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Peter N. Yianilos 

ABSTRACT. Our work gives a positive result for nearest neighbor search in 
high dimensions. It establishes that radius-limited search is, under particular 
circumstances, free of the curse of dimensionality. It further illuminates the 
nature of the curse, and may therefore someday contribute to improved general 
purpose algorithms for high dimensions and for general metric spaces. 

We consider the problem of nearest neighbor search in the Euclidean 
hypercube [-l,+ l]d with uniform distributions, and the additional natural 
assumption that the nearest neighbor is located within a constant fraction R 
of the maximum interpoint distance in th is space, i.e. within distance 2RVd 
of the query. 

We introduce the idea of aggressive pruning and give a family of practical 
algorithms, an idealized analysis, and describe experiments. Our main result 
is that search complexity measured in terms of d-dimensional inner product 
operations, is i) strongly sublinear with respect to the data set size n for 
moderate R, ii) asymptotically, and as a practical matter, independent of 
dimension. 

Given a random data set, a random query within distance 2RVd of some 
database element, and a randomly constructed data structure, the search suc
ceeds witb a specified probabili ty, which is a parameter of the search algorithm. 
On average a search performs R:$ n"f distance computations where n is the num
ber of point.s in the database, and "f < 1 is calculated in our analysis. Linear 
and near-linear space structures are described, and our algorithms and analy
sis are fr·ee of large hidden constants, i.e . the algorithms perform far less work 
than exhaustive search - both in theory and practice. 

1. Introduction 

Finding nearest neighbors in Euclidean spaces of very low dimension is theoret
ically fast, and practical, using the notion of a Voronoi diagram [Aur91]. In mod
erate dimension, or in general metric spaces with intrinsically moderate dimension, 
recursive projection-decomposition techniques such as kd-trees (FBS75, FBF77, 
BF79, Ben80] and vantage-point techniques [Uhl91b, Uhl91a, RP92, Yia93] 
for general metric spaces of intrinsically low dimension, are effective. 

1991 Mathematics Subject Classification. 68WOl, 68W05, 68W40, 68Pl0. 
Key words and phrases. :-.learest neighbor search, kd-tree, curse of dimensionality. 
Completed during 1999 while visiting the Princeton University computer science department. 
A prelim inary version appeared as [YiaOO]. 

@2002 Americao :-.!atbematical Society 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Page 2 of 14

2 PETER :'<. YJA:'<ILOS 

As dimension d grows large, these tree techniques perform significantly better 
than brute-force search only if the number of dataset points n grows exponentially 
in d. Or, in the case of Voronoi diagrams, if space increases exponentially. 

The motivation for this work is the observation that, in practice, one is usually 
interested in nearest neighbors only if they are somewhat close to the query. The 
main contribution of this paper is the algorithmic idea of aggressiue pruning and 
its analysis for the uniformly distributed hypercube. In this setting, with a natural 
definition of somewhat close, we show that the expected time complexity of finding 
nearest neighbors is invariant with respect to dimension1 - and the space cose is 
independent of d, and linear in n . 

In a Euclidean hypercube the maximum distance between two points grows 
with Jd. By somewhat close we mean within a neighborhood whose radius is a 
constant fraction R of this distance. A parameter 0 < p < 1 controls the probability 
that a search will locate the nearest neighbor within this search domain. For each 
choice of R and p we calculate an exponent 'Y < 1 such that the search will perform 
on average~ n..., distance computations, and this dominates the work performed. 
Notice that 'Y is independent of d. 

The practical significance of our work is that search time is strongly sublinear 
given moderately large values for R and acceptable success probabilities. For ex
ample, searching 1, 000,000 points uniformly distributed in [-1, +1]1°00 with our 
experimental software, given R = 0.1, requires on average~ 30,000 distance com
putations, and succeeds with probability 0.9988. In this example 'Y ~ 0.78 from 
our analysis. Arbitrarily high success probabilities can be obtained at the expense 
of distance computations. 

We remark that this work was motivated by the author's recent work of [Yia99], 
where the objective is to build a data structure that provides worst-case sublinear
tirne radius-limited nearest neighbor search (independent of query) for a given 
dataset. With uniform distributions in Euclidean space, the resulting structures 
support search neighborhood of only 0(1) size, in contrast with those of this paper 
that scale linearly with the maximum interpoint distance. 

Early work in nearest neighbor search is surveyed in [D as91]. There is a large 
literature on the search problem, much of it elaborating on a single fact : that certain 
projections from a metric space to lR have the property that projected distances 
are dominated by those in the original space. 

The two most important such projections are i) inner product with a unit vector 
in Euclidean space, and il) distance from a chosen vantage point.3 These ideas were 
recognized early on in work including [BK73, Fuk75, Fuk90, FS82 , Sha77]. 

Taking the inner product with a canonical basis element in Euclidean space 
leads to the well-known kd-tree of Friedman and Bentley [FBS75, FBF77, BF 79, 
Ben80J. They recursively divide a pointset in JRd by projecting each element onto a 
distinguished coordinate. Improvements, distribution adaptation, and incremental 
searches, are described in [EW82], [KP86], and [Bro90] respectively. 

1:Vfeasured as d-dimensional inoer product opera~ions 
2In addition to the space required to store the dataset itself 
3The first of these may be viewed as the second in the limit as a vantage point moves toward 

infinity along t he direction of the unit vector. 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Page 3 of 14

LOCALLY LIFTI:'o:G THE: Ct:RSE: OF DntE:'o:SIO:'o: • .\LlTY FOR :-.;:-.; SEARCH 3 

The search tree we build has essentially the same structure as a kd-tree built 
given randomly pretransformed data~. and constrained to use the same cut coordi
nate for all nodes at a gi\·en tree leveL Our criterion for pruning branches during 
search, and its analysis, are the primary contributions of this paper and distinguish 
our methods from kd-tree search. 

;\fore recently, the field of computational geometry has yielded many interesting 
results such as those of [Vai89, Cla88, Cla87, FMT92J and earlier [DL76J. 

Very recently a number of papers have appeared striving for more efficient algo
rithms with worst-case time bounds for the approximate nearest neighbor problem 
[AMN t-94, Kle97, KOR98, IM98J. These exploit properties of random projec
tions beyond the simple projection distance dominance fact mentioned above, and 
additional ideas to establish worst case bounds. Our work may be viewed as ex
ploiting the fact that random projections of uniformly random data in a hypercube, 
and of neighborhood balls of radius proportional to Jd. both have constant vari
ance with respect to d. See also [Cla97J for very reC'cnt work on search in general 
metric spaces. 

Several of the papers mentioned above include interesting theoretical construc
tions that trade polynomial space, and in some cases expensive preprocessing, for 
fast performance in the ,...-orst case. We remark that to be useful in practice, a 
nearest neighbor algorithm must require very nearly linear space - a stringent 
requirement. As datasets grow. even low-degree polynomial space becomes rapidly 
unacceptable. 

For completeness. early work dealing with two special cases should be men
tioned. Retrieval of similar binary keys is considered by Rivest in (Riv74J and the 
Loc setting is the focus of [Yun76J. Also see [BM80J for worst case data struc
tures for the range search problem. Finally, recent works [BOR99J and (CCGL99J 
establish nontrivial lower bounds for nearest neighbor search. 

[n the following section we give construction and search algorithms specialized 
for our uniform setting. Section 3 gives a concrete analysis of these algorithms that 
include calculations of the applicable search time complexity exponent, and failure 
probability. E>..-periments are presented in section 4, which confirm in practice the 
dimensional invariance established by analysis. Finally, some directions for further 
work are mentioned in section 5. 

2. Algorithms 

2.1. Construction: A search tree is built with the set of data points as its 
leaves. It has essentially the same structure as a kd-tree built on data that has first 
been transformed to a random coordinate system. Construction time is easily seen 
to be O(n logn) and space is linear. 

Construction proceeds recursively. Each interior node has as input a list of 
points. The root's list is the entire set. Associated with each interior node is a 
randomly selected unit vector Ui, where i denotes level (distance from the root). 
The number of such vectors is then equal to the depth of tree minus one (because 
there is no vector associated with a leaf). This set is constructed so as to be 

4Th at is, where the dataset is first transformed tO the coordinate system induced by a random 
basis. When t he kd-tree cuts space using a single coordinate in this transformed setting, is then 
the same as cutting based the inner product of a data element with a particular basis vector. 
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orthonormal. First. random vectors are drawn. then they are orthonormalized in 
the usual way (Gram-Schmidt). 

Construction of a node consists of reading its input list, computing the inner 
product of each element with the node's associated u;, and adding the element 
to a left or right output list depending on its sign. ln general the dividing point 
is chosen more intelligently, e.g. by computing the median of the inner product 
values. But in our uniform [-l,+l]d setting we just use zero for simplicity. Left 
and right children are then generated recursively. If a node's input list consists of 
a single element, then that node becomes a leaf and stores the clement within it. 

2.2. Search: The search is parameterized by a query q, a value R E (0, 1) 
giving the proportional size of the search domain, and a probability 0 < p < 1 that 
is related to the success rate we expect. 

The inner product of q and each tt; is first computed. l\'cxt the positive thresh
old distance e = ~;;-~2(p) is computed, where~ denotes the cumulative distdbution 
function for a normal density with the variance indicated by subscdpt. 

Search proceeds recursively from the root. For a node at level i the value 
< q, u; > is examined. If it is less than e then the left child is recursively explored. If 
it exceeds -f then the right child is explored. Xoticc that when < q. ui >E (-e. +l) 
both children are explored. \Yhen a leaf is encountered, the distance is computed 
between the element it contains and q. 

This decision rule is centered at zero because of our particular uniform [-1. +1Jd 
setting, but is easily translated to an arbitrary cut point, e.g. the median of the 
projected values. 

After each distance computation d(q, x) is performed the proportion d(q, x)/2~ 
is computed. If smaller than R, then R is reduced and e recomputed. 

This concludes the description of our search algorithm and we now briefly 
discuss related issues and ex-tensions. 

An important idea in kd-tree search involves the computation of the minimum 
distance from the query to the subspace corresponding to a node to be explored. 
II this distance grows beyond the radius of interest, the node is pruned. We do 
not, however, include it in our analysis or experimental implementation because in 
our high dimensional setting, in the absence of exponentially many data elements, 
this idea has vanishingly little effect. Intuitively, this is because the search tree is 
not nearly deep enough for the minimum distance to grow larger than the search 
radius. 

The analogue of tbis kd-tree idea in our setting is an alternative version of our 
algorithm abOYe that Slightly redUCes f wbile descending through interiOr nodeS tO 
reflect the fact that the distribution of data elements within a ball about the query 
is no longer uniform. But, again, tbis is a second order effect. 

Finally we remark that the f-cutoff approach taken above might be replaced 
with an entirely probabilistic pruning scheme that passes probabilities from our 
analysis down to each child during search. The probabilities upward to the root 
are then multiplied and search continues downward until the result falls below a 
specified threshold. 

3. A nalysis 

We assume both data points and queries are uniformly distributed within the 
hypercube [-1, + l]d. The Euclidean distance metric applies and the ma.x:imum 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Page 5 of 14

LOCALLY LIFTI~G THE CURSE OF DC\IIE~SfO~ALTTY POR :-<~ SEARCH 5 

distance between two points in this space is 2Vd. We consider the problem of 
finding the nearest neighbor of a query q within some distance 8 that is a constant 
proportion of the maximum interpoint distance, i.e. 8 = 2RVd with 0 < R < 1. 

Any unit vector ·u gives rise to a projection 1T' u mapping x E JR.d into JR. defined 
by < x, u >. It is immediate that distances in the range of this projection are 
dominated by distances in the domain. It is this fact that kd-trees exploit to prune 
branches during branch-and-bound search. 

If r represents the distance to the nearest neighbor encountered so far during 
a search, then this fact implies that every member of the ball of radius r centered 
at the query q maps under any 'iT'u into the interval [7ru(q)- T, 1T'u(q) + r]. So kd
tree search may confidently disregard any data points that project outside of this 
interval. Unlike the kd-tree, which finds nearest neighbors with certainty, we will 
consider randomized constructions that succeed with some specified probability. 

Since 8 scales up linearly with Jd, the interval grows ['iT' .,(q)- 8, '~~u(q) + 8] too, 
and soon the kd-tree can confidently prune almost nothing, and performs a nearly 
exhaustive search. 

But in our uniformly random setting we will show that the 8 ball about q 
projects to a distribution about 11(q) having constant variance. This is why it is 
possible to continue to probabilistically prune just as effectively even as d -+ oo. 
Since dimension does not affect our ability to prune, we have lifted the curse of 
dimensionality in our setting. 

We now proceed with the description and idealized analysis of our algorithm 
with the following proposition, which establishes two elementary but key dimen
sional invariants 

PROPOS!T!O:" 3.1. i) Let u be a random unit vector, and let X denote a random 
dataset in our setting, then the one dimensional set of values 1iu (X) has mean zero 
and variance 1/3 - independent of dimension - where both u and X are random 
variables. ii) Consider any q E JR.d and let r denote a random vector located on 
the surface of a ball centered at q of radius 2RVd. Then jo1· any unit vector u, 
the distribution of values 1T' ... (r) has mean 1T'11 (q) and variance 4R2 - independent of 
dimension. 

PROOF . The variance of each component of u is 1/d since < u,u >= 1 by 
definition and the components are i.i.d. Consider a random element x E [-1, +1Jrl. 
Here a simple integration establishes that the variance of each component is 1/3. So 
the variance of each term of< u, x > is 1/3d, and that of the entire inner product 
is then 1/3 as required. Now each component of u and x has mean zero so that 
< u, x > has mean zero - and part i) is established. 

'iT'" (r) is centered at 1iu(q) by linearity of inner product. So we may assume 
without loss of generality that q = 0. Now the inner product of two random unit 
vectors is easily seen to have variance 1/ d. Scaling one of them by a factor of 2R Jd 
increases the variance by a factor of 4R2d, so that it becomes 4R2 as required by 
part ii). 0 

Now tix some unit vector u and consider the query's projection 'iT'" ( q). Then by 
Proposition 3.1, and ignoring hypercube corner effects, the projection of the data 
points within the domain of search are distributed about 1T'.u(q) with variance no 
greater than 4R2

• 

Because distances between projected points are dominated by their original 
distance it is clear that I 'iT' u ( x) - "" ( q) I < 2R Jd for any x in the search domain. 
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