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ATRACT Our work gives a positive resuli for dearess neighbor seach in
high dimensions "z szabistes thar radies-limited search =, nder particular
circamstances, free of the curse of dimenrionsity [t further illuminales the
matgre af the curse, and may therefors someday contribute o improved general
purpose algorithes for high dimensions and for general metric spaces.

We consider the probiem of nearsst aeighbor search in the Euclidean
kypercuba |1, -1 with oniform distributions, and the additional natuial
ssumption that the ssarest neighbor i located within a constant fraction B
of the Misfmam interpoint distancs i this space, |, within distance 28
of the query.

We Ineroduce the idea of ageressive praning and give a family of praciical
algneithma, an idealized analysie, and describe scperirments Jur main result
s that search compiesity messured in terma of ddimensicral inner producs
operations, s ii mrongly sabiinear with respect to the dats st sive n for
moderate R, ] asyaptotically, asd aa & practical matser, indepeadent of
cirmenion

Given & random data set, a random query within disance 28vd of some
database slement, a=d 3 randomly constractad data mroctare. the search soc-
concs with & specifiec probability, which is a pasameter of the ssarch algor]ihum.
On average A search performs & nY distance computations where a @ the num-
ber of points in the database, and + < 1 is cabculated in owr analysis Linear
acd near-linear space structures are described, and our algorithes and analy-
#id are froo of large kidden constants, (& the algorithms perform far less work
than exhaustive search — both in theary and practice

1. Introduoction

Fmﬁ;mn&gbhxh&ﬂi&mmdmhw&mm is theorst-

ically fast, and practical, using the notion of & Voronoi

i diagram [Aur91] In mod-

erate dimension, or in general metric spaces with mirmsically modecales dinsasion,
recursive projection-decompaosition techniques such as kd-trees [FBS75, FBFTT,
BFT9, BenB0] and vantage-point techniques [TThiBlb, Uhlﬂlt, RP92, Yiad3|
for general metric spacss of intrinsically low dimension, are effective.
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As dimension d grows large, these tree techniques perform significantly better
than beuteforce seasch only if the number of dataset points n grows exponentially
in d. Or, In the case of Voronci diagrams. if space increases exponentially

The motivation for this work is the observation that, in practice, one is usually
interested in nearest neighbors only If they are somewhat elose to she query. The
main contribution of this paper is the algorithmic idea of sggressive pruning and
its analysis for the uniformiy distributed hypercube. In this satting, with a natural
definition of somewhat close, we show that the expected time complexity of finding
neares: neighbors is invariant with respect to dimension’ — and the space cost? is
independent of 4, and linear in n.

In a Euclidean hypercube the maximym distance between two points grows
with vd. By somewhat close we mean within a neighborhood whose radius is a
constant fraction R of this distance. A parameter 0 < p < 1 controls the probability
that a search will locate the nearest neighbor within this search domain. For each
choice of R and p we calculate an exponent o < 1 such that the search will perform
on average = n7 distance computations, and this dominates the work performed
Notice that v is independent of 4.

The practical significanee of our work is that search time is sirongly sublinear
given moderately large values for R and acceptable success probabilities. For ex-
ample, searching 1,000,000 points uniformly distributed in [—1 +1]'990 with our
axperimental software, given R = 0.1, requires on average = 30, 000 distance com-
putations, and sucreeds with probability 0.9988 In this example -+ = 0.78 from
our analysis. Arbitrarily high success probabilizies can be obzained at the sxpense
of distance computations.

We remark that this work was motivated by the authot s recent work of [Yia99],
where the objective is to build a data structure that provides worst-case sublinear-
time radius-limited nearsst neighbor search {independent of query) for a given
dataser. With uniform distzibutions in Euclidean space, the resulting structures
suppaort search neighborhood of only O(1) sze, in eontrast with those of this paper
that scale linearly with the maximum interpcint distance.

Early work in nearest neighbor search is surveyed in [Das81). There is a large
literature on the search problem, much of it slaborating on a single fact: that cortain
projections from a metric space to R have the property that projected distances
are dominatesd by these in the original space.

The two most important such projections are i) inner product with a unit vector
in Euclidean space, and ii) distance from a chossn vantsge pomt.? These ideas were
recognized early on in work including [BK73, Fuk75, Fuk90, FS82. Sha77].

Taking the inner product with a canonical basiz element in Fuclidean space
leads to the well-known kd-tree of Friedman and Bentley [FBSTS, FBF77T, BFT9,
RanAn]. They recursively divide a pointset in B¥ by projecting each cloment onta a
distinguished coordinate. Improvements, distribution adaptarion, and incremental
searches, are deseribed in [EW82], [KP86]. and [Bro90]| respectively

Miteasured a5 d-dimensioaal inner product operations

*In addition to the space raquired to stors the datasst itselé

®The first of these may be viewsd 35 the second i the limit a= a vantage point moves towasd
infinity along the direction of the unit vecior
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The search tree we buoild has essentially the same structure as a kd-tree barilt
given randomly pretransiormed data®, and constrained to use the same cut coordi-
naze for all nodes at a given tree lovel. Owur eriterion for pruning branches during
search, and its analysis, are the primary contributions of this paper and distinguish
our methods from kd-tree search.

More recently, the field of computational geometry has vielded many interesting
results such as those of [VaiB9, Cla88, Cla87, FMT92] and earlier [DL76].

Very secently a number of papers have appeared siriving for more efficient algo-
rithms with worst-case time bounds for the spprozimate nearest neighbor problem
[AMN*+94, Kle97, KOR9S, IM98]. These exploit properties of random projec-
tions beyond the simple projection distance dominance fac: mentioned above, and
additional ideas to establish worst case bounds. Cur work may be viewed as ex-
ploiting the fact that random projections of uniformly random datz in a hypercube,
and of neighborhood balls of radius proportional to 1/d, both have constant vari-
ance with respect to d See also [Cla97] for very recent work on search in general
metric spaces

Several of the papers mentioned above incluce interesting theoretical construc-
tions that trade polynomial space, and in some cases expensive preprocessing, for
fast performance In the worst case. We remark that to be useful in practice, a
nearest neighbor algorithm must require very nearly linear space — a stringent
requirement. As datasets grow, even low-degres polynomial space becomes rapidly
unaccepzahle,

For completeness, early work dealing with two special cases should be men-
tioned. Retrieval of similar binary keys is considered by Rivest in [Riv74] and the
Ly setting is the focus of [Yun76]. Also see [BMB0] for worst case data struc-
tures for the range search problem. Finally, recent works [BOR99] and [CCGL99]
establish nontrivial lower bounds for nearest neighbor search.

In the following section we give construction and search algorithms specialized
for our uniform setting. Section 3 gives a concrete analysis of thess algorithme that
include calculations of the applicable search time complexity exponent, and failure
probability. Experiments are presented in section 4, which confirm in practice the
dimensional invariance established by anzlysis. Finally, some directions for further
work are mentioned in section 5.

2. Algorithms

2.1. Construction: A search tree is built with the set of data points as its
leaves. It has essentially the same structure as a kd-tree built on dasa that has first
been transformed to a random coordinate system. Censtruction time is ezsily seen
to be inlogn) and space s linear

Construction procesds recursively  Fach interior node has as input a list of
points. The root’s liss is the enire set. Associated with each interior node is a
randomly selected unit vecior wy, where 1 denotes level (distance from the toot)
The number of such vertors is then equal to the depth of tree minug one (because
there iz no vertor associated with a leaf} This set is constructed so 2s to be

*Thas is, where the datases s Srut transiormed to the coordinate system induced by 1 rasdom
basis. When the ko-tree curs space using a single coordinate in this wransfcrmed setting, is then
the same as custing bassd the inper product of a data cement with a pasticular basiz vector.
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orthonormal. First, random vectors are drawn, then they are orthonormalized in
the usual way (Gram-Schmidt).

Construction of a node consists of reading its input list, computing the inner
product of each element with the node’s associated u;, and adding the element
to a left or right cutput st depending on = sign. In gemeral the dividing point
is chosen more intelligently, eg. by computing the median of the inner product
values. But m our uniform [—1, +1]? setting we just use zero for simplicity. Left
and right children are then generated recursively. If a node’s input list consists of
a single element, then that node becomes 2 leaf and stores the element within it

2.2. Search: The search is parameterized by a query ¢, a value B € (0,1)
giving the proportional size of the search domain, and a probability 0 < p < 1 that
is related to the success rate we expect.

The inner product of g and each u; is frst computed. Next the positive thresh.
old distance £ = 33 (p) is computed, wheze & denates the cumalative distribution
Fanction for 2 normal density with the variaace indicated by subscript.

Search proceeds recursively from the root. For a node at level i the walue
< g, u; > is examined. If it is less than £ then the left child is recursively explored If
it exceeds — then the right child is explored. Notice that when < g, u; >€ (—£, +{)
both children are explored. When a leaf is encountersd, the distance is computed
Bétwetn the slement it contains and g.

This decision rule is centered at zero because of our particnlar uniform [-1,+1]¢
setting, but is easily wanslated to an arbitzary cul; point, eg. the median of the
projected values.

After each distance computation d{g. z) is performed the propartion dig, =) 2v/d
is computed If smaller than R, then B is reduced and ¢ recomputed.

This concludes the description of owr search algorithm and we now briefly
discuss related issues and extensions.

An important idea in kd-tree search involves the compuration of the minimum
distanee from the query to the subspace cwresponding to a node to be explored
If this distance grows beyond the radius of interest, the node is pruned. We do
not, bowever, include it in our analysis or experimental implementation becanse in
our high dimensicnal setting, in the absence of exponentially many data elements,
this idea has vanishingly little effect. Intuitively, this is because the search tree is
not nearly deep encugh for the minimum disiance Lo grow larger than the search
radius.

Tte analogue of this kd-tree idea in our setting is an alternative version of our
algorithm above that slightly reduces £ while descending through intericr nodes 1o
reflect the fact thas the distribution of data elements within a ball about the query
is no longer uniform. Bus, again, this is a second order effect

Finally we remark that the {-cutoff approach taken above might be replaced
with an entirely probabilistic pruning scheme that passes probabilities from omx
anaiysis down to each child during search The probabilities upward to the roct
are then muitiplied and search continues dewnward until the result falls beicw a
specified shreshold

3. Analysis

We assume both data points and queries are uniformly distributed within the
hypercube [-1,+1]*. The Euclidean distance metric apples and the maximum
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distance between two points in this space is 2/d. We consider the problem of
finding the nearest neighbor of 2 query g within some distance 4 that s a constant
proportion of the maximum interpoint distance, ie. = 2RVd with0 < R < 1.

Any anit vector u gives rise to a projection 7, mapping = € Y into R defined
by < z.u > Il s Inumedizse that distancss in the range of this projection are
dominated by distances in the domain It is this fact that keé-trees exploit to prune
branches during branch-and-bound search.

If  represents the distance to the nearest neighbor encountered so far during
a search, then this fact implies that every member of the ball of radius  centered
at the query ¢ maps under any =, into the interval [ry(q) — 7 mu(g) + 7] So kd-
tree search may confidently disregard any data points that project outside of this
interval. Unlike the kd-tree, which finds cearest neighbors with certainty, we will
consider randomized constructions that succeed with some specified probability.

Since 4§ scales up linearly with /d, the interval grows [m, (g) — 8, me (q) — 4] too,
and soon the kd-tree can confidently prune almost nothing, and performs a nearly
exhaustive search.

But in cur uniformly random setting we will show that the § ball about g
projects to a distribution about 7(q) having constant variance This is why it is
possible to continue to probabilfistically prune just as effectively cven as d — oo
Since dimensinn does not affect our ahility to prone, we have lifted the curse of
dimensionality in our sstting.

We now proceed with the descripticn and idealized analvsis of our algorithm
with the following proposition, which establishes two clementary but key dimen-
sional invariants

ProPosiTION 3.1, 3) Let u be o random unit vector, and let X denote a rendom
dataset m our setting, then the one dimensional set of veives 7,(X) has mean zero
and verence 1/3 - mdependent of dimension - where both w and X are random
varwsbies. 1) Consider any g € BY and let r denote a random vector located on
the swrface of a ball centered at q of rodius 2Rv'd  Thea for any unit vector u,
the distribution of values =, (r) has mean =,(g) and vemanes 4R* — independent of
dimension

ProoF The variance of sach component of u is 1/d since < u,u >= 1 by
definition and the components are Li.d. Consider a random element z € -1, 414
Heze a simple integrazion eszablishes that the variance of each component is 1/3 So
the variance of sach term of < u,z > is 1/34d, and that of the entire inner product
is then 1/3 as required. Now each component of u and © has mean zero so that
< 4,7 > has mean zero — and part i} is sstablished.

wu(r) is centered at =.(g) by linearity of inner product. So we may assume
without Ines of generality that g = 0. Now the inner produet of teo random unit
vectors is easily seen to have variance 1/d. Sealing one of them by a factor of 2R/d
increases the variance by a factor of 4R%d, so that it becomes 4R* as required bv
part ii). O

Now fix some unit vector u and consider the query's projection 7. (¢). Then by
Proposition 3.1, and ignoring hypercube corner effects, the projection of the data
points within the domain of search are distributed about =, (g) with variance no
greater than 472,

Because distances between projected points are dominased by their original
distance it is clear that jx, (z) — m,(g)] < 2RV for any = in the search domain.
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