		Page 1
1	UNITED STATES PATENT AND TRADEMARK OFFICE	
	BEFORE THE PATENT AND TRIAL AND APPEAL	
2	BOARD	
3	----------------------------x	
	GOOGLE, INC.,	
4	Petitioner, IPR-2015-00343	
	IPR-2015-00345	
5	vs. IPR-2015-00347	
	IPR-2015-00348	
6	NETWORK-1 TECHNOLOGIES,	
7	Patent Owner.	
8	---------------------------x	
	Patent Nos. 8,640,179	
9	8,205,237	
	8,010,988	
10	8,056,441	
11		
12		
13	VIDEOTAPED DEPOSITION OF GEORGE KARYPIS New York, New York Thursday, November 12, 2015	
14	$9: 05 \text { a.m. }$	
15		
16		
17		
18	```Reported by: Jennifer Ocampo-Guzman, CRR, CLR```	
19		
20		
21		
22		
23		
24		
25	Job No. CS2183243	

	Page 6		Page 8
1	THE VIDEOGRAPHER: Good morning.	1	Q. You understand you've just been
2	We are now on the record. Please note	2	sworn to testify under oath in the same
3	that the microphones are sensitive and	3	manner you would if you were testifying in a
4	may pick up whispering and private	4	court of law?
5	conversations. Please turn off a	5	A. Yes.
6	cellphones or place them away from th	6	Q. And do you feel there's any reason
7	microphones, as they can interfere with	7	that you can't testify fully and accurately
8	the deposition audio. Recording will	8	today?
9	ontinue until all parties	9	A. No.
10	off the record.	10	Q. No medical conditions or health
11	My name is Christopher Han	11	issues that would interfere with your ability
12	representing Veritext. The date today	12	to testify?
13	is November 12, 2015. The time is	13	A. No.
14	approximately 9:05 a.m. This deposition	14	Q. Have you ever given a deposition
15	is being held at Amster Rothstein \&	15	before?
16	Ebenstein located at 90 Park Avenue, New	16	A. No, I have not.
17	York, New York and is being taken by	17	Q. Have you ever served as an expert
18	counsel for the petitioner.	18	itness in a litigation before?
19	The caption in this case is Google	19	A. No, I have not.
20	Incorporated versus Network-1	20	Q. Just a couple of general background
21	Technologies, being held before The	21	comments, the
22	Patent Trial and Appeal Board, case	22	Jennifer will be taking down
23	numbers 343, 345, 347, and 348.	23	everything we say today on the record. I'm
24	The name of the witness today	24	going to try, against my normal tendency, to
25	Dr. George Karypis. At this time I	25	speak slowly and clearly; but if my questions
	Page 7		Page 9
1	would ask counsel to please state you	1	are not clear to you either because you can't
2	appearances for the record.	2	hear them or can't understand them, feel free
3	MR. NEMEC: Douglas Nemec of	3	to ask me to clarify.
4	Skadden Arps for the petitioner, Google	4	Is that fair?
5	And with me is Andrew Gish, also with	5	A. Yes.
6	Skadden Arps for the petitioner.	6	Q. And likewise so as to avoid talking
7	MR. LUNER: Sean Luner for Patent	7	over each other and making Jennifer's even
8	Owner Network-1 Technologies from Dovel	8	more difficult than it already is, I would
9	\& Luner.	9	ask you to wait to answer until I've finished
10	MR. MACEDO: Charles Macedo from	10	my question; and I in turn will wait for your
11	Amster Rothstein \& Ebenstein, also for	11	answer before I ask another question. Fair?
12	the Patent Owner, Network-1	12	A. Fair.
13	Technologies.	13	Q. If you would like to take a break
14	THE VIDEOGRAPHER: Thank you.	14	during the course of today's proceedings,
15	Our court reporter today is	15	feel free to speak up. I generally break
16	Jennifer Ocampo-Guzman, representing	16	every 90 minutes or so, but this is not a
17	Veritext. She will now swear in	17	forced march, so if you need to step out,
18	Dr. Karypis and we can proceed.	18	please speak up.
19	GEORGE KARYPIS, called	19	A. I will.
20	tness, having been duly sworn, was examined	20	Q. You understand that you are here to
21	d testified as follows	21	testify today in connection with a
22	EXAMINATION BY	22	declaration that you submitted on behalf of
23	MR. NEMEC:	23	Network-1 Technologies, correct?
24	Q. Good morning, Dr. Karypis.	24	A. Correct.
25	A. Good morning.	25	Q. And that declaration was submitted

Karypis

	ge 10		Page 12
1	in connection with four inter partes review	1	Cox patents should be interpreted, and the
2	proceedings that were instituted at the	2	second category being the teachings of the
3	request of Google?	3	prior art?
4	A. Yes.	4	A. Correct.
5	Q. And there are four U.S. patents at	5	Q. In connection with forming your
6	issue in those IPR proceedings, right?	6	opinions, what information did you rely upon?
7	A. Yes.	7	A. The specific information I rely
8	Q. And you've referred to those as the	8	upon I believe is listed in my declaration.
9	IPR patents in your declaration?	9	I can give you the exact list, if you give me
10	A. I believe so.	10	copy of it.
11	Q. And the inventor on each of those	11	But on top of my head, it involves
12	patents is a man named Dr. Cox, correct?	12	what you referred to as the Cox patents, the
13	A. Correct.	13	-- the patents that was submitted by Google
14	Q. So if I occasionally refer to the	14	as part of the IPR, specifically the Ghias
15	patents today as the Cox patents, will you	15	patent, the Iwamura patent, Conwell patent,
16	understand what I'm talking about?	16	the Dr. Moulin's declaration and deposition
17	A. Yes.	17	and the IPR filings that Google filed.
18	Q. Just a couple of other terminology	18	Q. The last item, I'm sorry, was the
19	points before we move on. I may refer to the	19	actual filings?
20	board or the P tab.	20	A. Correct
21	Are those terms that you've heard?	21	Q. So the petitions?
22	A. Yes, I have.	22	And were there also some Wikipedia
23	Q. The P tab is the Patent Trial and	23	pages to which you referred?
24	Appeal Board. You understand that that's the	24	A. Correct. I believe there were two
25	tribunal that will be, in the first instance,	25	or three Wikipedia pages. Everything is
	Page 11		Page 13
1	deciding the matters in dispute in this case?	1	fully detailed in my declaration.
2	A. Yes.	2	Q. Okay. Let me focus for a moment on
3	Q. Okay. In the declaration that you	3	the Moulin declaration. That's a set of
4	submitted on behalf of Network-1, you	4	declarations submitted by Dr. Pierre Moulin
5	expressed certain technical expert opinions,	5	in support of Google's petitions; is that
6	correct?	6	right?
7	A. Correct.	7	A. Correct.
8	Q. And you expressed the opinion that	8	Q. In what fashion, generally
9	the challenged claims of the Cox patents are	9	speaking, did you rely upon Dr. Moulin's
10	not unpatentable, correct?	10	declarations in forming your opinions?
11	A. Correct.	11	A. I read the declarations. I just
12	Q. You've expressed the opinion that	12	tried to understand some of the context, you
13	the challenged claims of the Cox patents are	13	know, behind the IPR filings, and that's
14	not anticipated by the prior art, correct?	14	about it.
15	A. Correct.	15	Q. Did the -- aside from providing
16	Q. You've also expressed the opinion	16	context for the matters in dispute, did the
17	that the challenged claims of the Cox patents	17	information presented in the Moulin
18	are not obvious, in view of the prior art; is	18	declaration influence your technical opinions
19	that right?	19	one way or the other?
20	A. Correct.	20	A. I do not believe so
21	Q. Under the umbrella of those	21	Q. And with regard to the deposition
22	opinions would it be fair to say that the,	22	testimony of Dr. Moulin, in what fashion did
23	the opinions you've expressed fall roughly	23	you rely upon that in forming your opinions?
24	into two categories, the first being opinions	24	A. I read the deposition and I don't
25	with regard to how the claim language in the	25	think it affected, you know, my opinions.

Karypis

	Page 14		Page 16
	Just, you know, fed them.	1	Q. Do you consider yourself to be an
	Q. So once again, with respect to the	2	expert on patent law?
	deposition, would it be fair to say that you	3	A. No.
	relied upon it for contextual purposes?	4	Q. Do you consider yourself to be an
	A. There are a few places my	5	expert on patent office procedures?
	declaration which I specifically, you know,	6	A. No.
	point to certain aspects of documents,	7	Q. So you wouldn't be qualified to
	declarations, to confirm, you know, some of	8	ffer expert opinions on legal issues, then;
	my beliefs. And I think, you know, to a	9	is that fair to say?
10	large extent that's about it, so.	10	A. I think that's a fair statement.
11	Q. Okay. So for example, in instances	11	Q. For example, independent of
12	where you agreed with what Dr. Moulin had	12	information that may have been conveyed to
13	testified, you might point to his deposition	13	you by counsel, you have no expertise on wha
14	for that purpose, right?	14	e various burdens of proof are in an inter
15	A. That would be correct.	15	partes review petition, correct?
16	Q. If you didn't have Dr. Moulin's	16	A. That is correct.
17	position testimony, do you think your	17	Q. And you have no independent
18	opinions in this case would be any different?	18	knowledge of the legal standards for
19	A. I do not think so.	19	termining anticipation of a patent claim,
20	Q. And you indicated that you had also	20	correct?
	relied upon the actual filings, the IPR	21	A. Not prior to --
22	petitions.	22	(Discussion off the record.)
23	In what fashion did you rely upon	23	A. Not prior
24	se materials?	24	(Discussion off the record.)
25	A. I just looked at, you know, the	25	A. Not prior, I said, the answer to
	Page 15		Page
	claim constructions I believe that's what you	1	that is yes.
2	call it, that the IPR petitions, you know,	2	MR. MACEDO: "Not prior to talking
3	put forth and how alleged the claims of the	3	to the counsel, yes."
4	Cox patents are anticipated by the prior art.	4	(Discussion off the record.)
5	Q. Have you ever read any deposition	5	Q. And finally, independent of
6	testimony from Dr. Cox?	6	discussions with counsel, you have no
7	A. No, I do not -- I have not.	7	expertise in the legal standards governing
8	Q. Is it correct that your	8	whether a patent claim is obvious over the
9	understanding of the law applicable to these	9	prior art or not, correct?
10	inter partes review petitions that you have	10	A. I'm familiar with the patent law
11	is derived strictly from your discussions	11	that has to do with what something is
12	with counsel in the case?	12	obvious; and if the familiarity is what you
13	A. I don't think I follow th	13	refer as expertise, then, yes, if that's just
14	question.	14	familiarity, then I'm familiar with the law.
15	Q. Is it correct that your	15	Q. My question was limited to the
16	understanding of the patent law applicable to	16	legal standards, and I will ask it a little
17	the decision in the IPR proceedings is	17	bit differently.
18	erived strictly from your discussions with	18	A. Okay.
19	counsel?	19	Q. Do you purport to be an expert in
20	A. Yes, and also some reading that	20	the legal standards governing whether a
21	ve done, you know, kind of cursory notes	21	patent claim is obvious or not?
22	about some of the material.	22	A. I will not qualify myself as being
23	Q. In connection with this proceeding	23	an expert in legal standards.
24	or separately?	24	Q. I take it, in the process of your
25	A. Just in general.	25	work, you've studied the disclosure of the

5 (Pages 14-17)

Karypis

Cox patents, correct? Page 18			Page 20
		1	to develop any kind of system to identify
2	A. By "disclosure," you mean	2	records in a database that are similar or
3	specification?	3	very similar to a particular query?
4	Q. That's a good point, so another	4	A. My recollection from the
5	terminology issue: If I refer to the	5	specification is that the answer to that is
6	specification of prior art or the Cox	6	no. The specification I believe discloses a
7	patents, I'm referring to the text that	7	bunch of methods to solve the problem.
8	precedes the claims in the patents.	8	Q. And generally speaking what is it
9	Is that consistent with your	9	that distinguishes the method for identifying
10	understanding?	10	r system for identifying records that Dr.
11	A. Yes.	11	Cox purports to have invented from those that
12	Q. Okay. So have you -- excuse me --	12	came before?
13	have you studied the specification in the Cox	13	MR. LUNER: Can you repeat the
14	patents in connection with your work on this	14	question?
15	case?	15	MR. NEMEC: Sure. You want it just
16	A. Yes,	16	read back. Why don't you go ahead and
17	Q. How would you characterize the	17	read back.
18	field of the Cox invention?	18	(A portion of the record was read.)
19	A. So the general field of the Cox	19	MR. LUNER: Objection to form.
20	invention falls in the general area of, I	20	A. So this is a very broad question.
21	would say information retrieval and from a	21	So, and I believe in my declaration I kind
22	technical point, and, you know, that's about	22	of, you know, tried to summarize what are the
23	it.	23	key distinguishing features of the invention
24	Q. Do you think content recognition	24	that is disclosed.
25	would be an accurate characterization of the	25	Now going, I can read you that
	Page 19		Page 21
1	field of the Cox patents?	1	section, but off the top of my head there are
2	A. No -- content recognition, content	2	a bunch of different components. One has to
3	retrieval, yeah, those would be, you know,	3	do with a nonlinear search. The other one
4	the fields.	4	has to do with a non-exhaustive search.
5	Q. And based on your review of the Cox	5	Another one has to do with a near neighbor
6	patents, what problem or problems do you	6	search. So those are the three that I can
7	understand Dr. Cox to have been addressing	7	recall.
8	with his inventions?	8	Q. And why is it, in the context of
9	A. So the general problem that, you	9	hese inventions, that Dr. Cox was setting
10	know, the invention addresses is, from the	10	out to identify similar works as opposed to
11	disclosure, has to do on how to identify	11	exactly matching works?
12	records in a database that are similar or	12	MR. LUNER: Objection to form.
13	very similar to a particular query, and how	13	A. So I believe the, you know, the
14	to take actions based on that identification.	14	specification, you know, put forth certain
15	Q. Do you understand one of Dr. Cox'	15	scenarios in which things like that would be
16	goals of his invention to be an efficient	16	desirable. I don't remember the specific
17	search process?	17	example that they provided, but I can, you
18	A. I believe I'm recollecting the	18	know, you know, hypothesize that finding, you
19	claims, and again, if the question has to do	19	know, similar or not necessarily exact, like,
20	with the claims, I don't think the specific	20	would be something that would be tolerant to
21	claim that -- talks about a search process.	21	some, you know, small changes or some
22	Q. So let me ask a somewhat different	22	transmission error
23	question, then.	23	Q. So for example, a distortion in an
24	Do you understand Dr. Cox to be	24	audio file?
25	asserting in his patents that he's the first	25	A. That can be an example.

Karypis

	Page 22		Page 24
1	Q. Is it your understanding from the	1	A. I cannot find the exact place, but
2	sclosure in the Cox patents that Dr. Cox	2	repeat your question and I can answer it from
3	found it undesirable to find an exact match?	3	my head.
4	A. I don't recall if it was explicitly	4	Q. Sure. So the question that I had
	stated it's undesirable or not, but -- yeah,	5	posed was, what is your understanding of the
	actually I don't recall if it's saying it's	6	term "nonlinear," separate and apart from the
7	desirable to find an exact match.	7	Cox patents?
8	Q. A moment ago you used the	8	A. Sure. So the term "nonlinear," you
9	Q	9	ually do, you know, I have
10	Do you mean that to be synonymous	10	function that is a parameter of a certain
11	ith sublinear?	11	ariable, let's say N. Like if I increase
12	A. Well, nonlinear is not synonymous	12	that variable by certain fraction, like, so I
13	with sublinear, but in the context of the Cox	13	look at 2 N or 4 N ; if I have an increase in
14	patents the nonlinearity that they're talking	14	the amount of the value of that function,
15	about is sublinearity.	15	ght, that is not the same proportion,
16	Q. So you mean in general nonlinearity	16	right. It's not 2, a factor of 2 or a factor
17	not synonymous with sublinearity, separate	17	of 4. If I have the corresponding increase
18	rom the Cox patents?	18	the integer variable, but then that would
19	A. Yes.	19	be a nonlinear function.
20	Q.	20	Q. How does the definition that you
2	patents, what do you understand nonlinearity	21	st gave differ from the definition of
22	mean?	22	blinear, as you understand it, separate
23	A.	23	om the Cox patents?
24	iev	24	A. I think it is exactly the same
25	linearity in my disclosure, but, you know, a	25	definition. The notion of sublinear is a
	Page 23		Page 25
	function, you know, of, you know, that		function in which you find increase by let's
2	increases at a rate that is either higher,	2	ay a factor of 2 or a factor of 4, right, an
3	greater or smaller than linear is a nonlinear	3	ncrease in the output of that function would
4	function. For example, a function that is	4	be less than a factor of 2 or a factor of 4.
5	quadratic would be a nonlinear function.	5	Q. Now, in your view is the term
6	Q. By "rate," do you mean to imply	6	"sublinear" used differently in the Cox
7	speed?	7	patents?
8	A. So this is very	8	A. No, I believe this is the use of,
	in my declaration. I can give you the	9	his is how the term is used.
10	definition.	10	Q. You mentioned the term
11	A	11	non-exhaustive" a new moments ago as well,
12	he declaration?	12	correct?
13	MR. NEMEC: Sure. We can go ahead	13	A. That's correct.
1	and mark it. We will mark as Karypis 1	14	Q. Non-exhaustive is one of the terms
15	the declaration of Dr. George Karypis	15	at appears in the claims of the Cox
16	submitted in the four IPR proceedings.	16	patents, right?
17	(Karypis Exhibit 1, Declaration of	17	A. I believe so
18	George Karypis, marked for	18	Q. The actual term "non-exhaustive" is
19	identification, this date.)	19	not used in the specification of the Cox
20	(Discussion off the record.)	20	patents, though, right?
21	THE WITNESS: At some point in time	21	A. I don't recall.
22	we'll switch to iPad with those?	22	Q. Dr. Cox, in his disclosure in his
23	MR. NEMEC: Yes, that's been tried.	23	atents, doesn't purport to have invented the
24	I find it difficult in the deposition	24	concept of non-exhaustive searching, right?
25	context, but some people like it.	25	A. I believe so.

7 (Pages 22-25)

Karypis

	Page 26		Page 28
	Q. You believe he does purport to have		point, then you disregard the first half of
2	invented it?	2	array, and you perform the same search on
3	A. He does not	3	he second part of the array.
4	Q. He does not. So as of 2000, when	4	You continue that way until you
5	Dr. Cox' patent applications were filed	5	ither find that value in the array, or your
6	non-exhaustive searching was a concept known	6	end result becomes an array, at which point
7	in the art, correct?	7	in time you don't find the value.
8	A. Corre	8	Q. Now, if the array you are seeking
9	Q.	9	is not sorted, can you still
10	e concept	10	form a binary search on that array?
	our work?	1	A. You can perform a binary search,
12	A. I believe you mean prior to 2000	12	t and get a correct result. But if your
13	Q. In or	13	goal is to get the correct answer, you cannot
14	A. Yes.	14	perform binary search.
15	Q.	15	Q. And what do you mean by "the
16	A. For example, a fairly widely-used	16	orrect result"
17	algorithm to research a site array is to do	17	A. In the example that I gave, if the
18	binary search. That would be an example of	18	mber exists in the array, then it will
19	non-exhaustive search	19	return true. If the number does not, it will
20	Q	20	turn false. If the array is not sorte
21	such algorithms in or before 2000	2	ere are no guarantees that the algorithm
22	A.	22	ill explain, will lead to the correct
23	Q	23	answer.
24	which	24	Q. So it might return the correct
25	non-exhaustive searching in or before 2000?	25	answer, but it also might not?
	Page 27		Page 29
1	A. Another approach by 2000 used for	1	A. A high probability it will not.
2	non-exhaustive search would be hash tables.	2	Q. Can you use a binary search to find
3	Q. Any other examples that you can	3	a near match or only an exact match?
4	all of --	4	A. The standard binary search on the
5	MR. NEMEC: Excuse me, I'll sta	5	sorted array can be modified to find a near
6	that over.	6	match.
7	Q. Any other examples you can recall	7	Q. What sort of modification would be
8	of non-exhaustive search techniques that you	8	required?
9	worked with in or before 2000?	9	A. There are a couple of ways to
10	A. Not that I can recall finding	10	mplement it, but I would presume a standard
11	techniques that I have worked with.	11	ay of doing that is after you do your binary
12	Q. You mentioned binary search.	12	search and you get an Mk array, then, you
13	A binary search is a non-exhaustive	13	know, conceptually you backtrack to your
14	search; is that correct?	14	previous step and, you know, that middle
15	A. That is correct.	15	value on your previous step can be returned
16	Q. Can you explain to me briefly how a	16	plus a, you know, near match.
17	binary search works?	17	Q. You also mentioned hash tables.
18	A. So assume you have an array	18	as the use of hash tables a form
19	let's assume numbers and solving in	19	of non-exhaustive searching?
20	increasing order, and the search is trying to	20	A. Yes.
21	answer the question, is a number in the array	21	Q. Can you explain how a hash table
22	or not. And, you know, what do you is you	22	works? In general terms.
23	check the middle point therein and compare it	23	A. So the two prototyp
24	with your number. If the number is, your	24	hash tables, I'll just describe one of them,
	number is smaller than what's in the middle		right. So it consists of an array, and each

	Page 30		Page 32
	element in the array has a link list		available, the valu
2	associated with it. So the way you store the	2	given, the data associated with the keys.
	data there is you have a function that will	3	Q. Okay. So now when it comes time to
	map the original, let's say keys into some	4	search the hash table populated in the
5	range, you know, that is bonded from one to	5	fashion you just described, how does the
6	the length of that array that you use. Then	6	search process proceed?
	you apply that function on that key. That	7	MR. LUNER: Objection to form.
8	gives you an index in the array. And then	8	A. So in the typical way, if the --
	you put the data into that link list	9	actually the way the search proceeds was
10	associated with that element of the array.	10	already explained, you know, prior to that.
11	So this is how you populate a hash	11	But you take the key, you apply the hash
	table, and then when you search, you have a	12	function that maps in the range from one to
13	key, you apply exactly the same function, you	13	the length of the array, and then you go to
	get to a link list that is associated with an	14	the link list and then you do a sequential
	element of that array which your hash value	15	scan of the link list, and you compare the
16	maps to; and then you, you know, sequentially	16	actual key with the key stroke there. And if
	an that link list to see if that k	17	ey're identical you return back the data,
18	re or not.	18	r the key, it depends on what the values
19	Q. So by -- you used the term "key"	19	
20	re.	20	Q. So each entry on the link list is
21	Is key -- what is a key?	21	associated with a single reference work or
22	A. The key, the equivalent in my	22	multiple reference works?
23	previous example are the numbers that we	23	A. What do you mean by "reference
24	store in that, in that sorted array.	24	works"?
25	Q. So a key is the entirety of the	25	Q. Let's establish another terminology
	Page 31		Page
	reference that's served in the array, or it's		thing, because this may come up throughout
2	some representation thereof?	2	the day.
3	A. I don't think I -- I fully -- I	3	When speaking in terms of database
4	don't think your question is fully fleshed	4	searching, I at least use the term "reference
5	out. If -- can you rephrase, repeat it?	5	to refer to what is stored in the
6	Q. Sure, sure.	6	database and "query work" to be you are
7	I'm starting at a very fundamental	7	trying to find in the database.
8	point, which is to understand what exactly	8	Is that a fair usage?
9	the key represents in reference to or in	9	A. I mean, that's your usage, which
	relation to the items that are stored in this	10	s, now that I know what it is. So a
11	array.	11	ference work is what is stored on the
12	A. Okay.	12	database. A query work is what you use to
13	So in a very general setting,	13	query, right?
14	right, you know, it's -- for all the stuff w	14	Q. So that's the terminology I used.
	did -- with the patents that we're discussing	15	Do you feel it's accurate from the
16	over here, you know, usually what a key	16	standpoint of a person skilled in the art?
17	represents is some way of describing, you	17	A. I think it does make sense, but
18	know, the data they would like to store. So	18	beyond the type of terms that people, we use
19	usually you talk about a key value pairs, or	19	in a normal setting. So in the normal
20	like a key is an end file with the data.	20	etting someone will use a database entry,
21	Sometimes the data can be the key itself.	21	ou know, and query.
22	Right? Sometimes the key is just a unique	22	Q. I'm not trying to quibble over the
23	identifier of the data.	23	terminology. I just want to make sure we're
24	So what you store in the array or	24	speaking the same language.
25	in a hash table, you store both the key, and	25	So the two terms you just used then
			9 (Pages 30-33)
Veritext Legal Solutions			

Karypis

	Page 34		Page 36
	were database entry?	1	entries.
	A. Or database reco	2	Q. So I'm not sure I followed that
3	Q. Or database record; and query?	3	last part.
4	A. And the query.	4	I had understood you to say you
	Q. Okay. And I will try to stick	5	compare the query key to each entry on the
	at terminology throughout today's	6	link list to look for a match.
7	uestioning.	7	Do I have that right?
8	A. Okay. So what was your question	8	A. The way the hash table querying
	ain?	9	orks, like you apply the hash function, you
10	Q. Okay	10	get a key; based on that key you go to that
11	the questio	11	etry in the table, the table of link lists,
12	in the linked list that you were describing,	12	right, so you go to that entry in the table
13	is an individual entry on the linked list	13	that contains that specific link list, and
14	sociated with a single database entry or a	14	then you traverse that link list.
15	ultiple database entries?	15	Q. Okay. Now how is it that I go
16	A. So in the link list example that I	16	about finding the right entry in the table to
17	ve you usually each entry in the link list	17	en traverse the link list?
18	is associated with a single database entry.	18	A. So I have the hash function thater
19	Q. So this hash table search process	19	kes what's called the key or the integer
20	at you're describing, then, the query is	20	at describes that key and maps it into a
21	compared to each entry on the link list to	21	nge from one to the length of the hash
22	determine whether there is a match; is that	22	le.
23	ect?	23	Q. Have you personally designed
24	A. In the way I described it, if you	24	software systems that use this kind of hash
25	implement a link list in a standard way, yes.	25	table?
	ge 35		Page
	Q. And if a match is found, what	1	A. Yes, I have.
2	happens at that point?	2	Q. And did you do so in or before
3	A. If a match is found, so you either	3	2000?
4	return to a match is found; or if there is	4	A. Yes, I have.
5	data associated with that record, you know,	5	Q. So we've discussed hash tables and
6	you return the data as well.	6	nary searches.
7	Q. And this is a search process that	7	Are there any other forms
8	you would characterize as a non-exhaustive	8	n-exhaustive searching you were
9	process?	9	before 2000?
10	A. That would be a non-exhaustive	10	A. There are other methods of
11	search.	11	on-exhaustive searches that have been
12	Q. What is it about the search that	12	eveloped prior to 2000. I believe the Cox
13	renders it non-exhaustive?	13	patents describe some of those methods. I
14	A. So the key element that makes a	14	believe they talk about the k-d trees as an
15	arch to be non-exhaustive is if you think	15	xample of a non-exhaustive search. They
16	of the hash table in which every row of that	16	talk about clustering as an example of a
17	table has a link list associated with it, you	17	on-exhaustive search. And then they give a
18	ow, as a result of applying the hash	18	bunch of other examples, too.
19	function right away narrows down to one of	19	Q. So I should have asked, in the hash
20	ose link lists, and I would search within	20	bles --
21	tink list. So I never search the rest	21	R. NEMEC: Strike th
22	of the video clips in the hash table, that	22	Q. In the software systems you
23	are associated with the different entries.	23	developed in or before 2000 that used hash
24	(Discussion off the record.)	24	tables, what were the hash tables used for?
25	A. Not associated with the different	25	A. Hash tables are very generic to

	Page 38		Page 40
	like a textbook data structure, to store key		key that you obtain by applying that
	value pairs. I believe the hash table that I	2	h function. So let's call it original key
	used is just to store the presence or absence	3	and derived key, right?
	of a particular key, so.	4	Q. Okay.
	Q. So was it for storing any	5	A. Go ahead.
6	particular type of data?	6	Q. The derived key being the hash?
7	What I mean by th	7	A. Yes.
8	posed to audio or video or something like	8	Q. And then this, the hash table
		9	lookup that was generally known as of 2000,
10	A. So the question has to do with the	10	hat you were seeking to do was find an exact
11	tware system that I designed?	11	atch to your hash, correct?
12	Q. Correct.	12	A. No. The way hash tables are
13	A. The answer is they were not really	13	implemented in that link list what you
14	ring any data.	14	actually store is the original key.
15	Q. In or before 2000, did you ever use	15	Q. Okay. So in the lookup process are
16	a hash table to locate near matches to a key?	16	you looking to match identical keys?
17	A. No, I never did.	17	A. You -- when you compare the query
18	Q. Was it generally known to people	18	key to each of the record in the link list,
19	skilled in the art in or before 2000 that you	19	so you look to match the identical keys, you
20	ld use hash tables to find a near match	20	ow, in the original, of the original keys.
21	between a query key and a database reference?	21	Q. So in practice, a non-exhaustive
22	MR. LUNER: Objection to form.	22	search would take the form of an algorithm
23	A. So the question is about finding a	23	mplemented in the software, right
24	near match, correct, between the query key	24	A. I would expect so,
25	and the database key, right.	25	Q. Dr. Cox doesn't disclose any
	ge 39		Page 41
	Q. Correct.	1	specific non-exhaustive search algorithms
2	A. No, prior to 2000 there were some,	2	his patents, does he?
3	you know, I would say early work or some work	3	A. You mean he describes a bunch
4	on using specifically design hash functions	4	non-exhaustive search algorithms. I presume
5	that would allow you to do something like	5	that means discloses right?
6	at.	6	Q. He describes categories
7	Q. But generally speaking, the key	7	algorithms, correct?
8	matching that would take place in the ha	8	A. I think he describes some specific
	table would be exact matching, as of 2000?	9	algorithms. I believe he talks about k-d
10	A. That would be correct.	10	trees and vantage point trees. So those are,
11	Q. But an exact match between a query	11	you know, I mean they are specific
12	key and a key in the database may not	12	algorithms.
13	correspond to an exact match between the work	13	Q. Understood. And a k-d tree, for
14	from which the key was derived, correct?	14	example, could be implemented in a variety of
15	A. If I understood your question	15	ways, right?
16	correctly, what you're asking is a fall line,	16	A. Yes.
17	is -- actually, repeat your question, because	17	Q. And Dr. Cox doesn't disclose any
18	I don't think I understood your question.	18	specific way of implementing a k-d tree, for
19	Q. Sure. The key, the key, and I'll	19	example, right?
20	back up a little bit. The key is derived	20	A. I don't recall if he does
21	from a larger set of data, correct?	21	Q. He doesn't disclose a specific way
22	A. Again, there are two keys that we	22	of implementing any other non-exhaustive
23	are talking about here, right? So one is the	23	algorithm, right?
24	key that is associated with the data, right.	24	A. I do not recall he describ
25	And then there is that, let's say the hash of	25	specifically of implementing, no.

11 (Pages 38-41)

Karypis

	Page 42		Page 44
1	Q. Do you understand Dr. Cox to have	1	right, within a song that the query matches,
2	disclosed any new type of non-exhaustive	2	right, then, you know, that segment would be
3	search algorithm?	3	the result of the query.
4	A. I do not recall Dr. Cox disclosing	4	Q. In your experience have you ever
5	any new algorithm for a non-exhaustive	5	heard a search that looks at every entry in a
6	search.	6	reference database characterized as a
7	Q. You understand that the Patent	7	non-exhaustive search?
8	Trial and Appeal Board has proposed a	8	MR. LUNER: Can you repeat the
9	construction of the term "non-exhaustive" for	9	question?
10	use in these proceedings, correct?	10	MR. NEMEC: Sure.
11	A. Correct.	11	Q. In your experience, have you ever
12	Q. And the board has stated that "The	12	heard a search that looks at every entry in a
13	non-exhaustive search should be construed as	13	reference database characterized as a
14	a search that locates a match without	14	non-exhaustive search?
15	comparison to all possible matches," right?	15	A. So if the goal of that query was to
16	I think you might be looking for	16	return an entry in the database as a result,
17	the chart of the constructions in your	17	like, what you described is an exhaustive
18	report. It's --	18	search.
19	A. It's page 39.	19	Q. So you think a person of ordinary
20	Q. Yes. That's the one you're looking	20	skill in the art would be incorrect to
21	for?	21	characterize a system that looks at every
22	A. Yes.	22	non-exhaustive search -- excuse me, will
23	So I believe you said a search that	23	entry in the database as a non-exhaustive
24	locates a match without a comparison of all	23	search?
25	possible matches, right? Yep.	24	A. So again, if the result of that
		25	query was to identify an entry in the

12 (Pages 42-45)

Karypis

			Page 4
	throughout your career?	1	is able to determine that 75 of the 100
	A. Yes.	2	cords need not be searched?
	Q. You're confident that in all the	3	A. Well, the algorithm will not
	presentations you've given and papers you've	4	necessarily determine 75 percent, but it will
	authored you've never defined non-exhaustive	5	determine that, you know, a, potentially a
	in a different way?	6	subset of the data will not need to be
	MR. LUNER: Obje	7	rched.
	A. It's hard for me to recall every	8	Q. In your example it was 75 of 100 .
	single paper I wrote and every presentation I	9	That's why I used that.
10	gave, but I believe to a large extent that's	10	A. Yes.
	my, you know, that's my definition of an	11	Q. So how would the algorithm go about
12	exhaustive search, the one that would search	12	determining what subset of information need
13	every record, right.	13	not be searched?
	Q. So it's possible that there may be	14	A. So in the hash table example that I
	other ways in which you've used the term	15	gave you, so if I load the records, using the
16	"non-exhaustive" throughout your career; is	16	approach that I outlined before, then given a
17	that what you're saying?	17	ey that I would like to locate the record
18	MR. LUNER: Objection, form.	18	for, right, if I applied exactly the same
19	A. It can be possible, but I don't	19	approach to generate the hash key, right,
20	recall any other uses.	20	at would get me to a link list that I know
21	Q. Do you believe a person skilled in	21	at if any other record with the same key
22	the art would be incorrect to characterize a	22	d been submitted before, would have been
23	search where every entry in the database is	23	at in the same link list, so let me research
24	searched but only a fraction of the data in	24	at link list.
25	each entry is searched as non-exhaustive?	25	Q. So the determination of which
	Page 47		e 49
1	A. I believe that would be incorrect.	1	records in the database can be excluded from
2	Q. Take a look at paragraph 80 in your	2	the search is made, at least in part, based
3	declaration, if you would, Exhibit 1.	3	on the nature of the query, correct?
4	A. Okay.	4	A. So the determination of which
5	Q. In that example you refer to a	5	records not to include, to exclude in the
6	situation where there are 100 records in	6	search is a function of the query.
7	database.	7	Q. Because we can't know where not to
8	Do you see that?	8	look until we know what we're looking for,
	A. Yes, I do.	9	orrect?
10	Q. And then you, say, "A	10	A. I would think so, yeah.
11	non-exhaustive search could u	11	Q. And in that fashion, the content of
12	intelligent algorithm to exclude 75 records	12	every entry in the database is taken into
13	from the search such that only 25 would be	13	account in deciding which entries to search
14	searched during the comparison process."	14	and which not to search, correct?
15	Do you see that?	15	A. That is not the case, because the
16	A. Yes. I'm just reading this now.	16	hash table example that I gave you, that, you
17	Yes, I read that. Yes.	17	know, I do not take into account the content
18	Q. So in this example, how would the	18	of every entry in the database at search time
19	intelligent algorithm you were referring to	19	figure out what to search or what not to
20	go about excluding 75 records from the	20	rch.
	arch?	21	Q. But you do take into account some
22	A. The hash table example I just gave	22	information about every entry in the database
	you would be an example of an algorithm.	23	in order to determine where to search and
	Q. In general terms, then, how is it	24	where not to search, correct?
25	in that hash table example that the algorithm	25	MR. LUNER: Objection to form.

13 (Pages 46-49)

Karypis

	Page 50		Page 52
	A. Not in the hash table example I		something in common with respect to the key,
2	gave you.		right. So there has to be some property of
3	Q. What about other examples?		the key that, you know, put those guys in the
4	A. I cannot think off the top of my		same bucket.
5	ead of a method that would take into account	5	Q. That property of the key is in some
6	all the entries in the database during the		shion representative of the records in that
7	query phase, in order to determine what to	7	ucket, correct?
8	search and what not to search.	8	A. Again, if we take the very generic
9	Discussion off the record.)		ew of a record consisting of a key and some
10	A. In order to determine what to	10	ata, right, you know, and the key is a way
	arch and what not to search.		retrieving the data which may or may not
12	Q. So the hash table is the only	12	e similarly be associated with the data,
13	ample that comes to mind?	13	hen the answer to your question is no.
14	A. I'm sorry, but I thought your	14	Q. Something about that key that
	question was for an example of the algorithm,	15	represents the bucket is indicative of
16	right? So your question was -- what was your	16	whether our search should consider the
17	question?	17	entries in that bucket; isn't that correct?
18	Q. W	18	A. Can you repeat your question again?
19	ide	19	Q. Sure. Something about the key that
20	of any other intelligent algorithm b	20	presents the bucket of records is
21	which you could exclude 75 records from a	21	indicative of whether, in a given search, the
22	100-record database and focus only on the	22	contents of that bucket should be examined,
23	remaining 25?	23	righ.
24	A. A metho	24	A. That depends on the data search
25	other space-partitioning method, you know	25	that you use or the method that you use. For
	Page 51		Page 53
1	orm category.		nstance, in a hash table, each, it's the
2	Q. So how would a space-partitioning	2	hash value of the original key that returns
3	method like this allow us to exclude record	3	he bucket. So that may lead to buckets
4	from the search?	4	ontaining records which hash key value is
5	A. So a space	5	he same, right. So if that's what you mean
6	you know, is to a large extent similar ideas	6	by indicative, yes, a hash table that falls
7	like a hash table; but what you do is you	7	in the same bucket are keys such that the
8	split each of the dimensions of, you know, a	8	hash value -- hash key values are the same.
9	high-dimensional feature, right, or a	9	Q. So then in the search process, we
10	multidimensional feature, right, so that you	10	ould be looking for a correspondence between
11	store the data in the appropriate buckets	11	e query and the key to determine whether to
12	based on the dimensions of the record, of the	12	further consider the contents of a given
13	key of the record, and then you use exactly	13	cket; is that right?
14	the same approach to select the buckets.	14	MR. LUNER: Objection to form.
15	Q. So the decision of what database	15	A. I mean a query consists of, I
16	records go in what bucket is based on the	16	presume, a key, right? So when you say
17	nature of the database records, right?	17	between a query and a key, what do you mean?
18	A. The decision of which database	18	Q. Well, let me step back from this a
19	cord goes to which bucket is a function	19	, and let's put aside the hash table for
20	he, of the key associated with that	20	ome
21	database, right.	21	A. Okay.
22	Q. So all the database records in a	22	Q. And let's talk about this, the
23	given bucket have something in common with	23	space-partitioning example.
2	one another, correct?	24	A. Okay.
25	A. They -- all the records have	25	Q. In the space-partitioning example,

	Page 54		Page 56
	and correct me if I'm wrong, but you are	1	assuming my decision tree has X, Y and Z , in
2	essentially creating a decision tree with	2	that order. So go down in X and within that
3	intelligently organized information down the	3	X bucket, as I say, with my range, you know,
4	various branches of the tree, correct?	4	I will branch, take the path associated with
5	A. So the decision tree is a correct	5	the Y bucket, and then within that, I will
6	analogy. The level of intelligence is up	6	take the branch that's in the Z bucket.
7	from the partition, but the decision tree is	7	Q. If you had a reference database
8	a good way of thinking about it.	8	containing a single entry, would it be
9	Q. So it's organized in some fashion	9	possible to non-exhaustively search that
10	such that information with some quality in	10	database?
11	common is down one branch, and information	11	A. I'm sorry. Your question was if I
12	with a different quality in common is down a	12	had a database consisting of one entry, will
13	different branch, right?	13	it be possible to search it in a
14	A. So it's organized such that, you	14	non-exhaustive way?
15	know, keys, right, to then put certain	15	Q. Correct.
16	dimensions for certain characterization would	16	A. The example that I gave you, from
17	fall into one branch of the tree versus the	17	both a hash table and as well as, you know,
18	other.	18	space-partition method, even if I had a
19	Q. Okay. So now when we're looking to	19	single entry, I can still, you know, my
20	search that tree, we start with a query. And	20	search, I'm not even going to examine that
21	our goal is to if there's anything in the	21	area, that entry under certain conditions.
22	tree that matches the query, right?	22	Q. Is that because you are considering
23	A. Correct.	23	there would be empty branches, for example,
24	Q. So we need to decide which branches	24	in the --
25	are worth looking down in this organized	25	A. In the empty branches, there can be
	Page 55		Page 57
1	tree, correct, and which ones we can ignore?	1	empty link lists in the hash table.
2	A. So the way the space-partitioning	2	Q. If you had a database with, if you
3	methods work, based on the dimensions of the	3	had a music database that contained one entry
4	key, the Pk could be one path down the tree.	4	with 100 songs appended back to back, would
5	Q. So you said the Pk -- I'm sorry?	5	it be possible to non-exhaustively search
6	A. So it's based on the values along	6	that database determine whether it contained
7	the dimensions of the key, they pick one path	7	a particular song?
8	down the tree.	8	MR. LUNER: Objection to form.
9	Q. Oh, I see. So we evaluate whether	9	A. Well, in the example that you gave,
10	the dimensions of the query key correspond to	10	a record over there is not one song. It's
11	the dimensions associated with the keys on	11	how many songs you said there were. Right?
12	one of the branches?	12	So all the examples that we talked
13	A. Again, there are many ways to	13	so far was looking at things like returning
14	implement space-partitioning methods, but	14	back a record, right? In the example that
15	let's keep something very simple. Let's	15	you said, you know, I have one record, right?
16	assume that we have a key that consists of	16	And the result of my query would be one
17	three dimensions, XYZ. And I split my X	17	record.
18	dimension into ten things, the Y dimension	18	Q. So an entry in the database may
19	into ten things, and the Z dimension into ten	19	constitute multiple records; is that what
20	things. Right.	20	you're saying?
21	So given a query, I look at the XYZ	21	A. No, that's not what I'm saying.
22	values, right. And that would get me to,	22	Q. I'm not following that.
23	based on the value of the X value that the	23	In my example, you have a database
24	key has, that would pick the appropriate	24	--
25	bucket to get me down to the X branch,	25	A. Yes.

Karypis

	Page 58		Page 60
1	Q. -- with a single entry containing a		over here, right. But one possibility for
2	file of 100 songs appended back to back		something like that is to create, you know,
3	understand?		ne sort of a, you know, like some sort of
4	A.		index or something, you know, that relates
5	Q. And the	5	it that will extract, you know, from that
6	ssible to non-exhaustively search	6	single record, you know, some signature of
7	tabase to determine whether a particul	7	those subsets and then, you know, use those
8	g is present?		gnatures, put them into some sort of a hash
9	A. So w		ble or space-partitioning structure,
10	th that one --	10	nerate exactly the same thing for my query;
	Q.	11	and then if I've never seen something like
	A. What is th	12	that in the past, then I can answer no
13	at one ent	13	without searching another single item.
14	Q. What	14	Q. Turning back to your example in
15	m not specifying any particular	15	aragraph 80 with the 100-record database
16		16	hereby you are able to exclude 75 records,
17	struct an	17	e process of excluding those 75 records is
18	atabase in a non-exhaustive fashion?	18	t a random selection process, correct?
19	A.	19	A. By "random selection," what do you
20	rrectly, so what you're asking is the	20	ean?
21	following; if I have a single record	21	Q. You don't just randomly exclude 75
22	containing some data, right, and I wo	22	Q.ords from the search, in order to narrow
23	erform a query that will tell me whether	23	sear
24	not that record contains a certain subset,	24	A.
25	that is the query that	25	know, they will, can exclude a random subset
	Page 59		Page 61
1	ere?		and then can provide some probabilistic
2	Q. Correct.	2	recovery damages.
3	A.	3	Q. So there are approaches where you
4	,	4	could just randomly exclude a certain number
5	so the subset identification problem, right,	5	of records in order to simplify the search
6	using a non-exhaustive search?	6	process, at the risk of missing a match?
7	Q. Rig	7	A. Yes.
8	A. I can think of nothing	8	Q. Would that be a non-exhaustive
9	my head. Either one or the other way, I	9	search?
10	ean there can be other methods that will	10	A. That would be, that would qualify
11	allow you to do that thing in a	11	as a non-exhaustive search
12	non-exhaustive fashion. Like there can	12	Q. And likewise, if you have an
13	method that is non-exhaustive. In this	13	telligent process of evaluating which
14	particular case, there may be a method that	14	records to review and which records not to
15	we may have to search that record.	15	view, would that be a non-exhaustive
16	Q. But it could be done	16	search?
17	on-exhausti	17	A. What would make it a non-exhaustive
18	A. If I have a sing	18	arch is if I have a mechanism by which to
19	tabase and I want to answer the questio	19	iminate records without having to review
20	oes the record contain a particular subse	20	ach record, right? So if as part of the
21	here can be a way to design the system such	21	elimination I have to review a record, you
22	that it can answer no, right, without having	22	now, as part of the query processing, prior
23	to visit that one record.	23	eliminating, that would be an exhaustive
24	Q. How would	24	arch, because I have to consider every
25	A. Again, I'm going on top of my head	25	record.

16 (Pages 58-61)

Karypis

	Page 62		Page 64
1	Q. So what you want is a system where		recovery of the records, whether that record
2	ou know enough about each record in the		ats, without having to look at anything
3	tabase to make a determination as		
	or not to examine that particu		MR. LUNER: Is it a time for a
5	ord, when presented with a given query		break?
6	rrect?	6	MR. NEMEC: Sure. I was just
7	A.		oticing it was 10:38.
8	don't think I follow.	8	THE VIDEOGRAPHER: The time is
9	Q. Sure. A system, in designing a		$0: 36$. We're going off the record.
10	-e	10	his will be the end of disk numbe
11	ngement whereby you know something		(A brief recess was taken.)
12	out each record in the database such that	12	THE VIDEOGRAPHER: The time is
13	n presented with a given query, you	13	10:48. We're back on the record. This
14	ke a determination of whether or not	14	the beginning of disk number 2.
15	ok at the content of that record?	15	Q. Dr. Karypis, are you familiar with
16	MR. LUNER: Objection to form.	16	the term "linear search"?
17		17	A.
18	n-exhaustive method work. I mean in	18	Q. That's a search that -- or, pardon
19	mple, you still tie the determination of	19	, that's a term that you used in your
20	not looking something by, you know, making a	20	claration in this case, right?
21	I	21	A. Yes.
22	mean non-exhaustive search, which at that	22	Q
23	point in time, you know, the fact that I have	23	.
24	to make a determination of not to look	24	A.
25	something by looking at every object, every	25	characterize the complexity of an
	Page 63		age 65
1	d,		gorithm and has nothing to do with whether
2	earch.	2	an algorithm does or it doesn't --
3	non-exhaustive search is a searc	3	Q. I didn't hear the last part, I
4	at it only looks at a subset, righ	4	apologize.
5	let's say the records, comes up with som	5	A. The term linear search has to do
6	matches; and it doesn't do anything with th	6	ith characterizing the complexity of the
7	rest, not even going through to simply	7	algorithm and has nothing to do with whether
8	determine whether or not it would conside	8	the search is exhaustive or non-exhaustive.
9	hat.	9	Q. So it's possible to have a linea
10	Q.	10	arch that is non-exhaustive? That wouldn't
11	he system is completely blind to the content	11	be a contradiction in terms?
12	of the records that you're not searching?	12	A. So if I define the complexity,
13	MR. LUNER: Objection to form.	13	s -- so, yes, in the linear search, right,
1	A. So at query time, right, the system	14	so when I -- the parameter that I have of
15	only considers the example that it searches.	15	interest in the number of records, I summons
16	Right? That is the query time.	16	a number of records. So if I have a linear
17	Q. What do you mean by "query time"?	17	ne algorithm that is with respect to the
18	A. So again, going back to that very	18	umber of records, right, then that will
19	simple example that I think illustrates many	19	dicate an algorithm I have to search of the
20	of those ideas, you know, a hash table, a	20	cords, so that would be an exhaustive
21	query time, the algorithms, we never looked	21	search.
22	at any of algorithms. Right. The data	22	Q.
23	structure is designed in such a way so that	23	Qe, the linear search would be exhaustive,
2	by only focusing on the stuff associated with	24	correct?
25	that link list, right, it can guarantee the	25	A. Yes, in the example I just gave,

17 (Pages 62-65)

	Page 66	Page 68	
	right, a linear -- an exhaustive search		different things.
2	algorithm that has to visit every record will	2	Q. Are different, okay.
3	have a complexity that is going to be in the	3	Now what about in the context of
4	order of the number of records, so it would	4	the Cox patents, do you understand those
5	be a linear complexity.	5	terms to be used the same or different?
6	Q. So is a linear search always	6	A. So in the context of the Cox
7	exhaustive is my question?	7	patents the term "linear" or "sublinear"
8	A. If the goal of the search is	8	efers to linear time or sublinear time. At
9	entify a single record, right, in which the	9	which point in time those are measures of
10	fitness of record is determined entirely by	10	complexity, so they are the same things.
11	the record itself, right, an exhaustive	11	Q. Let's take a moment to look at that
12	search would be a linear search.	12	in the patents. We might as well go ahead
13	Q. I think I understand your question,	13	and mark all four patents at this point so
14	but I'm afraid we may be coming at this from	14	that you have them available as they come up.
15	opposite directions.	15	MR. NEMEC: We will mark as Karypis
16	The question that I'm posing is	16	Deposition Exhibit 2, U.S. Patent
17	whether a linear search is always exhaustive.	17	8,010,988.
18	A. So let me give you an example of a	18	Mark as Karypis Exhibit 3, U.S.
19	linear search that may not necessarily be	19	Patent 8,205,237.
20	exhaustive. Okay.	20	Karypis Exhibit 4 will be U.S.
21	If the part of my search is to find	21	Patent 8,640,179.
22	the best combination of K IDs, of K records	22	And Karypis Exhibit 5 will be U.S.
23	in my database. An exhaustive search of that	23	Patent 8,656,4
24	will have to enumerate, will have to visit	24	(Karypis Exhibit 2, Photocopy of
25	every, every potential, you know, match,	25	U.S. Patent No. 8,010,988, marked for
	Page 67		Page 69
1	right? So it would be every potential K	1	identification, this date.)
2	subset, so that would be an exhaustive	2	(Karypis Exhibit 3, Photocopy of
3	search, which complexity is now going to be	3	U.S. Patent No. 8,205,237, marked for
4	linear than on the records, you know.	4	identification, this date.)
5	Q. Is it typical in the art to	5	(Karypis Exhibit 4, Photocopy of
6	determine a linear search as a sequential	6	U.S. Patent No. 8,640,179, marked for
7	search of all N entries in the database?	7	identification, this date.)
8	A. So can you repeat your question	8	(Karypis Exhibit 5, Photocopy of
9	again.	9	U.S. Patent No. 8,656,441, marked for
10	Q. Is it typical in the art to define	10	identification, this date.)
11	a linear search as a sequential search of all	11	Q. Dr. Karypis, you have the four
12	N entries in a database?	12	patents in front of you?
13	A. So a search that has a linear	13	A. Uh-huh.
14	complexity, okay, and if its goal is to	14	Q. Take a look at, if you would, at
15	return a single result, right, you know, then	15	Exhibit 2, the '988 patent.
16	a linear search under those conditions, you	16	A. Yes.
17	know, will lead to a sequential scan.	17	Q. And in particular column 9.
18	Q. So you've mentioned a couple of	18	A. Yes.
19	times the concept of linear complexity, and	19	Q. And line 25. Do you see a
20	my question is simply about the term a linear	20	reference to the term "linear search" there?
21	search.	21	A. Yes.
22	Are these two separate concepts, or	22	Q. What do you understand linear
23	are they one and the same to you?	23	search to mean in that context?
24	A. Those two concepts, without any	24	A. Let me read the context.
25	other context associated with them, are	25	Q. Sure.

Karypis

	Page 70		Page 72
1	A. So the meaning of linear search in	1	Q. Now, in paragraph 83 you're
2	this context is a sequential search	2	describing a hypothetical search where the
3	Q. A sequential search, okay	3	query work is ABC , and you're looking in a
4	That's a different concept from the	4	database for records that would match ABC ,
5	linear complexity concept that we were	5	correct?
6	discussing a moment ago?	6	A. Very good.
7	A. So linear, it says over heres	7	Yes, so what was your question
8	scribes a way of searching. The linea	8	gain?
9	time complexity describes the complexity.	9	Q. Just try me out to make sure I'm
10	Q. And when Dr. Cox uses the term in	10	understanding the example that you've
11	his patent here, he's talking about the way	11	provided here.
12	of searching, right?	12	A. Yes.
13	MR. LUNER: Objection, form.	13	Q. Query work is ABC , and the database
14	Q. Is that how you interpret him using	14	contains strings of letters, correct?
15	the term?	15	A. Correct.
16	A. So the use of term "linear search"	16	Q. And we're looking for a match to
17	over here has to do with the way he refers to	17	ABC in the database?
18	the -- the way the algorithm scans	18	A. So the records consists of strings,
19	sequentially the entries of the -- the N	19	right. We won't have a query. And what
20	entries.	20	we're trying to find out is we're trying to
21	Q. And as described here in the Cox	21	find the record that, you know, you know, has
22	patent, that linear search is an exhaustive	22	ABC , whose string is ABC .
23	search, correct?	23	I believe the setup over here
24	A. So that would be an example of an	24	very simple. I have records consisting of
	exhaustive search, yes.		three-character words, and my query is a
Page 71		1 three-character word, and I want to go and 73	
1	Q. Now, if you take the example of a		
2	search that considers every entry in a	2	find a matching record.
3	multi-entry database but looks at so little	3	Q. And if I look through the database
4	of each entry that it can't reliably	4	in your example to seek a match to ABC, I
5	determine whether a match exists in that	5	look at the first letter in each database
6	entry or not, would you still characterize	6	entry and exclude those that don't begin with
7	that as an exhaustive search?	7	A, to narrow the data set.
8	A. So that would be an exhaustive	8	Does that step render the search
9	search, because you have to look at every	9	n-exhaustive?
10	entry in every record in the database.	10	A. So the fact that I have looked at
11	Q. Even if you're not looking at	11	every record in the database, you know, makes
12	enough from each entry to really know whether	12	the search to be exhaustive.
13	a match exists in that entry or not?	13	Q. So in your example you would not
14	A. The -- I believe that's the case.	14	examine any entry that doesn't begin with A,
15	Yes, that would be the case. It would be an	15	beyond identifying the fact that that entry
16	exhaustive search.	16	doesn't begin with A, right?
17	Q. So even if we look at a single	17	A. So in my example, we examine every
18	of information in every entry in the	18	entry, perform a comparison on the first
19	database, that's an exhaustive search in your	19	character and then returns folds of those
20	view?	20	records that did not match.
21	A. That's an exhaustive search in my	21	Q. And it will examine further the
22	view, yes.	22	entries that do begin with A, correct?
23	Q. Let's turn back to your	23	A. That would be correct.
24	declaration, Exhibit 1, at paragraph 83.	24	Q. It will move on to the second
25	A. Paragraph 83.		letter?

19 (Pages 70-73)

Karypis

	Page 74		Page 76
1	A. Well, that would be done on a		non-exhaustively?
2	record-by-record basis. Given a query, given	2	MR. LUNER: Objection to form.
3	record, first compare the first character	3	A. So the question you're asking is, I
4	of the query and the first character of the	4	Ave a hypothetical database containing
5	record. If they match, we continue. The	5	strings of length 9, right?
6	second character of the query would be the	6	Q. Right.
7	second character of the record. If there's a	7	A. And my query is a string of length
8	tch, we'll continue.	8	?
9	But if at an	9	Q. Correct.
10	ess there is no match, we terminate, we	10	A. And I want to solve a subset
11	eturn false, and we move on to the second	11	roblem?
12	ne.	12	Q. Correct.
13	Q. Without	13	A. Substring problem, right? It's a
14	mainder of that reference, correct?	14	substring contained in one of the records.
15	A. You're -- correct.	15	Q. Right.
16	Q. Now, in your example you're looking	16	A. And your question is, can I think
17	or an exact match to ABC , correct?	17	a method that would allow me to do that
18	A. In this particular case, I believe	18	hing in a non-exhaustive way?
19	, yes.	19	Q. Right.
20	Q. What	20	A. So the answer to that is yes. This
21	search to look for something that was similar	21	is exactly the same example that, the
22	to ABC ?	22	olution approach that I gave you for your
23	A. How	23	xample of a one single record database.
24	Q. What if we were looking for	24	Q. And how would that, how would it
25	something that had at least two of the	25	work?
	Page 75		Page 77
	ers in sequence		A. So if I was to design a system that
2	A. Okay. So in a scenario like	2	would allow me to do in that fashion, I will
3	this particular example, I will compare A	3	or each query in the -- for each string from
4	ith B, right. So -- but I can potentially	4	he database I will extract every substring
5	ave, you know, B and C matching what comes	5	f length 3, use those substrings to, to
6	erwards. So I will continue, you know,	6	create -- let's say in the context of
7	comparing until I can reliably determine that	7	strings, it would probably make more sense.
8	string cannot qualify as a match, at	8	There's a database structure called an
9	ich point in time I will stop examining any	9	verted index, which is something similar to
10	ore records	10	hash table idea; and then given that query
11	Q. In that case you may	11	tring, I will just then search the records
12	Qough every letter in the sequence in every	12	that have that and nothing else.
13	entry in the database to determine whether or	13	That would be an non-exhaustive
14	not there is a match, correct?	14	search.
15	A. I would think that depending on the	15	Q. So in the process you just
16	ery string and the definition	16	escribed, then, you'd consider all the
17	"similarity" that you have, that would	17	extracted index values?
18	require to actually compare everything,	18	A. Not during the query time, if th
19	her words, to not early terminate	19	what your question is. During the query
20	comparison		me I only consider the extracted index
21	Q. What about a system in which your	21	values that match my query.
22	abase contained nine-letter strings, and	22	Q. So to form the extracted index
23	r goal was to find the presence	23	Qlues, you take into account the content of
24	three-letter string in one of the database		each record, correct?
25	entries? Could you perform that search	25	A. I do it -- during the indexing

	Page 78		Pag
	w, I do it, yes.	1	your understanding from the
	Q. And then at the query time, you	2	disclosure in the Cox patents that Dr. Cox
	consider only the, only the index values that	3	was not concerned or
	have something in common with your query?	4	MR. NEMEC: Strike that.
	A. That is correct.	5	Q. -- was not interested in finding an
	(Discussion off the record.)	6	xact match in the data sets to be searched?
	A. That is correct.	7	A. I don't recall that, you know, in
	Q. I'm going to move on to another	8	the disclosure that it was an explicit
	erm. The term "neighbor" appears in certain	9	statement, saying it's, you know, we do not
10	of the challenge claims of the Cox patents,	10	ant the exact match or the closest match
	right?	11	Q. Some of the examples Dr. Cox uses
12	A. That is correct.	12	for application of his invention in the
13	Q. As well as "near neighbor"	13	patents are to identify songs and video
14	A. I believe	14	vorks, correct?
15	Q. And the term "neighbor search" also	15	A. I believe so.
16	appears in some claims?	16	Q. You think it's within the spirit of
17	A. I believe	17	at application to ignore exact matches of
18	Q. And "identifying a neighbor"	18	adio or video works in the search process?
19	appears in some claims?	19	MR. LUNER: Objection to form.
20	A. I believe	20	A. So again, I'm not very familiar
21	Q. As of 2000, is neighbor searching	21	with those applications from an
22	something that you were familiar with?	22	implementation and from a business
23	A. Yes.	23	standpoint, right; but ignoring the exact
24	Q. Dr. Cox doesn't purport to have	24	matches, right, is -- you know, those things
25	invented neighbor searching in his patents,	25	exist, right. There should not be, no.
	Page 79		Page
	does he?		Q. So if the intent of your system is
2	A. I don't believe so	2	to identify a song in a database, if that
3	Q. And in fact it was a concept well	3	exact work exists in the database, you're
4	known to people skilled in the art in and	4	going to want to find it, right?
5	before 2000?	5	MR. LUNER: Objection to form.
6	A. That is true	6	A. I mean to a large extent that has
7	Q. In general, what was neighbor	7	to do with a specific application, right? I
8	searching used for as of 2000?	8	can take scenarios in which given a query, if
9	A. So I can think of two -- two	9	there is something identical in your
10	journal applications for that. One is to	10	database, you know, that may not necessarily
11	speed up search, and the second one is to	11	be what you're after, something that is close
12	enable -- actually, speeding up search is	12	to that. And you know, for a typical
13	probably the primary application of that. I	13	example, something like that would be like a
14	mean the driver behind it.	14	recommended system.
15	Q. And how is it that use of neighbor	15	Q. In your work have you ever designed
16	searching would speed up the search?	16	a system for recognition of audio content?
17	A. Well, the general idea of a	17	A. No, I haven't.
18	neighbor search, right, which is, the goal is	18	Q. Have you ever designed a system for
19	to identify a close but not necessarily the	19	recognition of video content?
20	closest match, right. It, you know, it makes	20	A. No, I have not.
21	it, the logic, it makes it easy to make	21	Q. Have you ever written any papers
22	optimizations through the search process that	22	about audio or video recognition technology?
23	would allow you to get to an algorithm	23	A. No, I have not.
	that -- it's faster. Like, for example, it	24	Q. As of 2000, if you had a sear
25	has a sublinear time limit.	25	that was configured to identify close matches

21 (Pages 78-81)

Karypis

	$\text { Page } 82$		Page 84
	but would also identify an exact match, if		alpha neighbor search, you know. You
2	one were present in the data set being	2	identify everybody, right, within a certain
3	searched, do you believe a person skilled in	3	distance of your query or that came more
4	the art would have been correct	4	milar things and so forth.
5	characterize that as a neighbor search	5	Q. Okay. Would a nearest neighbor be
6	MR. LUNER: Objection.	6	a form of a neighbor?
7	A. So I believe this is an issue that	7	A. If I understand your question,
8	I have not addressed in length in my	8	you're asking me is an object, right, that is
9	declaration, and I believe this is addressed	9	he nearest neighbor, whether or not that is
10	in	10	so a near neighbor?
11	Q	11	Q. Or a neighbor.
12	Before you consult your	12	A. Or a neighbor.
13	ration, are you	13	What is your definition of a
14	question from your experience in the field?	14	eighbor"?
15	A. Yeah. I mean -- so your question,	15	Q. I would prefer to work from your
16	- just to make sur	16	Qinition of a neighbor as it was understood
17	if I have a search, right, that will retur	17	in the year 2000.
18	in addition to a close match, always an exact	18	So let's start with
19	match, would that be a neighbor search or	19	A. I mean the notion
2	t	20	, is someone that is close but not
21	Q.	21	necessarily the best or the optimal solution
22	A. -- correct	22	a search, right, so that would be a
23	if	23	neighbor.
24	the exact match, right, that wo	24	So th
25	that would not be a neighbor search, that	25	y be a subset
	Page 83		
1	uld be a, you know, a nearest neighbor		of the neighbor. So to answer your question
2	search. Actually in this case it would be a	2	yes, the closest would be close as well.
3	xact search.	3	Q. Okay. Now as of 2000, would the
4	Q. I'm asking that based on the	4	earch that always returned the closest match
5	owledge of people skilled in the art	5	the database being searched be accurately
6	2000, so separate from how the term may be	6	characterized as a neighbor search?
7	used or defined in the context of the	7	A. No, it will not be characterized.
8	patents.	8	If it returned the closest, it will not be
9	A. I mean if I have a search, righ	9	characterized as a neighbor search.
10	that is always guaranteed to return the	10	Q. What would people skilled in the
11	exact, like somebody skilled in the art, you	11	art have called that kind of a search as of
12	know, in the 2000 frame that you mentioned,	12	2000?
13	at would not characterize the thing as a	13	A. We would call that, use the term
14	near neighbor search, right? I mean that is	14	he nearest neighbor search.
15	a --	15	Q. And is the nearest neighbor search
16	Q. So what would one skilled in the	16	a form of a neighbor search?
17	art call a search that is designed to	17	MR. LUNER: Objection to form.
18	identify close matches but will also always	18	A. So the way the neighbor search is,
19	identify an exact match, if one is present in	19	u know, I have -- I have defined in my
20	a set?	20	declaration, I believe it's an agreement, you
21	A. So the term that someo	21	know, with the board's construction is that a
22	would have used, it would an exact search or	22	eighbor search, right, is a search, right,
23	a -- a -- some sort of a K nearest neighbor	23	that is not guaranteed, you know, to return
24	search, right, in which, you know, you	24	the -- the nearest neighbor search.
25	identify, you know, all; or something like an	25	So a nearest neighbor search is

22 (Pages $82-85$)

	Page 86		Page 88
	anteed to return the best result, so		construction in rendering your opinions in
2	arest neighbor search is not a type		ase, you have excluded from the
	ighbor search.		finition of "neighbor search" anything that
	Q. And you say that because of		uarantees identification of an exact or the
	arantee that a nearest neighbor search wil	5	closest match, correct?
	return the best result; is that right?	6	A. I have excluded anything that
	orrect, so the nearest neig		ys guarantees identification of the exact
		8	Q
	cult		Q. Likewise, in applying your
10	that, you know, you don't have that	10	derstanding of the patent office's
	threshold. I mean the question of whet		construction of identifying a neighbor, you
12	not the nearest neighbor search is to ret	12	ave excluded anything that guarantees to
13	result, it will guarantee to return the	13	ways return the exact or the closest match?
1	est result	14	A. So identifying a neighbor refers to
15	Q. And again, is this your	15	search process, right, so it's a search
16	aning of the term, separate and apart	16	thod that identifies, always identifies the
17	atent office construction in this case?	17	sest return, say the closest or the exact
18	A. Which term are you referring to	18	atch, right. You know, it's not what I
19	e nearest neig	19	fer to as identifying a neighbor
20	Q. Neighbor search.	20	Q And if the patent office
21	A.		ermine that a search is guaranteed to find
22		22	osest or an exact match qualifies as a
23		23	ighbor search in their construction, would
	structions, you know, it's -- actually		want to revisit the opinions rendered in
	they're in agreement.	25	your declaration?
	Pag		Page 89
1	Q. So what you're saying		LUNER: Objection to form
2	fference between your general understanding	2	A. Can you restate your question?
3	f the term "neighbor search" and what you	3	Q. Sure. If the patent office were to
4	nderstand the patent office construction to	4	conclude that searches, a search that
5	be; do I have that right?		guarantees finding an exact or the closest
6	A. So I believe the pat	6	match in a data set qualifies as a neighbor
7	astruction of the neighbor search	7	arch, would you want to revisit the
8	rch, right, that	8	inions you've rendered in your declaration?
9	ranteed	9	A. No
10	dentify a close but not necessarily the best	10	Q. That wouldn't change your view in
	neighbor, right? You know, this is, you	11	any way?
12	know, consistent with my construction, right,	12	A. No. My view is that a neighbor
13	and I believe in my declaration I have	13	arch or identifying a neighbor is a type of
14	further clarified that. And I believe, so	14	arch, but, you know, does not guarantee to
15	hen I have a search, right, in which it's	15	nd the best match. The type of search that
16	guaranteed to return a close but not	16	vays guarantees to find the best match is
17	cessarily the closest, all the time,	17	the neighbor search or identifying a
18	so better than neighbor sear	18	neighbor.
19	If I have a search in which,	19	Q. And what I'm asking you is, if the
20	ow, always guaranteed to return	20	atent office were to come to the conclusion
2	osest, okay, regardless of whether or not	21	at a search that does guarantee that
22	returns some things that they're not the	22	ill always find the exact or closest match
23	losest, right, that it's not a neig	23	a neighbor search, would y
2	earch. That's a nearest neighbor search.		visit the opinions in your declaration with
25	Q. So in applying the patent office's		regard to whether a neighbor search is

23 (Pages 86-89)

Karypis

	Page 90		Page 9
	disclosed in the prior art?	1	A. So if the title of that reference
	MR. LUNER: Objection to form.	2	is a unique key, right, a unique identifier
	A. The written statements are there.	3	of that reference, that would be a result
	So my opinion about what constitutes a	4	that I didn't find.
	neighbor search and define a neighbor was	5	Q. And if a search were to return a
	reached independent of the patent office, you	6	list of titles and indicate that one of those
	know, opinion, right. So I don't think I	7	titles is a match but not specify which one,
	would be -- I will be needing to revisit, you	8	do you believe that search will have
	know, my opinion in those terms.	9	identified a match within the context of the
10	Q. You understand that the patent	10	urt's claim construction, the board's claim
	fice is the one that ultimately decides how	11	construction?
12	these terms are to be construed, correct?	12	A. Can you repeat your question again?
13	A. I believe so.	13	Q. Sure. If a search were to return a
14	Q. So if the patent office were	14	st of titles and indicate that one of the
	reach a conclusion different from yours with	15	les in that list is a close match but not
16	regard to whether a search that guarantees	16	specify which one, do you believe that that
	finding an exact or the closest match	17	arch will have identified a neighbor within
	qualifies as a neighbor search, would you	18	e scope of the board's construction?
19	want to revisit the opinions in your	19	MR. LUNER: Objection to form.
20	claration?	20	A. So the result of the query is a set
21	A. Opinions regarding what?	21	of records, right; and I know within that
22	Q. Opinions regarding whether the	22	record there is a close match, but I don't
23	prior art references you've discussed in y	23	now which one it is.
24	declaration disclose a neighbor search.	24	Q. Correct.
25	A. So if the patent office defines a	25	A. Right? That will not have
	Page 91		Pas
	neighbor search as a type of search that	1	identified the close but not necessarily an
2	always guarantees to return the best result,	2	act or close match.
3	right, then my opinion as far as the validity	3	Q. And if a search is run and it
4	of the prior art, in light of the claims as	4	returned the title of the closest matching
5	it relates to the neighbor search in light of	5	reference, will that search have identified a
6	the prior art, right, will have to change.	6	neighbor within the board's construction?
7	Q. Just for convenience, to have the	7	A. If that search within the
8	construction in front of you, if you could	8	construction of the board identified a close
9	turn to paragraph 60 in your declaration.	9	but not necessarily an exact or closest
10	A. I have 6 here. You sure?	10	match, if it always returned the closest
11	Q. Paragraph 60, the grid showing the	11	match, right, it's my opinion that that
12	constructions that were applied.	12	particular board construction with the close
13	A. Yes.	13	but not necessarily exact or closest match,
14	Q. So looking at the construction for	14	but sort of has two implications, one
15	neighbor search there, it begins with	15	implication is that if the result -- you
16	identifying.	16	know, I mean if the query, that's one, if the
17	Do you see that?	17	query of guarantee to return the closest,
18	A. Uh-huh.	18	right, it's not a neighbor search.
19	Q. And how do you interpret the term	19	So given your question, if the
20	"identifying"?	20	query always returned the closest match, no,
21	A. Finding.	21	that will not be a neighbor search.
22	Q. So if a search is run and returns	22	Q. Let's move on to a different term.
	the title of a matching reference, is it yo	23	The term "approximate nearest neighbor
	view that that search has identified a match	24	arch" appears in some of the contested
25	within the scope of this construction?	25	claims, correct?

Karypis

	Page 94		Page 96
1	A. Yes.		an action," correct?
2	Q. And you understand that the board	2	A. I believe so.
3	has preliminarily construed that term to mean	3	Q. Do you have an understanding of
4	identifying a close match that is not	4	what constitutes an action within the scope
5	necessarily the closest match?	5	of this claim term?
6	A. Yes.	6	A. It's been a while since I looked at
7	Q. Now based on your review of the Cox	7	this particular claim. I need to be able to
8	patents, would you agree with me that Dr. Cox	8	see my declaration for that.
9	doesn't purport to have invented the concept	9	Okay, I've had a chance to go over
10	of the approximate nearest neighbor	10	it, so what was your question?
11	searching?	11	Q. Okay, I'll ask it again.
12	A. That is correct.	12	Do you have an understanding of
13	Q. That's a concept that was known to	13	what constitutes an action within the scope
14	people skilled in the field as of 2000?	14	of the term "determining an action" in the
15	A. The approximate nearest neighbor	15	'988 patent claim 15?
16	search as a term, right, has been used, you	16	A. I believe so.
17	know, in -- prior to 2000, yes.	17	Q. What is your understanding?
18	Q. Pardon me. Is approximate nearest	18	A. So determining an action over here
19	neighbor searching something that you had	19	is, you know, selecting an action to perform.
20	experience with as of 2000 ?	20	Q. What sort of actions would fall
21	A. Yes.	21	within the scope of the term "action" in this
22	Q. Now, putting aside the Cox patents	22	claim?
23	and the board's constructions in this case,	23	A. I presume, you know, fetching a
24	as of 2000, was it your understanding that an	24	record from a database and transmitting it.
25	approximate nearest neighbor search must	25	Q. Anything else?
	Page 95		Page 97
1	always be sublinear?	1	A. I cannot think of any --
2	A. So outside the context of the	2	(Discussion off the record.)
3	patents, the term for approximate nearest	3	A. No.
4	neighbor search, you know, it's usually a	4	Q. Let's go down a little bit further
5	sublinear algorithm, but it doesn't have to	5	in the '988 patent and look at claim 31.
6	be similar.	6	Do you see that around line 46 in
7	Q. Take a look at Exhibit 2, that's in	7	column 26?
8	front of you, the '988 patent. And in	8	A. Yes.
9	particular if you look at column 26.	9	Q. And you see there that the claim
10	A. Yes.	10	specifies "The action comprises providing
11	Q. Element C of claim 15 at the top of	11	and/or displacing additional information in
12	the column, do you see the language,	12	association with the electronic work"?
13	"Determining an Action"?	13	A. Yep.
14	A. So which element do you want me to	14	Q. Do you understand that to be giving
15	take a look at?	15	an example of an action within the scope of
16	Q. We're looking at claim 15 in the	16	claim 15?
17	'988 patent, and this is around line 7.	17	A. That could be one of the actions,
18	A. Of the element B , right?	18	the type of action performed.
19	Q. The element C, I'm sorry.	19	Q. So displaying additional
20	A. Element C.	20	information in association with the
21	Q. "Electronically Determining an	21	electronic work would be an action that meets
22	action," do you see that?	22	the definition of "action" in claim 15,
23	A. Yes.	23	right?
24	Q. You've expressed some views in your	24	A. Yes.
25	declaration regarding the term "Determining	25	Q. And might that additional

Karypis

	Page 98		Page 1
	information include the title of the song		And if you would like to
2	that you're searching for?	2	double-check what I've read, I was reading
	A. That can be the additional	3	that from paragraph 60 in your declaration.
	information.	4	A. Yep. I'm in agreement with that
	Q. Can you think of anything that you	5	interpretation of the sublinear term, to a
	believe would not qualify as an action, as	6	large extent, yes.
	that term is used in claim 15 in the '988	7	Q. Where the board refers to "size" in
	patent?	8	at definition, the size of the data set,
	MR. LUNER: Objection to form.	9	you've equated that with the number of
10	A. So your question, if I -- actually	10	entries in the reference database; is that
	your question was, can I think of any type of	11	right?
12	actions that will not fall within the scope	12	A. Number of records, yes.
13	of this thing?	13	Q. Number of records.
14	Q. Correct	14	And is it your view that that's how
15	A. So an action that is not based	15	the term is used in the Cox patents as well?
16	the identification would not fall within the	16	A. I believe so.
17	scope of that.	17	Q. Now, let's take a look at
	Q. Okay. Anything else come to mind?	18	Exhibit 3, if you would, the '237 patent, and
19	A. Well, an action that's not	19	in particular column 21. Starting around
20	determined electronically.	20	line 14, if you could take a look at that and
	Q. And you say that because the claim	21	let me know if you are familiar with that
22	specifies that it's electronically	22	assage.
	determining action, right?	23	A. Okay. I read the passage. Go
24	A. Yes.	24	ahead.
25	Q. And you also say that an action not	25	Q. In the example that's described
	Page 99		
	based on identification of the electronic	1	there, how many entries do you understand
2	work wouldn't qualify, because the claim	2	there to be in the data set that's being
3	specifies that the action must be based on	3	iscussed?
4	the identification of the electronic work,	4	A. So any of these example is that 9
5	right?	5	million -- 90 million, I'm sorry.
6	A. Yep.	6	Q. So it's your understanding that
7	Q. Focusing just on the word "action,"	7	there are 90 million entries in the database?
8	can you think of anything that would fall	8	A. So according to the passage, N is
9	outside the scope of action, as it's used in	9	defined to be the number of entries, and the
10	the context of the claim?	10	database stores each frame as a record. So
11	MR. LUNER: Objection to form.	11	ere are a total of 90 million records
12	A. That's a very broad question.	12	he database.
13	I cannot really think of anything.	13	Q. And this database contains 100,000
14	I mean outside, you know, the constraints of	14	commercials; is that right?
15	e rest of the words in this step.	15	A. That's what it says, yes.
16	Q. Let's move to another term. And	16	Q. So it's your understanding that
17	the word "sublinear" appears in some of the	17	each commercial doesn't have its own entry in
18	challenge claims issued in the -- correct?	18	the database, but rather the commercials are
19	A. I believe so.	19	deconstructed into their individual frames?
20	Q. And the board has indicated that	20	A. So, yes, in this particular
21	blinear should be construed to mean a	21	ample, each frame is considere
22	search whose execution time scales with a	22	entry, each frame from the commercial is
23	ss than linear relationship to the size of	23	considered to be an entry in the database.
	the data set to be searched," right?	24	Q. And that's how we get to N equals
25	A. That sounds right.	25	90 million?

26 (Pages 98-101)

Karypis

	Page 102		Page 104
1	A. Yes.	1	Q. And if you were to organize the
2	Q. Now if we were to construct the	2	database where each commercial is a database
3	database such that each commercial was an	3	entry, what would be the merit of that
4	individual entry in the database, then N	4	approach?
5	would be 100,000?	5	A. So the merit of that approach is,
6	A. If the record is a commercial, yes,	6	with my goal at the end of the day is to
7	then it would be 100,000	7	identify a commercial that contains my query
8	Q. Now in your view, in the example	8	frame, then I just need to identify one
9	here regarding the number of comparisons	9	matching query frame to a video frame in a
10	would be required to determine whether there	10	record. So that I don't have to identify,
1	is a match among these 100,000 commercials,	11	you know, search every single one video
12	would it make a difference if the database	12	frame, you know, from the record.
13	was constructed with each database entry	13	Q. Now on line 25, there's a reference
14	being one commercial, as opposed to one	14	to a storage requirement of nine gigabytes.
15	frame?	15	What does that refer to?
16	A. Again, the question then becom	16	A. The nine gigabytes I believe is 9
17	what is the granularity of the results,	17	million times 1,000 bytes.
18	right? If what you want to identify is a	18	Q. So is that the size of the database
19	frame, right, then that's the way to do it.	19	that would be required to hold all of these
20	If you want to identify a commercial, right,	20	frames?
21	then I would probably store each, each	21	A. It's not here
22	commercial in its own recor	22	Q. The proposal a couple lines above
23	Q. And	23	is to take every tenth frame to construct the
	identify a commercial, using a single frame	24	database from the total of 90 million,
	as a query?		
	Page 103		Page 105
1	A. Okay. And what is the question?	1	A. Correct.
2	My goal is what then?	2	Q. And the assumption is that each
3	Q. Yes, I'm sorry. If that was your	3	vector, meaning each frame, is one kilobyte,
4	goal then -- then how would you construct the	4	right?
5	data set?	5	A. Okay.
6	MR. LUNER: Objection to form.	6	Q. So that gets us to the coverage
7	A. I can see merits for both	7	requirement of 9 gigabytes?
8	approaches, so I'm really concerned with the	8	A. Yes.
9	way it was discussed over here, you know,	9	Q. That's a representation of the size
10	90,000 -- 90 million records, one frame,	10	f the database that would be required,
1	which they're base records, or I can	11	right?
12	construct it as one record for each	12	A. I believe so, yeah.
13	commercial.	13	Q. In your declaration at paragraph
14	Q. Now, using my example where you are	14	61, you list two possible interpretations of
15	trying to identify a commercial using one	15	size of the data set within the construction
16	frame from the commercial, what would be the	16	of sublinear, right? One being the number of
17	merit of organizing the database with each	17	entries in the data set and two being the
18	database entry being a single frame?	18	size of an individual entry in the data set;
19	A. So the merit of doing something	19	is that right?
20	like that is, you know, going back to the	20	A. That's correct.
21	whole example that you used before, one	21	Q. Why isn't there a third possible
22	record database, right? So if I organize it	22	interpretation which would be the size on
23	this way, I could potentially develop some,	23	disk required for the database?
24	you know, sophisticated basis, allowing me to	24	A. That can be a valid interpretation.
25	do it in a non-exhaustive fashion.	25	Q. And you've expressed the opinion

27 (Pages 102-105)

	Page		Page 108
	that the number of entries in the data set is		So you think someone with
	the appropriate interpretation.	2	experience in text information retrieval
	Why would the size on disk not be	3	would be able to apply that knowledge to more
	an appropriate interpretation?	4	highly dimensional problems associated with
	A. I think that can also be an	5	udio and video retrieval?
	appropriate interpretation.	6	A. I do.
	MR. NEMEC: Can we go off the	7	Q. At the end of your definition there
	cord for just a moment?	8	is reference to a related area, a graduate
	THE VIDEOGRAPHER: The time is	9	degree in the same or related area.
10	12:09. We're going off the record.	10	What would be the related areas
11	This will be the end of disk number 2	11	t you're referring to there?
12	(A brief recess was taken.)	12	A. So related areas would be probably
13	THE VIDEOGRAPHER: The time is	13	electrical engineering, possibly statistics.
14	:20. We're back on the record. This	14	(Discussion off the record.)
15	is the beginning of disk number 3 .	15	A. Statistics.
16	Q. Dr. Karypis, I would like to direct	16	Q. If the level of skill in the art
17	you to paragraph 11 in your declaration.	17	was determined to be higher or lower than
18	A. Yes.		what you've described here in your
19	Q. In paragraph 11 you state your	19	declaration, do you believe that would impact
20	opinion on the qualifications of a person	20	ny of the opinions you've expressed
	ordinary skill in the art of the inventions	21	A. I do not think
22	at issue in this case; is that right?	22	MR. NEMEC: Mark as Exhibit 6 a
23	A. That's correct.	23	document, a 13-page document that says
24	Q. Now, is it your view that there is	24	"Big O notation" at the top.
25	any material difference between your	25	(Karypis Exhibit 6, Wikipedia entry
	Page 107		Page 109
	definition of the level of skill in the art		entitled, "Big O notation," marked for
2	and Dr. Moulin's?		identification, this date.)
3	A. In my view, I don't think there's a	3	Q. Do you have Exhibit 6 before you?
4	material difference. I think there is a	4	A. I do.
5	difference in terms of the degree	5	Q. Is this a document that you
6	requirements, but I think once you've had	6	reference and rely upon in your declaration?
7	your degree and experience, it all comes out	7	A. I believe so.
8	to about the same.	8	Q. And this is a printout from
	Q. Okay. Now your definition in	9	Wikipedia?
10	paragraph 11 refers to two to three years of	10	A. Yes.
11	relevant experience.	11	Q. Is this something that you
12	What, in your view, would be	12	downloaded?
13	relevant experience?	13	A. I don't remember if I downloade
14	A. So relevant experience in this case	14	but it is something that I did find and read,
15	would be someone working in the area of, you	15	and read.
16	know, content retrieval, content comparison,	16	Q. It is dated at the bottom, it says
17	you know, database systems, information	17	"September 15, 2015." It actually reads
18	retrieval.	18	"9/15/2015," do you see that?
19	Q. And would it matter what sort of	19	A. Uh-huh.
20	content or information the person had	20	Q. Do you know if that was the date
21	experience with?	21	which this was printed?
22	A. I don't think it would have been,	22	A. I'm not sure what date that thing
23	you know, the type of methods being discussed		
24	in those patents, Ithink are to a large	24	Q. Do you know when this, this
25	extent, you know, content agnostic.	25	document was created?

Karypis

	Page 110		Page 112
1	A. No.	1	AFTERNOON SESSION
2	Q. Did Wikipedia exist in 2000?	2	(Time noted: 1:17 p.m.)
3	A. I don't really know the answer to	3	THE VIDEOGRAPHER: The time is now
4	that, but there may have been some earlier	4	1:17. We are back on the record.
5	version of that. I don't know when Wikipedia	5	MR. NEMEC: I would like to mark as
6	came online.	6	the next exhibit, which I believe is 7,
7	Q. Do you know one way or the other	7	Karypis Exhibit 7, a copy of the
8	whether this discussion of the "Big O	8	6,188,010 to Iwamura.
9	notation" that we've marked as Exhibit 6	9	(Karypis Exhibit 7, Photocopy of
10	existed in the year 2000?	10	U.S. Patent No. 6,188,010, marked for
11	A. So this particular content that is,	11	identification, this date.)
12	this particular document, you know, I'm not	12	GEORGE KARYPIS, resumed.
13	sure it was existing in the year 2000 or not.	13	EXAMINATION (Cont'd.)
14	Q. And there are a number of other	14	BY MR. NEMEC:
15	Wikipedia printouts that you reference in	15	Q. Do you recognize Exhibit 7?
16	your declaration, right?	16	A. I do.
17	A. Uh-huh.	17	Q. Is this one of the prior art
18	Q. Would your answer be the same with	18	references that you expressed opinions about
19	respect to those, you don't know one way or	19	in your declaration?
20	the other whether they existed in 2000?	20	A. Uh-huh.
21	A. That would be correct.	21	Q. Would you agree that the Iwamura
22	MR. NEMEC: All right. We're on	22	patent describes a system for searching for
23	the cusp of jumping into a deeper topic,	23	melodies?
24	so this is probably a logical point to	24	A. I do.
25	break, to grab some lunch.	25	Q. And in particular a system whereby
	Page 111		Page 113
1	THE WITNESS: Sounds good.	1	use of relative pitch values from a query and
2	THE VIDEOGRAPHER: The time is	2	compare those to pitch values of known
3	12:28. We're going off the record.	3	references to look for a match or a near
4	(Lunch recess taken at 12:28 p.m.)	4	match; is that a fair characterization?
5		5	A. Yes. That's one of the ways, yes.
6		6	Q. One of the things that's described
7		7	in the Iwamura reference is a note-by-note
8		8	comparison process as between a query work
9		9	and a reference work, correct?
10		10	A. Basically, yes.
11		11	Q. Would you generally explain your
12		12	understanding of how that note-by-note
13		13	comparison process works, as described in
14		14	Iwamura?
15		15	A. My recollection of the particular
16		16	algorithm or approach, something like that,
17		17	so I have a query which is for a certain
18		18	length; and I have a reference melody that's
19		19	for a certain length. And then I start at
20		20	the beginning of the reference melody and I
21		21	compute a distance, you know, between each,
22		22	what is called data points of the query to
23		23	the data point in the reference. That would
24		24	give me some score of distance, I believe.
25		25	And then I, you know, shift the

Karypis

	Page 114	Page 116	
	query by one to the right, and I repeat the		purposes, right?
2	process and keep on doing that until the end.	2	A. Yes.
3	And at the end I return the score of the	3	Q. So I would be correct in assuming,
4	match, the best scoring subsegment or the	4	wouldn't I, that you believe these are
5	highest scoring subsegment.	5	accurate representations of what a query work
6	Q. The highest or the lowest scorings?	6	might look like, according to Iwamura?
7	A. I believe they're using distance.	7	A. Uh-huh
8	hat would be the lowest.	8	Q. Or what a reference work might look
9	Q. Now, if we assume hypothetically	9	ike?
10	Q a query is a string, $5,4,3,2,1$, is	10	A. That is correct.
1	at a fair representation of a query that	11	Q. But you're not certain one way or
12	might use in the Iwamura note-by-note search?	12	the other whether the centering you described
13	A. I believe so, yes. Those would be	13	is required?
14	relative pitches, yes.	14	A. I don't recall the specific method
15	Q. So let's assume	15	at they use, but the fact that they have,
16	2, 1, and let's assume we're going	16	u know, both positive and negatives that
17	mpare that to a reference work that has the	17	easures a high and a low relative to a
18	quence $6,5,4,3,2,1$.	18	seline, so that's where the negative values
19	that a reasonable assum	19	mes in.
20	ake, according to Iwamura?	20	Q. Now, so let's assume for purposes
21	A. Say that again?	21	this hypothetical that the centering is
22	Q. Can we assume that $6,5,4,3,2,1$	22	t required.
23	ul	23	So in the hypothetical that I'm
24	reference	24	scribing the query is $5,4,3,2$, 1 , okay?
25	A. You need to check whether or not	25	A. Okay.
	Page 115		Page 117
	references are centered, which has to	1	Q. And the reference work that we're
2	ith whether or not it will have present	2	Qmparing it to is $6,5,4,3,2,1$, okay
3	egative values or not	3	A. Okay.
4	Q. Whether they	4	Q. So when we begin the note-by-note
5	sorry?	5	Qmparison between this query and this
6	A. Whether there would be negative	6	reference work, how do we align the pieces or
7	alues present in the sequence or not. I	7	he strings for the first comparison?
8	elieve, you know, both actually, the query	8	R. LUNER: Objection to form.
9	nd the reference, those are relative pitch	9	A. So I believe Iwamura disclosed a
10	ifferences, so -- and I don't recall if they	10	uple of methods. One is one that does
	center those things or not.	11	itial alignments by computing the scores by
12	Q. What do you mean by "center"?	12	relying on the peaks, and I also believe they
13	A. For example, subtract the mean	13	disclosed an early, less sophisticated method
14	value out of the values.	14	at, you know, they start from the beginning
15	Q. Okay. So you're not sure whether	15	to align with things.
16	any given query or reference string would	16	Q. Okay. And is the less
17	have to have some negative numbers in it?	17	phisticated method that you are describing
18	A. Correct.	18	the note-by-note comparison?
19	Q. Now, you have a couple of examples	19	A. I believe so, yes.
20	of strings in your declaration, and we can	20	Q. So that's the one that I'm asking
	check those to get the answer.	21	out at this point now
22	Paragraph 160 to 161, I bel	22	If we were to be using t
23	Let's see.	23	-by-note comparison, how would we line up
24	And the	24	query and the reference in order to make
25	references that you selected for illustrative	25	that first comparison?

Karypis

	Page 118	
	A. So the first position of the query	
2	will align against the first position of the	2
3	reference and so forth.	
4	Q. So for example, the 5 would align	4
5	with the 6 , and 4 would align with 5 and so	5
6	forth?	6
7	A. Correct.	
8	Q. And then in the note-by-note	8
9	rocess, after that first set of comparisons	9
10	is made, the query work would be shifted to	10
11	the right; is that correct?	11
12	A. The query would be shifted to the	12
13	right by one, correct.	13
14	Q. So in the second positi	14
15	the 5 would align with the 5 ?	15
16	A. I don't think that's, so if the	16
17	query is $6,5,4,3,2,1$, right?	17
18	Q. The query in my hypothetical was 5,	18
19	$4,3,2,1$, and the reference was $6,5,4,3$,	19
20	2,1 ?	20
21	A. Yes, so the first 5 with the query	1
22	ill align with the second location of the	22
23	reference.	23
24	Q. And	24
25	wouldn't be considered, because it does not	25
	Page 119	
1	align with a note in the query?	
2	A. No, correct. It would not make	2
3	that comparison.	3
4	Q. Now you just referenced a few	
5	moments ago the peak search approach that's	5
6	described in Iwamura, correct?	6
7	A. Correc	7
8	Q. Now,	8
9	te-by-note search, would a peak search of a	9
10	given query against a given reference require	10
11	fewer comparisons?	11
12	A. The peak-based approach would	12
13	require fewer comparisons than the note by	13
14	note.	14
15	Q. And turning back to the	15
16	note-by-note comparison process, if you had a	16
17	five-note query in the note-by-note	17
18	comparison, would the Iwamura process compare	18
19	that five-note query to every set of five	19
20	consecutive notes in the reference?	20
21	A. In the quote/unquote naive	21
22	note-by-note approach, the query would	22
23	compare to every set of five consecutive	23
24	notes in the reference.	24
25	Q. I direct your attention to column 7	25

reference.
Q. And then the 6 in that instance
align with a
A. No, correct. It would not make that comparison.
Q. Now you just referenced a few
moments ago the peak search approach that's described in Iwamura, correct?
A. Correct.
Q. Now, as compared to the
note-by-note search, would a peak search of a given query against a given reference require fewer comparisons?
A. The peak-based approach would
require fewer comparisons than the note by note.
Q. And turning back to the
note-by-note comparison process, if you had a
five-note query in the note-by-note comparison, would the Iwamura process compare that five-note query to every set of five consecutive notes in the reference?
A. In the quote/unquote naive
note-by-note approach, the query would compare to every set of five consecutive notes in the reference.
Q. I direct your attention to column 7

1

in the Iwamura patent, in particular the text that begins around 20 and continues down to around 45. If you want to take a moment to look at that and, I will ask my question.
A. Sure.

So you are saying up to line 35 , right?
Q. Around to 45, after that second equation.
A. Okay.
Q. The text you just reviewed in column 7 of Iwamura relates to the peak search process, correct?
A. That is correct.
Q. And what we see depicted in the first equation there from about line 26 through 30 is a comparison of a database reference in the top line, correct?
A. Well, the top line actually has part of the database reference.
Q. Part of the database reference being compared to all or part of a query in the second line, correct?
A. That is correct.
Q. And in this particular depiction

Karypis

	Page 122		Page 124
1	on't think so. I believe the	1	declaration, or 101 of 292, whichever you
	ure at the bottom of page 98 does, you	2	prefer?
3	ow, imply a shift.	3	A. Yes.
4	Right, those two things should be	4	Q. Okay. So in your view that's a
5	med the other way around.	5	proper example of a query that might be run
6	Q. So that was a mistake in these	6	using the Iwamura system?
7	pictions of how Iwamura operates in your	7	A. It's a query.
8	eclaration?	8	Q. And below that where it says
9	A. Yeah	9	eference," do you recognize that string of
10	st row shou	10	ers that
	Q. Do you know if there is any	11	you used as the record in the database, in
	sclosure in Iwamura of shifting the	12	your example in paragraph 160 of your report?
13	database reference with respect to the query?	13	A. Yes.
14	A. I don't recall.	14	Q. Now take a look at the chart that
15	Q. In paragraph 162	15	appears down below.
16	ure we were just discussing, the	16	ee that reference sequence
17		17	the bottom line of the grid?
18	at, consistent with the mistakenly place	18	A. Ye
19	row, is it not?	19	Q. And do you see in comparison number
20	A. Let me rea	20	11 in that row the query appears?
21	Actually, that statement over	21	A. Yes, I do.
22	not really clear whid	22	Q.
23	shifting.	23	comparison numbers 1 through 20 depicted in
24	Q. Did you write this portion of your	24	e grid, that the query is shifted by what,
	declaration?	25	one note with respect to the reference?
	Page 123		Page 125
1	A. I did.	1	A. Yes.
2	Q. Did you write all of your	2	Q. Based on your understanding of the
3	claration?	3	note-by-note comparison process described in
4	A.	4	wamura, which of the comparisons in this
5	the declaration; then, you know, I got some	5	grid, if any, would take place in the
6	language edits from, from counsel.	6	note-by-note comparison process?
7	MR. NEMEC: Mark as the next	7	A. So my recollection of the
8	exhibit, Karypis Deposition Exhibit 8, a	8	te-by-note comparison process.
9	single-page chart.	9	So my understanding of the
10	(Karypis Exhibit 8, Single-page	10	te-by-note process that's described in
11	chart, marked for identification, this	11	vamura, that would be a comparison 11 to 20
12	date.)	12	but I can easily see that also comparisons 1
13	Q. Dr. Karypis, I've put this together	13	hrough 10 would also be included here.
14	to try to make the next set of questions that	14	Q. All right. Now, I ask you the same
15	I want to walk through a little easier to	15	question but with respect to the peak note
16	understand, rather than asking you to	16	earch.
17	emorize long strings	17	If you were comparing this query
18	Take a look at the top where	18	ork to this reference work using the peak
19	ys "Query."	19	te search of Iwamura, which, if any, of the
20	Do you see that string of numbers?	20	comparisons 1 through 20 would take place?
21	A. Yes.	21	A. So my understanding of Iwamura, so
22	Q. Can you just take a look	22	e comparison that would take place that
23	Qifirm that that's the same string of	23	ould be first number 13. And it would be
24	numbers that you used in your example of the	24	comparison number 18.
25	Iwamura operation at page 97 of your	25	Q. Does the Iwamura place any

32 (Pages 122-125)
Veritext Legal Solutions

Karypis

	Page 126		Page 128
	restriction on the distance between peak	1	A. So the way a peak is defined has to
2	notes?	2	be a local minimum or local maximum, which by
3	A. I don't recall off the top of my	3	construction would have a minimum distance
4	head. If there is any restrictions on the	4	required.
5	distance between the peak notes. I can take	5	Q. What would that minimum be?
6	a look.	6	A. I believe it would be at least one
7	Q. Sure, I will have you take a look,	7	or two notes
8	but before you do that, sir, let me ask	8	MR. NEMEC: Go ahead and mark
9	another question.	9	another chart as Exhibit 9
10	Would distance between the peak	10	(Karypis Exhibit 9, Single-page
11	notes in either a query or a reference item	11	chart, marked for identification, this
12	in Iwamura would be a function of the music,	12	date.)
13	right?	13	Q. Do you have Exhibit 9, Dr. Karypis?
14	A. The distance between the peak notes	14	A. Yes.
15	in either the query or the reference would be	15	Q. At the top of the page it says,
16	a function of the music and a function of how	16	"Query * 5, 4, 3, 2, 1," do you see that?
17	they're, whether or not they're, how they're	17	Can you accept, for purposes of
18	doing the centering.	18	this hypothetical, that that's a query
19	Q. Okay. So let's take that as	19	string, according to Iwamura?
20	two pieces, then.	20	A. So the one part that I need to
21	First, can you look at Iwamura and	21	double check is whether or not their peak
22	confirm whether or not Iwamura requires	22	identification algorithm will allow a peak at
23	centering?	23	the beginning of the string or at the end of
24	A. Sure.	24	the string, as a result of their peak
25	So I describe both the case in	25	identification approach.
	Page 127		Page 129
1	which, excuse me, they have both absolute	1	Q. If you look back at paragraph 160
2	peaks as well as relative peaks data, and I	2	in your declaration, page 101 of 292, the
3	don't believe they describe how to get the	3	sample query work that you use there begins
4	relative pitch data, so it's both scenarios.	4	with peak, correct?
5	Q. So they describe scenarios that	5	A. Yes, it does.
6	would involve centering and not involve	6	Q. So at least when you prepared this
7	centering; is that what you're saying?	7	example you believed that a query string,
8	A. It's a relative versus an absolute,	8	according to Iwamura, could begin with a
9	yes.	9	peak?
10	Q. Okay. And then the second half of	10	A. It would seem that way, so I'm just
11	the question is: Is there anything in the	11	trying to verify that.
12	Iwamura disclosure that would place some	12	Q. If we assume that that is an
13	limit on the number of notes between the	13	admissible way to begin a query, then can you
14	peak -- between the peaks?	14	accept that this query of $* 5,4,3,2,1$ is
15	A. So my understanding of the method	15	an appropriate theory, according to Iwamura?
16	they used to identify peaks, there is no	16	MR. LUNER: Objection to form.
17	limitation in terms of what, the distance	17	A. Is it an appropriate way to start
18	between two successful peaks.	18	the query, then -- so with a peak note, yes,
19	Q. And would that be true of both	19	that would an appropriate query.
20	query and the reference?	20	Q. And if you look down at the
21	A. I believe so.	21	reference, do you see the string of numbers?
22	Q. And just to make sure we're clear	22	A. I do.
23	on this, Iwamura also doesn't set a minimum	23	Q. And if we again assume that it's
24	limit on the number of notes between peaks,	24	appropriate according to the teachings of
	correct?		Iwamura to begin a string with a peak, can

Karypis

	Page 130		Page 132
	you accept, for purposes of this	1	difference between 4 and 2?
2	hypothetical, using that string as a	2	A. I believe so.
3	reference?	3	Q. And so forth until you're at the
4	A. Under all of the above ifs, yes, I	4	end of the query?
5	do.	5	A. Uh-huh.
6	Q. And if our assumption about the	6	Q. Do you agree that if you were to
7	ability to start a string with a peak is	7	perform that comparison and add up the
8	incorrect, then the examples in your	8	numbers it would total 5?
9	declaration are also incorrect, right?	9	A. Yes.
10	A. The particular query that I used in	10	Q. And that's the total absolute
11	my declaration would be incorrect.	11	difference that Iwamura uses to determine
12	Q. And looking at the sample query on	12	whether a reference is a match to a query or
13	Exhibit 9, how many peaks does that query	13	not --
14	have?	14	A. Yes.
15	A. Probably	15	Q. -- is that correct? Okay.
16	Q. And which one is that?	16	So in the peak-by-peak -- pardon
17	A. That would be the one marked with a	17	me, in the peak search process, comparisons
18	star or a 5.	18	umber 1 through 4 in Exhibit 9 wouldn't take
19	Q. And how	19	lace, correct?
20	reference have?	20	A. That would be correct.
21	A. That would	21	Q. And comparisons 6 through 10 would
22	Q. Which ones are those?	22	not take place, correct?
23	A. That would be 6 and 6 .	23	A. That would be correct.
24	Q. Okay. Look down at the	24	Q. And comparisons 12 through 16 would
25	depicted below. Do you see the reference	25	not take place?
	Page 131		Page 133
1	string in green at the bottom of the grid?	1	A. That would be correct.
2	A. I do.	2	Q. And using this example query and
3	Q. And do you see the query grid	3	reference, would Iwamura make any comparison
4	depicted in various, the comparison number	4	that takes into account the one digit, digits
5	rows up above?	5	in the reference sample?
6	A. I do.	6	MR. LUNER: Objection to form.
7	Q. We were using the peak search	7	A. So your question was whether or not
8	comparison process of Iwamura, which, if any,	8	he notes marked with 1 would ever be
9	of the comparisons 1 through 16 would take	9	compared?
10	place?	10	Q. The question is whether the note in
11	A. That would be comparison number 5,	11	e string that reads $622,221,654321$, were
12	and that would be comparison number 11.	12	e ones --
13	Q. The second one you said was?	13	MR. NEMEC: Strike that.
14	A. 11.	14	Q. In the reference string reading
15	Q. Now, during each comparison, what	15	22,221, will that 1 ever be compared to a
16	computation does Iwamura perform?	16	note in the query?
17	A. It computes the pairwise distance	17	MR. LUNER: Objection to form.
18	between the aligned positions, so the	18	A. I'm sorry, the question is whether
19	pairwise difference, absolute difference.	19	not that one in the query could be
20	Q. So using, for example, the	20	compared to a note in the reference?
21	comparison between line 5 and the reference,	21	Q. Correct.
22	you would first take the difference between 5	22	MR. NEMEC: No, strike that.
23	and 6; is that right?	23	Q. The question is whether the 1 in
2	A. Correct.	24	e reference would ever be compared to any
25	Q. And you would add that to the	25	note in the query, and this is in the peak

34 (Pages 130-133)

Karypis

	Page 134		,
	search according to Iwamura.		passing description of those from column 9,
2	A. Uh-huh	2	lines 48 to 50, that indicate that those are
3	So the 1 in the reference would not		geologic send, user defined.
	be compared to any note in the query.		Q. So Iwamura doesn't provide any
	Q. If you take a look at compariso		jective criteria for defining what would be
	mber 12		an unimportant portion of the music sample,
	A. U	7	correct?
8	Q. -- and	8	A. My recollection of the disclosure,
	Q	9	's correct.
10	that p	10	That would be determined at the
11	absolute difference sums to zero?	1	Qretion of the person who is creating the
	A. I	12	ference database?
13	Q.	13	A. It's not actually clear. I mean
14	Qact match between the query and th	14	hat the specifications disclose, it usually
15	portion of reference work?	15	identifies such important portions, that's
16	A. That is representativ	16	key word. The other unimportant portions
17	match,	17	cannot be ignored. What is not clear over
18	Q.	18	here is who is the us
19	Q.ess of the Iwamura, this comp	19	Q. Does the Iwamu
20	no	20	at the query represent an important portion
21	PR LUNER.	21	of a music work?
22	A. My understanding of	22	A.
23	peak-by-p	23	Q. Do the teachings of Iwamura require
24	comparison will not be performed.	2	esent an important portion
25	(Discussion off the record.)	25	of the musical work?
	Page 135		Page
1			A. I don't think the Iwamura, you
2	w the peak-by-peak search approach works	2	now, have not had a requirement one way or
3	amura, tha	3	the other.
4	formed.	4	Q. So if the reference database in
5	Q	5	wamura were constructed to omit the
6	essarily find the best matching melody	6	unimportant portions of the references, and
7	segment in the reference; is that correct?	7	the user constructed a query based on one of
8	A. So in that case, you know, Iwamu	8	those unimportant portions of the music, the
9	1 not find the best matching segment in	9	search wouldn't result in a match, correct?
10	the melody that has the peak notes aligned	10	A. So if the database does not have
11	Q. And using the peak search approach	11	the portions of a melody in which, that the
12	of Iwamura, not all data in the reference is	12	user searches, yes, that will not lead to a
13	considered, corr	13	atch.
14	A. That is c	14	Q. And let me actually ask that again,
15	Q. Another teaching in the Iwamur	15	because I think I may have misstated how
16	reference is that the user may elect not to	16	Iwamura operates.
17	consider unimportant portions of the	17	If the reference databa
18	reference melodies, correct?	18	amura embodiment is structured such that
	A. Coret.	19	e unimportant portions are to be skipped
20		20	d a query is based on one of the
	definition provided in Iwamura as to wh	21	nimportant portions of a reference work, no
22	would constitute an unimportant portion of a	22	atch will be found, correct?
23	music reference?	23	MR. LUNER: Objection to form.
24	A. To my recollection there is a very	24	A. So the database is structured and
25	vague description of it. So there's a very		the search algorithm is structured to keep

35 (Pages 134-137)

Karypis

			Page
	tant portions from the melody from	1	A. I believe that particular part,
	reference work, and the query contains	2	right, it actually refers to both the, there
	just the unimportant part?	3	are two components in the Iwamura search tha
	Q. Correct.	4	allows you to skip, right? One has to do
	A. Iwamura will still identify a	5	with skip of, I believe they call them
	match. It would identify the best match that	6	repeated patterns, so repeating melodies, and
	the user's query matches against the	7	the other one is skipping the unimportant
	database	8	arts. So both of those things I believe
	Q. So in that case --	9	hey are tied together within the same
10	A. -- and as determined by the peaks.	10	context, and my understanding of this section
11	Q. In that case, it may return a match	11	n column 12, that essentially talks about
12	ut not the closest or an exact match?	12	the whole process of unmarking, because I
13	MR. LUNER: Objection to form.	13	believe they use a term unmarking, you know,
14	A. In that case we will return a match	14	hen they were describing
	that is the closest, given the data that the	15	pproaches.
16	algorithm searches and how it performs a	16	Q. Look, if you would, at column 8 in
17		17	Qmura, and I guess this begins on line 13
18	Q. Even though an exact match, in	18	14 , runs down to about line 20.
19	fact, is present in the reference data set?	19	A. Okay.
20	MR. LUNER: Objection to form.	20	Yes.
21	A. So the way, my understanding of	21	Q. What do you understand Iwamura to
22	Iwamura, right, so when it goes and	22	be describing here?
23	preprocesses the melodies to skip over the	23	A. So the lines, so there are kind of
24	unimportant portions as part of the search	24	two components there. So the fir
25	process, you know, this is really what it	25	component, right, describes instead of
	Page 1		Page 1
	does, it does to some extent some type of	1	looking at peaks, to look at dips or more
2	future extractions. So when it searches,	2	dips in here than peaks, as a way to further
3	given that you just query, it identifies the	3	reduce the number of comparisons they make
4	best match, you know, with respect to the	4	Q. I may have directed you to the
5	future that it has there, based on its	5	wrong portion. I was asking about column 8 ,
6	searches. So in my opinion it will still	6	lines 13 through 20.
7	return the best match, according to a search	7	A. Oh, okay.
8	order.	8	So my understanding of that, and
9	Q. Now, does Iwamura state that the	9	again this is a very cryptic description is
10	skipping of unimportant portions takes place	10	the following: Given a reference I have the
11	in a preprocessing stage?	11	different peaks. I have the highest peak,
12	A. I believe so.	12	second highest peak and third highest peak.
13	Q. Where is that?	13	So given a query, then I will first align the
14	A. I was reading.	14	highest peak of the query against the highest
15	So on column 12, lines 5 through	15	peak of the reference, you know, compute a
16	10, roughly that paragraph, it says, "When	16	score, right? Then align the highest peak of
17	you build the database, by un-marking peaks,	17	the query against the second highest peak of
18	you can select the portion that should not be	18	he reference and compute a score and so
19	searched. This avoids searching unnecessary	19	forth.
20	portions and accelerates search speed."	20	Q. How is it that that approach would
21	So this is during database	21	further accelerate the search?
22	building. That's processing step.	22	A. So that paragraph actually does not
23	Q. And you understand that text in	23	discuss how that can further accelerate the
24	column 12 to refer to a future where	24	search. That's it.
25	unimportant portions can be skipped?	25	Q. Is Iwamura suggesting here that if

36 (Pages 138-141)

Karypis

	Page 142		Page 144
	you were to compare the highest peak in the		mean there when it says, "Another peak can be
2	the highest	2	used for the search"?
3	and find a match, you could discontinue th	3	A. It's an example of what they have
4	mparisons between that query and th	4	er there, they provide a clear example of
5	reference, return that reference as a match?	5	hat is the other peak. And in the first
6	A. I don't know how you disclose	6	, the peak would be the first one, which
7	mething like that.	7	in the example it would be that star 5. And
8	Q. If you were to	8	he second peak would be the star 5 in
9	accelerate the searc	9	cation
10	A.	10	Q. So what this indicates is that
	,		Qura doesn't always consider all the peaks
	exact match, and then	12	the query, correct?
	it. But if the match is not an exact match,	13	A. What do you mean by "consider"?
	it doesn't mean that there	14	Q. This indicates that if an exact
15	peak-aligned match that would have	15	match is found by comparing the first peak in
16	score, so that by itself is not a select	16	e query to the peaks in the reference, the
17	earc	17	arch won't continue on to another peaks in
18		18	e query, correct?
	ertain	19	A. So that rate of passage does not
20		20	dicate that the search was stopped.
21	a certa	21	Q. So where it indicates in line 27,
22	-	22	n this case no exact result is obtained,
23	point in the query is in line with the	23	other search will be done with the second
24	his		eak."
25	calculation yields at least absolute	25	Do you see that?
			Page 145
	nce	1	A. Yes
2	tch	2	Q. Does that not indicate that if an
3	. L	3	act match were found using comparison to
4	A. So what is defined as a match	4	e first peak in the query, that that second
5	of identifying	5	arch wouldn't take place?
6	ference, you know, contains some m	6	R. LUNER: Objection to form
7	hat is peaked aligned, who is, you kn	7	A. So my identification of the
8	distance is less than or equal to a use	8	aragraph is the fall line, so my
9	supply constant, right, then, you know, once	9	understanding of that algorithm is when I use
10	you find one of those, then we can turn and	10	e first peak, right, I align it with
	search and identify that thing as a match.	11	query against a reference, a computer score.
12	Q. And by employing that approach you	12	If I go through the process by aligning, you
	uld accelerate the search, correct?	13	know, shifting the first peak to all the
14	A. So by employing that approach, you	14	peaks in the reference, if I have a -- that
15	n, you know, you will not need to identify	15	ould give me a set of scores and a set of
	you know, search any other peaks that you've	16	matches. So there is no exact match of me
17	seen in the regular reference work.	17	oing that. And then in the process of again
18	Q. And there	18	ng
	correct?	19	articular record, I would pick up a second
20	A. That	20	eak and do the same thing
21	Q. Let's turn over to column 9, if you	21	Q. And if an exact matc
22	ould, and take a moment to look over the	22	hat you just described, you would not movor
23	ext from lines 24 through about 32.	23	on that second search, correct?
	A. Yes, I'm ready.	24	A. That's what I reference, that is
25	Q. What do you understand Iwamura to	25	what I appear to have listed.

37 (Pages 142-145)

	Page 146		Page 148
1	Q. Now, in the case using the peak	1	five-digit sequence in the reference,
2	search approach in Iwamura, where you have a	2	correct?
3	short query and a longer reference melody,	3	A. I believe the match within the
4	it's possible that the query would match the	4	context of the Iwamura is a melody, so the
5	reference in multiple locations, correct?	5	match is really the reference.
6	A. That is possible, yes.	6	Q. And you evaluate whether you have a
7	(Karypis Exhibit 10, Single-page	7	matching melody by virtue of whether the
8	chart, marked for identification, this	8	query matches the melody segments within the
9	date.)	9	reference, correct?
10	Q. I want to take a look at an example	10	A. So you evaluate the quality of the
11	sequence here that we will mark as	11	match by evaluating how well the query
12	Exhibit 10. Exhibit 10, do you see the top	12	matches, you know, the best matching segment
13	where it says "Query: 5, 4, 3, 2, 1"?	13	in the reference.
14	A. Yes.	14	Q. Let's look back at Iwamura in
15	Q. And can you accept hypothetically	15	column 8, please, in particular lines 4
16	that that's a query string for use in a peak	16	through 12 of column 8. And there Iwamura
17	search, according to Iwamura?	17	teaches that in addition to doing a peak
18	A. I do.	18	search, you could also do a dip search,
19	Q. And below that it has a string of	19	right?
20	numbers and a reference, do you see that?	20	A. Uh-huh.
21	A. I do.	21	Q. Now is it possible any given query
22	Q. Can you accept hypothetically that	22	or reference work that the best matching
23	that is a reference melody string for a	23	melody segment within that reference work
24	comparison, according to the peak search	24	would be at a dip?
25	process of Iwamura?	25	A. What exactly do you mean by being
	Page 147		Page 149
1	A. I do.	1	at a dip?
2	Q. Now, if we were to compare the	2	Q. Let me make sure that we're finding
3	query $5,4,3,2,1$ to the reference depicted	3	this the same way.
4	on Exhibit 10, is the first instance of the	4	How do you understand the dip
5	sequence $5,4,3,2,1$ in the reference a	5	segments to be defined according to Iwamura?
6	match for the query?	6	A. My understanding of the definition
7	A. It is.	7	of a dip is going to be a local minimum and a
8	Q. And is the second instance of 5, 4,	8	peak being a local maximum.
9	3,2, 1 highlighted in orange also a match?	9	Q. So in the dip search process you
10	A. Yes, it is.	10	would align a dip from the query with a dip
11	Q. And is the yellow sequence $5,4,3$,	11	in the reference, right?
12	2,1 also a match for the query?	12	A. That's my understanding of when it
13	A. Yes, it is.	13	says you can use dips and instead of peaks,
14	Q. And would the blue highlighted	14	yes.
15	sequence $5,4,3,2,1$ again be a match to	15	Q. And you would compare the notes as
16	the query?	16	aligned in the reference -- pardon me, in the
17	A. It is.	17	query to the reference aligned at the dip?
18	Q. So in this example, is it fair to	18	A. Correct.
19	say that there are four exact matches to the	19	Q. And is it possible that taking that
20	query within the reference?	20	query aligned at the dip would yield the
21	A. So within the reference there are	21	lowest absolute difference of any melody
22	four portions that match exactly to the	22	segment in the work?
23	query, yes.	23	A. That is a possibility.
24	Q. And in the case of this five-digit	24	Q. Continuing with that hypothetical
25	query, the match is the corresponding		scenario, if you were then to take the query

Karypis

	Page 150		Page
	and compare it to the reference work using	1	ch approach and a dip search
	the peak search, you would not find that	2	pproach, what you return at the end is the
	closest matching segment in the reference,	3	est of the two. The best result can be one
	would you?	4	at is coming from the dip search portion of
	A. Can you repeat that question?	5	overall search.
	MR. NEMEC: Sure. I'll just read	6	Q. All right.
	back off the record here.	7	Now in that scenario we take that
	Q. Continuing with that hypothetical	8	query and that same reference, and we
	Qario, if you were then to take the query	9	ve found the best match at a dip. But we
10	and compare it to the reference work using	10	ow compare that query to that reference
	peak search, you would not find that	11	sing only the peak search, we're not going
12	closest matching segment in the reference?	12	to find that best matching segment, are we?
13	MR. LUNER: Objection to form.	13	A. Again, that goes back to the whole
	So my notion of what is the closes	14	Aion of the definition of a search and what
	tch and what is not is a function of the		is the result. But if I have an algorithm
16	algorithm that you use to find it. So if I	16	that is designed to find the best peak, let's
	a peak search approach, what I would	17	11 it aligned in the segment, right, the
	return back as the closest would be the	18	eak search approach will be the best. But
19	closest as a result of the peak search	19	an algorithm is designed to find the best
20		20	old
21	So with respect to that particular	21	best.
22	rch strategy or algorithm, that's the	22	I mean for their respective
23	st, you know, matching segment.	23	gorithm, in terms of what they're designed
24	Q. Now, Iwamura teaches that you could	24	to do, you know, what the -- the result that
25	also do the comparison using both peaks and	25	comes out from the dip search approach may
	Page 151		Page 153
	dips, right?	1	not necessarily be an allowable result of the
2	A. There is a discussion about that	2	peak search approach. Because this is not
3	Q. And in that scenario, the closest	3	what the algorithm is designed to do. But
4	matching segment would be the comparison	4	the peak search approach will identify the
5	between either a peak or a dip in the	5	est match.
6	reference that yields the least absolute	6	Q. So if the algorithm isn't
7	difference when aligned with a corresponding	7	considered, isn't configured to consider a
8	peak or dip in the reference, correct?	8	particular match, then that can't be the
	A. So if I do a search in which I use	9	closest match; is that right?
10	both a peak search approach and also a dip	10	A. If an algorithm is designed to find
11	search approach, and I return back the best	11	a certain type of matches, right, it will not
12	match of both of them, right. So that would	12	find a match that it is not designed to find.
13	be the best match of the combined approach.	13	So in your example, right, the type
14	Q. And that best match might occur at	14	match that you consider to be your best is
15	a dip as opposed to a peak, right?	15	a match in which an algorithm is designed to
16	MR. LUNER: Objection to form.	16	find. But the peak search approach will find
17	A. So that best match can be obtained	17	the best match that it's designed to find.
18	ing a peak search approach or a dip search	18	Q. So if it's a match that you don't
19	approach.	19	Qsider, it can't be the closest match,
20	Q. And what I'm getting at is that in	20	simply put, correct?
	approach where you're searching both the	21	A. But this is a que
22	dips and the peaks, it's possible that the	22	efinition of what is a segment that the peak
23	best match would be found at a dip, right?	23	earch approach finds. Peak search approach
24	MR. LUNER: Objection to form.	24	ill consider all the matches that satisfy
25	A. So when I'm doing a search using a	25	its definition as to what it is after and

39 (Pages 150-153)

Karypis

	Page 154		Page 156
	among those will return the best.	1	A. That's my understanding of that.
2	Q. So I'll put it a little bit	2	Q. And if every peak segment in that
3	differently then. If, say, a portion of the	3	reference that's compared has an error above
4	reference that you don't consider in the	4	the limit we've defined, then that particular
5	rch, then that portion of the r	5	g will not be considered a match, right?
6	by definition, cannot be the closest match?	6	A. Would you repeat your question
7	A. What do you mean when you say you	7	again?
8	cannot consider a portion of the reference?	8	Q. If all the peak segments within a
9	Is it something that you choose not to	9	eference, have an error above the limit that
10	consider, or your algorithm, you know,	10	e've defined, then Iwamura won't consider
11	things	11	ce to be a match, correct?
12	in identifying the allowable matches?	12	A. I don't think Iwamura discloses
13	Q. Well, using the example of the peak	13	hat.
14	ersus the dip search in Iwamura, if you are	14	Q. Which part of what I said?
15	running the peak search, you are not	15	A. That if -- everything that you just
16	considering the dips, correct?	16	said.
17	A. You may not be considering	17	Q. How is it that you understand the
18	necessarily. You would still be considering	18	mit function to operate?
19	some of the dips, if they include it in their	19	A. So my understandi
20	peak.	20	ction is we've done -- when I called the
21	Q.	21	alignment of the query against that portion
2	convey by the portion of the reference that's	22	of the reference, as I go down each aligned
23	not considered, one example of it. Do you	23	position and compute the actual difference,
2	follow?	24	that thing, you know, goes above a certain
25	A. No.	25	threshold, then I can, you know, stop going
	Page 155		57
1	Q. Okay. Sounded like you did.	1	down the path, down note by note to compute
2	Why don't we go back to the two	2	the difference, the actual difference, and
3	tions that you proposed. In one instance	3	just shift to the next peak.
4	you said the algorithm that's excluding a	4	Q. And then when you shift to that
5	portion of the reference, and in the other	5	ext peak, if you continue doing the
6	you said the user is excluding, right?	6	calculation, and with each peak comparison
7	A. In what context did I say that?	7	throughout that reference you hit the
8	Q. A couple of minutes ago I think you	8	threshold at the end of that process, that
9	de reference to it being a difference	9	reference will not begin to match, correct?
10	whether the algorithm excludes searching a	10	A. Actually Iwamura does not disclose
11	part of a reference or whether the user does.	11	what happens in that scenario.
12	Iwamura describes a limit function	12	Q. Do you have any unders
13	at can be employed, correct?	13	based on the overall teachings, of what would
14	A. Yes, I believe so.	14	happen to that particular reference?
15	Q. Take a look at column 7, lines 56	15	A. So one possibility is to not
16	nd 57.	16	consider that reference as a match.
17	A. I'm sorry, what was the line	17	Q. Is there any teaching in Iwamura on
18	numbers again?	18	limit on how strict this error tolerance,
19	Q. Column 7, lines	19	pardon me, this limit function can be?
20	A. Yes.	20	A. I don't recall off the top of my
21	Q. So in practice, if we're running	21	head whether or not they say anything
22	peak search and we're using this limit	22	specific to that.
2	function, the search will include, excuse me,	23	I do not recall that it says
2	any peak segments with error above the	24	mething like that, a formula to describe
25	threshold that we select, correct?	25	what that thing should be.

40 (Pages 154-157)

Karypis

	Page 158	Page 160	
1	Q. I apologize, I didn't hear you.	1	A. I do not know.
2	You said you do or don't recall seeing --	2	MR. NEMEC: We will take our coffee
3	A. I do not recall seeing whether or	3	break
4	not they provide any guidelines as to what	4	THE VIDEOGRAPHER: Okay. The time
5	that thing would be.	5	is 2:40-- stand by.
6	Q. Do you think it's possible that the	6	The time is $2: 48$. We're going off
7	limit function could be set at zero?	7	the record. This is the end of disk
8	A. Well, if the limit function is set	8	number 3. Thanks.
9	o zero, then the algorithm that they	9	(A brief recess was taken.)
10	describe would only identify exact matches if	10	THE VIDEOGRAPHER: We are now back
11	such matches occur, if my understanding is	11	on the record. The time is $3: 01$. This
12	correct.	12	is the beginning of disk number 4.
13	Q. Would you agree that the search	13	MR. NEMEC: Let's mark as
14	time in the peak note search process of	14	Exhibit 11 U.S. Patent 5,874,686, the
15	Iwamura is proportional to the number of	15	Ghias, please.
16	peaks in the reference work?	16	(Karypis Exhibit 11, Photocopy of
17	A. So the search, the amount of time	17	U.S. Patent No. 5,874,686, marked for
18	it takes to search a particular record in the	18	identification, this date.)
19	peak search approach, right, will depend,	19	Q. Do you have Exhibit 11, Dr.
20	among others, on the number of peaks.	20	Karypis?
21	Q. And you believe it would be roughly	21	A. Yes, I do.
22	a proportional relationship between the	22	Q. And this is the Ghias prior art
23	search time and the number of peaks?	23	reference that you discuss in your
24	A. The more the peaks, the more time,	24	declaration, correct?
25	yes.	25	A. Correct.
	Page 159		Page 161
1	Q. And the less peaks, the less time,	1	Q. Is it fair to say that Ghias
2	correspondingly?	2	discloses a system where you can hum a tune
3	A. Correct.	3	and the system will try to identify the song
4	MR. LUNER: I think we're running	4	that you are humming?
5	low on caffeine.	5	A. Yes, it's identifying melody from a
6	MR. NEMEC: I have a couple more	6	database.
7	questions on this reference and I will	7	Q. And it does that by comparing the
8	be done, so I'll wrap up the line and we	8	relative pitch values from the hummed query
9	will take a coffee break. Excellent.	9	melody to the relative pitch values of known
10	Q. One of the file formats that	10	reference melodies; is that right?
11	Iwamura discusses is the mini file format,	11	A. I believe so.
12	correct?	12	Q. Ghias discloses comparing a text
13	A. Correct.	13	representation of the notes in the query to a
14	Q. Just briefly, how would you	14	text representation of the notes in the
15	characterize what the mini file format is?	15	reference, right?
16	A. I'm not an expert on the mini file	16	A. That is correct.
17	format, but my understanding is this is a	17	Q. In particular, Ghias represents
18	media file format. It predates, you know,	18	queries and references as strings of the
19	MP3 files.	19	characters U, S and D, right?
20	Q. There is also a description or a	20	A. Yes.
21	disclosure of a wav file format in Iwamura,	21	Q. U, S and D referring to whether the
22	correct?	22	note is the same, an up note or a down note,
23	A. Uh-huh.	23	as compared to the preceding note?
24	Q. How does the wav file format differ	24	A. I believe so.
25	from mini, if you know?	25	Q. And what is your understanding of

41 (Pages 158-161)

Karypis

	Page 162		Page 164
1	how Ghias goes about determining whether a		because I'm getting myself tied in knots
2	query matches a reference?	2	
3	A. So my understanding of how Ghias	3	If two -- if a query has the same
4	goes about doing that is it performs a	4	number of mismatched references when compared
5	substring search of the string representing	5	to two different --
6	the query, again, the string representing a	6	MR. NEMEC: Strike that.
7	record in the database; and then based on	7	Q. If a query has the same number
8	that it computes a score, and then it	8	smatched characters when compared to
9	returns, you know, some of those m	9	erence 1 as it does when compared to
10	a result of that qu	10	reference 2 , will Ghias consider reference 1
11	Q. How does Ghias go about determining	11	and reference 2 to be equal quality matches?
12	which reference most closely matches a query?	12	A. So if the best, if a substring with
13	A. So I believe the way that they use	13	the least number of mismatches of the query
14	it is they find a substring that has the	14	in reference 1 , which is -- if the number of
15	least number of character differences whe	15	mismatches of the best matching substrate of
16	they, it is aligned in a gapless way	16	query to reference 1 is the same as the
17	Q. So -- I'm sorry, go ahead	17	number of mismatches of the best matching
18	A. Actually, they can potentially	18	substring of query to reference 2 , right,
19	allow insertions and deletions as well, but	19	then, you know, I believe Ghias will consider
20	it's really a substring alignmen	20	those two things as equal quality melodies or
21	Q. Okay. So by way of example, if	21	references, good overall matches.
22	-- if a query string was SSS and a reference	22	Q. So is Ghias able, in the instance
23	string was SSU, how would -- how would Ghias	23	of comparing SSS --
24	characterize the difference between those	24	MR. NEMEC: Strike that.
25	two?	25	Q. Can Ghias determine whether SSS is
	Page 163		Page 165
1	A. So Ghias would characterize that	1	a closer match to SSU than SSD is?
2	those two strings have a one-characte	2	A. So the query is SSS, and the
3	mismatch.	3	reference is SSU and SSD, so both references
4	Q. And how would Ghias go about	4	are one-character mismatch with a query. And
5	determining the difference between a string	5	if they, if the metric is in the number of
6	SSS and SSD?	6	mismatches, those two things will be, those
7	MR. NEMEC: Strike that	7	two things would be, you know, the same,
8	Q. What would Ghias characterize as	8	equally good matches.
9	the difference between SSS and SSD?	9	Q. If SSU is the query and the two
10	A. I believe will characterize as 1.	10	references are SSS and SSD, will Ghias rank
11	Q. If two references have the same	11	those as equally good matches?
12	number of mismatched characters as compared	12	A. I believe so, the one-character
13	to a given reference, will Ghias consider	13	difference between the query and the two
14	them to be equal quality matches?	14	references.
15	MR. LUNER: Objection to form.	15	Q. One of the things that Ghias
16	MR. NEMEC: Let me ask that again,	16	teaches is that it can output a rank list of
17	I apologize.	17	matches, correct?
18	Q. If two queries have the same number	18	A. That is correct.
19	of mismatched characters as compared to a	19	Q. If the search in Ghias' run has
20	given reference, will Ghias consider them to	20	determined that there are ten references that
21	be equal quality matches?	21	differ by only one character, how would Ghias
22	A. As far as I know, you don't match a	22	go about ranking those ten?
23	query to a reference. It's the other way	23	A. So if they rank least that -- so if
24	around.		the reference is that the query matches
25	Q. Okay. Let me try that again,	25	against had the same number of mismatches,

Karypis

	Page 166		Page 168
	then the, you know, ranking between those		equivalent; but you can have what is called a
2	ings in terms of which one is the best is	2	weighted mismatch in which certain mismatches
3	oth irrelevant and arbitrary. You know, all	3	weighed less or more, but in which case can
4	them are equally good answers to that	4	create an order is one of those strings.
5	uery, given those constraints	5	But if I use a symmetric of
6	Q. Now, it may be of that list of		ilarity or distance between two strings,
7	at one of the referenced melodies itsel	7	number of mismatched characters, those
8	atches the hummed melody closer than another	8	oo would be equally good.
9	the ten, correct?	9	Q. My question was separate from
10	MR. LUNER: Objection to form	10	Ghias.
11	A. So can you repeat your question?	11	A. Okay.
12	Q. So notwithstanding the fact that	12	Q. So if we have a piece of music
13	Qe search in Ghias yields ten reference	13	that's represented by SSU, and we have
14	at differ by only one character, and th	14	another piece of music that is represented by
15	ose ten references, as far as the Ghias	15	SSS and another represented by SSD, which is
16	arch process is concerned, would be equally	16	more similar to SSU, SSS or SSD?
17	milar or equally different, the underlying	17	MR. LUNER: Objection to form.
18	gs --	18	A. How do you define similarity?
19	MR. NEMEC: Strike that	19	Q. How different the notes are.
20	Q. The fact that a reference, the	20	A. Do you consider the -- if I look
21	at a query in Ghias differs by the sam	21	underlying note, that would be a
22	number of characters as compared to two	22	different similarity than what I can compute
23	ferent references doesn't necessarily mean	23	just having that another presentation,
24	the query song is an equal match to both	24	less you define a distance between the
25	of the reference melodies, correct?	25	characters of their presentation.
	Page 167		Page 169
1	MR. LUNER: Objection to form.	1	Q. Column 2 of Ghias discloses an
2	A. So again, within the method that	2	rror tolerance, if you look at lines
3	Ghias discloses, right, a query is a string.	3	hrough 50 to 53?
4	So based on that query, it identifies,	4	Do you see that?
5	computes a matching scroll to the references.	5	A. 50 to 53?
6	And if there are a number of references that	6	Q. I apologize, 52 to 53.
7	have the same scroll, number of mismatched	7	A. 52 to 53 . Let me take a minute.
8	characters, right, for the purpose of the	8	Yes, I see that line.
9	search, right now, for the purpose of the	9	Q. What do you understand this error
10	algorithm disclosed in Ghias, those things	10	olerance to mean?
11	are equally good matches.	11	A. My understanding of an error
12	Q. So putting Ghias aside, if a query	12	olerance is the maximum number of allowed
13	piece of music is represented by SSU, which	13	mismatches between the query and the best
14	referenced piece of music would be more	14	matching segment or melody.
15	similar to it, SSS or SSD?	15	Q. So it's not possible that the error
16	MR. LUNER: Objection to form.	16	tolerance would mean that the output is
17	A. So if my query is SSS, and the two	17	imited to a set number of matches or maximum
18	references is SSD and SSU.	18	number of matches?
19	Q. The query is SSU --	19	A. What do you mean by that?
20	A. The query is SSU.	20	Q. In other words, is it not possible
21	Q. -- and the references are SSS and	21	hat the error tolerance could mean that the
22	SSD.	22	system only returns the ten best matches?
23	A. The method that Ghias discloses in	23	A. My understanding of the error
24	hich it measures the similarity in terms of	24	lerance, as used in Ghias is, is that it
25	just mismatches, those things would be		talks about, it's defined in terms of a

Karypis

	Page 170		Page 172
	maximum number of allowed mismatches. I	1	explains that a user can perform a new query
2	don't recall seeing it another way.	2	on a restricted search list consisting of
3	Q. So we discussed a moment ago, and	3	songs just retrieved, correct?
4	let me just reconfirm, that one of the	4	A. Right.
5	possible outputs from Ghias is a ranked list	5	Q. Could the new query that's
6	of matching melodies; is that right?	6	described there be a different portion of the
7	A. Yes, I believe so.	7	same song that was searched in the original
8	Q. Is it an unlimited list, or is	8	query?
9	there some cap that Ghias puts on the number	9	MR. LUNER: Objection to form.
10	of entries included on that ranked list?	10	A. That can be a possibility.
11	A. So my recollection in reading	11	Q. Could the new query be a completely
12	Ghias, the size of the ranked list depends on	12	different song?
13	the error tolerance. So if the error	13	A. The segments can perform a new
14	tolerance is said to be high, the ranked list	14	query and puts no restrictions on the type of
15	would be larger, potentially; if it's low,	15	a query.
16	it's going to be smaller.	16	Q. Now, if we were to return, pardon
17	I don't recall seeing a	17	me. If we were to run a first search
18	specification of the fixed number of results.	18	MR. NEMEC: Strike that.
19	Q. So if, for example, the error	19	Q. If we were to run a search
20	tolerance were set at one, the ranked list	20	according to Ghias, using the chorus from a
21	would return all those references that had a	21	song, would that necessarily return the same
22	difference of one as compared to the query?	22	results as if we were to use the guitar solo
23	A. What a search will return is all	23	from the same song as the query run against
24	the references with best matching substring	24	the reference database?
25	that has at most one difference. That means	25	MR. LUNER: Objection to form.
	Page 171		Page 173
1	it will return those that have zero and those		A. It may or may not.
2	that have one, assuming that they are non --	2	Q. So the results could be different?
3	Q. Okay. Understood.	3	A. It could be different, yes.
4	So what we're looking at, then, is	4	Q. Look at figure 1 in Ghias, if you
5	the matches with the, the best matches with	5	would.
6	the substrings as opposed to the overall	6	Is the query engine that performs
7	reference, correct?	7	the search process in Ghias --
8	A. Can you repeat your question?	8	A. Yes.
9	Q. Sure.	9	Q. -- item 24?
10	MR. NEMEC: Let me state it	10	A. Uh-huh.
11	differently.	11	Q. So it's the query engine that
12	Q. The error tolerance would refer to	12	identifies matches?
13	the difference between the query work and a	13	A. Yes.
14	substring within the reference?	14	Q. And then those matches are output
15	A. My understanding is the way they	15	as a ranked list of matching melodies at item
16	talk about error tolerance is that the error	16	26; is that correct?
17	tolerance is defined in terms of a best	17	A. Based on the result of those
18	matching, is defined in terms of the best	18	matches, the melodies, you know, that satisfy
19	substring match, a query against the	19	the search criteria are ranked at output,
20	reference. If those two things are the same	20	yes.
21	length, it would be a, one would be the same.	21	Q. Do you have an understanding of
22	It will not be a substring match, but if the	22	what form that output would take?
23	reference is longer than the query, it will	23	A. What do you mean? Can you clarify
24	be a substring match.	24	your question?
25	Q. The top of column 7 in Ghias	25	Q. Sure.

Karypis

	Page 174		Page 176
1	Is the user going to get a list of	1	Ghias, do you think it's a desirable feature
2	songs by title? Is that your understanding	2	that search keys could be matched with any
3	of what Ghias is teaching?	3	portion of the melody rather than just the
4	A. I don't recall what is the form of	4	beginning?
5	the output, but, you know, a list of titles	5	MR. LUNER: Objection to form.
6	is a potential output.	6	A. I can consider cases in which my
7	Q. We know it's coming in list form,	7	goal is to find a melody based on something
8	right?	8	that was hummed on the radio, into a
9	A. Well, it's a ranked lis	9	microphone, and they start humming the melody
10	Q. If you will look at column 7, lines	10	from an arbitrary point within the melody; so
11	36 through 40 of Ghias, please.	11	doing a substring match, you know, will
12	A. You said column 7, lines --	12	increase the chances of identifying the
13	Q. 36 to 40.	13	melody or not.
14	A. Yes.	14	Q. Does the fact that the search
15	Q. So he says there, "As a consequence	15	described here in column 7 of Ghias is an
16	of using a fast approximate string matching	16	approximate search mean that it doesn't
17	algorithm, search keys can be matched with	17	consider all the data within each reference?
18	any portion of the melody rather than just	18	MR. LUNER: Objection to form.
19	the beginning. As the size of the database	19	A. So I believe the definition of
20	grows larger, however, this may not prove to	20	"approximate" that Ghias -- the term
21	be an advantage."	21	"approximate string matching" over here
22	What is your understanding of why	22	refers to what would be considered a match,
23	that would not prove to be an advantage?	23	and a match is considered a valid match if it
24	A. I will presume that by enabling a	24	has at most K mismatches. So the term
25	flexibility to locate a substring within a	25	"approximate," right, it used to characterize
	Page 175		Page 177
1	bigger string, you know, that would be	1	what is allowed as part of the answer.
2	somewhat slower than looking at just the	2	Q. So in fact at the top of column 6,
3	beginning.	3	lines 9 through 11, Ghias defines when he
4	Q. How do you believe a person skilled	4	means by "approximate, right?
5	in the art would circumvent this	5	A. I believe so.
6	disadvantage?	6	Q. And he says, "Approximate" -- "By
7	MR. LUNER: Objection to form.	7	approximate is meant the algorithm should be
8	A. So if the type of the query that I	8	able to take into account various forms of
9	would like to do is identifying all	9	errors."
10	substrings within a string that can have	10	Do you see that?
11	optic k-mismatches. There are a set of	11	A. That's what it says, yes.
12	methods that have been developed primarily in	12	Q. Do you think, from the standpoint
13	searching sequences, DNA sequences that use	13	of a person skilled in the art in 2000,
14	efficient methods to index strings that would	14	that's a reasonable definition of
15	allow you to do fast approximate substring	15	"approximate" in this context?
16	matches.	16	A. The definition of "approximate"
17	I can describe them in detail.	17	being that, something that will allow a
18	Q. That's not something that's	18	certain amount of mismatches, I think that's
19	disclosed in Ghias, what you just described?	19	a reasonable definition.
20	A. I do not think so.	20	The definition that Ghias uses is,
21	Q. Is that a technique that was known	21	in terms of the way it formulates the search,
22	as of 2000?	22	is actually more precise. So what it calls
23	A. I believe those methods were	23	approximate string matching is the matching
24	developed prior to 2000.	24	that allows at most k-mismatches.
25	Q. Turning back to the description in	25	Q. So you say it's more precise.

45 (Pages 174-177)

Karypis

	Page 178		Page 180
	Do you think it's an unusual or		exactly the same hash as the query, will
2	unacceptable definition?	2	Conwell locate any match?
3	MR. LUNER: Objection to form.	3	A. So if the database has no record
4	A. I think this is one way of defining	4	that it has the exactly the same hash, I
5	approximate stream matching.	5	believe Conwell will not locate a match.
6	MR. NEMEC: Let's mark as	6	Q. And if the database in Conwell
7	Exhibit 12 US patent 6,970,886.	7	contains a reference that is very close match
8	(Karypis Exhibit 12, Photocopy of	8	to the query but matched to a slightly
9	U.S. Patent No. 6,970,886, marked for	9	different hash, will Conwell determine that
10	identification, this date.)	10	that's a match?
11	Q. Is Exhibit 12 the Conwell prior art	11	A. When you say "a close match to the
12	reference that is discussed in your	12	query," are you talking about in terms of the
13	declaration?	13	hash, or in terms of the actual melody?
14	A. Yes, it is.	14	Q. So both. I'll ask the question
15	Q. Is it fair to say that Conwell	15	again, just so it's clear.
16	describes a system which identifies a query	16	If the database in Conwell contains
17	work by hashing the query work and comparing	17	a reference, it's a very close to match to
18	it to hashes and known reference works?	18	the query but maps to a slightly different
19	A. That's a fair characterization.	19	hash, will Conwell determine that that's a
20	Q. And Conwell can look at a reference	20	match?
21	work that is a near match to a query work, if	21	A. So if the hash of the query is
22	the two map the same hash value, correct?	22	different than any of the hashes in the
23	MR. LUNER: Can you repeat the	23	database, the Conwell will not determine a
24	question?	24	match.
25	MR. NEMEC: Sure.	25	Q. Any difference whatsoever in the
	Page 179		Page 181
1	Excuse me.	1	hashes will result in a no match
2	Q. Conwell can look at a reference	2	determination in Conwell; is that right?
3	work that is a near match to a query work, if	3	A. If there is no absolutely no entry
4	the two map to the same hash value, correct?	4	in the database that has exactly the same
5	A. By using appropriately designing	5	hash value as that computed for the query, it
6	hash functions, yes.	6	will have no match.
7	Q. So in the Conwell system, a	7	Q. Generally speaking, would you
8	determination is made as to whether two works	8	consider a search of a dictionary, a paper
9	match by comparing whether their hash values	9	dictionary, to be a non-exhaustive search?
10	are exact matches?	10	MR. LUNER: Objection to form.
11	A. Can you repeat the question again?	11	A. What do you mean by a search of a
12	Q. Conwell determines whether two	12	dictionary, of a paper dictionary?
13	works match by comparing whether their hash	13	Q. Looking up a word in the
14	values are exact matches, correct?	14	dictionary.
15	A. That is correct.	15	MR. LUNER: Objection to form.
16	MR. NEMEC: Can I take a quick	16	A. That would depend on how you go
17	five minutes? I apologize.	17	about doing that.
18	MR. LUNER: Sure.	18	Q. So what are the different ways that
19	THE VIDEOGRAPHER: The time is	19	one might look up a word in the dictionary?
20	3:43. We're going off the record.	20	A. Well, one way to do that is start
21	(A brief recess was taken.)	21	from page 1 and go down until you find the
22	THE VIDEOGRAPHER: The time is	22	page on which that word occurs, or go to the
23	3:53. We're now back on the record.	23	end of the dictionary. That would one way to
24	Q. Dr. Karypis, if the database in	24	do it.
25	Conwell doesn't contain a reference to	25	Another way to do it would be, you

Karypis

	Page 182		Page 184
	know, if the dictionary is alphabetized, to		Q. If you were constructing an
	go to the set of pages that starts with the	2	electronic database, would you order the
3	ame character as your word and then go down	3	ntries in some fashion?
4	that list until you find something.	4	A. If I have a database and I would
5	Q. And would either of those searche	5	like to be able to perform certain type of
6	a non-exhaustive search?	6	queries efficiently, I would probably create
7	A. So the second way in which you	7	indices that would allow me to do those
	ectly go to the pages that, let's say	8	efficiently.
9	art with, your word starts with a K,	9	Q. So you would create an ordered
10	t examine any pages prior	10	tabase, in other words?
11	art with the K, you know, that would be a	11	A. Actually, there is no such thing.
12	on-exhaustive search.	12	his is -- you don't necessarily create an
13	he first way is not	13	order database. No, what you create is you
14	Q. Is that why --	14	create an index on top of your database that
15	MR. NEMEC: Strike that	15	will allow you to, to transverse it in an
16	Q. In the paper dictionary example	16	der that is up to modify the inquiry.
17	that we're discussing, the words are arrange	17	Q. Okay. In general, the purpose of
18	in alphabetical order before your lookup	18	eating such an index would be to make the
19	process begins, correct?	19	arch more efficient?
20	A. That would be the way why people do	20	A. That is the purpose of most
21	it.	21	dexes, yes.
22	Q.	22	Q. Now, in Conwell, the reference
23	up a word in the dictionary, which of the two	23	table as disclosed has its entries sorted by
24	approaches that you just described would you	24	hash value, correct?
25	use?	25	A. Can you tell me which figure you're
	Page 183		Page 185
1	MR. LUNER: Objection to form.		referring to?
2	A. Well, I will do another approach	2	Q. Sure. I'm referring actually to
3	at would be more efficient, and that would	3	he text, column 5, lines 59 through 61.
4	the one that will, you know, go the pages	4	A. Column 5, 59 through 61.
5	ontaining the words, go to the pages that	5	Q. Correct. "For ease of description,
6	ntain the words that start with the same	6	he present disclosure assumes the entries
7	haracter as my query.	7	are sorted by identifier."
8	Q. And that's the approach th	8	A. Yep. What was the question? I'm
9	characterized as non-exhaustive, correct?	9	sorry.
10	A. That would be the one I	10	Q. So do you understand from that that
11	characterized, yes.	11	the disclosure here is of a reference table
12	Q. Now if we're talking about an	12	with entries sorted by their hash value?
13	Qectronic dictionary, would a search of an	13	A. Yes, I believe that's how they have
14	electronic dictionary to look up a word use a	14	them sorted, yes.
15	binary search?	15	Q. And what is the purpose of sorting
16	A. What do you mean by "electronic	16	the hash entries?
17	dictionary"?	17	A. So one of the reasons that you like
18	Q. So as opposed to a paper	18	sort the hash entries is so that it will
19	dictionary, a collection of words and their	19	low you to potentially implement a search
20	associated definitions arranged in a	20	efficiently.
21	database.	21	Q. In the fashion that you would, in a
22	A. Without any more information, I	22	paper dictionary, look up a word by its first
23	will just go from record one until I find a	23	letter in the word?
24	match or find a word or until I go to the	24	MR. LUNER: Objection, form.
25	last record.	25	A. Well, the keys are sorted in

47 (Pages 182-185)

Karypis

	Page 186		Page 188
1	increasing or decreasing order, right? Now I	1	which point in time the querying processing
2	would like to match a key, and if I want to	2	engine can make a decision on whether or not
3	leverage the track of how those things are	3	that would be more efficient or not, to use
4	sorted, I will do a, probably a binary	4	the indices or not.
5	search.	5	Q. If you made the decision that it
6	Q. A binary search being an example of	6	would be more efficient to use the indices,
7	a non-exhaustive search, correct?	7	at you would be using a non-exhaustive
8	A. That is correct.	8	arch, correct?
9	Q. Now, lines 58 to 59 of Conwell in	9	A. So if the indices were enabled,
10	the same column there, column 5 , it says,	10	during querying processing time, the
11	"Maintenance to the table 12 is well	11	atabase engine would make a decision whether
12	understood by those skilled in data	12	not answering that query would be faster
13	structures."	13	lying on the indices or not. And if it's
14	Do you see that?	14	ster, will use the indices; if it's not
15	A. Yes, I do.	15	faster, it will not.
16	Q. And as of about 2000, you think a	16	Q. I see.
17	person skilled in the art of the Cox patents	17	(Discussion off the record.)
18	would have been familiar with database	18	Q. Take a look at Exhibit 4. It's the
19	structures?	19	179 patent. Take a look at column 21,
20	A. Actuall	20	ease, lines 37 to 42
21	structures, not database structure	21	A. I'm sorry, what were the line
22	Q. Oh, I apologize, okay.	22	numbers again?
23	So I will ask that question again.	23	Q. Lines 37 to 42.
24	As of 2000 do think a person	24	A. Okay.
25	skilled in the art would be familiar with	25	Q. The passage that begins, "While
	Page 187		Page 189
1	data structures?	1	databases of this size"?
2	A. Yes.	2	A. Yes.
3	Q. And do you think that a person of	3	Q. Would you agree that here this
4	skill in the art implementing the invention	4	specification in the Cox patent is explaining
5	described in the Conwell patent would turn to	5	that databases that were known as of the date
6	some form of commercially available data	6	of invention look up entries without
7	structure software?	7	comparing a query to all reference items?
8	MR. LUNER: Objection to form.	8	MR. LUNER: Objection to form.
9	A. That can be a possibility, they can	9	A. Okay, so what was the question
10	use a commercially available software to	10	again?
11	build it.	11	Q. Would you agree that the
12	Q. As of 2000, are you familiar with	12	specification in the Cox patents here in
13	any of the commercially available database	13	column 21 is explaining that the databases
14	software that was on the market?	14	that were known as of the date of invention,
15	A. Both commercial and open source,	15	date of invention look up entries without
16	yes.	16	comparing a query to all reference items?
17	Q. And generally speaking, did such	17	A. So what it here describes,
18	database software employ exhaustive lookup	18	describes that databases have the technology
19	techniques?	19	to do that.
20	A. That would be a direct function on	20	Q. So that was an understood approach
21	how you choose to configure it. You set up a	21	to database searching as of 2000 when this
22	database, without creating indices. That's	22	patent was filed, correct?
23	the only way to answer the queries that you	23	A. So as I said before, if I'm using a
24	want would be to add an exhaustive search.	24	atabase system and I would like to perform
25	Set up a database by creating indexes at	25	certain queries, if I can create indices for

Karypis

\&	$\begin{gathered} \text { 11/12/2015 } 193: 3 \\ \text { 194:8 } \end{gathered}$	141:6	$\begin{aligned} & \text { 146:13 147:3,5,9,11 } \\ & 147: 15 \text { 160:8 } \end{aligned}$
\& 2:13 3:4,14 4:3		2000 26:4,9,12,21,25	
$6: 157: 9,11$	112 5:15	27:1,9 37:3,9,12,23	30 120:17
0	12 1:13 5:21 6:13	38:15,19 39:2,9	31 97:5
07039 194:2			
	8:16 178:7,8,11	85:3,12 94:14,17,2	3200 194:1
1 1:65:6 6:20 7:8,12	186:11	94:24 110:2,10,13	336-8074 4:7
9:23 11:4 23:14,17	123 5:16	110:20 175:22,24	343 6:23
47:3 64:10 71:24	128 5:17	177:13 186:16,24	345 6:23
114:10,16,18,22	12:09 106:10	187:12 189:21	347 6:23
116:24 117:2	12:20 106:14	$201 \text { 3:16 }$	348 6:23
118:17,19,20	12:28 111:3,4	$\begin{gathered} 2015 \quad 1: 132: 86: 13 \\ 109: 17191: 19 \end{gathered}$	35 120:6
124:23 125:12,20	13 108:23 125:23		36 174:11,13
128:16 129:14	140:17 141:6	192:21 193:22	37 188:20,23
131:9 132:18 133:8	13th 192:20 14 100:20 140:18	194:4	39 42:19
133:15,23 134:3		2015-00343 $1: 4$	3:01 160:11
146:13 147:3,5,9,12	14 100:20 140:18 146 5.18	$\begin{array}{lll}\text { 2015-00345 } & 1: 4 \\ \mathbf{2 0 1 5 - 0 0 3 4 7} & 1.5\end{array}$	3:43 179:20
147:15 163:10	$\begin{gathered} 15 \quad 95: 11,1696: 15 \\ 97: 16,2298: 7 \end{gathered}$		3:53 179:23
164:9,10,14,16		$2015-00348$ $1: 5$ 21 $100: 19$ $188: 19$	
173:4 181:21	$\begin{aligned} & 97: 16,22 \text { 98:7 } \\ & 109: 17 \end{aligned}$		$4 \quad 3: 65: 1024: 17$
190:15 193:3 194:6	$16 \quad 131: 9 \quad 132: 24$		
$\begin{array}{lll}\mathbf{1 , 0 0 0} & 104: 17 \\ \mathbf{1 0} & 5 \cdot 18 & 125: 13\end{array}$	$\begin{array}{cc} 160 \quad 5: 20 ~ 115: 22 \\ 124: 12 & 129: 1 \end{array}$	$\begin{array}{ll} \mathbf{2 1 2} & 3: 8 \\ \text { 2183243 } & 194: 7 \end{array}$	114:10,15,18,22
10 5:18 125:13	$161 \quad 115: 22$		16:24 117:2 118
132:21 139:16		$\begin{array}{ll} 23 & 5: 6 \\ 237 & 100: 18 \end{array}$	
146:7,12,12 147:4	162 121:21 122:15	237 100:18	128:16 129:14
100 47:6 48:1,8	178 5:21	$\begin{array}{ll} \mathbf{2 4} & 143: 23 ~ 173: 9 \\ \mathbf{2 5} & 47: 13 \\ 50: 23 \end{array}$	132:1,18 146:13
50:22 57:4 58:2	$\begin{array}{lr} 179 & 188: 19 \\ \mathbf{1 8} & 125: 24 \end{array}$		147:3,5,8,11,15
$\begin{array}{cc}\text { 60:15 } \\ \mathbf{1 0 0 , 0 0 0} & 101: 13\end{array}$	$\mathbf{1 : 1 7 \quad 1 1 2 : 2 , 4}$	69:19 104:13$269597: 7120$	148:15 160:12
$\begin{gathered} \mathbf{1 0 0 , 0 0 0} \quad 101: 13 \\ 102: 5,7,11 \end{gathered}$	2		188:18 190:19
		173:16	40 174:11,13
10016 4:6	2 5:7 24:16,16 25:2	$\begin{array}{lr} 27 & 144: 21 \\ \mathbf{2 9 0} & 194: 1 \end{array}$	42 188:20,23
10038 3:7	25:4 64:14 68:16,24	$292 \quad 124: 1 \quad 129: 2$	45 120:3,8
101 124:1 $129: 2$	69:15 95:7 106:11$114: 10,16,18,22$		46 97:6
108 5:14		$2: 40 \quad 160: 5$	48 136:2
10:36 64:9	$116: 24 ~ 117: 2$	2:48 160:6	$\begin{array}{ll} \mathbf{4 : 1 1} & 190: 8 \\ \mathbf{4 : 2 3} & 190: 12,18,21 \\ \mathbf{4 n} & 24: 13 \\ \hline \end{array}$
10:38 64:7	118:17,19,20	2n 24:13	
10:48 64:13	128:16 129:14	3	
11 2:8 5:19 106:17	132:1 146:13 147:3		5
106:19 107:10	147:5,9,12,15		$\begin{gathered} 5 \text { 5:12 68:22 69:8 } \\ 114: 10,15,18,22 \\ 116: 24 \quad 117: 2118: 4 \\ 118: 5,15,15,17,18 \\ 118: 19,21 \quad 128: 16 \end{gathered}$
124:20 125:11	164:10,11,18 169:1		
131:12,14 160:14	169:2		
160:16,19 177:3	20 120:2 124:23		
	125:11,20 140:18		

Veritext Legal Solutions

129:14 130:18	8	absence 38:3	agree 6:9 94:8
131:11,21,22 132:8	8 5:16 123:8,10	absolute 127:1,8	112:21 132:6
139:15 144:7,8	140:16 141:5	131:19 132:10	134:10 158:13
146:13 147:3,5,8,11	$148: 15,16$	134:11 142:25	189:3,11
147:15 185:3,4	$\mathbf{8 , 0 1 0 , 9 8 8} \quad 1: 95: 8$	149:21 151:6	agreed 14:12
186:10	$68: 17,25$	absolutely 181:3	agreement 85:20
5,874,686 5:20	8,056,441 1:10	accelerate 141:21,23	86:25 100:4
160:14,17	8,205,237 $1: 95: 9$	142:9 143:13,18	ahead 20:16 23:13
50 136:2 169:3,5	68:19 69:3	accelerates 139:20	40:5 68:12 100:24
52 169:6,7	$\mathbf{8 , 6 4 0 , 1 7 9} \quad 1: 85: 11$	accept 128:17	128:8 162:17
53 169:3,5,6,7	68:21 69:6	129:14 130:1	algorithm 26:17
$56155: 15,19$	$\text { 8,656,441 } 5: 12$	146:15,22	28:21 40:22 41:23
57 155:16,19	68:23 69:9	account 49:13,17,21	42:3,5 47:12,19,23
58 186:9	$80 \quad 47: 260: 15$	50:5 77:23 133:4	47:25 48:3,11 50:15
59 185:3,4 186:9	800-227-8440	177:8	50:20 58:17 65:1,2
6	800-567-8658 193:2	accurate 18:25	65:7,17,19 66:2
6 5:13 91:10 108:22	83 71:24,25 72:1	33:15 43:14 116	70:18 79:23 95:5
108:25 109:3 110:9	9	action 95:13,22 96:1	137:25 138:16
114:18,22 117:2	9 5:1769:17 76:	96:4,13,14,18,19,21	145:9 150:16,22
	101:4 104:16 105:7	97:10,15,18,21,22	152:15,19,23 153:3
2:21 177:2	128:9,10,13 130:13	98:6,15,19,23,25	153:6,10,15 154:10
6,188,010 5:15	132:18 136:1	99:3,7,9 192:15	155:4,10 158:9
112:8,10	143:21 177:3	actions 19:14 96:20	167:10 174:17
$\mathbf{6 , 9 7 0 , 8 8 6} 5: 21$	$\begin{array}{llll}\mathbf{9 / 1 5 / 2 0 1 5} & 109: 18 \\ \mathbf{9 0} & 2.13 & 4.5 & 6.16\end{array}$	7:17 98:12	177:7
178:7,9	2:13 4:5 6:16	actual 12:19 14:2	algorithms 26:21
60 91:9,11 100:3	16 101:5,7,11,25	25:18 32:16 156:23	41:1,4,7,9,12 63:21
61 105:14 185:3,4	103:10 104:24	157:2 180:13	63:22
622,221 133:15	000 103:10	add 131:25 132:7	align 117:6,15 118:2
622,221,654321	01	187:24	118:4,5,15,22 119:1
133:11	97 123:25	addition 82:18	141:13,16 145:10
656-7066 3:18	973-629-1287 194:2	148:17	149:10
68 5:8	$98 \quad 122: 2$	additional 97:11,19	aligned 131:18
$695: 9,11,12$	988 69:15 95:8,17	97:25 98:3	135:10 142:15
7	9:05 1:14 2:9	address 194:	143:7 149:16,17,20
7 5:3,15 95:17	a	addresses 19:10	156:22 162:16
112:7,9,15 119:25	a.m. 1:14 2:9	addressing 19:7	aligning 145:12
:12 144:9	abc $72: 3,4,13,17,22$	admissible 129:13	alignment 134:8
5:15,19 171:25	72:22 73:4 74:17,22	advantage 174:21	156:21 162:20
174:10,12 176:15	ability 8:11 130:7	174:23	alignments 117:11
735-2419 3:8	able 48:1 60:16	afraid 66:14	alleged 15:3
75 47:12,20 48:1,4,8	82:13 96:7 108:3	agnostic 107:25	allow 39:5 51:3
50:21 60:16,17,21	164:22 177:8 184:5	ago 22:8 25:11 70:6	59:11 76:17 77:2
		119:5 155:8 170:3	79:23 128:22

Veritext Legal Solutions

162:19 175:15	appended 57:4 58:2	arps 3:4 7:4,6	assumes 185:6
177:17 184:7,15	applicable 15:9,16	arranged 182:17	assuming 56:186:9
185:19	application 79:13	183:20	116:3 171:2
allowable 153:1	80:12,17 81:7	arrangement 62:11	assumption 105:2
154:12	applications 26:5	array $26: 1727: 18$	114:19 130:6
allowed 169:12	79:10 80:21	27:21 28:2,3,5,6,8	attached 191:12
170:1 177:1	applied 48:18 91:12	28:10,18,20 29:5,12	attention 119:25
allowing 103:24	apply 30:7,13 32:11	29:25 30:1,6,8,10	attorneys 3:5,15 4:4
allows 140:4 177:24	36:9 108:3	30:15,24 31:1,11,24	audio 6:8 21:24 38:8
alpha 84:1	applying 35:18 40:1	32:13	80:18 81:16,22
alphabetical 182:18	87:25 88:9	arrow 122:19	108:5
alphabetized 182:1	approach 27:1	art 11:14,18 12:3	authored 46:5
amount 24:14	48:16,19 51:14	15:4 17:9 18:6 26:7	available 32:1 68:14
121:18 158:17	76:22 104:4,5	33:16 38:19 44:20	187:6,10,13
177:18	113:16 119:5,12,22	46:22 67:5,10 79:4	ave 194:1
amster 2:12 4:3 6:15	128:25 134:23	82:4 83:5,11,17,21	avenue 2:14 4:5
7:11	135:2,11 141:20	85:11 90:1,23 91:4	6:16
analogy 54:6	143:12,14 146:2	91:6 106:21 107:1	avoid 9:6
anchor 121:17	150:17,20 151:10	108:16 112:17	avoids 139:19
andrew 3:117:5	151:11,13,18,19,21	160:22 175:5	aware 37:8
andrew.gish 3:12	152:1,2,18,25 153:2	177:13 178:11	b
answer 9:9,11 16:25	153:4,16,23,23	186:17,25 187:4	b 75:4,5 95:18
20:5 24:2 27:21	158:19 183:2,8	aside 13:15 50:19	back 20:16,17 32:17
28:13,23,25 38:13	189:20	53:19 94:22 167:12	
43:17 52:13 59:19	approaches 61:3	asked 37:19 182:22	5:1
59:22 60:12 76:20	103:8 140:15	asking 39:16 58:20	63:18 64:13 71:23
82:13 85:1 110:3,18	182:24	58:25 76:3 83:4	103:20 106:14
115:21 177:1	appropriate 51:11	84:8 89:19 117:20	112:4 119:15
187:23	55:24 106:2,4,6	123:16 141:5	121:21 129:1
answering 188:12	129:15,17,19,24	aspects 14:7	148:14 150:7,18
answers 166:4	appropriately 179:5	asserting 19:2	151:11 152:13
anticipated 11:14	approximate 93:23	assignment 193:2	155:2 160:10
15:4	94:10,15,18,25 95:3	associated 30:2,10	75:25 179:23
anticipation 16:19	174:16 175:15	30:14 32:2,21 34:14	190:12 194:13
apart 24:6 86:16	176:16,20,21,25	34:18 35:5,17,23,25	background 8:20
apologize 65:4	177:4,6,7,15,16,23	39:24 51:20 52:12	backtrack 29:13
158:1 163:17 169:6	178:5	55:11 56:4 58:9,12	base 103:11
179:17 186:22	approximately 6:14	58:14 63:24 67:25	based 19:5,14 36:10
appeal $1: 16: 22$	arbitrary 166:3	108:4 183:20	49:2 51:12,16 55:3
10:24 42:8	176:10	association 97:12,20	55:6,23 83:4 94:7
appear 145:25	area 18:20 56:21	assume 27:18,19	$98: 15 \text { 99:1,3 119:12 }$
appearances 4:17:2	107:15 108:8,9	55:16 114:9,15,16	$125: 2 \text { 137:7,20 }$
appears 25:15 78:9	areas 108:10,12	114:22 116:20	$139: 5 \quad 157: 13 \quad 162: 7$
78:16,19 93:24	arelaw.com 4:9	129:12,23	167:4 173:17 176:7

116:18	4	briefly 27:16 159:14	S
ically 113:10	12,22	broad 20:20 99:12	categories 11:
asis 74:2 103:24	0:23 151:11,13	bucket 51:16,19,23	41:6
beginning 64:14	,23 152:	15,17,20,2	:2
106:15 113:20	152:3,9,12,16,18,19	53:3,7,13 55:25	ce 194:25
117:14 128:23	152:21 153:5,14,17	56:3,5,6	ellphones 6:6
160:12 174:19	154:1 164:12,15,17	buckets	enter 115:11,12
175:3 176:4	166:2 169:13,22	53:3	entered 115:1
begins 91:15 120	170:24 171:5,	139:1	entering 116:12,21
9:3 140:17	etter 87:18	building 139:22	126:18,23 127:6,7
2:19 188:25	beyond 33.18	bunch 20:7 21:2	certain 11:5 14:7
behalf 9:22 11:	big 5:14 108:24	8 41:3	$1: 14$ 24:10,12
beliefs 14:9	109:1 110:8	rdens	:15,16 56:21
believe 10:10	bigger 175:1	business 80:22	58:24 61:4 78:9
12:24 13:20 15:1	binary 26:18 27:12	byte 45:5,15,19	84:2 113:17,19
19:18 20:6,21 21:13	27:13,17 28:10,11	bytes 104:17	116:11 142:19,21
22:9,24 25:8,17,25	28:14 29:2,4,11	c	11 156:24
26:1,12 37:12,14	37:6 183:15 186:4		68:2 177:18
38	bit	c $3.275 .595 .11,19$	89:25
43:5 46:10,21 47:1	1971:1797	ca	certified
			certify 191:9
78	blind 6		192:14
80:	blood		alleng
85:20 87:6,13	blue		99:18
90:13 92:8,16 96:2	board		challenged 11:9,13
96:16 98:6 99:19	10:20,24 42:8,12		11:17
100:16 104:16	3:8,12 94:2		96ance 96
105:12	10		chances 176:12
109:7 112:6 113:24	board's		change 89:10 91:6
114:7,13 115:8,22	:18		193:5 194:11,12
116:4 117:9,12,19	bonded		hanges 21:21
121:4 122:1 127:3	bottom		194:11
127:21 128:6 132:2	:2 124:17	career 46:1	charact
139:12 140:1,5,8,13		$\text { case } 6: 19,2$	3:1,19 74:3,4,6,7
148:3 155	ard		162:15 163:2 165:4
158:21 161:11,2	branch 54:11,13		65:12,21 166:14
162:13 163:10	$5 \cdot 25$		82:3 183:7
164:19 165:12	br	83:2	characterization
170:7 175:4,23	55:12 56:23	88:2 94:23 106:	:2 54:
176:19 177:5 180:5	break 9:13,15		113:4 178:19
185:13	110:25 159:9 160:3		characterize 18:17
elieved 1	brief	138.9,11,14	35:8 44:21 45:7
est 66:22 84:21	160:9 179	$168: 31$	6:22 64:25 71
86:1,6,9,14	190:10		82:5 83:13 159:15
89:15,16 91:2 114:4			162:24 163:1,8,10

176:25	94:4 180:7,11,17	commercials 101:14	complexity 64:25
characterized 44:6	closely 162:12	101:18 102:11	65:6,12 66:3,5 67:3
44:13 85:6,7,9	closer 165:1 166:8	commission 193:25	67:14,19 68:10 70:5
183:9,11	closest 79:20 80:10	common 51:23 52:1	70:9,9
characterizing 65:6	85:2,4,8 87:17,21	54:11,12 75:178:4	component 140:25
characters 161:19	87:23 88:5,8,13,17	compare 27:23	components 21:2
163:12,19 164:8	88:17,22 89:5,22	32:15 36:5 40:17	140:3,24
166:22 167:8 168:7	90:17 93:4,9,10,13	74:3 75:3,18 113:2	comprises 97:10
168:25	93:17,20 94:5	114:17 119:18,23	computation 131:16
charles 4:87:10	138:12,15 150:3,12	134:8 142:1 147:2	compute 113:21
194:5	150:14,18,19 151:3	149:15 150:1,10	141:15,18 156:23
chart 5:16,17,18	153:9,19 154:6	152:10	157:1 168:22
42:17 123:9,11	clr 1:18 192:23	compared 34:21	computed 181:5
124:14 128:9,11	clustering 37:16	119:8 120:22 121:2	computer 145:11
146:8	cmacedo 4:9	121:8 133:9,15,20	computes 131:17
check 27:23 100:2	coffee 159:9 160:2	133:24 134:4 156:3	162:8 167:5
114:25 115:21	collection 183:19	161:23 163:12,19	computing 117:11
128:21	column 69:17 95:9	164:4,8,9 166:22	concept 25:24 26:6
choose 154:9 187:21	95:12 97:7 100:19	170:22	26:10 67:19 70:4,5
chorus 172:20	119:25 120:12	compares 45:19	79:3 94:9,13
christopher 4:15	136:1 139:15,24	comparing 75:7	concepts 67:22,24
6:11	140:11,16 141:5	117:2 125:17	conceptually 29:13
circumstance	143:21 148:15,16	144:15 161:7,12	concerned 80:3
circumvent 175:5	155:15,19 169:1	164:23 178:17	103:8 166:16
claim 11:25 15:1	171:25 174:10,12	179:9,13 189:7,16	conclude 89:4
16:19 17:8,21 19:21	176:15 177:2 185:3	comparison 42:15	concludes 190:20
92:10,10 95:11,16	185:4 186:10,10	42:24 47:14 73:18	conclusion 89:20
96:5,7,15,22 97:5,9	188:19 189:13	75:20 107:16 113:8	90:15
97:16,22 98:7,21	combination 66:22	113:13 117:5,7,18	conditions 8:10
99:2,10	combined 151:13	117:23,25 119:3,16	56:21 67:16
claims 11:9,13,17	come 33:1 68:14	119:18 120:17	confident 46:3
15:3 18:8 19:19,20	89:20 98:18	121:7 124:19,23	configure 187:21
25:15 78:10,16,19	comes 32:3 50:13	125:3,6,8,11,22,24	configured 81:25
91:4 93:25 99:18	63:5 75:5 107:7	131:4,8,11,12,15,21	153:7
clarified 87:14	116:19 152:25	132:7 133:3 134:5	confirm 14:8 123:23
clarify 9:3 173:23	coming 66:14 152:4	134:19,24 135:3	126:22
clear 9:1 122:22	174:7	145:3 146:24	connection 9:21
127:22 136:13,17	comments 8:21	150:25 151:4 157:6	10:1 12:5 15:23
144:4 180:15	commercial 101:17	comparisons 102:9	18:14
clearly 8:25	101:22 102:3,6,14	118:9 119:11,13	connects 142:12
clips 35:22	102:20,22,24	125:4,12,20 131:9	consecutive 119:20
close 79:19 81:11,25	103:13,15,16 104:2	132:17,21,24 141:3	119:23
82:18 83:18 84:20	104:7 187:15	142:4	consequence 174:15
85:2 87:10,16 92:15	commercially 187:6	completely 63:11	consider 16:1,4
92:22 93:1,2,8,12	187:10,13	172:11	52:16 53:12 61:24

Veritext Legal Solutions

63:877:16,20 78:3	94:23	conveyed 16:12	138:4 142:9 143:13
135:17 144:11,13	construed 42:13	conwell 12:15	143:19 144:12,18
153:7,14,19,24	90:12 94:3 99:21	178:11,15,20 179:2	145:23 146:5 148:2
154:4,8,10,11	consult 82:12	179:7,12,25 180:2,5	148:9 149:18 151:8
156:10 157:16	cont'd 112:13	180:6,9,16,19,23	153:20 154:16
163:13,20 164:10	contain 59:20	181:2 184:22 186:9	155:13,25 156:11
164:19 168:20	179:25 183:6	187:5	157:9 158:12 159:3
176:6,17 181:8	contained 57:3,	copy 12:10 $23: 11$	159:12,13,22
considered 101:21	75:22 76:14	112:7	160:24,25 161:16
101:23 118:25	containing 53:4	corey 4:10	165:17,18 166:9,25
135:13 153:7	56:8 58:1,22 76:4	correct 9:23,24	171:7 172:3 173:16
154:23 156:5	183:5	10:12,13 11:6,7,10	178:22 179:4,14,15
176:22,23	contains 36:13	11:11,14,15,20 12:4	182:19 183:9
considering 56:22	58:24 72:14 101:13	12:20,24 13:7 14:15	184:24 185:5 186:7
154:16,17,18	104:7 138:2 143:6	15:8,15 16:15,16,20	186:8 188:8 189:22
considers 63:15	180:7,16	17:9 18:1 25:12,13	191:10
71:2	content 18:24 19:2,2	26:7,8 27:14,15	corrections 191:11
consistent 18:9	49:11,17 62:15	28:12,13,16,22,24	194:11
87:12 121:12	63:11 77:23 81:16	34:23 38:12,24 39:1	correctly 39:16
122:18	81:19 107:16,16,20	39:10,14,21 40:11	58:20
consisting 52:9	107:25 110:11	41:7 42:10,11 45:6	correspond 39:13
56:12 72:24 172:2	contents 52:22	49:3,9,14,24 51:24	43:13 55:10
consists 29:25 53:15	53:12	52:7,17 54:1,4,5,23	correspondence
55:16 72:18	contested	55:1 56:15 59:2	53:10
constant 143:9	context 13:12,16	60:18 62:6 65:24	corresponding
constitute 57:19	21:8 22:13 23:25	70:23 72:5,14,15	24:17 147:25 151:7
135:22	26:15 67:25 68:3,6	73:22,23 74:14,15	correspondingly
constitutes 90:4	69:23,24 70:2 77:6	74:17 75:14 76:9,12	159:2
96:4,13	83:7 92:9 95:2	77:24 78:5,7,12	counsel 6:187:1
constraints 99:14	99:10 140:10 148:4	80:14 82:4,21,22	15:12,19 16:13 17:3
166:5	155:7 177:15	86:7 88:5 90:12	17:6 123:6
construct 58:17	contextual 14:4	92:24 93:25 94:12	county 191:3 192:4
102:2 103:4,12	continue 6:9 28:4	96:1 98:14 99:18	couple 8:20 10:18
104:23	74:5,8 75:6 144:17	104:25 105:1,20	29:9 67:18 104:22
constructed 102:13	157:5	106:23 110:21	115:19 117:10
137:5,7	continued	113:9 115:18 116:3	155:8 159:6
constructing 184:1	continues 120:2	116:10 118:7,11,13	course 9:14
construction 42:9	continuing 149:24	119:2,6,7 120:13,14	court 7:15 8:4
85:21 86:17 87:4,7	150:8	120:18,23,24	court's 92:10
87:12 88:1,11,23	contradiction 65:11	121:10,24 127:25	coverage 105:6
91:8,14,25 92:10,11	contrast 121:19	129:4 131:24	cox 10:12,15 11:9,13
92:18 93:6,8,12	convenience 91:7	132:15,19,20,22,23	11:17 12:1,12 15:4
105:15 128:3	conversations 6:5	133:1,21 134:20	15:6 18:1,6,13,18
constructions 15:1	convey 154:22	135:7,13,14,18,19	18:19 19:1,5,7,15
42:17 86:24 91:12		136:7,9 137:9,22	19:24 20:11 21:9

22:2,2,13,18,20	database 19:12 20:2	178:10 189:5,14,15	defines 90:25 177:3
24:7,23 25:6,15,19	33:3,6,7,12,20 34:1	193:3 194:8	defining 136:5
25:22 26:5 37:12	34:2,3,14,15,18	dated 109:16	178:4
40:25 41:17 42:1,4	38:21,25 39:12	day 33:2 104:6	definitely 84:25
43:6 68:4,6 70:10	43:16,18,21 44:6,13	191:18 192:20	definition 22:24
70:21 78:10,24 80:2	44:16,22 45:1,4,6,9	193:22	23:10 24:20,21,25
80:2,11 94:7,8,22	45:11,15,16,21	days 194:15	43:2,4 46:11 75:16
100:15 186:17	46:23 47:7 49:1,12	dear 194:9	84:13,16 88:3 97:22
189:4,12	49:18,22 50:6,22	decide 54:24	100:8 107:1,9 108:7
create 60:2 77:6	51:15,17,18,21,22	decides 90:11	135:21 149:6
168:4 184:6,9,12,13	56:7,10,12 57:2,3,6	deciding 11:1 49:13	152:14 153:22,25
184:14 189:25	57:18,23 58:7,18	decision 15:17 51:15	154:6 176:19
created 109:25	59:3,19 60:15 62:3	51:18 54:2,5,7 56:1	177:14,16,19,20
creating 54:2	62:12 66:23 67:7,12	62:21 188:2,5,11	178:2
136:11 184:18	71:3,10,19 72:4,13	declaration 5:6 9:22	definitions 183:20
187:22,25	72:17 73:3,5,11	9:25 10:9 11:3 12:8	degree 107:5,7
criteria 136:5	75:13,22,24 76:4,23	12:16 13:1,3,18	108:9
173:19	77:4,8 81:2,3,10	14:6 20:21 23:9,12	deletions 162:19
crr 1:18 192:23	85:5 96:24 100:10	23:15,17 47:3 64:20	department 194:22
cryptic 141:9	101:7,10,12,13,18	71:24 82:9,13 85:20	depend 158:19
cs2183243 1:25	101:23 102:3,4,12	87:13 88:25 89:8,24	181:16
191:25 193:2	102:13 103:17,18	90:20,24 91:9 95:25	depending 75:15
cursory 15:21	103:22 104:2,2,18	96:8 100:3 105:13	depends 32:18
cusp 110:23	104:24 105:10,23	106:17 108:19	52:24 170:12
d	107:17 120:17,20	109:6 110:16	depict 121:22
d 5:1 37:14 41:9,13	120:21 121:3,9	112:19 115:20	depicted 120:15
41:18 50:24 161:19	122:13 124:11	121:20 122:8,25	124:23 130:25
161:21	136:12 137:4,10,17	123:3,5 124:1 129:2	131:4 147:3
damages	137:24 138:8	130:9,11 160:24	depiction 120:25
data $30: 3,931: 18,20$	139:17,21 161:6	178:13	depictions 122:7
31:21,23 32:2,17	162:7 172:24	declarations 13:4,10	deposition 1:12 2:11
35:5,6 38:1,6,14	174:19 179:24	13:11 14:8	6:8,14 8:14 12:16
39:21,24 43:12 45:5	180:3,6,16,23 181:4	deconstructed	13:21,24 14:3,13,17
45:10 46:24 48:6	183:21 184:2,4,10	101:19	15:5 23:24 68:16
51:11 52:10,11,12	184:13,14 186:18	decreasing 186:1	123:8 190:20 191:9
52:24 58:22 63:22	186:21 187:13,18	deemed 194:16	192:10,11 193:3
73:7 80:6 82:2 89:6	187:22,25 188:11	deeper 110:23	194:8,10
99:24 100:8 101:2	189:21,24 190:1	define 65:12 67:10	derived 15:11,18
103:5 105:15,17,18	databases 189:1,5	74:23 90:5 142:1	39:14,20 40:3,6
106:1 113:22,23	189:13,18	168:18,24	describe 29:24
127:2,4 135:12	date 6:12 23:19	defined 46:5	7:13 126:25 127:3
138:15,19 176:17	69:4,7,10 109:2,20	85:19 101:9 128:1	127:5 157:24
186:12,20 187:1,6	109:22 112:11	136:3 143:1,4 149:5	158:10 175:17
186.12,20 187.1,6	123:12 128:12	156:4,10 169:25	described 23:8 32:5
	146:9 160:18	171:17,18	34:24 44:17 70:21

Veritext Legal Solutions

77:16 100:25	determined 66:10	digit 133:4 147:24	discussed 37:5
108:18 113:6,13	98:20 108:17	148:1	90:23 101:3 103:9
116:12 119:6 125:3	136:10 138:10	digits 133:4	107:23 170:3
125:10 145:22	165:20	dimension 55:18,18	178:12
172:6 175:19	determines 179:12	55:19	discusses 159:11
176:15 182:24	determining 16:19	dimensional 51:9	discussing 31:15
187:5	48:12 95:13,21,25	108:4	70:6 122:16 182:17
describes 36:20 41:3	96:14,18 98:23	dimensions 51:8,12	discussion 16:22,24
41:6,8,24 70:8,9	162:1,11 163:5	54:16 55:3,7,10,11	17:4 23:20 35:24
112:22 121:6	develop 20:1 103:23	55:17	50:9 78:6 97:2
140:25 155:12	developed 37:12,23	dip 148:18,24 149:1	108:14 110:8
178:16 189:17,18	175:12,24	149:4,7,9,10,10,17	134:25 151:2
describing 31:17	dictionary 181:8,9	149:20 151:5,8,10	188:17
34:12,20 72:2	181:12,12,14,19,23	151:15,18,23 152:1	discussions 15:11,18
116:24 117:17	182:1,16,23 183:13	152:4,9,20,25	17:6
140:14,22	183:14,17,19	154:14	disk 64:10,14
description 122:17	185:22	dips 141:1,2 149:13	105:23 106:3,11,15
135:25 136:1 141:9	differ 24:21 159:24	151:1,22 154:16,19	160:7,12 190:19
159:20 175:25	165:21 166:14	direct 106:16	displacing 97:11
185:5	difference 87:2	119:25 187:20	displaying 97:19
design 39:4 59:21	102:12 106:25	directed 141:4	dispute 11:1 13:16
77:1	107:4,5 131:19,19	direction 135:20	disregard 28:1
designed 36:23	131:22 132:1,11	directions 66:15	distance 84:3
38:11 43:24 63:23	134:11 143:1	directly 182:8	113:21,24 114:7
81:15,18 83:17	149:21 151:7 155:9	disadvantage 175:6	126:1,5,10,14
152:16,19,23 153:3	156:23 157:2,2	disclose 40:25 41:17	127:17 128:3
153:10,12,15,17	162:24 163:5,9	41:21 90:24 136:14	131:17 143:8 168:6
designing 62:9	165:13 170:22,25	142:6 157:10	168:24
179:5	171:13 180:25	disclosed 20:24 42:2	distinguishes 20:9
desirable 21:16	differences 115:10	90:1 117:9,13	distinguishing
176:1	162:15	167:10 175:19	20:23
detail 175:17	different 14:18	184:23	distortion 21:23
detailed 13:1	19:22 21:2 35:23,25	discloses 20:6 41:5	dna 175:13
determination	46:6 50:18 54:12,13	156:12 161:2,12	document 108:23,23
48:25 49:4 62:3,14	68:1,2,5 70:4 90:15	167:3,23 169:1	109:5,25 110:12
62:19,24 179:8	93:22 141:11 164:5	disclosing 42:4	documents 14:7
181:2	166:17,23 168:19	disclosure 17:25	doing 29:11 103:19
determine 34:22	168:22 172:6,12	18:2 19:11 22:2,25	114:2 126:18
48:1,4,5 49:23 50:7	173:2,3 180:9,18,22	25:22 80:2,8 122:12	145:17 148:17
50:10 53:11 57:6	181:18	127:12 136:8	151:25 157:5 162:4
58:7 63:8 67:6 71:5	differently 17:17	159:21 185:6,11	176:11 181:17
75:7,13 88:21	25:6 154:3 171:11	discontinue 142:3	double 100:2 128:21
102:10 121:18	differs 166:21	discretion 136:11	douglas 3:9 7:3
132:11 164:25	difficult 9:8 23:24	discuss 141:23	194:25
180:9,19,23		160:23	

Veritext Legal Solutions

douglas.nemec 3:10	electronic 97:12,21	58:1,13 71:2,3,4,6	93:13 134:14,16
dovel 3:147:8	99:1,4 183:13,14,16	71:10,12,13,18 73:6	138:12,18 142:12
downloaded 109:12	184:2	73:14,15,18 75:13	142:13 144:14,22
09:	electronically 95:21	101:17,22,23 102:4	145:3,16,21 147:19
dr 6:25 7:1	98:20,22	102:13 103:18	158:10 179:10,14
10:12 12:16 13:4,9	element 30:1,10,15	104:3 105:18	exactly 21:11 $24: 24$
13:22 14:12,16 15:6	35:14 95:11,14,18	108:25 181:3	30:13 31:8 48:18
9:7,15,24 20:10	95:19,20	enumerate 66:24	51:13 60:10 76:21
21:9 22:2 23:15	eliminate 61:19	equal 143:8 163:14	147:22 148:25
25:22 26:5 40:25	eliminating 61:23	163:21 164:11,20	180:1,4 181:4
41:17 42:1,4 64:15	elimination 61:21	166:24	examination 5:2
69:11 70:10 78:24	embodiment 137:18	equally $165: 8,11$	7:22 112:13
80:2,11 94:8 106:16	employ 187:18	166:4,16,17 167:11	examine 56:20 62:4
107:2 123:13	employed 155:13	168:8	73:14,17,21 182:10
128:13 160:19	employing 143:12	equals 101	examined 7:20
79:24 190:13	143:14	equated 100:9	52:22
draft 123:4	empty 56:23,25 57:1	equation 120:9,16	examining 75:9
driver 79:14	enable 79:12	equivalent 30:22	example 14:11
duly 7:20 192:	led	168:1	16:11 21:17,23,25
e	bling 174:2	errata 193:1 194:1	23:4 26:16,18 28:17
e 3:2,2	94:2	194:13	30:23 34:16 37:15
	enclosed	error 21:2	37:16 41:14,19 47:5
	engine 173:6,11	156:3,9 157:18	47:18,22,23,25 48:8
earlier $110 \cdot 4121 \cdot 13$	188:2,11	169:2,9,11,15,21,23	48:14 49:16 50:1,13
$\text { early } 39: 375: 19$	engineering 10	170:13,13,19	50:15 53:23,25
$117: 13$	entirely 66:10	171:12,16,16	56:16,23 57:9,14,23
se 185:5	entirety 30:25	errors 177:9	60:14 62:19 63:10
easier 123:15	entitled 5:13 109	esq 3:9,11,19 4:8,10	63:15,19 65:22,25
easily 125:	entries 34:15 35:23	194:5,25	66:18 70:24 71:1
	36:1 49:13 50:6	essentially 54:2	72:10 73:4,13,17
ebenstein 2:13	52:17 67:7,12 70:19	140:11	74:16 75:3 76:21,23
$\text { : } 16 \text { 7:11 }$	70:20 73:22 75:25	establish 32:25	79:24 81:13 97:15
dits 123:6	100:10 101:1,7,9	evaluate 55:9 148:6	100:25 101:4,21
efficient 19:16	105:17 106:1	148:10	102:8 103:14,21
175:14 183:3	170:10 184:3,23	evaluating 61:13	115:13 118:4
184:19 188:3,6	185:6,12,16,18	148:11	121:21 123:24
efficiently $184: 6$	189:6,15	everybody 84:2	124:5,12 129:7
185:20	entry 5:13 32:20	exact 12:9 21:19	131:20 133:2 144:3
either 9:1 23:2 2	33:20 34:1,13,14,17	22:3,7 24:1 29:3	144:4,7 146:10
$5: 359: 9126: 1$	34:18,21 36:5,11,12	39:9,11,13 40:10	147:18 153:13
$\begin{aligned} & 5: 539: 9 \\ & 51: 5182 \end{aligned}$	36:16 44:5,12,16,22	74:17 80:6,10,17,23	154:13,23 162:21
ct 135:16	44:25 45:4,5,9,10	81:3 82:1,18,24	170:19 182:16
electrical 108:13	45:16 46:23,25	83:3,11,19,22 88:4	186:6
	49:12,18,22 56:8,12	88:7,13,17,22 89:5	examples 27:3,7
	56:19,21 57:3,18	89:22 90:17 93:2,9	37:18 50:3 57:12

Veritext Legal Solutions

80:11 115:19	69:2,5,8,15 71:24	extractions 139:2	fetching 96:23
121:19,22 130:8	95:7 100:18 108:22	f	fewer 119:11,13
excellent 159:9	108:25 109:3 110:9	f 112:1 192:1	field 18:18,19 19:1
exclude 47:12 49:5	112:6,7,9,15 123:8	f 112.1	82:14 94:14
50:21 51:3 60:16,21	123:8,10 128:9,10	$73: 10,1579: 3$	fields 19:4
60:25 61:4 73:6	128:13 130:13		figure 49:19 121:6
excluded 49:188:2	132:18 146:7,12,12		122:2,16 173:4
88:6,12	147:4 160:14,16,19	66:20 176:14	184:25
excludes 155:	178:7,8,11 188:18	77:2	file 21:24 31:20 58:2
excluding 47:20	ex	factor 24:16,16 25:2	159:10,11,15,16,18
60:17 155:4,6	ex	$25: 2,4,4$	159:21,24
excuse 18:12 27:5	existed 110:10,20	fair 9:4,11,12 11:22	filed 12:17 26:5
22 127:1 155:23	existing 110:13	14:3 16:9,10 33:8	189:22
179:1	exists 28:18 64:2	$\begin{aligned} & 43: 4114: 11 \end{aligned}$	files 159:19
execution 99:22	71:5,13 81:3	47:18 161:1	filings 12:17,19
190:4	expect	8:15,	13:13 14:21
exhaustive	experience 26:24	$\text { fairly } 26: 16$	finally 17:5
25:11,14,18,24 26:6	44:4,11 82:14 94:20	fairy 26.16	find 22:3,7 23:24
26:10,19,25 27:2,8	107:7,11,13,14,21	54-17 96-20 98	24:1 25:1 28:5,7
27:13 29:19 35:8,10	108:2	98.16 99:8 $145 \cdot 8$	29:2,5 33:7 38:20
35:13,15 37:8,11,15	expert 8:17	falls $18 \cdot 2053: 6$	40:10 66:21 72:20
37:17 40:21 41:1,4	16:2,5,8 17:19,23	false 28:20 74:1	72:21 73:2 75:23
41:22 42:2,5,9,13	159:16	familiar 17:10,14	81:4 88:21 89:15,16
44:7,14,17,22 45:7	expertise 16:13 17:7		89:22 92:4 109:14
45:12,22,23,25 46:5	17:13		135:6,9 142:3
46:12,16,25 47:11	expires 193:25	87	143:10 150:2,11,16
56:14 58:18 59:6,12	explain 27:16 28:22		152:12,16,19
59:13 61:8,11,15,17	29:21 113:11	far $57.1391 \cdot 3$	153:10,12,12,16,16
61:23 62:10,18,22	explained 32:10	163:22 166:15	153:17 162:14
63:1,3 64:22 65:8,8	explaining 189:4,13	fashion 13:8,22	176:7 181:21 182:4
65:10,20,23 66:1,7	explains 172:1	fashion 13:8,22	183:23,24 194:10
66:11,17,20,23 67:2	explicit 80:8		finding 21:18 27:10
70:22,25 71:7,8,16	explicitly $22: 4$	-12 77:2 1	36:16 38:23 80:5
71:19,21 73:9,12	exposure 26:9	184:3	89:5 90:17 91:21
76:18 77:13 103:25	expressed 11:5,8,12		149:2
181:9 182:6,12	:16,23 95:24	faster 79:24 188:1	finds 153:23
183:9 186:7 187:18	105:25 108:20	188:14,15 190:3	finished 9:9
187:24 188:7	112:18	$\text { ax } \quad 194: 2$	first 10:25 11:24
exhaustively 56:9	extent 14:10 46:10		19:25 24:9 28:1
57:5 58:6 59:17	:6 81:6 100:6	76	73:5,18 74:3,3,4
76:1	107:25 139:1		117:7,25 118:1,2,9
exhibit 5:6,7,9,10,12	extract 60:577:4		118:21 120:16
5:13,15,16,17,18,19	extracted 77:17,20		121:1,2,8 122:10
5:21 23:17 47:3	77:22	feel 8:6 9:2,15 33:15	123:4 125:23
68:16,18,20,22,24			126:21 131:22

Veritext Legal Solutions

140:24 141:13	187:8 189:8	141:2,21,23 190:14	145:15
144:5,6,15 145:4,10	format 159:11,15,17	192:14	given 8:14 32:2 46:4
145:13 147:4	159:18,21,24	future 139:2,5,24	48:16 51:23 52:21
172:17 182:13	formats 159:10	g	53:12 55:21 62:5,13
185:22	forming 12:5 13:10	g 7:19,19 112:12,12	74:2,2,9 77:10 81:8
firsthand 26:24	13:23	gapless $162: 16$	93:19 115:16
fitness 66:10	forms 37:7 177:8		119:10,10 138:15
five $119: 17,19,19,23$	formula 157:24	general $18: 19,20$ 19:9 22:16	139:3 141:10,13
147:24 148:1	formulates 177:21	29:22 31:13 47:24	148:21 163:13,20
179:17	forth 15:3 21:14		166:5 192:12
fixed 170:18	84:4 118:3,6 132:3		gives 30:8
fleshed 31:4	141:19 192:10	84.	giving 97:14
flexibility 174:25	forward 194:13	$20: 8 \text { 38:18 39:7 }$	go 6:9 20:16 23:13
flom 3:4	found 22:3 35:1,3,4	40:9 113:11 181:7	32:13 36:10,12,15
focus 13:2 50:22	137:22 144:15		40:5 45:20 47:20
focusing 63:24 99:7	145:3,21 151:23		48:11 51:16 56:2
folds 73:19	152:9		68:12 73:1 96:9
follow 15:13 62:8	four 1		97:4 100:23 106:7
154:24	68:13 69:11 147:19		128:8 145:12 155:2
followed 36:2	147:22	1:12 2.115.3	156:22 162:11,17
following 57:22	fraction 24:12 46:24	$5: 66: 2523: 15,18$	163:4 165:22
58:21 141:10	frame 83:12 101:10		181:16,21,22 182:2
follows 7:21	101:21,22 102:15		182:3,8,22 183:4,5
forced 9:17	102:19,24 103:10		183:23,24
foregoing 191:7	103:16,18 104:8,9,9	$12: 1443: 7$	goal 28:13 44:15
form 20:19 21:12	104:12,23 105:3	2	45:17 54:21 66:8
29:18 32:7 38:22	frames 101:19		67:14 75:23 79:18
40:22 43:23 46:7,18	104:20	62.23 163.1, 4 , 8.13	102:23 103:2,4
49:25 51:1 53:14	free 9:2,15 194:2		104:6 176:7
57:8 62:16 63:13	front 69:12 91:8		goals 19:16
70:13 76:2 77:22	95:8		goes 51:19 138:22
80:19 81:5 84:6	fully $8: 713: 131: 3,4$		152:13 156:24
85:16,17 89:1 90:2	function 23:1,4,4,5	23	162:1,4
92:19 98:9 99:11	24:10,14,19 25:1,3	$68: 10169: 1,24$	going 8:24 20:25
103:6 117:8 129:16	30:3,7,13 32:12		56:20 59:25 63:7,18
133:6,17 134:21	35:19 36:9,18 40:2		64:9 66:3 67:3 78:8
137:23 138:13,20	49:6 51:19 126:12		81:4 103:20 106:10
143:3 145:6 150:13	126:16,16 150:15	1500	111:3 114:16 149:7
151:16,24 163:15	155:12,23 156:18		152:11 156:25
166:10 167:1,16	156:20 157:19		160:6 170:16 174:1
168:17 172:9,25	158:7,8 187:20		179:20 190:8,18
173:22 174:4,7	functions 39:4 179:6		good 6:17:24,25
175:7 176:5,18	fundamental 31:7		18:4 54:8 72:6
178:3 181:10,15	further 53:12 73:21		111:1 164:21 165:8
183:1 185:24 187:6	74:13 87:14 97:4		165:11 166:4

Veritext Legal Solutions

167:11 168:8	38:20 39:4,8,25	humming 161:4	176:12
google 1:3 6:19 7:4	40:2,6,8,11,12	76:	ids 66:22
10:3 12:13,17 193:3	47:22,25 48:14,19	hypothesize 21:18	fs 130:4
194:6	49:16 50:1,12,19	hypothetical 72:2	ignore 55:1 80:17
google's 13:5	51:7 53:1,2,4,6,8,8	76:4 116:21,23	ignored 136:17
governing 17:7,20	53:19 56:17 57:1	118:18 128:18	ignoring 80:23
grab 110:25	60:8 63:20 77:10	130:2 149:24 150:8	illustrates 63:19
graduate 108:8	178:22 179:4,6,9,13	hypothetically	illustrative 115:25
granularity 102:17	180:1,4,9,13,19,21	114:9 146:15,22	impact 108:19
greater 23:3	181:5 184:24	I	implement 29:10
green 131:1	185:12,16,18	i.d. 5:5	34:25 55:14 185:19
grid 91:11 124:17	hashes 178:18	idea 77:10 79:17	implementation
124:24 125:5	180:22 181:1	ideas 51:6 63:20	80:22
130:24 131:1,3	hashing 178:17	identical 32:17	implemented 40:13
grows 174:20	head 12:11 21:1	40:16,19 81:9	40:23 41:14
guarantee 63:25	24:3 50:5 59:9,25	identification 19:14	implementing 41:18
86:5,13 89:14,21	126:4 157:21	23:19 59:5 69:1,4,7	41:22,25 187:4
93:17	health	69:10	implication 93:15
guaranteed 83:10	hear 9:2 65:3	99:1,4 109:2 112:11	implications 93:14
85:23 86:1,8 87:9	heard 10:21 44:5,12	123:11 128:11,22	imply 23:6 122:3
87:16,20 88:21	held 2:12 6:15,21	$28.25145 \cdot 7146 \cdot 8$	important 136:15
guarantees 28:21	hereinbefore 192:10	10:	136:20,24 138:1
88:4,7,12 89:5,16	hereunto 192:20	identified 91:24	include 49:5 98:1
90:16 91:2	high 29:1 51:9	92:9,17 93:1,5,8	154:19 155:23
guess 140:17	:17 170:14	identifier 31:23	included 125:13
guidelines 158	higher 23:2 108	85:	170:10 194:11
guitar 172:22	highest 114:5,6	identifies	incorporated 6:20
guys 52:3	141:11,12,12,14,14	136:15 139:3 167:	incorrect 44:20 45:1
guzman 1:18 2:16	141:16,17 142:1,2	73:12 178:16	46:22 47:1 130:8,9
7:16 192:6,23	142:22,24		130:11
h	highlighted 147:9		increase 24:11,13,17
half 28:1 127:10	7:	5:18 66:9 79:19	25:1,3 176:12
hand 192:20	hig	80:13 81:2,25 82:1	increases 23:2
hanlon 4:15 6:11		83:18,19,25 84:2	increasing 27:20
happen 157:14	hold 104:1	87:10 102:18,20,24	86:1
happens 35:2	horowitz	03:15 104:7,8,10	independent 16:11
157:11	huh 69:13 91:18	27:16 138:5,6	16:17 17:5 86:23
hard 46:8	109:19 110:17	43:11,15 153:	90:6
hash 27:2 29:17,18	112:20 116:7 132:5	158:10 161:3	index 30:8 60:4 77:9
29:21,24 30:11,15	134:2,7 148:20	identifying 20:9,10	77:17,20,22 78:3
31:25 32:4,11 34:19	159:23 173:10	3:15 78:18 88:	175:14 184:14,18
35:16,18,22 36:8,9	hum 161:2	88:14,19 89:13,17	indexes 184:21
36:18,21,24 37:5,19	ned 161:8	91:16,20 94:4 143:5	187:25
37:23,24,25 38:2,16	:8 176:8	154:12 161:5 175:9	indexing 77:25

indicate 65:19 92:6	interfere 6:7 8:11	133:3 134:1,19,23	key 20:23 30:7,13
92:14 136:2 144:20	interpret 70:14	135:3,5,8,12,15,21	30:17,19,21,21,22
145:2	91:19	136:4,19,23 137:1,5	30:25 31:9,16,19,20
indicated 14:20	interpretation 100:5	137:16,18 138:5,22	31:21,22,25 32:11
99:20	105:22,24 106:2,4,6	139:9 140:3,17,21	32:16,16,18 35:14
indicates 144:10,14	interpretations	141:25 143:25	36:5,10,10,19,20
144:21	105:14	144:11 146:2,17,25	38:1,4,16,21,24,25
indicating 194:11	interpreted 12:1	148:4,14,16 149:5	39:7,12,12,14,19,19
indicative 52:15,21	invented 20:11	150:24 154:14	39:20,24 40:1,2,3,6
53:6	25:23 26:2 78:25	155:12 156:10,12	40:14,18 48:17,19
indices 184:7 187:22	94:9	157:10,17 158:15	48:21 51:13,20 52:1
188:4,6,9,13,14	invention 18:18,20	159:11,21	52:3,5,9,10,14,19
189:25 190:3	19:10,16 20:23	j	53:2,4,8,11,16,17
individual 34:13	80:12 187:4 189:6	jennifer 1:18 2:15	$55: 4,7,10,16,24$ $58: 12,1492.2$
19 102:	189:14,15	7:16 8:22 192:6,23	58:12,14 92:2
	inventions 19:8 21:9 106:21	jennifer's 9:7	2
information		jersey 194:2	keys 30:4 32:2 39:22
13:17 16:12 18:21	inverted 77:9	job 1:25 191:	54:15 55:11 58:9
48:12 49:22 54:3,10	involve 127:6,6	journal 79:10	174:17 176:2
54:11 71:18 97:11	involves 12:11	jurat 194:15	185:25
97:20 98:1,4 107:17	ipad 23:22		kilobyte 105:3
107:20 108:2	ipr 1:4,4,5,5 10:6,9	k	kind 15:21 20:1,21
183:22	12:14,17 13:13	k 7:19 37:14 41:9,13	36:24 85:11 140:23
initial 117:11	14:21 15:2,17 23:16	41:18 50:24 66:22	knots 164:1
inquiry 184:16	irrelevant 166:3	66:22 67:1 83:23	know 13:13,25 14:1
insertions 162:19	issue 10:6 18:5 82:7	112:12 175:11	14:6,8,9,25 15:2,21
instance 10:25 53:1	106:22	176:24 177:24	18:22 19:3,10 20:22
118:24 147:4,8	issued 99:180	182:9,11	21:13,14,18,18,19
155:3 164:22	issues 8:11 16:8	karypis 1:12 2:12	21:21 22:25 23:1,1
instances 14:11	item 12:18 60:13	5:3,5,6 6:25 7:18,24	24:9,9 27:22 29:13
26:23	126:11 173:9,15	23:14,15,17,18	29:14,16 30:5,16
instituted 10:2	items 31:10 189:7	64:15 68:15,18,20	31:14,16,18 32:10
integer 24:18 36:19	189:16	68:22,24 69:2,5,8	33:10,21 35:5,18
intelligence 54:6	iwamura 12:15 43:7	69:11 106:16	39:3 40:20 41:11
intelligent 47:12,19	112:8,21 113:7,14	108:25 112:7,9	43:25 44:2 46:11
50:20 61:13 190:2	114:12,20,24 116:6	123:8,10,13 128:10	48:5,20 49:7,8,17
intelligently 54:3	117:9 119:6,18	128:13 146:7	50:25 51:6,8 52:3
intent 81:1	120:1,12 122:7,12	160:16,20 178:8	52:10 54:15 56:3,17
inter 10:1 15:10	123:25 124:6 125:4	179:24 190:13	56:19 57:15 60:2,3
16:14	125:11,19,21,25	191:6,15 192:9	60:4,5,6,7,25 61:22
interest 65:15	126:12,21,22	193:4,20 194:8	62:2,11,20,23 63:20
interested 80:5	127:12,23 128:19	keep 55:15 114:2	66:25 67:4,15,17
192:17	129:8,15,25 131:8	137:25	71:12 72:21,21
	131:16 132:11		73:11 75:5,6 78:1

79:20 80:7,9,24	larger 39:21 170:15	68:7,8 69:20,22	located 6:16
81:10,12 83:1,12,24	174:20	70:1,5,7,8,16,22	locates 42:14,24
83:25 84:1,25 85:19	law 8:4 15:9,16 16:2	99:23	location 118:22
85:21,23 86:8,9,10	17:10,14	linearity 22:25	144:9
86:24 87:8,11,12,20	lead 28:22 53:3	lines 104:22 136:2	locations 146:5
88:18 89:14 90:7,9	67:17 137:12 190:3	139:15 140:23	logic 79:21
92:21,23 93:16	legal 16:8,18 17:7	141:6 143:23	logical 110:24
94:17 95:4 96:19,23	17:16,20,23 193:1	148:15 155:15,19	long 123:17
99:14 100:21 103:9	194:1	169:2 174:10,12	longer 146:3 171:23
103:20,24 104:11	length 30:6 32:13	177:3 185:3 186:9	look 24:13 36:6
104:12 107:16,17	36:21 76:5,7 77:5	188:20,23	40:19 47:2 49:8
107:23,25 109:20	82:8 113:18,19	link 30:1,9,14,17	55:21 62:15,24 64:2
109:24 110:3,5,7,12	171:21	32:14,15,20 34:16	68:11 69:14 71:9,17
110:19 113:21,25	letter 73:5,25 75:12	34:17,21,25 35:17	73:3,5 74:21 95:7,9
115:8 116:16	75:22,24 185:23	35:20,21 36:6,11,13	95:15 97:5 100:17
117:14 122:3,11	194:16	36:14,17 40:13,18	100:20 113:3 116:6
123:5 135:8 137:2	letters 72:14 75:1	48:20,23,24 57:1	116:8 120:4 121:21
138:25 139:4	level 54:6 107:1	63:25	123:18,22 124:14
140:13 141:15	108:16	linked 34:12,13	126:6,7,21 129:1,20
142:6 143:6,7,9,15	leverage 186:3	list 12:9 30:1,9,14	130:24 134:5
143:16 145:13	light 91:4,5	30:17 32:14,15,20	140:16 141:1
148:12 150:23	likewise 9:661:12	34:12,13,16,17,21	143:22 146:10
152:20,24 154:10	88:9	34:25 35:17,21 36:6	148:14 155:15
156:24,25 159:18	limit 79:25 127:13	36:13,14,17 40:13	168:20 169:2 173:4
159:25 160:1 162:9	127:24 155:12,22	40:18 48:20,23,24	174:10 178:20
163:22 164:19	156:4,9,18,19	63:25 92:6,14,15	179:2 181:19
165:7 166:1,3	157:18,19 158:7,8	105:14 165:16	182:22 183:14
173:18 174:5,7	limitation 127:17	166:6 170:5,8,10,12	185:22 188:18,19
175:1 176:11 182:1	limited 17:15	170:14,20 172:2	189:6,15
182:11 183:4	169:17	173:15 174:1,5,7,9	looked 14:25 45:3,4
knowledge 16:18	line 39:16 69:19	182:4	63:21 73:10 96:6
83:5 108:3	95:17 97:6 100:20	listed 12:8 145:25	looking 40:16 42:16
known 26:6 38:18	104:13 117:23	lists 35:20 36:11	42:20 45:14 49:8
40:9 79:4 94:13	120:6,16,18,19,23	57:1	53:10 54:19,25
113:2 161:9 175:21	124:17 131:21	litigation 8:18	57:13 62:20,25
178:18 189:5,14	140:17,18 142:23	little 17:16 39:20	71:11 72:3,16 74:13
1	144:21 145:8	71:3 97:4 123:15	74:16,24 91:14
label 122:9	155:17 159:8 169:8	154:2	95:16 130:12 141:1
language 11:25	188:21 193:5	livingston 194:2	171:4 175:2 181:13
33:24 95:12 123:6	194:11	llp 2:13 3:4 4:3	looks 44:5,12,21
large 14:10 46:10	linear 22:23 23:3	load 48:15	45:8,10 63:4 71:3
51:681:6 100:6	64:16,22,24 65:5,9	local 128:2,2 149:7	lookup 40:9,15
107.24	65:13,16,23 66:1,5	149:8	182:18 187:18
	66:6,12,17,19 67:4	locate 38:16 48:17	low 116:17 159:5
	67:6,11,13,16,19,20	174:25 180:2,5	170:15

Veritext Legal Solutions

lower 108:17 142:15	marked 23:18 68:25	176:11,22,23,23	28:15 32:23 33:9
lowest 114:6,8	69:3,6,9 109:1	178:21 179:3,9,13	38:7 41:3,11 43:2
149:21	110:9 112:10	180:2,5,7,10,11,17	43:15 53:5,15,17
lunch 110:25 111:4	123:11 128:11	180:20,24 181:1,6	59:10 60:20 62:18
luner 3:14,19 7:7,7	130:17 133:8 146:8	183:24 186:2	62:22 63:17 69:23
7:9 20:13,19 21:12	160:17 178:9	matched 43:20	79:14 81:6 82:15
32:7 38:22 43:23	market 187:14	174:17 176:2 180:8	83:9,14 84:19 86:11
44:8 46:7,18 49:25	marking 139:17	matches 38:16	93:16 94:3 99:14,21
53:14 57:8 62:16	marriage 192:16	42:15,25 43:2,3	115:12,13 136:13
63:13 64:4 70:13	match 22:3,7 29:3,3	44:1 54:22 63:6	142:14,20 144:1,13
76:2 80:19 81:5	29:6,16 34:22 35:1	80:17,24 81:25	148:25 152:22
82:6 85:17 89:1	35:3,4 36:6 38:20	83:18 138:7 145:16	154:7 166:23
90:2 92:19 98:9	38:24 39:11,13	147:19 148:8,12	169:10,16,19,21
99:11 103:6 117:8	40:11,16,19 42:14	153:11,24 154:12	173:23 176:16
129:16 133:6,17	42:24 43:10,11,15	158:10,11 162:2,12	181:11 183:16
134:21 137:23	43:22 61:6 66:25	163:14,21 164:11	meaning 70:1 86:16
138:13,20 143:3	71:5,13 72:4,16	164:21 165:8,11,17	105:3
145:6 150:13	73:4,20 74:5,8,10	165:24 166:8	means 41:5 170:25
151:16,24 159:4	74:17 75:8,14 77:21	167:11 169:17,18	177:4
163:15 166:10	79:20 80:6,10,10	169:22 171:5,5	meant 177:7
167:1,16 168:17	82:1,18,19,24 83:19	173:12,14,18	measures 68:9
172:9,25 175:7	85:4 88:5,8,13,18	175:16 179:10,14	116:17 167:24
176:5,18 178:3,23	88:22 89:6,15,16,22	matching 21:11	mechanism 61:18
179:18 181:10,15	90:17 91:24 92:7,9	39:8,9 73:2 75:5	media 159:18
183:1 185:24 187:8	92:15,22 93:2,10,11	91:23 93:4 104:9	medical 8:10
189:8 190:15	93:13,20 94:4,5	135:6,9 148:7,12,22	meets 97:21
m	102:11 113:3,4	150:3,12,23 151:4	megabytes 45:16
macedo 4:8 7:10,10	114:4 132:12	152:12 164:15,17	melodies 112:23
$17: 2 \quad 194: 5$	134:14,17 137:9,13	167:5 169:14 170:6	135:18 138:23
17.2194 .5	137:22 138:6,6,11	170:24 171:18	140:6 161:10 162:9
aintenance 186:11	138:12,14,18 139:4	173:15 174:16	164:20 166:7,25
aking 9:7 62:20	139:7 142:3,5,11,11	176:21 177:23,23	170:6 173:15,18
$\tan 10: 12$	142:12,13,13,15,18	178:5	melody 43:9 113:18
manner 8:3 45:24	142:20 143:2,4,11	material 15:22	113:20 135:6,10
map 30:4 178:22	144:15 145:3,16,18	106:25 107:4	137:11 138:1 143:6
179:4	145:21 146:4 147:6	materials 14:24	145:18 146:3,23
maps 30:16 32:12	147:9,12,15,22,25	matter 107:19	148:4,7,8,23 149:21
36:20 180:18	148:3,5,11 150:15	192:18	161:5,9 166:8
arch 9:17	151:12,13,14,17,23	matters 11:1 13:	169:14 174:18
mark 23:14,14	152:9 153:5,8,9,12	maximum 128:2	176:3,7,9,10,13
68:13,15,18 108:22	153:14,15,17,18,19	149:8 169:12,17	180:13
112:5 123:7 128:8	154:6 156:5,11	170:1	memorize 123:17
146:11 160:13	157:9,16 163:22	meagher 3:4	mentioned 25:
178:6	165:1 166:24	mean 18:2 22:10,16	27:12 29:17 67:18
	171:19,22,24	22:22 23:6 26:12	83:12

Veritext Legal Solutions

rit 103:17,19	mistakenly $122: 18$	narrows 35:19	27:5 37:21 44:10
4:3,5	m	nature 49:3 51:1	$4: 6$ 68:15 80:4
erits 103:7	modification	near 21:5 29:3,5,16	106:7 108:22
thod 20:9 50:5,2	dified 29:5	38:16,20,24 78:13	10:22 112:5,14
50:25 51:3,5 52:25	modify 184:16	83:14 84:10 113:3	23:7 128:8 133:13
56:18 59:13,14	moment 13:2 22:	178:21 179:3	133:22 150:6 159:6
62:18 76:17 88:16	3:20 68:11 70:6	nearest 83:1,23 84:5	160:2,13 163:7,16
6:14 117:13,17	106:8 120:3 143:22	84:9 85:14,15,24,25	164:6,24 166:19
127:15 167:2,23	170:3	86:2,5,7,12,19	171:10 172:18
methods 20:7 37:10	moments 25:11	87:24 93:23 94:10	178:6,25 179:16
37:13 55:3,14 59:10	119:5	94:15,18,25 95:3	182:15 190:6,13
24 107:23	ca	necessarily $21: 19$	194:25
:10 175:12	morning 6:17:24,25	88:4 66:19 79:19	network 1:6 6:20
175:23	moulin 13:3,4,17,22	81:10 84:21 87:10	7:8,12 9:23 11:4
etric	14:12	87	190:15 193:3 194:6
icrophone 1	moulin's 12:16 13:9	94:5 135:6 153:1	never 35:21 38:17
microphones 6:3,7	14:16 107:2	154:18 166:23	46:5 60:11 63:21
middle 27:23,25	move 10:19	172:21 184:12	new 1:13,13 $2: 14,14$
29:14	74:11 78:8 93:	need 9:17 48:2,6	2:14,18 3:7,7 4:6,6
million 101:5,5,7,11	99:16 145:22	54:24 75:11 96:7	6:16,17 25:11 42:2
:25 103:10	mp3	14:2	42:5 172:1,5,11,13
4:1		143	192:2,4
ind 50:13	m	needing 90:8	nine 75:
mini 159:11,15,16	m	negative 115:3,6,17	104:16
159.25		116:18	non 21:4
inimum		negatives	25:18,24 26:6,10,19
128:2,3,5 149	34:1	neighbor 21:5 78:9	26:25 27:2,8,13
minute 169:7	music 57:3 126:12	78:13,15,18,21,25	29:19 35:8,10,13,15
minutes 9:16 155:8	26:16 135:23	79:7,15,18 82:5,19	37:8,11,15,17 40:21
179:17	,21 137:8	82:25 83:1,14,23	41:1,4,22 42:2,5,9
mismatch 1	167:13,14 168:12	84:1,5,6,9,10,11,12	42:13 44:7,14,22
165:4 168:2		84:14,16,19,23 85:1	45:7,22,25 46:5,16
mismatched 163:12	musical 136:	85:6,9,14,15,16,18	6:25 47:11 56:9,14
163:19 164:4,	n	8:22,24,25 86:2,3	7:5 58:6,18 59:6
167:7 168:7		86:5,7,12,19,20,21	59:12,13,17 61:8,11
mismatches 164:13		86:22 87:3,7,11,18	61:15,17 62:10,18
164:15,17 165:6,25		87:23,24 88:3,11,14	62:22 63:3 65:8,10
167:25 168:2		88:19,23 89:6,12,13	73:9 76:1,18 77:13
169:13 170:1		89:17,18,23,25 90:5	103:25 171:2 181:9
175:11 176:24		0:5,18,24 91:1,5	82:6,12 183
177:18,24		:15 92:17 93:6,18	186:7
		,23 94:10,	nonlinear 21:3 22:9
tated		94	2:12 23:3,5 24:6,8
mistake 122:6		$\begin{array}{r} \text { nemec } 3: 95: 37: 3,3 \\ 7: 23 \quad 20: 1523: 13,23 \end{array}$	24:19

Veritext Legal Solutions

nonlinearity 22:14	110:14 124:19	183:1 185:24 187:8	once
2:16,21	127:13	189:8	143:9
nonsubset 59:4	:4,11,12	ve	ones 55:1 130:22
normal 8:24 33:19	132:18 134:6 141:3	btain 40:1	133:12
33:19	158:15,20,23 160:8	obtained 144:22	online 110:6
n	160:12 162:15	151:17	open 187:15
tarized 194:12	163:12,18 164:4	obvious 11:18 17:8	operate 156:18
notary 2:17 191:2	164:13,14,17 165:5	17:12,21	operates 122:7
192:7 193:21,24	165:25 166:22	ocampo	137:16
notation 5:14	167	,23	operation 123:25
108:24 109:1 1	16	casionally	opinion 11:8,12,16
note $6: 2113: 7,7,12$	170:9,18 190:19	ccur 151:14 158:1	90:4,7,9 91:3 93:11
113:12 114:12,12	194:7,11	ccurs 181:22	105:25 106:20
117:4,4,18,18,23,23	numbers 6:23 27:19	offer 16:8	139:6
118:8,8 119:1,9,9	30:23 115:17	office 1:1 16:5 86:17	opinions 11:5,22,23
119:13,14,16,16,17	123:17,20,24	86:23 87:4,6 88:20	11:24 12:6 13:10,18
119:17,17,19,22,22	124:10,10,23	89:3,20 90:6,11,14	13:23,25 14:18 16:8
124:25 125:3,3,6,6	129:21	90:25	88:1,24 89:8,24
125:8,8,10,10,15,19	146:20 155:	office's	90:19,21,22 108:20
129:18 133:10,16	188:22	fices	112:18
133:20,25 134:4	0	h	opposed 21:10 38:8
157:1,1 158:14		22	102:14 151:15
161:22,22,22,23		okay 11:3 13:2	171:6 183:18
168:21 194:11		14:11 17:18 18:	opposite 66:15
noted 112:2 190:21		32:3 34:5	optic 175:11
notes 15:21 119:20		4:10 36:15 40:4,15	optimal 84:21,2
9:24 126:2,5,11	$\begin{aligned} & \text { Dject } \\ & 143: 3 \end{aligned}$	7:4 53:21,24 54:19	optimizations 79:22
126:14 127:13,24		65:22 66:20 67:1	options 155:3
128:7 133:8 134:9	$21 \cdot 1232.7$	68:2 70:3 75:2 84:5	orange 147:9
135:10 149:15		85:3 87:21 96:9,11	order 27:20 49:23
161:13,14 168:19		8:18 100:23 103:1	50:7,10 56:2 60:22
notice 2:15		105:5 107:9 115:15	61:5 66:4 117:24
noticing 64:7		116:24,25 117:2,3	139:8 168:4 182:18
notion 24:25 84		117:16 120:10	184:2,13,16 186:1
:14 152:14		4:4 126:	ordered
notwithstanding		127:10 130:2	ordinary 44:19
166:12		2:15 140	106:21
november 1:13		1:7 155:1 160	organize 103:2
13 192:21		2:21 163:25	104:1
number 27:21,24,24		8:1	organized 54:3,9,14
27:25 28:18,19 61:4		4:17 186:22	54:25
64:10,14 65:15,16		88:24 189:9	organizing 103:17
65:18 66:4 100:9,12		190:17	original 30:4 40:2
100:13 101:9 102:9	78.3 181:10,15	omit 137:5	40:14,20,20 53:2
105:16 106:1,11,15	178.3 181.10,15		172:7

tcome 192:17	149:16 157:19	89:3,20 90:6,10,14	155:22,24 156:2,8
outlined 48:16	172:16	90:25 95:8,17 96:15	157:3,5,6 158:14,19
output 25:3 165:16	park 2:13 4:5 6:16	97:5 98:8 100:18	peaked 143:7
169:16 173:14,19	part 12:14 28:3 36:3	112:10,22 120:1	peaks 117:12 121:17
173:22 174:5,6	43:9 49:2 61:20,22	160:14,17 178:7,9	127:2,2,14,16,18,24
outputs 170:5	65:3 66:21 120:20	187:5 188:19 189:4	130:13,19 138:10
outside 95:2 99:9,14	120:21,22 128:20	189:22 190:15	139:17 141:1,2,11
overall 152:5 157:13	138:3,24 140:1	patents 10:5,9,12,15	143:16 144:11,16
164:21 171:6	155:11 156:14	10:15 11:9,13,17	144:17 145:14
owner 1:7 3:15 4:4	177:1	12:1,12,13 15:4	149:13 150:25
7:8,12 190:15	partes 10:1 15:10	18:1,7,8,14 19:1,6	151:22 158:16,20
p	16:15	19:25 22:2,14,18,21	158:23,24 159:1
p 3:2,2 7:19 10:20	articula	24:7,23 25:7,16,20	penalty 194:13
10:23 112:12	20:3 38:4,6 57:7	25:23 31:15 37:13	people 23:25 33:18
m. $4: 11111: 4$	58:7,15 59:14,20	41:2 43:6,7 68:4,7	38:18 79:4 83:5
112:2 190:21	62:4 69:17 74:18	68:12,13 69:12	85:10 94:14 182:20
page 5:2,16,17,18	75:3 93:12 95:9	78:10,25 80:2,13	percent 48:4
42:19 108:23 122:2	96:7 100:19 101:20	83:8 94:8,22 95:	perform 28:2,10,11
123	110:11,12 112:25	100:15 107:24	28:14 58:23 73:18
128:15 129:2 146:7	113:15 120:1,25	186:17 189:12	75:25 96:19 131:16
181:21,22 191:12	130:10 140:1	path 55:4,7 56:4	132:7 172:1,13
193:5 194:11	145:19 148:15	157:1	184:5 189:24
pages 12:23,25	150:21 153:8 156:4	patterns 140:6	performed 97:18
182:2,8,10 183:4,5	157:14 158:18	peak 119:5,9,12	134:24 135:4
191:8	161:17	120:12 121:1,2,8,9	performs 138:16
pairs 3	parties 6:9 192:15	121:13 125:15,18	162:4 173:6
pairwise 131:17,19	partition 54:7 56:18	:1,5,10,	rjury 194:13
paper 46:9 181:8,12	partitioning 50:25	127:14 128:1,21,22	person 33:16
182:16 183:18	51:2,5 53:23,25	128:24 129:4,9,18	46:21 82:3 106:20
185:22	55:2,14 60:9	129:25 130:7 131:7	107:20 136:11
papers 46:4 81:21	parts 140:8	132:16,16,17	175:4 177:13
paragraph 47:2	passage 100:22,	133:25 134:18,	186:17,24 187:3
60:15 71:24,25 72:	101:8 144:19	134:23,23 135:2,2	personally 26:20
91:9,11 100:3	188:25	135:10,11 141:11	36:23
105:13 106:17,19	passing 136:1	141:12,12,14,15,16	petition 16:15
107:10 115:22	patent 1:1,1,7,8 3:15	141:17 142:1,2,15	petitioner 1:4 $3: 5$
121:21,25 122:15	4:4 5:7,9,10,12,15	144:1,5,6,8,15,24	6:18 7:4,6 190:14
124:12 129:1	5:19,21 6:22 7:7,12	145:4,10,13,20	petitions 12:21 13:5
139:16 141:22	10:23 12:15,15,15	146:1,16,24 148:17	14:22 15:2,10
145:8	15:16 16:2,5,19	149:8 150:2,11,17	phase 50:7
	17:8,10,21 26:5	150:19 151:5,8,10	photocopy 5:7,9,10
65:14	42:7 68:16,19,21,23	151:15,18 152:1,11	5:12,15,19,21 68:24
	68:25 69:3,6,9,15	152:16,18 153:2,4	69:2,5,8 112:9
$\begin{gathered} \text { ardon } \\ \text { 94:18 } \\ \text { 94: } \end{gathered}$	70:11,22 86:17,23	153:16,22,23	160:16 178:8
	87:4,6,25 88:10,20	154:13,15,20	

Veritext Legal Solutions

pick 6:4 55:7,24	137:11,19,21 138:1	presentation 46:9	79:22 80:18 88:15
145:19	138:24 139:10,20	168:23,25	113:8,13 114:2
piece 167:13,14	139:25 147:22	presentations 46:4	118:9 119:16,18
168:12,14	posed 24:5 34:11	presented 13:17	120:13 122:17
pieces 117:6 126:20	posing 66:16	62:5,13	125:3,6,8,10 131:8
pierre 13:4	position 118:1,2,14	presume 29:10 41:4	132:17 134:19
pitch 113:1,2 115:9	156:23	53:16 96:23 174:24	138:25 140:12
127:4 161:8,9	positions 131:18	previous 29:14,15	145:12,17 146:25
pitches 114:14	positive 116:16	30:23	149:9 157:8 158:14
pk 55:4,5	possibility 60:1	primarily 175:12	166:16 173:7
place 6:6 24:1 39:8	149:23 157:15	primary 79:13	182:19
125:5,20,22,25	172:10 187:9	printed 109:21	processing 61:22
127:12 131:10	possible 42:15,25	printout 109:8	139:22 188:1,10
132:19,22,25	43:1,3,10,11,15	printouts 110:15	production 194:22
134:20 139:10	46:14,19 56:9,13	prior 11:14,18 12:3	proof 16:14
145:5	57:5 58:6,16 65:9	15:4 16:21,23,25	proper 124:5
placed 122:18	105:14,21 146:4,6	17:2,9 18:6 26:12	property 52:2,5
places 14:5	148:21 149:19	26:13 32:10 37:12	proportion 24:15
pleasant 194:1	151:22 158:6	39:2 61:22 90:1,23	proportional 158:15
please 6:2,5 7:1 9:18	169:15,20 170:5	91:4,6 94:17 112:17	158:22
148:15 160:15	possibly 108:13	160:22 175:24	proposal 104:22
174:11 188:20	potential 66:25 67:1	178:11 182:10	proposed 42:8 155:3
194:10,10	174:6	private 6:4	prototypical 29:23
plus 29:16	potentially 43:16	probabilistic 61:1	prove 174:20,23
point 14:7,13 18:4	48:5 75:4 103:23	probability 29:1	provide 61:1 136:4
18:22 23:21 27:23	162:18 170:15	probably 77:7 79:13	144:4 158:4
28:1,6 31:8 35:2	185:19	102:21 108:12	provided 21:17
41:10 62:23 68:9,13	practice 40:21	110:24 130:15	72:11 135:21
74:9 75:9 110:24	155:21	184:6 186:4	providing 13:15
113:23 117:21	precedes 18:8	problem 19:6,9 20:7	97:10
134:10 142:23,24	preceding 161:23	59:4,5 76:11,13	public 2:17 191:21
176:10 188:1	precise 22:24	problems 19:6	192:7 193:24
points 10:19 113:22	177:22,25	108:4	purport 17:19 25:23
121:18	precisely 23:8	procedures 16:5	26:178:24 94:9
populate 30:11	predates 159:18	proceed 7:18 32:6	purports 20:11
populated 32:4	prefer 84:15 124:2	proceeding 15:23	purpose 14:14 167:8
portion 20:18	preliminarily 94:3	proceedings 9:14	167:9 184:17,20
122:24 134:15	prepared 129:6	10:2,6 15:17 23:16	185:15
135:22 136:6,20,24	preprocesses 138:23	42:10	purposes 14:4 116:1
139:18 141:5 152:4	preprocessing	proceeds 32:9	116:20 128:17
154:3,5,8,22 155:5	139:11	process 17:24 19:17	130:1
156:21 172:6	presence 38:3 75:23	19:21 32:6 34:19	pursuant 2:15
174:18 176:3	present 4:14 58:8	35:7,9 40:15 47:14	put 15:3 21:14 30:9
portions 135:17	82:2 83:19 115:2,7	53:9 60:17,18 61:6	48:23 52:3 53:19
136:15,16 137:6,8	138:19 185:6	61:13 74:10 77:15	54:15 60:8 123:13

153:20 154:2	120:22 121:1,7,8,14	59:19 62:7 66:7,13	0:2
puts 170:9 172:14	121:16,24 122:13	66:16 67:8,20 72:7	100:23 109:14,15
putting 43:14 94:22	123:19 124:5,7,20	76:3,16 77:19 82:14	121:25 122:20
167:12	124:24 125:17	82:15 84:7 85:1	150:6 191:7
q	126:11,15 127:20	86:11 89:2 92:12	reading 15:20 47:16
quadratic 23:5	128:16,18 129:3,7	93:19 96:10 98:10	100:2 133:14
qualifications	129:13,14,18,19	98:11 99:12 102:16	39:14 170:1
	130:10,12,13 131:3	103:1 120:4 125:15	194:16
	132:4,12 133:2,16	126:9 127:11 133:7	reads 109:17 133:11
	133:19,25 134:4,9	133:10,18,23	ready 143:24
$90: 18$	134:14 136:20,24	136:22 142:10	real $2: 16$
qualify 17:22 61:10	137:7,20 138:2,7	150:5 153:21 156:6	really $38: 1371: 12$
75:8 98:6 99:2	139:3 141:13,14,17	166:11 168:9 171:8	99:13 103:8 110:3
quality 54:10,12	142:2,4,23 144:12	173:24 178:24	22:22 138:25
148:10 163:14,21	144:16,18 145:4,11	179:11 180:14	148:5 162:20
	146:3,4,13,16 147:3	185:8 186:23 189:9	reason 8:6 193:5
$\text { queries } \quad 115: 24$	147:6,12,16,20,23	questioning 34:7	194:12
161:18 163:18	147:25 148:8,11,21	questions 8:25	reasonable 114:19
184:6 187:23	149:10,17,20,25	123:14 159:7	177:14,19
$189: 25190: 1$	150:9 152:8,10	190:14,16	reasons 185:17
query 19:13 20:3	156:21 161:8,13	quibble 33:22	recall 21:7 22:4,6
33:6,12,13,21 34:3	162:2,6,10,12,22	quick 179:16	25:21 26:23 27:4,7
34:4,20 36:5 38:21	163:23 164:3,7,13	quote 119:21	27:10 41:20,24 42:4
38:24 39:11 40:17	164:16,18 165:2,4,9	\mathbf{r}	46:8,20 80:7 115:10
43:5,8,13,17,20	165:13,24 166:5,21	r 3:2,9 4:8 7:19,19	6:14 122:14
44:1,3,15,25 45:8	166:24 167:3,4,12	112:1,12,12 192:1	126:3 157:20,23
45:14,17 49:3,6	167:17,19,20	194:5	158:2,3 170:2,17 $174 \cdot 4$
50:7 53:11,15,17	$171 \cdot 131923172 \cdot 1$	radio 176:8	receipt
54:20,22 55:10,21		random 60:18,19,25	receipt
57:16 58:23,25	$172: 5,8,11,14,15,23$ $173 \cdot 6,11175 \cdot 8$	randomly 60:21	recess 64:11 106:12
60:10 61:22 62:5,13	$173: 6,11175: 8$ $178 \cdot 16,17,21179 \cdot 3$	61:4	111:4 160:9 179:21 190.10
62:21 63:14,16,17	$178: 16,17,21179: 3$ $180 \cdot 1,8,12,18,21$	range 30:5 32:12	190:10
63:21 72:3,13,19,25	$181: 5 \quad 183: 7188: 12$	36:21 56:3	recognition 18:24 19:2 81:16,19,22
74:2,4,6 75:16 76:7	$189: 7,16 \text { 190:4 }$	rank 165:10,16,23	recognize 112:15
77:3,10,18,19,21	querying 36:8 43:18	ranked 170:5,10,12	124:9
$78: 2,481: 884: 3$ $92 \cdot 2093 \cdot 16,17,20$	$188: 1,10$	170:14,20 173:15 $173 \cdot 19174 \cdot 9$	recollecting 19:18
92:20 93:16,17,20 102:25 104:7,9	question 9:10,11	173:19 174:9 ranking 165:22	recollection 20:4
102:25 104:7,9 $113: 1,8,17,22 ~ 114: 1$	15:14 17:15 19:19	ranking 165:22	113:15 125:7 135:1
114:10,11,15 115:8	19:23 20:14,20 24:2	rate 23:2,6 144:1	135:24 136:8
$115: 16 \text { 116:5,24 }$	24:4 27:21 31:4	reach 90:15	170:11
$117: 5,24 \text { 118:1,10 }$	34:8,11 38:10,23	reached 90:6	recommended
$118: 12,17,18,21$	39:15,17,18 44:9	read 13:11,24 15:5	81:14
119:1,10,17,19,22	$50: 15,16,1752: 13$	$20: 16,17,18,25$	reconfirm 170:4

Veritext Legal Solutions

record 6:2,10 7:2	reduce 141:3	164:11,14,16,18	relevant 107:11,13
8:23 16:22,24 17:4	refer 10:14,19 17:13	165:3,24 166:20,25	107:14
20:18 23:20 34:2,3	18:5 33:5 47:5	171:7,14,20,23	reliably 71:4 75:7
35:5,24 40:18 43:8	88:19 104:15	172:24 176:17	relied 14:4,21
46:13 48:17,21 50:9	139:24 171:12	178:12,18,20 179:2	rely $12: 6,713: 9,23$
50:22 51:12,13,19	reference 31:1,9	179:25 180:7,17	14:23 109:6
52:9 57:10,14,15,17	32:21,22,23 33:4,11	184:22 185:11	relying 117:12
58:21,24 59:3,15,18	38:21 44:6,13 56:7	189:7,16 194:7	188:13
59:20,23 60:6,15	69:20 74:14 91:23	referenced 119:4	remainder 74:14
61:20,21,25 62:2,5	92:1,3 93:5 100:10	166:7 167:14	remaining 50:23
62:12,15,21 63:1	104:13 108:8 109:6	references 90:23	remember 21:16
64:1,9,13 66:2,9,10	110:15 113:7,9,18	112:18 113:3 115:1	109:13
66:11 71:10 72:21	113:20,23 114:17	115:25 137:6	render 73:8
73:2,11 74:2,2,3,5,7	114:24 115:9,16	161:18 163:11	rendered 88:24 89:8
76:23 77:24 78:6	116:8 117:1,6,24	164:4,21 165:3,10	rendering 88:1
92:22 96:24 97:2	118:3,19,23 119:10	165:14,20 166:13	renders 35:13
101:10 102:6,22	119:20,24 120:18	166:15,23 167:5,6	repeat 20:13 24:2
103:12,22 104:10	120:20,21 121:3,9	167:18,21 170:21	31:5 39:17 44:8
104:12 106:8,10,14	121:14,15,17	170:24	52:18 62:7 67:8
108:14 111:3 112:4	122:13 124:9,16,25	referred 10:8 12:12	92:12 114:1 136:22
121:23 124:11	125:18 126:11,15	12:23	150:5 156:6 166:11
134:25 145:19	127:20 129:21	referring 18:7 47:19	171:8 178:23
150:7 158:18 160:7	130:3,20,25 131:21	86:18 108:11	179:11
160:11 162:7	132:12 133:3,5,14	161:21 185:1,2	repeated 140:6
179:20,23 180:3	133:20,24 134:3,9	refers 68:8 70:17	repeating 140:6
183:23,25 188:17	134:15 135:7,12,16	88:14 100:7 107:10	rephrase 31:5
190:6,9,12,18	135:18,23 136:12	140:2 176:22	report 42:18 124:12
192:12	136:19 137:4,17,21	regard 11:25 13:21	reported 1:18
recording 6:8	138:2,19 141:10,15	89:25 90:16	reporter 2:17 7:15
records 19:12 20:2	141:18 142:2,5,5,24	regarding 90:21,22	represent 136:20,24
20:10 45:18,20 47:6	143:6,17 144:16	95:25 102:9	representation 31:2
47:12,20 48:2,15	145:11,14,24 146:3	regardless 87:21	105:9 114:11,23
49:1,5 50:21 51:3	146:5,20,23 147:3,5	regular 143:17	161:13,14
51:16,17,22,25 52:6	147:20,21 148:1,5,9	related 108:8,9,10	representations
52:20 53:4 57:19	148:13,22,23	108:12 192:15	116:5
60:16,17,22 61:5,14	149:11,16,17 150:1	relates 60:4 91:5	representative 52:6
61:14,19 63:5,12	150:3,10,12 151:6,8	120:12	134:13,16
64:1 65:15,16,18,20	152:8,10 154:4,5,8	relation 31:10	represented 167:13
66:4,22 67:4 72:4	154:22 155:5,9,11	relationship 99:23	168:13,14,15
72:18,24 73:20	156:3,9,11,22 157:7	158:22	representing 6:12
75:10 76:14 77:11	157:9,14,16 158:16	relative 113:1	7:16 162:5,6
92:21 100:12,13	159:7 160:23	114:14 115:9	represents 31:9,17
101:11 103:10,11	161:10,15 162:2,12	116:17 127:2,4,8	52:15,20 161:17
recovery 61:2 64:1	$\begin{array}{ll} 162: 22 & 163: 13,20 \\ 163: 23 & 164: 9,10,10 \end{array}$	161:8,9	request 10:3

Veritext Legal Solutions

require 75:18	retrieving 52:11	66:9,11 67:1,15	172:17,19,23
119:10,13 136:19	return 28:19,20,24	70:12 72:19 73:16	running 74:20
136:23	32:17 35:4,6 44:16	75:4 76:5,6,13,15	154:15 155:21
required 29:8	67:15 74:11 82:17	76:19 78:11 79:18	159:4
102:10 104:19	82:24 83:10 85:23	79:20 80:23,24,25	runs 140:18
105:10,23 116:13	86:1,6,9,12,13	81:4,7 82:17,24	S
116:22 128:4	87:16,20 88:13,17	83:9,14,24 84:2,8	s 3:2 7:19 112:1,1
193:21	91:2 92:5,13 93:17	84:20,22 85:22,22	112:12 161:19,21
requirement 104:14	114:3 138:11,14	86:6 87:5,8,11,12	193:5
105:7 137:2	139:7 142:5 150:18	87:15,17,23 88:15	sample
requirements 107:6	151:11 152:2 154:1	88:18 90:7 91:3,6	$129: 3 \text { 130:12 133:5 }$
requires 126:22	170:21,23 171:1	92:2,21,25 93:11,18	136:6
research 26:17	172:16,21	94:16 95:18 97:23	$\text { santa } 3: 16,17$
48:23	returned 29:	98:23 99:5,24,25	$\text { satisfy } \quad 153: 24$
respect 14:2 52:1	43:17,19 85:4,8	100:11 101:14	$173: 18$
65:17 110:19	93:4,10,20 194:15	102:18,19,20	saying 22:6 46:17
121:15,23 122:13	returning 57:13	103:22 105:4,11,16	$57: 20,2180: 987: 1$
124:25 125:15	returns 53:2 73:19	105:19 106:22	120:6 127:7
139:4 150:21	87:22 91:22 162:9	110:16,22 114:1	says 70:7 101:15
respective 152:22	169:22	116:1 118:11,13,17	108:23 109:16
rest 35:21 63:7	review 10:1 15:10	120:7 121:3,11	123:19 124:8
99:15	16:15 19:5 61:14,15	122:4 125:14	128:15 139:16
restate 89:2	61:19,21 94:7	126:13 130:9	144:1 146:13
restricted 172:2	194:11	131:23 138:22	149:13 157:23
restriction 126:1	reviewed 120:11	140:2,4,25 141:16	174:15 177:6,11
restrictions 126:4	revisit 88:24 89:7,24	143:9 145:10	186:10
172:14	90:8,19	148:19 149:11	$\text { scales } 99: 22$
result 28:6,12,16	right 10:6 11:19	151:1,12,15,23	$\text { scan } 30: 1732: 15$
35:18 43:5,7 44:3	13:6 14:14 24:15,16	152:6,17 153:9,11	67:17
44:16,24 57:16	25:2,16,20,24 29:25	153:13 155:6 156:5	scans 70:18
67:15 86:1,6,9,13	31:14,22 33:13	158:19 161:10,15	scenario 75:2
86:14 91:2 92:3,20	35:19 36:7,12,16	161:19 164:18	$\text { 149:25 150:9 } 151$
93:15 128:24 137:9	38:25 39:23,24 40:3	167:3,8,9 170:6	152:7 157:11
144:22 150:19	40:23 41:5,15,19,23	172:4 174:8 176:25	scenarios 21:15 81:8
152:3,15,24 153:1	42:15,25 43:9,9	177:4 181:2 186:1	$127: 4,5$
162:10 173:17	44:1,2 45:9,11,18	risk 61:6	scope 91:25 92:18
181:1	46:13 48:18,19	rothstein 2:13 4:3	$96: 4,13,2197: 15$
results 102:17	50:16 51:9,10,17,21	6:15 7:11	98:12,17 99
170:18 172:22	52:2,10,23 53:5,13	roughly 11:23	score 113:24 1
173:2	53:16 54:13,15,22	139:16 158:21	$141: 16,18 \text { 142:16 }$
resumed 112:12	55:20,22 57:11,14	row 35:16 122:10	$145: 11 \quad 162: 8$
retrieval 18:21 19:3	57:15 58:22 59:4,5	124:20	scores 117:11
107:16,18 108:2,5	59:7,22 60:1 61:20	rows 131	$145: 15$
retrieved 172:3	$\begin{aligned} & \text { 63:4,14,16,22,25 } \\ & 64: 20 \text { 65:13,18 66:1 } \end{aligned}$	$\begin{gathered} \text { run 91:22 93:3 } \\ 124: 5165: 19 \end{gathered}$	

scoring 114:4,5	86:23 87:3,7,8,9,15	138:16 139:2,6	153:22 156:2
scorings 114:6	87:18,19,24,24 88:3	182:5	169:14
scroll 167:5,7	88:15,15,21,23 89:4	searching 25:24	segments 43:25
sean 3:19 7:7	89:7,13,14,15,17,21	26:6,10,25 29:19	148:8 149:5 155:24
search 19:17,21	89:23,25 90:5,16,18	33:4 37:8 60:13	156:8 172:13
21:3,4,6 26:18,19	90:24 91:1,1,5,15	63:12 70:8,12 78:21	select 51:14 139:18
27:2,8,12,13,14,17	91:22,24 92:5,8,13	78:25 79:8,16 94:11	142:16 155:25
27:20 28:2,9,10,11	92:17 93:3,5,7,18	94:19 98:2 112:22	190:2
28:14 29:2,4,12	93:21,24 94:16,25	139:19 151:21	selected 115:25
30:12 32:4,6,9	95:4 99:22 104:11	155:10 175:13	selecting 96:19
34:19 35:7,11,12,15	114:12 119:5,9,9	189:21	selection 60:18,19
35:20,21 37:15,17	120:13 125:16,19	second 12:2 28:3	send 136:3
40:22 41:1,4 42:3,6	131:7 132:17 134:1	73:24 74:6,7,11	sense 33:17 77:7
42:13,14,23 44:5,7	134:18 135:2,11	79:11 82:11 118:14	sensitive 6:3
44:12,14,18,23 45:3	137:9,25 138:17,24	118:22 120:8,23	separate 22:17,20
45:7,12,22,23 46:12	139:7,20 140:3	121:6,9 122:10	24:6,22 67:22 83:6
46:12,23 47:11,13	141:21,24 142:9,17	127:10 131:13	86:16 168:9
47:21 49:2,6,13,14	143:11,13,16,18,20	141:12,17 144:8,23	separately 15:24
49:18,19,20,23,24	144:2,17,20,23	145:4,19,23 147:8	september 109:17
50:8,8,11,11 51:4	145:5,23 146:2,17	182:7	sequence $75: 1,12$
52:16,21,24 53:9	146:24 148:18,18	seconds 43:20	114:18 115:7
54:20 56:9,13,20	149:9 150:2,11,17	section 21:1 121:3	124:16 146:11
57:5 58:6,17 59:6	150:19,22 151:9,10	140:10	147:5,11,15 148:1
59:15 60:22,23 61:5	151:11,18,18,25	see 30:17 47:8,15	sequences 175:13,13
61:9,11,16,18,24	152:1,1,4,5,11,14,18	55:9 69:19 91:17	sequential 32:14
62:10,22 63:2,3,3	152:25 153:2,4,16	95:12,22 96:8 97:6	67:6,11,17 70:2,3
64:16,18,22,23,24	153:23,23 154:5,14	97:9 103:7 109:18	sequentially 30:16
65:5,8,10,13,19,21	154:15 155:22,23	115:23 120:15	70:19
65:23 66:1,6,8,12	158:13,14,17,18,19	121:1 123:20	served 8:17 31:1
66:12,17,19,21,23	158:23 162:5	124:16,19,22	session 4:11
67:3,6,7,11,11,13,16	165:19 166:13,16	125:12 128:16	set 13:3 39:21 43:12
67:21 69:20,23 70:1	167:9 170:23 172:2	129:21 130:25	60:23 73:7 82:2
70:2,3,16,22,23,25	172:17,19 173:7,19	131:3 144:25	83:20 89:6 92:20
71:2,7,9,16,19,21	174:17 176:2,14,16	146:12,20 169:4,8	99:24 100:8 101:2
72:2 73:8,12 74:21	177:21 181:8,9,11	177:10 186:14	103:5 105:15,17,18
75:25 77:11,14	182:6,12 183:13,15	188:16	106:1 118:9 119:19
78:15 79:11,12,16	184:19 185:19	seeing 158:2,3 170:2	119:23 123:14
79:18,22 80:18	186:5,6,7 187:24	170:17	127:23 138:19
81:24 82:5,17,19,23	188:8	seek 73:4	145:15,15 158:7,8
82:25 83:2,3,9,14	searched 46:24,25	seeking 28:8 40:10	169:17 170:20
83:17,22,24 84:1,22	47:14 48:2,7,13	seen 60:11 143:17	175:11 182:2
84:25 85:4,6,9,11	80:6 82:3 85:5	segment 44:2 135:7	187:21,25 192:10
85:14,15,16,18,22	99:24 139:19 172:7	135:9 148:12,23	192:20
85:22,24,25 86:2,3	searches 37:6,11	149:22 150:3,12,23	sets 80:6
86:5,8,12,19,20,21	63:15 89:4 137:12	151:4 152:12,17,20	

Veritext Legal Solutions

setting 21:9 31:13	sir 126:8 194:9	song 43:21 44:1	specifications
33:19,20	site 26:17	57:7,10 58:8 81:2	136:14
setup 72:23	situation 47:6	98:1 156:5 161:3	specifies 97:10
sheet 193:1 194:11	size 99:23 100:7,8	166:24 172:7,12,21	98:22 99:3
194:12,13	104:18 105:9,15,18	172:23	specify 92:7,16
shift 113:25 121:18	105:22 106:3	songs 43:19 57:4,11	specifying 58:15
122:3 157:3,4	170:12 174:19	58:2 80:13 166:18	speed 23:7 79:11,16
shifted 118:10,12	189:1	172:3 174:2	139:20 143:20
121:7,14,16,23	skadden 3:4 7:4,6	sophisticated	speeding 79:12
124:24	skadden.com 3:10	103:24 117:13,17	spirit 80:16
shifting 122:12,17	3:12	sorry 12:18 50:14	split 51:8 55:17
122:23 145:13	skill 44:20 106:21	55:5 56:11 95:19	square 3:6
short 146:3	107:1 108:16 187:4	101:5 103:3 115:5	ss 191:2 192:3
shorthand 2:17	skilled 33:16 38:19	133:18 155:17	ssd 163:6,9 165:1,3
showing 91:11	46:21 79:4 82:3	162:17 185:9	165:10 167:15,18
shown 191:11	83:5,11,16 85:10	188:21	167:22 168:15,16
194:13	94:14 175:4 177:13	sort 29:7 60:3,3,8	Sss 162:22 163:6,9
signature 60:6	186:12,17,25	83:23 93:14 96:20	164:23,25 165:2,10
194:12	skip 138:23 140:4,5	107:19 185:18	167:15,17,21
signatures 60:8	skipped 137:19	sorted 28:9,20 29:5	168:15,16
signing 194:12,16	139:25	30:24 184:23 185:7	ssu 162:23 165:1,3,9
similar 19:12,13	skipping 139:10	185:12,14,25 186:4	167:13,18,19,20
20:2,3 21:10,19	140:7	sorting 185:15	168:13,16
51:6 74:21,23 77:9	slate 3:4	sounded 155:1	stage 139:11
84:4 95:6 166:17	slightly 180:8,18	sounds 99:25 111	stand 160:5
167:15 168:16	slower 175:2	source 187:15	standard 29:4,10
similarity 75:17	slowly 8:25	space 50:25 51:2,5	34:25
167:24 168:6,18,22	small 21:21	53:23,25 55:2,14	standards 16:18
similarly 52:12	smaller 23:3 27:25	56:18 60:9	17:7,16,20,23
simple 55:15 63:19	170:16	speak 8:25 9:15,18	standpoint 33:16
72:24	software 36:2	speaking 13:9 20:8	80:23 177:12
simplify 61:5	37:22 38:11 40:23	33:3,24 39:7 181:7	star 130:18 144:7,8
simply 63:7 67:20	187:7,10,14,18	187:17	start 27:5 54:20
153:20	solo 172:22	specific 12:7 19:20	84:18 113:19
sincerely 194:20	solution 76:22 84:21	21:16 36:13 41:1,8	117:14 129:17
single 5:16,17,18	84:24	41:11,18,21 43:25	130:7 176:9 181:20
32:21 34:14,18 46:9	solutions 193:1	81:7 116:14 157:22	182:9,11 183:6
56:8,19 58:1,21	194:1	specifically $12: 14$	starting 31:7 100:19
59:3,18 60:6,13	solve 20:7 59:4	14:6 39:4 41:25	starts 182:2,9
66:9 67:15 71:17	76:10	154:11	state 2:187:1
76:23 102:24	solving 27:19	specification 18:3,6	106:19 139:9
103:18 104:11	somebody 83:11	18:13 20:5,6 21:14	171:10 191:1 192:2
123:9,10 128:10	somewhat 19:22	25:19 170:18 189:4	192:7
146:7	175:2	189:12	stated 22:542:12

statement 16:10	stroke 32:16	sums 134:11	49:16 50:1,12,19
43:19 80:9 122:21	structure 38:1 58:15	supply 143:9	51:7 53:1,6,19
statements 90:3	60:9 63:23 77:8	support 13:5	56:17 57:1 60:9
ates	187:7	sure 20:15 23:13	63:20 77:10 184:23
statistics 108:13,15	structured 137:18	24:4,8 26:13 31:6,6	185:11 186:11
step 9:17 29:14,15	137:24,25	33:23 36:2 39:19	tables 27:2 29:17,18
53:18 73:8 99:15	structures 186:13	44:10 52:19 58:4	29:24 37:5,20,24,24
139:22	186:19,21,21 187:1	62:9 64:6 69:25	37:25 38:20 40:12
stick 34:5	studied 17:25 18:13	72:9 82:16 89:3	take 9:13 17:24
stop 75:9 82:11	stuff 31:14 63:24	91:10 92:13 109:22	19:14 32:11 39:8
156:25	subject 191:10	110:13 115:15	40:22 47:2 49:17,21
stopped 144:20	sublinear 22:11,13	120:5 126:7,24	50:5 52:8 56:4,6
storage 104:14	24:22,25 25:6 68:7	127:22 149:2 150:6	68:11 69:14 71:1
store 30:2,24 31:18	68:8 79:25 95:1,5	171:9 173:25	77:23 81:8 95:7,15
31:24,25 38:1,3	99:17,21 100:5	178:25 179:18	100:17,20 104:23
40:14 51:11 102:21	105:16	185:2 190:7	120:3 121:20
stored 31:10 33:5,11	sublinearity $22: 15$	swear 7:17	123:18,22 124:14
stores 101:10	22:17	switch 23:22	125:5,20,22 126:5,7
storing 38:5,14	submitted 9:22,25	sworn 7:20 8:2	126:19 131:9,22
strategy 150:22	11:4 12:13 13:4	191:17 192:11	132:18,22,25 134:5
stream 178:5	23:16 48:22	193:21	134:20 143:22
strict 157:18	subscribed 191:17	symmetric 168:5	145:5 146:10
strictly 15:11,18	193:21	synonymous 22:10	149:25 150:9 152:7
strike 37:21 80:4	subsegment 114:4,5	22:12,17	155:15 159:9 160:2
133:13,22 163:7	subset 45:10 48:6,12	system 20:1,10	169:7 173:22 177:8
164:6,24 166:19	58:24 59:5,20 60:25	38:11 43:19,24	179:16 188:18,19
172:18 182:15	63:4 67:2 76:10	44:21 59:21 62:1,9	taken 6:17 49:12
string 72:22 75:8,16	84:25	62:10 63:11,14	64:11 106:12 111:4
75:24 76:7 77:3,11	subsets 60:7	75:21 77:1 81:1,14	160:9 179:21
114:10 115:16	substrate 164:15	81:16,18 112:22,25	190:10
123:20,23 124:9,10	substring 76:13,14	124:6 161:2,3	takes 36:19 133:4
128:19,23,24 129:7	77:4 162:5,14,20	169:22 178:16	139:10 158:18
129:21,25 130:2,7	164:12,18 170:24	179:7 189:24 190:1	talk 31:19 37:14,16
131:1 133:11,14	171:14,19,22,24	systems 36:24 37:22	53:22 171:16
146:16,19,23 162:5	174:25 175:15	107:17	talked 57:12
162:6,22,23 163:5	176	t	talking 9:6 10:16
167:3 174:16 175:1	substrings 77:5		17:2 22:14 39:23
175:10 176:21	171:6 175:10	tab 10:20,23	70:11 180:12
177:23	subtract 115:13	table 29:21 30:12	183:12
strings 72:14,18	successful 127:18	$31: 2532: 434:$	talks 19:21 41:9
75:22 76:5 77:7	suggesting 141:25	$35: 16,17.22 \text { 36:8,11 }$	140:11 169:25
115:20 117:7	suite 194:1	$36: 11,12,16,22,25$	186:20
123:17 161:18	summarize 20:22		teaches 148:17
163:2 168:4,6	summons 65:15	$47: 22,2548: 14$	150:24 165:16
175:14		47.22,25 48.14	

teaching 135:15	166:2 167:24	107:6,22,24 108:1	169:24 170:13,14
157:17 174:3	169:25 171:17,18	108:21 118:16	170:20 171:12,16
teachings 12:2	177:21 180:12,13	122:1 137:1,15	171:17
129:24 136:23	testified 7:21 14:13	155:8 156:12 158:6	tolerant 21:20
157:13	121:13	159:4 175:20 176:1	toll 194:2
technical 11:5 13:18	testify $8: 2,7,129: 21$	177:12,18 178:1,4	top 12:11 21:1 50:4
8:22	testifying 8:3	186:16,24 187:3	59:8,25 95:11
technique 175:21	testimony 13:22	thinking 54:8	108:24 120:18,19
techniques 27:8,11	14:17 15:6 191:8	third 105:21 141:12	123:18 126:3
187:19	192:12	thirty 194:15	128:15 146:12
technologies 1:6	text 18:7 38:7 108:2	thought 50:14	157:20 171:25
6:21 7:8,13 9:23	120:1,11 121:5	three 12:25 21:6	177:2 184:14
193:3 194:6	139:23 143:23	55:17 72:25 73:1	topic 110:23
technology 81:22	161:12,14 185:3	75:24 107:10 143:1	total 101:11 104:24
189:18	textbook 38:1	threshold 86:11	132:8,10 134:10
tell 58:23 184:2	thank 7:14 190	142:19,21 155:25	track 186:3
ten 43:20 45:16	thanks 160:8	156:25 157:8	trademark
55:18,19,19 165:20	theory 129:15	thursday 1:13	transcript 191:10
165:22 166:6,9,13	thereof 31:2	tie 62:19	194:10,11
166:15 169:22	thing 33:1 59:11	tied 140:9 164:1	transmission 21:22
tendency 8:24	60:10 76:18 83:13	time 2:16 6:13,25	transmitting 96:24
tenth 104:23	98:13 109:22	23:21 28:7 32:3	transverse 184:15
term 22:8 24:6,8	143:11 145:20	49:18 62:21,23	traverse 36:14,17
25:5,9,10,18 30:19	156:24 157:25	63:14,16,17,21 64:4	tree 41:13,18 50:24
33:4 42:9 45:25	158:5 184:11	64:8,12 65:17 68:8	54:2,4,5,7,17,20,22
46:15 64:16,19,24	things 21:15 55:18	68:8,9 70:9 75:9	55:1,4,8 56:1
65:5 67:20 68:7	55:19,20 57:13 68:1	77:18,20 78:1,2	trees 37:14 41:10,10
69:20 70:10,15,16	68:10 80:24 84:4	79:25 87:17 99:22	trial 1:1 6:22 10:23
78:9,9,15 83:6,21	87:22 113:6 115:11	106:9,13 111:2	42:8
85:13 86:16,18,22	117:15 122:4 140:8	112:2,3 158:14,17	tribunal 10:25
87:3 91:19 93:22,23	154:11 164:20	158:23,24 159:1	tried 13:12 20:22
94:3,16 95:3,25	165:6,7,15 166:2	160:4,6,11 179:19	23:23
96:5,14,21 98:7	167:10,25 171:20	179:22 188:1,10	true 28:19 45:13
99:16 100:5,15	186:3	190:4,8,11,17,21	79:6 127:19 191:10
140:13 176:20,24	think 13:25 14:9,17	times 3:6 67:19	192:12
terminate 74:10	14:19 15:13 16:10	104:17	try 8:24 34:572:9
75:19	18:24 19:20 24:24	title 91:23 92:1 93:4	123:14 161:3
terminology 10:18	31:3,4 33:17 35:15	98:1 174:2	163:25
18:5 32:25 33:14,23	39:18 41:8 42:16	titles 92:6,7,14,15	trying 27:20 33:7,22
34:6	44:19 49:10 50:4,20	174:5	72:20,20 103:15
terms 10:21 25:14	59:8 62:8 63:19	today 6:12,24 7:15	129:11 145:18
29:22 33:3,18,25	66:13 75:15 76:16	8:8,23 9:21 10:15	154:21
47:24 65:11 68:5	79:9 80:16 90:7	today's 9:14 34:6	tune 161:2
90:9,12 107:5	97:1 98:5,11 99:8	tolerance 157:18	turn 6:5 9:10 71:23
127:17 152:23	99:13 106:5 107:3,4	169:2,10,12,16,21	91:9 143:10,21

187:5	understand 8:19:2	unnecessary 139:19	values 32:1,18 53:8
turning 60:14	9:20 10:16,24 13:12	unpatentable 11:10	55:6,22 77:17,21,23
119:15 175:25	19:7,15,24 22:21	unquote 119:21	78:3 113:1,2 115:3
two 11:24 12:24	24:22 31:8 42:1,7	unusual 178:1	115:7,14 116:18
29:23 33:25 39:22	43:1 58:3,19 66:13	usage 33:8,9	161:8,9 179:9,14
67:22,24 74:25 79:9	68:4 69:22 82:16	use 25:8 29:2,18	vantage 41:10
79:9 93:14 105:14	84:7 87:4 90:10	30:6 33:4,12,18,20	variable 24:11,12,18
105:17 107:10	94:2 97:14 101:1	36:24 38:15,20	variety 41:14
122:4 126:20	123:16 139:23	42:10 47:11 51:13	various 16:14 54:4
127:18 128:7	140:21 143:25	52:25,25 60:7 70:16	131:4 177:8
130:21 140:3,24	149:4 156:17 169:9	77:5 79:15 85:13	vector 105:3
152:3 155:2 162:25	185:10	113:1 114:12	verify 129:11
163:2,11,18 164:3,5	understanding 15:9	116:15 121:20,22	veritext 6:127:17
164:20 165:6,7,9,13	15:16 18:10 22:1	129:3 140:13 145:9	193:1 194:1,7
166:22 167:17	24:5 43:4 72:10	146:16 149:13	version 110:5
168:6,8 171:20	80:1 87:2 88:10	150:16 151:9	versus 6:20 54:17
178:22 179:4,8,12	94:24 96:3,12,17	162:13 168:5	127:8 154:14
182:23	101:6,16 113:12	172:22 175:13	video 35:22 38:8
type 33:18 38:6 42:2	125:2,9,21 127:15	182:25 183:14	80:13,18 81:19,22
86:2 89:13,15 91:1	134:22 135:1	187:10 188:3,6,14	104:9,11 108:5
97:18 98:11 107:23	138:21 140:10	190:2	videographer 4:15
139:1 153:11,13	141:8 145:9 149:6	user 135:16 136:3	6:17:14 64:8,12
172:14 175:8 184:5	149:12 156:1,19	136:18 137:7,12	106:9,13 111:2
types 29:23	157:12 158:11	143:8 155:6,11	112:3 160:4,10
typical 32:8 67:5,10	159:17 161:25	172:1 174:	179:19,22 190:7,11
81:12	162:3 169:11,23	user's 138:7	190:17
u	171:15 173:21	uses 46:20 70:10	videotaped 1:12
u 161:19,21	174:2,22	80:11 132:11 $177 \cdot 20$	$\begin{aligned} & \text { 2:11 } \\ & \text { view } 11: 1825: 5 \end{aligned}$
u.s. $5: 7,9,10,12,15$	$39: 15,1841: 13$	usually $24: 931: 16$	view 11:18 $52: 971: 20,2286: 15$
$\begin{aligned} & 5: 19,2110: 568: 16 \\ & 68: 18,20,22,2569: 3 \end{aligned}$	45:25 84:16 171:3	31:19 34:17 95:4	86:22 89:10,12
	186:12 189:20	136:14	91:24 100:14 102:8
160:14,17 178:9	undesirable 22:3,5	v	106:24 107:3,12
uh 69:13 91:18		v 193:3 194:6	124:4 views 95.24
109:19 110:17	unimportant 135:17 135:22 136:6,16	vague 135:25	virtue 148:7
112:20 116:7 132:5	$\begin{aligned} & 135: 22 \text { 136:6,16 } \\ & 137: 6,8,19,21 \quad 138: 3 \end{aligned}$	valid 105:24 114:23	$\text { visit } 59: 2366: 2,24$
134:2,7 148:20	$138: 24 \text { 139:10,25 }$	176:23	vs $1: 5$
159:23 173:10 ultimately $90 \cdot 11$	140:7	validity 91:3	vs 1.5
ultimately 90:11 umbrella 11:21	unique 31:22 92:2,2	29:15 30:15 31:19	
un 139:17	united 1:1	$38: 253: 2,4,855: 2$	wait $9 \cdot 9$
unacceptable 178:2	unlimited 170:8	$55: 23115: 14$	waived
underlying 166:17	unmarking 140:12	178:22 179:4 181:5	walk 123:15
168:21	140.13	184:24 185:12	

want 20:15 33:23	111:1 191:6 192:9	\mathbf{x}
59:19 62:1,10 73:1	192:13,19 193:4	$\text { x } \quad 1: 3,8,105: 155: 17$
76:10 80:10 81:4	194:8,10	55:23,25 56:1,2,3
88:24 89:7,23 90:19	witness' 194:12	xyz 55:17,21
$95: 14102: 18,20$ $120 \cdot 3123 \cdot 15$	word 73:1 99:7,17	xyz
146:10 186:2	181:22 182:3,9,23	y 7:19 55:18 56:1,5
187:24	183:14,24 185:22	112:12
wav 159:21,24	185:23	yeah 19:3 22:5
way 13:19 28:4	words 72:25 75:19	49:10 82:15 86:22
29:11 30:2 31:17	99:15 142:22	105:12 122:9
32:8,9 34:24,25	169:20 182:17	year 84:17 110:10
36:8 40:12 41:18,21	183:5,6,19 184:10	110:13
43:14 46:6 50:18	work 17:25 18:14	years 107:10
52:10 54:8 55:2	26:11 32:21 33:5,6	yellow 147:11
56:14 59:9,21 63:23	33:11,12 39:3,3,13	уер 42:25 97:13
70:8,11,17,18 76:18	55:3 62:18 72:3,13	99:6 100:4 185:8
85:18 89:11 102:19	76:25 81:3,15 84:15	yield 149:20
103:9,23 110:7,19	97:12,21 99:2,4	yields 142:25 151:6
116:11 122:5 128:1	113:8,9 114:17,24	166:13
129:10,13,17 137:2	116:5,8 117:1,6	york 1:13,13 2:14
138:21 141:2 149:3	118:10 125:18,18	2:14,14,18 3:7,7 4:6
162:13,16,21	129:3 134:9,15	4:6 6:17,17 192:2,4
163:23 170:2	136:21,25 137:21	192:8
171:15 177:21	138:2 143:17	z
178:4 181:20,23,25	148:22,23 149:22	z 55:19 56:1,6
182:7,13,20 187:23	150:1,10 158:16	zero 134:11 158:7,9
192:17	171:13 178:17,17	171:1
ways 29:9 41:15	178:21,21 179:3,3	
46:15 55:13 113:5	worked 26:20 27:9	
181:18	27:11	
we've 37:5 86:8	working 107:15	
110:9 156:4,10,20	works 21:10,11	
weighed 168:3	27:17 29:22 32:22	
weighted 168:2	32:24 36:9 80:14,18	
whatsoever 180:25	113:13 134:23	
whereof 192:19	135:2 178:18 179:8	
whichever 124:1	179:13	
whispering 6:4	worth 54:25	
widely 26:16	wrap 159:8	
wikipedia 5:13	write 122:24 123:2	
12:22,25 108:25	written 81:21 90:3	
109:9 110:2,5,15	wrong 54:1 141:5	
witness 5:2 6:24	wrote 46:9 123:4	
7:20 8:18 23:21		

Federal Rules of Civil Procedure
Rule 30
(e) Review By the Witness; Changes.
(1) Review; Statement of Changes. On request by the deponent or a party before the deposition is completed, the deponent must be allowed 30 days after being notified by the officer that the transcript or recording is available in which: (A) to review the transcript or recording; and (B) if there are changes in form or substance, to sign a statement listing the changes and the reasons for making them.
(2) Changes Indicated in the Officer's Certificate. The officer must note in the certificate prescribed by Rule $30(f)(1)$ whether a review was requested and, if so, must attach any changes the deponent makes during the 30 -day period.

DISCLAIMER: THE FOREGOING FEDERAL PROCEDURE RULES ARE PROVIDED FOR INFORMATIONAL PURPOSES ONLY. THE ABOVE RULES ARE CURRENT AS OF SEPTEMBER 1, 2014. PLEASE REFER TO THE APPLICABLE FEDERAL RULES OF CIVIL PROCEDURE FOR UP-TO-DATE INFORMATION.

Filed on Behalf of NETWORK-1 TECHNOLOGIES, INC.

By: Charles R. Macedo (Reg. No. 32,781)
Brian A. Comack (Reg. No. 45,343)
Amster, Rothstein \& Ebenstein LLP
90 Park Avenue
New York, NY 10016
Telephone: (212) 336-8074
cmacedo@arelaw.com
N1-Google-IPR@arelaw.com
Gregory Dovel (admitted pro hac vice)
Dovel \& Luner, LLP
201 Santa Monica Blvd., Suite 600
Santa Monica, CA 90401
Telephone: (310) 656-7066
greg ω dovellaw.com

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

GOOGLE INC.
Petitioner
v.

NETWORK-1 TECHNOLOGIES
Patent Owner

Cases IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Patents $8,640,179,8,205,237,8,010,988$, and $8,656,441$

DECLARATION OF DR. GEORGE KARYPIS

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
Table of Contents

1. Background to my opinions in this Declaration 1
A. Expertise 1
B. Assignment 3
C. Approach 4
D. Understanding of the law 5
2. Summary of the IPR Patents and asserted art 8
A. The IPR Patents 8
3. '237 patent (Ex. $1001 \cdot 237$ IPR) 8
4. '988 patent (Ex. 1001 '988 IPR) 10
5. '179 patent (Ex. 1001'179 IPR) 11
6. '44I patent (Ex. 1001 '44I IPR) 13
B. The asserted art 16
7. Overview of Ghias Ex. 1010 (addressed in the '237, '988. '179, and '441 IPRs) 16
8. Overview of Iwamura-Ex. 1012 (addressed in the ${ }^{2} 237$ and '988 IPRs) 19
9. Overview of Conwell-Ex. 1009 (addressed in the ' 179 and 441 IPRs). 22
10. Overview of Philyaw-Ex. 1014 (addressed in the ' 179 and '441 IPRs as a secondary reference) 24
11. Overview of Chen-Ex. 1008 (addressed in the ' 237 IPR as a secondary reference). 25
III. Genetal Findings 27
IV. General concerns with the IPR Petitions and Dr. Moulin's Declarations (Exs. 1004 in each IPR) 30
V. Claim Constructions. 38
A. sub-linear (237 patent) 40
12. the words used in the construction: "size of the dataset" 41
13. $\quad 237$ specification 43
14. Petitioner's Declarant. 47
B. non-exhaustive search ('237, '988, '179, and '441 patents). 54
15. The Board's preliminary construction of "non-exhaustive search" is consistent with the understanding of one of ordinary skill in the art: "a search that locates a match without a comparison of all possible matches." 54
16. The Board properly rejected Petitioner's assertion that a "non- exhaustive search" should be construed as "a search that locates a match without conducting a brute force comparison of all possible matches, and all data within all possible matches." ...56
C. neighbor search / identifying a neighbor / neighbor/near neighbor ('237, '988, '179, and '441 patents) 58
D. approximate nearest neighbor search (' 237 patent). 60
17. "identifying a close match that is not necessarily the closest match" 61
18. "sublinear" 62
VI. '237 patent. 65
A. '237 Ground 1: The instituted claims of the '237 patent are not anticipated by Iwamura. 65
19. sub-linear time search (claims elements $1(\mathrm{~b})$ and $5(\mathrm{~b} .2)$) 66
20. approximate nearest neighbor search (claim elements 9 (b) and 13(b.2)) 85
21. nonexhaustive search (claim element $25(\mathrm{~b})$) 95
22. identify a neighbor / near neighbor (claims elements 1(b), 5(b), and $25(\mathrm{~b})$). 126
23. sublinear approximate nearest neighbor search (claim element 33(b)) 132
B. '237 Ground 2: The instituted claims of the ' 237 patent are not anticipated by Ghias. 134
24. sublinear time search (claim elements 1 (b) and $5(b, 2)$). 134
25. approximate nearest neighbor search (claim elements $9(b)$ and 13(b.2)) 155
C. '237 Ground 3: The instituted claims of the ' 237 patent are not obvious over Iwamura and Chen 166
VII. '988 patent. 168
A. '998 Ground 1: The instituted claims of the "988 Patent are not anticipated by Ghias. 168
26. non-exhaustive search (claim element 15(b)) 169
27. Search identifying a neighbor (claim element 15 (b)) 186
28. determining an action based on the identification (claim element 15(c)) 190
B. '988 Ground 2: The instituted claims of the '998 patent are not obvious over Ghias 193
C. '988 Ground 3: The instituted claims of the '998 patent are not anticipated by Iwamura. 194
29. non-exhaustive search (claim 15(b)) 194
30. identifying a neighbor (claim $15(b)$) 203
VIII. 179 patent. 204
A. '179 Ground 1: The instituted claims of the ' 179 patent are not anticipated by Conwell. 204
31. neighbor search (claims I, 13, 25) 205
32. non-exhaustive search (claims 1, 13, 25) 231
B. '179 Ground 2: The instituted claims of the "179 Patent are not obvious in view of Ghias and Philyaw 244
33. non-exhaustive search (claims 1, 13, 25) 245
34. neighbor search (claims $1,13,25$). 251
IX. 441 Patent. 256
A. '441 Ground 1: The instituted claims of the '441 Patent are not anticipated by Conwell 256
35. neighbor search (claims I, 13, 25) 256
36. non-exhaustive search (claims 1, 13, 25) 259
B. '441 Ground 2: The instituted claims of the '441 Patent are not obvious over Ghias and Philyaw 260
37. non-exhaustive search (claims $1,13,25$). 261
38. neighbor search (claims 1, 13, 25) 264

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

I, George Karypis, declare:
I am making this Declaration at the request of Patent Owner Network-I Technologies, Inc. in the following Inter Partes Reviews of U.S. Patent Nos. $8,205,237$ ('237 patent), 8,010,988 ('988 patent), 8,640,179 ('179 patent), and 8,656,441 ("441 patent) (collectively the "IPR Patents"):

- IPR2015-00345 (‘237 patent),
- IPR2015-00347 ('988 patent),
- IPR2015-00343 ('179 patent), and
- IPR2015-00348 ('441 patent),
(collectively the "IPRs"), all initiated by petitioner Google Inc. ("Petitioner").

1. Background to my opinions in this Declaration.

A. Expertise.

1. I am a Professor in the Department of Computer Science and Engineering at the University of Minnesota. I hold a Ph.D. in Computer Science from the University of Minnesota, granted in 1996. I began my post-graduate school career as a Research Associate in my current department. I became an Assistant Professor in 1999, an Associate Professor in 2004, and a Professor in 2009. I teach courses in Algorithms and Data Structures, Parallel Programming, and Data Mining, among other subjects.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
2. I am a member of the Editorial Board of a number of academic journals. and I have chaired a number of academic conferences. ${ }^{1}$ I am a co-author of the books Introduction to P'orallel ('omputing, and Imrochuction to P'arallel (omputing: Design and Analysis of Algorithms. I am an author of more than 80 published journal papers, and more than 115 published conference papers. ${ }^{2}$

1 Representative academic conferences include:

- Program Committee co-Chair of the ACM Recommender Systems

Conference (RecSys'13), Hong Kong, China (2013);

- Program Committee co-Chair of the $13^{\text {th }}$ International Conference on Data

Mining (ICDM), Dallas, Texas (December 2013); and

- Program Committec Co-Chair of the International Conference on Data Science and Advanced Analytics (DSAA 2014), Shanghai, China, (November 2014).

2 Representative papers include:

- "I.2Knng: Fant Exact K-Nearest Neighbor (iraph Construction with L.2-

Norm P'runing:" David C. Anastasiu and George Karypis, $24^{\text {th }} \mathrm{ACM}$
International Conference on Information and Knowledge Management
(CIKM), Melbourne, Australia (2015).

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
3. I have also developed a number of software systems for a variety of functions, including software for analyzing high-dimensional data sets. A copy of my curriculum vitae is attached as Exhibit A to this Declaration. It contains a more complete listing of my professional activities and background.

B. Assignment.

4. I have been retained by Patent Owner Network-1 Technologies, Inc. as a technical consultant. 1 am being compensated for my time at my standard consulting rate of $\$ 350$ per hour. I am not receiving any compensation that depends on the outcome of the IPRs.
5. This declaration addresses the validity of:

- "l.2AP: Fast Cosine Similarity Search with Prefix L-2 Norm Bounds" David Anastasiu and George Karypis, $30^{\text {th }}$ 1EEE International Conference on Data Engineering (ICDE), pp. 784-795 (2014).
- "Comparison of Descriptor Spaces for Chemical Compound Retrieval and Classification" Nikil Wale and George Karypis, IEEE International Conference on Data Mining (ICDM), pp. 678-689 (2006).
- "Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering" Ying Zhao and George Karypis, Machine Learning, 55, pp. 311-331 (2004).

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

- claims 1, 3-5, 7-9, 11-13, 15, 16, 21-27,29, 30, 33, 34, 35, 37, and 38 of the ' 237 patent;
- claims 15-17, 21-28, 31-33, 51, and 52 of the '998 patent:
- claims 1-3, 6, 8-14, 18, 19, 21-27,29-31, and 34-37 of the '179 patent; and
- claims $1-3,6,8-14,18,19,21-27,29$, and 30 of the ' 441 patent.
C. Approach.

6. To develop my opinions, I have read:

- the four IPR Patents (the '237, '988, '179, and '441 patents):
- the four Petitions for Inter I'artes Reviews:
- the exhibits accompanying the Petitions, including the four Declarations of Dr. Pierre Moulin (Exs. 1004 in each IPR);
- the four Decisions Instituting the IPRs; and
- the testimony of Dr. Pierre Moulin, dated August 19-20, 2015 (Ex. 2006). ${ }^{\text {T }}$

In this Declaration, I identify the specific Petition, Declaration, and Decision that I am citing by including the corresponding patent abbreviation in a parenthetical. For example, I refer to the Petition addressing the " 237 patent as Pet. (237) at X; and the Moulin Declaration addressing the " 179 patent as Moulin Decl. (179) $\cdot \mathrm{X}$. Because there is only one Dr. Moulin Deposition transcript for all

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
7. In addition, I relied on my personal knowledge and experience with both research and development in the technology underlying the IPR Patents and the art asserted against the IPR Patents.

D. Understanding of the law.

8. My understanding regarding the law as applicable to this Declaration is based on my discussions with counsel. I have included in the text of my Declaration quotations from or references to certain legal cases or statutes that were provided to me by counsel to provide me with an understanding of the relevant law.

E. Person of ordinary skill in the art.

9. Through my education, experience and training, in academia and industry, and my analysis of the IPR Patents, 1 am familiar with the knowledge of a person of ordinary skill in the field of the IPR Patents at the time of invention in 2000.
10. For the purposes of this Declaration, I am of the opinion that a person of ordinary skill in the art with respect to the IPR Patents is a person with a Bachelor's degree in computer science, mathematics, or a similar discipline and two to three years of relevant experience, or a graduate degree in the same area.
four IPRs (Ex. 2006), I simply refer to Dr. Moulin's deposition testimony as Moulin Depo. Z.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

In determining what would be the level of ordinary skill in the field as of the 2000 time frame, I considered the following:
(a) the educational level of the inventor, Ingemar J. Cox (it is my understanding that Dr. Cox has a bachelor's degree in electronics and computer science from University College London (1980) and a Ph.D. from Oxford (1983)):
(b) the type of problems encountered in the art-i.e., how to identify a digital work without modifying the work (see e.g., 237, 1:30-36):
(c) the prior ant solutions to those problems (see e.g., $237,1: 37-4: 4$, and the prior art asserted by the Petitioner in the IPRs addressing related problems involving searching, matching, and identifying melodies, audio files, and other digital files within databases - Conwell, Ghias, Iwamura, Chen, and Philyaw);
(d) the rapidity with which innovations are made (based on my observations over the past 20 plus years, major innovations in content identification occur about every 5 to 10 years);
(e) the sophistication of the technology (developing content identification solutions is a moderately sophisticated technology); and

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
(f) the educational level of workers in the field (workers in the field generally had have at least a bachelor's degree in computer science, mathematics or a similar discipline and at least two to three years of relevant experience).
11. Based on these factors, it is my conclusion that a person of ordinary skill in the art at the time would have been a person with a Bachelor's degree in computer science, mathematics, or a similar discipline and two to three years of relevant experience, or a graduate degree in the same or related area.
12. I note that Dr. Moulin suggests that the person of ordinary skill in the art "would have been highly skilled, and typically would have possessed at least an M.S. in computer science, electrical engineering, or mathematics; knowledge of video and audio processing techniques; and 1-2 years of experience in audio, video, or image processing." See e.g., Moulin Decl. ('237) 97; Pet. ('237) at 4. Dr. Moulin's opinion as to the person of ordinary skill in the art is similar to mine with respect to the degrees and years of experience, but I note that: (1) Dr. Moulin does not provide any rational underpinnings for his opinion; and (2) the phrase "highly skilled" used by Dr. Moulin in his description is a relative term and Dr. Moulin does not provide the context for this phrase.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-()0348
Declaration of George Karypis
II. Summary of the IPR Patents and asserted art.
13. In this Declaration:

- I use the term "work" to mean the item (e.g., a digital audio or image file) to be identitied using the search (see c.g.. '237, 6:51-56; '988, 7:17-20; '179, 6:18-21: 441, 6:49-52)
- I use the term "record" to mean one of the units in the reference database that the extracted features of the work may be compared to (see e.g., 237. $6: 16-20 ; \cdot 988,6: 46-50 ; \cdot 179,6: 21-24 ; \cdot 441,6: 15-18)$, and
- I use the term "database," "data set," or "library" to mean the collection of all records to be searched (see e.g., '237, 6:23-30; '988, 6:50-60, '179. 6:3036; '441, 6:24-30).

A. The IPR Patents.

14. Each IPR Patent (the $2337, ` 179$, '988, and '441 patents) involves a search that compares features from a given work to records in a reference database of potential matches to identify an action to be taken.
15. $\cdot 237$ patent (Ex. $1001 \cdot 237$ IPR).
16. The independent claims of the 237 patent include the following elements:
[1] receiving or obtaining features extracted from a work;

Page 12 of 292

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
[2] identifying the work using the extracted features to perform a search of the database, where the search is:

- a sub-linear time search to identify a neighbor (claims I and 5);
- an approximate nearest neighbor search (claims 9 and 13);
- a non-exhaustive search ... to identify a near neighbor (claim 25); or
- a sublinear approximate nearest neighbor search (claim 33); and
[3] either (i) transmitting information about the identified work to the client device, or (ii) determining an action based on the identity of the work.

16. The invention claimed in the ' 237 patent includes two key features:
17. Feature 1: Although the language varies among the claims, each claim requires that the "identifying" be performed based on a search that has two properties:
(1) a sub-linear or non-exhaustive property (reflected in the underlined language):

- sub-linear time search ... to identify a neighbor (claims 1 and 5);
- approximate nearest neighbor search (claims 9 and 13);
- non-exhaustive search ... to identify a near neighbor (claim 25); and
- sublinear approximate nearest neighbor search (claim 33).
(2) a neighbor property (reflected in the underlined language):

IPR2015-00.343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

- identify a neighbor (claims I and 5):
- approximate nearest neighbor search (claims 9 and 13):
- non-exhaustive search ... to identify a near neighbor (claim 25): and
- sublinear approximate nearest neighbor search (claim 33).

18. Feature 2: The system must either determine an "action" based on the identification (claims 25 and 33); or transmit information about the identified media work to a "client device" (claims 1, 5, 9, and 13). It is not sufficient to simply identify a match. Rather, an action must also be identified or information about the identified work must be transmitted to the client device.

2. '988 patent (Ex. 1001 '988 IPR).

19. The independent claims of the ' 988 patent include the following elements:
[1] extracting features from a work;
[2] identifying the work based on the extracted features by performing "a non-exhaustive search identifying a neighbor:"
[3] determining an action based on the identity of the work: and
[4] performing the action.
20. The invention claimed in the ' 988 patent includes two relevant distinguishing features:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
(1) the "identifying" must be performed using a "non-exhaustive search identifying a neighbor;" and
(2) the system must "determin[e] an action" and "perform[] the action" based on the identity of the work. It is not sufficient to identify a match. Rather, "an action" associated with the match must be "determin[ed]" and "perform[ed]." "988, claim 15.
21. I note that the Board did not institute trial for independent claim 1 of the '988 patent and any claims dependent on claim 1. Accordingly, I do not address these claims in this Declaration.
3. '179 patent (Ex. 1001 ' 179 IPR).
22. The independent claims of the ' 179 patent (claims 1,13 , and 25) include the following five elements for identifying a work and performing a corresponding action:
[1] a database comprising: (a) electronic representations of works; and (b) electronic data related to an action corresponding to works;
[2] obtaining extracted features of an unknown work;
[3] identifying the unknown work by comparing the extracted features and electronic representations using a "non-exhaustive neighbor search;"

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
[4] determining an appropriate action based on the electronic data related to an action: and
[5] associating the detemmined action with the identified work.

179, claims 1. 13. and 25
23. The claimed steps are illustrated in Figure 1:

Figure 1 illustrates ("for work (at2"):

- "feature (vector) extraction operation(s)" (140) that extract features from the work ('179, 6:45-47):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

- "feature (vector) lookup operation(s)" (150) that identify the work by searching for a matching feature vector (${ }^{(179,6: 50-52) \text {; }}$
- "work-associated information lookup operation(s)" (160) that retrieve(s) associated information, such as an action ('179, 6.55-58); and
- "action initiation operation(s)" (170) that perform(s) some action based on the associated information (' $179,6: 58-60$).

24. The invention claimed in the " 179 patent includes two relevant distinguishing features:
(1) the "identifying" must be performed by comparing the extracted features to the electronic representations using a "non-exhaustive neighbor search;" and
(2) the system must determine or associate an "action" based on the identified work. It is not sufficient to simply identify a match. Rather, "an action" associated with the match must be "determined" or "associated."
'179, claims 1, 13, and 25.

4. '441 patent (Ex. 1001 '441 IPR).

25. The independent claims of the '441 patent (claims 1, 13, and 25) include the following five elements for identifying a work and performing a

IPR2015-(0)343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
corresponding action:
[1] a database with (a) first data related to records, and (b) second data related to action information corresponding to the records;
[2] extracting features from a work:
[3] identifying the work by comparing the extracted features and the data related to the records using "a non-exhaustive neighbor search,"
[4] determining an action based on the identity of the electronic work; and [5] performing the action.
-441, claims 1, 13, and 25.
26. The claimed steps are illustrated in Figure 1:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Figure 1 illustrates ("for work @t2"):

- "feature (vector) extraction operation(s)" (140) that extract(s) features from the work ("441, 6:39-41);
- "feature (vector) lookup operation(s)" (150) that identify the work by searching for a matching feature vector ('441, 6:44-48);
- "work-associated information lookup operation(s)" (160) that retrieve(s) associated information, such as an action ("441, 6:49-51); and
- "action initiation operation(s)" (170) that perform(s) some action based on the associated information ('441, 6:52-54).

IPR2015-001343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
27. The invention claimed in the 441 patent includes two relevant distinguishing features:
(1) the "identifying" must be performed by comparing the extracted features to the electronic representations using a "non-exhaustive neighbor search;" and
(2) the system must determine or associate an "action" based on the identified work. It is not sufficient to simply identify a match. Rather, "an action" associated with the match must be "determined" or "associated."
'441, claims 1, 13, and 25.

B. The asserted art.

28. The four IPRs address three primary references and two secondary references. 1 address each reference in turn, starting with the primary references and then turning to the secondary references.
29. Overview of Ghias-Ex. 1010 (addressed in the '237, '988, '179, and '441 IPRs).
30. Ghias (Patent No. $5,874,6861$ discloses "an apparatus [for] searching melodies." Ghias, Abstract. As illustrated in Figure I of Ghias, a "tune 12 is hummed by a person 18 into a microphone 20." Ghias, 2:41-42

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

The data from the microphone is fed into "a pitch tracking module 22 in computer 16 " which extracts "a contour representation" of the melody (23). Ghias, 2:41-50. The computer uses a "query engine 24 " which "searches the melody database 14 ." Ghias, 2:50-52. The disclosed search can produce a ranked list of matching melodies-"ranked by how well they matched the query" (Ghias, 6:60-63) as illustrated at 26.
30. As I explain below in detail, all searches disclosed in Ghias are linear (not sub-linear) with respect to the size of the data set being searched. In addressing "the problem of approximate string matching," Ghias identifies the running times of several algorithms:

IPR2015-001343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

> Several Algorithms have been developed that address the problem of appowimate stong matehing Running times
> 25 bave ranged from (k mat) for the brute force algorithon to O(kn) or ()(nkog(m), where "()" means "on the order of." m is the number of piteh diflerences in the query, and o is the size of the string (song)

Ghias, 6:23-28. In each identified instance, the running time of the search is not sub-linear with respect to the data set. As clarified in this passage from Ghias (and as I address in detail below):

- "m is the number of pitch differences in the query" corresponding to the length of the query (highlighted in green in the passage above); and
- "n is the size of the string (song)" corresponding to the size of a record being searched (highlighted in orange in the passage above).

31. The disclosed searches may be sub-linear with respect to the length of the query being searched " m... the number of pitch differences in the query." Specifically, the referenced search with a running time of $O(n \log (m))$ is sublinear with respect to " m " because it is a function of $\log (\mathrm{m})$) The disclosed searches, however, are never sub-linear with respect to " n...the size of the string (song)" or the size of the data set (N) (i.e., the number of songs to be compared). Rather, the search time will grow linearly with each additional song to be searched and the length of the song.
32. Also as I describe in detail below, the searches disclosed in Ghias are exhaustive rather than "nonexhaustive." The "query engine 24 " compares the

IPR 2015-00343, IPR2015-00345, IPR2015-0034.7, and IPR 2015-00348 Declaration of George Karypis
work (user input 23) to "all the songs" in the melody database 14 (the library). Ghias, 5:66-6:2. After searching all possible matches, the system "output[s] a ranked list of approximately matching melodies." Ghias, 2:50-53.
33. Finally, as I describe in detail below, the searches disclosed in Ghias are not "neighbor" searches because the searches always necessarily identify the exact or closest match-they are guaranteed to identify an exact match or the closest match. Ghias does not identify any search in which an exact or the closest match is not guaranteed to be identified.
2. Overview of Iwamura-Ex. 1012 (addressed in the ' 237 and '988 IPRs).
34. Iwamura (Patent No. $6,188,010$) discloses a "method to enable one to search for a song title when only its melody is known." Iwamura, Abstract. "A remote music database with melody information is searched for the melody entered by the user, using for example, a peak or differential matching algorithm." Iwamura, Abstract. Figure 1 illustrates "an example of a search interface" (Iwamura, 2;45-46):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

35. Iwamura discloses a searching algorithm that is designed to be more efficient than alternatives by matching up peak notes from the work to be identified with the peak notes of the records in the database when comparing the notes from the work to be identified with the notes in the records. "Peak notes are also detected and marked when the data base is built." Iwamura, 6:59-60. "A fast search is performed by using a peak or differential matching algorithm." Iwamura, 12:1-2.
36. As I explain in detail below, the search disclosed in Iwamura is exhaustive rather than the claimed "non-exhaustive," "sublinear," or "approximate nearest neighbor" search. While the individual comparisons of a work and a record in the library can be more efficient using the "peak note" approach

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
disclosed in Iwamura (search speed can be increased), in doing so each record in the library is searched as part of the disclosed algorithm and " $[\mathrm{t}]$ he reference melody that gives the least difference is returned as a search result." Iwamura, 7:53-55.
37. Moreover, the Boyer-Moore algorithm referenced in Iwamura searches "word by word from the beginning of the database to the end." Iwamura, 9:51-55. As a result, as I explain in detail below, while the Boyer-Moore algorithm may be sublinear with respect to the length of the query (the work to be identified), ${ }^{4}$ it is not sub-linear with respect to the relevant size of the dataset being searched.
${ }^{4}$ If the query pre-processing step of the Boyer-Moore algorithm is included as part of the execution time, then the algorithm may be linear in terms of the length of the query. If the query is used repeatedly, however, the pre-processing execution time will only be incurred once. One can think of concatenating all the database strings to give as an aggregate length of n . If " m " is the query length, then the worse-case complexity is Theta(m) $O(n)$, which is linear with respect to both the database n and the query length m.

IPR2015-0034.3, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

3. Overview of Conwell-Ex. 1009 (addressed in the ' 179 and - 441 IPRs).

38. Conwell (Patent No. $6,970,866$) diseloses associating media content, such as MP3 files, with identifiers and URLs. Conwell. Abstract. As illustrated in Figure 3, the identifiers (e.g., "034") are associated with corresponding URLs (e.g., "WWW.sonymusic.com/catalog/05634 html"):

034	www sonymusic. com/catalog/05634 html
112	www sonymusic com/catalog/00014 html
198	www supertracks corrindexjartists/taylor.htm
376	Www errusic com/0555353x.pdf
597	wwW.cdw.comimusicffeatured_cDssindex. html
612	Www. zonymusic. corn/catalogr00231 html
850	www. pelygram com/franklirvadf_234 htm
921	whw.loudeye.com/rap/1999/46755646.html

FIG. 3
39. Conwell discloses two approaches to identifying a work: (1) assigning identifiers, or (2) implicitly generating identifiers derived from the data using a hashing algorithm. Conwell, Abstract. The implicit approach (rather than explicitly assigning identifiers) is the approach relevant to the IPR Petitions. See Pet. (${ }^{(179)}$) at 22-23.
40. Conwell relies on hashing algorithms to extract features from the work to be identified:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
"The identifiers can be assigned, or can be implicit (e.g., derived from other data in the content object, as by hashing)."

Conwell, Abstract; 1:65-67 ("some or all of the content data is processed by a hashing algorithm to yield a 128 bit identifier corresponding to that content.") As I explain in detail below, Conwell compares the hashed extracted features of the work to be identified to the features of the records in the database exclusively using an exact match comparison.
41. When implementing the search in Conwell to identify a match, comparing the hashed extracted features from a work with a record in the library using the disclosed lookup table (Conwell, 3:43-45) produces a binary result: either (1) there is an exact match; or (2) there is no exact match. See Conwell, Figure 3. Whether the hash of the extracted features of the work and the hashed extracted features of the record being compared are close (similar) or distant (dissimilar) is not considered, is not relevant, and cannot be determined using a nearness comparison of the hashes extracted in Conwell.
42. In addition, as I explain below in detail, while Conwell discloses using a sorted lookup table to store the hashed extracted features (see Conwell Figure 3, 3:43-45), Conwell does not identify any specific algorithm for performing the exact match comparison using the lookup-table and therefore does not identify either an exhaustive search or a non-exhaustive search. Either

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis approach could theoretically be used; however. neither approach is expressly or inherently disclosed.
4. Overview of Philyaw-Ex. 1014 (addressed in the ' 179 and *441 IPRs as a secondary reference).
43. Philyaw (Patent No. $6,098,106$) discloses a system that uses identifying information embedded into either the sound or video portion of a broadcast signal to view corresponding information. Philyaw, Abstract; 1:66-2:8. "Figure 3 illustrates the system interactions over a global network" (Philyaw, 2:2021):

44. Rather than using the searches clamed in the IPR patents to identify a work by comparing extracted features to a database of potential matches, the system in Philyaw embeds a "routing signal having routing information contained therein" into a broadcast program to identify what is being broadcast:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
"A program is broadcasted having embedded therein a routing signal having routing information contained therein. The routing signal is then extracted from the broadcast. Thereafter, a personal computer is controlled to allow a user to retrieve the information from a storage region at the defined location, which defined location is located with the extracted routing information, providing it at the personal computer for use by the user."

Philyaw, 2:1-9. Accordingly, Philyaw does not disclose any searching algorithm. ${ }^{5}$
5. Overview of Chen-Ex. 1008 (addressed in the ' 237 IPR as a secondary reference).
45. Chen (Patent No, $7,444,353$) discloses a system for identifying music in a "music and information delivery" system. Chen, Abstract. Figure 1 "illustrates one embodiment of a music and information delivery system according to the teachings" of Chen. Chen, 4:7-9.
$5 \quad$ I note that the '179 and '44I IPR Petitions do not assert that Philyaw discloses the claimed "non-exhaustive neighbor search" (from the "179 and '441 claims) but instead exclusively relies on Ghias for this element in Ground 2 of the '179 and '441 IPRs (the only grounds in which Philyaw is asserted). See Pet. ('179) 47-48, 51; Pet. ('441) 47-48; 51.

A user can identify music that they can then access, for example, by downloading to a laptop or home computer. Chen, 1:58-66.
46. The system in Chen can "search a storage medium to identify and access the piece of music from the storage medium." Chen, Abstract. But Chen does not provide any details as to how any search is performed. Accordingly, Chen does not disclose a(n):

- sub-linear time search to identify a neighbor (237 , claims 1 and 5);
- approximate nearest neighbor search (237 , claims 9 and 13):
- non-exhaustive search ... to identify a near neighbor (237, claim 25): or

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

- sublinear approximate nearest neighbor search (claim 33).

I note that neither the Petition nor the corresponding Declaration relies on Chen for these claimed elements but instead relies on Iwamura in Ground 3 of the ' 237 IPR, the only ground in which Chen is at issue. See Pet. (-237) at 54-57.

III. General Findings.

47. Based on my analysis of:
(a) the IPR Patents (the '237, '988, '179, and '441 patents);
(b) the art asserted against the IPR Patents in the four IPRs;
(c) the IPR Petitions;
(d) Dr. Moulin's Declarations (Exs. 1004 in each IPR) and deposition testimony (Ex. 2006);
(e) the documents cited in the IPR Petitions;
(f) the IPR Decisions; and
(g) the other documents referenced in this Declaration, I am of the opinion that the instituted claims of the IPR Patents ${ }^{6}$ are not unpatentable based on the grounds at issue in the IPRs.
48. I understand that the instituted claims are claims $1,3-5,7-9,11-13,15,16$, $21-27,29,30,33,34,35,37$, and 38 of the ' 237 patent; claims $15-17,21-28,31-$

IPR $2015-00343$, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
48. Specifically, for the reasons and based on the analysis that I set forth below, I am of the opinion that:
' 237 patent:

- Ground 1: Claims 1, 3-5, 7-9, 11-13, 15, 16, 21-25, 29, 30, 33, 37, and 38 of the ' 237 patent are not anticipated by \llbracket wamura under 35 U.S.C. $\$ 102(\mathrm{e})$;
- Ground 2: Claims 1-3,5-7,9-11, 13-15, and 21-24 of the '237 patent are not anticipated by Ghias under 35 U.S.C. $\$ 102$ (b);
- Ground 3: Claims 26,27,34, and 35 of the ' 237 patent are not obvious over [wamura and Chen under 35 U.S.C. § 103:
"998 patent:
- Ground 1: Claims 15-17,21-23,28,31, and 51 of the 998 patent are not anticipated by Ghias under 35 U.S.C. $\$ 102(\mathrm{~b})$:
- Ground 2: Claims 22,24-26, and 52 of the "998 patent are not obvious over Ghias under 35 U.S.C. $\$ 103(\mathrm{a})$:

33, 51 , and 52 of the " 998 patent; claims $1-3,6,8-14,18,19,21-27,29-31$. and $34-37$ of the ' 179 patent; and claims $1-3,6,8-14,18,19,21-27,29$, and 30 of the -44I patent.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

- Ground 3: Claims $15-17,21,23,27,28,31-33,38$, and 51 of the '998 patent are not anticipated by Iwamura under 35 U.S.C. § 102(c);
' 179 patent:
- Ground 1: Claims 1-3,6,8-14,19,21-26,30,31, and 34-37 of the '179 patent are not anticipated by Conwell under 35 U.S.C. $\$ 102(\mathrm{e})$;
- Ground 2: Claims $1-3,8,10-14,18,19,21-27,29,31$, and $34-37$ of the ${ }^{4} 179$ patent are not obvious over Ghias and Philyaw under 35 U.S.C. § 103;

'441 patent:

- Ground 1: Claims 1-3,6,8-14, 19,21-26, and 30 of the *441 patent are not anticipated by Conwell under 35 U.S.C. $\$ 102(\mathrm{e})$; and
- Ground 2: Claims $1-3,8,10-14,18,19,21-27,29$, and 30 of the ' 441 patent are not obvious over Ghias and Philyaw under 35 U.S.C. $\$ 103$ (a).

49. The information below presents the basis for my opinions that the challenged claims of the IPR Patents are not unpatentable based on the grounds at issue in the IPRs.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
IV. General concerns with the IPR Petitions and Dr. Moulin's Declarations (Exs. 1004 in each IPR).
50. It is my understanding that a Petition must set forth how a challenged claim is to be construed. In addition, it is my understanding that a Petition and corresponding declaration must then map the properly construed claim language to the teachings of the asserted art. Based on my review of the Petitions and corresponding Declarations, one skilled in the art would understand that the Petitions and corresponding Declarations fail to comply with these requirements.
51. First, the Petitions (and in particular, the ' 237 Petition) and corresponding Declarations fail to identify any construction of the phrase "approximate nearest neighbor search." See Pet. (237) at 1-53. Claims 9 and 13 of the '237 patent include an "approximate nearest neighbor search." See '237 patent claims 9 and 13. Because the Petition and Declarant do not identify any construction of "approximate nearest neighbor search," they fail to map the properly construed language to the teaching of the prior art (i.e. Iwamura, Ghias, and Chen).

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
52. Second, although Petitioner and Dr. Moulin identified constructions for certain terms, ${ }^{7}$ neither the Petition nor the corresponding Declaration maps the construed claim language to the teachings of the asserted art.
53. Moreover, one skilled in the art would understand that Petitioner's failure to map the properly construed claim language to the teachings of the prior art results in critical mistakes in the IPR Petitions and Declarations, as I illustrate using the following two examples:
54. Example 1: In his Declaration with respect to the ' 237 patent, Petitioner's Declarant, Dr. Moulin, confirmed (consistent with my understanding and the understanding of one of ordinary skill in the art) that a "sublinear search" is a search that has a sublinear relationship to the database size:

```
        53. I understand and agree with Petitioner's position that the lerm
"sublincar search" means "a search whose execution time has a sublinear
relationshup to database size " For instance. a linear search of a 200-item database
would take twice as long as a linear search of a 100-item database. By contrast. a
sublinear search of a 200-item database would take less than twice as long as a
sublinear search of a l00-item database. perhaps, for instance, 1.5 times as long.
```

${ }^{7}$ See, e.g., Moulin Decl. ('237) 43 (addressing non-exhaustive search); Moulin Decl. ('237) 94 (addressing identify a neighbor / identify a near neighbor/ nearest neighbor search); Moulin Decl. ('237) 953 (addressing sub-linear).

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Decl. ('237) 953. In that same Declaration. Dr. Moulin also asserted that Ghias discloses a search that is sublinear based on the disclosure in Ghias of algorithms that have running times of "O(kn) or $\mathrm{O}(\mathrm{n} \log (\mathrm{m}))$:"

> In particular Ghas
discloses searches whose execution umes are proportional to the logarithm of the

Moulin Decl. (${ }^{-237}$) 123 .
55. In asserting that Ghias discloses a search that is sublinear, Dr. Moulin did not apply the construction of a sublinear search which requires that the search be sublinear with respect to the "size of the database" and not the number of pitch differences in the query which is the length of the query. Moulin Decl. ('237) ©53. However, as stated in Ghias (and confirmed by Dr. Moulin at his deposition, see the deposition citations that I reference below), (1) " m " refers to the number of pitch differences in the query while " n " refers to the size of the string (song), and (2) each search algorithm identified in Ghias is linear with respect to the size of the data set. Accordingly, one skilled in the art would understand that Ghias does not disclose a sublinear search under Petitioner's (and Dr. Moulin's) own construction of sublinear.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
56. Dr. Moulin's deposition transcript addressing the paragraph from his Declaration that I presented above (Moulin Decl. ('237) \&123) demonstrates to one skilled in the art the problems that result from the Petitioner failing to apply Dr. Moulin's own construction to the art:

Moulin Depo. 154:14-155:2

IPR2015-00343, IPR2015-00345, IPR 2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 155:12-156:6.

Moulin Depo. 156:22-157:3

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis


```
& wovid misteas it and be rasled.
```



```
    in If*s not at al1 the .... the zeascm. So
if alone m. orere ate fouf dscuments. Some, tha%
ave. llke, #s pages each. Some of the words could
have been 上テ=vez zhoser. In pastzcular, the moxd
```



```
chat.
    2 $u* a5sure .-
    A Ag*:5, I have scknowledged shat ch:s was
```

Moulin Depo. 157:6-18.
57. Example 2: As I noted above, in his Declaration with respect to the '237 Patent, Dr. Moulin confirmed that a sublinear search is a search that has a sublinear relationship to the database size:

> 53. I understand and agree with Petitionet's position that the term
> "sublincar search" means "a search whose execution time has a sublinear
> relation-hip to database size." For instance, a linear search of a 200 -item database

Moulin Decl. (237) 953. Just a few pages later in that same Declaration, Dr. Moulin asserted:

IPR2015-0034.3, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

suh/mear hehan wour Lx 1017 at 1

Moulin Decl. (*237) 972. In asserting that Iwamura discloses a search that is sublinear, Dr. Moulin did not apply his construction of a sublinear to the referenced Boyer-Moore algorithm.
58. As I explain in detail below and confirmed by Dr. Moulin, one skilled in the art would understand that the Boyer-Moore algorithm disclosed in Ghias does not disclose sublinear behaviors with respect to the size of the data set but only with respect to the query (or pattern)" to be matched. Again, Dr. Moulin's deposition transcript addressing the paragraph from his Declaration that I presented above (Moulin Decl. (•237) 972) demonstrates to one skilled in the art the problems that result from Petitioner failing to apply Dr. Moulin's own construction to the art:

8 Dr. Moulin testified that "query." "pattern," and "probe" are "all synonymous in this context." Moulin Depo. 21:24-22:1. I agree with Dr. Moulin's testimony.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
20 Q कhen vou wtote this, wezE %out cu%%na to
2I convey that searohing using the Soyez-Hoove
22 algovithm would be subliteal with zespeot to th=
23 s%ze of the dataset beang seazched?
24 A No. I fild not -- no.
```

Moulin Depo. 74:20-24.

```
9 Q When we read paragraph 72, are you
10 conveying to the reader that the Emyer-Moore
11 algozithm is zublineaz *ith :espegt to the s:ze ot
12 The dataset belng seasched?
13 A %H. Al1 I do is quote a part of a paper
14 that shows why that algorithm is much faster than
15 brute force. That's all I'm dolng. You're
16 inferring things I'm not saying of writing.
```

Moulin Depo. 69:9-16.

```
    Q When we tead pasagraph 72, are you
10 conveying to the reader that the E=%=5-vonta
11 algorithm is sublineaz whth vesp%ct to the s12= as
12 the dataset being seazched?
13 A |%. All I do is quote a part of a papez
14 that shows why that algorithm is much faster than
15 brute force. That's all I'm doing. You're
If infertang thangs I'm not saying or wating.
```

Moulin Depo. 66:9-18.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
\qquad
\qquad

Moulin Depo. 75:23-76:3.


```
    A & : . | : : .
```

Moulin Depo. 67:17-21.

V. Claim Constructions.

59. In construing the claims of the IPR Patents, I understand that in this proceeding, the claims are interpreted using the broadest reasonable construction in light of the patent in which they appear. I also understand that there is a presumption that a claim term carries its ordinary and customary meaning to one of ordinary skill in the art at the time of the invention. In conducting my analysis of the claim elements below, I apply this understanding.
60. It is also my understanding that, for purposes of evaluating whether the IPR Petitions satisfied an initial threshold, the Board identified certain claim

> 38
> Page 42 of 292

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis constructions in its Decisions. It is my understanding that the preliminary constructions identified by the Board are:

"sub-linear"	"a search whose execution time scales with a less than linear relationship to the size of the data set to be searched" Decision ('237) at 7.
"non-exhaustive search" / "non- exhaustive...search"	"a search that locates a match without a comparison of all possible matches" Decision ('237) at 7; Decision ('988) at 7; Decision ("179) at 7; and Decision ('441) at 7.
"neighbor search" / neighbor" a	"identifying a close, but not necessarily exact or closest, match" Decision ("988) at 7; Decision ("179) at 8; and Decision ("441) at 7.
"neighbor" / "near neighbor"	"a close, but not necessarily exact or closest, match" Decision ('237) at 8.
"approximate nearest	
neighbor search"	"identifying a close match that is not necessarily the closest match"" Decision ("237) at 9.

I address each construction in turn.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

A. sub-linear ('237 patent).

61. The Board's preliminary construction of "sub-linear time search" is "a search whose execution time scales with a less than linear relationship to the size of the data set to be searched " Decision ('237) at 7. While the Board's preliminary construction is a correct construction of "sub-linear time search," there are apparently two possible interpretations of the Board's construction:

Interpretation 1: consistent with the meaning of the phrase "size of the data set," the "size of the data set" refers to the number of records in the data set being searched (such that the relevant linear relationship is with respect to the size of the data set, i.e, the number of records in the data set), or Interpretation 2: the "size of the data set" refers to the length of an individual record in the database (such that the linear relationship is with respect to the length of an individual record to be searched rather than the size of the data set).
62. As I explain below, the first interpretation is correct. Also, as I demonstrate below, the asserted art for this element (Iwamura and Ghias) does not disclose a sub-linear search under either interpretation. The (1) words actually used in the Board's construction, the (2) specification of the '237 patent, and (3) the Petitioner's Declarant, confirm that the proper interpretation of a sub-linear search, in the context of the 237 patent, is a search that is sublinear with the size

Page 44 of 292

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
of the data set where the data set is the number of records in the database, not the length of an individual record in the data set.

1. the words used in the construction: "size of the dataset"

63. A data set, in the context of the ' 237 , is a database (i.e., set of records), not an individual record in a dataset or database. The Board incorporated the phrase "size of the dataset" in its preliminary construction based on the fact that "database" and "dataset" are "largely consistent" such that "database size" and "size of the data set" are "largely consistent." Decision ('237) at 7. As Petitioner's Declarant confirmed, "dataset" and "database" are the same in the context of the IPR Patents:
```
$4 Q When you say "database," is that the sants
```

Moulin Depo. 22:14-16.

```
41. W When you wrote "sublinearm heze, you'ze
```

Moulin Depo. 110:11-15. Consistent with the understanding of one skilled in the art, I agree with Petitioner's Declarant-that "database" and "dataset" are the same in the context of the IPR Patents.

IPR2015-00)343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
64. A database comprises all records in the database: a single record in a database is not a database. My understanding is consistent with the testimony of Petitioner's Declarant:

Moulin Depo. 89:4-13.
65. Moreover, 1 observed that the origin of the phrase "data set" in the Board's construction of sub-liner is the Patent Owner's Preliminary Response for the ' 237 patent in which Patent Owner specifically clarified that the "s size of the data set' is the number of potential matches in the data set (i.e., the 'number of entries in the search database.'. Preliminary Response ('237) at 9-10 (quohing Moulin Decl. (237) 154). I note that neither the Patent Owner (in its Preliminary Response) nor the Petitioner (in its Petition or Declaration) stated or suggested that sublinear should be based on the length of an individual query in the dataset. ${ }^{\text {P }}$
" This is the natural growth mechanism for such a problem. For example. if there are X songs in a database and X additional songs are added, in one dimension the database has doubled (2X). In general, there is no reason to think that the distribution of record sizes changes as the size of the database (number of record in the database) increases. If each record is a fixed length vector, the database size

IPR 2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

2. '237 specification.

66. As I noted above, it is my understanding that a claim in an unexpired patent is given its broadest reasonable construction in light of the specification of the patent in which it appears. It is also my understanding that the best source for discerning the proper context of claim terms is the patent specification.
67. "Sub-linear" indicates a relationship between two quantities which is less than linear. Linearity describes "[t]he relationship existing between two quantities when a change in a second quantity is directly proportionate to a change in the first quantity." Ex. 2007 (Modern Dictionary of Electronics) at 425 (1999). "Sub-" is a prefix indicating "under" or "below."
68. The claim language identifies "time" as one of the quantities being related. In the expression "a sub-linear time search," "sub-linear time" is an adjective phrase modifying "search." The ' 237 specification identifies the number of records in the data set (" N ") as the variable that is sub-linear with respect to time.
will double when the number of records doubles. Even if each record is a digital representation of an entire song, there is no reason to think that the new songs have a time / length statistical distribution that is significantly different from the songs that already exist in the database.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
69. First, the specification identifies a problem with prior art searches that the searches are "linear" with respect to the number of records in the data set (" N ") ${ }^{10}$ - not with respect to the length of an individual record in the database being searched:
"If binary search was possible, then a database containing N vectors would requite at most $\log (\mathrm{N})$ comparisons. ... In previous work, it was not uncommon to perform a linear search of all N entries, perhaps halting the search when the first match is found. On average, this will require $\mathrm{N} / 2$ comparisons. ${ }^{\text {. }}$ If N is large, this search can be computationally very expensive."
$\cdot 237,8: 54-63 .^{12}$

10 In the " 237 specification, the variable " N " indicates the number of entries in the database being searched -"a database containing N vectors." '237, 8:54-55. ${ }^{11} \mathrm{~N} / 2$ is the expected average result for an exhaustive or linear search of a dataset with one match.

12 A search algorithm that requires $\mathrm{N} / 2$ comparisons has a rumning time that scales linearly with respect to N . As N increases by one, the search's running time increases by, on average, one half of the running time of a single comparison. Thus, as N increases, the running time of a search requiring $\mathrm{N} / 2$ comparisons increases by a directly proportionate amount. i.e., linearly.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
"Consider a situation in which one out of 100,000 possible commercials is to be identified. Each 30 -second commercial consists of 900 video frames. If all 900 frames are stored in the database, then $\mathrm{N}-90,000,000$. Even if only every 10 th video frame is stored in the database, its size is still nine million. While databases of this size are now common, they rely of [sic] efficient search to access entries, i.e., they do not perform a linear search. A binary search of a $90,000,000$-item database requires less than 20 comparisons. In contrast, a linear search will require an average of $45,000,000$!" -237, 21:14-23.
70. In both of the instances from the ' 237 specification that I presented above, the " 237 specification describes prior art search techniques as "linear" with respect to " N "-the number of records in the database being searched-not with respect to the length of an individual record in the database.
71. Second, the ' 237 specification identifies search techniques that achieve a sub-linear search time with respect to the number of records in the database being scarched (not with respect to the length of an individual record being searched):
"Other forms of matching include those based on clustering, kd-trees, vantage point trees and excluded middle vantage point forests are possible and will be discussed in more detail later.... Thus, for example, a sub-linear search time can be achieved."

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
'237. 8:64-9:7.
"A number of possible data structures are applicable including kdtrees and vantage point trees. These data structures and associated search algorithms organize a N -point dataset ($\mathrm{N}=90.000,000$ in out previous example) so that sub-linear time searches can be performed on average."
'237, 21:56-60. Clustering, kd-1rees, vantage point trees and excluded middle vantage point all achieve sub-linear behavior by reducing the number of records being search. e.g., by discarding clusters (buckets) of potential matches, not by reducing the length of an individual record being searched. These methods prune parts of the search space (ie, data records to be searched) and this is why they are efficient. ${ }^{13}$
${ }^{13}$ The Yianilos paper incorporated by reference into the ' 237 patent (237 , 8:65-9:6) explains: "We introduce the idea of aggressive pruning and give a family of practical algorithms, an idealized analysis, and describe experiments. Our main result is that search complexity measured in terms of d-dimensional inner product operations, is i) strongly sublinear with respect to the data set size n for moderate R, ii) asymptotically, and as a practical matter, independent of dimension." Sere Ex. 2010 (P. N. Yianilos) at 1.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
72. Again, in all instances, the " 237 specification describes techniques as "linear" with respect to " N "- the number of records in the database being searched - not with respect to the length of an individual record in the database.

3. Petitioner's Declarant.

73. According to Petitioner (consistent with the understanding of one skilled in the art), a "sublinear" search is "a search whose execution time has a sublinear relationship to database size"- where the database size is the number of records in the database, not the length of an individual record in the data set.
74. A "database" consists of all records in the data set; a "database" is not one individual record in the database- an individual record is not a "database." Dr. Moulin confirmed that sublinear in the context of the ' 237 patent is based on the size of database (a "concept that's common in [his] field" Moulin 8:10-14), not the length of an individual record in the database:
```
53. I understand and agree with Petitioner's position that the term
"sublinear scarch" means "a search whose execution time has a sublinear
relationship to database s1ae." For instance. a linear search of a 200 -item database would take twice as long as a linear search of a l00-ftem database. By contrast. a sublinear search of a 200 -item database would take less than nwice as long as a sublinear search of a 100 -item database, perhaps, for instance. 1.5 times as long.
```

Moulin Dect. ('237) 953. As Petitioner's Declarant-Dr. Moulin-conlimed:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 13:24-14:4.

Moulin Depo. 103:16-22; 16:4-12; 24:1-12.
75. The Petition and corresponding Declaration interpreted "database size" as the number of records in the database (not the length of an individual record to be searched):
"For instance. a linear search of a 200 -item database would take twice as long as a linear search of a 100 -item database. By contrast, a sublinear scarch of a 200 -item database would take less than twice as Iong as a sublinear search of a 100 -item database. perhaps, for instance. 1.5 times as long."

Pet. (237) at 6: Moulin Decl. (237) 53

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Moulin Decl. ('237) $\$ 54$ (showing that the execution time of a sub-linear time search increases with a less than linear relationship to the "number of entries in the search database").
"[I]t is my opinion that a search whose execution time is proportional to the logarithm of the size of the data set (e.g., a search with execution time proportional to $\mathrm{A} \log (\mathrm{BN})$, where A and B are constants, and N is the number of entries in the database) is sublinear."

Moulin Deel. (237) 156.
76. One skilled in the art would understand that each explanation of "sublinear" in the Petition and Declaration demonstrates that the sub-linearity of a search depends on the number of entries in a database, not on other factors, such as the length of an individual record in the database. Nowhere does Petitioner or the

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
Declarant suggest that the relevant sublinear search is with respect to the length of an individual record to be searched. ${ }^{14}$
77. I note that in its Decision, the Board did not present any analysis or reasoning for interpreting sub-linear relative to the length of an individual record being searched rather than the number of records in the dataset. See Pet. ('237) at 7. And the example presented by the Board in its Decision equates "data set" with the number of records in the database (" N "), not the length of an individual record:

```
    One example
of such a sub-lunear search would be a search with an execution nme
proportional to the logarithm of the slze of the data set ("N"), where a
doubling of N would lead to an execution time proportonal to logi 2N ,
```

14. In Petitioner's analysis, the length of individual records is not a factor in evaluating whether an algorithm is a sub-linear time search or a linear time search. If the length of individual records were a factor in evaluating the sub-linearity of a search, then such lengths would have to be addressed in determining whether a given algorithm is sub-linear and Petitioner's examples would have to account for those lengths. The Petition does not rely upon any variable other than the number of items in the database to be searched to determine whether a search is sub-linear. The Petition determines whether a search has a sub-linear running time exclusively with respect to the number of entries in the database to be searched.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Decision ('237) at 7.
78. Importantly, one skilled in the art would understand that under any possible interpretation of "sublinear" in the context of the " 237 patent (as well as the general context of search algorithms), a search algorithm is sublinear only with respect to the size of the dataset (the size of the reference database), not the size of the query (pattern) of the work to be identified using the search. As Petitioner's expert confirmed, consistent with my understanding, whether a prior art search "scales based upon the size of the query or pattern" would not "be accurately assessing the "237 patent claims." Moulin Depo. 25:22-26:8.

```
11 Is it the case that fo: a search to be
```



```
b3 enough for it to have exezution time that is
14 Subllneavin relationship to the stae of the
15 pattezn; it must also be sublineat in telaticrship
Le ta the size oz The qavatsse?
17 A When I read "sublinear" in, say, Claim 5
19 of the patent, as We zust did, I urderstand
10 SLiblineat to mean in felation with. the size of the
z0 database. Zt ãoes not say anythang abdut &n
21relation with thesize ot the qu%2%.
```

Moulin Depo. 26:11-21.

IPR 2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 25:4-12.

Moulin Depo. 26:25-27:15.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
16 Is it the case that if we had a plece of
17 prior att that was linear wath respect to the saze
I2 of the database but sublinear infth respect to the
Is size of the query of the pattern, that that pftof
20 art would not teach a sublinear seazch as it's used
21 -n Claim 25?
22 A Again, if one undezstands subll:edz to be
23 in *-rmg in velation to the si=4 of the database,
24 tha: :ould ke a ... a linear searco.
```

Moulin Depo. 27:16-24.

```
4 Let's Essume we've got a piece of pziov
5 art that scales at a suklineat zelationship with the
r size of the fottenll ur ywezy but it scalus at a
7 Innear relationshyp wht The size of tive datarase
    z that:s bewng searched.
    HouId -hat pz=D= art cemorstrate of
    disciose a sublinear search as it's used in tite
    &laims of the '%37 pacert?
    A No. Agamn, because my uncerstancinng is
    the clavms of the "237 patent, whensver these"s
    mention c& "sublineaL," It means {r tevms of the
    5 databasestze. It does not say 1% expl土uitly; it's
If my infezence based on my knowledge and my expertise.
```

Moulin Depo. 28:4-16. I agree with the Petitioner's Declarant-that "sublinear" in the context of the IPR Patents is with respect to the size of the database, not the size of the query or pattern.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
B. non-exhaustive search ('237, '988, '179. and '441 patents).

1. The Board's preliminary construction of "non-exhaustive search" is consistent with the understanding of one of ordinary skill in the art: "a search that locates a match without a comparison of all possible matches."
2. A "non-exhaustive" search is a search that uses an algorithm designed to locate a match without comparing the work to all records in the database. A "non-exhaustive" search uses an intelligent algorithm to narrow the database to only a subset of potential matches. Seee.g. Moulin Decl. ("988) ๆ12 ("algorithms that increased efficiency by intelligently searching only a subset of potential matches (i.e., "non-exhaustive" algorithms)"); Pet. (237) at 3 ("search algorithms that increased efficiency by intelligently searching only a subset of potential matches (i.e., 'non-exhaustive' algorithms)"').
3. For example, if there are 100 records in a database, a non-exhaustive search could use an intelligent algorithm to exclude 75 records from the search such that only 25 would he searched during the comparison process. As the specifications of the IPR Patents observe, these non-exhaustive "forms of matching include[ing] those based on clustering, kd-trees, vantage point trees and excluded middle vantage point forests" do not systematically compare the work to be identified to each record. Seee e.g., '179, 9:14-17. Each of these examples uses an intelligent algorithm to narrow the database to only a subset of potential matches.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and 1PR2015-00348
Declaration of George Karypis
81. A "non-exhaustive" search can be contrasted with an "exhaustive" search. An exhaustive search systematically checks whether each potential match matches the work to be identified until a match is found, "perhaps halting the search when the first match is found." '237, 8:59-61. An exhaustive search is "a very general problem-solving technique that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement." Ex. 2001 (the "solution" here refers to a record and not a section within that record).
82. If there are 100 records in the database, an "exhaustive" search does not narrow the potential matches but instead systematically compares the work with each record to determine a match (if there is one). Systematically comparing the work to be identified with each potential match until a match is identified rather than using intelligence to narrow the search candidates is also referred to as using "brute force." Moulin Decl. ('988) *44 ("a brute force search conducts a comparison of every item in a search database"); Ex. 2001.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
2. The Board properly rejected Petitioner's assertion that a "non-exhaustive search" should be construed as "a search that locates a match without conducting a brute force comparison of all possible matches, and all data within all possible matches."
83. The "all data" clause (that I underlined above) in Petitioner's proposed construction (Pet. ('237) at 5; Decision ('237) at 5-7) would improperly include as a "non-exhaustive" search any search that did not compare "all data" in each record, even if the search were a brute force comparison of each record in the database. As an illustrative example, assume the work to be identified "ABC" is compared with all records in a library, including record "DEF." When comparing "ABC" with "DEF," the algorithm determines that there is no match between "ABC" and "DEF" after just comparing the first letter of the work "A" with the first letter of the record "D." If the algorithm does not unnecessarily compare the second and third letters, then according to Petitioner, the search is not "exhaustive" even though every record is compared.
84. Petitioner's Declarant states that a non-exhaustive search is any search that is not a brute force search, and a "brute force' search, in turn, is a search wherein a query is compared to every single portion of every single item in a database." Moulin Decl. (‘237) 443. Petitioner’s Declarant, however, provides no

NETWORK-1 EXHIBIT 2005
Google Inc. v. Network-1 Technologics, Inc.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
analysis or support for this conclusory assertion which. I understand, is insufficient to satisfy Petitioner's burden in these IPR proceedings.
85. One skilled in the art would understand that the "all data" clause is improper because it is:

- inconsistent with how the non-exhaustive search concept is used in the IPR Patents which describes a linear exhaustive search as one where the search compares the work to all "N entries," not all data within all "N entries" (see e.g., '179. 21:10-42: 8:59-9:54); and
- not part of the ordinary meaning of "non-exhaustive search" (see Ex. 2001).

86. Moreover, objective sources confirm my understanding that an "exhaustive" or "brute-force" search systematically compares the work with each record in a database, not all data within each record, for example:
"In computer science, brute-force search or exhaustive search, also known as generate and test, is a very general problem-solving technique that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement."

Ex. 2001 -each "candidate" is checked, not "all data" within each candidate.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
87. Petitioner's own Declarant twice confirmed my understanding-that a "non-exhaustive" search searches a subset of "potential matches," not a subset of "all data within all potential matches":
(1)"Because neighbor searching is computationally intensive, content recognition schemes typically employed search algorithms that increased efficiency by intelligently searching only a subset of potential matches (i.e., 'non-exhaustive' algorithms)." Moulin Decl. ('237) \&12;
(2)"to maximize search efficiency, persons skilled in the art routinely employed more efficient searches that did not conduct a comparison of every single item in a database, sometimes referred to as non-exhaustive searches." Moulin Decl. (*237) ©43.
88. For the reasons that I presented above, one skilled in the art would understand that the Board properly rejected Petitioner's "all data" clause.

Decision ('237) at 6.
C. neighbor search / identifying a neighbor / neighbor / near neighbor ('237, '988, '179, and '441 patents).
89. One skilled in the art would understand that the Board properly construed a "neighbor search" and "identifying a neighbor" as "identifying a close, but not necessarily exact or closest, match" and "neighbor" and "near neighbor" as

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
"a close, but not necessarily exact or closest, match." Decision ($\cdot 237$) at 8:
Decision ('988) at 7-8; Decision ('179) at 8: Decision ('441) at 7 .
90. Petitioner and its Declarant agree with the Board's construction of "neighbor search." See e.g. Petition ('179) at 6 ("The term 'neighbor search"... should be construed to mean 'identifying a close, but not necessarily exact, match."): Moulin Deel. ('179) 45 ("'neighbor search' means "identifying a close, but not necessarily exact, match.'"): Moulin Depo. 250:2-5.
91. One skilled in the ant would understand that there are two relevant features of a neighbor search under this construction:
92. Feature 1: If a search necessarily identifies an exact or the closest match (t.e, the search is designed to guarantee that an exact or the closest march is identified each time the search is performed), it is not a neighbor or near neighbor search because it is not a search that "identif[ies] a close, but not necessarily exact or closest, match." Rather, such a search necessarily identifies an exact or the closest match.
93. Feature 2: If a search that necessarily identifies an exact or the closest match (e.g., Match I) but also identifies other matches that, by definition, are not the closest match (Match 2, Match 3, Match 4), the search still necessarily identifies an exact or the closest match (Match 1) and therefore cannot be the claimed neighbor or near neighbor search.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

D. approximate nearest neighbor search ('237 patent).

94. As 1 noted above, the Petitioner did not identify a construction of "approximate nearest neighbor search."
95. The Board preliminary determined that an "approximate nearest neighbor search" is a search "identifying a close match that is not necessarily the closest match." Decision ('237) at 9 . One skilled in the art would understand that this construction is correct, but incomplete, as demonstrated by the ' 237 specification. The "237 specification states that the claimed "approximate nearest neighbor search" is [1] a sub-linear neighbor search that [2] does not always find the closest point to the query - i.e., does not always find the closest match:
"[1] One example of a sub-linear time search is an approximate nearest neighbor search. [2] A nearest neighbor search always finds the closest point to the query. An approximate nearest neighbor search does not always find the closest point to the query. For example, it might do so with some probability, or it might provide any point within some small distance of the closest point."
'237, 9:12-19.
96. The first feature-that a "approximate nearest neighbor search" is a sub-linear time search-is not reflected in the Board's preliminary construction and, as demonstrated below, should be included in the construction. The second

IPR2015-00343. IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
feature of the claimed "approximate nearest neighbor search" is reflected in the Board's preliminary construction - "identifying a close match that is not necessarily the closest match." I address these two features in reversed order.

1. "identifying a close match that is not necessarily the closest match"

97. This feature of "approximate nearest neighbor search" was properly adopted by the Board. A search that is guaranteed to return the actual closet match is not an "approximate nearest neighbor search." The ' 237 specification states that an "approximate nearest neighbor search does not always find the closest point to the query," '237, 9:15-16. Accordingly, a search that "always finds" (i.e., is guaranteed to find) the closest match is not an "approximate nearest neighbor search" while a search that is not guaranteed to find the closest match can be an "approximate nearest neighbor search" if it identifies a close match. Sce Pet. $(\cdot 237)$ at 19 (stating that a reference discloses an "approximate nearest neighbor search" because the search "identifies a neighbor, but not necessarily the nearest neighbor:")
98. This understanding of "approximate nearest neighbor search" is consistent with the ordinary meaning of the phrase
"Approximate nearest neighbor In some applications it may be acceptable to retrieve a 'good guess' of the nearest neighbor. In those

IPR2015-00343, IPR2015-00345, IPR 2015-00347, and IPR2015-00348
Declaration of George Karypis
cases, we can use an algorithm which doesn't guarantee to return the actual nearest neighbor in every case, in return for improved speed or memory savings."

Ex. 2008
(http://en.wikipedia.org/wiki/Nearest neighbor search\#Approximate nearest neig hbor.) at 5.
99. Similar to the neighbor and near neighbor searches addressed above, one skilled in the art would understand that a search that necessarily identifies both: (1) an exact match or the closest match, and, in addition, (2) "a close match that is not necessarily the closest match" is not an "approximate nearest neighbor search" because it is always guaranteed to identify the closest match.

2. "sublinear"

100. It is my understanding that an inventor may act as his or her own lexicographer in defining terms used in a patent's claims. One skilled in the ant would understand that the ' 237 patent defines "approximate nearest neighbor search" as a type of sub-linear search.
101. Title: In the title of the ' 237 patent, the patentee identified an "approximate nearest neighbor search" as a type of sub-linear search: "Identifying works, using a sub-linear time search, such as an approximate nearest neighbor search, for initiating a work-based action, such as an action on the internet." '237, Title.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
102. Abstract: It is my understanding that the abstract of a patent may be used to determine the scope of the invention. In its Abstract, the ' 237 patent also describes an "approximate nearest neighbor search" as a "sub-linear time search": "determining an identification of the media work . . . using a sub-linear time search, such as an approximate nearest neighbor search for example." "237, Abstract.
103. Specification: In describing methods for carrying out a sub-linear search of the reference data set, the ' 237 specification also describes an "approximate nearest neighbor search" as a type of sub-linear search: "One example of a sub-linear time search is an approximate nearest neighbor search." '237, 9:12-14.
104. In its preliminary construction, the Board did not include the sublinear feature of the claimed "approximate nearest neighbor search" based on what appears to be faulty logic. The Board preliminarily found:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

We largely agree with Patent Owner's construction, but note that the Specification refers to "olne example of a sub-linear time search is an approximate nearest neighbor search" (Ex. 1001, 9:12-14), such that we are not persuaded that an "approximate nearest neighbor search," must be a sublinear search, as that term has been construed above. As such, we are persuaded that the proper construction of "approximate nearest neighbor search" is "identifying a close match that is not necessarily the closest match."

Decision ('237) at 9. The logic underlying the Board's reasoning appears to be as follows: If A is "one example" of B, A is not always B . In my opinion, this logic is faulty.
105. If A is "one example" of B, A is always B even though there may be examples other than A that fall within the scope of B. If A is "one example" of B, the scope of B is not limited to just A (i.e., the scope of B can include C, D, and E) but A is always B. For example, a poodle is "one example" of a dog; a poodle is always a dog (there is no scenario where a poodle is not a dog) but there are other examples that fall within the scope of dog beyond poodles, i.e., terriers, Dalmatians, etc. Just like a "poodle" being "one example" of a dog must be a dog (e.g., a dog bred with a curly coat that is usually clipped ...) an "approximate nearest neighbor search" being "one example" of a "sublinear search that"

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis must be a sublinear search (i.e. a "sublinear search identifying a close match that is not necessarily the closest match.")

VI. ' 237 patent.

106. I understand that the Board instituted the ' 237 IPR based on three Grounds:

- Ground 1: Claims 1, 3-5, 7-9, 11-13, 15, 16, 21-25, 29, 30, 33, 37, and 38 as unpatentable under 35 U.S.C. § 102(e) as anticipated by Iwamura:
- Ground 2: Claims 1-3, 5-7,9-11, 13-15, and 21-24 as unpatentable under 35 U.S.C. § $102(\mathrm{~b})$ as anticipated by Ghias; and
- Ground 3: Claims 26, 27, 34, and 35 as unpatentable under 35 U.S.C. § 103 as obvious over Iwamura and Chen.

Decision ('237) at 21-22. I address each Ground in turm.
A. ' 237 Ground 1: The instituted claims of the ' 237 patent are not anticipated by Iwamura.
107. The Board instituted Ground I based on the following: Claims $1,3-5$, $7 \underline{9}, 11-\underline{13}, 15,16,21-\underline{25}, 29,30, \underline{33}, 37$, and 38 as unpatentable under 35 U.S.C. $\$ 102(\mathrm{e})$ as anticipated by Iwamura. Decision ('237) at 21 (I underlined the

IPR2015-00343, IPR2015-00345, IPR2015-0034.7, and IPR2015-00348
Declaration of George Karypis
independent claims). Ground 1 fails because Iwamura does not disclose the following key elements from each instituted independent claim:

- sub-linear time search (claims 1, 5);
- approximate nearest neighbor (claims 9 and 13):
- nonexhaustive search ... to identify a near neighbor (claim 25); and
- sublinear approximate nearest neighbor search (claim 33).

1 address each in turn.

1. sub-linear time search (claims elements 1(b) and 5(b.2)).
2. Claims elements I (b) and 5(b.2) require a "sub-linear time search."
3. As I explained above, a "sub-linear time search" is "a search whose execution time scales with a less than linear relationship to the size of the data set to be searched." Decision ('237) at 7.
4. One skilled in the art would understand that Iwamura does not disclose a "sub-linear time search." I wamura discloses a searching algorithm that is designed to be more efficient than altematives by comparing peak notes from the work to be identified with the peak notes in the database. Iwamura, 6:59-60; 12:12. While the individual comparisons of a work to a record in the library can be more efficient using this peak note approach, lwamura does not teach an algorithm that "scales with a less than linear relationship to the size of the data set to be searched" where the data set is either (a) the number of records in the database, or

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
(b) even the length of an individual record. Instead, each melody in the melody database is processed as part of the disclosed comparison and " $[t]$ he reference melody that gives the least difference is returned as a search result " I wamura, 7:53-55.
111. Specifically, Iwamura confirms that the referenced Boyer-Moore algorithm (the basis for alleged disclosure of a sub-linear search in the Petition, Declaration, and Decision) searches all items in the database and even searches "word by word from the beginning of the database to the end" and therefore cannot scale with a less than linear relationship to the size of the data set being searchi.e., it is not sublinear:
"Boyer Moore (discussed below) or other string-matching algorithms do not have this kind of flexibility. They only search word by word from the beginning of the database to the end."

Iwamura, 9:52-55. ${ }^{15}$
112. The search algorithms disclosed in Iwamura do not reduce the number of records to be searched during a search (or even the data to be searched within a record) as the dataset increases. Rather, the disclosed algorithms speed up the comparison of the work to each record by matching peaks. Iwamura, 9:9-11. Accordingly, the disclosed algorithms in I wamura search all records in the library,

15 The word-by-word comparison is valid for the worst case.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
and the computational time that the disclosed search takes to make such comparisons grows linearly with the number of records in the database (the relevant analysis) and even linearly with the data in each record. Iwamura therefore teaches a linear search rather than the claimed "sublinear" search as the term is used in the IPR Patents, because the computational time that it takes to perform a search grows linearly as new data is added to the database.
113. The Petition fails to satisfy its burden of demonstrating that Iwamura teaches a "sub-linear time search." As support for the "sub-linear" elements, Petitioner (and corresponding Declaration) exclusively relies on the Boyer-Moore algorithm referenced in Iwamura:
114. Petition: The text of the Petition does not address the sub-linear elements or state that Iwamura discloses a "sub-linear time search." Pet. ("237) at 7-10. Neither the word sublinear nor the concept appears in the text of the Petition.
115. Petition Chart: In its chart, Petitioner exclusively relies on the referenced Boyer-Moore algorithm as support for the sub-linear search elements (highlighted in yellow in the passages below):

Claim 1(b):

IPR2015-00.343, IPR2015-(00345, IPR2015-00347, and IPR2015-00.348 Declaration of George Karypis

```
(b) determanmy. by the computer
system, an kemtificatwon of the
media work usimg the recened
features evtracted from the medin
work to perform a sub-lmear tme
search of extracted features of
ventilied media works to ndentili a
neighbor. and
```

Iwamura determines an identification of the meda work usumg the extracted foatures by "Find| ming the closest melody from the databass." wheh ts a nerghbor " 25-is 121-2 Iwamura discloses searchmg u5mg the "Boyer-Moore algorahm" (9,63-64. (0)|-i). which is subwinear (Ex $|0|^{-}$at 1) Ex 10 KH at ${ }^{6} 72$

Pet. ('237) at 10-11 .
Claim 5(b.2) (Petitioner references Claim 1):

2) detemmang, by the computer system, an identification of the media work using the features extracted from the medta work to perform a sub-lunear turne search of evtracted features of identified media works to identify a nemphbor. and	Pethoner incorporates the abose dacusson of lwanura regardme (hom Ib.

Pet. (‘237) at 12.
116. Declaration: The Declaration also exclusively relies on the Boyer-

Moore algorithm as support for the sublinear search elements:
72. Ins my aqumen that lwamura further teaches how his warch can be
vublinear For example. Iw amura dischoses that differens "wearch algonthom may

Moulin Decl. ('237): 72.
117. Declaration Char: The chart in the Declaration also exclusively relies on the Boyer-Moore algorithm:

IPR2015-00343, IPR2015-00345, TPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Claim 1(b):

| b) determaning by the computer bystem. an identificatuon of the medna work ustng the recetved features extracted from the medta werk to pertorm a sub-linest time search of extracted features of identitised media works fo sdentity a neighbor: and | In ammen discloses the the of a "scanch cingine" to determane an identiticatuon of the media work usmg the extracted features by "find\|ng | the choses melody trom the database," whath is a neightion 9 25-38.
 12:1-2 Iwamura diacloses rearhmy usmg the "Bover-Moore algonthm" (963-6-4. 10.1-3), which is sublimear (Ex 1017 a1 I) |
| :---: | :---: |

Moulin Decl. ('237) 975.

Claim 5(b.2) (the Declarant references Claim 1):

2) determining, by the computer	I incorporate my above discussion of
system, an identification of the	Iwamura regarding Claim Ib.
media work using the features	
extracted from the media work to	
perform a sab-linear ume search of	
extracted features of identified	
media works to identify a neighbor.	
and	

Moulin Decl. ("237) 1775.
118. Neither the Petition nor Declaration identifies any basis for asserting
that lwamura discloses the sub-linear search elements other than the referenced
Boyer-Moore algorithm. Pet. (237) at 10-12; Moulin Decl. ('237) f72. My
understanding is confirmed by Petitioner's Declarant:

```
23 Q The oniz thang you iden=:Ey in you:
24 Le:14zation about INamuza that could disclose a
25 Sublinear time search is the झoyez-Woove algozithm;
1 sozzect?
A A As zaz as I vemember, yes. In that
3 D%clarat.on, at that tame, 隹.
```

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 82:23-83:3.
119. One skilled in the art would understand that the referenced BoyerMoore algorithm, however, does not disclose or even address a sublinear searchthat is "a search whose execution time scales with a less than linear relationship to the size of the data sel to be searched." Decision (237) at 7. Because Iwamura itself does not state that Boyer-Moore algorithm is sublinear, the entire basis in the Petition and corresponding Declaration for the claimed sublinear elements is the single statement in the Petitioner's Declaration:
"On the average the [Boyer-Moore] algorithm has a sub-liner behavior." Moulin Decl. ('237) 772 (quoting Ex. 1017 at 1). One skilled in the art would understand that this statement is not accurate with respect to the relevant sub-linear behavior, i.e., with respect to the size of the database. My understanding was confirmed by Petitioner's Declarant who testified that:
(1) he understood that "sub-linear" in the context of the • 237 patent is based on the size of the data set searched, not the size of the query or pattern to be matched (from the work to be identified):
(2) the Boyer-Moore algorithm does not disclose a search that is sublinear with respect to the dataset or database or even the length of a record to be search (it does not even address a database or dataset), and

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
(3) that when he wrote "which is sublinear" in his Declaration, he did not intend the Board to interpret "sublinear" in the context of the ' 237 patent but instead in a different context unrelated to ' 237 patent.
120. (1) As I noted above, Petitioner's Declarant understood that "sublinear" in the context of the ' 237 patent is based on the size of the searched dataset, not the size of the query or pattern of the work to be matched (which is the correct understanding):

```
53. I understand and agree with Petitioncr's position that the term
"sublinear scarch" means "a search whose execution time has a sublinear relationship to database size." For instance, a linear search of a 200 -item database would take twice as long as a linear search of a 100 -item database. By contrast. a sublinear search of a 200 -item database would take less than fwice as long as a sublinear search of a 100 -item database, perhaps, for instance. 1.5 times as long
```

Moulin Decl. ('237) 『53.

IPR 2015－00343，IPR2015－00345，IPR2015－00347，and IPR2015－00348 Declaration of George Karypis

Moulin Depo．24：1－12．

12	Eublineaz as－t＇s used in the＇こご paterf，－＇s not
13	enough to：：t to have execution time that is
14	sublineat in relationship to the stze of the
15	pattetn；it must also be sublinear in selationship
16	\because thestue O （ the datacase？
17	
13	
14	
\therefore	databast．：－cies noct sif angroing abour ：
－	

Moulin Depo．26：11－21．

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
    Q Noulc it be wrong, cher, to assess rihethez
    a search is sublinear by applying a definiticn that
    said, "It's sublinear if this executzon time has a
```



```
    The patterr."#
```



```
    mathematicaliy, it can be done. Everything can be
    done. But 土t would not te:ele*ant, from an
12 englneering %iewpoint, for an application like this.
```

Moulin Depo. 25:4-12.

```
25 Let's assumb that the Eatent T:1al and
Apreat &card üs presented wizth priov art chat
prezanted a seafch that was litieav u!th vespec= =c
```



```
zescef: -G the size - = the pattert.
    Would that p:yov art dempnstrate a
    sublinear search as 1t's used in Cla:m 25?
            A People say̌ :s's a -i:ieaz sea:ch, again,
Lezause iz's in relation with the size of the
    database. And as you fu5t sald, that complexi*% is
    s={11 Iinear; so people wsuld say it:e a l:neaz
    งea:ch..
            Q It is not a suthlneaz seazan?
```


Moulin Depo. 26:25-27:15.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00.348 Declaration of George Karypis

Moulin Depo. 27:16-24.

4	
:	aさt - ¢at
t	
7	
z	
\bigcirc	Wouls that F̌ts art jersnstyate os
1%	
11	
1.	
$1:$	
-4	
1 :	
18	

Moulin Depo. 28:4-16.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
$4 Q When You wrove Your Deciazation, you had
i5 an mind that sutlimeaw meant having execut:on time
I% that incteased at a le&s~that-I:reaf zelationshap
I? comyased ts Ste s:ze st the datasez being seaz=heat
15 zignt?
```



```
20 y%%.
21 O And then you sicote this clsim chazt 2..
```



```
23 patz of the =1amm; =1ght?
```


Moulin Depo. 77:14-24.
121. (2) Petitioner's Declarant confirmed my understanding - that the Boyer-Moore algorithm referenced in Iwamura does not disclose a search that is sublinear with respect to the database size (i.e, the size of the data set to be searched)-it does not even address a database (Moulin Depo. 53:19-22 ("There's no database in Boyer-Moore."))-but instead has a relationship to the size of the query pattern from the work to be identified:

```
1A Q Are You fam&liat with any analysism of the
14 E-yer-Moote slgsithe with mespect co the size of
20 the datastet pornu searched?
21 A 1t's demethbed hote. No, dgain, thas i.
22 If you lwok at the wors% case, i is N minus patlen,
Z2 then youl whtain tt. }\dot{A}=1\mathrm{ 2aid, it -111 he a 12reat
24 rolat:-nshir.
```

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 61:18-24; 44:20-46:6: 59:6-9: 61:25-62:9: 68:25-69:4.
122. (3) Petitioner's Declarant confirmed my understanding that the statement in his Declaration-Petitioner's only support for the sub-linear elements - was wrong. He testified that when he wrote:

> "On the average the [Bover-Moore] algorithm has a
> sublinear behasour" Ex 1017 at I
(Moulin Decl. ('237) 972) and wrote just a few pages earlier:
53 $\quad 1$ understand and agree with Petitioner's postion that the term
"sublinear search" means "a search whose executson tume has a sublinear
relationship to database sue " I or instance a huear seareh of a 200-1tem database
(Moulin Decl. (237) 453), he was not trying to convey that the Boyer-Moore algorithm was sublinear or "has a sublinear behavior" in the context of the "237 patent -i.e., "has a sublinear relationship to the database size":


```
Zz size s: the iatasev tein} seazahets
```


Moulin Depo. 74:20-24; 74:8-12.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR 2015-00348 Declaration of George Karypis

```
    we read pasagraph 7,., are you
    zonweying to the reader chat the Boyer-Moore
    algorithtm is sublinear with respect to the size of
    the dataset being searched?
    A Un. ANL I dc is quote a pazt of a paper
    that shows why that algorithm is much faster than
    Lrute force. That's #11 I'm doing. You're
    inferting things I'm not saying or writing.
```

Moulin Depo. 69:9-16.

```
9. In paragraph 72, are you representing to
10 the Board that it's your understanding that the
11 Boyer-Mooze algorithm has a sublineas Dehaytos with
12 Eespect to the stze of the dataset?
13 2 %%. This is ;use a quote of another paper
14 aiscussing Boyer-Moore. This Boyer-Moore algorithm
15 has been used in a variety of contezts, including,
Id of course, content recognition. I'm simply quoting
17 from another paper hert, i'm not presenting
18 anything about what you asked.
```

Moulin Depo. 66:9-18.

```
23 When you wrote this sentenze here on
24 page 25, did you thinit that sombone as the soazd
25 looking at this might thiniz that you meant that a -.
    1 tr.- Soyer-%ovse algorithm was sublineas as usea <n
= -he patent clamm.
A I د2on't think of it that way, no.
```

Moulin Depo. 75:23-76:3.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis


```
    :Me . -., EGa:: :.av the ミ0,0:-1%:e
```



```
    # & # % |..
```

Moulin Depo. 67:17-21.
123. Consistent with my understanding. Petitioner's Declarant clarified that he was not claiming that the Boyer-Moore algorithm referenced in Iwamura discloses a sub-linear search in the context of the ' 237 patent, i.e., with respect to the size of the dataset:

Moulin Depo. 77:25-78:15.

IPR2015－00343，IPR2015－00345，IPR2015－00347，and IPR2015－00348
Declaration of George Karypis

```
16 Q Ok3Y. Would vou agree, sir, that :f .-
thas one way co read this would ke vhat you wete
zazming that the GIazm Language, "pez&omm a
```



```
using che EsYev*Howre algozi*hm:
```



```
    nQz clie Nay む'\pir 土eadzng th.25 mo%*
    As I savci, प名e Aay I'|T reading tin:s is I'm
#4 quoting banguage from a :&&世zence. Arich, againit tc
```



```
I E-y<z-M&ste, as tits alone, is gozngtogive uis a
```



```
4 Envs document.
```

Moulin Depo．78：16－79：6．

```
& Q Nould it be =easonable for the Board to
    have read this as you opining. you asserting, that
    Twamura discloses a sublunear time search kefause it
    dis%loses searching uszty the Boyez-Moore algozithm.
    whtch is sublinear?
    A. Agsin, I don't kno% how itfterent people
    gan read it. If there's any amboguity, I hope I
    -ust cleazed it up. I'- not =152m:ng that
    ミoyer-Moore alone is going to g**e us a sublinear
19 time seazch for the database search problem.
```

Moulin Depo．79：9－18

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 79:19-80:12; 80:15-83:3.
124. Accordingly, one skilled in the art would understand that the support in the Petition and Declaration for the sublinear search elements fails to disclose the sublinear search elements.
125. Board's concerns: I now address the Board's specific concerns (identified in its Decision) with respect to whether I wamura discloses the claimed "sub-linear time search." In instituting Ground I, I note that the Board preliminary found that Iwamura disclosed the "sub-linear time search because (a) a sub-linear

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
search of the data within the records can be sublinear even if every record in the database is searched, and (b) Patent Owner's argument that Boyer-Moore searches all items in the database therefore does not demonstrate that the Boyer-Moore algorithm is not sub-linear:

In addition, we note that no claim in the 237 Patent requires the searching, in the determining aspect of the claims, to be both nonexhaustive and sub-linear. such that a sub-linear search of the data within the records. even if every record is searehed, can potentially reach the aspect of independent claims I and 5 which recite "performing a sub-linear time search of extracted features." Although the Specification of the "237 Patent discloses that a sub-linear search is performed on the records of the database and not information within the records, the clams do not specify that the sub-linear search must be performed on a subset of all of the records, and not information within individual records.

Decision ('237) at 11 .
Paten Owner also argues that Iwamura's use of the "-Boyer-Moore algorithm' searches all items int the database and therefore is not sublinear." Prelim Resp 18-19 As discussed above, we are not persuaded that this is a deficiency with respect to the instant claims.

Decision ('237) at 12. It is my opinion that the Board's preliminary analysis is flawed on multiple levels for the reasons I explain below.
126. First, the Board's preliminary analysis is based on an incorrect interpretation of the construction of sub-linear as it would be understood by one skilled in the relevant art at the time of the inventions. The Board construed a

IPR2015-00.343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
"sublinear" search as "a search whose execution time scales with a less than linear relationship to the size of the data set to be searched, " not the length of any specific record in the database. As I explained above in detail above and reflected in in the Board's analysis of the construction of sub-linear, the data set is the number of records in the database to be searched "the size of the data set ("N")." Decision (237) at 7.
127. In addition, as I explained above in detail, those skilled in the ant understand that the size of the data set in the context of the ' 237 patent refers to the number of records in the database to be searched (N) and not the length of any particular record in the database. This understanding is consistent with Dr. Moulin's explanation in his Declaration. See Moulin Decl. ('237) $\$ 53$. Accordingly, the Board's preliminary analysis is based on an improper interpretation of the construction of "sublinear."
128. Second, it is my understanding that the Board's preliminary analysis has the relevant burden backwards it is not the Patent Owner's burden to demonstrate that the referenced Boyer-Moore algorithm does not disclose a sublinear search. Rather it is my understanding that it was the Petitioner's burden to demonstrate that referenced Boyer-Moore algorithm discloses a sublinear search. As I showed above, Petitioner failed to satisfy this burden. As I explained

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
above, in my opinion, one of ordinary skill in the art would understand that BoyerMoore algorithm is not a sublinear search in the context of the " 237 patent.
129. Third, one skilled in the art would understand that there is no evidence under any interpretation of sublinear in the context of the ' 237 patent that the referenced Boyer-Moore algorithm discloses a search that is sublinear with respect to either (a) the "size of the dataset" (Decision ("237) at 7); or (b) the length of an individual record being searched. In my opinion, one of ordinary skill in the art would understand that it is not.
130. The two references to the Boyer-Moore algorithm in Iwamura are:

Boyer-
Moore (discussed below) or other string-matching algorithms do not have this kind of flexibility. They only search word by word from the beginning of the database to the end.

Iwamura, 9:52-55.
There
are many studies for Last and efficient string search techniques. For example, the Boyer-Moore algorithm is wellknown as one of the best solulions. See
[wamura, 9:61-64. While the Boyer-Moore algorithm is described as being "efficient," one skilled in the art would understand that neither passage states that the algorithm is sublinear with respect to either the number of references in the database or the length of an individual record to be searched.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
131. Fourth. as I explained above. Petitioner's Declarant conlimed my understanding-that the referenced Boyer-Moore algorithm does not disclose a search that is sublinear in the context of the ' 237 patent.

2. approximate nearest neighbor search (claim elements 9(b) and 13(b.2)).

132. As I presented above, one of ordinary skill in the art would understand that, in the context of the " 237 patent, an "approximate nearest neighbor search" is a sub-linear search identifying a close match that is not necessarily the closest match. Also, as I explained above, a search that necessarily identifies the closest match is not an "approximate nearest neighbor search" even if it also identifies other near matches.
133. One skilled in the art would understand that Iwamura does not disclose the claimed "approximate nearest neighbor search" for two independent teasons.
134. Reason 1: One skilled in the art would understand that Iwamura does not disclose an "approximate nearest neighbor search" because Iwamura does not disclose "identifying a close match that is not necessarily the closest match." Iwamura discloses a search that always identifies an exact or the closest match. Consistent with my understanding., Petitioner's Declarant likewise confirmed that

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
Iwamura will either produce an "exact match" if it finds one, or the "best match it finds using that approximate criterion." Moulin Depo. 271:22-272:12.
135. The system in Iwamura will always find the closest match, even if unimportant peaks are skipped or repeated patterns are avoided. My understanding is consistent with the understanding of Petitioner's Declarant:

* "[W]'re still going to be identifying the closest match" even when "the unimportant peaks are skipped.... Dropping an unimportant part is not going to affect the ability to find the best match." Moulin Depo. 317:14-23.
- "If we implement that feature of Iwamura... skipping a repeated pattern.... It will not affect the ability to find the best match." Moulin Depo. 318:1118.

136. Petitioner asserts that Iwamura identifies a neighbor because: "the 'search engine will find the closest melody from the database." Pet. ('237) at 8 (quoting Iwamura, 9:24-25)); Moulin Decl. ('237) ${ }^{\text {© }} 69$. A person of ordinary skill in the art would understand that these statements do not disclose an "approximate nearest neighbor search" which is a search identifying a close match that is not necessarily the closest match. Instead, these statements confirm that Iwamura always identifies the closest match-necessarily the closest match-rather than a match that is not necessarily the elosest match as required by the claimed

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00)348 Declaration of George Karypis
"appropriate nearest neighbor search." See' 237, 9:15-16 (an "approximate nearest neighbor search does not always find the closest point to the query.").
137. Because the searches disclosed in Iwamura necessarily return the closest match, they are not search algorithms that identify a match that is not necessarily the closest match, as the properly construed claim element requires. Accordingly, in my opinion, I wamura neither expressly nor inherently (necessarily) discloses an "approximate nearest neighbor search" a search that does not necessarily find the closest match.
138. Reason 2: One skilled in the art would understand that Iwamura does not disclose an "approximate nearest neighbor search" because Iwamura does not disclose a sublinear search. As I demonstrated above, an "approximate nearest neighbor search" is "one example" of a sublinear search. Also, as I demonstrated above, Iwamura does not disclose a sublinear search. Accordingly, Iwamura does not disclose the claimed "approximate nearest neighbor search."
139. One skilled in the art would understand that the Petition, Declaration, and corresponding charts fail to demonstrate that I wamura discloses the claimed "approximate nearest neighbor search." As support for the claimed "approximate nearest neighbor search," the Petition and corresponding Declaration rely on (1) the fault tolerance feature, and (2) skipped portions feature, described in Iwamura.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
140. Petition: The text of the Petition does not address the claimed "approximate nearest neighbor search"-I note that the words "approximate nearest neighbor search" do not appear in the text of the Petition.
141. Petition Chart: Petitioner provides the following in its claim chart:

Claim 9(b):

> b) determunng, by the computer system. an idenification of the media work using the recened features extracted from the media work to perform an approximate nearest neighbor search of extracted features of idenuified modia works. and
Petitioner ineorporates the above
discussion of lwamura regardmg Cham it.
Furhermore. Iwamura uses an approximate
nearest neighbor "search engine \{that] has
Eaput fault tokrance capability" (10).17*
18). and skips "portions that should not be
scarched" ($12.6-7$). such as "repeated
patems" $(9: 36-44)$, and "unimpormant
porion|s] " of the melody (9.4 .4 .45)

Pet. ('237) 12.
Claim 13(b.2) (referencing claim element 9(b)):

2) determinigg, by the computer	Petitioner meomorases the above system an identification of the media work using the recened features extracted from the media work to perform an approxinate nearest neshbor search of extracted fearures of identified media works.
and	

Pet. (237) 13.
142. Declaration: The text of the Declaration also does not address the claimed "approximate nearest neighbor search."
143. Declaration Chart: Petitioner' Declarant provides the following in its claim chart:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
Claim 9(b):
b) deternanme. by the computer
system, ath denenfication of the
medna work usmg the recened
features exiracted from the media
woth to perform an approvimate
nearest theighber search of
extraced features of identified
medna wotks, and

1 meorporate my above discussion of In anuma regarding Clam Ib. Furthernore. Iwamura discloses usting an approxmmate nearest neighbor "search engine [that] has mput fault tolerance capabilis:" (101 1^{7}. 18k. and skips "portions that should not be searched" (12, (1-7). such as "repeated patterns" (4)-3(1-4), and "unmportant pornom $(5)^{\prime \prime}$ of the melody $(9.44-45)$

Moulin Decl. (237) 975.

Claim 13(b.2) (referencing claim element 9(b)):

```
21 deternmmmg. by the computer
system, an denenification of the
media work using the receised
fearures extracted from the media
work to perform ;m approximate
nearest neighbor search of
extracted features of idemtfied
media works. and
```

Moulin Decl. ('237) 975.
144. I note that these statements in the Petition (and Declaration) and corresponding passages from Iwamura do not:
(a) provide a construction of "approximate nearest neighbor search,"
(b) explain how Iwamura discloses the claimed "approximate nearest neighbor search,"
(c) explain why the fault tolerance capability and skipped portion are relevant to or disclose an "approximate nearest neighbor search," and
(d) establish that Iwamura discloses an "approximate nearest neighbor search."

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
145. One skilled in the art would understand that the quoted passages do not disclose an "approximate nearest neighbor search" because the quoted passages do not disclose a search that (a) is not guaranteed to identify the closest match, and (b) is sublinear.
146. First, as I noted above, the passage from element 1 (b) crossreferenced in Petitioner's chart ("Petitioner incorporates the above discussion of Iwamura regarding Claim $\mathrm{Ib}^{\text {") }}$) does not disclose an "approximate nearest neighbor search." As I explained above, one skilled in the art would understand that an "approximate nearest neighbor search" identifies a close match that is not necessarily the closest match. See Decision ('237) at 9. The passage cited in the Petition (and corresponding Declaration) confirms that the search disclosed in Iwamura finds "the closest melody from the database." Pet. ('237) at 8 (quoting Iwamura, 9:24-35).
147. Second, one skilled in the art would understand that Petitioner's references to searches that have (a) an "input fault tolerance" (Pet. ('237) at 12, quoting Iwamura, 10:17-18), or (b) skipped "portions that should not be searched" (Pet. ('237) at 12 quoting Iwamura, 12:6-7, 9:36-44, and 9:44-45) do not expressly or inherently (necessarily) disclose a search that does not necessarily identify the closest match and is sublinear. A key issue in addressing whether a search is an "approximate nearest neighbor search" is whether the search is designed to and

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis will necessarily identify an exact match or the closest match. or whether the search could identify search results that do not include an exact or the closest match. If a sublinear search can return a "close match that is not necessarily the closest match." it is an "approximate nearest neighbor search." But if a search cannot retum a "close match that is not necessarily the closest match" (because it is designed to only find the closest match), then it is not an "approximate nearest neighbor search," irrespective of how the search is performed.
148. The input fault tolerance and skipped sections search features describe how a peak note search may be performed. Neither enables a peak note search to return a result other than the closest match. While the Petition identifies these two search features-the way the search is conducted-the Petition does not address the output of the searches much less identify a search that does not necessarily identify the closest match. As demonstrated above, the output from any disclosed Iwamura search always identifies the closest match and therefore is not an "approximate nearest neighbor search"-a search "identifying a close match that is not necessarily the closest match." Iwamura therefore does not disclose an approximate nearest neighbor search. I will specifically address each of the two search features identified by Petitioner is addressed in turn.

impur fanlt tolerance

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
149. Iwamura discloses that its peak note search can include an "input fault tolerance." Iwamura, 9:20-24. Input fault tolerance allows a user to identify the closest match, even when the melody entered by a user has some enrors. Iwamura, 9:33-39 (input fault tolerance enables "a correct search . . . notwithstanding inaccurate input from the user."). Using the fault tolerance feature, the peak note search first performs a search based on a tolerance of no errors, then a tolerance of one error, then a tolerance two errors, etc. The search will continue to search based on additional errors only if the search has not identified a match.
150. Accordingly, using the fault tolerance feature, the Iwamura search always produces an exact match or the closest match-it does not produce a result that is not necessarily the closest match. See e.g., Iwamura, I 1:43-45 ("The invented input fault tolerance function allows the user to obtain an exact result even when an entered melody has some errors."). Because the record identified using the fault tolerance search is necessarily the closest match, it is not a search that returns a "close match that is not necessarily the closest match," and, as a result, the feature does not disclose the claimed "approximate nearest neighbor search."

skipped sections.

151. Iwamura also teaches that the disclosed search has "flexibility on search area" within a record in the reference database. Iwamura, 9:35. For

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis example, a user can identify the "important" portions of a melody. thereby enabling the search to skip the remaining "unimportant" portions. See lwamura. 9:45-50 ("In a long music selection, there are some important portions that are indispensable to identify the melody. These portions are well recognized and remembered by the user. The user identifies such important portions as a keyword (key-melody). The other unimportant portions [in a long reference melody] can often be ignored."). The skipped sections feature is a pre-processing component. and what remains to be searched can be viewed as the "extracted" features over which an exhaustive search is performed until a match is found.
152. Iwamura does not disclose that flexibility on search area enables the Iwamura search to return a result other than the closest match. See Iwamura, 9:3555. Because the record identified using the skipped portion search feature is still necessarily the closest match, it is not a search that returns a "close match that is not necessarily the closest match" and the feature does not disclose the claimed "approximate nearest neighbor search."
153. Moreover. as I explained above, an "approximate nearest neighbor search" is a sub-linear search. and each of the passages cited by Petitioner does not disclose a sub-linear search.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Board's concerns:

154. I now address the Board's specific concerns (identified in its Decision) with respect to whether Iwamura discloses the claimed "approximate nearest neighbor search." In instituting Ground 1, the Board preliminary found that Iwamura disclosed the "approximate nearest neighbor search" because the "approximate nearest neighbor search" "does not require that all of the records in the library are not used":

With respect to "approximate

nearest neighbor search." Patent Owner argues that the input fault tolerance capability of Iwamura cannot teach the same because it does not state or imply "that all records in the music library are not used in the comparison as required in an "approximate nearest neighbor search. ${ }^{\prime} \mathrm{Fd}$. at 19-20. Our construction of "approximate nearest neighbor search" to be "identifying a close match that is not necessarily the closest match" does not require that all of the records in the library are not used. so we also do not find this to be a deficiency of the ground

Decision ('237) at 12. It is my opinion that the Board's preliminary analysis is flawed at multiple levels.
155. First, it is my understanding that the Board's preliminary analysis has the relevant burden backwards-it is not the Patent Owner's burden to demonstrate that the referenced "fault tolerance capability of Iwamura" does not disclose an "approximate nearest neighbor search." Rather it was the Petitioner's burden to demonstrate that Iwamura (and the "fault tolerance capability") discloses an

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
"approximate nearest neighbor search." As I demonstrated ahove, Petitioner did not satisfy this burden.
156. Second, as I demonstrated above, one skilled in the an would understand that there is no evidence that the referenced "fault tolerance capacity of Iwamura" teaches a search that identifies a close match that is not necessarily (i.e. not guaranteed to be) the closest match rather than search that is guaranteed to identify the closest match. As I demonstrated above, the evidence confirms the opposite - that Iwamura finds "the closest melody from the database." Pet. (237) at 8 (cuoting Iwamura, 9:24-25).
157. Third, as I demonstrated above, an "approximate nearest neighbor search" is a sublinear search, and there is no evidence that the referenced "fault tolerance capability of Iwamura" teaches a sublinear search as the phrase is used in the context of the ' 237 Patent.

3. nonexhaustive search (claim element 25 (b)).

158. As I explained above, a "nonexhaustive search" is "a search that locates a match without a comparison of all possible matches." Decision (237) at 7.
159. One skilled in the art would understand that Jwamura does not disclose a non-exhaustive search as the phrase is used in the context of the ${ }^{-237}$

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Patent. As I described above, Iwamura discloses a searching algorithm that is designed to be more efficient than alternatives by lining up peak notes from the music work to be identified with the peak notes in each record in the music database when comparing the work to each record. Iwamura, 12:1-2. Instead of comparing the work to be identified with a record in the database by (a) preforming a first comparison of the notes in the work and the record, and then (b) shifting the comparison between the work and the record "note by note" to see if there is a match, Iwamura teaches that the shifting can be done peak-note-to-peaknote, thereby reducing the number of comparisons made between the work and a specific record, thus making the comparison more efficient.
"Peak notes are approximately 20% of the total number of notes in a typical melody. That means search speed using peak notes is 20% of a brute force search which shifts the entered melody, note by note."

Iwamura, 9:9-11; see Iwamura, 5:9-13 ("The peaks in all the melodies stored in the databases are marked in advance. For melody matching, the entered melody is time-shifted . . so that its peak matches each peak in the reference melody.").
160. This peak note search process can be illustrated using the example notes from Iwamura (Iwamura, 7:11-45). The following illustrates a first comparison between the notes from the work to be identified and the notes in a single record in the database:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

The top row represents the notes in the work to be identified; the middle row (highlighted in green) represents the notes of the record in the database being searched; and the bottom row (text in red) represents the absolute difference between the compared notes. The "peak notes" in the work to be identified and the record being searched are identified by "*". In this first comparison, the first peak note from the work to be identified (*5) and the record (*5) are aligned (as illustrated by the dashed red outline). Note that the computation (the absolute difference between the work to be identified and the record) results in a total value of $27(0+1+2+6+5+0+10+3)$
161. In a second comparison between the work to be identified and this same record in the reference database, the record in the database is shifted to the right by a single note (this is the "note by note" approach referenced in I wamura (F wamura, 9:9-11)):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

The peak notes are not aligned in this comparison (as illustrated by the dashed red outline). The computation (the absolute difference between the work to be identified and the record) results in a total value of $43(2+6+1+5+5+7+5+9+3)$.
162. An alternative to the second comparison presented above is to use the peak note approach taught in lwamura. Using this peak note approach, the second comparison between the notes of the work to be identified and the notes in the record in the database is not just shifted one note to the right but is shifted to the right to align the next peek note (i.e., five notes to the right), thereby skipping what would have been four intermediate comparisons using the alternative note by note approach:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
As a result. the peak note approach taught in Iwamura avoided four unnecessary comparisons between the work to be identified and this reference work, making this peak note search more efficient. Note that the computation now results in a total absolute difference of 8 . The number of comparisons that are avoided is 4^{*} (length of the query) as computing the individual distances between the notes requires a comparison.
163. Each melody in the melody database is compared using this peak note approach and " $[t]$ he reference melody that gives the least difference is returned as a search result." Iwamura, 7:53-55. Because the peak note search algorithm disclosed in Iwamura does not reduce the number of records to be searched or even the notes in each record to be searched but rather speeds up the individual comparison of the work to be identified to each record (by shifting the comparisons by peak notes rather than note by note), the disclosed algorithm searches all records in the library and is therefore an exhaustive search rather than the claimed "non-exhaustive" search. This approach does not reduce the number of records being searched e.g. by discarding clusters of potential matches, like the sub-linear searches addressed in the IPR Patents. See e.g., '237, 8:64-9.7 ("Other forms of matching include those based on clustering, kd-trees, vantage point trees and excluded middle vantage point forests are possible and will be discussed in more detail later. .. Thus, for example, a sub-lincar search time can be achieved.")

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

While the individual comparisons of a work and a record in the library can be more efficient using the peak note approach disclosed in Iwamura ("search speed can be increased"), in doing so each record in the library is searched as part of the disclosed algorithm and "[t]he reference melody that gives the least difference is returned as a search result." Iwamura, 7:53-55.
164. Accordingly, one skilled in the art would understand that lwamura teaches an exhaustive search rather than the claimed "non-exhaustive" search, because it searches all records in the database using the peak note approach.
165. I note that Petitioner's Declarant, Dr. Moulin, confirmed that "for all the Iwamura searches...[i]t's understood that you search through every musical work in the database"-i.e., all potential matches (Moulin Depo. 269:19-270:2):

```
* Q Iou would agree that in Iwamusa, the
; starch that's Identifted there does make a
```



```
5-hat couldte fetuznsa as a matto!}
OMF. ELACVUA: ODJection.
7 THE MITNESS: To eazh cz the musiosal Noz%=,
# %es.
```

Moulin Depo. 223:2-8.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
Moulin Depo. 247:18-20.

Moulin Depo. 271:19-21.

Moulin Depo. 207:18-23. As a result, consistent with my understanding and the understanding of one skilled in the art, Petitioner's Declarant confirmed that, based on the proper construction of a non-exhaustive search (adopted by the Board).

Iwamura does not disclose a non-exhaustive search:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
\4 b E% "ron=khaustzve search." we nean a
25 search that does a compazison but seesn't look at
I zach of the melodies in our reference database.
{ च%'s going to sisp cVe= some of them.
3 E%""exhaustute seazch," we'ze going to #%
    O&ach ohec: thatm. We maght not use #11 the sata
    for, that melody, bur we'te gotrig to do some
    comparison of the daca tc each of the melodies.
        [s you undevstand?
        A %̈ー5.
        Q Nizth that Gefinition, Soes Ewamuta
LO jisclose a -- an exhaustive seazch or a
1! notexhaustive seazch?
12 A %ell, with youz, again, incotzect
13 d=finition. that would ce an &zhausti*e 5eascr..
14 But, ajain, : disagsee %ith %ous definittcn.
```

Moulin Depo. 233:24-234:14.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 225:16-226:7.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
IQ Effofe that seatch is rum, each of those
2 works is a possible thatch: righe?
    A Yes.
    Q Would %ou agree thar the Iwamura seamch,
    when it's rum, it does a comparismn of the unknown
    Wovk to each -土 those posaible matches?
    A TG Each of tivse possib\e music inortis,
    yes. An approximate comparison, just to be ciear.
    Q And by "apptoximate," you mean that it
10 dsesm't nez%5saril% look at every biz of data in
```



```
!5 al\ the datu, and then at uses only approximations
14 ts the matchir.g =:itet:on.
```



```
16 Sustcal *igifs -- or each =i the mustodi wo:his that
i7 could bexetutred zs a possible tratch?
```


Moulin Depo. 217:1-18.
166. I note that Petitioner's Declarant also confirmed that (as illustrated in the examples presented above) "all the notes" from each record in the database are compared. As a result, the searches disclosed in Iwamura would not be nonexhaustive even based on Petitioner's construction that includes the improper "and all data within all possible matches" clause (Pet. ('237) at 6):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 280:6-13.

Moulin Depo. 277:6-21.
167. The Petition, Declaration, and corresponding charts fail to demonstrate that Iwamura discloses a "nonexhaustive search." Petitioner and its

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Declarant identify three features of the lwamura search as teaching non-exhaustive searching:
(a) peak notes: a search that shifts the comparison of the notes in the work to be identified with the notes in a records by peak notes rather than note-by-note;
(b) limit function: comparing the work to be identified with a specific record in the database can be stopped and shifted to the next peak notes when the computation of the total absolute difference between the notes in the work to be identified and the specific record exceeds a certain limit;
(c) unsearched portions: a search that skips portions that should not be searched, such as "repeated patterns" and "unimportant melodies."

Pet. ('237) at 9-10. Petitioner identifies these three features from Iwamura (labeled (1) , 3 , and below) as disclosing the non-exhaustive search in its Petition, Declaration, and corresponding charts, addressing either all three features or two of the features:
168. Petition:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
            Cbum 25 of the '237 patent further requures that the searchis
    "norevhaustre" E\ [(0)] at (ham 25 Iwamura further teaches how thos search
    can be nen-cxhaususe Forcxample. lwamun teaches a mon-evhaustrec soarch that
            (1)
uses "peak notes" Ev lo12 at 6.31.755 "Peak notes are approxmatch 20"o of
    the total number of notes ur a typical melody.That means seareh speed usumpeak
notes & 20"w of a brute force search " St at 9&-11 In another example of non-
                                    2)
cvisustace search lwamura teachos deveasmy searchtume bs soppmethe seareh
when computatons "exceed| a certaun limu" Fx 1012 at 7 56-57 In yet another
                            (3)
example of non-exhaustre search. lwamura discloses skippung "portons that
should not be searehed" (uct at 12:(-7), suchas "sepeated pattems" (at at 4-36-1+1)
and "unmportant porton|s|" of the melody (hi at 4.4-4.5,
```

Pet. (237) 9-10.

169. Petition chart:

| b) determming. by the computer system an xientificaton of the meda work using the media work extracted feanures to pettorm a
 extracted features of reterence medar works to identify a near netghtor and | Pettioner meorporates the ahove dscusson of Iwanura regardng (bim 9 h Iwamura further discloses non-exhaustre starch algonthms uning "prak motes" (6:3). 755), wheh "are approxmateh 20° o of 1 the total number of notes in a rypeal mehody." meanmy "seath speta mang peak noter is $2 \omega^{\circ}$ of a brite force search" (9)-9-10) The warch is further nonexhansive beeausen can be aecelerated bs steppug the searsh when computations "exceed\|| a centam burt " 7 56-57 |
| :---: | :---: |

Pet. (237) 15.

170. Declaration:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

71 It is my opinion that Iwamura further teaches how this search can be non-exhaustive. For example. Iwamura teaches a non-exhaustive seatch that uses "penk notes, " See id at 6:31-755. "Peak notes are approxumately 20° of the total number of notes in a typical melody. That means search speed using peak notes is $20^{\circ} \%$ of a brue foree search ... " d . at $9: 8.11$
73. It is my opinion that Inamura's disclosure that the search can be accelerated by stopping the search when computations "exceed [] a certatn limi" is another example of non-cxhanstive searching. Ex. 1012 at $7.56-57$.
74. It is my upinnon that /wamusa's disclosure of shoppeng "portions that should not be searched" (Ex. 1012 at 126.7) wherem these skipped portions
include "repeated patterns" (id at 9:36-44) and "unimportant portron[s]" of the melody (id at $9: 44-5$) constitutes another example of non-exhaustive searching.

Moulin (*237) Decl. $\mathbb{*}$ (71, 73-74. ${ }^{16}$

171. Declaration Chart:

I meorporate my above discussion of
Iwamura regarding Clam 96 . Iwamura
further disclumes using non-exhastrice
scarch algorithus using "peak notes" (6.31-
755), whin "are appoximately 20° out 1
the total number of totes in a rypical
melody." meaning "search speed using
peak notes is 20% of a brute force search"
(9)9-10). The seareb is further non-
exhauntive because it can be aceelerated by
stopping the search when computations (2)
"exceed|l a certain limi." 7:56-57

16
 Paragraph 72 of Dr. Moulin's Declaration addresses the "sublinear" rather
 than the "non-exhaustive" element.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Decl. (237) 975.
172. One skilled it the art would understand that none of these three Iwamura search features disclose the claimed "non-exhaustive search." Each feature accelerates search speed within a single comparison of a work to be identified with a record in the reference database. No feature, however, enables the disclosed search to locate a match without comparing the work to be identified with each record in the reference database. I address each feature in turn. ${ }^{17}$
173. peak motes: A person of ordinary skill in the art would understand that the lwamura "peak note" approach does not disclose a search that can locate a match without a comparison of all possible matches. As I explained above, a feature of the Iwamura search is that the search speed can be increased if the peaks of a melody input by a user are matched to the peaks of each reference melody, i.e., each record in the reference database and the comparison between the work

17 I observed that Petitioner's Declarant also confirmed that another search feature disclosed in Iwamura-fault tolerance (that was not identified by Petitioner as support for the "non-exhaustive" search element)-also "does a comparison of the unknown work to each of the melodies in our reference database ...it compares with every musical work, yes, in the database" and is therefore an exhaustive rather than non-exhaustive search. Moulin Depo. 268:15-20.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
and the record is shifted by peak notes rather than note by note. See Iwamura 5:913 ("The peaks in all the melodies stored in the databases are marked in advance. For melody matching, the entered melody is time-shifted . . . so that its peak matches each peak in the reference melody.").
174. Peak note searching accelerates a search within a single comparison of the work to be identified with an individual record because, when comparing the notes of the work with the notes of the record, it shifts the notes to be compared by peak notes rather than note by note:
"Peak notes are approximately 20% of the total number of notes in a typical melody. That means search speed using peak notes is 20% of a brute force search which shifts the entered melody, note by note."

Iwamura, 9:8-11.
175. While this search technique may be efficient, the peak note searching disclosed in Iwamura still requires exhaustively searching every reference melody. Iwamura, 9:11-13 (discussing a faster comparison of "each reference melody" with respect to peak note searching); see also Iwamura, 7:52-54 (noting that in the search process, "the entered melody is shifted to each reference melody and compared"). As Petitioner's Declarant repeatedly confirmed (consistent with my understanding) "you search through every musical work in the database" for "all

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
the Iwamura searches" (including the "peak note" approach) (Moulin Depo. 269:19-270:2):

Moulin Depo. 213:23-214:2:223:2-8:247:18-20; 271:19-21.
176. Under the proper construction of "non-exhaustive," the "peak note" approach and the corresponding passages from Iwamura cited in the Petition and Declaration do not disclose a non-exhaustive search because they do not state or suggest that all references in the music library are not compared. Rather, all reference melodies are compared and " $[t]$ he reference melody that gives the least difference is returned as a search result." I wamura, 7:52-55. Accordingly, a search using "peak notes" is not a non-exhaustive search.
177. Moreover, even applying the "all data" clause in Petitioner's improper construction-a non-exhaustive "search ... locates a match without conducting a brute force comparison of ... all data within all possible matches"- the peak note search disclosed in Iwamura is still an exhaustive (rather than non-exhaustive) search because it compares "all data within all possible matches." When comparing a work to be identified with each potential match, the peaks of the song

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
to be identified are lined up with the peaks of the reference work to expedite the comparison: "In this manner, the entered melody is shifted to each peak in each reference melody and compared." Iwamura, $7: 52-55$. But in doing so, this does not mean that only the peaks from the work to be identified are compared to the peaks of the reference work. Rather, once the peaks are lined up, both the peaks and valleys (all data) are compared in the computation. Dr. Moulin, at his deposition, agreed with this understanding of the peak note search:

```
6 Q It says, "In this manner, the entered
7 Telody is shifted to exch peak in eath reference
8 mesody and zomparec,"
5 [o you see that?
10 A Yes.
13 Does this indicate to you that Iwamura is
12 teaching a peak search method in which it's going to
13 compare the unknown melody with sach peak in the --
14 each reference melody?
15. A In this case -- I'm just reading the
If context. Okay?
17 So al2 the note: ste 40ed. Okay, %e sre
16 back to this same numetical example. So all the
19 notes are used in this example, and therefore, be
20 evaluatas the -- you krow, the least absolute ertor
21 cicterion.
```

Moulin Depo. 277:6-21.
178. While the Petition (Pet. ('237) at 5) quotes a passage from Iwamura that suggests Iwamura avoids a "brute force" search, one skilled in the art would

IPR2015-00343, IPR2015-(0)345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
understand that the "brute force" being avoided (and what makes the algorithm efficient) is that peaks are not compared to valleys and valleys are not compared with peaks. Instead, by lining up the peaks when comparing the data, peaks are compared with peaks and valleys are compared with valleys. Therefore. when Iwamura states that its approach is 20% more efficient than a brute force search, one skilled in the art would understand that this does not mean that the peak note approach disclosed in Iwamura does not consider "all possible matches" or even "all data in all possible matches." Rather, it means that by lining up the peaks when doing the comparison, it will save time over comparing the music to be identified with the referenced song without first lining up the peaks; shifting the comparisons by peak notes is more efficient than simply shifting the comparisons "note by note." Iwamura, 9:8-11.
179. Limit fumction: One skilled in the art would understand that the limit function approach addressed in Iwamura does not disclose non-exhauslive search under either the proper construction or under the Petitioner's flawed construction. Under the proper construction, a non-exhaustive search locates a match without comparing the work to be identified with all possible records in the reference database. The Iwamura limit function is not a search that locates a match without comparing the work to be identified with all possible matches. The Iwamura limit function accelerates the process of comparing the work to be identified to a single

IPR2015-00343, IPR2015-00345, IPR20I5-00347, and IPR2015-00348 Declaration of George Karypis
record in the reference database. The limit function describes the ability of a user to input a "limit" whereby a computation based on comparing the notes of the work to be identified with the notes of an individual record for a particular peak will be stopped and shifted to the next peak for that record when the total absolute difference between the compared notes exceeds a certain value. Iwamura, 7:5658. ${ }^{18}$ Nothing in Iwamura talks about absolute distance calculated for a record (i.e., across all peaks in the record), only for each peak.
180. For example (using the examples provide in Iwamura, 7:11-45), assume a user inputs a limit where the computation comparing the notes of the work to be identified and a single record in the database would be stopped when the total absolute difference in the computation exceeds 5 :

18 Computation refers to the process of comparing the absolute difference between the integer values assigned to the notes in the work to be identified (the melody input by the user to be identified) and a single melody record in the reference database for a specific peak comparison.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

This comparison would be stopped before all notes have been compared for this specific alignment because comparing the first four notes results in a computation of an absolute difference that exceeds the limit of $5: 0+1+2+6$ exceeds the set limit of 5 .
181. Once a peak range search is stopped by the limit function (i.e., the total absolute difference exceeds a certain limit so that the computation is stopped), the search shifts to the next peak range comparison within the same record, and continues the search process until each peak in each record is compared against the melody input by the user. A search that uses the limit function disclosed in Iwamura will still compare every record in the reference database: "In this manner, the entered melody is shifted to each peak in each reference melody and compared. The reference melody that gives the least different is returned as a search result." Iwamura, 6:31-7:55. My understanding of how the limit function of Iwamura works was confirmed by Petitioner's Declarant:

IPR2015－00343，IPR2015－00345，IPR2015－00347，and IPR2015－00348 Declaration of George Karypis


```
\4 洔, that the sear=h algoti=ht would do, it would
25 ther shift this peak zver* the next pesk ant stant
& Anoth-t -al<ulation; is that fighe?
\ is Y゙<3. 彷.
```

Moulin Depo．241：24－242：2．
182．Petitioner＇s Declarant confirmed that＂you search through every musical work in the database＂for＂all the Iwamura searches＂（including the limit function approach）．Moulin Depo．269：19－270：2．

```
17 Q -- when we th:0w in this Limit on the
15 cemputation, 㲂 are going to still do a comparison
19 te each of the works thas ate in cu: database;
id right?
21 A Ne de a sompazison of some data withis
22 Each musfcal work, y*s.
23 Q You don't zead this as saying that if
24 he'ze doing a computation, and for one of them it
25 exceeds a veztain limit, then we stop the search
I Aizogethez? It doesn't say that, does it?
z A No, We rove vo the nex: loe.
3 Q By "the next one," you mean the next
4 sorputation?
5 I} Th+ next possible match. Like after th
& first ling in your example, we move to the second
7 sne.
```

Moulin Depo．243：17－244：7．

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 242:19-243:5.
183. One skilled in the art would understand that the limit function search disclosed in Iwamura is therefore exhaustive.
184. Moreover, even using the "all data" clause from Petitioner's improper construction, one skilled in the art would understand that the limit function algorithm disclosed in Iwamura is still exhaustive rather than non-exhaustive because it compares "all data within all possible matches." While the search comparing a particular peak pattern of a work against a record can be stopped if the difference exceeds a certain limit, this does not mean that the comparison of the work with the record stops. Rather, as I described above, this means that the data in the work will be shifted against the record to match up with the next peak and the comparison of all the data will continue. Nothing in Iwamura expressly states

IPR 2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
that all data will not be searched and a search that does not compare all data is also not inherent (i.e., necessarily present).
185. unsearched portions: One skilled in the art would understand that this unsearched portion approach disclosed in I wamura does not disclose a nonexhaustive search. If a search compares the work to be identified to each reference in a database, it is not the claimed non-exhaustive search. Even if certain portions of a reference are skipped, the unsearched portions approach of Iwamura still compares the work to be identified with all potential matches. Consistent with my understanding, Petitioner's Declarant confirmed that all musical records in the reference database are searched under all Iwamura searches (including the unsearched portions approach):

```
1% Q Is i= tque thav for al: znz Ewamuta
```



```
21 It always teaches sonng s =cmparison to eacn of the
A2 Tusical Gortis chat's a possikle match in ouz
Q3 Antabose?
24 A I dor't think it says it explicitiy e#ery
25 time. It's wu it's often impligit. It's undezstood
```



```
2 dstabase.
```

Moulin Depo. 269:19-270:2.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
186. Petitioner's Declarant specifically confirmed, consistent with my understanding, that all potential matches in the database are searched using Imamura's unsearched portions approach

Moulin Depo. 317:2-12.

```
O Q :iこ%. Ne if fhe teatures of :wanu:a is an
```


Moulin Depo. 267:13-24.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
187. Iwamura does not expressly state (nor is it inherent, i.e., necessarily present) that flexibility on search area enables the disclosed search to entirely skip a record in the reference database. Each and every record in the reference database will be searched; therefore, the search is an exhaustive search rather than the claimed non-exhaustive search. Moreover, when a repeated pattern (e.g., "second measure") is skipped, it is a "reasonable engineering assumption" that the search has "already tested" the repeated pattern and, as a result, all data is considered in the search. Moulin Depo. 279:7-14. Moreover, Iwamura states that each repeated portion can be pre-processed and is marked as such in the database. Iwamura, 9:39-42. Accordingly, the unsearched portion process constitutes extracting the features of the melodies to be compared and the resulting search searches all preprocessed data.
188. Board's concerns: I now address the Board's specific concerns (identified in its Decision) with respect to whether Iwamura discloses the claimed nonexhaustive search. In instituting Ground I of the ' 237 Petition, the Board determined that one feature of Iwamura identified by Petitioner the "computational limits" feature - discloses a non-exhaustive search because if the computation limit (comparing the notes in the work to be identified with a single record in the database) is reached, the entire search is stopped, independent of how many records in the database have actually been searched:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Patent Owner also argues that Iwamura's compurational limir does not create a monexhamstive search because "it does not state or sugeest that all records in the music library are not use|d| an the comparison." Prelam. Resp Is. We do not agree If. in I wamura, the computational limit is reached, the search is stopped. cien if not all of the records hate been searched. Per our constraction of "nonexhaustive search," i e.. "i search that locates a match without a comparison of all possible matches." we are persuaded on this record that the process of I wamura. with the computational limit. would prevent all of the records of the remote music database from bemg searehed. but would ultimately provide a match because of the input fault tolerance process, discussed above see Ex. 1012. 7.50-57.9.20-34

Decision ('237) at 11-12. In making this preliminary finding, it appears that the Board apparently confused:
(a) stopping an individual computation of the absolute difference between the notes in the work to be identified with a specific record in the database for a specific alignment of peak notes and then shifting the peaks to perform another peak comparison with that record, with
(b) stopping the entire search process altogether.

In my opinion, there are at least two reasons why the Board's preliminary interpretation of Iwamura is not correct.
189. Reason 1: Iwamura does not state (or even suggest or imply) that when a given computation (the absolute difference between the compared notes) based on comparing a work to be identified with a specific record in the database

Page 125 of 292

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
exceeds a certain limit (demonstrating that the particular alignment of work to be identified with the specific record being searched is not a match) the entire search stops. Neither the Petition, Petitioner's Declarant, nor the Board points to such a statement in Iwamura, because one skilled in the art would understand that there is none. Rather Iwamura states that to accelerate comparing the peaks of the work to be identified with a single record in the database, the "computation of the total absolute difference" between the melody and a specific reference work based on that search can be stopped and shifted to the next comparison:

To accelcrate the scarch, computation of the total absolute difference can be stopped when it exceeds a cernain limit.

Iwamura, 7:56-57.
190. The individual computation based on that particular alignment between the peak notes of the work to be identified and the record "can be stopped" when that individual computation exceeds a certain limit. The search process itself is not stopped but rather accelerated: "[t]o accelerate the search." "In this manner, the entered melody is shifted to each peak in each reference melody and compared. The reference melody that gives the least difference is returned as a search result. Iwamura, 6:31-7:55. The specific computation is stopped, not the search: "it would then shift this peak over to the next peak and start another calculation." Moulin Depo. 240:24-242:2.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR 2015-00348 Declaration of George Karypis
191. Again. I note that. consistent with my understanding. Petitioner's Declarant confirmed that under the computation limits approach disclosed in I wamura (as well as all other approaches in Iwamura), all potential matches are searched:

Moulin Depo. 269:19-270:2.

IPR2015－00343，IPR2015－00345，IPR2015－00347，and IPR2015－00348 Declaration of George Karypis

```
17 Q .- mhen be thrsw in this l:mat on the
18 computation, we arege:ng st stili do a compatssa=
19 to eazh of the horks that are in out davabase:
20 エこg゙!.t?
I1 A tie de a čomparison of some daca N2thin
22 each mus:2a1 vo:k, yes.
## & You don't veadzhis as saying that if
24 we'ze doえng a computar:on, and fov one of them :t
25 Exceads a cevtain Iimit, then we stop the seazsh
! altogethez} It doesn*t say that, does 2t?
```



```
3 Q By "#he next one," you mean the next
4 computatzon*
S A The rext possablematch. Like after the
6 Ezost line in Youz evample, we move to the sezond
7 QRE.
```

Moulin Depo．243：17－244：7．

```
15 Q If we use this paramete= in doing cor
20 search in Iwamuxa, is It the case that aftez we
21 determine that one calculation should be stoppet,
```



```
23 keep calculating --
24 dig. liemove %= the next ore. So like
25 heve, if the Farametez value is 20, once we reazh
    I 20, we abandon this and move on to the next one.
    Q Then after we complete the peak seaxch
    analysis for a given work, then w'% go co the n+kt
    woz%: 土s tnat =\ght?
    A Yes.
```

IPR2015-(0)343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 242:19-243:5
192. Reason 2: One skilled in the art would understand that the alternative (which is not disclosed in Iwamura) - that the entire search process stops when one peak search comparison between the work to be identified and one record in the database reaches a certain limit - would make the search process inoperable. The purpose of Iwamura is to find a match. Stopping the search when an individual computation exceeds a certain limit would prevent the search from finding a match. For example, assume that:

- there are 10 records in the dataset to be search:
- the computation based on the first peek note alignment between the work to be identified and the first record in the database exceeds the set limit.

Stopping the search at that point-after comparing the work to be identified with just the first alignment of the first record - would identify no match even if records 4,7 , and 8 were close matches and record 9 was an exact match. The system would be inoperable and would fail to identify matches if the search is stopped completely when a computational limit is reached rather than, as disclosed in I wamura, the search moves on to (a) the next aligmment of peak notes between the work to be identified and that same record in the database, or (b) the next potential record in the database to identify a match. Stopping the search when a given computation exceeds a certain limit will speed up comparing the work to be

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
identified with a given record in the database but it does not stop the search process.
193. I note that the Board also noted that if Iwamura disclosed a search that is not a nonexhaustive search, this "does not end the inquiry"-Iwamura could still teach a nonexhaustive search as long as, in addition to disclosing other searches, Iwamura actually disclosed the claimed nonexhaustive search:

> We note that all of the independent claims of the ' 237 Patent utilize "comprising" language, such that those claimed methods and apparatuses do not exclude additional. unrecited elements or method steps. See Mars Ine. v. H.J. Heinz Co.. 377 F. 3 d 1369.1376 (Fed. Cir. 2004). Thus. the scope of independent claim 25 can include an exhaustive search. as long as it performs a nonexhaustive search as well. Thus, even if Patent Owner is correct and a particular search in lwamura is exhaustive, that does not end the inquiry.

Decision ('237) at 11. As I demonstrated above, one of ordinary skill in the art would understand that Iwamura docs not disclose any nonexhaustive searches.

4. identify a neighbor / near neighbor (claims elements 1(b), 5(b), and 25(b)).

194. In instituting Ground I, the Board did not specifically address whether Iwamura disclosed the neighbor or near neighbor properties of the claimed search. Decision ('237) at 11-12. As I demonstrated below, one skilled in the art would understand that Iwamura does not disclose such properties.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
195. As I explained above. identifying "a neighbor" or "near neighbor" means identifying "a close, but not necessarily exact or closest, match." Decision (237) at 8 .
196. Iwamura does not disclose a search to identify a neighbor or near neighbor because, as I explained above, the disclosed search always identifies an exact or the closest match. Iwamura confirms that the disclosed search engine will find the "closest" match - the melody that gives the least difference. Iwamura. 9:54-55. Petitioner's Declarant also confirmed that Iwamura will either produce an "exact match" if it finds one, or the "best match it finds using that approximate criterion." Moulin Depo. 271:22-272:12.
197. One skilled in the art would understand that the system in Iwamura will always find the closest match, even if unimportant peaks are skipped or repeated pattems are avoided. At his deposition, Dr. Moulin agreed to my understanding:

- "[W]'re still going to be identifying the closest match" even when "the unimportant peaks are skipped.... Dropping an unimportant part is not going to affect the ability to find the best match." Moulin Depo. 317:14-22.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

- "If we implement that feature of Iwamura... skipping a repeated pattern It will not affect the ability to find the best match." Moulin Depo. 318:1118.

Because the search algorithms disclosed in Iwamura necessarily return the closest match, they do not identify a match that is not necessarily the closest match, as the neighbor and near neighbor claim elements require. Iwamura does not disclose identifying a neighbor or near neighbor because the disclosed search always identifies an exact or the closest match.
198. The Petition, Declaration, and corresponding charts fail to demonstrate that lwamura discloses the claimed neighbor or near neighbor searches.
199. The Petition does not address the "neighbor" concepts in the text of the Petition. In its Charts, to establish the claimed search "to identify a neighbor" (elements I(b) and $5(\mathrm{~B} .2)$) and search "to identify a near neighbor" (element 25(b)), Petitioner asserts:

Claim 1(b):

b) detemining. by the computer system, an identification of the media work using the recened features extracted from the media work to perform a sub-linear tume search of exuracted features of idemified media works to identify a netghbor: and	Juanura detemines an identification of the media work using the extracted features by "find ingl the closest melody from the database," which is a neighbor 925-38. 12:1-2 Iwamura discloses searching using the "Boyer-Moore ahonithm" (9:63-64. 10:1-3), which is sublinear (Ex. 1017 at in) Ex. 1004 at $\cdot 72$

Claim 5(b.2):

2I determangy by the computer system an xdentificaton of the media work usme the features extracted from the media work to perform a sub-linear tume search of extricted features of identified medra works to identify a nembor and

Pettioner incorporates the abose discusson of fwamura regardmy (ham its

Pet. (‘237) at 12.
Claim 25(b): Petitioner incorporates its discussions regarding element 9 (b) (the remaining discussion addresses the non-exhaustive component of the claim element):

Pet. (237) at $15 .^{19}$
For claim element 9(b), Petitioner asserts:

19 The referenced claim element 9 (b) does not include a search "to identify a near neighbor" but instead includes "an approximate nearest neighbor search."

b) determining, by the computer systern, an identification of the media work using the received features extracked fron the media work to perform an approximate nearest netghbor search of extracted teatures of identified meda works. and	Petitioner incorporates the above discussion of lwamura regarding Chim ib Furthermore, Iwamura uses an approximate nearest neighbor "search engine [that] hav inqut fault tokerance capability" (10:1718). and skips "portions that should not be searched" (12.6-7). such as "repeated pattems" $(9: 36-44)$. and "unimportant portion\|s 1^{14} of the melody (9:44-45).

Pet. ("237) at 12.
200. The Declaration is essentially the same.

Claim element (b):

b) determining, by the computer system, an identification of the media work using the recerved features extracted from the media Work wo perform a sub-lancar time search of extracted teatures of tdentified media works to identity a neighbor and	I wamurs disclose the the of a "search tngine " $f 0$ determenc an identification of the media work using the extracted features by "find m_{n} \| the closest melody from the database," which is a neighbor. 9:25-38, 12.1-2. lwamura discloses searching usiny the "Bover-Moxe alporithm" (9),62-64. [10 (-3). which is sublnear (Ex. 1017 at 1)

Moulin Decl. (277) 975.

Claim element 25 (b) cross references claim element $9(b)$:

| b) determining, by the computer system. an identification of the media work using the media work extracted features to perform a nonexhaustive search of reference extracted features of reference media works to identify a near neighbor and | I incorporate $m y$ above discusston of IWamura regarding Clam 9b, Iwamura further discloses using noa-exhaustive search algonithms using "peak notes" (6:3)7.55), which "are approximately 20° of the rotal number of notes in a rypical melody." meaning "search speed using peak notes is 200° of a brute foree seareh" $(99-10)$. The search is further nonexhaustive because it can be accelerated by stopping the starch when computations "exceed\|| a certain limit." 7:56-57. |
| :---: | :---: |

Claim element 9(b):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
b) determuning by the comprates
whems an sdentufication of the
medsa work usme the tevened
features extracted from the media
Work to pertorm an approxamate
neares netghbor search of
extracted feature of idembified
medta works, and
I incorperate my abux 0 drectrsson of
Iwamura tegardong Clam ib I uthernore
Ivanuma dixloses using ath approximate
neared netghbur "search engene |that | har
"mput fault tolerance capabilty" (10 17.
181 and skins "portems that should not be
sarched" (12 (1-7), such as "repeated
pattern-" (9) $3(6-4$) and "tummpertant
pentron/al" of the melonds (9.4.4-55)
201. One skilled in the art would understand that these discussions and the cited passages from Iwamura do not demonstrate that Iwamura teaches a search that identifies a neighbor or near neighbor for the reasons that I set forth above.
202. First, the cited passage from element 1 (b) does not disclose a search that identifies a neighbor or near neighbor. As I explained above, a search that identifies a neighbor or near neighbor is a search that identifies "a close, but not necessarily exact or closest, match." Decision ('237) at 8 . The passage cited in the Petition and corresponding declaration confirms that the Iwamura searches find "the closest melody from the database." Pet. ('237) at 8 (quoting Iwamura, 9:2435).
203. Second, the references to searches that have an "input fault tolerance" or skip "portions that should not be searched" (Pet. (‘237) 13 quoting Iwamura 10:13-18, 12:6-7, 9:36-44, and 9:44-45) do not expressly or inherently disclose a search that does not necessarily identify the closest match. As I demonstrated above, the output from any disclosed Iwamura search always identifies the closest match and therefore is not a search that identifies a neighbor or near neighbor - "a

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
close, but not necessarily exact or closest, match." See e.g., Iwamura, 11:43-45 ("The invented input fault tolerance function allows the user to obtain an exact result even when an entered melody has some errors.").

5. sublinear approximate nearest neighbor search (claim element 33 (b)).

204. Claim 33 requires a search that is both (a) a sublinear, and (b) an approximate nearest neighbor search.
205. One skilled in the art would understand that Iwamura does not disclose a "sublinear approximate nearest neighbor search" for at least two independent reasons.
206. Reason 1: As I demonstrated above (with respect to claim elements 1(b) and 5(b.2)), Iwamura does not disclose a "sublinear" search.
207. Reason 2: Also as I demonstrated above (with respect to claim elements 9(b) and 13(b.2)), Iwamura does not disclose an "approximate nearest neighbor search."
208. The Petition, Declaration, and corresponding charts fail to demonstrate that Iwamura discloses the claimed "sublinear approximate nearest neighbor search." For claim 33, the Petition and corresponding Declaration do not address the "sublinear approximate nearest neighbor search" in their respective

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
texts but instead exclusively cross-reference their respective charts for Claims 1(b) and 9(b).

Petition:

b) determanmg. by the computer system, an identificaton of the media work usme the meda work extracted features to perform a sublinear approxmate nearest negghbor search of reterence extracted features of reference identificed media works. and	Pettioner meorporates the above discussonof lwamura regardmg Chms if and '

Pet. (${ }^{(237)}$ at 16 .

Declaration:

$$
\begin{array}{l|l}
\begin{array}{l}
\text { b) determinge. by the computer }
\end{array} & \text { I mcorporite my abose discussion of } \\
\text { system. an identification of the } & \text { Iw amura regarding Claims ib and \%b } \\
\text { media work using the media work } & \\
\text { extracted features to perform a } & \\
\text { sublinear approximate nearest } & \\
\text { neighbor searel of reference } & \\
\text { extracted features of reference } & \\
\text { identified media works. and } &
\end{array}
$$

Moulin Decl. (${ }^{(237)} 975$. As I demonstrated above, the cross-referenced "discussions" and citations to Iwamura fail to demonstrate that Iwamura discloses either a "sublinear" search or an "approximate nearest neighbor search."

Accordingly, the Petition fails to satisfy its burden for these two independent reasons.
209. Board's concerns: I addressed the Board's concerns with respect to the "sublinear" component above in Section VI(A)(1). I addressed the Board's

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR 2015-00348 Declaration of George Karypis
concerns with respect to the "approximate nearest neighbor component" above in Section VI(A)(2).
B. '237 Ground 2: The instituted claims of the ' 237 patent are not anticipated by Ghias.
210. The Board instituted Ground 2 based on the following: Claims $1-3$, 5-7,9-11, 13-15, and 21-24 as unpatentable under 35 U.S.C. §102(b) as anticipated by Ghias. Decision ('237) at 21 (1 underlined the independent claims). Ground 2 fails because Ghias does not disclose the following key elements from each instituted independent claim:

- sub-linear time search (claim elements 1 (b) and 5(b.2)); and
- approximate nearest neighbor search (claim elements 9(b) and 13(b.2)). I address each in turn below.

1. sublinear time search (claim elements 1(b) and 5(b.2)).

211. Claims elements I(b) and 5(b.2) require a "sub-linear time search."
212. As I explained above, one of ordinary skill in the art would understand that a "sub-linear time search" is "a search whose execution time scales with a less than linear relationship to the size of the data set to be searched." Decision ('237) at 7.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
213. Ghias does not disclose a "sub-linear time search" search but instead teaches a linear search in which the search time grows linearly in relationship to the size of the data set. The searches disclosed in Ghias compare the work (user imput 23) with "all the songs" in the library (i.e., what the Petition calls "all possible matches," Pet. 6):

$$
\begin{aligned}
& \text { In order to seareh the database, songs in the database } 14 \\
& \text { are preprocessed to convert the melody into a stream of the } \\
& \text { previously diseussed } U, D \text {), } S \text { characters, and the converted } \\
& \text { user input (the key } 23 \text {) is compared with all the songs. }
\end{aligned}
$$

Ghias, 5:66-6:2. ${ }^{20}$ If an increase in a given variable increases the execution time of a given algorithm by an amount that is only a constant multiple of the amount by which that variable was increased, irrespective of the initial value of that variable, then that algorithm scales linearly with regard to that variable. ${ }^{21}$ More specifically,

20 To compare the "user input" with "all the songs," Ghias must compare the user input with every song in the data set. Ghias does not disclose a search algorithm that does not compare the work to be identified with every record in the data set.

2: As I explained above. linearity describes "[t]he relationship existing between two quantities when a change in a second quantity is directly proportionate to a change in the first quantity." Ex. 2007 (Modern Dictionary of Electronics) at 425 (1999).

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
if $f(n 1, \ldots, n i, \ldots, n k)$ is a function that describes the execution time of an algorithm where variables $n l, \ldots, n i, \ldots, n k$ are the sizes of the different types of data on which the algorithm operates, then if $f(n 1, \ldots, n i+q, \ldots, n k)=f(n l, \ldots, n i$, $\ldots, n k)+f(n 1, \ldots, q, \ldots, n k)$, then that algorithm scales linearly with regards to variable ni. Because a constant increase in the size of the data set (i.e., number of records in the reference data set) increases the execution time of the Ghias search algorithm by a constant amount that does not depend on the initial size of the data set, Ghias discloses a linear time search, not a sub-linear time search.
214. In addressing "the problem of approximate string matching," Ghias identifies "the rumning times of several algorithms:

> Several Algorithms have becn developed that address the problem of approximate string mateching. Running times
> 25 have ranged from O(mn) for the brute foree algorithm to $0(\mathrm{kn})$ or $O($ nlog(m), where " O " means "on the order of," m is the number of piteh differences in the query, and n is the size of the string (song).

Ghias, $6: 23-28$. In each instance, the running time of the identified search is linear (not sub-linear) with respect to the size of the data set.
215. As clarified in this passage from Ghias:

- " m is the number of pitch differences in the query" corresponding to the length of the query of the work to be identified (highlighted in green); and

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

- " n is the size of the string (song)" (highlighted in orange): Moulin Depo 88:13-15.22
- "k" refers to the number of mismatched characters permitted in the search results returned by the search. "The problem consists of finding all instances of a pattern string $P=p 1, p 2, p 3 \ldots p m$ in a text string $T-t 1,12$, t3 . . . tn such that there are at most k mismatches (characters that are not the same) for each instance of P in T." Ghias, 6:37-41; Moulin Depo. 96:2-15.
* In the field of computer software, "O" indicates big O notation. Big O notation describes the relationship between an algorithm's execution time and other variables. In computer science, big O notation is used to describe how algorithms respond (e.g., in their processing time or working space requirements) in the worst-case to changes in input size. Ex. 2009 (http://en.wikipedia.org/wiki/Big_O notation.): Moulin Depo. 16:13-24 (in the field, there is "a common system of notation that's used ... when we"re taking about how the search time or execution time scales with respect to the size of the database - it's the so-called order of notation ... sometimes referred to as the 'big O notation."')

216. As I explained above, the disclosed searches may be sublinear with respect to " m ... the number of pitch differences in the query." $O((n \log (m)))$ is

22 Referring to " n " as part of the dataset to be searched (rather than the query of the work to be identified) is standard in the field. Moulin Depo. 18:2-10.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
sublinear with respect to " m " (corresponding to the length of the query) because the running time is a function of $\log (\mathrm{m}))$. See Moulin Depo. 102:9-13. ${ }^{23}$
217. The disclosed searches are never sublinear with respect to " n "- "the size of the string (song)" or the number of records in the data set ("N"). ${ }^{24}$ As I explained above, if a constant increase in a given variable increases the execution time of a given algorithm by a constant amount, then that algorithm scales linearly with regard to that variable. An incremental increase in the number of records in the data set, or even in the length of a given reference record (" n ") in the data set, increases the execution time of every search disclosed by Ghias by a constant amount.
218. $O(m n), O(\mathrm{kn})$, and $O(n \log (m))$ all describe algorithms whose execution times increase by a constant amount as the length of the record being searched is incrementally increased. The first to run times - $O(\mathrm{mn})$ and $\mathrm{O}(\mathrm{kn})$ are linear with respect to the size of the data set being searched. My

23 "log" stands for taking the logarithm of the following variable; so $\log (\mathrm{m})$ means the logarithm of m.

As I noted above, in the IPR Patents, consistent with the literature, the size of the dataset is referred to as " N " where " N " is the number of records in the dataset.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis understanding, consistent with the understanding of one skilled in the art, is contirmed by Petitioner's Declarant. sée, ég.

Moulin Depo. 28:17-29:2.2 The third run time- $O(n \log (m))$ may be sub-linear with respect to the number of pitch differences in the query "m" but is always linear with respect to " n," the size of the string (song) being searched, or the number of records in the dataset being searched. Again, my understanding. consistent with the understanding of one skilled in the art, is confirmed by Petitioner's Declarant see, e.g.:
25. Petitioner's Declarant uses "data set" and "database" interchangeable in this context. Moulin Depo, 22:14-16.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Moulin Depo. 36:20-37:13. ${ }^{26}$
219. Accordingly, Ghias exclusively disclose searches that are linear-not sublinear-in relationship to the data set to be searched. My understanding is again confirmed by Petitioner's Declarant:
${ }^{26}$ These "running times" are the times it takes to run a query of length " m " against one record of the length " n " in a dataset including N records. The search time for running the same query against the full dataset would take on average N time longer, since each record in the dataset will need to be searched.

IPR2015-000343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 88:22-89:3.

Moulin Depo. 89:14-18.

Moulin Depo. 90:16-21: 93:24-94:5; 98:20-25: 100:8-11: 142:5-10.
220. Petitioner's Declarant confirmed my understanding - that:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
(a) any sub linearity referenced in Ghias is with respect to " m "--the number of pitch differences in the query, not " n " the size of the string (song) or the size of the data set (N);
(b) Ghias does not state or suggest that the size of the query is dependent on the size of the data set:
(c) any sub linearity with respect to the query "is not relevant" to the " 237 patent, and
(d) as a result, Ghias does not disclose a search that is sublinear with respect to the size of the data set-the relevant sub-linearity inquiry for the '237 patent.

Moulin Depo. 152:20-154:2 (any sub-linearity with respect to the query "is not relevant.")
221. In reviewing Dr. Moulin's deposition, I observed that Petitioner's Declarant, Dr. Moulin, testified that:
(1) he clearly understood that sub-linear in the context of the +237 patent is based on the size of the data set searched, not the size of the query or the pitch differences in the query;
(2) Ghias does not identify a search that is sub-linear with respect to the data set; and

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
(3) when he wrote in his Declaration that "Ghias discloses searches ... which ... are sublinear," he did not intend the Board to interpret "sublinear" to be in the context of the ' 237 patent but rather in a different context irrelevant to the 237 patent.
222. As I noted above, Petitioner's Declarant understood that, consistent with my understanding, "sublinear" in the context of the *237 patent ("a concept that's common in [his] field" (Moulin Depo. 8:10-14)) is based on the size of the data set searched (N), not the size of the query or pattern to be matched (" m "):

Moulin Decl. ('237) 953.

IPR2015－00343，IPR2015－00345，IPR2015－00347，and IPR2015－00348 Declaration of George Karypis

```
1 1 \text { Is +t the zase that for a seazch to be}
    subl2nea= as 土t's used in the 'I?' patent, it's not
    enough for it to have ekecution time that is
    suki2near in teiationshzp vo the size of the
    pattern; it must alsc b< sublineam in telationsmip
    5% 5h% s\2% 2% 5he 4atabas&?
    ir When I read "subilmeaz" in, say, Clairn s
    Q the paterit, as we Just gid, I understand
```



```
    database. It does not saz anything about in
IL Iela*ion luth the size of the quez%.
```

Moulin Depo．26：11－21．

```
I Q Is it the cast tiat in ioflly your afalysis
    :% determine Whether oz not priog art antzazpated,
    you applied the dezin:tion that a sublinear seazch
```



```
    Z二Me has a sublin#a゙ ze:ationship to the database
    ミ:こ#?
    A INat is corzez%, Yes.
    Q Is that the us=5%ct dafinhtion that shoula
    be applied, of atc you applying the wiong
```



```
    A In m% opinion. Ih:s is thz covre二t
```


Moulin Depo．24：1－12．

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Moulin Depo. 31:13-18.


```
% % %es.
```

Moulin Depo. 103:16-22.
223. Petitioner's Declarant agreed with my understanding that the algorithms disclosed in Ghias do not disclose a search that is sublinear with respect to the size of the data set but instead has a sub-linear relationship to " m " the pitch differences in the query pattern:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

14	Q When you did that, you knew that what was
15	
16	at the fatasez;
17	A That is alvays the assurption, that
18	there are zoo notions of sublinearity which shoula
19	hat be consuaed.
20	And one notion, which is relevant to these
21	Proceedings. is subilnest:u\% with respect to the
	stze of the dataset. fnd then another notzon, which
23	Ptsurs in Ghias in the references, is in comparison
24	with brute-force search.
25	And I reiterate they are not the sara

Moulin Depo. 158:14-159:4.

```
18 Did you ever read mhls and say to
1G Yourself, "What it say's heze about these algztithms,
L0 in thas descziption of these algozithms, telis me
21 that we have a sul:1:near *ime searc."?
Z2 A : Az. I don't represenk zhat, no.
```

Moulin Depo. 91:18-22.

```
9 Q - %ere you twying to sonve% that these
10 searches here in Ghias were sublateat whth z=spezt
id to the size ct the datase=?
12 A #V. :V. The discusslon theze was
13 relative to brute-foree search. And it is onIY
14 Sub\in#ar -- iz is known %o be suthinear in that
I5 sense. I the not know whether it would be subzinear
16 In the site of the database {or that particulat
17 algorichm.
```

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-()0348
Declaration of George Karypis

Moulin Depo. 108:9-17
224. Petitioner's Declarant testified that when he wrote the following paragraph in his Declaration (Moulin Decl. (*237) *123):

he really meant sublinear with respect to the query, not the database or data set being searched:

Moulin 103:1-15.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

```
14 Q m.d. by "logasthm of the dataser," you
15 rean logarithm of the size of the guery, not the
16 dataset to be searched; is that true?
|7 A : believe we discussed that earlies.
1% O;ay. Should nave -- heze it is the log, indeed, Of
19 the query dataset. Ss 107(m).
20 Q So it should -. this shoulat be
21 2nterpreted ... when you irite "dataset," you're --
22 what you nean is the query dataset, not the dataset
23 50に% E#arched?
24 A That's sorrezt. So the lagarithm of the
25 datasec is 20g(m), which. is wiltuen beloh, Yes.
& Q thich is the guery clataset?
2 A That's zight.
```

Moulin 154:14-155:2

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 155:12-156:6.

Moulin Depo. 156:22-157:3

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
6 Well. Che possible reason you wanted to
    gave the Ecatd this information is sc that they
    would m:ssead it and be misled.
        That's a possibluty; xtgkt?
        if It's not at: all the -- the teason. So
    1f alone -- there are four documents. Some. theaz
    are, llke, gs pages each. Some of the wozds zould
    have been better chosen. In partloulaz, the wosd
    "чн-土"" shoula have bee: coete. : nave ackncxifigea
    that.
    Q But assume --
    A mgan, : have acknowledged that thas was
    nct weitten the best wa%.
```

Moulin Depo. 157:6-18. I agree with Dr. Moulin-that the referenced passages in Ghias do not disclose a sublinear search with respect to the size of the dataset. 225. Petitioner fails to satisfy its burden of demonstrating that Ghias teaches a "sub-linear time search." As support for the "sub-linear" elements, Petitioner (and corresponding Declaration) exclusively rely on the statement addressed above - that Ghias discloses "searches whose execution times are proportional to the logarithm of the size of the data set" based on the disclosed running times of $\mathrm{O}(\mathrm{kn})$ or $\mathrm{O}(\mathrm{nlog}(\mathrm{m})$). Pet. ('237) at 41 (quoting Iwamura 6:23-35 and 6:24-28):
226. Petition:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Independent clams I and 5 of the 23^{-9} paten further require that the search be "subtinear" Fi litil at Chams I. \& Ghas discloses search algortioms that are substantalk faster than "brute force" searches Ex. 1010 at 6.23-35 In parmoubr Ghias discloses searches whose execution tmes are proportonal to the logarthm of
 above in Sectoon $\mathrm{V}(\mathrm{D})$, are sublenear (Ex $1(k) 1$ at $854-(3)$. Ex 1004 at ${ }^{*} 123$

Pet. (237) at 41 .

227. Chart in Petition:

Claim 1(b):

bidetermmang by the computer sy stem an dentulicaton of the medta work using the recerved features extracted from the media work to performa sub-limear tme search of exeracted fearures of identified meda works to denufy a neughbor. and	Ghas determenes the identificarion of a moda work by "scarchling the melody database" (2.501-5y) to bocate matching "sequerace\|s/of digitued representations of relame pich differences." i.e . extracted fealures (Absiract) This is sublemear because execution tume is proportional to the koganthm of the data set $6+25$ ("Oinlogem)" Ex 10104 at " 123 This identifies a lest of neighbers. Le. "a ranked list of approxmately matchung mekodks as Hlustrated at 26 " of "the sengle most approxmate

Pet. ($\quad 237$) at 42-43.

Claim 5(b.2):

2) determining. by the computer system, an identuficaton of the modna work usug the features exuracted from the media work 10 perfomm a sub-linear tme search of extracted features of kientified medo works to dentily a netghbor. and	Pethoner meorporates the above discussion of Ghias regarding Clam 16.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
Pet. (237) at 44.

228. Declaration:

> 123. It is my opinion that Ghas further discloses the elements of claims I and 5 of the " 237 patent that requie that the scarch be "sublincar." Ex. 1001 at Clams 1.5 . In particular. Ghias discloses search algonthms that are substantially faster than "brute force" searches. Ex. 1010 at $6: 23-35$ In particular. Ghias discloses searches whose execution times are proportional to the logarithm of the sire of the data set (id. at $6: 24-28$ ("O(kn) or O(nlog(m)")), which, as explained above in Section V(D). are sublinear (Ex. $100 \mid$ at $8.54-63)$.

Moulin Decl. ('237) 1123 (the paragraph addressed above).

229. Declaration Charts:

Claim 1(b):

b) determining, by the computer syatem an identification of the media work usiug the recelved features extracted from the medra work to petform as sub-finear time vearch of cxtracted teatures of sdentilicd medra work to idennify a neightor. and	dowteholfan if I medue kork ho (Abstract) Ghas further diseloses that this scarch is sublmear because its cxecution time may be proportwonal to the loganthm of the data set. 6:24-28 therghtions ac "aranhedlant ot (1) 0 ,

Moulin Deel. ('237) $\$ 127$
Claim 5(b.2):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-()0.348
Declaration of George Karypis

```
2) determming, by the computer I micorporate my above discusston of
system, an Identificamon of the medaa Ghas regardme Clamm ib
work usmme the features extracted
from the media work to perfontm a
sub-linear tmene search of extracted
features of identified media works to
Identify a nerghbor. and
```

Moulin Decl. (237) 9127.27
230. As I explained above in detail, this discussion and the passage from Ghias quoted in the Petition and Declaration exclusively address sub-linearity with respect the number of pitch differences in the query ("m"), not the "size of the string (song)" ("n") (Ghias, 6:23-28), much less the size of the data set being searched (" N "), as required by a sub-linear search in the context of the ' 237 patent. Accordingly, although each individual comparison can be more efficient using the searches disclosed in Ghias, the computational time it takes to search the database always grows linearly with the size of the dataset. As a result, the disclosed searches in Ghias are linear, not sublinear.

231: Board's concerns: I now addresses the Board's specific concerns (identified in its Decision in the ' 237 IPR) with respect to whether Ghias discloses the claimed "sub-linear time search." In instituting Ground 1, the Board

27 Petitioner's expert confirmed that the other passages that he cites relating to other claim elements do not disclose a search that is sublinear. See, e.g., Moulin

Depo. 151:1-5: 151:6-12; 152:3-9 (addressing Ghias 2:50-59).

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
preliminary found that Ghias disclosed the claimed "sublinear time search" based on the disclosed "sub-linear approximate string matching" disclosed in Ghias:

> Additionally, as we found above, the claims do not specify that the sublinear search muse be performed on a subset of all of the records, and not information within individual records. As such, we are persuaded that the sub-linear approximate string matching. in Ghias, satisfies the claimed recitation of "using the received features extracted from the media work to perform a sub-linear time search of extracted features of identified media works to identify a neighbor."

Decision ('237) at 18-19.
232. As I demonstrated above, however, the "approximate string matching" algorithms disclosed in Ghias are only sub-linear with respect to the " m... the number of pitch differences in the query" not " $n \ldots$... the size of the string (song)," or with respect to N , the size of the dataset:

> Several Algorithms have becn developed that address the problem of approximate string matching. Running times
> 25 have ranged from O(mn) for the brute force algorithm to Oikn) or Onnog(m) where ${ }^{-0 "}$ means "on the order of," m is the number of pitch differences in the query, and n is the size of the string (song).

Ghias, 6:23-28.
233. As I noted above, Petitioner"s Declarant confirmed that Ghias, and the approximate string matching algorithms disclosed in Ghias, do not disclose a sublinear search with respect to the size of the data set-the relevant inquiry in the

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis context of the ' 237 patent. Accordingly, the premise underlying the Board's preliminary finding that the approximate string matching algorithms disclosed in Ghias have sub-linear properties with respect to the dataset-is wrong. ${ }^{28}$

2. approximate nearest neighbor search (claim elements 9(b) and 13(b.2)).

234. As I explained above, an "approximate nearest neighbor search" is a sublinear search identifying a close match that is not necessarily the closest match." Section V(D); Decision ('237) at 9.
235. One skilled in the ant would understand that Ghias does not disclose the claimed "approximate nearest neighbor search" for at least two independent reasons.
236. Reason 1: One skilled in the ant would understand that Ghias does not disclose an "approximate nearest neighbor search" because Ghias does not disclose "identifying a close match that is not necessarily the closest match."
237. To disclose an approximate nearest neighbor search, Ghias must disclose a search that does not necessarily find the closest match. See Section
238. I note that Petitioner's Declarant also confirmed that searching a subset of information within individual records (e.g., not looking at "every single character in the dataset') does not establish a sub-linear search. Moulin Depo. 37:18-38:5.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

V(D). "A nearest neighbor search always finds the closest point to the query. An approximate nearest neighbor search does not always find the closest point to the query. For example, it might do so with some probability, or it might provide any point within some small distance of the closest point." '237, 9:12-19. A search that always (necessarily) identifies an exact or the closest match is not an approximate nearest neighbor search because a neighbor search identifies a "close, but not necessarily exact or closest, match." Section V(D); Decision ('237) at 8 .
238. Ghias discloses a search algorithm that necessarily finds the closest match. Ghias does not expressly disclose a search that does not necessarily identify an exact or closest match. And one skilled in the art would understand that such a search is not inherent (necessarily present) in Ghias.
239. Ghias teaches a search that generates three possible outputs:
(1) an exact match (Ghias 2:53-59 ("exact matching melody"));
(2) a "ranked list of approximately matching melodies" (Ghias, 2:50-59:

Ghias, 6:60-63 ("a list of songs ranked by how well they matched the query"); Moulin Depo. 118:9-22); or
(3) "the single most approximate matching melody" (Ghias, 2:50-59). Petitioner's Declarant confirmed, consistent with my understanding, that Ghias teaches these three potential outputs:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 341:16-21.
240. For all three outputs, Ghias always identifies an exact or the closest match:
241. (1) exact match: If the search produces an exact match, it necessary produces an "exact or closest, match" and therefore does not disclose an "approximate nearest neighbor search." Petitioner's Declarant agreed with my understanding:


```
44 wouli zou sy:e% that sheds teachen prowidty is
```



```
    A T&s.
```

Moulin Depo. 341:23-342:1.
242. (2) ranked list: If the search produces a ranked list, it necessarily identifies as part of the ranked list either an exact match (if there is one) or the closest match-i.e., the top ranked match-and therefore does not disclose an "approximate nearest neighbor search" that does not necessarily identify an exact or the closest match. At the top of the ranked list (i.e., the number I ranked match

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
in the list) is an exact or the closest match. For example, assume for illustrative purposes that the work to be identified is 500. Assume that the list outputs in ranked order:

Ist closest: 502
2nd closest: 510
3rd closest: 530 and
4th closest: 570 .

The ranked list identified the closest match as 502 . The closest match will never be excluded from the list of matches returned. As another example, assume that the list outputs in ranked order:

1st closest: 500
2nd closest: 510
3rd closest: 530 and
4th closest: 570 .

In this example, the ranked list identified an exact match as 500 . The exact match will never be excluded from the list of matches returned ${ }^{29}$ Accordingly, this

29 The list of matches within a given error-tolerance includes the full list of matches except those matches outside a given error-tolerance. Because the closest match is among the matches retrieved from the database, and the closest match is

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis approach necessarily identifies the closest match and therefore is not an "approximate nearest neighbor search."
243. Petitioner's Declarant confirmed, consistent with my understanding, that the ranked list approach identifies the closest match:

Moulin Depo. 356: 2-21.
not subsequently excluded from that list, the closest match will always be among the list of matches returned.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
244. (3) single most approximate matching melody: If the search identifies the single most approximate matching melody, it necessarily identifies the closet match and is therefore not the claimed "approximate nearest neighbor search." Petitioner's Declarant agreed with my understanding:

```
8 Q If it recurus - if it ilentifies anython?
5. as a -. as a match, it's qoira to be zaentifyima the
10 clobest possible =atch; =lght?
11 a ves.
```

Moulin Depo. 345:16-346:11.
245. Petitioner's expert confirmed that for all three outputs, Ghias teaches a system that will always (necessarily) identify the closest match. Moulin Depo, 352:22-353:2. Accordingly, for all three potential outputs, Ghias necessarily identifies an exact or the closest match. Ghias does not disclose an "approximate nearest neighbor search" which identifies "a close, but not necessarily exact or closest, match."
246. Reason 2: Ghias does not disclose an "approximate nearest neighbor search" because Ghias does not disclose a sublinear search. As I explained above, an "approximate nearest neighbor search" is "one example" of a "sublinear search." Section V(D). Also, as I demonstrated above, Ghias does not disclose a "sublinear search." Section VI(B)(1). Accordingly, Ghias does not disclose the claimed "approximate nearest neighbor search."

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR 2015-00348
Declaration of George Karypis
247. The Petition, Declaration, and corresponding charts fail to demonstrate that Ghias discloses the claimed "approximate nearest neighbor search." The Petition and corresponding declaration assert that Ghias discloses the "approximate nearest neighbor search" because it produces:
(1) "a ranked list of approximately matching melodies" (labeled (1) ; or
(2) "the single most approximate matching melody"(labeled(3):
248. Petition:

Pet. ('237) at 42.
249. Petition Charts:

Claim 9(b):

b) determinge, by the computer system. an identification of the media work using the received features extracted from the media work to perform an approximate nearest neighbor search of extracted feanures of identified medin works: and	Petitioner meorporates the above discussion of Ghias regarding Clam 1b. This may be an approximate neighbor search that generaics "a ranked list of approximately 1 matching melodies, as ithustrated at 26 " or "the single most approximate matchong melody " $2 \cdot 50,50,6,60+63$.

Pet. (${ }^{-237)}$) at 45 .

IPR2015-00)343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Claim 13(b.2) (referencing claim element 9(b)):

2) deternmmg. by the computer system. an identification of the meda work usme the receised features extracted from the media work to perform an approximate nearest nemhbor search of extraced features of identified medna works. and	Petitioner meorporates the above discusson of Ghas regarding Cham 96 .

Pet. at 46.
250. Declaration:

```
    124 It is my opimon that Glazs further discloses the efements of clams"
and 13 of the '237 patent that require that the search locate an "ipproxmate nearest
nerghbor" Ex |(x)| at Clams9, 1F In particular. Ghias discloses that the search
    (1)
locates a near or ncirest ncighbor by detenumung "a ramked list of approvmately
(2)
matching melodies, as illustrated at 26" or "the single most approximate matching
melody " Ex 1010 at 2.51-54, 6:60-63
```

Moulin Decl. ('237) 1124.

251. Declaration Chars:

Claim 9(b):

b) dectornate bo the computer	I incorporate my above discussion of
system an identification of the media	Ghas regardmy Clam Ib Ghas further discloses that thas may be an
work using the received features	approxmate nerghbor search that (5)
extricted from the media work	generates "il ranked list of approsmately
pertorm an approsinate nearest	matchung melodies, as illustrated at $26^{\prime \prime}$
lewhbor scarch of exiracted features	or "the single most approximate 2
of adenluned medn wotks. and	

Moulin Decl. (*237) 9127.
Claim 13(b.2) referencing claim element 9(b)):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
2) determining, by the computer I meorporate my above discussion of
system, an identifcation of the media Ghas regarding Clamm 9b.
work using the received features
exmacted from the media work to
perform an approsimate ncarest
neighbor search of extracled feaures
of identified media works. and
```

Moulin Decl. ('237) 9127.
252. One skilled in the art would understand that neither of the cited passages discloses the claimed "approximate nearest neighbor search" because, as described above, both the ranked list and single most approximate matching melody always identify the closest match. I address each passage in turn:

253. Passage 1:

The query engine 24 searches the melody database 14 and outputs a ranked list of approximately matching melodies, as illustrated at 26 . A preselected error tolerance may be applied to the search. The query engine 24 may of course allernatively be programmed to output the single most approximate matching melody or, if desired, to output an exact matching melody. However, by searching for an approximate matching melody, as hereinafter discussed, various forms of anticipated errors may be taken into account.

Ghias, 2:50-59. As noted in the Petition and Declaration, this passage states that the search "outputs a ranked list of approximately matching melodies, as illustrated at 26 " or "the single most approximate matching melody." As I explained above, neither approach discloses the claimed "approximate nearest neighbor search." An "approximate nearest neighbor search" must identify "a close, but not necessarily exact or closest, match" Section V(D); Decision ('237) at 8. Both outputs

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
disclosed in this passage necessarily disclose an exact or the closest match and. therefore, are not an "approximate nearest neighbor search."

254. Passage 2:

> The computer 16 may desurably be programmed se that. for a given quesy, the database It returns a list of songs ranked by bow well they matehed the query, not just ane beat match.

Ghias, 6:60-63. This passage also does not disclose a neighbor search. As 1 explained above, a "list of songs ranked by how well they matched the query" necessarily identifies an exact or the closest match, and specifically identifies such a song as the top-ranked song.
255. Moreover, under the proper construction of "approximate nearest neighbor search," the search must be a sub-linear search. '237, 9:12-19 (an approximate nearest neighbor search is an "example of a sub-linear time search"); Section $V(D)$. As demonstrated above, these passages disclose a linear (rather than sublinear) search.
256. Board's concerns: I now address the Board's specific concerns (identified in its Decision) with respect to whether Ghias discloses the claimed "approximate nearest neighbor search." In instituting Ground 2 of the 237 IPR. the Board found that Ghias disclosed the "approximate nearest neighbor search"

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
because the error-tolerance search disclosed in Ghias "allows the user to identify sets of songs that contain similar melodies:"

> Ghias provides that "|t|he number of matches that the database 14 should retrieve depends upon the error-tolerance used during the keysearch." and "the user can perform a new query on a resiricted search /ist consisting of songs just retrieved. This allows the user to identify sets of songs that contain similar melodies." Ex. 1010, 6:63-65, 7:5-8 (emphases added). Thus. Ghias makes clear that the search need not be exhaustive, as Patent Owner has argued. and will aet to "identifyl| a close, but not necessarily exact or closest. match." per our claim construction.

Decision ('237) at 18-19. The Board did not explain, however, how "Ghias makes clear" that the search in Ghias will "identify[J a close, but not necessarily exact or closest, match" as required by an "approximate nearest neighbor search."
257. The Board noted that using an "error-tolerance," the user can adjust the number of output matches ("The number of matches that the database 14 should retrieve depends upon the error-tolerance used during the key search." Ghias, 6:63-65); and a new query can be performed on the restricted list ("If the list is too large, the user can perform a new query on a restricted search list consisting of songs just retrieved." Ghias, 7:5-8). But nothing in these passages or anywhere else in Ghias states or even suggests that the output of the initial list or the output of the restricted search will "identify a close, but not necessarily exact or closest, match." As I explained above, no such search is expressed in Ghias or is

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis inherent (i.c. necessarily present). Rather, the search will always ("necessarily") identify an exact or closest match. Accordingly, Ghias does not disclose the claimed "approximate nearest neighbor search.";"
C. 237 Ground 3: The instituted claims of the ' 237 patent are not obvious over Iwamura and Chen.
258. It is my understanding that if a combination of two references fails to teach an important claimed element, it is not possible for that combination to render the claim obvious. That is, assuming one of ordinary skill would have thought to combine prior art references, those references would still be missing an important element and therefore, even with the combination, one of ordinary skill would still not possess the invention.
259. Any combination of Iwamura with Chen would still be missing the same elements addressed above in Ground 1
260. Ground 3 is directed to only dependent claims 26 and 27 which depend either directly or indirectly on independent claim 25 , and claims 34 and 35 which depend either directly or indirectly on independent claim 33. Pet. ('237) at

30 An approximate nearest neighbor search could miss one or more of the closest matches in the returned search results. The searches disclosed in Ghias never purport to miss one or more of the closest matches in the returned results.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
53-56; Decision ('237) at 22 . Ground 3 presents two alternative grounds-that the dependent claims "are obvious over Iwamura alone, or alternatively, over Iwamura in view of Chen." Pet. ('237) at 53.
261. As I demonstrated above, Iwamura does not disclose key elements from the independent claims upon which Ground 3 is based (claims 25 and 33) including:

- "non-exhaustive search ... to identify a near neighbor" (claim 25(b.2); and
- "approximate nearest neighbor search" (claim 33(b.2)).

I note that Petitioner does not rely on Chen for these elements. Pet. ('237) at 5356; Moulin Depo. 371:17-20 (addressing sublinear); Moulin Depo. 372:2-4 (addressing non-exhaustive); Moulin Depo. 372:5-7 (addressing approximate nearest neighbor search).
262. Moreover, I note that Petitioner does not assert that these missing elements are obvious in light of lwamura but rather continues to assert that they are expressly disclosed in Iwamura. See e.g., Pet. ('237) 54 ("For the reasons expressed in Ground I [anticipation based on Iwamura], Iwamura discloses all elements of claims 25 and 33."). Accordingly, Ground 3 fails at least because the elements from the independent claims addressed above are missing from Iwamura and the Petition does not identify any basis for correcting these deficiencies based on either Iwamura or Chen.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
VII. 988 patent.
263. The Board instituted the ' 988 IPR based on three Grounds:
-Ground 1: Claims 1517,21 23,28,31, and 51 under 35 U.S.C. $\$ 102(\mathrm{~b})$ as anticipated by Ghias:
-Ground 2. Claims 22. 24-26, and 52 under 35 U.S.C. S 103(a) as obvious over Ghias; and
-Ground 3: Claims $15-17,21,23,27,28,31-33,38$, and 51 under 35 U.S.C. $\$ 102(\mathrm{e})$ as anticipated by Iwamura;

Decision ('988) at 22. I note that the only instituted independent claim is claim 15 . I address each Ground in turn.
A. '998 Ground 1: The instituted claims of the '988 Patent are not anticipated by Ghias.
264. The single independent claim of the " 988 patent instituted for trial requires a "non-exhaustive search identifying a neighbor." "988, claim 15. Ghias does not disclose (1) a non-exhaustive search, (2) a search identifying a neighbor, or (3) detemmining an action based on the identification. I address each deficiency in turn.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

1. non-exhaustive search (claim element 15(b)).

265. As I explained above in detail (Section V(B)), a "non-exhaustive search" is "a search that locates a match without a comparison of all possible matches."
266. One skilled in the art would understand that Ghias teaches an exhaustive search that compares the work to be identified (user input 23) with "all the songs" in the database-i.e., "all possible matches." One skilled in the art would understand that all "possible matches" in the system disclosed in Ghias are all of the songs in the database. My understanding is confirmed by Petitioner's Declarant:
```
19 & Is tt the case tiat the set of all
20 posscble matches for Ghias are the set of the
21 musical works in the database?
22 मे < < S.
```

Moulin Depo. 325:19-22. Ghias discloses a search that compares the work to be identified ("user input") with all possible matches - "all the songs" in the database:

> In order to search the database, sougs in the database 14 are preprocessed to convert the melody into a stream of the previously discused U, D, S characiers, and the converted user imput (the key 23) is compared with all the songs.

Ghias, 5:66-6:2. As Petitioner's Declarant acknowledged when addressing the paragraph from Ghias quoted above:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-(0)348
Declaration of George Karypis

Moulin Depo. 339:23:-340:5.

Moulin Depo. 340:6-9.

```
But what Yc:'`e identitzed in Ghids, In
*:&% zecavds :n the dacakasき: {+ak:?
    A VE3.
```



```
*:--.
```

Moulin Depo. 323:4-13
267. The user input (23) is not compared with some songs in the melody database (14): rather, it "is compared with all the songs." Ghias does not disclose a

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis search algorithm that does not compare the query to every record in the reference data set. Petitioner's Declarant confirmed my understanding - that the search disclosed in Ghias compares the song to be identified with each record in the database and is therefore not "non-exhaustive"-"a search that locates a match without a comparison of all possible matches" (Section V(B)); Decision (998) at 7):

```
M\mp@code{Let's assume we define "Exhaustive seazch"}
```

Moulin Depo. 327:3-12.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00.348
Declaration of George Karypis

Moulin Depo. 327:14-328:4.
268. The Petition and corresponding Declaration fail to demonstrate that Ghias discloses a non-exhaustive search.
269. Petition: As support for the claimed "non-exhaustive search," the Petition relies on the following assertions (and corresponding references to Ghias) labeled 1 and (2):

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Pet. ('988) 9-10.
270. Petition Charts: The charts in the Petition rely on the same assertions and passages from Ghias: Petitioner's chart for claim 15, element [c] incorporates the chart for claim I, element [c]:

b) electronically deternining an identification of the electronic work based on the extracted features, wherein the identifications is based on a non-exhaustive search identifying a neighbor.	Pettioner incorporates the above discusson of Ghias regarding Chim lc.

Pet. ('988) at 14. The chart for claim 1, element [c], in turn, provides:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

Corecen ene at the portabk chemt devke from the one or more sencers an menntificaton of the electronx work based on the evaracted featurs. wheren the identifiation is based on a nonchaustac search dentify m_{g} a nemghor.

Pet. ('988) at 12.
271. Declaration: Petitioner's Declaration relies on the same assertions and passages from Ghias:
relative pitch differences betu een successive notes of the melody.") Ghas further discloses that this search may be non-exhastive Specifically. Ghias teaches that "it is considered desirable to use an efficient approximate pattern matching algorithm" rather than an algorithm that is guaranteed to yield a math $l d$ at 6:711. Moreover. Gtuas teaches that "Several Algorithms have been developed that address |thrs| problem" ranging from "brute force" to substantally faster alyonthms d at $23.35,^{\text {n S S e eral }}$ Algontinns have been developed that address the problem of approximate strin mathen! Rumby fomes hase taned from whm) for the brute force algorithm 10 Ohnn or Otalogmi). where 'O' means on the order of.' In is the namber of pretr differences in the quen and it is the sire of the strme (song)", Wian 6:23-35 Because these abonthms are faster than brute force searhes, they are non-extamsme under Petimoners constructson

Moulin Decl. (988) M99-70.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis
272. Declaration Charts: Finally, the charts in the Declaration also rely on the same assertions and passages from Ghias:

c) recerving at the portable client device from the one or more server, an idennification of the electronic work based on the extracted features. wherem the identification is based on a non-cxhauthve vearch identifying a neighthor.	Ghas disclowes recenving and outpurting at the computer. Which is a portable slient device, a list of identifications of clectronic works 2:50-52.6:60-63, 7:4. $5.826-28,8.61-63$ Ghims further discloses that such identitications are determined by "searching the melody database $14^{\prime \prime}$ to locate a matching melody. 2:50-59, 6:60-63, 7:4-5. Abseract, 8:26-28, 8:61-63. Ghas further deckoses that this sarch may employ a nor-exluastive "approxmate pantern malchung algonthm" or another aigorthim that operates faster than a brute fotce searsh 6:7-11, 6.23-35 Ghas further discloses that this nonexhaustive seareh identifies a neghbor by determinmg "a ranked liss of

Moulin Decl. ('988) 975.
273. These are the only passages from Ghias cited by the Petitioner and

Declarant to support the sub-linear claim elements. Moulin Depo. 113:15-21. The assertions relating to these passages fails to: (a) apply Petitioner's construction (or any other construction) of non-exhaustive to Ghias; or (b) explain how an "approximate string matching algorithm" is expressly or inherently a nonexhaustive search. One skilled in the art would understand that neither the assertions nor the passages from Ghias disclose the claimed non-exhaustive search. I address each in turn.
274. Passage 1:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348

Declaration of George Karypis

> For performing the key-search within the dalabase 14 , it is eonsidered devirable 10 use an efficient approximate pattern matching algorithm. By "approximate" is meant that the algorithm should be able to take into account various forms of errors.

Ghias, 6:7-11. First, this passage does not state that the algorithm is not guaranteed to yield a match (as interpreted by Petitioner). Second, and more importantly, the described algorithm does not state (or even suggest) that all possible matches in the database are not searched. The passage does not state that all matches are not considered, or even that all data in all possible matches is not considered. My understanding is confirmed by Petitioner's Declarant:


```
17 is : atree.
```

Moulin Depo. 347:13-17.

```
275. Passage 2:
```

Several Algorithms have been developed that address the
problem of approximate string matching. Running times
have ranged from ($)(\mathrm{mn}$) for the brute force algorithm to
O(kn) or O(nlog(m), where "(0 " means "on the order of," m
is the number of pitch differences in the query, and n is the
size of the string (song). See Ricardo Baeza-Yates and (i. Ht
Gomnet, "Fast String Matching with Mismatches," Informa-
fion and Computation, 1992. A preferred algorithm which is
considered to offer better performance in general for this
purpuse is that dexcribed in Ricardo A. Bacsa-Yates and
Chris 11. Pericherg, "last and Practical Approximate String
Makhing, "Combinaturial Patfern Monching. Phord Anntad
Symposiuns." pages 185-192, 1992.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Ghias, 6:23-35. One skilled in the art would understand that the "approximate string matching" algorithms discussed in this passages involve matching a work with a record in the database, where the work to be identified includes an "error" so that "various forms of errors" would not prevent a proper match from being identified. The "approximate string matching" algorithm is applied when the work melody "is compared with all the songs" in the database and all of the data within each record. Ghias, 5:66-6:2; Moulin Depo. 347:13-17. This passage discusses comparing the work with a single record in the database.
276. Accordingly, Ghias does not disclose a search that would even meet Petitioner's improper construction of "non-exhaustive search," because Ghias does not search less than "all possible matches" or even less than "all data within all possible matches."
277. I observed that Petitioner only cited the two passages quoted above as support that Ghias discloses the claimed non-exhaustive search. Petitioner's expert confirmed my observation:

IPR2015-(0)343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Moulin Depo. 332:17-333:2. As 1 demonstrated above, these two passages fail to disclose the claimed non-exhaustive search. Accordingly, Petitioner failed to satisfy its burden of establishing that Ghias discloses the claimed non-exhaustive search.
278. Moreover, Petitioner's expert confirmed that other passages from Ghias cited in his Declaration-in an attempt to establish other claimed elementsalso do not establish the claimed non-exhaustive search. Moulin Depo. 330:19-331:24:239:22-25 (2:50-52 "does not teach excluding a portion of the database from our search"): Moulin Depo. 330:15-18 (2:50-52 ("Q. Does Ghias have any portion in where it teaches affirmatively searching only part of the database. A. Not in that sentence, no."); Moulin Depo. 330:1-14 (2:50-52 (the "natural inference" from the statement that the "query engine 24 searches the melody database 14 " is that "it's going to search the entire database"): Moulin Depo.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

334:2-21 (Q. "[D]oes Ghias teach looking at only a portion of the database? ... A. It does not do that in this paragraph."): Moulin Depo. 337:7-338:17.
279. Board's concerns: I now address the Board's specific concerns (identified in its Decision in the " 988 IPR) with respect to whether Ghias discloses the claimed non-exhaustive search. I note that in instituting Ground 2, the Board did not rely on the arguments presented by Petitioner and its Declarant or the passages from Ghias quoted by Petitioner and its Declarant in an attempt to establish the claimed non-exhaustive search. Instead, the Board initially found that Ghias disclosed the "non-exhaustive" search because the search disclosed in Ghias could produce a list of matches based on an error-tolerance and the user can perform a "new query on a restricted search list consisting of songs just retrieved:"

On the present record, we are not persuaded by Patent Owner's arguments. Ghias provides that "[t]he number of matches that the database 14 should retrieve depends upon the error-tolerance used dunng the key-search." Ex. 1010, 6:63-65 (emphasis added). Ghias further provides that "the user can perform a new query on a restricted search list consisting of songs just rembeved. This allows the user to identify sets of songs that contain similar melodies." /d. at $7: 5-8$ (emphasis added). Thus. Ghias makes clear that the search need not be exhaustive, as Patent Owner argues. and will act 10 "identifyll a close. but not necessarily exact or closest. match. " per our clam constration. Additionally. given the

IPR2015-00343, IPR2015-00345, IPR2015-00)347, and IPR2015-00348 Declaration of George Karypis

Decision ('988) at 12. There are two reasons why the Board's reliance on the "new query on a restricted search list" does not satisfy Petitioner's burden of demonstrating that the instituted clams are unpatentable based on Ghias.
280. First, had the concept of a new second search based on the restricted list (and these passages from Ghias cited by the Board) disclosed the claimed "nonexhaustive search" (as I demonstrated below, they do not), it is my understanding that it could be improper for the Board to rely on these passages in finding the challenged claims unpatentable because these passages were not identified by the Petitioner as support for the non-exhaustive search.
281. I note that Petitioner never asserted (in the Petition, charts, or Declaration) that Ghias discloses a non-exhaustive search because the "user can perform a new query on a restricted search list consisting of songs." The Petition does not even mention the words or concepts emphasized by the Board in its Decision and that form the basis for the Board's preliminary finding that Ghias discloses a non-exhaustive search: "error-tolerance" and "restricted search list consisting of songs just receive." The only references to Ghias presented by the Petitioner for the claimed non-exhaustive search are Ghias, 6:7-11 and 6:23-35 addressing approximate string matching, not performing a "new query on a restricted search list consisting of songs just retrieved" based on an error tolerance. Petitioner's Declarant did not "cite anything in [his] Declaration that teaches, in

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

Ghias, performing a search that returns a list of ranked matching songs and then performing a second search on that list." Moulin Depo. 146:21-147:21.
282. I note that the Board, however, relied exclusively on two completely different passages from Ghias not cited by Petitioner-Ghias, 6:63-65 and 7:5-8. Decision ('988) at 12 . One skilled in the art would understand that these passages address a different concept than the approximate pattern matching concept identified by Petitioner as support for the nonexhaustive search element.
283. Second, using a "new query" on the "restricted search list consisting of songs just received" does not disclose the claimed "non-exhaustive search." A "non-exhaustive search" is "a search that locates a match without a comparison of all possible matches." See Section $V(B), \pi \mathbb{X}$. The restricted search can be viewed in one of two ways. ${ }^{31}$ Under either view, Ghias does not disclose a non-exhaustive search. I address each view in turn.
284. First view: Under the first view, the search to identify the record that matches the song being hummed is viewed as a single search with two stages. Under this view, the second search on the "restricted list" is not an independent search - the two stages of the search are not independent. Rather, the search on the
3. Ghias provides no details or information about the search on the restricted search list.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis
"restricted list" is the second stage of a two-stage search. dependent on the first stage. See Moulin Depo. 336:9-15. The second search depends on the first to generate a candidate set. A single work, $i e^{e}$, the song being hummed (not two or more works) , is being identified in the two-stage search. The two stages refine the identified matches; the second stage does not identify any new matches.
285. To constitute a "non-exhaustive search" under this view, the twostage search process disclosed in Ghias would have to conduct the search without comparing the work to be identified with all possible matches in the dataset. One skilled in the art would understand that the two-stage search disclosed in Ghias is exhaustive because the first stage compares the query to all possible matches in the dataset - "all the songs." Ghias, 5:66-6:2. My understanding is confirmed by Petitioner's Declarant:

Moulin 336:3-336:12.

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348 Declaration of George Karypis

```
| (compazison of a:L the possible matches? 
```

Moulin Depo. 338:6-14.
286. Under this view, the query on a restricted search list is part of a broader search of every record in the database, which compares the work to be identified with all possible matches-all records in the data set.
287. Second view: Altematively, the second search could be viewed as an independent second search. As disclosed in Ghias, the second search is based on a "new query"-"the user can perform a new query on a restricted search list." Ghias, 7:4-8. The two searches, the first based on an initial query, and the second, based on a second "new query," is reflected in this illustration:

IPR2015-00343, IPR2015-00345, IPR2015-00347, and IPR2015-00348
Declaration of George Karypis

To refine the list of potential matches, the "new query" (2) disclosed in Ghias must be different from the original query (1). This is because Ghias does not teach an alternative search algorithm for searching the restricted list. Rather, Ghias teaches that the same search algorithm is applied to the "new query" (2) that was previously applied to the initial query (1). If the initial query (1) is applied to the restricted list using the same algorithm, the search would produce the same restricted list rather than refine the search as intended by Ghias. ${ }^{22}$ Although the

[^0] algorithm is applied to the restricted list, this would constitute a single search with

[^0]: i2 If the query remains constant - the query is not changed but a different

