
Similarity Search in High Dimensions via Hashing

Aristides Gionis
�

Piotr Indyk
y

Rajeev Motwani
z

Department of Computer Science
Stanford University
Stanford� CA �����

fgionis�indyk�rajeevg�cs�stanford�edu

Abstract

The nearest� or near�neighbor query problems

arise in a large variety of database applications�
usually in the context of similarity searching� Of
late� there has been increasing interest in build�

ing search�index structures for performing simi�
larity search over high�dimensional data� e�g�� im�
age databases� document collections� time�series

databases� and genome databases� Unfortunately�
all known techniques for solving this problem fall
prey to the �curse of dimensionality�� That is�

the data structures scale poorly with data dimen�
sionality� in fact� if the number of dimensions
exceeds 	
 to �
� searching in k�d trees and re�

lated structures involves the inspection of a large
fraction of the database� thereby doing no better
than brute�force linear search� It has been sug�

gested that since the selection of features and the
choice of a distance metric in typical applications
is rather heuristic� determining an approximate
nearest neighbor should su�ce for most practi�

cal purposes� In this paper� we examine a novel
scheme for approximate similarity search based
on hashing� The basic idea is to hash the points

�Supported by NAVY N��������������� grant and NSF

Grant IIS��	�����

ySupported by Stanford Graduate Fellowship and NSF NYI

Award CCR����	��

zSupported by ARO MURI Grant DAAH������������ NSF

Grant IIS��	������ and NSF Young Investigator Award CCR�

���	��� with matching funds from IBM� Mitsubishi� Schlum�
berger Foundation� Shell Foundation� and Xerox Corporation

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage� the VLDB copyright notice and
the title of the publication and its date appear� and notice is
given that copying is by permission of the Very Large Data Base
Endowment� To copy otherwise� or to republish� requires a fee
and�or special permission from the Endowment�

Proceedings of the ��th VLDB Conference�

Edinburgh� Scotland� �����

from the database so as to ensure that the prob�
ability of collision is much higher for objects that
are close to each other than for those that are far

apart� We provide experimental evidence that our
method gives signicant improvement in running
time over other methods for searching in high�
dimensional spaces based on hierarchical tree de�

composition� Experimental results also indicate
that our scheme scales well even for a relatively
large number of dimensions �more than �
��

� Introduction

A similarity search problem involves a collection of ob�
jects �e�g�� documents� images� that are characterized
by a collection of relevant features and represented
as points in a high�dimensional attribute space� given
queries in the form of points in this space� we are re�
quired to �nd the nearest �most similar� object to the
query� The particularly interesting and well�studied
case is the d�dimensional Euclidean space� The prob�
lem is of major importance to a variety of applications�
some examples are	 data compression
��� databases
and data mining
��� information retrieval
��� ��� ���
image and video databases
��� ��� ��� ��� machine
learning
�� pattern recognition
�� ��� and� statistics
and data analysis
��� ��� Typically� the features of
the objects of interest are represented as points in �d
and a distance metric is used to measure similarity of
objects� The basic problem then is to perform indexing
or similarity searching for query objects� The number
of features �i�e�� the dimensionality� ranges anywhere
from tens to thousands� For example� in multimedia
applications such as IBM�s QBIC �Query by Image
Content�� the number of features could be several hun�
dreds
��� ��� In information retrieval for text doc�
uments� vector�space representations involve several
thousands of dimensions� and it is considered to be a
dramatic improvement that dimension�reduction tech�
niques� such as the Karhunen�Lo�eve transform
��� ��
�also known as principal components analysis
�� or
latent semantic indexing
���� can reduce the dimen�
sionality to a mere few hundreds�

Google Ex. 1018f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The low�dimensional case �say� for d equal to � or
�� is well�solved
��� so the main issue is that of deal�
ing with a large number of dimensions� the so�called
�curse of dimensionality�� Despite decades of inten�
sive e�ort� the current solutions are not entirely sat�
isfactory� in fact� for large enough d� in theory or in
practice� they provide little improvement over a linear
algorithm which compares a query to each point from
the database� In particular� it was shown in
�� that�
both empirically and theoretically� all current index�
ing techniques �based on space partitioning� degrade
to linear search for su�ciently high dimensions� This
situation poses a serious obstacle to the future develop�
ment of large scale similarity search systems� Imagine
for example a search engine which enables content�
based image retrieval on the World�Wide Web� If the
system was to index a signi�cant fraction of the web�
the number of images to index would be at least of
the order tens �if not hundreds� of million� Clearly� no
indexing method exhibiting linear �or close to linear�
dependence on the data size could manage such a huge
data set�

The premise of this paper is that in many cases
it is not necessary to insist on the exact answer� in�
stead� determining an approximate answer should suf�
�ce �refer to Section � for a formal de�nition�� This
observation underlies a large body of recent research
in databases� including using random sampling for his�
togram estimation
� and median approximation
���
using wavelets for selectivity estimation
�� and ap�
proximate SVD
��� We observe that there are many
applications of nearest neighbor search where an ap�
proximate answer is good enough� For example� it
often happens �e�g�� see
��� that the relevant answers
are much closer to the query point than the irrele�
vant ones� in fact� this is a desirable property of a
good similarity measure� In such cases� the approxi�
mate algorithm �with a suitable approximation factor�
will return the same result as an exact algorithm� In
other situations� an approximate algorithm provides
the user with a time�quality tradeo� � the user can
decide whether to spend more time waiting for the
exact answer� or to be satis�ed with a much quicker
approximation �e�g�� see
���

The above arguments rely on the assumption that
approximate similarity search can be performed much
faster than the exact one� In this paper we show that
this is indeed the case� Speci�cally� we introduce a
new indexing method for approximate nearest neigh�
bor with a truly sublinear dependence on the data size
even for high�dimensional data� Instead of using space
partitioning� it relies on a new method called locality�
sensitive hashing �LSH�� The key idea is to hash the
points using several hash functions so as to ensure that�
for each function� the probability of collision is much
higher for objects which are close to each other than
for those which are far apart� Then� one can deter�

mine near neighbors by hashing the query point and
retrieving elements stored in buckets containing that
point� We provide such locality�sensitive hash func�
tions that are simple and easy to implement� they can
also be naturally extended to the dynamic setting� i�e��
when insertion and deletion operations also need to be
supported� Although in this paper we are focused on
Euclidean spaces� di�erent LSH functions can be also
used for other similarity measures� such as dot prod�
uct
��
Locality�Sensitive Hashing was introduced by Indyk

and Motwani
�� for the purposes of devising main
memory algorithms for nearest neighbor search� in par�
ticular� it enabled us to achieve worst�case O�dn�����
time for approximate nearest neighbor query over an
n�point database� In this paper we improve that tech�
nique and achieve a signi�cantly improved query time
of O�dn��������� This yields an approximate nearest
neighbor algorithm running in sublinear time for any
� � �� Furthermore� we generalize the algorithm and
its analysis to the case of external memory�
We support our theoretical arguments by empiri�

cal evidence� We performed experiments on two data
sets� The �rst contains ������ histograms of color
images� where each histogram was represented as a
point in d�dimensional space� for d up to ��� The sec�
ond contains around ������� points representing tex�
ture information of blocks of large aerial photographs�
All our tables were stored on disk� We compared
the performance of our algorithm with the perfor�
mance of the Sphere�Rectangle�tree �SR�tree�
��� a
recent data structure which was shown to be com�
parable to or signi�cantly more e�cient than other
tree�decomposition�based indexing methods for spa�
tial data� The experiments show that our algorithm is
signi�cantly faster than the earlier methods� in some
cases even by several orders of magnitude� It also
scales well as the data size and dimensionality increase�
Thus� it enables a new approach to high�performance
similarity search � fast retrieval of approximate an�
swer� possibly followed by a slower but more accurate
computation in the few cases where the user is not
satis�ed with the approximate answer�
The rest of this paper is organized as follows� In

Section � we introduce the notation and give formal
de�nitions of the similarity search problems� Then in
Section � we describe locality�sensitive hashing and
show how to apply it to nearest neighbor search� In
Section � we report the results of experiments with
LSH� The related work is described in Section �� Fi�
nally� in Section � we present conclusions and ideas for
future research�

� Preliminaries

We use ldp to denote the Euclidean space �d under the
lp norm� i�e�� when the length of a vector �x�� � � �xd� is

de�ned as �jx�jp � � � �� jxdjp���p� Further� dp�p� q�

Google Ex. 1018f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

jjp�qjjp denotes the distance between the points p and
q in ldp � We use Hd to denote the Hamming metric
space of dimension d� i�e�� the space of binary vectors
of length d under the standard Hamming metric� We
use dH �p� q� denote the Hamming distance� i�e�� the
number of bits on which p and q di�er�
The nearest neighbor search problem is de�ned as

follows	

De�nition � �Nearest Neighbor Search �NNS��
Given a set P of n objects represented as points in a
normed space ldp � preprocess P so as to e�ciently an�
swer queries by �nding the point in P closest to a query
point q�

The de�nition generalizes naturally to the case
where we want to return K � � points� Speci�cally� in
the K�Nearest Neighbors Search �K�NNS�� we wish to
return the K points in the database that are closest to
the query point� The approximate version of the NNS
problem is de�ned as follows	

De�nition � ���Nearest Neighbor Search ���NNS��
Given a set P of points in a normed space ldp � prepro�
cess P so as to e�ciently return a point p � P for any
given query point q� such that d�q� p� � �� � ��d�q� P ��
where d�q� P � is the distance of q to the its closest point
in P �

Again� this de�nition generalizes naturally to �nd�
ing K � � approximate nearest neighbors� In the Ap�
proximate K�NNS problem� we wish to �nd K points
p�� � � � � pK such that the distance of pi to the query q is
at most ��� �� times the distance from the ith nearest
point to q�

� The Algorithm

In this section we present e�cient solutions to the ap�
proximate versions of the NNS problem� Without sig�
ni�cant loss of generality� we will make the following
two assumptions about the data	

�� the distance is de�ned by the l� norm �see com�
ments below��

�� all coordinates of points in P are positive integers�

The �rst assumption is not very restrictive� as usu�
ally there is no clear advantage in� or even di�erence
between� using l� or l� norm for similarity search� For
example� the experiments done for the Webseek
��
project �see
��� chapter �� show that comparing color
histograms using l� and l� norms yields very similar
results �l� is marginally better�� Both our data sets
�see Section �� have a similar property� Speci�cally�
we observed that a nearest neighbor of an average
query point computed under the l� norm was also an
��approximate neighbor under the l� norm with an av�
erage value of � less than �! �this observation holds

for both data sets�� Moreover� in most cases �i�e�� for
��! of the queries in the �rst set and ��! in the sec�
ond set� the nearest neighbors under l� and l� norms
were exactly the same� This observation is interest�
ing in its own right� and can be partially explained
via the theorem by Figiel et al �see
�� and references
therein�� They showed analytically that by simply ap�
plying scaling and random rotation to the space l��
we can make the distances induced by the l� and l�
norms almost equal up to an arbitrarily small factor�
It seems plausible that real data is already randomly
rotated� thus the di�erence between l� and l� norm
is very small� Moreover� for the data sets for which
this property does not hold� we are guaranteed that
after performing scaling and random rotation our al�
gorithms can be used for the l� norm with arbitrarily
small loss of precision�
As far as the second assumption is concerned�

clearly all coordinates can be made positive by prop�
erly translating the origin of �d� We can then con�
vert all coordinates to integers by multiplying them
by a suitably large number and rounding to the near�
est integer� It can be easily veri�ed that by choosing
proper parameters� the error induced by rounding can
be made arbitrarily small� Notice that after this oper�
ation the minimum interpoint distance is ��

�	� Locality�Sensitive Hashing

In this section we present locality�sensitive hashing
�LSH�� This technique was originally introduced by
Indyk and Motwani
�� for the purposes of devising
mainmemory algorithms for the ��NNS problem� Here
we give an improved version of their algorithm� The
new algorithm is in many respects more natural than
the earlier one	 it does not require the hash buckets to
store only one point� it has better running time guar�
antees� and� the analysis is generalized to the case of
secondary memory�
Let C be the largest coordinate in all points in P �

Then� as per
��� we can embed P into the Hamming

cube Hd�

with d� Cd� by transforming each point
p �x�� � � �xd� into a binary vector

v�p� UnaryC�x�� � � �UnaryC�xd��

where UnaryC�x� denotes the unary representation of
x� i�e�� is a sequence of x ones followed by C�x zeroes�
Fact � For any pair of points p� q with coordinates in
the set f� � � �Cg�

d��p� q� dH�v�p�� v�q���

That is� the embedding preserves the distances be�
tween the points� Therefore� in the sequel we can
concentrate on solving ��NNS in the Hamming space
Hd�

� However� we emphasize that we do not need to
actually convert the data to the unary representation�

Google Ex. 1018f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

which could be expensive when C is large� in fact� all
our algorithms can be made to run in time indepen�
dent on C� Rather� the unary representation provides
us with a convenient framework for description of the
algorithms which would be more complicated other�
wise�
We de�ne the hash functions as follows� For an inte�

ger l to be speci�ed later� choose l subsets I�� � � � � Il of
f�� � � � � d�g� Let pjI denote the projection of vector p on
the coordinate set I� i�e�� we compute pjI by selecting
the coordinate positions as per I and concatenating
the bits in those positions� Denote gj�p� pjIj � For
the preprocessing� we store each p � P in the bucket
gj�p�� for j �� � � � � l� As the total number of buckets
may be large� we compress the buckets by resorting
to standard hashing� Thus� we use two levels of hash�
ing	 the LSH function maps a point p to bucket gj�p��
and a standard hash function maps the contents of
these buckets into a hash table of size M � The maxi�
mal bucket size of the latter hash table is denoted by
B� For the algorithm�s analysis� we will assume hash�
ing with chaining� i�e�� when the number of points in
a bucket exceeds B� a new bucket �also of size B� is
allocated and linked to and from the old bucket� How�
ever� our implementation does not employ chaining�
but relies on a simpler approach	 if a bucket in a given
index is full� a new point cannot be added to it� since
it will be added to some other index with high prob�
ability� This saves us the overhead of maintaining the
link structure�
The number n of points� the size M of the hash

table� and the maximum bucket size B are related by
the following equation	

M �
n

B
�

where � is the memory utilization parameter� i�e�� the
ratio of the memory allocated for the index to the size
of the data set�
To process a query q� we search all indices

g��q�� � � � � gl�q� until we either encounter at least c � l
points �for c speci�ed later� or use all l indices� Clearly�
the number of disk accesses is always upper bounded
by the number of indices� which is equal to l� Let
p�� � � � � pt be the points encountered in the process�
For Approximate K�NNS� we output the K points pi
closest to q� in general� we may return fewer points if
the number of points encountered is less than K�
It remains to specify the choice of the subsets Ij�

For each j � f�� � � � � lg� the set Ij consists of k ele�
ments from f�� � � � � d�g sampled uniformly at random
with replacement� The optimal value of k is chosen to
maximize the probability that a point p �close� to q
will fall into the same bucket as q� and also to mini�
mize the probability that a point p� �far away� from q
will fall into the same bucket� The choice of the values
of l and k is deferred to the next section�

Algorithm Preprocessing
Input A set of points P �
l �number of hash tables��

Output Hash tables Ti� i �� � � � � l
Foreach i �� � � � � l
Initialize hash table Ti by generating
a random hash function gi���

Foreach i �� � � � � l
Foreach j �� � � � � n
Store point pj on bucket gi�pj� of hash table Ti

Figure �	 Preprocessing algorithm for points already
embedded in the Hamming cube�

Algorithm Approximate Nearest Neighbor Query
Input A query point q�
K �number of appr� nearest neighbors�

Access To hash tables Ti� i �� � � � � l
generated by the preprocessing algorithm

Output K �or less� appr� nearest neighbors
S � "
Foreach i �� � � � � l
S � S � fpoints found in gi�q� bucket of table Tig

Return the K nearest neighbors of q found in set S
�# Can be found by main memory linear search #�

Figure �	 Approximate Nearest Neighbor query an�
swering algorithm�

Although we are mainly interested in the I�O com�
plexity of our scheme� it is worth pointing out that
the hash functions can be e�ciently computed if the
data set is obtained by mapping ld� into d

��dimensional
Hamming space� Let p be any point from the data set
and let p� denote its image after the mapping� Let I
be the set of coordinates and recall that we need to
compute p�jI� For i �� � � � � d� let Iji denote� in sorted

order� the coordinates in I which correspond to the
ith coordinate of p� Observe� that projecting p� on Iji
results in a sequence of bits which is monotone� i�e��
consists of a number� say oi� of ones followed by ze�
ros� Therefore� in order to represent p�I it is su�cient
to compute oi for i �� � � � � d� However� the latter
task is equivalent to �nding the number of elements
in the sorted array Iji which are smaller than a given
value� i�e�� the ith coordinate of p� This can be done
via binary search in logC time� or even in constant
time using a precomputed array of C bits� Thus� the
total time needed to compute the function is either
O�d logC� or O�d�� depending on resources used� In
our experimental section� the value of C can be made
very small� and therefore we will resort to the second
method�

For quick reference we summarize the preprocessing

Google Ex. 1018f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

and query answering algorithms in Figures � and ��

�	� Analysis of Locality�Sensitive Hashing

The principle behind our method is that the probabil�
ity of collision of two points p and q is closely related
to the distance between them� Speci�cally� the larger
the distance� the smaller the collision probability� This
intuition is formalized as follows
��� Let D��� �� be a
distance function of elements from a set S� and for
any p � S let B�p� r� denote the set of elements from
S within the distance r from p�

De�nition � A family H of functions from S to U
is called �r�� r�� p�� p���sensitive for D��� �� if for any
q� p � S
� if p � B�q� r�� then PrH
h�q� h�p� 	 p��

� if p �� B�q� r�� then PrH
h�q� h�p� � p��

In the above de�nition� probabilities are considered
with respect to the random choice of a function h from
the family H� In order for a locality�sensitive family
to be useful� it has to satisfy the inequalities p� � p�
and r� � r��
Observe that if D��� �� is the Hamming distance

dH��� ��� then the family of projections on one coor�
dinate is locality�sensitive� More speci�cally	

Fact � Let S be Hd�

�the d��dimensional Ham�
ming cube� and D�p� q� dH�p� q� for p� q �
Hd�

� Then for any r� � � �� the family Hd�
fhi 	 hi��b�� � � � � bd��� bi� for i �� � � � � d�g is�
r� r�� � ��� �� r

d�
� �� r�����

d�

�
�sensitive�

We now generalize the algorithm from the previ�
ous section to an arbitrary locality�sensitive family
H� Thus� the algorithm is equally applicable to other
locality�sensitive hash functions �e�g�� see
��� The
generalization is simple	 the functions g are now de�
�ned to be of the form

gi�p� �hi��p�� hi��p�� � � � � hik�p���

where the functions hi� � � � � � hik are randomly chosen
from H with replacement� As before� we choose l such
functions g�� � � � � gl� In the case when the familyHd� is
used� i�e�� each function selects one bit of an argument�
the resulting values of gj�p� are essentially equivalent
to pjIj �
We now show that the LSH algorithm can be used to

solve what we call the �r� ���Neighbor problem	 deter�
mine whether there exists a point p within a �xed dis�
tance r� r of q� or whether all points in the database
are at least a distance r� r����� away from q� in the
�rst case� the algorithm is required to return a point
p� within distance at most �� � ��r from q� In par�
ticular� we argue that the LSH algorithm solves this
problem for a proper choice of k and l� depending on

r and �� Then we show how to apply the solution to
this problem to solve ��NNS�
Denote by P � the set of all points p� � P such that

d�q� p�� � r�� We observe that the algorithm correctly
solves the �r� ���Neighbor problem if the following two
properties hold	

P� If there exists p� such that p� � B�q� r��� then
gj�p�� gj�q� for some j �� � � � � l�

P� The total number of blocks pointed to by q and
containing only points from P � is less than cl�

Assume that H is a �r�� r�� p�� p���sensitive family�

de�ne 	 ln ��p�
ln ��p�

� The correctness of the LSH algo�

rithm follows from the following theorem�

Theorem � Setting k log��p��n�B� and l
�
n
B

��
guarantees that properties P� and P� hold with prob�
ability at least �

� � �
e 	 ������

Remark � Note that by repeating the LSH algorithm
O���
� times� we can amplify the probability of success
in at least one trial to ��
� for any
 � ��

Proof
 Let property P� hold with probability P��
and property P� hold with probability P�� We will
show that both P� and P� are large� Assume that there
exists a point p� within distance r� of q� the proof is
quite similar otherwise� Set k log��p��n�B�� The
probability that g�p�� g�q� for p � P � B�q� r�� is at
most pk�

B
n � Denote the set of all points p

� �� B�q� r��
by P �� The expected number of blocks allocated for gj
which contain exclusively points from P � does not ex�
ceed �� The expected number of such blocks allocated
for all gj is at most �l� Thus� by the Markov inequal�
ity
��� the probability that this number exceeds �l is
less than ���� If we choose c �� the probability that
the property P� holds is P� � ����
Consider now the probability of gj�p

�� gj�q��
Clearly� it is bounded from below by

pk� p
log��p� n�B

� �n�B��
log ��p�
log ��p� �n�B����

By setting l
�
n
B

��
� we bound from above the prob�

ability that gj�p��
 gj�q� for all j �� � � � � l by ��e�
Thus the probability that one such gj exists is at least
P� 	 �� ��e�
Therefore� the probability that both properties P�

and P� hold is at least � �
�� � P�� � �� � P��
P� � P� � � 	 �

�
� �

e
� The theorem follows� �

In the following we consider the LSH family for the
Hammingmetric of dimension d� as speci�ed in Fact ��
For this case� we show that 	 � �

���
assuming that

r � d�

ln n � the latter assumption can be easily satis�ed
by increasing the dimensionality by padding a su��
ciently long string of �s at the end of each point�s rep�
resentation�

Google Ex. 1018f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

