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Rendering programs usually perform a perspective
transformation which simulates a pinhole camera and
transforms straight lines to straight lines and planes to
planes. However, the Omnimax projection of a 3D en-
vironment is a 1800 fish-eye projection that does not
preserve linearity or planarity, so rendering programs
must be modified to perform an Omnimax projection
rather than a perspective projection.
Rendering programs work in a variety of ways and

handle a variety of geometric primitives. Because they
are independent from the perspective projection, ray
tracers are easily converted for Omnimax' projection,
but their high computational expense makes them im-
practical for many applications.
On the other hand, standard polygon renderers rely

NYIT,19i heavily on the perspective projection to simplify and
speed the scan conversion process. Among other things,
they take advantage of the fact that the perspective
projection preserves the convexity of polygons and the
linearity of their edges, properties not preserved by the
Omnimax projection. In short, standard polygon render-
ers are much more difficult to convert for Omnimax
projection than ray tracers and conversion reduces their
computational efficiency.
The problem of software conversion should be exam-

ined in the context of whole image generation systems.
Some systems generate the final frames of animation
using a single program, while other systems create images
piece by piece using a variety of programs. We use the
latter approach at NYIT: One program renders polygons,
another renders quadric surfaces, and dozens of other
programs process rendered images to produce final
frames3
To convert all the programs in this graphics system to

*Heckbert is now with Pixar, Inc. Material in this article was
presented orally by the authors at the 126th SMPTE Technical
Conference in November 1984. Omnimax is a registered trade-
mark of Imax Corp., Toronto, Canada.
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We were interested in general techniques for creating
Omnimax images that would allow high resolution, high

a a a a000000000 0 a a o D O O O a scene complexity, and a variety of geometric modeling
primitives. We were willing to sacrifice speed for gener-

/rame cenn\I projection center ality and quality. Others have developed more efficient
frame centerii e7X j / \ (axis of projection) techniques for specific applications. Max has generated

t 1 ;z -.-- Omnimax animation of molecules using a local linear
-uF X approximation to the distortion,3 and methods for real-

time Omnimax distortion of low-resolution images have

:10DDDD b D00 0 D D 0 0N0 00Xtf O O O O also been developed4

<~-- oapproximately elliptical The Omnimax projection
extent of I80 fisheye projection Max has described the Omnimax projection lens and

theater geometry in detail;' the following description has
been condensed from his account.

Figure 1. An Omnimax film frame. In an Omnimax theater, film is projected through a

fish-eye lens onto a hemispherical screen that fills the
audience's field of view. This extreme field of view
necessitates a large film format to provide sufficient
resolution. Omnimax is the largest motion picture film
format in use today-frames are oriented lengthwise on
70-mm film stock.
A 1800 fish-eye lens (round type) projects half of the

environment into a circular image. The Omnimax film
image shown in Figure 1 is a 1800 fish-eye projection with
the bottom of the frame cropped to an approximately
elliptical arc. The projected Omnimax image covers a full

Figure 2. A three- 1800 horizontally but, due to the cropping of the frame,
dimensional covers less vertically-about 1350. In a typical Omnimax
scene projected theater the axis of projection (which pierces the film
onto four faces frame at the "projection center" shown in Figure 1) is

.of a cube. elevated 110 from the horizontal.
Each pixel in the raster grid of an Omnimax image

corresponds to a ray projected through the Omnimax
lens. Pixels are mapped to rays by simulating the C430
Omnimax projection lens as follows:
The limiting circle of the 1800 fish-eye projection is

assigned a unit radius, and its center is chosen as the
image origin. Because the projection lens is rotationally
symmetric about the axis of projection, the effect of the
lens can be described by a single function that relates
radial displacement from the center of the circle to the
angle of the projected ray from the axis of projection.

- Points in the image are assigned polar coordinates (r,O)
_ and are converted to spherical coordinates with angular

coordinates 0 and 4, where 0 is longitude and 4 is the

Figure 3. The unfolded cube of texture. The brighter angle from the axis of projection. The transformation
area is the Omnimax field of view. The left half from polar to spherical coordinates keeps 0 the same and

artheaisftpanel,the raieldoalf oiew. the lht hanelf transforms r into 4. The expression for 4 as a function of
of the left panel, the right half of the right panel, r dpe rmMxi
and the top half of the top panel lie outside the field r, adapted from Max! is
of view, so these regions need not be rendered. 4) (r) = 1.411269r- .094389r3 + .25674r5

See Max' for a more detailed discussion of Omnimax lens
and theater geometry, and film frame layout.

Omnimax projection
handle Omnimax projection would be prohibitively time from cube projection
consuming, would complicate existing software, and To produce an Omnimax projection, standard image
would make maintenance more difficult. For these rea- generation programs are used to project the environment
sons we sought a method for creating Omnimax projec- onto four faces of a cube centered at the viewpoint,' and
tions from perspective views. this cube of texture is then processed to obtain an
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Omnimax projection. The cube's orientation corresponds
to a coordinate system that has a horizontal left-right axis
and another axis coinciding with the axis of projection.
Each face of the cube of texture is obtained by pointing
the camera down the appropriate axis and rendering with
a 900 view angle. The rendered views are the projections
on the front, top, left, and right faces of the cube.
Figure 2 shows the projection of a 3D scene onto four

faces of a cube. This cube of texture is shown unfolded in
Figure 3, wherein the darkened areas correspond to
regions of the scene that lie outside the Omnimax field of
view. Figure 4 shows the region of the Omnimax frame
that each face of the cube contributes to.
Creating the Omnimax projection from the cube of

texture can be done in scan-line order. Each pixel in the
Omnimax projection corresponds to a ray through the
projection lens, the direction of which can be found with
some straightforward trigonometry using the lens distor-
tion formula given above. This ray is then intersected
with the cube of texture to determine which texture pixel
corresponds to the pixel in the Omnimax projection.
Actually, this point-sampling approach will cause aliasing.
A filtering technique that eliminates visible aliasing is
described later in this article.
Figure 5 is an Omnimax projection obtained from the

cube of texture in Figure 2. It has twice the horizontal
resolution of the cube faces of Figure 2, and this corre-
sponds to a 2:3 ratio of "source pixels" (the bright area of
Figure 3) to "destination pixels" in the Omnimax projec-
tion. The exact ratio of source pixels to destination pixels
isn't important as long as there is rough parity (having far
more source pixels than destination pixels wastes source
texture resolution; having far fewer source pixels than
destination pixels magnifies the source texture unneces-
sarily). Empirical tests have shown that a resolution of
approximately 2000 X 1500 is sufficient for raster Omni-
max frames6
A potential problem with our method is discontinuities

in the Omnimax projection at the boundaries between
the cube faces shown in Figure 4. For example, if a
polygon in the Omnimax projection straddles a seam, it
will be clipped and rendered in two separate cube faces.
Whether or not the projected polygon will exhibit visible
artifacts at the seam depends on the algorithms used for
clipping, shading, and so on. In some cases it may be
necessary to use more sophisticated algorithms, but in
practice seams have never been a problem for us.
The framework for projection need not be a cube. An

Omnimax projection can be obtained from any combi-
nation of perspective views with viewpoint at the camera
that collectively covers the Omnimax field of view. For
example, it is possible to use just two perspective views,
one covering the left half of the Omnimax field of view,
the other covering the right half. This scheme, however,
requires very large view angles that result in poor image
resolution near the image center. All things considered,
the cube appears to be the best framework for projection.

Image filtering
To control aliasing, the cube-face images must be

filtered, not point-sampled,7 as Figure 6 shows. We treat

Figure 4. The correspondence between cube faces and
regions of the Omnimax projection.

Figure 5. An Omnimax projection made from the cube of
texture of Figures 2 and 3. Scene modeling by Jules
Bloomenthal (tree), Paul P. Xander (terrain), Ned Greene
(sky), and Dick Lundin (overall scene composition and
rendering).

Figure 6. Portions of Omnimax images generated from
checkerboard cube faces. Aliasing is evident with point
sampling (left) but not with filtering (right).
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Figure 7. An example of a mapping with a nonuniform
resampling grid. Circular pixels In screen space (left)
become elliptical when mapped to texture space (right).
Since the ellipses vary In size, eccentricity, and orientation,
the filter Is space variant. Dots mark pixel centers.

FILTER AREA FILTER COST REFERENCE
l (in texture space) CROSS-SECTION l

pixels in the Omnimax frame as square or circular areas

instead of points, so their corresponding rays through the
projection lens form cones that intersect the cube faces
in quadrilateral or elliptical areasOA8 These areas are then
filtered to obtain pixel values.
Omnimax distortion is nonlinear, so the resampling

grids on the cube faces are nonuniform, as Figure 7
illustrates. Consequently a space-variant filter is required
instead of the simpler space-invariant filter techniques. In
response to the need for generality and speed, we devel-
oped a new filtering technique.

24

Image filtering for Omnimax distortion is very similar
to the technique of texture mapping onto curved surfaces
in 3D: both require space-variant filters? The filter we
present can be used for either application.
Applying the terminology of texture mapping, the cube-

face image is called the texture, with coordinates u and v.
The output picture is called the screen, with coordinates x
and y. Some methods for texture filtering are listed in
Table 1, classified according to kernel shape. The most
important features of a filter are the generality of its
shape, which determines, quality, and the number of
samples that must be accessed and the cost of each
access, which determine speed.

High-quality filters such as those by Catmull,'0 Blinn
et al.,1! Feibush et al.,'2 and Gangnet et al.13 operate on
arbitrary quadrilaterals or ellipses. Their computational
cost is proportional to texture area, so the cost can be
very high when large texture areas map to small screen
areas.

Fast filters such as those by Dungan et al.,8 Williams,4
Crow,'5 and Perlin'6 have a constant cost per screen pixel,
but are limited to orthogonally oriented squares, rec-
tangles, or ellipses, so they cannot filter elongated diagonal
areas accurately. This limited shape control causes either
aliasing or blurring of the texture. These "constant-cost"
filters also require extra time and memory to preintegrate
or prefilter the texture. Also, when the texture changes
from frame to frame, as it does in our method of
Omnimax frame creation, the cost per screen pixel (in-
cluding setup time) is not constant, but includes a term
proportional to texture area.

In general, the constant-cost filters are most desirable
for static textures with mappings that compress large
areas to small. Since the texture areas corresponding to
each screen pixel are small in our application (typically
nine to 16 pixels), an efficient, high-quality filter may be
nearly as fast as a constant-cost filter in this case.

Elliptical weighted average filter
We developed the elliptical weighted average (EWA)

filter to attain more efficient, high-quality filtering. The
filter area is an arbitrarily oriented ellipse, as in the filters
by Feibush et al.2 and Gangnet et al!.3 These two methods
require every texture sample point to be mapped to or
from screen space for weighting by the circular kernel
residing in screen space. To avoid this cost, EWA distorts
the circular screen space kernel into an ellipse in texture
space, so texture weighting can be done more directly.
This is similar to the method used by Blinn et al., who
distorted a screen square into a texture parallelogram'l
The radial cross section of the kernel is controlled by a

weight lookup table, so it can be any function. Like other
high-quality filters, EWA's cost is proportional to the
texture space area. However, because it avoids mapping
each texture pixel between screen space and texture
space, it is faster than filters of similar quality.
Under the perspective transformation, a circular screen

space pixel will normally map to an elliptical texture
space area, assuming local planarity of the surface (this
approximation breaks down near vanishing points, where
the circles can map to parabolas or hyperbolas). Point-in-
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ellipse testing can be done with one function evaluation
(this is faster than point-in-quadrilateral testing, which
requires substitution into four line equations). The func-
tion for this test is a quadratic in the texture coordinates
u and v:

Q(u,v) = Au2 + Buv+ Cv2

where u = 0, v = 0 is the center of the ellipse. This
function is an elliptical paraboloid. Points inside the
ellipse satisfy Q (u,v) < Ffor some threshold F. In texture
space the contours of Q are concentric ellipses (Figure 8),
but when mapped to screen space, they are nearly circu-
lar. Since Q is parabolic it is proportional to r2, where r is
the distance from the center of a pixel in screen space.
This radius r is just the parameter needed when indexing
a kernel, so Q can serve two purposes: inclusion testing
and kernel indexing.
The kernel f(r) is stored in a weight lookup table,

WTAB. Rather than index WTAB by r, which would
necessitate the calculation of r =V at each pixel, we
define

WTAB[Q]=f( \fQ)
so that the array can be indexed directly by Q.
Warping a lookup table for computational efficiency is

a useful trick that has been applied by others3"7 A good
kernel to use is the Gaussian f(r) = e-ar, shown in Figure
9, for which WTAB[Q] = e-aQ. The Gaussian is preferred
to the theoretically optimal sinc kernel because it decays
much more quickly. By properly scaling A, B, C, and F, the
length of the WTAB array can be controlled to minimize
quantization artifacts (several thousand entries have
proven sufficient). The parameters F and a can be tuned
to adjust the filter cutoff radius and the degree of pixel
overlap.
To evaluate Q efficiently, we employ the method of

finite differences. Since Q is quadratic, two additions
suffice to update Q from one pixel to the next? The
following pseudocode implements the EWA filter for
monochrome pictures (it is easily modified for color).
Integer variables are lowercase; floating-point variables
are uppercase.

1* Let texture[v,uJ be a 2-dimensional array holding texture *1
< Compute texture space ellipse center (UO,VO)

from screen coordinates (x,y) >

. Compute (Ux,Vx) au av and (Uy,Vy) =
ai atax, ax J ay..]

/* Now find ellipse corresponding to a circular pixel: */
A - Vx*Vx+Vy*Vy
B - -2.*(Ux*Vx+Uy*Vy)
C - UX*UX+Uy*Uy
F - Ux*Vy-Uy*Vx
F - F*F
< scale A, B, C, and F equally so that F - WTAB length >

/* Ellipse is AU2+BUV+CV2=F, where U=u-UO, V=v-VO *1

EWA(UO,VO,A,B,C,F)

begin
< Find bounding box around ellipse: ul.u.u2, vl.v.v2 >
NUM = 0.
DEN - 0.
DDQ = 2.*A
U = ul-UO
1* scan the box */
for v-vl to v2 do begin
V = v-VO
DQ = A*(2.*U+l.)+B*V /* =Q(U+I,V)-Q(U,V) *1
Q = (C*V+B*U)*V+A*U*U
for u=ul to u2 do begin

1* ignore pixel if Q out of range *1
if Q<F then begin
WEIGHT = WTAB[floor(Q)]
1* read and weight texture pixel */
NUM - NUM+WEIGHT*texture[v,u]
/* DEN is denominator (for normalization) */
DEN = DEN+WEIGHT

end
Q = Q+DQ
DQ = DQ+DDQ

end
end
return(NUM/DEN)

end

This implementation can be optimized further by re-
moving redundant calculations from the v loop and, with
proper checking, by using integer variables throughout.
The EWA filter computes the weighted average of

elliptical areas incrementally, requiring one floating-point
multiply, four floating-point adds, one integerization, and
one table lookup per texture pixel. Blinn et al.'s method,
which is the most similar to EWA, appears to have

Figure 8. Contours of elliptical paraboloid Q and box
around Q = F. Dots are centers of texture space pixels.
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Figure 9. Gaussian kernel e-'.

Figure 10. Omnimax frame from Inside a Quark, an
animation cycle by Ned Greene from The Magic Egg. The
vines trace the edges of a diamond lattice and the anima-
tion depicts uniform motion down a corridor In this
lattice. Software by the authors, Jules Bloomenthal, and
Lance Williams.

comparable speed but inferior quality, based on the very
brief description in their paper." The texture filters by
Feibush et al.'2 and Gangnet et al.'3 have the same quality
as EWA but require each sample point to be mapped
between screen space and texture space, an operation
requiring at least one division and two multiplications,
even when done incrementally.8 Based on this analysis
the EWA filter appears to be about twice as fast as the
other methods of similar quality.

Figure 11. Omnimax frame from Revenge of the Ant,
animation of a mechanical ant by Dick Lundin from The
Magic Egg. In this 12-second sequence the ant climbs out
of the "anthill" and charges the camera. Terrain modeling
by Lance Williams and Paul P. Xander.

Areas for future work
The mapping program to create an Omnimax projec-

tion from a cube projection can easily be modified to
produce other nonlinear projections such as cylindrical
projections (the Mercator projection, for example), or a

picture of the environment as it would appear reflected in
a chrome ball. The projection formulas for these appli-
cations are derived easily. The cube faces required
depend on the projection-for example, all six are re-

quired to produce a chrome ball reflection.
Because the computational cost of EWA filtering is

proportional to texture space area, using it to map large
texture areas to small screen areas is very slow compared
to constant-cost filters. An untested method of dealing
with this problem is to use EWA (or some other high-
quality filter) on a prefiltered image pyramid.814 EWA
filtering would be performed on small elliptical areas at

the appropriate level in the image pyramid. Actually,
performing such filtering at two adjacent levels in the
image pyramid and interpolating the results, as in Wil-
liams,'4 would be preferable. In theory this hybrid ap-

proach offers the best of both worlds: high-quality filter-
ing at a constant, relatively low cost per pixel.
An unexplored approach to digital Omnimax distortion

is decomposition of the 2D mapping and filtering into two
passes of ID mapping and filtering"9 using least-squares
approximations30

Conclusions
This method is completely general in the sense that an

Omnimax projection can be produced of any scene that
can be rendered in perspective. Only a modest program-

ming effort is required-existing rendering programs

need not be modified, and the only new software is the
mapping program. All rendering can be done with existing
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efficient programs that exploit the linearity of the per-
spective transformation.
These techniques were used at NYIT to create two

sequences of animation for The Magic Egg, a compilation
of Omnimax animation sponsored by SIGGRAPH 84 and
produced by Garrick Films?'23 Figures 10 and 11 are
frames from these sequences. Cube faces were rendered
at a resolution of 1024 X 960; from these 1966 X 1436 X
24-bit Omnimax frames were made. The high resolution
requirements of the Omnimax format result in large data
volumes (up to 8.5M bytes per frame) and slow frame
generation. On a Digital Equipment Corp. VAX 11/780,
the four cube-face images needed for each Omnimax
frame took from one to six hours to create, followed by
mapping and filtering, which took one hour.
To date, about 20 minutes of computer-generated

Omnimax animation has been produced in raster format,
much of it rendered with ray tracing on supercomputers.
Our method provides an alternative to this brute-force
approach. U
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