
Page 1 of 14

 NETWORK-1 EXHIBIT A2010
 Google Inc. v. Network-1 Technologies, Inc.
 IPR2015-00345

Df:VIACS Series in Discrete)..1athematics
and Theoretical Comput;er Science

Locally Lifting the Curse of Dimensionality for
Nearest Neighbor Search

Peter N. Yianilos

ABSTRACT. Our work gives a positive result for nearest neighbor search in
high dimensions. It establishes that radius-limited search is, under particular
circumstances, free of the curse of dimensionality. It further illuminates the
nature of the curse, and may therefore someday contribute to improved general
purpose algorithms for high dimensions and for general metric spaces.

We consider the problem of nearest neighbor search in the Euclidean
hypercube [-l,+ l]d with uniform distributions, and the additional natural
assumption that the nearest neighbor is located within a constant fraction R
of the maximum interpoint distance in th is space, i.e. within distance 2RVd
of the query.

We introduce the idea of aggressive pruning and give a family of practical
algorithms, an idealized analysis, and describe experiments. Our main result
is that search complexity measured in terms of d-dimensional inner product
operations, is i) strongly sublinear with respect to the data set size n for
moderate R, ii) asymptotically, and as a practical matter, independent of
dimension.

Given a random data set, a random query within distance 2RVd of some
database element, and a randomly constructed data structure, the search suc
ceeds witb a specified probabili ty, which is a parameter of the search algorithm.
On average a search performs R:$ n"f distance computations where n is the num
ber of point.s in the database, and "f < 1 is calculated in our analysis. Linear
and near-linear space structures are described, and our algorithms and analy
sis are fr·ee of large hidden constants, i.e . the algorithms perform far less work
than exhaustive search - both in theory and practice.

1. Introduction

Finding nearest neighbors in Euclidean spaces of very low dimension is theoret
ically fast, and practical, using the notion of a Voronoi diagram [Aur91]. In mod
erate dimension, or in general metric spaces with intrinsically moderate dimension,
recursive projection-decomposition techniques such as kd-trees (FBS75, FBF77,
BF79, Ben80] and vantage-point techniques [Uhl91b, Uhl91a, RP92, Yia93]
for general metric spaces of intrinsically low dimension, are effective.

1991 Mathematics Subject Classification. 68WOl, 68W05, 68W40, 68Pl0.
Key words and phrases. :-.learest neighbor search, kd-tree, curse of dimensionality.
Completed during 1999 while visiting the Princeton University computer science department.
A prelim inary version appeared as [YiaOO].

@2002 Americao :-.!atbematical Society

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 2 of 14

2 PETER :'<. YJA:'<ILOS

As dimension d grows large, these tree techniques perform significantly better
than brute-force search only if the number of dataset points n grows exponentially
in d. Or, in the case of Voronoi diagrams, if space increases exponentially.

The motivation for this work is the observation that, in practice, one is usually
interested in nearest neighbors only if they are somewhat close to the query. The
main contribution of this paper is the algorithmic idea of aggressiue pruning and
its analysis for the uniformly distributed hypercube. In this setting, with a natural
definition of somewhat close, we show that the expected time complexity of finding
nearest neighbors is invariant with respect to dimension1 - and the space cose is
independent of d, and linear in n .

In a Euclidean hypercube the maximum distance between two points grows
with Jd. By somewhat close we mean within a neighborhood whose radius is a
constant fraction R of this distance. A parameter 0 < p < 1 controls the probability
that a search will locate the nearest neighbor within this search domain. For each
choice of R and p we calculate an exponent 'Y < 1 such that the search will perform
on average~ n..., distance computations, and this dominates the work performed.
Notice that 'Y is independent of d.

The practical significance of our work is that search time is strongly sublinear
given moderately large values for R and acceptable success probabilities. For ex
ample, searching 1, 000,000 points uniformly distributed in [-1, +1]1°00 with our
experimental software, given R = 0.1, requires on average~ 30,000 distance com
putations, and succeeds with probability 0.9988. In this example 'Y ~ 0.78 from
our analysis. Arbitrarily high success probabilities can be obtained at the expense
of distance computations.

We remark that this work was motivated by the author's recent work of [Yia99],
where the objective is to build a data structure that provides worst-case sublinear
tirne radius-limited nearest neighbor search (independent of query) for a given
dataset. With uniform distributions in Euclidean space, the resulting structures
support search neighborhood of only 0(1) size, in contrast with those of this paper
that scale linearly with the maximum interpoint distance.

Early work in nearest neighbor search is surveyed in [D as91]. There is a large
literature on the search problem, much of it elaborating on a single fact : that certain
projections from a metric space to lR have the property that projected distances
are dominated by those in the original space.

The two most important such projections are i) inner product with a unit vector
in Euclidean space, and il) distance from a chosen vantage point.3 These ideas were
recognized early on in work including [BK73, Fuk75, Fuk90, FS82 , Sha77].

Taking the inner product with a canonical basis element in Euclidean space
leads to the well-known kd-tree of Friedman and Bentley [FBS75, FBF77, BF 79,
Ben80J. They recursively divide a pointset in JRd by projecting each element onto a
distinguished coordinate. Improvements, distribution adaptation, and incremental
searches, are described in [EW82], [KP86], and [Bro90] respectively.

1:Vfeasured as d-dimensional inoer product opera~ions
2In addition to the space required to store the dataset itself
3The first of these may be viewed as the second in the limit as a vantage point moves toward

infinity along t he direction of the unit vector.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3 of 14

LOCALLY LIFTI:'o:G THE: Ct:RSE: OF DntE:'o:SIO:'o: • .\LlTY FOR :-.;:-.; SEARCH 3

The search tree we build has essentially the same structure as a kd-tree built
given randomly pretransformed data~. and constrained to use the same cut coordi
nate for all nodes at a gi\·en tree leveL Our criterion for pruning branches during
search, and its analysis, are the primary contributions of this paper and distinguish
our methods from kd-tree search.

;\fore recently, the field of computational geometry has yielded many interesting
results such as those of [Vai89, Cla88, Cla87, FMT92J and earlier [DL76J.

Very recently a number of papers have appeared striving for more efficient algo
rithms with worst-case time bounds for the approximate nearest neighbor problem
[AMN t-94, Kle97, KOR98, IM98J. These exploit properties of random projec
tions beyond the simple projection distance dominance fact mentioned above, and
additional ideas to establish worst case bounds. Our work may be viewed as ex
ploiting the fact that random projections of uniformly random data in a hypercube,
and of neighborhood balls of radius proportional to Jd. both have constant vari
ance with respect to d. See also [Cla97J for very reC'cnt work on search in general
metric spaces.

Several of the papers mentioned above include interesting theoretical construc
tions that trade polynomial space, and in some cases expensive preprocessing, for
fast performance in the ,...-orst case. We remark that to be useful in practice, a
nearest neighbor algorithm must require very nearly linear space - a stringent
requirement. As datasets grow. even low-degree polynomial space becomes rapidly
unacceptable.

For completeness. early work dealing with two special cases should be men
tioned. Retrieval of similar binary keys is considered by Rivest in (Riv74J and the
Loc setting is the focus of [Yun76J. Also see [BM80J for worst case data struc
tures for the range search problem. Finally, recent works [BOR99J and (CCGL99J
establish nontrivial lower bounds for nearest neighbor search.

[n the following section we give construction and search algorithms specialized
for our uniform setting. Section 3 gives a concrete analysis of these algorithms that
include calculations of the applicable search time complexity exponent, and failure
probability. E>..-periments are presented in section 4, which confirm in practice the
dimensional invariance established by analysis. Finally, some directions for further
work are mentioned in section 5.

2. Algorithms

2.1. Construction: A search tree is built with the set of data points as its
leaves. It has essentially the same structure as a kd-tree built on data that has first
been transformed to a random coordinate system. Construction time is easily seen
to be O(n logn) and space is linear.

Construction proceeds recursively. Each interior node has as input a list of
points. The root's list is the entire set. Associated with each interior node is a
randomly selected unit vector Ui, where i denotes level (distance from the root).
The number of such vectors is then equal to the depth of tree minus one (because
there is no vector associated with a leaf). This set is constructed so as to be

4Th at is, where the dataset is first transformed tO the coordinate system induced by a random
basis. When t he kd-tree cuts space using a single coordinate in this transformed setting, is then
the same as cutting based the inner product of a data element with a particular basis vector.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4 of 14

PETER :->. Yl.\ '\I LOS

orthonormal. First. random vectors are drawn. then they are orthonormalized in
the usual way (Gram-Schmidt).

Construction of a node consists of reading its input list, computing the inner
product of each element with the node's associated u;, and adding the element
to a left or right output list depending on its sign. ln general the dividing point
is chosen more intelligently, e.g. by computing the median of the inner product
values. But in our uniform [-l,+l]d setting we just use zero for simplicity. Left
and right children are then generated recursively. If a node's input list consists of
a single element, then that node becomes a leaf and stores the clement within it.

2.2. Search: The search is parameterized by a query q, a value R E (0, 1)
giving the proportional size of the search domain, and a probability 0 < p < 1 that
is related to the success rate we expect.

The inner product of q and each tt; is first computed. l\'cxt the positive thresh
old distance e = ~;;-~2(p) is computed, where~ denotes the cumulative distdbution
function for a normal density with the variance indicated by subscdpt.

Search proceeds recursively from the root. For a node at level i the value
< q, u; > is examined. If it is less than e then the left child is recursively explored. If
it exceeds -f then the right child is explored. Xoticc that when < q. ui >E (-e. +l)
both children are explored. \Yhen a leaf is encountered, the distance is computed
between the element it contains and q.

This decision rule is centered at zero because of our particular uniform [-1. +1Jd
setting, but is easily translated to an arbitrary cut point, e.g. the median of the
projected values.

After each distance computation d(q, x) is performed the proportion d(q, x)/2~
is computed. If smaller than R, then R is reduced and e recomputed.

This concludes the description of our search algorithm and we now briefly
discuss related issues and ex-tensions.

An important idea in kd-tree search involves the computation of the minimum
distance from the query to the subspace corresponding to a node to be explored.
II this distance grows beyond the radius of interest, the node is pruned. We do
not, however, include it in our analysis or experimental implementation because in
our high dimensional setting, in the absence of exponentially many data elements,
this idea has vanishingly little effect. Intuitively, this is because the search tree is
not nearly deep enough for the minimum distance to grow larger than the search
radius.

The analogue of tbis kd-tree idea in our setting is an alternative version of our
algorithm abOYe that Slightly redUCes f wbile descending through interiOr nodeS tO
reflect the fact that the distribution of data elements within a ball about the query
is no longer uniform. But, again, tbis is a second order effect.

Finally we remark that the f-cutoff approach taken above might be replaced
with an entirely probabilistic pruning scheme that passes probabilities from our
analysis down to each child during search. The probabilities upward to the root
are then multiplied and search continues downward until the result falls below a
specified threshold.

3. A nalysis

We assume both data points and queries are uniformly distributed within the
hypercube [-1, + l]d. The Euclidean distance metric applies and the ma.x:imum

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5 of 14

LOCALLY LIFTI~G THE CURSE OF DC\IIE~SfO~ALTTY POR :-<~ SEARCH 5

distance between two points in this space is 2Vd. We consider the problem of
finding the nearest neighbor of a query q within some distance 8 that is a constant
proportion of the maximum interpoint distance, i.e. 8 = 2RVd with 0 < R < 1.

Any unit vector ·u gives rise to a projection 1T' u mapping x E JR.d into JR. defined
by < x, u >. It is immediate that distances in the range of this projection are
dominated by distances in the domain. It is this fact that kd-trees exploit to prune
branches during branch-and-bound search.

If r represents the distance to the nearest neighbor encountered so far during
a search, then this fact implies that every member of the ball of radius r centered
at the query q maps under any 'iT'u into the interval [7ru(q)- T, 1T'u(q) + r]. So kd
tree search may confidently disregard any data points that project outside of this
interval. Unlike the kd-tree, which finds nearest neighbors with certainty, we will
consider randomized constructions that succeed with some specified probability.

Since 8 scales up linearly with Jd, the interval grows ['iT' .,(q)- 8, '~~u(q) + 8] too,
and soon the kd-tree can confidently prune almost nothing, and performs a nearly
exhaustive search.

But in our uniformly random setting we will show that the 8 ball about q
projects to a distribution about 11(q) having constant variance. This is why it is
possible to continue to probabilistically prune just as effectively even as d -+ oo.
Since dimension does not affect our ability to prune, we have lifted the curse of
dimensionality in our setting.

We now proceed with the description and idealized analysis of our algorithm
with the following proposition, which establishes two elementary but key dimen
sional invariants

PROPOS!T!O:" 3.1. i) Let u be a random unit vector, and let X denote a random
dataset in our setting, then the one dimensional set of values 1iu (X) has mean zero
and variance 1/3 - independent of dimension - where both u and X are random
variables. ii) Consider any q E JR.d and let r denote a random vector located on
the surface of a ball centered at q of radius 2RVd. Then jo1· any unit vector u,
the distribution of values 1T' ... (r) has mean 1T'11 (q) and variance 4R2 - independent of
dimension.

PROOF . The variance of each component of u is 1/d since < u,u >= 1 by
definition and the components are i.i.d. Consider a random element x E [-1, +1Jrl.
Here a simple integration establishes that the variance of each component is 1/3. So
the variance of each term of< u, x > is 1/3d, and that of the entire inner product
is then 1/3 as required. Now each component of u and x has mean zero so that
< u, x > has mean zero - and part i) is established.

'iT'" (r) is centered at 1iu(q) by linearity of inner product. So we may assume
without loss of generality that q = 0. Now the inner product of two random unit
vectors is easily seen to have variance 1/ d. Scaling one of them by a factor of 2R Jd
increases the variance by a factor of 4R2d, so that it becomes 4R2 as required by
part ii). 0

Now tix some unit vector u and consider the query's projection 'iT'" (q). Then by
Proposition 3.1, and ignoring hypercube corner effects, the projection of the data
points within the domain of search are distributed about 1T'.u(q) with variance no
greater than 4R2

•

Because distances between projected points are dominated by their original
distance it is clear that I 'iT' u (x) - "" (q) I < 2R Jd for any x in the search domain.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

