
Example of Big O notation: f(x) O(g(x)) as there exists c > 0 (e.g.,
c = 1) and x0 (e.g., x0 = 5) such that f(x) < cg(x) whenever x > x0.

Big O notation
From Wikipedia, the free encyclopedia

In mathematics, big O notation describes the limiting behavior of a
function when the argument tends towards a particular value or
infinity, usually in terms of simpler functions. It is a member of a
larger family of notations that is called Landau notation,
Bachmann–Landau notation (after Edmund Landau and Paul
Bachmann),[1][2] or asymptotic notation. In computer science, big O
notation is used to classify algorithms by how they respond (e.g., in
their processing time or working space requirements) to changes in
input size.[3] In analytic number theory, it is used to estimate the
"error committed" while replacing the asymptotic size, or
asymptotic mean size, of an arithmetical function, by the value, or
mean value, it takes at a large finite argument. A famous example is
the problem of estimating the remainder term in the prime number
theorem.

Big O notation characterizes functions according to their growth
rates: different functions with the same growth rate may be
represented using the same O notation. The letter O is used because
the growth rate of a function is also referred to as order of the
function. A description of a function in terms of big O notation
usually only provides an upper bound on the growth rate of the
function. Associated with big O notation are several related
notations, using the symbols o, , , and , to describe other kinds
of bounds on asymptotic growth rates.

Big O notation is also used in many other fields to provide similar estimates.

Contents

1 Formal definition
2 Example
3 Usage

3.1 Infinite asymptotics
3.2 Infinitesimal asymptotics

4 Properties
4.1 Product
4.2 Sum
4.3 Multiplication by a constant

5 Multiple variables
6 Matters of notation

6.1 Equals sign
6.2 Other arithmetic operators

6.2.1 Example
6.3 Declaration of variables
6.4 Multiple usages

7 Orders of common functions
8 Related asymptotic notations

8.1 Little-o notation
8.2 Big Omega notation

8.2.1 The Hardy–Littlewood definition
8.2.2 Simple examples
8.2.3 The Knuth definition

8.3 Family of Bachmann–Landau notations
8.4 Use in computer science

Page 1 of 13Big O notation - Wikipedia, the free encyclopedia

9/15/2015file:///C:/Users/kla/AppData/Local/Temp/IW2EIM09.htm

Page 1 of 13

 NETWORK-1 EXHIBIT A2009
 Google Inc. v. Network-1 Technologies, Inc.
 IPR2015-00345f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

8.5 Extensions to the Bachmann–Landau notations
9 Generalizations and related usages
10 History (Bachmann–Landau, Hardy, and Vinogradov notations)
11 See also
12 References and Notes
13 Further reading
14 External links

Formal definition

Let f and g be two functions defined on some subset of the real numbers. One writes

if and only if there is a positive constant M such that for all sufficiently large values of x, the absolute value of f(x) is at most M
multiplied by the absolute value of g(x). That is, f(x) = O(g(x)) if and only if there exists a positive real number M and a real number x0

such that

In many contexts, the assumption that we are interested in the growth rate as the variable x goes to infinity is left unstated, and one
writes more simply that f(x) = O(g(x)).

The notation can also be used to describe the behavior of f near some real number a (often, a = 0): we say

if and only if there exist positive numbers and M such that

If g(x) is non-zero for values of x sufficiently close to a, both of these definitions can be unified using the limit superior:

if and only if

Additionally, the notation O(g(x)) is also used to denote the set of all functions f(x) that satisfy the relation f(x)=O(g(x)). In this case we
write

Example

In typical usage, the formal definition of O notation is not used directly; rather, the O notation for a function f is derived by the
following simplification rules:

If f(x) is a sum of several terms, the one with the largest growth rate is kept, and all others omitted.
If f(x) is a product of several factors, any constants (terms in the product that do not depend on x) are omitted.

For example, let f(x) = 6x4 2x3 + 5, and suppose we wish to simplify this function, using O notation, to describe its growth rate as x
approaches infinity. This function is the sum of three terms: 6x4, 2x3, and 5. Of these three terms, the one with the highest growth rate
is the one with the largest exponent as a function of x, namely 6x4. Now one may apply the second rule: 6x4 is a product of 6 and x4 in

Page 2 of 13Big O notation - Wikipedia, the free encyclopedia

9/15/2015file:///C:/Users/kla/AppData/Local/Temp/IW2EIM09.htm

Page 2 of 13f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

which the first factor does not depend on x. Omitting this factor results in the simplified form x4. Thus, we say that f(x) is a "big-oh" of
(x4). Mathematically, we can write f(x) = O(x4). One may confirm this calculation using the formal definition: let f(x) = 6x4 2x3 + 5
and g(x) = x4. Applying the formal definition from above, the statement that f(x) = O(x4) is equivalent to its expansion,

for some suitable choice of x0 and M and for all x > x0. To prove this, let x0 = 1 and M = 13. Then, for all x > x0:

so

Usage

Big O notation has two main areas of application. In mathematics, it is commonly used to describe how closely a finite series
approximates a given function, especially in the case of a truncated Taylor series or asymptotic expansion. In computer science, it is
useful in the analysis of algorithms. In both applications, the function g(x) appearing within the O(...) is typically chosen to be as simple
as possible, omitting constant factors and lower order terms. There are two formally close, but noticeably different, usages of this
notation: infinite asymptotics and infinitesimal asymptotics. This distinction is only in application and not in principle, however—the
formal definition for the "big O" is the same for both cases, only with different limits for the function argument.

Infinite asymptotics

Big O notation is useful when analyzing algorithms for efficiency. For example, the time (or the number of steps) it takes to complete a
problem of size n might be found to be T(n) = 4n2 2n + 2. As n grows large, the n2 term will come to dominate, so that all other terms
can be neglected—for instance when n = 500, the term 4n2 is 1000 times as large as the 2n term. Ignoring the latter would have
negligible effect on the expression's value for most purposes. Further, the coefficients become irrelevant if we compare to any other
order of expression, such as an expression containing a term n3 or n4. Even if T(n) = 1,000,000n2, if U(n) = n3, the latter will always
exceed the former once n grows larger than 1,000,000 (T(1,000,000) = 1,000,0003= U(1,000,000)). Additionally, the number of steps
depends on the details of the machine model on which the algorithm runs, but different types of machines typically vary by only a
constant factor in the number of steps needed to execute an algorithm. So the big O notation captures what remains: we write either

or

and say that the algorithm has order of n2 time complexity. Note that "=" is not meant to express "is equal to" in its normal
mathematical sense, but rather a more colloquial "is", so the second expression is technically accurate (see the "Equals sign" discussion
below) while the first is considered by some as an abuse of notation.[4]

Infinitesimal asymptotics

Big O can also be used to describe the error term in an approximation to a mathematical function. The most significant terms are
written explicitly, and then the least-significant terms are summarized in a single big O term. Consider, for example, the exponential
series and two expressions of it that are valid when x is small:

Page 3 of 13Big O notation - Wikipedia, the free encyclopedia

9/15/2015file:///C:/Users/kla/AppData/Local/Temp/IW2EIM09.htm

Page 3 of 13f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The second expression (the one with O(x3)) means the absolute-value of the error ex (1 + x + x2/2) is smaller than some constant
times |x3| when x is close enough to 0.

Properties

If the function f can be written as a finite sum of other functions, then the fastest growing one determines the order of f(n). For example

In particular, if a function may be bounded by a polynomial in n, then as n tends to infinity, one may disregard lower-order terms of the
polynomial. Another thing to notice is the sets O(nc) and O(cn) are very different. If c is greater than one, then the latter grows much
faster. A function that grows faster than nc for any c is called superpolynomial. One that grows more slowly than any exponential
function of the form cn is called subexponential. An algorithm can require time that is both superpolynomial and subexponential;
examples of this include the fastest known algorithms for integer factorization and the function nlog n.

We may ignore any powers of n inside of the logarithms. The set O(log n) is exactly the same as O(log(nc)). The logarithms differ only
by a constant factor (since log(nc) = c log n) and thus the big O notation ignores that. Similarly, logs with different constant bases are
equivalent. On the other hand, exponentials with different bases are not of the same order. For example, 2n and 3n are not of the same
order.

Changing units may or may not affect the order of the resulting algorithm. Changing units is equivalent to multiplying the appropriate
variable by a constant wherever it appears. For example, if an algorithm runs in the order of n2, replacing n by cn means the algorithm
runs in the order of c2n2, and the big O notation ignores the constant c2. This can be written as c2n2 = O(n2). If, however, an algorithm
runs in the order of 2n, replacing n with cn gives 2cn = (2c)n. This is not equivalent to 2n in general. Changing variables may also affect
the order of the resulting algorithm. For example, if an algorithm's run time is O(n) when measured in terms of the number n of digits of
an input number x, then its run time is O(log x) when measured as a function of the input number x itself, because n = O(log x).

Product

Sum

This implies , which means that is a convex cone.

If f and g are positive functions,

Multiplication by a constant

Let k be a constant. Then:
 if k is nonzero.

Multiple variables

Big O (and little o, and ...) can also be used with multiple variables. To define Big O formally for multiple variables, suppose

Page 4 of 13Big O notation - Wikipedia, the free encyclopedia

9/15/2015file:///C:/Users/kla/AppData/Local/Temp/IW2EIM09.htm

Page 4 of 13f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

and are two functions defined on some subset of . We say

if and only if[5]

Equivalently, the condition that for some can be replaced with the condition that , where denotes the
Chebyshev distance. For example, the statement

asserts that there exist constants C and M such that

where g(n,m) is defined by

Note that this definition allows all of the coordinates of to increase to infinity. In particular, the statement

(i.e.,) is quite different from

(i.e.,).

This is not the only generalization of big O to multivariate functions, and in practice, there is some inconsistency in the choice of
definition.[6]

Matters of notation

Equals sign

The statement "f(x) is O(g(x))" as defined above is usually written as f(x) = O(g(x)). Some consider this to be an abuse of notation, since
the use of the equals sign could be misleading as it suggests a symmetry that this statement does not have. As de Bruijn says, O(x) = O
(x2) is true but O(x2) = O(x) is not.[7] Knuth describes such statements as "one-way equalities", since if the sides could be reversed, "we
could deduce ridiculous things like n = n2 from the identities n = O(n2) and n2 = O(n2)."[8] For these reasons, it would be more precise to
use set notation and write f(x) O(g(x)), thinking of O(g(x)) as the class of all functions h(x) such that |h(x)| C|g(x)| for some constant
C.[8] However, the use of the equals sign is customary. Knuth pointed out that "mathematicians customarily use the = sign as they use
the word 'is' in English: Aristotle is a man, but a man isn't necessarily Aristotle."[9]

Other arithmetic operators

Big O notation can also be used in conjunction with other arithmetic operators in more complicated equations. For example, h(x) + O(f
(x)) denotes the collection of functions having the growth of h(x) plus a part whose growth is limited to that of f(x). Thus,

expresses the same as

Example

Page 5 of 13Big O notation - Wikipedia, the free encyclopedia

9/15/2015file:///C:/Users/kla/AppData/Local/Temp/IW2EIM09.htm

Page 5 of 13f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

