods

may be aggregated because they are logically coupled. For

example, two budgets may be linked together because one of the

10 budgets represents an overall limitation, and a second budget

represents the current limitation available for use. This would

arise if, for example. large budget is released in small amounts 7
over time.

15 For example, an aggregate method that includes meter,

billing and budget processes can be used instead of three

separate methods. Such an aggregate method may reference a

single "load module“ 1100 that performs all of the functionsof
the three separate load modules and use only one user data

20

minimize overall memory requirements, database searches,

decryptions, andthe number of user data element writes back to

a secure database 610. The disadvantage of using an aggregate

-422 -

Petitioner Apple Inc. — Exhibit 1006, p. 1153

Petitioner Apple Inc. - Exhibit 1006, p. 1154

W0 93/09209 PC!‘IUS97/15243

method instead of three separate methods can be a loss of some

flexibility on the part of a provider and user in that various

functions may no longer be independently replaceable.

Figure 16 shows methods 1000 as being part of secureU!

database 610.

A "method“ 1000 provided by the preferred embodiment is

a collection of basic instructions and information related to the

10 basic instructions. that provides context. data, requirements

and/or relationships for use in performing, and/or preparing to

perform, the basic instructions in relation to the operation of one

or more electronic appliances 600. As shown in Figure 16,

methods 1000 in the preferred embodiment are represented in

15 secure database 610 by:

- method "cores“ 1000’;

- Method Data Elements (MDES) 1202;

0 User Data Elements (UDES) 1200;. and

- ‘Data Description Elements (DTDs).

20

Method “core” 1000’ in the preferred embodiment may

contain or reference one or more data elements such as MDES

1202 and UDEs 1200. In the preferred embodiment, MDES 1202

and UDEs 1200 may have the same general characteristics, the

-423-

Petitioner Apple Inc. — Exhibit 1006, p. 1154,

Petitioner Apple Inc. - Exhibit 1006, p. 1155

WO 98109209 PCTfUS97I1 5243

main difference between these two types of data elements being

that a UDE is preferably tied to a particular method as well asa
particular user or group of users, whereas an MDE may be tied

to a particular method but may be user independent. These

5 MDE and UDE data structures 1200, 1202 are used in the

preferred embodiment to provide input data to methods 1000, to _
receive data outpputted by methods, or both. MDEs 1202 and

UDES 1200 may be delivered independently of method cores

1000’ that reference them. or the data structures may be

10 delivered as part of the method cores. For example, the method

_core 1000' in the preferred embodiment may contain one or more

MDES 1202 andor L'DEs 1200 (or portions thereof). Method core

1000’ may. alter-n:1tel_v or in addition, reference one or more

MDE and/or UDE data structures that are delivered

15 independently of method core(s) that reference them.

Method cores 1000’ in the preferred embodiment also

reference one or more "load modules“ 1100. Load modules 1100

20 also include or reference one or more data structures called "data

descriptor“ ("DTD") information. This "data descriptor“

information may, for example, ‘provide data input information to

the DTD interpreter 590. DTDs may enable load modules 1100

-424-

Petitioner Apple Inc. — Exhibit 1000, 10- 1155

Petitioner Apple Inc. - Exhibit 1006, p. 1156

wo 98/09209 PCTIUS97I15243

to access (e.g., read from and/or write to) the MDE and/for UDE

data elements 1202. 1200.

« Method cores 1000’ may also reference one or more DTD

5 and/or MDE data structures that contain a textual description of

their operations suitable for inclusion as part of an electronic

contract. The references to the DTD and MDE data structures

may occur in the private header of the method core 1000i, or may

be specified as part of the event table described below.
10 -

Figure 22 shows an example ofa format for a method core

1000‘ provided by the preferred embodiment. A method core

1000’ in the preferred embodiment contains a method event I

table 1006 and a method local data area 1008. Method event _\

15 table 1006 lists "events.“ These "events“ each reference "load

modules“ 1100 and/or PERCS 808 that control processing of an

event, Associated with each event in the list is any static data ~ «

necessary to parameterize the_load module 1000 or permissions

record 808, and reference(s) into method user data area 1008

20 that are needed to support that event. The data that

parameterizes the load module 1100 can be thought of, in part,

as a specific function call to the load module, and the data,

elements corresponding to it may be thought of as the input

and/or output data for that specific function call.

-425-

Petitioner Apple Inc. — Exhibit 1006, p. 1156

Petitioner Apple Inc. - Exhibit 1006, p. 1157

wo 98/09209 PCTIUS97Il5243

element). Specifically, each user/group may have its own UDE

1200 and use a shared method core 1000’.

UDE 1200. Ifthat method core 1000' already exists in the site's

10 secure database 610, only the UDE 1200 may need to be added.

Alternately, the method may create any required UDE 1200 at
registration time.

15

An example of a possible field layout for method core 1000’

20 public header 802 is shown in the following table: I

-426-

Petitioner Apple Inc. — Exhibit 1006, p. 1157

Petitioner Apple Inc. - Exhibit 1006, p. 1158

10

wo 98/o92(_)9_ 4' PC!‘IUS97I15243

Distributor of this method

(e... last chan .)

Constant, indicates method

It . é‘uI

Method ID Unique sequence number

‘ . for this method.

Version ID Version number of this

method.

Class [D ID to support different

method "classes."

ID to support method type

escriptive Desci-1'ption(s) .Tex'tua.1 description(s) of the
I nformation method.

Summary of event classes

(e.g., USE) that this method

su orts.

-427-A

Petitioner Apple Inc. — Exhibit 1006, p. 1158

Petitioner Apple Inc. - Exhibit 1006, p. 1159

OI

10*

WO 98109209 PCT/US97l15243

An example of a possible field layout for private header

804 is shown below:

Copy of Public Header 802 Method ID Method ID from
and "Other Classification Public Header
Information“

of Events Descriptive

Information
 # of events supported

in this method.

V Access and Access tag i Tags used to
determine if this

method is the P

correct method

Reference Tags

V31id<'-10.0“ tag under management
L by the SPU; ensure

that the method

core 1000' is used

only under

 Correlation tag l

appropriate

 circumstances.

 Data Structure Reference Optional Reference to
DTD(s) and/or

MDE(s)

 Check Value Check value for

Private Header and

method event table.

 Check Value for Public Header Check Value for
Public Header

15

-428 -

Petitioner Apple Inc. — Exhibit 1006, 10- 1159

Petitioner Apple Inc. - Exhibit 1006, p. 1160

WO 98109209 ’ ‘ PCFIUS97/15243

Referring once again to Figure 22, method event table

1006 may in the preferred embodiment include from 1 to N

method event records 1012. Each of these method event records

1012 corresponds to a different event the method 1000

5 represented by method core 1000’ may respond to. Methods

1000 in the preferred embodiment may have completely difi'erent

behavior depending upon the event they respond to. For

example, an AUDIT method may store information in an audit

trail UD.E 1200 in response to an event corresponding to a users

10 use ofan object or other resource. This same AUDIT method

may report the stored audit trail to a VDE administrator or other

participant in response to an administrative event such as, for

example, a timer expiring within a VDE node or a request from

another VDE participant to report the audit trail. In the

15 preferred embodiment. each of these different events may be

represented by an "event code.“ This "’event code“ may be passed

as a parameter to a method when the method is called, and used

to ”look up“ the appropriate method event record 1012 within

method event table 1006. The selected method event record

20 1012, in turn, specifies the appropriate information (e.g., load I

modu1e(s) 1100, data element UDE(s) and MDE(s) 1200, 1202,

and/or PERC(s) 808) used to construct a component assembly

690 for execution in response to the event that has occurred.

4-429-

Petitioner Apple Inc. — Exhibit 1006, p. 1160

Petitioner Apple Inc. - Exhibit 1006, p. 1161

wo 93/09209 1 '1 ’ PCT/US9‘7Il5243

Thus, in the preferred embodiment, each method event

record 1012 may include an event field 1014, a LM/PERC

reference field 1016. and any number of data reference fields

1018. Event fields 1014 in the preferred embodiment may

contain a "event code“ or other information identifying the

corresponding event. The LM/PERC reference field 1016 may

provide a reference into the secure database 610 (or other

"pointer“ information} identifying a load module 1100 and/or a

PERC 808 providing (or referencing) executable code to be loaded

10 and executed to perform the method in response to the event.

Data reference fields 1018 may include information referencing a

UDE 1200 or a MDE 1202. These data structures may be

contained in the method local data area 1008 of the method core

1000', or they may be st'ored Within the secure database 610 as

15 independent deliverables.

The following table is an example of a possible more

20 Deacri - tion

Identifies corresponding
event.

Event Field 1014

Access tag

this row of the method

event record.

-430-

Petitioner Apple Inc. — Exhibit 1006, 10- 1161

Petitioner Apple Inc. - Exhibit 1006, p. 1162

‘zo

wo 98/09209 ’ PCT/US9”!5243

l Deacri tion

LM/PERC DB ID or Database reference (or local

Reference offset/size ointer).
Field 1016 Correlation tag Correlation tag to assert

when referencing this

element.’

of Data Element Reference _ Count of data reference
5 Fields fields in the method event

record. V

Data UDE ID or Database 610 reference (or
Reference offset/size local ointer).

Field 1 Correlation tag Correlation tag to assert

when referencing this 4;-
. elenoent}

10 Data UDE ID or Database 610 reference (or
Reference offseL'size local ointer).

Field n Correlation tag Correlation tag to assert
when referencing this

element.

15 Load Modules

Figure 23 is an example of a load module 1100 provided by

the preferred embodiment. In general, load modules 1100

represent a collection of basic functions that are used for control

operations.

20

Load module 1100 contains code and static data (that is

functionally the equivalent of code), and is used to perform the

basic operations of VDE 100. Load modules 1100 will generally

-431-

Petitioner Apple Inc. — Exhibit 1006, p. 1162

Petitioner Apple Inc. - Exhibit 1006, p. 1163

' _wo 9s/09209 ’ PCI‘fUS97I15243

be shared by all the control structures for all objects in the

system, though proprietary load modules are also permitted.

Load modules 1100 may be passed between VDE participants in

administrative object structures 870, and are usually stored in
5 secure database 610. They are always encrypted and

authenticated in both of these cases. When a method core 1000’

references a load module 1100, a load module is loaded into the

SPE 503, decrypted. and then either passed to the electronic

. appliance microprocessor for ‘executing in an HPE 655 (if that is

10 where it eizecutesi. or kept in the SPE (if that is where it I

executes). If no SPE 503 is present. the load module may be

-decrypted by the HPE 655 prior to its execution.

Load module creation by parties is preferably controlled by

15 a certification process or a ring based SP1." architecture. Thus,

the process of creating new load modules 1100 is itself a

__controlled process, as is the process of replacing, updating or

deleting load modules already stored in a secureddatabase 610.

20 A load module 1100 is able to perform its function only

when executed in the protected environment of an SPE 503 or an

HZPE 655 because only then can it gain access to the protected

elements (e.g., UDEs 1200, other load modules 1100) on which it

operates. Initiation of load module execution in this

-432-

Petitioner Apple Inc. — Exhibit 1006, p. 1163

Petitioner Apple Inc. - Exhibit 1006, p. 1164

W0 98/09209 PCT/US97/15243

environment is strictly controlled by a combination of access

tags, validation tags, encryption keys, digital signatures and/or

correlation tags. Thus. a load module 1100 may only be

referenced if the caller knows its ID and asserts the shared

5 secret correlation tag specific to that load module. The

decrypting SPU may match the identification token and local

access tag of a load module after decryption. These techniques

make the physical replacement of any load module 1100

detectable at the next physical access of the load module.

10 1 Furthermore, load modules 1100 may be made ”read only“ in the

preferred embodiment. The read-only nature of load modules

1100 prevents the write-back of load modules that have been

tampered with in non-secure space.

15 Load modules are not necessarily directly governed by

PERCS 808 that control them, nor must they contain any

time/date information or expiration dates. The only control

consideration in the preferred embodiment is that one or more

methods 1000 reference them using a correlation tag (the value

20 of a protected object created by the load module’s owner,

distributed to authorized parties for inclusion in their methods,

and to which access and use is controlled by one or more PERCS

808). If a method core 1000’ references a load module 1100 and

asserts the proper correlation tag (and the load module satisfies

-433-

Petitioner Apple Inc. — Exhibit 1006, p. 1164

Petitioner Apple Inc. - Exhibit 1006, p. 1165

10

W0 PCTIUS97!15243

the internal tamper checks for the SPE 503), then that load

module can be loaded and executed, or it can be acquired from,

shipped to, updated, or deleted by, other systems.

As shown in Figure 23, load modules 1100 in the preferred

embodiment may be constructed of a public (unencrypted) header

802, a private (encrypted) header 804, a private body 1106

containing the encrypted executable code, and one or more data

description elements‘ (”DTDs“) 1108. The DTDs 1108 may be

stored within a load module 1100, or they may be references to

static data elements stored in secure database 610.

The following is an example of a possible field layout for

load module public header 802:

I Descri tion

VDE ID of Load Module.

Creator ID Site ID of creator of this load

module.

Constant indicates load

module t e.

-434-p

Petitioner Apple Inc. — Exhibit 1006, p. 1165

Petitioner Apple Inc. - Exhibit 1006, p. 1166

()1

W0 98/09209 PCTIUS97/15243

Field -5. 9 l Descri - tion

-LM ID Unique sequence number for

this load module, which

uniquely identifies the load _

module in a sequence of load

modules created by an
l authorized VDE '

Version number of this load

module.

Version ID

Other»

classificatio

ID to support diflerent load

module classes.

 atible searchin.
Type ID I ID to support method typecorn

Textual description of the

load module.

Descriptive Description
Information,

Value that describes what

execution space (e.g., SPE or

HPE) this load module.

Execution

space code

Many load modules 1100 contain code that executes in an

SPE 503. Some load modules 1100 contain code that executes in

an HPE 655. This allows methods 1000 to execute in whichever

environment is appropriate. For example, an INFORMATION

method 1000 can be built to execute only in SPE 503 secure

space for government classes of security, or in an HPE 655 for

commercial applications. As described above, the load module

public header 802 may contain an "execution space code“ field

-435-

Petitioner Apple Inc. — Exhibit 1006, p. 1166

Petitioner Apple Inc. - Exhibit 1006, p. 1167

WO 98109209 PCTIUS97/15243

that indicates ‘where the load module 1100 needs to execute.

This functionality also allows for different SPE instruction sets

as well as different user platforms, and allows methods to be

constructed without dependencies on the underlying load module

5 instruction set.

Load modules 1100 operate on three major data areas: the

stack, load module parameters, and data structures. The stack

and execution memory size required to execute the load module"

10 1100 are preferably described in private header 804, as are the

data descriptions from the stack image on load module call,

return, and any return data areas. The stack and dynamic areas

are described using the same DTD mechanism. The following is

an example ofa possible layout for a load module private header

15 1104:

Deacri - tion

 Copy of some or all of information from Object ID from Public Header.
ublic header 802

Check Value

Size of executable code block.
LM Exec Size

LM Exec Stack

-436-

 Other

classification

information

Check Value for Public Header.
20

 Descriptrive
Information

Executable code size for the load
module.

Stack size required for the load
module.

Petitioner Apple Inc. — Exhibit 1006, p. 1167

Petitioner Apple Inc. - Exhibit 1006, p. 1168

WO 98109209 PCTIUS97/15243

Execution space code Code that describes the execution

space for this load module.

Access and Access tag Tags used to determine if the load

reference tags I module is the correct LVI requested
Validation rat by the spa.

Correlation tag Tag used to determine if the caller

of the LM has the right to execute
this LM.

Digital Signature Used to determine if the LM

executable content is intact and

was created by a trusted source

(one with a correct certificate for

creating I..Ms).

I ‘ .

Data record DTD count Number of DTDs that follow the
\ descriptor 3 code block.

information

I DTD 1 reference ' Iflocally defined, the physical size
7 and offset in bytes of the first DTD

defined for this LM.

UI

If publicly referenced DTD. this is

I the DTD ID and the correlation tag' to permit access to the record. ‘or

DTD N reference lflocally defined. the physical size
and offset in bytes of the Nth DTD

defined for this LM.

If publicly referenced DTD, this is

the DTD ID and the correlation tag
to permit access to the record.

Check Value for entire LM.

\

Each load module 1100 also may use DTD 1108

10 _ information to provide the information necessary to support

building methods from a load module. This DTD information

-437-

Petitioner Apple Inc. — Exhibit 1006, p. 1168

Petitioner Apple Inc. - Exhibit 1006, p. 1169

wo gs/09209 - ~ PCT/US9"I/15243

contains the definition expressed in a language such as SGML

for the names and data types of all of the method data fields that

the load module supports, and the acceptable ranges of values

that can be placed in the fields. Other DTDS may describe the

UI function of the load module 1100 in English for inclusion in an

electronic contract. for example.

The next section of load module 1100 is an encrypted

executable body 1 106 that contains one or more blocks of

10 encrypted code. Load modules 1100 are preferably coded in the

"native" instruction set of their execution environment for

efficiency and compactness. SPU 500 and platform providers

may provide versions of the standard load modules 1100 in order

to make their products cooperate with the content in distribution

15 mechanisms contemplated by VDE 100. The preferred

embodiment creates and uses native mode load modules 1100 in

lieu of an interpreted or ”p-code“ solution to optimize the

performance of a limited resource SPU. However, when

sufiicient SPE (or HPE) resources exist and/or platforms have

20 sufiicient resources, these other implementation approaches may

improve the cross platform utility of load module code.

-438-

Petitioner Apple Inc. — Exhibit 1006, p. 1169

Petitioner Apple Inc. - Exhibit 1006, p. 1170

10

15

WO 98/09209

The following is an example of a field layout for a load

module DTD 1108:

 I Version number ofthjs DTD‘
I

llescriptive Size ofD'I‘D block.| .
I nformanon

I Tags used to determine ifthe DTD is
the correct DTD requested by the SPE.

D

‘ ccess and Access [:19

Nalidatlon ta: .

I I
fforrelation tag I1

lDTD Data Definition 1

Tag used to determine lfthe caller of

this DTD has the right to use the DTD.

TD Data Definition 2

1| Data Definition N

heck Value Check Value for entire DTD record.

Some examples of how load modules 1100 may use DTDS

1108 include:

- Increment data element (defined by name in DTD3)

value in data area DTD4 by value in DTDl

-439-

Petitioner Apple Inc. — Exhibit 1006, p. 1170

pc‘[‘IUS97/15243

Petitioner Apple Inc. - Exhibit 1006, p. 1171

W0 98,092o9 PCTIUS97/15243

- ' Set data element (defined by name in DTD3) value
in data area DTD4 to value in DTD3

- Compute atomic element from event in DTD1 from
5 table in DTD3 and return in DTD2

- Compute atomic element from event in DTD1 from

equation in DTD3 and return in DTD2

10 A - Create load module from load module creation

template referenced in DTD3 ’

- . , Modify load module in DTD3 using content in DTD4

15 - Destroy load module named in DTD3

Commonly used load modules 1100 may be built into a

SPU 500 as space permits. VDE processes that use built-in load .

‘modules 1100 will have significantly better performance than *

20 processes that have to find, load and decrypt external load

modules". The most useful load modules 1100 to buil.d into a SPU

might include sealer meters, fixed price billing, budgets and load 1

modules for aggregate methods that perform these three

processes.

25

User Data Elements (UDEa) 1200 and Method Data Elements
(MDEs) 1202

User Data Elements (UDEs) 1200 and Method Data

30 Elements (MDES) 1202 in the preferred embodiment store data.

-440-

Petitioner Apple Inc. — Exhibit 1006, p. 1171

Petitioner Apple Inc. - Exhibit 1006, p. 1172

W0 98,092,” PCTIUSb97/l524v3

There are many types of UDEs 1200 and MDEs 1202 provided by

the preferred embodiment. In the preferred embodiment, each of

these different types of data structures shares a common overall

format including a common header definition and naming

5 scheme. Other UDEs 1200 that share this common structure

include "local name services records“ (to be explained shortly)

and account information for connecting to other VDE

participants. These elements are not necessarily associated with

an individual user, and may therefore be considered MDEs 1202.

10 _ All UDEs 1200 and all MDEs 1202 provided by the preferred

embodiment may, if desired, (as shown in Figure 16) be stored in

a common physical table Within secure database 610, and

database access processes may commonly be used to access all of

these different types of data structures.

15

In the preferred embodiment, PERCS 808 and user rights

table records are types of UDE 1200. There are many other

types of UDEs 1200/MDEs 1202, including for example, meters,

meter trails, budgets, budget trails, and audit trails. Different

20 formats for these different types of UDEs/MDEs are defined, as

described above, by SGML definitions contained within DTDs

1108. Methods 1000 use these DTDs to appropriately access

UDEs/MDEs 1200, 1202.

-441-

Petitioner Apple Inc. — Exhibit 1006, p. 1172

Petitioner Apple Inc. - Exhibit 1006, p. 1173

wo 98/09209 PCTfUS97/15243

% Secure database 610' stores two types of items: static and

dynamic. Static data structures and other items are used for
information that is essentially static information. This includes

load modules 1100, PERCS 808, and many components of

methods. These items are not updated frequently and contain

expiration dates that can be used to prevent ”old“ copies of the

information from being substituted for newly received items.

These items may be encrypted with a site specific secure

database file key when they are stored in the secure database

10 I 610, and then decrypted using that key when they are loaded
into the SPE.

Dynamic items are used to support secure items that must

_be updated frequently. The UDEs 1200 of many methods must

15 be updated and written out of the SPIZ 503 after each use.

Meters and budgets are common examples of this. Expiration

dates cannot be used effectively to prevent. substitution of the

previous copy of a budget UDE 1200. To secure these frequently

updated items, a transaction tag is generated and included in the

20 encrypted item each time that item is updated. A list of all VDE

item IDs and the current transaction tag for each item is

maintained as part of the secure database 610.

-442-

Petitioner Apple Inc. — Exhibit 1006, 10- 1173

Petitioner Apple Inc. - Exhibit 1006, p. 1174

W0 93,0920.) PCrIUs97I1s243

Figure 24 shows an example of a user data element

(”UDE“) 1200 provided by the preferred embodiment. As shown

in igure 24, UDE 1200 in the preferred embodiment includes a

public header 802, a private header 804, and a data area 1206. —'

5 - The layout for each of these user data elements 1200 is generally

defined by an SGML data definition contained within a DTD

1108 associated with one or more load modules 1100 that operate

on the UDE 1200.

H 10 I UDES 1200 are preferably encrypted using a site specific

* key once they are loaded into a site. This site-specific key masks

a validation tag that may be derived from a cryptographically

strong pseudo-random sequence by the SPE 503 and updated

each time the record is written back to the secure database 610.

15 This technique provides reasonable assurance that the UDE

1200 has not been tampered with nor substituted when it is

requested by the system for the next use.

Meters and budgets are perhaps among the most common

20 data structures in VDE 100. They are used to count and record

events, and also to limit events. The data structures for each

meter and budget are determined by the content provider or a

distributor/redistributor authorized to change the information.

Meters and budgets, however, generally have common

-443 -

Petitioner Apple Inc. — Exhibit 1006, p. 1174

Petitioner Apple Inc. - Exhibit 1006, p. 1175

10

15

W0 98l09209

information stored in a common header format (e.g., user ID, site

ID and related identification information).

The content provider or distributor/redistributor may

specify data structures for each meter and budget UDE.

Although these data structures yary depending upon the

particular application, some are more common than others. The

following table lists some of the more commonly occurring data

structures for METER and BUDGET methods:

ll escription or

byte. short. long, or

unsigned versions of

the same widths

byte. short. long, or '

unsigned versions of

the same widths

! escending count of

ermitted use; eg.,

2, 4 or 8 byte integer

split into two related

bytes or words

 - ata structures.

 it indicator of use

r ownershi .

 Array of bytes ‘ eter/Budget

2 ndicator of use or

wnership that may

= e with time.

eter/Budet II ate of last use.

-444-

Petitioner Apple Inc. — Exhibit 1006, p. 1175

PCT/U597/15243

Petitioner Apple Inc. - Exhibit 1006, p. 1176

7/15243
wo 98/092139 . . PCTIUS9 .

ical . II escription or

’ B8 ' 88 '
-- Date fludget '0 ate of first

é = owable use.

i
{ ext Audit t:ime_t 0 eter/Budget ‘I ate of next

euired audit.

' uditor VDE ID eter/Budget E ID of .
’ uthorized auditor.

The information in the table above is not complete or

U 2'.I'D

10 comprehensive, but rather is intended to show some examples of

' types of information that may be stored in meter and budget

related data structures. The actual structure of particular

meters and budgets is determined by one or more DTDs 1 108

associated with the load modules 1100 that create and

15 manipulate the data structure. A list of data types permitted by

the DTD interpreter 590 in VDE 100 is extensible by properly

authorized parties.

Figure 25 shows an example of one particularly

.20 advantageous kind of UDE 1200 data area 1206. This data area

1206 defines a ”map“ that may be used to record usage

information. For example, a meter method 1000 may maintain

one or more "usage map“ data areas 1206. The usage map may

-445-

Petitioner Apple Inc. — Exhibit 1006, p. 1176

Petitioner Apple Inc. - Exhibit 1006, p. 1177

WO 98109209 V PCTI_Us97I1s243

be a “usage bit map“ in the sense that it stores one or more bits

of information (i.e., a single or multi-dimensional bit image)

corresponding to each of several types or categories of usage.

Usage maps are an eficient means for referencing prior usage.

5 For example, a usage map dataarea may be used by a meter

method 1000 to record all applicable portions of information

content that the user has paid to use, thus supporting a very

efiicient and flexible means for allowing subsequent user usage

of the same portions of the information content. This mayyenable

10 certain«VDE related security functions such as "’contiguousness,“

"logical relatedness,“ randomization of usage, and other usage

types. Usagemaps may be analyzed for other usage patterns

(e.g., quantity discounting, or for enabling :1 user to reaccess

information content for which the user previously paid for

15 unlimited‘ usage).

The ”usage map“ concept provided by the preferred

-_ embodiment may be tied to the concept of "atomic elements.“ In

the preferred embodiment, usage of an object 300 may be

20 metered in terms of ”atomic elements.“ In the preferred

embodiment, an "atomic element“ in the metering context defines

a unit of usage that is ”su1ficiently significant“ to be recorded in

a meter. The definition of what constitutes an ”atomic element“

is determined by the creator of an object 300. For instance, a

-445-

Petitioner Apple Inc. — Exhibit 1006, p. 1177

Petitioner Apple Inc. - Exhibit 1006, p. 1178

43wo 98,05,209 . Pcr/US97/152

”byte“ of information content contained in an object 300 could be ’

defined as an "atomic element,“ or a record of a database could be

defined as an ”atomic element,“ or each chapter of an

electronically published book could be defined as an "atomic

5 element.“

An object 300 can have multiple sets of overlapping atomic

elements. For example, an access to any database in a plurality

of databases may be defined as an ”atomic element.“

10 Simultaneously, an access to any record, field of records, sectors

of informations, and/or bytes contained in any of the plurality of

databases might also be defined as an ”atomic element.“ In an

electronically published newspaper, each hundred words ofan

article could be defined as an ”atomic element,“ while articles of

15 more than a certain length could be defined as another set of

”atomic elements.“ Some portions ofa newspaper (e.g.,

advertisements, the classified section, etc.) might not be mapped

into an atomic element.

20 ' The preferred embodiment provides an essentially

unbounded ability for the object creator to define atomic element

types. Such atomic element definitions may be very flexible to

accommodate a wide variety of different content usage. Some

examples of atomic element types supported by the preferred

-447-

Petitioner Apple Inc. — Exhibit 1006, p. 1178

Petitioner Apple Inc. - Exhibit 1006, p. 1179

I “,0 gsmzog PCl‘fUS97I15243

embodiment include bytes, records, files, sectors, objects, a

quantity of bytes, contiguous or relatively contiguous bytes (or

other predefined unit types), logically related bytes containing

content that has some logical relationship by topic, location or

5 other user specifiable logic of relationship, etc. Content creators

preferably may flexibly define other types of atomic elements.

The preferred embodiment of the present invention

provides EVENT methods to provide a mapping between usage

10 events and atomic elements. Generally, there may be an EVENT

method for each different set of atomic elements defined for an

object 300. In many cases, an object 300 will have at least one

type of atomic element for metering relating to billing, and at

least one other atomic element type for non-billing related

15 metering (e.g., used to, for example. detect fraud, bill advertisers,

and/or collect data on end user usage activities).

In the preferred embodiment, each EVENT method in a

usage related context performs two functions: (1) it maps an

20 accessed event into a set of zero or more atomic elements, and (2)

it provides information to one or more METER methods for

metering object usage. The definition used to define this

mapping between access events and atomic elements may be in

the form of a mathematical definition, a table, a load module, etc.

-448-

Petitioner Apple Inc. — Exhibit 1006, p. 1179

Petitioner Apple Inc. - Exhibit 1006, p. 1180

W0 98,092” PCT/Us97I15243

When an EVENT method maps an access request into ”zero“

atomic elements, a user accessed event is not mapped into any

atomic element based on the particular atomic element definition

that applies. This can be, for example, the object owner is not

5 interested in metering usage based on such accesses (e.g.,

because the object owner deems such accesses to be insignificant

from a metering standpoint).

A "usage map“--may employ a "bit map image“ for storage

10 of usage history information in a highly eflicient manner. 3

Individual storage elements in a usage map may correspond to

atomic elements. Different elements within a usage map may

correspond to different atomic elements (e.g., one map element

may correspond to number of bytes read, another map element

15 may correspond to whether or not a particular chapter was

opened, and yet another map element may correspond to some

other usage event).

One of the characteristics of a usage map provided by the

20 preferred embodiment of the present invention is that the

significance of a map element is specified, at least in part, by the

position of the element within the usage map. Thus, in a usage

map provided by the preferred embodiment, the information

indicated or encoded by a map element is a function of its

-449-

Petitioner Apple Inc. — Exhibit 1006, p. 1180

Petitioner Apple Inc. - Exhibit 1006, p. 1181

WO 98109209 PCT/US97/15243

position (either physically or logically) within the map structure.

As one simple example, a usage map for a twelve-chapter novel

could consist of twelve elements, one for each chapter of the

novel. When the user opens the first chapter, one or more bits

5 within the element corresponding to the first chapter could be

changed in value (e.g., set to ”one‘). In this simple example

where the owner of the content object containing the novel was

interested only in metering which chapters had been opened by

the user, the usage map element corresponding to a chapter

10 could be set to ”one“ the first time the user opened that

corresponding chapter, and could remain ”onc“ no matter how

many additional times the user opened the chapter. The object

owner or other interested VDE participant would be able to

rapidly and efficiently tell which chapterisl had been opened by

15 the user simply by examining the compact usage map to

determine which elements were set to "one.‘

Suppose that the content object owner wanted to know

how many times the user had opened each chapter of the novel.

20 In this case, the usage map might comprise, for a twelve-chapter

novel, twelve elements each of which has a one-to-one

correspondence with a different one of the twelve chapters of the

novel. Each time a user opens a particular chapter, the

corresponding METER method might increment the value

-450-

Petitioner Apple Inc. — Exhibit 1006, p. 1181

Petitioner Apple Inc. - Exhibit 1006, p. 1182

97/15243WO 98109209 PCWUS

contained in the corresponding usage map element. In this way, -

an account could be readily maintained for each of the chapters

of the novel.

The position of elements within a usage map may encode a

multi-variable function. For example, the elements within a

usage map may be arranged in a two-dimensional array as

shown in Figure 25B. Different array coordinates could

correspond to independent variables such as, for example, atomic
10 elements and time. Suppose, as an example, that a content

object owner distributes an object containing a collection of audio

recordings. Assume further that the content object owner wants

to track the number of times the user listens to each recording

within the collection, and also wants to track usage based on

15 month of the year. Thus, assume that the content object owner

wishes to know how many times the user during the month of

January listened to each of the recordings on a recording-by-

recording basis, similarly wants to know this same information

for the month of February, March, etc. In this case, the usage

20 map (see Figure 25B) might be defined as a two-dimensional
array of elements. One dimension of the array might encode

audio recording number. The other dimension of the array might

encode month of the year. During the month of January, the

corresponding METER method would increment elements in the

-451-

Petitioner Apple Inc. — Exhibit 1006, p. 1182

Petitioner Apple Inc. - Exhibit 1006, p. 1183

WO 98/09209 . PCTIUS9'1l15243

array the ”January“ column of the array, selecting which

element to increment as a function of recording number. When

January comes to an end. the METER method might cease

Writing into the array elements in the January column, and

5 instead write values i.nto a further set of February array

elements—once again selecting the particular array element in

this column as a function of recording number. This concept may

be extended to N dimensions encoding N different variables.

10 Usage map meters are thus an efficient means for

referencing prior usage. They may be used to enable certain

VDE related security functions such as testing for

contiguousness (including relative contiguousness), logical

relatedness (including relative logical relatedness), usage

15 randomization, and other usage patterns. For example, the

"degree or character of the ’’randomness‘‘ of content usage by a

user might serve as a potential indicator of attempts to

circumvent VDE content budget limitations. A user or groups of

users might employ multiple sessions to extractcontent in a

20, manner which does not violate contiguousness, logical

relatedness or quantity limitations, but which nevertheless

enables reconstruction of a "material portion or all of a given,

valuable unit of content. Usage maps can be analyzed to

determine other patterns of usage for pricing such as, for

-452-

Petitioner Apple Inc. — Exhibit 1006, p. 1183

Petitioner Apple Inc. - Exhibit 1006, p. 1184

W0 98,092” . . PCT/US97I15243
example, quantity discounting after usage of a certain quantity

of any or certain atomic units. or for enabling a user to reaccess

an object for which the user previously paid for unlimited

accesses (or unlimited accesses over a certain time duration).

5 Other useful analyses might include discounting for a given

atomic unit for a plurality of uses.

A further example of a map meter includes storing a

. record of all applicable atomic elements that the user has paid to

10 . use (or alternatively, has been metered as having used, though

payment may not yet have been required or made). Such a usage

map would support a very efficient and flexible way to allow

subsequent user usage of the same atomic elements.

15 i A further usage map could be maintained to detect

fraudulent usage of the same object. For example, the object

might be stored in such a way that sequential access of long

blocks should never occur. A METER method could then record

all applicable atomic elements accesses during, for example, any

20 specified increment of time, such as ten minutes, an hour, a day,

a month, a year, or other time duration). The usage map could

be analyzed at the end of the specified time increment to check

for an excessively. long contiguous set of accessed blocks, and/or

could be analyzed at the initiation of each access to applicable

-453-

Petitioner Apple Inc. — Exhibit 1006, p. 1184

Petitioner Apple Inc. - Exhibit 1006, p. 1185

wo 93/09209 PCT/US97/15243

- atomic elements. After each time duration based analysis, if no

fraudulent use is detected, the usage map could be cleared (or

partially cleared) and the mapping process could begin whole

or in part anew. If a fraudulent use pattern is suspected or

5 detected, that information might be recorded and the use of the

object could be halted. For example, the user might be required

to contact a content provider who might then further analyze the

usage information to determine whether or not further access

should be permitted.

10

to usage during a particular time period t'e.g.. current month

usage, last month’s usage, usage in the month before last. etc.).

15 The usage record shown thus comprises an array of ”flags“ or

fields 1206, each element in the array being used to indicate

usage in a different time period in this particular example.

When a time period ends, all elements 1206 in the array may be

shifted one position, and thus usage information (or the purchase

20 of user access rights) over a series of time periods can be

reflected by a series of successive array elements. In the specific

example shown in Figure 25c, the entire wide array 1206 is

shifted by one array’ position each month, with the oldest array

element being deleted and the new array element being ”turned“

Petitioner Apple Inc. — Exhibit 1006, p. 1185

Petitioner Apple Inc. - Exhibit 1006, p. 1186

wo 93/09209 PCl‘IUS9‘7Il5243

in a new array map corresponding to the current time period. In .

this example, record 1302 tracks usage access rights and/or other

usage related activities during the present calendar month as

well for the five immediately prior calendar months.

5 Corresponding billing and/or billing method 406 may inspect the

map, determine usage as related to billing and/or security

monitoring for current usage based on a formula that employs

the usage data stored in the record, and updates the wide record

to indicate the applicable array elements for which usage

10 occurred or the like. A wide bit map may also be used for many

other purposes such as maintaining an element by element count

of usage, or the contiguousness, relatedness, etc. function

described above, or some combination of functionality.

15 Audit trail maps may be generated at any frequency

determined by control, meter, budget and billing methods and

load modules associated with those methods. Audit trails have a

" similar structure to meters and budgets and they may contain

user specific information in addition to information about the

20 usage event that caused them to be created. Like meters and

budgets, audit trails have a dynamic format that is defined by

the content provider or their authorized designee, and share the

» basic element types for meters and budgets shown in the table

above. In addition to these types, the following table lists some

-455-

Petitioner Apple Inc. — Exhibit 1006, p. 1186

Petitioner Apple Inc. - Exhibit 1006, p. 1187

'20

25‘

wo_9s/09209 PCTIUS97l15243

examples of other significant data fields that may be found in

audit trails:

,
se Event ID signed long

Event ID that started a

rocessin

Meter/"Budgefl
Billin

se

Meter/Budgefl

Billing

Transaction number to

help detect audits that

have been tampered
with.

 Meter/Billing Atomic elementts) and

ID of object that was
used.

ntegensi of

ppropriate

fvidth

 Personal information

about user.

ersonal User haracter or

nformation

‘se Date"I‘ime ime_t .VIeter/Budgeu’ Date/time of use.
Billing _

D

Audit trail records may be automatically combined into

 Budget/Billing

Meter/Budget’
Billinrz

VDE ID of user.

single records to conserve header space. The combination

process may, for example, occur under control of a load module

that creates individual audit records.

I Permissions Record Overview

Figure 16 also shows that PERCS 808 may be stored as

part of secure database 610. Permissions records (”PERCs“) 808

-456-

Petitioner Apple Inc. — Exhibit 1006, p. 1187

Petitioner Apple Inc. - Exhibit 1006, p. 1188

10

15

20

W0 98/119209 PCl‘IUS97IlS243

are at the highest level of the data driven control hierarchy

provided by the preferred embodiment of VDE 100. Basically,

there is at least one PERC 808 that corresponds to each

information and/or transactional content distributed by VDE

‘100. Thus, at least one PERC 808 exists for each VDE object 300

in the preferred embodiment. Some objects may have multiple

corresponding PERCs 808. PERC 808 controls how access and/or

manipulation permissions are distributed and/or how content

and/or other information may o_therv_vise be used. PERC 808 also

specifies the ”rights“ of each VDE participant in and to the

content and/or other information.

In the preferred embodiment, no end user may use or

access a VDE object unless a permissions record 808 has been

delivered to the end user. As discussed above, a PERC 808 may

be delivered as part of a traveling object 860 or it may be

delivered separately (for example, within an administrative

object). An electronic appliance 600 may not access an object

unless a corresponding PERC 808 is present, and may only use

the object and related information as permitted by the control

structures contained within the PERC.

-457-

Petiti0ner'Apple Inc. — Exhibit 1006, p. 1188

Petitioner Apple Inc. - Exhibit 1006, p. 1189

wo 93/09209 PC!‘/US97Il5243

Briefly, the PERC 808 stores information concerning the

methods, method options, decryption keys and rights with

respect to a corresponding VDE object 300.

5 _ PERC 808 includes control structures that define high

level categories or classifications of operations. These high level

categories are referred to as ”rights.“ The ”right“ control

structures, in turn, provide internal control structures that

reference ”methods“ 1000. The internal structure of preferred

10 1 embodiment PERC 808 organizes the "methods“ that are

required to perform each allowable operation on an object or

associated control structure (including operations performed on

the PERC itself‘). For example, PERC 808 contains decryption

keys for the object. and usage of the keys is controlled by the

15 methods that are required by the PERC for performing

operations associated with the exercise of a "right.“

—T—._.._

PERC 808 for an object is typically created when the object

is created, and future substantive modifications of a PERC, if

20 allowed, are controlled by methods associated with operations

using the distribution right(s) defined by the same (or different)

PERC.

—458—

Petitioner Apple Inc. — Exhibit 1006, p. 1189

Petitioner Apple Inc. - Exhibit 1006, p. 1190

W0 “M209 PCTIUS97/15243

Figure 22 shows the internal structures present in an

example of a PERC 808 provided by the preferred embodiment.

All of the structures shown represent (or reference) collections of

methods required to process a corresponding object in some

5 specific way. PERCs 808 are organized as a hierarchical

structure, and the basic elements of the hierarchy are as follows:

”rights“ records 906

"control sets“ 914

”required method“ records 920 and

10 ”required method options“ 924.

There are other elements that may be included in a PERC

808 hierarchy that describe rules and the rule options to support '

the negotiation of rule sets and control information for smart

15 objects and for the protection ofa user's personal information by

a privacy filter. These alternate elements may include:

optional rights records

optional control sets

optional method records

20 permitted rights records

permitted rights control sets

permitted method records

required DTD descriptions

optional DTD descriptions

-459-

Petitioner Apple Inc. — Exhibit 1006, p. 1190

Petitioner Apple Inc. - Exhibit 1006, p. 1191

wo ggmgzog PCT/US97/15243

V permitted DTD descriptions

These alternate fields can control other processes that may, in

part, base negotiations or decisions regarding their operation on

the contents of these fields. Rights negotiation, smart object

5 control information, and related processes can use these fields for

more precise control of their operation.

The PERC 808 shown in Figure 26 includes a PERC

header 900, a CSO ("control set 0“) 902, private body keys 904,

g 10 and one or more rights sub-records 906. Control set 0 902 in the

preferred embodiment contains information that is common to

one or more "rights“ associated with an object 300. For example,

a particular ”event“ method or methods might be the same for p

usage rights, extraction rights and/or other rights. In that case,

15 ”control set O“ 902 may reference this event that is common

across multiple "rights.“ The provision of ”control set 0“ 902 is

actually an optimization, since it would be possible to store

different instances of a commonly-used event within each of

plural ”rights“ records 906 of a PERC 808.

20

I Each rights record 906 defines a different ”right“i

corresponding to an object. A ”right“ record 9.06 is the highest

level of organization present in PERC 808. There can be several

different rights in a PERC 808. A ”right“ represents a major

-460-

Petitioner Apple Inc. — Exhibit 1006, p. 1191

Petitioner Apple Inc. - Exhibit 1006, p. 1192

wo 93/ogzog PCT/US97/15243

functional partitioning desired by a participant of the basic

architecture of VDE 100. For example, the right to use an object

and the right to distribute rights to use an object are major

functional groupings within VDE 100. Some examples of

5 possible rights include access to content, permission to distribute

rights to access content, the ability to read and process audit

trails related to content and/or control structures, the rightto

perform transactions that may or may not be related to content

and/or related control structures (such as banking transactions,

10 catalog purchases, the collection of taxes, EDI transactions, and

such), and the ability to change some or all of the internal

structure of PERCs created for distribution to other users.

PERC 808 contains a rights record 906 for each type of right to

object access/use the PERC grants.

15

Normally, for VDE end users, the most frequently granted

right is a usage right. Other types of rights include the

"extraction right,“ the ”audit right“ for accessing audit trail

information of end users, and a "distribution right“ to distribute

20 an object. Each of these different types of rights may be

embodied in a different rights record 906 (or alternatively,

different PERCs 808 corresponding to an object may be used to

grant difierent rights).

-461-

Petitioner Apple Inc. — Exhibit 1006, p. 1192

Petitioner Apple Inc. - Exhibit 1006, p. 1193

WO 98109209 ~ PCTIUS97/15243

’ Each rights record 906 includes a rights record header 908,-

a CSR (”control set for right“) 910, one or more "right keys“ 912,

and one or more ”control sets“ 914. Each "rights“ record 906

contains one or more control sets 914 that are either required or

selectable options to control an object in the exercise of that

”right.“ Thus, at the next level, inside of a ”right“ 906, are control

sets 914. Control sets 914, in turn, each includes a control set

header 916, a control method 918, and one or more required

methods records 920. Required methods records 920, in turn,

'10 each includes a required method header 922 and one or more

required method options 924.

Control sets 914 exist in two types in VDE 100: common

required control sets which are given designations 7’control set 0“

15 or "control set for right,“ and a set of control set options. "Control

set 0“ 902 contains a list of required methods that are common to

all control set options, so that the common required methods do

not have to be duplicated in each control set option. A ”control

set for right“ (”CSR“) 910 contains a similar list for control sets

20 within a given right. "Control set 0“ and any "control sets for

rights“ are thus, as mentioned above, optimizations; the same

omitting ”control set 0“ and any ”control sets for rights.“

-462-

Petitioner Apple Inc. — Exhibit 1006, 10- 1193 ‘

Petitioner Apple Inc. - Exhibit 1006, p. 1194

' 43
W0 98/09209 I . Pcr/US97/152

One of the control set options, "control set 0“ and the

appropriate "control set for right“ together form a complete

control set necessary to exercise a right.

5 Each control set option contains a list of required methods

1000 and represents a different way the right may be exercised.

Only one of the possible complete control sets 914 is used at any

one time to exercise a right in the preferred embodiment.

A 10 Each control set 914 contains as many required methods

records 920 as necessary to satisfy all of the requirements of the

creators and/or distributors for the exercise of a right. Multiple

ways a right may be exercised, or multiple control sets that

govern how a given right is exercised. are both supported. As an

15 example, a single control set 914 might require multiple meter

and budget methods for reading the object’s content, and also

require different meter and budget methods for printing an

object’s content. Both reading and printing an object’s content

can be controlled in a single control set 914.

20

Alternatively, two different control set options could

support reading an object’s content by using one control set

option tosupport metering and budgeting the number of bytes

read, and the other control set option to support metering and

-463-

Petitioner Apple Inc. — Exhibit 1006, p. 1194

Petitioner Apple Inc. - Exhibit 1006, p. 1195

V wo 98/092‘-,9 PCT/US97/1.5243
l buudgetinlgthe number of paragraphs read. One or the other of V l

these options would be active at a time.

Typically, each control set 914 will reference a set of

another control set may represent another, entirely different

distinct metering methodology.

10

At the next level inside a control set 914 are the required

methods records 920: Methods records 920 contain or reference

methods 1000 in the preferred embodiment. Methods 1000 are a

collection of ”events,“ references to load modules associated with

15 these events, static data, and references to a secure database 6.1.0

for automatic retrieval of any other separately deliverable data

elements that may be required for processing events (e.g.,

UDEs)i A control set 914 contains a list of required methods that

must be used to exercise a specific right (i.e., process events

20 associated with a right). A required method record 920 listed in

a control set 914 indicates that a method must exist to exercise

the right that the control set supports. The required methods

may reference "load modules“ 1100 to be discussed below.

- 464 -

Petitioner Apple Inc. — Exhibit 1006, p. 1195

Petitioner Apple Inc. - Exhibit 1006, p. 1196

W0 gsmzog PCTIUS97/15243

Briefly, load modules 1100 are pieces of executable code that may .

be used to carry out required methods.

- Each control set 914 may have a control method record 918

5 as one of its required methods. The referenced control method

may define the relationships between some or all of the various

methods 1000 defined by a control set 906. For example, a

control method may indicate which required methods are

functionally grouped together to process particular events, and

10 the order for processing the required methods. Thus, a control

method may specify that required method referenced by record

920(a)(l)(i) is the first to be called and then its output is to go to

required method referenced by record 920(a)(1)(ii) and so on. In

this way, a meter method may be tied to one or more billing

15 methods and then the billing methods may be individually tied

to different budget methods, etc.

Required method records 920 specify one or more required

method options 924. Required method options are the lowest

20 level of control structure in a preferred embodiment PERC 808.

By parameterizing the required methods and specifying the

required method options 924 independently of the required

methods, it becomes possible to reuse required methods in many

different circumstances.

-465-

Petitioner Apple Inc. — Exhibit 1006, p. 1196

Petitioner Apple Inc. - Exhibit 1006, p. 1197

WO 98109209 I PCTIUS97/l52n.13
For example, a required method record 920 may indicate

that an actual budget method ID must be chosen from the list of

budgetrmethod IDs in the required method option list for that

required method. Required method record 920 inthis case does

5 not contain any method IDs for information about the type of

method required, it only indicates that a method is required.

. Required method option 924 contains the method ID of the

method to be used if this required method option is selected. As H

a further optimization. an actual method ID may be stored if

10 only one option exists for a specific required method. This allows

the size of this data structure to be decreased.

PERC 808 also contains the fundamental decryption keys

for an object 300, and any other keys used With "rights“ (for

15 encoding and/or decoding audit trails. for example). It may

contain the keys for the object content or keys to decrypt portions

of the object that contain other keys that then can be used to

decrypt the content of the object. Usage of the keys is controlled

by the control sets 914 in the same ”right“ 906 within PERC 808.

20

In more detail, Figure 26 shows PERC 808 as including

private body keys 904, and right keys 912. Private body keys

904 are used to decrypt information contained within a private

-466-

Petitioner Apple Inc. — Exhibit 1006, p. 1197

Petitioner Apple Inc. - Exhibit 1006, p. 1198

10

15

20

WO 98/09209 PCTIUS97I15243

body 806 of a corresponding VDE object 300. Such information

may include, for example. methods 1000,load modules 1100

and/or UDEs 1200, for example. Right keys 912 are keys used to

exercise a right in the preferred embodiment. Such right keys

912 may include, for example, decryption keys that enable a

method specified by PERC 808 to decrypt content for release by a

VDE node to an end user. These right keys 912 are, in the

preferred embodiment, unique to an object 300. Their usage is

preferably controlled by budgets in the preferred embodiment.

Detailed Example ofa PERC 808

Figures 26A and 26B show one example of a preferred

embodiment PERC 808. In this example, PERC header 900

includes:

a site record number 926.

afield 928 specifying the length of the private body

key block,

’T.‘ “ a field 930 specifying the length of the PERC,

an expiration date/time field 932 specifying the

expiration date and/or time for the PERC,

alast modification date/time field 934 specifying the

last date and/or time the PERC 808 was

modified,

-467-

Petitioner Apple Inc. — Exhibit 1006, p. 1198

Petitioner Apple Inc. - Exhibit 1006, p. 1199

wo 93/09299 V I PCTlllS97ll5243
the original distributor ID field 936 that specifies

who originally distributed the PERC and/or

corresponding object,

a last distributor field 938 that specifies who was

5 the last distributor of the PERC and/or the

object,

an object ID field 940 identifying the corresponding

VDElobject 300,

a field 942 that specifies the class and/or type of

10 PERC and/or the instance ID for the record

class to differentiate the PERCS of the same

type that may differ in their particulars,

a field 944 specifying the number of "’rights“ sub-

records 906 within the PERC, and

15 a validation tag 948.

The PERC 808 shown in Figures 26a, 26b also has private body

keys stored in a private body key block 950. I

This PERC 808 includes a control set 0 sub-record 914 (O)

20 that may be used commonly by all of rights 906 within the

PERC. This control set 0 record 914(0) may include the following
fieldsi

a length field 952 specifying the length of the control

set 0 record

-468-

Petitioner Apple Inc. — Exhibit 1006, p. 1199

Petitioner Apple Inc. - Exhibit 1006, p. 1200

wo ggmgzog _ PCT/US97/15243

a field 954 specifying the number of required

method records 920 within the control set

an access tag field 956 specifying an access tag to

control modification of the record and

5 one or more required method records 920.

Each requ.i.red method record 920, in turn may include:

a length field 958 specifying the length of the

required method record

a field 960 specifying the number of method option

10 p - recordswithin the required method record 920

an access tag field 962 specifying an access tag to

control modification of the record and

one or more method option records 924.

Each method option sub-record 924 may include:

15 a length field 964 specifying the length of the

.. method option record 0

a length field 966 specifying the length of the data

area (if any) corresponding to the method

option record I

20 a method ID field 968 specifying a method ID (e.g.,

type/owner/class/instance)

a correlation tag field 970 specifying a correlation

tag for correlating with the method specified

in field 9680 ‘

-469-

Petitioner Apple Inc. — Exhibit 1006, p. 1200

Petitioner Apple Inc. - Exhibit 1006, p. 1201

10

15

20

W0 98/09209 PCT/US97/15243

an access tag field 972 specifying an access tag to

control modification of this record

a method-specific attributes field 974

a data area 976 and

a check value field 978 for validation purposes

In this example of PERC 808 also includes one or more

rights records 906, and an overall check value field 980. Figure

23b is an example of one of right records 906 shown in Figure

1621. In this particular example, rights record 906a includes a

rights record header 908 comprising:

a length field 982 specifying the length of the rights
key block 912

a length field 984 specifying the length of the rights
record 908

an expiration date/time field 986 specifying the

‘expiration date and/or time for the rights

record _

a right ID field 988 identifying a right

a number field 990 specifying the number of control

sets 914 within the rights record 906, and

an access tag field 992 specifying an access tag to

control modification of the right record.

- 470 -

Petitioner Apple Inc. — Exhibit 1006, 10- 1201

Petitioner Apple Inc. - Exhibit 1006, p. 1202

wo 93/09209 PCTlUS97I15243

This example of rights record 906 includes:

a control set for this right (CSR) 910

a rights key block 912

one or more control sets 914, and

5 a check value field 994.

Object Registry

Referring once again to Figure 16, secure database 610

provides data structures that support a ”lookup“ mechanism for

10 ”registered“ objects. This ”lookup“i mechanism permits electronic

appliance 600 to associate, in a secure way, VDE objects 300

With PERCs 808. methods 1000 and load modules 1100. In the

preferred embodiment, this lookup mechanism is based in pan

on data structures contained within object registry 450.

15

H In one embodiment, object registry 450 includes the

following tables:

- an object registration table 460;

- a subject table 462;

20 0 0 a User Rights Table (’”URT“) 464;

- an Administrative Event Log 442;

- a shipping table 444; and

- a receiving table 446.

-471-

Petitioner Apple Inc. — Exhibit 1006, p. 1202

Petitioner Apple Inc. - Exhibit 1006, p. 1203

16

15

20

WO 98109209 PCTIUS97!15243

Object registry 460 in the example embodiment: is a

database of information concerning registered VDE objects 300

and the lights of users and user groups with regard to those

objects. When electronic appliance 600 receives an object 300

containing a new budget or load module 1100, the electronic

appliance usually needs to add the information contained by the

object to secure database 610. Moreover, when any new VDE

object 300 arrives at an electronic appliance 600, the electronic

appliance-must ”register“ the object within object registry 450 so

that it can be accessed. The lists and records for a new object

300 are built in the preferred embodiment when the object is

”registered“ by the electronic appliance 600. The information for

the object may be obtained from the object's encrypted private

header, object body, and encrypted name services record. This

information may be extracted or derived from the object 300 by

SPE 503, and then stored within secure database 610 as

encrypted records.

p In one embodiment, object registration table 460 includes

information identifying objects within object storage (repository)

728. These VDE objects 300 stored within object storage 728 are

not, in the example embodiment, necessarily part of secure

database 610 since the objects typically incorporate their own

security (as necessary and required) and are maintained using

-472-

Petitioner Apple Inc. — Exhibit 1006, p. 1203

Petitioner Apple Inc. - Exhibit 1006, p. 1204

wo 93/09209 PC‘l‘lUS97Il5243

diflerent mechanisms than the ones used to maintain the secure

database. Even though VDE objects 300 mayunot strictly be part

of secure database 610, object registry 450 (and in particular,

object registration table 460) refers to the objects and thus

5 "incorporates them by reference“ into the secure database. In

the preferred embodiment, an electronic appliance 600 may be

disabled from using any VDE object 300 that has not been

' appropriately registered with a corresponding registration record

stored wi-thin object registration table 460.

1_0

Subject table 462 in the example embodiment establishes

correspondence between objects referred to by object registration

table 460 and users (or groups of users) of electronic app-liance

600. Subject table 462 provides many of the attributes ofan

15 access control list (”ACL“), as will be explained below.

User rights table 464 in the example embodiment provides

permissioning and other information specific to particular users

or groups of usersand object combinations set forth in subject

20 table 462. In the example embodiment, permissions records 808

(also shown in Figure 16 and being stored within secure

database 610) may provide a universe of permissioning for a

particular object-user combination. Records within user rights

table 464 may specify a sub-set of this permissioning universe

-473-

Petitioner Apple Inc. — Exhibit 1006, p. 1204

Petitioner Apple Inc. - Exhibit 1006, p. 1205

wo 98/09209 _ PCT/US97Il5243

based on, for example, choices made by users during interaction

at time of object registration.

Administrative event log 442, shipping table 444, and

5 receiving table 446 provide information about receipts and

deliveries of VDE objects 300. These data structures keep track

of administrative objects sent or received by electronic appliance

600 including, for example, the purpose and actions of the

I administrative objects in summary and detailed form. Briefly,

10 shipping table 444 incudes a shipping record for each

administrative object sent (or scheduled to be sent) by electronic

appliance 600 to another VDE participant. Receiving table 446

in the preferred embodiment includes a receiving record for each

administrative object received (or scheduled to be received) by

15 electronic appliance 600. Administrative event log 442 includes

an event log record for each shipped and each received

administrative object, and may include details concerning each

distinct event specified by received administrative objects.

20 Administrative Object Shipping and Receiving

Figure 27 is an example of a detailed format for a shipping

table 444. In the preferred embodiment, shipping table 444

includes a header 444A and any number of shipping records 445.

Header 444A includes information used to maintain shipping

-474-

Petitioner Apple Inc. — Exhibit 1006, p. 1205

Petitioner Apple Inc. - Exhibit 1006, p. 1206

wo 93/09109 PC’l‘lUS97I15243

table 444. Each shipping record 445 within shipping table 444

provides details concerning a shipping event (i.e.. either a

completed shipment of an administrative object to another VDE

participant, or a scheduled shipment of an administrative

5 object).

In the example embodiment of the secure database 610,

shipping table header 444A may include a site record number

444A(1), a user (or group) ID 444A(2), a series of reference fields

10 444A(3)-444A(6), validation tags 444A_(7)-444A(8),’and a check

valueifield 444A(9;. The fields 444A(3)-444A(6) reference certain

recent IDs that designate lists of shipping records 445 within

shipping table 444. For example, field 4-14A(3) may reference to

a ’’first‘‘ shipping record representing a completed outgoing

15 shipment of an administrative object. and field 44¢L4.(4) may

reference to a ’’last‘‘ shipping record representing a completed

outgoing shipment of an administrative object. In this example,

”first‘‘ and ”last“ may, if desired, refer to time or order of

shipment as one example. Similarly, fields 444A(5) and 444A(6)

20 may reference to ”first“ and ”last“ shipping records for scheduled

outgoing shipments. Validation tag 444A(7) may provide
validation from a name services record within name services

record table 452 associated with the user (group) ID in the

header. This permits access from the shipping record back to the

-475-

Petitioner Apple Inc. — Exhibit 1006, p. 1206

Petitioner Apple Inc. - Exhibit 1006, p. 1207

wo 98/09209 PC!‘/US97/15243

nameservices record that describes the sender of the object

described by the shipping records. Validation tag 444A(8)

provides validation for a ”first“ outgoing shipping record

referenced by one or more of pointers 444A(3)-444A(6). Other

5 validation tags may be provided for validation of scheduled

shipping record(s).

Shipping record 444(1) shown includes a site record

number 445(1)(A). It also includes first and last scheduled

10 shipment date/times 445(1)(B), 445(1)(Cl providing a window of

time used for scheduling administrative object shipments. Field

445(1)(D) may specify an actual date/time of a completed

shipment ofan administrative object. Field 445(1)(E) provides

an ID of an administrative object shipped or to be shipped, and

15 ’ thus identifies which administrative object within object storage

728 pertains to this particular shipping record. A reference field

445(1)(G) references a name services record within name services

record table 452 specifying the actual or intended recipient of the

administrative object shipped or to be shipped. This information

20 within name services record table 452 may, for example, provide

routing information suflicient to permit outgoing administrative

objects manager 754 shown in Figure 12 to inform object switch

734 to ship the administrative object to the intended recipient. A

field 445(1)(H) may specify (e.g., using a series of bit flags) the

-476-

Petitioncr Apple Inc. — Exhibit 1006, p. 1207

Petitioner Apple Inc. - Exhibit 1006, p. 1208

10

15

20

WO 98/09209 PCTIUS97]15243

purpose of the administrative object shipment, and a field

445(1)(I) may specify the status of the shipment. Reference

fields 4-45(1)(J), 445(1)(K) may reference "previous“ and "next“

shipping records 445 in a linked list (in the preferred

embodiment, there may be two linked lists, one for completed

shipping records and the other for scheduled shipping records).

Fields 445(1)(L) ~- 445(1)(P) may provide validation tags

respectively from header 444A, to a record within administrative

event log 442 pointed to by pointer 445(1)(F); to the name

services record referenced by field 445(1)(G); from the previous

record referenced by 445(1)(J)', and to the next record referenced

by field 445(l)(K). A check value field 445(1)(Q) may be used for

validating shipping record 445.

Figure 28 shows an example of one possible detailed

format for a receiving table 446. In one embodiment, receiving

table 446 has a structure that is similar to the structure of the

shipping table 444 shown in Figure 27. Thus, for example,

receiving table 446 may include a header 446a and a plurality of

receiving records 447, each receiving record including details

about a particular reception or scheduled reception of an

administrative object. Receiving-table 446 may include two

linked lists, one for completed receptions and another for

schedule receptions. Receiving table records 447 may each

-477-

Petitioner Apple Inc. — Exhibit 1006, p. 1208

Petitioner Apple Inc. - Exhibit 1006, p. 1209

10

15

20

WO 98/09209 PCT/US97/15243

reference an entry within name services record table 452

specifying an administrative object sender, and may each point

to an entry within administrative event log 442. Receiving

records 447 may also include additional details about scheduled

and/or completed reception (e.g.. scheduled or actual date/time of

reception, purpose of reception and status of reception), and they

may each include validation tags for validating references to

other secure database records.

Figure 29 shows an example of a detailed format for an

administrative event log 442. In the preferred embodiment,

administrative event log 442 includes an event log record

442(1)442(N') for each shipped administrative object and for

each received administrative object. Each administrative event

log record may include a header 443a and from 1 to N sub-

records 442(J)(1) . . . 442(J)(N). In the preferred embodiment,

header 443a may include a site record number field 443A(1), a

record length field 443A(2), an administrative object ID field

443A(3), a field 443A(4) specifying a number of events, a

validation tag 443A(5) from shipping table 4_44 or receiving table

446, and a check sum field 443A(6). The number of events

specified in field 443A(4) corresponds to the number of sub-

records 442(J)(1) . . . 442(J)(N) Within the administrative event

log record 442(J). Each of these sub-records specifies

~478-

Petitioner Apple Inc. — Exhibit 1006, p. 1209

Petitioner Apple Inc. - Exhibit 1006, p. 1210

wo 98109209 PCTIUS97I15243

information about a particular ”event“ affected or corresponding

to the administrative object specified within field 443(A)(3).

Administrative events are retained in the administrative event

log 442 to permit the reconstruction (and preparation for i

5 construction or processing) of the administrative objects that

have been sent from or received by the system. This permits lost

administrative objects to be reconstructed at a later time.

Each sub-record may include a sub-record length field

10 442(J)(1)(a), a data area length field 442(J)(1)(b), an event ID '

field 442(J)(1)(c), a record type field 442(J)(1)(d), a record ID field

442(J)(1)(e), a data area field 442(J)(1)(f), and a check value field

442(J)(1)(g). The data area 442(J)(1)(f‘) may be used to indicate

which information within secure database 610 is affected by the

15 event specified in the event ID field 4-12(J)(1)(c), or what new

secure database item(s) were added. and may also specify the

outcome of the event.

The object registration table 460 in the preferred

20 embodiment includes a record corresponding to each VDE object

300 within object storage (repository) 728. When a new object

arrives or is detected (e.g., by redirector 684), a preferred ‘

embodiment electronic appliance 600 ”registers“ the object by

creating an appropriate object registration record and storing it

-479-

Petitioner Apple Inc. — Exhibit 1006, p. 1210

Petitioner Apple Inc. - Exhibit 1006, p. 1211

wo 98109209 PCT/US97/15243

in the object registration table 460. In the preferred

embodiment, the object registration table stores information that

is ‘user-independent, and depends only on the objects that are

registered at a given VDE electronic appliance 600. Registration

5 activities are typically managed by a REGISTER method

associated with an object.

In the example, subject table 462 associates users (or

groups of users) with registered objects. The example subject

10 table 462 performs the function of an access control list by

specifying which users are authorized to access which registered

VDE objects 300.

As described above, secure database 610 stores at leastone

15 PERC 808 corresponding to each registered VDE object 300.

PERCS 808 specify a set of rights that may be exercised to use or

access the corresponding VDE object 300. The preferred

embodiment allows user to ”customize“ their access rights by

selecting a subset of rights authorized by a corresponding PERC

20 808 and/or by specifying parameters or choices that correspond

to some or all of the rights granted by PERC 808. These user

choices are set forth in a user rights table 464 in the preferred

embodiment. User rights table (URT) 464 includes URT records,

each of which corresponds to a user (or group of users). Each of

-480-

Petitioner Apple Inc. — Exhibit 1006, p. 1211

Petitioner Apple Inc. - Exhibit 1006, p. 1212

wo 98/09209 PCl'IUS97I15243

these URT records specifies user choices for a corresponding

VDE object 300. These user choices may, either independently or

in combination with a PERC 808, reference one or more methods

1000 for exercising the rights granted to the user by the PERC

5 808 in a way specified by the choices contained within the URT

record.

Figure 30 shows an example of how these various tables

may interact with one another to provide a secure database

10 lookup mechanism. Figure 30 shows object registration table

460 as having a plurality of object registration records 460(1),

460(2), These records correspond to VDE objects 300(1),

300(2), . . . stored within object repository 728. Figure 31 shows

an example format for an object registration record 460 provided

15 by the preferred embodiment. Object registration record 460(N)

may include the following fields:

site record number field 466(1)

object type field 466(2)

creator ID field 466(3)

20 object ID field 466(4)

a reference field 466(5) that references subject

table 462

an attribute field 466(6)

a minimum registration interval field 466(7)

-481-

Petitioner Apple Inc. — Exhibit 1006, p. 1212

Petitioner Apple Inc. - Exhibit 1006, p. 1213

10

15

20

WO 98/09209 Pcr/US97/15243

a tag 466(8) to a subject table record, and

a check value field 466(9).

The site record number field 466(1) specifies the site

record number for this object registration record 460(N). In one

embodiment of secure database 610, each record stored within

the secure database is identified by a. site record number. This

site record number may be used as part of a database lookup

process in order to keep track of all of the records within the

secure database 610.

Object type field 466(2) may specify the type of registered

VDE object 300 (e.g., a content object, an administrative object,

etc.).

Creator ID field 466(3) in the example may identify the

creator of the corresponding VDE object 300.

Object ID field 466(4) in the example uniquely identifies

the registered VDE object 300.

Reference field 466(5) in the preferred embodiment

identifies a record within the subject table 462. Through use of

this reference, electronic appliance 600 may determine all users

-482-

Pctitioncr Apple Inc. — Exhibit 1006, p. 1213

Petitioner Apple Inc. - Exhibit 1006, p. 1214

wo 93/99209 PC!‘/US9'7I15243

(or user groups) listed in subject table 462 authorized to access

the corresponding VDE object 300. Tag 466(8) is used to validate

that the subject table records accessed using field 466(5) is the

proper record to be used with the object registration record

- 5 460(N).

Attribute field 466(6) may store one or more attributes or

attribute flags corresponding to VDE object 300.

10 A _ Minimum registration interval field 466(7) may specify

how often the end user may re-register as a user of the VDE

object 300 with a clearinghouse service, VDE administrator, or

VDE provider. One reason to prevent frequent re-registration is

to foreclose users from reusing budget quantities in traveling

15 objects until a specified amount oftirne has elapsed. The

minimum registration interval field 466(7) may be left unused

when the object owner does not wish to restrict re-registration.

Check value field 466(9) contains validation information

20 used for detecting corruption or modification of record 460(N) to V

ensure security and integrity of the record. In the preferred

embodiment, many or all of the fields within record 460(N) (as

with other records within the secure database 610) may be fully

or partially encrypted and/or contain fields that are stored

-483 -

Petitioner Apple Inc. — Exhibit 1006, p. 1214

Petitioner Apple Inc. - Exhibit 1006, p. 1215

10

15

20

W0 98/09209 PCT/US97/15243

redundantly in each record (once in unencrypted form and once

in encrypted form). Encrypted and unencrypted versions of the

same fields may be cross checked at various times to detect

corruption or modification of the records.

As mentioned above, reference field 466(5) references

subject table 462, and in particular, references one or more

user/object records 460(M) within the subject table. Figure 32

shows anexample of a format for a user/object record 462(M)

provided by the example. Record 462(M) may include a header

468 and a subjectrecord portion 470. Header 468 may include a

field 468(6) referencing a "first“ subject record 470 contained

within the subject registration table 462. This ”first“ subject

record 470(1) may, in turn, include a reference field 470(5) that

references a ”next“ subject record 470(2) within the subject

registration table 462, and so on. This ”linked list“ structure

permits a single object registration record 460(N) to reference to

from one to N subject records 470.

Subject registration table header 468 in the example

includes a site record number field 468(1) that may uniquely

identify the header as a record within secure database 610.

Header 468 may also include a creator ID field 468(2) that may

be a copy of the content of the object registration table creator ID

-484-

Petitioner Apple Inc. — Exhibit 1006, p. 1215

Petitioner Apple Inc. - Exhibit 1006, p. 1216

wo 93/99209 PCl'IUS9'7Il5243

field 466(3). Similarly, subject registration table header 468 may .

include an object ID field 468(5) that may be a copy of object ID

field 466(4) within object registration table 460. These fields

468(2), 468(5) make user/object registrati_on records explicitly

5 correspond to particular VDE objects 300.

Header 468 may also include a tag 468(7) that permits

validation. In one example arrangement, the tag 468(7) Within

the user/object registration header 468 may be the same as the

10 tag 466(8) Within the object registration record 460(N) that

points to the user/object registration header. Correspondence

between these tags 468(7) and 466(8) permits validation that the

object registration record and user/object registration header

match up.

15

User/object header 468 also includes an original

distributor ID field 468(3) indicating the original distributor of

the corresponding VDE object 300, and the last distributor ID

field 468(4) that indicates the last distzibutor within the chain of

20 handling of the object prior to its receipt by electronic appliance

600.

-485-

Petitioner Apple Inc. — Exhibit 1006, p. 1216

Petitioner Apple Inc. - Exhibit 1006, p. 1217

wo 93/09299 PCTlUS97I15243

Header 468 also includes a tag 468(8) allowing validation

between the header and the ”f1rst“ subject record 470(1) which

field 468(6) references

5 Subject record 470(1) includes a site record number 472(1),

a user (or user group) ID field 472(2), a user (or user group)

attributes field 472(3), a field 472(4) referencing user rights table

464, a field 472(5) that references to the "next“ subject record

470(2) (if there is one), a tag 472(6) used to validate with the

n 10 . header tag 468(8), a tag 472(7) used to validate with a

corresponding tag in the user rights table record referenced by

field 472(4), a tag 472(9) used to validate with a tag in the ”next“

subject record referenced to by field 472(5) and a check value

field 472(9).

15

User or user group ID 472(2) identifies a user or a user

group authorized to use the object identified in field 468(5).

Thus, the fields 468(5) and 472(2) together form the heart of the

access control list provided by subject table 462. User attributes

e 20 field 472(3) may specify attributes pertaining to use/access to

~ object 300 by the user or user group specified in fields 472(2).

Any number of different users or user groups may be added to

the access control list (each with a different set of attributes

-486-

Petitioner Apple Inc. — Exhibit 1006, p. 1217

Petitioner Apple Inc. - Exhibit 1006, p. 1218

10

15

20

W0 98l09209 PC'I‘IUS97Il5243

472(3)) by providing additional subject records 470 in the "linked

list“ structure.

Subject record reference field 472(4) references one or

mdre records within user rights table 464. Figure 33 shows an

example of a preferred format for a user rights table record

464(k). User rights record 464(k) may include a URT header

474, a record rights header 476, and a set of user choice records

478. U'RT”header 474' may include a site record number field, a

field 474(2) specifying the number of rights records within the

URT record 464(k). a field 474(3) referencing a "first“ rights

record (i.e., to rights record header 476), a tag 474(4) used to

validate the lookup from the subject table 462, a tag 474(5) used

to validate the lookup to the rights record header 476, and a

check value field 474(6).

Rights record header 476 in the preferred embodiment

may include site record number field 476(1), a right ID field

476(2), a field 476(3) referencing the ”next“ rights record 476(2),

a field 476(4) referencing a first set of user choice records 478(1),

a tag 476(5) to allow validation with URT header tag 474(5), a

tag 476(6) to allow validation with a user choice record tag

478(6), and a check value field 476(7). Right ID field 476(2) may,

for example, specify the type of right conveyed by the rights

-487-

Petitioner Apple Inc. — Exhibit 1006, p. 1218

Petitioner Apple Inc. - Exhibit 1006, p. 1219

wo 98109209 I PC’I‘IUS97Il5243

record 476(e.g., right to use, right to distribute, right to read,

right to audit, etc.).

The one or more user choice records 478 referenced by

5 _ rights record header 476 sets forth the user choices

corresponding to access and/or use of the corresponding VDE

object 300. There will typically be a rights record 476 for each

right authorized to the corresponding user or user group. These

rights govern use of the VDE object 300 by that user or user

10 group. For instance, the user may have an ”access“ right, and an

"extraction“ right, but not a "copy“ right. Other rights controlled

by rights record 476 (which is derived from PERC 808 using a

REGISTER method in the preferred embodiment.) include

distribution rights, audit rights, and pricing rights. When an

15 object 300 is registered with the electronic appliance 600 and is

registered with a particular user or user group, the user may be

permitted to select among various usage methods set forth in

PERC 808. For instance, a VDE object 300 might have two

required meter methodologies: one for billing purposes, and one

20 for accumulating data concerning the promotional materials

used by the user. The user might be given the choice of a variety

of meter/billing methods, such as: payment by VISA or

MasterCard; choosing between billing based upon the quantity of

material retrieved from an information database, based on the

-488-

Petitioner Apple Inc. 4 Exhibit 1006, p. 1219

Petitioner Apple Inc. - Exhibit 1006, p. 1220

WO 98/09209 A _ _ PCTIUS97ll5243
time of use, and/or both. The user might be offered a discount on

time and/or quantity billing if he is willing to allow certain

details concerning his retrieval of content to be provided to third

parties (e.g., for demographic purposes). At the time of

5 registration of an object and/or user for the object, the user would

be asked to select a particular meter methodology as the "active

metering method“ for the first acquired meter. A VDE

distributor might narrow the universe of available choices for the

user to a subset of the original selection array stipulated by

10 PERC 808. These user selection and configuration settings are

stored within user choice records 480(1), 480(2), 480(N). The

user choice records need not be explicitly set forth within user

rights table 464; instead, it is possible for user choice records 480

to refer (e.g., by site reference number) to particular VDE

15 methods and/or information parameterizing those methods.

Such reference by user choice records 480 to method 1000 should

be validated by validation tags contained within the user choice

records. Thus, user choice records 480 in the preferred

embodiment may select one or more methods 1000 for use with

20 the corresponding VDE object 300 (as is shown in Figure 27).

These user choice records 480 may themselves fully define the

methods 1000 and other information used to build appropriate

components assemblies 690 for implementing the methods.

Alternatively, the user/object record 462 used to reference the

-489-

Petitioner Apple Inc. — Exhibit 1006, p. 1220

Petitioner Apple Inc. - Exhibit 1006, p. 1221

10

15

20

WO 98/09209 PCT/US97ll5243

user rights record 464 may also reference the PERC 808

corresponding to VDE object 300 to provide additional

information needed to build the component assembly 690 and/or

otherwise access the VDE object 300. For example, PERC 808

may be accessed to obtain MDEs 1202 pertaining to the selected

methods, private body and/or rights keys for decrypting and/or

encrypting object contents, and may also be used to provide a

checking capability ensuring that the user rights record conveys

only those" rights authorized by a current authorization embodied

within a PERC.

In one embodiment provided by the present invention, a

conventional database engine may be used to store and organize

secure database 610, and the encryption layers discussed above

may be "on top of“ the conventional database structure. -

However, if such a conventional database engine is unable to

organize the records in secure database 610 and support the

security considerations outlined above, then electronic appliance

600 may maintain separate indexing structures in encrypted

form. These separate indexing structures can be maintained by

SPE 503. This embodiment would require SPE 503 to decrypt

the index and search decrypted index blocks to find appropriate

"site record IDs“ or other pointers. SPE 503 might then request

the indicated record from the conventional database engine. If

-490-

Petitioner Apple Inc. — Exhibit 1006, p. 1221

Petitioner Apple Inc. - Exhibit 1006, p. 1222

wo 93/09209 PC'l‘IUS97I15243

the record ID cannot be checked against a record list, SPE 503

might be required to ask for the data file itself so it can retrieve

the desired record. SPE 503 would then perform appropriate

authentication to ensure that the file has not been tampered

5 with and that the proper block is returned. SPE 503 should not

simply pass the index to the conventional database engine

(unless the database engine is itself secure) since this would

allow an incorrect record to be swapped for the requested one.

10 Figure 34 is an example of how the site record numbers

described above may be used to access the various data

structures within secure database 610. In this example, secure

database 610 further includes a site record table 482 that stores

a plurality of site record numbers. Site record table 482 may

15 store what is in effect a "master list“ of all records within secure

database 610. These site record numbers stored by site record

table 482 permit any record within secure database 610 to be

accessed. Thus, some of the site records within site record table

482 may index records with an object registration table 460,

20 other site record numbers within the site record table may index

records within the user/object table 462, still other site record

numbers within the site record table may access records within

URT 464, and still other site record numbers within the site

record table may access PERCS 808. In addition, each of method

-491-

Petitioner Apple Inc. — Exhibit 1006, p. 1222

Petitioner Apple Inc. - Exhibit 1006, p. 1223

10

15

20

WO 98109209 PCT/US97I15243

cores 1000’ may also include a" site record number so they may be '

accessed by site record table 482.

Figure 34A shows an example of a site record 4820') within

site record table 482. Site record 4820') may include a field

484(1) indicating the type of record, a field 484(2) indicating the

owner or creator of the record, a ”class “ field 484(3) and an

"instance" field 484(4) providing additional information about

the record to which the site record 482()') points; a specific

descriptor field 484(5) indicating some specific descriptor (e.g.,
object ID) associated with the record; an identification 484(6) of

the table or other data structure which the site record references;

a reference and/or offset Within that data structure indicating

where the record begins; a validation tag 484(8) for validating

the record being looked up, and a check value field 484(9). Fields

484(6) andl484(7) together may provide the mechanism by which

the record referenced to by the site record 4840) is actually

physically located within the secure database 610.

Updating Secure Database 610

Figure 35 show an example of a process 1150 which can be

used by a clearinghouse, VDE administrator or other VDE

participant to update the secure database 610 maintained by an

end user’s electronic appliance 600. For example, the process

-492-

Petitioner Apple Inc. — Exhibit 1006, p. 1223

Petitioner Apple Inc. - Exhibit 1006, p. 1224

W0 98/09209 Pcr/Us97I15243

1500 shown in Figure 35 might be used to collect ”audit trail“

records within secure database 610 and/or provide new budgets

and permissions (e.g., PERCS 808) in response to an end user’s

request.

Typically, the end user’s electronic appliance 600 may

initiate communications with a clearinghouse (Block 1152). This

contact may. for example, be established automatically or in

response to a user command. It may be initiated across the

10 electronic highway 108, or across other communications

networks suchas a LAN, WAN, two-way cable or using portable

media exchange between electronic appliances. The process of

exchanging administrative information need not occur in a single

”on line“ session, but could instead occur over time based on a

15 number of different one-way and/or two-way communications

over the same or different communications means. However, the

process 1150 shown in Figure 35 is a specific example where the

end user’s electronic appliance 600 and the other VDE

participant (e.g., a clearinghouse) establish a two-way real-time

20 interactive communications exchange across a telephone line,

network, electronic highway 108, etc.

The end user’s electronic appliance 600 generally contacts

a particular VDE administrator or clearinghouse. The identity of

-493-

Petitioner Apple Inc. — Exhibit 1006, p. 1224

Petitioner Apple Inc. - Exhibit 1006, p. 1225

10

15

20

WO 98109209 PCTIUS97I15243

the particular clearinghouse is based on the VDE object 300 the

user wishes to access or has already accessed. For example,

suppose the user has already accessed a particular VDE object

300 and has run out of budget for further access. The user could

issue a request which will cause her electronic appliance 600 to

automatically contact the VDE administrator, distributor and/or

financial clearinghouse that has responsibility for that particular

object. The identity of the appropriate VDE participants to

contact is -provided in the example by information within UDES

1200, MDES 1202, the Object Registration Table 460 and/or .

Subject Table 462, for example. Electronic appliance 600 may

have to contact multiple VDE participants (e.g., to distribute

audit records to one participant, obtain additional budgets _or

other permissions from another participant. etc.). The contact

1152 may in one example be scheduled in accordance with the

Figure 27 Shipping Table 444 and the Figure 29 Administrative

Event Log 442.

Once contact is established, the end user’s electronic

appliance and the clearinghouse typically authenticate one

another and agree on a session key to use for the real-time

information exchange (Block 1154). Once a secure connection is _

established, the end user’s electronic appliance may determine

(e.g., based on Shipping Table 444) whether it has any

-494-

Petitioner Apple Inc. — Exhibit 1006, p. 1225

Petitioner Apple Inc. - Exhibit 1006, p. 1226

wo 98/09209 PCTfUS9‘7I15243

administrative object(s) containing audit information that it is

supposed to send to the clearinghouse (decision Blockp1156).

Audit information pertaining to several VDE objects 300 may be

placed within the same administrative object for transmission, or

5 different administrative objects may contain audit information

about different objects. Assuming the end user’s electronic 5

appliance has at least one such administrative object to send to

this particular clearinghouse (”yes“ exit to decision Block 1156),

the electronic appliance sends that administrative object to the

10 clearinghouse via the now-established secure real-time

communications (Block 1158). In one specific example, a single

administrative object may be sent an administrative object

containing audit information pertaining to multiple VDE objects,

with the audit information for each different object

15 compromising a separate ”event“ within the administrative

object.

The clearinghouse may receive the administrative object

and process its contents to determine whether the contents are

20 A ’’valid“ and ”legitimate.“ For example, the clearinghouse may

analyze the contained audit information to determine whether it

indicates misuse of the applicable VDE object 300. The

clearinghouse may, as a result of this analysis, may generate one

or more responsive administrative objects that it then sends to

-495-

Petitioner Apple Inc. — Exhibit 1006, p. 1226

Petitioner Apple Inc. - Exhibit 1006, p. 1227

wo 98/09209 PCT/US97/15243

the end user’s electronic appliance 600 (Block 1160). The end

user’s electronic appliance 600 may process events that update

its secure database 610 and/or SPU 500 contents based on the

administrative object received (Block 1162). For example, if the

5 audit information received by the clearinghouse is legitimate,

then the clearinghouse may send an administrative object to the

end user’s electronic appliance 600 requesting the electronic

appliance to delete and/or compress the audit information that

has been transferred. Alternatively or in addition, the

10 clearinghouse may request additional information from the end-

user electronic appliance 600 at this stage (e.g., retransmission

of certain information that was corrupted during the initial

transmission, transmission of additional information not earlier

transmitted, etc.). If the clearinghouse detects misuse based on

15 the received audit information, it may transmit an

administrative object that revokes or otherwise modifies the end

user’s right to further access the associated VDE objects 300.

The clearinghouse may, in addition or alternatively, send

20 an administrative object to the end users electronic appliance

600 that instructs the electronic appliance to display one or more

-messages to the user. These messages may inform the user

about certain conditions and/or they may request additional

information from the user. For example, the message may

-496-

Petitioner Apple Inc. — Exhibit 1006, p. 1227

Petitioner Apple Inc. - Exhibit 1006, p. 1228

wo 98109209 PCT/US97I1524_3

instruct the end user to contact the clearinghouse "directly by

telephone or otherwise to resolve an indicated problem, enter a

PIN, or it may instruct the user to contact a new service

company to re-register the associated VDE object. Alternatively,

5 the message may tell the end user that she needs to acquire new

usage permissions for the object, and may inform the user of cost,

status and other associated information.

During the same or different communications exchange,

10 the same or different clearinghouse may handle the end user’s

request for additional budget and/or permission pertaining to

VDE object 300. For example, the end user’s electronic appliance

600 may (e.g., in response to a user input request to access a

particular VDE object 300) send an administrative object to the

15 clearinghouse requesting budgets and/or other permissions

allowing access (Block 1164). As mentioned above, such requests

may be transmitted in the form of one or more administrative

objects, such as, for example, a single administrative object

having multiple "even “ associated with multiple requested

20 budgets and/or other permissions for the same or difierent VDE

objects 300. The clearinghouse may upon receipt of such a

request, check the end user’s credit, financial records, business

agreements and/or audit histories to determine whether the

requested budgets and/or permissions should be given. The

-497-

Petitioner Apple Inc. — Exhibit 1006, p. 1228

Petitioner Apple Inc. - Exhibit 1006, p. 1229

W0 98,092” PCTIUS97/15243

clearinghouse may, based on this analysis, send one or more

responsive administrative objects which cause the end user’s

electronic appliance 600 to update itssecure database in

response (Block 1166, 1168). This updating might, for example,

5 comprise replacing an expired PERC 808 with a fresh one,

modifying a PERC to provide additional (or lesser) rights, etc.

Steps 1164-1168 may be repeated multiple times in the same or

different communications session to provide further updates to
the end user’s secure database 610.

10

Figure 36 shows an example of how a new record or

element may be inserted into secure database 610. Theload

process 1070 shown in Figure 35 checks each data element or

item as it is loaded to ensure that it has not been tampered with,

15 replaced or substituted. In the process 1070 shown in Figure 35,

the first step that is performed is to check to see if the current

user of electronic appliance 600 is authorized to insert the item

into secure database 610 (block 1072). This test may involve, in

the preferred embodiment, loading (or using already loaded)

20 appropriate methods 1000 and other data structures such as

UDEs 1200 into an SPE 503, which then authenticates user

authorization to make the change to secure database 610 (block

1074). If the user is approved as being authorized to make the

change to secure database 610, then SPE 503 may check the

-498-

Petitioner Apple Inc. — Exhibit 1006, p. 1229

Petitioner Apple Inc. - Exhibit 1006, p. 1230

wo 93/99209 PC!‘/US97I15243

integrity of the element to be added tothe secure database by

decrypting it (block 1076) and determining whether it has

become damaged or corrupted (block 1078). The element is

checked to ensure that it decrypts properly using a

5 predetermined management file key, and the check value may be

validated. In addition, the public and private header ID tags (if

present) may be compared to ensure that the proper element has

been provided and had not been substituted, and the unique

element tag ID compared against the predetermined element

10 tag. If any of these tests fail, the element may be automatically

rejected, error corrected, etc. Assuming the element is found to

have integrity, SPE 503 may re—encrypt the information (block

1080) using a new key for example (see Figure 37 discussion

below). In the same process step an appropriate tag is preferably

15 provided so that the information becomes encrypted within a I‘

security wrapper having appropriate tags contained therein

(block 1082). SPE 503 may retain appropriate tag information so

that it can later validate or otherwise authenticate the item

when it is again read from secure database 610 (block 1084).

20 The now-secure element within its security wrapper may then be

stored within secure database 610.

Figure 37 shows an example ofa process 1050 used in the

preferred embodiment database to securely access an item stored

-499-

Petitioner Apple Inc. — Exhibit 1006, p. 1230

Petitioner Apple Inc. - Exhibit 1006, p. 1231

10

20

WO 98/09209 PCTIUs97I15243

in secure database 610. In the preferred embodiment, SPE 503

first accesses and reads in the item from secure database 610

records. SPE 503 reads this information from secure database

610 in encrypted form, and may ”unwrap“ it (block 1052) by

decrypting it (block. 1053) based on access keys internally stored

within the protected memory of an SPU 500. In the preferred

embodiment, this "unwrap“ process 1052 involves sending blocks

of information to encrypt/decrypt engine 522 along with a

management file key and other necessary information needed to

decrypt. Decrypt engine 522 may return "plaintext“ information

that SPE 503 then checks to ensure that the security of the

object has not been breached and that the object is the proper

object to be used (block 1054). SPE 503 may then check all

correlation and access tags to ensure that the read-in element

has not been substituted and to guard against other security

threats (block 1054). Part of this "checking" process involves

checking the tags obtained from the secure database 610 with

tags contained within the secure memory or an SPU 500 (block

1056). These tags stored within SPU 500 may be accessed from

SPU protected memory (block 1056) and used to check further

the now-unwrapped object. Assuming this "checki_ng“ process

. 1054 does not reveal any improprieties (and block 1052 also

indicates that the object has not become corrupted or otherwise

damaged). SPE 503 may then access or otherwise use the item

-500-

Petitioner Apple Inc. — Exhibit 1006, p. 1231

Petitioner Apple Inc. - Exhibit 1006, p. 1232

'10

15

20

WO 98/09209 PCI‘/US97Il5243

(block 1058). Once use of the item is completed, SPE 503 may

need to store the item back into secure database 610 if it has

changed. If the item has changed, SPE 503 will send the item in

its changed form to encrypt/decrypt engine 522 for encryption

(block 1060), providing the appropriate necessary information to

the encrypt/decrypt engine (e.g., the appropriate same or

different management file key and data) so that the object is

appropriately encrypted. A unique, new tag and/or encryption. "

key may be used at this stage to uniquely tag and/or encrypt the

item security wrapper (block 1062; see also detailed Figure 37

discussion below). SPE 503 may retain a copy of the key and/or

tag Within a protected memory of SPU 500 (block 1064) so that

the SPE can decrypt and validate the object when it is again read

from secure database 610.

The keys to decrypt_secure database 610 records are, in the

preferred embodiment, maintained solely within the protected

memory of an SPU 500. Each index or record update that leaves

the SPU 500 may be time stamped, and then encrypted with a

unique key that is determined by the SPE 503. For example, a

key identification number may be placed "in plain view“ at the

front of the records of secure database 610 so the SPE 503 can

determine which key to use the next time the record is retrieved.

SPE 503 can maintain the site ID of the record or index, the key

-501-

Petitioner Apple Inc. — Exhibit 1006, p. 1232

Petitioner Apple Inc. - Exhibit 1006, p. 1233

wo 93/09209 . ‘ PCI‘fUS97/l5243

identification number associated with it, and the actual keys in

the list internal to the SPE. At some point, this internal list may

fill up. At this point, SPE 503 may call a maintenance routine

that re—encrypts items within secure database 610 containing

5 changed information. Some or all of the items within the data

structure containing changed information may be read in,

decrypted, and then re-encrypted with the same key. These

items may then be issued the same key identification number.

The items may then be writtenout of SPE 503 back into secure

10 database 6i0. SPE 503 may then clear the internal list of item

IDs and corresponding key identification numbers. It may then

begin again the process of assigning a different key and a new

key identification number to each new or changed item. By

using this process, SPE 503 can protect the data structures

15 (including the indexes) of secure database 610 against

substitution of old items and against substitution of indexes for

current items. This process also allows SPE 503 to validate

retrieved item IDs against the encrypted list of expected IDs.

20 Figure 38 is a flowchart showing this process in more

detail. Whenever a secure database 610 item is updated or

modified, a new encryption key can be generated for the updated

item. Encryption using a new key is performed to add security

Petitioner Apple Inc. — Exhibit 1006, p. 1233

Petitioner Apple Inc. - Exhibit 1006, p. 1234

wo 9s/09209 PC!‘/US97Il5243

records. The new encryption key for each updated secure

database 610 record may be stored in SPU 500 secure memory

with an indication of the secure database record or record(s) to

which it applies.

SPE 503 may generate a new encryption/decryption key

for each new item it is going to store within secure database 610

(block 1086). SPE 503 may use this new key to encrypt the

record prior to storing it in the secure database (block 1088).

10 SPE 503 make sure that it retains the key so that it can later

read and decrypt the record. Such decryption keys are, in the

preferred embodiment, maintained within protected non-volatile

memory (e.g., NVR.-LVI 53-4b) within SPU 500. Since this

protected memory has a limited size, there may not be enough

15 room within the protected memory to store a new key. This

condition is tested for by decision block 1090 in the preferred

embodiment. If there is not enough room in memory for the new

key (or some other event such as the number of keys stored in

the memory exceeding a predetermined number, a timer has

20 expired, etc.), then the preferred embodiment handles the

situation by re-encrypting other records with secure database

610 with the same new key in order to reduce the number of (or

change) encryption/decryption keys in use. Thus, one or more

secure database 610 items may be read from the secure database

-503-

Pctitioner Apple Inc. — Exhibit 1006, p. 1234

Petitioner Apple Inc. - Exhibit 1006, p. 1235

W0 98,0920, PCT/US97/15243

I 1 "(block 1092), and decrypted using the old key(s) used to encrypt
them the last time they were stored. In the preferred

embodiment, one or more ”old keys“ are selected, and all secure

database items encrypted using the old key(s) are read and

5 decrypted. These records may now be re-encrypted using the

new key that was generated at block 1086 for the new record

(block 1094). The old key(s) used to decrypt the other record(s)

may now be removed from the SPU protected memory (block .

1096), and the new key stored in its place (block 1097). The old

10 key(s) cannot be removed from secure memory by block 1096
unless SPE 503 is assured that all records within the secure

database 610 that were encrypted using the old k_ey(s) have been

read by block 1092 and re-encrypted by block 1904 using the new

key. All records encrypted (or re-encrypted) using the new key

15 may now be stored in secure database 610 (block 1098). If
. decision block 1090 determines there is room within the SPU 500

protected memory to store the new key, then the operations of

blocks 1092, 1094, 1096 are not needed and SPE 503 may

instead simply store the new key within the protected memory

20 (block 1097) and store the new encrypted records into secure

database 610 (block-1098).

The security of secure database 610 files may be further

improved by segmenting the records into ”compart:ments.“

-504-

Petitioner Apple Inc. — Exhibit 1006, p. 1235

Petitioner Apple Inc. - Exhibit 1006, p. 1236

10

15

20

WO 98/09209 Pcr/US97/1524;

Different encryption/decryption keys may be used to protect

difierent ”compartments.“A This strategy can be used to limit the

amount of information within secure database 610 that is

encrypted with a single key. Another technique for increasing

security of secure database 610 may be to encrypt difi'erent

portions of the same records with difierent keys so that more

than one key may be needed to decrypt those records.

Backup of Secure Database 610.

Secure database 610 in the preferred embodiment is

backed up at periodic or other time intervals to protect the

information the secure database contains. This secure database

information may be of substantial value to many VDE

participants. Back ups of secure database 610 should occur

Without significant inconvenience to the user, and should not

breach any security.

__;__...

The need to back up secure database 610 may be checked

at power on of electronic appliance 600, when SPE 503 is

initially invoked, at periodic time intervals, and if “audit roll up“

value or other summary services information maintained by SPE

503 exceeds a user set or other threshold, or triggered by criteria

established by one or more content publishers and/or distributors

and/or clearinghouse service providers and/or users. The user

-505-

Petitioner Apple Inc. — Exhibit 1006, p. 1236

Petitioner Apple Inc. - Exhibit 1006, p. 1237

W0 98,0920, ‘ PCT/US97Il5243

may be prompted to backup if she has failed to do so by or at

some certain point in time or after a certain duration of time or

quantity of usage, or the backup may proceed automatically

without user intervention.

Referring to Figure 8, backup storage 668 and storage

media 670 (e.g., magnetic tape) may be used to store backed up

‘information. Of course, any non-volatile media (e.g., one or more

floppy diskettes, a writable optical diskette, a hard drive, or the

10 I like) may be used for backup storage 668.

There are at least two scenarios to backing up secure

database 610. The first scenario is “site specific,“ and uses the

security of SPU 500 to support restoration of the backed up

15 information. This first method is used in case of damage to

secure database 610 due for example to failure of secondary

storage device 652‘, inadvertent user damage to the files, or other

occurrences that may damage or corrupt some or all of secure

database 610. This first, site specific scenario of back up

20 assumes that an SPU 500 still functions properly and is

available to restore backed up information.

The second back up scenario assumes that the user’s SPU

500 is no longer operational and needs to be, or has been,

- 506-

Petitioner Apple Inc. — Exhibit 1006, p. 1237

Petitioner Apple Inc. - Exhibit 1006, p. 1238

10

15

20

w_o 9sm92o9 ' PCT/US97ll524A3

replaced. This second approach permits an authorized VDE

administrator or other authorized VDE participant to access the

stored back up information in order to prevent loss of critical

data and/or assist the user in recovering from the error.

Both of these scenarios are provided by the example of

program control steps performed by ROS 602 shown in Figure

39. Figure 39 shows an example back up" routine 1250 performed

by an electronic appliance 600 to back up secure database 610 ,

(and other information) onto back up storage 668. Once a back

up has been initiated, as discussed above, back up routine 1250

generates one or more back up keys (block 1252). Back up

routine 1250 then reads all secure database items, decrypts each

item using the original key used to encrypt them before they

were stored in secure database 610 (block 1254). Since SPU 500

is typically the only place where the keys for decrypting this

information Within an instance of secure database 610 are

stored, and since one of the scenarios provided by back up

routine 1250 is that SPU 500 completely failed or is destroyed,

back up routine 1250 performs this reading and decrypting step

1254 so that recovery from a backup is not dependent on

lmowledge of these keys within the SPU. Instead, back up

routine 1250 encrypts each secure database 610 item with a

newly generated back up key(s) (block 1256) and writes the

-507-

. Petitioner Apple Inc. — Exhibit 1006, p. 1238

Petitioner Apple Inc. - Exhibit 1006, p. 1239

10

15

20

WO 98/09209 PCT/US97I1 5243

encrypted item to back up store 668 (block 1258). This process

and written to the back up store (as tested for by decision L
block 1260).

The preferred embodiment also reads the summary

other information such as the time of back up and other

appropriate information to identify the back up) with a further

Petitioner Apple Inc. — Exhibit 1006, 10- 1239

Petitioner Apple Inc. - Exhibit 1006, p. 1240

W0 98,092.” PCTIUS97I15243

private keys known only to SPU 500. Alternatively, a second

back up key generated by the SPU 500 and kept only in the SPU

may be used for the final encryption in place of a public key.

Block 1264 ‘preferably includes multiple encryption in order to

5 . make it more difficult to attack the security of the back up by

"cracking" the encryption used to protect the back up keys.

Although block 1262 includes encrypted summary services

information on the back up, it preferably does not include SPU

device private keys, shared keys, SPU&code and other internal

10 security information to prevent this information from ever

becoming available to users even in encrypted form.

The information stored by block 1264 is sufficient to allow

the same SPU 500 that performed (or at least in part performed)

15 back up routine 1250 to recover the backed up information.

However, this information is useless to any device other than

that same SPU because only that SPU knows the particular keys

used to protect the back up keys. To cover the other possible

scenario wherein the SPU 500 fails in a non-recoverable way,

20 back up routine 1250 provides an additional step (block 1266) of

saving the back up key(s) under protection of one or more further

set of keys that may be read by an authorized VDE

administrator. For example, block 1266 may encrypt the back up

keys with an ”download authorization key“ received during

-509-

Petitioner Apple Inc. — Exhibit 1006, p. 1240

Petitioner Apple Inc. - Exhibit 1006, p. 1241

. s97/15243wo 9s/09209 p "7""

initialization of SPU 500 from a administrator. This

encrypted version of back up keys is also written to back up store

668 (block 1266). It can be usedhto support restoration of the

back up files in the event of an SPU 500 failure. More

5- specifically, a VDE administrator that knows the download

authorization (or other) keys(s) used by block 1266 may be able

to recover the back up keyfs) in the back up store 668 and

proceed to restore the backed up secure database 610 to the same

or different electronic appliance 600.

10

In the preferred embodiment, the information saved by

‘routine 1250 in back up files can be restored only after receiving

a back up authorization from an authorized VDE administrator.

In most cases, the restoration process will simply be a restoration

15 of secure database 610 with some adjustments to account for any

usage since the back up occurred. This may require the user to

20 500 may be compared to the summary services information

-510-

Petitioner Apple Inc. — Exhibit. 1006, 10- 1241

Petitioner Apple Inc. - Exhibit 1006, p. 1242

W0 98,0920, PCI‘/US97Il5243

In case of an SPU 500 failure, an authorized VDE

administrator must be contacted to both initialize the

replacement SPU 500 and to decrypt the back up files. These

processes allow for both SPU failures and upgrades to new SPUs.. '

5 In the case of restoration, the back up files are used to restore

\ the necessary information to the user's system. In the case of

upgrades, the back up files may be used to validate the upgrade

process.

10 ' The back up files may in some instances be used to

transfer management information betweenelectronic appliances

600. However, the preferred embodiment may restrict some or

all information from being transportable between electronic

appliances with appropriate authorizations. Some or all of the

15 back up files may be packaged within an administrative object‘.

and transmitted for analysis, transportation, or other uses.

As a more detailed example of a need for restoration from

back up files, suppose an electronic appliance 600 suffers a hard

20 disk failure or other accident that wipes out or corrupts part or

all of the secure database 610, but assume that the SPU 500 is

still functional. SPU 500 may include all of the information (e.g.,

secret keys and the like) it needs to restore the secure database

610. However, ROS 602 may prevent secure database

-511-

Petitioner Apple Inc. — Exhibit 1006, p. 1242,

Petitioner Apple Inc. - Exhibit 1006, p. 1243

WO 98/09209 PCTlUS97l15243

restorationluntil a restoration authorization is received from a

VDE administrator. A restoration authorization may comprise,

for example, a ”secret value“ that must match a value expected

by SPE 503. A VDE administrator may, if desired, only provide

5 this restoration authorization after, for example, summary

services information stored Within SPU 500 is transmitted to the

administrator in an administrative object for analysis. In some

circumstances, a VDE administrator may require that a copy

(partial or complete) of the back up files be transmitted to it

10 within an administrative object to check for indications of

fraudulent activities by the user. The restoration process, once

authorized, may require adjustment of restored budget records

and the lilce to reflect activity since the last back up, as
mentioned above.

15

Figure 40 is an example of program controlled ”restore“

routine 1268 performed by electronic appliance 600 to restore

secure database 610 based on the back up provided by the

routine shown in Figure 38. This restore may be used, for

20 example, in the event that an electronic appliance 600 has failed

but can be recovered for ”rein.itialized“ through contact with a

VDE administrator for example. Since the preferred

embodiment does not permit an SPU 500 to restore from backup

imless and until authorized by a VDE administrator, restore

-512-

Petitioner Apple Inc. — Exhibit 1006, p. 1243

Petitioner Apple Inc. - Exhibit 1006, p. 1244

wo 93/09209 PCT/US97]15243

routine 1268 begins by establishing a secure communication with‘

a VDE administrator that can authorize the restore to occur

(block 1270). Once SPU 500 and the VDE administrator

authenticate one another (part of block 1270), the VDE

5 administrator may extract "work in progress“ and summary

values from the SPU 500’s internal non-volatile memory (block

1272). The VDE administrator may use this extracted

information to help determine, for example, whether there has “

been a security violation, and also permits a failed SPU 500 to

10 A effectively ”dun:1p“ its contents to the VDE administrator to

permit the VDE administrator to handle the contents. The SPU

500 may encrypt this information and provide it to the VDE

administrator packaged in one or more administrative objects.

The VDE administrator may then request a copy of some or all of

15 the current backup of secure database 610 from the SPU 500

(block 1274). This information may be packaged by SPU 500 into

one or more administrative objects, for example, and sent to the

VDE administrator. Upon receiving the information, the VDE

administrator may read the summary services audit information

20 from the backup volume (i.e., information stored by Figure 38

block 1262) to determine the summa_ry values and other

information stored at time of backup. The VDE administrator

may also determine the time and date the backup was made by

reading the information stored by Figure 38 block 1264.

-513-

Petitioner Apple Inc. — Exhibit 1006, p. 1244

Petitioner Apple Inc. - Exhibit 1006, p. 1245

W0 98/119209 V PC'I‘IUS97ll5243

The VDIE administrator may at this point restore the

summary values and other information within SPU 500 based on

the informatnon obtained by block 1272 and from the backup

,,(block 1276). For example, the VDE administrator may reset

5 SPU internal summary values and counters so that they are

consistent with the last backup. These values may be adjusted

by the VDE administrator based on the ”Work in progress“

recovered by block 1272, the amount of time that has passed

since the backup, etc. The goal may typically be to attempt to

10 provide internal SPU values that are equal to what they would

have been had the failure not occurred.

The VDE administrator may then authorize SPU 500 to

recover its secure database 610 from the backup files (block

15 1278). This restoration process replaces all secure database 610

records with the records from the backup. The VDE

administrator may adjust these records as needed by passing 4

commands to SPU 500 during or after the restoration process.

20 -The VDE administrator may then compute bills based on

the recovered values (block 1280), and perform other actions to

recover from SPU downtime (block 1282). Typically, the goal is

to bill the user and adjust other VDE 100 values pertaining to

the failed electronic appliance 600 for usage that occurred

-514-

Petitioner Apple Inc. — Exhibit 1006, p. 1245

Petitioner Apple Inc. - Exhibit 1006, p. 1246

wo 93/09209 PCl'lUS97Il5243

subsequent to the last backup but prior to the failure. This

process may involve the VDE administrator obtaining, from

other VDE participants, reports and other information

pertaining to usage by the electronic appliance prior to its failure

5 and comparing it to the secure database backup to determine

which usage and other events are not yet accounted for.

In one alternate embodiment, SPU 500 may have

sufficient internal. non-volatile memory to allow it to store some
10 or all of secure database 610. In this embodiment, the additional

memory may be provided by additional one or more integrated

circuits that can be contained within a secure enclosure, such as

a tamper resistant metal container or some form of a chip pack

containing multiple integrated circuit components, and which

15 impedes and/or evidences tampering attempts, and/or disables a

portion or all of SPU 500 or associated critical key and/or other

control information in the event of tampering. The same back up

routine 1250 shown in Figure 38 may be used to back up this

type of information, the only diflerence being that block 1254

20 may read the secure database item from the SPU internal

memory and may not need to decrypt it before encrypting it with

the back up key(s).

-515-

Petitioner Apple Inc. — ExhibitllOO6, p. 1246

Petitioner Apple Inc. - Exhibit 1006, p. 1247

W0 98/09209 PCIF/US97Il5243

Event-Driven VDE Processes

As discussed above, processes provided by/under the

preferred embodiment rights operating system (ROS) 602 may be

"event driven.“ This "event driven“ capability facilitates

5 integration and extendibility.

An ”event“ is a happening at a point in time. Some

examples of ”events“ are a user striking a key of a keyboard,

arrival of a message or an object 300, expiration of a timer, or a

10 request from another process.

In the preferred embodiment. ROS 602 responds to an

”event“ by performing a process in-response to the event. ROS

602 dynamically creates active processes and tasks in response

15 to the occurrence of an event. For example, ROS 602 may create

and begin executing one or more component assemblies 690 for

performing a process or processes in response to occurrence of an

event. The active processes and tasks may terminate once ROS

602 has responded to the event. This ability to dynamically

20 create (and end) tasks in response to events provides great

flexibility, and also permits limited execution resources such as

those provided by an SPU.500 to perform a virtually unlimited 4

variety of difierent processes in different contexts.

-516-

Petitioner Apple Inc. — Exhibit 1006, p. 1247

Petitioner Apple Inc. - Exhibit 1006, p. 1248

wo 9sro92o9 ~ - PCTIUS97ll5243

Since an ”event“ may be any type of happening, there are

an unlimited number of diflenent events. Thus, any attempt to

categorize events into different types will necessarily be a

generalization. Keeping this in mind, it is possible to categorize

5 events provided/supported by the preferred embodiment into two

broad categories:

- user-initiated events; and

- system-initiated events.

10'

Generally, ”user-initiated“ events are happenings

attributable to a user (or a user application). A common ”user-

initiated“ event is a user’s request (e.g., by pushing a keyboard

button, or transparently using redirector 684) to access an object

15 300 or other VDE-protected information.

"Systern-initiated“ events are generally happenings not

”’éT'i'5utable to a user. Examples of system initiated events

include the expiration of a timer indicating that information

20 should be backed to non-volatile memory, receipt of a message

from another electronic appliance 600, and a service call

generated by another process (which may have been started to

respond to a system-initiated event and/or a user~initiated

event).

-517-

Petitioner Apple Inc. — Exhibit 1006, p. 1248

Petitioner Apple Inc. - Exhibit 1006, p. 1249

wo 98/09109 PCT/USQ7/15243

ROS 602 provided by the preferred embodiment responds .

to an event by specifying and beginning processes to process the

event. These processes are, in the preferred embodiment, based
on methods 1000. Since there are an unlimited number of

5 ‘ diflerent types of events, the preferred embodiment supports an

unlimited number of different processes to process events. This

flexibility. is supported by the dynamic creation of component

assemblies 690 from independently deliverable modules such as

methodicores 1000’, load modules 1100, and data-structures such

p 10 as UDEs 1200. Even though any categorization of the unlimited

potential types of processes supported/provided by the preferred

embodiment will be a generalization, it is possible to generally

classify processes as falling within two categories:

15 - processes relating to use of VDE protected information;
and

- processes relating to VDE administration.

'Uae"and "Ad1n.inistra.tive'Proce_sses

20 ”Use“ processes relate in some way to use of VDE-

protected information.’ Methods 1000 provided by the preferred

embodiment may provide processes for creating and maintaining

a chain of control for use of VDE-protected information.‘ _One

Petitioner Apple Inc. — Exhibit 1006, p. 1249

Petitioner Apple Inc. - Exhibit 1006, p. 1250

W0 98,05,209 PC'l‘IUS97ll5243

user to open a VDE object 300 and access its contents. A method

1000 may provide detailed use-related processes suchas, for

example, releasing content to the user as requested (if

permitted), and updating meters, budgets, audit trails, etc. Use-

01 related processes are often user-initiated, but some use processes

may be system-initiated. Events that trigger a VDE use-related

process may be called ”use events.“

An "administrative“ process helps to keep VDE 100

10 3 working. It provides processing that helpsnsupport the

transaction management "infrastructure“ that keeps VDE 100

running securely and efficiently. Administrative processes may,

for example, provide processing relating to some aspect of

creating, modifying and/or destroying VDE-protected data

15 structures that establish and maintain VDE‘s chain of handling

and control. For example, "administrative“ processes may store,

update, modify or destroy information contained within a VDE

electronic appliance 600 secure database 610. Administrative

processes also may provide communications servicesthat

20 establish, maintain and support secure communications between

different VDE electronic appliances 600. Events that trigger

administrative processes may be called "administrative events.“

-519-

Petitioner Apple Inc. — Exhibit 1006, p. 1250

Petitioner Apple Inc. - Exhibit 1006, p. 1251

W0 98/09209 I PCT/US97l15243

Reciprocal Methods

Some VDE processes are paired based on the way they

interact together. One VDE process -may ”request“ processing

services from another VDE process. The process that requests

5 processing services may be called a "request process.“ The

”request“ constitutes an "event" because it triggers processing by

the other VDE process in the pair. The VDE process that

responds to the "request event“ may be called a "response

rocess.“ The "re uest rocess“ and “res onse rocess“ ma be‘ll Y

10 called "reciprocal processes.“

The "request event“ may comprise, for example, a message

issued by one VDE node electronic appliance 600 or process for

certain information. A corresponding "response process“ may

15 respond'to the "request event“ by, for example, sending the

information requested in the message. This response may itself

constitute a "request event“ if it triggers a further VDE "response

process.“ For example, receipt of a message in response to an

earlier-generated request may trigger a "reply process.“ This

20 ”reply process“ is a special type of "response process“ that is

triggered in response to a "reply“ from another “response

process.“ There may be any number of ”request“ and ”response“

process pairs within a g'iven.VDE transaction.

-520-

Petitioner Apple Inc. — Exhibit 1006, p. 1251

Petitioner Apple Inc. - Exhibit 1006, p. 1252

WO 98109209 _ PCTIUS97!1 5143

‘A ”request process“ and its paired ”response process“ may

.be performed on the same VDE electronic appliance 600, or the

two processes may be performed on difierent VDE electronic

appliances. Communication between the two processes in the

5 pair may be by way of a secure (VDE-protected) communication,

an ”out of channel“ communication, or a combination of the two.

Figures 41a-41d are a set of examples that show how the

chain of handling and control is enabled using "reciprocal

10 methods.“ A chainofand control is constructed, in

part, using one or more pairs of "reciprocal events“ that

cooperate in request-response manner. Pairs of reciprocal events

may be managed in the preferred embodiment in one or more

"reciprocal methods.“ As mentioned above, a "reciprocal

15 method“ is a method 1000 that can respond to one or more

"reciprocal events.“ Reciprocal methodscontain the two halves of

a cooperative process that may be securely executed at physically

and/or temporally distant VDE nodes. The reciprocal processes

may have a flezdbly defined information passing protocols and

20 information content structure. The reciprocal methods may, in

fact, be based on the same or diflerent method core 1000’

operating in the same or difierent VDE nodes 600. nodes

600A and 600B shown in Figure 41a may be the same physical

-521-

Petitioner Apple Inc. — Exhibit 1006, p. 1252

Petitioner Apple Inc. - Exhibit 1006, p. 1253

W0 98/09209 PCT/USH97/15243

electronic appliance 600 or may be separate electronic

appliances.

Figure 41a is an example of the operation of a single pair

5 "” ‘of reciprocal events. In VDE node 600A, method 1000a is

processing an event that has a request that needs to be processed

at VDE node 600B. The method 1000a (e.g., based on a

component assembly 690 including its associated load modules

1100 and data)‘that responds to this “request” event is shown. in

10 Figure 41a as 1450. The process 1450 creates a request (1452)

and, optionally, some information or data that be sent to the

other VDE node 1000b’ for processing by a process associated

with the reciprocal event. The request and other information

may be transmitted by any of the transport mechanisms

15 described elsewhere in this disclosure.

Receipt of the request by node 60% comprises a

response event at that node. Upon receipt of the request, the

VDE node.600b may perform a ”reciprocal“ process 1454 defined
20 by the same or different method 1000b to respond to the response

event. The reciprocal process 1454 may be based on a component

assembly 690 (e.g., one or more load modules 1100, data, and

optionally other methods present in the VDE node 600B).

-522-

Petitioner Apple Inc. — Exhibit 1006, p. 1253

Petitioner Apple Inc. - Exhibit 1006, p. 1254

wo 93/09109 PCl'IUS97l15243

Figure 41b extends the concepts presented in Figure 41a to

include a response from VDE node 600B back to node. 600A.

The process starts as described for Figure 41a through the

receipt and processing of the request event and information 1452

5 by the response process 1454 in VDE node 600B. The response

process 1454 may, as part of its processing, cooperate with

another request process (1468) to send a response 1469 back to

the initiating VDE node 600A. A corresponding reciprocal

process 1470 provided by method 1000A may respond to and

10 process this request event 1469. In this manner, two or more

‘ VDE nodes 600A. 600B may cooperate and pass configurable

information and requests between methods 1000A, 1000B

executing in the nodes. The first and second request-response

sequences [(1450, 1452. 1454) and (1468. 1469, 1470)] may be

15 separated by temporal and spatial distances. For efficiency, the

request (1468) and response (1454) processes may be based on

the same method 1000 or they may be implemented as two

methods in the same or difierent method core 1000’. A method

-1000 may be parameterized by an "event code“ so it may provide

20 diflerent behaviors/results for different events, or difierent

methods may be provided’ for different events.

Figure 41c shows the extension the control mechanism

described i.n Figures 41a-41b to three nodes (60OA, 600B, 600C).

-523-

Petitioner Apple Inc. — Exhibit 1006,'p. 1254

Petitioner Apple Inc. - Exhibit 1006, p. 1255

wo 93/09209 PCFIUS97/15243

Each request-response pair operates in the manner as described

for Figure 41b, with several pairs linked together to form a chain

of control and handling between several VDE nodes 600A, 600B,

. 600C. This mechanism may be used to extend the chain of

5 I handling and control to an arbitrary number ofVDE nodes ‘using

any configuration of nodes. For example, VDE node 600C might

communicate directly to VDE node 600A and communicate

directly to VDE 600B, which in turn communicates with VDE

node 600A.“ Alternately, VDE node 600C might communicate

10 directly with VDE node 600A, VDE node 600A may communicate

with VDE node 600B, and VDE node 600B may communicate

with VDE node sooc. '

A method 1000 may be parameterized with sets of events

15 that specify related or cooperative functions. Events may be

logically grouped by function (e.g., use, distribute), or a set of

reciprocal events that specify processes that may operate in

conjunction with each other. Figure 41d illustrates a set of

"reciprocal events“ that support cooperative processing between

20 _ several VDE nodes 102, 106, 112 in a content distribution model

to support the distribution of budget. The chain of handling and

control, in this example, is enabled by using a set of ”reciprocal

events“ specified within a BUDGET method. Figure 41d is an

example of how the reciprocal event behavior within an example

-524-

Pctitioner Apple Inc. — Exhibit 1006, p. 1255

Petitioner Apple Inc. - Exhibit 1006, p. 1256

wo 93/09209 PCT/US97I15243

BUDGET method (1510) work in cooperation to establish a chain

of handling and control between several VDE nodes. The

8 example BUDGET method 1510 responds to a.”use“ event 1478

by performing a ”use“ process 1476 that defines the mechanism

5 by which processes are budgeted. The BUDGET method 1510

might, for example, specify a use process 1476 that compares a

meter count to a budget value and fail the operation if the meter

count exceeds the budget value. It might also write an audit

trail that describes the results of said BUDGET decisions.

10 1 Budget method 1810 may respond to a ”distribute“ event by

performing a distribute process 1472 that defines the process

and/or control information for further distribution of the budget.

It may respond to a ”request“ event 1480 by performing a request

process 1480 that specifies how the user might request use

15 and/or distribution rights from a distributor. It may respond to a

”response“ event 1482 by performing a response process 1484

that specifies the manner in which a distributor would respond

to requests from other users to whom they have distributed some

(or all) of their budget to. It may respond to a ’’reply‘‘ event 1474

20 by performing a reply process 1475 that might specify how the

user should respond to message regranting or denying (more)

budget.

-525-

Petitioner Apple Inc. — Exhibit 1006, p. 1256

Petitioner Apple Inc. - Exhibit 1006, p. 1257

wo 98/09209 . PCT/US97/1524}

Control of event processing, reciprocal events, and their

associated methods and method components is provided by

PERCS 808 in the preferred embodiment. These PERCs (808)

“might reference administrative methods that govern the

5 creation, modification, and distribution of the data structures

and administrative methods that permit access, modification,

and further distribution of these items. In this way, each link in

A the chain of handling and control might," for example, be able to

customize audit information, alter the budget requirements for

10 using the content, and/or control further distribution of these

rights in a manner specified by prior members along the

distribution chain.

In the example shown in Figure 41d, a distributor at a-~.

15 VDE distributor node (106) might request budget from a content

creator at another node (102). This request may be made in the

context of a secure communication or it may be passed in ‘

an "out-of-channel“ communication (e.g. a telephone call or

letter). The creator 102 may decide to grant budget to the

20 .. -, . distributor 106 and processes a distribute event (1452 in

BUDGET method 1510 at VDE node 102). A result of processing

the distribute event within the BUDGET method might be a

secure communication (1454) between VDE nodes 102 and 106

by which a budget granting use and redistribute rights to”the

-526-

Petitioner Apple Inc. — Exhibit 1006, p. 1257

Petitioner Apple Inc. - Exhibit 1006, p. 1258

wo 93/09209 PC!‘M597![5243

distributor 106 may be transferred from the creator 102 to the

distributor. The distributors VDE node 106 may respond to the

receipt of the budget information by processing the

communication using the reply process 1475B of the BUDGET

method 1510. The reply event processing 1475B might, forOI

example, install a budget and PERC 808 within the distributoi’s

VDE 106 node to permit the distributor to access content or

processes for which access is control at least in part by the

budget and/or PERC. At some point, the distributor 106 may i

10 ._ also desire to use the content to which she has been granted

rights to access.

After registering to use the content object, the user 112

would be required to utilize an array of"use‘ processes 1476C to,

15 1 for example, open, read, write, and/or close the content object as

part of the use process.

Once the distributor 106 has used some or all of her

budget, she may desire to obtain additional budget. The

20 distributor 106 might then initiate a process using the BUDGET

method request process (148OB). "Request process 1480B might

initiate a communication (1482A_B) with the content creator VDE

node 102 requesting more budget and perhaps providing details

of the use activity to date (e.g., audit trails). Thepcontent creator

-527-

Petitioner Apple Inc. — Exhibit 1006, p. 1258

Petitioner Apple Inc. - Exhibit 1006, p. 1259

wo 9s/09209 ‘ PCT/US97/15243

102 processes the ’get more budget’ request event 1482AB using

the response process (1484A) within the creator's BUDGET

i method 1510A. Response process 1484A might, for example,

make a determination if the use information indicates proper use —

5 of the content, and/or if the distributor is credit worthy for more

budget. The BUDGET method response process 1484A might

also initiate a financial transaction to transfer funds from the

_ ' distributor to pay for said use, or use the distribute process

1472A to distribute budget to the distributor 106. A response to

10 the distributor 106 granting more budget (or denying more

budget) might be sent immediately as a response to the request

communication 1482AB, or it might be sent at a later time as

part of a separate communication. The response communication,

upon being received at the distributors VDE node 106, might be

15 processed using the reply process 1475B within the distributofs

copy of the BUDGET method 1510B. The reply process 1475B

might then process the additional budget in the same manner as

described above.

20 e The chain of handling and control may, in addition to

posting budget information, also pass control information that

governs the manner in which said budget may be utilized. For

example, the control information specified in the above example

may also contain control information describing the process and

-5223-

Petitioner Apple Inc. — Exhibit 1006, p. 1259

Petitioner Apple Inc. - Exhibit 1006, p. 1260

W0 98/09209 PCT/US97/15243

limits that apply to the distributofs redistribution of the right to I

use the creator’s content object. Thus, when the distributor

responds to a budget request from a user (a communication

between a user at VDE node 112 to the distributor at VDE node

5 106 similar in nature to the one described above between VDE

nodes 106 and 102) using the distribute process 1472B within

the distributor’s copy of the BUDGET method 1510B, a

distribution and request/response/reply process similar to the

one described above might beinitiated.

10

Thus, in this example a single method can provide

A multiple dynamic behaviors based on difierent ”trigge1ing£‘

events. For example, single BUDGET method 1510 might

support any or all of the events listed below:

15

;!vent l Process Doacrition
l se" Events luse budeet
E’ - uest Events equest more budget Request more money for
1' - essed by bud et.

20 " ser Node equest audit by auditor Request that auditor #1 audit
I’ quest Process -~ 1 the budget use._'"

480:: equest budget deletion Request that budget be
deleted from s stem.

Update method used for

auditin.

equest to change auditors Change from auditor 1 to
auditor 2.‘or vice versa.

equest different audit Change time interval between
terval audits.

equest ability to provide Request ability to provide
ud et co ies coies ofa bud et.

-529-

equest method updated

Petitioner Apple Inc. — Exhibit 1006, p. 1260

Petitioner Apple Inc. - Exhibit 1006, p. 1261

10

15

WO 98/09209

equest ability to Request ability to distribute a
- 'stn'bute budet budet to other users.

equest account status Request information on

. current status of an account.

-uest New Method
I’ - uest Method U date ’ - - uest udate of method.

1' e uest Method Deletion Request deletion of method.

eceive more budget Allocate more money to
bud - et.

eceive method update Udate method.

eceive auditor change Change frombne auditor to
another.

eceive change to audit Change interval between
. terval audits.

eceive budzet deletion Delete budet.

rovide audit to auditor #1 Forward audit imormation to
auditor #1.

Forward audit information toauditor #2.

" - Receive more for budzet.

. Send audit information.

erform Deletion Delete information.

I concile . Reconcile budget and
auditine.

Distribute budet.

ethod Modification Modifv method.

I

is - lav Method Dis - lav reuested method.
Iielete Delete information.

-530-

Petitioner Apple Inc. — Exhibit 1006, p. 1261

PCT/US97/15243

Petitioner Apple Inc. - Exhibit 1006, p. 1262

On

10

15

20

25

WO 98109209 PCT/US97]15243

 r—-———'— —“

Hovide new budget to user.

Provide more budget to user.

 Provided updated budget to

user.

Examples of Reciprocal Method Processes

A’ BUDGET

Figures 42a. 42b. 42c and 42d, respectively, are flowcharts ,

of example process control steps performed by a representative

example of BUDGET method 2250 provided by the preferred

embodiment. In the preferred embodiment. BUDGET method

2250 may operate in any of four different modes:

- use (see Figure 42a)

- administrative request (see Figure 42b)

- administrative response (see igure 42c)

- administrative reply (see Figure 42d).

In general, the ”use“ mode of BUDGET method 2250 is invoked

in response to an event relating to the use of an object or. its

content. The "administrative request“ mode of BUDGET method

2250 is invoked by or on behalf of the user in response to some

user action that requires contact with a VDE financial provider,

and basically its task is to send an administrative request to the

-531-

Petitioner Apple Inc. — Exhibit 1006, p. 1262

Petitioner Apple Inc. - Exhibit 1006, p. 1263

WO 98/09209 PC!‘/US97/15243

VDE financial provider.’ The "administrative response“ rnode of
BUDGET method 2250 is performed at the VDE financial

provider in response to receipt of an administrative request sent

from a VDE node to the VDE financial provider by the

5 "administrative request“ invocation of BUDGET method 2250

shown in Figure 42b. The "administrative response“ invocation

of BUDGET method 2250 results the transmission of an

administrative object from VDE financial provider to the VDE

user node. Finally, the "administrative reply“ invocation of

I 10 BUDGET method 2250 shown in Figure 42d is performed at the 2

user VDE node upon receipt of the administrative object sent by

the "administrative response“ invocation of the method shown in

Figure 42c.

15 In the preferred embodiment, the sa.me BUDGET method

2250 performs each of the four different step sequences shown in

Figures 42a-42d. In the preferred embodiment, different event

codes may be passed to the BUDGET method 225040 invoke

these various diflerent modes. Of course, it would be possible to

20 use four separate BUDGET methods instead of a single

BUDGET. method with four different "dynamic personalities,“

but the preferred embodiment obtains certain advantages by
using the same BUDGET method for each of these four types of

' invocations.

-532-

Petitioner Apple Inc. — Exhibit 1006, p. 1263

Petitioner Apple Inc. - Exhibit 1006, p. 1264

wo 98109209 . PCT/US97/15243

Looking at Figure 42a, the ”use“ invocation of BUDGET

method 2250 first primes the Budget Audit Trail (blocks 2252,

2254). It then obtains the DTD for the Budget UDE, which it

uses to obtain and read the Budget UDE blocks 2256-2262).

5 BUDGET method 2250 in this ”use“ invocation may then

determine whether a Budget Audit date has expired, and

terminate if it has (”yes“ exit to decision block 2264; blocks 2266,

2268). So long as the Budget Audit date has not expired, the

method may then update the Budget using the atomic element

10 and event counts (and possibly other information) (blocks 2270,

2272), and may then save a Budget User Audit record in a

Budget Audit Trail UDE (blocks 2274, 2276) before terminating

(at terminate point 2278).

15 6 Looking at Figure 42b, the first six steps (blocks 2280-

2290) may be performed by the user VDE node in response to

some user action (e.g., request to access new information, request

for a new budget, etc.). This "administrative request“ invocation

of BUDGET method 2250 may prime an audit trail (blocks 2280,

20 2282). The method may then place a request for administrative

processing of an appropriate Budget onto a request queue (blocks

2284, 2286). Finally, the method may save appropriate audit

trail information (blocks 2288, 2290). Sometime later, the user

VDE node may prime a communications audit trail (blocks 2292,

-533-

Petitioner Apple Inc. — Exhibit 1006, p. 1264

Petitioner Apple Inc. - Exhibit 1006, p. 1265

W0 93/09209 PCTIUS97/15243

2294), and may then write a Budget Administrative Request into

an administrative object (block 2296). This step may obtain

information from the secure database as needed from such

sources such as, for example, Budget UDE; Budget Audit Trail

5 UDE(sv); and Budget Administrative Request Record(s) (block
2298). A

Block 2296 may then communicate the administrative

' object tona VDE financial provider, or alternatively, block 2296

10 may pass ‘administrative object to a separate communications

process or method that arranges for such communications to

occur. If desired, method 2250 may then save a communications

audit trail (blocks 2300, 2302) before terminating (at termination .
point 2304).

15

Figure 42c is a flowchart of an example of process control

steps performed by the example of BUDGET method 2250

provided by the preferred embodiment operating in an

”administrative response“ mode. Steps shownin Figure 42c

20 would, for example, be performed by a VDE financial provider

who has received an administrative object containing a Budget

administrative request as created (and communicated to a VDE

administrator for example) by Figure 42b (block 2296).

-p 534 -

Petitioner Apple Inc. — Exhibit 1006, p. 1265

Petitioner Apple Inc. - Exhibit 1006, p. 1266

_ wo 93/09209 _ PCTIUS97/15243

Upon receiving the administrative object, BUDGET

method 2250.at the VDE financial provider site may prime a

budget communications and_response audit trail (blocks 2306,

2308), and may then unpack the administrative object and

5 ‘ retrieve the budget request(s), audit trail(s) and record(s) it

contains (block 2310). This information retrieved from the

administrative object may be written by the VDE financial

provider into its secure database (block 2312). The VDE

financial provider may then retrieve the budget request(s) and
10 determine the response method it needs to execute to process the

request (blocks 2314, 2316). BUDGET method 2250 may send

the event(s) contained in the request record(s) to the appropriate

response method and may generate response records and

response requests based on the RESPONSE method (block 2318).

15 The process performed by block 2318 may satisfy the budget

request by writing appropriate new response records into the

VDE financial provider’s secure database (block 2320). BUDGET

method 2250 may then write these Budget administrative

response recordsinto an administrative object (blocks 2322,

20 2324). which it may then communicate back to the user node

that initiated the budget request. BUDGET method 2250 may

then save communications and response processing audit trail

information into appropriate audit trail UDE(s) (blocks 2326,

2328) before terminating (at termination point 2330).

-535-

Petitioner Apple Inc. — Exhibit 1006, p. 1266

Petitioner Apple Inc. - Exhibit 1006, p. 1267

WO 98109209 V P(.'l'/US97/15243

Figure 42d is a flowchart of an example of program control

steps performed by a representative example of BUDGET

user node upon receipt of an administrative object containing

budget-related information. BUDGET method 2250 may first

prime a Budget administrative and communications audit trail

(blocks 2332, 2334). BUDGET method 2250 may then extract
records and requests from a received administrative object and

10 i write the reply record to the VDE secure database (blocks 2336,
2338). The VDE user node may then save budget administrative

and communications audit trail information in an appropriate

audit trail UDE(s) (blocks 2340, 2341).

15 Sometime later, the VDE user node may retrieve the reply
record from the secure database and determine what method is

required to process it (blocks 2344, 2346). The VDE user node

may, optionally, prime an audit trail (blocks 2342, 2343) to

20

new budget records, delete old budget records and/or apply

changes to budget records (blocks 2348,2350). BUDGET method

-536-

Petitioner Apple Inc. — Exhibit 1006, 10- 1267

Petitioner Apple Inc. - Exhibit 1006, p. 1268

I WO 98109209 PCI'IUS97IlS243

2250 may then delete the reply record from the secure data base

(blocks 2352, 2353) before writing the audit trail (if required)

(blocks 2354m 2355) terminating (at terminate point 2356).

5 B. REGISTER

Figures 43a"-43d are flowcharts of an example of program

control steps performed by a representative example of a

REGISTER method 2400 provided by the preferred embodiment.

In this example, the REGISTER method 2400 performs the

10 example steps shown in Figure 43a when operating in a ’'use‘‘

made, performs the example steps shown in Figure 43b when

operating in an "administrative request“ mode, performs the

steps shown in Figure 43c when operating in an "administrative

response“ mode, and performs the steps shown in Figure 43d ~\

15 when operating in an "administrative reply“ mode. A

The steps shown in Figure 43a may be, for example,

performed at a user VDE node in response to some action by or I

on behalf of the user. For example the user may ask to access an

20 I object that has not yet been (or is not now) properly registered to

. her. In response to such a user request, the REGISTER method

2400 may prime a Register Audit Trail UDE (blocks 2402, 2404)

before determining whether the object being requested has

already been registered (decision block 2406). If the object has

-537-

Petitioner Apple Inc. — Exhibit 1006, p. 1268

Petitioner Apple Inc. - Exhibit 1006, p. 1269

W0 gsmgzog PC!‘/US97/15243

already been registered (”yes“ exit to decision block 2406), the

REGISTER method may terminate (at termination point 2408).

If the object is not already registered (”no“ exit to decision block

2406), then REGISTER method 2400 may access the VDE node

5 1“ _secure database PERC 808 and/or Register MDE (block 2410).

REGISTER method 2400 may extract an appropriate Register

Record Set from this PERC 808 and/or Register MDE (block

2412), and determine whether all of the required elements are

present that are needed to register the object (decision block

10 ' 2414). If some piece(s) is missing (”no“ exit to decision block

2414), REGISTER method 2400 may queue a Register request

record to a communication manager and then suspend the

REGISTER method until the queued request is satisfied (blocks

2416, 2418). Block 2416 may have the effect of communicating a

15 - register request to a VDE distributor, for example. When the

request is satisfied and the register request record has been

received (block 2420), then the test of decision block 2414 is

satisfied ("yes“ exit to decision block 2414), and REGISTER

method 2400 may proceed. At this stage, the REGISTER method

20 2400 may allow the user to select Register options from the set of

method options allowed by PERC 808iaccessed at block 2410

(block 2422). As one simple example, the PERC 808 may permit

the user to pay by VISA or MasterCard but not by American

Express; block 2422 may display a prompt asking the user to

-538-

Petitioner Apple Inc. — Exhibit 1006, p. 1269

Petitioner Apple Inc. - Exhibit 1006, p. 1270

wo 98/09209 PCT/U597/15243

select between ‘paying using her VISA card and paying using her

MasterCard (block 2424). The REGISTER method 2400

preferably validates the user selected registration options and

requires the user to select d.ifi'erent options if the initial user

5 options were invalid (block 2426, ”no“ exit to decision block

2428). Once the user has made all required registration option

selections and those selections have been validated ("yes“ exit to

decision block 2428), the REGISTER method 2400 may write an

User Registration Table (URT) corresponding to this object and

10 this user which embodies the user registration selections made

by the user along with other registration information required by

PERC 808 and/or the Register MDE (blocks 2430, 2432).

REGISTER method 2400 may then write a Register audit record

into the secure database (blocks 2432, 2434) before terminating

15 (at terminate point 2436).

Figure 43b shows an example of an "administrative

request“ mode of REGISTER method 2400. This Administrative
Request Mode may occur on a VDE user system to generate an

20 A appropriate administrative object for communication to a VDE

distributor or other appropriate VDE participant requesting

registration information. Thus;‘for example, the steps shown in

Figure 43b may be performed as part of the ”queue register

request record“ block 2416 shown in Figure 43a. To make a

-539-

Petitioner Apple Inc. — Exhibit 1006, p. 1270

Petitioner Apple Inc. - Exhibit 1006, p. 1271

I wo 93/09109 rcrIUs97/15243

Register administrative request, REEISTER method 2400 may

first prime a communications audit trail (blocks 2440, 2442), and

then access the secure database to obtain data about registration

(block 2444). This secure database access may, for example,

5 allow the owner and/or publisher of the object being registered to

find out demographic. user or other information about the user.

As a specific example, suppose that the object being registered is

a spreadsheet software program. The distributor of the object I

may want to know what other software the user has registered.

10 For example, the distributor may be willing to give preferential

pricing if the user registers a “suite” of multiple software

products distributed by the same distributor. Thus, the sort of

information solicited by a "user registration“ card enclosed with

most standard softwarepackages may be solicited and

15 automatically obtained by the preferred embodiment at

registration time. In order to protect the privacy rights of the

user, REGISTER method 2400 may pass such user-specific data

through a privacy filter that may be at least in part customized

by the user so the user can prevent certain information from

20 being revealed to the outside world (block 2446). The

REGISTER method 2400 may write the resulting information

along with appropriate Register Request information identifying

the object and other appropriate parameters into an

administrative object (blocks 2448, 2450). REGISTER method

.540-

Petitioner Apple Inc. — Exhibit 1006, p. 1271

Petitioner Apple Inc. - Exhibit 1006, p. 1272

wo 93/09209 _ PC'1'IUS97I15243

2400 may then pass this administrative object to‘ a '

communications handler. REGISTER method 2400 may then

save a communications audit trail (blocks 2452, 2454) before

terminating (at terminate point 2456).

Figure 43c includes REGISTER method 2400 steps that

may be performed by a VDE distributor node upon receipt of

Register Administrative object sent by block 2448, Figure 43b.

REGISTER method 2400 in this "administrative response“ mode

10 may prime appropriate audit trails (blocks 2460, 2462), and then

may unpack the received administrative object and write the

associated register request(s) configuration information into the

secure database (blocks 2464, 2466). REGISTER method 2400

may then retrieve the administrative request from the secure

15 database and determine which response method to run to process

the request (blocks 2468, 2470). If the user fails to provide

suflicient information to register the object, REGISTER method

"2400 may fail (blocks 2472, 2474). Otherwise, R.EG_I_S,TER

method 2400 may send event(s) contained in the appropriate

20 request record(s) to the appropriate response method, and

- — generate and write response records and response requests (e.g.,

PERC(s) and/or UDEs) to the secure database (blocks 2476,

2478). REGISTER method 2400 may then write the appropriate

Register administrative response record into an administrative

-541-

Petitioner Apple Inc. — Exhibit 1006, p. 1272

Petitioner Apple Inc. - Exhibit 1006, p. 1273

WO 98/09209 . PCT/US97/15243

object (blocks 2480, 2482). Such information may include, for

example, one or more replacement PERC(s) 808, methods,

UDE(s), etc. (block 2482). This enables, for example, a

upon registration, replacing the limited right permissions with

wider permissioning scope granting the user more complete

‘ access to the objects. REGISTER method 2400 may then save

the communications and response processing audit trail ‘(blocks

10 2484, 2486‘), before terminating (at terminate point 2488).

Figure 43d shows steps that may be performed by the VDE

user node upon receipt of the administrative object

generated/transmitted by Figure 43c block 2480. The steps

15 shown in Figure 43d are very similar to those shown in Figure

42d for the BUDGET method administrative reply process.

c. AUDIT

Figures 44a-44c are flowcharts of examples of program

20 control steps performed by a representative example of an

AUDIT method 2520 provided by the preferred embodiment. As

Petitioner Apple Inc. — Exhibit 1006, p. 1273

Petitioner Apple Inc. - Exhibit 1006, p. 1274

W0 98/09209 PCl‘IUS97Il5243

method in an ”administrative request“ mode; Figure 44b shows

steps performed by the method in the "administrative response“

mode; and Figure 44c shows the steps performed by the method

in an "administrative reply“ mode.

U!

The AUDIT method 2520 operating in the ”administrative

request“ mode as shown in Figure 44a is typically performed, for

example, at a VDE user node based upon some request by or on

behalf of the user. For eicample, the user may have requested an

10 audit, or a timer may have expired that initiates communication

of audit information to a VDE content provider or other VDE

participant. In the preferred embodiment, different audits of the

same overall process may be performed by difierent VDE

participants. A particular ”audit“ method 2520 invocation may

15 be initiated for any one (or all) of the involved VDE participants.

Upon invocation of AUDIT method 2520, the method may prime

an audit administrative audit trail (thus, in the preferred

embodiment, the audit processing may itself be audited) (blocks

2522, 2524). The AUDIT method 2520 may then queue a request '

20 i for administrative processing (blocks 2526, 2528), and then may

save the audit administrative audit trail in the secure database

(blocks 2530, 2532). Sometime later, AUDIT method 2520 may

prime a communications audit trail (blocks 2534, 2536), and may

then write Audit Administrative Request(s) into one or more

-543 —

Petitioner Apple Inc. — Exhibit 1006, p. 1274

Petitioner Apple Inc. - Exhibit 1006, p. 1275

wo .98/09209 PCT/US97/15243

administrative object(s) based on specific UDE, audit trail

UDE(s), and/or administrative record(s) stored in the secure

database (blocks 2538, 2540). The AUDIT method 2520 may

thensave appropriate information into the communications

5 audit trail (blocks 2542, 254-4) before terminating (at terminate
point 2546).

Figure 44b shows example steps performed by a VDE

content provider, financial provider or other auditing node

10 upon receipt of the administrative object generated and

communicated by Figure 44a block 2538. The AUDIT method

2520 in this "administrative response“ mode may first prime an

Audit communications and response audit trail (blocks 2550,

15 and retrieve its contained Audit request(s) audit trail(s) and

audit record(s) for storage into the secured database (blocks

2554, 2556). AUDIT method 2520 may then retrieve the audit

request(s) from the secure database and determine—the response

method to run to process the request (blocks 2558, 2560). AUDlT

20 method 2520 may at this stage send eventts) contained in the

request record(s) to the appropriate response method, and

b generate response record(s) and requests based on this method

(blocks 2562, 2564). The processing block 2562 may involve a

communication to the outside world.

-544-

Petitioner Apple Inc. — Exhibit 1006, p. 1275

Petitioner Apple Inc. - Exhibit 1006, p. 1276

wo 93}o9;09 PCT/US97I15243

T For example, -AUDIT method 2520 at this point could call

an external process to perform, for example, an electronic funds

transfer against the user’s bank account or some other bank

account. The AUDIT administrative response can; if desired, call

5 an external process that interfaces VDE to one or more existing

computer systems. The external process could be passed the

user’s account number, PEN, dollar amount, or any other

information configured in,«or associated with, the VDE audit

trail being processed. The external process can communicate

10 with non—VDE hosts and use the information passed to it as part

of these communications. For example. the external process

could generate automated clearinghouse (ACH) records in a file

for submittal to a bank. This mechanism would provide the

ability to automatically credit or debit a bank account in any

15 ‘financial institution. The same mechanism could be used to

communicate with the existing credit card te.g. VISA) network by

submitting VDE based charges against the charge account.

Once the appropriate Audit response record(s) have been

20 generated, AUDIT method 2520 may write an Audit

administrative record(s) into an administrative object for

communication back to the VDE user node that generated the

Audit request (blocks 2566, 2568). The AUDIT method 2520 may

then save communications and response processing audit

-545-

Petitioner Apple Inc. — Exhibit 1006, p. 1276

Petitioner Apple Inc. - Exhibit 1006, p. 1277

WO 98109209 rcr/us97/15243 _

information in appropriate audit trail(s) (blocks 2570, 2572)’

before terminating (at terminate point 2574).

Figure 44c shows an example of steps that may be

5 5 performed by the AUDI’I‘ method 2520 back at the VDE user

node upon receipt of the administrative object generated and

sent by Figure 44b, block 2566. The steps 2580-2599 shown in

Figure 44c are similar to theisteps shown in Figure 43d for the

REGISTER method 2400 in the "administrative reply“ mode.
10 Briefly, these steps involve receiving and extracting appropriate

» response records from the administrative object (block 2584), and

then processing the received information appropriately to update

secure database records and perform any other necessary actions

(blocks 2595, 2596).

15

Examples of Event-Driven Content-Based Methods

VDE methods 1000 are designed to provide a very flexible

and highly modular approach to secure processing. A complete

VDE process to service a “use event“ may typically be

20 constructed as a combination of methods 1000. As one example,

the typical process for reading content or other information from

an object 300 may involve the following methods:

- an EVENT method

- a METER method

-546-

Petitioner Apple Inc. — Exhibit 1006, p. 1277

Petitioner Apple Inc. - Exhibit 1006, p. 1278

W0 98/119209 PCl'IUS97Il5243

- a BILLDIG method

- _ a BUDGET method.

A Figure 45 is an example of a sequential series of methods

performed by VDE 100 in response to an event. In this example,0|

when an event occurs, an EVENT method 402 may ’'qualify“ the

event to determine whether it is significant or not. Not all

events are significant. For example, if the EVENT method 1000

in a control process dictates that usage is to be metered based V

10 uponlnumber of pages read, then user request ”events“ for _

reading less than a page of information may be ignored. In

another example. if a system event represents a request to read a

certain number of bytes, and the EVENT method 1000 is part of

a control process designed tolmeter paragraphs. then the EVENT

15 method may evaluate the read request to determine how many

paragraphs are represented in the bytes requested. This process

may involve mapping to ”atomic elements“ to be discussed in

more detail below.

20 EVENT method 402 filters out events that are not

significant with regard to the specific control method involved.

EVENT method 402 may pass on qualified events to a METER

process 1404, which meters or discards the event based on its

own particular criteria.

-547-

Petitioner Apple Inc. — Exhibit 1006, p. 1278

Petitioner Apple Inc. - Exhibit 1006, p. 1279

W0 98,0925, . A pcr/ugsA97/15243

In addition, the preferred embodiment provides an

optimization called ”precheck.“ EVENT method/process 402 may

perform this "precheck“ based on metering, billing and budget

information to determine whether processing based on an event

5 will be allowed. Suppose, for example, that the user has already

exceeded her budget with respect to accessing certain

information content so that no further access is‘ permitted.

Although BUDGET method 408 could make this determination,

records and processes performed by BUDGET method 404 and/or

10 BILLIING method 406 might have to be "undone“ to, for example,

prevent the user from being charged for an access that was .

actually denied. It may be more efficientto perform a ”precheck“

within EVENT method 402 so that fewer transactions have to be

"undone."

15

METER method 404 may store audit record in a meter

”tra.il“ UDE 1200, for example, and may also record information

related to the event in a meter UDE 1200. For example, METER
method 404 may increment or decrement a ”meter“ value within

20 . a meter UDE 1200 each time content is accessed. The two

different data structures (meter UDE and meter trail UDE) may

be maintained to permit record keepingfor reporting purposes to
be maintained separately from record keeping for internal

operation purposes, for example.

-548-

Petitioner Apple Inc. — Exhibit 1006, p. 1279

Petitioner Apple Inc. - Exhibit 1006, p. 1280

wo 93,092!” PCTIUS97/15243.

Once the event is metered by METER method 404,. the

metered event may be processed by a BILLING method 406.

BILLING method 406 determines how much budget is consumed

by the event, and keeps records that are useful for reconciliation

5 of meters and budgets. Thus, for example, BILLING method 406

may read budget information from a budget UDE, recordbilling

information in a billing UDE, and write one or more audit

records in a billing trail UDE. While some billing trail

information may duplicate’ meter and/or budget trail

10 information, the billing trail’ information is useful, for example,
to allow a content creator 102 to expect a payment of a certain

size, and serve as a reconciliation check to reconcile meter trail

information sent to creator 102 with budget trail information

sent to, for example, an independent budget provider.

15

BILLING method 406 may then pass the event on to a

BUDGET method 408. BUDGET method 408 sets limits and

records transactional information associated" with those limits.

For example, BUDGET method 408 may store budget

20 ' information in a budget UDE, and may store an audit record in a

- budget trail UDE. BUDGET method 408 may result in a "budget

remaining“ field in a budget UDE being decrementedby an

amount specified by BILLING method 406.

-549-

Petitioner Apple Inc. — Exhibit 1006, p. 1280

Petitioner Apple Inc. - Exhibit 1006, p. 1281

PCTIUS97/15243WO 98/09209 '

The information content may be released, or other action

taken, once the various methods 402, 404, 406, 408 have

processed the event.

As mentioned above, PERCS 808 in the preferred

methods/processes 402, 404, 406, and 408 of Figure 45 can be
10 organized and controlled by a control method 410. Control

method 410 may call, dispatch events, or otherwise invoke the

other methods 402, 404, 406, 408 and otherwise supervise the

processing performed in response to an “event.”

15 Control methods operate at the level of control sets 906

within PERCS 808. They provide structure, logic, and flow of

control between disparate acquired methods 1000. This

mechanism permits the content provider to create any desired

chain of processing, and also allows the specific chain of
20

-550-

Petitioner Apple Inc. — Exhibit 1006, p. 1281

Petitioner Apple Inc. - Exhibit 1006, p. 1282

wo 93/09109 ‘ PCl'IUS97Il5243

Figure 4'7 shows an example of an ”aggregate“ method 412.

which collects METER method 404, BUDGET method 406 and

BILLIN method 408 into an ”aggregate“ processing flow.

Aggregate method 412 may, for example, combine various

elements of metering, budgeting and billing into a single methodor

1000. Aggregate method 412 may provide increased efficiency as

a result of processing METER method 404, BUDGET method 406

and BILLING method 408 aggregately, but may decrease H

flexibility because of decreased modularity.

10

Many different methods can be effect simultaneously.

Figure 48 shows an example of preferred embodiment event

processing using multiple METER methods 404 and multiple

BUDGET methods 1408. Some events may be subject to many

15 -different required methods operating independently or

cumulatively. For example, in the example shownin Figure 48,

meter method 404a may maintain meter trail and meter

information records that are independent from the meter trail

and meter information records maintained by METEvR_method

20 404b. Similarly, BUDGET method 408a may maintain records
independently of those records maintainediby BUDGET method

408b. Some events may bypass BILLING method 408 while

nevertheless being processed by meter method 404a and

Petitioner Apple Inc. — Exhibit 1006, p. 1282

Petitioner Apple Inc. - Exhibit 1006, p. 1283

W0 98/09209 PCTIUSQ7/15243

BUDGET method 408a. A variety of diflerent variations are

possible.

REPRESENTATWE EXAMPLES OF VDE METHODS

5 Although methods 1000 can have virtually unlimited

variety and some may even be user-defined, certain basic ”use“

type methods are preferably used in the preferred embodiment to

control most of the more fundamental object manipulation and

‘ other functions provided by VDE 100. For example, the

10 following high level methods would typically be provided for

object manipulation:

- OPEN method

- READ method

0 WRITE method

15 p - CLOSE method.

An OPEN method is used to control opening a container so

its contents may be accessed. A READ method is used to control

the access to contents in a container. A WRITE method is used

20 i to control the insertion of contents into a container. A CLOSE

method is used to close a container that hasbeen opened.

-552-

Petitioner Apple Inc. — Exhibit 1006, p. 1283

Petitioner Apple Inc. - Exhibit 1006, p. 1284

10

15

20

WO 98109209 PCIIUS97/15243 _

Subsidiary methods are providedto perform some of the

steps required by the OPEN, READ, WRITE and/or CLOSE

methods. Such subsidiary methods may include the following:

‘ ACCESS method

PANIC method

ERROR method

DECRYPT method

ENCRYPT method

DESTROY content method

. INFORMATION method ‘

OBSCURE method

FINGERPRINT method

EVENT method.

CONTENT method

EXTRACT method

EMBED method

METER method

BUDGET method

REGISTER method

BILLING method

AUDIT method

_ An ACCESS method may be used to physically access

content associated with an opened container (the content can be

-553-

Petitioner Apple Inc. — Exhibit 1006, p. 1284

Petitioner Apple Inc. - Exhibit 1006, p. 1285

wo 98/09209 Pcfr/Us97/15243

anywhere). A PANIC method may be used to disable at least a

portion of the node if a security violation is detected. An

ERROR method may be used to handle error conditions. A

DECRYPT method is used to decrypt encrypted information.‘ An

ENCRYPT method is used to encrypt informéition. A DESTROYOI

content method is used to destroy the ability to access specific

content within a container. An INFORMATION method is used

to provide public information about the contents of a container. M

An OBSCURE method is used to devalue content read from an

10 opened container (e.g., to write the word ”SAMPLE“ over a

displayed image). A FINGERPRINT method is used to mark

content to show who has released it from the secure container.

An event method is used to convert events into different events

for response by other methods.

15

Open

Figure 49 is a flowchart of an example of preferred

embodiment process control steps for an example of an OPEN

method 1500. -Different OPEN methods provide different

20 p detailed steps. However, the OPEN method shown in Figure 49

is a representative example of a relatively full-featured ”open“

method provided by the preferred embodiment. Figure 49 shows

a macroscopic view of the OPEN method. Figures 49a-49f are

-554-

Petitioner Apple Inc. — Exhibit 1006, p. 1285

Petitioner Apple Inc. - Exhibit 1006, p. 1286

wo 98I09209 pcrrussn/15:43

together an example of detailed program controlled steps A ‘

"performed to implement the method shown in Figure 49.

The OPEN method process starts with an "open event.“

This open event may be generated by a user application, anUl

operating system intercept or various other mechanisms for

capturing or intercepting control. For example, a user

application may issue a request for access to a particular content
stored within the VDE container. As another example, another

10 method may issue a command.

In the example shown, the open event is processed by a

control method 1502. Control method 1502 may call other

methods to process the event. For example, control method 1502

15 may call an EVENT method 1504, a METER method 1506, a

BILLING method 1508, and a BUDGET method 1510. Not all

OPEN control methods necessarily call of these additional

methods, but the OPEN method 1500 shown in Figure 49 is a

-representative example.

20

Control method 1502 passes a description of the open

event to EVENT method'1504. EVENT method 1504 may

determine, for example, whether the open event is permitted and

whether the open event is significant i.n the sense that it needs to

‘-555-

Pctitioner Apple Inc. — Exhibit 1006, p. 1286

Petitioner Apple Inc. - Exhibit 1006, p. 1287

wo 98/09209 I I PCT/US97/15243

be processed by METER method 1506, BILLING method 1503,

and/or BUDGET method 1510. EVENT method 1504 may

maintain audit trail information within an audit trail UDE, and

may determine permissions and significance of the event by

5 _ using an Event Method Data Element (MDE). EVENT method

1504 may also map the open event i.nto an "atomic element“ and

count that may be processed by METER method 1506. BILLING

method 1508, and/or BUDGET method 1510.

10 In OPEN method 1500, once EVENT method 1504 has

been called and returns successfully, control method 1502 then

may call METER method 1506 and pass the METER method, the

atomic element and count returned by EVENT method 1504.

METER method 1506 may maintain audit trail information in a

15 METER method Audit Trail UDE, and may also maintain meter

information in a METER method UDE. In the preferred

embodiment; METER method 1506 returns a meter value to

control method 1502 assuming successful completion_._

20 In the preferred embodiment, control method upon

receiving an indication that ‘METER method 1506 has completed

successfully, then calls BILLING method 1508. Control method

1502 may pass to BILLING method 1508 the meter value

provided by METER method 1506. BILLING method 1508 may

-556-

Petitioner Apple Inc. — Exhibit 1006, p. 1287

Petitioner Apple Inc. - Exhibit 1006, p. 1288

W0 98/09209 PCTIUS97/15243

read and update billing information maintained in a BILLING

method map MDE, and may also maintain and update audit trail

in a BILLING method Audit Trail UDE. BILLING method 1508

may return a billing amount and a completion code to control

5 method 1502.

Assuming BILLING method 1508 completes successfully,

control method 1502 may pass the billing value provided by -

BILLING method 1508 to BUDGET method 1510. BUDGET

10 1 method 1510 may read and update budget information within a

BUDGET method and may also maintain audit trail

information in a BUDGET method Audit Trail UDE. BUDGET

method 1510 may return a budget value to control method 1502,

and may also return a completion code indicating whether the

15 open event exceeds the user’s budget (for this type of event).

Upon completion of BUDGET method 1510, control

method 1502 may create a channel and establish read/use

control information in preparation for subsequent calls to the

20 READ method.

Figures 49a-49f are a more detailed description of the

OPEN method 1500 example shown in Figure 49. Referring to

Figure 49a, in response toan open event, control method 1502

-557-

Petitioner Apple Inc. — Exhibit 1006, p. 1288

Petitioner Apple Inc. - Exhibit 1006, p. 1289

WO 98/09209 PC!‘/US97ll5243

first may determine the identification of the object to be opened
and the identification of the user that has requested the object to

be opened (block 1520). Control method 1502 then determines
whether the object to be opened is registered for this user

(decisionblock 1522). It makes this determination at least in

part in the preferred embodiment by reading the PERC 808 and

the User Rights Table (URT) element associated with the

particular ‘object and particular user determined by block 1520

‘ (block 1524). If the user is not registered for this particular

10 object (”no“ exit to decision block 1522), then control method

1502 may call the REGISTER method for the object and restart

the OPEN method 1500 once registration is complete (block

1526). The REGISTER method block 1526 may be an

independent process and may be time independent. It may, for

15 example, take a relatively long time to complete the REGISTER

method (say if the VDE distributor or other participant

responsible for providing registration wants to perform a credit

check on the user before registering the user for this particular
object).

20

Assuming the proper URT for this user and object is

present such that the object is registered for this _user (”yes“ exit

to decision block 1522), control method 1502 may determine

whether the object is already open for this user (decision block

-558-

Petitioner Apple Inc. — Exhibit 1006, 10- 1289

Petitioner Apple Inc. - Exhibit 1006, p. 1290

W0 98I09209 _ PCT/US97/15243

1528). This test may avoid creating a redundantchannel for

opening an object that is already open. Assuming the object is

not already open (”no“ exit to decision block 1528), control

method 1502 creates a channel and binds appropriate open

5 control elements to it (block 1530). It reads the appropriate open

control elements from the secure database (or the container, such

as, for example, in the case of a travelling object), and ”binds“ or

”links“ these particular appropriate control elements together in

order to" control opening of the object for this user. Thus, block

10 1530 associates an event with one or more appropriate method

core(s), appropriate load modules, appropriate User Data

Elements, and appropriate Method Data Elements read from the

secure database (or the container) (block 1532). At this point,

control method 1502 specifies the open event (which started the

15 OPEN method to begin with), the object ID and user ID

(determined by block 1520), and the channel ID of the channel

created by block 1530 to subsequent EVENT method 1504,

METER method 1506, BILLING method 1508 BUDGET

method 1510 to provide a secure database ”transaction“ (block

20 1536). Before doing so,—control method 1502 may prime an audit

process (block 1533) and write audit information into an audit

UDE (block 1534) so a record of the transaction exists even if the

transaction fails or is interfered

-559-

Petitioner Apple Inc. — Exhibit 1006, p. 1290

Petitioner Apple Inc. - Exhibit 1006, p. 1291

10

15

20

W0 98109209 PC'l‘IUS97I1 5243

The detail steps performed by method 1504 are set

forth on Figure 49b. EVENT method 1504 may first prime an

event audit trail if required (block 1538) which may write to an

EVENT Method Audit Trail UDE (block 1540). EVENT method

1504 may then perform the step of mapping the open event to an

atomic element number and event count using a map

(block 1542). The EVENT method map MDE may be read from

the secure database (block 1544). This mapping process

performed by block 1542 may, for example, determine whether or

not the open event is meterable, billable, or budgetable, and may

transform the open event into some discrete atomic element for

metering, billing and/or budgeting. As one example, block 1542

might perform a one-to-one mapping between open events and

”open“ atomic elements, or it may only provide an open atomic

element for every fifth time that the object is opened. The map

block 1542 preferably returns the open event, the event count,

the atomic element number, the object ID, and the user ID. This

information may be written to the EVENT method Audit Trail

UDE (block 1546, 1548). In the preferred embodiment, a test

(decision block 1550) is then performed to determine whether the

EVENT method failed. Specifically, decision block 1550 may

determine whether an atomic element number was generated. If

no atomic element number was generated (e.g., meaning that the

open event is not significant for processing by METER method

-560-

Petitioner Apple Inc. — Exhibit 1006, p. 1291

Petitioner Apple Inc. - Exhibit 1006, p. 1292

wo gs/99209 PCI‘IUS97ll52-13

1506, BILLING method 1508 and/or BUDGET method 1510),

then EVENT method 1504 may return a “fail” completion code to

control method 1502 (”no“ exit to decision block 1550).

5 _ Control method 1502 tests the completion code returned by

EVENT method 1504 to determine whether it failed or was

successful (decision block 1552). If the EVENT method failed

(”no“ exit to decision block 1552), control method 1502 may "roll

back“ the secure database.transaction (block 1554) and return

10 I _ itself with an indication that the OPEN. method failed (block
1556). In this context, ”rollj.ng back_“ the secure database

transaction means, for example, ”undoing‘ the changes made to

audit trail UDE by blocks 1540, 1548. However, this "roll back“

performed by block 1554 in the preferred embodiment does not

15 ”undo“ the changes made to the control method audit UDE by

blocks 1532, 1534.

Assuming the EVENT method 1504 completed

successfully, control method 1502 then calls the METER method

20 1506 shown on Figure 49c. In the preferred embodiment,

METER method 1506 primes the meter audit trail if required

‘(block 1558), which typically involves writing to a METER

method audit trail UDE (block 1560). METER method 1506 may

then read a METER method from the secure database

-561-

Petitioner Apple Inc. — Exhibit 1006, p. 1292

Petitioner Apple Inc. - Exhibit 1006, p. 1293

W0 98,0920, PCTlUS97l15243

(block 1562), modify the meter UDE by adding an appropriate

event count to the meter value contained in the meter UDE

(block 1564), and then writing the modified meter UDE back to

the secure database (block 1562). In other words, block 1564
OI

may read the meter UDE, increment the meter count it contains,.

and write the changed meter UDE back to the secure database.

In the preferred embodiment, METER method 1506 may then

write meter audit trail information to ‘the METER method audit

trail UDE ifrequired (blocks 155e, 1568). METER method 1506 A
10 ‘preferably next performs a test to determine whether the meter

increment succeeded (decision block 1570). METER method

1506 returns to control method 1502 with a completion code (e.g.,

succeed or fail) and a meter value determined by block 1564.

15 Control method 1502 tests whether the METER method

succeeded by examining the completion code, for example

(decision block 1572). If the METER method failed (”no“ exit to

‘decision block 1572), then control method 1502 "rolls back“ a

secure database transaction (block 1574), and returns with an

20 indication that the OPEN method failed (block 1576). Assuming

the METER method succeeded (”yes“ exit to decision block 1572),

control method 1502 calls the BILLING method 1508 and passes

it the meter value provided by METER method 1506.

-562-

Petitioner Apple Inc. — Exhibit 1006, p. 1293

Petitioner Apple Inc. - Exhibit 1006, p. 1294

wo 93/09209 PC!‘/US97I15243

An example of steps performed by BILLING method 1508

is set forth in Figure 49d. BILLING method 1508 may prime a

billing audit trail if required (block 1578) by writing to a

BILLING method.Audit Trail UDE within the secure database

5 (block 1580). BILLING method 1508 may then map the atomic

element number, count and meter value to a billing amount

using a BILLING method ‘map MDE read from the secure

. database (blocks 1582, 1584). Providing an independent

.BILLING method map MDE containing, for example, price list

10 8 information, allows separately deliverable pricing for the billing

process. The resulting billing amount generated by block 1582

may be written to the BILLING method Audit Trail UDE (blocks

1586, 1588), and may also be returned to control method 1502.

In addition, BILLING method 1508 may determine whether a

15 billing amount was properly selected by block 1582 (decision

block 1590). In this example, the test performed by block 1590

generally requires more than mere examination of the returned

billing amount, since the billing amount may be changed in

unpredictable ways as specified by BILLING method map MDE.

20 Control then returns to control method 1502, which tests the

completion code provided by BILLING method 1508 to determine

whether the BILLING method succeeded or failed (block 1592).

If the BILLDIG method failed (”no“ exit to decision block 1592),

control method 1502 may "roll back“ the secure database

-563-

Petitioner Apple Inc. — Exhibit 1006, p. 1294

Petitioner Apple Inc. - Exhibit 1006, p. 1295

wo gs/09209 PCTrUS97I15243_

transaction (block 1594), and return an indication that the

OPEN method failed (block 1596). Assuming the test performed

by decision block 1592 indicates that the BILLING method

(succeeded (”yes“ exit to decision block 1592), then control method

5 1502 may call BUDGET method 1510.

Other BILLING methods may useisite, user and/or usage

information to establish, for example, pricing information. For

example, information concerning the presence or absence of an

10 object may be used in establishing 'lsuite“ purchases, competitive

discounts, etc. Usage levels may be factored into a BILLING

method to establish price breaks for different levels of usage. A

currency translation feature of a BILLING method may allow

purchases and/or pricing in many diflerent currencies. Many

15 other possibilities exist for determining an amount of budget‘
consumed by an event that may be incorporated into BILLING

methods.

An example of detailed control steps performed by

20 BUDGET method 1510 is set forth in Figure 49e. BUDGET

method 1510 may prime a budget audit trail if required by

writing to a budget trail UDE (blocks 1598, 1600). BUDGET

method 1510 may next perform a billing operation by adding a

billing amount to a budget value (block 1602). This operation’

-564-

Petitioner Apple Inc. — Exhibit 1006, p. 1295

Petitioner Apple Inc. - Exhibit 1006, p. 1296

10

15A

20

WO 98109209 PCTIUS97/15243

may be performed, for example, by reading a BUDGET method

UDE from the secure database, modifying it, and writing it back

to the secure database (block 1604). BUDGET method 1510 may

then write the budget audit trail information to the BUDGET

method Audit Trail UDE (blocks 1606, 1608). BUDGET method

1510 may finally, in this example, determine whether the user

has run out of budget by determining whether the budget value

calculated by block 1602 is out of range (decision block 1610). If

the user has run out of budget (”yes“ exit to decision block 1610),

the BUDGET method 1510 may return a "fail completion“ code to

control method 1502. BUDGET method 1510 then returns to

control method 1502, which tests whether the BUDGET method .

completion code was successful (decision block 1612). If the

BUDGET method failed (”no“ exit to decision block 1612), control

method 1502 may "roll back“ the secure database transaction

andlitself return with an indication that the OPEN method failed

(blocks 1614, 1616). Assuming control method 1502 determines

that the BUDGET method was successful, the control method

may perform the additional steps shown on Figure 49f. For A

example, control method 1502 may write an open audit trail if

required by writing auditinformation to the audit UDE that was

primed at block 1532 (blocks l61_8, 1620). Control method 1502

may then establish a read event processing (block 1622), using

the User Right Table and the PERC associated with the object

-565-

Petitioner Apple Inc. — Exhibit lO06,‘p. 1296

Petitioner Apple Inc. - Exhibit 1006, p. 1297

and user to establish the channel (block 1624). This channel

may optionally be shared between users of the VVDE node 600, or

may be used only by a specified user.

OI
Control method 1502 then, in the preferred embodiment,

tests whether the read channel was established successfully

1 (decision block 1626). If the read channel was not successfully
established l”no“ exit to decision block 1626), control method

1502 ”rolls back“ the secured database transaction and provides

' 10 an indication that the OPEN method failed (blocks 1628, 1630).

exit to decision block 1626), control method 1502 may ”commit“

the secure database transaction (block 1632). This step of

”committing“ the secure database transaction in the preferred

15 embodiment involves, for example, deleting intermediate values

associated with the secure transaction that has just been

performed and, in one example, writing changed UDEs and

MDEs to the secure database. It is generally not possible to ”roll

back“ a secure transaction once it has been committed by block

20 1632. Then, control method 1502 may ”tear__doWn“ the channel

for open processing (block 1634) before terminating (block 1636).

In some arrangements, such as multi-tasking VDE node 6
environments, the open channel may be constantly maintained

and available for use by any OPEN method that starts. In other

-566-

Petitioner Apple Inc. — Exhibit 1006, p. 1297

Petitioner Apple Inc. - Exhibit 1006, p. 1298

wo 93/09299 PCI‘IUS97l15243

implementations, the channel for open processing may be rebuilt A

and restarted each time OPEN method starts.‘

Read

5 b Figure 50, 50a-50f show examples of process control steps

for performing a representative example of a READ method

1650. Comparing Figure 50 with Figure 49 reveals that the

same overall high level processing may typically be performed for

READ method 1650 as was described in connection with OPEN

10 method 1500'. Thus, READ method 1650 may call a control

method 1652 in response to a read event, the control method in

turn invoking an method 1654, a METER method 1656,

a BILLING method 1658 and a BUDGET method 1660. In the

preferred embodiment, READ control method 1652 may request

15 methods to fingerprint and/or obscure content before releasing

the decrypted content.

-T-—__—

— Figures 50a-50e are similar to Figures 49a-4_9e. Of course,

even though the same user data elements may be used for both

20 the OPEN method 1500 and the READ method 1650, the method

data elements for the ‘READ method may be completely djfierent,

and in addition, the user data elements may provide difierent

auditing, metering, billing and/or budgeting criteria for read as

opposed to open processing.

-567-

Petitioner Apple Inc. — Exhibit 1006, p. 1298

Petitioner Apple Inc. - Exhibit 1006, p. 1299

S97I15243WO 98/09209 PC]-[U

10 then determine whether a
Tingerprint“ is desired (decision block

1766). If fingerprinting of the content is desired (”yes“ exit of

decision block 1766), READ control method 1652 may call the

FINGERPRINT method (bleek 1768). Otherwise, READ control

method 1652 may determine whether it is desired to obscure the
15 decrypted content (decision block 1770). Ifso, READ control

method 1652 may call an OBSCURE method to perform this

function (block 1772). Finally, READ control method 1652 may
commit the secure database transaction (block 1774), optionally
tear down the read channel (not shown),

20 1776).

and terminate (block

Petitioner Apple Inc. — Exhibit 1006, 10- 1299

Petitioner Apple Inc. - Exhibit 1006, p. 1300

wo 9s/09209 - PCTIUS97Il5243

W'RITE method 1780 in the preferred embodiment. WRITE

method 1780 uses a control method 1782 to call an EVENT

method 1784, METER method 1786, BILLING method 1788, and

BUDGET method 1790 in this example. Thus, writing

5 information into a container (either by overwriting information

already stored in the container or adding new information to the

container) in the preferred embodiment may be metered, billed

and/or budgeted in a manner similar to the way opening a

container and reading from a container can be metered, billed

10 and budgeted. As shown in Figure 51, the end result of WRITE

method 1780 is typically to encrypt content, update the container

table of contents and related information to reflect the new

content, and write the content to the object.

15 Figure 51a for the WRITE control method 1782 is similar

to Figure 49a and Figure 50a for the OPEN control -method and

the READ control method, respectively. However, Figure 51b is

slightly d.ifi'erent from its open and read counterparts. In

particular, block 1820 is performed ifthe WRITE EVENT

20 method 1734 fails. This block 1320 updates the EVENT method

map MDE to reflect new data. This is necessary to allow

information written by block 1810 to be read by Figure 51b

READ method block 1678 based on the same (but now updated)

EVENT method map MDE.

-569-

Petitioner Apple Inc. — Exhibit 1006, p. 1300

Petitioner Apple Inc. - Exhibit 1006, p. 1301

wo 98/09209 _ PCl'lUS97ll5243'

2 Lookingvat Figure 51f, once the EVENT, METER,

BILLING and BUDGET methods have returned successfully to

WRITE control method 1782, the control method writes

audit information to Audit UDE (blocks 1890, 1892), and then

- 5. determines (based on the PERC for the object and user and an

optional algorithm) which key should be used to encrypt the

content before it is written to the container (blocks 1894, 1896)." ”

CONTROL method 1782 then encrypts the content (block 1898)

possibly by calling an ENCRYPT method, and writes-the

10 L ' . encrypted content to the object (block 1900). CONTROL method

1782 may-then update the table of contents (and related

information) for the container to reflect the newly written

information (block 1902),pcommit the secure database

transaction (block 1904), and return (block 1906).

15

Close

Figure 52 is a flowchart of an example of process control

“"_s‘fe”p"s’ to perform a representative example of a CLOSE method

1920 in the preferred embodiment. CLOSE method 2.1920 is used

20 to close an open object. In the preferred embodiment, CLOSE

method 1920 primes an audit trail and writes audit information

to an Audit (blocks 1.922, 1924). CLOSE method 1920 then

may destroy the current channel(s) being used to support and/or '

process one or more open objects (block 1926). As discussed.

-570-

Petitioner Apple Inc. — Exhibit 1006, p. 1301

Petitioner Apple Inc. - Exhibit 1006, p. 1302

W0 93/092139 PCTlUS97I15243

above, in some (e.g., multi-user or multi-tasking) installations,

the step of destroying a channel is not needed because the

channel may be left operating for processing additional objects

for the same or different users. CLOSE method 1920 also

releases appropriate records and resources associated with the
DI

object at this time (block 1926). The CLOSE method 1920 may

then write an audit trail { if required) into an Audit UDE (blocks

' 1928, 1930) before completing.

10‘ Event

‘Figure 53a is a flowchart of example process control steps

provided by a more general example of an method 1940

provided by the preferred embodiment. Examples of EVENT

methods are set forth in Figures 49b, 50b and 51b and are

15 described above. EVENT method 1940 shown in Figure 53a is

somewhat more generalized than the examples above. Like the

EVENT method examples above, EVENT method 1940 receives

an identification of the event along with an event count and

event parameters. EVENT method 1940 may first prime an

20 EVENT audit trail (if required) by writing appropriate

information to an EVENT method Audit Trail UDE (blocks 1942, '

1944). EVENT method 1940 may then obtain and load an

_ EVENT method map DTD from the secure database (blocks

1946, 1948). This EVENT method map DTD describes, in this

-571-

Petitioner Apple Inc. — Exhibit 1006, p. 1302

Petitioner Apple Inc. - Exhibit 1006, p. 1303

W0 93,0910, I .1 PCI‘/US97l15243

example, the format of the EVENT method map MDE to be read '
and accessed immediatelyisubsequently (by blocks 1950. 1952).

In thepreferred embodiment, MDEs and UDEs may have any of

various diflerent formats, and their formats may be flexibly

on
specified or changed dynamically depending upon the

installation, user, etc. The DTD, in effect, describes to the _

EVENT method 1940 how to read from the EVENT method map

MDE. D'I‘Ds are also used to specify how methods should write

A to MDEs and UDES, and thus may be used to implement privacy
10 0 filters by, for example, preventingcertain confidential user

information from being written to data structures that will be

reported to third parties.

Block 1950 ("map event to atomic element # and event

15 count using a Map MDE“) is in some sense the ”heart“ of EVENT

method 1940. This step "maps" the event into an "atomic

element number“ to be responded to by subsequently called.

methods. An example of process control steps performed by a

somewhat representative example of this ”mapping“ step 1950 is

20 shown in Figure 53b.

The Figure 53b example shows the process of converting a

READ event that is associated with requesting byte range 1001-

1500 from a specific piece of content into an appropriate atomic

-572-

Petitioner Apple Inc. — Exhibit 1006, p. 1303

Petitioner Apple Inc. - Exhibit 1006, p. 1304

wo gsmgzog PCT/US97/15743

element. The example EVENT method mapping process (block

1950 in Figure 53a) can be detailed as the representative process ‘

shown in Figure 53b.

5 method mapping process 1950 may first look up
the event code (READ) in the EVENT method MDE (1952) using

the EVENT method map DTD (1948) to determine the structure

and contents of the MDE. A test might then be performed to

determine if the event code was found in the MDE (1956), and if . I ‘_

10 not("No“ branch), the EVENT method mapping process may the

terminate (1958) without mapping the event to an atomic

element number and count. If the event was found in the MDE

.("Yes“ branch), the method mapping process may then
compare the event range (e.g., bytes 1001-1500) against the

15 atomic element to event range mapping table stored in the

(block 1960). The comparison might yield one or more atomic

element numbers or the event range might not be found in the .

mapping table. The result of the comparison might then be

tested (block 1962) to determine if any atomic element numbers

20 were found in the table. If not (”No“ branch), the EVENT

method mapping process may terminate without selecting any

atomic element numbers or counts (1964). If the atomic element

numbers were found, the process might then calculate the atomic

element count from the event range (1966). In this example, the

-573- ’

Petitioner Apple Inc. — Exhibit 1006, p. 1304

Petitioner Apple Inc. - Exhibit 1006, p. 1305

W0 209 ’ _ pcr/us97/15243

process might calculate the number of bytes requested by

subtracting the upper byte range from the lower byte range (e.g.,

1500 — 1001 + 1 = 500). The example EVENT method mapping

process might then terminate (block 1968) and return the atomic

5 ‘ element number(s) and counts.

EVENT method 1940 may then Write an EVENT audit

trail if required to an EVENT method Audit Trail UDE (block

1970, 1972). EVENT method 1940 may then prepare to pass the

10 atomic element number and event count to the calling

CONTROL method (or other control process) (at exit point 1978).

Before that, however, EVENT method 1940 may test whether an

atomic element was selected (decision block 1974). If no atomic

element was selected, then the EVENT method may he failed

15 (block 1974). This may occur for a number of reasons. For

20;

various versions in thecontent object by altering the EVENT

method MDE delivered to the user. A specific use of this "

technology might be to control the distribution of different

- 574 —

Petitioner Apple Inc. — ‘Exhibit 1006, 10- 1305

Petitioner Apple Inc. - Exhibit 1006, p. 1306

10

15

WO 98109209 PCTIUS9'7Il5243

language (e.g., English, French, Spanish) versions of a piece of

content.

Billing ’

Figure 53c is a flowchart of an example of process control

steps performed by a BILLING method 1980. Examples of

BILLING methods are set forth in Figures 49d, 50d, and 51d and

are described above. BILLING method 1980 shown in Figure 53c

is somewhat more generalized than the [examples above. Like

the BILLING method examples above, BILLING method 1980

receives a meter value to determine the amount to bill.

BILLING method 1980 may first prime a BILLING audit trail (if

required) by writing appropriate information to the BILLING

method Audit Trail UDE (blocks 1982, 1984). BILLING method

1980 may then obtain and load a BILLING method map DTD

from the secure database (blocks 1985, 1986), which describes

the BILLING method map MDE (eg, a price list, table, or

parameters to the billing amount calculation algorithm) that

should be used by this BILLLNG method. The BILLING method

map MDE may be delivered either as part of the content object or

as a separately deliverable component that combined with the

control information at registration. _ _

Petitioner Apple Inc. — Exhibit 1006, p. 1306

Petitioner Apple Inc. - Exhibit 1006, p. 1307

wo 98,092!” . PCT/US97ll5243

' The BILLING method map in this example may

describe the pricing algorithm that should be used in this

BILLING method (e.g., bill $0.001 per byte of content released).

Block 1988 ("Map meter value to billing amount“) functions in

5 the same manner as block 1950 of the EVENT method; it maps

the meter value to a billing value. Process step 1988 may also

interrogate the secure database (as limited by) the privacy filter)

to determine if other objects or information (e.g., user

information) are present as part of the BILLING method

10 algorithm.

BILLING method 1980 may then write a BILLLNG audit

trail if required to a BILLING method Audit Trail UDE (block

1990, 1992), and may prepare to return the billing amount to the

15 ca.1ling CONTROL method (or other control process). Before

that, however, BILLING method 1980 may test whether a billing

amount was determined (decision block 1994). If no billing

amount was determined, then the BILLING method may he

failed (block 1996). This may occur if the user is not authorized

20 to access the specific areas of the pricing table that the BILLING

-576-

Petitioner Apple Inc. 4 Exhibit 1006, p. 1307

Petitioner Apple Inc. - Exhibit 1006, p. 1308

wo gsmgzog PCTIUS97l15243

Access

Figure 54 is a flowchart_ ofan example of program control

steps performed by-an ACCESS method 2000. As described

above, an ACCESS method may be used to access content

5 embedded in an object 300 so it can be written to, read from, or

otherwise manipulated or processed. In many cases, the

ACCESS method may be relatively trivial since the object may,

for example, be stored in a local storage that is easily accessible.

* However, in the general case, an ACCESS method 2000 must go

10 "through a more complicated procedure in order to obtain the

object. For example. some objects (or parts of objects) may only

be available at remote sites or may be provided in the form of a

real-time download or feed (e.g., in the case of broadcast

transmissions). Even if the object is stored locally to the VDE

15 node, it may be stored as a secure or protected object so that it is

not directly accessible to a calling process. ACCESS method

2000 establishes the connections; routings, and security

requisites needed to access the object. These steps may be

performed transparently to the calling process so that the calling

20 process only needs to issue an access request and the particular

ACCESS method corresponding to the object or class of objects

handles all of the details and logistics involved in actually

accessing the object.

-577-

Petitioner Apple Inc. — Exhibit 1006, p. 1308

Petitioner Apple Inc. - Exhibit 1006, p. 1309

wo 93/09209 7 _ I PCTIU597/15243

ACCESS method 2000 may first prirne an ACCESS audit

ti-‘a.i1 (if required) by writing to an ACCESS Audit Trail UDE

(blocks 2002, 2004). ACCESS method 2000 may then read and

' load an ACCESS method DTD in order to determine the format

on
of an ACCESS MDE (blocks 2006, 2008). The ACCESS method

MDE specifies the source and routing information for the

particular object to be accessed in the preferred embodiment.

Using the ACCESS method DTD, ACCESS method 2000 may

load the correction parameters (e.g., by telephone number,

10 1 account ID, password and/or a request script in the remote

resource dependent language).

ACCESS method 2000 reads the ACCESS method MDE

from the secure database, reads it in accordance with the

15 ACCESS method DTD, and loads encrypted content source and

routing information based on the MDE (blocks 2010, 2012). This

source and routing information specifies the location of the

encrypted content. ACCESS method 2000 then determines

whether a connection to the content is available (decision block

20 2014). This ”connection“ could be, for example, an on-line

connection to a remote site, a real-time information feed, or a

path to a secure/protected resource, for example. If the

connection to the content is not currently available (”No“ exit of

decision block 2014), then ACCESS method 2000 takes steps to

-578-

Petitioner Apple Inc. — Exhibit 1006, p. 1309

Petitioner Apple Inc. - Exhibit 1006, p. 1310

PCT/US97I15243wo 93/09209

open the connection (block 2016). If the connection fails (e.g.,

because the user is not authorized to access a protected secure

resource), then the ACCESS method 2000 returns with a failure

indication (termination point 2018). If the open connection

5 succeeds, on the other hand, then ACCESS method 2000 obtains

the encrypted content (block 2020). ACCESS method 2000 then 0

writes an ACCESS audit trail if required to the secure database

ACCESS method Audit Trail UDE (blocks 2022, 2024), and then

terminates (terminate point 2026).
10

Decrypt and Encrypt

Figure 553 is a flowchart of an example of process control

steps performed by a representative example of a DECRYPT

method 2030 provided by the preferred embodiment. DECRYPT

15 method 2030 in the preferred embodiment obtains or derives a

decryption key from an appropriate’ PERC 808, and uses it to

decrypt a block of encrypted content. DECRYPT method 2030 is

passed a block of encrypted content or a pointer to where the

encrypted block is stored. DECRYPI‘ 2030 selects a key number

20 from a key block (block 2032). For security purposes, a content

object may be encrypted with more than one key. For example, a

movie may have the first 10 minutes encrypted using a first key,

the second 10 minutes encrypted with a second key, and so on.

These keys are stored in a PERC 808 in a structure called a "key

-579-

Petitioner Apple Inc. — Exhibit 1006, p. 1310

Petitioner Apple Inc. - Exhibit 1006, p. 1311

wo 98/09209 PCT/U597/1524'}

block“. The selection process involves determining the correct key

to use from the key block in order to decrypt the content. The

process for this selection is similar to the process used by

EVENT methods to map events into atomic element numbers.

A 5 DECRYPT method 2030 may then access an appropriate PERC

5808 from the secure database 610 and loads a key (or ”seed“) -

from a PERC (blocks 2034, 2036). This key information may be

the actual decryption key to be used to decrypt the content, or it

may be information from which the decryption key may be _at -

10 least in part derived or calculated. If necessary, DECRYPT

method 2030 computes the decryption key based on the

_ information read from PERC 808 at block 2034 (block 2038).

DECRYPT method 2030 then uses the obtained and/or calculated

decryption key to actually decrypt the block of encrypted

15 information (block 2040). DECRYPT method 2030 outputs the

decrypted block (or the pointer indicating where it may be

found). and terminates (termination point 2042).

Figure 55b is a flowchart of an example of process control
20 steps performed by a representative example of an ENCRYPT

method 2050. ENCRYPT method 2050 is passed as an input, a

block of information to encrypt (or a pointer indicating where it

may be found). ENCRYPT method 2050 then may determine an

encryption key to use from a key block (block 2052). The

-580-

Petitioner Apple Inc. — Exhibit 1006, p. 1311

Petitioner Apple Inc. - Exhibit 1006, p. 1312

10

15

20

WO 98109109 PC'l‘IUS97IlS243

encryption key selection makes a determination if a key for a

specific block of content to be written already exists in a key

block stored in PERC 808. If the key already exists in the key

block, then the appropriate key number is selected. If no such

key exists in the key block, a new key is calculated using an

algorithm appropriate to the encryption algorithm. This key is

then stored in the key block of PERC 808 so that DECRYPT‘

method 2030 may access the key in order to decrypt the content

stored in the content object. ENCRYPT method 2050 then

accesses the appropriate PERC to obtain, derive and/or compute

an encryption key to be used to encrypt the information block

(blocks 2054, 2056, 2058, which are similar to Figure 55a blocks

2034, 2036, 2038). ENCRYPT method 2050 then actually

encrypts the information block using the obtained and/or derived

encryption key (block 2060) and outputs the encrypted

information block or a pointer where it can be found before

terminating (termination point 2062).

Content

Figure 56 is a flowchart of an example of process control

steps performed by a representative of a CONTENT method

2070 provided by the preferred embodiment. CONTENT method

2070 in the preferred embodiment builds a ”synopsis“ of

protected content using a secure process. For example,

-581-

Petitioner Apple Inc. — Exhibit 1006, p. l3 l2

Petitioner Apple Inc. - Exhibit 1006, p. 1313

wo 98/09209 _ , ’ PCT/US97l15243‘

CONTENT method 2070 may be used to derive unsecure

(“public”) information from secure content. Such derived public

information might include, for example, an abstract, an index, a

table of contents, a directory of files, a schedule when content

01
may be available, or excerpts such as for example, a movie

"trailer."

CONTENT method 2070 begins" by determining whether

the derivedcontent to be provided must be derived from secure

10 contents, or whether it is already available in the object the

form of static values (decision block 2070). Some objects may, for

example, contain prestored abstracts, indexes, tables of contents,

etc., provided expressly for the purpose of being extracted by the

CONTENT method 2070. If the object contains such static:

15 values (”static“ eidt to decision block 2072), then CONTENT

method 2070 may simply read this static value content

information from the object (block 2074), optionally decrypt, and

“release this content description (block 2076). If,,or_1_ the other

hand, CONTENT method 2070 must derive the synopsis/content

. 20 description from the secure object (”derived“ exit to decision block

2072), then the CONTENT method may then securely read

information from the container according to a synopsis algorithm

to produce the synopsis (block 2078).

-582-

Petitioner Apple Inc. — Exhibit .1006, p. 1313

Petitioner Apple Inc. - Exhibit 1006, p. 1314

wo 98ID9209 PcrrUs97/15243

Extract and Embed

Figure 57a is a flowchart of an example of process control

steps performed by a representative example of an EXTRACT

method 2080 provided by the preferred embodiment. EXTRACT

5 method 2080 is used to copy or remove content from an object

. and place it into a new object. In the preferred embodiment, the

EXTRACT method 2080 does not involve any release of content,

but rather simply takes content from one container and places it

into another container, both of which may be secure. Extraction‘

10 of content difi'ers from release in thatthe content is never

exposed outside a secure container. Extraction and Embedding

are complementary functions; extract takes content from a

container and creates a new container containing the extracted

content and any specified control information associated with

15 that content. Embedding takes content that is already in a

container and stores it (or the complete object) in another

container directly and/or by reference, integrating the control

information associated with existing content with those of the

new content.

20

EXTRACT method 2080 begins by priming an Audit

(blocks 2032, 2084). EXTRACT”method then calls a BUDGET

method to make sure that the user has enough budget for (and is

authorized to) extract content from the original object (block

-583-

Petitioner Apple Inc. — Exhibit 1006, p. 1314

Petitioner Apple Inc. - Exhibit 1006, p. 1315

10

15

20

W0 98I09209

2086). Ifthe user’s budget does not permit the extraction ("no“

exit to decision block 2088), then EXTRACT method 2080 may

write afailure audit record (block 2000), and terminate

(termination point 2092). ‘If the use1’s budget permits the

extraction (”yes“ exit to decision block 2088), then the EXTRACT

method 2080 creates a copy of the extracted object with specified

rules and control information (block 2094). In the preferred

embodiment, this step involves calling a method that actually

controls‘ the copy. This step may or may not involve decryption

and encryption, depending on the particular the PERC 808

associated with the original object, for example. EXTRACT

method 2080 then checks whether any control changes are

permitted by the rights authorizing the extract to begin with

(decision block 2096). In some cases, the extract rights require

an exact copy of the PERC 808 associated with the original object

(or a PERC included for this purpose) to be placed in the new

(destination) container (”no“ exit to decision block 2096). If no

control changes are permitted, then extract method 2080 may

simply write audit information to the Audit UDE (blocks 2098,

2100) before terminating (terminate point 2102). If, on the other

hand, the ‘extract rights permit the user to make control changes

(”yes“ to decision block 2096), then EXTRACT method 2080 may

call a method or load module that solicits new or changed control

information (e.g., from the user, the distributor who

-584-

Petitioner Apple Inc. — Exhibit 1006, p. 1315

PCT/lJS97/15243

Petitioner Apple Inc. - Exhibit 1006, p. 1316

wo 93/09209 PCT/US97/15243

created/granted extract rights, or from some other source) from

the user (blocks 2104, 2106). EXTRACT method 2080 may then

I call a method or load module to create a new PERC that reflects

these user-specified control information (block 2104). This new

5 - PERC is then placed in the new (destination) object, the auditing

steps are performed, and the process terminates.

Figure 57b is an example of process control steps

performed by a representative example of an EMBED method

10 2110 provided by the preferred embodiment. EMBED method

2110 is similar to EXTRACT method 2080 shown in Figure 57a.

However, the EMBED method 2110 performs a slightly different

fu.nction—it writes an object (or reference) into a destination

container. Blocks 2112-2122 shown in Figure 57b are similar to

15 blocks 2082-2092 shown in Figure 57a. At block 2124, EMBED

method 2110 writes the source object into the destination

container, and may at the same time extract or change the

control information of the destination container. One alternative

is to simply leave the control information of the destination

20 container alone, and include the full set of control information

associated with the object being embedded in addition to the

original container control information. As an optimization,

however, the preferred embodiment provides a technique

whereby the control information associated with the object being

-585-

Petitioner Apple Inc. — Exhibit 1006, p. 1316

Petitioner Apple Inc. - Exhibit 1006, p. 1317

W0 98,0920, _ PCTIUS97Il5243A

L embedded are ”abstracted“ and incorporated into the control

information of the destination container. Block 2124 may call a '

' method to abstract or change this control information. ENEBED

method 2110 then performs steps 2126-2130 which are similar to

5 steps 2096,2104, 2106 shown in Figure 57a to allow the user, if

authorized, to change and/or specify control information

associated with the embedded object and/or destination

container. EMBED method 2110 then writes audit information

into an'Audit UDE (blocks 2132, 2134),, before terminating (at

10 termination point 2136).

Obscure

Figure 58a is a flowchart of an example of process control

steps performed by a representative example of an OBSCURE

15 method 2140 provided by the preferred embodiment. OBSCURE

method 2140 is typically used to release secure content in 2

devalued form. For example, OBSCURE method 2140 may

release a high resolution image in a lower resolution so that a

viewer can appreciate the image but not enjoy its full value. As

20 . another example, the OBSCURE method 2140 may place an

obscuring legend (e.g., ”COPY,“ ”PROOF,“ etc.) across image

to devalue it. OBSCURE method 2140 may ”obscure“ text,

images, audio information, or any other type of content.

-586-

Petitioner Apple Inc. — Exhibit 1006, p. 1317

Petitioner Apple Inc. - Exhibit 1006, p. 1318

WO 98109209 PCT/US97/15243

OBSCURE method 2140 first calls an method to

determine if the content is appropriate and in the range to be

obscured (block 2142). If the content is not appropriate for

obscuring, the OBSCURE method terminates (decision block

5 2144 "no“ exit, terminate point 2146). Assuming that the content

2 is to be obscured ("yes“ exit to decision block 2144), then

OBSCURE method 2140 determines whether it has previously

‘been called to obscure this content (decision block 2148).

Assuming the OBSCURE‘ 2140 has not previously called for this

10 object/content (”yes‘ exit to decision block 2148), the OBSCURE

method 2140 reads an appropriate OBSCURE method MD_E from

the secure database and loads an obscure formula and/or pattern

from the MDE (blocks 2150, 2152). The OBSCURE method 2140

may then apply the appropriate obscure transform based on the

15 patters and/or formulas loaded by block 2150 (block 2154). The

OBSCURE method then may terminate (terminate block 2156).

Fingerprint

Figure 58b is a flowchart of an example of process control

20 steps performed by a representative example of a

FINGERPRINT method 2160 provided by the preferred

embodiment. FINGERPRINT method 2160 in the preferred

embodiment operates to ”mark“ released content with a

”fi.ngerprint“ identification of who released the content and/or

2 -587-

Petitioner Apple Inc. — Exhibit 1006, p. 1318

Petitioner Apple Inc. - Exhibit 1006, p. 1319

wo 98,0920, PCl'IUS97I1S243

check for such marks. This allows one to later determine who

released unsecured content by examining the content.

FINGERPRINT method 2160 may, for example, insert a user ID

vfithin a datastream representing audio, video, or binary format

5 information. FINGERPRINT method 2160 is quite similar to

OBSCURE method 2140 shown in Figure 58a except that the

transform applied by FINGERPRINT method block 2174

”fingerprints“ the released content rather than obscuring it.

10 I ' Figure 58c shows an example of a ”fingerprinting“

procedure 2160 that inserts into released content ”fingerprints“

2161 that identify the object and/or property and/or the user that

requested the released content and/or the date and time of the

release and/or other identification criteria of the released

15 content.

Such fingerprints 2161 can be "buried" -- that is inserted 4
in a manner that hides the fingerprints from typical users,

sophisticated ”hackers,“ and/or from all users, depending on the

20 file format, the sophistication and/or variety of the insertion »

algorithms, and on the availability of original, non-fingerprinted

content (for comparison for reverse engineering of algorithm(s)).

Inserted or embedded fingerprints 2161, in a preferred

embodiment, may be at least in part encrypted to make them

-588-

Petitioner Apple Inc. — Exhibit 1006, p. 13.19

Petitioner Apple Inc. - Exhibit 1006, p. 1320

wo 93/09209 PCl‘fUS97IlS243

more secure. Such encrypted fingerprints 2161 may be

embedded within released content provided in "clear“ (plaintext)

form.

5 Fingerprints 2161 can be used for a variety of purposes

including, for example, the often related purposes of proving

misuse of released materials and provinglthe source of released

content. Soitvvare piracy is a particularly good example where

fingerprinting can be very useful. Fingerprinting can also help

10 to enforce content providers’ rights for most types of I

electronically delivered information including movies, audio

recordings, multimedia, information databases, and traditional

"literary" materials. Fingerprinting is a desirable alternative or

addition to copy protection.

15

Most piracy of software applications, for example, occurs

not with the making of an illicit copy by an individual for use on

another of the individual’s own computers, but rather in giving a

copy to another party. This ofien starts a chain (or more

20 accurately a pyramid) of illegal copies, as copies are handed from

individual to individual. The fear of identification resulting from

the embedding of a fingerprint “2161 will likely dissuade most

individuals fi'om participating, as many currently do, in

widespread, “casual” piracy. In some cases, content may be

-589-

Petitioner Apple Inc. — Exhibit 1006, p. 1320

Petitioner Apple Inc. - Exhibit 1006, p. 1321

Ul

.10

15

20

WO98109209 PC'I'/US97/15243

checked for the presence of a fingerprint by. a fingerprint method‘

to help enforce content providers’ rights‘.

Difierent fingerprints 2161 can have different levels of

security (e.g., one fingerprint 2161(1) could be

readable/identifiable by commercial concerns, While another

fingerprint 2161(2) could be readable only by a more trusted

agency. The methods for generating the more secure fingerprint

2161 might employ more complex encryption techniques (e.g.,

digital signatures) and/or obscuring of location methodologies.

‘Two or more fingerprints 2161 can be embedded in diflerent

locations and/or using different techniques to help protect

fingerprinted information against hackers. The more secure

fingerprints might only be employed periodically rather than

each time content release occurs, if the technique used to provide

a more secure fingerprint involves an undesired amount of

additional overhead. This may nevertheless be effective since a

principal objective of fingerprinting is deterrence——that is the _

fear on the part of the creator of an illicit copy that the copying

will be found out.

For example, one might embed a copy of a fingerprint 2161

which might be readily identified by an authorized party--for

example a distributor, service personal, client administrator, or

-590-

Petitioner Apple Inc. — Exhibit 1006, p. 1321

Petitioner Apple Inc. - Exhibit 1006, p. 1322

WO 98109209 _ PC!‘/US9'IIl5243

clearinghouse using a VDE electronic appliance 600. One might

embed one or more additional copies or variants of a fingerprint

2161 (e.g., fingerprints carrying information describing some or

all relevant identifying information) and this additional one or

5 "more fingerprints 2161 might be maintained in a more secure

manner.

Fingerprinting can also protect privacy concerns. For

example, the algorithm and/or mechanisms needed‘ to identify

10 the fingerprint 2161 might be available only through a

particularly trusted agent.

Fingerprinting 2161 can take many forms. For example,

in an irnage, the color of every N pixels (spread across an image,

15 or spread across a subset of the image) might be subtly shifted in

a visually unnoticeable manner (at least according to the normal,

unaided observer). These shifts could be interpreted by analysis

'"_'<fi"fh'e image (with or without access to the original image), with

each occurrence or lack of occurrence of a shift in color (or

20 greyscale) being one or more binary "on or off“ bits for digital

information storage. The N pixels might be either consistent, or

alternatively, pseudo-random in order (but interpretable, at least

in part, by a object creator, object provider, client administrator,

and/or VDE administrator).

-591-

-- Petitioner Apple Inc. — Exhibit 1006, p. 1322

Petitioner Apple Inc. - Exhibit 1006, p. 1323

‘V0.93/09209 ' PC!‘/US97]15243

[Other modifications of an image (or moving image, audio,

etc.) which provide a similar benefit (that is, storing information

in a form that is not normally noticeable as a result of a certain

modification of the source information) may be appropriate,

5 depending on the application. For example, certain subtle

modifications in the frequency of stored audio information can be

modified so as to be normally unnoticeable to the listener while

still being readable with the proper tools. Certain properties of

the storage of information might be modified to provide such

10 slight but interpretable variations in polarityilof certain

information which is opticallyustored to achieve similar results.

Other variations employing other electronic, magnetic, and/or

optical characteristic may be employed.

15 Content stored in files that employ graphical formats, such

as Microsofl; Windows word processing files, provide significant

‘opportunities for ”burying“ a fingerprint 2161. Content that

includes images and/or audio provides the opportunity to embed

fingerprints 2161 that may be difiicult for unauthorized

20 individuals to identify since, in the absence of an

"unfingerprinted“ original for purposes of comparison, minor

subtle variations at one or more time instances in audio

frequencies, or in one "or more video images, or the like, will be in

themselves undiscernible given the normally unknown nature of

-592-

Petitioner Apple Inc. — Exhibit 1006, p. 1323

Petitioner Apple Inc. - Exhibit 1006, p. 1324

wo 93/09109 PCT/US97I15243

the original and the large amounts of data employed in both I

image and sound data (and which is not particularly sensitive to

minor variations). With formatted text documents, particularly

those created with graphical word processors (such as Microsoft

5 Windows or Apple Macintosh word processors and their DOS

and Unix equivalents), fingerprints 2161 can normally be

inserted unobtrusively into portions of the document data

representation that are not normally visible to the end user (such

as in a header or other non-displayed data field).

10

Yet another form of fingerprinting, which may be

particularly suitable for certain textual documents, would

employ and control the formation of charactersfor a given font.

Individual characters may have a slightly different visual

15 formation which connotes certain “fingerprint” information. This

alteration of a given character’s form would be generally

undiscernible, in part because so many slight variations exist in

versions of the same font available from different suppliers, and

in part because of the smallness of the variation. For example, p

20 in a preferred embodiment, a program such as AdobeType Align

could be used which, in its off-the-shelf versions, supports the

ability of a user to modify font characters in a variety of ways.

The mathematical definition of the font character is modified

according to the user’s instructions to produce a specific set of

.593-

Petitioner Apple Inc. — Exhibit 1006, p. 1324

Petitioner Apple Inc. - Exhibit 1006, p. 1325

wo 93/09209 PCT/US97Il5243 I

modifications to belapplied to a character or font. Information

content could be used in an analogous manner (as an alternative

to user selections) to modify certain or all characters too subtly

‘for user recognition under normal circumstances but which 1

5 nevertheless provide appropriate encoding for the fingerprint

2161. Various subtly different versions of‘a given character

might be usedwithin a_ single document so as to increase the

ability to carry transaction related font fingerprinted

information.

' 10

Some other examples of applications for fingerprinting

might include:

1. In software programs, selecting certain

interchangeable code fragments in such a way as to

15 produce more or less identical operation, but on

1 analysis, difierences that detail fingerprint
information.

With databases, selecting to format certain fields,

such as dates, to appear in difierent

20 3. In games, adjusting backgrounds, or changing order

of certain events, including noticeable or very subtle

changes in timing and/or ordering of appearance of

game elements, or slight changes in the look of

elements of the game.

-594-

Petitioner Apple Inc. — Exhibit 1006, p. 1.325

Petitioner Apple Inc. - Exhibit 1006, p. 1326

wo 98/09209 Pc'rIus97I1s243

Fingerprinting method 2160 is typically performed (if at

all) at the point at which content is released from a content

object 300. However, it could also be performed upon

distribution of an object to ”mark“ the content while still in

5 encrypted form. For example, a network-based object repository

could embed fingerprints 2161 into the content of an object

before transmitting the object to the requester, the fingerprint

information could identify a content requester/end user. This

could help detect ”spoof“ electronic appliances 600 used to release

‘ 10' ' content Without authorization.

Destroy

Figure 59 is a flowchart of an example of process control

steps performed by a representative performed by a DESTROY

15 method 2180 provided by the preferred embodiment. DESTROY

method 2180 removes the ability of a user to use an object by

destroying the URT the user requires to access the object. In the

preferred embodiment, a DESTROY method 2180 may first write

audit information to an Audit UDE (blocks 2182, 2184).

20 DESTROY method 2180 may than call a WRITE and/or ACCESS

method to write information which will corrupt (and thus

destroy) the header and/or other important parts of the object

(block 2186). DESTROY method 2180 may then mark one or

more of the control structures (e.g., the URT) as damaged by

-595-

Petitioner Apple Inc. — Exhibit 1006, p. 1326

Petitioner Apple Inc. - Exhibit 1006, p. 1327

W0 gsmzog PCTIUS97/15243

writing appropriate information to the control structure (blocks ‘

2188, 2190). DESTROY method 2180, finally, may write

additional audit information to Audit UDE (blocks 2192, 2194)

before terminating (terminate point 2196).

Panic

Figure 60 is _a flowchart of an example of process control

steps performed by a representative example of a PANIC lI1el.'.l'l3d_.:’:"'-‘I:’=?‘-'?:'i-’-"‘7=-

1 2200 provided by the preferred embodiment. PANIC method

10 2200 may be called when a security violation is detected. PANIC-

method 2200 may prevent the user from further accessing the

object currently being accessed by, for example, destroying the

channel being used to access the object and marking one or more

of the control structures (e.g., the URT) associated with the user

15 and object as damaged (blocks 2206, and 2208-2210,

respectively). Because the control structure is damaged, the

VDE node will need to contact an administrator to obtain a valid

control structure(s) before the user may access the same object

again. When the VDE node contacts the administrator, the

20 administrator may request information sufficient to satisfy itself

that no security violation occurred, or if a security violation did

occur, take appropriate steps to ensure that the security

violation is not repeated.

-596-

Petitioner Apple Inc. — Exhibit 1006, p. 1327

Petitioner Apple Inc. - Exhibit 1006, p. 1328

wo 93109209 ‘ 1>crrus97/15243

Meter

Figure 61 is a flowchart of an example of process control

‘ steps performed by a representative example of a METER

method provided by the preferred embodiment. Although

5 METER methods were described above in connection with

Figures 49, 50 and 51, the METER method 2220 shown in Figure

61 is possibly a somewhat more representative example. In the

preferred embodiment, METER method 2220 first primes an

Audit Trail by accessing a METER Audit Trail UDE (blocks

10, ' 2222, 2224). METER method 2220 may then read the ETD for '

the Meter UDE from the secure database (blocks 2226, 2228).

METER method 2220 may then read the Meter UDE from the

secure database (blocks 2230, 2232). METER method 2220 next

may test theobtained Meter UDE to determine whether it has

15 expired (decision block 2234). In the preferred embodiment, each

Meter UDE may be marked with an expiration date. If the

current date/time is later than the expiration date of the Meter

UDE (”yes“ exit to decision block 2234), then the METER method

2220 may record a failure in the Audit Record and terminate

20 2 with a failure condition (block 2236, 2238).

Assuming the Meter UDE is not yet expired, the meter

method 2220 may update it using the atomic element and event

count passed to the METER method from, for example, an

-597-

Petitioner Apple Inc. — Exhibit 1006, p. 1328

Petitioner Apple Inc. - Exhibit 1006, p. 1329

wo 98,0920!’ PCTIUS97l152-13

EVENT method (blocks 2239, 2240). The METER method 2220

may then save the Meter Use Audit Record in the Meter Audit

Trail UDE (blocks 2242, 224-4), before terminating (at terminate

point 2246).

Additional Security Features Provided by the Preferred
Embodiment -

_ VDE 100 provided by the preferred embodiment has

10 _ sufiicient security to help ensure that it cannot becompromised

short of a successful "brute force attack,“ and so that the time

and cost to succeed in such a "brute force attack“ substantially

exceeds any value to be derived. In addition, the security

provided by VDE 100 compartmentalizes the internal workings

15 of VDE so that a successful "brute force attack“ would

compromise only a strictly bounded subset of protected

information, not the entire system.

The following are among security aspects and features

20 provided by the preferred embodiment:

- security of PPE 650 and the processes it performs

- security of secure database 610

security of encryption/decryption performed by PPE

650

-598-

' Petitioner Apple Inc. — Exhibit 1006, p. 1329

Petitioner Apple Inc. - Exhibit 1006, p. 1330

PC!‘/US97I15243WO 98109209

- key management; security of encryption/decryption

keys and shared secrets

- security of authentication/external communications

, - security of secure database backup

5 - secure transportability of VDE internal information

between electronic appliances 600

V- security of permissions to access VDE secure

information

-A security of VDE objects 300

10 - ' ' integrity of VDE security.

15

20

Some of these security aspects and considerations are

discussed above. The following provides an expanded discussion

of preferred embodiment security features not fully addressed

elsewhere.

Management of Keys and Shared Secrets

VDE 100 uses keys and shared secrets to provide security.

The following key usage features are provided by the preferred

embodiment:

- different cryptosystem/key types

0 secure key length

- key generation

- key ”convolution“'and key "aging."

-599-

Petitioner Apple Inc. — Exhibit 1006, p. 1330

Petitioner Apple Inc. - Exhibit 1006, p. 1331

W0 93,092.» rcr/us97/15243

Each of these types are discussed below.

A. Public-Kay and Symmetric Kay Cryptoaystema

The process of disguising or transforming information to

5 hide its substance is called encryption. Encryption’ produces

”ciphertext.“ Reversing the encryption process to recover the

substance from the ciphertext isicalled ”decryption.“ A

cryptographic algorithm is the mathematical function used for

encryption and decryption.

10

Most modern cryptographic algorithms use a “key.” The

”key“ specifies one of a family of transformations to be provided.

Keys allow a standard, published and tested cryptographic

algorithm to be used while ensuring that specific

15 transformations performed using the algorithm are kept secret.

The secrecy of the particular transformations thus depends on

the secrecy of the key, not on the secrecy of the algorithm.

There are two general forms of key-based algorithms,

20 either or both of which may be used by the preferred embodiment

PPE 650:

symmetric; and

public-key (”PK“).

-600-

Petitioner Apple Inc. — Exhibit 1006, p. 1331

Petitioner Apple Inc. - Exhibit 1006, p. 1332

wo 93/09209 PCTIUS97Il5243

Symmetric algorithms are algorithms where the

encryption key can be calculated from the decryption key and

vice versa. In many such systems, the encryption and decryption

keys are the same. The algorithms, also called "secret-key“,

5 "single key“ or "shared secret“ algorithms, require a sender and

receiver to agree on a key before ciphertext produced by a sender

can be decrypted by a receiver. This key must be kept secret.

The security of a symmetric algorithm rests the key:

the key means that anybody could encrypt and decrypt

10 I information in such a cryptosystem. See Schneier, Applied

Qmpjggzaphy at Page 3. Some examples of symmetric key

algorithms that the preferred embodiment may use include DES,

Skipjack/Clipper, IDEA, RC2, and RC4.

15 In public-key cryptosystems, the key used for encryption is

diflerent from the key used for decryption. Furthermore, it is

computationally infeasible to derive one key from the other. The

algorithms used in these cryptosystems are called "public key“

because one of the two keys can be made public without

20 endangering the security of the other key. They are also

sometimes called ”asymmetric“ cryptosystems because they use

different keys for encryption and decryption. Examples of

public-key algorithms include RSA, El Gamal and LUC.

-601-

Petitioner Apple Inc. — Exhibit 1006, p. 1332

Petitioner Apple Inc. - Exhibit 1006, p. 1333

wo 93/09209 PCI‘lUS97/15243

The "preferred embodiment PPE 650 may operate based on .

only symmetric key cryptosystems, based on public-key

cryptosystems, or based on both symmetric key cryptosystems

and public-key cryptosystems. VDE 100 does not require any

5 specific encryption algorithms; the architecture provided by the

preferred embodiment may support numerous algorithms

including PK and/or secret key (non PK) algorithms. In some

cases, the choice of encryption/decryption algorithm will be

dependent on a number of business decisions such as cost,

10 market demands, compatibility with other commercially

available systems, export laws, etc.

Although the preferred embodiment is not dependent on

any particular type of cryptosystem or encryption/decryption

15 algorithm(s), the preferred example uses PK cryptosystems for

secure communications between PPES 650, and uses secret key

cryptosystems for "bulk“ encryption/decryption of VDE objects _ _

300. Using secret key cryptosystems (e.g., DES implementations

using multiple keys and multiple passes, Skipjack, RC2, or RC4)

20 for "bulk“ encryption/decryption provides efiiciencies in

encrypting and decrypting large quantities of information, and

also permits PPES 650 without PK-capability to deal with VDE

objects 300 in a variety of applications. Using PK cryptosystems I

for communications may provide advantages such as eliminating

-602-

Petitioner Apple Inc. — Exhibit 1006, p. 1333

Petitioner Apple Inc. - Exhibit 1006, p. 1334

W0 gslogzog PCTIUS97/15243

reliance on secret shared external communication keys to

establish communications,’ allowing for a challenge/response that

doesn’t rely on shared internal secrets to authenticate PPEs 650,

and allowing for a publicly available ”certification“ process

5 without reliance on shared secret keys.

Some content providers may wish to restrict use of their

content to PK implementations. This desire can be supported by .

malcing’ the availability of capabilities, and the specific

10 nature or type of PK capabilities, in PPEs 650 a factor in the

registration of VDE objects 300, for example, by including a

requirement in a REGISTER method for such objects in the form

of a load module that examines a PPE 650 for specific or general

PK capabilities before allowing registration to continue.

15

Although VDE 100 does not require any specific algorithm,

it is highly desirable that all PPEs 650 are capable of using the

same algorithm for bulk encryption/decryption. If the bulk

encryption/decryption algorithm used for encrypting objects

20 300 is not standardized, then it is possible that not all VDE

electronic appliances 600 will be capable of handling all VDE

objects 300. Performance differences will exist between different

PPEs 650 and associated electronic appliances 600 if

standardized bulk encryption/decryption algorithms are not

-603-

Petitioner Apple Inc. — Exhibit 1006, p. 1334

Petitioner Apple Inc. - Exhibit 1006, p. 1335

W0 93[o92o9 ’ p _ i ' PCTfIlS97Il5243

implemented in vvhole or in part by hardware-based

available to a PPE 650.

B. Key Length

I Increased key length may increase security. %A "brute-
10 _force“ attack of a cryptosystem involves trying every possible

key. The longer the key, the more possible keys there are to try.’

At some key length, available computation resources will require

an impractically large amount of time for a "brute force“ attacker

to try every possible key.

15

VDE 100 provided by the preferred embodiment

‘accommodates and can use many different key lengths.’ The

length of keys used by VDE 100 in the preferred embodiment is

determined by the algoz-ithm(s) used for encryption/decryption,

20 the level of security desired, and throughput requirements.

Longer keys generally require additional processing power to

ensure fast encryption/decryption response times. Therefore, ’

there is a tradeoff between (a) security, and (b) processing time

and/or resources. Since a hardware—based PPE encrypt/decrypt

-604-

Petitioner Apple Inc. — Exhibit 1006, p. 1335

Petitioner Apple Inc. - Exhibit 1006, p. 1336

WO 98109209 PCTlUS9’7I15243

engine 522 may provide faster processing than software-based

encryption/decryption, the hardware-based approach may, in

general, allow use of longer keys.

5 The preferred embodiment may use a 1024 bit modulus

(key) RSA cryptosystem implementation for PK

encryption/decryption, and may use 56-bit DES for "bulk"

encryption/decryption. Since the 56-bit key provided by standard

DES may not be long enough to provide sufficient security for at

' 10 least the most sensitive VDE information, multiple DES

encryptions using multiple passes and multiple DES keys may

be used to provide additional security. DES can be made

significantly more secure if operated in a manner that uses

multiple passes with different keys. For example, three passes

15 with 2 or 3 separate keys is much more secure because it

effectively increases the length of the key.. RC2 and RC4

(alternatives to DES) can be exported for up to 40-bit key sizes,

but the key size probably needs to be much greater to provide

even DES level security. The 80-bit key length provided by

20 NSA's Skipjack may be adequate for most VDE security needs.

The capability of downloading code and other information

dynamically into'PPE 650 allows key length to be adjusted and

changed dynamically even after a significant number of VDE

-605-

Petitioner Apple Inc. — Exhibit 1006, p. 1336

Petitioner Apple Inc. - Exhibit 1006, p. 1337

W0 gslogzog PCT/U597/15243

‘ electronic appliances 606 are intuse. The ability of a VDE

administrator to communicate with each PPE 650 efiiciently

makes such after-the-fact dynamic changes both possible and

cost-efiective. New or modified cryptosystems can be

5 downloaded into eidsting PPES 650 to replace or add to the

cryptosystem repertoire available within the PPE, allowing older

PPES to maintain compatibility with newer PPEs and/or newly
released VDE objects 300 and other VDE-protected information.

For example, sofiware encryption/decryption algorithms may be
10 ‘V downloaded into PPE 650 at any time to supplement the

hardware-based functionality of encrypt/decrypt engine 522 by

providing different key length capabilities. To provide increased

flexibility, PPE encrypt/decrypt engine 522 may be configured to

anticipate multiple passes and/or variable and/or longer key

15 lengths. In addition, it may be desirable to provide PPEs 650

with the capability to_ internally generate longer PK keys.

C. Key Generation

Key generation techniques provided by the preferred

20 embodiment permit PPE 650 to generate keys and other

information that are ”known“. only to it.

The security of encrypted information rests in the security

of the key used to encrypt it. If a cryptographically weak process

-606-

Petitioner Apple Inc. — Exhibit 1006, p. 1337

Petitioner Apple Inc. - Exhibit 1006, p. 1338

W0 gslogzog PCT/US97/15143

is used to generate keys, the entire security is weak. Good keys

are random bit strings so that every possible key in the key space

is equally likely. Therefore, keysshould in general be derived

from a reliably random source, for example, by a

5 s cryptographically secure pseudo-random number generator

seeded from such a source. Examples of such key generators are

described in Schneier, (John Wiley and

Sons, 1994), chapter 15. If keys are generated outside a given

PPE 650 (e.g., by another PPE 650), they must be verified to

10 I ensure they come from a trusted source before they can be used.

”Certification“ may be used to verify keys.

The preferred embodiment PPE 650 provides for the

automatic generation of keys. For example, the preferred

15 embodiment PPE 650 may generate its own public/private key

pair for use in protecting PK-based external communications and

for other reasons. A PPE 650 may also generate its own

symmetric keys for various purposes during and afier

initialization. Because a PPE 650 provides a secure

20 environment, most key generation in the preferred embodiment

may occur within the PPE (with -the possible exception of initial

PPE keys used at manufacturing or installation time to allow a

PlPE to authenticate initial download messages to it).

-607-

Petitioner Apple Inc. — Exhibit 1006, p. 1338

Petitioner Apple Inc. - Exhibit 1006, p. 1339

WO 98/09209 ‘ V 1 / PCTIUS97/15243

Good key. generation relies on randomness. The preferred I
embodiment PPE 650 may, as mentionedpabove in connection

with Figure 9, includes a hardware-based random number

generator 542‘ with the characteristics required to generate

5 reliable random numbers. These random numbers may be used

to ”seed“ a cryptographically strong pseudo—random number
generator (e.g., DES operated in Output Feedback Mode) for

generation of additional key values derived from the random

seed. In the preferred embodiment, randomlnumber generator

10 542 may consist of a "noise diode“ or other physically-based

source of random values ('e.g., radioactive decay).

If no random number generator 542 is available in the

VPPE 650, the SPE 503 may employ a cryptographic algorithm

15 (e.g., DES Output Feedback Mode) to generate a sequence of

pseudo-random values derived from a secret value protected

Within the SPE. Although these numbers are pseudo-random

rather than truly random, they are cryptographically derived

from a value unknown outside the SPE 503- and therefore may be
20 satisfactory in some applications.

In an embodiment incorporating an HPE 655 without an

SPE 503, the random value generator 565 software may derive

reliably random numbers from unpredictable external physical

- 608 5-

Petitioner Apple Inc. — Exhibit 1006, p. 1339

Petitioner Apple Inc. - Exhibit 1006, p. 1340

W0 ggmgzog PCl'IUS97I15243

events (e.g., high-resolution timing of disk I/O completions or of

user keystrokes at an attached keyboard 612).

Conventional techniques for generating PK and non-PK

5 keys based upon such ”seeds“ may be used. Thus, if performance

and manufacturing costs permit, PPE 650 in the preferred

embodiment will generate its own public/private key pair based

on such random or pseudo-random ”seed“ values. This key pair

may then be used for external communications between the PPE

10 650 that generated the key pair and other PPEs that wish to A

communicate with it. For example, the generating PPE 650 may

reveal the public key of the key pair to other PPES. This allows

other PPEs 650 using the public key to encrypt messages that

may be decrypted only by the generating PPE (the generating

15 . PPE is the only PPE that “knows” the corresponding ”private

key“). Similarly, the generating PPE 650 may encrypt messages

using its private key that, when decrypted successfully by other

PPES with the generating PPE’s public key, permit the other

PPEs to authenticate that the generating PPE sent the message.

20

Before one PPE 650 uses a public key generated by

another PPE, a public key certification process should be used to

provide authenticity certificates for the public key. A public-key

certificate is someone’s public key ”signed“ by a trustworthy

-609-

Petitioner Apple Inc. — Exhibit 1006, p. 1340

Petitioner Apple Inc. - Exhibit 1006, p. 1341

10

15

20

WO 98109209
PCT/US97l15243

entity such as an authentic PPE 650 or a VDE administrator.

Certificates are used to thwart attempts to convince a PPE 650

‘that it is communicating with an authentic PPE when it is not

(e.g., it is actually communicating with a person attempting to

breaknthe security of PPE 650). One or more VDE

administrators in the preferred embodiment may constitute a

certifying authority. By ”signing_“ both the public key generated

by a PPE 650 and information about the PPE and/or the

corresponding VDE electronic appliance 600 (e.g., site ID, user

ID, expiration date". name, address, etc.), the VDE administrator

certifying authority can certify that information about the PPE

and/or the VDE electronic appliance is correct and that the

public key belongs to that particular VDE mode.

Certificates play an important role in the trustedness of

digital signatures, and also are important in the public-key

authentication communications protocol (to be discussed below).

VDE electronic appliance 600 (e.g., whether or not it has a

hardware-based SPE 503 or is instead a less trusted software

emulation type HPE 655) that can be used to avoid transmitting

certain highly secure information to less trusted/secure VDE ' 4 H

installations.

-610-

Petitioner Apple Inc. — Exhibit 1006, p. 1341

.\...,.». - '

Petitioner Apple Inc. - Exhibit 1006, p. 1342

wo 98/09209 Pcr/Us97/15243

Certificates can also play an important role in

decommissioning rogue users and/or sites. By including a site

and/or user ID in a certificate, a PPE can evaluate this

information as an aspect of authentication. For example, if a

5 VDE administrator or clearinghouse encounters a certificate

bearing an ID (or other information) that meets certain criteria

(e.g., is present on a list of decommissioned and/or otherwise

suspicious users and/or sites), they may choose to take actions I

based on those criteria such as refusing to communicate,

1(l communicating disabling information, notifying the user of the‘

condition, etc. Certificates also typically include an expiration

date to ensure that certificates must be replaced periodically, for

example, to ensure that sites and/or users must stay in contact

with a VDE administrator and/or to allow certification keys to be

15 changed periodically. More than one certificate based on

different keys may be issued for sites and/or users so that if a

given certification key is compromised, one or more "backup“ p 4

certificates may be used. If a certification key is compromised, A

.VDE administrator may refuse to authenticate based on

20 certificates generated with such a key, and send a signal after

' authenticating with a ”backup“ certificate thatinvalidates all

use of the compromised key and all certificates associated with it

in further interactions with VDE participants. A new one or

-611-

Petitioner Apple Inc. — Exhibit 1006, p. 1342

Petitioner Apple Inc. - Exhibit 1006, p. 1343

wo 93/09209 _ PICT/US97I15243 .

more ”backup“ certificates and keys may be created and sent to

the authenticated site/user after such a compromise.

If multiple certificates are available, some of the l

5 certificates may be reserved as backups. Alternatively or in

addition, one certificate from a group of certificates may be

selected (e.g., by using RNG 542) in a given authentication.

thereby reducing the likelihood that a certificate associated with

a compromised certification key will be used. Still alternatively,

10' more than one certificate may be used in a given authentication-

To guard against the possibility of compromise of the

certification algorithm (e.g., by an unpredictable advance in the

mathematical foundations on which the algorithm is based),

15 distinct algorithms may used for different certificates that are

based on diflerent mathematical foundations.

Another technique that may be employed to decrease the

probability of compromiselis to keep secret (in protected storage

20 in the PPE 650) the ”public“ values on which the certificates are

based, thereby denying an attacker access to values that may aid
in the attack. Although these values are nominally ”public,“ they -
need be known only to those components which actually validate

certificates (i.e., the PPE 650).

-612-

Petitioner Apple Inc. — Exhibit 1006, p. 1343

Petitioner Apple Inc. - Exhibit 1006, p. 1344

W0 98,092.” PCI‘IUS97I1S143

In the preferred embodiment, PPE 650 may generate its

own certificate, or the certificate may be obtained externally,

such as from a certifying authority VDE administrator.

Irrespective of where the digital certificate is generated, the

5 certificate is eventually registered by the VDE administrator

certifying authority so that other VDE electronic appliances 600

may have access to (and trust) the public key. For example, PPE

650 may communicate its public key and other information to a H

certifying authority which may then encrypt the public key and

10 other information using the certifying authoritjfs private key.

Other installations 600 may trust the ’’certificate“ because it can

be authenticated by using the certifying authority’s public key to

decrypt it. As another example, the certifying authority may

encrypt the public key it receives from the generating PPE 650

15 and use it to encrypt the certifying authority's private key. The

V certifying authority may then send this encrypted information

back to the generating PPE. 650. The generating PPE 650 may

then use the certifying authority’s private key to internally

create a digital certificate, after which it may destroy its copy of

20 the certifying authority’s private key. The generating PPE 650

may then send out its digital certificate to be__stored in a

certification repository at the VDE administrator (or elsewhere)

if desired. The certificate process can also be implemented with

an external key pair generator and certificate generator. but

-613-

Petitioner Apple Inc. — Exhibit 1006, p. 1344

Petitioner Apple Inc. - Exhibit 1006, p. 1345

U!

10

15

20

W0 98/09209 PCT/US97Il5243

might be somewhat less secure depending on the nature of the V

secure facility. In such a case, a manufacturing key should be

used in PPE 650 to limit exposure to the other keys involved.

. ‘

A PPE 650 may need more than one certificate. For

example, a certificate may be needed to assure other users that a

PPE is authentic, and to identify the PPE. Further certificates

may be needed for individual users of a PPE 650. These

certificates may incorporate both user and site information or

may only include user information. Generally, a certifying

authority will require a valid site certificate to be presented. prior

to creating a certificate for a given user. Users may each require

their own public key/private key pair in order to obtain

certificates. VDE adrninistrators, clearinghouses, and other

i participants may normally require authentication of both the “site

(PPE 650) and of the user in a communication or other »

interaction. The processes described above for key generation

and certification for PPEs 650 may also be used to form site/user

certificates or user certificates.

Certificates as described above may also be used to certify

the origin of load modules 1100 and/or the authenticity of

administrative operations. The security and assurance

techniques described above may be employed to decrease the

-614-

Petitioner Apple Inc. — Exhibit 1006, p. 1345

Petitioner Apple Inc. - Exhibit 1006, p. 1346

wo 93/09309 PCl‘IUS97I15243

probability of compromise for any such certificate (including

certificates other than_ the certificate for a VDE electronic

appliance 600's identity).

D. Key Aging and ConvolutionU!

PPE 650 also has the ability in the preferred embodiment

to generate secret keys and other information that is shared

between multiple PPES 650. In the preferred embodiment, such

secret keys and other information may be shared between

10 ‘ multiple VDE electronic appliances 600 without requiring the

shared secret information to ever be communicated explicitly

between the electronic appliances. More specifically, PPE 650

uses a technique called "key convolution“ to derive keys based on

I a deterministic process in response to seed information shared

15 between multiple VDE electronic appliances 600. Since the

multiple electronic appliances 600 “know” what the ”seed“

information is and also "know" the deterministic process used to

generate keys based on this information, each of the electronic

appliances may independently generate the ”true key.“ This

20 permits multiple VDE electronic appliances 600 to share a

common secret key without potentially compromising its security

by communicating it over an insecure channel.

-615-

Petitioner Apple Inc. — Exhibit 1006, p. 1346

Petitioner Apple Inc. - Exhibit 1006, p. 1347

wo 98/09209 PCTIUS97/15243

No encryption ikeyshould be used for an indefinite period. ‘

The longer a key is used, the greater the chance that it may be

compromised and -the greater the potential loss if the key is

compromised but still in use to protect new information. The

UI
longer a key is used, the more information it may protect and

therefore the greater the potential rewards for someone to spend

the effort necessary to break it. Further, if a key is used for a

long time, there may be more ciphertext available to an attacker

_ attempting to b_reak_ the key using a ciphertext-based attack. See

10 Schneier at 150-151. Key convolution in the preferred *

embodiment provides a way to efficiently change keys stored in

secure database 610 on a routine periodic or other basis while

simplifying key management issues surrounding the change of

keys. In addition, key convolution may be used to provide ”time

15 aged keys“ (discussed below) to provide "expiration dates“ for key

usage and/or validity.

Figure 62 shows an example implementation of key

convolution in the preferred embodiment. Key convolution may

20 be performed using a combination of a site ID 2821 and the high-

order bits of the RTC 528 to yield a site-unique value "V“ that is

time-dependent on a large scale (e.g., hours or days). This value

"V“ may be used as the key for an encryption process 2871'that

transforms a convolution seed value 2861 into a ”current

-616-

Petitioner Apple Inc. — Exhibit 1006, 1347

Petitioner Apple Inc. - Exhibit 1006, p. 1348

W0 98/09209 PCT/US97/15243

convolution key“ 2862. The seed value 2861 may be a universe-

wide or group-wide shared secret value, and may be stored in

secure key storage (e.g,, protected memory within PPE 650).» The

seed value 2861 is‘ installed during the manufacturing process

5 and may be updated occasionally by a VDE administrator. There

may be a plurality of seed values 2861 corresponding to diflerent

sets of objects 300.

The current convolution key 2862 represents an encoding

- 10 of the site ID 2821 and current time. This transformed value *

2862 may be used as a key for another encryption process 2872

to transform the stored key 810 in the object’s PERC 808 into the

true private body key 2863 for the object’s contents.

15 The "convolution function“ performed by blocks 2861, 2871

may, for example. be a one-way function that can be performed

independently at both thecontent creator's site and at the

cont—ent usefslsite. If the content user does not use_precisely the

same convolution function and precisely the same input values

20 (e.g., time and/or site and/or other information) as used by the

content creator, then the result of the convolution function

performed by the content user will be different from the content

creator's result. If the result is used as a symmetrical key for

encryption by the content creator, the content user will not be '

-617-

Petitioner Apple Inc. — Exhibit 1006, p. 1348

Petitioner Apple Inc. - Exhibit 1006, p. 1349

wo 93/09209 ' PCTIUS97/15243

i able to decrypt unless the content user’s result is the same. as the

result of the content creator.

The time component for input to the key convolution

5 function may be derived from RTC 528 (care being taken to

ensure that slight diflerences in RTC synchronization between

VDE electronic appliances will not cause different electronic

appliances to use different time components). Difierent portions

of the RTC 528 output may be used to provide keys with different

10 valid durations, or some tolerance can be built into the process to
try several different key values. ‘For example, a "time

granularity“ pa.ra.meter can be adjusted to provide time tolerance

in terms of days, weeks, or any other time period. As one

example, if the "time granularity“ is set to 2 days, and the

15 tolerance is :2 days, then three real-time input values can be

I I t:ried as input to the convolution algorithm. Each of the resulting
key values may be tried to determine which of the possible keys

is actually used. In this example, the keys will have only a 4 day

life span. I

20

. Figure 63 shows how an appropriate convoluted key may
be picked in order to compensate for skew between the users

RTC 528 and the producer’s RTC 528. A sequence of convolution

keys 2862 (a-e) may be generated by using different input values

-618-

Petitioner Apple Inc. — Exhibit 1006, p. 1349

Petitioner Apple Inc. - Exhibit 1006, p. 1350

wo 9999109 , PCT/US97Il5243

28'81(a-e), each derived from the site ID 2821 and the RTC 528

value plus or minus a differential (e.g., -2 days, -1 days, no delta,

+1 days, +2 days). The convolution steps 2871(a-e) are used to

generate the sequence of keys 2862(a-e).

Meanwhile, the creator site may use the convolution step

2871(2) based on his RTC 528 value (adjusted to correspond to

the intended validity time for the key) to generate a convoluted

‘key 2862(2), which may then be used to generate the content key

10 2863 in the object’s PERC 808. To decrypt the object’s content,

the user site may use each of its sequence of convolution keys

2862 (a-e) to attempt to generate the master content key 810.

When this is attempted, as long as the RTC 538 of the creator

site is within acceptable tolerance of the RTC 528 at the user

15 site, one of keys 2862(a—e) will match key 2862(2) and the

decryption will be successful. In this example, matching is

determined by validity of decrypted output, not by direct

compa.rison of keys.

20 Key convolution as described above need not use both site

ID and time as a value. Some keys may be generated based on

current real time, other keys might be generated on site ID, and

still other keys might be generated based on bothcurrent real-

time and site ID.

-619-

Petitioner Apple Inc. — Exhibit 1006, p. 1350

Petitioner Apple Inc. - Exhibit 1006, p. 1351

“,0 93,092” _ p PCI‘IUS97ll5243

Key convolution be used to provide "time-aged“ keys.

Such "time-aged“ keys provide an automatic mechanism for

allowing keys to expire and be replaced by ”new“ keys. They

provide a way to give a user time-limited rights to make time-

5 limited use of an object, or portions of an object, without

requiring user re-registration but retaining significant control in

the hands of the content provider or administrator. If secure -

database 610 is sufficiently secure, similar capabilities can be ‘

accomplished by checking an expiration date/time associated

10 with a key, but this requires using more storage space for each

key or group of keys.

In the preferred embodiment, PERCS 808 can include an

expiration date and/or time after which access to the VDE-

15 protected information they correspond to is no longer authorized.

Alternatively or in addition, after a duration of time related to

some aspect of the use of the electronic appliance 600 or one or

more VDE objects 300, a PERC 808 can force a user to send. audit

history information to a clearinghouse, distributor, client

20 administrator, or object creator in order to regain or retain the

right to use the object(s). The PERC 808 can enforce such time-

based restrictions by checking/enforcing parameters that limit.

key usage and/or availability past time of authorized use. ’Time

-620-

Petitioner Apple Inc. — Exhibit 1006, p. 1351

Petitioner Apple Inc. - Exhibit 1006, p. 1352

Petitioner Apple Inc. - Exhibit 1006, p. 1353

Petitioner Apple Inc. - Exhibit 1006, p. 1354

Petitioner Apple Inc. - Exhibit 1006, p. 1355

Petitioner Apple Inc. - Exhibit 1006, p. 1356

Petitioner Apple Inc. - Exhibit 1006, p. 1357

Petitioner Apple Inc. - Exhibit 1006, p. 1358

Petitioner Apple Inc. - Exhibit 1006, p. 1359

Petitioner Apple Inc. - Exhibit 1006, p. 1360

Petitioner Apple Inc. - Exhibit 1006, p. 1361

Petitioner Apple Inc. - Exhibit 1006, p. 1362

Petitioner Apple Inc. - Exhibit 1006, p. 1363

Petitioner Apple Inc. - Exhibit 1006, p. 1364

Petitioner Apple Inc. - Exhibit 1006, p. 1365

Petitioner Apple Inc. - Exhibit 1006, p. 1366

Petitioner Apple Inc. - Exhibit 1006, p. 1367

Petitioner Apple Inc. - Exhibit 1006, p. 1368

Petitioner Apple Inc. - Exhibit 1006, p. 1369

Petitioner Apple Inc. - Exhibit 1006, p. 1370

Petitioner Apple Inc. - Exhibit 1006, p. 1371

Petitioner Apple Inc. - Exhibit 1006, p. 1372

Petitioner Apple Inc. - Exhibit 1006, p. 1373

Petitioner Apple Inc. - Exhibit 1006, p. 1374

Petitioner Apple Inc. - Exhibit 1006, p. 1375

Petitioner Apple Inc. - Exhibit 1006, p. 1376

Petitioner Apple Inc. - Exhibit 1006, p. 1377

Petitioner Apple Inc. - Exhibit 1006, p. 1378

Petitioner Apple Inc. - Exhibit 1006, p. 1379

Petitioner Apple Inc. - Exhibit 1006, p. 1380

Petitioner Apple Inc. - Exhibit 1006, p. 1381

Petitioner Apple Inc. - Exhibit 1006, p. 1382

Petitioner Apple Inc. - Exhibit 1006, p. 1383

Petitioner Apple Inc. - Exhibit 1006, p. 1384

Petitioner Apple Inc. - Exhibit 1006, p. 1385

Petitioner Apple Inc. - Exhibit 1006, p. 1386

Petitioner Apple Inc. - Exhibit 1006, p. 1387

Petitioner Apple Inc. - Exhibit 1006, p. 1388

Petitioner Apple Inc. - Exhibit 1006, p. 1389

Petitioner Apple Inc. - Exhibit 1006, p. 1390

Petitioner Apple Inc. - Exhibit 1006, p. 1391

Petitioner Apple Inc. - Exhibit 1006, p. 1392

Petitioner Apple Inc. - Exhibit 1006, p. 1393

Petitioner Apple Inc. - Exhibit 1006, p. 1394

Petitioner Apple Inc. - Exhibit 1006, p. 1395

Petitioner Apple Inc. - Exhibit 1006, p. 1396

Petitioner Apple Inc. - Exhibit 1006, p. 1397

Petitioner Apple Inc. - Exhibit 1006, p. 1398

Petitioner Apple Inc. - Exhibit 1006, p. 1399

Petitioner Apple Inc. - Exhibit 1006, p. 1400

Petitioner Apple Inc. - Exhibit 1006, p. 1401

Petitioner Apple Inc. - Exhibit 1006, p. 1402

Petitioner Apple Inc. - Exhibit 1006, p. 1403

Petitioner Apple Inc. - Exhibit 1006, p. 1404

Petitioner Apple Inc. - Exhibit 1006, p. 1405

Petitioner Apple Inc. - Exhibit 1006, p. 1406

Petitioner Apple Inc. - Exhibit 1006, p. 1407

Petitioner Apple Inc. - Exhibit 1006, p. 1408

Petitioner Apple Inc. - Exhibit 1006, p. 1409

Petitioner Apple Inc. - Exhibit 1006, p. 1410

Petitioner Apple Inc. - Exhibit 1006, p. 1411

Petitioner Apple Inc. - Exhibit 1006, p. 1412

Petitioner Apple Inc. - Exhibit 1006, p. 1413

Petitioner Apple Inc. - Exhibit 1006, p. 1414

Petitioner Apple Inc. - Exhibit 1006, p. 1415

Petitioner Apple Inc. - Exhibit 1006, p. 1416

Petitioner Apple Inc. - Exhibit 1006, p. 1417

Petitioner Apple Inc. - Exhibit 1006, p. 1418

Petitioner Apple Inc. - Exhibit 1006, p. 1419

Petitioner Apple Inc. - Exhibit 1006, p. 1420

Petitioner Apple Inc. - Exhibit 1006, p. 1421

Petitioner Apple Inc. - Exhibit 1006, p. 1422

Petitioner Apple Inc. - Exhibit 1006, p. 1423

Petitioner Apple Inc. - Exhibit 1006, p. 1424

Petitioner Apple Inc. - Exhibit 1006, p. 1425

Petitioner Apple Inc. - Exhibit 1006, p. 1426

Petitioner Apple Inc. - Exhibit 1006, p. 1427

Petitioner Apple Inc. - Exhibit 1006, p. 1428

Petitioner Apple Inc. - Exhibit 1006, p. 1429

Petitioner Apple Inc. - Exhibit 1006, p. 1430

Petitioner Apple Inc. - Exhibit 1006, p. 1431

Petitioner Apple Inc. - Exhibit 1006, p. 1432

Petitioner Apple Inc. - Exhibit 1006, p. 1433

Petitioner Apple Inc. - Exhibit 1006, p. 1434

Petitioner Apple Inc. - Exhibit 1006, p. 1435

Petitioner Apple Inc. - Exhibit 1006, p. 1436

Petitioner Apple Inc. - Exhibit 1006, p. 1437

Petitioner Apple Inc. - Exhibit 1006, p. 1438

Petitioner Apple Inc. - Exhibit 1006, p. 1439

Petitioner Apple Inc. - Exhibit 1006, p. 1440

Petitioner Apple Inc. - Exhibit 1006, p. 1441

Petitioner Apple Inc. - Exhibit 1006, p. 1442

Petitioner Apple Inc. - Exhibit 1006, p. 1443

Petitioner Apple Inc. - Exhibit 1006, p. 1444

Petitioner Apple Inc. - Exhibit 1006, p. 1445

Petitioner Apple Inc. - Exhibit 1006, p. 1446

Petitioner Apple Inc. - Exhibit 1006, p. 1447

Petitioner Apple Inc. - Exhibit 1006, p. 1448

Petitioner Apple Inc. - Exhibit 1006, p. 1449

Petitioner Apple Inc. - Exhibit 1006, p. 1450

Petitioner Apple Inc. - Exhibit 1006, p. 1451

Petitioner Apple Inc. - Exhibit 1006, p. 1452

Petitioner Apple Inc. - Exhibit 1006, p. 1453

Petitioner Apple Inc. - Exhibit 1006, p. 1454

Petitioner Apple Inc. - Exhibit 1006, p. 1455

Petitioner Apple Inc. - Exhibit 1006, p. 1456

Petitioner Apple Inc. - Exhibit 1006, p. 1457

Petitioner Apple Inc. - Exhibit 1006, p. 1458

Petitioner Apple Inc. - Exhibit 1006, p. 1459

Petitioner Apple Inc. - Exhibit 1006, p. 1460

Petitioner Apple Inc. - Exhibit 1006, p. 1461

Petitioner Apple Inc. - Exhibit 1006, p. 1462

Petitioner Apple Inc. - Exhibit 1006, p. 1463

Petitioner Apple Inc. - Exhibit 1006, p. 1464

Petitioner Apple Inc. - Exhibit 1006, p. 1465

Petitioner Apple Inc. - Exhibit 1006, p. 1466

Petitioner Apple Inc. - Exhibit 1006, p. 1467

Petitioner Apple Inc. - Exhibit 1006, p. 1468

Petitioner Apple Inc. - Exhibit 1006, p. 1469

Petitioner Apple Inc. - Exhibit 1006, p. 1470

Petitioner Apple Inc. - Exhibit 1006, p. 1471

Petitioner Apple Inc. - Exhibit 1006, p. 1472

Petitioner Apple Inc. - Exhibit 1006, p. 1473

Petitioner Apple Inc. - Exhibit 1006, p. 1474

Petitioner Apple Inc. - Exhibit 1006, p. 1475

Petitioner Apple Inc. - Exhibit 1006, p. 1476

Petitioner Apple Inc. - Exhibit 1006, p. 1477

Petitioner Apple Inc. - Exhibit 1006, p. 1478

Petitioner Apple Inc. - Exhibit 1006, p. 1479

Petitioner Apple Inc. - Exhibit 1006, p. 1480

Petitioner Apple Inc. - Exhibit 1006, p. 1481

Petitioner Apple Inc. - Exhibit 1006, p. 1482

Petitioner Apple Inc. - Exhibit 1006, p. 1483

Petitioner Apple Inc. - Exhibit 1006, p. 1484

Petitioner Apple Inc. - Exhibit 1006, p. 1485

Petitioner Apple Inc. - Exhibit 1006, p. 1486

Petitioner Apple Inc. - Exhibit 1006, p. 1487

Petitioner Apple Inc. - Exhibit 1006, p. 1488

Petitioner Apple Inc. - Exhibit 1006, p. 1489

Petitioner Apple Inc. - Exhibit 1006, p. 1490

Petitioner Apple Inc. - Exhibit 1006, p. 1491

Petitioner Apple Inc. - Exhibit 1006, p. 1492

Petitioner Apple Inc. - Exhibit 1006, p. 1493

Petitioner Apple Inc. - Exhibit 1006, p. 1494

Petitioner Apple Inc. - Exhibit 1006, p. 1495

Petitioner Apple Inc. - Exhibit 1006, p. 1496

Petitioner Apple Inc. - Exhibit 1006, p. 1497

Petitioner Apple Inc. - Exhibit 1006, p. 1498

Petitioner Apple Inc. - Exhibit 1006, p. 1499

Petitioner Apple Inc. - Exhibit 1006, p. 1500

Petitioner Apple Inc. - Exhibit 1006, p. 1501

Petitioner Apple Inc. - Exhibit 1006, p. 1502

Petitioner Apple Inc. - Exhibit 1006, p. 1503

Petitioner Apple Inc. - Exhibit 1006, p. 1504

Petitioner Apple Inc. - Exhibit 1006, p. 1505

Petitioner Apple Inc. - Exhibit 1006, p. 1506

Petitioner Apple Inc. - Exhibit 1006, p. 1507

Petitioner Apple Inc. - Exhibit 1006, p. 1508

Petitioner Apple Inc. - Exhibit 1006, p. 1509

Petitioner Apple Inc. - Exhibit 1006, p. 1510

Petitioner Apple Inc. - Exhibit 1006, p. 1511

Petitioner Apple Inc. - Exhibit 1006, p. 1512

Petitioner Apple Inc. - Exhibit 1006, p. 1513

Petitioner Apple Inc. - Exhibit 1006, p. 1514

Petitioner Apple Inc. - Exhibit 1006, p. 1515

Petitioner Apple Inc. - Exhibit 1006, p. 1516

Petitioner Apple Inc. - Exhibit 1006, p. 1517

Petitioner Apple Inc. - Exhibit 1006, p. 1518

Petitioner Apple Inc. - Exhibit 1006, p. 1519

Petitioner Apple Inc. - Exhibit 1006, p. 1520

Petitioner Apple Inc. - Exhibit 1006, p. 1521

Petitioner Apple Inc. - Exhibit 1006, p. 1522

Petitioner Apple Inc. - Exhibit 1006, p. 1523

Petitioner Apple Inc. - Exhibit 1006, p. 1524

Petitioner Apple Inc. - Exhibit 1006, p. 1525

Petitioner Apple Inc. - Exhibit 1006, p. 1526

Petitioner Apple Inc. - Exhibit 1006, p. 1527

Petitioner Apple Inc. - Exhibit 1006, p. 1528

Petitioner Apple Inc. - Exhibit 1006, p. 1529

Petitioner Apple Inc. - Exhibit 1006, p. 1530

Petitioner Apple Inc. - Exhibit 1006, p. 1531

Petitioner Apple Inc. - Exhibit 1006, p. 1532

Petitioner Apple Inc. - Exhibit 1006, p. 1533

Petitioner Apple Inc. - Exhibit 1006, p. 1534

Petitioner Apple Inc. - Exhibit 1006, p. 1535

Petitioner Apple Inc. - Exhibit 1006, p. 1536

Petitioner Apple Inc. - Exhibit 1006, p. 1537

Petitioner Apple Inc. - Exhibit 1006, p. 1538

Petitioner Apple Inc. - Exhibit 1006, p. 1539

Petitioner Apple Inc. - Exhibit 1006, p. 1540

Petitioner Apple Inc. - Exhibit 1006, p. 1541

Petitioner Apple Inc. - Exhibit 1006, p. 1542

Petitioner Apple Inc. - Exhibit 1006, p. 1543

Petitioner Apple Inc. - Exhibit 1006, p. 1544

Petitioner Apple Inc. - Exhibit 1006, p. 1545

Petitioner Apple Inc. - Exhibit 1006, p. 1546

Petitioner Apple Inc. - Exhibit 1006, p. 1547

Petitioner Apple Inc. - Exhibit 1006, p. 1548

Petitioner Apple Inc. - Exhibit 1006, p. 1549

Petitioner Apple Inc. - Exhibit 1006, p. 1550

Petitioner Apple Inc. - Exhibit 1006, p. 1551

Petitioner Apple Inc. - Exhibit 1006, p. 1552

Petitioner Apple Inc. - Exhibit 1006, p. 1553

Petitioner Apple Inc. - Exhibit 1006, p. 1554

Petitioner Apple Inc. - Exhibit 1006, p. 1555

Petitioner Apple Inc. - Exhibit 1006, p. 1556

Petitioner Apple Inc. - Exhibit 1006, p. 1557

Petitioner Apple Inc. - Exhibit 1006, p. 1558

Petitioner Apple Inc. - Exhibit 1006, p. 1559

Petitioner Apple Inc. - Exhibit 1006, p. 1560

Petitioner Apple Inc. - Exhibit 1006, p. 1561

Petitioner Apple Inc. - Exhibit 1006, p. 1562

Petitioner Apple Inc. - Exhibit 1006, p. 1563

Petitioner Apple Inc. - Exhibit 1006, p. 1564

Petitioner Apple Inc. - Exhibit 1006, p. 1565

Petitioner Apple Inc. - Exhibit 1006, p. 1566

Petitioner Apple Inc. - Exhibit 1006, p. 1567

Petitioner Apple Inc. - Exhibit 1006, p. 1568

Petitioner Apple Inc. - Exhibit 1006, p. 1569

Petitioner Apple Inc. - Exhibit 1006, p. 1570

Petitioner Apple Inc. - Exhibit 1006, p. 1571

Petitioner Apple Inc. - Exhibit 1006, p. 1572

Petitioner Apple Inc. - Exhibit 1006, p. 1573

Petitioner Apple Inc. - Exhibit 1006, p. 1574

Petitioner Apple Inc. - Exhibit 1006, p. 1575

Petitioner Apple Inc. - Exhibit 1006, p. 1576

Petitioner Apple Inc. - Exhibit 1006, p. 1577

Petitioner Apple Inc. - Exhibit 1006, p. 1578

Petitioner Apple Inc. - Exhibit 1006, p. 1579

Petitioner Apple Inc. - Exhibit 1006, p. 1580

Petitioner Apple Inc. - Exhibit 1006, p. 1581

Petitioner Apple Inc. - Exhibit 1006, p. 1582

Petitioner Apple Inc. - Exhibit 1006, p. 1583

Petitioner Apple Inc. - Exhibit 1006, p. 1584

Petitioner Apple Inc. - Exhibit 1006, p. 1585

Petitioner Apple Inc. - Exhibit 1006, p. 1586

Petitioner Apple Inc. - Exhibit 1006, p. 1587

Petitioner Apple Inc. - Exhibit 1006, p. 1588

Petitioner Apple Inc. - Exhibit 1006, p. 1589

Petitioner Apple Inc. - Exhibit 1006, p. 1590

Petitioner Apple Inc. - Exhibit 1006, p. 1591

Petitioner Apple Inc. - Exhibit 1006, p. 1592

Petitioner Apple Inc. - Exhibit 1006, p. 1593

Petitioner Apple Inc. - Exhibit 1006, p. 1594

Petitioner Apple Inc. - Exhibit 1006, p. 1595

Petitioner Apple Inc. - Exhibit 1006, p. 1596

Petitioner Apple Inc. - Exhibit 1006, p. 1597

Petitioner Apple Inc. - Exhibit 1006, p. 1598

Petitioner Apple Inc. - Exhibit 1006, p. 1599

Petitioner Apple Inc. - Exhibit 1006, p. 1600

Petitioner Apple Inc. - Exhibit 1006, p. 1601

Petitioner Apple Inc. - Exhibit 1006, p. 1602

Petitioner Apple Inc. - Exhibit 1006, p. 1603

Petitioner Apple Inc. - Exhibit 1006, p. 1604

Petitioner Apple Inc. - Exhibit 1006, p. 1605

Petitioner Apple Inc. - Exhibit 1006, p. 1606

Petitioner Apple Inc. - Exhibit 1006, p. 1607

Petitioner Apple Inc. - Exhibit 1006, p. 1608

Petitioner Apple Inc. - Exhibit 1006, p. 1609

Petitioner Apple Inc. - Exhibit 1006, p. 1610

Petitioner Apple Inc. - Exhibit 1006, p. 1611

Petitioner Apple Inc. - Exhibit 1006, p. 1612

Petitioner Apple Inc. - Exhibit 1006, p. 1613

Petitioner Apple Inc. - Exhibit 1006, p. 1614

Petitioner Apple Inc. - Exhibit 1006, p. 1615

Petitioner Apple Inc. - Exhibit 1006, p. 1616

Petitioner Apple Inc. - Exhibit 1006, p. 1617

Petitioner Apple Inc. - Exhibit 1006, p. 1618

Petitioner Apple Inc. - Exhibit 1006, p. 1619

Petitioner Apple Inc. - Exhibit 1006, p. 1620

Petitioner Apple Inc. - Exhibit 1006, p. 1621

Petitioner Apple Inc. - Exhibit 1006, p. 1622

Petitioner Apple Inc. - Exhibit 1006, p. 1623

Petitioner Apple Inc. - Exhibit 1006, p. 1624

Petitioner Apple Inc. - Exhibit 1006, p. 1625

Petitioner Apple Inc. - Exhibit 1006, p. 1626

Petitioner Apple Inc. - Exhibit 1006, p. 1627

Petitioner Apple Inc. - Exhibit 1006, p. 1628

Petitioner Apple Inc. - Exhibit 1006, p. 1629

Petitioner Apple Inc. - Exhibit 1006, p. 1630

Petitioner Apple Inc. - Exhibit 1006, p. 1631

Petitioner Apple Inc. - Exhibit 1006, p. 1632

Petitioner Apple Inc. - Exhibit 1006, p. 1633

Petitioner Apple Inc. - Exhibit 1006, p. 1634

Petitioner Apple Inc. - Exhibit 1006, p. 1635

Petitioner Apple Inc. - Exhibit 1006, p. 1636

Petitioner Apple Inc. - Exhibit 1006, p. 1637

Petitioner Apple Inc. - Exhibit 1006, p. 1638

Petitioner Apple Inc. - Exhibit 1006, p. 1639

Petitioner Apple Inc. - Exhibit 1006, p. 1640

Petitioner Apple Inc. - Exhibit 1006, p. 1641

Petitioner Apple Inc. - Exhibit 1006, p. 1642

Petitioner Apple Inc. - Exhibit 1006, p. 1643

Petitioner Apple Inc. - Exhibit 1006, p. 1644

Petitioner Apple Inc. - Exhibit 1006, p. 1645

Petitioner Apple Inc. - Exhibit 1006, p. 1646

Petitioner Apple Inc. - Exhibit 1006, p. 1647

Petitioner Apple Inc. - Exhibit 1006, p. 1648

Petitioner Apple Inc. - Exhibit 1006, p. 1649

Petitioner Apple Inc. - Exhibit 1006, p. 1650

Petitioner Apple Inc. - Exhibit 1006, p. 1651

Petitioner Apple Inc. - Exhibit 1006, p. 1652

Petitioner Apple Inc. - Exhibit 1006, p. 1653

Petitioner Apple Inc. - Exhibit 1006, p. 1654

Petitioner Apple Inc. - Exhibit 1006, p. 1655

Petitioner Apple Inc. - Exhibit 1006, p. 1656

Petitioner Apple Inc. - Exhibit 1006, p. 1657

Petitioner Apple Inc. - Exhibit 1006, p. 1658

Petitioner Apple Inc. - Exhibit 1006, p. 1659

Petitioner Apple Inc. - Exhibit 1006, p. 1660

Petitioner Apple Inc. - Exhibit 1006, p. 1661

Petitioner Apple Inc. - Exhibit 1006, p. 1662

Petitioner Apple Inc. - Exhibit 1006, p. 1663

Petitioner Apple Inc. - Exhibit 1006, p. 1664

Petitioner Apple Inc. - Exhibit 1006, p. 1665

Petitioner Apple Inc. - Exhibit 1006, p. 1666

Petitioner Apple Inc. - Exhibit 1006, p. 1667

Petitioner Apple Inc. - Exhibit 1006, p. 1668

Petitioner Apple Inc. - Exhibit 1006, p. 1669

Petitioner Apple Inc. - Exhibit 1006, p. 1670

Petitioner Apple Inc. - Exhibit 1006, p. 1671

Petitioner Apple Inc. - Exhibit 1006, p. 1672

Petitioner Apple Inc. - Exhibit 1006, p. 1673

Petitioner Apple Inc. - Exhibit 1006, p. 1674

Petitioner Apple Inc. - Exhibit 1006, p. 1675

Petitioner Apple Inc. - Exhibit 1006, p. 1676

Petitioner Apple Inc. - Exhibit 1006, p. 1677

Petitioner Apple Inc. - Exhibit 1006, p. 1678

Petitioner Apple Inc. - Exhibit 1006, p. 1679

Petitioner Apple Inc. - Exhibit 1006, p. 1680

Petitioner Apple Inc. - Exhibit 1006, p. 1681

Petitioner Apple Inc. - Exhibit 1006, p. 1682

Petitioner Apple Inc. - Exhibit 1006, p. 1683

Petitioner Apple Inc. - Exhibit 1006, p. 1684

Petitioner Apple Inc. - Exhibit 1006, p. 1685

Petitioner Apple Inc. - Exhibit 1006, p. 1686

Petitioner Apple Inc. - Exhibit 1006, p. 1687

Petitioner Apple Inc. - Exhibit 1006, p. 1688

Petitioner Apple Inc. - Exhibit 1006, p. 1689

Petitioner Apple Inc. - Exhibit 1006, p. 1690

Petitioner Apple Inc. - Exhibit 1006, p. 1691

Petitioner Apple Inc. - Exhibit 1006, p. 1692

Petitioner Apple Inc. - Exhibit 1006, p. 1693

Petitioner Apple Inc. - Exhibit 1006, p. 1694

Petitioner Apple Inc. - Exhibit 1006, p. 1695

Petitioner Apple Inc. - Exhibit 1006, p. 1696

Petitioner Apple Inc. - Exhibit 1006, p. 1697

Petitioner Apple Inc. - Exhibit 1006, p. 1698

Petitioner Apple Inc. - Exhibit 1006, p. 1699

Petitioner Apple Inc. - Exhibit 1006, p. 1700

Petitioner Apple Inc. - Exhibit 1006, p. 1701

Petitioner Apple Inc. - Exhibit 1006, p. 1702

Petitioner Apple Inc. - Exhibit 1006, p. 1703

Petitioner Apple Inc. - Exhibit 1006, p. 1704

Petitioner Apple Inc. - Exhibit 1006, p. 1705

Petitioner Apple Inc. - Exhibit 1006, p. 1706

Petitioner Apple Inc. - Exhibit 1006, p. 1707

Petitioner Apple Inc. - Exhibit 1006, p. 1708

Petitioner Apple Inc. - Exhibit 1006, p. 1709

Petitioner Apple Inc. - Exhibit 1006, p. 1710

Petitioner Apple Inc. - Exhibit 1006, p. 1711

Petitioner Apple Inc. - Exhibit 1006, p. 1712

Petitioner Apple Inc. - Exhibit 1006, p. 1713

Petitioner Apple Inc. - Exhibit 1006, p. 1714

Petitioner Apple Inc. - Exhibit 1006, p. 1715

Petitioner Apple Inc. - Exhibit 1006, p. 1716

Petitioner Apple Inc. - Exhibit 1006, p. 1717

Petitioner Apple Inc. - Exhibit 1006, p. 1718

Petitioner Apple Inc. - Exhibit 1006, p. 1719

Petitioner Apple Inc. - Exhibit 1006, p. 1720

Petitioner Apple Inc. - Exhibit 1006, p. 1721

Petitioner Apple Inc. - Exhibit 1006, p. 1722

Petitioner Apple Inc. - Exhibit 1006, p. 1723

Petitioner Apple Inc. - Exhibit 1006, p. 1724

Petitioner Apple Inc. - Exhibit 1006, p. 1725

Petitioner Apple Inc. - Exhibit 1006, p. 1726

Petitioner Apple Inc. - Exhibit 1006, p. 1727

Petitioner Apple Inc. - Exhibit 1006, p. 1728

Petitioner Apple Inc. - Exhibit 1006, p. 1729

Petitioner Apple Inc. - Exhibit 1006, p. 1730

Petitioner Apple Inc. - Exhibit 1006, p. 1731

Petitioner Apple Inc. - Exhibit 1006, p. 1732

Petitioner Apple Inc. - Exhibit 1006, p. 1733

Petitioner Apple Inc. - Exhibit 1006, p. 1734

Petitioner Apple Inc. - Exhibit 1006, p. 1735

Petitioner Apple Inc. - Exhibit 1006, p. 1736

Petitioner Apple Inc. - Exhibit 1006, p. 1737

Petitioner Apple Inc. - Exhibit 1006, p. 1738

Petitioner Apple Inc. - Exhibit 1006, p. 1739

Petitioner Apple Inc. - Exhibit 1006, p. 1740

Petitioner Apple Inc. - Exhibit 1006, p. 1741

Petitioner Apple Inc. - Exhibit 1006, p. 1742

Petitioner Apple Inc. - Exhibit 1006, p. 1743

Petitioner Apple Inc. - Exhibit 1006, p. 1744

Petitioner Apple Inc. - Exhibit 1006, p. 1745

Petitioner Apple Inc. - Exhibit 1006, p. 1746

Petitioner Apple Inc. - Exhibit 1006, p. 1747

Petitioner Apple Inc. - Exhibit 1006, p. 1748

Petitioner Apple Inc. - Exhibit 1006, p. 1749

Petitioner Apple Inc. - Exhibit 1006, p. 1750

Petitioner Apple Inc. - Exhibit 1006, p. 1751

Petitioner Apple Inc. - Exhibit 1006, p. 1752

Petitioner Apple Inc. - Exhibit 1006, p. 1753

Petitioner Apple Inc. - Exhibit 1006, p. 1754

Petitioner Apple Inc. - Exhibit 1006, p. 1755

Petitioner Apple Inc. - Exhibit 1006, p. 1756

Petitioner Apple Inc. - Exhibit 1006, p. 1757

Petitioner Apple Inc. - Exhibit 1006, p. 1758

Petitioner Apple Inc. - Exhibit 1006, p. 1759

Petitioner Apple Inc. - Exhibit 1006, p. 1760

Petitioner Apple Inc. - Exhibit 1006, p. 1761

Petitioner Apple Inc. - Exhibit 1006, p. 1762

Petitioner Apple Inc. - Exhibit 1006, p. 1763

Petitioner Apple Inc. - Exhibit 1006, p. 1764

Petitioner Apple Inc. - Exhibit 1006, p. 1765

Petitioner Apple Inc. - Exhibit 1006, p. 1766

Petitioner Apple Inc. - Exhibit 1006, p. 1767

Petitioner Apple Inc. - Exhibit 1006, p. 1768

Petitioner Apple Inc. - Exhibit 1006, p. 1769

Petitioner Apple Inc. - Exhibit 1006, p. 1770

Petitioner Apple Inc. - Exhibit 1006, p. 1771

Petitioner Apple Inc. - Exhibit 1006, p. 1772

Petitioner Apple Inc. - Exhibit 1006, p. 1773

Petitioner Apple Inc. - Exhibit 1006, p. 1774

Petitioner Apple Inc. - Exhibit 1006, p. 1775

Petitioner Apple Inc. - Exhibit 1006, p. 1776

Petitioner Apple Inc. - Exhibit 1006, p. 1777

Petitioner Apple Inc. - Exhibit 1006, p. 1778

Petitioner Apple Inc. - Exhibit 1006, p. 1779

Petitioner Apple Inc. - Exhibit 1006, p. 1780

Petitioner Apple Inc. - Exhibit 1006, p. 1781

Petitioner Apple Inc. - Exhibit 1006, p. 1782

Petitioner Apple Inc. - Exhibit 1006, p. 1783

Petitioner Apple Inc. - Exhibit 1006, p. 1784

Petitioner Apple Inc. - Exhibit 1006, p. 1785

Petitioner Apple Inc. - Exhibit 1006, p. 1786

Petitioner Apple Inc. - Exhibit 1006, p. 1787

Petitioner Apple Inc. - Exhibit 1006, p. 1788

Petitioner Apple Inc. - Exhibit 1006, p. 1789

Petitioner Apple Inc. - Exhibit 1006, p. 1790

Petitioner Apple Inc. - Exhibit 1006, p. 1791

Petitioner Apple Inc. - Exhibit 1006, p. 1792

Petitioner Apple Inc. - Exhibit 1006, p. 1793

Petitioner Apple Inc. - Exhibit 1006, p. 1794

Petitioner Apple Inc. - Exhibit 1006, p. 1795

Petitioner Apple Inc. - Exhibit 1006, p. 1796

Petitioner Apple Inc. - Exhibit 1006, p. 1797

Petitioner Apple Inc. - Exhibit 1006, p. 1798

Petitioner Apple Inc. - Exhibit 1006, p. 1799

Petitioner Apple Inc. - Exhibit 1006, p. 1800

Petitioner Apple Inc. - Exhibit 1006, p. 1801

Petitioner Apple Inc. - Exhibit 1006, p. 1802

Petitioner Apple Inc. - Exhibit 1006, p. 1803

Petitioner Apple Inc. - Exhibit 1006, p. 1804

Petitioner Apple Inc. - Exhibit 1006, p. 1805

Petitioner Apple Inc. - Exhibit 1006, p. 1806

Petitioner Apple Inc. - Exhibit 1006, p. 1807

Petitioner Apple Inc. - Exhibit 1006, p. 1808

Petitioner Apple Inc. - Exhibit 1006, p. 1809

Petitioner Apple Inc. - Exhibit 1006, p. 1810

Petitioner Apple Inc. - Exhibit 1006, p. 1811

Petitioner Apple Inc. - Exhibit 1006, p. 1812

Petitioner Apple Inc. - Exhibit 1006, p. 1813

Petitioner Apple Inc. - Exhibit 1006, p. 1814

Petitioner Apple Inc. - Exhibit 1006, p. 1815

Petitioner Apple Inc. - Exhibit 1006, p. 1816

Petitioner Apple Inc. - Exhibit 1006, p. 1817

Petitioner Apple Inc. - Exhibit 1006, p. 1818

Petitioner Apple Inc. - Exhibit 1006, p. 1819

Petitioner Apple Inc. - Exhibit 1006, p. 1820

Petitioner Apple Inc. - Exhibit 1006, p. 1821

Petitioner Apple Inc. - Exhibit 1006, p. 1822

Petitioner Apple Inc. - Exhibit 1006, p. 1823

Petitioner Apple Inc. - Exhibit 1006, p. 1824

Petitioner Apple Inc. - Exhibit 1006, p. 1825

Petitioner Apple Inc. - Exhibit 1006, p. 1826

Petitioner Apple Inc. - Exhibit 1006, p. 1827

Petitioner Apple Inc. - Exhibit 1006, p. 1828

Petitioner Apple Inc. - Exhibit 1006, p. 1829

Petitioner Apple Inc. - Exhibit 1006, p. 1830

Petitioner Apple Inc. - Exhibit 1006, p. 1831

Petitioner Apple Inc. - Exhibit 1006, p. 1832

Petitioner Apple Inc. - Exhibit 1006, p. 1833

Petitioner Apple Inc. - Exhibit 1006, p. 1834

Petitioner Apple Inc. - Exhibit 1006, p. 1835

Petitioner Apple Inc. - Exhibit 1006, p. 1836

Petitioner Apple Inc. - Exhibit 1006, p. 1837

Petitioner Apple Inc. - Exhibit 1006, p. 1838

Petitioner Apple Inc. - Exhibit 1006, p. 1839

Petitioner Apple Inc. - Exhibit 1006, p. 1840

Petitioner Apple Inc. - Exhibit 1006, p. 1841

Petitioner Apple Inc. - Exhibit 1006, p. 1842

Petitioner Apple Inc. - Exhibit 1006, p. 1843

Petitioner Apple Inc. - Exhibit 1006, p. 1844

Petitioner Apple Inc. - Exhibit 1006, p. 1845

Petitioner Apple Inc. - Exhibit 1006, p. 1846

Petitioner Apple Inc. - Exhibit 1006, p. 1847

Petitioner Apple Inc. - Exhibit 1006, p. 1848

Petitioner Apple Inc. - Exhibit 1006, p. 1849

Petitioner Apple Inc. - Exhibit 1006, p. 1850

Petitioner Apple Inc. - Exhibit 1006, p. 1851

Petitioner Apple Inc. - Exhibit 1006, p. 1852

Petitioner Apple Inc. - Exhibit 1006, p. 1853

Petitioner Apple Inc. - Exhibit 1006, p. 1854

Petitioner Apple Inc. - Exhibit 1006, p. 1855

Petitioner Apple Inc. - Exhibit 1006, p. 1856

Petitioner Apple Inc. - Exhibit 1006, p. 1857

Petitioner Apple Inc. - Exhibit 1006, p. 1858

Petitioner Apple Inc. - Exhibit 1006, p. 1859

Petitioner Apple Inc. - Exhibit 1006, p. 1860

Petitioner Apple Inc. - Exhibit 1006, p. 1861

Petitioner Apple Inc. - Exhibit 1006, p. 1862

Petitioner Apple Inc. - Exhibit 1006, p. 1863

Petitioner Apple Inc. - Exhibit 1006, p. 1864

Petitioner Apple Inc. - Exhibit 1006, p. 1865

Petitioner Apple Inc. - Exhibit 1006, p. 1866

Petitioner Apple Inc. - Exhibit 1006, p. 1867

Petitioner Apple Inc. - Exhibit 1006, p. 1868

Petitioner Apple Inc. - Exhibit 1006, p. 1869

Petitioner Apple Inc. - Exhibit 1006, p. 1870

Petitioner Apple Inc. - Exhibit 1006, p. 1871

Petitioner Apple Inc. - Exhibit 1006, p. 1872

Petitioner Apple Inc. - Exhibit 1006, p. 1873

Petitioner Apple Inc. - Exhibit 1006, p. 1874

Petitioner Apple Inc. - Exhibit 1006, p. 1875

Petitioner Apple Inc. - Exhibit 1006, p. 1876

Petitioner Apple Inc. - Exhibit 1006, p. 1877

Petitioner Apple Inc. - Exhibit 1006, p. 1878

Petitioner Apple Inc. - Exhibit 1006, p. 1879

Petitioner Apple Inc. - Exhibit 1006, p. 1880

Petitioner Apple Inc. - Exhibit 1006, p. 1881

Petitioner Apple Inc. - Exhibit 1006, p. 1882

Petitioner Apple Inc. - Exhibit 1006, p. 1883

Petitioner Apple Inc. - Exhibit 1006, p. 1884

Petitioner Apple Inc. - Exhibit 1006, p. 1885

Petitioner Apple Inc. - Exhibit 1006, p. 1886

Petitioner Apple Inc. - Exhibit 1006, p. 1887

Petitioner Apple Inc. - Exhibit 1006, p. 1888

Petitioner Apple Inc. - Exhibit 1006, p. 1889

Petitioner Apple Inc. - Exhibit 1006, p. 1890

Petitioner Apple Inc. - Exhibit 1006, p. 1891

Petitioner Apple Inc. - Exhibit 1006, p. 1892

Petitioner Apple Inc. - Exhibit 1006, p. 1893

Petitioner Apple Inc. - Exhibit 1006, p. 1894

Petitioner Apple Inc. - Exhibit 1006, p. 1895

Petitioner Apple Inc. - Exhibit 1006, p. 1896

Petitioner Apple Inc. - Exhibit 1006, p. 1897

Petitioner Apple Inc. - Exhibit 1006, p. 1898

Petitioner Apple Inc. - Exhibit 1006, p. 1899

Petitioner Apple Inc. - Exhibit 1006, p. 1900

Petitioner Apple Inc. - Exhibit 1006, p. 1901

Petitioner Apple Inc. - Exhibit 1006, p. 1902

Petitioner Apple Inc. - Exhibit 1006, p. 1903

Petitioner Apple Inc. - Exhibit 1006, p. 1904

Petitioner Apple Inc. - Exhibit 1006, p. 1905

Petitioner Apple Inc. - Exhibit 1006, p. 1906

Petitioner Apple Inc. - Exhibit 1006, p. 1907

Petitioner Apple Inc. - Exhibit 1006, p. 1908

Petitioner Apple Inc. - Exhibit 1006, p. 1909

Petitioner Apple Inc. - Exhibit 1006, p. 1910

Petitioner Apple Inc. - Exhibit 1006, p. 1911

Petitioner Apple Inc. - Exhibit 1006, p. 1912

Petitioner Apple Inc. - Exhibit 1006, p. 1913

Petitioner Apple Inc. - Exhibit 1006, p. 1914

Petitioner Apple Inc. - Exhibit 1006, p. 1915

Petitioner Apple Inc. - Exhibit 1006, p. 1916

Petitioner Apple Inc. - Exhibit 1006, p. 1917

Petitioner Apple Inc. - Exhibit 1006, p. 1918

Petitioner Apple Inc. - Exhibit 1006, p. 1919

Petitioner Apple Inc. - Exhibit 1006, p. 1920

Petitioner Apple Inc. - Exhibit 1006, p. 1921

Petitioner Apple Inc. - Exhibit 1006, p. 1922

Petitioner Apple Inc. - Exhibit 1006, p. 1923

Petitioner Apple Inc. - Exhibit 1006, p. 1924

Petitioner Apple Inc. - Exhibit 1006, p. 1925

Petitioner Apple Inc. - Exhibit 1006, p. 1926

Petitioner Apple Inc. - Exhibit 1006, p. 1927

Petitioner Apple Inc. - Exhibit 1006, p. 1928

Petitioner Apple Inc. - Exhibit 1006, p. 1929

Petitioner Apple Inc. - Exhibit 1006, p. 1930

Petitioner Apple Inc. - Exhibit 1006, p. 1931

Petitioner Apple Inc. - Exhibit 1006, p. 1932

Petitioner Apple Inc. - Exhibit 1006, p. 1933

Petitioner Apple Inc. - Exhibit 1006, p. 1934

Petitioner Apple Inc. - Exhibit 1006, p. 1935

Petitioner Apple Inc. - Exhibit 1006, p. 1936

Petitioner Apple Inc. - Exhibit 1006, p. 1937

Petitioner Apple Inc. - Exhibit 1006, p. 1938

Petitioner Apple Inc. - Exhibit 1006, p. 1939

Petitioner Apple Inc. - Exhibit 1006, p. 1940

Petitioner Apple Inc. - Exhibit 1006, p. 1941

Petitioner Apple Inc. - Exhibit 1006, p. 1942

Petitioner Apple Inc. - Exhibit 1006, p. 1943

Petitioner Apple Inc. - Exhibit 1006, p. 1944

Petitioner Apple Inc. - Exhibit 1006, p. 1945

Petitioner Apple Inc. - Exhibit 1006, p. 1946

Petitioner Apple Inc. - Exhibit 1006, p. 1947

Petitioner Apple Inc. - Exhibit 1006, p. 1948

Petitioner Apple Inc. - Exhibit 1006, p. 1949

Petitioner Apple Inc. - Exhibit 1006, p. 1950

Petitioner Apple Inc. - Exhibit 1006, p. 1951

Petitioner Apple Inc. - Exhibit 1006, p. 1952

Petitioner Apple Inc. - Exhibit 1006, p. 1953

Petitioner Apple Inc. - Exhibit 1006, p. 1954

Petitioner Apple Inc. - Exhibit 1006, p. 1955

Petitioner Apple Inc. - Exhibit 1006, p. 1956

Petitioner Apple Inc. - Exhibit 1006, p. 1957

Petitioner Apple Inc. - Exhibit 1006, p. 1958

Petitioner Apple Inc. - Exhibit 1006, p. 1959

Petitioner Apple Inc. - Exhibit 1006, p. 1960

Petitioner Apple Inc. - Exhibit 1006, p. 1961

Petitioner Apple Inc. - Exhibit 1006, p. 1962

Petitioner Apple Inc. - Exhibit 1006, p. 1963

Petitioner Apple Inc. - Exhibit 1006, p. 1964

Petitioner Apple Inc. - Exhibit 1006, p. 1965

Petitioner Apple Inc. - Exhibit 1006, p. 1966

Petitioner Apple Inc. - Exhibit 1006, p. 1967

Petitioner Apple Inc. - Exhibit 1006, p. 1968

Petitioner Apple Inc. - Exhibit 1006, p. 1969

Petitioner Apple Inc. - Exhibit 1006, p. 1970

Petitioner Apple Inc. - Exhibit 1006, p. 1971

Petitioner Apple Inc. - Exhibit 1006, p. 1972

Petitioner Apple Inc. - Exhibit 1006, p. 1973

Petitioner Apple Inc. - Exhibit 1006, p. 1974

Petitioner Apple Inc. - Exhibit 1006, p. 1975

Petitioner Apple Inc. - Exhibit 1006, p. 1976

Petitioner Apple Inc. - Exhibit 1006, p. 1977

Petitioner Apple Inc. - Exhibit 1006, p. 1978

Petitioner Apple Inc. - Exhibit 1006, p. 1979

Petitioner Apple Inc. - Exhibit 1006, p. 1980

Petitioner Apple Inc. - Exhibit 1006, p. 1981

Petitioner Apple Inc. - Exhibit 1006, p. 1982

Petitioner Apple Inc. - Exhibit 1006, p. 1983

Petitioner Apple Inc. - Exhibit 1006, p. 1984

Petitioner Apple Inc. - Exhibit 1006, p. 1985

Petitioner Apple Inc. - Exhibit 1006, p. 1986

Petitioner Apple Inc. - Exhibit 1006, p. 1987

Petitioner Apple Inc. - Exhibit 1006, p. 1988

Petitioner Apple Inc. - Exhibit 1006, p. 1989

Petitioner Apple Inc. - Exhibit 1006, p. 1990

Petitioner Apple Inc. - Exhibit 1006, p. 1991

Petitioner Apple Inc. - Exhibit 1006, p. 1992

Petitioner Apple Inc. - Exhibit 1006, p. 1993

Petitioner Apple Inc. - Exhibit 1006, p. 1994

Petitioner Apple Inc. - Exhibit 1006, p. 1995

Petitioner Apple Inc. - Exhibit 1006, p. 1996

Petitioner Apple Inc. - Exhibit 1006, p. 1997

Petitioner Apple Inc. - Exhibit 1006, p. 1998

Petitioner Apple Inc. - Exhibit 1006, p. 1999

Petitioner Apple Inc. - Exhibit 1006, p. 2000

