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Status of this Memo 

This RFC suggests a method for workstations to dynamically find their 
protocol address (e.g., their Internet Address), when they know only 
their hardware address (e.g., their attached physical network 
address). 

This RFC specifies a proposed protocol for the ARPA Internet 
community, and requests discussion and suggestions for improvements. 

I. Introduction 

Network hosts such as diskless workstations frequently do not know 
their protocol addresses when booted; they often know only their 
hardware interface addresses. To communicate using higher-level 
protocols like IP, they must discover their protocol address from 
some external source. Our problem is that there is no standard 
mechanism for doing so. 

Plummer's "Address Resolution Protocol" (ARP) [1] is designed to 
solve a complementary problem, resolving a host's hardware address 
given its protocol address. This RFC proposes a "Reverse Address 
Resolution Protocol" (RARP). As with ARP, we assume a broadcast 
medium, such as Ethernet. 

II. Design Considerations 

The following considerations guided our design of the RARP protocol. 

A. ARP and RARP are different operations. ARP assumes that every 
host knows the mapping between its own hardware address and protocol 
address(es). Information gathered about other hosts is accumulated 
in a small cache. All hosts are equal in status; there is no 
distinction between clients and servers. 

On the other hand, RARP requires one or more server hosts to maintain 
a database of mappings from hardware address to protocol address and 
respond to requests from client hosts. 
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B. As mentioned, RARP requires that server hosts maintain large 
databases. It is undesirable and in some cases impossible to maintain 
such a database in the kernel of a host's operating system. Thus, 
most implementations will require some form of interaction with a 
program outside the kernel. 

c. Ease of implementation and minimal impact on existing host 
software are important. It would be a mistake to design a protocol 
that required modifications to every host's software, whether or not 
it intended to participate. 

D. It is desirable to allow for the possibility of sharing code with 
existing software, to minimize overhead and development costs. 

III. The Proposed Protocol 

We propose that RARP be specified as a separate protocol at the 
data-link level. For example, if the medium used is Ethernet, then 
RARP packets will have an Ethertype (still to be assigned) different 
from that of ARP. This recognizes that ARP and RARP are two 
fundamentally different operations, not supported equally by all 
hosts. The impact on existing systems is minimized; existing ARP 
servers will not be confused by RARP packets. It makes RARP a general 
facility that can be used for mapping hardware addresses to any 
higher level protocol address. 

This approach provides the simplest implementation for RARP client 
hosts, but also provides the most difficulties for RARP server hosts. 
However, these difficulties should not be insurmountable, as is shown 
in Appendix A, where we sketch two possible implementations for 
4.2BSD Unix. 

RARP uses the same packet format that is used by ARP, namely: 

ar$hrd (hardware address space) - 16 bits 
ar$pro (protocol address space) - 16 bits 
ar$hln (hardware address length) - 8 bits 
ar$pln (protocol address length) - 8 bits 
ar$op (opcode) - 16 bits 
ar$sha (source hardware address) - n bytes, 

where n is from the ar$hln field. 
ar$spa (source protocol address) - m bytes, 

where m is from the ar$pln field. 
ar$tha (target hardware address) - n bytes 
ar$tpa (target protocol address) - m bytes 

ar$hrd, ar$pro, ar$hln and ar$pln are the same as in regular ARP 
(see [1]). 
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known Ethernet addresses. Then, in each RARP packet, ar$hrd = 1 
{Ethernet), ar$pro = 2048 decimal {the Ethertype of IP packets), 
ar$hln = 6, and ar$pln = 4. 

There are two opcodes: 3 ("request reverse") and 4 ("reply reverse"). 
An opcode of 1 or 2 has the same meaning as in [1]; packets with such 
opcodes may be passed on to regular ARP code. A packet with any 
other opcode is undefined. As in ARP, there are no ""not found"" or 
""error"" packets, since many RARP servers are free to respond to a 
request. The sender of a RARP request packet should timeout if it 
does not receive a reply for this request within a reasonable amount 
of time. 

The ar$sha, ar$spa, $ar$tha, and ar$tpa fields of the RARP packet are 
interpreted as follows: 

When the opcode is 3 ('request reverse'): 

ar$sha is the hardware address of the sender of the packet. 

ar$spa is undefined. 

ar$tha is the 'target' hardware address. 

In the case where the sender wishes to determine his own 
protocol address, this, like ar$sha, will be the hardware 
address of the sender. 

ar$tpa is undefined. 

When the opcode is 4 ('reply reverse'): 

ar$sha is the hardware address of the responder {the sender of the 
reply packet). 

ar$spa is the protocol address of the responder (see the note 
below). 

ar$tha is the hardware address of the target, and should be the 
same as that which was given in the request. 

ar$tpa is the protocol address of the target, that is, the desired 
address. 

Note that the requirement that ar$spa in opcode 4 packets be filled 
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in with the responder's protocol is purely for convenience. For 
instance, if a system were to use both ARP and RARP, then the 
inclusion of the valid protocol-hardware address pair (ar$spa, 
ar$sha) may eliminate the need for a subsequent ARP request. 
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[1] Plummer, D., "An Ethernet Address Resolution Protocol", RFC 826, 
MIT-LCS, November 1982. 

Appendix A. Two Example Implementations for 4.2BSD Unix 

The following implementation sketches outline two different 
approaches to implementing a RARP server under 4.2BSD. 

A. Provide access to data-link level packets outside the kernel. The 
RARP server is implemented completely outside the kernel and 
interacts with the kernel only to receive and send RARP packets. The 
kernel has to be modified to provide the appropriate access for these 
packets; currently the 4.2 kernel allows access only to IP packets. 
One existing mechanism that provides this capability is the CMU 
"packet-filter" pseudo driver. This has been used successfully at 
CMU and Stanford to implement similar sorts of "user-level" network 
servers. 

B. Maintain a cache of database entries inside the kernel. The full 
RARP server database is maintained outside the kernel by a user 
process. The RARP server itself is implemented directly in the 
kernel and employs a small cache of database entries for its 
responses. This cache could be the same as is used for forward ARP. 

The cache gets filled from the actual RARP database by means of two 
new ioctls. (These are like SIOCIFADDR, in that they are not really 
associated with a specific socket.) One means: "sleep until there is 
a translation to be done, then pass the request out to the user 
process"; the other means: "enter this translation into the kernel 
table". Thus, when the kernel can't find an entry in the cache, it 
puts the request on a (global} queue and then does a wakeup(). The 
implementation of the first ioctl is to sleep() and then pull the 
first item off of this queue and return it to the user process. 
Since the kernel can't wait around at interrupt level until the user 
process replies, it can either give up (and assume that the 
requesting host will retransmit the request packet after a second) or 
if the second ioctl passes a copy of the request back into the 
kernel, formulate and send a response at that time. 
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