
Nearest neighbor search
From Wikipedia, the free encyclopedia

Nearest neighbor search (NNS), also known as proximity search, similarity search or closest point
search, is an optimization problem for finding closest (or most similar) points. Closeness is typically
expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.
Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a
space M and a query point q M, find the closest point in S to q. Donald Knuth in vol. 3 of The Art of
Computer Programming (1973) called it the post-office problem, referring to an application of
assigning to a residence the nearest post office. A direct generalization of this problem is a k-NN search,
where we need to find the k closest points.

Most commonly M is a metric space and dissimilarity is expressed as a distance metric, which is
symmetric and satisfies the triangle inequality. Even more common, M is taken to be the d-dimensional
vector space where dissimilarity is measured using the Euclidean distance, Manhattan distance or other
distance metric. However, the dissimilarity function can be arbitrary. One example are asymmetric
Bregman divergences, for which the triangle inequality does not hold.[1]

Contents

1 Applications
2 Methods

2.1 Linear search
2.2 Space partitioning
2.3 Locality sensitive hashing
2.4 Nearest neighbor search in spaces with small intrinsic dimension
2.5 Projected radial search
2.6 Vector approximation files
2.7 Compression/clustering based search
2.8 Greedy walk search in small-world graphs

3 Variants
3.1 k-nearest neighbor
3.2 Approximate nearest neighbor
3.3 Nearest neighbor distance ratio
3.4 Fixed-radius near neighbors
3.5 All nearest neighbors

4 See also
5 Notes
6 References
7 Further reading
8 External links

Page 1 of 8Nearest neighbor search - Wikipedia, the free encyclopedia

9/10/2015file:///C:/Users/kla/AppData/Local/Temp/YSXBL31N.htm

Page 1 of 8

 NETWORK-1 EXHIBIT A2008
 Google Inc. v. Network-1 Technologies, Inc.
 IPR2015-00345f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Applications

The nearest neighbor search problem arises in numerous fields of application, including:

Pattern recognition - in particular for optical character recognition
Statistical classification- see k-nearest neighbor algorithm
Computer vision
Computational Geometry - see Closest pair of points problem
Databases - e.g. content-based image retrieval
Coding theory - see maximum likelihood decoding
Data compression - see MPEG-2 standard
Robotic sensing[2]

Recommendation systems, e.g. see Collaborative filtering
Internet marketing - see contextual advertising and behavioral targeting
DNA sequencing
Spell checking - suggesting correct spelling
Plagiarism detection
Contact searching algorithms in FEA
Similarity scores for predicting career paths of professional athletes.
Cluster analysis - assignment of a set of observations into subsets (called clusters) so that
observations in the same cluster are similar in some sense, usually based on Euclidean distance
Chemical similarity
Sampling-Based Motion Planning

Methods

Various solutions to the NNS problem have been proposed. The quality and usefulness of the algorithms
are determined by the time complexity of queries as well as the space complexity of any search data
structures that must be maintained. The informal observation usually referred to as the curse of
dimensionality states that there is no general-purpose exact solution for NNS in high-dimensional
Euclidean space using polynomial preprocessing and polylogarithmic search time.

Linear search

The simplest solution to the NNS problem is to compute the distance from the query point to every other
point in the database, keeping track of the "best so far". This algorithm, sometimes referred to as the
naive approach, has a running time of O(dN) where N is the cardinality of S and d is the dimensionality
of M. There are no search data structures to maintain, so linear search has no space complexity beyond
the storage of the database. Naive search can, on average, outperform space partitioning approaches on
higher dimensional spaces.[3]

Space partitioning

Page 2 of 8Nearest neighbor search - Wikipedia, the free encyclopedia

9/10/2015file:///C:/Users/kla/AppData/Local/Temp/YSXBL31N.htm

Page 2 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Since the 1970s, branch and bound methodology has been applied to the problem. In the case of
Euclidean space this approach is known as spatial index or spatial access methods. Several space-
partitioning methods have been developed for solving the NNS problem. Perhaps the simplest is the k-d
tree, which iteratively bisects the search space into two regions containing half of the points of the
parent region. Queries are performed via traversal of the tree from the root to a leaf by evaluating the
query point at each split. Depending on the distance specified in the query, neighboring branches that
might contain hits may also need to be evaluated. For constant dimension query time, average
complexity is O(log N) [4] in the case of randomly distributed points, worst case complexity analyses
have been performed.[5] Alternatively the R-tree data structure was designed to support nearest neighbor
search in dynamic context, as it has efficient algorithms for insertions and deletions such as the R* tree.
[6] R-trees can yield nearest neighbors not only for Euclidean distance, but can also be used with other
distances.

In case of general metric space branch and bound approach is known under the name of metric trees.
Particular examples include vp-tree and BK-tree.

Using a set of points taken from a 3-dimensional space and put into a BSP tree, and given a query point
taken from the same space, a possible solution to the problem of finding the nearest point-cloud point to
the query point is given in the following description of an algorithm. (Strictly speaking, no such point
may exist, because it may not be unique. But in practice, usually we only care about finding any one of
the subset of all point-cloud points that exist at the shortest distance to a given query point.) The idea is,
for each branching of the tree, guess that the closest point in the cloud resides in the half-space
containing the query point. This may not be the case, but it is a good heuristic. After having recursively
gone through all the trouble of solving the problem for the guessed half-space, now compare the
distance returned by this result with the shortest distance from the query point to the partitioning plane.
This latter distance is that between the query point and the closest possible point that could exist in the
half-space not searched. If this distance is greater than that returned in the earlier result, then clearly
there is no need to search the other half-space. If there is such a need, then you must go through the
trouble of solving the problem for the other half space, and then compare its result to the former result,
and then return the proper result. The performance of this algorithm is nearer to logarithmic time than
linear time when the query point is near the cloud, because as the distance between the query point and
the closest point-cloud point nears zero, the algorithm needs only perform a look-up using the query
point as a key to get the correct result.

Locality sensitive hashing

Locality sensitive hashing (LSH) is a technique for grouping points in space into 'buckets' based on
some distance metric operating on the points. Points that are close to each other under the chosen metric
are mapped to the same bucket with high probability.[7]

Nearest neighbor search in spaces with small intrinsic dimension

The cover tree has a theoretical bound that is based on the dataset's doubling constant. The bound on
search time is O(c12 log n) where c is the expansion constant of the dataset.

Page 3 of 8Nearest neighbor search - Wikipedia, the free encyclopedia

9/10/2015file:///C:/Users/kla/AppData/Local/Temp/YSXBL31N.htm

Page 3 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Projected radial search

In the special case where the data is a dense 3D map of geometric points, the projection geometry of the
sensing technique can be used to dramatically simplify the search problem. This approach requires that
the 3D data is organized by a projection to a two dimensional grid and assumes that the data is spatially
smooth across neighboring grid cells with the exception of object boundaries. These assumptions are
valid when dealing with 3D sensor data in applications such as surveying, robotics and stereo vision but
may not hold for unorganized data in general. In practice this technique has an average search time of O
(1) or O(K) for the k-nearest neighbor problem when applied to real world stereo vision data. [2]

Vector approximation files

In high dimensional spaces, tree indexing structures become useless because an increasing percentage of
the nodes need to be examined anyway. To speed up linear search, a compressed version of the feature
vectors stored in RAM is used to prefilter the datasets in a first run. The final candidates are determined
in a second stage using the uncompressed data from the disk for distance calculation.[8]

Compression/clustering based search

The VA-file approach is a special case of a compression based search, where each feature component is
compressed uniformly and independently. The optimal compression technique in multidimensional
spaces is Vector Quantization (VQ), implemented through clustering. The database is clustered and the
most "promising" clusters are retrieved. Huge gains over VA-File, tree-based indexes and sequential
scan have been observed.[9][10] Also note the parallels between clustering and LSH.

Greedy walk search in small-world graphs

One possible way to solve NNS is to construct a graph , where every point is
uniquely associated with vertex . The search of the point in the set S closest to the query q takes
the form of the search of vertex in the graph . One of the basic vertex search algorithms in
graphs with metric objects is the greedy search algorithm. It starts from the random vertex . The
algorithm computes a distance value from the query q to each vertex from the neighborhood

 of the current vertex , and then selects a vertex with the minimal distance
value. If the distance value between the query and the selected vertex is smaller than the one between
the query and the current element, then the algorithm moves to the selected vertex, and it becomes new
current vertex. The algorithm stops when it reaches a local minimum: a vertex whose neighborhood does
not contain a vertex that is closer to the query than the vertex itself. This idea was exploited in VoroNet
system [11] for the plane, in RayNet system [12] for the and for the general metric space in Metrized
Small World algorithm.[13] Java and C++ implementations of the algorithm together with sources are
hosted on the GitHub (Non-Metric Space Library
(https://github.com/searchivarius/NonMetricSpaceLib), Metrized Small World library
(http://aponom84.github.io/MetrizedSmallWorld/)).

Page 4 of 8Nearest neighbor search - Wikipedia, the free encyclopedia

9/10/2015file:///C:/Users/kla/AppData/Local/Temp/YSXBL31N.htm

Page 4 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Variants

There are numerous variants of the NNS problem and the two most well-known are the k-nearest
neighbor search and the -approximate nearest neighbor search.

k-nearest neighbor

k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is
commonly used in predictive analytics to estimate or classify a point based on the consensus of its
neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest
neighbors.

Approximate nearest neighbor

In some applications it may be acceptable to retrieve a "good guess" of the nearest neighbor. In those
cases, we can use an algorithm which doesn't guarantee to return the actual nearest neighbor in every
case, in return for improved speed or memory savings. Often such an algorithm will find the nearest
neighbor in a majority of cases, but this depends strongly on the dataset being queried.

Algorithms that support the approximate nearest neighbor search include locality-sensitive hashing, best
bin first and balanced box-decomposition tree based search.[14]

Nearest neighbor distance ratio

Nearest neighbor distance ratio do not apply the threshold on the direct distance from the original point
to the challenger neighbor but on a ratio of it depending on the distance to the previous neighbor. It is
used in CBIR to retrieve pictures through a "query by example" using the similarity between local
features. More generally it is involved in several matching problems.

Fixed-radius near neighbors

Fixed-radius near neighbors is the problem where one wants to efficiently find all points given in
Euclidean space within a given fixed distance from a specified point. The data structure should work on
a distance which is fixed however the query point is arbitrary.

All nearest neighbors

For some applications (e.g. entropy estimation), we may have N data-points and wish to know which is
the nearest neighbor for every one of those N points. This could of course be achieved by running a
nearest-neighbor search once for every point, but an improved strategy would be an algorithm that
exploits the information redundancy between these N queries to produce a more efficient search. As a
simple example: when we find the distance from point X to point Y, that also tells us the distance from
point Y to point X, so the same calculation can be reused in two different queries.

Page 5 of 8Nearest neighbor search - Wikipedia, the free encyclopedia

9/10/2015file:///C:/Users/kla/AppData/Local/Temp/YSXBL31N.htm

Page 5 of 8f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

