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Space—Time Codes for High Data
Rate Wireless Communication:
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Absrrocri We consider the design of channel codes for im-
proving the data rate andi'or the reliability of communications
over fading channels using multiple transmit antennas. Data is
encoded by a channel code and the encoded data is split into
n streams that are simultaneously transmitted using 'H' transmit
antennas. The received signal at each receive antenna is a linear
superposition of the 'n transmitted signals perturbed by noise. We
derive performance criteria for designing such codes under the
assumption that the fading is slow and frequency nonselective.
Performance is shown to be determined by matrices constructed
from pairs of distinct code sequences. The minimum rank among
these matrices quantilies the divemigf gain, while the minimum
determinant of these matrices quantifies the coding gain. The
results are then extended to fast fading channels. The design
criteria are used to design trellis codes for high data rate wireless
communication. The encodingidecoding complexity of these codes
is comparable to trellis codes employed in practice over Gaussian
channels. The codes constructed here provide the best tradeoff
between data rate, diversity advantage, and trellis complexity.
Simulation results are provided for 4 and 8 PSK signal sets
with data rates of 2 and 3 bitsr'symbol, demonstrating excellent
performance that is within 2—3 dB of the outage capacity for these
channels using only 64 state encoders.

index Terms— Array processing, diversity, multiple transmit
antennas, space—time codes, wireless communications.

I. INTRODUCTION

A. Motivation

URRENT cellular standards support circuit data and fax

services at 9.6 kbt’s and a packet data mode is being

standardized. Recently, there has been growing interest in

providing a broad range of services including wire—line voice

quality and wireless data rates of about 64—128 kbfs (lSDN)

using the cellular (850—MHZ) and PCS (I .9—GHZ) spectra [2].

Rapid growth in mobile computing is inspiring many proposals

for even higher speed data services in the range of I44 1(be

(for microcellular wide—area high—mobility applications) and

up to 2 Mbts (for indoor applications) [1].

The majority of the providers of PCS services have further

decided to deploy standards that have been developed at

cellular frequencies such as CDMA (IS-95), TDMA (lS-S4i’lS-

136), and GSM (DCS—l900). This has led to considerable
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effort in developing techniques to provide the aforementioned

new services while maintaining some measure of backward

compatibility. Needless to say, the design of these techniques

is a challenging task.

Band—limited wireless channels are narrow pipes that do not

accommodate rapid flow of data. Deploying multiple transmit

and receive antennas broadens this data pipe. Information the-

ory [14], [35] provides measures of capacity, and the standard

approach to increasing data flow is linear processing at the
receiver [15], [44]. We will show that there is a substantial

benefit in merging signal processing at the receiver with

coding technique appropriate to multiple transmit antennas.

In particular, the focus of this work is to propose a solution

to the problem of designing a physical layer (channel coding,

modulation, diversity) that operate at bandwidth efficiencies

that are twice to four times as high as those of today’s systems

using multiple transmit antennas.

B. Diver‘sigr

Unlike the Gaussian channel, the wireless channel suffers

from attenuation due to destructive addition of multipaths in

the propagation media and due to interference from other users.

Severe attenuation makes it impossible for the receiver to

determine the transmitted signal unless some less—attenuated

replica of the transmitted signal is provided to the receiver.

This resource is called diversity and it is the single most

important contributor to reliable wireless communications.

Examples of diversity techniques are (but are not restricted to)

- Temporal Diversity: Channel coding in conjunction with

time interleaving is used. Thus replicas of the transmit-

ted signal are provided to the receiver in the form of

redundancy in temporal domain.

- Frequency Divemity: The fact that waves transmitted on

different frequencies induce different multipath structure

in the propagation media is exploited. Thus replicas of

the transmitted signal are provided to the receiver in the

fortn of redundancy in the frequency domain.

- Antenna Diversity: Spatially separated or differently po—

larized antennas are used. The replicas of transmitted

signal are provided to the receiver in the form of redun—

dancy in spatial domain. This can be provided with no

penalty in bandwidth efficiency.

When possible, cellular systems should be designed to encom-

pass all forrns of diversity to ensure adequate performance

OBIS—94489351000 © 1993 IEEE
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[26]. For instance, cellular systems typically use channel

coding in combination with time interleaving to obtain some

form of temporal diversity [28]. In TDMA systems, frequency

diversity is obtained using a nonlinear equalizer [4] when

multipath delays are a significant fraction of symbol interval.

In DSrCDMA, RAKE receivers are used to obtain frequency

diversity. Antenna diversity is typically used in the up-link

(mobile—to—base) direction to provide the link margin and

coehannel interference suppression [40]. This is necessary to

compensate for the low power transmission from mobiles.

Not all forms of diversity can be available at all times. For

example, in slow fading channels, temporal diversity is not an

option for delay-sensitive applications. When the delay spread

is small, frequency (multipath) diversity is not an option. In

macrocellular and mierocellular environments, respectively,

this implies that the data rates should be at least several

hundred thousand symbols per second and several million

symbols per second, respectively. While antenna diversity at

a base—station is used for reception today, antenna diversity

at a mobile handset is more difficult to implement because

of electromagnetic interaction of antenna elements on small

platforms and the expense of multiple down-conversion RF

paths. Furthermore, the channels corresponding to different
antennas are correlated, with the correlation factor determined

by the distance as well as the coupling between the antennas.

Typically, the second antenna is inside the mobile handset,

resulting in signal attenuation at the second antenna. This

can cause some loss in diversity benefit. All these factors

motivate the use of multiple antennas at the base-station for
transmission.

In this paper, we consider the joint design of coding,

modulation, transmit and receive diversity to provide high

performance. We can view our work as combined coding and

modulation for multi—input (multiple transmit antennas) multi—

output (multiple receive antennas) fading channels. There

is now a large body of work on coding and modulation

for single—inputimulti—output channels [5], [10], [ll], [29],

[30], [38], and [39], and a comparable literature on receive

diversity, array processing, and beamforming. In light of these

research activities, receive diversity is very well understood.

By contrast, transmit diversity is less well understood. We

begin by reviewing prior work on transmit diversity.

C. Historical Perspective on Transmit Diversity

Systems employing transmit fall into three general cate-

gories. These are

' schemes using feedback,

- those with feedforward or training information but no
feedback, and

' blind schemes.

The first category uses implicit or explicit feedback of

information from the receiver to the transmitter to configure

the transmitter. For instance, in time—division duplex systems

[16], the same antenna weights are used for reception and

transmission, so feedback is implicit in the appeal to channel

symmetry. These weights are chosen during reception to

maximize the signal-to-noise ratio (SNR), and during trans-
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mission to weight the amplitudes of the transmitted signals.

Explicit feedback includes switched diversity with feedback

[41] as well as techniques that use spatiotemporal—frequency

water pouring [27] based on the feedback of the channel

response. However, in practice, vehicle movements or inter-
ference causes a mismatch between the state of the channel

perceived by the transmitter and that perceived by receiver.

Transmit diversity schemes mentioned in the second cat—

egory use linear processing at the transmitter to spread the
information across the antennas. At the receiver, information

is obtained by either linear processing or maximum—likelihood

decoding techniques. Feedforward information is required to
estimate the channel from the transmitter to the receiver. These

estimates are used to compensate for the channel response

at the receiver. The first scheme of this type was proposed

by Wittneben [43] and it includes the delay diversity scheme

of Seshadri and Winters [32] as a special case. The linear

processing approach was also studied in [15] and [44]. It has

been shown in [42] that delay diversity schemes are indeed

optimal in providing diversity in the sense that the diversity

advantage experienced by an optimal receiver is equal to the
number of transmit antennas. We can view the linear filter as

a channel code that takes binary data and creates real-valued

output. It is shown that there is significant gain to be realized

by viewing this problem from a coding perspective rather than

purely from the signal processing point of view.

The third category does not require feedback or feedforward

information. Instead, it uses multiple transmit antennas com-

bined with channel coding to provide diversity. An example of

this approach is to combine phase sweeping transmitter diver-

sity of [18] with channel coding [19]. Here a small frequency

offset is introduced on one of the antennas to create fast fading.

An appropriately designed channel codeiinterleaver pair is

used to provide diversity benefit. Another scheme is to encode

information by a channel code and transmit the code symbols

using different antennas in an orthogonal manner. This can be

done either by frequency multiplexing [9], time multiplexing

[32], or by using orthogonal spreading sequences for different

antennas [3?]. A disadvantage of these schemes over the

previous two categories is the loss in bandwidth efficiency due

to the use of the channel code. Using appropriate coding, it is

possible to relax the orthogonality requirement needed in these

schemes and obtain the diversity as well as coding advantage

ofl'er without sacrificing bandwidth. This is possible when the

whole system is viewed as a multiple—inputfmultiple—output

system and suitable codes are used.

Information-theoretic aspects of transmit diversity were

addressed in [14], [25], and [35]. We believe that Telatar

[35] was the first to obtain expressions for capacity and

error exponents for multiple transmit antenna system in the

presence of Gaussian noise. Here, capacity is derived under the

assumption that fading is independent from one channel use

to the other. At about the same time, Foschini and Gans [14]

derived the outage capacity under the assumption that fading

is quasistatic; i.e., constant over a long period of time, and

then changes in an independent manner. A particular layered

space—time architecture was shown to have the potential to

achieve a substantial fraction of capacity. A major conclusion 
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Fig. l. The block diagram of a delayr diversity transmitter.

of these works is that the capacity of a multi-antenna systems

far exceeds that of a single-antenna system. In particular,

the capacity grows at least linearly with the number of

transmit antennas as long as the number of receive antennas

is greater than or equal to the number of transmit antennas.

A comprehensive information—theoretic treatment for many of

the transmit diversity schemes that have been studied before

is presented by Narula, Trott, and Womell [25].

D. Space—lime Codes

We consider the delay diversity scheme as proposed by

Wittneben [44]. This scheme transmits the same information

from both antennas simultaneously but with a delay of one

symbol interval. We can view this as a special case of the

arrangement in Fig. l, where the information is encoded by

a channel code (here the channel code is a repetition code of

length 2). The output of the repetition code is then split into

two parallel data streams which are transmitted with a symbol

delay between them. Note that there is no bandwidth penalty

due to the use of the repetition code, since two output—channel

symbols are transmitted at each interval.

It was shown in [32], via simulations, that the effect of

this technique is to change a narrowband purely frequency—

nonselective fading channel into a frequency-selective fad-

ing channel. Simulation results further demonstrated that a

maximum—likelihood sequence estimator at the receiver is

capable of providing dual branch diversity.
When viewed in this framework, it is natural to ask if

it is possible to choose a channel code that is better than
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Modulator

the R = 1/2 repetition code in order to provide improved

performance while maintaining the same transmission rate?

We answer the above question affirmatively and propose a

new class of codes for this application referred to as the Space—

Ylme Codes. The restriction imposed by the delay element in

the transmitter is first removed. Then performance criteria are

established for code design assuming that the fading from each

transmit antenna to each receive antenna is Rayleigh or Rician.

It is shown that the delay diversity scheme of Seshadri and

Winters l32] is a specific case of space—time coding.

In Section II, we derive performance criteria for design—

ing codcs. For quasistatic flat Rayleigh or Rician channels,

performance is shown to be determined by the diversity

advantage quantified by the rank of certain matrices and by

the coding advantage that is quantified by the determinants of

these matrices. These matrices are constructed from pairs of

distinct channel codewords. For rapidly changing ilat Rayleigh

channels, performance is shown to be determined by the

diversity advantage quantified by the generalized Hamming

distance of certain sequences and by the coding advantage that

is quantified by the generalized product distance of these se-

quences. These sequences are constructed from pairs of distinct

codewords. In Section III, this performance criterion is used to

design trellis codes for high data rate wireless communication.

We design coded modulation schemes based on 4-PSK, 8-PSK,

and lfi-QAM that perform extremely well and can operate

within 2—3 dB of the outage capacity derived by Foschini and

Gans [14]. For a given data rate, we compute the minimal

constraint length, the trellis complexity required to achieve a

certain diversity advantage, and we establish an upper bound 
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Fig. 2. The block diagram of the transmitter.

on the data rate as a functiori of the constellation size and

diversity advantage. For a given diversity, we provide explicit
constructions of trellis codes that achieve the minimum trellis

complexity as well as the maximum data rate. Then, we revisit

delay diversity and show that some of the codes constructed

before have equivalent delay diversity representations. This

section also includes multilevel constructions which provide an

efficient way to construct and decode codes when the number

of antennas is large (4—8). It is further shown that it is not

possible for block-coded modulation schemes to outperform

trellis codes constructed here at a given diversity advantage

and data rate. Simulation results for many of the codes that

we have constructed and comparisons to outage capacity for

these channels are also presented. We then consider design

of space—time codes that guarantee a diversity advantage of

“-"1 when there is no mobility and a diversity advantage of

1'2 2 'f'l when the channel is fast-fading. ln constructing these

codes, we combine the design criteria for rapidly changing

flat Rayleigh channels with that of quasistatic flat Rayleigh

channels to arrive at a hybrid criteria. We refer to these

codes as smart greedy codes which also stands for low-rate

multidimensional spaccin'me codes for both slow and rapid

fading channels. We provide simulation results indicating that

these codes are ideal for increasing the frequency reuse factor

under a variety of mobility conditions. Some conclusions are
made in Section IV.

[1. PERFORMANCE CRITERIA

A. The System Model

We consider a mobile communication system where the

base—station is equipped with n. antennas and the mobile is

equipped with m antennas. Data is encoded by the channel
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Modulator

encoder, the encoded data goes through a serial—to~parallel
converter, and is divided into n streams of data. Each stream

of data is used as the input to a pulse shaper. The output

of each shaper is then modulated. At each time slot t, the

output of modulator i is a signal c; that is transmitted using

transmit antenna (Ta: antenna) i for l S 'i S n. We emphasize

that the to signals are transmitted simultaneously each from a

different transmit antenna and that all these signals have the

same transmission period T. The signal at each receive antenna

is a noisy superposition of the n, transmitted signals corrupted

by Rayleigh or Rician fading (see Fig. 2). We assume that the

elements of the signal constellation are contracted by a factor

of \/E_s chosen so that the average energy of the constellation
is 1.

At the receiver, the demodulator computes a decision statis-

tic based on the received signals arriving at each receive

antenna 1 S j S m. The signal it}? received by antenna j
at time t is given by

in.

d“: =2 tY-:,jCi\/E_s+7fi1": l.
(1)

where the noise 7],} at time t is modeled as independent
samples of a zero-mean complex Gaussian random variable

with variance N0/2 per dimension. The coefficient (n, j is the
path gain from transmit antenna i to receive antenna j. It is

assumed that these path gains are constant during a frame and

vary from one frame to another (quasistatic flat fading).

B. The Case rgfltrdependem Fade (.‘oeflicrems

In this subsection, we assmne that the coefficients (a, J- are
first modeled as independent samples of complex Gaussian

random variables with possibly nonzero complex mean Eng: _.,-
and variance 0.5 per dimension. This is equivalent to the 
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assumption that signals transmitted from ditferent antennas

undergo independent fades.

We shall derive a design criterion for constructing codes

under this transmission scenario. We begin by establishing

the notation and by reviewing the results from linear algebra

that we will employ. This notation will also be used in the

sequel to this paper [34]. Let a: = ($1, .133, ---,.1?;,.) and

y : (:91, :92, - - - , yr.) be complex vectors in the its—dimensional

complex space 03". The inner product of a: and y is given by
.I‘.

.1: - y : Z my,1:].

where 1—,- denotes the complex conjugate of 92;. For any matrix

A, let A‘ denote the Hermitian (transpose conjugate) of A.

Recall from linear algebra that an n. X 11. matrix A is Hermiti‘an

if A : A”. The matrix A is nonnegative dyinire if ach’“ 2 0

for any l x n complex vector 3:. An 11. x n, matrix V is unitary

if VV‘ 2 I where I is the identity matrix. An 'n. x 1 matrix B

is a square root of an n X 11. matrix A if 88* = A. We shall

make use of the following results from linear algebra [20].

- An eigenvector 1.: of an “H. x 31 matrix A corresponding to

eigenvalue A is a 1 x n. vector of unit length such that

11A : A1: for some complex number A. The vector space

spanned by the eigenvectors of A corresponding to the

eigenvalue zero has dimension n — a", where 1' is the rank
of A.

' Any matrix A with a square root .8 is nonnegative
definite.

- For any nonnegativc-definite Hennitian matrix A, there

exists a lower triangular square matrix B such that
BB‘ 2 A.

' Given a Hermitian matrix A, the eigenvectors of A span

it”, the complex space of n dimensions and it is easy

to construct an orthonormal basis of III” consisting of

eigenvectors A. Furthermore, there exists a unitary matrix

V and a real diagonal matrix D such that VAV“ = D.

The rows of V are an orthonormal basis of {[3" given

by eigenvectors of A. The diagonal elements of D are

the eigenvalues Ar, 1‘ : l, 2, n, of A counting

multiplicities.

' The eigenvalues of a Hermitian matrix are real.

- The eigenvalues of a nennegalive-dcfinile Hermitian ma-

trix are nonnegative.

Let us assume that each element of the signal constellation

is contracted by a scale factor JET chosen so that the average
energy of the constellation elements is 1. Thus our design

criterion is not constellation—dependent and applies equally
well to 4—PSK. 8—PSK, and lé—QAM.

We consider the probability that a maximum-likelihood

receiver decides erroneously in favor of a signal

B2818?” Effie;- “(33---(:31(332-~c}’

assuming that

(3:616?---c‘fc%cE---c§--«lief-“c?

was transmitted.
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Assuming ideal channel state information (CSI), the proba-

bility of transmitting C and deciding in favor ofe at the decoder

is well approximated by

P0: —J cluigj, 1' : 1,2, ---, n, j : 1,2, -, m)

5 exp(—d2[c, e)E,/4No) (2)

where RIO/2 is the noise variance per dimension and

Ti?- 2

«2m. «J= :2 i«m. —:«J .3.
j=1 i=1. i=1  

This is just the standard approximation to the Gaussian tail
function.

Setting fl,- : (cal _,-, « « -, an 4.), we rewrite (3) as
“I N.

 

ZZZfltJn‘t.) flitX—Cr—(3:)
-=1 i=1 1.":—1

After simple manipulations, we observe that

(£203, 3) = Z 9,-1in (4)
i=1

where Am 21:? .13.;f and 9:?-— (CP— (31, cg—cég, ref—c?)
for 1 S p, q S n. Thus

P(c—>e|a,z,j,il= 1, 2, ---, n,_-j= l, 2, m)

S H exp[—QjA(c, (3)9: 55/4530) (5)
i=1

where
t'

W: Mali—ct)-i=1

Since A(c, e) is Hermitian, there exists a unitary matrix V

and a real diagonal matrix D such that VA(c_._ e)V* = D. The

rows {111, 112, - - - , 0”} of V are a complete orthonormal basis
of CD” given by eigenvectors of A. Furthermore, the diagonal

elements of D are the eigenvalues hi. i : l_._ 2, ---, n of .4

counting multiplicities. By construction, the matrix

ci—ci cfi—cé ell—Ci
cf—cf cfi—cg cf—cf

B(c. e) 2 cf — c3? c3 — cg '. : c? — c? (6)

(5’1" — cf (33 — (:‘2‘ . . . . . . (if — cf

is clearly a square root of A(c, 6). Thus the eigenvalues of

A(c. e) are nonnegative real numbers.

Next, we express 032(c, e) in terms of the eigenvalues of
the matrix A(6, 6).

Let ([31,), (in) = Q-V“, then

ZAI/J'ul

Next, recall that (v.33- are samples of a complex Gaussian

random variable with mean Ear: j. Let

Q-A(e, eJQ‘l: (7)

 

     
 

 

K}- = (Efll’j, Ettg’j. ‘ ' ' , ERR-J).
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Since V is unitary, {111, v2, 11:1} is an orthonormal

basis of (13” and flit-J are independent complex Gaussian

random variables with variance 0.5 per dimension and mean

If3 Iii-5.. Let K71“; = lEfi-fijlg = lIf‘I'a I'Uilg. Thus Ifitdi are
independent Rician distributions with pdf

Ki. .‘iflfllzlfiid | va'H-i)

for |;'5‘,-__‘J-| 2 0, where 100) is the zero-order modified Bessci
fiinction of the first kind.

Thus to compute an upper bound on the average probability

of error, we simply average

Idlthnl) = 21th, .a'l expi—lfi-é-JIZ —

YT!

H oxp(—(E3/4No) Z AilfihiP)i=1i=1

with respect to independent Rician distributions of |fi._.-_?j| to
arrive at

    
 

1 ragga-
P(C—>e)<H Hl—‘ESAj-exp —T50

J—l :1 + 41“) 4N0
(3)

We next examine some special cases.

The Case afRayleigh Fading: In this case. Em; _.,- = 0 and

as afortiori Km 2 0 for all i and j. Then the inequality (8)
can be written as

”I

1

n— (9}

Hu+nanm)i=1

resag

Let 7' denote the rank of matrix A, then the kernel of A has

dimension n — -r and exactly in — r eigenvalues of A are zero.

Say the nonzero eigenvalues of A are A1, A2, , A,., then it

follows from inequality (9) that

Ptc—AeJS (H A) (EH/worm. (10)i=1

Thus a diversity advantage of mr and a coding advantage

of (Al/\g - - - ATP/r is achieved. Recall that Jim? - - - A, is the
absolute value of the sum of determinants of all the principal

r x r cofactors of A. Moreover, it is easy to see that the ranks

of A(c, e). and B(c_._ e) are equal.

Remark: We note that the diversity advantage is the power

of SNR in the denominator of the expression for the pairwise

error probability derived above. The coding advantage is an

approximate measure of the gain over an uncoded system

operating with the same diversity advantage.

Thus from the above analysis, we arrive at the following

design criterion.
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Design Criteriafbr Rayieigh Space—Iime Codes:
- The Rank Criterion: In order to achieve the maximum

diversity nm. the matrix B(c, c) has to be full rank for

any codewords c and e. [f B[c, c) has minimum rank
r over the set of two tuples of distinct codewords, then

a diversity of rm is achieved. This criterion was also

derived in [15].

- The Determinant Criterion: Suppose that a diversity ben—

efit of rm is our target. The minimum of rth roots of the

sum of determinants of all r x r principal cofactors of

A(c, e) = 8(6, e)B”‘ (c, 6) taken over all pairs ofdistinct
codewords e and 6 corresponds to the coding advantage,

where r is the rank of A(e, e). Special attention in the

design must be paid to this quantity for any codewords e

and c. The design target is making this sum as large as

possible. If a diversity of nm is the design target, then

the minimum of the determinant of A(c_._ e) taken over all
pairs of distinct codewords e and 6 must be maximized.

We next study the behavior of the right—hand side of inequality

(8) for large signal-to-noise ratios. At sufficiently high signal-

to-noise ratios, one can approximate the right-hand side of

inequality (8) by
—?7?-

P(c—>C)S (4i:0)— (H A?) H H aim—Km) 'i=1

 

1:1 i=1.

(11)

Thus a diversity of rm. and a coding advantage of

‘ l/r'm

(Al/\g - - -/\,.)1/" H H (mm—Km)
j=l {:1

is achieved. Thus the following design criteria is valid for the

Rician space—time codes for large signal-to-noise ratios.

Design Criteria for The Rieian Space—Time Codes:

- The Rank Criterion: This criterion is the same as that

given for the Rayleigh channel.

- The Coding Advantage Criterion: Let A02, e) denote the
sum of all the determinants of r x r principal cofactors

of A(c._ e), where r is the rank of A(c, e). The minimum
of the products

M“:(3)1“ Hi: 493')
l/r'm.

taken over distinct codewords c and e has to be maxi-

mized.

Note that one could still use the coding advantage

criterion, since the performance will be at least as good

as the right—hand side of inequality (9).

C. Ihe Case ofDependent Fade Coejjfieients

In this subsection, we assume that the coefficients (12,; J- are
samples of possibly dependent zero—mean complex Gaussian

random variables having variance 0.5 per dimension. This is

the Rayleigh fading, but the extension to the Rician case is

straightforward.  
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To this end, we consider the mm X ma. matrix

./1(c, e) o U u

0 Abs, e) 0 0

Y(c, e) = 0 0 A(e, e) E U

a a 0' o Apia
where 0 denotes the all-zero n. X 'n. matrix. If

S2 : (£21, Sim)

,then (S) can be written as

P(c—+c|cr5,j.i=1.2. H-._n._j=l,2,---,rrt)

gmm4wmqmanmynm

Let 8 : EQ*Q denote the correlation matrix of Q. We assume

that E) is full rank. The matrix (-J, being a nonnegalive-delinitc

square Hermitian matrix, has a square root C which is an

rim x rim lower triangular matrix. The diagonal elements of

(-3! are unity, so that the rows of C are of length one. Let

V = {BK/“)4, then it is easy to see that the components of
.v are uncorrelated complex Gaussian random variables with

variance 0.5 per dimension. The mean of the components of

V can be easily computed from the mean of a“ and the

matrix C. In particular, if the m, J- have mean zero, so do the
components of :2.

By (12), we arrive at the conclusion that

mcaamds=1g,u.mj=tz,u,m)

S exI)(—r/C*Y(c, QC}? Es/4Nn). (13)

We can now follow the same argument as in the case of

independent fades with .r'1(e. 6) replaced by C*Y(c, (5)0. It

follows that the rank of C’“Y(c. e)C has to be maximized.
Since C is full rank, this amounts to maximizing

rank [Y(e, (2)] = in rank [A(c, 6)].

Thus the rank criterion given for the independent fade coeffi-
cients holds in this case as well.

Since (xi, J- have zero mean, so do the components of v. Thus
by a similar argument to that of the case of independent fade

coefl'icients, we arrive at the conclusion that the determinant

of C‘*1"(c, e)C must be maximized. This equals to

det. ((7)) det (1"(c, 6)) = det (6)[det (A(c, c))]’”.

In this light the determinant criterion given in the case of

independent fade coefficients holds as well. Furthennore. by

comparing this case to the case of independent fade coeffi-

cients, it is observed that a penalty of [IO/rim) lo“510(det(9))
decibels in the coding advantage occurs This approximately

quantifies the loss due to dependence.

It follows from a similar argument that the rank criterion is

also valid for the Rician case and that any code designed for

the Rayleigh channel performs well for the Rician channel

even if the fade coefficients are dependent. To obtain the

coding advantage criterion, one has to compute the mean of

the components of V and apply the coding advantage criterion

given in the case of independent Rician fade coefficients. This

is a straightforward but tedious computation.

000007
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D. The Case quupfd Fading

When the fading is rapid, we model the channel by the

mathematical equation
H

d:- = Zt.r.,,J-(t)r:: m + of.'f-=l
(14)

The coefficients (rm-(t) for t : 1,2, i, i = l, 2, m, n,
j : 1, 2, m are modeled as independent samples of

a complex Gaussian random variable with mean zero and

variance 0.5 per dimension. This assumption corresponds to

very fast Rayleigh fading but the generalization to Rician

fading is straightforward. Also, iii are samples of independent
zero-mean complex Gaussian random variables with variance

Rio/2 per dimension.
As in previous subsections, we assume that the coefficients

a,,j(t)fort= 1, 2, f,i=1, 2, n,j= l, 2, ---, m
are known to the decoder. The probability of transmitting

a: ii 1‘125

and deciding in favor of
J ')

(321$er «firing (:3— tie;- (if

at the maximum-likelihood decoder is well approximated by

PkfidmfiflLLflSmMfiflqdflMM)

where

r12(c, e) =   
This is just the standard approximation to the Gaussian tail
function. Let

9:0?) = (Hedi): (mitt): ". Charm)

and C(t) denote the n. x n. matrix with the element at pth row

and qth column equal to (cf —e{’)(c—;‘ (sq). Then it is easy
to see that

1'”-

EZEZQW W
y==1tl

d202, e):

The matrix C(t) is Hermitian, thus there exist a unitary

matrix V0?) and a diagonal matrix DH) such that C(t) =

V(t)D(t)V*(t) [20]. The diagonal elements of DOE), denoted

here by 13,56), 1 S i S n, are the eigenvalues of C(t) count—

ing multiplicities. Since C(t) is Hermitian, these eigenvalues
are real numbers. Let

Wadi): remit» = Qi'ifJVit)

then f3,-_,j(t) for i = l, 2, n,j : l, 2, m, t :
l, 2, ---, i are independent complex Gaussian variables with

mean zero and variance 0.5 per dimension and

      
 

m(n0(txrp)— §:Ui,n-9Hoy
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By combining this with (3) and (15) and averaging with respect

to the Rayleigh distribution of |fi,-_‘J-(t)l, we arrive at

P(c—> e) < H (1 +D“(t)4ii:n )_m.

We next examine the matrix (70?). The columns of 005) are

all different multiples of

ci—ez=(ci—ciaci—ci.

Thus C(t) has rank 1 if def-“e? 75 cite? ”-0.? and rank
zero otherwise. It follows that n — 1 elements in the list

Dllfl)‘ 1322001" ‘ D11?1(t)

are zeros and the Only possibly nonzero element in this list is

|ci — ei|2. By ([5), we can now conclude that

E3 —'.'N.

1" ((2—1 e|rr,- .J.(t) i, j, t)_< H (1+ |e, —e,|‘4NU) .i=1

(16)

Let 12(0, 3) denote the set of time instances 1 5 t S i such that

let — oil 79 0 and let |l}(c, e)| denote the number of elements

of V(c._ e). Then it follows from (l6) that

 

(15)

:0? - C?)-

 

EH

1
 

ace e) 5 (let — am,
(17)

It follows that a diversity of trill/(c, e)| is achieved. Exam-

ining the coeflicient of (E,/4Ng)‘mvlcie) leads to a design
criterion.

Design Criteria fin- Rapidfading Rayieigh Channeis:

- The Distance Criterion: In order to achieve the diversity

em in a rapid fading environment, for any two codewords

c and e the strings do? we? and eief He? must be
different at least for 11 values of 1 S t S i.

s The Product Criterion: Let V(c, 6) denote the set of time

instances 1 S t S i such that eierf-- fi etef- we"
and let R

= 2 [Ci — (filg.i=1

Then to achieve the most coding advantage in a rapid

fading environment, the minimum of the products

H
t. E Vt: c, 8)

taken over distinct codewords e and 6 must be maximized.

l6: —eil2

l0: ‘tiil2

Ill. CODE CONSTRUCTION

A. Fundamentai Limits on Outage Capacity

Let us consider a communication system employing a trans—

mit and one receive antennas where the fading is quasistatic

and flat. Intuition suggests that, there must come a point

where adding more transmit antennas will not make much
of a difference and this can be seen in the mathematics

of outage capacity. Foschini and Gans [l4] prove that the

capacity of the aforementioned system is a random variable

 -o
1

Fig. 3. 4-PSK and 8-PSK constellations.

variable formed by summing the squares of 2?: independent
Gaussian random variables with mean zero and variance

one. This means that by the strong law of large number

Xgn/Qn —r 1 in distribution. Practically speaking, for n. : 4,
xg,,/2n : 1 and the capacity is the familiar Gaussian capacity
log-2(1 + SNR) per complex dimension. Thus in the presence

of one receive antenna. little can be gained in terms of

outage capacity by using more than four transmit antennas. A

similar argument shows that if there are two receive antennas,

almost all the capacity increase can be obtained using a = 6
transmit antennas. These observations also follow from the

capacity plots given by Telatar [35]. This paper considers

communication systems with at most two receive antennas,
so we focus on the case that the number of transmit antennas

is less than six. If more transmit and receive antennas are

used, we can use the coding methods given in [33], where

array processing and space—time coding are combined.

Our focus is mostly on low-delay applications. We thus only

allow coding inside a frame of data as coding across different

frames introduces delay. This emphasis on the method of

coding motivated the choice of outage capacity (rather than

Shannon‘s capacity) as the measure of achievable perfor-
mance.

3. Code Constractianfor Quasi-Static Fiat Fading Channels

We proceed to use the criteria derived in the previous

section to design trellis codes for a wireless communication

system that employs n transmit antennas and (optional) receive

antenna diversity where the channel is quasistatic {lat fading

channel. The encoding for these trellis codes is obvious,

with the exception that at the beginning and the end of each

frame, the encoder is required to be in the zero state. At

each time t, depending on the state of the encoder and the

input bits a ltransition branch is chosen. If the label of this
branch is (1th ”13?, then transmit antenna 3' is used to

send constellation symbols (ii: i : 1, 2, n. and all these
transmissions are simultaneous.

Let us consider the 4—PSK and 8-PSK constellations as

given in Fig. 3. In Figs. 4—6, we provide 4—PSK codes for

transmission of 2 bisin using two transmit antennas. As-

suming, one receive antenna, these codes provide a diversity

advantage of two. Similarly, in Figs. 7—9, we provide 8-PSK

codes for transmission of 3 bisin using two transmit antennas.

Assuming, one receive antenna, these codes provide a diversity

advantage of two. We did not include the 64-state 4-PSK and

8— PSK codes for brevity of presentation

We next consider decoding of these codes. Assuming

ideal channel state information, the path gains (1:,- J-, i. =

 

     
 

 

of the form log2(1 + (xgn/BnfiNR), where in is a random 1, 2,'1,1j = 1, 2,. , m. are known to the decoder.
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m In In :11 «1.111111111111115111111?

$|_‘3_$I__Vl__||_$6j7.‘l]

1:111 12 I! 22.112423313121121 mi .
1.11;41,. - 47.\.1(.?!.16J1J|IJ|.?] "’

211 2! 22 2] «munqtmjigllgfl
13.111.12.1n.11.12.1.1.u

It .1l 1} 3‘!
 

fitfiTfllfii.fi}.t\1Mfi‘l

Fig. 4. 2—spaCc—timc code. 4—PSK. 4 states. 2 bfssz. ".931 .12..“ . H .H. Ht

l.‘.tfi.IT.lU.| “1.1.1.1!    mmmmmamm
III. III .02. II3 INLIJIJRJB
II}. I I. 12. I3 12.!3.l(|.|1 11.m_11_12_11_u_11_u
211. 21. 22.21 20.21.2123
111. 3 I. .12. 1.1 32.33.311.31 m”'”’”""-"’“‘““‘
22. 23. 2:). 2| 10-11-3333 suz.u.sa.st.%n.m
'32. 33. 3”, 3| 32.33.3{JJI
112. 11:1. {It}. {I} INLIIIJDJB 22.113125261221131

12. I], II]. II (:ifi-(tflli n_11.?s_1n.71_‘m.21.12
II). I I. Ill 3 44.191631313113143

22.23.211.21 _ _
31.31.3133 Flg. 8. 2-space—tlme code, 8-PSK, 16 states. 3 bfsa'Hz.
22.23.211.21
ILSIJIJJ

“2'01“”: I lHMII .02fl3,lH.ltS.(lt1.EJT
"1.11.1113 11.52.11.545. 5.51.50

Fig. 5. 2—spacc—timc codes. 4—PSK, 8 and I6 slates. 2 Warm. m-‘-“-:’5-"‘~’7-2“-“UJIJSJIIJTJUJ 1.12
4445.46.17.40.“ .414]
l5.lfi.l T. HI. I l ,IL‘J 3. I4

[n.tltjlll'fl Mblhflft l.E1'1.1‘13.M.hfi

   
11.12.11.111 .12.m.11.12.11.14.15.11.
11.21.111.21 31.311.31.12.11.14.15.1h
-‘-‘--‘"—-‘l-‘3 1111.111.02.:13.1141n.1111.n'1
111.21.2221 51.52.53.54555115151111.111.11.11
mmoom 22.21.24. .. 11.21.211.21‘ I . .n. . . 1v - . 11.143531131111311)

. I01112 . *‘Ig’gofzfl' fl .“NJ-“35'- - A}; "113’! u.4s.4a.¢7.411.-11.42.4.1
. .. 51"»;1111111.an * " Ii.l6.l'.|'.!t}.ll.t2.l3.'|4H.I2..l].lfl

22.21.111.21 M,r.1.w.ni.62.n.l..m.ss
11.111.11.12 22.231425252121121
111.21.22.21 '11.14.'15.1r1.11.10.71 .17.H 13 1" 10

112.03.00.01 44.111111147411141 124
22.23.211.21 11.1n.11.1o.11.12.11.14
31.341.11.12 511.111.110.11 1.112.113.5«5
01.111.112.111 211.10.11.1233343531,
11.113.11.12 1100111201 04111 nun02.0.1le . . . . ., .
11.111.11.12 5152.53.54.5551151511
20.21.2233 5|.5?.53.fi4.fi.fib..‘s'}.5[l
31‘“ 1.110 22.23.24.25.21.21.211.2111.I2.l1.10 . .
211312113: 1134.15.15.111113132
31.30.“.13 44.45.46.414“! I .4143
111.111.021.03 15.15.11.1u.11.12.11.14

11.12.33.311 (111.67.610.13 1.112.111.1116:mmmm
13.111.11.12 11.103132313111111
211.11.22.21 110.111.112.031111131111111

Fig. 6. 2-spaee—time code. 4-PSK, 32 states, 2 bIsIl-lz. 1" ig. 9. 2-space—time code, 8-PSK, 32 states. 3 blsfl-Iz.

m.m.m.m.m.nm.m ASb-ljl‘lllng that 1. 15 the tecewed stgnal at receive antenna Jr
at tune t. the branch metrtc for a trans1t1on labeled (1% 95 - - '91"
is given by

50. SI. 52. 51. $11. 55. in. ST

20. 2|. 2!. 2.1. $101711)?
m.‘11.'.?2.‘tl. 1'4. 75. in. ‘n

m n 2
In. 41. «2.4.1. 44. 4.1.4.1. n j :1.
m. 11. 12. 1:1. 1:. 15. la. 11 E ’t — E (1'...th

mfilJSlblfl». (111111.117 3:1 1:1 
m-‘h-‘Zn‘wvfi-W-‘T The Viterbi algorithm is then used to compute the path

Fig. '1'. 2-spacc—timc code. H-PSK. 8 states. 3 bistHz. with the lowest accumulated metric. In the absence of ideal 
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FrameErrorProbabliltty
- — — dstatas

' X E! states

"----1Eistates

.3! 32 states

— 64 states

  
 

6.5 3’

SNR' (dB)

 
7 5 3 8.5 9 9.5 10

Fig. 10. Codes for 4-PSK with rate 2 btsfl-lz that achieve diversity 4 with two receive and two transmit antennas.

 

FrameErrorProbabliIity  
104 . . . . _ . _10 11 12 13

 
_ — — 4states

_ X 8 states

-— -- 16 states

3% 32 states

—-- 64 states  
14 15 16 1? 18

sun (as)

Fig. ll.

channel state information, an analysis carried in [34] gives the

appropriate branch metrics. Channel estimation algorithm for

this case is also cousidered in [34].

The aforementioned trellis codes are space—time trellis

codes, as they combine spatial and temporal diversity tech-

niques. Furthermore, if a space—time trellis code guarantees a

diversity advantage of r for the quasislalic flat fading channel

model described above (given one receive antenna), we say

that it is an r-space—tr‘me trellis code. Thus the codes of

Figs. 4—9 are 2—space—time codes.

000010

Codes for 4—PSK with rate 2 bt’stHz that achieve diversity 2 with one receive and two transmit antennas.

In Figs. 10—13, we provide simulation results for the perfor-
mance of these codes with two transmit and with one and two

receive antennas. For comparison, the outage capacity given

in [14] is included in Figs. t4 and 15. We observe that, at

the frame error rate of 0.10 (In these simulations, each frame

consists of 130 transmissions out of each transmit antenna),

the codes perform within 2.5 dB of the outage capacity. It

appears from the simulation results that the coding advantage

obtained by increasing the number of states increases as the
number of receive antennas is increased. We also observe that
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r - Estates

.. - 16 states
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— 64 states

11

sun (as)
12 13 14

Fig. 12. Codes for 8—PSK with rate 3 hr’sr'H-z. that achieve diversity -1 with two receive and two transmit antennas.

 

FrameErrorProbabl'rlity  
13

Fig. 13.

the coding advantage over the 4-state code is not as large

as that forecasted by the determinant criterion. This is not

unexpected, since the determinant criterion is approximate. For

instance, it takes no account of path multiplicity. Furthermore,

in the derivation of the design criteria. only the probability of

confusing two distinct codewords was considered. In any case,
simulation results demonstrate that the codes we constructed

perform very well.

The above codes are designed by hand and for fixed rate,

diversity advantage, constellation size, and trellis decoding

complexity the designer sought to maximize the coding ad—

000011

 

  
 

 
 14

sun (as)

- - 8 states i_._._..t‘_._.: ----165tates

g X 32 states
--— 64 states

 
I l l

15 1? 18 1916

Codes for 8—PSK with rate 3 brer-z. that achieve diversity 2 with one receive and two transmit antennas,

vantage given by the determinant criterion. A natural question

is whether higher transmission rates are possible for 4-PSK

and 8—PSK constellation rates using 2-space—time codes? A

second question is whether simpler coding schemes exist?

Fundamental questions of this type are the focus of the next
section.

C. Tradeofl Between Rate, Diversity, Constellation

Size, and Trellis Complexity

We shall derive fundamental tradeoff between transmis—

sion rate, diversity advantage, constellation size, and trellis
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Capacity(Bitsfsecsz)
   

Fig. I4. Outage capacity for two receive and two transmit antennas,

  
SNR (dB)

 

 

 Capacity(Bitsfsecle)   
SNFt (dB)

Fig. IS. Outage Capacity for one receive and two transmit antennas.

decoding complexity. For fixed rate. diversity advantage, con-

stellation size. and trellis decoding cornplexity. we seek to

maximize the coding advantage given by the determinant
criterion.

Consider a wireless system with n transmit and m receive

antennas. It is known, from the result of previous sections that

a maximum diversity of mu can be achieved. Our objective of

code design must be achieving the maximum possible rate at a

diversity advantage of 1m. The following theorem addresses
this issue.

Theorem 3.3.1: Consider an n transmit, m receive antenna

mobile communication system with a Rician transmission

model as given in the previous section. Let t'm be the diversity

000012

advantage of the system. Assuming that the signal constellation

Q has 2” elements, the rate of transmission R. satisfies

< log[.«’-12u(n_._ t)]
_ I

in bits per second per Hertz, where (421;! (n, 7‘) is the maximum
size of a code length n and minimum Hamming distance 1"

defined over an alphabet of size 2“.

Proof Let I denote the frame length. We consider the

superalphabet (— I : Q x Q x x Q given by the I—folded
Cartesian product of Q with itself. The mapping f: Q3" —i

[623]” taking the codeword

R (13)

 

     
 

 

(310E . - - c’l‘cficg - - - c: - - . 0,310.32 - - . (a?
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in Q11! in

tier. ~61) (e . a). watt. ---.e1)1

in [631]” is one—to—one. By the rank criterion, the matrix B(c, 6)
given in (6) is of rank at least 1‘ for any two distinct codewords

c and 3. Thus at least 1' rows of B(e, e) are nonzero. It

follows that fie) and [(6) have Hamming distance at least

1' as codewords defined over Q". The alphabet (f has size 2“,

thus the number of codewords is bounded above by 1121.101, r)

It follows that the rate of transmission is bounded above by
(18). El

Coroflory 3.3.}: Consider the Rician transmission model

with n transmit and m receive antennas. If the diversity

advantage is am, then the transmission rate is at most it hits

per second per hertz.

Proof: [t is known that 1121101., '0.) = 2"1 and this is
achieved by a repetition code [24]. El

Remark: For 4-PSK, 8-PSK, or lo-QAM constellations,

respectively, a diversity advantage of am places an upper
bound on transmission rate of 2, 3, and 4 bistHz.

It follows also from the above that there is a fundamental

tradeoff between constellation size, diversity, and the trans-

mission rate. We relate this tradeoff to the trellis complexity
of the code.

Lemma 3.3.]: The constraint length of an r-space—time
trellis code is at least r — 1.

Proof: Consider two parallel transitions corresponding to

the constraint length 1/ in the trellis diagram. Without loss of

generality, we may assume that one of these transitions corre-

sponds to all-zero path 00000 - - - 0 and the other corresponds
to

HIQ NIH":
(3.."-

l 2 . 9

(1131' n l 2 n _ l - 00_cl I92:32 C2 I Cu+lcy+1 Iciz+1'0000-

If V < r — 1. the tank criterion is easily seen to be violated.
El

Lemma 3.3.2: Let 1’) denote the transmission rate of a

multiple-antenna system employed in conjunction with an

r—space—time trellis code. The trellis complexity of the

space—time code is at least 210—1}.
Proof.- Since the transmission rate is 0 bits per second

per hertz, the number of branches leaving each state of the

trellis diagram is 26’. Thus at time instance 1‘ — 1, there are

2’4"” paths that have diverged from the zero state of the
trellis at time zero. By Lemma 3.3.], none ofthese paths can

merge at the same state. Thus there are at least 2511—1) states
in the trellis. CI

The codes constructed in Figs. 4 and 7" and some of those

to be constructed later, achieve this upper bound. Thus the

bound of Theorem 3.3.] is tight. This also means that these

codes produce the optimal tradeoff between the transmission

rate. diversity, trellis complexity, and constellation size.

D. Geometrico! Uniformity and its Appficorions

For the Gaussian channel, the method of constructing trellis

codes based on lattices and cosets allowed coding theorists

to work with larger constellations and more complicated set

partitioning schemes ['1']. Here, we examine the algebraic

000013
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structure of the codes presented in Section III-B. We begin

with the code of Fig. 4. This is an example of delay diversity
codes to be discussed later.

Exompt‘e 3.4.}: Here the signal constellation is 4—PSK,

where the signal points are labeled by the elements of L, the

ring of integers modulo 4 as shown in Fig. 3. We consider

the 4—state trellis code shown in Fig. 4. The edge label $1.13

indicates that signal 11:1 is transmitted over the first antenna

and that signal 1'2 is transmitted over the second antenna. This

code has a very simple description in terms of a sequence
(b3, , or) of binary inputs. The output signal pair .1?1.1?_, at time
k is given by

(sf, 3.4;) =1),._1(2, 0)+ a1..._l(1, 0) +5110, 2) +a1-(0. 1)
(19)

where the addition takes place in 24 (cf. Calderbank and

Sloane [7]).

Following Fomey [12], we shall say that a code is geo-

metrically uniform if given any two codewords 1,3,1, there is

an isometry fishy perrnuting the set of codewords such that

Q'IJITy(JJ) : :1}. For Rician transmission as above, the isome-
tries are unitary transformations of the underlying Complex

space. If a space—time code is geometrically uniform, then

it is easy to see that the performance is independent of the

transmitted codeword [12]. We claim that the code of Fig. 4

is geometrically uniform.

To this end, let 1E1 : (1, 0X2, 3) and R2 : (1, 2X0, 3)
be permutations of the elements of 4-PSK constellation. The

permutations R1 and 132 are realized by reflection in the

bisectors of the first and second quadrants of the complex

plane, respectively. In this light, they are isometries of the

complex space.

Given a codeword a: of the code of Fig. 4, we consider

the corresponding sequence (lip, (11,.) of binary inputs. Let

1,153,. : (03 x til) —+ (CE x CE) be the isometry given by

(Rik—23112221“: RT" (3132)“ l)-

Then

'Xsboxsblxsbzxn-

maps the all zero codeword to :1: while preserving the code.

This proves the claim.

For a diversity advantage of 2, it is required that for any

pair of distinct codewords e and e the matrix
1 l l l .L l

(51 — Cl (32 — CE (5i — CE

(c,e)_(02_€2 02—62 (2—02'1 'l '2 '2 i I

must have rank 2. This is evident from Fig. 4 or from the

algebraic description (19). for if the paths corresponding to

codewords c and e diverge at time t1 and re-merge at time t3,
then the vectors (1:311 —r:’11, 12:1— (:21) and (oi1 —(:1 , (2:——eE”)
are linearly independent. In fact, e11 — (:11 2 e2
(if—(:217&0,and11-’—ef’7€0.

To compute the coding advantage, we need to find code-
words 6 and e such that the determinant

det (2(ck—ci, of. —cf._)* (Clck —ci.__._ cf—cfi)) (20)

—Cr_). : ,
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 I: 210

I: 3]

  

01
 

[Z i)
Fig. 16. State diagram of Example 3.4,].

is minimized. As the code of this example is geometrically

uniform, we could assume without loss of generality that e is

the all zero codeword. We can attack (20) by replacing the

edge label (-31, 32) by the complex matrix

(ti—*1 — 1W — 1) or“ — nos-"3 — 1))or“ — 1xrg— 1) or — more — 1) '

This labeling is shown in Fig. 16.

Diverging from the zero state contributes a matrix of the
form

0 0

0 t

and remerging to the zero state contributes a matrix of the form

(3 3)
where s, t 2 2. Thus (20) can be written as

at: 1)+<) 1))
with a, d 2 0 and |b|2 5 ad. Hence the minimum determinant
is 4. El

Remark: It is straightforward to prove that the codes of the

previous section are geometrically uniform. Indeed, we exam—

ine the 4—PSK trellis codes with 8, 16, and 32 states in Figs. 5

(21)

000014

 
and 6. These codes can be, respectively, expressed by equa—
tions

(ar’f, 93$) :oi._2(2, 2) +b;,._1(2._ 0) + aHu, 0)

‘i— bk“): 2) ‘i- (1:9(0: l)

(391“, 235;) = t;;,._2((), 2) + ar._2(2, 0) + bk_l(2, 0)

‘i— 04,._]_(1, 2J+bk(01 2) + ohm, 1)

(if, :53) = (Lk_3(2. 2) + b3._2[3, 3) + ak_2(2, 0)

‘i— bk_1(2_._ 2) + Qk_l(l, l)

+ bill], 2) + (IMO, 1)

in 24, using the same notation as the one employed in Example

3.4.]. These codes are geometrically uniform. The minimum

determinants are, respectively, 12, 20, and 28.

The design rules that guarantee the diversity in Figs. 4 and
7 are as follows.

- Design Rate 1: Transitions departing from the same state

differ in the second symbol.

- Design Rafe 2: Transitions arriving at the same state

diITcr in the first symbol.

The rest of the codes are a bit trickier to analyze but it can

be confirmed using geometrical uniformity that the diversity

advantage is actually achieved.

E. Optima! Codes

Here, we censtruct some other codes that are optimal with

respect to the fundamental tradeoffs between rate, diversity. 
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constellation size, and trellis complexity. First, we consider

the case when n. : 2 and design 2-space—time trellis codes.

Suppose that the constellation has Q : 2” elements. By

Corollary 3.3.1, the maximum transmission rate is b bits per

second per hertz. On the other hand, Lemma 3.3.2 implies that

the number of states of any 2espacv..Ltime trellis code is at least

2”. The following lemma proves that all these bounds can be
attained together.

Lemma 3.5.]: There exists 2-space—time trellis codes de-

fined over a constellation of size 2" having trellis complexity

2” and transmission rate 3) bits per second per henz.
Proof: Every block of [1 bits naturally corresponds to

an element of flu, the ring of integers modulo 2". The
constellation alphabet can also be labeled with elements of

22:. in a one-to-one and onto manner. Thus without loss of

generality, we identify both the input blocks and the states

of the encoder with the elements of 225. We consider the

trellis code having 2" states corresponding to elements of
22:. as defined next. Given that a block of length l; of bits

corresponding to r; is the input to the encoder and the encoder

is at state .3 E 22», the label of the transmission branch is

(i. 3). The new state of the encoder is 3'.
Given two distinct codewords c and e, the associated paths

in the trellis emerge from a state at time t1 and remerge in

another state at a later time Q S E. It is easy to see that the :3 1th

and tgtl'l columns of the matrix B(c, e) are independent. El
Remark: The construction given above is just delay diver—

sity expressed in algebraic terms.

For the 4-PSK constellation, the code given by the above

Lemma appears in Fig. 4.

For the 8-PSK constellations, the code given by the above

lemma appears in Fig. 1?. One can also consider the code of

Fig. 7. Assuming that the input to the encoder at time Fr is the

3 input bits (rip, bk, up), the output of the encoder at time k is

(ii 4'3) =dp_l(4. 0) + bra—til 0) +Gt-—i(5= 0)

+ (MO. 4) + but), 2) + (M0, 1)

where the computation is performed in 2,5, the ring of integers
modulo 8, and the elements of the 8-PSK constellation have

the labeling given in Fig. 3. Design Rules 1 and 2 guarantee

diversity advantage 2 for this code. We believe that the above

code optimizes the coding advantage (determinant criterion),

but unfortunately have not been able to prove this conjecture.
The minimum determinant of this code is 2.

As in the 4-PSK case, one can improve the coding advantage

of the above codes by constructing encoders with more states.

In fact, using the design criterion established in this paper,

we have designed 2espaceitime trellis codes with number of

states up to 64 for 8—PSK and lé—QAM constellations. We

include the 16-state lfi-QAM code as well (Figs. 18 and 19),

but for brevity, we avoided including the rest of these codes.

Design rules I and 2 (or simple extensions thereof) guarantee

diversity 2 in all cases.

We conjecture that most of the codes presented above are

the best in terms of the determinant criterion, but we do not

have a proof to this effect.

000015

(I). (H.112. II}. (N. 05. H6. 0'?

IIJ,11.12.13.I4,15,I6.I7

20. II. 22. 23. 24. 25. 25. 2?

30. 31. 32. 13. 34. 35. 36. 37

4(I,4l,41 43. 44. 45. 46,4?

SD. 51. 52. 53. 54. 55. 56. 57

an, sue, a1, 64. (.5. Mr (is  
m. "N . 1'1 73. 1'4. 1'5, 76, T?

Fig. I 1'. Space—time realization of a delay diversity 8-PSK codc constructed
from a repetition code.

 
Fig. [8. The QAM constellation.

F. An ‘r-Space—Tfme Treb’r‘s Code for r > 2

Here, we design r—space—time codes for r )v 2. We construct

a 4-space—time code for a 4 transmit antenna mobile commu-

nication system. The limit on transmission rate is 2 bfsi'l-lz.

Thus the trellis complexity of the code is bounded below by

64. The input to the encoder is a block oflength 2 ofbits (L1, 01

corresponding to an integer'i : 2m +01 E 24. The 64 states of

the trellis correspond to the set of all three tuples (.31, .33. 33)

with 3?- E 24 for 1 g :i g 3. At state (31, 32, 33) upon

input data 2', the encoder outputs (2i 3;, 32, .33) elements of4—

PSK constellation (see Fig. 3} and moves to state (i, 31, 52).

Given two codewords c and e, the associated paths in the

trellis diverge at time t1 from a state and remerge in another

state at a later time t2 5 i. It is easy to see that the t1th,

(:31 + 1)th, (t2 — l)th, and tgth columns of the matrix B(c, c)

are independent. Thus the above design gives a 4-space—time
code.

G. Coding with Deiqv Diversrha‘

Here we observe that the delay diversity scheme of [32]

and [44] can be viewed as space—time coding, and that our

methods for analyzing performance apply to these codes.

Indeed, consider the delay diversity scheme of Fig. l, where

the channel encoder is a rate 1/2 block repetition code defined

over some signal constellation alphabet. This can be viewed

as a space—time code by defining

.1 _ :1
f1 — (”E—1

.2 _ ".2
ct — at

where ci and cf are the symbols of the equivalent space—time
code at time t and 5.15., is the output of the encoder at time t. 
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Fig. l9. 2-space—timc 16-QAM code. 16 states. 4 bisr'I-lz.

Next consider the 8—PSK signal constellation, where the

encoder maps a sequence of three bits 11.5.1... at time k to 11

with 1' : 4:11.. + 23);. + 121;... It is easy to show that the equivalent

space—time code for this delay diversity code has the trellis

representation given in Fig. l?. The minimum determinant of

this code is (2 — fijg.
Next. we consider the block code

C = {00, 15, 22, 37, 44, 51, 66, 73}

of length 2 defined over the alphabet 8-PSK instead of the

repetition code. This block code is the best in the sense of

product distance [32] among all the codes of cardinality 8

and of length 2 defined over the alphabet 8-PSK. This means

that the minimum of the product distance Icl — (:1||eg — (32

between pairs of distinct codewords e : clog E C and

c = (31-92 E C is maximum among all such codes. The delay

diversity code constructed from this block code is identical to

the space—time code given by trellis diagram of Fig. 7. The

minimum determinant of this delay diversity code is thus 2.

The 16—state code for the 16—QAM constellation given in

Fig. 19, is obtained from the block code

{00,111,22,39,44,515,66,713,88,

93, 1010, 11 1,12 12,137, 1414, 15 5}

 

using the same delay diversity construction. Again, this block

code is optimal in the sense of product distance.

The delay diversity code construction can also be gener-

alized to systems having more than two transmit antennas.

For instance, the 4—PSK 4—space—time code given before is

a delay diversity code. The corresponding block code is the

repetition code. By applying the delay diversity construction
to the 4—PSK block code

{0000.1231,2123,3312}

one can obtain a more powerful 4—PSK 4—space—time code

having the same trellis complexity.

000016

 
It is an interesting open problem whether it is possible to

construct good space—time codes of a given complexity using

coding in conjunction with delay diversity. Note that coding

is an integral part of the delay diversity arrangement and is

not to be confused with outer coding.

H. Multilevel Space—lime Coding

Imai and Hirakawa [21] described a multilevel method

for constructing codes where the transmitted symbols are

obtained by combining codeword symbols from the component

codes. They also introduced a suboptimal multistage decoding

algorithm. Multilevel coding has been extended to Gaussian

channels (see [6] and the references therein).

Space—time codes may be designed with multilevel struc—

ture, and multistage decoding can be useful in some practical

communication systems, particularly when the number of

transmit antennas is high, This has the significant advantage

of reducing the decoding complexity.

Without loss of generality, we assume a signal constellation

Q0 consisting of 25” signal points and a set partitioning of Q0
based on subsets

Qf—l C Qf—a C C Qt C Qo

where the number of elements of C35. is equal to 21”“ for all

0 S k S f — 1. By such a set partitioning, we mean that Q0

is the union of 25“!" disjoint sets called cosets 0le in Q0,

each having 2’” elements. The collection of 2M4“ cosets of
Ql in Qo must include Ql as an element. Having the cosets

of Q. in Q” at hand, each coset is then divided into 251-52

disjoint sets each having 2”2 elements. The 251—”? subsets of

Q1 are called cosets of Q2 in (21. The collection of cosets of

Q; in (21 must include Q2. Thus there are 250—"3 subsets of Q0

with 2"? elements called the cosets of C22 in Qu- Trivially, the
collection of cosets of C32 in (20 includes (22. This procedure

is repeated until we arrive at cosets of 62;. in Q... for all

0 S w < k S [—1. Let Tf_l = bf_1 and ’17,. = 11“.; —le for 
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it = 0. 1. f — 2. Then (2;. contains 2"" cosets of Qk+1
for all k : 0. 1. ---. f — 2. Set partitioning of QAM and PSK

constellations were first introduced by Ungerboeck [36].

Corresponding to the aforementioned set partitioning,

there exist f space—time encoders. namely, encoders

EU. E2. - - - . Ef_l. It is required that all these encoders

have a trellis representation. Every K 2 K0 + + Kf—l

bits of input data is encoded using encoders EU. . . - . EJr_ 1
corresponding to the f levels.

At each time 1: depending on the state of the jth encoder

and the input data. a branch of the trellis of the kth encoder
is chosen which is labeled with it blocks of n. bits denoted

by 133(k). 133(k). 8:0». For each 1 g i g n, the
blocks BETH). . - - . BE'U' — 1) then choose a point of the signal

constellation in the following way: the block DEW) chooses

a coset QE of Q1 in Q0. The block BEU) chooses a coset
QE, of Q? in (30 which is also a subset of Q". and so forth.

Finally, the block BEU — l) chooses a point of Q34. The
chosen point is then transmitted using the ith antenna at time

t. Multilevel decoding is described in [21].

Let us suppose that the encoder of the kth level has 25*
states at time it. One can view the multilevel code described

above as a space—time code C with 2(5"+"'+5I—1) states at
time t. The states of C at time t correspond to _fetuples

(3?. 5E. SEC—l) of states of encoders 0. l. f — l at
that time. There is a branch between states (3?. 5E, - - - . SEC—1)
and (sEjH. 5.1+“ sir—11) when EA. goes from state SE“ to
sf“ for all 0 5 k- g f — 1. In this case. the branch labels
between these states is the set of symbols that are sent via

antennas 1. 2. -- -. to when encoders Eh. k = 0. f — 1

move from state sE“ to the state sir-Jr. for all 0 g k g f — 1.
In this way, one can view a multilevel space—time code as a

regular space—time code with a multilevel structure that allows

simplified decoding. The penalty for this simplified decoding

is a loss in performance due in part to magnification of the

etfcctive error coefficient. Also. in this way the design criterion

derived previously could be applied to the space—time code C.

Alternatively, the criteria can be applied to the trellis of each

encoder providing different diversities at each level with the

levels decoded first given the higher diversities.

We provide an example of multilevel coding.

Consider a scheme using it : 3 transmit antennas and an

S-PSK constellation. Suppose that a data rate of 5 bisin is
desired. We construct a multilevel scheme that has this data

rate and provides diversity advantage 2. If trellis space—time

coding is employed, at least 25 = 32 states are required with 32

transitions leaving each state of the trellis. Instead. we employ

a multilevel code with multistage decoding [30].

At each time t the input to the encoder is five bits of

information bEb‘bestibE. The input sequence b? is encoded

using a repetition code of rate 1/3 giving the output sequence

bbe’bE’. The pair of bits bEbE-J and high? are encoded using a

parity-check code of rate 2/3 yielding sequences {diff}? and
gag. Let

ci 240% + 2b? + b?

of 2 4.5L. + ZIJLI + bE’_l

of = 4bE’_2 + 2b:_2 + bE’_2

000017

be elements of the S-PSK constellation. where the labeling is

given in Fig. 3. The transmitted signal from antenna 1 g i. 5 3

at time t is CE.
At the decoder multistage decoding is performed. At first,

a decision on (if is made. A trellis diagram for I)? has only

four states where the states depend on bELl and b?_-’_). In such
a trellis diagram each branch has 15 parallel branches. There

are 32 branches leaving each state. It is easy to use the criterion

developed in this paper and observe that a diversity advantage

of3 on deciding the bits EJE’. big. - - - _._ b? is guaranteed.
Assuming that 5‘1). b3. . - - _. E)? are determined, the multistage

decoder performs decoding to determine bf bf. Here. the states

at time t are given by the triplet (DE; 1. UL 1. bf_‘_)), so there
are eight states in the trellis diagram. There are four parallel

transitions between any two connected states. The criteria

for diversity can be used to observe that assuming correct

decisions in the first stage of decoding, a diversity advantage

of two is achieved in the second stage.

In the third stage. the multilevel decoder determines OED?
using a trellis. The states at time t are given by the triplet

(bE_ 1: (ii 1: big-4), so there are eight states in the trellis
diagram. There are no parallel transitions between any two

connected states. Assuming correct decisions in the first and

second stage of decoding. a diversity advantage of two is

achieved in the third stage.

The total number of branches visited in decoding this

multilevel scheme is almost half as much as the one given

by the trellis space—time code having 32 states. Thus it is

natural to expect that multilevel coding is a good way to

produce powerful space—time codes for various high—bit—rate

applications if the number of antennas at the base—station is

high.

i. Space—Time Codes That Exploit Temporal

Variations: Smart Greedy Space—Time Codes

This subsection addresses the important problem of con—

structing codes for data transmission. not at rates greater than

today's wireless systems, but operating at significantly lower

signal-to-noise ratios. This provides a better frequency reuse

factor. The second key issue addressed here is designing codes

that can take advantage of possible temporal variations in a

wireless channel to provide additional diversity. This has use

in providing quality service to both low— and high—mobility
users.

We provide examples of codes that address both these

key issues and refer to them as iota-rare muiiidimensionai

space—time codes for both si'ow and rapidfading channels or

smart—greeaj/ space—time codes. At the very highest level,
these are concatenated codes. As the function of the outer

code is fixing a small number of symbol errors, we focus

on the design of the inner code. The code is called smart and

greeafiz because the encoder does not know the channel but can

exploit the benefits provided both by the transmit and receive

antennas as well as by possible rapid changes in the channel. It
is assumed that the transmitter does not know the channel but

seeks to choose a codebook that guarantees a diversity gain of

Ti when there is no mobility and a diversity gain of “('2 2 r1

when the channel is fast fading.  
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Fig. 20. The BPSK censlcllalion.

When the fading is slow, it will be modeled as in Section

II as quasistatic. When fading is rapid. it will be modeled

as in Section Il—D. In reality, we know that the situation is

something between these two extremes. It is thus expected

that a code designed using a hybrid criteria given by these two

extremes will perform well in a variety of mobility conditions.
We thus combine the criteria obtained in those subsections

to arrive at a hybrid design criteria.

A Hybrid Design Criteria for Smart—Green? Space—Time
Codes.-

' The Distance/Rank Criterion: In order to achieve the

diversity am in a rapid fading environment, for any two

codewords c and e the strings (1% r}; - - - c? and ate? - - - 6;"
must be different at least for r; values of l S t S I.

Furthermore, let
i 1

cl — cl (2.}, — c2 cg — Cr
cf — cf eff; — Ci of — (2:2

_ 3 3 ,3 3 3 3
8(6: 3) — (31 — (:1 L2 — C2 8: — Cg . (22)

(a? — (51’ (92‘ — (:3

If 5(6, 8) has minimum rank r over the set of pairs of
distinct codewords, then a diversity of rm is achieved in

static flat fading environments.

' The Product/Determinant Criterion: Let V(e, 6) denote

the set of time instances 1 S t S t such that cicf - . . .2?
title? - - . CI" and let

I!

let — etl2 : Z [c1 — (3H2.i=1

Then to achieve the most coding advantage in a rapid

fading environment, the minimum of the products

I] lcr — Brig
tel/(me)

taken over distinct codewords e and 6 must be maximized.

For the case of a static fading channel, the minimum of

rth roots of the sum of determinants of all r x r principal

cofactors of .402, c) : B(c, (2)3“ (c, 6) taken over all
pairs of distinct codewords e and c corresponds to the

coding advantage, where ’r' is the rank of A(c, 6).

Using the above design criteria, we constructed smart—greedy

codes for both slow and fast fading channels. We illustrate the

construction of these codes by some examples. In all these

examples, it is again assumed that at the beginning and the

end of each frame, the encoder of the code is at zero state.

Example 3.9.1: Suppose that a transmission rate of 0.5

bfsr’Hz is required. In this example, we will use the BPSK

constellation. The constellation points are given in Fig. 20.

Our objective is to guarantee a diversity advantage of 2 and

4, respectively, in slow and rapid flat fading environments.
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Fig. 2], BPSK smart—greedy code.

(I! II) [II
(11 II Iii
{12 22 2|)
II] 33 ill 

  
 
 

 
 

  

10m [I3
ll 1t! [3
['12]. 23
13 32 33

200202
2l13l1
122022
233l32

 

30mm
3ll111
3221M
3330M

Fig. 22. 4-PSK smart—greedy code.

The follthing code (see Fig. 21) using MwTCM construction

guarantees these diversity gains.

At time 21; + l, k : 0, l, 2, ---, depending on the state

of the encoder and the input bit, a branch is chosen by the
encoder and the first coordinate and second coordinates of

the labels are sent simultaneously from the transmit antennas

at times 21: + 1 and 2!: + 2. For instance, at time 1, if the

branch label 10 11 is chosen, symbols 1, [I and l, 1 are sent,

respectively, from transmit antennas one and two at times one

and two. From the design criteria established, it is easy to see

that this code guarantees the desired diversities in static and

rapid fading environments.

Example 3.9.2: Here a transmission rate of l bfsr'I-lz and

diversity gains of 2 and 3, respectively, in static and rapid flat

fading environments are desired. From the criteria, we know

that a diversity gain of 2 is possible in a static flat fading

environment and this transmission rate can be accomplished

using a BPSK constellation. In this example, we will use the

4—PSK constellation instead (see Fig. 3). Our objective is to

guarantee a diversity gain of 2 and 3, respectively, in slow 
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Fig. 23. Perfonnance of the code of Example 3.9.3 wilh two receive
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Fig. 24. Performance of the code of Example 3.9.3 wilh one receive and lwo transmit antennas.

and rapid flat fading environments. The code of Fig. 22 using

M—TCM construction guarantees these diversity gains. From

the design criteria established above, it is easy to see that

this code guarantees the desired diversities in static and rapid

fading environments.

In both these examples the design of smart—greedy codes of

the same rate and better performance having higher number

of states is also possible. Another possibility is concatenation

with appropriate RS codes. We demonstrate the performance

of these codes by the following examples.

Exampfe 3. 9.3: Consider the code of Example 3.9.] as the

inner code and a [16, 12. 5] extended RS code over GF (16)
as an outer code. For 48 coded input bits (12 symbols of

000019

GF (16)) and one terminating bit set equal to zero, the output
of the outer code corresponds to 65 bits which is used as the

input to the smart—greedy space—time encoder. The output of

the smart—greedy space—time encoder is two frames of length

130 symbols of BPSK symbols corresponding to two transmit

antennas. The uncoded zero bit guarantees that the encoder
of the inner code is at zero state at the end of each frame.

The rate of this smart—greedy code is almost 0.3? bfssz. The

performance of this concatenated code is given in Figs. 23 and

24 for, respectively, two and one receive antennas.

Exampfe 3.9.4: Consider the code of Example 3.9.2 as the

inner code and a [25, 21. 5] shortened RS code over GF (32)
as an outer code. For l05 coded input bits, four uncoded input
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Performance of the code of Example 3.9.4 with two receive and two transmit antennas.
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Fig. 26.

bits, and one terminating bit set equal to zero, the output of

the outer code corresponds to 130 bits which is used as the

input to the smart—greedy space—time encoder. The output of

the smart—greedy space—time encoder is two frames of length

130 symbols of 4-PSK symbols corresponding to two transmit

antennas. The uncoded zero bit guarantees that the encoder
of the inner code is at zero state at the end of each frame.

The rate of this smart—greedy code is almost 0.83 blsle. The

performance of this concatenated code is given in Figs. 25 and

26 for, respectively, two and one receive antennas.

The greediness and smartness of the codes can be observed

from the above performance curves. These codes are also ideal

for improving the frequency reuse factor.

000020

 
SNR (dB}

Perfonnance of the code of Example 3.9.4 with one receive and [we transmit antennas,

J. Trellis Versus Block-Coded Modulation

There has been recently an explosion of interest in the trellis

complexity of codes. In this light, one may ask if a block-

coded modulation scheme can outperform the space—time

trellis codes in terms of the tradeoff between complexity of

implementation rate and diversity advantage.

It is well known that a block-code trellis is time-varying

and harder to implement than that of a space—time trellis code.

Space—time trellis codes have significant advantage over the

block codes that only one time section of the trellis must be

stored in memory. Moreover, for a block-coded modulation

scheme the number of ACS (Add—Compare—Select) elements
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required at each time instance is different, making both DSP

and VLSI implementation less attractive. The problem of de~

signing a block-coded modulation scheme that satisfy the rank

criterion is also an open problem. These deficiencies aside,

we further discourage the possibility of potential application

of block codes by proving that they cannot outperform the

space—time trellis codes in terms of the tradeoff between the

diversity advantage, rate, and trellis complexity.

It will be assumed that the reader is familiar with the theory

of trellis complexity of block codes (for details, we refer the

reader to [13]).

Let Q denote the constellation of q : 2" (where b is
not necessarily an integer) signals to be used for information
transmission. Consider a block code C and a trellis for C.

Suppose that the code is used to transmit q-ary symbols via rt.

antennas using frames of length i. Let us fix the transmission

model of the previous sections. The codewords are then blocks

of length oi. of q-ary symbols. At any time instance it symbols

of branches of a path in the trellis are assigned to rt points of

the constellation in some manner. The rt. signal points are then

simultaneously sent via the to. transmit antennas. We have the

following theorem.
Theorem 3.10.]: Consider a block code C defined over a

qeary alphabet and a trellis for C. Suppose that C is employed

as above for transmission of information using rt transmit and

to. receive antennas. If the achieved diversity gain is mr and

the transmission rate is R bits per second per hertz, then 3:11:03
the number of maximum states in the trellis of C, satisfies

> 2H(?—l.) ‘'5 llli‘LX _ (23)

Furthermore, the above bound is still valid even if the trellis

is sectionalized into segments of length rt.

Proof.- It suflices to prove the last statement of the

theorem. To this end. suppose that a seetionalized trellis of C

is given with each branch labeled by rt. constellation symbols.

Then, it follows from the rank criterion, that no two paths of

this sectionalized trellis diverging from some state can remerge

at another state in a time interval of length less than i'.

Then a straightforward variant of [22] proves that am”, the

maximum number of states in the seetionalized trellis, satisfies

the inequality Smax Z oil—1) 10s.,(|C|}/!_ Given that g = 2” and
observing that lt’. : log2(|C|)/l, we arrive at the inequality
3...“ 2 239-1}. I:I

Corollary 3.10.]: No block code (that admits a trellis repre—

sentation) can outperform the designs of this paper in terms of

the tradeoff between diversity gain, rate, and trellis complexity.

Proof: The above bound is similar to the bound estab—

lished for the spaceetime trellis codes which can be attained

for our designs. El

IV. CONCLUSIONS

We unveiled a new family of codes called the Space—Time

codes for transmission using multiple transmit antennas over

Rayleigh or Rician wireless channels. Many subfamilies of

space—time codes were also introduced. The performance of

these codes was shown to be excellent, and the decoding

channels. Space—time codes have simple systolic architecture

and can be readily implemented in DSP and VLSI.

Various fundamental theoretical limits on rate, trellis com-

plexity, diversity, constellation size, and their tradeoffs were

established. Examples were provided confirming that the limits

we established are attainable in practice.

We believe that the studies we initiated here, only scratch

the tip of the iceberg and many important questions remain to
be answered. Research on the interactions and combinations

of the space—time coding technology with other techniques

such as orthogonal frequency division multiplexing [3], array

processing [33], and numerous other topics is now being

pursued.
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