
1 MICROSOFT 1002

Petitioner Apple Inc. - Exhibit 1002, p. 1

Z0/05/60

llil»l’-- illllil ’l§ii
MODIFIED PTOISB/05 (03 (J

Approved for use through 10/31/2002 OMB 0651-tn’
U 5 Patent and Trademark Office US DEPARTMENT OF COMMEI:

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control nurribi

UTILITY °°°82

PATENT APPLICATION cow
IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FORSECURE COMMUNICATIONS WITH ASSURED SYSTEM

(Only for new nonprovisional applications under 37 C F R 1 53(0)) Express Mail Label No

AVAILABILITY

APPLICATION ELEMENTS
See MPEF’ chapter 600 concerning utility patent application contents

Fee Transmittal Form (e g , PTO/SBII7)
(Submit an original and a duplicate for fee processing)
Applicant claims small entity status
See 37 CFR 1.27

Specification [Total Pages E-_|]
(preferred arrangement set forth below) b Specification Sequence Listing on
— Descriptive title of the Invention i_ E] C_D_RQM 0, CD_R (2 Copies)‘ or an
— Cross Reference to Related Applications ii’ E] paper 3~--.

*1
V Smemem Regardmg Fed sponsored R 8‘ D c El Statements veri in identit of above coies- Reference to sequence listing, a table,

07 3 C0mDUteT Pl'09l3m “SW19 appelldlx ACCOMPANYING APPLICATIONS PARTS
- Background of the Invention
— Brief Summary of the Invention
- Brief Description of the Drawings (if filed)
- Detailed Description
- Claimts)
- Abstract of the Disclosure

Please type a plus sign (+) inside this box :>

Assistant Commissioner for Patents
Box PatentAppIication
Washington, DC 20231

7 I:] CD—ROM or CD—R in duplicate, large table or
Computer Program (Appendix) 0

8. Nucleotide and/or Amino Acid Sequence Submission 5:
(if applicable, all necessary) 05

a [:I Computer Readable Form (CRF) :3

9. E] Assignment Papers (cover sheet & document(s))
37 C F R §3.73(b) Statement E] Power of
(when there is an assignee) Attorney

English Translation Document (if applicable)

lnfomiation Disclosure I:l Copies of IDS
Statement (IDS)/PTO—1449 Citations
Preliminary Amendment
Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
Certified Copy of Priority Document(s)
(if foreign priority is claimed)
Nonpublication Request under 35 U S C 122
(b)(2)(B)(i). Applicant must attach form PTO/SB/35
or its equivalent

4. IX] Drawing(s) (35 U S C 113) [Total Sheets I
a IE Formal, or
b D Informal

5. Oath or Declaration [Total Pages]
a El Newly executed (original or copy), or
b IX Copy from a prior application (37 CFR 1 63 (d))

(for a continuation/divisional with Box 18 completed)

i l:I DELETION OF lNVENTOR(S)
Signed statement attached deleting inventor(s)
named in the prior application, see 37 CFR Other
1 63(d)(2) and 1 33(b)

6. IE Application Data Sheet. See 37 CFR 1.76

18. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment,
or in an Application Data Sheet under 37 CFR 1 76

El Continuation E Divisional El Continuation~in-part (CIP) of prior application No. Q l 504 783
Prior application information Examiner Krisna Lim Group / Art Unit C

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied
under Box 5b, is considered a part of the disclosure of the accompanying or divisional application and is hereby incorporated by reference.
The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS
22907

E Customer Number or Bar Code Label ' W D C°"e5P°”d9”C5‘ 5dd"355 below
(Insert Customer No or Attach bar code label here)

Name

Address

CW 1 State I Zip Code
Country Telephone Fax

Name (Print/Type) 49,024

September 30, 2002Signature

Burden Hour Statement This form is estimated to take 0 2 hours to complete Time will vary depending upon the needs 01 the individual case Any
comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U S Patent and Trademark
Office_ Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for
Patents, Box Patent Application, Washington, DC 20231

2

Petitioner Apple Inc. - Exhibit 1002, p. 2

.'_‘li.. iii. IE2!’ ‘léill *1-«ll-49:2‘! ll»-ll" ill Illiil E?i.I‘iZ2i.il".IL%lApproved for use through 10/31/2002 OMB 0651003.U 5 Patent and Trademark Office U 8 DEPARTMENT OF COMMERCE
Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

FEE TRANSMITTAL

for FY 2002
Patent fees are subject to annual revision

Complete if Known

Application Number TBA
Filing Date September 30, 2002

First Named Inventor Edmond Colby Munger

I:I Applicant claims small entity status. See 37 CFR 1.27

Examiner Name TBA

Group IArt Unit 2153

TOTAL AMOUNT OF PAYMENT ($)

METHOD OF PAYMENT (check all that apply)

E] Check

E Deposit Account

Deposit
Account
Number

190733

El Credit card [I Money [I Other I] NoneOrder

DepositAccou nt
Name

Banner & Witcoff, Ltd

The Commissioner is authorized to: (check all that apply)
E Charge fee(s) indicated below 8 Credit any overpayments
El Charge any additional fee(s) during the pendency of this application
|:| Charge fee(s) indicated below, except for the filing feeto the above-identified deosit account

FEE CALCULATION

BASIC FILING FEE

Fee Desc rlptlon

Utility filing fee
Design filing fee
Plant filing fee
Reissue filing fee
Provisional filling fee

SUBTOTAL (1) 740
2. EXTRA CLAIM FEES

Extra
Claims

Fee fioiii Fee
below

20

Small Entit
Fee
($l
9
42

42

9

SUBTOTAL i2)

l_0__lXlj|

EX
XEZ

F66 DGSCTIQIIOH
Claims in excess of 20
independent claims in excess of 3
Multiple dependent claim, if not paid
"' Reissue independent claims over
original patent
“ Reissue claims in excess of 20 and
over original patent

is) 335

“oi number previously paid, ifgreater. For Reissues, see above

SUBMITTED BY

Name {PnnVType) Ross A Dannenberg

Sign a lure Q9-V»
I Registration No Attorney/Agent)

Attorne Docket No 000479 00082

FEE CALCULATION (continued)
3. ADDITIONAL FEES

code Fee Description
205 Surcharge - late filing fee or oath
227 Surcharge - late provisional filing fee

or cover sheet
139 Non-English specification
147 For filing a request for reexamination
112 Requesting publication of SIR prior toExaminer action
113 Requesting publication of SIR afterExaminer action
215 Extension for reply within first month
216 Extension for reply within secondmonth
217 Extension for reply within third month
218 Extension for reply within tourlhmonth
228 Extension for reply within fifth month
219 Notice of Appeal
220 Filing a brief in support of an appeal
221 Request for oral hearing

Petition to institute a public use
proceeding

240 Petition to revive - unavoidable
241 Petition to revive — unintentional
242 Utility issue fee (or reissue)
243 Design issue fee
244 Plant issue fee
I22 Petitions to the Commissioner
123 Processing fee under 37 CFR 1 17 (q)

Submission of Information Disclosure
Stmt
Recording each patent assignment
per property (times number of
properties)
Filing a submission afterfinal rejection
(37 CFR § 1 129(a))
For each additional invention to be
examined (37 CFR § 1 129(b))

138

126

581 40

246 370

249 370

279 370 Request for Continued Examination (RCE)
169 900 Request for expedited examination

of a design application

Other fee (specity)

‘Reduced by Basic Filing Fee Paid

49,024 Telephone (202) 505-9153

Mu .,

Date September 30, 2002

WARNING: Information on this form may become public. Credit card Information should not be
Included on this form. Provide credit card Information and authorization on PTO-2038.

Burden Hour Statement This form is estimated to take 0 2 hours to complete Time will vary depending upon the needs of the individual case Any comments on the
amount of time you are required to complete this form should be sent to the Chief Information Officer, U S Patent and Trademark Office, Washington, DC 20231
DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS SEND TO Assistant Commissioner for Patents, Washington, DC 20231

3

Petitioner Apple Inc. - Exhibit 1002, p. 3

_IZ3'3..51i’Iil;--E!533$}“€113I’-vii~"§§313‘~ii~ .1. ii3!"3Z T“
Lu.

Application Data Sheet

Application Information

Application number::

Filing Date::

Application Type::

Subject Matter::

Suggested classification:

Suggested Group Art Unitc:

CD—ROM or CD-R?::

Number of CD diskszz

Number of copies of CDs::

Sequence submission?::

Computer Readable Form (CRF)?::

Number of copies of CRF::

Titlez: IMPROVEMENTS TO AN AGILE NETWORK

PROTOCOL FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

Attorney Docket Number:: OOO479.00082

Request for Early Pub|ication?:: NO

Request for Non-Pub|ication?:: NO

Suggested Drawing Figurezz

Total Drawing Sheets: 35

Small Entity?:: NO

Latin name::

Variety denomination namez:

Petition inc|uded?::

Petition Type::

Licensed US Govt. Agency:

Contract or Grant Numberszz

Initial O9/30/02

4

Petitioner Apple Inc. - Exhibit 1002, p. 4

Secrecy Order in Parent App|.?::

Applicant Information

Applicant Authority Type:

Primary Citizenship Country::

Status::

Given Name:

Middle Name:

Family Name::

Name Suffix:

City of Residence::

State or Province of Residence:

Country of Residence:

Street of mailing address:

City of mailing address::

State or Province of mailing address:

Country of mailing address::

Postal or Zip Code of mailing address:

Applicant Authority Type::

Primary Citizenship Country:

Status::

Given Name::

Middle Name:

Family Name::

Name Suffix::

City of Residence::

State or Province of Residence:

Country of Residence::

Street of mailing address:

Inventor

USA

Full Capacity

Edward

Colby

Munger

Crownsville

MD

USA

1101 Opaca Court

Crownsville

MD

USA

21032

Inventor

USA

Full Capacity

Douglas

Charles

Schmidt

Severna Park

MD

USA

230 Oak Court

Initial O9/30/02

5

Petitioner Apple Inc. - Exhibit 1002, p. 5

City of mailing address:

State or Province of mailing address:

Country of mailing address::

Postal or Zip Code of mailing address:

Applicant Authority Type::

Primary Citizenship Country:

Status:

Given Name::

Middle Name::

Family Name::

Name Suffix:

City of Residence::

State or Province of Residence::

Country of Residence:

Street of mailing address::

City of mailing address::

State or Province of mailing address:

Country of mailing address:

Postal or Zip Code of mailing address:

Applicant Authority Type::

Primary Citizenship Country:

Status:

Given Name::

Middle Name::

Family Name::

Name Suffix:

City of Residence:

State or Province of Residence:

3i:'.’:‘i E53? *7?‘ ‘~‘}'=2‘l 1., iifii *3’-33%

Serverna Park

MD

USA

21146

Inventor

USA

Full Capacity

Robert

Dunham

Shon

Ill

Leesburg

VA

USA

38710 Goose Creek Lane

Leesburg

VA

USA

20175

Inventor

USA

Full Capacity

Victor

Larson

Fairfax

VA

Initial O9/30/O2

T.§“:}‘.1i§Cl§! iilfii i§:i}"‘E

6

Petitioner Apple Inc. - Exhibit 1002, p. 6

Country of Residence:

Street of mailing address:

City of mailing address:

State or Province of mailing address::

Country of mailing address:

Postal or Zip Code of mailing address:

Applicant Authority Type::

Primary Citizenship Country:

Status::

Given Name::

Middle Name:

Family Name::

Name Suffix::

City of Residence::

State or Province of Residence:

Country of Residence:

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address:

Postal or Zip Code of mailing address::

Correspondence Information

Correspondence Customer Number:

Representative Information

Representative Customer Number:

l.,;g; :i.,;;,.:i:;:; ;2..;;..

USA

12026 Lisa Marie Court

Fairfax

VA

USA

22033

Inventor

USA

Full Capacity

Michael

Williamson

South Riding

VA

USA

26203 Ocala Circle

South Riding

VA

USA

20152

Initial 09/30/02

In
ii..;li "'7“..:1,i . '

7

Petitioner Apple Inc. - Exhibit 1002, p. 7

Domestic Priority Information

Application: Continuity Type: Parent Application:: Parent Filing Date: }
This Application Division of O9/504,783 O2/15/O0 l

l A l
Foreign Priority Information

Country: Application number: Filing Date:: Priority Claimed:

Assignee Information

Assignee name:: Science Applications International Corporation

Street of mailing address:: 10260 Campus Point Drive

City of mailing address:: San Diego

State or Province of mailing address: CA

Country of mailing address:: USA

Postal or Zip Code of mailing address: 92121

Initial O9/30/O2

8

Petitioner Apple Inc. - Exhibit 1002, p. 8

00047900082

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL
FOR SECURE COMMUNICATIONS

WITI-I ASSURED SYSTEM AVAILABILITY

CROSS-REFERENCE TO RELATED APPLICATIONS

[01] This application is a divisional application of 09/504,783 (filed February 15, 2000),

which claims priority from and is a continuation-in-part of previously filed U.S. application

serial number 09/429,643 (filed October 29, 1999). The subject matter of that application, which

is bodily incorporated herein, derives from provisional U.S. application numbers 60/106,261

(filed October 30, 1998) and 60/137,704 (filed June 7, 1999).

BACKGROUND OF THE INVENTION

[02] A tremendous variety of methods have been proposed and implemented to provide

security and anonymity for communications over the Intemet. The variety stems, in part, from

the different needs of different Internet users. A basic heuristic framework to aid in discussing

these different security techniques is illustrated in FIG. 1. Two terminals, an originating terminal

100 and a destination terminal 110 are in communication over the Internet. It is desired for the

communications to be secure, that is, immune to eavesdropping. For example, terminal 100 may

transmit secret information to terminal 110 over the Internet 107. Also, it may be desired to

prevent an eavesdropper from discovering that terminal 100 is in communication with terminal

1 10. For example, if terminal 100 is a user and terminal 1 10 hosts a web site, terminal 100’s user

may not want anyone in the intervening networks to know what web sites he is "visiting."

Anonymity would thus be an issue, for example, for companies that want to keep their market

research interests private and thus would prefer to prevent outsiders from knowing which web-

sites or other Internet resources they are “visiting.” These two security issues may be called data

security and anonymity, respectively.

[03] Data security is usually tackled using some form of data encryption. An encryption key

48 is known at both the originating and terminating terminals 100 and 110. The keys may be

private and public at the originating and destination terminals 100 and 110, respectively or they

may be symmetrical keys (the same key is used by both parties to encrypt and decrypt). Many
encryption methods are known and usable in this context.

9

Petitioner Apple Inc. - Exhibit 1002, p. 9

"-35 M-“1E’él3‘-I H. $312?! ‘*3,-‘ll Ifiiiiiilifill il'.".l3%i§':3‘ff

00047900082

[04] To hide traffic from a local administrator or ISP, a user can employ a local proxy server

in communicating over an encrypted channel with an outside proxy such that the local

administrator or ISP only sees the encrypted traffic. Proxy servers prevent destination servers

fiom determining the identities of the originating clients. This system employs an intermediate

server interposed between client and destination server. The destination server sees only the

Internet Protocol (IP) address of the proxy server and not the originating client. The target server

only sees the address of the outside proxy. This scheme relies on a trusted outside proxy server.

Also, proxy schemes are vulnerable to traffic analysis methods of determining identities of

transmitters and receivers. Another important limitation of proxy servers is that the server knows

the identities of both calling and called parties. In many instances, an originating terminal, such

as terminal A, would prefer to keep its identity concealed from the proxy, for example, if the

proxy server is provided by an Internet service provider (ISP).

[05] To defeat traffic analysis, a scheme called Chaum’s mixes employs a proxy server that

transmits and receives fixed length messages, including dummy messages. Multiple originating

terminals are connected through a mix (a server) to multiple target servers. It is difficult to tell

which of the originating terminals are communicating to which of the connected target servers,

and the dummy messages confiise eavesdroppers’ efforts to detect communicating pairs by

analyzing traffic. A drawback is that there is a risk that the mix server could be compromised.

One way to deal with this risk is to spread the trust among multiple mixes. If one mix is

compromised, the identities of the originating and target terminals may remain concealed. This

strategy requires a number of alternative mixes so that the intermediate servers interposed

between the originating and target terminals are not determinable except by compromising more

than one mix. The strategy wraps the message with multiple layers of encrypted addresses. The

first mix in a sequence can decrypt only the outer layer of the message to reveal the next

destination mix in sequence. The second mix can decrypt the message to reveal the next mix and

so on. The target server receives the message and, optionally, a multi-layer encrypted payload

containing return information to send data back in the same fashion. The only way to defeat such

a mix scheme is to collude among mixes. If the packets are all fixed—length and intermixed with

dummy packets, there is no way to do any kind of traffic analysis.

10

Petitioner Apple Inc. - Exhibit 1002, p. 10

,§§l,_§:3|i1:§F§33§§3§13-{3}*l~§!»=5f}?li'3i-i3-- M ‘iii?! §.::3§: ATE:

000479.00082

[06] Still another anonymity technique, called ‘crowds,’ protects the identity of the originating

terminal from the intermediate proxies by providing that originating terminals belong to groups

of proxies called crowds. The crowd proxies are interposed between originating and target

terminals. Each proxy through which the message is sent is randomly chosen by an upstream

proxy. Each intermediate proxy can send the message either to another randomly chosen proxy

in the “crowd” or to the destination. Thus, even crowd members cannot determine if a preceding

proxy is the originator of the message or if it was simply passed from another proxy.

[07] ZKS (Zero-Knowledge Systems) Anonymous IP Protocol allows users to select up to any

of five different pseudonyms, while desktop sofiware encrypts outgoing traffic and wraps it in

User Datagram Protocol (UDP) packets. The first server in a 2+-hop system gets the UDP

packets, strips off one layer of encryption to add another, then sends the traffic to the next server,

which strips off yet another layer of encryption and adds a new one. The user is permitted to

control the number of hops. At the fina] server, traffic is decrypted with an untraceable IP

address. The technique is called onion—routing. This method can be defeated using traffic

analysis. For a simple example, bursts of packets fi‘om a user during low-duty periods can reveal
the identities of sender and receiver.

[08] Firewalls attempt to protect LANs from unauthorized access and hostile exploitation or

damage to computers connected to the LAN . Firewalls provide a server through which all access

to the LAN must pass. Firewalls are centralized systems that require administrative overhead to

maintain. They can be compromised by virtual-machine applications (“applets”). They instill a

false sense of security that leads to security breaches for example by users sending sensitive

information to servers outside the firewall or encouraging use ofmodems to sidestep the firewall

security. Firewalls are not useful for distributed systems such as business travelers, extranets,
small teams, etc.

SUMMARY OF THE INVENTION

[09] A secure mechanism for communicating over the intemet, including a protocol referred

to as the Tunneled Agile Routing Protocol (TARP), uses a unique two—layer encryption format

and special TARP routers. TARP routers are similar in function to regular IP routers. Each

TARP router has one or more IP addresses and uses normal LP protocol to send IP packet

11

Petitioner Apple Inc. - Exhibit 1002, p. 11

O0O479.00082

messages (“packets” or “datagrams”). The IP packets exchanged between TARP terminals Via

TARP routers are actually encrypted packets whose true destination address is concealed except

to TARP routers and servers. The normal or “clear” or “outside” IP header attached to TARP IP

packets contains only the address of a next hop router or destination server. That is, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s IP

header always points to a next-hop in a series of TARP router hops, or to the final destination.

This means there is no overt indication from an intercepted TARP packet of the true destination

of the TARP packet since the destination could always be next—hop TARP router as well as the
final destination.

[10] Each TARP packet’s true destination is concealed behind a layer of encryption generated

using a link key. The link key is the encryption key used for encrypted communication between

the hops intervening between an originating TARP terminal and a destination TARP terminal.

Each TARP router can remove the outer layer of encryption to reveal the destination router for

each TARP packet. To identify the link key needed to decrypt the outer layer of encryption of a

TARP packet, a receiving TARP or routing terminal may identify the transmitting terminal by
the sender/receiver IP numbers in the cleartext IP header.

[11] Once the outer layer of encryption is removed, the TARP router determines the final

destination. Each TARP packet 140 undergoes a minimum number of hops to help foil traffic

analysis. The hops may be chosen at random or by a fixed value. As a result, each TARP packet

may make random trips among a number of geographically disparate routers before reaching its

destination. Each trip is highly likely to be different for each packet composing a given message

because each trip is independently randomly determined. This feature is called agile routing. The

fact that different packets take different routes provides distinct advantages by making it difficult

for an interloper to obtain all the packets forming an entire multi—packet message. The associated

advantages have to do with the inner layer of encryption discussed below. Agile routing is

combined with another feature that furthers this purpose; a feature that ensures that any message

is broken into multiple packets.

[12] The IP address of a TARP router can be changed, a feature called IP agility. Each TARP

router, independently or under direction from another TARP terminal or router, can change its IP

12

Petitioner Apple Inc. - Exhibit 1002, p. 12

0O0479.00082

address. A separate, unchangeable identifier or address is also defined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs.

[13] The message payload is hidden behind an inner layer of encryption in the TARP packet

that can only be unlocked using a session key. The session key is not available to any of the

intervening TARP routers. The session key is used to decrypt the payloads of the TARP packets

permitting the data stream to be reconstructed.

[14] Communication may be made private using link and session keys, which in turn may be

shared and used according to any desired method. For example, public/private keys or symmetric

keys may be used.

[15] To transmit a data stream, a TARP originating terminal constructs a series of TARP

packets from a series of IP packets generated by a network (IP) layer process. (Note that the

terms “network layer,” “data link layer,” “application layer,” etc. used in this specification

correspond to the Open Systems Interconnection (OSI) network terminology.) The payloads of

these packets are assembled into a block and chain—block encrypted using the session key. This

assumes, of course, that all the IP packets are destined for the same TARP terminal. The block is

then interleaved and the interleaved encrypted block is broken into a series of payloads, one for

each TARP packet to be generated. Special TARP headers IPT are then added to each payload

using the IP headers from the data stream packets. The TARP headers can be identical to nonnal

IP headers or customized in some way. They should contain a formula or data for deinterleaving

the data at the destination TARP terminal, a time—to-live (TTL) parameter to indicate’ the number

of hops still to be executed, a data type identifier which indicates whether the payload contains,

for example, TCP or UDP data, the sender’s TARP address, the destination TARP address, and

an indicator as to whether the packet contains real or decoy data or a formula for filtering out

decoy data if decoy data is spread in some way through the TARP payload data.

13

Petitioner Apple Inc. - Exhibit 1002, p. 13

00047900082

[16] Note that although chain—block encryption is discussed here with reference to the session

key, any encryption method may be used. Preferably, as in chain block encryption, a method

should be used that makes unauthorized decryption difficult without an entire result of the

encryption process. Thus, by separating the encrypted block among multiple packets and making

it difficult for an interloper to obtain access to all of such packets, the contents of the

communications are provided an extra layer of security.

[17] Decoy or dummy data can be added to a stream to help foil traffic analysis by reducing

the peak-to—average network load. It may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet cannot be tied to

communication bursts at another point to reveal the communicating endpoints.

[18] Dummy data also helps to break the data into a larger number of inconspicuously-sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to portion, or entirety, of a message, and

that portion or entirety then interleaved into a number of separate packets. Considering the agile

IP routing of the packets, and the attendant difficulty of reconstructing an entire sequence of

packets to form a single block-encrypted message element, decoy packets can significantly

increase the difficulty of reconstructing an entire data stream.

[19] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Because the encryption system described above is insertable between the data link and network

layers, the processes involved in supporting the encrypted communication may be completely

transparent to processes at the IP (network) layer and above. The TARP processes may also be

completely transparent to the data link layer processes as well. Thus, no operations at or above

the Network layer, or at or below the data link layer, are affected by the insertion of the TARP

stack. This provides additional security to all processes at or above the network layer, since the

14

Petitioner Apple Inc. - Exhibit 1002, p. 14

0O0479.00082

difficulty of unauthorized penetration of the network layer (by, for example, a hacker) is

increased substantially. Even newly developed servers running at the session layer leave all

processes below the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[20] IP address changes made by TARP terminals and routers can be done at regular intervals,

at random intervals, or upon detection of “attacks.” The variation of IP addresses hinders traffic

analysis that might reveal which computers are communicating, and also provides a degree of

immunity from attack. The level of immunity from attack is roughly proportional to the rate at

which the IP address of the host is changing.

[21] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicating that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. In addition, it may create a subprocess that maintains the original IP

address and continues interacting with the attacker in some manner.

[22] Decoy packets may be generated by each TARP terminal on some basis determined by an

algorithm. For example, the algorithm may be a random one which calls for the generation of a

packet on a random basis when the terminal is idle. Alternatively, the algorithm may be

responsive to time of day or detection of low traffic to generate more decoy packets during low

traffic times. Note that packets are preferably generated in groups, rather than one by one, the

groups being sized to simulate real messages. In addition, so that decoy packets may be inserted

in normal TARP message streams, the background loop may have a latch that makes it more

likely to insert decoy packets when a message stream is being received. Alternatively, if a large

number of decoy packets is received along with regular TARP packets, the algorithm may

increase the rate of dropping of decoy packets rather than forwarding them. The result of

dropping and generating decoy packets in this way is to make the apparent incoming message

size different from the apparent outgoing message size to help foil traffic analysis.

15

Petitioner Apple Inc. - Exhibit 1002, p. 15

“E3-3? '-“ll-7“ES3iJ W £1135 3*

000479.00082

[23] In various other embodiments of the invention, a scalable version of the system may be

constructed in which a plurality of IP addresses are preassigned to each pair of communicating

nodes in the network. Each pair of nodes agrees upon an algorithm for “hopping” between IP

addresses (both sending and receiving), such that an eavesdropper sees apparently continuously

random IP address pairs (source and destination) for packets transmitted between the pair.

Overlapping or “reusable” IP addresses may be allocated to different users on the same subnet,

since each node merely verifies that a particular packet includes a valid source/destination pair

from the agreed—upon algorithm. Source/destination pairs are preferably not reused between any

two nodes during any given end-to-end session, though limited IP block sizes or lengthy sessions

might require it.

[24] Further improvements described in this continuation—in-part application include: (1) a

load balancer that distributes packets across different transmission paths according to

transmission path quality; (2) a DNS proxy server that transparently creates a virtual private

network in response to a domain name inquiry; (3) a large-to-small link bandwidth management

feature that prevents denial-of—se1vice attacks at system chokepoints; (4) a traffic limiter that

regulates incoming packets by limiting the rate at which a transmitter can be synchronized with a

receiver; and (5) a signaling synchronizer that allows a large number of nodes to communicate

with a central node by partitioning the communication function between two separate entities

BRIEF DESCRIPTION OF THE DRAWINGS

[25] FIG. 1 is an illustration of secure communications over the Internet according to a prior
art embodiment.

[26] FIG. 2 is an illustration of secure communications over the Internet according to a an
embodiment of the invention.

[27] FIG. 3a is an illustration of a process of forming a tunneled IP packet according to an
embodiment of the invention.

[28] FIG. 3b is an illustration of a process of forming a tunneled IP packet according to
another embodiment of the invention.

16

Petitioner Apple Inc. - Exhibit 1002, p. 16

000479 .O0O82

[29] FIG. 4 is an illustration of an OSI layer location of processes that may be used to

implement the invention.

[30] FIG. 5 is a flow chart illustrating a process for routing a tunneled packet according to an
embodiment of the invention.

[31] FIG. 6 is a flow chart illustrating a process for forming a tunneled packet according to an
embodiment of the invention.

[32] FIG. 7 is a flow chart illustrating a process for receiving a tunneled packet according to
an embodiment of the invention.

[33] FIG. 8 shows how a secure session is established and synchronized between a client and a
TARP router.

[34] FIG. 9 shows an IP address hopping scheme between a client computer and TARP router

using transmit and receive tables in each computer.

[35] FIG. 10 shows physical link redundancy among three Internet Service Providers (ISPS)

and a client computer.

[36] FIG. 11 shows how multiple IP packets can be embedded into a single “frame” such as an

Ethernet frame, and further shows the use of a discriminator field to camouflage true packet

recipients.

[37] FIG. 12A shows a system that employs hopped hardware addresses, hopped IP addresses,

and hopped discriminator fields.

[38] FIG. 12B shows several different approaches for hopping hardware addresses, IP

addresses, and discriminator fields in combination.

17

Petitioner Apple Inc. - Exhibit 1002, p. 17

000479.00082

[39] FIG. 13 shows a technique for automatically re-establishing synchronization between

sender and receiver through the use of a partially public sync value.

[40] FIG. 14 shows a “checkpoint” scheme for regaining synchronization between a sender

and recipient.

[41] FIG. 15 shows further details of the checkpoint scheme of FIG. 14.

[42] FIG. 16 shows how two addresses can be decomposed into a plurality of segments for

comparison with presence vectors.

[43] FIG. 17 shows a storage array for a receiver’s active addresses.

[44] FIG. 18 shows the receiver’s storage array afier receiving a sync request.

[45] FIG. 19 shows the receiver’s storage array after new addresses have been generated.

[46] FIG. 20 shows a system employing distributed transmission paths.

[47] FIG. 21 shows a plurality of link transmission tables that can be used to route packets in
the system of FIG. 20.

[48] FIG. 22A shows a flowchart for adjusting weight value distributions associated with a

plurality of transmission links.

[49] FIG. 22B shows a flowchart for setting a weight value to zero if a transmitter turns off.

[50] FIG. 23 shows a system employing distributed transmission paths with adjusted weight

value distributions for each path.

[51] FIG. 24 shows an example using the system of FIG. 23.

[52] FIG. 25 shows a conventional domain-name look—up service.

18

Petitioner Apple Inc. - Exhibit 1002, p. 18

000479.00082

[53] FIG. 26 shows a system employing a DNS proxy server with transparent VPN creation.

[54] FIG. 27 shows steps that can be carried out to implement transparent VPN creation based

on a DNS look-up function.

[55] FIG. 28 shows a system including a link guard function that prevents packet overloading
on a low-bandwidth link LOW BW.

[56] FIG. 29 shows one embodiment of a system employing the principles of FIG. 28.

[57] FIG. 30 shows a system that regulates packet transmission rates by throttling the rate at

which synchronizations are performed.

[58] FIG. 31 shows a signaling server 3101 and a transport server 3102 used to establish a

VPN with a client computer.

[59] FIG. 32 shows message flows relating to synchronization protocols of FIG. 3].

DETAILED DESCRIPTION OF THE TNVENTION

[60] Referring to FIG. 2, a secure mechanism for communicating over the intemet employs a

number of special routers or servers, called TARP routers 122-127 that are similar to regular IP

routers 128-132 in that each has one or more IP addresses and uses normal IP protocol to send

norrnal—looking IP packet messages, called TARP packets 140. TARP packets 140 are identical

to normal IP packet messages that are routed by regular IP routers 128-132 because each TARP

packet 140 contains a destination address as in a normal IP packet. However, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s 140 IP

header always points to a next-hop in a series of TARP router hops, or the final destination,

TARP terminal 110. Because the header of the TARP packet contains only the next—hop

destination, there is no overt indication from an intercepted TARP packet of the true destination

of the TARP packet 140 since the destination could always be the next-hop TARP router as well

as the final destination, TARP tenninal 110.

19

Petitioner Apple Inc. - Exhibit 1002, p. 19

OO0479.00082

[61] Each TARP packet’s true destination is concealed behind an outer layer of encryption

generated using a link key 146. The link key 146 is the encryption key used for encrypted

communication between the end points (TARP terminals or TARP routers) of a single link in the

chain of hops connecting the originating TARP terminal 100 and the destination TARP terminal

1 10. Each TARP router 122-127, using the link key 146 it uses to communicate with the

previous hop in a chain, can use the link key to reveal the true destination of a TARP packet. To

identify the link key needed to decrypt the outer layer of encryption of a TARP packet, a

receiving TARP or routing terminal may identify the transmitting terminal (which may indicate

the link key used) by the sender field of the clear IP header. Alternatively, this identity may be

hidden behind another layer of encryption in available bits in the clear IP header. Each TARP

router, upon receiving a TARP message, determines if the message is a TARP message by using

authentication data in the TARP packet. This could be recorded in available bytes in the TARP

packet’s IP header. Alternatively, TARP packets could be authenticated by attempting to decrypt

using the link key 146 and determining if the results are as expected. The former may have

computational advantages because it does not involve a decryption process.

[62] Once the outer layer of decryption is completed by a TARP router 122-127, the TARP

router determines the final destination. The system is preferably designed to cause each TARP

packet 140 to undergo a minimum number of hops to help foil traffic analysis. The time to live

counter in the IP header of the TARP message may be used to indicate a number of TARP router

hops yet to be completed. Each TARP router then would decrement the counter and determine

from that whether it should forward the TARP packet 140 to another TARP router 122-127 or to

the destination TARP terminal 110. If the time to live counter is zero or below zero after

decrementing, for an example of usage, the TARP router receiving the TARP packet 140 may

forward the TARP packet 140 to the destination TARP terminal 110. If the time to live counter is

above zero afier decrementing, for an example of usage, the TARP router receiving the TARP

packet 140 may forward the TARP packet 140 to a TARP router 122-127 that the current TARP

terminal chooses at random. As a result, each TARP packet 140 is routed through some

minimum number of hops of TARP routers 122-127 which are chosen at random.

20

Petitioner Apple Inc. - Exhibit 1002, p. 20

000479.00082

[63] Thus, each TARP packet, irrespective of the traditional factors determining traffic in the

Internet, makes random trips among a number of geographically disparate routers before

reaching its destination and each trip is highly likely to be different for each packet composing a

given message because each trip is independently randomly determined as described above. This

feature is called agile routing. For reasons that will become clear shortly, the fact that different

packets take different routes provides distinct advantages by making it difficult for an interloper

to obtain all the packets forming an entire multi-packet message. Agile routing is combined with

another feature that furthers this purpose, a feature that ensures that any message is broken into

multiple packets.

[64] A TARP router receives a TARP packet when an IP address used by the TARP router

coincides with the IP address in the TARP packet’s IP header IPC. The IP address of a TARP

router, however, may not remain constant. To avoid and manage attacks, each TARP router,

independently or under direction from another TARP terminal or router, may change its IP

address. A separate, unchangeable identifier or address is also defined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs. In reality, whenever a TARP router looks up the address of a

destination in the encrypted header, it must convert a TARP address to a real IP address using its
LUT.

[65] While every TARP router receiving a TARP packet has the ability to detennine the

packet’s final destination, the message payload is embedded behind an inner layer of encryption

in the TARP packet that can only be unlocked using a session key. The session key is not

available to any of the TARP routers 122-127 intervening between the originating 100 and

destination 110 TARP terminals. The session key is used to decrypt the payloads of the TARP

packets 140 permitting an entire message to be reconstructed.

[66] In one embodiment, communication may be made private using link and session keys,

which in turn may be shared and used according any desired method. For example, a public key

or symmetric keys may be communicated between link or session endpoints using a public key

13

21

Petitioner Apple Inc. - Exhibit 1002, p. 21

00O479.00082

method. Any of a variety of other mechanisms for securing data to ensure that only authorized

computers can have access to the private information in the TARP packets 140 may be used as
desired.

[67] Referring to FIG. 3a, to construct a series of TARP packets, a data stream 300 of IP

packets 207a, 207b, 207c, etc., such series of packets being formed by a network (IP) layer

process, is broken into a series of small sized segments. In the present example, equal-sized

segments 1-9 are defined and used to construct a set of interleaved data packets A, B, and C.

Here it is assumed that the number of interleaved packets A, B, and C formed is three and that

the number of IP packets 207a-207c used to form the three interleaved packets A, B, and C is

exactly three. Of course, the number of IP packets spread over a group of interleaved packets

may be any convenient number as may be the number of interleaved packets over which the

incoming data stream is spread. The latter, the number of interleaved packets over which the data

stream is spread, is called the interleave window.

[68] To create a packet, the transmitting software interleaves the normal IP packets 207a et.

seq. to form a new set of interleaved payload data 320. This payload data 320 is then encrypted

using a session key to form a set of session-key-encrypted payload data 330, each of which, A,

B, and C, will form the payload of a TARP packet. Using the IP header data, from the original

packets 207a-207c, new TARP headers IPT are formed. The TARP headers IPT can be identical

to normal IP headers or customized in some way. In a preferred embodiment, the TARP headers

IPT are IP headers with added data providing the following information required for routing and

reconstruction of messages, some of which data is ordinarily, or capable of being, contained in
normal LP headers:

A window sequence number ~ an identifier that indicates where the packet

belongs in the original message sequence.

An interleave sequence number — an identifier that indicates the interleaving

sequence used to form the packet so that the packet can be deinterleaved along

with other packets in the interleave window.

A time—to—live (TTL) datum — indicates the number of TARP-router—hops to

be executed before the packet reaches its destination. Note that the TTL parameter

22

Petitioner Apple Inc. - Exhibit 1002, p. 22

00047900082

may provide a datum to be used in a probabilistic formula for determining

whether to route the packet to the destination or to another hop.

Data type identifier — indicates whether the payload contains, for example,
TCP or UDP data.

Sender’s address — indicates the Sender’s address in the TARP network.

Destination address — indicates the destination terminal’s address in the TARP

network.

Decoy/Real — an indicator of whether the packet contains real message data or

dummy decoy data or a combination.

[69] Obviously, the packets going into a single interleave window must include only packets

with a common destination. Thus, it is assumed in the depicted example that the IP headers of IP

packets 207a-207c all contain the same destination address or at least will be received by the

same terminal so that they can be deinterleaved. Note that dummy or decoy data or packets can

be added to form a larger interleave window than would otherwise be required by the size of a

given message. Decoy or dummy data can be added to a stream to help foil traffic analysis by

leveling the load on the network. Thus, it may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet cannot be tied to

communication bursts at another point to reveal the communicating endpoints.

[70] Dummy data also helps to break the data into a larger number of inconspicuously-sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to a portion, or the entirety, of a message,

and that portion or entirety then interleaved into a number of separate packets.

[71] Referring to FIG. 3b, in an alternative mode of TARP packet construction, a series of IP

packets are accumulated to make up a predefined interleave window. The payloads of the

packets are used to construct a single block 520 for chain block encryption using the session key.

23

Petitioner Apple Inc. - Exhibit 1002, p. 23

. ~13" ,1. ll:ll*‘3}1lI [j;}§2ii'f'§l’rl:1.lEEi§l?

00047900082

The payloads used to form the block are presumed to be destined for the same terminal. The

block size may coincide with the interleave window as depicted in the example embodiment of

FIG. 3b. After encryption, the encrypted block is broken into separate payloads and segments

which are interleaved as in the embodiment of Fig 3a. The resulting interleaved packets A, B,

and C, are then packaged as TARP packets with TARP headers as in the Example of FIG. 3a.

The remaining process is as shown in, and discussed with reference to, FIG. 3a.

[72] Once the TARP packets 340 are formed, each entire TARP packet 340, including the

TARP header IPT, is encrypted using the link key for communication with the first-hop-TARP

router. The first hop TARP router is randomly chosen. A final unencrypted IP header IPC is

added to each encrypted TARP packet 340 to form a normal IP packet 360 that can be

transmitted to a TARP router. Note that the process of constructing the TARP packet 360 does

not have to be done in stages as described. The above description is just a useful heuristic for

describing the final product, namely, the TARP packet.

[73] Note that, TARP header IPT could be a completely custom header configuration with no

similarity to a normal IP header except that it contain the information identified above. This is so

since this header is interpreted by only TARP routers.

[74] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Referring to FIG. 4, a TARP transceiver 405 can be an originating terminal 100, a destination

terminal 110, or a TARP router 122-127. In each TARP Transceiver 405, a transmitting process

is generated to receive normal packets from the Network (IP) layer and generate TARP packets

for communication over the network. A receiving process is generated to receive normal IP

packets containing TARP packets and generate from these normal IP packets which are “passed

up” to the Network (IP) layer. Note that where the TARP Transceiver 405 is a router, the

received TARP packets 140 are not processed into a stream of IP packets 415 because they need

only be authenticated as proper TARP packets and then passed to another TARP router or a

TARP destination terminal 110. The intervening process, a “TARP Layer” 420, could be

combined with either the data link layer 430 or the Network layer 410. In either case, it would

intervene between the data link layer 430 so that the process would receive regular IP packets

24

Petitioner Apple Inc. - Exhibit 1002, p. 24

. 33‘. if}! 41?}! ESE???

O00479.00082

containing embedded TARP packets and “hand up” a series of reassembled IP packets to the

Network layer 410. As an example of combining the TARP layer 420 with the data link layer

430, a program may augment the normal processes running a communications card, for example,

an Ethernet card. Alternatively, the TARP layer processes may form part of a dynamically

loadable module that is loaded and executed to support communications between the network

and data link layers.

[75] Because the encryption system described above can be inserted between the data link and

network layers, the processes involved in supporting the encrypted communication may be

completely transparent to processes at the IP (network) layer and above. The TARP processes

may also be completely transparent to the data link layer processes as well. Thus, no operations

at or above the network layer, or at or below the data link layer, are affected by the insertion of

the TARP stack. This provides additional security to all processes at or above the network layer,

since the difficulty of unauthorized penetration of the network layer (by, for example, a hacker)

is increased substantially. Even newly developed servers running at the session layer leave all

processes below the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[76] Note that IP address changes made by TARP terminals and routers can be done at regular

intervals, at random intervals, or upon detection of “attacks.” The variation of [P addresses

hinders traffic analysis that might reveal which computers are communicating, and also provides

a degree of immunity from attack. The level of immunity from attack is roughly proportional to

the rate at which the IP address of the host is changing.

[77] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicates that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. To accomplish this, the TARP process will construct a TARP-formatted

message, in the style of Internet Control Message Protocol (ICMP) datagrams as an example;

this message will contain the machine’s TARP address, its previous IP address, and its new IP

address. The TARP layer will transmit this packet to at least one known TARP router; then upon

17

25

Petitioner Apple Inc. - Exhibit 1002, p. 25

“*3.-?§i ‘FE?’-‘$3273! ll]! ‘W ‘FE? ‘?T.El il’,'I‘;} :::::;’

000479.00082

receipt and validation of the message, the TARP router will update its LUT with the new IP

address for the stated TARP address. The TARP router will then format a similar message, and

broadcast it to the other TARP routers so that they may update their LUTs. Since the total

number of TARP routers on any given subnet is expected to be relatively small, this process of

updating the LUTs should be relatively fast. It may not, however, work as well when there is a

relatively large number of TARP routers and/or a relatively large number of clients; this has

motivated a refinement of this architecture to provide scalability; this refinement has led to a

second embodiment, which is discussed below.

[78] Upon detection of an attack, the TARP process may also create a subprocess that

maintains the original IP address and continues interacting with the attacker. The latter may

provide an opportunity to trace the attacker or study the attacker’s methods (called “fishbowling”

drawing upon the analogy of a small fish in a fish bowl that “thinks” it is in the ocean but is

actually under captive observation). A history of the communication between the attacker and the

abandoned (fishbowled) IP address can be recorded or transmitted for human analysis or further

synthesized for purposes of responding in some way.

[79] As mentioned above, decoy or dummy data or packets can be added to outgoing data

streams by TARP terminals or routers. In addition to making it convenient to spread data over a

larger number of separate packets, such decoy packets can also help to level the load on inactive

portions of the lntemet to help foil traffic analysis efforts.

[80] Decoy packets may be generated by each TARP terminal 100, 110 or each router 122-

127 on some basis determined by an algorithm. For example, the algorithm may be a random one

which calls for the generation of a packet on a random basis when the terminal is idle.

Alternatively, the algorithm may be responsive to time of day or detection of low traffic to

generate more decoy packets during low traffic times. Note that packets are preferably generated

in groups, rather than one by one, the groups being sized to simulate real messages. In addition,

so that decoy packets may be inserted in normal TARP message streams, the background loop

may have a latch that makes it more likely to insert decoy packets when a message stream is

being received. That is, when a series of messages are received, the decoy packet generation rate

may be increased. Alternatively, if a large number of decoy packets is received along with

18

26

Petitioner Apple Inc. - Exhibit 1002, p. 26

7; ll ll-~ll~ “$55 M lEZIii"1}>l*I,7f§l 313: a‘llI.lJ . ESE

00047900082

regular TARP packets, the algorithm may increase the rate of dropping of decoy packets rather

than forwarding them. The result of dropping and generating decoy packets in this way is to

make the apparent incoming message size different from the apparent outgoing message size to

help foil traffic analysis. The rate of reception of packets, decoy or otherwise, may be indicated

to the decoy packet dropping and generating processes through perishable decoy and regular

packet counters. (A perishable counter is one that resets or decrements its value in response to

time so that it contains a high value when it is incremented in rapid succession and a small value

when incremented either slowly or a small number of times in rapid succession.) Note that

destination TARP terminal 1 10 may generate decoy packets equal in number and size to those

TARP packets received to make it appear it is merely routing packets and is therefore not the
destination terminal.

[81] Referring to FIG. 5, the following particular steps may be employed in the above-

described method for routing TARP packets.

0 S0. A background loop operation is performed which applies "an algorithm which determines

the generation of decoy IP packets. The loop is interrupted when an encrypted TARP packet
is received.

S2. The TARP packet may be probed in some way to authenticate the packet before

attempting to decrypt it using the link key. That is, the router may determine that the packet

is an authentic TARP packet by performing a selected operation on some data included with

the clear IP header attached to the encrypted TARP packet contained in the payload. This

makes it possible to avoid performing decryption on packets that are not authentic TARP

packets.

S3. The TARP packet is decrypted to expose the destination TARP address and an indication

of whether the packet is a decoy packet or part of a real message.

S4. If the packet is a decoy packet, the perishable decoy counter is incremented.

S5. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the router may choose to throw it away. If the received

packet is a decoy packet and it is determined that it should be thrown away (S6), control
returns to step S0.

27

Petitioner Apple Inc. - Exhibit 1002, p. 27

£3? ill!‘-"*?.1-TI V‘--ll %lI]i*5I}'?3IEi3Ii{IIll

000479.00082

0 S7. The TTL parameter of the TARP header is decremented and it is determined if the TTL

parameter is greater than zero.

S8. If the TTL parameter is greater than zero, a TARP address is randomly chosen from a list

of TARP addresses maintained by the router and the link key and IP address corresponding

to that TARP address memorized for use in creating a new IP packet containing the TARP
packet.

S9. If the TTL parameter is zero or less, the link key and IP address corresponding to the

TARP address of the destination are memorized for use in creating the new IP packet

containing the TARP packet.

S10. The TARP packet is encrypted using the memorized link key.

S11. An IP header is added to the packet that contains the stored IP address, the encrypted

TARP packet wrapped with an IP header, and the completed packet transmitted to the next

hop or destination.

[82] Referring to FIG. 6, the following particular steps may be employed in the above-

described method for generating TARP packets.

0 S20. A background loop operation applies an algorithm that determines the generation of

decoy IP packets. The loop is interrupted when a data stream containing IP packets is
received for transmission.

S21. The received IP packets are grouped into a set consisting of messages with a constant IP

destination address. The set is further broken down to coincide with a maximum size of an

interleave window The set is encrypted, and interleaved into a set of payloads destined to

become TARP packets.

S22. The TARP address corresponding to the IP address is determined from a lookup table

and stored to generate the TARP header. An initial TTL count is generated and stored in the

header. The TTL count may be random with minimum and maximum values or it may be

fixed or determined by some other parameter.

S23. The window sequence numbers and interleave sequence numbers are recorded in the

TARP headers of each packet.

S24. One TARP router address is randomly chosen for each TARP packet and the IP address

corresponding to it stored for use in the clear lP header. The link key corresponding to this

28

Petitioner Apple Inc. - Exhibit 1002, p. 28

333' ‘?13l:!2l‘r—“‘}?l| llwllu 1., lljfll *7?‘ :33.

00047900082

router is identified and used to encrypt TARP packets containing interleaved and encrypted
data and TARP headers.

S25. A clear IP header with the first hop router’s real IP address is generated and added to

each of the encrypted TARP packets and the resulting packets.

[83] Referring to FIG. 7, the following particular steps may be employed in the above-

described method for receiving TARP packets.

0 S40. A background loop operation is performed which applies an algorithm which

determines the generation of decoy IP packets. The loop is interrupted when an encrypted
TARP packet is received.

S42. The TARP packet may be probed to authenticate the packet before attempting to

decrypt it using the link key.

S43. The TARP packet is decrypted with the appropriate link key to expose the destination

TARP address and an indication of whether the packet is a decoy packet or part of a real
message.

S44. If the packet is a decoy packet, the perishable decoy counter is incremented.

S45. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the receiver may choose to throw it away.

S46. The TARP packets are cached until all packets forming an interleave window are
received.

S47. Once all packets of an interleave window are received, the packets are deinterleaved.

S48. The packets block of combined packets defining the interleave window is then

decrypted using the session key.

S49. The decrypted block is then divided using the window sequence data and the IPT

headers are converted into normal IPC headers. The window sequence numbers are integrated
in the IPC headers.

S50. The packets are then handed up to the IP layer processes.

1. SCALABILITY ENHANCEMENTS

[84] The IP agility feature described above relies on the ability to transmit IP address changes

to all TARP routers. The embodiments including this feature will be referred to as “boutique”

embodiments due to potential limitations in scaling these features up for a large network, such as

21

29

Petitioner Apple Inc. - Exhibit 1002, p. 29

00047900082

the Internet. (The “boutique” embodiments would, however, be robust for use in smaller

networks, such as small virtual private networks, for example). One problem with the boutique

embodiments is that if IP address changes are to occur frequently, the message traffic required to

update all routers sufficiently quickly creates a serious burden on the Internet when the TARP

router and/or client population gets large. The bandwidth burden added to the networks, for

example in ICMP packets, that would be used to update all the TARP routers could overwhelm

the Internet for a large scale implementation that approached the scale of the Internet. In other

words, the boutique system’s scalability is limited.

[85] A system can be constructed which trades some of the features of the above embodiments

to provide the benefits of IP agility without the additional messaging burden. This is

accomplished by IP address-hopping according to shared algorithms that govern IP addresses

used between links participating in communications sessions between nodes such as TARP

nodes. (Note that the IP hopping technique is also applicable to the boutique embodiment.) The

IP agility feature discussed with respect to the boutique system can be modified so that it

becomes decentralized under this scalable regime and governed by the above-described shared

algorithm. Other features of the boutique system may be combined with this new type of IP-

agility.

[86] The new embodiment has the advantage of providing IP agility governed by a local

algorithm and set of IP addresses exchanged by each communicating pair of nodes. This local

governance is session-independent in that it may govern communications between a pair of

nodes, irrespective of the session or end points being transferred between the directly

communicating pair ofnodes.

[87] In the scalable embodiments, blocks of IP addresses are allocated to each node in the

network. (This scalability will increase in the future, when Internet Protocol addresses are

increased to 128-bit fields, vastly increasing the number of distinctly addressable nodes). Each

node can thus use any of the IP addresses assigned to that node to communicate with other nodes

in the network. Indeed, each pair of communicating nodes can use a plurality of source IP

addresses and destination IP addresses for communicating with each other.

30

Petitioner Apple Inc. - Exhibit 1002, p. 30

Q"; .a,.;;,. : 112;; 21.43,. ggg; II

O00479.00082

[88] Each communicating pair of nodes in a chain participating in any session stores two

blocks of IP addresses, called netblocks, and an algorithm and randomization seed for selecting,

from each netblock, the next pair of source/destination IP addresses that will be used to transmit

the next message. In other words, the algorithm governs the sequential selection of IP-address

pairs, one sender and one receiver IP address, from each netblock. The combination of algorithm,

seed, and netblock (IP address block) will be called a “hopblock.” A router issues separate

transmit and receive hopblocks to its clients. The send address and the receive address of the IP

header of each outgoing packet sent by the client are filled with the send and receive IP

addresses generated by the algorithm. The algorithm is “c1ocked” (indexed) by a counter so that

each time a pair is used, the algorithm turns out a new transmit pair for the next packet to be sent.

[89] The router’s receive hopblock is identical to the client’s transmit hopblock. The router

uses the receive hopblock to predict what the send and receive IP address pair for the next

expected packet from that client will be. Since packets can be received out of order, it is not

possible for the router to predict with certainty what IP address pair will be on the next

sequential packet. To account for this problem, the router generates a range of predictions

encompassing the number of possible transmitted packet send/receive addresses, of which the

next packet received could leap ahead. Thus, if there is a vanishingly small probability that a

given packet will arrive at the router ahead of 5 packets transmitted by the client before the given

packet, then the router can generate a series of 6 send/receive IP address pairs (or “hop window”)

to compare with the next received packet. When a packet is received, it is marked in the hop

window as such, so that a second packet with the same IP address pair will be discarded. If an

out—of—sequence packet does not arrive within a predetermined timeout period, it can be

requested for retransmission or simply discarded from the receive table, depending upon the

protocol in use for that communications session, or possibly by convention.

[90] When the router receives the client’s packet, it compares the send and receive IP

addresses of the packet with the next N predicted send and receive IP address pairs and rejects

the packet if it is not a member of this set. Received packets that do not have the predicted

source/destination IP addresses falling with the window are rejected, thus thwarting possible

hackers. (With the number of possible combinations, even a fairly large window would be hard

31

Petitioner Apple Inc. - Exhibit 1002, p. 31

00047900082

to fall into at random.) If it is a member of this set, the router accepts the packet and processes it

fiirther. This link—based IP-hopping strategy, referred to as “IHOP,” is a network element that

stands on its own and is not necessarily accompanied by elements of the boutique system

described above. If the routing agility feature described in connection with the boutique

embodiment is combined with this link—based IP-hopping strategy, the router’s next step would

be to decrypt the TARP header to determine the destination TARP router for the packet and

determine what should be the next hop for the packet. The TARP router would then forward the

packet to a random TARP router or the destination TARP router with which the source TARP

router has a link—based IP hopping communication established.

[9]] Figure 8 shows how a client computer 801 and a TARP router 811 can establish a secure

session. When client 801 seeks to establish an IHOP session with TARP router 811, the client

801 sends “secure synchronization” request (“SSYN”) packet 821 to the TARP router 811. This

SYN packet 821 contains the client’s 801 authentication token, and may be sent to the router 81 1

in an encrypted format. The source and destination IP numbers on the packet 82] are the client’s

801 current fixed IP address, and a “known” fixed IP address for the router 811. (For security

purposes, it may be desirable to reject any packets from outside of the local network that are

destined for the router’s known fixed IP address.) Upon receipt and validation of the client’s 801

SSYN packet 821, the router 811 responds by sending an encrypted “secure synchronization

acknowledgment” (“SSYN ACK”) 822 to the client 801. This SSYN ACK 822 will contain the

transmit and receive hopblocks that the client 801 will use when communicating with the TARP

router 811. The client 801 will acknowledge the TARP router’s 811 response packet 822 by

generating an encrypted SSYN ACK ACK packet 823 which will be sent fiom the client’s 801

fixed IP address and to the TARP router’s 811 known fixed IP address. The client 801 will

simultaneously generate a SSYN ACK ACK packet; this SSYN ACK packet, referred to as the

Secure Session Initiation (SSI) packet 824, will be sent with the first {sender, receiver} IP pair in

the client’s transmit table 921 (FIG. 9), as specified in the transmit hopblock provided by the

TARP router 811 in the SSYN ACK packet 822. The TARP router 811 will respond to the SSI

packet 824 with an SSI ACK packet 825, which will be sent with the first {sender, receiver} IP

pair in the TARP router’s transmit table 923. Once these packets have been successfully

exchanged, the secure communications session is established, and all further secure

32

Petitioner Apple Inc. - Exhibit 1002, p. 32

51333:? ‘W?! ““l'§~ ‘V-33% “~31-v

00047900082

communications between the client 801 and the TARP router 811 will be conducted via this

secure session, as long as synchronization is maintained. If synchronization is lost, then the client

801 and TARP router 802 may re—establish the secure session by the procedure outlined in
Figure 8 and described above.

[92] While the secure session is active, both the client 901 and TARP router 911 (FIG. 9) will

maintain their respective transmit tables 921, 923 and receive tables 922, 924, as provided by the

TARP router during session synchronization 822. It is important that the sequence of IP pairs in

the client’s transmit table 921 be identical to those in the TARP router’s receive table 924;

similarly, the sequence of IP pairs in the client’s receive table 922 must be identical to those in

the router’s transmit table 923. This is required for the session synchronization to be maintained.

The client 901 need maintain only one transmit table 921 and one receive table 922 during the

course of the secure session. Each sequential packet sent by the client 901 will employ the next

{send, receive} IP address pair in the transmit table, regardless of TCP or UDP session. The

TARP router 911 will expect each packet arriving from the client 90] to bear the next IP address

pair shown in its receive table.

[93] Since packets can arrive out of order, however, the router 911 can maintain a “look

ahea ” buffer in its receive table, and will mark previously—received IP pairs as invalid for future

packets; any future packet containing an IP pair that is in the look-ahead buffer but is marked as

previously received will be discarded. Communications from the TARP router 911 to the client

901 are maintained in an identical manner; in particular, the router 911 will select the next IP

address pair fi‘0m its transmit table 923 when constructing a packet to send to the client 901, and

the client 901 will maintain a look—ahead buffer of expected IP pairs on packets that it is

receiving. Each TARP router will maintain separate pairs of transmit and receive tables for each

client that is currently engaged in a secure session with or through that TARP router.

[94] While clients receive their hopblocks from the first server linking them to the Internet,

routers exchange hopblocks. When a router establishes a link-based IP-hopping communication

regime with another router, each router of the pair exchanges its transmit hopblock. The transmit

hopblock of each router becomes the receive hopblock of the other router. The communication

33

Petitioner Apple Inc. - Exhibit 1002, p. 33

‘5.7:l “--ll‘?-371! “~il-- 31'}! ‘Till 253-} ilill llfil

00047900082

between routers is governed as described by the example of a client sending a packet to the first
router.

[95] While the above strategy works fine in the IP milieu, many local networks that are

connected to the Internet are Ethernet systems. In Ethernet, the IP addresses of the destination

devices must be translated into hardware addresses, and vice versa, using known processes

(“address resolution protocol,” and “reverse address resolution protocol”). However, if the link-

based IP-hopping strategy is employed, the correlation process would become explosive and

burdensome. An alternative to the link—based IP hopping strategy may be employed within an

Ethernet network. The solution is to provide that the node linking the Internet to the Ethernet

(call it the border node) use the link—based IP-hopping communication regime to communicate

with nodes outside the Ethernet LAN. Within the Ethernet LAN, each TARP node would have a

single IP address which would be addressed in the conventional way. Instead of comparing the

{sender, receiver} IP address pairs to authenticate a packet, the intra-LAN TARP node would

use one of the IP header extension fields to do so. Thus, the border node uses an algorithm

shared by the intra-LAN TARP node to generate a symbol that is stored in the free field in the IP

header, and the intra-LAN TARP node generates a range ‘of symbols based on its prediction of

the next expected packet to be received from that particular source IP address. The packet is

rejected if it does not fall into the set of predicted symbols (for example, numerical values) or is

accepted if it does. Communications from the intra-LAN TARP node to the border node are

accomplished in the same manner, though the algorithm will necessarily be different for security

reasons. Thus, each of the communicating nodes will generate transmit and receive tables in a

similar manner to that of Figure 9; the intra-LAN TARP nodes transmit table will be identical to

the border node’s receive table, and the intra-LAN TARP node’s receive table will be identical to

the border node’s transmit table.

[96] The algorithm used for IP address—hopping can be any desired algorithm. For example,

the algorithm can be a given pseudo—random number generator that generates numbers of the

range covering the allowed IP addresses with a given seed. Alternatively, the session participants

can assume a certain type of algorithm and specify simply a parameter for applying the

34

Petitioner Apple Inc. - Exhibit 1002, p. 34

57- Ml--‘l3}il “»-~ll=- gr 'il.;il ‘lb

000479.00082

algorithm. For example the assumed algorithm could be a particular pseudo-random number

generator and the session participants could simply exchange seed values.

[97] Note that there is no permanent physical distinction between the originating and

destination terminal nodes. Either device at either end point can initiate a synchronization of the

pair. Note also that the authentication/synchronization-request (and acknowledgment) and

hopblock-exchange may all be served by a single message so that separate message exchanges

may not be required.

[98] As another extension to the stated architecture, multiple physical paths can be used by a

client, in order to provide link redundancy and further thwart attempts at denial of service and

traffic monitoring. As shown in Figure 10, for example, client 1001 can establish three

simultaneous sessions with each of three TARP routers provided by different ISPs 1011, 1012,

1013. As an example, the client 1001 can use three different telephone lines 1021, 1022, 1023 to

connect to the ISPs, or two telephone lines and a cable modem, etc. In this scheme, transmitted

packets will be sent in a random fashion among the different physical paths. This architecture

provides a high degree of communications redundancy, with improved immunity from denial-of-

service attacks and traffic monitoring.

2. FURTHER EXTENSIONS

[99] The following describes various extensions to the techniques, systems, and methods

described above. As described above, the security of communications occurring between

computers in a computer network (such as the Internet, an Ethernet, or others) can be enhanced

by using seemingly random source and destination Internet Protocol (IP) addresses for data

packets transmitted over the network. This feature prevents eavesdroppers from determining

which computers in the network are communicating with each other while permitting the two

communicating computers to easily recognize whether a given received data packet is legitimate

or not. In one embodiment of the above-described systems, an IP header extension field is used

to authenticate incoming packets on an Ethernet.

[100] Various extensions to the previously described techniques described herein include: (1)

use of hopped hardware or “MAC” addresses in broadcast type network; (2) a self-

27

35

Petitioner Apple Inc. - Exhibit 1002, p. 35

00047900082

synchronization technique that permits a computer to automatically regain synchronization with

a sender; (3) synchronization algorithms that allow transmitting and receiving computers to

quickly re-establish synchronization in the event of lost packets or other events; and (4) a fast-

packet rejection mechanism for rejecting invalid packets. Any or all of these extensions can be

combined with the features described above in any of various ways.

A. Hardware Address Hogping

[101] Internet protocol-based communications techniques on a LAN—or across any dedicated

physical medium—typically embed the IP packets within lower—level packets, often referred to9

as “frames.’ As shown in FIG. 11, for example, a first Ethernet fi'ame 1 150 comprises a frame

header 1101 and two embedded IP packets IP1 and IP2, while a second Ethernet frame 1160

comprises a different frame header 1104 and a single IP packet IP3. Each frame header

generally includes a source hardware address 1101A and a destination hardware address 1101B;

other well-known fields in frame headers are omitted from FIG. 11 for clarity. Two hardware

nodes communicating over a physical communication channel insert appropriate source and

destination hardware addresses to indicate which nodes on the charmel or network should receive
the frame.

[102] It may be possible for a nefarious listener to acquire information about the contents of a

frame and/or its communicants by examining frames on a local network rather than (or in

addition to) the IP packets themselves. This is especially true in broadcast media, such as

Ethernet, where it is necessary to insert into the frame header the hardware address of the

machine that generated the frame and the hardware address of the machine to which frame is

being sent. All nodes on the network can potentially “see” all packets transmitted across the

network. This can be a problem for secure communications, especially in cases where the

communicants do not want for any third party to be able to identify who is engaging in the

information exchange. One way to address this problem is to push the address-hopping scheme

down to the hardware layer. In accordance with various embodiments of the invention, hardware

addresses are “hopped” in a manner similar to that used to change IP addresses, such that a

listener cannot determine which hardware node generated a particular message nor which node is

the intended recipient.

36

Petitioner Apple Inc. - Exhibit 1002, p. 36

000479.00082

[103] FIG. 12A shows a system in which Media Access Control (“MAC”) hardware addresses

are “hopped” in order to increase security over a network such as an Ethernet. While the

description refers to the exemplary case of an Ethernet environment, the inventive principles are

equally applicable to other types of communications media. In the Ethernet case, the MAC

address of the sender and receiver are inserted into the Ethernet frame and can be observed by

anyone on the LAN who is within the broadcast range for that frame. For secure

communications, it becomes desirable to generate frames with MAC addresses that are not

attributable to any specific sender or receiver.

[104] As shown in FIG. 12A, two computer nodes 1201 and 1202 communicate over a

communication channel such as an Ethernet. Each node executes one or more application

programs 1203 and 1218 that communicate by transmitting packets through communication

software 1204 and 1217, respectively. Examples of application programs include video

conferencing, e-mail, word processing programs, telephony, and the like. Communication

software 1204 and 1217 can comprise, for example, an OSI layered architecture or “stack” that

standardizes various services provided at different levels of functionality.

[105] The lowest levels of communication software 1204 and 1217 communicate with

hardware components 1206 and 1214 respectively, each of which can include one or more

registers 1207 and 1215 that allow the hardware to be reconfigured or controlled in accordance

with various communication protocols. The hardware components (an Ethernet network

interface card, for example) communicate with each other over the communication medium.

Each hardware component is typically pre-assigned a fixed hardware address or MAC number

that identifies the hardware component to other nodes on the network. One or more interface

drivers control the operation of each card and can, for example, be configured to accept or reject

packets from certain hardware addresses. As will be described in more detail below, various

embodiments of the inventive principles provide for “hopping” different addresses using one or

more algorithms and one or more moving windows that track a range of valid addresses to

validate received packets. Packets transmitted according to one or more of the inventive

principles will be generally referred to as “secure” packets or “secure communications” to

37

Petitioner Apple Inc. - Exhibit 1002, p. 37

OO0479.00082

differentiate them from ordinary data packets that are transmitted in the clear using ordinary,
machine—correlated addresses.

[106] One straightforward method of generating non-attributable MAC addresses is an

extension of the IP hopping scheme. In this scenario, two machines on the same LAN that desire

to communicate in a secure fashion exchange random—number generators and seeds, and create

sequences of quasi—rand0m MAC addresses for synchronized hopping. The implementation and

synchronization issues are then similar to that of IP hopping.

[107] This approach, however, runs the risk of using MAC addresses that are currently active

on the LAN—~which, in turn, could interrupt communications for those machines. Since an

Ethernet MAC address is at present 48 bits in length, the chance of randomly misusing an active

MAC address is actually quite small. However, if that figure is multiplied by a large number of

nodes (as would be found on an extensive LAN), by a large number of frames (as might be the

case with packet voice or streaming video), and by a large number of concurrent Virtual Private

Networks (VPNS), then the chance that a non—secure machine’s MAC address could be used in

an address—hopped frame can become non-trivial. In short, any scheme that runs even a small

risk of interrupting communications for other machines on the LAN is bound to receive

resistance from prospective system administrators. Nevertheless, it is technically feasible, and

can be implemented without risk on a LAN on which there is a small number of machines, or if

all of the machines on the LAN are engaging in MAC-hopped communications.

[108] Synchronized MAC address hopping may incur some overhead in the course of session

establishment, especially if there are multiple sessions or multiple nodes involved in the

communications. A simpler method of randomizing MAC addresses is to allow each node to

receive and process every incident frame on the network. Typically, each network interface

driver will check the destination MAC address in the header of every incident frame to see if it

matches that machine’s MAC address; if there is no match, then the frame is discarded. In one

embodiment, however, these checks can be disabled, and every incident packet is passed to the

TARP stack for processing. This will be referred to as “promiscuous” mode, since every incident

frame is processed. Promiscuous mode allows the sender to use completely random,

unsynchronized MAC addresses, since the destination machine is guaranteed to process the

30

38

Petitioner Apple Inc. - Exhibit 1002, p. 38

"7-5. ll-All‘-Vii W ":1 illili “$3

0OO479.00082

frame. The decision as to whether the packet was truly intended for that machine is handled by

the TARP stack, which checks the source and destination IP addresses for a match in its IP

synchronization tables. If no match is found, the packet is discarded; if there is a. match, the

packet is unwrapped, the inner header is evaluated, and if the inner header indicates that the

packet is destined for that machine then the packet is forwarded to the IP stack—otherwise it is

discarded.

[109] One disadvantage of purely—random MAC address hopping is its impact on processing

overhead; that is, since every incident frame must be processed, the machine’s CPU is engaged

considerably more often than if the network interface driver is discriminating and rejecting

packets unilaterally. A compromise approach is to select either a single fixed MAC address or a

small number of MAC addresses (e.g., one for each virtual private network on an Ethernet) to

use for MAC—hopped communications, regardless of the actual recipient for which the message

is intended. In this mode, the network interface driver can check each incident frame against one

(or a few) pre-established MAC addresses, thereby freeing the CPU from the task of physical-

layer packet discrimination. This scheme does not betray any useful information to an interloper

on the LAN; in particular, every secure packet can already be identified by a unique packet type

in the outer header. However, since all machines engaged in secure communications would

either be using the same MAC address, or be selecting from a small pool of predetermined MAC

addresses, the association between a specific machine and a specific MAC address is effectively
broken.

[110] In this scheme, the CPU will be engaged more ofien than it would be in non-secure

communications (or in synchronized MAC address hopping), since the network interface driver

cannot always unilaterally discriminate between secure packets that are destined for that

machine, and secure packets from other VPNs. However, the non—secure traffic is easily

eliminated at the network interface, thereby reducing the amount of processing required of the

CPU. There are boundary conditions where these statements would not hold, of course—e.g., if

all of the traffic on the LAN is secure traffic, then the CPU would be engaged to the same degree

as it is in the purely—random address hopping case; alternatively, if each VPN on the LAN uses a

different MAC address, then the network interface can perfectly discriminate secure frames

39

Petitioner Apple Inc. - Exhibit 1002, p. 39

§':3’»"‘3--il"‘l-iii! “*3” llllil ‘$3521 ‘IE3l§.§lT.ll ill} ..:iIi

00O479.000S2

destined for the local machine from those constituting other VPNs. These are engineering

tradeoffs that might be best handled by providing administrative options for the users when

installing the software and/or establishing VPNs.

[111] Even in this scenario, however, there still remains a slight risk of selecting MAC

addresses that are being used by one or more nodes on the LAN. One solution to this problem is

to formally assign one address or a range of addresses for use in MAC—hopped communications.

This is typically done via an assigned numbers registration authority; eg, in the case of

Ethernet, MAC address ranges are assigned to vendors by the Institute of Electrical and

Electronics Engineers (IEEE). A formally-assigned range of addresses would ensure that secure

flames do not conflict with any properly—configured and properly—functioning machines on the
LAN.

[112] Reference will now be made to FIGS. 12A and 12B in order to describe the many

combinations and features that follow the inventive principles. As explained above, two

computer nodes 1201 and 1202 are assumed to be communicating over a network or

communication medium such as an Ethernet. A communication protocol in each node (1204 and

1217, respectively) contains a modified element 1205 and 1216 that perfomis certain functions

that deviate from the standard communication protocols. In particular, computer node 1201

implements a first “hop” algorithm 1208X that selects seemingly random source and destination

IP addresses (and, in one embodiment, seemingly random IP header discriminator fields) in order

to transmit each packet to the other computer node. For example, node 1201 maintains a

transmit table 1208 containing triplets of source (S), destination (D), and discriminator fields

(DS) that are inserted into outgoing IP packet headers. The table is generated through the use of

an appropriate algorithm (e.g., a random number generator that is seeded with an appropriate

seed) that is known to the recipient node 1202. As each new IP packet is formed, the next

sequential entry out of the sender’s transmit table 1208 is used to populate the IP source, IP

destination, and IP header extension field (e.g., discriminator field). It will be appreciated that

the transmit table need not be created in advance but could instead be created on-the-fly by

executing the algorithm when each packet is formed.

40

Petitioner Apple Inc. - Exhibit 1002, p. 40

OOO479.00082

[113] At the receiving node 1202, the same IP hop algorithm l222X is maintained and used to

generate a receive table 1222 that lists valid triplets of source IP address, destination IP address,

and discriminator field. This is shown by virtue of the first five entries of transmit table 1208

matching the second five entries of receive table 1222. (The tables may be slightly offset at any

particular time due to lost packets, misordered packets, or transmission delays). Additionally,

node 1202 maintains a receive window W3 that represents a list of valid IP source, IP

destination, and discriminator fields that will be accepted when received as part of an incoming

IP packet. As packets are received, window W3 slides down the list of valid entries, such that

the possible valid entries change over time. Two packets that arrive out of order but are

nevertheless matched to entries within window W3 will be accepted; those falling outside of

window W3 will be rejected as invalid. The length of window W3 can be adjusted as necessary

to reflect network delays or other factors.

[114] Node 1202 maintains a similar transmit table 1221 for creating IP packets and frames

destined for node 1201 using a potentially different hopping algorithm 1221X, and node 1201

maintains a matching receive table 1209 using the same algorithm 1209X. As node 1202

transmits packets to node 1201 using seemingly random IP source, IP destination, and/or

discriminator fields, node 1201 matches the incoming packet values to those falling within

window W1 maintained in its receive table. In effect, transmit table 1208 of node 1201 is

synchronized (i.e., entries are selected in the same order) to receive table 1222 of receiving node

1202. Similarly, transmit table 1221 of node 1202 is synchronized to receive table 1209 of node

1201. It will be appreciated that although a common algorithm is shown for the source,

destination and discriminator fields in FIG. 12A (using, e.g., a different seed for each of the three

fields), an entirely different algorithm could in fact be used to establish values for each of these

fields. It will also be appreciated that one or two of the fields can be “hopped” rather than all
three as illustrated.

[115] In accordance with another aspect of the invention, hardware or “MAC” addresses are

hopped instead of or in addition to IP addresses and/or the discriminator field in order to improve

security in a local area or broadcast—type network. To that end, node 1201 further maintains a

transmit table 1210 using a transmit algorithm 1210X to generate source and destination

41

Petitioner Apple Inc. - Exhibit 1002, p. 41

3 3.1953} 1'11}?! *“’~»§}-"Yr:-iii 11-?!" 31331 *3???

00047900082

hardware addresses that are inserted into frame headers (e.g., fields 1101A and 1101B in FIG.

11) that are synchronized to a corresponding receive table 1224 at node 1202. Similarly, node

1202 maintains a different transmit table 1223 containing source and destination hardware

addresses that is synchronized with a corresponding receive table 1211 at node 1201. In this

manner, outgoing hardware flames appear to be originating from and going to completely

random nodes on the network, even though each recipient can determine whether a given packet

is intended for it or not. It will be appreciated that the hardware hopping feature can be

implemented at a different level in the communications protocol than the IP hopping feature

(e.g., in a card driver or in a hardware card itself to improve performance).

[116] FIG. 12B shows three different embodiments or modes that can be employed using the

aforementioned principles. In a first mode referred to as “promiscuous” mode, a common

hardware address (e.g., a fixed address for source and another for destination) or else a

completely random hardware address is used by all nodes on the network, such that a particular

packet carmot be attributed to any one node. Each node must initially accept all packets

containing the common (or random) hardware address and inspect the IP addresses or

discriminator field to determine whether the packet is intended for that node. In this regard,

either the IP addresses or the discriminator field or both can be varied in accordance with an

algorithm as described above. As explained previously, this may increase each node’s overhead

since additional processing is involved to determine whether a given packet has valid source and

destination hardware addresses.

[117] In a second mode referred to as “promiscuous per VPN” mode, a small set of fixed

hardware addresses are used, with a fixed source/destination hardware address used for all nodes

communicating over a virtual private network. For example, if there are six nodes on an

Ethernet, and the network is to be split up into two private virtual networks such that nodes on

one VPN can communicate with only the other two nodes on its own VPN, then two sets of

hardware addresses could be used: one set for the first VPN and a second set for the second

VPN. This would reduce the amount of overhead involved in checking for valid frames since

only packets arriving from the designated VPN would need to be checked. IP addresses and one

or more discriminator fields could still be hopped as before for secure communication within the

42

Petitioner Apple Inc. - Exhibit 1002, p. 42

00O479.00082

VPN. Of course, this solution compromises the anonymity of the VPNs (i.e., an outsider can

easily tell what traffic belongs in which VPN, though he carmot correlate it to a specific

machine/person). It also requires the use of a discriminator field to mitigate the vulnerability to

certain types of DOS attacks. (For example, without the discriminator field, an attacker on the

LAN could stream frames containing the MAC addresses being used by the VPN; rejecting those

frames could lead to excessive processing overhead. The discriminator field would provide a

low-overhead means of rejecting the false packets.)

[118] In a third mode referred to as “hardware hopping” mode, hardware addresses are varied

as illustrated in FIG. 12A, such that hardware source and destination addresses are changed

constantly in order to provide non-attributable addressing. Variations on these embodiments are

of course possible, and the invention is not intended to be limited in any respect by these

illustrative examples.

B. Extending the Address Space

[119] Address hopping provides security and privacy. However, the level of protection is

limited by the number of addresses in the blocks being hopped. A hopblock denotes a field or

fields modulated on a packet-wise basis for the purpose of providing a VPN. For instance, if two

nodes communicate with IP address hopping using hopblocks of 4 addresses (2 bits) each, there

would be 16 possible address-pair combinations. A window of size 16 would result in most

address pairs being accepted as valid most of the time. This limitation can be overcome by using

a discriminator field in addition to or instead of the hopped address fields. The discriminator

field would be hopped in exactly the same fashion as the address fields and it would be used to

determine whether a packet should be processed by a receiver.

[120] Suppose that two clients, each using four-bit hopblocks, would like the same level of

protection afforded to clients communicating via IP hopping between two A blocks (24 address

bits eligible for hopping). A discriminator field of 20 bits, used in conjunction with the 4 address

bits eligible for hopping in the IP address field, provides this level of protection. A 24-bit

discriminator field would provide a similar level of protection if the address fields were not

hopped or ignored. Using a discriminator field offers the following advantages: (1) an arbitrarily

43

Petitioner Apple Inc. - Exhibit 1002, p. 43

OO0479.00082

high level of protection can be provided, and (2) address hopping is unnecessary to provide

protection. This may be important in enviromnents where address hopping would cause routing
problems.

C. Sflchronization Technigucs

[121] It is generally assumed that once a sending node and receiving node have exchanged

algorithms and seeds (or similar information sufficient to generate quasi-random source and

destination tables), subsequent communication between the two nodes will proceed smoothly.

Realistically, however, two nodes may lose synchronization due to network delays or outages, or

other problems. Consequently, it is desirable to provide means for re-establishing

synchronization between nodes in a network that have lost synchronization.

[122] One possible technique is to require that each node provide an acknowledgment upon

successful receipt of each packet and, if no acknowledgment is received within a certain period

of time, to re-send the unacknowledged packet. This approach, however, drives up overhead

costs and may be prohibitive in high—throughput enviromnents such as streaming video or audio,

for example.

[123] A different approach is to employ an automatic synchronizing technique that will be

referred to herein as “self-synchronization.” In this approach, synchronization information is

embedded into each packet, thereby enabling the receiver to re-synchronize itself upon receipt of

a single packet if it determines that is has lost synchronization with the sender. (If

communications are already in progress, and the receiver determines that it is still in sync with

the sender, then there is no need to re-synchronize.) A receiver could detect that it was out of

synchronization by, for example, employing a “dead—man” timer that expires after a certain

period of time, wherein the timer is reset with each valid packet. A time stamp could be hashed

into the public sync field (see below) to preclude packet—retry attacks.

[124] In one embodiment, a “sync field” is added to the header of each packet sent out by the

sender. This sync field could appear in the clear or as part of an encrypted portion of the packet.

Assuming that a sender and receiver have selected a random-number generator (RNG) and seed

value, this combination of RNG and seed can be used to generate a random-number sequence

44

Petitioner Apple Inc. - Exhibit 1002, p. 44

€43? We-“§Z:?i “--El» I323? "1§£I}*‘§i $3?

O00479.00082

(RNS). The RNS is then used to generate a sequence of source/destination IP pairs (and, if

desired, discriminator fields and hardware source and destination addresses), as described above.

It is not necessary, however, to generate the entire sequence (or the first N-1 values) in order to

generate the Nth random number in the sequence; if the sequence index N is known, the random

value corresponding to that index can be directly generated (see below). Different RNGS (and

seeds) with different fundamental periods could be used to generate the source and destination IP

sequences, but the basic concepts would still apply. For the sake of simplicity, the following

discussion will assume that IP source and destination address pairs (only) are hopped using a

single RNG sequencing mechanism.

[125] In accordance with a “self-synchronization” feature, a sync field in each packet header

provides an index (i.e., a sequence number) into the RNS that is being used to generate IP pairs.

Plugging this index into the RNG that is being used to generate the RNS yields a specific random

number value, which in turn yields a specific IP pair. That is, an IP pair can be generated directly

from knowledge of the RNG, seed, and index number; it is not necessary, in this scheme, to

generate the entire sequence of random numbers that precede the sequence value associated with

the index number provided.

[126] Since the communicants have presumably previously exchanged RNGS and seeds, the

only new information that must be provided in order to generate an IP pair is the sequence

number. If this number is provided by the sender in the packet header, then the receiver need

only plug this number into the RNG in order to generate an IP pair — and thus verify that the IP

pair appearing in the header of the packet is valid. In this scheme, if the sender and receiver lose

synchronization, the receiver can immediately re-synchronize upon receipt of a single packet by

simply comparing the IP pair in the packet header to the IP pair generated from the index

number. Thus, synchronized communications can be resumed upon receipt of a single packet,

making this scheme ideal for multicast communications. Taken to the extreme, it could obviate

the need for synchronization tables entirely; that is, the sender and receiver could simply rely on

the index number in the sync field to validate the IP pair on each packet, and thereby eliminate

the tables entirely.

45

Petitioner Apple Inc. - Exhibit 1002, p. 45

000479.00082

[127] The aforementioned scheme may have some inherent security issues associated with it —

namely, the placement of the sync field. If the field is placed in the outer header, then an

interloper could observe the values of the field and their relationship to the IP stream. This could

potentially compromise the algorithm that is being used to generate the IP—address sequence,

which would compromise the security of the communications. If, however, the Value is placed in

the inner header, then the sender must decrypt the inner header before it can extract the sync

value and validate the IP pair; this opens up the receiver to certain types of denial-of-service

(DoS) attacks, such as packet replay. That is, if the receiver must decrypt a packet before it can

validate the IP pair, then it could potentially be forced to expend a significant amount of

processing on decryption if an attacker simply retransmits previously valid packets. Other attack

methodologies are possible in this scenario.

[128] A possible compromise between algorithm security and processing speed is to split up the

sync value between an inner (encrypted) and outer (unencrypted) header. That is, if the sync

value is sufficiently long, it could potentially be split into a rapidly-changing part that can be

viewed in the clear, and a fixed (or very slowly changing) part that must be protected. The part

that can be viewed in the clear will be called the “public sync” portion and the part that must be

protected will be called the “private sync” portion.

[129] Both the public sync and private sync portions are needed to generate the complete sync

value. The private portion, however, can be selected such that it is fixed or will change only

occasionally. Thus, the private sync value can be stored by the recipient, thereby obviating the

need to decrypt the header in order to retrieve it. If the sender and receiver have previously

agreed upon the frequency with which the private part of the sync will change, then the receiver

can selectively decrypt a single header in order to extract the new private sync if the

communications gap that has led to lost synchronization has exceeded the lifetime of the

previous private sync. This should not represent a burdensome amount of decryption, and thus

should not open up the receiver to denial-of-service attack simply based on the need to

occasionally decrypt a single header.

[130] One implementation of this is to use a hashing function with a one—to—one mapping to

generate the private and public sync portions from the sync value. This implementation is shown

38

46

Petitioner Apple Inc. - Exhibit 1002, p. 46

00047900082

in FIG. 13, where (for example) a first ISP 1302 is the sender and a second ISP 1303 is the

receiver. (Other alternatives are possible from FIG. 13.) A transmitted packet comprises a public

or “outer” header 1305 that is not encrypted, and a private or “inner” header 1306 that is

encrypted using for example a link key. Outer header 1305 includes a public sync portion while

inner header 1306 contains the private sync portion. A receiving node decrypts the inner header

using a decryption function 1307 in order to extract the private sync portion. This step is

necessary only if the lifetime of the currently buffered private sync has expired. (If the

currently-buffered private sync is still valid, then it is simply extracted from memory and

“added” (which could be an inverse hash) to the public sync, as shown in step 1308.) The public

and decrypted private sync portions are combined in function 1308 in order to generate the

combined sync 1309. The combined sync (1309) is then fed into the RNG (1310) and compared

to the IP address pair (131 1) to validate or reject the packet.

[131] An important consideration in this architecture is the concept of “future” and “past”

where the public sync values are concerned. Though the sync values, themselves, should be

random to prevent spoofing attacks, it may be important that the receiver be able to quickly

identify a sync value that has already been sent —— even if the packet containing that sync value

was never actually received by the receiver. One solution is to hash a time stamp or sequence

number into the public sync portion, which could be quickly extracted, checked, and discarded,

thereby validating the public sync portion itself.

[132] In one embodiment, packets can be checked by comparing the source/destination IP pair

generated by the sync field with the pair appearing in the packet header. If (1) they match, (2) the

time stamp is valid, and (3) the dead—man timer has expired, then re—synchronization occurs;

otherwise, the packet is rejected. If enough processing power is available, the dead—man timer

and synchronization tables can be avoided altogether, and the receiver would simply

resynchronize (e.g., validate) on every packet.

[133] The foregoing scheme may require 1arge—integer (e.g., 160-bit) math, which may affect its

implementation. Without such large-integer registers, processing throughput would be affected,

thus potentially affecting security from a denia1—of-service standpoint. Nevertheless, as large-

47

Petitioner Apple Inc. - Exhibit 1002, p. 47

‘$1133 %in§i-- ‘l3'{«ii 1l=-%!- llliil (33193? :53?‘ 11:3 ill}

0OO479.00082

integer math processing features become more prevalent, the costs of implementing such a
feature will be reduced,

D. Other S}gch1-onization Schemes

[134] As explained above, if W or more consecutive packets are lost between a transmitter and

receiver in a VPN (where W is the window size), the receiver’s window will not have been

updated and the transmitter will be transmitting packets not in the receiver’s window. The sender

and receiver will not recover synchronization until perhaps the random pairs in the window are

repeated by chance. Therefore, there is a need to keep a transmitter and receiver in

synchronization whenever possible and to re—establish synchronization whenever it is lost.

[135] A “checkpoint” scheme can be used to regain synchronization between a sender and a

receiver that have fallen out of synchronization. In this scheme, a checkpoint message

comprising a random IP address pair is used for communicating synchronization information. In

one embodiment, two messages are used to communicate synchronization information between a

sender and a recipient:

l. SYNC_REQ is a message used by the sender to indicate that it wants to synchronize;
and

2. SYNC_ACK is a message used by the receiver to inform the transmitter that it has

been synchronized.

[136] According to one variation of this approach, both the transmitter and receiver maintain

three checkpoints (see FIG. 14):

In the transmitter, ckpt_o (“checkpoint old”) is the IP pair that was used to re—send the

last SYNC_REQ packet to the receiver. In the receiver, ckpt_o (“checkpoint old”) is

the IP pair that receives repeated SYNC_REQ packets from the transmitter.

In the transmitter, ckpt_n (“checkpoint new”) is the IP pair that will be used to send

the next SYNC_REQ packet to the receiver. In the receiver, ckpt_n (“checkpoint

new”) is the IP pair that receives a new SYNC_REQ packet from the transmitter and

which causes the receiver’s window to be re-aligned, ckpt_o set to ckpt_n, a new

ckpt_n to be generated and a new ckpt_r to be generated.

48

Petitioner Apple Inc. - Exhibit 1002, p. 48

00047900082

3. In the transmitter, ckpt~r is the IP pair that will be used to send the next SYNC_ACK

packet to the receiver. In the receiver, ckpt_r is the IP pair that receives a new

SYNC_ACK packet from the transmitter and which causes a new ckpt_n to be

generated. Since SYNC_ACK is transmitted from the receiver ISP to the sender ISP,

the transmitter ckpt_r refers to the ckpt_r of the receiver and the receiver ckpt_r refers

to the ckpt_r of the transmitter (see FIG. 14).

[137] When a transmitter initiates synchronization, the IP pair it will use to transmit the next

data packet is set to a predetermined value and when a receiver first receives a SYNC_REQ, the

receiver window is updated to be centered on the transmitter’s next IP pair. This is the primary

mechanism for checkpoint synchronization.

[138] Synchronization can be initiated by a packet counter (e.g., afler every N packets

transmitted, initiate a synchronization) or by a timer (every S seconds, initiate a synchronization)

or a combination of both. See FIG. I5. From the transmitter’s perspective, this technique

operates as follows: (1) Each transmitter periodically transmits a “sync request” message to the

receiver to make sure that it is in sync. (2) If the receiver is still in sync, it sends back a “sync

ack” message. (If this works, no further action is necessary). (3) If no “sync ack” has been

received within a period of time, the transmitter retransmits the sync request again. If the

transmitter reaches the next checkpoint without receiving a “sync ack” response, then

synchronization is broken, and the transmitter should stop transmitting. The transmitter will

continue to send sync__reqs until it receives a sync_ack , at which point transmission is
reestablished.

[139] From the receiver’s perspective, the scheme operates as follows: (1) when it receives a

“sync request” request from the transmitter, it advances its window to the next checkpoint

position (even skipping pairs if necessary), and sends a “sync ack” message to the transmitter. If

sync was never lost, then the “jump ahead” really just advances to the next available pair of

addresses in the table (i.e., nonnal advancement).

49

Petitioner Apple Inc. - Exhibit 1002, p. 49

00047900082

[140] If an interloper intercepts the “sync request” messages and tries to interfere with

communication by sending new ones, it will be ignored if the synchronization has been

established or it it will actually help to re-establish synchronization.

[141] A window is realigned whenever a re—synchronization occurs. This realignment entails

updating the receiver’s window to straddle the address pairs used by the packet transmitted

immediately afier the transmission of the SYNC_REQ packet. Normally, the transmitter and

receiver are in synchronization with one another. However, when network events occur, the

receiver’s window may have to be advanced by many steps during resynchronization. In this

case, it is desirable to move the window ahead without having to step through the intervening

random numbers sequentially. (This feature is also desirable for the auto—sync approach

discussed above).

E. Random Number Generator with a Jump-Ahead capability

[142] An attractive method for generating randomly hopped addresses is to use identical

random number generators in the transmitter and receiver and advance them as packets are

transmitted and received. There are many random number generation algorithms that could be

used. Each one has strengths and weaknesses for address hopping applications.

[143] Linear congruential random number generators (LCRs) are fast, simple and well

characterized random number generators that can be made to jump ahead n steps efficiently. An

LCR generates random numbers X1, X2, X3 Xk starting with seed X0 using a recurrence

X;=(a X;_1 + b) mod c (1)

where a, b and c define a particular LCR. Another expression for Xi,

Xi=((ai(Xo+b)—b)/(a-1)) mod c (2)

enables the jump-ahead capability. The factor ai can grow very large even for modest i if left

unfettered. Therefore some special properties of the modulo operation can be used to control the

size and processing time required to compute (2). (2) can be rewritten as:

X.=(a‘ (Xo(a—1)+b)-b)/(a—1) mod c (3)

[144] It can be shown that:

50

Petitioner Apple Inc. - Exhibit 1002, p. 50

000479.00082

(ai(Xo(a—1)+b)-b)/(a-1) mod c =((aimod((a-1)c)(X0(a—1)+b) -b) /(a-1)) mod c (4)

(Xo(a—1)+b) can be stored as (X0(a-1)+b) mod c, b as b mod c and compute ai mod((a-1)c) (this

requires O(log(i)) steps).

[145] A practical implementation of this algorithm would jump a fixed distance, n,

between synchronizations; this is tantamount to synchronizing every :1 packets. The window

would commence 71 IP pairs from the start of the previous window. Using X-“', the random

number at the jth checkpoint, as X0 and n as i, a node can store a" mod((a-1)c) once per LCR and
set

Xj+1w=X,,(j+1)=((a" mod((a-1)c) (X1-W (a-1)+b)-b)/(a-l))mod c, (5)

to generate the random number for the j+l"‘ synchronization. Using this construction, a node

could jump ahead an arbitrary (but fixed) distance between synchronizations in a constant

amount of time (independent of n).

[146] Pseudo-random number generators, in general, and LCRS, in particular, will eventually

repeat their cycles. This repetition may present vulnerability in the IP hopping scheme. An

adversary would simply have to wait for a repeat to predict future sequences. One way of coping

with this vulnerability is to create a random number generator with a known long cycle. A

random sequence can be replaced by a new random number generator before it repeats. LCRS

can be constructed with known long cycles. This is not currently true of many random number

generators.

[147] Random number generators can be cryptographically insecure. An adversary can derive

the RNG parameters by examining the output or part of the output. This is true of LCGs. This

vulnerability can be mitigated by incorporating an encryptor, designed to scramble the output as

part of the random number generator. The random number generator prevents an adversary from

mounting an attack—e.g., a known plaintext attack—against the encryptor.

F. Random Number Generator Examgle

[148] Consider a RNG where a=31,b=4 and c=15. For this case equation (1) becomes:

Xi=(3l X;-1 + 4) mod 15. (6)

51

Petitioner Apple Inc. - Exhibit 1002, p. 51

000479.00082

[149] If one sets Xo=l, equation (6) will produce the sequence 1, 5, 9, 13, 2, 6, 10, 14,

3, 7, 11, O, 4, 8, 12. This sequence will repeat indefinitely. For a jump ahead of 3 numbers in this

sequence a"= 313=29791, c*(a—1)=1 5*30=45O and a" mod((a-1)c) =

3 13mod(l S*30)=29791mod(450)=91. Equation (5) becomes:

((91 (X;30+4)-4)/30)mod 15 (7)

[150] Table 1 shows the jump ahead calculations from (7) . The calculations start at 5 and jump

ahead 3.

2

-

W4»
5

14

6

3

154

34
_30390
1222°“

G. Fast Packet Filter

[151] Address hopping VPNS must rapidly determine whether a packet has a valid header and

thus requires fl.1I'thC1' processing, or has an invalid header (a hostile packet) and should be

immediately rejected. Such rapid determinations will be referred to as “fast packet filtering.”

This capability protects the VPN fi'om attacks by an adversary who streams hostile packets at the

receiver at a high rate of speed in the hope of saturating the receiver’s processor (a so-called

“denial of service” attack). Fast packet filtering is an important feature for implementing VPNs

on shared media such as Ethernet.

[152] Assuming that all participants in a VPN share an unassigned “A” block of addresses, one

possibility is to use an experimental “A” block that will never be assigned to any machine that is

not address hopping on the shared medium. “A” blocks have a 24 bits of address that can be

hopped as opposed to the 8 bits in “C” blocks. In this case a hopblock will be the “A” block.

The use of the experimental “A” block is a likely option on an Ethernet because:

52

Petitioner Apple Inc. - Exhibit 1002, p. 52

El.,fi..:L":'.{§ W ;;;""l§ I
11

000479 00082

The addresses have no validity outside of the Ethernet and will not be routed out to a valid

outside destination by a gateway.

There are 224 (~16 million) addresses that can be hopped within each “A” block. This yields

>280 trillion possible address pairs making it very unlikely that an adversary would guess a

valid address. It also provides acceptably low probability of collision between separate VPNs

(all VPNS on a shared medium independently generate random address pairs from the same

“A” block).

The packets will not be received by someone on the Ethernet who is not on a VPN (unless

the machine is in promiscuous mode) minimizing impact on non-VPN computers.

[153] The Ethernet example will be used to describe one implementation of fast packet

filtering. The ideal algorithm would quickly examine a packet header, determine whether the

packet is hostile, and reject any hostile packets or determine which active IP pair the packet

header matches. The problem is a classical associative memory problem. A variety of techniques

have been developed to solve this problem (hashing, B—trees etc). Each of these approaches has

its strengths and weaknesses. For instance, hash tables can be made to operate quite fast in a

statistical sense, but can occasionally degenerate into a much slower algorithm. This slowness

can persist for a period of time. Since there is a need to discard hostile packets quickly at all

times, hashing would be unacceptable.

H. Presence Vector Algorithm

[154] A presence vector is a bit vector of length 2“ that can be indexed by n-bit numbers (each

ranging from O to 2"—l). One can indicate the presence of k n-bit numbers (not necessarily

unique), by setting the bits in the presence vector indexed by each number to 1. Otherwise, the

bits in the presence vector are 0. An n-bit number, x, is one of the k numbers if and only if the xm

bit of the presence vector is 1. A fast packet filter can be implemented by indexing the presence

vector and looking for a 1, which will be referred to as the “test.”

[155] For example, suppose one wanted to represent the number 135 using a presence Vector.

The 135'“ bit of the vector would be set. Consequently, one could very quickly determine

whether an address of 135 was valid by checking only one bit: the 135“ bit. The presence

vectors could be created in advance corresponding to the table entries for the IP addresses. In

53

Petitioner Apple Inc. - Exhibit 1002, p. 53

:3" 4%? *l=32ln“?’«'ll “-4i,l~ .. 533% "1?-li LES} ‘ll‘j“it lit}! ii???

000479.00082

effect, the incoming addresses can be used as indices into a long vector, making comparisons

very fast. As each RNG generates a new address, the presence vector is updated to reflect the

information. As the window moves, the presence vector is updated to zero out addresses that are

no longer valid.

[156] There is a trade—off between efficiency of the test and the amount of memory required for

storing the presence vector(s). For instance, if one were to use the 48 bits of hopping addresses

as an index, the presence vector would have to be 35 terabytes. Clearly, this is too large for

practical purposes. Instead, the 48 bits can be divided into several smaller fields. For instance,

one could subdivide the 48 bits into four 12-bit fields (see FIG. 16). This reduces the storage

requirement to 2048 bytes at the expense of occasionally having to process a hostile packet. In

effect, instead of one long presence vector, the decomposed address portions must match all four

shorter presence vectors before further processing is allowed. (If the first part of the address

portion doesn’t match the first presence vector, there is no need to check the remaining three

presence vectors).

[157] A presence vector will have a 1 in the yth bit if and only if one or more addresses with a

corresponding field of y are active. An address is active only if each presence vector indexed by

the appropriate sub-field of the address is 1.

[158] Consider a window of 32 active addresses and 3 checkpoints. A hostile packet will be

rejected by the indexing of one presence vector more than 99% of the time. A hostile packet will

be rejected by the indexing of all 4 presence vectors more than 99.9999995% of the time. On

average, hostile packets will be rejected in less than 1.02 presence vector index operations.

[159] The small percentage of hostile packets that pass the fast packet filter will be rejected

when matching pairs are not found in the active window or are active checkpoints. Hostile

packets that serendipitously match a header will be rejected when the VPN software attempts to

decrypt the header. However, these cases will be extremely rare. There are many other ways this

method can be configured to arbitrate the space/speed tradeoffs.

I. Further Synchronization Enhancements

54

Petitioner Apple Inc. - Exhibit 1002, p. 54

O00479.00082

[160] A slightly modified form of the synchronization techniques described above can be

employed. The basic principles of the previously described checkpoint synchronization scheme

remain unchanged. The actions resulting from the reception of the checkpoints are, however,

slightly different. In this variation, the receiver will maintain between 000 (“Out of Order”) and

2><WINDOW_SIZE+OoO active addresses (1 S000 £WINDOW_SIZE and WINDOW_SIZE

21). O00 and WINDOW_SIZE are engineerable parameters, where O00 is the minimum

number of addresses needed to accommodate lost packets due to events in the network or out of

order arrivals and WINDOW_SIZE is the number of packets transmitted before a SYNC_REQ is

issued. FIG. 17 depicts a storage array for a receiver’s active addresses.

[161] The receiver starts with the first 2XWlNDOW_SIZE addresses loaded and active (ready

to receive data). As packets are received, the corresponding entries are marked as “used” and are

no longer eligible to receive packets. The transmitter maintains a packet counter, initially set to

0, containing the number of data packets transmitted since the last initial transmission of a

SYNC_REQ for which SYNC_ACK has been received. When the transmitter packet counter

equals WINDOW_SIZE, the transmitter generates a SYNC_REQ and does its initial

transmission. When the receiver receives a SYNC_REQ corresponding to its current CKPT__N, it

generates the next WINDOW_SIZE addresses and starts loading them in order starting at the

first location after the last active address wrapping around to the beginning of the array after the

end of the array has been reached. The receiver’s array might look like FIG. 18 when a

SYNC_REQ has been received. In this case a couple of packets have been either lost or will be

received out of order when the SYNC_REQ is received.

[162] FIG. 19 shows the receiver’s array afier the new addresses have been generated. If the

transmitter does not receive a SYNC_ACK, it will re-issue the SYNC_REQ at regular intervals.

When the transmitter receives a SYNC_ACK, the packet counter is decremented by

WINDOW_SIZE. If the packet counter reaches 2XWlNDOW_SIZE ~ O00 then the transmitter

ceases sending data packets until the appropriate SYNC_ACK is finally received. The

transmitter then resumes sending data packets. Future behavior is essentially a repetition of this

initial cycle. The advantages of this approach are:

1. There is no need for an efficient jump ahead in the random number generator,

47

55

Petitioner Apple Inc. - Exhibit 1002, p. 55

000479.00082

No packet is ever transmitted that does not have a corresponding entry in the receiver side

No timer based re-synchronization is necessary. This is a consequence of 2.

The receiver will always have the ability to accept data messages transmitted within O00

messages of the most recently transmitted message.

J. Distributed Transmission Path Variant

[163] Another embodiment incorporating various inventive principles is shown in FIG. 20. In

this embodiment, a message transmission system includes a first computer 2001 in

communication with a second computer 2002 through a network 2011 of intermediary

computers. In one variant of this embodiment, the network includes two edge routers 2003 and

2004 each of which is linked to a plurality of Internet Service Providers (ISPs) 2005 through

2010. Each ISP is coupled to a plurality of other ISPS in an arrangement as shown in FIG. 20,

which is a representative configuration only and is not intended to be limiting. Each connection

between ISPs is labeled in FIG. 20 to indicate a specific physical transmission path (e.g., AD is a

physical path that links ISP A (element 2005) to ISP D (element 2008)). Packets arriving at each

edge router are selectively transmitted to one of the ISPs to which the router is attached on the

basis of a randomly or quasi-randomly selected basis.

[164] As shown in FIG. 21, computer 2001 or edge router 2003 incorporates a plurality of link

transmission tables 2100 that identify, for each potential transmission path through the network,

valid sets of IP addresses that can be used to transmit the packet. For example, AD table 2101

contains a plurality of IP source/destination pairs that are randomly or quasi-randomly generated.

When a packet is to be transmitted from first computer 2001 to second computer 2002, one of the

link tables is randomly (or quasi-randomly) selected, and the next valid source/destination

address pair from that table is used to transmit the packet through the network. If path AD is

randomly selected, for example, the next source/destination IP address pair (which is pre-

determined to transmit between ISP A (element 2005) and ISP B (element 2008)) is used to

transmit the packet. If one of the transmission paths becomes degraded or inoperative, that link

table can be set to a “down” condition as shown in table 2105, thus preventing addresses from

being selected from that table. Other transmission paths would be unaffected by this broken link.

56

Petitioner Apple Inc. - Exhibit 1002, p. 56

000479.00082

3. CONTINUATION—IN—PART IMPROVEMENTS

[165] The following describes various improvements and features that can be applied to the

embodiments described above. The improvements include: (1) a load balancer that distributes

packets across different transmission paths according to transmission path quality; (2) a DNS

proxy server that transparently creates a virtual private network in response to a domain name

inquiry; (3) a large-to-small link bandwidth management feature that prevents denial-of-service

attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by limiting the

rate at which a transmitter can be synchronized with a receiver; and (5) a signaling synchronizer

that allows a large number of nodes to communicate with a central node by partitioning the

communication function between two separate entities. Each is discussed separately below.

A. Load Balancer

[166] Various embodiments described above include a system in which a transmitting node and

a receiving node are coupled through a plurality of transmission paths, and wherein successive

packets are distributed quasi—randomly over the plurality of paths. See, for example, FIGS. 20

and 21 and accompanying description. The improvement extends this basic concept to

encompass distributing packets across different paths in such a manner that the loads on the

paths are generally balanced according to transmission link quality.

[167] In one embodiment, a system includes a transmitting node and a receiving node that are

linked via a plurality of transmission paths having potentially varying transmission quality.

Successive packets are transmitted over the paths based on a weight value distribution function

for each path. The rate that packets will be transmitted over a given path can be different for

each path. The relative “health” of each transmission path is monitored in order to identify paths

that have become degraded. In one embodiment, the health of each path is monitored in the

transmitter by comparing the number of packets transmitted to the number of packet

acknowledgements received. Each transmission path may comprise a physically separate path

(e.g., via dial-up phone line, computer network, router, bridge, or the like), or may comprise

logically separate paths contained within a broadband communication medium (e.g., separate

channels in an FDM, TDM, CDMA, or other type of modulated or unmodulated transmission

link).

57

Petitioner Apple Inc. - Exhibit 1002, p. 57

000479.00082

[168] When the transmission quality of a path falls below a predetermined threshold and there

are other paths that can transmit packets, the transmitter changes the weight value used for that

path, making it less likely that a given packet will be transmitted over that path. The weight will

preferably be set no lower than a minimum value that keeps nominal traffic on the path. The

weights of the other available paths are altered to compensate for the change in the affected path.

When the quality of a path degrades to where the transmitter is turned off by the synchronization

function (i.e., no packets are arriving at the destination), the weight is set to zero. If all

transmitters are turned off, no packets are sent.

_[169] Conventional TCP/IP protocols include a “throttling” feature that reduces the

transmission rate of packets when it is determined that delays or errors are occurring in

transmission. In this respect, timers are sometimes used to determine whether packets have been

received. These conventional techniques for limiting transmission of packets, however, do not

involve multiple transmission paths between two nodes wherein transmission across a particular

path relative to the others is changed based on link quality.

[170] According to certain embodiments, in order to damp oscillations that might otherwise

occur if weight distributions are changed drastically (e.g., according to a step function), a linear

or an exponential decay formula can be applied to gradually decrease the weight value over time

that a degrading path will be used. Similarly, if the health of a degraded path improves, the

weight value for that path is gradually increased.

[171] Transmission link health can be evaluated by comparing the number of packets that are

acknowledged within the transmission window (see embodiments discussed above) to the

number of packets transmitted within that window and by the state of the transmitter (i.e., on or

off). In other words, rather than accumulating general transmission statistics over time for a

path, one specific implementation uses the “windowing” concepts described above to evaluate

transmission path health.

[172] The same scheme can be used to shift virtual circuit paths from an “unhealthy” path to a

“healthy” one, and to select a path for a new virtual circuit.

58

Petitioner Apple Inc. - Exhibit 1002, p. 58

3‘ "‘§l-“E5351 "~%l)- ililéi

00O479.00082

[173] FIG. 22A shows a flowchart for adjusting weight values associated with a plurality of

transmission links. It is assumed that software executing in one or more computer nodes

executes the steps shown in FIG. 22A. It is also assumed that the software can be stored on a

computer-readable medium such as a magnetic or optical disk for execution by a computer.

[174] Beginning in step 2201, the transmission quality of a given transmission path is

measured. As described above, this measurement can be based on a comparison between the

number of packets transmitted over a particular link to the number of packet acknowledgements

received over the link (e.g., per unit time, or in absolute terms). Alternatively, the quality can be

evaluated by comparing the number of packets that are acknowledged within the transmission

window to the number of packets that were transmitted within that window. In yet another

variation, the number of missed synchronization messages can be used to indicate link quality.

Many other variations are of course possible.

[175] In step 2202, a check is made to determine whether more than one transmitter (e.g.,

transmission path) is turned on. If not, the process is terminated and resumes at step 220].

[176] In step 2203, the link quality is compared to a given threshold (e.g., 50%, or any arbitrary

number). If the quality falls below the threshold, then in step 2207 a check is made to determine

whether the weight is above a minimum level (e.g., 1%). If not, then in step 2209 the weight is

set to the minimum level and processing resumes at step 2201. If the weight is above the

minimum level, then in step 2208 the weight is gradually decreased for the path, then in step

2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they are

increased).

[177] If in step 2203 the quality of the path was greater than or equal to the threshold, then in

step 2204 a check is made to determine whether the weight is less than a steady—state value for

that path. If so, then in step 2205 the weight is increased toward the steady—state value, and in

step 2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they

are decreased). If in step 2204 the weight is not less than the steady-state value, then processing

resumes at step 2201 without adjusting the weights.

59

Petitioner Apple Inc. - Exhibit 1002, p. 59

000479.00082

[178] The weights can be adjusted incrementally according to various functions, preferably by

changing the value gradually. In one embodiment, a linearly decreasing function is used to

adjust the weights; according to another embodiment, an exponential decay function is used.

Gradually changing the weights helps to damp oscillators that might otherwise occur if the

probabilities were abruptly.

[179] Although not explicitly shown in FIG. 22A the process can be performed only

periodically (e.g., according to a time schedule), or it can be continuously run, such as in a

background mode of operation. In one embodiment, the combined weights of all potential paths

should add up to unity (e.g., when the weighting for one path is decreased, the corresponding

weights that the other paths will be selected will increase).

[180] Adjustments to weight values for other paths can be prorated. For example, a decrease of

10% in weight value for one path could result in an evenly distributed increase in the weights for

the remaining paths. Alternatively, weightings could be adjusted according to a weighted

formula as desired (e.g., favoring healthy paths over less healthy paths). In yet another variation,

the difference in weight value can be amortized over the remaining links in a manner that is

proportional to their traffic weighting.

[181] FIG. 22B shows steps that can be executed to shut down transmission links where a

transmitter turns off. In step 2210, a transmitter shut—down event occurs. In step 2211, a test is

made to determine whether at least one transmitter is still turned on. If not, then in step 2215 all

packets are dropped until a transmitter turns on. If in step 2211 at least one transmitter is turned

on, then in step 2212 the weight for the path is set to zero, and the weights for the remaining

paths are adjusted accordingly.

[182] FIG. 23 shows a computer node 2301 employing various principles of the above-

described embodiments. It is assumed that two computer nodes of the type shown in FIG. 23

communicate over a plurality of separate physical transmission paths. As shown in FIG. 23, four

transmission paths X1 through X4 are defined for communicating between the two nodes. Each

node includes a packet transmitter 2302 that operates in accordance with a transmit table 2308 as

described above. (The packet transmitter could also operate without using the IP—hopping

60

Petitioner Apple Inc. - Exhibit 1002, p. 60

00047900082

features described above, but the following description assumes that some form of hopping is

employed in conjunction with the path selection mechanism.). The computer node also includes

a packet receiver 2303 that operates in accordance with a receive table 2309, including a moving

window W that moves as valid packets are received. Invalid packets having source and

destination addresses that do not fall within window W are rejected.

[183] As each packet is readied for transmission, source and destination IP addresses (or other

discriminator values) are selected from transmit table 2308 according to any of the various

algorithms described above, and packets containing these source/destination address pairs, which

correspond to the node to which the four transmission paths are linked, are generated to a

transmission path switch 2307. Switch 2307, which can comprise a software function, selects

from one of the available transmission paths according to a weight distribution table 2306. For

example, if the weight for path X1 is 0.2, then every fifih packet will be transmitted on path X1.

A similar regime holds true for the other paths as shown. Initially, each link’s weight value can

be set such that it is proportional to its bandwidth, which will be referred to as its “steady-state”
value.

[184] Packet receiver 2303 generates an output to a link quality measurement function 2304

that operates as described above to determine the quality of each transmission path. (The input

to packet receiver 2303 for receiving incoming packets is omitted for clarity). Link quality

measurement fimction 2304 compares the link quality to a threshold for each transmission link

and, if necessary, generates an output to weight adjustment function 2305. If a weight

adjustment is required, then the weights in table 2306 are adjusted accordingly, preferably

according to a gradual (e.g., linearly or exponentially declining) fimction. In one embodiment,

the weight values for all available paths are initially set to the same value, and only when paths

degrade in quality are the weights changed to reflect differences.

[185] Link quality measurement function 2304 can be made to operate as part of a synchronizer

function as described above. That is, if resynchronization occurs and the receiver detects that

synchronization has been lost (e.g., resulting in the synchronization window W being advanced

out of sequence), that fact can be used to drive link quality measurement fimction 2304.

According to one embodiment, load balancing is performed using information garnered during

53

61

Petitioner Apple Inc. - Exhibit 1002, p. 61

OO0479.00082

the normal synchronization, augmented slightly to communicate link health from the receiver to

the transmitter. The receiver maintains a count, MESS_R(W), of the messages received in

synchronization window W. When it receives a synchronization request (SYNC_REQ)

corresponding to the end of window W, the receiver includes counter MESS_R in the resulting

synchronization acknowledgement (SYNC_ACK) sent back to the transmitter. This allows the

transmitter to compare messages sent to messages received in order to asses the health of the

link.

[186] If synchronization is completely lost, weight adjustment function 2305 decreases the

weight value on the affected path to zero. When synchronization is regained, the weight value

for the affected path is gradually increased to its original value. Alternatively, link quality can be

measured by evaluating the length of time required for the receiver to acknowledge a

synchronization request. In one embodiment, separate transmit and receive tables are used for

each transmission path.

[187] When the transmitter receives a SYNC_ACK, the MES S_R is compared with the number

of messages transmitted in a window (MESS_T). When the transmitter receives a SYNC_ACK,

the traffic probabilities will be examined and adjusted if necessary. MESS_R is compared with

the number of messages transmitted in a window (MESS_T). There are two possibilities:

1. If MESS_R is less than a threshold value, THRESH, then the link will be deemed to

be unhealthy. If the transmitter was turned off, the transmitter is turned on and the weight P for

that link will be set to a minimum value MIN. This will keep a trickle of traffic on the link for

monitoring purposes until it recovers. If the transmitter was turned on, the weight P for that link
will be set to:

P’=oL>< MIN +(1— oc)xP (1)

Equation 1 will exponentially damp the traffic weight value to MIN during sustained periods of

degraded service.

2. If MESS_R for a link is greater than or equal to THRESH, the link will be deemed

healthy. If the weight P for that link is greater than or equal to the steady state value S for that

link, then P is lefi unaltered. If the weight P for that link is less than THRESH then P will be set
to:

62

Petitioner Apple Inc. - Exhibit 1002, p. 62

000479 .00082

P’=[3x s +(1— [5)><P

where B is a parameter such that 0<=B<=1 that determines the damping rate of P.

[188] Equation 2 will increase the traffic weight to S during sustained periods of acceptable

service in a damped exponential fashion.

[189] A detailed example will now be provided with reference to FIG. 24. As shown in FIG.

24, a first computer 2401 communicates with a second computer 2402 through two routers 2403

and 2404. Each router is coupled to the other router through three transmission links. As

described above, these may be physically diverse links or logical links (including virtual private

networks).

[190] Suppose that a first link L1 can sustain a transmission bandwidth of 100 Mb/s and has a

window size of 32; link L2 can sustain 75 Mb/s and has a window size of 24; and link L3 can

sustain 25 Mb/s and has a window size of 8. The combined links can thus sustain 20OMb/s. The

steady state traffic weights are 0.5 for link Ll; 0.375 for link L2, and 0.125 for link L3.

MIN=1Mb/s, THRESH =0.8 MESS_T for each link, o!.=.75 and [_’)=.5. These traffic weights will

remain stable until a link stops for synchronization or reports a number of packets received less

than its THRESH. Consider the following sequence of events:

1. Link Ll receives a SYNC_ACK containing a MESS_R of 24, indicating that only 75%

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link 1 would be below THRESH (0.8). Consequently, link L1’s traffic

weight value would be reduced to 0.12825, while link L2’s traffic weight value would

be increased to 0.65812 and link L3’s traffic weight value would be increased to

0.217938.

Link L2 and L3 remained healthy and link L1 stopped to synchronize. Then link L1’s

traffic weight value would be set to 0, link L2’s traffic weight value would be set to

0.75, and link L33’s traffic weight value would be set to 0.25.

Link Ll finally received a SYNC_ACK containing a MESS_R of 0 indicating that none

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link L1 would be below THRESH. Link Ll ’s traffic weight value would be

63

Petitioner Apple Inc. - Exhibit 1002, p. 63

1.3.. t‘;ZlT§3 11-3.. M gm 221;; ;

000479.00O82

increased to .005, link L2’s traffic weight value would be decreased to 0.74625, and

link L3 ’s traffic weight value would be decreased to 0.24875.

Link Ll received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MESS_T (32) messages transmitted in the last window were successfillly received.

Link Ll would be above THRESH. Link L1’s traffic weight value would be increased

to 0.2525, while link L2’s traffic weight value would be decreased to 0.560625 and link

L3 ’s traffic weight value would be decreased to .186875.

Link L1 received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MESS_T (32) messages transmitted in the last window were successfully received.

Link L1 would be above THRESH. Link L1’s traffic weight value would be increased

to 0.37625; link L2’s traffic weight value would be decreased to 0.4678125, and link

L3 ’s traffic weight value would be decreased to 0.1559375.

Link L1 remains healthy and the traffic probabilities approach their steady state traffic

probabilities.

B. Use of a DNS Proxy to Transparently Create Virtual Private Networks

[191] A second improvement concerns the automatic creation of a virtual private network

(VPN) in response to a domain-name server look-up function.

[192] Conventional Domain Name Servers (DNSS) provide a look—up function that returns the

IP address of a requested computer or host. For example, when a computer user types in the web

name “Yahoo.com,” the user’s web browser transmits a request to a DNS, which converts the

name into a four-part IP address that is returned to the user’s browser and then used by the

browser to contact the destination web site.

[193] This conventional scheme is shown in FIG. 25. A user’s computer 2501 includes a client

application 2504 (for example, a web browser) and an IP protocol stack 2505. When the user

enters the name of a destination host, a request DNS REQ is made (through IP protocol stack

2505) to a DNS 2502 to look up the IP address associated with the name. The DNS returns the

IP address DNS RESP to client application 2504, which is then able to use the IP address to

communicate with the host 2503 through separate transactions such as PAGE REQ and PAGE
RESP.

64

Petitioner Apple Inc. - Exhibit 1002, p. 64

0OO479.00082

[194] In the conventional architecture shown in FIG. 25, nefarious listeners on the Internet

could intercept the DNS REQ and DNS RESP packets and thus learn what IP addresses the user

was contacting. For example, if a user wanted to set up a secure communication path with a web

site having the name “Targetcom,” when the user’s browser contacted a DNS to find the IP

address for that web site, the true IP address of that web site would be revealed over the Internet

as part of the DNS inquiry. This would hamper anonymous communications on the Internet.

[195] One conventional scheme that provides secure virtual private networks over the Internet

provides the DNS server with the public keys of the machines that the DNS server has the

addresses for. This allows hosts to retrieve automatically the public keys of a host that the host

is to communicate with so that the host can set up a VPN without having the user enter the public

key of the destination host. One implementation of this standard is presently being developed as

part of the FreeS/WAN project(RFC 2535).

[196] The conventional scheme suffers from certain drawbacks. For example, any user can

perform a DNS request. Moreover, DNS requests resolve to the same value for all users.

[197] According to certain aspects of the invention, a specialized DNS server traps DNS

requests and, if the request is from a special type of user (e.g., one for which secure

communication services are defined), the server does not return the true IP address of the target

node, but instead automatically sets up a virtual private network between the target node and the

user. The VPN is preferably implemented using the IP address “hopping” features of the basic

invention described above, such that the true identity of the two nodes cannot be determined

even ifpackets during the communication are intercepted. For DNS requests that are determined

to not require secure services (e.g., an unregistered user), the DNS server transparently “passes

through” the request to provide a normal look—up fimction and return the IP address of the target

web server, provided that the requesting host has permissions to resolve unsecured sites.

Different users who make an identical DNS request could be provided with different results.

[198] FIG. 26 shows a system employing various principles summarized above. A user’s

computer 260] includes a conventional client (e.g., a web browser) 2605 and an IP protocol

stack 2606 that preferably operates in accordance with an IP hopping fimction 2607 as outlined

65

Petitioner Apple Inc. - Exhibit 1002, p. 65

. " till! *5-Eli Iii}? fill llflli SE’?

00O479.00082

above. A modified DNS server 2602 includes a conventional DNS server function 2609 and a

DNS proxy 2610. A gatekeeper server 2603 is interposed between the modified DNS server and

a secure target site 2704. An “unsecure” target site 261 1 is also accessible via conventional IP

protocols.

[199] According to one embodiment, DNS proxy 2610 intercepts all DNS lookup functions

from client 2605 and determines whether access to a secure site has been requested. If access to

a secure site has been requested (as determined, for example, by a domain name extension, or by

reference to an internal table of such sites), DNS proxy 2610 determines whether the user has

sufficient security privileges to access the site. If so, DNS proxy 2610 transmits a message to

gatekeeper 2603 requesting that a virtual private network be created between user computer 2601

and secure target site 2604. In one embodiment, gatekeeper 2603 creates “hopblocks” to be used

by computer 2601 and secure target site 2604 for secure communication. Then, gatekeeper 2603

communicates these to user computer 2601. Thereafier, DNS proxy 2610 returns to user

computer 2601 the resolved address passed to it by the gatekeeper (this address could be

different from the actual target computer) 2604, preferably using a secure administrative VPN.

The address that is returned need not be the actual address of the destination computer.

[200] Had the user requested lookup of a non-secure web site such as site 2611, DNS proxy

would merely pass through to conventional DNS server 2609 the look-up request, which would

be handled in a conventional manner, returning the IP address of non-secure web site 2611. If

the user had requested lookup of a secure web site but lacked credentials to create such a

connection, DNS proxy 2610 would return a “host unknown” error to the user. In this manner,

different users requesting access to the same DNS name could be provided with different look—up
results.

[201] Gatekeeper 2603 can be implemented on a separate computer (as shown in FIG. 26) or as

a function within modified DNS server 2602. In general, it is anticipated that gatekeeper 2703

facilitates the allocation and exchange of information needed to communicate securely, such as

using “hopped” IP addresses. Secure hosts such as site 2604 are assumed to be equipped with a

secure communication function such as an IP hopping function 2608.

66

Petitioner Apple Inc. - Exhibit 1002, p. 66

m :‘i..,lJ

00047900082

[202] It will be appreciated that the functions of DNS proxy 2610 and DNS server 2609 can be

combined into a single server for convenience. Moreover, although element 2602 is shown as

combining the fimctions of two servers, the two servers can be made to operate independently.

[203] FIG. 27 shows steps that can be executed by DNS proxy server 2610 to handle requests

for DNS look-up for secure hosts. In step 2701, a DNS look-up request is received for a target

host. In step 2702, a check is made to determine whether access to a secure host was requested.

If not, then in step 2703 the DNS request is passed to conventional DNS server 2609, which

looks up the IP address of the target site and returns it to the user’s application for further

processing.

[204] In step 2702, if access to a secure host was requested, then in step 2704 a further check is

made to determine whether the user is authorized to connect to the secure host. Such a check can

be made with reference to an internally stored list of authorized IP addresses, or can be made by

communicating with gatekeeper 2603 (e.g., over an “administrative” VPN that is secure). It will

be appreciated that different levels of security can also be provided for different categories of

hosts. For example, some sites may be designated as having a certain security level, and the

security level of the user requesting access must match that security level. The user’s security

level can also be determined by transmitting a request message back to the user’s computer

requiring that it prove that it has sufficient privileges.

[205] If the user is not authorized to access the secure site, then a “host unknown” message is

returned (step 2705). If the user has sufficient security privileges, then in step 2706 a secure

VPN is established between the user’s computer and the secure target site. As described above,

this is preferably done by allocating a hopping regime that will be carried out between the user’s

computer and the secure target site, and is preferably performed transparently to the user (i.e., the

user need not be involved in creating the secure link). As described in various embodiments of

this application, any of various fields can be “hopped” (e.g., IP source/destination addresses; a

field in the header; etc.) in order to communicate securely.

[206] Some or all of the security fimctions can be embedded in gatekeeper 2603, such that it

handles all requests to connect to secure sites. In this embodiment, DNS proxy 2610

67

Petitioner Apple Inc. - Exhibit 1002, p. 67

H ‘‘

00047900082

communicates with gatekeeper 2603 to determine (preferably over a secure administrative VPN)

whether the user has access to a particular web site. Various scenarios for implementing these

features are described by way of example below:

Scenario #1: Client has permission to access target computer, and gatekeeper has a rule

to make a VPN for the client. In this scenario, the client’s DNS request would be received by the

DNS proxy server 2610, which would forward the request to gatekeeper 2603. The gatekeeper

would establish a VPN between the client and the requested target. The gatekeeper would

provide the address of the destination to the DNS proxy, which would then return the resolved

name as a result. The resolved address can be transmitted back to the client in a secure

administrative VPN.

Scenario #2: Client does not have permission to access target computer. In this scenario,

the client’s DNS request would be received by the DNS proxy server 2610, which would forward

the request to gatekeeper 2603. The gatekeeper would reject the request, informing DNS proxy

server 2610 that it was unable to find the target computer. The DNS proxy 2610 would then

return a “host unknown” error message to the client.

Scenario #3: Client has pennission to connect using a normal non-VPN link, and the

gatekeeper does not have a rule to set up a VPN for the client to the target site. In this scenario,

the client’s DNS request is received by DNS proxy server 2610, which would check its rules and

determine that no VPN is needed. Gatekeeper 2603 would then inform the DNS proxy server to

forward the request to conventional DNS server 2609, which would resolve the request and

return the result to the DNS proxy server and then back to the client.

Scenario #4: Client does not have permission to establish a norrnal/non—VPN link, and

the gatekeeper does not have a rule to make a VPN for the client to the target site. In this

scenario, the DNS proxy server would receive the client’s DNS request and forward it to

gatekeeper 2603. Gatekeeper 2603 would determine that no special VPN was needed, but that

the client is not authorized to communicate with non-VPN members. The gatekeeper would

reject the request, causing DNS proxy server 2610 to return an error message to the client.

C. Large Link to Small Link Bandwidth Management

[207] One feature of the basic architecture is the ability to prevent so-called “denial of service”

attacks that can occur if a computer hacker floods a known Internet node with packets, thus

68

Petitioner Apple Inc. - Exhibit 1002, p. 68

“it-‘*§§’i' 3‘--ll-i .. M “A 23%} ‘E33 217 iii

00047900082

preventing the node from communicating with other nodes. Because IP addresses or other fields

are “hopped” and packets arriving with invalid addresses are quickly discarded, Internet nodes

are protected against flooding targeted at a single IP address.

[208] In a system in which a computer is coupled through a link having a limited bandwidth

(e.g., an edge router) to a node that can support a much higher-bandwidth link (e.g., an Internet

Service Provider), a potential weakness could be exploited by a determined hacker. Referring to

FIG. 28, suppose that a first host computer 2801 is communicating with a second host computer

2804 using the IP address hopping principles described above. The first host computer is

coupled through an edge router 2802 to an Internet Service Provider (ISP) 2803 through a low

bandwidth link (LOW BW), and is in turn coupled to second host computer 2804 through parts

of the Internet through a high bandwidth link (HIGH BW'). In this architecture, the ISP is able to

support a high bandwidth to the intemet, but a much lower bandwidth to the edge router 2802.

[209] Suppose that a computer hacker is able to transmit a large quantity of dummy packets

addressed to first host computer 2801 across high bandwidth link HIGH BW. Normally, host

computer 2801 would be able to quickly reject the packets since they would not fall within the

acceptance window permitted by the IP address hopping scheme. However, because the packets

must travel across low bandwidth link LOW BW, the packets overwhelm the lower bandwidth

link before they are received by host computer 2801. Consequently, the link to host computer

2801 is effectively flooded before the packets can be discarded.

[210] According to one inventive improvement, a “link guard” function 2805 is inserted into

the high-bandwidth node (e.g., ISP 2803) that quickly discards packets destined for a low-

bandwidth target node if they are not valid packets. Each packet destined for a low-bandwidth

node is cryptographically authenticated to determine whether it belongs to a VPN. If it is not a

valid VPN packet, the packet is discarded at the high-bandwidth node. If the packet is

authenticated as belonging to a VPN, the packet is passed with high preference. If the packet is a

valid non—VPN packet, it is passed with a lower quality of service (e.g., lower priority).

[21]] In one embodiment, the ISP distinguishes between VPN and non—VPN packets using the

protocol of the packet. In the case of IPSEC [rfc 2401], the packets have IP protocols 420 and

61

69

Petitioner Apple Inc. - Exhibit 1002, p. 69

"‘:'%~"’13’-ll ‘I'll-A m lllli “-333! lET’*ul7:‘i
a

000479.00082

421. In the case of the TARP VPN, the packets will have an IP protocol that is not yet defined.

The ISP’s link guard, 2805, maintains a table of valid VPNs which it uses to validate whether

VPN packets are cryptographically valid.

[212] According to one embodiment, packets that do not fall within any hop windows used by

nodes on the low-bandwidth link are rejected, or are sent with a lower quality of service. One

approach for doing this is to provide a copy of the IP hopping tables used by the low-bandwidth

nodes to the high—bandwidth node, such that both the high—bandwidth and low-bandwidth nodes

track hopped packets (e.g., the high-bandwidth node moves its hopping window as valid packets

are received). In such a scenario, the high-bandwidth node discards packets that do not fall

within the hopping window before they are transmitted over the low-bandwidth link. Thus, for

example, ISP 2903 maintains a copy 2910 of the receive table used by host computer 2901.

Incoming packets that do not fall within this receive table are discarded. According to a different

embodiment, link guard 2805 validates each VPN packet using a keyed hashed message

authentication code (HMAC) [rfc 2104]. According to another embodiment, separate VPNs

(using, for example, hopblocks) can be established for communicating between the low-

bandwidth node and the high-bandwidth node (i.e., packets arriving at the high—bandwidth node

are converted into different packets before being transmitted to the low-bandwidth node).

[213] As shown in FIG. 29, for example, suppose that a first host computer 2900 is

communicating with a second host computer 2902 over the Internet, and the path includes a high

bandwidth link HIGH BW to an ISP 2901 and a low bandwidth link LOW BW through an edge

router 2904. In accordance with the basic architecture described above, first host computer 2900

and second host computer 2902 would exchange hopblocks (or a hopblock algorithm) and would

be able to create matching transmit and receive tables 2905, 2906, 2912 and 2913. Then in

accordance with the basic architecture, the two computers would transmit packets having

seemingly random IP source and destination addresses, and each would move a corresponding

hopping window in its receivc table as valid packets were received.

[214] Suppose that a nefarious computer hacker 2903 was able to deduce that packets having a

certain range of IP addresses (e.g., addresses 100 to 200 for the sake of simplicity) are being

transmitted to ISP 2901, and that these packets are being forwarded over a low-bandwidth link.

62

70

Petitioner Apple Inc. - Exhibit 1002, p. 70

1%‘ “A31-"W s;:::3z "53?! 1!.’f':!¥E1:%i:”;E-“:i:

000479.00082

Hacker computer 2903 could thus “flood” packets having addresses falling into the range 100 to

200, expecting that they would be forwarded along low bandwidth link LOW BW, thus causing

the low bandwidth link to become overwhelmed. The fast packet reject mechanism in first host

computer 3000 would be of little use in rejecting these packets, since the low bandwidth link was

effectively jammed before the packets could be rejected. In accordance with one aspect of the

improvement, however, VPN link guard 2911 would prevent the attack from impacting the

performance ofVPN traffic because the packets would either be rejected as invalid VPN packets

or given a lower quality of service than VPN traffic over the lower bandwidth link. A denial-of-

service flood attack could, however, still disrupt non-VPN traffic.

[215] According to one embodiment of the improvement, ISP 2901 maintains a separate VPN

with first host computer 2900, and thus translates packets arriving at the ISP into packets having

a different IP header before they are transmitted to host computer 2900. The cryptographic keys

used to authenticate VPN packets at the link guard 2911 and the cryptographic keys used to

encrypt and decrypt the VPN packets at host 2902 and host 2901 can be different, so that link

guard 291 I does not have access to the private host data; it only has the capability to authenticate

those packets.

[216] According to yet a third embodiment, the low-bandwidth node can transmit a special

message to the high-bandwidth node instructing it to shut down all transmissions on a particular

IP address, such that only hopped packets will pass through to the low-bandwidth node. This

embodiment would prevent a hacker from flooding packets using a single IP address. According

to yet a fourth embodiment, the high—bandwidth node can be configured to discard packets

transmitted to the low-bandwidth node if the transmission rate exceeds a certain predetermined

threshold for any given IP address; this would allow hopped packets to go through. In this

respect, link guard 2911 can be used to detect that the rate of packets on a given IP address are

exceeding a threshold rate; further packets addressed to that same IP address wo11ld be dropped

or transmitted at a lower priority (e.g., delayed).

D. Traffic Limiter

[217] In a system in which multiple nodes are communicating using “hopping” technology, a

treasonous insider could internally flood the system with packets. In order to prevent this

63

71

Petitioner Apple Inc. - Exhibit 1002, p. 71

000479.00082

possibility, one inventive improvement involves setting up “contracts” between nodes in the

system, such that a receiver can impose a bandwidth limitation on each packet sender. One

technique for doing this is to delay acceptance of a checkpoint synchronization request from a

sender until a certain time period (e.g., one minute) has elapsed. Each receiver can effectively

control the rate at which its hopping window moves by delaying “SYNC ACK” responses to

“SYNC_REQ” messages.

[218] A simple modification to the checkpoint synchronizer will serve to protect a receiver

from accidental or deliberate overload from an internally treasonous client. This modification is

based on the observation that a receiver will not update its tables until a SYNC_REQ is received

on hopped address CKPT_N. It is a simple matter of deferring the generation of a new CKPT_N

until an appropriate interval after previous checkpoints.

[219] Suppose a receiver wished to restrict reception fi‘om a transmitter to 100 packets a

second, and that checkpoint synchronization messages were triggered every 50 packets. A

compliant transmitter would not issue new SYNC_REQ messages more often than every 0.5

seconds. The receiver could delay a non—compliant transmitter from synchronizing by delaying

the issuance of CKPT_N for 0.5 second after the last SYNC_REQ was accepted.

[220] In general, if M receivers need to restrict N transmitters issuing new SYNC_REQ

messages after every W messages to sending R messages a second in aggregate, each receiver

could defer issuing a new CKPT_N until MxNxW/R seconds have elapsed since the last

SYNC_REQ has been received and accepted. If the transmitter exceeds this rate between a pair

of checkpoints, it will issue the new checkpoint before the receiver is ready to receive it, and the

SYNC_REQ will be discarded by the receiver. Afier this, the transmitter will re-issue the

SYNC_REQ every Tl seconds until it receives a SYNC_ACK. The receiver will eventually

update CKPT_N and the SYNC_REQ will be acknowledged. If the transmission rate greatly

exceeds the allowed rate, the transmitter will stop until it is compliant. If the transmitter exceeds

the allowed rate by a little, it will eventually stop after several rounds of delayed synchronization

until it is in compliance. Hacking the transmitter’s code to not shut off only permits the

transmitter to lose the acceptance window. In this case it can recover the window and proceed

only after it is compliant again.

72

Petitioner Apple Inc. - Exhibit 1002, p. 72

:":. 1". ;: ":7.
'7." l’"i:~“r':-I‘ ll-21“ M ‘L2? “:44 .,:,5u IL,

000479.00082

[221] Two practical issues should be considered when implementing the above scheme:

1. The receiver rate should be slightly higher than the permitted rate in order to allow for

statistical fluctuations in traffic arrival times and non-uniforrn load balancing.

2. Since a transmitter will rightfully continue to transmit for a period after a SYNC_REQ

is transmitted, the algorithm above can artificially reduce the transmitter’s bandwidth. If events

prevent a compliant transmitter from synchronizing for a period (e. g. the network dropping a

SYNC_REQ or a SYNC_ACK) a SYNC~REQ will be accepted later than expected. After this,

the transmitter will transmit fewer than expected messages before encountering the next

checkpoint. The new checkpoint will not have been activated and the transmitter will have to

retransmit the SYNC_REQ. This will appear to the receiver as if the transmitter is not

compliant. Therefore, the next checkpoint will be accepted late from the transmitter’s

perspective. This has the effect of reducing the transmitter’s allowed packet rate until the

transmitter transmits at a packet rate below the agreed upon rate for a period of time.

[222] To guard against this, the receiver should keep track of the times that the last C

SYNC_REQs were received and accepted and use the minimum of MxNxW/R seconds after the

last SYNC_REQ has been received and accepted, 2xMxNxW/R seconds after next to the last

SYNC_REQ has been received and accepted, CxMxNxW/R seconds afier (C—1)"’ to the last

SYNC_REQ has been received, as the time to activate CKPT_N. This prevents the receiver

from inappropriately limiting the transmitter’s packet rate if at least one out of the last C

SYNC_REQs was processed on the first attempt.

[223] FIG. 30 shows a system employing the above-described principles. In FIG. 30, two

computers 3000 and 3001 are assumed to be communicating over a network N in accordance

with the “hopping” principles described above (e.g., hopped IP addresses, discriminator values,

etc.). For the sake of simplicity, computer 3000 will be referred to as the receiving computer and

computer 3001 will be referred to as the transmitting computer, although full duplex operation is

of course contemplated. Moreover, although only a single transmitter is shown, multiple

transmitters can transmit to receiver 3000.

[224] As described above, receiving computer 3000 maintains a receive table 3002 including a

window W that defines valid IP address pairs that will be accepted when appearing in incoming

65

73

Petitioner Apple Inc. - Exhibit 1002, p. 73

00047900082

data packets. Transmitting computer 3001 maintains a transmit table 3003 fi'om which the next

IP address pairs will be selected when transmitting a packet to receiving computer 3000. (For

the sake of illustration, window W is also illustrated with reference to transmit table 3003). As

transmitting computer moves through its table, it will eventually generate a SYNC*REQ

message as illustrated in function 3010. This is a request to receiver 3000 to synchronize the

receive table 3002, from which transmitter 3001 expects a response in the form of a CKPT_N

(included as part of a SYNC_ACK message). If transmitting computer 3001 transmits more

messages than its allotment, it will prematurely generate the SYNC_REQ message. (If it has

been altered to remove the SYNC_REQ message generation altogether, it will fall out of

synchronization since receiver 3000 will quickly reject packets that fall outside of window W,

and the extra packets generated by transmitter 3001 will be discarded).

[225] In accordance with the improvements described above, receiving computer 3000

performs certain steps when a SYNC_REQ message is received, as illustrated in FIG. 30. In step

3004, receiving computer 3000 receives the SYNC_REQ message. In step 3005, a check is

made to determine whether the request is a duplicate. If so, it is discarded in step 3006. In step

3007, a check is made to determine whether the SYNC_REQ received from transmitter 3001 was

received at a rate that exceeds the allowable rate R (i.e., the period between the time of the last

SYNC_REQ message). The value R can be a constant, or it can be made to fluctuate as desired.

If the rate exceeds R, then in step 3008 the next activation of the next CKPT_N hopping table

entry is delayed by W/R seconds after the last SYNC_REQ has been accepted.

[226] Otherwise, if the rate has not been exceeded, then in step 3109 the next CKPT_N value is

calculated and inserted into the receiver’s hopping table prior to the next SYNC_REQ from the

transmitter 3101. Transmitter 3101 then processes the SYNC_REQ in the normal manner.

E. Signaling SEchronizer

[227] In a system in which a large number of users communicate with a central node using

secure hopping technology, a large amount of memory must be set aside for hopping tables and

their supporting data structures. For example, if one million subscribers to a web site

occasionally communicate with the web site, the site must maintain one million hopping tables,

thus using up valuable computer resources, even though only a small percentage of the users may

66

74

Petitioner Apple Inc. - Exhibit 1002, p. 74

‘V.’-‘l-";'-ll 3--ll» M iifiil *3

00047900082

actually be using the system at any one time. A desirable solution would be a system that

permits a certain maximum number of simultaneous links to be maintained, but which would

“recognize” millions of registered users at any one time. In other words, out of a population of a

million registered users, a few thousand at a time could simultaneously communicate with a

central server, without requiring that the server maintain one million hopping tables of

appreciable size.

[228] One solution is to partition the central node into two nodes: a signaling server that

performs session initiation for user log-on and log-off (and requires only minimally sized tables),

and a transport server that contains larger hopping tables for the users. The signaling server

listens for the millions ofknown users and performs a fast-packet reject of other (bogus) packets.

When a packet is received from a known user, the signaling server activates a virtual private link

(VPL) between the user and the transport server, where hopping tables are allocated and

maintained. When the user logs onto the signaling server, the user’s computer is provided with

hop tables for communicating with the transport server, thus activating the VPL. The VPLs can

be torn down when they become inactive for a time period, or they can be torn down upon user

log-out. Communication with the signaling server to allow user log-on and log-off can be

accomplished using a specialized version of the checkpoint scheme described above.

[229] FIG. 31 shows a system employing certain ofthe above~described principles. In FIG. 31,

a signaling server 3101 and a transport server 3102 communicate over a link. Signaling server

310] contains a large number of small tables 3106 and 3107 that contain enough information to

authenticate a communication request with one or more clients 3103 and 3104. As described in

more detail below, these small tablcs may advantageously be constructed as a special case of the

synchronizing checkpoint tables described previously. Transport server 3102, which is

preferably a separate computer in communication with signaling server 3101, contains a smaller

number of larger hopping tables 3108, 3109, and 3110 that can be allocated to create a VPN with

one of the client computers.

[230] According to one embodiment, a client that has previously registered with the system

(e.g., Via a system administration function, a user registration procedure, or some other method)

transmits a request for information from a computer (eg, a web site). In one variation, the

67

75

Petitioner Apple Inc. - Exhibit 1002, p. 75

000479.00082

request is made using a “hopped” packet, such that signaling server 3101 will quickly reject

invalid packets from unauthorized computers such as hacker computer 3105. An

“administrative” VPN can be established between all of the clients and the signaling server in

order to ensure that a hacker carmot flood signaling server 3101 with bogus packets. Details of

this scheme are provided below.

[231] Signaling server 3101 receives the request 3111 and uses it to detennine that client 3103

is a validly registered user. Next, signaling server 3101 issues a request to transport server 3102

to allocate a hopping table (or hopping algorithm or other regime) for the purpose of creating a

VPN with client 3103. The allocated hopping parameters are returned to signaling server 3101

(path 3113), which then supplies the hopping parameters to client 3103 via path 3114, preferably

in encrypted fonn.

[232] Thereafter, client 3103 communicates with transport server 3102 using the normal

hopping techniques described above. It will be appreciated that although signaling server 3101

and transport server 3102 are illustrated as being two separate computers, they could of course be

combined into a single computer and their functions performed on the single computer.

Alternatively, it is possible to partition the functions shown in FIG. 31 differently from as shown

without departing from the inventive principles.

[233] One advantage of the above-described architecture is that signaling server 3101 need only

maintain a small amount of information on a large number of potential users, yet it retains the

capability of quickly rejecting packets from unauthorized users such as hacker computer 3105.

Larger data tables needed to perform the hopping and synchronization functions are instead

maintained in a transport server 3102, and a smaller number of these tables are needed since they

are only allocated for “active” links. After a VPN has become inactive for a certain time period

(e.g., one hour), the VPN can be automatically torn down by transport server 3102 or signaling
server 3101.

[234] A more detailed description will now be provided regarding how a special case of the

checkpoint synchronization feature can be used to implement the signaling scheme described

above.

76

Petitioner Apple Inc. - Exhibit 1002, p. 76

00047900082

[235] The signaling synchronizer may be required to support many (millions) of standing, low

bandwidth connections. It therefore should minimize per—VPL memory usage while providing

the security offered by hopping technology. In order to reduce memory usage in the signaling

server, the data hopping tables can be completely eliminated and data can be carried as part of

the SYNC_REQ message. The table used by the server side (receiver) and client side

(transmitter) is shown schematically as element 3106 in FIG. 31.

[236] The meaning and behaviors of CKPT_N, CKPT_O and CKPT_R remain the same from

the previous description, except that CKPT_N can receive a combined data and SYNC_REQ

message or a SYNC_REQ message without the data.

[237] The protocol is a straightforward extension of the earlier synchronizer. Assume that a

client transmitter is on and the tables are synchronized. The initial tables can be generated “out

of band.” For example, a client can log into a web server to establish an account over the

Internet. The client will receive keys etc encrypted over the Internet. Meanwhile, the server will

set up the signaling VPN on the signaling server.

[238] Assuming that a client application wishes to send a packet to the server on the client’s

standing signaling VPL:

1. The client sends the message marked as a data message on the inner header using the

transmitter’s CKPT_N address. It turns the transmitter off and starts a timer Tl noting

CKPT_O. Messages can be one of three types: DATA, SYNC_REQ and SYNC_ACK.

In the normal algorithm, some potential problems can be prevented by identifying each

message type as part of the encrypted inner header field. In this algorithm, it is important

to distinguish a data packet and a SYNC_REQ in the signaling synchronizer since the

data and the SYNC_REQ come in on the same address.

When the server receives a data message on its CKPT_N, it verifies the message and

passes it up the stack. The message can be verified by checking message type and and

other information (i.e user credentials) contained in the inner header It replaces its

CKPT_O with CKPT_N and generates the next CKPT_N. It updates its transmitter side

77

Petitioner Apple Inc. - Exhibit 1002, p. 77

000479.00082

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

When the client side receiver receives a SYNC_ACK on its CKPT_R with a payload

matching its transmitter side CKPT_O and the transmitter is off, the transmitter is turned

on and the receiver side CKPT_R is updated. If the SYNC_ACK’s payload does not

match the transmitter side CKPT_O or the transmitter is on, the SYNC_ACK is simply
discarded.

Tl expires: If the transmitter is off and the client’s transmitter side CKPT_O matches the

CKPT_O associated with the timer, it starts timer T1 noting CKPT_O again, and a

SYNC_REQ is sent using the transmitter’s CKPT_O address. Otherwise, no action is

taken.

When the server receives a SYNC_REQ on its CKPT_N, it replaces its CKPT_O with

CKPT_~N and generates the next CKPT_N. It updates its transmitter side CKPT_R to

correspond to the client’s receiver side CKPT_R and transmits a SYNC_ACK containing

CKPT_O in its payload.

When the server receives a SYNC_REQ on its CKPT_O, it updates its transmitter side

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

[239] FIG. 32 shows message flows to highlight the protocol. Reading from top to bottom, the

client sends data to the server using its transmitter side CKPT_N. The client side transmitter is

turned off and a retry timer is turned off. The transmitter will not transmit messages as long as

the transmitter is turned off. The client side transmitter then loads CKPT_N into CKPT_O and

updates CKPT_N. This message is successfiilly received and a passed up the stack. It also

synchronizes the receiver i.e, the server loads CKPT_N into CKPT_O and generates a new

CKPT_N, it generates a new CKPT_R in the server side transmitter and transmits a SYNC_ACK

containing the server side receiver’s CKPT_O the server. The SYNC_ACK is successfully

received at the client. The client side receiver’s CKPT_R is updated, the transmitter is turned on

and the retry timer is killed. The client side transmitter is ready to transmit a new data message.

[240] Next, the client sends data to the server using its transmitter side CKPT_N. The client

side transmitter is turned off and a retry timer is turned off. The transmitter will not transmit

78

Petitioner Apple Inc. - Exhibit 1002, p. 78

000479.00082

messages as long as the transmitter is turned off. The client side transmitter then loads CKPT_N

into CKPT_O and updates CKPT_N. This message is lost. The client side timer expires and as a

result a SYNC_REQ is transmitted on the client side transmitter’s CKPT_O (this will keep

happening until the SYNC_ACK has been received at the client). The SYNC_REQ is

successfully received at the server. It synchronizes the receiver i.e, the server loads CKPT_N

into CKPT_O and generates a new CKPT_N, it generates an new CKPT_R in the server side

transmitter and transmits a SYNC_ACK containing the server side receiver’s CKPT_O the

server. The SYNC_ACK is successfully received at the client. The client side receiver’s

CKPT_R is updated, the transmitter is turned off and the retry timer is killed. The client side

transmitter is ready to transmit a new data message.

[241] There are numerous other scenarios that follow this flow. For example, the SYNC_ACK

could be lost. The transmitter would continue to re—send the SYNC_REQ until the receiver

synchronizes and responds.

[242] The above-described procedures allow a client to be authenticated at signaling server

3201 while maintaining the ability of signaling server 3201 to quickly reject invalid packets,

such as might be generated by hacker computer 3205. In various embodiments, the signaling

synchronizer is really a derivative of the synchronizer. It provides the same protection as the

hopping protocol, and it does so for a large number of low bandwidth connections.

79

Petitioner Apple Inc. - Exhibit 1002, p. 79

00047900082

CLAIMS

We Claim:

1. A method for establishing an encrypted channel between a client and a target

computer, comprising the steps of:

(i) intercepting a DNS request sent by the client; and

(ii) based on the DNS request, establishing the encrypted channel between the client

and the target.

The method of claim 1, wherein step (ii) comprises steps of:

determining whether the client is authorized to access the target;

when the client is authorized to access the target, initiating the encrypted channel;
and

when the client is not authorized to access the target, sending an error message to
the client.

3. The method of claim 2, wherein step b) comprises sending encrypted charmel

parameters to the client.

4. The method of claim 1, wherein step (ii) occurs in a communication protocol

independently of an application program.

5. The method of claim 1, wherein step (i) comprises a DNS proxy server

intercepting the DNS request sent by the client.

6. The method of claim 1, wherein step (ii) comprises establishing the encrypted

channel responsive to intercepting a DNS request for a domain name comprising a

predetermined domain name extension.

7. A method for establishing an encrypted charmel between a client and a secure

host, comprising the step of automatically creating the encrypted channel upon intercepting a

DNS request for a domain name comprising a predetermined domain name extension.

80

Petitioner Apple Inc. - Exhibit 1002, p. 80

00047900082

8. The method of claim 7, wherein the creating step is performed in a

communication protocol independently of an application program.

9. A method for establishing an encrypted channel between a client and a secure

host, comprising the step of automatically creating the encrypted channel in response to detecting

a request for access to a predetermined IP address.

10. The method of claim 9, wherein the creating step is performed in a

communication protocol independently of an application program.

11. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, performs the steps of:

(i) detennining whether the intercepted DNS request corresponds to a secure sewer;

(ii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS function that returns an IP address of a

nonsecure computer; and

when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted channel between the client and the secure server.

The data processing device of claim 1 1, wherein step (iii) comprises the steps of:

determining whether the client is authorized to access the secure server; and

when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted channel between the secure server and the

client.

The data processing device of claim 12, wherein step (iii) further comprises the

when the client is not authorized to access the secure server, returning a host

unknown error message to the client.

81

Petitioner Apple Inc. - Exhibit 1002, p. 81

W33 W I??? i!§I%1i§l’,i'i}’::?f

00O479.00082

14. The data processing device of claim 13, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

15. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, when the intercepted DNS request corresponds to a secure server, determines whether

the client is authorized to access the secure server and, if so, automatically initiates an encrypted

channel between the client and the secure server.

16. A computer readable medium storing a domain name server (DNS) proxy module

comprised of computer readable instructions that, when executed, cause a data processing device

to perform the steps of:

(i) intercepting a DNS request sent by a client;

(ii) determining whether the intercepted DNS request corresponds to a secure server;

(iii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS function that returns an IP address of a

nonsecure computer; and

when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted channel between the client and the secure server.

The computer readable medium of claim 16, wherein step (iii) comprises the steps

determining whether the client is authorized to access the secure server; and

when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted channel between the secure server and the

client.

18. The computer readable medium of claim 17, wherein step (iii) further comprises

the step of:

82

Petitioner Apple Inc. - Exhibit 1002, p. 82

O00479.00082

(c) when the client is not authorized to access the secure server, returning a host

unknown error message to the client.

19. The computer readable medium of claim 18, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

20. A computer readable medium comprising computer readable instructions that,

when executed, cause a domain name server (DNS) proxy module to intercept DNS requests sent

by a client and, for each intercepted DNS request, when the intercepted DNS request corresponds

to a secure server, determines whether the client is authorized to access the secure server and, if

so, automatically initiates an encrypted channel between the client and the secure server.

83

Petitioner Apple Inc. - Exhibit 1002, p. 83

Lliiii ill} E31

000479.00082

ABSTRACT

A plurality of computer nodes communicate using seemingly random Internet Protocol

source and destination addresses. Data packets matching criteria defined by a moving window

of Valid addresses are accepted for fiirther processing, while those that do not meet the criteria

are quickly rejected. Improvements to the basic design include (1) a load balancer that

distributes packets across different transmission paths according to transmission path quality; (2)

a DNS proxy server that transparently creates a virtual private network in response to a domain

name inquiry; (3) a large—t0—small link bandwidth management feature that prevents denial—of-

service attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by

limiting the rate at which a transmitter can be synchronized with a receiver; and (5) a signaling

synchronizer that allows a large number of nodes to communicate with a central node by

partitioning the communication function between two separate entities.

84

Petitioner Apple Inc. - Exhibit 1002, p. 84

IP IP

ROUTER ROUTER

29 25 INTERN

ROUPTER 'P
ROUTER

ENCRYPTION KEY

85

Petitioner Apple Inc. - Exhibit 1002, p. 85

..
P 2:..;§ R::?*.‘ .4211: "145 ‘W W *:!'- 1L.,:= ‘*7!’ :5» 11,3‘ *.:...:= 131:‘.

100

TARP

TERMINAL

107

131

IP

ROUTER

LINK KEY
TARP TARP

ROUTER ROUTER

129 132

‘R TARP |P
ROUTER ROUTER °' ' ' ROUTER

LINK KEY 126

123

IP

ROUTER

C’

127

TARP

TARP ROUTER
ROUTER LINK KEY

fir. LINK KEY
SESSION KEY TARP PACKET

110

TARP

TERMINAL

86

Petitioner Apple Inc. - Exhibit 1002, p. 86

DATA STREAM fl)

INTERLEA

PAYLOAD D

Q9

SESSION-KEY-ENCRYPTED

PAYLOAD DATA@

TARP PACKET WITH

ENCRYPTED PAYLOADS git]

LINK-KEY-ENCRYPTED

TARP PACKETS @

" IP PACKETS WI ENCR ED
' TARP PACKETS

PAYLOAD E9

TARP TARP

ROUTER 1 ROUTER 2

TARP TARP

ROUTER 7 TARP ROUTER 5
ROUTER 3

TARP

ROUTER 4 ROUTER6
TARP

87

Petitioner Apple Inc. - Exhibit 1002, p. 87

%magiaémozm_.E2,2655&sm§m>§”Ez_magi2z_sassvagmazzazmaA_m>§Ez_8<o:<n_9;BEE53¢aémozm
%35%2z_H......_HaQ_>_ea2mazzazm. .A..33:3;3%;233éamo95%328;e_.2o_wmeaE%zm_.v_§m.

|I|lI____|n__Nn__82,_<m_EwS<Q‘&...ENasas22

88

Petitioner Apple Inc. - Exhibit 1002, p. 88

@$&§soosfiV2:53

Agoml

92$2z_2%3mommoog.3_._Es@2535;%:z_m_§2m>Ez$:<$15

mommoog¢_90_.E>>wz_mm§_¢“ESM2289m>_._.<zmmE<mzo

3%:EV552§$>_§zs:1%

89

Petitioner Apple Inc. - Exhibit 1002, p. 89

BACKGROUND LOOP-DECOY

GENERATION

AUTHENTICATE TARP PACKET

OUTER LAYER DECRYPTION OF

TARP PACKET USING LINK KEY

DUMP DECOY

CHECK FOR DECOY AND

INCREMENT PERISHABLE DECOY
COUNTER AS APPROPRIATE

TRANSMIT DECOY?

DECREMENT

TIL TTL > 0?

DETERMINE DESTINATION TARP GENERATE NEXT-HOP TARP

ADDRESS AND STORE LINK KEY ADDRESS AND STORE LINK KEY 88
AND IP ADDRESS AND IP ADDRESS

GENERATE NEXT-HOP TARP

ADDRESS AND STORE LINK KEY 310
AND IP ADDRESS

GENERATE IP HEADER

AND TRANSMIT A 311

FIG. 5

90

Petitioner Apple Inc. - Exhibit 1002, p. 90

BACKGROUND LOOP-DECOY

GENERATION

GROUP RECEIVED IP PACKETS

INTO INTERLEAVE WINDOW

DETERMINE DESTINATION TARP

ADDRESS, INITIALIZE TTL, STORE
IN TARP HEADER

RECORD WINDOW SEQ. NOS. AND

INTERLEAVE SEQ. NOS IN TARP
HEADERS

CHOOSE FIRST HOP TARP

ROUTER, LOOK UP IP ADDRESS

AND STORE IN CLEAR IP HEADER,
OUTER LAYER ENCRYPT

INSTALL CLEAR IP HEADER

AND TRANSMIT

% ‘I5 Iii? 33:7 iii}! IILII ?':EE:‘Z

91

Petitioner Apple Inc. - Exhibit 1002, p. 91

S40

TACKGROUND LOOP-DECOY
GENERATION

S42

AUTHENTICATE TARP PACKET

RECEIVED

S43

DECRYPT OUTER LAYER

ENCRYPTION WITH LINK KEY

S44

INCREMENT PERISHABLE

COUNTER IF DECOY

S45

THROW AWAY DECOY OR KEEP

IN RESPONSE TO ALGORITHM

S46

CACHE TARP PACKETS UNTIL

WINDOW IS ASSEMBLED

S47

DEINTERLEAVE PACKETS

FORMING WINDOW

S48

DECRYPT BLOCK

DIVIDE BLOCK INTO PACKETS

USING WINDOW SEQUENCE DATA,
ADD CLEAR IP HEADERS

GENERATED FROM TARP

HEADERS

S50

HAND COMPLETED IP PACKETS

TO IP LAYER PROCESS

92

Petitioner Apple Inc. - Exhibit 1002, p. 92

Ew$52&<._

3:§54.zo_z:_z_zoaammgawQzo:<Ez_zoammEammfimvagV5522%N|N.3.m_v5<n_V22%am5552%

am._<z_s_mm:.Ea

93

Petitioner Apple Inc. - Exhibit 1002, p. 93

NFF_3N_NFN.FN

NFNFF.3N_NN_FNFNENNNNFF
NFFNN_gN_NFN.FNFNFFNFF

NF._3N_N_FFFFNFFoN.gN_NFN_FNFFNFSNNF_FFF.FFF
FFNFSNNF

NFN_3N_NFNFNNSNNN_FNFNFNSNNNN_gN_NFN_FNNNSNNFNFFNFSNNN_FNFNNSNNFNF.F.NN.NFN.FNQwas._.__2mz<,n_._.NQwasm>_§m
N.FN_FN_FNF

II}: 3'53?! * .

.FNFNF.3N_NFN.FNFNm.3N_NFN_FNFNF_F.NN.NF.FNF.FNFNNF_3N.NFN.FNFNNF.F.oN_NFN.FNFNNFSNNF.FNF.FFFFF.FFFF.F
NN_F.NN_NFNNFFNNNFFF

NFNF

NFFNN_3N_NFN.FNFN_F.NN_NFN.FNFNNFNNNNFNN_3N_NFN.FN$_F.oN_NFN.FNNNFNNNQENEm>_§mFNNwasF_F,_wz§
NN_gN_N$_3N_N

FFNI
F8

$52:53
&<._.

94

Petitioner Apple Inc. - Exhibit 1002, p. 94

mmkaom¢m<Honemmhgoxmm<Fmagmmhgommm<H<¢2

Hzmjo

95

Petitioner Apple Inc. - Exhibit 1002, p. 95

223?.2.gm:_2_§_Q5”w$%e:_5%K¢my_2_<n__M238E51E05n__3”mm§:>IED2w$%23:9%E5:mg»:52%:

a23%23:_2_§a2§§:_ED2_m$§§_$58E225R9%s__§aEw$%e:_5%2_$w_8<n__M25335&2>>IED2$m§<3:am$31mgsamzmmxm

96

Petitioner Apple Inc. - Exhibit 1002, p. 96

<3a:

gemsowzo_E_E<zoEa_§<$352.DE$5ENEEFSE93SESE

97

Petitioner Apple Inc. - Exhibit 1002, p. 97

2%z_32>mm252%z_82>mm252%z_32;mm25$3;3%~_2<z__)__§a

msom
025z_32;mm25oz;_,__32>mm252%z_82;mm25mmm§:_

025z_32>mm252%I05me$3s_8z§Em§_8mo$82:28W25

2%Em88m_s_9¢_Nm8§_s_9_n_._%_>__§s_mmomoo:

98

Petitioner Apple Inc. - Exhibit 1002, p. 98

2.0_n_

2058E33massza

99

Petitioner Apple Inc. - Exhibit 1002, p. 99

E.o_“_

$N_zo%oz>mEzmm2%_.§mme025z_E_~_mN_zo%oz>$zm_¢_§o:Ezm$o$z5z_ze_
$:__>_mzs=

100

Petitioner Apple Inc. - Exhibit 1002, p. 100

3%12;n__$:__%z<Ez_=.§_o;__o%m_aE202%xin__5_on_§5§.oz>2__%zE.gmzeémzma$:_s_mzs:z__E9H._e_§_memIm_<_::z_oe$_ooz_s_8z_E_§m>_%<>azoEm_mz.m%_mV2.02;2%,:
mm>_m_mm5m_<n_n=;__on_§5

.3&9._.z_o%_om:o.>>mmzomwmm$>_m_.ommE2“cravew_mm>_m_ommEsmzmwn_z<c3%m__§nmmo<m_._o:z_s_ooz__._._._>>n__:,__on_v_8Io%:_s_wz<E
E202%8525€$_o<E2:Ea_8_§§_mz<Ee:_>_mz<E28%Izo:<N_zox_._oz>wE1;am02%©

$>_§<am2%E1;*

101

Petitioner Apple Inc. - Exhibit 1002, p. 101

55%m$§<<oz:.z<._mzymxm.

102

Petitioner Apple Inc. - Exhibit 1002, p. 102

W|NDOW_S|ZE

W|NDOW_S|ZE

7//////////////////////.
 Z

7//////////////////////.

7//////////////////////.
V//////////////////////.
'//////////////////////J.
7///7/////////////////A

103

Petitioner Apple Inc. - Exhibit 1002, p. 103

I INACTIVE

WINDOW SIZE % AC-I-NE
7//////////////////////. USED
'//////////////I//I/////.
?//////////////////////4
,/////////////////////J
7////////////////////A

W|NDOW_SlZE ,

104

Petitioner Apple Inc. - Exhibit 1002, p. 104

W|NDOW_S|ZE

W|NDOW_S|ZE

 A
’
7/////////////////////.

.'//////////////////////Z
///////////////////J%
,/////////////////////fl
'

7”’

7/////////////////////A

105

Petitioner Apple Inc. - Exhibit 1002, p. 105

<as
’2$52$52;

@2200was

was$22002ga

52

22

106

Petitioner Apple Inc. - Exhibit 1002, p. 106

AD TABLE

|P1 IP2

IP3 IP4

AE TABLE -

AF TABLE

BD TABLE

BE TABLE

LINK DOWN

BF TABLE

CD TABLE

CE TAB LE

CF TABLE

107

Petitioner Apple Inc. - Exhibit 1002, p. 107

MEASURE

QUALITY OF
TRANSMISSION

PATH X

MORE

THAN ONE

TRANSMITTER

TURNED

ON?

PATH X

QUALITY <

THRESHOLD?

PATH X

WEIGHT LESS

THAN STEADY

STATE

VALUE?

INCREASE WEIGHT

FOR PATH X

TOWARD STEADY

STATE VALUE

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

DECREASE

WEIGHT FOR

PATH X

SET WEIGHT

TO MIN. VALUE

FIG. 22A

108

Petitioner Apple Inc. - Exhibit 1002, p. 108

(EVENT) TRANSMITTER
FOR PATH x

TURNS OFF

AT LEAST

ONE TRANSMITTER

TURNED ON?

SET WEIGHT

TO ZERO

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

fiMfl%%%%W

FIG. 22B

DROP ALL PACKETS

UNTIL A TRANSMITTER

TURNS ON

iifij '73‘; III?-E IIILII 3}???

109

Petitioner Apple Inc. - Exhibit 1002, p. 109

22522;_mE%w$s_

:2wasm>_§x

$:__>_mz<E._.mv_o.&

39¢._._2wz§._.

110

Petitioner Apple Inc. - Exhibit 1002, p. 110

E2200$5%_8

111

Petitioner Apple Inc. - Exhibit 1002, p. 111

E2moan;mm.®_n_

Hamg50%

ammeg

xmmaommmm;

112

Petitioner Apple Inc. - Exhibit 1002, p. 112

meowoz_&o_:_M5wasmmsmw
mioz_n_n_o_._

xmmgomm

nE,a$2,
$>$mmzo

113

Petitioner Apple Inc. - Exhibit 1002, p. 113

RECEIVE DNS

REQUEST FOR
TARGET SITE

ACCESS TO

SECURE SITE

REQUESTED?

USER

AUTHORIZED TO

CONNECT?

ESTABLISH

VPN WITH

TARGET SITE

PASS THRU

REQUEST TO

DNS SERVER

RETURN

"HOST UNKNOWN"

ERROR

114

Petitioner Apple Inc. - Exhibit 1002, p. 114

N%mmH:m2ouHmozmmkaommeow

115

Petitioner Apple Inc. - Exhibit 1002, p. 115

ooN.ooga$220050:$52$8

SamEwazofimoz

116

Petitioner Apple Inc. - Exhibit 1002, p. 116

e_§_D

m>_m$m

$:_zmz<E

117

Petitioner Apple Inc. - Exhibit 1002, p. 117

3104

c\|
415:
H
2
I-'_-1___|
C.)

TX/RXTX/RXTX/RX 320832093210

118

Petitioner Apple Inc. - Exhibit 1002, p. 118

CLIENT

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N
START TIMER, SHUT
TRANSMITTER OFF

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R
KILL TIMER, TURN
TRANSMITTER ON

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N

START TIMER, SHUT
TRANSMITTER OFF

WHEN TIMER EXPIRES

TRANSMIT SYNC_REQ
USING TRANSMITTERS

CKPT_O, START TIMER

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R
KILL TIMER, TURN
TRANSMITTER ON

.:iiI., 3I'.”5II §i:E}?:‘ "3271? W?-=‘I{~II I“-II« ‘!IIFi F??? 31133 ‘:IZ'.Ii I;:,€?’

SYNC_REQ

PASS DATA UP STACK

CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

119

Petitioner Apple Inc. - Exhibit 1002, p. 119

Attorney Docket No. 0047935672

JOINT DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLICATION

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

U was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37,
Code of Federal Regulations, §1.56.

Prior Foreign Applicationlsl

We hereby claim foreign priority benefits under Title 35, United States Code, §1 19(a)-(d) or 365(b) of any foreign
applicationls) for patent or inventor's certificate, or 365(al of any PCT international application which designated at least
one country other than the United States of America, listed below and have also identified below any foreign applicationlsl
for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

E] Additional provisional application numbers
are listed on a supplemental priority data
sheet PTOISB/OZB attached hereto.

. 60/106,261 10/30/98

60/1 37.704 6/7/99

Page 1 of 4

120

Petitioner Apple Inc. - Exhibit 1002, p. 120

Aiiorney Docket No. 0047985672

We hereby claim the benefit under Title 35, United States Code, §120 of any United States applicationlsl listed below
and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States
application in the manner provided by the first paragraph of Title 35, United States Code, §1 1 2, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the
filing date of the prior application and the national or PCT international filing date of this application:

Power of Attorney

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to
prosecute this application and transact all business in the U.S. Patent and Trademark Office connected herewith as well

as before any office or agency of a foreign country or any international organization in connection with any foreign
counterpart application claiming priority to this application, including the power to appoint agents and local representatives
in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers beinglisted after their names:

Robert Altherr, Reg. No. 31,810, Donald W. Banner, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,335; William
W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.
Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg. No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.
Medlock, Reg. No. 29,673; William J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19,724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,1 62; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061. ‘

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.
Washington, D.C. 20001-4597

Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on
information and belief are believed to be true; and further that these statements were made with the knowledge that willful
false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such
willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature Date
Full Name of

Joint Inventor MUNGER Edmund Colby
Family Name First Given Name Second Given Name

Residence 1101 Ogaca Court, Crownsville, Magyland 21032

Citizenship U.S.
Post Office

Address 1101 Opaca Court, Crownsville, Magland 21032

Page 2 of 4

121

Petitioner Apple Inc. - Exhibit 1002, p. 121

‘W3‘%i-"3}»3%35=ii-- 23:1} “'2:-~iiI,§§i iifilfiifl Li‘

Anomey Docket No. 0047935672

Signamre Date
Full Name of

Joint Inventor SCHMIDT D u las Charles

Family Name First Gwen Name Second Given Name

Residence 230 Oak Court, Severna Park, Maggland 21146

Citizenship U.S.
Post Office

Address 230 Oak Court, Severna Park, Magland 21146

Signature)3 I % ¥ 1 2 : Date / f 1
Full Name of 4

Joint Inventor §HORT Robeg Dunham. Ill
Family Name First Given Name Second Given Name

Residence 38710 Goose Creek Lane, Leesburg, Virginia 20175

Citizenship U.S.
Post Office

Address 38710 Goose Creek Lane, Leesburg, Virginia 20175

Signature fimg Date 2 / M2 2I 2
Full Name of

Joinflnventor LARSON Victor

Family Name First Given Name Second Given Name

Residence 12026 Lisa Marie Court, Fairfax, Virginia 22033

Citizenship U.S.
Post Office

Address 12026 Lisa Marie Court, Fairfax, Virginia 22033

Page 3 of 4

122

Petitioner Apple Inc. - Exhibit 1002, p. 122

Ii‘
‘ zs:;;;u 21,4}. fig; uxgj;

Aimmcy Docket No. 0047935672

Signature ~ I v ' V '7 Date 2 / (909
Full Name of

Joint Inventor WlLL|AM§0N Mighael
Family Name First Given Name Second Given Name

Residence 26203 Ocala Circle, South Riding, Virginia 20152

Citizenship U. S.
Post Office

Address 26203 Qcala Circle, South Riding, Virginia 201§2

LAW OFFICES

BANNER ES Wm:oFF, LTD.
IOOI G STREET. N.W.

WASHINGTON, D.C. ZOOOI-4597
(202) 508-9 I 00

Page 4 of 4

123

Petitioner Apple Inc. - Exhibit 1002, p. 123

Attorney Docket No. 0047935672

JOINT DECLARATION AND POWER OF ATTORNEY

FOR PATENT APPLICATION

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

D was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37,
Code of Federal Regulations, §1.56.

Prior Foreign Applicationls)

We hereby claim foreign priority benefits under Title 35, United States Code, §1 19(a)-(d) or 365(b) of any foreign
applicationlsl for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least
one country other than the United States of America, listed below and have also identified below any foreign applicationlsl
for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

U Additional provisional application numbers
are listed on a supplemental priority data
sheet PTO/SB/02B attached hereto.

 ‘I soiioséei " ' '—"1<A)/‘i:»Qo'/AsiaH
so/137.704 6/7/99

Page 1 of 4

124

Petitioner Apple Inc. - Exhibit 1002, p. 124

Aflomey Docket No. 0047935672

We hereby claim the benefit under Title 35, United States Code, §12O of any United States application(sl listed below
and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States
application in the manner provided by the first paragraph of Title 35, United States Code, §112, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the
filing date of the prior application and the national or PCT international filing date of this application:

' ' ' 3,... M'otith='-'I‘Y.1i'a'r _ A

99/429949 19/29/99

Power of Attorney
And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to

prosecute this application and transact all business in the U.S. Patent and Trademark Office connected herewith as well

as before any office or agency of a foreign country or any international organization in connection with any foreign
counterpart application claiming priority to this application, including the power to appoint agents and local representatives
in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers being
listed after their names:

Robert Aitherr, Reg. No. 31,810, Donald W. Banner, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,335; Vifilliam
W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.
Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg. No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.
Medlock, Reg. No. 29,673; William J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19,724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,1 62; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061.

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.
Washington, D.C. 20001-4597

Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on
information and belief are believed to be tme; and further that these statements were made with the knowledge that willful
false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such
willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature Date
Full Name of

Joint Inventor MUNGER Edmund Colby
Family Name First Given Name Second Given Name

Residence 1101 Opaca Cour}, Crownsville, Maggland 21032

Citizenship U.S.
Post Office

Address 1101 Opaca Court, Crownsville, Maryland 21032

Page 2 of 4

125

Petitioner Apple Inc. - Exhibit 1002, p. 125

Attorney Docket No. 0047935672

Signature C Date %[00
Full Name of

Joint Inventor SCHMIDT Do las Charles
Family Name First Given Name Second Given Name

Residence 230 Oak Qoug, Severna Park, Mar_yland 21146

Citizenship US.
Post Office

Address 230 Oak Court, Severna Park, Magland 21146

Signature Date

Full Name of

Joint inventor SHORT Robeg Dunham, Ill
Family Name First Given Name Second Given Name

Residence 38710 Goose Creek Lane, Leesburg, Virginia 20175

Citizenship U.S.
Post Office

Address 38710 Goose Creek Lane, Leesburg, Virginia 20175

Signature Date

Full Nalrne of
Joint Inventor LARSON Victor

Family Name First Given Name Second Given Name

Residence 12026 Lisa Marie Court, Fairfax, Virginia 22033

Citizenship U. S.
Post Office

Address 12026 Lisa Marie Court, Fairfax, Virginia 22033

Page 3 of 4

126

Petitioner Apple Inc. - Exhibit 1002, p. 126

Aliomey Docket No. 0047935672

Signature .

Full Name of
Joint Inventor WILUAMSON Michael

Family Name First Given Name Second Given Name

Residence 26203 Ocala Circle, South Riding, Virginia 20152

Citizenship U.S.
Post Office

Address 26203 Ocala Cirglg, §ou1h Riding, Virginia 20152

LAW OFFICES

BANNER 6. WHCOFF, LTD.
IOOI G STREET, N.W.

WASHINGTON, D.C. ZOOOI-4597
(202) 506-9 I O0

Page 4 of 4

127

Petitioner Apple Inc. - Exhibit 1002, p. 127

4 ID A:\'_JIu _J Lb$.3l'vl

02/15/00 14221 FAX

Minn]Duh!No. 0047913671

JOINT DECLARATION AND POWER OF ATTORNEY
FOR PATENT APPLIOAUON

Aothebelownamodinvnmors.weherebvdcclarethat:

Ourmsldnncea, postoffieoaddrnuusandeitiunshincarenastntndbelowncarttoow names:

Wu bollovo we are the original, first and joint invuntom of the subject matter which is clnimod and for which a
patent is caught on the invention entitled:

IMPBOVENIENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURE!) SYSTEM AVAILABILITY

the specification of which
I is attached heme.

D was and on an Application Svriul Numbar and was amerdml on or appnubm

WeMnwswtuthmmhnwnvzweduuuflmsmdflnemwummmeabuwhumfiwapwificufimuknmiu
mg claims, as amended by any amendmmt nfunod to above.

we oclcnowlodgo the duty to disclose lnfotmutlon which it matlrlnl to patontablllty in accordance with Title 37.
Code of Federal Regulations. £1.56.

Prior Fovelgn Applicatlonlsl

We hereby claim foruign priotity benefits under Title 35, United status code, 51 19m-(dl or 3650:) of any foreign
appucationlsl for patent or Inventor’: cenificate. or 365m) of any PCT intomutiaml application which designated at least
one country other than the United Status of America, listed below and have also idontlflod below any foreign opplicnflonlsl
fov patent or inventors cortillcatv having an filing date bwfora ml: of the application on which priority in clairnad:

' ,‘;.~xa~w«s4 . ;r\‘7-".'.5.‘<_. A , . _ _..-_«;..v. -

J. “cg?/;‘ "3: ‘ D}. a";->s‘,,_.,,\.,§L. -3.;
“

‘ ,_‘_ 0 Additional provlsional application number:

are listed on a sunplomental priority dataA.‘ -

128

Petitioner Apple Inc. - Exhibit 1002, p. 128

A-Ib~¢ww 3:uzrm

.__r_nz/15/00 14:3,; gax __

T‘I'\|.Jl”| -_‘u-\.|.\.«_-_>l|._r-\L._A.nu.a. x«;-« ;q_._,,,_,,,_,._,,_._.

wo homby claim the benefit under This 35. Unlmd States Code, 5120 of any United States nppliculoncsl listed below
a,,d_ inmh, .3 an gublecr rnaltur of each of tho claims of this application is not disclosed in the prior United States
application in the manner provided by the fun paragraph 0! Title 35, United Status Code. 511 2, We acknowledge the duty
to disclose material information as defined in Title 37. Code of Fedora! Rcgulationv. i1 .56 which occurred between the
filing can of the prior application and the national or PCT lmarnufional filing due of this application:

pronoun this appllcotion and transact all businoss in tin: U.S. Patent and Tradernark Dfflco cormoctod herewith as well
as beloru nny office or agency of a foreign country or any international omanlntlon In oonnvcflon with any foreign
counterpart application claiming priority 1:: this applcation, incbdinn the povnr no appolnt auonts Ird local representatives
in connec-non with such foreign npnlcmions. tho followino attorney: or Burner & Wltcorlf. thuir rB9'5‘l!‘Dtlon numbers being
listed 3110! their ultras‘.

flobcn Altherr. Ron. No. 31.810. Donald W. Banmr. Rug. No. 17,037: Edward F. Mnkie, Jr., Flag. No. 17.335; William
W. Bockutt. Flog. No. 18,262: Dole H. l-Ioschcll, Rag. No. 19.090: Joesph M. Potonu, Reg. No. 2.8.175: Jamar: A.
Niogowflci. Reg. No. 28.331; Joseph M. Slcerpon. Reg. No. 29,864; Thomas L Peterson, Hag. No. 30.989: Nina L.
Medlock, Reg. No. 29.873; Willem J. Fisher. lleo. No. 32.133; Thorrus H. Juckson. Reg. No. 29,803: Franklin D. Wolfle,
Reg. No. 19,724: Susan A. Wulffo. Boa. No. 83.553; Daniel E. Fisher, Reg. No. 34.162; Kevin A. Wolff. Reg. No. 42,233
and Bradley C. Wright. Rm. No. 38,031.

All corrwpondoncu and toleohona comm.-nicnfions should be addrossnd ‘In:

Banncr & Wiwofl. Ltu.
Eluvomh Floor

‘HXJ1 G 59081. N.W.
Woshimton. D.C. 20001-4597

Tel. No. I201) $03-9100

Wohuebydeclamduntalstammamsundnhwuinolourovmlmowlodgearcmaeandflunollsutzrrrentsmadeon
inlorrrmionambeliofarobaliuvudwlzottuo;undflmhuthunhuusutcrnmuwomnnuownhttnkmwlodootlmatwfllhd
fdsostaurmnsudfinhRnmnudomum:riflnbbbym1ewlrnpiaomu1Lwbodl.u1du18U.S.C. 1001 andxhansuch
willful false statements may ioopanllzothovalldity uftht aopficauonor my patent issuing thereon.

Slgnatun Date /5‘ /55’ 200 D
Full Name of

Jointmvwwr
Hm Given Name Second Given Name

129

Petitioner Apple Inc. - Exhibit 1002, p. 129

4 ID ¢¥.JLI_pc—v~_u..

02/15/00 14223 FAX

simmre W°
Fufi Namn of
Joint Inventor I01’ _ C r _

Family Nam. I-‘us: Gwen Nnrno Second Gwen Name

Residence 23 Saw M I 11

Post Oflioo
Addtggs Qgk CDU_I_'[, Pugh, Mflfllaffl 21146

%nmro WN

Full Numu of
Joint|Mmr

Family Nume Furs! Given Name Second Givun Name

D818
$wamve

Fullxhhmo of

Jointlmma
Family Name First Given Name Second Gavan Name

flusidonce 12026 ‘ ‘no

uflIV“a|b

‘I25

130

Petitioner Apple Inc. - Exhibit 1002, p. 130

//. .2 1:; .4222: 5 swmvn .-m_,.v. _~,,.‘“_ Q,,__m_*N_ VF‘ /KJ~3IC)I\J£J£Gl; VF“ V
oz/_15./no 14: 23 nut *-~39 ‘45...... '

 TV

a.,;d...¢¢

ci:izomm

Amnu

LAW OF|"|C§

Bnman 6. Wncorr. L10.
loo! 6 zmzatr. N.W.

WASHINGTON. u.c. zooov-4597
120:) 303-9 1 oo

131

Petitioner Apple Inc. - Exhibit 1002, p. 131Petitioner Apple Inc. - Exhibit 1002, p. 131

132

Petitioner Apple Inc. - Exhibit 1002, p. 132Petitioner Apple Inc. - Exhibit 1002, p. 132

133

Petitioner Apple Inc. - Exhibit 1002, p. 133Petitioner Apple Inc. - Exhibit 1002, p. 133

134

Petitioner Apple Inc. - Exhibit 1002, p. 134

lEil ir‘:7.f Em Ell ll-«l+- "Ell ’"—lI- 'llI‘Il ‘Ell III]! ilI.‘il—~E_“__'
Please type a plus sign (+) inside "mbox 1} \ MODIFIED PTO/SB/05 (O3»t.-' ‘

Approved through 10/31/2002. OMB 06514."
_ U.S. Patent and Trademark _ U.S. DEPARTMENT OF COMMEI-’_

Under the Paperwork Reduction Act of .i 5, no persons are required to respond to a collection of infonnation unless it displays a valid OMB control numbt

‘ ooo479.oooa2

PATENT APPLICATION edmonocowvmunser
IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FORSECURE COMMUNICATIONS WITH ASSURED SYSTEM
AVAILABILITY

(Only for new nonprovisional applications under 37 C.F.R. 1.53(b)) Express Mail Label No.

App UCATION ELEMENTS Assistant Comniissioner for Patents
_ H I I Box Patent ApplicationSee MPEP chapter 600 concerning utility patent application contents. Washington, DC 20231

1. IX Fee Transmittal Form (e.g., PTOISB/17) 7. I] CD-ROM or CD-R in duplicate, large table or
(Submit an original and a duplicate for fee processing) Computer Program (Appendix)
Applicant claims small entity status. 8. Nucleotide andlor Amino Acid Sequence Submission
See 37 CFR 1.27. (if applicable, all necessary)
Specification [Total Pages iii] a. Ij Computer Readable Fon'n (CRF)
(Fri-"Wed arrangement 55'’ '0'”? below) b. Specification Sequence Listing on:
— Descriptive title of the Invention i_ D CD_ROM or CD_R (2 copies); or
- Cross Reference to Related Applications ii D paper- Statement Regarding Fed sponsored R & D '
- Reference to sequence listing, a table,

or a computer program listing appendix
- Background of the Invention
- Brief Summary of the Invention 9. E] Assignment Papers (cover sheet 8. document(s))
- Brief Description of the Drawings (iffiled) 10 I: 37 C F R §3 73(b) Statement [3 Power of— o t ‘I d o ‘ r . .

_ Cgfifs) escnp '0” (when there is an assignee) Attorney
- Abstract of the Disclosure 1 1. I: English Translation Document (if applicable)

4. E Drawing(s) (35 U.S.C. 113) [Total Sheets] 12. E lnfonnation Disclosure El Copies of IDS
a 8] Formal, or Statement (IDS)lPTO-1449 Citations
b D Informal PreliminaryAmendment

. h I - P . Return Receipt Postcard (MPEP 503)5 03‘ °' Dec a'a"°" [T°'a' 8995 1 (Should be specifically itemized)
3’ D Newly executed (°ri9ina' °r °°py)i °' . Certified Copy of Priority Document(s)
b. E Copy from a prior application (37 CFR 1.63 (d)) (if foreign priority is claimed)

(fora continuationldivlsional with Box 18 completed) . Nonpublication Request under 35 U.S.C. 122

L D Applicant must attach form PTO/SB/35
Signed statement attached deleting inventor(s) °' its °q"'iVa'em‘
named in the prior application, see 37 CFR . Other:
1.63(d)(2) and 1.33(b).

6. El Application Data Sheet. See 37 CFR 1.76

18. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment,
or in an Application Data Sheet under 37 CFR 1. 76:

CI Continuation E Divisional U Continuation-in-par1(ClP) of prior application No: Q! 504 783
Prior application information: Examiner Krisna Lim Group /Art Unit: gm

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied
under Box 5b, is considered a part of the disclosure of the accompanying or divisional application and is hereby Incorporated by reference.
The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

E Customer Number or Bar Code Label °’ ‘:1 C°”95P°”d9"°9 “W955 b9’°W

Address

C”-V State Zip Code

—Telephone —
Name (Print/Type) Ross A. Dannenberg Registration No. (Attomey/Agent) 49,024

I V gm

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any
comments on the amount of time you are required to complete this form should be sent to the Chief information Officer, U.S. Patent and Trademark
Office. Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for
Patents, Box Patent Application, Washington, DC 20231.

135

Petitioner Apple Inc. - Exhibit 1002, p. 135

__ , , ___,_‘ __,._

...iiL ":2 udii" mil" in I“-{'lqL3D..li.i if...Approve W use through 10/31/2002. OME! 0651-003.’-
U.S. Patent and Tradem : US. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1 ' persons are required to respond to a collection of information it displays a valid OMB control number.

Complete If Known

FEE TRANS|V"TTA|-
for FY 2002

Patent fees are subject to annual revision.

C] Applicant claims small entity status. See 37 CFR 127 G,oup,A,1 U...”
TOTAL AMOUNT OF PAYMENT Attorne Docket No. 00047990032

METHOD OF PAYMENT (check all that appiy) FEE CALCULATION continued
3. ADDITIONAL FEES

|]Check CI Creditcard E] Money I] Other [I NoneOrder
E Deposit Account:

Fae Descrlptlon
Deposit , ‘
Accoum 1943733 Surcharge - late filing fee or oath
Number Surcharge - late provisional filing feeor cover sheet.

Deposit Non-English specification
A°C°““i Bannel 3' W“°°"v ‘M For filing a request for reexamination
Name Requesting publication of SIR prior to

The Commissioner is authorized to: (check all that apply} Eflminef action
E Charge fee(s) indicated below E Credit any overpayments Requesting publication of SIR after
D Charge any additional fee(s) during the pendency of this application Examiner action
D Charge fee(s) indicated below, except for the filing fee Emnsim for mpiy wig-ii,-, first momh
to the above-identified desit account. Extension for [eply within secondFEE CALCULATION month

BASIC HUNG FEE Extension for reply within third month
Extension for reply within founh
month

F D I ll , ‘ ,
89 escr on Extension for reply within fifth month

Utility riiing fee N°“°° °‘ A9995‘
Design filing fee Filing a brief in suppon oi an appeal
plant filing fee Request for oral hearingPetition to institute a public use

proceeding
Petition to revive — unavoidable

SUB-I-01-AL (1) Petition to revive — unintentional
Utility issue fee (or reissue)
Design issue lee
Plant issue fee
Petitions to the Commissioner

Processing fee under 37 CFR 1.17 (q)
Submission of Information Disclosure
Stmt

Recording each patent assignment
581 40 per property (times number of

properties)

Fee Descrl “on 246 370 Fa)after final rejection
Claims in excess of 20 249 370 For each additional invention to be
Independent claims in excess of 3 examined (37 CFR § 1-12903))

Multiple dependem c'aim- if n°‘ paid 279 370 Request for Continued Examination (RCE)
" Reissue independent claims over _ ‘ _
Qi-igjnai patent 169 900 Request for expedited examinationof a design application

Reissue filing fee
Provisional Filling tee

" Reissue claims in excess of 20 and
over original patent

SUBTOTAL (2) (s) 335

"or number previously paid, if greater; For Reissues, see above

Other tee (specify)

‘Reduced by Basic Filing Fee Paid SUBTOTAL (3) (5) 0

SUBM|TTED BY

Name {Pnnt/Type) Ross A. Dannenberg Registration No. Attomey/Agent) Telephone (202) 508-9153

Signature @_|/,_ Date September 30, 2002
WARNING: Information on this form may become public. Credit card information should not be
included on this form. Provide credit card Information and authorization on PTO-2038.

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the
amount oi time you are required to complete this form should be sent to the Chief lnforrnation Oificer, U.S. Patent and Trademark Office. Washington, DC 20231.
DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

136

Petitioner Apple Inc. - Exhibit 1002, p. 136

ITL T31 ‘E55: '13! "*3-4!}-"E5! “*}§-- ... TED ‘I.-T23! "IE5? ’!{IIfi ‘Ki! :'zi*3f

. 100

ORIGINATING

TERMINAL

40

IP PACKET

IP IP IP T

ROUTER ROUTER ROUTER 28

29 25 . INTERNET 32 H,

ROUTER ROUTER ROUTER

26

48.

27

'P ROUPTER
ROUTER

E OF" I ‘ E 110

ENCRYPTION KEY T . D$g;|mTA€N

137

Petitioner Apple Inc. - Exhibit 1002, p. 137

S§lffiIii.iE:‘i “EB “»‘T}v'“:?1’ “~!§- ... ~’1T.3!“'T.“'33.i:"£!f

100

TARP

TERMINAL

140 .

146 TARP PACKET T 131

3.11 IP
LINK KEY ROUTER

ti’!
LINK KEY

LINK KEY

TARP TARP

ROUTER ROUTER

107

A 123

129 132 .IP

ROUTER

126 *

TARP 0"‘ RCTJUTER
ROUTER LINKKEY I V3

OF... LINK KEY
SESSION KEY TARP PACKET

110

TARP

TERMINAL

138

Petitioner Apple Inc. - Exhibit 1002, p. 138

:11 I3! E3! “E31 *’-II-"£39 “-II-- 1n ITIII ‘*5-?II IIZI! IIIII TEE‘

DATA STREAM fli

INTERLEAVED

SESSION-KEY-ENCRYPTED

PAYLOAD DATAE

TARP PACKET WITH

ENCRYPTED PAYLOADS E

LINK-KEY-ENCRYPTED

TARP PACKETS §_§Q

I IP PACKETS w/ ENCR ED
' TARP PACKETS

PAYLOAD gqg

TARP TARP

ROUTER 1 ROUTER 2

TARP TARP .

ROUTER5’ ROUTER 3

TARP

TARP ROUTER 6

ROUTER 4
TARP

DESTINATION

139

Petitioner Apple Inc. - Exhibit 1002, p. 139

%920%3:55:25E55.25mmm.a>,$Ez_220%2z_32,5vagmazzazm,_mflm>§§z_waoza2z_39>:53¢33%.:

1?1l..‘1l‘.".ii’ii‘3.’£’i~'1'« J1 ‘“~‘!!~ ... MI‘ .33 1£'.i§I.n£“.?

Emagi22..ao_>_e_oo§EEzw38:25.%mozm:$8<o§...33moeasm55.3;e_.zo_mmmvazézwagm
I ale§s_§_5§aI7.“....38£8£8New %

140

Petitioner Apple Inc. - Exhibit 1002, p. 140

oum§&s_>>§2oEz_E<Q

A201;

9:82_,__2%.3mowmmoomm.3Esezamaea&<:_,__m_\,_82m>_zz$:smEo

.;'.1L :i[I:IIH‘“.~T%“1§l—”"'.-3! “~i}~ ... 313] "ETE:"§§ TL] if}?

E%;<._E:

mommmoogn__ma_.E>>wz_mmooEhasmz_m_>_8o._.m_>_._.<z~m_.._<mzo

%.WESEéoamz§$>_§_,_§:§

141

Petitioner Apple Inc. - Exhibit 1002, p. 141

31. ;II§'.‘-II {II-3 “-II" .11) ITLII “Z-III I-EH23! IIIIE

BACKGROUND LOOP-DECOY

GENERATION

AUTHENTICATE TARP PACKET I

OUTER LAYER DECRYPTION OF I
TARP PACKET USING LINK KEY

CHECK FOR DECOY AND

INCREMENT PERISHABLE DECOY

COUNTER AS APPROPRIATE

TRANSMIT DECOY?

DECREMENT

'I'|'L 'I'|'L > 0?

DETERMINE DESTINATION TARP GENERATE NEXT-HOP TARP

ADDRESS AND STORE LINK KEY ADDRESS AND STORE LINK KEY 88
AND IP ADDRESS AND IP ADDRESS

GENERATE NEXT-HOP TARP ‘

ADDRESS AND STORE LINK KEY S10
AND IP ADDRESS

GENERATE IP HEADER I

AND TRANSMIT 311

FIG. 5

142

Petitioner Apple Inc. - Exhibit 1002, p. 142

IEII E33 “«II-v‘E'€Il ‘I~II- m 1If.'.II ‘LEI! 33 iIIIIII'II."3I

BACKGROUND LOOP-DECOY

GENERATION

GROUP RECEIVED IP PACKETS

INTO INTERLEAVE WINDOW

DETERMINE DESTINATION TARP

ADDRESS, INITIALIZE TTL, STORE
IN TARP HEADER

RECORD WINDOW SEQ. NOS. AND

INTERLEAVE SEQ. NOS IN TARP

HEADERS

CHOOSE FIRST HOP TARP

ROUTER, LOOK UP IP ADDRESS

AND STORE IN CLEAR IP HEADER,
OUTER LAYER ENCRYPT

INSTALL CLEAR IP HEADER

AND TRANSMIT

143

Petitioner Apple Inc. - Exhibit 1002, p. 143

L243. II.'.~II E: E3 “‘:?1.I"-*II-”§§II "-II- -[I3 ‘L331 IE3! IIIII FE";

S40

BACKGROUND LOOP-‘DECOY
GENERATION

S42

AUTHENTICATE TARP PACKET

RECEIVED '
DIVIDE BLOCK INTO PACKETS

USING WINDOW SEQUENCE DATA,
ADD CLEAR IP HEADERS

DECRYPT OUTER LAYER GENERATED FROM TARP
ENCRYPTION WITH LINK KEY HEADERS

£2

S50

HAND COMPLETED IP PACKETS

INCREMENT PERISHABLE To "3 LAYER PROCESS
COUNTER IF DECOY

S44

S45

THROW AWAY DECOY OR KEEP

IN RESPONSE TO ALGORITHM

S46

CACHE TARP PACKETS UNTIL
WINDOW IS ASSEMBLED

S47

DEINTERLEAVE PACKETS

FORMING WINDOW

S48

DECRYPT BLOCK

144

Petitioner Apple Inc. - Exhibit 1002, p. 144

EL Ml Q1 *‘-9?!--331 1‘-vi‘}~3.'L'."ll 5:34‘! IE1! IL}? E73

momQV2zo_._.<Ez_zoaamEémQzo_._.<_._._z_zoamwesam§:§n_§§2%Mud555V22%Q.E_o<n_25.0,

Q§,___)_§Ea

145

Petitioner Apple Inc. - Exhibit 1002, p. 145

“‘:‘JI

2._3N_2N.§E...§§2NE.3~éN.§

¢:.3~.£N.§5N_§.m_N.§8_3~.m=~_§

%.3N_2N.§22923.5.~§.3N.2N.§

222.35§.§.E.§$.3N.$N.§

:.4'j‘L-ii» ‘W in £3!

s§.§.§52.2.2.5mgwasm>_§m

$.3$§.§§.§.E.§Qwas:,_mzs:

L311. H:.1I:h"::.!'.?'.-'.-.‘u ‘V

$.3~é~.§~Z.8.m:~.§$.SN.2N.§~_..a~.m_.~.§§.3~.$N.§m2.3~.£~.§.8Z.oN.2N.§32.3.2.5$_3N_2~._.9EN.3N.£N.§B_§.2N.§EN_S~_mE.§$.3N.$N.§92.2.2.53235.5§.a.E.§§m§:>_§m§m§:_s_m_,_s:ag:§
.3:

146

Petitioner Apple Inc. - Exhibit 1002, p. 146

E«nu».Mm.W;
m.

WHHJ.

147

Petitioner Apple Inc. - Exhibit 1002, p. 147

' 731 “'iW§:il ‘LIP ... I13!’ '3IfiIMlZ1lI .3

R29%35;s__§a.3%m_§<n__55Ew$%o<n__mesa$3:Ev_o<n_¢_8Hm$§:>IEDS”mmEo<>>_._0%$5:m__2<EESE

Q20:52Eu:s__§_Q.EHmmgam_.532.”m$§,;_W258E232..R5%_2_§aEHm$~_8§_E93“£32.__$582“mafia>>_._.5385&2>>_._am$95:m_>_s¢52%;;

148

Petitioner Apple Inc. - Exhibit 1002, p. 148

H
m3mum

H.
wmfi5E1

zo:<o:ml<mmm:

~o~_¢oN_moN_voN_

149

Petitioner Apple Inc. - Exhibit 1002, p. 149

.31.. {[31 ii. ‘F311 34% “:33 ‘‘—'i}~ .. 51731 ‘L}31.![I]i IE1! 552*}

025z_B_~_<>mm25025z_82>mm25oz;_,__BE,mm25$3;9%~§<z__>__§a

 msoz
2%z_B_m<>mm25025z_32>mm25025z_32>mm25mmmgam_

025z_Ba;mm252%55msax:_>_8z§Eméoomo$82._._<mem__2<w

wz_&o_._m§>e_<I_n2%Ew88m__>_oE.~m882§_n_._._.zm__2_oom_>_m_mowoo:

150

Petitioner Apple Inc. - Exhibit 1002, p. 150

2.o_..._
22

3,521

E2392o_zo.E<>Emas,02$

‘lL IZDEEH ‘F31! "~H~“.~?J“~iI'- ,u. ![33'“"-31.“. 11".]? :1Efl§z?rI‘.'

2o_Eon_033
025az_ms_8m_3<>oza

mafiaEan__$32$58.__E58

151

Petitioner Apple Inc. - Exhibit 1002, p. 151

E.0_u_

$N_zo%oz5Ezmw2;_m_.__ammo...2%z_E5.Ezomxoza;_m_n__am9mmozmmmeoz;z_E5.

,2m_._.zm_n__om~_%:_s_mzs=

:1]. 113% 7iiI{.“L E; -“~'§¥—“*7..'~3! 1“~H-- u. £1! E31 iT.'.'fl 5-I-33

>>m_<n_n=E_<n_¢_
$:__>_wzs:

152

Petitioner Apple Inc. - Exhibit 1002, p. 152

:e_;_<&_$:__>_mzs:z___.%:__oe_a_aE52?m_<.:_;__o%m_._o%%zw,%.z_§
H..Vau~m9m_._

gs.n__._.z_on_v_om__._ooz_s_ooz_:_._._._>>$>_%_<mV207%2m_._>:_
m_<n_,__._.z_on_v_om__._o

.1 3133! 51.. “El 1'-‘E-~"-‘E31 »“~B- ... 31731 .';":"‘31 .113! {Hi E-3.’

>>on_z=sm_._<n_%.2,.mwzolmmm$>_m.o%m52H:Eum_m_m>_mom_mHsmzmooz<=_._omiN~m_o<m_._w.z_s_ooz__.E>>n__._.z_o%_o.”_Io$:_2mzs:
E22%SfizsE2E2:E5_8_$n_sfizsfie._._s_wz<m._.mz_$mom_m:oz>m©2o_zN_z9__§%zm__._>>©

$>_§<$moz;31;.

153

Petitioner Apple Inc. - Exhibit 1002, p. 153

Mwu...a

8wo2_wcavasmm$%e2QE..z<._mzmmxmv

154

Petitioner Apple Inc. - Exhibit 1002, p. 154

EL E34 is"-2' ”3Ev‘1'“-!}-“3El|-‘W .,. TM "533 Ci.~'*‘§!f1lI'.7lHICIl1:'xE§3

—
7/////////////////////.

W|NDOW_SlZE
7//////////////////////A

.'//////////////////////A
V/////////////////////fl
,/‘///I//////////////////1.
7//////////////////////.

'//////////////////////A
7//////////////////////A
'///////////////////////.

7//////////////////////.

W|NDOW_S|ZE

155

Petitioner Apple Inc. - Exhibit 1002, p. 155

mwflflwwwwmmqmmma

WWDOW-S'ZE
.'///////////////////////A
V////////////////////////.
,//////////////////////A
7//////////////////////A

W|NDOW_S|ZE %

156

Petitioner Apple Inc. - Exhibit 1002, p. 156

iii. if}! '53 “E31 “~11-"‘E-34 ‘L-11- ‘IETLH “E31 1131 H E.’

V//////I///////////////A

V//////////////////////A
'///////////////////////A
7//////////////////////A

W'ND°W'S'ZE 7//////////////////////.
7//////////////////////A

,/////////////////////fl
,///////////////////////.
7////////////////////fl

""'“°°""-3'25

7/////////////////////.

157

Petitioner Apple Inc. - Exhibit 1002, p. 157

331.. 11231 3'35: "*'i¥3i“‘-ii-='“43.3;i| “-U-- m .*l'.'.fi “F51 U31 fflfji

(\’o._Nma.:$52$58;$=§_oo$3$3@2200as%asif

158

Petitioner Apple Inc. - Exhibit 1002, p. 158

SJ}. 317.]! "-*1}-“S3! “-5fl-- K) "1113? f.?i’fi iTL"..1HL"_’ii

AD TABLE

IP1 IP2

IP3 IP4

AE TABLE .

AF TABLE

BD TABLE

BE TABLE

LINK DOWN

BF TABLE

/(TABLE2100 CD

CE TABLE

CF TABLE ’

159

Petitioner Apple Inc. - Exhibit 1002, p. 159

MEASURE

QUALITY OF

TRANSMISSION

PATH X

MORE

THAN ONE

TRANSMITTER

TURNED

ON?

PATH X

QUALITY <

THRESHOLD?

PATH X -

WEIGHT LESS

THAN STEADY

STATE

VALUE?

INCREASE WEIGHT

FOR PATH X

TOWARD STEADY

STATE VALUE

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

DECREASE

WEIGHT FOR
‘ PATH X

SET WEIGHT

TO MIN. VALUE

FIG. 22A

160

Petitioner Apple Inc. - Exhibit 1002, p. 160

I‘-IL IIIZII TE?! 5": “E31 *‘-Pr-‘£33 “-II- n. ‘IILII L":E“':IILII .1231 .fr:.I3

(EVENT) TRANSMITTER
FOR PATH x

TURNS OFF

AT LEAST DROP ALL PACKETS

ONE TRANSMITTER UNTILA TRANSMITTER

TURNED ON? TURNS ON

SET WEIGHT

TO ZERO

ADJUST WEIGHTS

FOR REMAINING

PATHS SO THAT

WEIGHTS EQUAL ONE

FIG. 22B R

161

Petitioner Apple Inc. - Exhibit 1002, p. 161

._,_o_s_,_a22522;_m_>_§a<%_)_m%m§_=a_m_>>>._.:<:cV2:
ga

32212;.\
:2

LIL ‘V-31 —"«3-“?E4|"Hl— m ‘iII]1T?5!§?Al‘£I§l {Di

wasm>_§m

$:_s_mz<EE0:

wasEmzsc/88

162

Petitioner Apple Inc. - Exhibit 1002, p. 162

mmafiwwgwwmgfimmfl

@2209$5.38

163

Petitioner Apple Inc. - Exhibit 1002, p. 163

E2moan;mm.o:

m_._._m$2,mg:

.311.Hi ”~1i~@J! ‘HF .. '!l.".Ti ‘E3! ‘.3 MIL'.';il M1111".-“:3

mmmaommmm;

164

Petitioner Apple Inc. - Exhibit 1002, p. 164

woe“oz_&o_._n__mamomswsam

~91» “J;-=eam.1~ .u, 1r;:a-=2,

E2oz_n_n_o_._

mmmgog

$n_me_E5%Es

165

Petitioner Apple Inc. - Exhibit 1002, p. 165

RECEIVE DNS

REQUEST FOR

TARGET SITE

ACCESS TO

SECURE SITE

REQUESTED?

USER

AUTHORIZED TO

CONNECT?

ESTABLISH

VPN WITH

TARGET SITE

‘III., EEII E3? ‘HI-‘L741 I'-sII-- IIITLII‘-“I:'.4I| ."-27$ =IIf3I.iEi‘?

PASS THRU

REQUEST TO

DNS SERVER

RETURN

"HOST UNKNOWN"

ERROR

166

Petitioner Apple Inc. - Exhibit 1002, p. 166

EH"...NMmm
m

km
nu

W.“%
1

mm.KMmmmm

mmhaommeow

167

Petitioner Apple Inc. - Exhibit 1002, p. 167

2.o:

8225n__coo.‘E2200~_mv_o<_._

-if] "+31 34!-“iii! "W »m 5131 ‘‘':"JJ '31 ‘(I31 E131 T51’

oowoo_xHm_N%mm_=m2ou+moImmppommeow

gmEE2s_oS8I

168

Petitioner Apple Inc. - Exhibit 1002, p. 168

‘HF “'.-351'“-1}’ ... ‘H31 “.3313 IE}? 'fE."JH1I3i 5532HH1

e_§_o

m>_§m

$:__>_wz§

169

Petitioner Apple Inc. - Exhibit 1002, p. 169

.21}. if}! "3241 3-fiv ... IE3? E92 1123! »![,"3!:i:TfC?

M04

CUENT#2

$‘_
C\l
C‘)

G)$
C\lC‘)

X3CNI
C’)

170

Petitioner Apple Inc. - Exhibit 1002, p. 170

CLIENT

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N
START TIMER, SHUT

' TRANSMITTER OFF

IF CKPT_O IN SYNC_ACK
MATCHES TRANSM|TTER'S

CKPT_O
UPDATE RECE|VER'S

CKPT_R
KILL TIMER, TURN
TRANSMITTER ON

SEND DATA PACKET

USING CKPT_N
CKPT_O=CKPT_N
GENERATE NEW CKPT_N
START TIMER. SHUT
TRANSMITTER OFF

WHEN TIMER EXPIRES

TRANSMIT SYNC_REQ
USING TRANSMITTERS

CKPT_O, START TIMER

IF CKPT_O IN SYNC_ACK
MATCHES TRANSMITTER'S

CKPT_O
UPDATE RECEIVER'S

CKPT_R

KILL TIMER, TURN

TRANSMITTER ON

7'II_";II “I-II» .,. ‘BI "IE3? ,?T_"_II E

SYNC_REQ

PASS DATA UP STACK

CKPT_O=CKPT_N
GENERATE NEW CKPT_N

GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK

CONTAINING CKPT_O

CKPT_O=CKPT_N
GENERATE NEW CKPT_N
GENERATE NEW CKPT_R
FOR TRANSMITTER SIDE

TRANSMIT SYNC_ACK
CONTAINING CKPT_O

171

Petitioner Apple Inc. - Exhibit 1002, p. 171

.ZlL ll.".'ll.Ei} “ill 9-ll--‘Ell “--ll-- [14 llfil “.331! lE1lil'f3l iii?!

OO0479.00082 O

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL

FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

CROSS-REFERENCE TO RELATED APPLICATIONS

[01] This application is a divisional application of 09/504,783 (filed February 15, 2000),

which claims priority from and is a continuation-in-part of previously filed U.S. application

serial number 09/429,643 (filed October 29, 1999). The subject matter of that application, which

is bodily incorporated herein, derives from provisional U.S. application numbers 60/106,261

(filed October 30, 1998) and 60/137,704 (filed June 7, 1999).

BACKGROUND or THE INVENTION

[02] A tremendous variety of methods have been proposed and implemented to provide

security and anonymity for communications over the Internet. The variety stems, in part, from

the different needs of different Internet users. A basic heuristic framework to aid in discussing

these different security techniques is illustrated in FIG. 1. Two terminals, an originating terminal

100 and a destination terminal 110 are in communication over the Internet. It is desired for the

communications to be secure, that is, immune to eavesdropping. For example, terminal 100 may

transmit secret infonnation to terminal 110 over the Internet 107. Also, it may be desired to

prevent an eavesdropper from discovering that terminal 100 is in communication with terminal

110. For example, if terminal 100 is a user and terminal 110 hosts a web site, terminal 100’s user

may not want anyone in the intervening networks to know what web sites he is "visiting."

Anonymity would thus be an issue, for example, for companies that want to keep their market

research interests private and thus would prefer to prevent outsiders from knowing which web-

sites or other Internet resources they are “visiting.” These two security issues may be called data

security and anonymity, respectively.

[03] Data security is usually tackled using some form of data encryption. An encryption key

48 is known at both the originating and terminating terminals 100 and 110. The keys may be

private and public at the originating and destination terminals 100 and 110, respectively or they

may be symmetrical keys (the same key is used by both parties to encrypt and decrypt). Many

encryption methods are known and usable in this context.

172

Petitioner Apple Inc. - Exhibit 1002, p. 172

.':‘L llili E! “EB ll-ll ‘E43! M1» u. Ell ".351 .1113! 1131 17.33

000479.00082 o O

[04] To hide traffic from a local administrator or ISP, a user can employ a local proxy server

in communicating over an encrypted charmel with an outside proxy such that the local

administrator or ISP only sees the encrypted traffic. Proxy servers prevent destination servers

from determining the identities of the originating clients. This system employs an intermediate

server interposed between client and destination server. The destination server sees only the

Internet Protocol (IP) address of the proxy server and not the originating client. The target server

only sees the address of the outside proxy. This scheme relies on a trusted outside proxy server.

Also, proxy schemes are vulnerable to traffic analysis methods of determining identities of

transmitters and receivers. Another important limitation of proxy servers is that the server knows

the identities of both calling and called parties. In many instances, an originating terminal, such

as terminal A, would prefer to keep its identity concealed from the proxy, for example, if the

proxy server is provided by an Intemet service provider (ISP).

[05] To defeat traffic analysis, a scheme called Chaum’s mixes employs a proxy server that

transmits and receives fixed length messages, including dummy messages. Multiple originating

terminals are connected through a mix (a server) to multiple target servers. It is difficult to tell

which of the originating terminals are communicating to which of the connected target servers,

and the dummy messages confuse eavesdroppers’ efforts to detect communicating pairs by

analwing traffic. A drawback is that there is a risk that the mix server could be compromised.

One way to deal with this risk is to spread the trust among multiple mixes. If one mix is

compromised, the identities of the originating and target terminals may remain concealed. This

strategy requires a number of alternative mixes so that the intermediate servers interposed

between the originating and target terminals are not determinable except by compromising more

than one mix. The strategy wraps the message with multiple layers of encrypted addresses. The

first mix in a sequence can decrypt only the outer layer of the message to reveal the next

destination mix in sequence. The second mix can decrypt the message to reveal the next mix and

so on. The target server receives the message and, optionally, a multi-layer encrypted payload

containing return information to send data back in the same fashion. The only way to defeat such

a mix scheme is to collude among mixes. If the packets are all fixed-length and intermixed with

dummy packets, there is no way to do any kind of traffic analysis.

173

Petitioner Apple Inc. - Exhibit 1002, p. 173

.ZlL fl}! 3’5§:"‘?:Ell“‘-8ll--“E}ll'“-3l~- 1.. llI'.'ll"l’§.ll ".‘3E.\llII.‘rl ill-E33

ooo479.ooos2 0 D

[06] Still another anonymity technique, called ‘crowds,’ protects the identity of the originating

terminal from the intermediate proxies by providing that originating terminals belong to groups

of proxies called crowds. The crowd proxies are interposed between originating and target

terminals. Each proxy through which the message is sent is randomly chosen by an upstream

proxy. Each intermediate proxy can send the message either to another randomly chosen proxy

in the “crowd” or to the destination. Thus, even crowd members carmot determine if a preceding

proxy is the originator of the message or if it was simply passed from another proxy.

[07] ZKS (Zero-Knowledge Systems) Anonymous IP Protocol allows users to select up to any

of five different pseudonyms, while desktop sofiware encrypts outgoing traffic and wraps it in

User Datagram Protocol (UDP) packets. The first server in a 2+-hop system gets the UDP

packets, strips off one layer of encryption to add another, then sends the traffic to the next server,

which strips off yet another layer of encryption and adds a new one. The user is permitted to

control the munber of hops. At the final server, traffic is decrypted with an unlraceable IP

address. The technique is called onion-routing. This method can be defeated using traffic

analysis. For a simple example, bursts of packets fiom a user during low-duty periods can reveal

the identities of sender and receiver.

[08] Firewalls attempt to protect LANs from unauthorized access and hostile exploitation or

damage to computers connected to the LAN. Firewalls provide a server through which all access

to the LAN must pass. Firewalls are centralized systems that require administrative overhead to

maintain. They can be compromised by virtual-machine applications (“applets”). They instill a

false sense of security that leads to security breaches for example by users sending sensitive

information to servers outside the firewall or encouraging use of modems to sidestep the firewall

security. Firewalls are not useful for distributed systems such as business travelers, extranets,

small teams, etc.

SUMMARY OF THE INVENTION

[09] A secure mechanism for communicating over the intemet, including a protocol referred

to as the Tunneled Agile Routing Protocol (TARP), uses a unique two-layer encryption format

and special TARP routers. TARP routers are similar in fimction to regular IP routers. Each

TARP router has one or more IP addresses and uses normal IP protocol to send IP packet

174

Petitioner Apple Inc. - Exhibit 1002, p. 174

.“lL ll."llir’.":‘3 IE} ‘F-3| “~'l}-“:74! '“-=ll=- lfill '1‘? ‘ID! l] 333!

000479.00082 0 .

messages (“packets” or “datagrams”). The IP packets exchanged between TARP terminals via

TARP routers are actually encrypted packets whose true destination address is concealed except

to TARP routers and servers. The normal or “clear” or “outside” [P header attached to TARP IP

packets contains only the address of a next hop router or destination server. That is, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s [P

header always points to a next-hop in a series of TARP router hops, or to the final destination.

This means there is no overt indication from an intercepted TARP packet of the true destination

of the TARP packet since the destination could always be next-hop TARP router as well as the

final destination.

[10] Each TARP packet’s true destination is concealed behind a layer of encryption generated

using a link key. The link key is the encryption key used for encrypted communication between

the hops intervening between an originating TARP terminal and a destination TARP terminal.

Each TARP router can remove the outer layer of encryption to reveal the destination router for

each TARP packet. -To identify the link key needed to decrypt the outer layer of encryption of a

TARP packet, a receiving TARP or routing terminal may identify the transmitting terminal by

the sender/receiver IP numbers in the cleartext IP header.

[11] Once the outer layer of encryption is removed, the TARP router determines the final

destination. Each TARP packet 140 undergoes a minimum number of hops to help foil traffic

analysis. The hops may be chosen at random or by a fixed value. As a result, each TARP packet

may make random trips among a number of geographically disparate routers before reaching its

destination. Each trip is highly likely to be different for each packet composing a given message

because each trip is independently randomly determined. This feature is called agile routing. The

fact that different packets take different routes provides distinct advantages by making it difficult

for an interloper to obtain all the packets forming an entire multi-packet message. The associated

advantages have to do with the inner layer of encryption discussed below. Agile routing is

combined with another feature that furthers this purpose; a feature that ensures that any message

is broken into multiple packets.

[12] The IP address of a TARP router can be changed, a feature called IP agility. Each TARP

router, independently or under direction from another TARP terminal or router, can change its IP

175

Petitioner Apple Inc. - Exhibit 1002, p. 175

fill. llIIll'ii&':?‘. *5."-.6 “E3! Ml» "93! “-ll- Ll! IE]! Elli ll]! IE3! {£335

ooo479.ooos2 O .

address. A separate, unchangeable identifier or address is also defined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs.

[13] The message payload is hidden behind an inner layer of encryption in the TARP packet

that can only be unlocked using a session key. The session key is not available to any of the

intervening TARP routers. The session key is used to decrypt the payloads of the TARP packets

permitting the data stream to be reconstructed.

[14] Communication may be made private using link and session keys, which in turn may be

shared and used according to any desired method. For example, public/private keys or symmetric

keys may be used.

[15] To transmit a data stream, a TARP originating terminal constructs a series of TARP

packets fiom a series of IP packets generated by a network (IP) layer process. (Note that the

terms “network layer,” “data link layer,” “application layer,” etc. used in this specification

correspond to the Open Systems Interconnection (OSI) network terminology.) The payloads of

these packets are assembled into a block and chain-block encrypted using the session key. This

assumes, of course, that all the IP packets are destined for the same TARP terminal. The block is

then interleaved and the interleaved encrypted block is broken into a series of payloads, one for

each TARP packet to be generated. Special TARP headers IPT are then added to each payload

using the IP headers from the data stream packets. The TARP headers can be identical to normal

IP headers or customized in some way. They should contain a formula or data for deinterleaving

the data at the destination TARP terminal, a time-to-live (TTL) parameter to indicate‘ the number

of hops still to be executed, a data type identifier which indicates whether the payload contains,

for example, TCP or UDP data, the sender’s TARP address, the destination TARP address, and

an indicator as to whether the packet contains real or decoy data or a formula for filtering out

decoy data if decoy data is spread in some way through the TARP payload data.

176

Petitioner Apple Inc. - Exhibit 1002, p. 176

..".ll. lllil “Ell ‘Lil-“?.;ll ‘“«ll~ .1. lfll “Eli llill llili El!

ooo479.ooos2 . “

[16] Note that although chain-block encryption is discussed here with reference to the session

key, any encryption method may be used. Preferably, as in chain block encryption, a method

should be used that makes unauthorized decryption difficult without an entire result of the

encryption process. Thus, by separating the encrypted block among multiple packets and making

it difficult for an interloper to obtain access to all of such packets, the contents of the

communications are provided an extra layer of security.

[17] Decoy or dummy data can be added to a stream to help foil traffic analysis by reducing

the peak-to-average network load. It may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet carmot be tied to

communication bursts at another point to reveal the communicating endpoints.

[18] Dummy data also helps to break the data into a larger number of inconspicuously-sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to portion, or entirety, of a message, and

that portion or entirety then interleaved into a number of separate packets. Considering the agile

IP routing of the packets, and the attendant difficulty of reconstructing an entire sequence of

packets to form a single block-encrypted message element, decoy packets can significantly

increase the difficulty of reconstructing an entire ilata stream.

[19] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Because the encryption system described above is insertable between the data link and network

layers, the processes involved in supporting the encrypted communication may be completely

transparent to processes at the IP (network) layer and above. The TARP processes may also be

completely transparent to the data link layer processes as well. Thus, no operations at or above

the Network layer, or at or below the data link layer, are affected by the insertion of the TARP

stack. This provides additional security to all processes at or above the network layer, since the

177

Petitioner Apple Inc. - Exhibit 1002, p. 177

mmmmwwmwmmaflmmn

000479.00082 0 0

difficulty of unauthorized penetration of the network layer (by, for example, a hacker) is

increased substantially. Even newly developed servers running at the session layer leave all

processes_below the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[20] IP address changes made by TARP terminals and routers can be done at regular intervals,

at random intervals, or upon detection of “attacks.” The variation of IP addresses hinders traffic

analysis that might reveal which computers are communicating, and also provides a degree of

immunity from attack. The level of immunity from attack is roughly proportional to the rate at

which the IP address of the host is changing.

[21] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicating that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. In addition, it may create a subprocess that maintains the original IP

address and continues interacting with the attacker in some manner.

[22] Decoy packets may be generated by each TARP terminal on some basis determined by an

algorithm. For example, the algorithm may be a random one which calls for the generation of a

packet on a random basis when the terminal is idle. Alternatively, the algorithm may be

responsive to time of day or detection of low traffic to generate more decoy packets during low

traffic times. Note that packets are preferably generated in groups, rather than one by one, the

groups being sized to simulate real messages. In addition, so that decoy packets may be inserted

in normal TARP message streams, the background loop may have a latch that makes it more

likely to insert decoy packets when a message stream is being received. Alternatively, if a large

number of decoy packets is received along with regular TARP packets, the algorithm may

increase the rate of dropping of decoy packets rather than forwarding them. The result of

dropping and generating decoy packets in this way is to make the apparent incoming message

size different from the apparent outgoing message size to help foil traffic analysis.

178

Petitioner Apple Inc. - Exhibit 1002, p. 178

Ill. lllll E92‘. ll-ll-‘Ell "L~ll— m lllll Ell Ell illll III}!

000479.00082 . .

[23] In various other embodiments of the invention, a scalable version of the system may be

constructed in which a plurality of IP addresses are preassigned to each pair of communicating

nodes in the network. Each pair of nodes agrees upon an algorithm for “hopping” between IP

addresses (both sending and receiving), such that an eavesdropper sees apparently continuously

random IP address pairs (source and destination) for packets transmitted between the pair.

Overlapping or “reusable” IP addresses may be allocated to different users on the same subnet,

since each node merely Verifies that a particular packet includes a valid source/destination pair

from the agreed-upon algorithm. Source/destination pairs are preferably not reused between any

two nodes during any given end-to-end session, though limited IP block sizes or lengthy sessions

might require it.

[24] Further improvements described in this continuation-in-part application include: (1) a

load balancer that distributes packets across different transmission paths according to

transmission path quality; (2) a DNS proxy server that transparently creates a virtual private

network in response to a domain name inquiry; (3) a large-to-small link bandwidth management

feature that prevents denial-of-service attacks at system chokepoints; (4) a traffic limiter that

regulates incoming packets by limiting the rate at which a transmitter can be synchronized with a

receiver; and (5) a signaling synchronizer that allows a large number of nodes to communicate

with a central node by partitioning the communication function between two separate entities

BRIEF DESCRIPTION OF THE DRAWINGS

[25] FIG. 1 is an illustration of secure communications over the Internet according to a prior

art embodiment.

[26] FIG. 2 is an illustration of secure communications over the Internet according to a an

embodiment of the invention.

[27] FIG. 3a is an illustration of a process of forming a tunneled IP packet according to an

embodiment of the invention.

[28] FIG. 3b is an illustration of a process of forming a tunneled IP packet according to

another embodiment of the invention.

179

Petitioner Apple Inc. - Exhibit 1002, p. 179

3].. ii]! iii‘? 95} “.:".l|~“-§l~“.T-.l1"-'il~- IE]! I355 .lE'.7ll ‘l[."Jl

000479.00082 “ “

[29] FIG. 4 is an illustration of an OSI layer location of processes that may be used to

implement the invention.

[30] FIG. 5 is a flow chart illustrating a process for routing a tunneled packet according to an

embodiment of the invention.

[31] FIG. 6 is a flow chart illustrating a process for forming a tunneled packet according to an

embodiment of the invention.

[32] FIG. 7 is a flow chart illustrating a process for receiving a tunneled packet according to

an embodiment of the invention.

[33] FIG. 8 shows how a secure session is established and synchronized between a client and a

TARP router.

[34] FIG. 9 shows an IP address hopping scheme between a client computer and TARP router

using transmit and receive tables in each computer.

[35] FIG. 10 shows physical link redundancy among three Internet Service Providers (ISPs)

and a client computer.

[36] FIG. 11 shows how multiple IP packets can be embedded into a single “frame” such as an

Ethernet frame, and further shows the use of a discriminator field to camouflage true packet

recipients.

[37] FIG. 12A shows a system that employs hopped hardware addresses, hopped IP addresses,

and hopped discriminator fields.

[38] FIG. 12B shows several different approaches for hopping hardware addresses, IP

addresses, and discriminator fields in combination.

180

Petitioner Apple Inc. - Exhibit 1002, p. 180

31L l|'..'.ll ii? 1353} ‘E33! “-ll="’§.ll "-41- ‘Ll! ilill 'r:?;ll'.I~Z";} llfll ll."."il

000479 .00082 .

[39] FIG. 13 shows a technique for automatically re-establishing synchronization between

sender and receiver through the use of a partially public sync value.

[40] FIG. 14 shows a “checkpoint” scheme for regaining synchronization between a sender

and recipient.

[41] FIG. 15 shows further details of the checkpoint scheme of FIG. 14.

[42] FIG. 16 shows how two addresses can be decomposed into a plurality of segments for

comparison with presence vectors.

[43] FIG. 17 shows a storage array for a receiver’s active addresses.

[44] FIG. 18 shows the receiver’s storage array afier receiving a sync request.

[45] FIG. 19 shows the receiver’s storage array after new addresses have been generated.

[46] FIG. 20 shows a system employing distributed transmission paths.

[47] FIG. 21 shows a plurality of link transmission tables that can be used to route packets in

the system of FIG. 20.

[48] FIG. 22A shows a flowchart for adjusting weight value distributions associated with a

plurality of transmission links.

[49] FIG. 22B shows a flowchart for setting a weight value to zero if a transmitter turns off.

[50] FIG. 23 shows a system employing distributed transmission paths with adjusted weight

value distributions for each path.

[51] FIG. 24 shows an example using the system of FIG. 23.

[52] FIG. 25 shows a conventional domain-narne look-up service.

181

Petitioner Apple Inc. - Exhibit 1002, p. 181

1211.. llfll ‘£54.! “}13‘“-ll-"Ell “~ll~ ... <ll'.]l “E224! ll'ZllllZll1”rE’3

00047900082 0 O

[53] FIG. 26 shows a system employing a DNS proxy server with transparent VPN creation.

[54] FIG. 27 shows steps that can be carried out to implement transparent VPN creation based

on a DNS look-up function.

[55] FIG. 28 shows a system including a link guard function that prevents packet overloading

on a low-bandwidth link LOW BW.

[56] FIG. 29 shows one embodiment of a system employing the principles of FIG. 28.

[57] FIG. 30 shows a system that regulates packet transmission rates by throttling the rate at

which synchronizations are performed.

[58] FIG. 31 shows a signaling server 3101 and a transport server 3102 used to establish a

VPN with a client computer.

[59] FIG. 32 shows message flows relating to synchronization protocols of FIG. 31.

DETAILED DESCRIPTION OF THE INVENTION

[60] Referring to FIG. 2, a secure mechanism for communicating over the internet employs a

number of special routers or servers, called TARP routers 122-127 that are similar to regular [P

routers 128-132 in that each has one or more IP addresses and uses normal IP protocol to send

normal-looking IP packet messages, called TARP packets 140. TARP packets 140 are identical

to normal IP packet messages that are routed by regular IP routers 128-132 because each TARP

packet 140 contains a destination address as in a normal IP packet. However, instead of

indicating a final destination in the destination field of the IP header, the TARP packet’s 140 IP

header always points to a next-hop in a series of TARP router hops, or the final destination,

TARP terminal 110. Because the header of the TARP packet contains only the next-hop

destination, there is no overt indication from an intercepted TARP packet of the true destination

of the TARP packet 140 since the destination could always be the next-hop TARP router as well

as the final destination, TARP terminal 110.

182

Petitioner Apple Inc. - Exhibit 1002, p. 182

fill. lllll :"1.5£!!l‘Eii‘1_".-éllvllll-"Elli-ill‘ m 'l§§li‘.".‘§~lIi|’llZ]l iii’!

000479.00082 0

[61] Each TARP packet’s true destination is concealed behind an outer layer of encryption

generated using a link key 146. The link key 146 is the encryption key used for encrypted

communication between the end points (TARP terminals or TARP routers) of a single link in the

chain of hops connecting the originating TARP terminal 100 and the destination TARP terminal

110. Each TARP router 122-127, using the link key 146 it uses to communicate with the

previous hop in a chain, can use the link key to reveal the true destination of a TARP packet. To

identify the link key needed to decrypt the outer layer of encryption of a TARP packet, a

receiving TARP or routing terminal may identify the transmitting terminal (which may indicate

the link key used) by the sender field of the clear 1P header. Alternatively, this identity may be

hidden behind another layer of encryption in available bits in the clear IP header. Each TARP

router, upon receiving a TARP message, determines if the message is a TARP message by using

authentication data in the TARP packet. This could be recorded in available bytes in the TARP

packet’s IP header. Alternatively, TARP packets could be authenticated by attempting to decrypt

using the link key 146 and determining if the results are as expected. The former may have

computational advantages because it does not involve a decryption process.

[62] Once the outer layer of decryption is completed by a TARP router 122-127, the TARP

router determines the final destination. The system is preferably designed to cause each TARP

packet 140 to undergo a minimum number of hops to help foil traffic analysis. The time to live

counter in the IP header of the TARP message may be used to indicate a number ofTARP router

hops yet to be completed. Each TARP router then would decrement the counter and determine

from that whether it should forward the TARP packet 140 to another TARP router 122-127 or to

the destination TARP terminal 110. If the time to live counter is zero or below zero after

decrementing, for an example of usage, the TARP router receiving the TARP packet 140 may

forward the TARP packet 140 to the destination TARP terminal 110. If the time to live counter is

above zero afier decrementing, for an example of usage, the TARP router receiving the TARP

packet 140 may forward the TARP packet 140 to a TARP router 122-127 that the current TARP

terminal chooses at random. As a result, each TARP packet 140 is routed through some

minimum number ofhops of TARP routers 122-127 which are chosen at random.

183

Petitioner Apple Inc. - Exhibit 1002, p. 183

.‘.'ll.. llfill E-B “ii "-13" 1.. lEll ‘ll.-Fl? Til} [Ell fin?!

000479.00082 . . .

[63] Thus, each TARP packet, irrespective of the traditional factors determining traffic in the

Internet, makes random trips among a number of geographically disparate routers before

reaching its destination and each trip is highly likely to be different for each packet composing a

given message because each trip is independently randomly determined as described above. This

feature is called agile routing. For reasons that will become clear shortly, the fact that different

packets take different routes provides distinct advantages by making it difficult for an interloper

to obtain all the packets forming an entire multi-packet message. Agile routing is combined with

another feature that furthers this purpose, a feature that ensures that any message is broken into

multiple packets.

[64] A TARP router receives a TARP packet when an IP address used by the TARP router

coincides with the IP address in the TARP packet’s IP header IPC. The IP address of a TARP

router, however, may not remain constant. To avoid and manage attacks, each TARP router,

independently or under direction from another TARP terminal or router, may change its IP

address. A separate, unchangeable identifier or address is alsodefined. This address, called the

TARP address, is known only to TARP routers and terminals and may be correlated at any time

by a TARP router or a TARP terminal using a Lookup Table (LUT). When a TARP router or

terminal changes its IP address, it updates the other TARP routers and terminals which in turn

update their respective LUTs. In reality, whenever a TARP router looks up the address of a

destination in the encrypted header, it must convert a TARP address to a real IP address using its

LUT.

[65] While every TARP router receiving a TARP packet has the ability to determine the

packet’s final destination, the message payload is embedded behind an inner layer of encryption

in the TARP packet that can only be unlocked using a session key. The session key is not

available to any of the TARP routers 122-127 intervening between the originating 100 and

destination 110 TARP terminals. The session key is used to decrypt the payloads of the TARP

packets 140 permitting an entire message to be reconstructed.

[66] In one embodiment, communication may be made private using link and session keys,

which in turn may be shared and used according any desired method. For example, a public key

or symmetric keys may be communicated between link or session endpoints using a public key

13

184

Petitioner Apple Inc. - Exhibit 1002, p. 184

:3]. llfil iiff TEE} “-ll~ “Ell '1-ll» ... ill}! ‘€911.31 1ll'.ll'll"Lll

ooo479.ooo32 0 .

method. Any of a variety of other mechanisms for securing data to ensure that only authorized

computers can have access to the private information in the TARP packets 140 may be used as

desired.

[67] Referring to FIG. 3a, to construct a series of TARP packets, a data stream 300 of IP

packets 207a, 207b, 207c, etc., such series of packets being formed by a network (IP) layer

process, is broken into a series of small sized segments. In the present example, equal-sized

segments 1-9 are defined and used to construct a set of interleaved data packets A, B, and C.

Here it is assumed that the number of interleaved packets A, B, and C formed is three and that

the number of IP packets 207a-207c used to form the three interleaved packets A, B, and C is

exactly three. Of course, the number of IP packets spread over a group of interleaved packets

may be any convenient number as may be the number of interleaved packets over which the

incoming data stream is spread. The latter, the number of interleaved packets over which the data

stream is spread, is called the interleave window.

[68] To create a packet, the transmitting software interleaves the normal IP packets 207a et.

seq. to form a new set of interleaved payload data 320. This payload data 320 is then encrypted

using a session key to form a set of session-key—encrypted payload data 330, each of which, A,

B, and C, will form the payload of a TARP packet. Using the IP header data, from the original

packets 207a-207c, new TARP headers [P7 are formed. The TARP headers IPT can be identical

to normal IP headers or customized in some way. In a preferred embodiment, the TARP headers

IPT are IP headers with added data providing the following information required for routing and

reconstruction of messages, some of which data is ordinarily, or capable of being, contained in

normal [P headers:

A window sequence number — an identifier that indicates where the packet

belongs in the original message sequence.

An interleave sequence number — an identifier that indicates the interleaving

sequence used to form the packet so that the packet can be deinterleaved along

with other packets in the interleave window.

A time-to-live (TTL) datum — indicates the number of TARP-router-hops to

be executed before the packet reaches its destination. Note that the TTL parameter

185

Petitioner Apple Inc. - Exhibit 1002, p. 185

ZIL IE]! “*«.!l«“‘f~II~ll Ml .., Illilfl “Ell ilfll .ll.'ll

000479.00082 . .

may provide a datum to be used in a probabilistic formula for determining

whether to route the packet to the destination or to another hop.

Data type identifier — indicates whether the payload contains, for example,

TCP or UDP data.

Sender’s address — indicates the sender’s address in the TARP network.

Destination address — indicates the destination terminal’s address in the TARP

network.

Decoy/Real — an indicator of whether the packet contains real message data or

dummy decoy data or a combination.

[69] Obviously, the packets going into a single interleave window must include only packets

with a common destination. Thus, it is assumed in the depicted example that the IP headers of IP

packets 207a-2070 all contain the same destination address or at least will be received by the

same terminal so that they can be deinterleaved. Note that dummy or decoy data or packets can

be added to form a larger interleave window than would otherwise be required by the size of a

given message. Decoy or dummy data can be added to a stream to help foil traffic analysis by

leveling the load on the network. Thus, it may be desirable to provide the TARP process with an

ability to respond to the time of day or other criteria to generate more decoy data during low

traffic periods so that communication bursts at one point in the Internet carmot be tied to

communication bursts at another point to reveal the communicating endpoints.

[70] Durmny data also helps to break the data into a larger number of inconspicuously-sized

packets permitting the interleave window size to be increased while maintaining a reasonable

size for each packet. (The packet size can be a single standard size or selected from a fixed range

of sizes.) One primary reason for desiring for each message to be broken into multiple packets is

apparent if a chain block encryption scheme is used to form the first encryption layer prior to

interleaving. A single block encryption may be applied to a portion, or the entirety, of a message,

and that portion or entirety then interleaved into a number of separate packets.

[71] Referring to FIG. 3b, in an alternative mode of TARP packet construction, a series of IP

packets are accumulated to make up a predefined interleave window. The payloads of the

packets are used to construct a single block 520 for chain block encryption using the session key.

186

Petitioner Apple Inc. - Exhibit 1002, p. 186

.211. ‘[11 51.33.11.-"£13 lllf-EM-ll~“l.~I3l ll-ll~ ... llfll ‘L."2ll‘."?.‘"1'}’lC';ll'1ll.'Iilx"E33

ooo479.ooo32 o 0

The payloads used to form the block are presumed to be destined for the same terminal. The

block size may coincide with the interleave window as depicted in the example embodiment of

FIG. 3b. Afier encryption, the encrypted block is broken into separate payloads and segments

which are interleaved as in the embodiment of Fig 3a. The resulting interleaved packets A, B,

and C, are then packaged as TARP packets with TARP headers as in the Example of FIG. 3a.

The remaining process is as shown in, and discussed with reference to, FIG. 3a.

[72] Once the TARP packets 340 are formed, each entire TARP packet 340, including the

TARP header IPT, is encrypted using the link key for communication with the first-hop-TARP

router. The first hop TARP router is randomly chosen. A final unencrypted IP header IPC is

added to each encrypted TARP packet 340 to form a normal IP packet 360 that can be

transmitted to a TARP router. Note that the process of constructing the TARP packet 360 does

not have to be done in stages as described. The above description is just a useful heuristic for

describing the final product, namely, the TARP packet.

[73] Note that, TARP header IP1‘ could be a completely custom header configuration with no

similarity to a normal IP header except that it contain the information identified above. This is so

since this header is interpreted by only TARP routers.

[74] The above scheme may be implemented entirely by processes operating between the data

link layer and the network layer of each server or terminal participating in the TARP system.

Referring to FIG. 4, a TARP transceiver 405 can be an originating terminal 100, a destination

terminal 110, or a TARP router 122-127. In each TARP Transceiver 405, a transmitting process

is generated to receive normal packets from the Network (IP) layer and generate TARP packets

for communication over the network. A receiving process is generated to receive normal IP

packets containing TARP packets and generate fi'om these normal IP packets which are “passed

up” to the Network (IP) layer. Note that where the TARP Transceiver 405 is a router, the

received TARP packets 140 are not processed into a stream of IP packets 415 because they need

only be authenticated as proper TARP packets and then passed to another TARP router or a

TARP destination terminal 110. The intervening process, a “TARP Layer” 420, could be

combined with either the data link layer 430 or the Network layer 410. In either case, it would

intervene between the data link layer 430 so that the process would receive regular IP packets

16

187

Petitioner Apple Inc. - Exhibit 1002, p. 187

fll.'.!J ‘liiiliéll 9-ll-“Ell "-li~ ... [L33 “EH lllll-|L".ll E!

ooo479.o0os2 . “

containing embedded TARP packets and “hand up” a series of reassembled IP packets to the

Network layer 410. As an example of combining the TARP layer 420 with the data link layer

430, a program may augment the normal processes running a communications card, for example,

an Ethernet card. Alternatively, the TARP layer processes may fonn part of a dynamically

loadable module that is loaded and executed to support communications between the network

and data link layers.

[75] Because the encryption system described above can be inserted between the data link and

network layers, the processes involved in supporting the encrypted communication may be

completely transparent to processes at the IP (network) layer and above. The TARP processes

may also be completely transparent to the data link layer processes as well. Thus, no operations

at or above the network layer, or at or below the data link layer, are affected by the insertion of

the TARP stack. This provides additional security to all processes at or above the network layer,

since the difficulty of unauthorized penetration of the network layer (by, for example, a hacker)

is increased substantially. Even newly developed servers running at the session layer leave all

processes below the session layer vulnerable to attack. Note that in this architecture, security is

distributed. That is, notebook computers used by executives on the road, for example, can

communicate over the Internet without any compromise in security.

[76] Note that IP address changes made by TARP terminals and routers can be done at regular

intervals, at random intervals, or upon detection of “attacks.” The variation of IP addresses

hinders traffic analysis that might reveal which computers are communicating, and also provides

a degree of immunity from attack. The level of immunity from attack is roughly proportional to

the rate at which the IP address of the host is changing.

[77] As mentioned, IP addresses may be changed in response to attacks. An attack may be

revealed, for example, by a regular series of messages indicates that a router is being probed in

some way. Upon detection of an attack, the TARP layer process may respond to this event by

changing its IP address. To accomplish this, the TARP process will construct a TARP-formatted

message, in the style of Internet Control Message Protocol (ICMP) datagrams as an example;

this message will contain the machine’s TARP address, its previous IP address, and its new IP

address. The TARP layer will transmit this packet to at least one known TARP router; then upon

17

188

Petitioner Apple Inc. - Exhibit 1002, p. 188

;ll. lflll Eff "1§3l3“-3.l~ "Ell H-ll~ n1 'll."1|“":":ll il.".ll llllll ‘El’

00O479.00082 . .

receipt and validation of the message, the TARP router will update its LUT with the new IP

address for the stated TARP address. The TARP router will then format a similar message, and

broadcast it to the other TARP routers so that they may update their LUTs. Since the total

number of TARP routers on any given subnet is expected to be relatively small, this process of

updating the LUTs should be relatively fast. It may not, however, work as well when there is a

relatively large number of TARP routers and/or a relatively large number of clients; this has

motivated a refinement of this architecture to provide scalability; this refinement has led to a

second embodiment, which is discussed below.

[78] Upon detection of an attack, the TARP process may also create a subprocess that

maintains the original IP address and continues interacting with the attacker. The latter may

provide an opportunity to trace the attacker or study the attacker’s methods (called “fishbow1ing”

drawing upon the analogy of a small fish in a fish bowl that “thinks” it is in the ocean but is

actually under captive observation). A history of the communication between the attacker and the

abandoned (fishbowled) IP address can be recorded or transmitted for human analysis or further

synthesized for purposes of responding in some way.

[79] As mentioned above, decoy or dummy data or packets can be added to outgoing data

streams by TARP terminals or routers. In addition to making it convenient to spread data over a

larger number of separate packets, such decoy packets can also help to level the load on inactive

portions of the Internet to help foil traffic analysis efforts.

[80] Decoy packets may be generated by each TARP terminal 100, 110 or each router 122-

127 on some basis determined by an algorithm. For example, the algorithm may be a random one

which calls for the generation of a packet on a random basis when the terminal is idle.

Alternatively, the algorithm may be responsive to time of day or detection of low traffic to

generate more decoy packets during low traffic times. Note that packets are preferably generated

in groups, rather than one by one, the groups being sized to simulate real messages. In addition,

so that decoy packets may be inserted in normal TARP message streams, the background loop

may have a latch that makes it more likely to insert decoy packets when a message stream is

being received. That is, when a series of messages are received, the decoy packet generation rate

may be increased. Alternatively, if a large number of decoy packets is received along with

18

189

Petitioner Apple Inc. - Exhibit 1002, p. 189

.“.ll..1[C§llii§f '.LP..l|‘“~.ll~ “',-3! ll-ll» m lllll "."~:ll llill lllil

000479.00082 . .

regular TARP packets, the algorithm may increase the rate of dropping of decoy packets rather

than forwarding them. The result of dropping and generating decoy packets in this way is to

make the apparent incoming message size different from the apparent outgoing message size to

help foil traffic analysis. The rate of reception of packets, decoy or otherwise, may be indicated

to the decoy packet dropping and generating processes through perishable decoy and regular

packet counters. (A perishable counter is one that resets or decrements its value in response to

time so that it contains a high value when it is incremented in rapid succession and a small value

when incremented either slowly or a small number of times in rapid succession.) Note that

destination TARP terminal 110 may generate decoy packets equal in number and size to those

TARP packets received to make it appear it is merely routing packets and is therefore not the

destination terminal.

[81] Referring to FIG. 5, the following particular steps may be employed in the above-

described method for routing TARP packets.

0 S0. A background loop operation is perfonned which applies ‘an algorithm which determines

the generation of decoy IP packets. The loop is interrupted when an encrypted TARP packet

is received.

S2. The TARP packet may be probed in some way to authenticate the packet before

attempting to decrypt it using the link key. That is, the router may determine that the packet

is an authentic TARP packet by performing a selected operation on some data included with

the clear IP header attached to the encrypted TARP packet contained in the payload. This

makes it possible to avoid performing decryption on packets that are not authentic TARP

packets.

S3. The TARP packet is decrypted to expose the destination TARP address and an indication

of whether the packet is a decoy packet or part of a real message.

S4. If the packet is a decoy packet, the perishable decoy counter is incremented.

S5. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the router may choose to throw it away. If the received

packet is a decoy packet and it is determined that it should be thrown away (S6), control

returns to step S0.

190

Petitioner Apple Inc. - Exhibit 1002, p. 190

53!. E3! :”r:":.". E"77:‘¥31 ‘Lil--’1El‘Lll~ All ll]! "Ell I3.“IE~ll'Ill tliifl

000479.00082 . t

0 S7. The TTL parameter of the TARP header is decremented and it is determined if the TTL

parameter is greater than zero.

S8. If the TTL parameter is greater than zero, a TARP address is randomly chosen from a list

of TARP addresses maintained by the router and the link key and IP address corresponding

to that TARP address memorized for use in creating a new IP packet containing the TARP

packet.

S9. If the TTL parameter is zero or less, the link key and IP address corresponding to the

TARP address of the destination are memorized for use in creating the new IP packet

containing the TARP packet.

S 10. The TARP packet is encrypted using the memorized link key.

Sll. An IP header is added to the packet that contains the stored IP address, the encrypted

TARP packet wrapped with an IP header, and the completed packet transmitted to the next

hop or destination.

[82] Referring to FIG. 6, the following particular steps may be employed in the above-

described method for generating TARP packets.

S20. A background loop operation applies an algorithm that determines the generation of

decoy IP packets. The loop" is interrupted when a data stream containing IP packets is

received for transmission.

S21. The received IP packets are grouped into a set consisting of messages with a constant IP

destination address. The set is further broken down to coincide with a maximum size of an

interleave window The set is encrypted, and interleaved into a set of payloads destined to

become TARP packets.

S22. The TARP address corresponding to the IP address is determined from a lookup table

and stored to generate the TARP header. An initial TTL count is generated and stored in the

header. The TTL count may be random with minimum and maximum values or it may be

fixed or determined by some other parameter.

S23. The window sequence numbers and interleave sequence numbers are recorded in the

TARP headers of each packet.

S24. One TARP router address is randomly chosen for each TARP packet and the IP address

corresponding to it stored for use in the clear IP header. The link key corresponding to this

191

Petitioner Apple Inc. - Exhibit 1002, p. 191

..TlL llfjliiftfl ‘Y-Ell *l?ll»‘FT,ll7“-ll" ... IE3] ‘$11 ll’fIHl.']l

00047900082 0 O

router is identified and used to encrypt TARP packets containing interleaved and encrypted

data and TARP headers.

S25. A clear IP header with the first hop router’s real IP address is generated and added to

each of the encrypted TARP packets and the resulting packets.

[83] Referring to FIG. 7, the following particular steps may be employed in the above-

described method for receiving TARP packets.

S40. A background loop operation is performed which applies an algorithm which

determines the generation of decoy IP packets. The loop is interrupted when an encrypted

TARP packet is received.

S42. The TARP packet may be probed to authenticate the packet before attempting to

decrypt it using the link key.

S43. The TARP packet is decrypted with the appropriate link key to expose the destination

TARP address and an indication of whether the packet is a decoy packet or part of a real

message.

S44. If the packet is a decoy packet, the perishable decoy counter is incremented.

S45. Based on the decoy generation/dropping algorithm and the perishable decoy counter

value, if the packet is a decoy packet, the receiver may choose to throw it away.

S46. The TARP packets are cached until all packets forming an interleave window are

received.

S47. Once all packets of an interleave window are received, the packets are deinterleaved.

S48. The packets block of combined packets defining the interleave window is then

decrypted using the session key.

S49. The decrypted block is then divided using the window sequence data and the IPT

headers are converted into normal IPc headers. The window sequence numbers are integrated

in the IPC headers.

S50. The packets are then handed up to the IP layer processes.

1. SCALABILITY ENHANCEMENTS

[84] The IP agility feature described above relies on the ability to transmit IP address changes

to all TARP routers. The embodiments including this feature will be referred to as “boutique”

embodiments due to potential limitations in scaling these features up for a large network, such as

21

192

Petitioner Apple Inc. - Exhibit 1002, p. 192

;.".ll.. fllll El‘ "53 "1331! ‘Ill-“E11 “rill-v m llfll “Ell Imlll llill

ooo479.ooos2 .

the Internet. (The “boutique” embodiments would, however, be robust for use in smaller

networks, such as small virtual private networks, for example). One problem with the boutique

embodiments is that if IP address changes are to occur fiequently, the message traffic required to

update all routers sufficiently quickly creates a serious burden on the Internet when the TARP

router and/or client population gets large. The bandwidth burden added to the networks, for

example in ICMP packets, that would be used to update all the TARP routers could overwhelm

the Internet for a large scale implementation that approached the scale of the Internet. In other

words, the boutique system’s scalability is limited.

[85] A system can be constructed which trades some of the features of the above embodiments

to provide the benefits of IP agility without the additional messaging burden. This is

accomplished by IP address-hopping according to shared algorithms that govern IP addresses

used between links participating in communications sessions between nodes such as TARP

nodes. (Note that the IP hopping technique is also applicable to the boutique embodiment.) The

IP agility feature discussed with respect to the boutique system can be modified so that it

becomes decentralized under this scalable regime and governed by the above-described shared

algorithm. Other features of the boutique system may be combined with this new type of IP-

agility.

[86] The new embodiment has the advantage of providing IP agility governed by a local

algorithm and set of IP addresses exchanged by each communicating pair of nodes. This local

governance is session-independent in that it may govern communications between a pair of

nodes, irrespective of the session or end points being transferred between the directly

communicating pair of nodes.

[87] In the scalable embodiments, blocks of IP addresses are allocated to each node in the

network. (This scalability will increase in the future, when Internet Protocol addresses are

increased to 128-bit fields, vastly increasing the number of distinctly addressable nodes). Each

node can thus use any of the IP addresses assigned to that node to communicate with other nodes

in the network. Indeed, each pair of communicating nodes can use a plurality of source IP

addresses and destination IP addresses for communicating with each other.

193

Petitioner Apple Inc. - Exhibit 1002, p. 193

..'1L .llI.".ll ‘f!:'-33 ‘F237 H" ‘Fill “-ii" ... III]! ‘Fill ..ll3l .l."ji| iii’!

000479.00082 0 0

[88] Each communicating pair of nodes in a chain participating in any session stores two

blocks of IP addresses, called netblocks, and an algorithm and randomization seed for selecting,

from each netblock, the next pair of source/destination IP addresses that will be used to transmit

the next message. In other words, the algorithm governs the sequential selection of IP-address

pairs, one sender and one receiver IP address, from each netblock. The combination of algorithm,

seed, and netblock (IP address block) will be called a “hopblock.” A router issues separate

transmit and receive hopblocks to its clients. The send address and the receive address of the IP

header of each outgoing packet sent by the client are filled with the send and receive IP

addresses generated by the algorithm. The algorithm is “clocked” (indexed) by a counter so that

each time a pair is used, the algorithm turns out a new transmit pair for the next packet to be sent.

[89] The router’s receive hopblock is identical to the client’s transmit hopblock. The router

uses the receive hopblock to predict what the send and receive IP address pair for the next

expected packet from that client will be. Since packets can be received out of order, it is not

possible for the router to predict with certainty what IP address pair will be on the next

sequential packet. To account for this problem, the router generates a range of predictions

encompassing the number of possible transmitted packet send/receive addresses, of which the

next packet received could leap ahead. Thus, if there is a vanishingly small probability that a

given packet will arrive at the router ahead of 5 packets transmitted by the client before the given

packet, then the router can generate a series of 6 send/receive IP address pairs (or “hop window”)

to compare with the next received packet. When a packet is received, it is marked in the hop

window as such, so that a second packet with the same IP address pair will be discarded. If an

out-of-sequence packet does not arrive within a predetermined timeout period, it can be

requested for retransmission or simply discarded from the receive table, depending upon the

protocol in use for that communications session, or possibly by convention.

[90] When the router receives the client’s packet, it compares the send and receive IP

addresses of the packet with the next N predicted send and receive IP address pairs and rejects

the packet if it is not a member of this set. Received packets that do not have the predicted

source/destination IP addresses falling with the window are rejected, thus thwarting possible

hackers. (With the number of possible combinations, even a fairly large window would be hard

194

Petitioner Apple Inc. - Exhibit 1002, p. 194

311.. 117.1! 3531 ‘Eli *1-ll~ ".331 “-11- -... ilfll “iii! 25?}? {Ell illill

ooo479.ooos2 . v

to fall into at random.) If it is a member of this set, the router accepts the packet and processes it

further. This link-based IP-hopping strategy, referred to as “IHOP,” is a network element that

stands on its own and is not necessarily accompanied by elements of the boutique system

described above. If the routing agility feature described in connection with the boutique

embodiment is combined with this link-based IP-hopping strategy, the router’s next step would

be to decrypt the TARP header to determine the destination TARP router for the packet and

determine what should be the next hop for the packet. The TARP router would then forward the

packet to a random TARP router or the destination TARP router with which the source TARP

router has a link-based IP hopping communication established.

[91] Figure 8 shows how a client computer 801 and a TARP router 811 can establish a secure

session. When client 801 seeks to establish an IHOP session with TARP router 811, the client

801 sends “secure synchronization” request (“SSYN”) packet 821 to the TARP router 811. This

SYN packet 821 contains the client’s 801 authentication token, and may be sent to the router 811

in an encrypted format. The source and destination IP numbers on the packet 821 are the client’s

801 current fixed IP address, and a “known” fixed IP address for the router 811. (For security

purposes, it may be desirable to reject any packets from outside of the local network that are

destined for the router’s known fixed IP address.) Upon receipt and validation of the client’s 801

SSYN packet 821, the router 811 responds by sending an encrypted “secure synchronization

acknowledgmen ” (“SSYN ACK”) 822 to the client 801. This SSYN ACK 822 will contain the

transmit and receive hopblocks that the client 801 will use when communicating with the TARP

router 811. The client 801 will acknowledge the TARP router’s 811 response packet 822 by

generating an encrypted SSYN ACK ACK packet 823 which will be sent from the client’s 801

fixed IP address and to the TARP router’s 811 known fixed IP address. The client 801 will

simultaneously generate a SSYN ACK ACK packet; this SSYN ACK packet, referred to as the

Secure Session Initiation (SSI) packet 824, will be sent with the first {sender, receiver} IP pair in

the client’s transmit table 921 (FIG. 9), as specified in the transmit hopblock provided by the

TARP router 811 in the SSYN ACK packet 822. The TARP router 811 will respond to the SSI

packet 824 with an SSI ACK packet 825, which will be sent with the first {sender, receiver} IP

pair in the TARP router’s transmit table 923. Once these packets have been successfully

exchanged, the secure communications session is established, and all further secure

195

Petitioner Apple Inc. - Exhibit 1002, p. 195

SH. 1123! ‘E3 “.1511 l‘-ll-“Ell “--ll-- 1,. llfll llfll.-1l.".i.ill ES?!

000479.00082 0 O

communications between the client 801 and the TARP router 811 will be conducted via this

secure session, as long as synchronization is maintained. If synchronization is lost, then the client

801 and TARP router 802 may re-establish the secure session by the procedure outlined in

Figure 8 and described above.

[92] While the secure session is active, both the client 901 and TARP router 911 (FIG. 9) will

maintain their respective transmit tables 921, 923 and receive tables 922, 924, as provided by the

TARP router during session synchronization 822. It is important that the sequence of IP pairs in

the client’s transmit table 921 be identical to those in the TARP router’s receive table 924;

similarly, the sequence of IP pairs in the client’s receive table 922 must be identical to those in

the router’s transmit table 923. This is required for the session synchronization to be maintained.

The client 901 need maintain only one transmit table 921 and one receive table 922 during the

course of the secure session. Each sequential packet sent by the client 901 will employ the next

{send, receive} IP address pair in the transmit table, regardless of TCP or UDP session. The

TARP router 911 will expect each packet arriving fi'om the client 901 to bear the next IP address

pair shown in its receive table.

[93] Since packets can arrive out of order, however, the router 911 can maintain a “look

ahead” buffer in its receive table, and will mark previously-received IP pairs as invalid for fiiture

packets; any future packet containing an IP pair that is in the look-ahead buffer but is marked as

previously received will be discarded. Communications from the TARP router 911 to the client

901 are maintained in an identical manner; in particular, the router 911 will select the next IP

address pair from its transmit table 923 when constructing a packet to send to the client 901, and

the client 901 will maintain a look-ahead buffer of expected [P pairs on packets that it is

receiving. Each TARP router will maintain separate pairs of transmit and receive tables for each

client that is currently engaged in a secure session with or through that TARP router.

[94] While clients receive their hopblocks from the first server linking them to the Internet,

routers exchange hopblocks. When a router establishes a link-based IP-hopping communication

regime with another router, each router of the pair exchanges its transmit hopblock. The transmit

hopblock of each router becomes the receive hopblock of the other router. The communication

196

Petitioner Apple Inc. - Exhibit 1002, p. 196

.211. llfll H E} ‘E211 l1«‘il"l"El1 "ii" it "ill! “Ell IE]! lllll

000479.00082

between routers is governed as described by the example of a client sending a packet to the first

router.

[95] While the above strategy works fine in the IP milieu, many local networks that are

connected to the Internet are Ethernet systems. In Ethernet, the IP addresses of the destination

devices must be translated into hardware addresses, and vice versa, using known processes

(“address resolution protocol,” and “reverse address resolution protocol”). However, if the link-

based IP-hopping strategy is employed, the correlation process would become explosive and

burdensome. An alternative to the link-based IP hopping strategy may be employed within an

Ethernet network. The solution is to provide that the node linking the Internet to the Ethernet

(call it the border node) use the link-based IP-hopping communication regime to communicate

with nodes outside the Ethernet LAN. Within the Ethernet LAN, each TARP node would have a

single IP address which would be addressed in the conventional way. Instead of comparing the

{sender, receiver} IP address pairs to authenticate a packet, the intra-LAN TARP node would

use one of the IP header extension fields to do so. Thus, the border node uses an algorithm

shared by the intra-LAN TARP node to generate a symbol that is stored in the free field in the IP

header, and the intra-LAN TARP node generates a range ‘of symbols based on its prediction of

the next expected packet to be received from that particular source IP address. The packet is

rejected if it does not fall into the set of predicted symbols (for example, numerical values) or is

accepted if it does. Communications from the intra-LAN TARP node to the border node are

accomplished in the same manner, though the algorithm will necessarily be different for security

reasons. Thus, each of the communicating nodes will generate transmit and receive tables in a

similar manner to that of Figure 9; the intra-LAN TARP nodes transmit table will be identical to

the border node’s receive table, and the intra-LAN TARP node’s receive table will be identical to

the border node’s transmit table.

[96] The algorithm used for IP address-hopping can be any desired algorithm. For example,

the algorithm can be a given pseudo-random number generator that generates numbers of the

range covering the allowed IP addresses with a given seed. Alternatively, the session participants

can assume a certain type of algorithm and specify simply a parameter for applying the

197

Petitioner Apple Inc. - Exhibit 1002, p. 197

Sll. 'l[.'.iJ .‘.'?3x ‘Eli Ml’-’l:3| W" m llfll 3:": IE1! "IE3! if-3.’

ooo479.ooos2 ‘ O

algorithm. For example the assumed algorithm could be a particular pseudo-random number

generator and the session participants could simply exchange seed values.

[97] Note that there is no permanent physical distinction between the originating and

destination terminal nodes. Either device at either end point can initiate a synchronization of the

pair. Note also that the authentication/synchronization-request (and acknowledgment) and

hopblock-exchange may all be served by a single message so that separate message exchanges

may not be required.

[98] As another extension to the stated architecture, multiple physical paths can be used by a

client, in order to provide link redundancy and further thwart attempts at denial of service and

traffic monitoring. As shown in Figure 10, for example, client 1001 can establish three

simultaneous sessions with each of three TARP routers provided by different ISPs 1011, 1012,

1013. As an example, the client 1001 can use three different telephone lines 1021, 1022, 1023 to

connect to the ISPs, or two telephone lines and a cable modem, etc. In this scheme, transmitted

packets will be sent in a random fashion among the different physical paths. This architecture

provides a high degree of communications redundancy, with improved immunity from denial-of-

service attacks and traffic monitoring.

2. FURTHER EXTENSIONS

[99] The following describes various extensions to the techniques, systems, and methods

described above. As described above, the security of communications occurring between

computers in a computer network (such as the Internet, an Ethernet, or others) can be enhanced

by using seemingly random source and destination Internet Protocol (IP) addresses for data

packets transmitted over the network. This feature prevents eavesdroppers from determining

which computers in the network are communicating with each other while permitting the two

communicating computers to easily recognize whether a given received data packet is legitimate

or not. In one embodiment of the above-described systems, an IP header extension field is used

to authenticate incoming packets on an Ethernet.

[100] Various extensions to the previously described techniques described herein include: (1)

use of hopped hardware or “MAC” addresses in broadcast type network; (2) a self-

198

Petitioner Apple Inc. - Exhibit 1002, p. 198

ill. ID! ii}?! ‘Ell "ll-¥M"r§ll ”«ll- ... lllll "Fill ilfill .llZIIll

000479.00082 0 O

synchronization technique that permits a computer to automatically regain synchronization with

a sender; (3) synchronization algorithms that allow transmitting and receiving computers to

quickly re-establish synchronization in the event of lost packets or other events; and (4) a fast-

packet rejection mechanism for rejecting invalid packets. Any or all of these extensions can be

combined with the features described above in any of various ways.

A. Hardware Address Hopping

[101] Internet protocol-based communications techniques on a LAN——+)r across any dedicated

physical medium—typically embed the IP packets within lower-level packets, often referred to
3

as “frarnes.’ As shown in FIG. 11, for example, a first Ethernet flame 1150 comprises a frame

header 1101 and two embedded IP packets IP1 and [P2, while a second Ethernet flame 1160

comprises a different frame header 1104 and a single IP packet IP3. Each frame header

generally includes a source hardware address 1101A and a destination hardware address 1101B;

other well-known fields in flame headers are omitted from FIG. 11 for clarity. Two hardware

nodes communicating over a physical communication channel insert appropriate source and

destination hardware addresses to indicate which nodes on the charmel or network should receive

the flame.

[102] It may be possible for a nefarious listener to acquire information about the contents of a

flame and/or its communicants by examining flames on a local network rather than (or in

addition to) the IP packets themselves. This is especially true in broadcast media, such as

Ethernet, where it is necessary to insert into the flame header the hardware address of the

machine that generated the flame and the hardware address of the machine to which frame is

being sent. All nodes on the network can potentially “see” all packets transmitted across the

network. This can be a problem for secure communications, especially in cases where the

communicants -do not want for any third party to be able to identify who is engaging in the

information exchange. One way to address this problem is to push the address-hopping scheme

down to the hardware layer. In accordance with various embodiments of the invention, hardware

addresses are “hopped” in a manner similar to that used to change IP addresses, such that a

listener cannot determine which hardware node generated a particular message nor which node is

the intended recipient.

199

Petitioner Apple Inc. - Exhibit 1002, p. 199

000479.00082 “ 0

[103] FIG. 12A shows a system in which Media Access Control (“MAC”) hardware addresses

are “hopped” in order to increase security over a network such as an Ethernet. While the

description refers to the exemplary case of an Ethernet environment, the inventive principles are

equally applicable to other types of communications media. In the Ethernet case, the MAC

address of the sender and receiver are inserted into the Ethernet frame and can be observed by

anyone on the LAN who is within the broadcast range for that frame. For secure

communications, it becomes desirable to generate frames with MAC addresses that are not

attributable to any specific sender or receiver.

[104] As shown in FIG. 12A, two computer nodes 1201 and 1202 communicate over a

communication channel such as an Ethernet. Each node executes one or more application

programs 1203 and 1218 that communicate by transmitting packets through communication

software 1204 and 1217, respectively. Examples of application programs include video

conferencing, e-mail, word processing programs, telephony, and the like. Communication

software 1204 and 1217 can comprise, for example, an OSI layered architecture or “stack” that

standardizes various services provided at different levels of functionality.

[105] The lowest levels of communication software 1204 and 1217 communicate with

hardware components 1206 and 1214 respectively, each of which can include one or more

registers 1207 and 1215 that allow the hardware to be reconfigured or controlled in accordance

with various communication protocols. The hardware components (an Ethernet network

interface card, for example) communicate with each other over the communication medium.

Each hardware component is typically pre-assigned a fixed hardware address or MAC number

that identifies the hardware component to other nodes on the network. One or more interface

drivers control the operation of each card and can, for example, be configured to accept or reject

packets from certain hardware addresses. As will be described in more detail below, various

embodiments of the inventive principles provide for “hopping” different addresses using one or

more algorithms and one or more moving windows that track a range of valid addresses to

validate received packets. Packets transmitted according to one or more of the inventive

principles will be generally referred to as “secure” packets or “secure communications” to

200

Petitioner Apple Inc. - Exhibit 1002, p. 200

:lJ.‘ilIll E?! fEi"'?ll‘Lil-‘“..'-ill “-ll- llIll“’3..-33 ll]! llifilifi-‘I3

0O0479.00082 0 .

differentiate them from ordinary data packets that are transmitted in the clear using ordinary,

machine-correlated addresses.

[106] One straightforward method of generating non-attributable MAC addresses is an

extension of the [P hopping scheme. In this scenario, two machines on the same LAN that desire

to communicate in a secure fashion exchange random-number generators and seeds, and create

sequences of quasi-random MAC addresses for synchronized hopping. The implementation and

synchronization issues are then similar to that of IP hopping.

[107] This approach, however, runs the risk of using MAC addresses that are currently active

on the LAN—which, in turn, could interrupt communications for those machines. Since an

Ethernet MAC address is at present 48 bits in length, the chance of randomly misusing an active

MAC address is actually quite small. However, if that figure is multiplied by a large number of

nodes (as would be found on an extensive LAN), by a large number of frames (as might be the

case with packet voice or streaming video), and by a large number of concurrent Virtual Private

Networks (VPNs), then the chance that a non-secure machine’s MAC address could be used in

an address-hopped frame can become non-trivial. Ir1 short, any scheme that rtms even a small

risk of interrupting communications for other machines on the LAN is bound to receive

resistance fiom prospective system administrators. Nevertheless, it is technically feasible, and

can be implemented without risk on a LAN on which there is a small number of machines, or if

all of the machines on the LAN are engaging in MAC-hopped communications.

[108] Synchronized MAC address hopping may incur some overhead in the course of session

establishment, especially if there are multiple sessions or multiple nodes involved in the

communications. A simpler method of randomizing MAC addresses is to allow each node to

receive and process every incident frame on the network. Typically, each network interface

driver will check the destination MAC address in the header of every incident frame to see if it

matches that machine’s MAC address; if there is no match, then the frame is discarded. In one

embodiment, however, these checks can be disabled, and every incident packet is passed to the

TARP stack for processing. This will be referred to as “promiscuous” mode, since every incident

flame is processed. Promiscuous mode allows the sender to use completely random,

unsynchronized MAC addresses, since the destination machine is guaranteed to process the

30

201

Petitioner Apple Inc. - Exhibit 1002, p. 201

'.ZlL~llIlJ “E33 3‘-ll~"E§i3 “—l— in llfll “Ell 'llI3ll—ll.Tll}izI'rl?

000479.00082 0

frame. The decision as to whether the packet was truly intended for that machine is handled by

the TARP stack, which checks the source and destination IP addresses for a match in its IP

synchronization tables. If no match is found, the packet is discarded; if there is a match, the

packet is unwrapped, the inner header is evaluated, and if the inner header indicates that the

packet is destined for that machine then the packet is forwarded to the IP stack—otherwise it is

discarded.

[109] One disadvantage of purely-random MAC address hopping is its impact on processing

overhead; that is, since every incident frame must be processed, the machine‘s CPU is engaged

considerably more often than if the network interface driver is discriminating and rejecting

packets unilaterally. A compromise approach is to select either a single fixed MAC address or a

small number of MAC addresses (e.g., one for each virtual private network on an Ethernet) to

use for MAC-hopped communications, regardless of the actual recipient for which the message

is intended. In this mode, the network interface driver can check each incident frame against one

(or a few) pre-established MAC addresses, thereby freeing the CPU from the task of physical-

layer packet discrimination. This scheme does not betray any useful information to an interloper

on the LAN; in particular, every secure packet can already be identified by a unique packet type

in the outer header. However, since all machines engaged in secure communications would

either be using the same MAC address, or be selecting from a small pool of predetermined MAC

addresses, the association between a specific machine and a specific MAC address is effectively

broken.

[110] In this scheme, the CPU will be engaged more often than it would be in non-secure

communications (or in synchronized MAC address hopping), since the network interface driver

carmot always unilaterally discriminate between secure packets that are destined for that

machine, and secure packets from other VPNs. However, the non-secure traffic is easily

eliminated at the network interface, thereby reducing the amount of processing required of the

CPU. There are boundary conditions where these statements would not hold, of course——e.g., if

all of the traffic on the LAN is secure traffic, then the CPU would be engaged to the same degree

as it is in the purely-random address hopping case; alternatively, if each VPN on the LAN uses a

different MAC address, then the network interface can perfectly discriminate secure frames

202

Petitioner Apple Inc. - Exhibit 1002, p. 202

Jll. llfll 3533} “I-Eli‘-ll~ '7.-Ell "~ll~ »... llfll E.H‘§;liIZll lliill

000479.00082 0

destined for the local machine from those constituting other VPNs. These are engineering

tradeoffs that might be best handled by providing administrative options for the users when

installing the soflware and/or establishing VPNs.

[111] Even in this scenario, however, there still remains a slight risk of selecting MAC

addresses that are being used by one or more nodes on the LAN. One solution to this problem is

to formally assign one address or a range of addresses for use in MAC-hopped communications.

This is typically done via an assigned numbers registration authority; e.g., in the case of

Ethernet, MAC address ranges are assigned to vendors by the Institute of Electrical and

Electronics Engineers (IEEE). A formally-assigned range of addresses would ensure that secure

frames do not conflict with any properly-configured and properly-functioning machines on the

LAN.

[112] Reference will now be made to FIGS. 12A and 12B in order to describe the many

combinations and features that follow the inventive principlm. As explained above, two

computer nodes 1201 and 1202 are assumed to be communicating over a network or

communication medium such as an Ethernet. A communication protocol in each node (1204 and

1217, respectively) contains a modified element 1205 and 1216 that performs certain functions

that deviate from the standard communication protocols. In particular, computer node 1201

implements a first “hop” algorithm 1208X that selects seemingly random source and destination

IP addresses (and, in one embodiment, seemingly random IP header discriminator fields) in order

to transmit each packet to the other computer node. For example, node 1201 maintains a

transmit table 1208 containing triplets of source (S), destination (D), and discriminator fields

(DS) that are inserted into outgoing IP packet headers. The table is generated through the use of

an appropriate algorithm (e.g., a random number generator that is seeded with an appropriate

seed) that is known to the recipient node 1202. As each new IP packet is formed, the next

sequential entry out of the sender’s transmit table 1208 is used to populate the IP source, IP

destination, and IP header extension field (e.g., discriminator field). It will be appreciated that

the transmit table need not be created in advance but could instead be created on-the-fly by

executing the algorithm when each packet is formed.

203

Petitioner Apple Inc. - Exhibit 1002, p. 203

111.. 1121119.? '“:'.éll’1-ll‘-‘l:":il"'~llv llfill l1".".l1?ll“.".iI:"ir”3

000479.00082 o

[113] At the receiving node 1202, the same IP hop algorithm 1222X is maintained and used to

generate a receive table 1222 that lists valid triplets of source IP address, destination IP address,

and discriminator field. This is shown by virtue of the first five entries of transmit table 1208

matching the second five entries of receive table 1222. (The tables may be slightly offset at any

particular time due to lost packets, misordered packets, or transmission delays). Additionally,

node 1202 maintains a receive window W3 that represents a list of valid IP source, IP

destination, and discriminator fields that will be accepted when received as part of an incoming

IP packet. As packets are received, window W3 slides down the list of valid entries, such that

the possible valid entries change over time. Two packets that arrive out of order but are

nevertheless matched to entries within window W3 will be accepted; those falling outside of

window W3 will be rejected as invalid. The length of window W3 can be adjusted as necessary

to reflect network delays or other factors.

[114] Node 1202 maintains a similar transmit table 1221 for creating IP packets and frames

destined for node 1201 using a potentially different hopping algorithm 1221X, and node 1201

maintains a matching receive table 1209 using the same algorithm 1209X. As node 1202

transmits packets to node 1201 using seemingly random IP source, IP destination, and/or

discriminator fields, node 1201 matches the incoming packet values to those falling within

window W1 maintained in its receive table. In effect, transmit table 1208 of node 1201 is

synchronized (i.e., entries are selected in the same order) to receive table 1222 of receiving node

1202. Similarly, transmit table 1221 of node 1202 is synchronized to receive table 1209 of node

1201. It will be appreciated that although a common algorithm is shown for the source,

destination and discriminator fields in FIG. 12A (using, e.g., a different seed for each of the three

fields), an entirely different algorithm could in fact be used to establish values for each of these

fields. It will also be appreciated that one or two of the fields can be “hopped” rather than all

three as illustrated.

[115] In accordance with another aspect of the invention, hardware or “MAC” addresses are

hopped instead ofor in addition to IP addresses and/or the discriminator field in order to improve

security in a local area or broadcast-type network. To that end, node 1201 further maintains a

transmit table 1210 using a transmit algorithm 1210X to generate source and destination

204

Petitioner Apple Inc. - Exhibit 1002, p. 204

.11. I131 E4.‘ ‘E3? Ml-‘Ell ‘“~l|-- ..u IE3] ‘L241 IE5 -llifll lllll

ooo479.ooos2 “ .

hardware addresses that are inserted into frame headers (e.g., fields 1101A and 1101B in FIG.

11) that are synchronized to a corresponding receive table 1224 at node 1202. Similarly, node

1202 maintains a different transmit table 1223 containing source and destination hardware

addresses that is synchronized with a corresponding receive table 1211 at node 1201. In this

manner, outgoing hardware frames appear to be originating from and going to completely

random nodes on the network, even though each recipient can determine whether a given packet

is intended for it or not. It will be appreciated that the hardware hopping feature can be

implemented at a different level in the communications protocol than the IP hopping feature

(e.g., in a card driver or in a hardware card itself to improve performance).

[116] FIG. 12B shows three different embodiments or modes that can be employed using the

aforementioned principles. In a first mode referred to as “promiscuous” mode, a common

hardware address (e.g., a fixed address for source and another for destination) or else a

completely random hardware address is used by all nodes on the network, such that a particular

packet cannot be attributed to any one node. Each node must initially accept all packets

containing the common (or random) hardware address and inspect the IP addresses or

discriminator field to determine whether the packet is intended for that node. In this regard,

either the IP addresses or the discriminator field or both can be varied in accordance with an

algorithm as described above. As explained previously, this may increase each node’s overhead

since additional processing is involved to determine whether a given packet has valid source and

destination hardware addresses.

[117] In a second mode referred to as “promiscuous per VPN” mode, a small set of fixed

hardware addresses are used, with a fixed source/destination hardware address used for all nodes

communicating over a virtual private network. For example, if there are six nodes on an

Ethernet, and the network is to be split up into two private virtual networks such that nodes on

one VPN can communicate with only the other two nodes on its own VPN, then two sets of

hardware addresses could be used: one set for the first VPN and a second set for the second

VPN. This would reduce the amount of overhead involved in checking for valid frames since

only packets arriving from the designated VPN would need to be checked. IP addresses and one

or more discriminator fields could still be hopped as before for secure communication within the

205

Petitioner Apple Inc. - Exhibit 1002, p. 205

Ill.. *3l.".'ll 3331 ‘W “Hill “~ll~- ‘flIfll“’-ill? —l1'."l|:llCIll ii-:“r'l’

O00479.00082 0 D

VPN. Of course, this solution compromises the anonymity of the VPNs (i.e., an outsider can

easily tell what traffic belongs in which VPN, though he cannot correlate it to a specific

machine/person). It also requires the use of a discriminator field to mitigate the vulnerability to

certain types of DoS attacks. (For example, without the discriminator field, an attacker on the

LAN could stream frames containing the MAC addresses being used by the VPN; rejecting those

frames could lead to excessive processing overhead. The discriminator field would provide a

low-overhead means of rej ecting the false packets.)

[118] In a third mode referred to as “hardware hopping” mode, hardware addresses are varied

as illustrated in FIG. 12A, such that hardware source and destination addresses are changed

constantly in order to provide non-attributable addressing. Variations on these embodiments are

of course possible, and the invention is not intended to be limited in any respect by these

illustrative examples.

B. Extending the Address Space

[119] Address hopping provides security and privacy. However, the level of protection is

limited by the number of addresses in the blocks being hopped. A hopblock denotes a field or

fields modulated on a packet-wise basis for the purpose of providing a VPN. For instance, if two

nodes communicate with IP address hopping using hopblocks of 4 addresses (2 bits) each, there

would be 16 possible address-pair combinations. A window of size 16 would result in most

address pairs being accepted as valid most of the time.‘ This limitation can be overcome by using

a discriminator field in addition to or instead of the hopped address fields. The discriminator

field would be hopped in exactly the same fashion as the address fields and it would be used to

determine whether a packet should be processed by a receiver.

[120] Suppose that two clients, each using four-bit hopblocks, would like the same level of

protection afforded to clients communicating via IP hopping between two A blocks (24 address

bits eligible for hopping). A discriminator field of 20 bits, used in conjunction with the 4 address

bits eligible for hopping in the [P address field, provides this level of protection. A 24-bit

discriminator field would provide a similar level of protection if the address fields were not

hopped or ignored. Using a discriminator field offers the following advantages: (1) an arbitrarily

206

Petitioner Apple Inc. - Exhibit 1002, p. 206

I L iljll ESE “-‘ll-“P§ll M} .1. iii! i“."~£l| I."-."37§2.,il",‘ll ~‘iK}il E33

000479.00082 . .

high level of protection can be provided, and (2) address hopping is urmecessary to provide

protection. This may be important in environments where address hopping would cause routing

problems.

C. Smchronization Technigues

[121] It is generally assumed that once a sending node and receiving node have exchanged

algorithms and seeds (or similar infomiation sufficient to generate quasi-random source and

destination tables), subsequent communication between the two nodes will proceed smoothly.

Realistically, however, two nodes may lose synchronization due to network delays or outages, or

other problems. Consequently, it is desirable to provide means for re-establishing

synchronization between nodes in a network that have lost synchronization.

[122] One possible technique is to require that each node provide an acknowledgment upon

successful receipt of each packet and, if no acknowledgment is received within a certain period

of time, to re-send the unacknowledged packet. This approach, however, drives up overhead

costs and may be prohibitive in high-throughput environments such as streaming video or audio,

for example.

[123] A different approach is to employ an automatic synchronizing technique that will be
9)

referred to herein as “self-synchronization. In this approach, synchronization information is

embedded into each packet, thereby enabling the receiver to re-synchronize itself upon receipt of

a single packet if it determines that is has lost synchronization with the sender. (If

communications are already in progress, and the receiver determines that it is still in sync with

the sender, then there is no need to re-synchronize.) A receiver could detect that it was out of

synchronization by, for example, employing a “dead-man” timer that expires after a certain

period of time, wherein the timer is reset with each valid packet. A time stamp could be hashed

into the public sync field (see below) to preclude packet-retry attacks.

[124] In one embodiment, a “sync field” is added to the header of each packet sent out by the

sender. This sync field could appear in the clear or as part of an encrypted portion of the packet.

Assuming that a sender and receiver have selected a random-number generator (RNG) and seed

value, this combination of RNG and seed can be used to generate a random—number sequence

207

Petitioner Apple Inc. - Exhibit 1002, p. 207

Ill. ‘ill?! iiEE¥! £5} “€3.14 "~ll~ “Eli “ll!ll."l! ‘El '13? ‘Ell llfll

ooo479.ooos2 . 0I

(RNS). The RNS is then used to generate a sequence of source/destination IP pairs (and, if

desired, discriminator fields and hardware source and destination addresses), as described above.

It is not necessary, however, to generate the entire sequence (or the first N-I values) in order to

generate the Nth random number in the sequence; if the sequence index N is known, the random

value corresponding to that index can be directly generated (see below). Different RNGs (and

seeds) with different fundamental periods could be used to generate the source and destination IP

sequences, but the basic concepts would still apply. For the sake of simplicity, the following

discussion will assume that IP source and destination address pairs (only) are hopped using a

single RNG sequencing mechanism.

[125] In accordance with a “self-synchronization” feature, a sync field in each packet header

provides an index (i.e., a sequence number) into the RNS that is being used to generate IP pairs.

Plugging this index into the RNG that is being used to generate the RNS yields a specific random

number value, which in turn yields a specific IP pair. That is, an IP pair can be generated directly

from knowledge of the RNG, seed, and index number; it is not necessary, in this scheme, to

generate the entire sequence of random numbers that precede the sequence value associated with

the index number provided.

[126] Since the communicants have presumably previously exchanged RNGs and seeds, the

only new information that must be provided in order to generate an IP pair is the sequence

number. If this number is provided by the sender in the packet header, then the receiver need

only plug this number into the RNG in order to generate an IP pair — and thus verify that the IP

pair appearing in the header of the packet is valid. In this scheme, if the sender and receiver lose

synchronization, the receiver can immediately re-synchronize upon receipt of a single packet by

simply comparing the IP pair in the packet header to the IP pair generated from the index

number. Thus, synchronized communications can be resumed upon receipt of a single packet,

making this scheme ideal for multicast communications. Taken to the extreme, it could obviate

the need for synchronization tables entirely; that is, the sender and receiver could simply rely on

the index number in the sync field to validate the IP pair on each packet, and thereby eliminate

the tables entirely.

208

Petitioner Apple Inc. - Exhibit 1002, p. 208

;lL llfll tiff! E1 1*il~”§.il '“~1ll~ m lliii “Eli "E511 ifill llfil 313%’?

000479.00082 0 0

[127] The aforementioned scheme may have some inherent security issues associated with it —

namely, the placement of the sync field. If the field is placed in the outer header, then an

interloper could observe the values of the field and their relationship to the [P stream. This could

potentially compromise the algorithm that is being used to generate the IP-address sequence,

which would compromise the security of the communications. If, however, the value is placed in

the inner header, then the sender must decrypt the inner header before it can extract the sync

value and validate the IP pair; this opens up the receiver to certain types of denial-of-service

(DoS) attacks, such as packet replay. That is, if the receiver must decrypt a packet before it can

validate the IP pair, then it could potentially be forced to expend a significant amount of

processing on decryption if an attacker simply retransmits previously valid packets. Other attack

methodologies are possible in this scenario.

[128] A possible compromise between algorithm security and processing speed is to split up the

sync value between an inner (encrypted) and outer (unencrypted) header. That is, if the sync

value is sufficiently long, it could potentially be split into a rapidly-changing part that can be

viewed in the clear, and a fixed (or very slowly changing) part that must be protected. The part

that can be viewed in the clear will be called the “public sync” portion and the part that must be

protected will be called the “private sync” portion.

[129] Both the public sync and private sync portions are needed to generate the complete sync

value. The private portion, however, can be selected such that it is fixed or will change only

occasionally. Thus, the private sync value can be stored by the recipient, thereby obviating the

need to decrypt the header in order to retrieve it. If the sender and receiver have previously

agreed upon the frequency with which the private part of the sync will change, then the receiver

can selectively decrypt a single header in order to extract the new private sync if the

communications gap that has led to lost synchronization has exceeded the lifetime of the

previous private sync. This should not represent a burdensome amount of decryption, and thus

should not open up the receiver to denial-of-service attack simply based on the need to

occasionally decrypt a single header.

[130] One implementation of this is to use a hashing function with a one-to-one mapping to

generate the private and public sync portions from the sync value. This implementation is shown

38

209

Petitioner Apple Inc. - Exhibit 1002, p. 209

.ZlL. llfll E3.‘ “Ell 4'-ll-"E31 ll-.<ll~ 1.. llfll "Ell ll'.'.ll llfll E3?

ooo479.o0os2 . 0

in FIG. 13, where (for example) a first ISP 1302 is the sender and a second ISP 1303 is the

receiver. (Other alternatives are possible from FIG. 13.) A transmitted packet comprises a public

or “outer” header 1305 that is not encrypted, and a private or “inner” header 1306 that is

encrypted using for example a link key. Outer header 1305 includes a public sync portion while

inner header 1306 contains the private sync portion. A receiving node decrypts the inner header

using a decryption function 1307 in order to extract the private sync portion. This step is

necessary only if the lifetime of the currently buffered private sync has expired. (If the

currently-buffered private sync is still valid, then it is simply extracted from memory and

“added” (which could be an inverse hash) to the public sync, as shown in step 1308.) The public

and decrypted private sync portions are combined in function 1308 in order to generate the

combined sync 1309. The combined sync (1309) is then fed into the RNG (1310) and compared

to the IP address pair (1311) to validate or reject the packet.

[131] An important consideration in this architecture is the concept of “future” and “past”

where the public sync values are concerned. Though the sync values, themselves, should be

random to prevent spoofing attacks, it may be important that the receiver be able to quickly

identify a sync value that has already been sent — even if the packet containing that sync value

was never actually received by the receiver. One solution is to hash a time stamp or sequence

number into the public sync portion, which could be quickly extracted, checked, and discarded,

thereby validating the public sync portion itself.

[132] In one embodiment, packets can be checked by comparing the source/destination IP pair

generated by the sync field with the pair appearing in the packet header. If (1) they match, (2) the

time stamp is valid, and (3) the dead—man timer has expired, then re-synchronization occurs;

otherwise, the packet is rejected. If enough processing power is available, the dead—man timer

and synchronization tables can be avoided altogether, and the receiver would simply

resynchronize (e.g., validate) on every packet.

[133] The foregoing scheme may require large-integer (e.g., 160-bit) math, which may affect its

implementation. Without such large-integer registers, processing throughput would be affected,

thus potentially affecting security from a denial-of-service standpoint. Nevertheless, as large-

210

Petitioner Apple Inc. - Exhibit 1002, p. 210

llill El E5} ‘Ell ?“il- 'L|]- IE3! ‘IT-if llfill (El! E3

ooo479.ooos2 O

integer math processing features become more prevalent, the costs of implementing such a

feature will be reduced.

D. Other S chronization Schemes

[134] As explained above, if W or more consecutive packets are lost between a transmitter and

receiver in a VPN (where W is the window size), the receiver’s window will not have been

updated and the transmitter will be transmitting packets not in the receiver’s window. The sender

and receiver will not recover synchronization until perhaps the random pairs in the window are

repeated by chance. Therefore, there is a need to keep a transmitter and receiver in

synchronization whenever possible and to re-establish synchronization whenever it is lost.

[135] A “checkpoint” scheme can be used to regain synchronization between a sender and a

receiver that have fallen out of synchronization. In this scheme, a checkpoint message

comprising a random IP address pair is used for communicating synchronization information. In

one embodiment, two messages are used to communicate synchronization information between a

sender and a recipient:

1. SYNC_REQ is a message used by the sender to indicate that it wants to synchronize;

and

2. SYNC__ACK is a message used by the receiver to inform the transmitter that it has

been synchronized.

[136] According to one variation of this approach, both the transmitter and receiver maintain

three checkpoints (see FIG. 14):

1. In the transmitter, ckpt_o (“checkpoint old”) is the IP pair that was used to re-send the

last SYNC_REQ packet to the receiver. In the receiver, ckpt_o (“checkpoint old”) is

the 11’ pair that receives repeated SYNC_REQ packets from the transmitter.

In the transmitter, ckpt_n (“checkpoint new”) is the IP pair that will be used to send

the next SYNC_REQ packet to the receiver. In the receiver, ckpt_n (“checkpoint

new”) is the 1}’ pair that receives a new SYNC_REQ packet from the transmitter and

which causes the receiver’s window to be re-aligned, ckpt_o set to ckpt_n, a new

ckpt_n to be generated and a new ckpt_r to be generated.

211

Petitioner Apple Inc. - Exhibit 1002, p. 211

Ell. $121! E333 ‘*";'.Ji ‘*3-ll-":§§l! “~ill- ... Illill iéllill 1131 Fr}?

000479.00082 0 0

3. In the transmitter, ckpt_r is the IP pair that will be used to send the next SYNC_ACK

packet to the receiver. In the receiver, ckpt_r is the [P pair that receives a new

SYNC_ACK packet from the transmitter and which causes a new ckpt_n to be

generated. Since SYNC_ACK is transmitted from the receiver ISP to the sender ISP,

the transmitter ckpt_r refers to the ckpt_r of the receiver and the receiver ckpt_r refers

to the ckpt_r of the transmitter (see FIG. 14).

[137] When a transmitter initiates synchronization, the IP pair it will use to transmit the next

data packet is set to a predetermined value and when a receiver first receives a SYNC_REQ, the

receiver window is updated to be centered on the transmitter’s next IP pair. This is the primary

mechanism for checkpoint synchronization.

[138] Synchronization can be initiated by a packet counter (e.g., after every N packets

transmitted, initiate a synchronization) or by a timer (every S seconds, initiate a synchronization)

or a combination of both. See FIG. 15. From the transmitter’s perspective, this technique

operates as follows: (1) Each transmitter periodically transmits a “sync request” message to the

receiver to make sure that it is in sync. (2) If the receiver is still in sync, it sends back a “sync

ack” message. (If this works, no further action is necessary). (3) If no “sync ack” has been

received within a period of time, the transmitter retransmits the sync request again. If the

transmitter reaches the next checkpoint without receiving a “sync ac ” response, then

synchronization is broken, and the transmitter should stop transmitting. The transmitter will

continue to send sync_reqs until it receives a sync_ack , at which point transmission is

reestablished.

[139] From the receiver’s perspective, the scheme operates as follows: (1) when it receives a

“sync request” request from the transmitter, it advances its window to the next checkpoint

position (even skipping pairs if necessary), and sends a “sync ack” message to the transmitter. If

sync was never lost, then the “jump ahead” really just advances to the next available pair of

addresses in the table (i.e., normal advancement).

212

Petitioner Apple Inc. - Exhibit 1002, p. 212

Jill- ll] if.’-'1 FEi':"’EF.-ll1"-4ll~-"'r3l1L-l|-- an lEll“lE."-,ll 3"}? ‘lfll -l[Illir.""33

000479.00082 0 .

[140] If an interloper intercepts the “sync request” messages and tries to interfere with

communication by sending new ones, it will be ignored if the synchronization has been

established or it it will actually help to re-establish synchronization.

[141] A window is realigned whenever a re-synchronization occurs. This realignment entails

updating the receiver’s window to straddle the address pairs used by the packet transmitted

immediately afier the transmission of the SYNC_REQ packet. Normally, the transmitter and

receiver are in synchronization with one another. However, when network events occur, the

receiver’s window may have to be advanced by many steps during resynchronization. In this

case, it is desirable to move the window ahead without having to step through the intervening

random numbers sequentially. (This feature is also desirable for the auto-sync approach

discussed above).

E. Random Number Generator with a Jumg-Ahead capability

[142] An attractive method for generating randomly hopped addresses is to use identical

random number generators in the transmitter and receiver and advance them as packets are

transmitted and received. There are many random number generation algorithms that could be

used. Each one has strengths and weaknesses for address hopping applications.

[143] Linear congruential random number generators (LCRS) are fast, simple and well

characterized random number generators that can be made to jump ahead n steps efficiently. An

LCR generates random numbers X1, X2, X3 Xk starting with seed X0 using a recurrence

Xi=(a X;.1 + b) mod c (1)

where a, b and c define a particular LCR. Another expression for Xi,

x.=((a‘(xo+b)-b)/(a-1»mode (2)

enables the jump-ahead capability. The factor ai can grow very large even for modest i if left

unfettered. Therefore some special properties of the modulo operation can be used to control the

size and processing time required to compute (2). (2) can be rewritten as:

x,=(a‘ (X0(a-1)+b)-b)/(a-1) mod c (3)

[144] It can be shown that:

213

Petitioner Apple Inc. - Exhibit 1002, p. 213

..'lL llfl! iii?! ‘Lil-“Elli ‘Lil ... i‘..'.'.ll“'EIl~llLll‘E:?.?

000479.00082 . .

(a‘(Xo(a-1)+b)-b)/(a-1) mod c =((aimod((a-1)c)(Xo(a-1)+b) -b) /(a-1)) mod c. (4)

(Xo(a-l)+b) can be stored as (Xo(a-1)+b) mod c, b as b mod c and compute al mod((a-l)c) (this

requires O(log(i)) steps).

[145] A practical implementation of this algorithm would jump a fixed distance, n,

between synchronizations; this is tantamount to synchronizing every n packets. The window

would commence n IP pairs from the start of the previous window. Using X,-W, the random

number at the jth checkpoint, as X0 and n as i, a node can store a" mod((a-l)c) once per LCR and

set

Xj+;“’=X.,G+1)=((a" mod((a-l)c) (X1-“’ (a-l)+b)-b)/(a-l))mod c, (5)

to generate the random number for the j+1”‘ synchronization. Using this construction, a node

could jump ahead an arbitrary (but fixed) distance between synchronizations in a constant

amount of time (independent of n).

[146] Pseudo-random number generators, in general, and LCRs, in particular, will eventually

repeat their cycles. This repetition may present vulnerability in the IP hopping scheme. An

adversary would simply have to wait for a repeat to predict future sequences. One way of coping

with this vulnerability is to create a random number generator with a known long cycle. A

random sequence can be replaced by a new random number generator before it repeats. LCRs

can be constructed with known long cycles. This is not currently true of many random number

generators.

[147] Random number generators can be cryptographically insecure. An adversary can derive

the RNG parameters by examining the output or part of the output. This is true of LCGs. This

vulnerability can be mitigated by incorporating an encryptor, designed to scramble the output as

part of the random number generator. The random number generator prevents an adversary from

mounting an attack—e.g., a known plaintext attack—against the encryptor.

F. Random Number Generator Example

[148] Consider a RNG where a=3 l ,b=4 and c=1 5. For this case equation (1) becomes:

X;=(31 X;-1 + 4) mod 15. (6)

214

Petitioner Apple Inc. - Exhibit 1002, p. 214

.'.lL\llI'Jl“L‘-ll~"‘Ell “—ll- -.1. llfll ..ll3l‘lEl|fl

000479.00082 .

[149] If one sets Xo=1, equation (6) will produce the sequence 1, 5, 9, 13, 2, 6, 10, 14,

3, 7, ll, 0, 4, 8, 12. This sequence will repeat indefinitely. For a jump ahead of 3 numbers in this

sequence a“= 3 1 3=29791 , c*(a-1)=l 5 *30=450 and a" mod((a- l)c) =

313mod(15*3O)=29791mod(450)=9l. Equation (5) becomes:

((91 (X,-30+4)—4)/30)mod 15 (7)

[150] Table 1 shows the jump ahead calculations from (7) . The calculations start at 5 and jump

ahead 3.

I 0930+‘) 91 <Xi3°+‘*"“

I

14010 467
154

424 38580
334 30390 H
44

22200

G. Fast Packet Filter

2

[151] Address hopping VPNs must rapidly determine whether a packet has a valid header and

thus requires further processing, or has an invalid header (a hostile packet) and should be

immediately rejected. Such rapid determinations will be referred to as “fast packet filtering.”

This capability protects the VPN from attacks by an adversary who streams hostile packets at the

receiver at a high rate of speed in the hope of saturating the receiver’s processor (a so-called

“denial of service” attack). Fast packet filtering is an important feature for implementing VPNs

on shared media such as Ethernet.

[152] Assuming that all participants in a VPN share an unassigned “A” block of addresses, one

possibility is to use an experimental “A” block that will never be assigned to any machine that is

not address hopping on the shared medium. “A” blocks have a 24 bits of address that can be

hopped as opposed to the 8 bits in “C” blocks. In this case a hopblock will be the “A” block.

The use of the experimental “A” block is a likely option on an Ethernet because:

215

Petitioner Apple Inc. - Exhibit 1002, p. 215

..“.ll.. Ell _f"""-3 “:31 ‘L*ll~"1.":ll "-ll— "m lllll Eli 'llIll'llZll E‘?

000479.00082 0

. The addresses have no validity outside of the Ethernet and will not be routed out to a valid

outside destination by a gateway.

. There are 224 (~16 million) addresses that can be hopped within each “A” block. This yields

>280 trillion possible address pairs making it very unlikely that an adversary would guess a

valid address. It also provides acceptably low probability of collision between separate VPNs

(all VPNs on a shared medium independently generate random address pairs from the same

“A” block).

. The packets will not be received by someone on the Ethernet who is not on a VPN (unless

the machine is in promiscuous mode) minimizing impact on non-VPN computers.

[153] The Ethernet example will be used to describe one implementation of fast packet

filtering. The ideal algorithm would quickly examine a packet header, determine whether the

packet is hostile, and reject any hostile packets or determine which active IP pair the packet

header matches. The problem is a classical associative memory problem. A variety of techniques

have been developed to solve this problem (hashing, B—trees etc). Each of these approaches has

its strengths and weaknesses. For instance, hash tables can be made to operate quite fast in a

statistical sense, but can occasionally degenerate into a much slower algorithm. This slowness

can persist for a period of time. Since there is a need to discard hostile packets quickly at all

times, hashing would be unacceptable.

H. Presence Vector Algorithm

[154] A presence vector is a bit vector of length 2“ that can be indexed by n-bit numbers (each

ranging from 0 to 2"—1). One can indicate the presence of k n-bit numbers (not necessarily

unique), by setting the bits in the presence vector indexed by each number to 1. Otherwise, the

bits in the presence vector are 0. An n-bit number, x, is one of the k numbers if and only if the xu‘

bit of the presence vector is 1. A fast packet filter can be implemented by indexing the presence

vector and looking for a l, which will be referred to as the “test.”

[155] For example, suppose one wanted to represent the number 135 using a presence vector.

The 135“ bit of the vector would be set. Consequently, one could very quickly determine

whether an address of 135 was valid by checking only one bit: the 135"‘ bit. The presence

vectors could be created in advance corresponding to the table entries for the IP addresses. In

216

Petitioner Apple Inc. - Exhibit 1002, p. 216

31. 113! ‘HES? "§ll"L-il-“f:ll ‘W 1.. llZll"Ell 11.11 11".}! E3.’

ooo479.ooos2 D .

effect, the incoming addresses can be used as indices into a long vector, making comparisons

very fast. As each RNG generates a new address, the presence vector is updated to reflect the

information. As the window moves, the presence vector is updated to zero out addresses that are

no longer valid.

[156] There is a trade-off between efficiency of the test and the amount of memory required for

storing the presence vector(s). For instance, if one were to use the 48 bits of hopping addresses

as an index, the presence vector would have to be 35 terabytes. Clearly, this is too large for

practical purposes. Instead, the 48 bits can be divided into several smaller fields. For instance,

one could subdivide the 48 bits into four 12-bit fields (see FIG. 16). This reduces the storage

requirement to 2048 bytes at the expense of occasionally having to process a hostile packet. In

effect, instead of one long presence vector, the decomposed address portions must match all four

shorter presence vectors before further processing is allowed. (If the first part of the address

portion doesn’t match the first presence vector, there is no need to check the remaining three

presence vectors).

[157] A presence vector will have a 1 in the y"‘ bit if and only if one or more addresses with a

corresponding field of y are active. An address is active only if each presence vector indexed by

the appropriate sub-field of the address is 1.

[158] Consider a window of 32 active addresses and 3 checkpoints. A hostile packet will be

rejected by the indexing of one presence vector more than 99% of the time. A hostile packet will

be rejected by the indexing of all 4 presence vectors more than 99.9999995% of the time. On

average, hostile packets will be rejected in less than 1.02 presence vector index operations.

[159] The small percentage of hostile packets that pass the fast packet filter will be rejected

when matching pairs are not found in the active window or are active checkpoints. Hostile

packets that serendipitously match a header will be rejected when the VPN software attempts to

decrypt the header. However, these cases will be extremely rare. There are many other ways this

method can be configured to arbitrate the space/speed tradeotfs.

I. Further Sflchronization Enhancements

217

Petitioner Apple Inc. - Exhibit 1002, p. 217

.211. [ll iii?! I“-M3211 “-ll; J.ll .llI.'.ll '1.":§ilIfE5“- IIIEII ilflfl E?

000479 00082 0 .

[160] A slightly modified form of the synchronization techniques described above can be

employed. The basic principles of the previously described checkpoint synchronization scheme

remain unchanged. The actions resulting from the reception of the checkpoints are, however,

slightly different. In this variation, the receiver will maintain between 000 (“Out of Order”) and

2><WINDOW__SIZE+OoO active addresses (1 S000 SWINDOW_SIZE and WINDOW_SIZE

21). 000 and WINDOW_SIZE are engineerable parameters, where 000 is the minimum

number of addresses needed to accommodate lost packets due to events in the network or out of

order arrivals and WINDOW_SIZE is the number of packets transmitted before a SYNC_REQ is

issued. FIG. 17 depicts a storage array for a receiver’s active addresses.

[161] The receiver starts with the first 2XWINDOW_SIZE addresses loaded and active (ready

to receive data). As packets are received, the corresponding entries are marked as “used” and are

no longer eligible to receive packets. The transmitter maintains a packet counter, initially set to

0, containing the number of data packets transmitted since the last initial transmission of a

SYNC_REQ for which SYNC_ACK has been received. When the transmitter packet counter

equals WINDOW_SIZE, the transmitter generates a SYNC_REQ and does its initial

transmission. When the receiver receives a SYNC_REQ corresponding to its current CKPT_N, it

generates the next WINDOW_SIZE addresses and starts loading them in order starting at the

first location after the last active address wrapping around to the beginning of the array after the

end of the array has been reached. The receiver’s array might look like FIG. 18 when a

SYNC_REQ has been received. In this case a couple of packets have been either lost or will be

received out of order when the SYNC_REQ is received.

[162] FIG. 19 shows the receiver’s array after the new addresses have been generated. If the

transmitter does not receive a SYNC_ACK, it will re-issue the SYNC_REQ at regular intervals.

When the transmitter receives a SYNC_ACK, the packet counter is decremented by

WINDOW_SIZE. If the packet counter reaches 2><WINDOW_SIZE — 000 then the transmitter

ceases sending data packets until the appropriate SYNC_ACK is finally received. The

transmitter then resumes sending data packets. Future behavior is essentially a repetition of this

initial cycle. The advantages of this approach are:

1. There is no need for an efficient jump ahead in the random number generator,

47

218

Petitioner Apple Inc. - Exhibit 1002, p. 218

' :.iL till ‘E341 ill}~"=’.—I..4i ‘“--ll~ .. 11211 “$531 .-2L".1l 1122!!00047900032 .

. No packet is ever transmitted that does not have a corresponding entry in the receiver side

. No timer based re-synchronization is necessary. This is a consequence of 2.

. The receiver will always have the ability to accept data messages transmitted within 000

messages of the most recently transmitted message.

J. Distributed Transmission Path Variant

[163] Another embodiment incorporating various inventive principles is shown in FIG. 20. In

this embodiment, a message transmission system includes a first computer 2001 in

communication with a second computer 2002 through a network 2011 of intermediary

computers. In one variant of this embodiment, the network includes two edge routers 2003 and

2004 each of which is linked to a plurality of Internet Service Providers (ISPs) 2005 through

2010. Each ISP is coupled to a plurality of other ISPs in an arrangement as shown in FIG. 20,

which is a representative configuration only and is not intended to be limiting. Each connection

between ISPs is labeled in FIG. 20 to indicate a specific physical transmission path (e.g., AD is a

physical path that links ISP A (element 2005) to ISP D (element 2008)). Packets arriving at each

edge router are selectively transmitted to one of the ISPs to which the router is attached on the

basis of a randomly or quasi-randomly selected basis.

[164] As shown in FIG. 21, computer 2001 or edge router 2003 incorporates a plurality of link

transmission tables 2100 that identify, for each potential transmission path through the network,

valid sets of IP addresses that can be used to transmit the packet. For example, AD table 2101

contains a plurality of IP source/destination pairs that are randomly or quasi-randomly generated.

When a packet is to be transmitted from first computer 2001 to second computer 2002, one of the

link tables is randomly (or quasi-randomly) selected, and the next valid source/destination

address pair from that table is used to transmit the packet through the network. If path AD is

randomly selected, for example, the next source/destination IP address pair (which is pre-

determined to transmit between ISP A (element 2005) and ISP B (element 2008)) is used to

transmit the packet. If one of the transmission paths becomes degraded or inoperative, that link

table can be set to a “down” condition as shown in table 2105, thus preventing addresses from

being selected from that table. Other transmission paths would be unaffected by this broken link.

219

Petitioner Apple Inc. - Exhibit 1002, p. 219

:L til EB ’T5:l1“«‘ll-‘“§3!‘**—ll- .. ‘JEN tI.".’li ltiliiiéf

ooo479.ooos2 .

3. CONTINUATION-IN-PART IMPROVEMENTS

[165] The following describes various improvements and features that can be applied to the

embodiments described above. The improvements include: (1) a load balancer that distributes

packets across different transmission paths according to transmission path quality; (2) a DNS

proxy server that transparently creates a virtual private network in response to a domain name

inquiry; (3) a large-to-small link bandwidth management feature that prevents denial-of-service

attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by limiting the

rate at which a transmitter can be synchronized with a receiver; and (5) a signaling synchronizer

that allows a large number of nodes to communicate with a central node by partitioning the

communication function between two separate entities. Each is discussed separately below.

A. Load Balancer

[166] Various embodiments described above include a system in which a transmitting node and

a receiving node are coupled through a plurality of transmission paths, and wherein successive

packets are distributed quasi-randomly over the plurality of paths. See, for example, FIGS. 20

and 21 and accompanying description. The improvement extends this basic concept to

encompass distributing packets across different paths in such a manner that the loads on the

paths are generally balanced according to transmission link quality.

[167] In one embodiment, a system includes a transmitting node and a receiving node that are

linked via a plurality of transmission paths having potentially varying transmission quality.

Successive packets are transmitted over the paths based on a weight value distribution function

for each path. The rate that packets will be transmitted over a given path can be different for

each path. The relative “health” of each transmission path is monitored in order to identify paths

that have become degraded. In one embodiment, the health of each path is monitored in the

transmitter by comparing the number of packets transmitted to the number of packet

acknowledgements received. Each transmission path may comprise a physically separate path

(e.g., Via dial-up phone line, computer network, router, bridge, or the like), or may comprise

logically separate paths contained within a broadband communication medium (e.g., separate

channels in an FDM, TDM, CDMA, or other type of modulated or unmodulated transmission

link).

220

Petitioner Apple Inc. - Exhibit 1002, p. 220

Ill. 3112]! ‘TI?“E3l1“-i1~‘l}Ji‘”'-ll‘ .4. ‘liill ‘Ell [31 11331 ‘E!000479 .00082 O

[168] When the transmission quality of a path falls below a predetermined threshold and there

are other paths that can transmit packets, the transmitter changes the weight value used for that

path, making it less likely that a given packet will be transmitted over that path. The weight will

preferably be set no lower than a minimum value that keeps nominal traffic on the path. The

weights of the other available paths are altered to compensate for the change in the affected path.

When the quality of a path degrades to where the transmitter is turned off by the synchronization

fimction (i.e., no packets are arriving at the destination), the weight is set to zero. If all

transmitters are turned off, no packets are sent.

[169] Conventional TCP/IP protocols include a “throttling” feature that reduces the

transmission rate of packets when it is determined that delays or errors are occurring in

transmission. In this respect, timers are sometimes used to determine whether packets have been

received. These conventional techniques for limiting transmission of packets, however, do not

involve multiple transmission paths between two nodes wherein transmission across a particular

path relative to the others is changed based on link quality.

[170] According to certain embodiments, in order to damp oscillations that might otherwise

occur if weight distributions are changed drastically (e.g., according to a step function), a linear

or an exponential decay formula can be applied to gradually decrease the weight value over time

that a degrading path will be used. Similarly, if the health of a degraded path improves, the

weight value for that path is gradually increased.

[171] Transmission link health can be evaluated by comparing the number of packets that are

acknowledged within the transmission window (see embodiments discussed above) to the

number of packets transmitted within that window and by the state of the transmitter (i.e., on or

off). In other words, rather than accumulating general transmission statistics over time for a

path, one specific implementation uses the “windowing” concepts described above to evaluate

transmission path health.

[172] The same scheme can be used to shit’: virtual circuit paths from an “unhealthy” path to a

“healthy” one, and to select a path for a new virtual circuit.

221

Petitioner Apple Inc. - Exhibit 1002, p. 221

IE3? iii? 4‘-?ll~ “Sill “«H-- m iiill "F-':l| lift IE3!000479.00082 .

[173] FIG. 22A shows a flowchart for adjusting weight values associated with a plurality of

transmission links. It is assumed that software executing in one or more computer nodes

executes the steps shown in FIG. 22A. It is also assumed that the software can be stored on a

computer-readable medium such as a magnetic or optical disk for execution by a computer.

[174] Beginning in step 2201, the transmission quality of a given transmission path is

measured. As described above, this measurement can be based on a comparison between the

number of packets transmitted over a particular link to the number of packet acknowledgements

received over the link (e.g., per unit time, or in absolute terms). Alternatively, the quality can be

evaluated by comparing the number of packets that are acknowledged within the transmission

window to the number of packets that were transmitted within that window. In yet another

variation, the number of missed synchronization messages can be used to indicate link quality.

Many other variations are of course possible.

[175] In step 2202, a check is made to determine whether more than one transmitter (e.g.,

transmission path) is turned on. If not, the process is terminated and resumes at step 2201.

[176] In step 2203, the link quality is compared to a given threshold (e.g., 50%, or any arbitrary

number). If the quality falls below the threshold, then in step 2207 a check is made to determine

whether the weight is above a minimum level (e.g., 1%). If not, then in step 2209 the weight is

set to the minimum level and processing resumes at step 2201. If the weight is above the

minimum level, then in step 2208 the weight is gradually decreased for the path, then in step

2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they are

increased).

[177] If in step 2203 the quality of the path was greater than or equal to the threshold, then in

step 2204 a check is made to determine whether the weight is less than a steady-state value for

that path. If so, then in step 2205 the weight is increased toward the steady-state value, and in

step 2206 the weights for the remaining paths are adjusted accordingly to compensate (e.g., they

are decreased). If in step 2204 the weight is not less than the steady-state value, then processing

resumes at step 2201 without adjusting the weights.

222

Petitioner Apple Inc. - Exhibit 1002, p. 222

Ill. llfll Elf 5’.-35 “Ell “~11”?-".-fl! “-ll= 1.. ll.".i| ”_3.ll‘llIilll[Zl|

ooo479.ooos2 .

[178] The weights can be adjusted incrementally according to various fimctions, preferably by

changing the value gradually. In one embodiment, a linearly decreasing function is used to

adjust the weights; according to another embodiment, an exponential decay function is used.

Gradually changing the weights helps to damp oscillators that might otherwise occur if the

probabilities were abruptly.

[179] Although not explicitly shown in FIG. 22A the process can be performed only

periodically (e.g., according to a time schedule), or it can be continuously run, such as in a

background mode of operation. In one embodiment, the combined weights of all potential paths

should add up to unity (e.g., when the weighting for one path is decreased, the corresponding

weights that the other paths will be selected will increase).

[180] Adjustments to weight values for other paths can be prorated. For example, a decrease of

10% in weight value for one path could result in an evenly distributed increase in the weights for

the remaining paths. Alternatively, weightings could be adjusted according to a weighted

formula as desired (e.g., favoring healthy paths over less healthy paths). In yet another variation,

the difference in weight value can be amortized over the remaining links in a manner that is

proportional to their traffic weighting.

[181] FIG. 22B shows steps that can be executed to shut down transmission links where a

transmitter turns off. In step 2210, a transmitter shut-down event occurs. In step 2211, a test is

made to determine whether at least one transmitter is still turned on. If not, then in step 2215 all

packets are dropped until a transmitter turns on. If in step 2211 at least one transmitter is turned

on, then in step 2212 the weight for the path is set to zero, and the weights for the remaining

paths are adjusted accordingly.

[182] FIG. 23 shows a computer node 2301 employing various principles of the above-

described embodiments. It is assumed that two computer nodes of the type shown in FIG. 23

communicate over a plurality of separate physical transmission paths. As shown in FIG. 23, four

transmission paths X1 through X4 are defined for communicating between the two nodes. Each

node includes a packet transmitter 2302 that operates in accordance with a transmit table 2308 as

described above. (The packet transmitter could also operate without using the IP-hopping

223

Petitioner Apple Inc. - Exhibit 1002, p. 223

Ill. lljli ET: '**-ill-1":".=lJ “~ll-- .1. Hill] ‘Ell fllfll fll iii}?

ooo479.ooos2 . 0

features described above, but the following description assumes that some form of hopping is

employed in conjunction with the path selection mechanism.). The computer node also includes

a packet receiver 2303 that operates in accordance with a receive table 2309, including a moving

window W that moves as valid packets are received. Invalid packets having source and

destination addresses that do not fall within window W are rejected.

[183] As each packet is readied for transmission, source and destination IP addresses (or other

discriminator values) are selected from transmit table 2308 according to any of the various

algorithms described above, and packets containing these source/destination address pairs, which

correspond to the node to which the four transmission paths are linked, are generated to a

transmission path switch 2307. Switch 2307, which can comprise a soflware function, selects

from one of the available transmission paths according to a weight distribution table 2306. For

example, if the weight for path X1 is 0.2, then every fifih packet will be transmitted on path X1.

A similar regime holds true for the other paths as shown. Initially, each link’s weight value can

be set such that it is proportional to its bandwidth, which will be referred to as its “steady-state”

value.

[184] Packet receiver 2303 generates an output to a link quality measurement fimction 2304

that operates as described above to determine the quality of each transmission path. (The input

to packet receiver 2303 for receiving incoming packets is omitted for clarity). Link quality

measurement function 2304 compares the link quality to a threshold for each transmission link

and, if necessary, generates an output to weight adjustment function 2305. If a weight

adjustment is required, then the weights in table 2306 are adjusted accordingly, preferably

according to a gradual (e.g., linearly or exponentially declining) function. In one embodiment,

the weight values for all available paths are initially set to the same value, and only when paths

degrade in quality are the weights changed to reflect differences.

[185] Link quality measurement function 2304 can be made to operate as part of a synchronizer

function as described above. That is, if resynchronization occurs and the receiver detects that

synchronization has been lost (e.g., resulting in the synchronization window W being advanced

out of sequence), that fact can be used to drive link quality measurement function 2304.

According to one embodiment, load balancing is performed using information garnered during

53

224

Petitioner Apple Inc. - Exhibit 1002, p. 224

ill. llill E3 “Ell ~“-.*ll- "1 ll]! “iii! 75 iii!) ll]! iii?

ooo479.ooos2 D .

the normal synchronization, augmented slightly to communicate link health from the receiver to

the transmitter. The receiver maintains a count, MESS_R(W), of the messages received in

synchronization window W. When it receives a synchronization request (SYNC_REQ)

corresponding to the end of window W, the receiver includes counter MESS_R in the resulting

synchronization acknowledgement (SYNC_ACK) sent back to the transmitter. This allows the

transmitter to compare messages sent to messages received in order to asses the health of the

link.

[186] If synchronization is completely lost, weight adjustment function 2305 decreases the

weight value on the affected path to zero. When synchronization is regained, the weight value

for the affected path is gradually increased to its original value. Alternatively, link quality can be

measured by evaluating the length of time required for the receiver to acknowledge a

synchronization request. In one embodiment, separate transmit and receive tables are used for

each transmission path.

[187] When the transmitter receives a SYNC_ACK, the MESS_R is compared with the number

of messages transmitted in a window (MESS_T). When the transmitter receives a SYNC_ACK,

the traffic probabilities will be examined and adjusted if necessary. MESS_R is compared with

the number of messages transmitted in a window (MESS_T). There are two possibilities:

I. If MESS_R is less than a threshold value, THRESH, then the link will be deemed to

be unhealthy. If the transmitter was turned off, the transmitter is turned on and the weight P for

that link will be set to a minimum value MIN. This will keep a trickle of traffic on the link for

monitoring purposes until it recovers. If the transmitter was turned on, the weight P for that link

will be set to:

P’=oo< MIN +(1- ot)xP (1)

Equation 1 will exponentially damp the traffic weight value to MIN during sustained periods of

degraded service.

2. If MESS_R for a link is greater than or equal to THRESH, the link will be deemed

healthy. If the weight P for that link is greater than or equal to the steady state value S for that

link, then P is lefi unaltered. If the weight P for that link is less than THRESH then P will be set

to:

225

Petitioner Apple Inc. - Exhibit 1002, p. 225

Jill. llfiill ET "E35 i‘L?ll"“73.lI “~*ll~ In 13! ‘Ell llifll lllll

00047900082 .

P’=I3>< S ‘‘'(1- l3)><P (2)

where B is a parameter such that 0<=B<=l that determines the damping rate of P.

[188] Equation 2 will increase the traffic weight to S during sustained periods of acceptable

service in a damped exponential fashion.

[189] A detailed example will now be provided with reference to FIG. 24. As shown in FIG.

24, a first computer 2401 communicates with a second computer 2402 through two routers 2403

and 2404. Each router is coupled to the other router through three transmission links. As

described above, these may be physically diverse links or logical links (including virtual private

networks).

[190] Suppose that a first link L1 can sustain a transmission bandwidth of 100 Mb/s and has a

window size of 32; link L2 can sustain 75 Mb/s and has a window size of 24; and link L3 can

sustain 25 Mb/s and has a window size of 8. The combined links can thus sustain 200Mb/s. The

steady state traffic weights are 0.5 for link L1; 0.375 for link L2, and 0.125 for link L3.

MIN=lMb/s, THRESH =0.8 MESS_T for each link, 0t=.75 and B=.5. These traffic weights will

remain stable until a link stops for synchronization or reports a number of packets received less

than its THRESH. Consider the following sequence of events:

1. Link L1 receives a SYNC_ACK containing a MESS_R of 24, indicating that only 75%

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link 1 would be below THRESH (0.8). Consequently, link L1’s traffic

weight value would be reduced to 0.12825, while link L2’s traffic weight value would

be increased to 0.65812 and link L3’s traffic weight value would be increased to

0.217938.

. Link L2 and L3 remained healthy and link Ll stopped to synchronize. Then link Ll ’s

traffic weight value would be set to 0, link L2’s traffic weight value would be set to

0.75, and link L33’s traffic weight value would be set to 0.25. _

. Link L1 finally received a SYNC_ACK containing a MESS_R of 0 indicating that none

of the MESS_T (32) messages transmitted in the last window were successfully

received. Link L1 would be below THRESH. Link L1’s traffic weight value would be

226

Petitioner Apple Inc. - Exhibit 1002, p. 226

ill. .ll.'Il| El? “E41 “-ll-- .u. if]! ‘Ell El} ‘vlfll iE.’3

000479.00082 fi

increased to .005, link L2’s traffic weight value would be decreased to 0.74625, and

link L3 ’s traffic weight value would be decreased to 0.24875.

. Link L1 received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MES S__T (32) messages transmitted in the last window were successfillly received.

Link Ll would be above THRESH. Link L1’s traffic weight value would be increased

to 0.2525, while link L2’s traffic weight value would be decreased to 0.560625 and link

L3’s traffic weight value would be decreased to .186875.

. Link Ll received a SYNC_ACK containing a MESS_R of 32 indicating that 100% of

the MESS_T (32) messages transmitted in the last window were successfitlly received.

Link Ll would be above THRESH. Link L1’s traffic weight value would be increased

to 0.37625; link L2’s traffic weight value would be decreased to 0.4678125, and link

L3’s traffic weight value would be decreased to 0.1559375.

. Link L1 remains healthy and the traffic probabilities approach their steady state traffic

probabilities.

B. Use of a DNS Proxy to Transgarently Create Virtual Private Networks

[191] A second improvement concerns the automatic creation of a virtual private network

(VPN) in response to a domain—narne server look-up function.

[192] Conventional Domain Name Servers (DNSS) provide a look-up function that returns the

IP address of a requested computer or host. For example, when a computer user types in the web

name “Yahoo.com,” the user’s web browser transmits a request to a DNS, which converts the

name into a four-part IP address that is returned to the user’s browser and then used by the

browser to contact the destination web site.

[193] This conventional scheme is shown in FIG. 25. A user’s computer 2501 includes a client

application 2504 (for example, a web browser) and an IP protocol stack 2505. When the user

enters the name of a destination host, a request DNS REQ is made (through IP protocol stack

2505) to a DNS 2502 to look up the IP address associated with the name. The DNS returns the

IP address DNS RESP to client application 2504, which is then able to use the IP address to

communicate with the host 2503 through separate transactions such as PAGE REQ and PAGE

RESP.

227

Petitioner Apple Inc. - Exhibit 1002, p. 227

.".ll.. {Ell E37 ‘El “-'11‘-H1 '“-ll-~ 4... ‘ll."l.J “‘?.li 1ll."l'!:il'IIll

000479.00082 .

[194] In the conventional architecture shown in FIG. 25, nefarious listeners on the Internet

could intercept the DNS REQ and DNS RESP packets and thus learn what IP addresses the user

was contacting. For example, if a user wanted to set up a secure communication path with a web

site having the name “Ta.rget.com,” when the user’s browser contacted a DNS to find the IP

address for that web site, the true IP address of that web site would be revealed over the Internet

as part of the DNS inquiry. This would hamper anonymous communications on the Internet.

[195] One conventional scheme that provides secure virtual private networks over the Internet

provides the DNS server with the public keys of the machines that the DNS server has the

addresses for. This allows hosts to retrieve automatically the public keys of a host that the host

is to communicate with so that the host can set up a VPN without having the user enter the public

key of the destination host. One implementation of this standard is presently being developed as

part of the FreeS/WAN project(RFC 2535).

[196] The conventional scheme suffers from certain drawbacks. For example, any user can

perform a DNS request. Moreover, DNS requests resolve to the same value for all users.

[197] According to certain aspects of the invention, a specialized DNS server traps DNS

requests and, if the request is from a special type of user (e.g., one for which secure

communication services are defined), the server does not return the true IP address of the target

node, but instead automatically sets up a virtual private network between the target node and the

user. The VPN is preferably implemented using the IP address “hopping” features of the basic

invention described above, such that the true identity of the two nodes cannot be determined

even ifpackets during the communication are intercepted. For DNS requests that are determined

to not require secure services (e.g., an unregistered user), the DNS server transparently “passes

through” the request to provide a normal look—up fimction and return the IP address of the target

web server, provided that the requesting host has permissions to resolve unsecured sites.

Different users who make an identical DNS request could be provided with different results.

[198] FIG. 26 shows a system employing various principles summarized above. A user’s

computer 2601 includes a conventional client (e.g., a web browser) 2605 and an IP protocol

stack 2606 that preferably operates in accordance with an IP hopping function 2607 as outlined

57

228

Petitioner Apple Inc. - Exhibit 1002, p. 228

D .;.‘.lL.ilf.Il: ‘HI-13!! M1» 11:1 #231 rgn ma
000479.00082

above. A modified DNS server 2602 includes a conventional DNS server function 2609 and a

DNS proxy 2610. A gatekeeper server 2603 is interposed between the modified DNS server and

a secure target site 2704. An “unsecure” target site 2611 is also accessible via conventional IP

protocols.

[199] According to one embodiment, DNS proxy 2610 intercepts all DNS lookup functions

from client 2605 and determines whether access to a secure site has been requested. If access to

a secure site has been requested (as determined, for example, by a domain name extension, or by

reference to an internal table of such sites), DNS proxy 2610 determines whether the user has

sufficient security privileges to access the site. If so, DNS proxy 2610 transmits a message to

gatekeeper 2603 requesting that a virtual private network be created between user computer 2601

and secure target site 2604. In one embodiment, gatekeeper 2603 creates “hopblocks” to be used

by computer 2601 and secure target site 2604 for secure communication. Then, gatekeeper 2603

communicates these to user computer 2601. Thereafter, DNS proxy 2610 returns to user

computer 2601 the resolved address passed to it by the gatekeeper (this address could be

different from the actual target computer) 2604, preferably using a secure administrative VPN.

The address that is returned need not be the actual address of the destination computer.

[200] Had the user requested lookup of a non-secure web site such as site 2611, DNS proxy

would merely pass through to conventional DNS server 2609 the look-up request, which would

be handled in a conventional manner, returning the IP address of non-secure web site 2611. If

the user had requested lookup of a secure web site but lacked credentials to create such a

connection, DNS proxy 2610 would return a “host unknown” error to the user. In this manner,

different users requesting access to the sa.me DNS name could be provided with different look-up

results.

[201] Gatekeeper 2603 can be implemented on a separate computer (as shown in FIG. 26) or as

a fimction within modified DNS server 2602. In general, it is anticipated that gatekeeper 2703

facilitates the allocation and exchange of information needed to communicate securely, such as

using “hopped” IP addresses. Secure hosts such as site 2604 are assumed to be equipped with a

secure communication function such as an IP hopping function 2608.

229

Petitioner Apple Inc. - Exhibit 1002, p. 229

‘.“.l|.. llill “$31 “~ll-“Ell “ll-A .., llilll ‘Ell "Eli 1131 till E59

000479.00082 0 .

[202] It will be appreciated that the functions of DNS proxy 2610 and DNS server 2609 can be

combined into a single server for convenience. Moreover, although element 2602 is shown as

combining the fimctions of two servers, the two servers can be made to operate independently.

[203] FIG. 27 shows steps that can be executed by DNS proxy server 2610 to handle requests

for DNS look-up for secure hosts. In step 2701, a DNS look—up request is received for a target

host. In step 2702, a check is made to determine whether access to a secure host was requested.

If not, then in step 2703 the DNS request is passed to conventional DNS server 2609, which

looks up the IP address of the target site and returns it to the user’s application for further

processing.

[204] In step 2702, if access to a secure host was requested, then in step 2704 a further check is

made to determine whether the user is authorized to connect to the secure host. Such a check can

be made with reference to an internally stored list of authorized IP addresses, or can be made by

communicating with gatekeeper 2603 (e.g., over an “administrative” VPN that is secure). It will

be appreciated that different levels of security can also be provided for different categories of

hosts. For example, some sites may be designated as having a certain security level, and the

security level of the user requesting access must match that security level. The user’s security

level can also be determined by transmitting a request message back to the user’s computer

requiring that it prove that it has sufficient privileges.

[205] If the user is not authorized to access the secure site, then a “host unknown” message is

returned (step 2705). If the user has sufficient security privileges, then in step 2706 a secure

VPN is established between the user’s computer and the secure target site. As described above,

this is preferably done by allocating a hopping regime that will be carried out between the user’s

computer and the secure target site, and is preferably performed transparently to the user (i.e., the

user need not be involved in creating the secure link). As described in various embodiments of

this application, any of various fields can be “hopped” (e.g., IP source/destination addresses; a

field in the header; etc.) in order to communicate securely.

[206] Some or all of the security functions can be embedded in gatekeeper 2603, such that it

handles all requests to connect to secure sites. In this embodiment, DNS proxy 2610

230

Petitioner Apple Inc. - Exhibit 1002, p. 230

:11. llIiliE‘l' *E';lJ‘*‘-il=-‘5.Elli*l-il- till {F315,-£!ilZ1"a“,‘llIfll III]!

00O479.00082 0 “

communicates with gatekeeper 2603 to determine (preferably over a secure administrative VPN)

whether the user has access to a particular web site. Various scenarios for implementing these

features are described by way of example below:

Scenario #1: Client has permission to access target computer, and gatekeeper has a rule

to make a VPN for the client. In this scenario, the client’s DNS request would be received by the

DNS proxy server 2610, which would forward the request to gatekeeper 2603. The gatekeeper

would establish a VPN between the client and the requested target. The gatekeeper would

provide the address of the destination to the DNS proxy, which would then return the resolved

name as a result. The resolved address can be transmitted back to the client in a secure

administrative VPN.

Scenario #2: Client does not have permission to access target computer. In this scenario,

the client’s DNS request would be received by the DNS proxy server 2610, which would forward

the request to gatekeeper 2603. The gatekeeper would reject the request, informing DNS proxy

server 2610 that it was unable to find the target computer. The DNS proxy 2610 would then

return a “host unknown” error message to the client.

Scenario #3: Client has permission to connect using a normal non-VPN link, and the

gatekeeper does not have a rule to set up a VPN for the client to the target site. In this scenario,

the client’s DNS request is received by DNS proxy server 2610, which would check its rules and

determine that no VPN is needed. Gatekeeper 2603 would then inform the DNS proxy server to

forward the request to conventional DNS server 2609, which would resolve the request and

return the result to the DNS proxy server and then back to the client.

Scenario #4: Client does not have permission to establish a norrnal/non-VPN link, and

the gatekeeper does not have a rule to make a VPN for the client to the target site. In this

scenario, the DNS proxy server would receive the client’s DNS request and forward it to

gatekeeper 2603. Gatekeeper 2603 would determine that no special VPN was needed, but that

the client is not authorized to communicate with non-VPN members. The gatekeeper would

reject the request, causing DNS proxy server 2610 to return an error message to the client.

C. Large Link to Small Link Bandwidth Management

[207] One feature of the basic architecture is the ability to prevent so-called “denial of service”

attacks that can occur if a computer hacker floods a known Internet node with packets, thus

231

Petitioner Apple Inc. - Exhibit 1002, p. 231

.I.ll.. {Ell ‘Ell! “ll-“El "~ll~ ‘ru —il'."iI “Ell ‘ll.“.;3l {Ell

00047900032 “ .

preventing the node from communicating with other nodes. Because IP addresses or other fields

are “hopped” and packets arriving with invalid addresses are quickly discarded, Internet nodes

are protected against flooding targeted at a single IP address.

[208] In a system in which a computer is coupled through a link having a limited bandwidth

(e.g., an edge router) to a node that can support a much higher-bandwidth link (e.g., an Internet

Service Provider), a potential weakness could be exploited by a determined hacker. Referring to

FIG. 28, suppose that a first host computer 2801 is communicating with a second host computer

2804 using the IP address hopping principles described above. The first host computer is

coupled through an edge router 2802 to an Internet Service Provider (ISP) 2803 through a low

bandwidth link (LOW BW), and is in turn coupled to second host computer 2804 through parts

of the Internet through a high bandwidth link (HIGH BW). In this architecture, the ISP is able to

support a high bandwidth to the intemet, but a much lower bandwidth to the edge router 2802.

[209] Suppose that a computer hacker is able to transmit a large quantity of dummy packets

addressed to first host computer 2801 across high bandwidth link HIGH BW. Normally, host

computer 2801 would be able to quickly reject the packets since they would not fall within the

acceptance window permitted by the IP address hopping scheme. However, because the packets

must travel across low bandwidth link LOW BW, the packets overwhelm the lower bandwidth

link before they are received by host computer 2801. Consequently, the link to host computer

2801 is effectively flooded before the packets can be discarded.

[210] According to one inventive improvement, a “link guard” function 2805 is inserted into

the high-bandwidth node (e.g., ISP 2803) that quickly discards packets destined for a low-

bandwidth target node if they are not valid packets. Each packet destined for a low-bandwidth

node is cryptographically authenticated to determine whether it belongs to a VPN. If it is not a

valid VPN packet, the packet is discarded at the high-bandwidth node. If the packet is

authenticated as belonging to a VPN, the packet is passed with high preference. If the packet is a

valid non-VPN packet, it is passed with a lower quality of service (e.g., lower priority).

[211] In one embodiment, the ISP distinguishes between VPN and non-VPN packets using the

protocol of the packet. In the case of IPSEC [rfc 2401], the packets have IP protocols 420 and

232

Petitioner Apple Inc. - Exhibit 1002, p. 232

. ill. 'l[Ill‘i'5.44 ‘Lil-“£41”-*ll~ us lE§1l‘1§l1 Z13! ll.Il|~|lZ'll;i";3.‘!

421. In the case of the TARP VPN, the packets will have an IP protocol that is not yet defined.

The ISP’s link guard, 2805, maintains a table of valid VPNs which it uses to validate whether

000479 .O0082

VPN packets are cryptographically valid.

[212] According to one embodiment, packets that do not fall within any hop windows used by

nodes on the low-bandwidth link are rejected, or are sent with a lower quality of service. One

approach for doing this is to provide a copy of the IP hopping tables used by the low-bandwidth

nodes to the high-bandwidth node, such that both the high-bandwidth and low-bandwidth nodes

track hopped packets (e.g., the high-bandwidth node moves its hopping window as valid packets

are received). In such a scenario, the high-bandwidth node discards packets that do not fall

within the hopping window before they are transmitted over the low-bandwidth link. Thus, for

example, ISP 2903 maintains a copy 2910 of the receive table used by host computer 2901.

Incoming packets that do not fall within this receive table are discarded. According to a different

embodiment, link guard 2805 validates each VPN packet using a keyed hashed message

authentication code (HMAC) [rfc 2104]. According to another embodiment, separate VPNs

(using, for example, hopblocks) can be established for communicating between the low-

bandwidth node and the high-bandwidth node (i.e., packets arriving at the high-bandwidth node

are converted into different packets before being transmitted to the low-bandwidth node).

[213] As shown in FIG. 29, for example, suppose that a first host computer 2900 is

communicating with a second host computer 2902 over the Internet, and the path includes a high

bandwidth link HIGH BW to an ISP 2901 and a low bandwidth link LOW BW through an edge

router 2904. In accordance with the basic architecture described above, first host computer 2900

and second host computer 2902 would exchange hopblocks (or a hopblock algorithm) and would

be able to create matching transmit and receive tables 2905, 2906, 2912 and 2913. Then in

accordance with the basic architecture, the two computers would transmit packets having

seemingly random [P source and destination addresses, and each would move a corresponding

hopping window in its receive table as valid packets were received.

[214] Suppose that a nefarious computer hacker 2903 was able to deduce that packets having a

certain range of IP addresses (e.g., addresses 100 to 200 for the sake of simplicity) are being

transmitted to ISP 2901, and that these packets are being forwarded over a low-bandwidth link.

62

233

Petitioner Apple Inc. - Exhibit 1002, p. 233

Jill. DIE? ..l “~ll-"Ell! “~ll~ 1... ll'.ll“T.-E1133? llill ll."Jl fr'Ei’

000479 .00082 0

Hacker computer 2903 could thus “flood” packets having addresses falling into the range 100 to

200, expecting that they would be forwarded along low bandwidth link LOW BW, thus causing

the low bandwidth link to become overwhelmed. The fast packet reject mechanism in first host

computer 3000 would be of little use in rejecting these packets, since the low bandwidth link was

effectively jammed before the packets could be rejected. In accordance with one aspect of the

improvement, however, VPN link guard 2911 would prevent the attack fi'om impacting the

performance of VPN traffic because the packets would either be rejected as invalid VPN packets

or given a lower quality of service than VPN traffic over the lower bandwidth link. A denial-of-

service flood attack could, however, still disrupt non-VPN traffic.

[215] According to one embodiment of the improvement, ISP 2901 maintains a separate VPN

with first host computer 2900, and thus translates packets arriving at the ISP into packets having

a different IP header before they are transmitted to host computer 2900. The cryptographic keys

used to authenticate VPN packets at the link guard 2911 and the cryptographic keys used to

encrypt and decrypt the VPN packets at host 2902 and host 2901 can be different, so that link

guard 2911 does not have access to the private host data; it only has the capability to authenticate

those packets.

[216] According to yet a third embodiment, the low—bandwidth node can transmit a special

message to the high-bandwidth node instructing it to shut down all transmissions on a particular

IP address, such that only hopped packets will pass through to the low-bandwidth node. This

embodiment would prevent a hacker from flooding packets using a single IP address. According

to yet a fourth embodiment, the high-bandwidth node can be configured to discard packets

transmitted to the low-bandwidth node if the transmission rate exceeds a certain predetermined

threshold for any given IP address; this would allow hopped packets to go through. In this

respect, link guard 2911 can be used to detect that the rate of packets on a given IP address are

exceeding a threshold rate; further packets addressed to that same IP address would be dropped

or transmitted at a lower priority (e.g., delayed).

D. Traffic Limiter

[217] In a system in which multiple nodes are communicating using “hopping” technology, a

treasonous insider could internally flood the system with packets. In order to prevent this

63

234

Petitioner Apple Inc. - Exhibit 1002, p. 234

. '“=*ll-‘lEi1"-4ll- ... llZ‘*.l“L3:l|’E.“"si l['.ll'l|'.’3lf:‘!‘J

000479.00082

possibility, one inventive improvement involves setting up “contracts” between nodes in the

system, such that a receiver can impose a bandwidth limitation on each packet sender. One

technique for doing this is to delay acceptance of a checkpoint synchronization request from a

sender until a certain time period (e.g., one minute) has elapsed. Each receiver can effectively

control the rate at which its hopping window moves by delaying “SYNC ACK” responses to

“SYNC_REQ” messages.

[218] A simple modification to the checkpoint synchronizer will serve to protect a receiver

from accidental or deliberate overload fi'om an internally treasonous client. This modification is

based on the observation that a receiver will not update its tables until a SYNC_REQ is received

on hopped address CKPT_N. It is a simple matter of deferring the generation of a new CKPT_N

until an appropriate interval after previous checkpoints.

[219] Suppose a receiver wished to restrict reception from a transmitter to 100 packets a

second, and that checkpoint synchronization messages were triggered every 50 packets. A

compliant transmitter would not issue new SYNC_REQ messages more often than every 0.5

seconds. The receiver could delay a non-compliant transmitter from synchronizing by delaying

the issuance of CKPT_N for 0.5 second after the last SYNC_REQ was accepted.

[220] In general, if M receivers need to restrict N transmitters issuing new SYNC_REQ

messages after every W messages to sending R messages a second in aggregate, each receiver

could defer issuing a new CKPT_N until MxNxW/R seconds have elapsed since the last

SYNC_REQ has been received and accepted. If the transmitter exceeds this rate between a pair

of checkpoints, it will issue the new checkpoint before the receiver is ready to receive it, and the

SYNC_REQ will be discarded by the receiver. After this, the transmitter will re-issue the

SYNC_REQ every T1 seconds until it receives a SYNC_ACK. The receiver will eventually

update CKPT_N and the SYNC_REQ will be acknowledged. If the transmission rate greatly

exceeds the allowed rate, the transmitter will stop until it is compliant. If the transmitter exceeds

the allowed rate by a little, it will eventually stop after several rounds of delayed synchronization

until it is in compliance. Hacking the transmitter’s code to not shut off only permits the

transmitter to lose the acceptance window. In this case it can recover the window and proceed

only after it is compliant again.

235

Petitioner Apple Inc. - Exhibit 1002, p. 235

.,;ll..llIll“E?l‘1l4ll~‘5.Ell '1-5ll~ u. il.".lli"}‘:?liEi§:' ll}! U E.’

ooo479.ooo32 . .

[221] Two practical issues should be considered when implementing the above scheme:

1. The receiver rate should be slightly higher than the permitted rate in order to allow for

statistical fluctuations in traffic arrival times and non-uniforrn load balancing.

2. Since a transmitter will rightfully continue to transmit for a period after a SYNC_REQ

is transmitted, the algorithm above can artificially reduce the transmitter’s bandwidth. If events

prevent a compliant transmitter from synchronizing for a period (e.g. the network dropping a

SYNC_REQ or a SYNC_ACK) a SYNC_REQ will be accepted later than expected. After this,

the transmitter will transmit fewer than expected messages before encountering the next

checkpoint. The new checkpoint will not have been activated and the transmitter will have to

retransmit the SYNC_REQ. This will appear to the receiver as if the transmitter is not

compliant. Therefore, the next checkpoint will be accepted late from the transmitter’s

perspective. This has the effect of reducing the transmitter’s allowed packet rate until the

transmitter transmits at a packet rate below the agreed upon rate for a period of time.

[222] To guard against this, the receiver should keep track of the times that the last C

SYNC_REQs were received and accepted and use the minimum of MxNxW/R seconds after the

last SYNC_REQ has been received and accepted, 2xMxNxW/R seconds after next to the last

SYNC_REQ has been received and accepted, CxMxNxW/R seconds afier (C-l)‘h to the last

SYNC_REQ has been received, as the time to activate CKPT_N. This prevents the receiver

from inappropriately limiting the transmitter’s packet rate if at least one out of the last C

SYNC_REQs was processed on the first attempt.

[223] FIG. 30 shows a system employing the above-described principles. In FIG. 30, two

computers 3000 and 3001 are assumed to be communicating over a network N in accordance

with the “hopping” principles described above (e.g., hopped IP addresses, discriminator values,

etc.). For the sake of simplicity, computer 3000 will be referred to as the receiving computer and

computer 3001 will be referred to as the transmitting computer, although full duplex operation is

of course contemplated. Moreover, although only a single transmitter is shown, multiple

transmitters can transmit to receiver 3000.

[224] As described above, receiving computer 3000 maintains a receive table 3002 including a

window W that defines valid IP address pairs that will be accepted when appearing in incoming

65

236

Petitioner Apple Inc. - Exhibit 1002, p. 236

.'.‘iL l.l'_7Jl_iEi'! H "l~.".Jl lLlI*-“EU “-13- m 113]! "$11 1131 tl.".'l| iii?!

000479.00082 D

data packets. Transmitting computer 3001 maintains a transmit table 3003 from which the next

IP address pairs will be selected when transmitting a packet to receiving computer 3000. (For

the sake of illustration, window W is also illustrated with reference to transmit table 3003). As

transmitting computer moves through its table, it will eventually generate a SYNC_REQ

message as illustrated in fiinction 3010. This is a request to receiver 3000 to synchronize the

receive table 3002, fiom which transmitter 3001 expects a response in the form of a CKPT_N

(included as part of a SYNC_ACK message). If transmitting computer 3001 transmits more

messages than its allotment, it will prematurely generate the SYNC_REQ message. (If it has

been altered to remove the SYNC_REQ message generation altogether, it will fall out of

synchronization since receiver 3000 will quickly reject packets that fall outside of window W,

and the extra packets generated by transmitter 3001 will be discarded).

[225] In accordance with the improvements described above, receiving computer 3000

perfonns certain steps when a SYNC_REQ message is received, as illustrated in FIG. 30. In step

3004, receiving computer 3000 receives the SYNC_REQ message. In step 3005, a check is

made to determine whether the request is a duplicate. If so, it is discarded in step 3006. In step

3007, a check is made to determine whether the SYNC_REQ received from transmitter 3001 was

received at a rate that exceeds the allowable rate R (i.e., the period between the time of the last

SYNC_REQ message). The value R can be a constant, or it can be made to fluctuate as desired.

If the rate exceeds R, then in step 3008 the next activation of the next CKPT_N hopping table

entry is delayed by W/R seconds after the last SYNC_REQ has been accepted.

[226] Otherwise, if the rate has not been exceeded, then in step 3109 the next CKPT_N value is

calculated and inserted into the receiver’s hopping table prior to the next SYNC_REQ from the

transmitter 3101. Transmitter 3101 then processes the SYNC_REQ in the normal manner.

E. Sigaling Sgchronizer

[227] In a system in which a large number of users communicate with a central node using

secure hopping technology, a large amount of memory must be set aside for hopping tables and

their supporting data structures. For example, if one million subscribers to a web site

occasionally communicate with the web site, the site must maintain one million hopping tables,

thus using up valuable computer resources, even though only a small percentage of the users may

66

237

Petitioner Apple Inc. - Exhibit 1002, p. 237

.211. .1131" iii? ‘L311 *”!l~*LI%!| ‘W .1. 1131 "91 ES} 1131! 1131

ooo479.ooos2 O .

actually be using the system at any one time. A desirable solution would be a system that

permits a certain maximum number of simultaneous links to be maintained, but which would

“recognize” millions of registered users at any one time. In other words, out of a population of a

million registered users, a few thousand at a time could simultaneously communicate with a

central server, without requiring that the server maintain one million hopping tables of

appreciable size.

[228] One solution is to partition the central node into two nodes: a signaling server that

performs session initiation for user log-on and log—off (and requires only minimally sized tables),

and a transport server that contains larger hopping tables for the users. The signaling server

listens for the millions ofknown users and performs a fast-packet reject of other (bogus) packets.

When a packet is received from a known user, the signaling server activates a virtual private link

(VPL) between the user and the transport server, where hopping tables are allocated and

maintained. When the user logs onto the signaling server, the user’s computer is provided with

hop tables for communicating with the transport server, thus activating the VPL. The VPLs can

be torn down when they become inactive for a time period, or they can be torn down upon user

log-out. Communication with the signaling server to allow user log-on and log-off can be

accomplished using a specialized version of the checkpoint scheme described above.

[229] FIG. 31 shows a system employing certain of the above-described principles. In FIG. 31,

a signaling server 3101 and a transport server 3102 communicate over a link. Signaling server

3101 contains a large number of small tables 3106 and 3107 that contain enough information to

authenticate a communication request with one or more clients 3103 and 3104. As described in

more detail below, these small tables may advantageously be constructed as a special case of the

synchronizing checkpoint tables described previously. Transport server 3102, which is

preferably a separate computer in communication with signaling server 3101, contains a smaller

number of larger hopping tables 3108, 3109, and 3110 that can be allocated to create a VPN with

one of the client computers.

[230] According to one embodiment, a client that has previously registered with the system

(e.g., via a system administration fimction, a user registration procedure, or some other method)

transmits a request for information from a computer (e.g., a web site). In one variation, the

67

238

Petitioner Apple Inc. - Exhibit 1002, p. 238

. LJL lfll Eli! “ll-"33! “ll” m lllll ‘Ell l‘."ll‘ll'.3i ii’

request is made using a “hopped” packet, such that signaling server 3101 will quickly reject

000479.00082

invalid packets from unauthorized computers such as hacker computer 3105. An

“administrative” VPN can be established between all of the clients and the signaling server in

order to ensure that a hacker cannot flood signaling server 3101 with bogus packets. Details of

this scheme are provided below.

[231] Signaling server 3101 receives the request 3111 and uses it to determine that client 3103

is a validly registered user. Next, signaling server 3101 issues a request to transport server 3102

to allocate a hopping table (or hopping algorithm or other regime) for the purpose of creating a

VPN with client 3103. The allocated hopping parameters are returned to signaling server 3101

(path 3113), which then supplies the hopping parameters to client 3103 via path 3114, preferably

in encrypted form.

[232] Thereafier, client 3103 communicates with transport server 3102 using the normal

hopping techniques described above. It will be appreciated that although signaling server 3101

and transport server 3102 are illustrated as being two separate computers, they could of course be

combined into a single computer and their functions performed on the single computer.

Alternatively, it is possible to partition the functions shown in FIG. 31 differently fi'om as shown

without departing fi'om the inventive principles.

[233] One advantage of the above-described architecture is that signaling server 3101 need only

maintain a small amount of information on a large number of potential users, yet it retains the

capability of quickly rejecting packets fiom unauthorized users such as hacker computer 3105.

Larger data tables needed to perform the hopping and synchronization functions are instead

maintained in a transport server 3102, and a smaller number of these tables are needed since they

are only allocated for “active” links. After a VPN has become inactive for a certain time period

(e.g., one hour), the VPN can be automatically torn down by transport server 3102 or signaling

server 3101.

[234] A more detailed description will now be provided regarding how a special case of the

checkpoint synchronization feature can be used to implement the signaling scheme described

above.

239

Petitioner Apple Inc. - Exhibit 1002, p. 239

lllll EB ‘.7535’ ‘Eli “«ii~ ‘E-ll "1-il— m ll:-ll ‘Elli '3'??? fifil {El E9

000479.O0082 “ .

[235] The signaling synchronizer may be required to support many (millions) of standing, low

bandwidth connections. It therefore should minimize per—VPL memory usage while providing

the security offered by hopping technology. In order to reduce memory usage in the signaling

server, the data hopping tables can be completely eliminated and data can be carried as part of

the SYNC_REQ message. The table used by the server side (receiver) and client side

(transmitter) is shown schematically as element 3106 in FIG. 31.

[236] The meaning and behaviors of CKPT_N, CKPT_O and CKPT_R remain the same from

the previous description, except that CKPT_N can receive a combined data and SYNC_REQ

message or a SYNC_REQ message without the data.

[237] The protocol is a straightforward extension of the earlier synchronizer. Assume that a

client transmitter is on and the tables are synchronized. The initial tables can be generated “out

of band.” For example, a client can log into a web server to establish an account over the

Internet. The client will receive keys etc encrypted over the Internet. Meanwhile, the server will

set up the signaling VPN on the signaling server.

[238] Assuming that a client application wishes to send a packet to the server on the client’s

standing signaling VPL:

1. The client sends the message marked as a data message on the inner header using the

transmitter’s CKPT_N address. It turns the transmitter off and starts a timer Tl noting

CKPT_O. Messages can be one of three types: DATA, SYNC_REQ and SYNC_ACK.

In the normal algorithm, some potential problems can be prevented by identifying each

message type as part of the encrypted inner header field. In this algorithm, it is important

to distinguish a data packet and a SYNC_REQ in the signaling synchronizer since the

data and the SYNC_REQ come in on the same address.

. When the server receives a data message on its CKPT_N, it verifies the message and

passes it up the stack. The message can be verified by checking message type and and

other information (i.e user credentials) contained in the inner header It replaces its

CKPT_O with CKPT_N and generates the next CKPT_N. It updates its transmitter side

240

Petitioner Apple Inc. - Exhibit 1002, p. 240

ll."3Ll E.".,“.-":i3 Ml» ‘E3! Ml ... ‘llfll "EEG l[Iil'i[Zt|

000479.00082 . 0

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

. When the client side receiver receives a SYNC_ACK on its CKPT_R with a payload

matching its transmitter side CKPT_O and the transmitter is off, the transmitter is turned

on and the receiver side CKPT_R is updated. If the SYNC__ACK’s payload does not

match the transmitter side CKPT_O or the transmitter is on, the SYNC_ACK is simply

discarded.

. Tl expires: If the transmitter is off and the client's transmitter side CKPT_O matches the

CKPT_O associated with the timer, it starts timer Tl noting CKPT_O again, and a

SYNC_REQ is sent using the transmitter’s CKPT_O address. Otherwise, no action is

taken.

. When the server receives a SYNC_REQ on its CKPT_N, it replaces its CKPT_O with

CKPT_N and generates the next CKPT_N. It updates its transmitter side CKPT_R to

correspond to the client’s receiver side CKPT_R and transmits a SYNC_ACK containing

CKPT_O in its payload.

. When the server receives a SYNC_REQ on its CKPT_O, it updates its transmitter side

CKPT_R to correspond to the client’s receiver side CKPT_R and transmits a

SYNC_ACK containing CKPT_O in its payload.

[239] FIG. 32 shows message flows to highlight the protocol. Reading from top to bottom, the

client sends data to the server using its transmitter side CKPT_N. The client side transmitter is

turned off and a retry timer is turned off. The transmitter will not transmit messages as long as

the transmitter is turned off. The client side transmitter then loads CKPT_N into CKPT_O and

updates CKPT_N. This message is successfully received and a passed up the stack. It also

synchronizes the receiver ie, the server loads CKPT_N into CKPT_O and generates a new

CKPT__N, it generates a new CKPT_R in the server side transmitter and transmits a SYNC_ACK

containing the server side receiver’s CKPT_O the server. The SYNC_ACK is successfully

received at the client. The client side receiver’s CKPT_R is updated, the transmitter is turned on

and the retry timer is killed. The client side transmitter is ready to transmit a new data message.

[240] Next, the client sends data to the server using its transmitter side CKPT_N. The client

side transmitter is turned off and a retry timer is turned off. The transmitter will not transmit

241

Petitioner Apple Inc. - Exhibit 1002, p. 241

LIL. lllfll riff "Ell '*'~li'-"Ell -“ell” 1|] llill -‘Ell ITJI ll]! E51’

000479.00082 ‘

messages as long as the transmitter is turned off. The client side transmitter then loads CKPT_N

into CKPT_O and updates CKPT_N. This message is lost. The client side timer expires and as a

result a SYNC_REQ is transmitted on the client side transmitter’s CKPT_O (this will keep

happening until the SYNC_ACK has been received at the client). The SYNC_REQ is

successfully received at the server. It synchronizes the receiver i.e, the server loads CKPT_N

into CKPT_O and generates a new CKPT_N, it generates an new CKPT_R in the server side

transmitter and transmits a SYNC_ACK containing the server side receiver’s CKPT_O the

server. The SYNC_ACK is successfully received at the client. The client side receiver’s

CKPT_R is updated, the transmitter is turned off and the retry timer is killed. The client side

transmitter is ready to transmit a new data message.

[241] There are numerous other scenarios that follow this flow. For example, the SYNC_ACK

could be lost. The transmitter would continue to re-send the SYNC_REQ until the receiver

synchronizes and responds.

[242] The above-described procedures allow a client to be authenticated at signaling server

3201 while maintaining the ability of signaling server 3201 to quickly reject invalid packets,

such as might be generated by hacker computer 3205. In various embodiments, the signaling

synchronizer is really a derivative of the synchronizer. It provides the same protection as the

hopping protocol, and it does so for a large number of low bandwidth connections.

242

Petitioner Apple Inc. - Exhibit 1002, p. 242

.1ll..fI'f.ll "?:ll*'*ll--‘Elli"--ll- ... ll'Iil‘L.";liill3l il'Ifl:iE‘E

0OO479.00082 0

CLAIMS

We Claim:

1. A method for establishing an encrypted channel between a client and a target

computer, comprising the steps of:

(i) intercepting a DNS request sent by the client; and

(ii) based on the DNS request, establishing the encrypted channel between the client

and the target.

The method of claim 1, wherein step (ii) comprises steps of:

determining whether the client is authorized to access the target;

when the client is authorized to access the target, initiating the encrypted charmel;

and

when the client is not authorized to access the target, sending an error message to

the client.

3. The method of claim 2, wherein step b) comprises sending encrypted channel

parameters to the client.

4. The method of claim 1, wherein step (ii) occurs in a communication protocol

independently of an application program.

5. The method of claim 1, wherein step (i) comprises a DNS proxy server

intercepting the DNS request sent by the client.

6. The method of claim 1, wherein step (ii) comprises establishing the encrypted

channel responsive to intercepting a DNS request for a domain name comprising a

predetermined domain name extension.

7. A method for establishing an encrypted charmel between a client and a secure

host, comprising the step of automatically creating the encrypted channel upon intercepting a

DNS request for a domain name comprising a predetermined domain name extension.

243

Petitioner Apple Inc. - Exhibit 1002, p. 243

312:3.’ ifii: 3*-3%.-"‘l3.?J ‘Lil .., llllll

0O0479.00082 0 0

8. The method of claim 7, wherein the creating step is performed in a

communication protocol independently of an application program.

9. A method for establishing an encrypted channel between a client and a secure

host, comprising the step of automatically creating the encrypted channel in response to detecting

a request for access to a predetermined IP address.

10. The method of claim 9, wherein the creating step is performed in a

communication protocol independently of an application program.

11. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, performs the steps of:

(i) determining whether the intercepted DNS request corresponds to a secure server;

(ii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS function that returns an IP address of a

nonsecure computer; and

when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted channel between the client and the secure server.

The data processing device of claim 11, wherein step (iii) comprises the steps of:

determining whether the client is authorized to access the secure server; and

when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted channel between the secure server and the

client.

The data processing device of claim 12, wherein step (iii) further comprises the

when the client is not authorized to access the secure server, returning a host

unknown error message to the client.

244

Petitioner Apple Inc. - Exhibit 1002, p. 244

Lil. £31 55533 "-ll-"Ell ll-ll" ~... 1133 ":11 Eli [ll .lEli’ii-1'3000479.00082 o

14. The data processing device of claim 13, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

15. A data processing device, comprising memory storing a domain name server

(DNS) proxy module that intercepts DNS requests sent by a client and, for each intercepted DNS

request, when the intercepted DNS request corresponds to a secure server, determines whether

the client is authorized to access the secure server and, if so, automatically initiates an encrypted

channel between the client and the secure server.

16. A computer readable medium storing a domain name server (DNS) proxy module

comprised of computer readable instructions that, when executed, cause a data processing device

to perform the steps of:

(i) intercepting a DNS request sent by a client;

(ii) determining whether the intercepted DNS request corresponds to a secure server;

(iii) when the intercepted DNS request does not correspond to a secure server,

forwarding the DNS request to a DNS function that returns an IP address of a

nonsecure computer; and

when the intercepted DNS request corresponds to a secure server, automatically

initiating an encrypted charmel between the client and the secure server.

The computer readable medium of claim 16, wherein step (iii) comprises the steps

determining whether the client is authorized to access the secure server; and

when the client is authorized to access the secure server, sending a request to the

secure server to establish an encrypted charmel between the secure server and the

client.

The computer readable medium of claim 17, wherein step (iii) further comprises

245

Petitioner Apple Inc. - Exhibit 1002, p. 245

_“ll,'1lIIil‘!F7I;‘l;“1l3 “-ll‘-‘Ell “4il- .1. V1133} ‘lligii Z5??? lllfli Eli F2‘!ooo479.ooos2 .

(c) when the client is not authorized to access the secure sewer, returning a host

unknown error message to the client.

19. The computer readable medium of claim 18, wherein the client comprises a web

browser into which a user enters a URL resulting in the DNS request.

20. A computer readable medium comprising computer readable instructions that,

when executed, cause a domain name server (DNS) proxy module to intercept DNS requests sent

by a client and, for each intercepted DNS request, when the intercepted DNS request corresponds

to a secure server, determines whether the client is authorized to access the secure server and, if

so, automatically initiates an encrypted charmel between the client and the secure server.

246

Petitioner Apple Inc. - Exhibit 1002, p. 246

.‘IlL1llIll iE:"33'41-ll- “El! 1,19 ... llfll ‘Eli Till lllll Ilfjl00047900032

ABSTRACT

A plurality of computer nodes communicate using seemingly random Internet Protocol

source and destination addresses. Data packets matching criteria defined by a moving window

of valid addresses are accepted for further processing, while those that do not meet the criteria

are quickly rejected. Improvements to the basic design include (1) a load balancer that

distributes packets across different transmission paths according to transmission path quality; (2)

a DNS proxy server that transparently creates a virtual private network in response to a domain

name inquiry; (3) a large-to-small link bandwidth management feature that prevents denial-of-

service attacks at system chokepoints; (4) a traffic limiter that regulates incoming packets by

limiting the rate at which a transmitter can be synchronized with a receiver; and (5) a signaling

synchronizer that allows a large number of nodes to communicate with a central node by

partitioning the communication function between two separate entities.

247

Petitioner Apple Inc. - Exhibit 1002, p. 247

_“iL Il*ll-“§ll‘Il=ll- u. ‘ll’Lll"‘?.?I| T5} llfill llfil ~

JOINT DECLARATION AND POWER OF ATTORNEY"
FOR PATENTAPPLICATION - ‘

Attorney Dockd No. 0047935672

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUNICATIONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

D was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above idemifled specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37,
Code of Federal Regulations, §1.56.

Prior Foreign Applicationlsl

We hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or 365(b) of any foreign
applicationlsl for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least

one country other than the United States of America, listed below and have also identified below any foreign applicationlsl
for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior United States Applicationlsl

We hereb claim the benefit under 35 U.S.C. 119(e) of an United States rovisional a licationls) listed below:

[I Additional provisional application numbers
are listed on a supplemental priority data
sheet PTO/SB/02B attached hereto.

60/1 06.261 10/30/98

60/1 37.704 6/7/99

248

Petitioner Apple Inc. - Exhibit 1002, p. 248

.....,,

.31. lllill x“rf‘.' ‘T;-ill ‘lll—“?3l ‘Lil ., ‘llfll “Ell $1. ,ll.".‘ll llfll E3

_ We hereby claim the benefit under Title 35, United States Code, §120 of any United States applicationlsl listed below
and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States

application in the manner provided by the first paragraph of Title 35, United States Code, §112, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the
filing date of the prior application and the national or PCT international filing date of this application:

Attorney Docket No. 0047935672

Power of Attorney

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to
prosecute this application and transact all business in the U.S. Patent and Trademark Office connected herewith as well

as before any office or agency of a foreign country or any international organization in connection with any foreign
counterpart application claiming priority to this application, including the power to appoint agents and local representatives
in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers being
listed after their names:

Robert Altherr, Reg. No. 31,810,,Donald W. Banner, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,33_5_,;Wi|liam
W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.
Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg." No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.
Medlock, Reg. No. 29,673; William J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19,724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,162; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061. '

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.
Washington, D.C. 20001-4597

__ _ Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are two and that all statements made on
information and belief are believed to be true; and further that these statements were made with the knowledge that willful
false statements and the like so made are punishable by fine or imprisonment, or both, under 18 U.S.C. 1001 and that such
willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signature Date
Full Name of

Joint Inventor MUNGER Edmund Colby
Family Name First Given Name Second Given Name

Residence 1101 Ogaca Qgug, Crownsville, Maryland 21032

Citizenship U.S.
Post Office

Address 11Q1 Ogaca Court, Crownsville, Magland 21032

Page 2 of 4

249

Petitioner Apple Inc. - Exhibit 1002, p. 249

.ZiL-iii]! E3’. "En “El! Mi’ “:31 ‘Lil-~' ... 3113! “E33113! iilil

Anomey Docket No. 0047935672

Signature

Full Name of

Joint Inventor SCHMIDT Dou las Charles
Family Name First Given Name Second Given Name

Residence 230 Oak Coug, Severna Park, Maryland 21146

Citizenship U.S.
Post Office

Address 230 Oak Court Severna Park Ma land 21146

Signature 423 r % ¥ : Date / E1
Full Name of

Joint Inventor SHORT Robeg Dgnham, Ill
Family Name First Given Name Second Given Name

Residence 38710 Goose Creek Lane, Leesburg, Virginia 20175

Citizenship U.S.
Post Office

Address 38710 Gogse Creek Lane, Leesburg, Virginia 20175

Signature 3 (312.9 Date I4]
Full Name of

Joinflnventor LARSON Vic or

Family Name First Given Name Second Given Name

Residence 12026 Lisa Marie Court, Fairfax, Virginia 22033

Citizenship U.S. "
Post Office

Address 12026 Lisa Marie Court, Fairfax, Virginia 22033

250

Petitioner Apple Inc. - Exhibit 1002, p. 250

,Ii)..'l[3I’E‘l3£*11"-ii-“?éi|‘Lii- ... {E11 “E31 .;i£ 3L".'-IHEIJJ
Anoméy Dodge No. oo479.ssm

Signature J V V . A Date zfi /f(;z90° A
Full Name of
Joint Inventor WILLIAM N Mi hael

Family Name First Given Name Second Given Name

Residence 26203 Ocala Circle South Ri in Vir inia 20152

Citizenship U.S.
Post Office
Address 26203 ala Circle South Ridin Vir inia 201 2

LAW OFHCES

BANNER Z5. WITCOFF. LTD.
IOOI G STREET. N.W.

WASHINGTON. D.C. 2000!-4597
(202) 508~9 I O0

251

Petitioner Apple Inc. - Exhibit 1002, p. 251

ifilll iii}? 57-}: "El “-'lI~".'-.3“ ‘L'l- 5.» 11:}! ‘LI-Tll IE3: IE1! 11:31 21??!

JOINT DECLARATION AND POWER OF ATTORNEY
' FOR PATENT APPLICATION

Attorney Docket No. 0047935672

As the below named inventors, we hereby declare that:

Our residences, post office addresses and citizenships are as stated below next to our names:

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a
patent is sought on the invention entitled:

IMPROVEMENTS TO AN AGILE NETWORK PROTOCOL FOR SECURE COMMUN|CA11ONS
WITH ASSURED SYSTEM AVAILABILITY

the specification of which
I is attached hereto.

U was filed on as Application Serial Number and was amended on (if applicable).

We hereby state that we have reviewed and understand the contents of the above identified specification, including
the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to patentability in accordance with Title 37,

Code of Federal Regulations, §1.56.

Prior Foreign Applicationlsl

We hereby claim foreign priority benefits under Title 35, United States Code, §119lal-ldl or 365lb) of any foreign
applicationisl for patent or inventor's certificate, or 365lal of any PCT international application which designated at least
one country other than the United States of America, listed below and have also identified below any foreign applicationls)
for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior United States Application(sl

We hereb claim the benefit under 35 U.S.C. 1 19(6) of an United States rovisional a licationisl listed below:

E] Additional provisional application numbers
are listed on a supplemental priority data
sheet PTO/SB/028 attached hereto.

60/106,261 1 0/30/98

60/137,704 6/7/99

252

Petitioner Apple Inc. - Exhibit 1002, p. 252

.:lL lllli ii-ll"'"?.il 1“-il~ m lllll E31 lljll lllll

We hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below
and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States

application in the manner provided by the first paragraph of Title 35, United States Code, §112, We acknowledge the duty
to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the

filing date of the prior application and the national or PCT international filing date of this application:

3 . Wm : 60 -. _ " I . ,

osmzws «o/29/es

Power of Attorney

And we hereby appoint, both jointly and severally, as our attorneys with full power of substitution and revocation, to
prosecute this application and transact all business in the U.S. Patent and Trademark Office connected herewith as well
as before any office or agency of a foreign country or any international organization in connection with any foreign
counterpart application claiming priority to this application, including the power to appoint agents and local representatives
in connection with such foreign applications, the following attorneys of Banner & Witcoff, their registration numbers being
listed after their names:

Robert Altherr, Reg. No. 31,810, Donald W. Bamer, Reg. No. 17,037; Edward F. McKie, Jr., Reg. No. 17,335; Vlfilliam
W. Beckett, Reg. No. 18,262; Dale H. Hoscheit, Reg. No. 19,090; Joseph M. Potenza, Reg. No. 28,175; James A.
Niegowski, Reg. No. 28,331; Joseph M. Skerpon, Reg. No. 29,864; Thomas L. Peterson, Reg. No. 30,969; Nina L.
Medlock, Reg. No. 29,673; Vlfilliam J. Fisher, Reg. No. 32,133; Thomas H. Jackson, Reg. No. 29,808; Franklin D. Wolffe,
Reg. No. 19.724; Susan A. Wolffe, Reg. No. 33,568; Daniel E. Fisher, Reg. No. 34,162; Kevin A. Wolff, Reg. No. 42,233
and Bradley C. Wright, Reg. No. 38,061.

All correspondence and telephone communications should be addressed to:

Banner & Witcoff, Ltd.
Eleventh Floor

1001 G Street, N.W.
Washington, D.C. 20001-4597

Tel. No. (202) 508-9100

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on
information and belief are believed to be true; and further that these statements were made with the knowledge that willful
false statements and the like so made are punishable by fine or imprisonment. or both, under 18 U.S.C. 1001 and that such
willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Sionamre Date
Full Name of

Joint Inventor MUNGER Edmund Colby
Family Name First Given Name Second Given Name

Residence 1101 Ogaca Court, Crownsville, Magland 21032

Citizenship
Post Office

Address 1101 Ogaca Court. Crownsville, Magland 21032

Page 2 of 4

Anomey Docket No. 0047935572 '

253

Petitioner Apple Inc. - Exhibit 1002, p. 253

.13.. IE]! "41" “-i}- 1.. iii] iifil '.":"::i 1131 IE3! El

‘Anomey Docket No. oo479.s5§72

signature ‘ . I Date jgl / 00 V
Full Name of

Joint Inventor SCH IDT Dou las Charles
Family Name First Given Name Second Given Name

Residence 230 0 KC v r a Park Ma land 21146

Citizenship U.S.
Post Office

Address 230 Oak Court Severna Park Ma land 21146

Signature Date

Full Name of

Joint Inventor SHOR[Robert Dunham, lll
Family Name First Given Name Second ‘Given Name

Residence M 38710 Gggg Qrgek Lane, Leesburg, Virginia 20175

Citizenship U.S.
Post Office

Address 38710 Goose Creek Lane, Leesbgrg, Virginia 20175

Signature

Full Name of
Joint lnventor LARSON Victor '

Family Name First Given Name Second Given Name

Residence 12026 Lisa Marie Cgug. Fairfax, Virginia 22033

Citizenship U.S.
Post Office

Address 1202§ Lisa Marie Coug, Fairfax, Virginia 22033

254

Petitioner Apple Inc. - Exhibit 1002, p. 254

Signature

Full Name of
Joint Inventor

Residence

Citizenship
Post Office
Address

iii. 11:11"

WILLIAMSON

Family Name

Michael
First Given Name

26203 Ocala Circle South Ridin Vir inia 20152

U.S.

26203 Ocala Circle South Ridin Vir inia 201 2

LAW OFFICES

BANNER 6. Wncol-‘F. LTD.
IOOI G STREET, N.W.

WASHINGTON, D.C. ZOOOI-4597
(202) 508-9 I O0

ii

Atlomey Docket No; 0047935672

Second Given Name

255

Petitioner Apple Inc. - Exhibit 1002, p. 255

4—l3—41OKJ QLuura'I . .. , , ,, . ,,.‘ ___,_____,_____

:n.. Ea Ian "4!}~*£?3| “~fl— l1| ‘K23! "**.;;«;«;{L'1:1r;as
02/xls/oo 14:21 FAX

1180!!!! Dwh!N4 00d'l9.8!S12

~ JOINT necumnou AND rowan or ATTORNEY
son PATENT APPLICATION

Wu boliavo we are the original, first and joint invanuats of the subject matter which is claimed and for which a
pawn is sought on the invention entitlad:

IMPROVEIVIENTS TO AN AGILE NETWORK PROTOCOL I-‘OR SECURE COMMUNICATIONS
WITH ASSURE!) SYSTEM AVAILABILITY

the specification of which
I is attached hento.

D was filed on no Appncatioa Sofia! Numbu art! was amended on as afiafiolblel.

Wohenbysutathumhnvenvkweduuuuwaadflnwtnunsdmeabauuumfiwspecificnfim lhcbcling
the claims, as amended by any omendmsnt rofamd to above.

We acknowledge tho duty to disclose information which it mmorlal no panontabflltv in accordance wm-o ‘ran 37.
Coda of Fedoml Regumions. 51.56.

Prior Fwelgn Applicatlontsi

we hereby ciaim foruign pviotity benefits undsr True 35, Unhsd Status Code, 51 19(8)-id) DI‘ 385th) of any furoign
appucationzs) fol’ patent or inventor‘: cenificate. or 365(9) of any PCT nwlication which designated at least
one country other than the United Stabs at America. listed below and have an identified boluw any foreign opplicauonw
for patent or Invomaora cortillcatc having a fling duo bvforo tint of mo appiicntion on which pfiorky la cluimodz

0 Additional provisional application numbers
on a supplemental pricing data

256

Petitioner Apple Inc. - Exhibit 1002, p. 256

2- I b-ZKM :5 : azarm l‘r\L.u'c \.)F\J\.a__~I||_l'\|_LIV\J~ VI-\ ;q_,_,,_,.,_-,U‘_.

. 02/59/00 14:;; EAX _ . . ‘:“"m’HfiIQHLB" ‘“ ‘m':2’;“F‘%3‘-"§“]33"‘“-'3’
Alum-ybodaaflo. 0047935672

We homby elalmthe henufit under 1'mo'3s, Unkm sum code. 5120 of my (mind States nnv5ca!i0n€=H1s‘Iod below
and. insofar as ‘the subject mama: of oach of the claims of this noolication is not disclosed In the prior United States
application in the manner provided byuurgmpuugmphor Title 35, Uritad Status Code. 5112. }Ne acknowledge the duty
to usuuose material information as uannod in Trfle 37. code of Fedora! Hoouiationv. 51-58 which occurred between the
was nu, 9; 11,. "39; appugytion and the national or PCT Imarrwtional filing date 9! this application:

nstadafurthotrnarrws:

Roam Attherr. Han. No. 31.810, Dumid W. Baumr. Rig.‘ No. 17,037: Edward F. MoKie, Jr., Flag. No. 17.335; William
w, 33¢,-kg“, Reg, No. 18,282: Dale H. I-Ioscheit, Reg. No. 19.090: Joaoph M. Paloma, Reg. No. 28.175: Juno: A.
Niogowski. Rea. No. 28,331; Joseph M. Slcerpon. Reg. No. 29.864; Thomas L Peterson, Flag. No. 30.989: Nina L.
Meulock, neg. No. 29.673; Vfilliam J. Fisher. Reg. No. 32.133;11I:mas H. Jackson. Reg. No. 29,808: Franklin D. Wolfle,
Reg. No. 19.724: Susan A. Woiffo. Rog. No. 83.568; Dmiel E. Fisher, Reg. No. 84.162; Kevin A. Wolff, Reg. No. 42.233
and Brndltv C. Wright, Reg. No. 38,081.

 r-

All corrupondancu ‘and tolephono corrnmxicinions drould be addressed to:

Bamor K Witeofl‘. Lw.
Elwomh fiwr

“X11 6 Strut. N.W.

Washington. vD.C. 20001-4597
Tél. No. (202) 508-9100

madoboruinolourovmbuowiodgearemaeuudthataflatntnmentsmodeon
mdfiuthwfl-uxthusbterriotruwuumanowkhunkrwwioduodaatwflfld

Irvpuriahoh|eb1fineorlmpiisomIem,orboth.Indor1BU.S.C. 1001 andthatwch
willful fab: stnxnrnemsruayiaopardhonunndity onhoappicarlonorany patent ‘muinorhereon.

Signature one /5 /43 "2000
Ful|Namcof

Jointmmmr
Firm Given Name Second Given Name

257

Petitioner Apple Inc. - Exhibit 1002, p. 257

.:.—u:>-'r.v.:o _...._,,.... __

:&L 3131 P5 ”-‘fl—“f-_‘31—fl«l+- m M a11;;r;.;zL:;1 3:1; ,3»;
02/15/00 u:23 FAX ' _ .

Signature 9“?
Fun Name of
Joint Invomor__,__ __$M_l_0_T _fl3s_______.:.__,fits! Given Name Second Given NameFamily Nam:

Residence 23 Sev NI 11

Citizenship §L.§.._ __._.__...._.._._._.__._ ._.____ ___ _ __ _ _ ,
Post Office
AMmu

258

Petitioner Apple Inc. - Exhibit 1002, p. 258

Z"|b’ZUU J3DUP’F"| FKUIVI DP\LL«__.2>lEI'\|_J.I\l|.:. VA /uatowaocu.

_ 02/45/00 14:23 FAX . ______.J.-—1—“‘l'_'._j':' —_--_:j i

.3}. {El ‘E5: 7“-H-“El “-1% m {D1 ‘[31 EU! E-37'

259

Petitioner Apple Inc. - Exhibit 1002, p. 259

Q .0

UNITED STATES PATENT AND TRADEMARK OFFICE
UNITED STATES DEPARTMENT of COMMERCE’ '‘ 1'; United States Pal. I. urld Trude-.mur|| OITIM-.

‘la ‘ . Addn-u:COMMISS]O_ R ma PATENTS '
‘hwy? .- . .Baxl450'° * ~°'-" muuI1"m.Yugini.u 2:313-mowvnnuuvluugov

IIIIIIIIIIIIIII||II|||||||II|||||||l|||||I|I|l|l|||I|Il|||Illll coN.=.RMAT.oN No_ 5257
Bib Data Sheet

FILING OR 371 (c)

SERIAL NUMBER DATE GROUP ART UNIT
10/259,494 09/30/2002 2143

RULE

ATTORNEY
DOCKET NO.

0O0479.00082

‘ PPLICANTS

Edmund Colby Munger, Crownsville, MD;
Robert Dunham Short III, Leesburg, VA;
Victor Larson, Fairfax, VA;

Michael Vlfilliamson, South Riding, VA;

. x tunannwuuwanuuaa

This application is a DIV Of 09/504,783 02/15/2000 PAT 6,502,135 ho '
which is a CIP of 09/429,643 10/29/1999
which claims benefit of 60/106,261 10/30/1998
and claims benefit of 60/137,704 06/07/1999

* flfiiflkflikfliilfliiiiiifl

IF REQUIRED, FOREIGN FILING LICENSE GRANTED

STATE OR SHEETS INDEPENDEN
. COUNTRY DRAWING CLAIMS

MD 35 6

‘ DDRESS

I 2907

ITLE

gile network protocol for secure communications with assured system availability

CI All Fees

I:I1.16 Fees (Filing)

FILING FEE FEES: Authority has been given in Paper D 1-17 F995 (P|'0Ce55I"9 Ext Of
RECEIVED No. to charge/credit DEPOSIT ACCOUNT time)

for following: D 1 18 Fees (Issue)

260

Petitioner Apple Inc. - Exhibit 1002, p. 260

PATENT APPLICATION SERIAL NO.

U.S. DEPARTMENT OF COMMERCE

PATENT AND TRADEMARK OFFICE

FEE RECORD SHEET

10/02/2002 BGEBREEI 00000072 190733 10259494

01 FC:101 740.00 CH
02 FC:102 252.00 CH

PTO-1556

(5/87)

‘US. Government Printing Oflioa: 2002 — 489-267/69033

261

Petitioner Apple Inc. - Exhibit 1002, p. 261

. . *0 .

AOPVC“E.....I—.BAKA..M..T.Tan..

Gfltlhnf

262

Petitioner Apple Inc. - Exhibit 1002, p. 262

PATENT APPLICAT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

A?
Group Art Unit: 2153

In re Application of

Edmond Colby Munger et al.

Serial No.: TBA

DIV of 09/504,783 Examiner: TBA

Filed: September 30, 2002 Atty. Docket No.: 000479.00082

IMPROVEMENTS TO AN AGILE

NETWORK PROTOCOL FOR SECURE

COMMUNICATIONS WITH ASSURED

SYSTEM AVAILABILITY

For: g/xyg/as/\/g/\/g/y/y/g/4
Honorable Assistant Commissioner for Patents

Washington, DC. 20231

Sir:

Pursuant to 37 C.F.R. 1.56, the attention of the Patent and Trademark Office is hereby

directed to the reference(s) listed on the attached PTO—1449. A copy of each cited prior art

reference was provided or cited in the prior application serial number 09/504,783 in

accordance with 37 C.F.R. 1.98(d). It is respectfully requested that the information be

expressly considered during the prosecution of this application, and that the reference(s) be

made of record therein and appear among the "References Cited" on any patent to issue

therefrom.

"9WWO?

I

MO9/awllllllllll
,,» -._,-

263

Petitioner Apple Inc. - Exhibit 1002, p. 263

Applicant does not waive any right to take appropriate action to establish patentability

over the listed documents should they be applied as a reference against the claims of the present

application.

The accompanying Information Disclosure Statement is being filed within three months

of the U.S. filing date OR before the mailing date of a first Office Action on the merits. No

certification or fee is required.

Respectfully submitted,

BANNER & WITCOFF, LTD.

By=
Ross A. Dannenberg

Registration No. 49,024

1001 G Street, N.W.
Eleventh Floor

Washington, D.C. 20001-4597

(202) 508-9100

Dated: September 30, 2002

264

Petitioner Apple Inc. - Exhibit 1002, p. 264

.;‘ll.. «lliill fill ‘“ll~‘“~13i Mi‘ 1.. IEIII -‘Ell ‘I513? III]! lllill El

Application Data Sheet

Application Information

Application number:

Filing Date::

Application Type::

Subject Matter::

Suggested classification:

Suggested Group Art Unit::

CD-ROM or CD-R7:

Number of CD disks::

Number of copies of CDs::

Sequence submission?::

Computer Readable Form (CRF)?::

Number of copies of CRF::

Tit|e:: IMPROVEMENTS TO AN AGILE NETWORK

PROTOCOL FOR SECURE COMMUNICATIONS

WITH ASSURED SYSTEM AVAILABILITY

Attorney Docket Number:: 000479.00082

Request for Early Pub|ication?:: NO

Request for Non-Pub|ication?:: NO

Suggested Drawing Figure:

Total Drawing Sheets: 35

Small Entity?:: NO

Latin name::

Variety denomination name::

Petition included?::

Petition Type::

Licensed US Govt. Agency:

Contract or Grant Numbers::

Initial 09/30/02

265

Petitioner Apple Inc. - Exhibit 1002, p. 265

Secrecy Order in Parent Appl.?::

Applicant Information

Applicant Authority Type::

Primary Citizenship Cou ntry::

Status::

Given Name::

Middle Name::

Family Name::

Name Suffix::

City of Residence:

State or Province of Residence:

Country of Residence:

Street of mailing address:

City of mailing address:

State or Province of mailing address:

Country of mailing address:

Postal or Zip Code of mailing address::

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name::

Middle Name::

Family Name:

Name Suffix::

City of Residence::

State or Province of Residence:

Country of Residence:

Street of mailing address:

;ll,‘ilT3l7'€:3! “~ll'-‘“.'-.§1lt“~lJ-- m llllill ’1.«".?ll 3315‘? i1I.Tll'll,'J1' E?

Inventor

USA

Full Capacity

Edward

Colby

Munger

Crownsville

MD

USA

1101 Opaca Court

Crownsville

MD

USA

21032

lnventor

USA

Full Capacity

Douglas

Charles

Schmidt

Severna Park

MD

USA

230 Oak Court

Initial 09/30/02

266

Petitioner Apple Inc. - Exhibit 1002, p. 266

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Applicant Authority Type::

Primary Citizenship Country::

Status:

Given Name::

Middle Name::

Family Name::

_ Name Suffix:

City of Residence::

State or Province of Residence:

Country of Residence:

Street of mailing address::

City of mailing address::

State or Province of mailing address::

Country of mailing address::

Postal or Zip Code of mailing address::

Applicant Authority Type::

Primary Citizenship Country:

Status::

Given Name::

Middle Name::

Family Name::

Name Suffix:

City of Residence:

State or Province of Residence::

'liLilIiE?.*3'E?i": ‘E.E;l|“‘~li- ‘Lil 5.. l['_'il ‘l:";ll“.'.-‘E:"i'i|Ill E331

Serverna Park

MD

USA

21146

lnventor

USA

Full Cap

Robert

Dunham

Shod

Ill

acity

Leesburg

VA

USA

38710 Goose Creek Lane

Leesburg

VA

USA

20175

Inventor

USA

Full Cap

Victor

Larson

Fairfax

VA

acity

Initial O9/30/02

267

Petitioner Apple Inc. - Exhibit 1002, p. 267

Country of Residence:

Street of mailing address:

City of mailing address::

State or Province of mailing address:

Country of mailing address::

Postal or Zip Code of mailing address:

Applicant Authority Type:

Primary Citizenship Country:

Status:

Given Name::

Middle Name:

Family Name::

Name Suffix:

City of Residence::

State or Province of Residence:

Country of Residence::

Street of mailing address:

City of mailing address:

State or Province of mailing address:

Country of mailing address:

Postal or Zip Code of mailing address::

Correspondence Information

Correspondence Customer Number::

Representative Information

Representative Customer Number:

'lEIll -Ell "'lE§ll “~ll~ ‘1.":TiJ ‘iii In -lllll lllll llI'.l!

USA

12026 Lisa Marie Court

Fairfax

VA

USA

22033

Inventor

USA

Full Capacity

Michael

Williamson

South Riding

VA

USA

26203 Ocala Circle

South Riding

VA

USA

20152

Initial O9/30/O2

268

Petitioner Apple Inc. - Exhibit 1002, p. 268

..".lL 'i"z‘.'*'B"!‘:"'.w': ‘E34 ”~ll~ “Ell 1‘-ll~ «ni illfill "531 ET}? ’ll".'ll llfll

C 0

Domestic Priority Information

App|ication:: Continuity Typez: Parent App|ication:: Parent Filing Date::

This Application ' ' ' 09/504,783 02/15/00

Foreign Priority Information

A lication numberz: Filin Datez: Priorit Claimed:

Assignee Information

Assignee namez: Science Applications International Corporation

Street of mailing address:: 10260 Campus Point Drive

City of mailing address: San Diego

State or Province of mailing address:: CA

Country of mailing address:: USA

Postal or Zip Code of mailing address: 92121

Initial 09/30/O2

269

Petitioner Apple Inc. - Exhibit 1002, p. 269

,9, Q ”““*””;;;;;;;s;;;;;;:;;;;;v- illlllllHIIIHHlllllllilllllllllilllllllllilllilllllllllllillllilli
Office européen des brevets (11) 0

(12) EUROPEAN PATENT APPLICATION

(43) Date 01 publication: (51) Int.C|.6: H04L 29/0629.04.1999 BuIletin1998/18

(21) Application number: 97118556.6

(22) Date of filing: 24.10.1997

(84) Designated Contracting States: Inventors:

AT BE CH DE DK ES Fl FR GB GR IE IT LI LU MC Alden, Kenneth F.
NL PT SE Boylston, Massachusetts 01505 (US)

' Designated Extension States: Lichtenberg, Mitchell P.
AL LT LV RO SI Sunnyvale, CA 94087 (US)

Wobber, Edward P.

(30) Priority: 25-10-1996 U5 738155 Menlo Park, California 94025 (us)

(71) Applicami (74) Representative: Betten & Resch
DIGITAL EQUIPMENT conPoRA11oN neichenbachsuasse 19

Maynard, Massachusetts 01 754 (US) 30459 Mfinchen (DE)

(54) Pseudo network adapter for frame capture, encapsulation and encryption

(57) A new pseudo network adapter provides an
interface for capturing packets from a local communica-
tions protocol stack for transmission on the virtual pri- OTHER

vate network. and includes a Dynamic Host °"§f,‘I,',’,'fi§‘,‘,'ss""
Configuration Protocol (DHCP) server emulator, and an
Address Resolution Protocol (ARP) server emulator.
The new system indicates to the local communications

protocol stack that nodes on a remote private network
are reachable through a gateway that is in turn reacha-
ble through the pseudo network adapter. A transmit
path in the system processes data packets from the 283 270

local communications protocol stack for transmission- —°3E
through the pseudo network adapter. An encryption DRNER °"°p SERVER EM:,":T
engine enc ts the data ckets and an encapsu ation zea
engine encapsulates the encrypted data packets into
tunnel data frames. The network adapter further
includes an interface into a transport layer of the local
communications protocol stack for capturing received

data packets from the remote server node. and areceive path for processing received data packets cap- .
tured from the transport layer of the local communica-
tions protocol stack. The receive path includes a
decapsulation engine, and a decryption engine, and
passes the decrypted. decapsulated data packets back
to the local communications protocol stack for deliveryto a user.

EP0838930A2
Printed by Xerox (UK) Business Services2.16.1/3.4

BNSDOCID: <EP_oaaa9aoA2_i_>

270

Petitioner Apple Inc. - Exhibit 1002, p. 270

EP083893OA2 2

Description

FIELD OF THE INVENTION

The invention relates generally to establishing
secure virtual private networks. The invention relates
specifically to a pseudo network adapter for capturing,
encapsulating and encrypting messages or frames.

BACKGROUND

In data communications it is often required that
secure communications be provided between users of
network stations (also referred to as ‘network nodes") at
different physical locations. Secure communications
must potentially extend over public networks as well as
through secure private networlfi. Secure private net-
works are protected by "firewalls". which separate the
private network from a public network. I-'IrewalIs ordinar-
ily provide some combination of packet filtering, circuit
gateway. and application gateway technology, insulating
the private network from unwanted communications
with the public network.

One approach to providing secure communications
is to form a virtual private network In a virtual private
network. secure communications are provided by
encapsulating and encrypting messages. Encapsulated
messaging in general is referred to as "tunneling". Tun-
nels using encryption may provide protected communi-
cations between users separated by a public network,
or among a subset of users of a private network.

Encryption may for example be performed using an
encryption algorithm using one or more encryption
"keys". When an encryption key is used, the value of the
key determines how the data is encrypted and
decrypted. When a public-key encryption system is
used, a key pair is associated with each communicating
entity. The key pair consists of an encryption key and a
decryption key. The two keys are formed such that it is
unleasible to generate one key from the other. Each
entity makes its encryption key public, while keeping its
decryption key secret. When sending a message to
node A. for example, the transmitting entity uses the
public key of node A to encrypt the message. and then
the message can only be decrypted by node A using
node A's private key.

In a symmetric key encryption system a single key
is used as the basis for both encryption and decryption.
An encryption key in a symmetric key encryption system
is sometimes referred to as a "shared" key. For exam-
ple. a pair of communicating nodes A and B could com-
municate securely as follows: a first shared key is used
to encrypt data sent from node A to node B, while a sec-
ond shared key is to be used to encrypt data sent from
node B to node A. In such a system. the two shared
keys must be known by both node A and node B. More
examples of encryption algorithms and keyed encryp-
tion are disclosed in many textbooks. for example

BNSDOCID. <EP_oa3sseoA2_r_>

"Applied Cryptography — Protocols, Algorithms. and
Source Code in C". by Bruce Schneier, published by
John Wiley and Sons. New York. New York, copyright
1994.

Information regarding what encryption key or keys
are to be used, and how they are to be used to encrypt
data for a given secure communications session is
referred to as “key exchange material". Key exchange
material may for example determine what keys are used
and a time duration for which each key is valid. Key
exchange material for a pair of communicating stations
must be known by both stations before encrypted data
can be exchanged in a secure communications session. -
How key exchange material is made known to the com-
municating stations for a given secure communications
session is referred to as "session key establishment”.

A tunnel may be implemented using a virtual or
"pseudo" network adapter that appears to the communi-
cations protocol stack as a physical device and which
provides a virtual private network A pseudo network
adapter must have the capability to receive packets
from the communications protocol stack, and to pass
received packets back through the protocol stad< either
to a user or to be transmitted.

A tunnel endpoint is the point at which any encryp-
tion/decryption and encapsulation/decapsulation pro-
vided by a tunnel is performed. In existing systems. the
tunnel end points are predetermined network layer
addresses. The source network layer address in a

received message is used to determine the "creden-
tials" of an entity requesting establishment of a tunnel
connection. For example. a tunnel server uses the
source network layer address to determine whether a
requested tunnel connection is authorized. The source
network layer address is also used to determine which
cryptographic key or keys to use to decrypt received
messages.

Existing tunneling technology is typically performed
by encapsulating encrypted network layer packets (also
referred to as "frames") at the network layer. Such sys-
tems provide “network layer within network layer"
encapsulation of encrypted messages. Tunnels in exist-
ing systems are typically between firewall nodes which
have statically allocated IP addresses. In such existing
systems, the statically allocated IP address of the fire-
wall is the address of a tunnel end point within the fire-
wall. Existing systems fail to provide a tunnel which can
perform authorization based for an entity which must
dynamically allocate its network layer address. This is
especially problematic for a user wishing to establish a
tunnel in a mobile computing environment. and who
requests a dynamically allocated IP address from an
Internet Service Provider (ISP).

Because existing virtual private networks are based
on network layer within network layer encapsulation,
they are generally only capable of providing connection-
less datagram type services. Because datagram type
services do not guarantee delivery of packets. existing

271

Petitioner Apple Inc. - Exhibit 1002, p. 271

3 EPO838930A2 4

tunnels can only easily employ encryption methods over
the data contained within each transmitted packet.
Encryption based on the contents of multiple packets is
desirable, such as cipher block chaining or stream
ciphering over multiple packets. For example, encrypted
data would advantageously be formed based not only
on the contents of the presem packet data being
encrypted, but also based on some attribute of the con-

nection or session history between the communicating
stations. Examples of encryption algorithms and keyed
encryption are disclosed in many textbooks, for exarn-
ple "Applied Cryptography - Protocols. Algorithms, and
Source Code in C", by Bruce Schneier, published by
John Vlfiley and Sons, New York, New York. copyright
1994.

Thus there is required a new pseudo network
adapter providing a virtual private network having a
dynamically determined end point to support a user in a
mobile computing environment. The new pseudo net-
work adapter should appear to the communications pro-
tocol stack of the node as an interface to an actual

physical device. The new pseudo network adapter
should support guaranteed, in-order delivery of frames
over a tunnel to conveniently support cipher block
chaining mode or stream cipher encryption over multi-
ple packets.

SUMMARY OF THE INVENTION

A new pseudo network adapter is disclosed provid-
ing a virtual private network The new system includes
an interface for capturing packets from a local commu-
nications protocol stack for transmission on the virtual

private network The interface appears to the local com-
munications stack as a network adapter device driver
for a network adapter.

The invention, in its broad form, includes a pseudo
network adapter as recited in claim 1, providing a virtual
network and a method therefor as recited in claim 9.

The system as described hereinafter further
includes a Dynamic Host Configuration Protocol
(DHCP) server emulator, and an Address Resolution

Protocol (ARP) server emulator. The new system indi-
cates to the local communications protocol stack that
nodes on a remote private network are reachable

through a gateway that is in turn reachable through the
pseudo network adapter. The new pseudo network
adapter includes a transmit path for processing data
packets from the local communications protocol stack
for transmission through the pseudo network adapter.
The transmit path includes an encryption engine for
encrypting the data packets and an encapsulation
engine for encapsulating the encrypted data packets
into tunnel data frames. The pseudo network adapter
passes the tunnel data frames back to the local commu-

nications protocol stack for transmission to a physical
network adapter on a remote server node.

Preterably. as described hereinafter, the pseudo

BNSD(IIID: <EPj0838%OA2_|_>

15

network adapter includes a digest value in a digestfield
in each of the tunnel data frames. A keyed hash function
is a hash function which takes data and a shared cryp-
tographic key as inputs, and outputs a digital signature
referred to as a digest. The value of the digest field is
equal to an output of a keyed hash function applied to
data consisting of the data packet encapsulated within
the tunnel data frame concatenated with a coumer

value equal to a total number of tunnel data frames pre-
viously transmitted to the remote server node. In
another aspect of the system, the pseudo network
adapter processes an Ethernet header in each one of

the captured data packets, including removing the
Ethernet header.

The new pseudo network adapter further includes
an interface into a transport layer of the local communi-
cations protocol stack for capturing received data pack-
ets from the remote server node, and a receive path for
processing received data packets captured from the
transport layer of the local communications protocol
stack. The receive path includes a decapsulation
engine, and a decryption engine, and passes the
decrypted, decapsulated data packets back to the local
communications protocol stack for delivery to a user.

Thus there is disclosed a new pseudo network
adapter providing a virtual private network having
dynamically determined end points to support users in a
mobile computing environment. The new pseudo net-
work adapter provides a system for capturing a fully
formed frame prior to transmission. The new pseudo
network adapter appears to the communications proto-
col stack of the station as an interface to an actual phys-
ical device. The new pseudo network adapter further
includes encryption capabilities to conveniently provide
secure communications between tunnel end points
using stream mode encryption or cipher block chaining
over multiple packets.

BRIEF DESCRIPTION OF THE DRAWINGS

A more detailed understanding of the invention may
be had from the following description of a preferred
embodiment, given by way of example and to be under-
stood in conjunction with the accompanying drawing in
which: '

Hg. 1 is a block diagram showing the Open Sys-
tems interconnection (OSI) reference model;

Fig. 2 is a block diagram showing the TCP/IP inter-
net protocol suite:

Fig. 3 is a block diagram showing an examplary
embodiment of a tunnel connection across a public
network between two tunnel servers;

Fig. 4 is a flow chart showing an examplary embod-
iment of steps performed to establish a tunnel con-

272

Petitioner Apple Inc. - Exhibit 1002, p. 272

EP0838 930A2 6

nection;

Hg. 5 is allow chart showing an examplary embod-
iment of steps performed to perform session key
management for a tunnel connection;

Fig. 6 is a block diagram showing an examplary
embodiment of a relay frame;

Fig. 7 is a block diagram showing an examplary
embodiment of a connection request frame;

Fig. 8 is a block diagram showing an examplary
embodiment of a connection response frame;

Fig. 9 is a block diagram showing an examplary
embodiment of a data frame;

Fig. 10 is a block diagram showing an examplary
embodiment of a close connection frame:

Fig. 11 is a state diagram showing an examplary
embodiment of a state machine forming a tunnel
connection in a network node initiating a tunnel
connection;

Fig. 12 is a state diagram showing an aramplary
embodiment of a state machine forming a tunnel
connection in a server computer;

Fig.- 13 is a state diagram showing an examplary
embodiment of a state machine forming a tunnel
connection in a relay node;

14 is a block diagram showing an examplary
embodiment of a tunnel connection between a cli-

ent computer (tunnel client) and a server computer
(tunnel server);

Fig. 15 is a block diagram showing an examplary
embodiment of a pseudo network adapter;

Fig. 16 is a block diagram showing an exarriplary
embodiment of a pseudo network adapter;

l-‘ig. 17 is a flow chart showing steps performed by
an examplary embodiment of a pseudo network
adapter during packet transmission;

Fig. 18 is a flow chart showing steps performed by
an examplary embodiment of a pseudo network
adapter during packet receipt;

f-‘ig. 19 is a data flow diagram showing data flow in
an examplary embodiment of a pseudo network
adapter during packet transmission;

Fig. 20 is a data flow diagram showing data flow in

BNSDCCID: <EP___,0836%OA2_l_>

an exarrplary embodiment of a pseudo network
adapter during packet receipt;

Fig. 21 is a diagram showing the movement of
encrypted and unencrypted data in an examplary
embodiment of a system including a pseudo net-
work adapter;

Fig. 22 is a diagram showing the movement of
encrypted and unencrypted data in an examplary
embodiment of a system including a pseudo net-
work adapter; and

l-‘lg. 23 is a flow chart showing steps initialization of
an examplary embodiment of a system including a
pseudo network adapter.

DETAILED DESQRIPTION OF THE PREFERRED
EMBODIMENTS

Now with reference to Fig. 1 there is described for
purposes of explanation, communications based on the
Open Systems Interconnection (OSI) reference model.
In Fig. 1 there is shown communications 12 between a
first protocol stack 10 and a second protocol stack 14.
The first protocol stack 10 and second protocol stack 14
are implementations of the seven protocol layers (Appli-
cation layer. Presentation layer. Session layer. Transport
layer, Network layer, Data link layer, and Physical layer)
of the OSI reference model. A protocol stack implemen-
tation is typically in some combination of software and
hardware. Descriptions of the specific services provided
by each protocol layer in the OSI reference model are
found in many text books. for example ”Conputer Net-
works". Second Edition, by Andrew S. Tannenbaum.
published by Prentice-Hall, Englewood Cliffs, New Jer-
sey, copyright 1988.

As shown in Fig. 1, data 11 to be transmitted from a
sending process 13 to a receiving process 15 is passed
down through the protocol stack 10 of the sending proc-
ess to the physical layer 9 for transmission on the data
path 7 to the receiving process 15. As the data 11 is
pased down through the protocol stack 10, each proto-
col layer prepends a header (and possibly also appends
a trailer) portion to convey information used by that pro-
tocol layer. For example, the data link layer 16 of the
sending process wraps the information received from
the network layer 17 in a data link header 18 and a data
link layer trailer 20 before the message is passed to the
physical layer 9 for transmission on the actual transmis-
sion path 7.

Fig. 2 shows the TCP/IP protocol stack. Some pro-
tocol layers in the TCP/IP protocol stack correspond
with layers in the OSI protocol stack shown in Fig. 1.
The detailed services and header forrmts of each layer
in the TCP/IP protocol stack are described in many
texts, for example "lnternetworking with TCP/IP, Vol. 1:
Principles, Protocols. and Architecture". Second Edi-

273

Petitioner Apple Inc. - Exhibit 1002, p. 273

7 EPO 838 930A2 8

tion, by Douglas E. Comer, published by Prentice-Hall,
Englewood Cliffs, New Jersey, copyright 1991. The
Transport Control Protocol (TCP) 22 corresponds to the
Transport layer in the OSI reference model. The TCP
protocol 22 provides a comection-oriented. end to end

transport service with guaranteed, in-sequence packet
delivery. In this way the TCP protocol 22 provides a reli-
able, transport layer connection.

The IP protocol 26 corresponds to the Network
layer of the OSI reference model. The IP protocol 26
provides no guarantee of packet delivery to the upper
layers. The hardware link level and access protocols 32
correspond to the Data link and Physical layers of the
OSI reference model.

The Address Resolution Protocol (ARP) 28 is used
to map IP layer addresses (referred to as "IP
addresses") to addresses used by the hardware link
level and access protocols 32 (referred to as "physical
addresses" or ‘MAC addresses‘). The ARP protocol
layer in each network station typically contains a table of
mappings between IP addresses and physical
addresses (relened to as the 'ARP cache"). when a
mapping between an IP address and the corresponding
physical address is not known. the ARP protocol 28
issues a broadcast packet (an 'ARP request" packet) on
the local network. The ARP request indicates an IP
address for which a physical address is being
requested. The ARP protocols 28 in each station con-
nected to the local network examine the ARP request,
and if a station recognizes the lP address indicated by
the ARP request, it issues a response (an "ARP
response" or "ARP reply” packet) to the requesting sta-
tion indicating the responder's physical address. The
requesting ARP protocol reports the received physical
address to the local IP layer which then uses it to send
datagrams directly to the responding station. As an
alternative to having each station respond only for its
own IP address, an ARP server may be used to respond
for a set of IP addresses it stores internally, thus poten-
tially eliminating the requirement of a broadcast
request. In that case, the ARP request can be sem
directly to the ARP server for physical addresses corre-
sponding to any IP address mappings stored within the
ARP server.

At system start up. each station on a network must
determine an IP address for each of its network inter-

faces before it can communicate using TCP/IP. For
example. a station may need to contact a server to
dynamically obtain an IP address for one or more of its
network interfaces. The station may use what is referred
to as the Dynamic Host Configuration Protocol (DHCP)
to issue a request for an IP address to a DHCP server.
For example, a DHCP module broadcasts a DHCP

request packet at system start up requesting allocation
of an IP address for an indicated network interface.

Upon receiving the DHCP request packet, the DHCP
server allocates an IP address to the requesting station
for use with the indicated network interface. The

BNSDOCID: <EP___0B389BOA2_I_>

requesting station then stores the IP address in the
response from the server as the IP address to associate

‘with that network interface when communicating usingTCPIIP.

Hg. 3 shows an example configuration of network
nodes for which the presently disclosed system is appli-
cable. In the example of Fig. 3, the tunnel server A is an
initiator of the tunnel connection. As shown in Fig. 3, the
term "tunnel relay" node is used to refer to a station

which fonrvards data packets between transport layer
connections (for example TCP connections).

For example, in the present system a tunnel relay
may be dynamically configured to forward packets
between transport layer connection 1 and transport
layer connection 2. The tunnel relay replaces the
header information of packets received over transport
layer connection 1 with header information indicating
transport layer connection 2. The tunnel relay can then
forward the packet to a firewall, which may be conven-
iently programmed to pass packets received over trans-
port layer connection 2 into a private network on the
other side of the firewall. In the present system, the tun-
nel relay dynamically forms transport layer connections
when a tunnel connection is established. Accordingly
the tunnel relay is capable of performing dynamic load
balancing or providing redundant service for fault toler-
ance over one or more tunnel servers at the time the
tunnel connection is established.

Fig. 3 shows a Tunnel Server A 46 in a private net-
work N1 48, physically connected with a first Firewall
50. The first Firewall 50 separates the private network
N1 48 from a public network 52. for example the Inter-
net. The first Firewall 50 is for example physically con-
nected with a Tunnel Relay B 54, which in turn is
virtually connected through the public network 52 with a
Tunnel Relay C. The connection between Tunnel Relay
8 and Tunnel Relay C may for example span multiple
intervening fonivarding nodes such as routers or gate-
ways through the public network 52.

The Tunnel Relay C is physically connected with a
second Firewall 58, which separates the public network
52 from a private network N2 60. The second Firewall
58 is physically connected with a Tunnel Server D 62 on
the private network N2 60. During operation of the ele-
ments shown in Fig. 3, the Tunnel Sewer D 62 provides
routing of IP packets between the tunnel connection

with Tunnel Server A 46 and other stations on the pri-
vate network N2 60. In this way the Tunnel Server D 62
acts as a router between the tunnel connection and the
private network N2 60.

During operation of the elements shown in Fig. 3.
the present system establishes a tunnel connection
between the private network N1 48 and the private net-
work N2 60. The embodiment of Fig. 3 thus eliminates
the need for a dedicated physical cable or line to provide
secure communications between the private network 48
and the private network 60. The tunnel connection
between Tunnel Server A 46 and Tunnel Server D 62 is

274

Petitioner Apple Inc. - Exhibit 1002, p. 274

9 EP0838930A2 - 10

composed of reliable, pair-wise transport layer connec-
tions between Tunnel Server A 46 (node "A"), Tunnel
Relay B 54 (node "B"), Tunnel Relay C 56 (node "C").
and Tunnel Server D 62 (node "D"). For example. such
pair-wise connections may be individual transport layer
connections between each node A and node B, node B
and node C, and node C and node D. In an alternative
embodiment, as will be described below, a tunnel con-
nection may alternatively be formed between a stand-
alone PC in a public network and a tunnel server within
a private network.

Fig. 4 and Fig. 5 show an exarrple embodiment of
steps performed during establishment of the tunnel-con-
nection between Tunnel Server A 46 (node 'A") and
Tunnel Server D 62 (node "D") as shown in Fig. 3. Prior
to the steps shown in Fig. 4, node A selects a tunnel
path to reach node D. The tunnel path includes the tun-
nel end points and any intervening tunnel relays. The
tunnel path is for example predetermined by a system
administrator for node A. Each tunnel relay along the
tunnel path is capable of finding a next node in the tun-
nel path, for example based on a provided next node
name (or "next node arc"), using a predetermined nam-
ing convention and service. for example the Domain
Name System (DNS) of the TCP/IP protocol suite.

During the steps shown in Fig. 4. each of the nodes
A, B and C perform the following steps:

resolve the node name of the next node in the tun-

nel path, for example as found in a tunnel relay
frame;

establish a reliable transport layer (TCP) connec-
tion to the next node in the tunnel path;

forward the tunnel relay frame down the newly
formed reliable transport layer connection to the
next node in the tunnel path.

As shown for example in Fig. 4, at step 70 node A
establishes a reliable transport layer connection with
node B. At step 72 node A identifies the next down-
stream node to node B by sending node B a tunnel relay
frame over the reliable transport layer connection
between node A and node B. The tunnel relay frame
contains a string buffer describing all the nodes along
the tunnel path (see below description of an example
tunnel relay frame format). At step 74, responsive to the
tunnel relay frame from node A, node B searches the
string buffer in the relay frame to determine if the string
buffer includes node B's node name if node B finds its

node name in the string buffer, it looks at the next node
name in the string buffer to find the node name of the
next node in the tunnel path.

Node B establishes a reliable transport layer con-
nection with the next node in the tunnel path, for exam-
ple node C. Node B further forms an association
between the reliable transport layer connection between

ansoocto: <Ei=>_oe.aa9aoA2_l_>

Node A and Node B, over which the relay frame was
received, and the newly formed reliable transport layer
connection between Node B and Node C. and as a

result forwards subsequent packets received over the
reliable transport layer connection with Node A onto the
reliable transport layer connection with Node C. and
vice versa. At step 76 node B forwards the tunnel relay
frame on the newly formed reliable transport layer con-
nection to node C.

At step 78, responsive to the relay frame forwarded
from node B, node 0 determines that the next node in
the tunnel path is the last node in the tunnel path, and
accordingly is a tunnel server. Node 0 may actively
determine whether alternative tunnel servers are availa-

ble to form the tunnel connection. Node C may select
one of the alternative available tunnel servers to form

the tunnel connection in order to provide load balancing
or fault tolerance. As a result node C may form a trans-
port layer connections with one of several available tun-
nel servers, for example a tunnel server that is relatively
underutilized at the time the tunnel connection is estab-

lished. In the example embodiment, node C establishes
a reliable transport layer connection with the next node
along the tunnel path, in this case node D.

Node C further forms an association between the

reliable transport layer connection between Node B and
Node C, over which the relay frame was received, and
the newly formed reliable transport layer connection
between Node 0 and Node D, and as a result tonrvards

subsequent packets received over the reliable transport
layer connection with Node B to the reliable transport
layer connection with Node D, and vice versa. At step 80
node C forwards the relay frame to node D on the newly
formed reliable transport layer connection.

Hg. 5 shows an example of tunnel end point
authentication and sharing of key exchange material
provided by the present system. The present system
supports passing authentication data and key exchange
material through the reliable transport layer connections
previously established on the tunnel path. The following
are provided by use of a key exchange/authentication
REQUEST frame and a key exchange/authentication
RESPONSE frame:

a) mutual authentication of both endpoints of the
tunnel connection;

b) establishment of shared session encryption keys
and key lifetimes for encrypting/authenticating sub-
sequent data sent through the tunnel connection;

:1) agreement on a shared set of cryptographic
transforms to be applied to subsequent data; and

e) exchange of any other connection-specific data
between the tumel endpoints, for example strength
and type of cipher to be used, any compression of
the data to be used, etc. This data can also be used

275

Petitioner Apple Inc. - Exhibit 1002, p. 275

11 EPO838930A2 12

by clients of this protocol to qualify the nature of the
authenticated connection.

At step 90 a key exchange/authentication request
frame is fonivarded over the reliable transport layer con-
nections formed along the tunnel path from node A to
node D. At step 92. a key exchange/authentication
response frame is forwarded from node D back to node
A through the reliable transport layer connections. The
attributes exchanged using the steps shown in Fig. 5
may be used for the lifetime of the tunnel connection. In
an alternative embodiment the steps shown in Fig. 5 are
repeated as needed for the tunnel end points to
exchange sufficient key exchange material to agree
upon a set of session parameters for use during the tun-
nel connection such as cryptographic keys, key dura-
tions, and choice of encryption/decryption algorithms.

Further in the disclosed system, the names used for
authentication and access control with regard to node A
and node 0 need not be the network layer address or
physical address of the nodes. For example, in an alter-
native embodiment where the initiating node sending
the tunnel relay frame is a stand-alone PC located
within a public network, the user's name may be used
for authentication and/or access control purposes. This
provides a significant improvement over existing sys-
terns which base authorization on predetermined IP
addresses.

Fig. 6 shows the format of an example embodiment
of a tunnel relay frame. The tunnel frame formats shown
in Figs. 6, 7, 8 and 9 are encapsulated within the data
portion of a transport layer (TCP) frame when transmit-
ted. Alternatively, another equivalent, connection-ori-
ented transport layer protocol having guaranteed, in-
sequence frame delivery may be used. The example
TCP frame format, including TCP header fields, is con-
ventional and not shown.

The field 100 contains a length of the frame. The
field 102 contains a type of the frame, for example a
type of RELAY. The field 104 contains a tunnel protocol
version number. The field 106 contains an index into a

string buffer field 1 12 at which a name of the originating
node is located, for example a DNS host name of the
node initially issuing the relay frame (node A in Eng. 3).
The fields following the origin index field 106 contain
indexes into the string buffer 112 at which names of
nodes along the tunnel path are located. For example
each index may be the offset of a DNS host name within
the string buffer 112. In this way the field 108 contains
the index of the name of the first node in the tunnel path,
for example node B (Fig. 3). The field 110 contains the
index of the name of the second node in the tunnel path,
etc. The field 112 contains a string of node names of
nodes in the tunnel path.

During operation of the present system. the initiat-
ing node, for example node A as shown in Hg. 3, trans-
mits a tunnel relay frame such as the tunnel relay frame
shown in Fig. 6. Node A sends the tunnel relay frame to

BNSDCXIID: <EP__O838§30A2_l_>

the first station along the tunnel path, for example node
B (Fig. 3), over a previously established reliable trans-
port layer connection. Node B searches the string buffer
in the tunnel relay frame to find its node name, for exam-
ple its DNS host name. Node B finds its node name in
the string buffer indexed by path index 0, and then uses
the contents of path index 1 110 to determine the loca-
tion within the string buffer 112 of the node name of the
next node along the tunnel path. Node B uses this node
name to establish a reliable transport layer connection
with the next node along the tunnel path. Node B then
fonrvards the relay frame to the next node. This process
continues until the end node of the tunnel route, for
example tunnel server D 62 (Fig. 3) is reached.

Fig. 7 shows the format of an example embodiment
of a key exchange/key authentication request frame.
The field 120 contains a length of the frame. The field
122 contains a type of the frame. for example a type of
REQUEST indicating a key exchange/key authentica-
tion request frame. The field 124 contains a tunnel,pro-
tocol version number. Thetield 126 contains an offset of

the name of the entity initiating the tunnel connection,
for example the name of a user on the node originally
issuing the request frame. This name and key exchange
material in the request frame are used by the receiving
tunnel end point to authenticate the key
exchange/authentication REQUEST. The name of the
entity initiating the tunnel connection is also use to
authorize any subsequent tunnel connection. based on
predetermined security policies of the system. The field
128 contains an offset into the frame of the node name

of the destination node, for example the end node of the
tunnel shown as node D 62 in Fig. 3.

The field 130 contains an offset into the frame at

which key exchange data as is stored, for example
within the string buffer field 138. The key exchange data
for example includes key exchange material used to
determinea shared set of encryption parameters for the
life of the tunnel connectionsuch as cryptographic keys
and any validity times associated with those keys. The
key exchange data, as well as the field 132, further
include information regarding any shared set of crypto-
graphic transforms to be used and any other connec-
tion-specific parameters, such as strength and type of
cipher to be used, type of compression of the data to be
used, etc. The field 134 contains flags, for exanple indi-
cating further information about the frame. The field 136
contains client data used in the tunnel end points to con-
figure the local routing tables so that packets for nodes
reachable through the virtual private network are sent
through the pseudo network adapters. in an example
embodiment, the string buffer 138 is encrypted using a
public encryption key of the receiving tunnel end point.

During operation of the present system. one of the
end nodes of the tunnel sends a key exchange/authen-
tication REQUEST frame as shown in Fig. 7 to the other
end node of the tunnel in order to perform key exchange
and authentication as described in step 90 of Fig. 5.

276

Petitioner Apple Inc. - Exhibit 1002, p. 276

13 EP0838 930A2 14

Fig. 8 shows the format of an example embodiment
of a key exchange/key authentication response frame,
referred to as a connection RESPONSE frame. The

field 150 contains a length of the frame. The field 152
contains a type of the frame, for example a type of con-
nection RESPONSE indicating a key exchangelkey
authentication request frame. The field 154 contains a
tunnel protocol version number.

The field 156 contains an offset into the frame at

which key exchange data as is stored, for example
within the string buffer field 163. The key exchange data
for example includes key exchange material to be used
for encryption/decryption over the life of the tunnel con-
nection and any validity times associated with that key
exchange material. The key exchange data, as well as
the field 158, further includes information regarding any
shared set of cryptographic transforms to be applied to
subsequent data and any other connection-specific
parameters. such as strength and type of cipher to be
used. any compression of the data to be used, etc. The
field 160 contains flags. for example indicating other
information about the frame. The client data field 162

contains data used by the pseudo network adapters in
the tunnel end points to configure the local routing
tables so that packets for nodes in the virtual private
network are sent through the pseudo network adapters.
The string buffer includes key exchange material. The
string buffer is for example encrypted using a public
encryption key of the receiving tunnel end point, in the
this case the initiator of the tunnel connection.

During operation of the present system, one of the
end nodes of the tunnel sends a key exchange/authen-
tication RESPONSE frame as shown in Fig. 7 to the
other end node of the tunnel in order to perform key
exchange and authentication as described in step 92 of
Fig. 5.

Fig. 9 shows the format of an example embodiment
of an tunnel data frame used to communicate through a
tunnel connection. Hg. 9 shows how an IP datagram
may be encapsulated within a tunnel frame by the
present system for secure communications through a
virtual private network. The field 170 contains a length
of the frame. The field 1 72 contains a type of the frame,
for example a type of DATA indicating a tunnel data
frame. The field 174 contains a tunnel protocol version
number.

The fields 176. 178 and 182 contain information

regarding the encapsulated datagram. The field 180
contains flags indicating information regarding the
frame. The field 184 contains a value indicating the
length of the optional padding 189 at the end of the
frame. The frame format allows for optional padding in
the event that the amount of data in the frame needs to

be padded to an even block boundary for the purpose of
being encrypted using a block cipher. The field 186 con-
tains a value indicating the length of the digestfield 187.

The data frame format includes a digital signature
generated by the transmitting tunnel end point referred

BNSDOCID: <Ei=#oe3a9eoA2_ig>

to as a "digest". The value of the digest ensures data
integrity, for example by detecting invalid frames and
replays of previously transmitted valid frames. The
digest is the output of a conventional keyed crypto-
graphic hash function applied to both the encapsulated
datagram 190 and a monotonically increasing
sequence number. The resulting hash output is passed
as the value of the digest field 187. The sequence
number is not included in the data frame. In the azample
embodiment. the sequence number is a counter main-
tained by the transmitter (for example node A in Fig. 3)
of all data frames sent to the receiving node (for exam-
ple node D in Fig. 3) since establishment of the tunnel
connection.

in order to determine if the data frame is invalid or a

duplicate, the receiving node decrypts the encapsulated
datagram 190, and applies the keyed cryptographic
hash function (agreed to by the tunnel end nodes during
the steps shown in Fig. 5) to both the decrypted encap-
sulated datagram and the value of a counter indicating
the number of data frames received from the transmitter
since establishment of the tunnel connection. For exam-

ple the keyed hash function is applied to the datagram
concatenated to the counter value. if the resulting hash
output matches the value of the digest field 187, then
the encapsulated datagram 190 was received correctly
and is not a duplicate. if the hash output does not match
the value of the digest field 187. then the integrity check
fails, and the tunnel connection is closed. The field 188
contains an encrypted network layer datagram, for
example an encrypted IP datagram.

The encapsulated datagram may be encrypted
using various encryption techniques. An example
embodiment of the present system advantageously
encrypts the datagram 190 using either a stream cipher
or cipher block chaining encryption over all data trans-
mitted during the life of the tunnel connection. This is
enabled by the reliable nature of the transport layer con-
nections within the tunnel connection. The specific type

of encryption and any connection specific symmetric
encryption keys used is determined using the steps
shown in Fig. 5. The fields in the tunnel data frame other
than the encapsulated datagram 188 are referred to as
the tunnel data frame header fields.

Fig. 10 is a block diagram showing an example
embodiment of a "close connection" frame. The field

190 contains the length of the frame. The field 191 con-
tains a frame type. for example having a value equal to
CLOSE. Field 192 contains a value equal to the current
protocol version number of the tunnel protocol. Thefield
193 contains a status code indicating the reason the
tunnel connection is being closed.

During operation of the present system. when end
point of a tunnel connection determines that the tunnel
connection should be closed, a close connection frame

as shown in Fig. 10 is transmitted to the other end point
of the tunnel connection. when a close connection

close frame is received, the receiver closes the tunnel

277

Petitioner Apple Inc. - Exhibit 1002, p. 277

15 EP0838 930A2 16

connection and no Iurther data will be transmitted or

received through the tunnel connection.

Fig. 11 is a state diagram showing an example
embodiment of forming a tunnel connection in a node
initiating a tunnel connection. In Fig. 11, Fig. 12, and
Fig. 13, states are indicated by ovals and actions or
events are indicated by rectangles. For example the tun-
nel server node A as shown in Fig. 3 may act as a tunnel
connection initiator when establishing a tunnel connec-
tion with the tunnel server node D. Similarly the client
system 247 in Fig. 14 may act as a tunnel connection
initiator when establishing a tunnel connection with the
tunnel server, The tunnel initiator begins in an idle state
194. Responsive to an input from a user indicating that
a tunnel connection should be established. the tunnel
initiator transitions from the idle state 194 to a TCP

Open state 195. In the TCP Open state 195. the tunnel
initiator establishes a reliable transport layer connection
with a first node along the tunnel path. For example, the
tunnel initiator opens a socket interface associated with
a TCP connection to the first node along the tunnel
path. In Fig. 3 node A opens a socket interface associ-
ated with a TCP connection with node 8.

Following establishment of the reliable transport
layer connection in the TCP Open state 195. the tunnel
initiator enters a Send Relay state 197. In the Send
Relay state 197. the tunnel initiator transmits a relay
trame at 198 over the reliable transport layer connec-
tion. Following transmission 01 the relay trame, the tun-
nel initiator enters the connect state 199. If during
transmission of the relay frame there is a transmission
error. the tunnel initiator enters the Network Error state

215 followed by the Dying state 208. In the Dying state
208, the tunnel initiator disconnects the reliable trans-

port Iayer connection formed in the TCP Open state
195, for example by disconnecting a TCP connection
with Node B. Following the disconnection at 209. the
tunnel initiator enters the Dead state 210. The tunnel ini-
tiator subsequemly transitions back to the Idle state 194

at a point in time predetermined by system security con-
figuration parameters.

In the Connect state 199. the tunnel initiator sends
a key exchange/authentication REQUEST frame at 200
to the tunnel server. Following transmission of the key
exchange/authentication REQUEST frame 200, the tun-
nel initiator enters the Response Wait state 201. The
tunnel initiator remains in the Response Wait state 201
until it receives a key exchange/authentication
RESPONSE frame 202 from the tunnel server. After the
key exchange/authentication RESPONSE frame is
received at 202, the tunnel initiator enters the Aut.hor-

ized state 203, in which it may send or receive tunnel
data frames. Upon receipt of a CLOSE connection
frame at 216 in the Authorized state 203. the tunnel ini-
tiator transitions to the Dying state 208.

Upon expiration of a session encryption key at 211,
the tunnel initiator enters the Reconnect state 212, and
sends a CLOSE connection frame at 213 and discon-

BNSDOCID: <EP__,OB3B%»0A2_|_>

10

nects the TCP connection with the first node along the
tunnel path at 214. Subsequently the ti.inneI initiator
enters the TCP Open state 195.

It during the authorized state 203. a local user
issues an End Session command at 204, or there is a
detection of an authentication or cryptography error in a
received data frame at 205, the tunnel initiator enters
the Close state 206. During the Close state 206 the tun-
nel initiator sends a CLOSE connection frame at 207 to
the tunnel server. The tunnel initiator then enters the
Dying state at 208.

Figure 12 is a state diagram showing,the states
within an example embodiment of a tunnel server, for
example node D in Fig. 3 or tunnel server 253 in Fig. 14.
The tunnel server begins in an Accept Wait state 217. In
the Accept Wait state 217, the tunnel server receives a
request for a reliable transport layer connection, for
example a TCP connection reguest 218 from the last
node in the tunnel path prior to the tunnel server. for
atample Node C in Fig. 3. In response to a TCP con-
nection request 218 the tunnel server accepts the
request and establishes a socket interface associated
with the resulting TCP connection with Node C.

Upon establishment ol the TCP connection with the
last node in the tunnel path prior to the tunnel sewer,
the tunnel server enters the Receive Relay state 219-. In
the Receive Relay state 219. the tunnel server waits to
receive a relay frame at 220. at which time the tunnel
server enters the Connect Wait state 221. If thereis

some sort of network error 234 during receipt of the
relay frame at 219. the tunnel server enters the Dying
state 230. During the Dying state 230 the tunnel server
disconnects at 231 the transport layer connection with
the last node in the tunnel path prior to the tunnel
server. After disconnecting the connection. the tunnel
server enters the Dead state 232.

In the Connect Wait state 221, the tunnel server
waits for receipt of a key exchange/authentication
REQUEST frame at 222. Following receipt of the key
exchange/authentication REQUEST frame at 222, the
tunnel server determines whether the requested tunnel
connection is authorized at step 223. The determination
of whether the tunnel connection is authorized is based

on a name of the tunnel initiator, and the key exchange
material within the key exchange/authentication
REQUEST frame.

It the requested tunnel connection is authorized the
tunnel server sends a key exchange/authentication
RESPONSE trame at 224 back to the tunnel initiator. If

the requested tunnel connection is not authorized, the
tunnel server enters the Close state 228, in which it
sends a close connection frame at 229 to the tunnel cli-

ent. Following transmission of the CLOSE connection
frame at 229, the tunnel server enters the Dying state
230.

It the requested tunnel connection is determined to
be authorized at step 223, the tunnel server enters the
Authorized state 225. In the Authorized state. the tunnel

278

Petitioner Apple Inc. - Exhibit 1002, p. 278

17 ‘ EP0838930A2 18

server transmits and receives tunnel data frames

between itself and the tunnel initiator. If during the
Authorized state 225, the tunnel server receives a
CLOSE connection frame at 233, the tunnel server tran-

sitions to the Dying state 230. if during the authorized
state 225, the tunnel sewer receives an end session
command from a user at 226, then the tunnel server
transitions to the Close state 228, and transmits a close
connection frame at 229 to the tunnel initiator. If the tun-
nel server in the Authorized state 225 detects an integ-

rity failure in a received packet. the tunnel sewer
transitions to the Close state 228. in the close state 228
the tunnel server sends a CLOSE connection frame at

229 and subsequently enters the Dying state 230.

Fig. 13 is a state diagram showing an example
embodiment of a state machine within a tunnel relay
node. The tunnel relay node begins in an Accept Wait
state 235. When a request is received to form a reliable
transport layer connection at 236, a reliable transport
layer connection is accepted with the requesting node.
For example. a TCP connection is accepted between
the relay node and the preceding node in the tunnel
path.

The relay node then transitions to the Receive
Relay state 237. During the Receive Relay state 237,
the relay node receives a relay frame at 238. Following
receipt of the relay frame at 238. the relay node deter-
mines what forwarding address should be used to for-
ward frames received from the TCP connection

established responsive to the TCP connect event 236. if
the next node in the tunnel path is a tunnel server, the
forwarding address may be selected at 239 so as to
choose an underutilized tunnel server from a group of
available tunnel servers or to choose an operational
server where others are not operational.

Following determination of the forwarding address
or addresses in step 239, the relay node enters the For-
ward Connect-state 240. in the Fonivard Connect state

240, the relay node establishes a reliable transport layer
connection with the node or nodes indicated by the for-
warding address or addresses determined in step 239.

Following establishment of the new connection at
event 241, the tunnel relay enters the Forward state
242. During the Forward state 242, the relay node for-
wards all frames between the connection established at

236 and those connections established at 241. Upon
detection of a network error or receipt of a frame indicat-
ing a closure of the tunnel connection at 243, the tunnel
relay enters the Dying state 244. Following the Dying
state 244, the relay node disconnects any connections
established at event 241. The relay node then enters
the Dead state 246.

Fig. 14 shows an example embodiment of a virtual
private network 249 formed by a pseudo network
adapter 248 and a tunnel connection between a tunnel
client 247 and a funnel server 253 across a public net-
work 251. The tunnel server 253 and tunnel client 247

are for example network stations including a CPU or

BNSDOCID: <EP:083893OA2_l_>

microprocessor, memory, and various I/O devices. The
tunnel server 253 is shown physically connected to a
private LAN 256 including a Network Node 1 257 and a
Network Node 2 258, through a physical network
adapter 254. The tunnel server 253 is further shown
physically connected with a firewall 252 which sepa-
rates the private LAN 256 from the public network 251.
The firewall 252 is physically connected with the public
network 251. The tunnel server 253 is further shown

including a pseudo network adapter 255. The client sys-
tem 247 is shown including a physical network adapter
250 physically connected to the public network 251.

During operation of the elements shown in Fig. 14,
nodes within the virtual private network 249 appear to
the tunnel client 247 as if they were physically con-

nected to the client system through the pseudo network
adapter 248. Data transmissions between the tunnel cli-
ent and any nodes that appear to be within the virtual
private network are passed through the pseudo network
adapter 248. Data transmissions between the tunnel cli-
ent 247 and the tunnel server 253 are physically accom-

plished using a tunnel connection between the tunnel
client 247 and the tunnel server 253. ’

Hg. 15 shows elements in an example embodiment
of a pseudo network adapter such as the pseudo net-
work adapter 248 in Fig. 14. In an example embodiment
the elements shown in Fig. 15 are implemented as soft-
ware executing on the tunnel client 247 as shown in Fig.
14. In Fig. 15 there is shown a pseudo network adapter
259 including a virtual adapter driver interface 263. an
encapsulation engine 264, an encryption engine 265, a
decapsulation engine 268, and a decryption engine
266. Further shown in the pseudo network adapter 259
are an ARP server emulator 270 and a Dynamic Host
Configuration Protocol (DHCP) server emulator.

The pseudo network adapter 259 is shown inter-
faced to a TCP/IP protocol stack 260, through the virtual

adapter driverinteiface 260. The TCP/IP protocol stack
260 is shown interfaced to ofiner services in an operat-
ing system 261, as well as a physical network adapter's
driver 252. The physical network adapter's driver 262 is
for example a device driver which controls the operation
of a physical network adapter such as physical network
adapter 250 as shown in Fig. 14.

During operation of the elements shown in Fig. 15.
the pseudo network adapter 259 registers with the net-
work layer in the TCP/IP stack 260 that it is able to reach
the IP addresses of nodes within the virtual private net-

work 249 as shown in Fig. 14. For example. the pseudo
network adapter on the client system registers that it
can reach the pseudo network adapter on the sewer.
Subsequently, a message from the tunnel client
addressed to a node reachable through the virtual pri-
vate network will be passed by the TCP/IP stack to the
pseudo network adapter 259. The pseudo network
adapter 259 then encrypts the message, and encapsu-
lates the message into a tunnel data frame. The pseudo
network adapter 259 then passes the tunnel data frame

279

Petitioner Apple Inc. - Exhibit 1002, p. 279

19 EPO838 930A2 20

back to the TCP/IP protocol stack 260 to be sent
through to the physical network adapter in the tunnel
sewer. The tunnel server passes the received data
frame to the pseudo network adapter in the sewer,
which de-encapsulates and decrypts the message.

Fig. 16 shows a more detailed example embodi-
ment of a pseudo network adapter 280. The pseudo
network adapter 280 includes a virtual network adapter
driver interface 288. The transmit path 290 includes an
encryption engine 292. and an encapsulation engine
294. The encapsulation engine 294 is interfaced with a
TCP/IP transmit interface 312 within a TCP/IP protocol
stack, for example a socket interface associated with
the first relay node in the tunnel path, or with the remote
tunnel end point if the tunnel path includes no relays.

In the example embodiment of Fig. 16, the pseudo
network adapter 280 appears to the TCP/IP protocol
stack 282 as an Ethernet adapter. Accordingly, ethernet
packets 286 for a destination addresses understood by
the TCP/IP protocol stack to be reachable through the
virtual private network are passed from the TCP/IP pro-
tocol stack 282 to the virtual network adapter interface
288 and through the transmit path 290. Similarly. ether-
net packets 284 received through the pseudo network
adapter 280 are passed from the receive path 296 to the
virtual network adapter interface 288 and on to the
TCP/IP protocol stack 282.

Further shown in the pseudo network adapter 280
of Fig. 16 is-a receive path 296 having a decryption
engine 298 interfaced to the virtual network adapter
interface 288 and a decapsulation engine 300. The
decapsulation engine 300 in turn is interfaced to a
TCP/IP receive function 314 in the TCP/IP protocol
stack 282. for example a socket interface associated
with the first relay in the tunnel path, or with the remote
tunnel end point if the tunnel path includes no relays.
The pseudo network adapter 280 further includes an
ARP server emulator 304 and a DHCP server emulator

306. AFiP and DHCP request packets 302 are passed
to the ARP server emulator 304 and DHCP server emu-

lator 306 respectively. when a received packet is
passed from the receive path 296 to the TCP/IP stack
282, a receive event must be indicated to the TCP/IP

stack 282, for example through an interface such the
Network Device interface Specification (NDIS), defined
by Microsoft” Corporation.

Also in Fig. 16 is shown is an operating system 310
coupled with the TCP/IP protocol stack 282. The
TCP/IP protocol stack 282 is generally considered to be
a component part of the operating system. The operat-
ing system 310 in Fig. 16 is accordingly the remaining
operating system functions and procedures outside the
TCP/IP protocol stack 282. A physical network adapter
308 is further shown operated by the TCP/IP protocol
stack 282.

During operation of the elements shown in Fig. 16,
a user passes data for transmission to the TCP/IP pro-
tocol stack 282, and indicates the IP address of the

BNSDX I D: < EP:083BR3DA2_l_>

node to which the message is to be transmitted, for
example through a socket interface to the TCP layer.
The TCP/IP protocol stack 282 then determines

whether the destination node is reachable through the
virtual private network. if the message is for a node that
is reachable through the virtual private network. the
TCP/lP protocol stack 282 an ethernet packet 286 cor-
responding to the message to the pseudo network
adapter 280. The pseudo network adapter 280 then
passes the ethernet packet 286 through the transmit
path, in which the ethernet packet is encrypted and
encapsulated into a tunnel data frame. The tunnel data
frame is passed back into the TCP/IP protocol stack 282
through the TCP/IP transmit function 312 to be transmit-
ted to the tunnel server through the tunnel connection.
In an example embodiment, a digest value is calculated
for the tunnel data frame before encryption within the
transmit path within the pseudo network adapter.

Further during operation of the elements shown in
Fig. 16, when the TCP/IP protocol stack 282 receives a
packet from the remote endpoint of the TCP/IP tunnel
connection, for example the tunnel server, the packet is
passed to the pseudo network adapter 280 responsive
to a TCP receive event. The pseudo network adapter

4 280 then decapsulates the packet by removing the tun-
nel header. The pseudo network adapter further
decrypts the decapsulated data"and passes it back to
the TCP/IP protocol stack 282. The data passed from
the pseudo network adapter 280 appears to the TCP/IP
protocol stack 282 as an ethernet packet received from
an actual physical device, and is the data it contains is
passed on to the appropriate user by the TCP/IP proto-
col stack 282 based on information in the ethernet

packet header provided by the pseudo network adapter.
Fig. 17 is a flow chart showing steps performed by

an example embodiment of a pseudo network adapter
during packet transmission, such as in the transmit path
290 of Fig. 14. The TCP/IP protocol stack determines
that the destination node of a packet to be transmitted is
reachable through the virtual LAN based on the destina-
tion IP address of the packet and a network layer routing
table. At step 320 the packet is passed to the pseudo
network adapter from the TCP/IP protocol stack. As a
result, a send routine in the pseudo adapter is triggered
for example in the virtual network adapter interface 288
of Fig. 16.

At step 322 the pseudo network adapter send rou-
tine processes the Ethernet header of the padxet pro-
vided by the TCP/IP stack. and removes it. At step 324.
the send routine determines whether the packet is an
ARP request packet. If the packet is an ARP request
packet for an IP address of a node on the virtual LAN,
such as the pseudo network adapter of the tunnel
server. then step 324 is followed by step 326. Other-
wise. step 324 is followed by step 330.

At step 326, the ARP server emulator in the pseudo
network adapter generates an ARP reply packet. For
example, it the AFIP request were for a physical address

280

Petitioner Apple Inc. - Exhibit 1002, p. 280

21 EP0838 930A2 22

corresponding to the IP address of the pseudo network
adapter on the tunnel server, the AFlP reply would indi-
cate a predetermined, reserved physical address to be
associated with that IP address. At step 328 the pseudo
network adapter passes the ARP response to the virtual
network adapter interface. The virtual network adapter
interface then indicates a received packet to the TCP/IP
protocol stack. for example using an NDIS interface.
The TCP/IP protocol stack then processes the ARP
response as if it had been received over an actual phys-
ical network

At step 330 the send routine determines whether
the packet is a DHCP request packet requesting an IP
address for the pseudo network adapter. If so. then step
330 is followed by step 332. Otherwise. step 330 is fol-
lowed by step 334.

At step 334, the DHCP server emulator in the
pseudo network adapter generates a DHCP response.
The format of DHCP is generally described in the DHCP
RFC. At step 328 the pseudo network adapter passes
the DHCP response to the virtual network adapter inter-
face, for example indicating an IP address received from
the tunnel server in the client data field of the key
exchangelauthentication RESPONSE frame. The vir-

tual network adapter interface then indicates a received
packet to the TCP/IP protocol stack. The TCP/IP proto-
col stack then processes the DHCP response as if it had
been received over an actual physical network.

At step 334 the pseudo network adapter encrypts
the message using an encryption engine such that only
the receiver is capable of decrypting and reading the
message. At step 336 the pseudo network adapter
encapsulates the encrypted message into a tunnel data
frame. At step 338 the pseudo network adapter trans-
mits the tunnel data frame through the tunnel connec-
tion using the TCP/IP protocol stack.

Fig. 18 is a flow chart showing steps performed by
an example embodiment of a pseudo network adapter
during packet receipt, such as in the receive path 296 of
Fig. 14.

At step 350. the pseudo network adapter is notified
that a packet has been received over the tunnel connec-
tion. At step 352 the pseudo network adapter decapsu-
lates the received message by removing the header
fields of the tunnel data frame. At step 354 the pseudo
network adapter decrypts the decapsulated datagram
from the tunnel data frame. At step 356, in an example
embodiment, the pseudo network adapter forms an
Ethernet packet from the decapsulated message. At
step 358 the pseudo network adapter indicates that an
Ethernet packet has been received to the TCP/IP proto-
col stack through the virtual network adapter interface.
This causes the TCP/IP protocol stack to behave as if it
had received an Ethernet packet from an actual Ether-
net adapter.

Fig. 19 shows the data flow within the transmit path
in an example embodimem of a pseudo network
adapter. At step 1 370, an application submits data to be

BNSD1lD <EP_,0B38930A2_|_>

transmitted to the TCP protocol layer 372 within the
TCP/IP protocol stack. The application uses a conven-
tional socket interface to the TCP protocol layer 372 to

pass the data. and indicates the destination IP address
the data is to be transmitted to. The TCP protocol layer
372 then passes the data to the IP protocol layer 374
within the TCP/IP protocol stack At step 2 376, the
TCP/IP protocol stack refers to the routing table 378 to
determine which network interface should be used to
reach the destination IP address.

Because in the example the destination IP address
is of a node reachable through the virtual private net-
work. the IP layer 374 determines from the routing table
378 that the destination IP address is reachable through
pseudo network adapter. Accordingly at step 3 380 the
TCP/IP protocol stack passes a packet containing the
data to the pseudo network adapter 382.

At step 4 384. the pseudo network adapter 382
encrypts the data packets and encapsulates them into
tunnel data frames.

The pseudo network adapter 382 then passes the
tunnel data frames packets back to the TCP protocol
layer 372 within the TCP/IP protocol stack through a
conventional socket interface to the tunnel connection

with thefirst node in the tunnel path.
The TCP protocol layer 372 then forms a TCP layer

packet for each tunnel data frame, having the tunnel
data frame as its data. The TCP frames are passed to
the IP layer 374. At step 5 386 the routing table 378 is
again searched, and this time the destination IP
address is the IP address associated with the physical
network adapter on the tunnel server, and accordingly is
determined to be reachable over the physical network

adapter 390. Accordingly at step 6 388 the device driver
390 for the physical network adapter is called to pass
the packets to the physical network adapter. At step 7
392 the physical network adapter transmits the data
onto the physical network 394.

Hg. 20 is a data flow diagram showing data flow in
an example embodiment of packet receipt involving a
pseudo network adapter. At step 1 410 data arrives over
the physical network 412 and is received by the physical
network adapter and passed to the physical network
driver 414. The physical network driver 414 passes the
data at step 2 418 through the IP layer 420 and TCP
layer 422 to the pseudo network adapter 426 at step 3
424. for example through a convemional socket inter-
face. At step 4 428 the pseudo network adapter 426
decrypts and decapsulates the received data and
passes it back to the IP layer of the TCP/IP protocol
stack. for example through the TDI (Transport Layer
Dependent Interface API) of the TCP/IP stack The data
is then passed through the TC P/lP protocol stack and to
the user associated with the destination IP address in
the decapsulated datagrams at step 5 430.

Fig. 21 shows dataflow in an example embodiment
of packet transmission involving a pseudo network
adapter. Fig. 21 shows an example embodiment for use

281

Petitioner Apple Inc. - Exhibit 1002, p. 281

23 EP 0 838 930 A2 24

on a Microsoft” Vffindows 95”‘ PC platform. In Fig. 21 a
user application 450 passes unencrypted data to an
interface into the TCP layer of the TCP/IP protocol. for
example the Winsock API 452. The user indicates a
destination IP address associated with a node reacha-

ble through a virtual private network accessible through
the pseudo network adapter.

The TCP layer 454 passes the data to the IP layer
456, which in turn passes the data to the Network
Device Interface Specification Media Access Control
(NDIS MAC) interface 458. The pseudo network
adapter 459 has previously registered with the routing
layer (IP) that it is able to reach a gateway address
associated with the destination IP address for the user

data. Accordingly the IP layer uses the NDIS MAC layer
interface to invoke the virtual device driver interface 460

to the pseudo network adapter 459. The pseudo net-
work adapter 459 includes a virtual device driver inter-
face 460. an ARP server emulator 462. and a DHCP
server emulator 464.

In the example embodiment of Fig. 19, the pseudo
network adapter 459 passes the data to a tunnel appli-
cation program 466. The tunnel application program
466 encrypts the IP packet received from the IP layer
and encapsulates it into a tunnel data frame. The tunnel

application then passes the tunnel data frame including
the encrypted data to the Winsock interface 452. indi-
cating a destination IP address of the remote tunnel end

point. The tunnel data frame is then passed through the
TCP layer 454, IP layer 456, NDIS MAC layer interface
458. and physical layer 468, and transmitted on the net-
work 470. Since the resulting packets do not contain a
destination IP address which the pseudo network
adapter has registered to convey. these packets will not
be diverted to the pseudo network adapter.

Fig. 22 is a data flow diagram showing data flow in
an example embodiment of packet transmission involv-
ing a pseudo network adapter. The embodiment shown
in Fig. 22 is for use on a UNIX platform. In Fig. 20 a user
application 472 passes unencrypted data to a socket
interface to the TCP/IP protocol stack in the UNIX
socket layer 474, indicating a destination IP address of
a node reachable through the virtual private network.

The UNIX socket layer 474 passes the data through
the TCP layer 476 and the IP layer 478. The pseudo
network adapter 480 has previously registered with the
routing layer (lP) that it is able to reach a gateway asso-
ciated with the destination IP address for the user data.

Accordingly the IP layer 478 invokes the virtual device
driver interface 482 to the pseudo network adapter 480.
The IP layer 478 passes the data to the pseudo network
adapter 480. The pseudo network adapter 480 includes
a virtual device driver interface 482, and a DHCP sewer
emulator 484. -

In the example embodiment of Fig. 22, the pseudo
network adapter 480 passes IP datagrarns to be trans-
mitted to a UNIX Daemon 486 associated with the tun-

nel connection. The UNIX Daemon 486 encrypts the IP

BNSDOCID. <E P__083B%0A2_l_>

packet(s) received from the IP layer 478 and encapsu-
lates them into tunnel data frames. The UNIX Daemon
486 then passes the tunnel data frames to the UNIX
socket layer 474, through a socket associated with the
tunnel connection. The tunnel data frames are then

processed by the TCP layer 476. lP layer 478. data link
layer 488. and physical layer 490 to be transmitted on
the network 492. Since the resulting packets are not
addressed to an IP address which the pseudo network
adapter 480 has registered to convey, the packets will
not be diverted to the pseudo network adapter 480.

Fig. 23 is a flow chart showing steps to initialize a
example embodiment of a virtual private network The
steps shown in Fig. 23 are performed for example in the
tunnel client 247 as shown in Fig. 14. At step 500 a tun-
nel application program executing in the tunnel client
sends a tunnel relay frame to the tunnel server. At step
502 the tunnel application program sends a tunnel key
exchange/authentication REQUEST frame to the tunnel
server. The tunnel application in the tunnel server
ignores the contents of the client data field in the tunnel
key exchange/authentication REQUEST frame. The
tunnel application in the tunnel server fills in the client
data field in the tunnel key exchange/authentication
RESPONSE frame with Dynamic Host Configuration
Protocol (DHCP) information, for example including the
following information in standard DHCP format: "

1) IP Address for tunnel client Pseudo Network
Adapter
2) lP Address for tunnel server Pseudo Network
Adapter
3) Routes to nodes on the private network physi-
cally connected to the tunnel server which are to be
reachable over the tunnel connection.

At step 504 the tunnel application receives a tunnel
key exchange/authentication RESPONSE frame from
the tunnel server. The client data field 508 in the tunnel

connection response is made available to the pseudo
network adapter in the tunnel client. The tunnel applica-
tion in the tunnel client tells the TCP/IP stack that the

pseudo network adapter in the tunnel client is active.
The pseudo network adapter in the tunnel client is
active and ready to be initialized at step 510.

The tunnel client system is configured such that it
must obtain an IP address for the tunnel client pseudo
network adapter dynamically. Therefore the TCP/IP
stack in the tunnel client broadcasts a DHCP request
packet through the pseudo network adapter. Accord-
ingly. at step 512 the pseudo network adapter in the cli-
ent receives a conventional DHCP request packet from
the TCP/IP stack requesting a dynamically allocated IP
address to associate with the pseudo network adapter.
The pseudo network adapter passes the DHCP request
packet to the DHCP server emulator within the pseudo
network adapter, which forms a DHCP response based
on the client data 508 received from the tunnel applica-

282

Petitioner Apple Inc. - Exhibit 1002, p. 282

25 EPO838 930A2 V 26

tion. The DHCP response includes the IP address for
the client pseudo adapter provided by the tunnel server
in the client data. At step 514 the pseudo network
adapter passes the DHCP response to the TCP/IP
stack.

At step 520. the tunnel application modifies the
routing tables within the tunnel client TCP/IP stack to
indicate that the routes to the nodes attached to the pri-
vate network to which the tunnel server is attached all

are reachable only through the pseudo network adapter
in the tunnel sewer. The IP address of the pseudo net-
work adapter in the tunnel server provided in the client
data is in this way specified as a gateway to the nodes
on the private network to which the tunnel server is
attached. In this way those remote nodes are viewed by
the TCP/IP stack as being reachable via the virtual pri-
vate network through the client pseudo network
adapter.

At step 516 the pseudo network adapter in the tun-
nel client receives an AFlP request for a physical
address associated with the IP address of the pseudo
network adapter in the tunnel server. The pseudo net-
work adapter passes the AFlP request to the ARP
server emulator, which forms an ARP reply indicating a
reserved physical address to be associated with the IP
address of the pseudo network adapter in the tunnel
server. At step 518 the pseudo network adapter passes
the ARP response to the TCP/lP stack in the tunnel cli-
ent. In response to the ARP response, the TCP/IP stack
determines that packets addressed to any node on the
virtual private network must be initially transmitted
through the pseudo network adapter.

In an example embodiment the present system
reserves two physical addresses to be associated with
the pseudo network adapter in the client and the pseudo
network adapter in the server respectively. These
reserved physical addresses are used in responses to
AFlP requests passed through the pseudo network
adapter for physical addresses corresponding to the IP
addresses for the pseudo network adapter in the client
and the pseudo network adapter in the server respec-
tively. The reserved physical addresses should have a
high likelihood of not being used in any actual network
interface. ‘

While the invention has been described with refer-

ence to specific example embodiments, the description
is not meant to be construed in a limiting sense. Various
modifications of the disclosed embodiments. as well as

other embodiments of the invention. will be apparent to
persons skilled in the art upon reference to this descrip-
tion. Specifically, while various embodiments have been
described using the TCP/IP protocol stack, the invention
may advantageously be applied where other communi-
cations protocols are used. Also. while various flow
charts have shown steps performed in an example
order, various implementations may use altered orders
of step in order to apply the invention. And further, while
certain specific software and/or hardware platforms

BNSDCKZID: <EP__O838%OA2_I_>

have been used in the description, the invention may be
applied on other platlorrns with similar advantage. It is
therefore contemplated that the appended claims will
cover any such modifications or embodiments which fall
within the scope of the invention.

\

Claims

1. A pseudo network adapter providing a virtual pri-
vate network, comprising:

an interface for capturing packets from a local
communications"protocoI stack for transmis-
sion on said virtual private network, said inter-
face appearing to said local communications
protocol stack as a network adapter device
driver for a network adapter connected to said
virtual private network;
a first server emulator, providing a first reply
packet responsive to a first request packet cap-
tured by said interface for capturing packets
from said local communications protocol stack
for transmission on said virtual private network,
said first request packet requesting a network
layer address for said pseudo network adapter.
said first reply indicating a network layer
address for said pseudo network adapter: and
a second server emulator. providing a second
reply packet responsive to an second request
packet captured by said interface for capturing
packets from said local communications proto-
col stack for transmission on said virtual private
network. said second request packet request-
ing a physical address corresponding to a net-
work Iayer address of a second pseudo
network adapter, said second pseudo network
adapter located on a remote server node, said
second reply indicating a predetermined,
reserved physical address.

2. The pseudo network adapter of claim 1, further
comprising a means for indicating to said local com-
munications protocol stack that said predeter-
mined. reserved physical address is reachable
through said pseudo network adapter. wherein said
means for indicating modifies a data structure in
said local communications protocol stack indicating
which nodes or networks are reachable through
each network interface of the local system.

The pseudo network adapter of claim 1. further
comprising a means for indicating to said local oom-
munications protocol stack that one or more nodes
on a remote private network connected to said
remote server node are reachable through a gate-
way node equal to said second pseudo network
adapter on said remote server node.

283

Petitioner Apple Inc. - Exhibit 1002, p. 283

27 EP 0 838 930 A2 28

4. The pseudo network adapter of claim 1, further
comprising:

a transmit path for processing data packets
captured by said interface for capturing packets
from said local communications protocol stack
for transmission on said virtual private network;
an encryption engine, within said transmit path.
for encrypting said data packets;
an encapsulation engine. within said transmit

path, for encapsulating said encrypted data
packets into tunnel data frames; and
a means for passing said tunnel data frames

back to said local communications protocol
stack for transmission to a physical network
adapter on said remote sewer node.

The pseudo network adapter ot claim 4, wherein
said transmit path further includes means for stor-

ing a digest value in a digest lield in each of said
tunnel data frames, said digest value equal to an
output of a keyed hash function applied to said data
packet encapsulated within said tunnel data frame
concatenated with a counter value equal to a total
number of tunnel data frames previously transmit-
ted to said remote server node.

The pseudo network adapter of claim 4, wherein
said transmit path further includes means for
processing an Ethernet header in each one of said

captured data packets. said processing of said
Ethernet header including removing said Ethernet
header.

The pseudo network adapter of claim 1, further
comprising:

an interface into a transport layer of said local
communications protocol stack for capturing
received data packets from said remote server
node.

The pseudo network adapter of claim 7, further
comprising:

a receive path for processing received data
packets captured by said interface into said
transport layer of said local communications

protocol stack for capturing received data pack-
ets from said remote sewer node;
an decapsulation engine, within said receive
path. for decapsulating said received data
packets by removing a tunnel frame header;
an decryption engine, within said receive path.
for decrypting said received data packets: and
a means for passing said received data pack-
ets back to said local communications protocol

5

9. A method for providing a pseudo network adapter
for a virtual private network, comprising the stepsof:

capturing packets from a local communications
protocol stack for transmission on said virtual

private network, said capturing through an
interface appearing to said local communica-
tions stack as a network adapter device driver
for a network adapter connected to said virtual
private network;

issuing a first reply packet responsive to a first
request packet captured by said interface for
capturing packets from said local communica-
tions protocol stack for trarsmission on said vir-

tual private network, said first request packet
requesting a network layer address for said
pseudo network adapter, saidfirst reply indicat-
ing a network, layer address for said pseudo
network adapter; and
issuing a second reply packet responsive to a
second request packet captured by said inter-
face for capturing packets from said local com-
munications protocol stack for transmission on
said virtual private network, said second
request packet requesting a physical address
corresponding to a network layer address of a
second pseudo network adapter. said second
pseudo network adapter located on a remote
server node, said ARP Reply indicating a pre-
determined, reserved physical address

10. The method of claim 9, further comprising indicat-
ing to said local communications protocol stack that
said predetermined, reserved physical address is
reachable through said pseudo network adapter.
wherein said step of indicating to said local commu-
nications protocol stack modities a data structure in

said local communications protocol stack indicating
which nodes or networks are reachable through
each network interface of the local system.

. The method of claim 9, further comprising indicat-
ing to said local communications protocol stack that
one or more nodes on a remote private network
connected to said remote server node are reacha-

ble through a gateway node equal to said second
pseudo network adapter on said ‘remote server
node, wherein said step of indicating to said local
communications protocol stack that one or more
nodes on said remote private network connected to
said remote server node are reachable through a
gateway node equal to said second pseudo net-
work adapter on said remote server node modifies
a network layer routing table in said local communi-
cations protocol stack

stack for delivery to a user. 12. The method of claim 9, further comprising:

BNSDOCID: <EP:0B38EBOA2_l_>

284

Petitioner Apple Inc. - Exhibit 1002, p. 284

29 EP0838 930A2

processing data packets captured by said inter-
face for capturing packets from said local com-
munications protocol stack for transmission on
said virtual private network in a transmit data

' Path;

encrypting said data packets in an encryption
engine, within said transmit path;
encapsulating said encrypted data packets into
tunnel data frames by an encapsulation
engine, within said transmit path; and
passing said tunnel data frames back to said
local communications protocol stack for trans-
mission to a physical network adapter on said
remote server node, wherein said transmit path
further includes storing a digest value in a
digest field in each of said tunnel data frames.
said digest value equal to an output ot a keyed
hash function applied to said data packet
encapsulated within said tunnel data frame
concatenated with a counter value equal to a

total number of tunnel data lrames previously
transmitted to said remote server node.

13. The method ot claim 12, wherein said transmit path
further includes processing an Ethernet header in
each \one of said captured data packets, said
processing of said Ethernet header including
removing said Ethernet header.

The method of claim 9. further comprising captur-
ing received data packets from said remote server

node through an interface into a transport layer of
said local communications protocol stack, further
comprising:

processing received data packets captured by
said interface into said transport layer of said
local communications protocol stack for captur-
ing received data packets from said remote
server node in a receive path;
decapsulating said received data packets by
removing a tunnel frame header in an decapsu-
lation engine. within said receive path;
decrypting said received data packets in a
decryption engine within said receive path; and
passing said received data frames packets
back to said local communications protocol
stack for delivery to a user.

. The method of claim 9. wherein said network layer
address for said pseudo network adapter and said
predetermined, reserved physical address is corn-
municated to said pseudo network adapter from
said remote server node as client data in a connec-

tion response frame. .

ENSDOCID: <EP?DB38%0A2_l_>

285

Petitioner Apple Inc. - Exhibit 1002, p. 285

I._.<n_zo_mm_s_mz<E<554<:5<$2..~m_><._v._<o_m>:n_4<.o_w>:n_a$2..%;Sv2x2:55 .xz:«:3«$56090552..v2E0252éozfiz¥_o2E_zmm><._._ooo»oEmm_><._2.EOn_wZ<m.rEon_mz<EEon_mz<Emm><._Aoookomamm_><._zo_mmm_mzoammmzoammwmatsmm><._zocfizmmmmazocfizmmmwauuuuI:;||I:|:|Lunuunnnanunnlnllnlluulumm><u__._ooo5mn_zo:<o_._&<mm_><._zO_._.<o_._n_n_<zo:<o_._&<
Mm8m09

mmmoomammmoommoz_>_mommozazmm
BNSDXID: <EP____083B930A2_l‘>

286

Petitioner Apple Inc. - Exhibit 1002, p. 286

EP0838930A2

Qmm>mmm$223mmmmxmozcmz\m:<>_E
8

.:<>>mmI

on

om><._mm><._mEfizz?fizz?m_m<>>om<.._w2<mooEzo:<o_._&<
._._<2m=..__u_

<mmimm._m_zz2.2E0252\m:<>_E
9.

BNSDOCID‘ <EP___0B38%0A2_|_>

287

Petitioner Apple Inc. - Exhibit 1002, p. 287

EPO838930A2

ACTION NODE COMMUNICATION

7o ESTABLISH CONNECTION (TCP)

IDENTIFY DOWNSTREAM ROUTE

(RELAY FRAME)

74 ESTABLISH CONNECTION (TCP)

IDENTIFY DOWNSTREAM ROUTE

(RELAY FRAME)

ESTABLISH CONNECTION (TCP)

IDENTIFY DOWNSTREAM ROUTE

(RELAY FRAME)

BNSDOCID: <E P;O838930A2_|_>

288

Petitioner Apple Inc. - Exhibit 1002, p. 288

EP0838930A2

NODE COMMUNICATION

KEY EXC HANGEI

AUTHENTICATION REQUEST:

KEY EXCHANGEI

AUTHENTICATION RESPONSE

(REPEAT Ks NEEDED)

A—>B —>C—>D

FIG. 5

[FRAME LENGTH

TYPE = RELAY

PROTOCOL VERSION NUMBER

' ORIGIN INDEX

PATH INDEX 0

PATH INDEX 1

STRING BUFFER

SNSDOCID: <E P__O838930A2_I_>

289

Petitioner Apple Inc. - Exhibit 1002, p. 289

EPO83893OA2

STRING BUFFER

L

STRING BUFFER

Bnsoocna: <EP_oe3a9aoA2_u_>

290

Petitioner Apple Inc. - Exhibit 1002, p. 290

EP083893OA2

FKDATA
ms

PAD_LEN

ENCAPSULATED

DATAGRAM

(OPTIONALLY

ENCRYPTED)

OPTIONAL PADDING

BNSDQJID: <EP__0B3B%OA2_I_>

291

Petitioner Apple Inc. - Exhibit 1002, p. 291

EP0838930A2

TCP CONNECT

AUTHORIZED

(SEND + RCV DATA)

TCP DISCONNECT

ansoocuo; <EP__08389e0A2_I_>

292

Petitioner Apple Inc. - Exhibit 1002, p. 292

EPO838930A2

RCV REQUEST

223

AUTHORIZE

CONNECTION

NETWORKERROR
SEND RESPONSE

AUTHORIZED

RCV CLOSE (SEND + RCV DATA)

END SESSION BAD CRYPTO

SEND CLOSE

TCP DISCONNECT

ansoocno; <EP__0a38930A2_I_>

293

Petitioner Apple Inc. - Exhibit 1002, p. 293

EPO83893OA2

RCV TCP CONNECT

RECVRRQ

RCV RELAY

DETERMINE
FORWARDING

ADDRESS

240

FORWARDCONNECT

TCP CONNECT

FORWARD

(SEND + RCV ALL

FRAMES)

NETWORKERROR
OR

REMOTE CLOSE

BNSDOCID: <Eu=_oaaasaoA2_:_>

294

Petitioner Apple Inc. - Exhibit 1002, p. 294

fimsommv2<4mhszma

EE<n_<EE<a<E0252vaozfizj<2mm_“_xmozfizooamma._<0_w>In_ozmaa
mm>mm_m.m_zzE

MWm9

mmE<o<mmE<o<xmoznmzxmozcmz._<o_w>In_ooammasmEu.>m»zm_._o

SNSDOCID: <EP_oaee9aoA2_|_>

295

Petitioner Apple Inc. - Exhibit 1002, p. 295

EPO83893OA2

OTHER

OPERATING SYSTEM
FUNCTIONS

TC P/I P STAC K

263 270

VIRTUAL ADAPTER ARP SERVER EMULATOR
DRIVER DHCP SERVER EMULATOR

272

ENCAPSULATION DECAPSULATION 268

ENCRYPTSION DECRYPTION

‘ 266

262

PHYSICAL NET\NORK ADAPTER'S
DRIVER

BNSDOCIDI -:EP:O83893OA2_|_>

296

Petitioner Apple Inc. - Exhibit 1002, p. 296

EPO 838 930 A2

OPERATING SYSTEM

TCP/IP TCP/IP
TCP/IP STACK TRANSMIT RECEIVE

FUNCTION FUNCTION

286\TRANSM|TTED 234\ RECEIVED 312
ETHERNET PACKETS ETHERNET PACKETS

PSEUDO NETINORK—

VIRTUAL NETWORK ADAPTER ADAF’TE§02
(EMULATES AN ETHERNET DEVICE)

ARP AND DHCP

PACKETS

""'RIEo3§I‘I’E"""E
2
,-9-9-3-TRANSMIT----

PATH

DECRYPTION 'ARP SERVER
EMULATOR

DHCP SERVER
EMULATOR

DECAPSULATIONF===============

PHYSICAL

NETWORK ADAPTER

(SENDS AND RECEIVES
PACKETS ON

PHYSICAL NETWORK

3NsDocID. <EP_oa3assoA2_I_>

297

Petitioner Apple Inc. - Exhibit 1002, p. 297

EP083893OA2

THE PSEUDO ADAPTER CAUSES

THIS EVENT OCCURS WHEN THE Eggggfigg $(T)A19:ET£R:EOC:'VE A
TCP/IP STACK SENDS A PACKET TO

. DHCP MESSAGE IT TRANSMII IED,
T|_-‘E TUNNEL S WRTUAL LAN CAUSING THE STACK TO BEHAVE AS

320 IF A PHYSICAL ETHERNET EXISTED.
\

\ N ”'-__ n n
PSEUDO ADAPTER CATE RECEIVED

~- RESPONSE VIA

SEND ROUTWE PSEUDO ADAPTER

PROCESS ETHERNET 322
HEADER

326

324

GENERATE ARP

ARP PACKET ? RESPONSE

NO

330 332

GENERATE DHCP

DHCP PACKET ? RESPONSE

NO
334

ENCRYPT

336 -

ENCAPSUI-ATE THE PSEUDO ADAPTER CALLS
THE TCP/IP STACK TO TRANSMIT

THE ENCRYPTED MESSAGE AS
NORMAL DATA OVER A TCP/IP
CONNECTION.

SEND DATA VIA
TCP/IP STACK

FIG. 17

BNSDOCID; <EP__OB38930A2_l_>

298

Petitioner Apple Inc. - Exhibit 1002, p. 298

EP0838930A2

THIS EVENT OCCURS WHEN DATA
ARRIVEs FROM THE REMOTE END

OF THE TUNNEL'S TCPIIP '
‘ CONNECTION

TCPIIP RECEIVE EVENT

DECAPSULATE

DECRYPT

WHEN THE PSEUDOHADAPTER
INDICATES RECEIVED DATA, IT
CAUSES THE TCPIIP STACK TO

CONSTRUCT ETHERNET ' BEHAVE AS IF IT RECEIVED THE

PACKET I," DATA FROM A REAL ETHERNET
ADAPTER.

INDICATE RECEIVED
DATA THROUGH VIRTUAL NETWORK

ADAPTER INTERFACE

BNSDOCID: <EP:O838%OA2_|_>

299

Petitioner Apple Inc. - Exhibit 1002, p. 299

EPO 838 930 A2

TUNNEL

'{——--v APPLICATION
1I

SOCKETS
I 402

TCP LAYER WITHIN TCP/|P STACK

IP LAYER VVITHIN TCP/IP STACK

PHYSICAL A
PSEUDO NE'l'WORK

ADAPTER

PHYSICAL NETWORK

BNSDOCID: < EPZ083B£‘B0A2_l_>

300

Petitioner Apple Inc. - Exhibit 1002, p. 300

EPO838930A2

TUNNEL

APPLICATION

PHYSICAL
(PSEUDO

ADAPTER) NEEIQIIESK

BNSDOCID: <EP__oa3s9aoA2_I_>

301

Petitioner Apple Inc. - Exhibit 1002, p. 301

EP083893OA2

---------- -- PLAINTEXT

— — — ENCRYPTED

486

USER
DAEMON APPLICATION . --------_- PLAINTEXT

- ' — — L "ENCRYPTED
umx SOCKET . 5

LAYER

DATALINK ---

1 PHYSICAL

W
————- NE‘nNORK”“ 492

FIG. 22

BNSDOCID: -: EP___0B3B%0A2_|_>

302

Petitioner Apple Inc. - Exhibit 1002, p. 302

EPO 838 930 A2

TUNNEL APPLICATION PSEUDO NETWORK ADAPTER

SEND RELAY

SEND REQUEST

RECEIVE RESPONSE

PASS CLIENT ADAPTER

TO PSEUDO ADAPTER

A MODIFY ROUTING INDICATE ACTIVE

TABLE SO THAT ALL STATUS To STACK
NODES ON THE

VIRTUAL PRIVATE LAN

ARE REACHED

THROUGH THE RECEIVE DHCP

TUNNEL SERVER ‘ REQUEST FROM STACK
PSEUDO ADAPTER

IP ADDRESS

SEND DHCP RESPONSE

TO STACK

RECEIVE ARP REQUEST

FOR MAC ADDRESS

FOR TUNNEL SERVER

PSEUDO ADAPTER

IP ADDRESS

SEND ARP RESPONSE

BACK TO STACK

BNSDCXIID: <EP__0B3B§3DA2_l_>

303

Petitioner Apple Inc. - Exhibit 1002, p. 303

/0/p 5/3, 3 X3’

m.UK Patent Application (19lGB “.12 317 792 MA
(43) Date ofA Publication o1.o4.19ss

Application No 9119315.: (51) INT cl.“
H041. 9100

Date of Filing 17.09.1991
(52) UK CL (Edition P l

Priority Data mp PPEB
431) 0:115:43 (32) 1s.o9.1ss6 (33) us u1s s2124 szzos

oimssss 1a.o9.199a
(56) Documents Cited

wo 97I26735 A1 wo 97/zs-:34 A1 wo 97126731 A1
Avvlicamlsl wo 97/23972 A1 wo 97113340 A1 'Secure Computing Corporation

(58) Field of Search .

"n¢°ID°m°d in USA - D°'=W='°l UK CL (Edition P 1 my PDCSA PDCSC PPEB
INT cL° HML 9/00 9132 29/06 29/03

2575 Long Lake Road. Roseville, onlinm Wm’ |NspEcMinnesota 55113-2536, United States of America

lnventorlsl
Spence Minear
Edward B Stocltwell
Troy De Jongh

Agent and/or Address for Service
Berestord & Co
2-5 Warwick Court, High Holhorn. LONDON.
WC1R SDJ. United Kingdom

(54) Virtual Private Network for encrypted firewall

(57) A system (10) for regulating the flow of messages through a firewall (18) having a network protocol
stack, wherein the network protocol stack includes an Internet Protocol (IP) layer where it the message is not
encrypted, it passes the unencrypted message up the network protocol stack to an application level proxy (50).
and if the message is encrypted, it decrypts the message and passes the decrypted message up the network
protocol stack to the application level proxy. The step of decrypting the message includes the step of executing
a process at the IP layer to decrypt the message.

10

12 /

WORKSTATION WORKSTATION

VZBLLLSZ89
At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

BNSDOCID: <GB__2317792A_|_>

304

Petitioner Apple Inc. - Exhibit 1002, p. 304

m—.._._§n._E .._._§.m~Ew_.¢_.o_zo_._.<._.mv_mo>>zocéméoz

305

Petitioner Apple Inc. - Exhibit 1002, p. 305

._<zmEz_N...._<zmm._.xm
UMW

306

Petitioner Apple Inc. - Exhibit 1002, p. 306

.8.8...§

kdzza@.%8zm_8.2..B2o.o.:.~:

307

Petitioner Apple Inc. - Exhibit 1002, p. 307

ummmzazmmmzazm.vwoE§ogmoEEoBIm_o<&Hz_mzazmoaks
am.am.__

8%dzymxz_

_$3n=Flllll

m.#z._Eem.m:mm_xoE__fl

BNSDOCID: <GB__a17792A_|_>

308

Petitioner Apple Inc. - Exhibit 1002, p. 308

._._<;”.2_.._zo_._.<._.mxm_o3zozfimxmoz
nMervV‘In-.nII 'r:177ov)A I \

309

Petitioner Apple Inc. - Exhibit 1002, p. 309

BNSDOCID: <GB___231T792A_|_>

231 7792

VIRTUAL PRIVATE NETWORK on APPLICATION GATEWAY

Eielsl_o_£Ihs_ln1cmiQn

The present invention pertains generally to network communications, and

in particular to a system and method for securely transferring information

between firewalls over an unprotected netvmrk.

Easkzrnimdlnfennafinn

Firewalls have become an increasingly important part ofnetwork design.

Firewalls provide protection ofvaluable resources on a private network while

allowing communication and access with systems located on an unprotected

network such as the Internet. In addition, they operate to block attacks on a

private network arriving from the improtected network by providing a single

connection with limited services. A well designed firewall limits the security

problems of an Internet connection to a single firewall computer system. This

allows an organization to focus their network security cfibrts on the definition of

the security policy enforced by the firewall. An example ofa firewall is given in

“SYSTEM AND METHOD FOR PROVIDING SECURE INIERNETWORK

SERVICES” by Boebert et al. (‘PCT Published Applicafion No. W0 96/131 13,

published on May 2, 1996), the description ofwhich is hereby incorporated by

reference. Another description ofa firewall is provided by Dan Thomsen in

“Type Enforcement: the new security model", Proceedings: Mulfimedia: Full-

Service Impact on Business, Education. and the Home, SPlE Vol. 2617, p. 143.
August 1996. Yet another such system is described in “SYSTEM AND

METHOD FOR ACHIEVING NETWORK SEPARATION" by Goodemm et al.

(PCT Published Application No. W0 97/29413, published on August I4, 1997),

the description ofwhich is hereby incorporated by reference. All the above

systems are examples of application level gateways. Application level gateways

use proxies or other such mechanisms operating at the application layer to

process traffic through the firewall. As such, they can review not only the

310

Petitioner Apple Inc. - Exhibit 1002, p. 310

B\lCl\fV‘Ih-.l':D 00177095 I \

2

message trafic but also message content. In addition, they provide

authentication and identification services, access control and auditing.

Data to be transferred on unprotected networks like the Internet is

susceptible to electronic eavesdropping and accidental (or deliberate) corruption.

Although a firewall can protect data within a private network from attacks

launched from the unprotected network, even that data is vulnerable to both

eavesdropping and corruption when transferred from the private network to an

external machine. To address this danger, the Internet Engineering Task Force

(IETF) developed a standard for protecting data transferred between firewalls

over an unprotected network. The Internet Protocol Security (IPSEC) standard

calls for encrypting data before it leaves the first firewall, and then decrypting

thedatawhenitisreceivedbythesecondfirewall. Thedecrypteddataisthen

delivered to its destination, usually a user workstation connected to the second

firewall. For this reason IPSEC encryption is sometimes calledfirewall-too

firewall encnption (FFE) and the connection between a workstation connected

to the first firewall and a client or server connected to the second firewall is

termed a virtualprivate network, or VPN.

The two main components of IPSEC security are data encryption and

sender authentication. Data encryption increases the cost and time required for

the eavesdropping party to read the transmitted data. Sender authentication

ensures that the destination system can verify whether or not the encrypted data

was actually sentfi-ornthe workstationflaatitwas supposedtobesent from. The

IPSEC standard defines an encapsulated payload (ESP) as the mechanism used

to transfer encrypted data. The standard dcfins an authentication header (AH)

as the mechanism for establishing the sending workstation’s identity.

Through the proper use ofencryption, the problems of eavesdropping and

corruption can be avoided; in effect, a protected connection is established fiorn

the internal network connected to one firewall through to aninternal network

connected to the second firewall. In addition, IPSEC can be used to provide a

protected connection to an external computing system such as a portable

personal computer.

311

Petitioner Apple Inc. - Exhibit 1002, p. 311

higher than the IP layer more work is required to ensure that all supported

communication is properly protected. In addition, since IPSEC encryption is

handled below the Transport layer, IPSEC can encrypt data sent by any

application. IPSEC therefore becomes a transparent add-on to such protocols as
10 TCP and UDP.

Since, however, IPSEC decryption occurs at the IP layer, it can be

dificult to port IPSEC to an application level gateway while still maintaining
control at the proxy over authentication, message content, access control and

auditing. Although the IPSEC specification in RFC 1825 suggests the use of a

15 mandatory access control mechanism in a multi-level secure (MLS) network to

compare a security level associated with the message with the security level of

the receiving process, such an approach provides only limited utility in an

application level gateway environment. In fact, implementations on application

level gateways to date have simply relied on the fact that the message was

20 IPSBC-encrypted as assurance that the message is legitimate and have simply
decoded and forwarded the message to its destination. This creates. however, a

potential chink in the firewall by assuming that the encrypted communication
has access to all services.

What is needed is a method ofhandling IPSEC messages within an

25 application level gateway which overcomes the above deficiencies. The method

should allow control over access by an IPSEC connection to individual services
within the internal network.

 *@fim 4

The present invention is a system and method for regulating the flow of A
30 messages through a firewall having a network protocol stack, wherein the

network protocol stack includes an Internet Protocol (IP) layer, the method

BNSDOCID: <ee_2a17792A_|_>

312

Petitioner Apple Inc. - Exhibit 1002, p. 312

RN.¢hf1‘.Il'$- (GR 93I77.fi‘)A I >

4

comprising the steps ofdetermining, atthe 1}’ layer, ifa message is crypted. if

the message is not encrypted, passing the unenerypted message up the network

protocol stack to an application level proxy, and ifthe message is encrypted, .

decrypting the message and passing the decrypted message up the network

protocol stack to the application level proxy, wherein the step ofdecrypting the

message includes the step ofexecuting a procedure at the IP layer to decrypt the

message.

According to another aspect ofthe present invtion, a system and

method is described for authenticating the sender of a message within a

computer system having a network protocol stack, wherein the network protocol

stack includes an Internet Protocol (IP) layer, the method comprising the steps of

determining, attheIPlaycr,ifthemessageisencrypted, ifthemessage is

encrypted decrypting the message, wherein the step ofdecrypting the message

includes the step ofexecuting a procedure at the 11’ layer to decrypt the message,

pmsing the decrypted message up the network protocol stack to an application

‘ level proxy, determining an authentication protocol appropriate for the message,

and executing the authentication protocol to authenticate the sender ofthe

message.

E . En . . E I D .

In the following detailed description ofexample embodiments ofthe

invention, reference is made to the accompanying drawings which form a part

haeof. and which is shown by way ofillustration only. specific embodiments in

which the invention may be practiced. It is to be understood that other

embodiments may be utilized and structural changes may be made without

departing from the scope ofthe present invention.

In the drawings, where like numerals refer to like components throughout
the several views:

Figure 1 is a functional block diagram ofan application level gateway-

implernented firewall-to-firewall encryption scheme according to the present

invention;

313

Petitioner Apple Inc. - Exhibit 1002, p. 313

5

Figure 2 is a block diagram showing access control checking of both

encrypted and unencrypted messages in network protocol stack according to the
present invention;

Figure 3 is a block diagram ofa representative application level gateway-
implemented firewall-to-firewall encryption scheme;

Figure 4 is a block diagram ofone embodiment ofa network-separated
protocol stack implementing IPSEC according to the prest invention; and

Figure 5 is a functional block diagram ofa firewall-to-workstation

encryption schemc according to the present invention.

In the following detailed description ofthe preferred embodiment,

references made to the accompanying drawings which form a part hereof, and in

which is shown by way ofillustration specific preferred embodiments in which

the invention may be practiced. These embodiments are described in sufficient

detail to enable those skilled in the art to practice the invention. and it is to be

from the spirit and scope of the present invention. The following detailed

description is, therefore, not to be taken in a sense, and the scope of the

present invention is defined only by the appended claims and their equivalents.

A system 10 which can be used for firewall-to-firewall encryption (FFE)

is shown in Figure 1. In Figure 1, system 10 includes a workstation l2

communicating through afirewa1l14 to an unprotected network 16 such as the

lntemet. System 10 also includes a workstation 20 communicating through a
firewall 18 to unprotected network 16. In one embodiment, firewall 18 is an
application level gateway.

communication must pass through the 1!’ layer. IPSEC takes the standard

BNSDOCID: <GB_23|7792A__l_>

314

Petitioner Apple Inc. - Exhibit 1002, p. 314

6

Internet packet and converts it into a carrier packet. The carrier packet is

designed to do two things: to conceal the contents ofthe original packet

(encryption) and to provide a mechanism by which the receiving firewall can

verify the source ofthe packet (authentication). In one embodiment ofthe

present invention, each IPSEC carrier packet includes both an authentication

header used to authenticate the sending machine and an encapsulated payload

containing encrypted data. The authentication header and the encapsulated

payload features of IPSEC ‘can. however, be used independently. As required in

RFC 1825, DES-CBC is provided for use in encrypting the encapsulated payload

while the authentication header uses keyal MD5.

To use IPSEC, you must create a security association (SA) for each

destination IP address. In one embodiment, each SA contains the following

information:

— Security Parameters Index (SP1) - The index used to find a SA on

receipt ofan IPSEC datagram.

DestinationIPaddress-'I'headdressusedtofindtheSAand

trigger use of IPSEC processing on output.

The peer SP1 - The SPI value to put on a IPSBC datagrarn on

output.

'I'hepeerIP address-ThedestinationIPaddressto beput into the

packet header ifIPSEC Tunnel mode is used.

The Encryption Security Payload (ESP) algorithm to be used.

The ESP key to used for decryption ofinput datagrams.

The ESP key to used for encryption ofoutput datagrarns.

The authentication (AH) algorithrn to be

'l'heAHkeyto beusedforvalidationofinputpackets.

The AH key to be used for generation ofthc authentication data

for output datagrams.

The combination ofa given Security Parameter Index and Destination IP

address uniquely identifies a particular “Security Association." In one

BNSDOCID: <GB 2317792A I >

315

Petitioner Apple Inc. - Exhibit 1002, p. 315

BNSDOCID: <GB__23l7792A_l__>

7

embodiment, the sending firewall uses the sending userid and Destination

Address to select an appropriate Security Association (and hence SPI value).

The receiving firewall uses the combination of SPI value and Source address to

obtain the appropriate Security Association.

A security association is normally one-way. An authenticated

communications session between two firewalls will normally have two Security

Parameter Indexes in use (one in each direction). The combination of a

particular Security Parameter Index and a particular Destination Address

uniquely identifies the Security Association.

_ More information on the specifics ofan IPSEC 1-‘FE implementation can

be obtained fiom the standards developed by the IPSEC work group and

documented in Security Architecturejbr IP (RFC 1825) and in RI-‘C's 1826-
l 829.

When a datagram is received from unprotected network 16 or is to be

transmitted to a destination across unprotected network 16, the firewall must be

able to determine the algorithms, keys, etc. that must be used to process the

datagram correctly. In one embodiment, this information is obtained via a

security association loolcup. In one such embodiment, the lookup routine is

passed several arguments: the source IP address ifthe datagram is being received

fiomnetwork 16 orthedestinationlPaddress ifthe datagramistobetransnitted

across network 16, the SPL and a flag that is used to indicate whether the lookup

is being done to receive or transmit a datagram.

When an IPSBC datagram is received by firewall 18 fiom unprotected

network 16. the SP1 and source IP address are determined by looking in the

datagram. In one embodiment a Security Association Database (SADB) stored

withinfirewall 18 is searched forthe entrywith amanching SPI. In one such

embodiment, security associations can be set up based on network address as

well as a more granular host address. This allows the network administrator to

create a security association between two firewalls with only a couple of lines in

a configuration file on each machine. For such embodiments, the entry in the

Security Association Database that has both the matching SP1 and the longest

316

Petitioner Apple Inc. - Exhibit 1002, p. 316

address match is selected as the SA entry. In another such embodiment, each SA

has a prefix length value associated with the address. An address match on a SA»

entry means that the addresses match for the number ofbits specified by the

prefix length value.

Therearetwoexceptionstothis searchprocess. First. whenan SAentry

is setmarkedasbeingdynamicitirnpliesthattheuserofthisSAmaynothavea

fixed IP address. In this case the match is fully determined by the SP! value.

Thus it is necessary that the SP1 values for such SA entries be unique in the

SADB. The second exception is for SA entries marked as tunnel mode entries.

In this case it is normally the case that the sending entity will hide its source

address so that all that is visible on the public wire is the destination address. In

thiscase,likeinthecasewheretheSAentriesarefordynamicIPaddresses,the

search is done exclusively on the basis ofthe SPI.

When transmitting a datagrarn across unprotected network 16 the SADB

is searched using only the destination address as an input. In this case the entry

which has the longest address match is selected andreturned to the calling

routine.

In one embodiment, if firewall 18 receives datagrarns which are

identified as either an lP_PROT0_IPSEC‘BSP or IP_PROTO_IPSBC__AH

protocol datagram, there niust be a corresponding SA in the SADB or else

firewall 18 will drop the packet and an audit message will be generated. Such an

occurrence might indicate a possible attack or it might simply be a symptom of

an erroneous key entry in the Security Association Database.

In a system such as system 10, application level ‘gateway firewall l8 acts

as abufier unprotected network 16 and workstations such as

workstation 20. Messages coming from unprotected network 16 are reviewed

and a determination is made as to whether execution ofan authentication and

identificationprotocol is warranted. In eonn-ast to previoussystems, system 10

also performs this same determination on IPSEC-encrypted messages. If

desired, the same authentication and identification can be made on messages to

be transferred fiorn workstation 20 to unprotected network l6. Figure 2

317

Petitioner Apple Inc. - Exhibit 1002, p. 317

BNSDOCI D: <GB__&17792aL,l_>

9

illustrates one way of authenticating both encrypted and unencrypted messages

inasystcmsuchas system 10.

In the system ofFigure 2 a network protocol stack 40 includes a physical

layer 42, an Internet protocol (IP) layer 44, a Transport layer 46 and an

application layer 48. Such a protocol stack exists. for instance on application

leycl gateway firewall l8 omgure 1. An application executing in application

layer 48 can communicate to an application executing on another system by

preparing a message and transmitting it through one ofthe existing transport

services executing on transport layer 46. Transport layer 46 in tin-n uses a

process executing in IP layer 44 to continue the transfer. Physical layer 42

provides the sofiware needed to transfer data through the communication

hardware (e.g., a network interface card or a modern). As noted above, IPSEC

executes within IP layer 44. Encryption and authentication is transparent to the

host as long as the network administrator has the Security Association Database

_ correctly configured and a key management mechanism is in place on the
firewall.

In application level gateway firewall 18, aproxy 50 operating within

application layer 48 processes messages transferred between internal and

external networks. All network-to-network traflic must pass through one of the

proxies within application layer 48 before being the transfer across networks is

allowed. A message arriving fiom external network 16 is examined at IP layer

44 and an SADB is queried to determine if the source address and SP1 are

associated with on SA. In the embodiment shown in Figure 2, an SADB Master

copy 52 is maintained in persistent memory at application layer 48 while a copy

54 of SADB is maintained in volatile memory within the kernel. If the message

is supposed to be encrypted, the message is decrypted based on the algorithm

and key associated with the particular SA and the message is transferred up
through transport layer 46 to proxy 50. Proxy 50 examines the source and

destination addresses and the type ofservice desired and decides whether

authentication ofthe sender is warranted. Ifso, proxy 50 initiates an

authentication protocol. The protocol may be as simple as requesting a user

318

Petitioner Apple Inc. - Exhibit 1002, p. 318

10

name and password or it may include a challenge/response authentication

process. Proxy 50 also looks to see whether the message coming in was

encrypted or not and may factor that into whether a particular type of

authentication is needed. In Telnet, for instance, user name/password

authentication may be sufiicient for an I-‘FE link while the security policy may

dictate that a more stringent challengelresponse protocol is needed for

unencryptedlinks. Inthatcase,proxy50willbeaTe1netproxyanditwill base

its authentication protocol on whether the link was encrypted or not.

Since IPSEC executes within ll’ layer 44 there is no need for host

firewalls to update their applications. Users that already have IPSBC available

on their own host machine will. however, have to request that the firewall

administrator set up SA's in the SADB for their trafic.

In the embodiment shown in Figure 2, a working copy 54 of the Security

Association Database consisting ofall currently active SA’: is kept resident in

memory for ready access by IP layer processing as datagrams are received and

transmitted. In addition, a working master copy 52 ofthe SADB is maintained

in a file in nonvolatile memory. During system startup and initialization

processing the content ofall of the required SA_'s in master SADB S2 is added to

the working copy 54 stored in kernel memory.

In one embodiment, firewall 18 maintains difiercnt levels of security on

internal and external network interfaces. It is desirable for a firewall to have

dificrcnt levels of security on both the internal and external interfaces. In one

embodiment. firewall 18 supports three dificrent levels, numbered 0 through 2.

These levels provide a simple policy mechanism that controls permission for

both in-bound and out-bound packets.

- Level 0 - do not allow any in-bound or out-bound traffic unless there is a

security association between the source and destination.

319

Petitioner Apple Inc. - Exhibit 1002, p. 319

BNSDOCID: <GB__2317792A_I_>

ll

- Level 1 - Allow both in-bound and out-bound non-IPSEC ttaffic but

force the use of IPSEC ifa SA exists for the address. (T0 support this firewall

18 must look for 1: SA for each in-bound datagram.)

- Level 2 - allow NULL security associations to exist. NULL associations

are just like normal security associations, except no encryption or authentication

transform is performed on in-bound or out-bound packets that correspond to this

NULL association. Mth Level 2 enabled, the machine will still receive

unprotected trarfic. but it will not transmit unless Level 1 is enabled.

The default protection level established when the Security Association

Database (SADB) is initialized at boot time is I for in-bound trafic and 2 for

out-bound traflic.

An Access Control List,‘ or ACL, is a list of rules that regulate the flow of

Internet connections through a firewall. These rules control how a firewalls

servers and proxies will react to connection attempts. When a server or proxy

receives an incoming connection, it performs an ACL check on that connection.

AnACLchcckcornpares asetofparametersassoeiatedwiththe

connection against a list ofAC1. rules. The rules determine whether the

connection is allowed or denied. A rule can also have one or more side efiects.

A side efiect causes the proxy to change its behavior in some fashion. For

example, a common side effect is to redirect the destination IP address to an

alternate machine- In addition to IP connection attempts, ACL checks can also

made on the console logins and on logins made from serial ports. Finally, ACL

checks cart also be made on behalfof I? access devices, such as a Cisco box,

through the use of the industry standard TACACS+ protocol.

In one embodiment, the ACL is managed‘ by an acid daemon running in

the kernel of firewalls l0 and 30. The acid daemon receives two types of

requests, one to query the ACL and one to administer it. In one such

embodiment. the ACL is stored in a relational database such as the Oracle

database for fast access. By using such a database, query execution is '

asynchronous and many queries can be executing concurrently. In addition,

these types ofdatabases are designed to manipulate long lists ofrules quickly

320

Petitioner Apple Inc. - Exhibit 1002, p. 320

ENSDOCID: <GB 2317792A I >

12

and efiiciently. These qualities ensure that a given query cannot hang up the

process that issued the query for any appreciable time (> 1-2 seconds).

In one such embodiment, the database can hold up to 100,000 users and

up to 10,000 hosts but can be scaled up to the capacity ofthc underlying

database engine. The results ofan ACL check is cached, allowing repeated

checks to be turned around very quickly.

Applications on firewalls 10 and 30 can query acld to determine ifa

giv connection attempt should be allowed to succeed. In one embodiment, the

types ofapplications (i.e. “agents") that can make ACL queries can be divided

into four classes:

1) Proxies. These allow connections to pass through firewall 10 or 30 in

order to provide access to a remote service. They include tnauthp

(authenticated telnet proxy). pfip (FTP proxy). lmpp (HTYP proxy). and

tcpgsp (TCP generic service proxy).

Servers. These provide a service on the firewall itself. They include ftpd

and httpd.

Login agents. Login agent is a program on the firewall that can create a

Unix shell. It is not considered a server because it cannot receive IP

connections. One example is lusrlbin/login when used to create a dialup

session or a console session on firewall 10 or 30. Another example is the

command rrole.

Network Access Servers (NAS). NAS is a remote IP access device,

typically a dialup box manufactured by such companies as Cisco or

Bridge. The NAS usually provides dialup telnet service and may also

provide SLIP or PPP service.

Proxies, servers, log'n agents, and NASes make queries to acid to

determine ifa given connection attempt should be allowed to succeed. All ofthe

agents except NAS make their queries directly. NAS, became it is remote, must

communicate via an auxiliary daemon that typically uses an industry standard

protocol such as RADIUS or 'l'ACACS+. The auxiliary daemon (e.g., tacr-add)

in turn forwards the query to local acld.

321

Petitioner Apple Inc. - Exhibit 1002, p. 321

BNSDOCID: <GB__2317792A_|,>

13

As a side efiect ofthe query, acld tells the agent ifauthentication is

needed. If no authentication is needed, the connection proceeds immediately.

Otherwise acld provides (83 another side effect) a list ofallowed authentication

methods that the user can choose fiorn. The agent can present a menu of choices

or simply pick the first authentication method by default. Typical authentication

methods include plain password. SNK DSS, SDI SecurID, LOCKout DES. and

LOCKout FORTEZZA. In one embodiment, the list of allowed authentication

methods varies depending on the host name. user name. time ofday, or any

combination thereof.

In the case of a Level 0 policy, it would be safe to assume that all

incoming trafic is encrypted or authenticated. In the case ofLevels 1 through 2,

a determination must be made whether or not a security association exists for a

given peer. Otherwise an application may believe that in-bound trafic has been

authenticated when it really has not. (That is why it is necessary to look for an

SA on input ofeach non-IPSEC datagram.)

In one embodiment. a flag which accompanies the message as it is sent

from IP layer 44 to proxy 50 indicates whether the incoming message was or was

not encrypted. In another embodiment, proxy S0 accesses Security Association

Database 54 (the table in the kernel can be queried via an SADB routing socket

(PF-SA.DB)) to determine whether or not a security association exists for a given

peer- The SADB socket is much like a routing socket found in the stock BSD

4.4 kernel (protocol family PF-ROUTE) except that PF-SADB sockets are used

to maintain the Security Association Database (SADB) instead of the routing

table. Because the private keys used for encryption, decryption, and keyed

authentication are stored in this table, access must be strictly prohibited and

allowed to only administrators and key management daemons. Care must be

taken when allowing user-level daemons access to /dev/mem or /dev/kmem

as well, since the keys are stored in kernel memory and could be exposed with

some creative hacking.

In one embodiment, a command-line tool called sadb is used to support

the generation and maintenance of in—kemel version 54 ofSADB. The primary

322

Petitioner Apple Inc. - Exhibit 1002, p. 322

I4

interface betwe this tool and the SADB is the PF-SADB socket. The kernel

provides socket processing to receive client requests to add, update, or change

entries in in-kernel SADB 54. As noted above, the default protection level

established when the Security Association Database (SADB) is initialized at boot

time is I for in-bound trafic and 2 for out-bound trafie. This may be changed

by the use ofthe eadb command.

The existing sadb command was derived fiom the NIST implementation

of IPSEC. As noted above, this tool is much like route in that it uses a special

socket to pass data structures in and out ofthe kernel. There are three commands

recognized by the sadb command: get, set, delete. The following simple shell

script supports adding and removing a single SA entry to SADB 54. It shows

one embodiment ofa parameter order for adding a SA to the SADB.

I /bin/ah

if [$# -ne 1 I
then

echo "usage: $0 <on>|<off>" >&2
exit 1

fi

ONOFF-$1

addaa ()

{
IPADDRESS=$2
PEERADDRESS-O . 0 . O . O

PREPIXLEN-O # Num of bits, 0 => full 32

bit: match

LOCALADDRESS-0.0.0.0

RBA.LADDR.ESS=-0.0.0.0

PORT=0

PROTOCOL=o

UID-O

DESALG=1 # I a DES-CBC

IVLEN-4 # bytes
DESKEY=ObOb0bObOb0bObOb

DEs1<nn.£:N=-8 # bytes
AI-IALGe1 # 1 = MD5

AHKEY=30313233343536373031323334353637

AHKEYLENu16 # bytes

40 LOCAL_SPI=$1

BNSDOCID: <GB___2317792A_|__>

323

Petitioner Apple Inc. - Exhibit 1002, p. 323

BNSDOCID: <GB_23IT792A_|_>

PEER_SPI=$1

TUNNEL_MODE=O
AHRESULTLEN=4

CDMINED_MODE=1
AK; 0 - AH, then asp

DYNAMIC_FLAG-0

on output. 1 = ESP, then

if ["$ONOFF“ = "on"
then

./sadb add dst $IPADDRESS $PREFIxLEN $LoCAL_SPI
SUID SPBERADDRESS $PEER_SPI $TUNNBL_MODE SLOCALADDRESS

SREALADDRESS $1>Ro'rocoL SPORT $DESALG $IVLEN SDESKEYLEN

SDESKBY $DESI<.E:YLEN SDESKEY $111-IALG SAHKEYLEN SAHKBY

$A]-IKEYLEN $A1-IKEY $1-EIRESULTLEN $CoMBIN'ED_—MODE
$DYNAMIC_FLAG
else

./sadb delete dst SIPADDRESS $LOCAL-SPI
fi

T }

Get down to work:

addsa 500 172.17.128.115 # number6.sctc.com

The current status of in-kernel SADB 54 can be obtained with the sadb

command. The get option allows dumping the entire SADB or a single entry. In

one embodiment, the complete dump approach uses /dev/kmem to find the

information. The information may be presented as follows:

sadb get dat

Local-SPI Address-Family Destination-Addr

Pref1x_1ength UID A

Peer—Adc1reas Peer-SPI Transport-Type
Local -Address Real -Address
Protocol Port:

ESP_A1g_ID ESB_IVEC_Length

EsP_Enc__Key_1ength ESP_Bnc__ESP_Key
E$P_Dec_Key__1engt:h ESP_Dec_I-.‘.SP_Key

AH_A1g_ID AH_Data_Length '

AI-I_Gen_Key_Length AH_Gen_I<ey

AI-l_Check__Key_Length AH_Check__Key
Combined_Mode Dynamic__l-"lag

324

Petitioner Apple Inc. - Exhibit 1002, p. 324

RNR|"IY‘.lI'): <GR ?.'I17792A I >

500 INET: number6.sctc.com O 0

0.0.0.0 500 Transportiol 0
0.0.0.0 0.0.0.0

None None

DES/CBC-RI-‘C1829(1) 4

8 0b0b0b0bObOb0b0b

8 obobobobobobobob

MD5-RFC1828(1) 4

16 30313233343536373031323334353637

16 30313233343536373031323334353637

ESP+AH(1) 0

501 INET: spokes.sctc.com 0 0

0.0.0.0 501 '1'ransport(O) 0
0.0.0.0.0.0.0.0

None None

DES/CBC-RFC1829(1) -1
8 Ob0b0b0b0b0bOb0b

B 0bObOb0b0b0bOb0b

MDS-RFCl828(1) 4
16 3031323334353637303l323334353637

16 303l3233343536373031323334353637

ESP+AH (1) 0

End of list.

When a new entry is added to in-kernel SADB 54, the add process first

checks to see thatno existing entry will match the values provided in the new

entry. lino match is found then the entry is added to the end ofthe existing

SADB list.

To illustratetheuseandadminisu'ationofanFFB.we‘ll gothmughan

example using FEB 70 in Figure 3. Firewalls 14 and is are both application

level gateway firewalls implemented according to the pxesent invention.

Workstations H2 and H3 both want to comtmmicate with I-Il. For the

administrator offirewalls 14 and18. this is easy to accomplish. The

administrator sets up a line something like this (we'll onlylshow the IP address

pan and SPIpa1ts of the SA, since they're the triekiest values to configure. Also,

assume that we are using nmncl mode):

Hypothetical SW1 Config File

325

Petitioner Apple Inc. - Exhibit 1002, p. 325

BNSDOCID: <GB_%17792A__l_>

17

#

Fields are laid out in the following manner:

arcaddrorneta 1ocalSPI= peeradd.r- peers!-"Is:

realsrcaddra 1oca1addr= key-

The following entry sets up a tunnel between hosts
behind SW1

and hosts behind SW2.

src=172.16.o.o loca1sPI-666 peer=192.16B.100.5

peerSPI-777 \
realsrcaddr--«192 . 168 . 100 . 5 loca1ad.drs=0 . 0 . 0 . 0

keyeoxdeadbeeffadebabe

Hypothetical SW2 Configl-‘ile

Fields are laid out in the following manner:

srcaddrornetn 1ocalSPI= peeraddra peerSPI.=

realsrcaddra localaddrn key:

The following entry/sets up a tunnel between hosts
behind SW1 and

hosts behind SW2.

src=172.l7.0.0 IOCEISPIS777 peer=192.168.20.1

peerSPI-666 \

realsrcaddr=192.168.2o.1 1ocaladdr=0.0.0-o \

keyaoxdeadbeeffadebabe

With this setup, all tramc is encrypted using one key, no matter who is

talking towhom. For exampletramcfroml-l2toI-llaswicllastmfic fioml-I3

to H1 will be encrypted with one key. Although this setup is small and simple, it

may not be enough. I

Whathappens ifH2 cannotttustl-I3? Inthiscas'e,the administrator can

set up security associations at the host level. In this case, we have to rely on the

SP1 field ofthe SA, since the receiving firewall cannot tell from the datagram

header which host behind the sending firewall sent the packet. Since the SP1 is

stored in IPSEC datagrams, we can do a lookup to obtain its value. Below are

the sample configuration files for both firewalls again, but this time. each host

combination communicates with a diflerent key. Moreover, I-I2 excludes H3

fi-om communications with H], and H3 excludes H2 in the same way.

326

Petitioner Apple Inc. - Exhibit 1002, p. 326

l8

Hypothetical SW1 Config File
#

Fields are laid out in the following manner:

srcaddrornet= loca1SPI= peeraddr- peersPI=

realsrcaddr= localaddr= key=

The following entry sets up a secure link between H2
and H1

src—172.l6.0.2 loca1SPI=666 peer=192.168.100.5

peerSPI=777 \ "
realsrcaddr=192.168.100.5

loca1addzs=l78.l7.l28.71 \

key=oxOa0aOaoa0aoaoaOa

The following entry sets up a secure link between H3
and H1

src-172.16.0.l 1oca1SPI=5S5 peer-192.16B.lO0.S

peerSPI=888 \ '
realsrcaddr=192.16B.100.S

localaddrs-178.17.123.71 \

key=Ox0bOb0bObObObObOb

Hypothetical SW2 Config File
#

Fields are laid out in the following manner:
srcaddrorneta localSPI= peeraddr= peerSPIu
realsrcaddre localaddrn key=

The following entry sets up a secure link between H2
and H1

src=172.17.12B.71 1ocalSPI=777 peer-192.168.2o.1

peerSPI=666 \
realsrcaddr-l92.168.2o.1 localaddrs=172.16.o.2 \

keyzoxoaoaoaoaoaoaoaoa

The following entry sets up a secure link oetween H3
and H1 V

src=172.17.l28.71 1ocalSPI=a88 peer=192.168.2D.1

peerSPI-555 \
realsrcaddr=l92.l68.20.1 1oca1addrs—172.l6.0.1 \

key=OxObOb0b0bOb0b0bOb

Figure 4 is a block diagram showing in more detail one embodiment of

an IPSEC-enabled application level gateway firewall 1 8. Application level

gateway firewall 18 provides access control checking ofboth encrypted and

327

Petitioner Apple Inc. - Exhibit 1002, p. 327

BNSDOCID: <GB__231779%__l_>

19

uncnctypted messages in a more secure environment due to its network-

separated architecmre. Network separation divides a system into a set of

independent regions or burbs, with a domain and a protocol stack assigned to

each burb. Each protocol stack 40x has its own independent set of data

structures, including routing information and protocol information. A given

socket will be bound to a single protocol stack at creation time and no data can

pass between protocol stacks 40 without going through proxy space. A proxy 50

therefore acts as the go-between for transfers between domains. Because ofthis,

a malicious attacker who gains control of one ofthe regions is prevented from

being able to compromise processes executing in other regions. Network

separation and its application to an application level gateway is described in

“SYSTEM AND METHOD FOR ACHIEVING NETWORK SEPARATION",

U.S. Application No. 08/599,232. filed February 9, 1996 by Gooderum et al.

In the system shown in Figure 4, the in-botmd and out-bound datagrarn

processing of a security association continues to follow the conventions defined

by the network separation model. 'lhus all datagrarns received on or sent to a

given burb remain in that burb once decrypted. In one such embodiment SADB

socket 78 has been defined to have the type ‘sadb’. Each proxy 50 that requires

access to SADB socket 78 to execute its query as to whether the received

message was encrypted must have create permission to the sadb type.

The following is list ofspecific requirements that a system such as is

shown in Figure 4 must provide. Many ofthe requirements were discussed in

the infonnstzion provided earlier in this document.

1. Firewall applications may query the IPSEC subsystem to determine if

trafficwithagivenaddressisguaranteedtobeencrypted.

Receipt of an unencrypted datagram from an address that has 3 SA results

in the datagram being dropped and an audit message being generated.

On receipt of encrypted protocol datagrams the SADB searches will be

done using the SP1 as the primary key. The source address will a

secondary key. The SA returned by the search will be the SA which

matches the SP1 exactly and has the longest match with the address.

328

Petitioner Apple Inc. - Exhibit 1002, p. 328

20

A searchofthe SADB forasflthatfindsancntrythatisrnarkedas SA

for a dynamic IP will not consider the address in the search process. _

Asearchofthe SADB forasmthatfindsancntrythatismarked asaSA

for a tunnel mode connection will to consider the address if it is (0.0.0.0)

i.e INADDR.

On receipt ofa non-IPSEC datagram the SADB will be searched for an

entry that matches the src address. If a SA is found the datagram will be

dropped and an audit message sent.

SADB searches on output will be done using the DST address as key. If

more than one SA entry in the SADB has that address the first one with

the maximurnaddressmatchwillberenuned.

The SADB mustbcstructurcd sothatsearchesarefastregardless ifthe

search is done by SP1 or by address.

The SADB must provide support for connections to a site with a fixed

SPI but changing IP address. SA entries for such connections will be

referred to as Dynamic Address Sites, or just Dynamic entries.

When a dynamic entry is found by a SPI search. the current datagmnfs

SRC address, which is required to ensure that the return datagrams are

properly encrypted, will be recorded in the SA only afier the AH

an outgoing connection to be transmitted in the clear.) ‘

A failure ofan Al-I check on a dynamic entry results in an audit message.

In an embodiment whcrethefirewall rcquircsthat all connectionsuse

both AH and ESP, on receipt the order should be A]-I first ESP second.

The processing structure on both input and output should try to

the number of SADB required lookups. '

Returning to Figure 4, in one embodiment firewall 18 includes a crypto

engine interface 80 used to encrypt an IPSEC payload. Crypto engine interface

80 may be connected to a sofiware encryption engine 82 or to a hardware

329

Petitioner Apple Inc. - Exhibit 1002, p. 329

BNSDOCl D: <GB_2'317792A_I_>

21

encryption engine 84. Engines 82 and 84 perform the actual encryption function

using, for example, DES-CBC. in addition, sofiware encryption engine 82 may

include the keyed MDS algorithm used for AH.

In one embodiment, crypto engine interface 80 is a utility which provides

a consistent interface between the software and hardware encryption engines. As

shown in Figure 4, in one such embodiment interface 80 only supports the use of

processing steps.

The required information is stored in a request structure that is bound to

the IP datagrarn being processed. The request is of type crypt:o_request__t.

' This structure is quite large and definitely does not contain a minimum state set.

In addition to the definition of the request data structure, this software

implementing interface 80 provides two fitnctions which isolate the decision of

.which cryptographic engine to use. The cr-ypt:_des_encrypt fimction is for

use by the IP output processing to encrypt a datagram. The

crypt:_des_decrypt: function is for use by the IP input processing to

decrypt a datagrarn. Ifhardware encryption engine 84 is present and other

hardware usage criteria are met the request is enqueued on a hardware processing

queue and a return code indicating that the cryptographic processing is in

progress is returned. Ifsofiware engine 82 is used, the return code indicates that

the cryptographic processing is complete. In the former case, thcicontinuation of

the IP processing is delayed until afler hardware encryption is done. Otherwise

it is completed us immediately in the same processing stream.

There are two software cryptographic engines 82 provided in the IPSEC

software. One provides the MD5 algorithm used by the IPSEC AH processing,

and the other provides the DES algorithm used by the IPSEC ESP processing.

This software can be obtained from the US Government IPSEC implementation.

330

Petitioner Apple Inc. - Exhibit 1002, p. 330

nucrvvstrvxen an1'l'ra)A in

22

In one embodiment hardware cryptographic engine 84 is provided by a

Cylink SafeNodc processing board. The interface to this hardware card is
provided by the Cylink device driver. A significant aspect ofthe Cylink card
thatplays arnajorpart inthe design ofthe IPSEC Cylinlt driver is thatthe card
functions much like a low level subroutine interface and requires software

support to each processing step.\Thus to encrypt or decrypt an individual
datagram there are a rninimtmr of two steps, one to set the DES initialization
vector and one to do the encryption. Since the IP processing can not suspend

itself and wait while the hardware completes and then be rescheduled by the

hardware interrupt handler, in one embodiment a finite state machine is med to

tie sequences ofhardware processing elernts together. In one such
embodiment the interrupt handler looks at the current state, executes a defined

after state function, transitions to the state and then executes that state‘: start

function.

One function, cy1_enqueue__request:, is used to either an

encrypt or a decrypt action. This function is designed to be called by
cryptographic engine interface 80. All of the information required to initiate the

A system 30 which can be used for firewall—to-workstation encryption is
shown in Figure 5. In Figure 5, system 30 includes a workstation l2

communicating through a firewall 14 to anunprotectednetwork 16 such as the
Internet. System 30 also includes a workstation 32 cornmunicaling directly with
firewall 14 through unprotected network 16. Firewall 14 is an application level

gateway incorporating IPSBC handling as described above. (It should be noted
that IPSEC security cannot be used to authenticate the personal identity ofthe

sender for a firewall to firewall transfer. When IPSEC is used, however, on a

30 single user machine such as a portable personal computer, IPSEC usage should

331

Petitioner Apple Inc. - Exhibit 1002, p. 331

73

be protected with a personal identification ntnnber (PIN). In these cases IPSEC
can be used to help with user identification to the firewall.)

According to the IPSEC RFC’s, you can use either tunnel or transport

mode with this embodiment based on your security needs. In certain situations,

5 the communications must be sent in tunnel mode to hide unregistered addresses.

Although specific embodiments have been illustrated and described

herein, it will be appreciated by those of ordinaxy skill in the art that any

arrangement which is calculated to achieve the same purpose may be substituted
for the specific embodiment shown. This application is intended to cover any

adaptations or variations of the present invention. Therefore, it is intended that
this invention be limited only by the claims and the equivalents thereof.

3NSDOCI D: <GB__231fi92A_I_>

332

Petitioner Apple Inc. - Exhibit 1002, p. 332

nm:nrv‘.In-Jen 932177091: re

What is claimed is:

1. A method ofregulating the flow ofmessages through a firewall having a
network protocol stack. wherein the network protocol stack includes an Internet

5 Protocol (IP) layer, the method comprising the steps of:
determining, at the IP layer, if a message is encrypted;
if the message is not encrypted. passing the unencrypted message up the

network protocol stack to an application level proxy; and
if the message is encrypted, decrypting the message and passing the

10 decrypted message up the network protocol stack to die application level proxy,
wherein the step ofdecrypting the message includes the step ofexecuting a

procedure at the IP layer to decrypt the message.

2. A method ofauthenticating the sender ofa message within a computer
etwotk protocol stack, wherein the network protocol stack

15 system having a 1:

includes an Internet Protocol (IP) layer, the method comprising the steps of:
determining, at the IP layer, it’ the message is encrypted;
if the message is encrypted, decrypting the message, wherein the step of

process at the IP layer todecrypting the message includes the step of executing a

20 decrypt the message;

passing the decrypted message up the network protocol stack to an

application level proxy;
an authentication protocol appropriate for the message; and

3. The method according to claim 2 wherein the step ofdetermining an
authentication protocol appropriate for the message includes the steps of:

determining a source IP address associated with the message; and
determining the authentication protocol usociated with the source IP

address.

333

Petitioner Apple Inc. - Exhibit 1002, p. 333

25

4. The method according to claim 2 wherein the message includes security

parameters index and wherein the step ofdetermining an authentication protocol
appropriate for the message includes the steps of:

determining the authentication protocol associated with a dynamic IP

address, wherein the step of determining the authentication protocol includes the
step of looldng up a security association based on the security parameters index;

determining a current address usociated with the dynamic source IP

5

address; and

binding the current address to the secur'rty parameters index.

A firewall, comprising:

a first communications interface;

a second communications interface;

a network protocol stack connected to the first and the second

15 communications interfaces, wherein the network protocol stack includes an

Internet Protocol (IP) layer and a transport layer;

a decryption procedure, operating at the IP layer, wherein the decryption

decrypts encrypted messages received at one of said first and secondprocedure

communications interfaces and outputs decrypted messages; and

20 a proxy, connected to the transport layer of said network protocol stack.
wherein the proxy receives decrypted messages from the decryption procedure

and executes an authentication protocol based on the content of the decrypted

message.

A firewall, comprising:

a first communications interface;

a second communications interface;

a first network protocol stack connected to the first communications

interface, wherein the first network protocol stack includes an Internet Protocol

30 (IP) layer and a transport layer;

BNSDQCID: <ea__2s177s2A_|_>

334

Petitioner Apple Inc. - Exhibit 1002, p. 334

DMEl'Y'\t‘.ll'b AEII

26

a second network protocol stack connected to the second

communications interface, wherein the second network protocol stack includes
an Internet Protocol (IP) layer and a transport layer;

a decryption procedure, operating at the IP layer ofthe first network

protocol stack, the decryption procedure receiving encrypted messages received
by said first communications interface and outputting decrypted messages; and

a proxy, connected to the transport layers of said first and second network

The firewall according to claim 6 wherein the firewall further includes:

a third communications interface; and V

a third network protocol stack connected to the third cornrmmications
interface and to the proxy, wherein the third network protocol stack includes an
Internet Protocol (IP) layer and a transport layer and wherein the second and

third network protocol stacks are restricted to first and second burbs,

respectively.

_ 20 8. A method ofestablishing a virtual private network between a first and a
second network, wherein each network includes an application level gateway

firewall which uses a proxy operating at the application layer to process traffic

through the firewall, wherein each firewall includes a network protocol stack and
wherein each network protocol stack includes an Internet Protocol (IP) layer, the

25 method comprising the steps of:

tnnsferring a connection request from the first network to the second

network;

determining, at the IP layer ofthe network protocol stack ofthe second

network's firewall, if the connection request is encrypted;

335

Petitioner Apple Inc. - Exhibit 1002, p. 335

BNSDOCID. <GB_23177g2A_|_>

27

ifthe connection request is encrypted, decrypting the request, wherein the

step of decrypting the request includes the step of executing a procedure at the IP
layer ofthe second network's firewall to decrypt the message;

pusing the connection request up the network protocol stack to an

application level proxy;

determining an authentication protocol appropriate for the connection

request;

executing the authentication protocol to authenticate the connection

request; and

if the connection request is authentic, establishing an active connection

between the first and second networks.

9. The method according to claim 8 wherein the step of executing the

authentication protocol includes the step ofexecuting program code within the .

firewall ofthe second network to mimic a challengelresponse protocol executing

on a server internal to the second network.

10. The method according to claim 8 wherein the step ofexecuting the

authentication protocol includes the step of executing program code to execute

the authentication protocol in line to the session.

11. Themethodaccordingtoclairn8whereinthestepofdeterminingan

authentication protocol includes the step ofdetermining ifthe connection request

arrived encrypted and selecting the authentication protocol based on whether the

connection request was encrypted or not encrypted.

336

Petitioner Apple Inc. - Exhibit 1002, p. 336

Patéii
Oifice

2.2

Application No: GB 9719816.2 Examiner: B.J.SPEAR
Claims searched: 1-11 Date of search: 21 January 1998

Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, W0 & US patent specifications, in:

UK Cl (Ed.P): H4P (PPEB,PDCSA,PDCSC)

Int Cl (Ed.6): H04L 9/00, 9/32, 29/06, 29/08

Other: Online:WP1, INSPEC

Documents considered to be relevant:

Ct-16:00! Identity of document and relevant passage Relevantto claims

XP W097/26734A1 (Raptor Systems) Whole document, eg Figs 1,3 and

pages 6-12

W097/2673lA1 (Raptor Systems) Whole document, eg Figs 1,3 and

. pages 7-12

W097/26735A1 (Raptor Systems) Whole document, eg Figs 1,3

and pages 4-10

W097/23972A1 (V-ONE Corp) Whole document, eg Figs 1,2 and
claim 1.

W097/1334OA1 (Digital Secured Networks) Whole document, eg

’ pages 7-13

Document indicating lack of novelty or inventive step Docurnen technological background andlor state of the art.
Document indicating lack of inventive step if combined Document published on or alter the declared priority date but before
with one or more other docuntertu of same category. the filing date of this invention.

Potent document published on or alter, but with priority date earlier
Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of'I'rade and Industry

337

Petitioner Apple Inc. - Exhibit 1002, p. 337

PATENT APPLICATION

IN THE UNITE?’ STATES PATENT AND TRADEMARK OFFICE ‘:5 E E
. at ‘

Group An Unit: 2152 (V (] 2>7(f>
In re Application of

Edmond Colby MUNGER et al.

Examiner: Unassigned

Serial No.: 10/259,494

Atty..Dkt. No. 000479.00082

RECEIVED

Improvement To An Agile JUN 26 2003
Network Protocol For Secure

Communications With Assured Technmogy Cgntef 2100
S stem Availabili

Filed: September 30, 2002

REQUEST TO CORRECT INVENTORSHIP

Commissioner of Patents

P.O. Box 1450

Alexandria, VA 22313

- Pursuant to 37 C.F.R. § 1.48 (b), Applicants hereby request correction of inventorship ofthe

above-captioned application as follows:

Delete inventor Douglas Charles Schmidt.

REMARKS

The present application is a divisional application of09/504,783 (the ‘783 application), now U.S.

Pat 6,502,135, issued December 31, 2002 (the ‘135 patent). During prosecution of the ‘783

application, the Office issued a restriction requirement. At least some claims directed to inventor

Schmidt’s invention were elected in the ‘783 application that issued as the ‘ 135 patent, however, his

invention is not claimed in the cancelled claims of the ‘783 application that are being pursued in the

present application.

338

Petitioner Apple Inc. - Exhibit 1002, p. 338

Application No. 10/082,164

The Office is hereby authorized to charge any required fee for this Request To Correct

Inventorship to the undersigx1ed?s‘]5eposit Account No. 19-0733. If the Examiner has any questions,

the examiner is requested to contact the undersigned at (202) 824-3153.

Respectfully submitted,

BANNER & WITCOFF, LTD.

fiA‘::£Q/=-
Ross A. Darmenberg

Reg. No. 49,024

1001 G Street, N.W.

Washington, D.C. 20001-4597

(202) 824-3000

339

Petitioner Apple Inc. - Exhibit 1002, p. 339

_ Q3‘? «W3 :2.
‘ PTOISBIZ1 (08-00)

«’ Please type a plus sign (+) inside this box -9 Approved for use through 10/31/2002: OMB 0651-0031U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE........._

P Under the Papenrvork Reduction Act of 1995. no persons are required to respond to a collection of information unless it displays a valid OMB control number.a

W :;TRANSM'TTAL

E Assignment Papers D After Allowance Communication to‘ F . ,
8 Fee Transmittal onn “Oren Apphcamm) Group

E! Fee Attached D Drawing(s)

[:1 Amendment/ Response D Licensing-related Papers

[:1 After Final |:| Petition

D Petition to Convert to a
El Affidavits/declaration(s) provisiona| Appncauon [3 Status Letter

_ _ D Power of Attorney, Revocation g other Enclosurem
[1 E’“°"5'°“ °i T"'"° Request Change of Correspondence Address (#9859 ,-dam,-fy bemw):

D Tenninal Disclaimer
D Express Abandonment Request

El Request for Refund

D lnfonnation Disclosure Statement D co_ Number or (;[)(5)

D Certified Copy of Priority

Document(s) 2 6
El Response to Missing Parts!

Incomplete Application

El Response to MissingParts under 37 CFR
1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT
Firm

or Ross A. Dannenberg, Reg. No. 49,024
Individual name -

4’ i

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope

addressed to: Assistant Commissioner for Patents. Washington, D.C. 20231 on this date:l
Typed or printed name

Technology Center 2100

Signature

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any
comments on the amount of time you are required to complete this form should be send to the Chief Information Oflicer, U.S. Patent and Trademark
Ofiice. Washington. DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner tor
Patents. Washington. DC 20231.

340

Petitioner Apple Inc. - Exhibit 1002, p. 340

search Text
encrypt$ same channel USPAT; 2004/02/22US-PGPUB

(encrypt$ same channel) and secure same USPAT; 2004/O2/22
communication US—PGPUB

((encrypt$ same channel) and secure same USPAT; 2004/02/22
communication) and DNS US-PGPUB
(((encrypt$ same channel) and secure same USPAT; 2004/02/22
communication) and DNS) and authoriz$ same US—PGPUB
access$
((((encrypt$ same channel) and secure same USPAT; 2004/02/22
communication) find DNS) and authoriz$ same US—PGPUB
access$) and proxy same server
(((((encrypt$ same channel) and secure USPAT; 2004/02/22
same communication) and DNS) and authoriz$ US—PGPUB
same access$) and proxy same server) and
client and target
((((((encrypt$ same channel) and secure USPAT; 2004/O2/22
same communication) and DNS) and authoriz$ US—PGPUB
same access$) and proxy same server) and
client and target) and DNS same request

Search History 2/22/04 1:35:35 PM Page 1
C:\APPs\EAST\Workspaces\Default EAST Workspace (Flat Panel).wsp

341

Petitioner Apple Inc. - Exhibit 1002, p. 341

Search Text Time stamp
("661B761").PN. USPAT; 2004/06/18

US-PGPUB

encrypts same channel USPAT; 2004/06/18
US-PGPUB

(encrypt$ same channel) and DNS USPAT; 2004/06/18
US-PGPUB

((encrypt$ same channel) and DNS) and USPAT; 2004/06/18
client and server US-PGPUB

(((encrypt$ same channel) and DNS) and USPAT; 2004/O6/18
client and server) and authoriz$ same US-PGPUB
access$
(((((encrypt$ same channel) and DNS) and USPATI 2004/06/18
client and server) and authoriz$ same US-PGPUB
access$) and DNS same request) and
establish$ same encrypt$ same channel
((((encrypt$ same channel) and DNS) and USPAT; 2004/06/18
client and server) and authoriz$ same US-PGPUB
access$) and DNS same request

Search History 6718704 12:05:09 PM Page 1
C:\APPs\EAsT\workspaces\Default EAST Workspace (Flat Panel).wsp

342

Petitioner Apple Inc. - Exhibit 1002, p. 342

67
UNITED STATES DEPARTMENT OF COMMERCE
United Slates Patent and Trademark Ol'l'lce
Address: COMMISSIONER FOR PATENTS

PO. Box I450
Alexandria. Virginia 22313-1450www.usplo,gov

APPLICATION NO. FILING DATE FIRST NAMED INVENTOR ATTORNEY DOCKET NO. CONFIRMATION NO.

10/259,494 09/30/2002 Edmund Colby Munger 00047900082 5257

UNITED STATES PATENT AND TRADEMARK OFFICE

22907 7590 oe/24rzoo4 - EXAMINER

BANNER & WITCOFF LIM. KRISNA
1001 G STREET N W

1 ART UNIT PAPER NUMBER
WASHINGTON, DC 2000] 2153

DATE MAILED: 06/24/2004

Please find below and/or attached an Office communication concerning this application or proceeding.

PTO-90C (Rev. 10/03)

343

Petitioner Apple Inc. - Exhibit 1002, p. 343

Application No. S’ Applicant(s)

10/259.494 MUNGER ET AL.

Office Action Summary Examine, M Unit

Krisna Lim 2153

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE Q MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event. however, may a reply be timely filed
after SIX (6) MONTHS from the mailing date of this communication.

- If the period for reply specified above is less than thirty (30) days. a reply within the statutory minimum of thirty (30) days will be considered timely.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).

Any reply received by the Otfice later than three months after the mailing date of this communication, even if timely filed, may reduce any
earned patent tenn adjustment. See 37 CFR 1.T04(b).

Status

1)E] Responsive to communication(s) filed on

2a)D This action is FINAL. 2b)E] This action is non-final.

3)D Since this application is in condition for allowance except for formal matters, prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11. 453 O.G. 213.

Disposition of Claims

4)EI Claim(s) ii is/are pending in the application.

4a) Of the above claim(s)j is/are withdrawn from consideration.

5)[:I Claim(s)_ is/are allowed.

6)EI Claim(s) 1—_20is/are rejected.

7)|:l Claim(s) __ is/are objected to.

8)[:I Claim(s)_are subject to restriction and/or election requirement.

Application Papers

9)D The specification is objected to by the Examiner.

10)lj The drawing(s) filed on_ is/are: a)l:] accepted or b)[] objected to by the Examiner.

Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11)E] The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)E] Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)l:] All b)[:l Some * c)l] None of:

LC] Certified copies of the priority documents have been received.

2.I:l Certified copies of the priority documents have been received in Application No. __

3.E] Copies of the certified copies of the priority documents have been received in this National Stage

application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) IX] Notice of References Cited (PTO-892) 4) I] Interview Summary (PTO—413)
2) D Notice of Drattsperson's Patent Drawing Review (PTO-948) Paper Nols)/Mail Date-_.
3) E Information Disclosure s te ent(s) (PTO-1449 or PTO/SB/08) 5) Cl Notice of Informal PatentAr>plication (PTO-152)

Paper No(s)IMail Date fifzzyo 9 6) I] Other: .
U.S. Patent and Tradermrk Office

PTOL-326 (Rev. 1-04) Office Action Summary Part of Paper No./Mail Date 4

344

Petitioner Apple Inc. - Exhibit 1002, p. 344

1

4
"\Application/Control Number: 10/259,494

Art Unit: 2153

Claims 1-20 are presented for examination.

2. The title of the invention is neither descriptive nor precise. A new title is required

which should include, using twenty words or fewer, claimed features that differentiate

the invention from the Prior Art. The title should reflect the gist of or the improvement

of the present invention.

The disclosure is objected to because of the following informalities:

(a) On page 1, the text of the first paragraph should be updated with the current

status of the cited applications such as U.S. Patent Application Serial No., a filing date,

U.S. Patent No., and the issued date. Appropriate correction is required.

4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set

forth in section 102 of this title, if the differences between the subject matter sought to be patented and

the prior art are such that the subject matter as a whole would have been obvious at the time the

invention was made to a person having ordinary skill in the art to which said subject matter pertains.

Patentability shall not be negatived by the manner in which the invention was made.

5. Claims 1-20 are rejected under 35 U.S.C. § 103(a) as being unpatentable over

Strentzsch et al. [U.S. Patent No. 6,256,671].

6. Strentzsch et al. disclose (e.g., see Figs. 1-7) the invention substantially as

claimed. Taking claim 1, 3 and 6 as an exemplary claims, the reference discloses a

method for establishing an encrypted channel between a client and a target computer (if

a source is allowed to access a host corresponding to the host name, then providing the

address to the source, col. 14, lines 18-21), comprising the steps of: I) intercepting a

DNS request sent by the client (e.g., see 505 of Fig. 5, col. 5, line 55, to col. 8, line 60);

ii) based on the DNS request, establishing the encrypted channel between the client

and the target (e.g., see 510 to 530 of Fig. 5, col. 5, line 55, to col. 8, line 60).

345

Petitioner Apple Inc. - Exhibit 1002, p. 345

.

\ ..x. 0
""App|ication/Control Number: 10/259,494

Art Unit: 2153

7. While Strentzsch discloses: a) a more secure wa to control access b the user

to host (target) systems on the network; b) typical access control programs indicate to

the user that, due to the access management setting, the user is prevented from

accessing the desired host system; and c) a network access control for returning

address to the source after checking to make sure that the user is allowed to access the

host, checking whether or not the IP address corresponding to the received host name

can be located and checking whether or not the user allowed to access IP address

(e.g., see col. 1, line 28, to col. 2, line 11), Strentzsch does not explicitly mention the

term "establishing the encgypted channel between the client and the target.” It would

have been obvious to one of ordinary skill in the art at the time the invention was made

to recognize that in order to control access by the user to the host in a secure way the

communication channel between the client (user) and the target (host) must be

encrypted. Moreover, such encryption feature is a well-known feature in the art (e.g.,

see any computer dictionary for the definition).

8. As to claim 2, Strentzsch et al. disclose the steps of: a) determining whether the

client is authorized to access the target (e.g., see 510 to 530 of Fig. 5, col. 5, line 55, to

col. 8, line 60); b) when the client is authorized to access the target, initiating the

encrypted channel (see paragraph 7 above for the teaching of encryption feature); and

c) when the client is not authorized to access the target, sending an error message to

the client (e.g., see 510 to 530 of Fig. 5, col. 5, line 55, to col. 8, line 60).

9. As to claim 5, Strentzsch et al. disclose the step of a DNS proxy server (160)

intercepting the DNS request sent by the client (e.g., see 510 to 530 of Fig. 5, col. 5,

line 55, to col. 8, line 60).

10. Claims 7-20 are similar in scope as of claims 1-6, and therefore claims 7-20 are

rejected for the same reasons set forth above for claims 1-6.

346

Petitioner Apple Inc. - Exhibit 1002, p. 346

“Application/Control Number: 10/259,494
Art Unit: 2153

11. The prior art made of record and not relied upon is considered pertinent to

applicant's disclosure.

The references are cited in the Form PTO-892 for the applicant's review.

A shortened statutory period for response to this action is set to expire 3 (three)

months and 0 (zero) days from the mail date of this letter. Failure to respond within the

period for response will result in ABANDONMENT of the application (see 35 U.S.C 133,

M.P.E.P 710.02, 710.02(b)).

Any inquiry concerning this communication or earlier communications from the
examiner should be directed to Examiner Krisna Lim whose telephone number is (703)

305-9672. The examiner can normally be reached on Monday-Friday from 7:30 to 5.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's

supervisor, Mr. Glenton Burgess, can be reached at (703)305-4772. The fax phone

number for the organization where this application or proceeding is assigned is (703)

872-9306

Any inquiry of a general nature or relating to the status of this application or

proceeding should be directed to the receptionist whose telephone number is 703-305-
9700

Communications via Internet e-mail regarding this application, other than those

under 35 U.S.C. 132 or which othenivise require a signature, may be used by the

applicant and should be addressed to [glen.burgess@uspto.gov].

All Internet e-mail communication will be made of record in the application file.

PTO employees do not engage in Internet communications where there exists a

possibility that sensitive information could be identified or exchanged unless the record

includes a properly signed express waiver of the confidentiality requirement of 35

U.S.C. 122. This is more clearly set forth in the Interim Internet Usage Policy published

in the Office Gazette of the Patent and Trademark on February 25, 1997 at 1195 0G
89.

kl

June 22, 2004

347

Petitioner Apple Inc. - Exhibit 1002, p. 347

Application/Control No. A Appiicant(s)/Patent Under
J ,. Reexamination

10/259494 MUNGER ET AL.

Examiner Art Unit

u.s.’ PATENT DOCUMENTS

G
H

FOREIGN PATENT DOCUMENTS

Document Number Date _ _

Country Oode~Number—Kind Code MM-YYYY C'a5S'"°3t'°”

‘A copy of this reference is not being furnished with this Office action. (See MPEP§ 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.
U.S. Patent and Trademark Office

PTO-892 (Rev. 01-2001) Notice of References Cited Part of Paper No. 4

348

Petitioner Apple Inc. - Exhibit 1002, p. 348

PTO-I449 (Modified)

US. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE APPLICANT

Edmond Colby Munger et al.

INFORMATION DISCLOSURE STATEMENT
BY APPLICANT FILING DATE GROUP ART UNIT

September 30, 2002 2153

U.S. PATENT DOCUMENTS

EXAMINER DOCUMENT - SUB FILING
INITIAL NUMBER DATE NAME CLASS CLASS DATE

FOREIGN PATENT DOCUMENTS

EXAMINER DOCUMENT SUB
INITIAL NUMBER DATE COUNTRY CLASS CLASS

/ 0 838 930 4/29/98

P. Srisuresh et aI., “DNS extensions to Network address Translators (DNS_ALG)“, INTERNET DRAFT, July 1998, pages

James E. Bellaire, “New Statement of Rules — Naming Internet Domains”, lntemet Newsgroup, July 30, 1995, 1 page

August Bequai, “Balancing Legal Concerns Over Crime and Security in Cyberspace", Computer & Security, Vol. I7, No.4,
1998, pages 293«298
Rich Winkel, “CAQ: Networking With Spooks: The NET & The Control Of Information", Internet Newsgroup, June 21,
I997, 4 pages

DATECONSIDERED 3 /0 3(/
EXAMINER: Initial citation ifreference was considered, Draw line through citation if not in conform nce to MPEP 609 and not considered.
Include copy ofthis form with next communication to applicant.

349

Petitioner Apple Inc. - Exhibit 1002, p. 349

Sheet 3 of _3

PTO— I449 (Modified) ATTY. DOCKET NO. SERIAL NUMBER
000479.00082 DIV of 09/504.783

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE APPLICANT

Edmond.Colby Munger et al.

INFORMATION DISCLOSURE STATEMENT
BY APPLICANT FILING DATE GROUP ART UNIT

September 30, 2002 2153

U.S. PATENT DOCUMENTS

EXAMINER DOCUMENT SUB FILING
INITIAL NUMBER DATE NAME CLASS CLASS DATE

FOREIGN PATENT DOCUMENTS

EXAMINER DOCUMENT sun T“*;‘,§_,L,:f,'°"INITIAL NUMBER DATE COUNTRY CLASS CLASS

' I99 24 575 I2/2/99 DE
’ V’

H— omssg mm '‘l—
I? womma mm m—

OTHER DOCUMENTS Includin Author, Title, Date, Pertinent Pa es, Etc.

Ta Search Report (dated 6/18/02), International Application No. PCT/USOI/13260
Search Report (dated 6/28/02), International Application No. PCT/USOI/13261

Donald E. Eastlake, “Domain Name System Security Extensions”. DNS Security Working Group, April 1998,51 pages

D. B. Chapman et 211., “Building Internet Firewalls", November 1995, pages 278-297 and pages 351-375

-P. Srisuresh et al., “DNS extensions to Network Address Translators”, July I998, 27 pages

EXAMINER: Initial citation ifreference was considered. Draw line through citation if not in conformance to MPEP 609 and not considered.
Include copy ofthis form with next communication to applicant.

350

Petitioner Apple Inc. - Exhibit 1002, p. 350

Sheet A of_3

PTO-I449 (Modified)

U.S. DEPARTMENT OF COMMERCE
PATENT AND TRADEMARK OFFICE APPLICANT

Edmond Colby Munger et al.

INFORMATION DISCLOSURE STATEMENT
BY APPLICANT FILING DATE GROUP ART UNIT

September 30, 2002 2153

U.S. PATENT DOCUMENTS

womsosss mm Q'Z—
. . ‘V

wogsswo :2/some“-
womssos WAl_—CT

WO 99 3808| PCT

OTHER DOCUMENTS

Search Report (dated 8/20/02), lntemational Application No. PCT/USOI/04340

//O Shree Murthy et aI., “Congestion-Oriented Shortest Multipath Routing“, Proceedings of I.EEE INFOCOM, 1996, pagesI028-I036

.6 Jim Jones et aI., “Distributed Denial of Service Attacks: Defenses“, Global Integrity Corporation, 2000, pages I-I4

I FASBENDER, KESDOGAN, and KUBITZ: “Variable and Scalable Security: Protection of Location Information in
Mobile IP", lEEl_5_EubIication, 1996, pages 963-967

EXAMINER: Initial citation if reference was considered. Draw line through citation ifnot in conformance to MPEP 609 and not considered.
Include copy of this form with next communication to applicant‘

351

Petitioner Apple Inc. - Exhibit 1002, p. 351

Appln. No.: 10/259,494
Amendment dated September 13, 2004

1y to Office Action of June 24, 2004

o\ P E ‘[0,.a

PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

Group Art Unit: 2153

Edmund Colby MUNGER et al.
Examiner: Krisna Lim

Serial No.: 10/259,494

Atty. Dkt. No. 000479.00082

Filed: September 30, 2002

RECEIVED

SEP 1 6 2004

Technology Center 2100

For: Establishment of a Secure

Communication Link Based on

a Domain Name Service

(DNS) Request (As Amended)

AMENDMENT

U.S. Patent and Trademark Office

220 20”‘ Street s.
Customer Window

Crystal Plaza Two, Lobby, Room 1B03

Arlington, VA 22202

Sir:

In response to the Office Action mailed June 24, 2004, please amend the instant

application as follows:

Amendments to the Specification begin on page 2 of this paper.

Amendments to the Claims are reflected in the Listing of Claims, which begins on page 3 of

this paper.

Remarks/Arguments begin on page 9 of this paper.

It is believed that no fee is required for this submission. If any fees are required or if an

overpayment is made, the Commissioner is authorized to debit or credit our Deposit Account No.

19-0733, accordingly.

09/14/2004AADlJFO1 ooooo1o119o733 10259494

01 FC:120E' 252. 00 DA

352

Petitioner Apple Inc. - Exhibit 1002, p. 352

353

Petitioner Apple Inc. - Exhibit 1002, p. 353

354

Petitioner Apple Inc. - Exhibit 1002, p. 354

355

Petitioner Apple Inc. - Exhibit 1002, p. 355

356

Petitioner Apple Inc. - Exhibit 1002, p. 356

357

Petitioner Apple Inc. - Exhibit 1002, p. 357

358

Petitioner Apple Inc. - Exhibit 1002, p. 358

359

Petitioner Apple Inc. - Exhibit 1002, p. 359

360

Petitioner Apple Inc. - Exhibit 1002, p. 360

361

Petitioner Apple Inc. - Exhibit 1002, p. 361

362

Petitioner Apple Inc. - Exhibit 1002, p. 362

363

Petitioner Apple Inc. - Exhibit 1002, p. 363

364

Petitioner Apple Inc. - Exhibit 1002, p. 364

365

Petitioner Apple Inc. - Exhibit 1002, p. 365

366

Petitioner Apple Inc. - Exhibit 1002, p. 366

367

Petitioner Apple Inc. - Exhibit 1002, p. 367

368

Petitioner Apple Inc. - Exhibit 1002, p. 368

369

Petitioner Apple Inc. - Exhibit 1002, p. 369

370

Petitioner Apple Inc. - Exhibit 1002, p. 370

371

Petitioner Apple Inc. - Exhibit 1002, p. 371

372

Petitioner Apple Inc. - Exhibit 1002, p. 372

373

Petitioner Apple Inc. - Exhibit 1002, p. 373

374

Petitioner Apple Inc. - Exhibit 1002, p. 374

375

Petitioner Apple Inc. - Exhibit 1002, p. 375

376

Petitioner Apple Inc. - Exhibit 1002, p. 376

377

Petitioner Apple Inc. - Exhibit 1002, p. 377

378

Petitioner Apple Inc. - Exhibit 1002, p. 378

379

Petitioner Apple Inc. - Exhibit 1002, p. 379

380

Petitioner Apple Inc. - Exhibit 1002, p. 380

381

Petitioner Apple Inc. - Exhibit 1002, p. 381

382

Petitioner Apple Inc. - Exhibit 1002, p. 382

383

Petitioner Apple Inc. - Exhibit 1002, p. 383

384

Petitioner Apple Inc. - Exhibit 1002, p. 384

385

Petitioner Apple Inc. - Exhibit 1002, p. 385

386

Petitioner Apple Inc. - Exhibit 1002, p. 386

387

Petitioner Apple Inc. - Exhibit 1002, p. 387

388

Petitioner Apple Inc. - Exhibit 1002, p. 388

389

Petitioner Apple Inc. - Exhibit 1002, p. 389

390

Petitioner Apple Inc. - Exhibit 1002, p. 390

391

Petitioner Apple Inc. - Exhibit 1002, p. 391

392

Petitioner Apple Inc. - Exhibit 1002, p. 392

393

Petitioner Apple Inc. - Exhibit 1002, p. 393

394

Petitioner Apple Inc. - Exhibit 1002, p. 394

395

Petitioner Apple Inc. - Exhibit 1002, p. 395

396

Petitioner Apple Inc. - Exhibit 1002, p. 396

397

Petitioner Apple Inc. - Exhibit 1002, p. 397

398

Petitioner Apple Inc. - Exhibit 1002, p. 398

399

Petitioner Apple Inc. - Exhibit 1002, p. 399

400

Petitioner Apple Inc. - Exhibit 1002, p. 400

401

Petitioner Apple Inc. - Exhibit 1002, p. 401

402

Petitioner Apple Inc. - Exhibit 1002, p. 402

403

Petitioner Apple Inc. - Exhibit 1002, p. 403

404

Petitioner Apple Inc. - Exhibit 1002, p. 404

405

Petitioner Apple Inc. - Exhibit 1002, p. 405

406

Petitioner Apple Inc. - Exhibit 1002, p. 406

407

Petitioner Apple Inc. - Exhibit 1002, p. 407

408

Petitioner Apple Inc. - Exhibit 1002, p. 408

409

Petitioner Apple Inc. - Exhibit 1002, p. 409

410

Petitioner Apple Inc. - Exhibit 1002, p. 410

411

Petitioner Apple Inc. - Exhibit 1002, p. 411

412

Petitioner Apple Inc. - Exhibit 1002, p. 412

413

Petitioner Apple Inc. - Exhibit 1002, p. 413

414

Petitioner Apple Inc. - Exhibit 1002, p. 414

415

Petitioner Apple Inc. - Exhibit 1002, p. 415

416

Petitioner Apple Inc. - Exhibit 1002, p. 416

417

Petitioner Apple Inc. - Exhibit 1002, p. 417

418

Petitioner Apple Inc. - Exhibit 1002, p. 418

419

Petitioner Apple Inc. - Exhibit 1002, p. 419

420

Petitioner Apple Inc. - Exhibit 1002, p. 420

421

Petitioner Apple Inc. - Exhibit 1002, p. 421

422

Petitioner Apple Inc. - Exhibit 1002, p. 422

423

Petitioner Apple Inc. - Exhibit 1002, p. 423

424

Petitioner Apple Inc. - Exhibit 1002, p. 424

425

Petitioner Apple Inc. - Exhibit 1002, p. 425

426

Petitioner Apple Inc. - Exhibit 1002, p. 426

427

Petitioner Apple Inc. - Exhibit 1002, p. 427

428

Petitioner Apple Inc. - Exhibit 1002, p. 428

429

Petitioner Apple Inc. - Exhibit 1002, p. 429

430

Petitioner Apple Inc. - Exhibit 1002, p. 430

431

Petitioner Apple Inc. - Exhibit 1002, p. 431

432

Petitioner Apple Inc. - Exhibit 1002, p. 432

433

Petitioner Apple Inc. - Exhibit 1002, p. 433

434

Petitioner Apple Inc. - Exhibit 1002, p. 434

435

Petitioner Apple Inc. - Exhibit 1002, p. 435

436

Petitioner Apple Inc. - Exhibit 1002, p. 436

437

Petitioner Apple Inc. - Exhibit 1002, p. 437

438

Petitioner Apple Inc. - Exhibit 1002, p. 438

439

Petitioner Apple Inc. - Exhibit 1002, p. 439

440

Petitioner Apple Inc. - Exhibit 1002, p. 440

441

Petitioner Apple Inc. - Exhibit 1002, p. 441

442

Petitioner Apple Inc. - Exhibit 1002, p. 442

443

Petitioner Apple Inc. - Exhibit 1002, p. 443

444

Petitioner Apple Inc. - Exhibit 1002, p. 444

445

Petitioner Apple Inc. - Exhibit 1002, p. 445

446

Petitioner Apple Inc. - Exhibit 1002, p. 446

447

Petitioner Apple Inc. - Exhibit 1002, p. 447

448

Petitioner Apple Inc. - Exhibit 1002, p. 448

449

Petitioner Apple Inc. - Exhibit 1002, p. 449

450

Petitioner Apple Inc. - Exhibit 1002, p. 450

451

Petitioner Apple Inc. - Exhibit 1002, p. 451

452

Petitioner Apple Inc. - Exhibit 1002, p. 452

453

Petitioner Apple Inc. - Exhibit 1002, p. 453

454

Petitioner Apple Inc. - Exhibit 1002, p. 454

455

Petitioner Apple Inc. - Exhibit 1002, p. 455

456

Petitioner Apple Inc. - Exhibit 1002, p. 456

457

Petitioner Apple Inc. - Exhibit 1002, p. 457

458

Petitioner Apple Inc. - Exhibit 1002, p. 458

459

Petitioner Apple Inc. - Exhibit 1002, p. 459

460

Petitioner Apple Inc. - Exhibit 1002, p. 460

461

Petitioner Apple Inc. - Exhibit 1002, p. 461

462

Petitioner Apple Inc. - Exhibit 1002, p. 462

463

Petitioner Apple Inc. - Exhibit 1002, p. 463

464

Petitioner Apple Inc. - Exhibit 1002, p. 464

465

Petitioner Apple Inc. - Exhibit 1002, p. 465

466

Petitioner Apple Inc. - Exhibit 1002, p. 466

467

Petitioner Apple Inc. - Exhibit 1002, p. 467

468

Petitioner Apple Inc. - Exhibit 1002, p. 468

469

Petitioner Apple Inc. - Exhibit 1002, p. 469

470

Petitioner Apple Inc. - Exhibit 1002, p. 470

471

Petitioner Apple Inc. - Exhibit 1002, p. 471

472

Petitioner Apple Inc. - Exhibit 1002, p. 472

473

Petitioner Apple Inc. - Exhibit 1002, p. 473

474

Petitioner Apple Inc. - Exhibit 1002, p. 474

475

Petitioner Apple Inc. - Exhibit 1002, p. 475

476

Petitioner Apple Inc. - Exhibit 1002, p. 476

477

Petitioner Apple Inc. - Exhibit 1002, p. 477

478

Petitioner Apple Inc. - Exhibit 1002, p. 478

479

Petitioner Apple Inc. - Exhibit 1002, p. 479

480

Petitioner Apple Inc. - Exhibit 1002, p. 480

481

Petitioner Apple Inc. - Exhibit 1002, p. 481

482

Petitioner Apple Inc. - Exhibit 1002, p. 482

483

Petitioner Apple Inc. - Exhibit 1002, p. 483

484

Petitioner Apple Inc. - Exhibit 1002, p. 484

485

Petitioner Apple Inc. - Exhibit 1002, p. 485

486

Petitioner Apple Inc. - Exhibit 1002, p. 486

487

Petitioner Apple Inc. - Exhibit 1002, p. 487

488

Petitioner Apple Inc. - Exhibit 1002, p. 488

489

Petitioner Apple Inc. - Exhibit 1002, p. 489

490

Petitioner Apple Inc. - Exhibit 1002, p. 490

491

Petitioner Apple Inc. - Exhibit 1002, p. 491

492

Petitioner Apple Inc. - Exhibit 1002, p. 492

493

Petitioner Apple Inc. - Exhibit 1002, p. 493

494

Petitioner Apple Inc. - Exhibit 1002, p. 494

495

Petitioner Apple Inc. - Exhibit 1002, p. 495

496

Petitioner Apple Inc. - Exhibit 1002, p. 496

497

Petitioner Apple Inc. - Exhibit 1002, p. 497

498

Petitioner Apple Inc. - Exhibit 1002, p. 498

499

Petitioner Apple Inc. - Exhibit 1002, p. 499

500

Petitioner Apple Inc. - Exhibit 1002, p. 500

501

Petitioner Apple Inc. - Exhibit 1002, p. 501

502

Petitioner Apple Inc. - Exhibit 1002, p. 502

503

Petitioner Apple Inc. - Exhibit 1002, p. 503

504

Petitioner Apple Inc. - Exhibit 1002, p. 504

505

Petitioner Apple Inc. - Exhibit 1002, p. 505

506

Petitioner Apple Inc. - Exhibit 1002, p. 506

507

Petitioner Apple Inc. - Exhibit 1002, p. 507

508

Petitioner Apple Inc. - Exhibit 1002, p. 508

509

Petitioner Apple Inc. - Exhibit 1002, p. 509

510

Petitioner Apple Inc. - Exhibit 1002, p. 510

511

Petitioner Apple Inc. - Exhibit 1002, p. 511

512

Petitioner Apple Inc. - Exhibit 1002, p. 512

513

Petitioner Apple Inc. - Exhibit 1002, p. 513

514

Petitioner Apple Inc. - Exhibit 1002, p. 514

515

Petitioner Apple Inc. - Exhibit 1002, p. 515

516

Petitioner Apple Inc. - Exhibit 1002, p. 516

517

Petitioner Apple Inc. - Exhibit 1002, p. 517

518

Petitioner Apple Inc. - Exhibit 1002, p. 518

519

Petitioner Apple Inc. - Exhibit 1002, p. 519

520

Petitioner Apple Inc. - Exhibit 1002, p. 520

521

Petitioner Apple Inc. - Exhibit 1002, p. 521

522

Petitioner Apple Inc. - Exhibit 1002, p. 522

523

Petitioner Apple Inc. - Exhibit 1002, p. 523

524

Petitioner Apple Inc. - Exhibit 1002, p. 524

525

Petitioner Apple Inc. - Exhibit 1002, p. 525

526

Petitioner Apple Inc. - Exhibit 1002, p. 526

527

Petitioner Apple Inc. - Exhibit 1002, p. 527

528

Petitioner Apple Inc. - Exhibit 1002, p. 528

529

Petitioner Apple Inc. - Exhibit 1002, p. 529

530

Petitioner Apple Inc. - Exhibit 1002, p. 530

531

Petitioner Apple Inc. - Exhibit 1002, p. 531

532

Petitioner Apple Inc. - Exhibit 1002, p. 532

533

Petitioner Apple Inc. - Exhibit 1002, p. 533

534

Petitioner Apple Inc. - Exhibit 1002, p. 534

535

Petitioner Apple Inc. - Exhibit 1002, p. 535

536

Petitioner Apple Inc. - Exhibit 1002, p. 536

537

Petitioner Apple Inc. - Exhibit 1002, p. 537

538

Petitioner Apple Inc. - Exhibit 1002, p. 538

539

Petitioner Apple Inc. - Exhibit 1002, p. 539

540

Petitioner Apple Inc. - Exhibit 1002, p. 540

541

Petitioner Apple Inc. - Exhibit 1002, p. 541

542

Petitioner Apple Inc. - Exhibit 1002, p. 542

543

Petitioner Apple Inc. - Exhibit 1002, p. 543

544

Petitioner Apple Inc. - Exhibit 1002, p. 544

545

Petitioner Apple Inc. - Exhibit 1002, p. 545

546

Petitioner Apple Inc. - Exhibit 1002, p. 546

547

Petitioner Apple Inc. - Exhibit 1002, p. 547

548

Petitioner Apple Inc. - Exhibit 1002, p. 548

549

Petitioner Apple Inc. - Exhibit 1002, p. 549

550

Petitioner Apple Inc. - Exhibit 1002, p. 550

551

Petitioner Apple Inc. - Exhibit 1002, p. 551

552

Petitioner Apple Inc. - Exhibit 1002, p. 552

553

Petitioner Apple Inc. - Exhibit 1002, p. 553

554

Petitioner Apple Inc. - Exhibit 1002, p. 554

555

Petitioner Apple Inc. - Exhibit 1002, p. 555

556

Petitioner Apple Inc. - Exhibit 1002, p. 556

557

Petitioner Apple Inc. - Exhibit 1002, p. 557

558

Petitioner Apple Inc. - Exhibit 1002, p. 558

559

Petitioner Apple Inc. - Exhibit 1002, p. 559

560

Petitioner Apple Inc. - Exhibit 1002, p. 560

561

Petitioner Apple Inc. - Exhibit 1002, p. 561

562

Petitioner Apple Inc. - Exhibit 1002, p. 562

563

Petitioner Apple Inc. - Exhibit 1002, p. 563

564

Petitioner Apple Inc. - Exhibit 1002, p. 564

565

Petitioner Apple Inc. - Exhibit 1002, p. 565

566

Petitioner Apple Inc. - Exhibit 1002, p. 566

567

Petitioner Apple Inc. - Exhibit 1002, p. 567

568

Petitioner Apple Inc. - Exhibit 1002, p. 568

569

Petitioner Apple Inc. - Exhibit 1002, p. 569

570

Petitioner Apple Inc. - Exhibit 1002, p. 570

571

Petitioner Apple Inc. - Exhibit 1002, p. 571

572

Petitioner Apple Inc. - Exhibit 1002, p. 572

573

Petitioner Apple Inc. - Exhibit 1002, p. 573

574

Petitioner Apple Inc. - Exhibit 1002, p. 574

575

Petitioner Apple Inc. - Exhibit 1002, p. 575

576

Petitioner Apple Inc. - Exhibit 1002, p. 576

577

Petitioner Apple Inc. - Exhibit 1002, p. 577

578

Petitioner Apple Inc. - Exhibit 1002, p. 578

579

Petitioner Apple Inc. - Exhibit 1002, p. 579

580

Petitioner Apple Inc. - Exhibit 1002, p. 580

581

Petitioner Apple Inc. - Exhibit 1002, p. 581

582

Petitioner Apple Inc. - Exhibit 1002, p. 582

583

Petitioner Apple Inc. - Exhibit 1002, p. 583

584

Petitioner Apple Inc. - Exhibit 1002, p. 584

585

Petitioner Apple Inc. - Exhibit 1002, p. 585

586

Petitioner Apple Inc. - Exhibit 1002, p. 586

587

Petitioner Apple Inc. - Exhibit 1002, p. 587

588

Petitioner Apple Inc. - Exhibit 1002, p. 588

589

Petitioner Apple Inc. - Exhibit 1002, p. 589

590

Petitioner Apple Inc. - Exhibit 1002, p. 590

591

Petitioner Apple Inc. - Exhibit 1002, p. 591

592

Petitioner Apple Inc. - Exhibit 1002, p. 592

593

Petitioner Apple Inc. - Exhibit 1002, p. 593

594

Petitioner Apple Inc. - Exhibit 1002, p. 594

595

Petitioner Apple Inc. - Exhibit 1002, p. 595

596

Petitioner Apple Inc. - Exhibit 1002, p. 596

597

Petitioner Apple Inc. - Exhibit 1002, p. 597

598

Petitioner Apple Inc. - Exhibit 1002, p. 598

599

Petitioner Apple Inc. - Exhibit 1002, p. 599

600

Petitioner Apple Inc. - Exhibit 1002, p. 600

601

Petitioner Apple Inc. - Exhibit 1002, p. 601

602

Petitioner Apple Inc. - Exhibit 1002, p. 602

603

Petitioner Apple Inc. - Exhibit 1002, p. 603

604

Petitioner Apple Inc. - Exhibit 1002, p. 604

605

Petitioner Apple Inc. - Exhibit 1002, p. 605

606

Petitioner Apple Inc. - Exhibit 1002, p. 606

607

Petitioner Apple Inc. - Exhibit 1002, p. 607

608

Petitioner Apple Inc. - Exhibit 1002, p. 608

609

Petitioner Apple Inc. - Exhibit 1002, p. 609

610

Petitioner Apple Inc. - Exhibit 1002, p. 610

611

Petitioner Apple Inc. - Exhibit 1002, p. 611

612

Petitioner Apple Inc. - Exhibit 1002, p. 612

613

Petitioner Apple Inc. - Exhibit 1002, p. 613

614

Petitioner Apple Inc. - Exhibit 1002, p. 614

615

Petitioner Apple Inc. - Exhibit 1002, p. 615

616

Petitioner Apple Inc. - Exhibit 1002, p. 616

617

Petitioner Apple Inc. - Exhibit 1002, p. 617

618

Petitioner Apple Inc. - Exhibit 1002, p. 618

619

Petitioner Apple Inc. - Exhibit 1002, p. 619

620

Petitioner Apple Inc. - Exhibit 1002, p. 620

621

Petitioner Apple Inc. - Exhibit 1002, p. 621

622

Petitioner Apple Inc. - Exhibit 1002, p. 622

623

Petitioner Apple Inc. - Exhibit 1002, p. 623

624

Petitioner Apple Inc. - Exhibit 1002, p. 624

625

Petitioner Apple Inc. - Exhibit 1002, p. 625

626

Petitioner Apple Inc. - Exhibit 1002, p. 626

627

Petitioner Apple Inc. - Exhibit 1002, p. 627

628

Petitioner Apple Inc. - Exhibit 1002, p. 628

629

Petitioner Apple Inc. - Exhibit 1002, p. 629

630

Petitioner Apple Inc. - Exhibit 1002, p. 630

631

Petitioner Apple Inc. - Exhibit 1002, p. 631

632

Petitioner Apple Inc. - Exhibit 1002, p. 632

633

Petitioner Apple Inc. - Exhibit 1002, p. 633

634

Petitioner Apple Inc. - Exhibit 1002, p. 634

635

Petitioner Apple Inc. - Exhibit 1002, p. 635

636

Petitioner Apple Inc. - Exhibit 1002, p. 636

637

Petitioner Apple Inc. - Exhibit 1002, p. 637

638

Petitioner Apple Inc. - Exhibit 1002, p. 638

639

Petitioner Apple Inc. - Exhibit 1002, p. 639

640

Petitioner Apple Inc. - Exhibit 1002, p. 640

641

Petitioner Apple Inc. - Exhibit 1002, p. 641

642

Petitioner Apple Inc. - Exhibit 1002, p. 642

643

Petitioner Apple Inc. - Exhibit 1002, p. 643

644

Petitioner Apple Inc. - Exhibit 1002, p. 644

645

Petitioner Apple Inc. - Exhibit 1002, p. 645

646

Petitioner Apple Inc. - Exhibit 1002, p. 646

647

Petitioner Apple Inc. - Exhibit 1002, p. 647

648

Petitioner Apple Inc. - Exhibit 1002, p. 648

649

Petitioner Apple Inc. - Exhibit 1002, p. 649

650

Petitioner Apple Inc. - Exhibit 1002, p. 650

651

Petitioner Apple Inc. - Exhibit 1002, p. 651

652

Petitioner Apple Inc. - Exhibit 1002, p. 652

653

Petitioner Apple Inc. - Exhibit 1002, p. 653

654

Petitioner Apple Inc. - Exhibit 1002, p. 654

655

Petitioner Apple Inc. - Exhibit 1002, p. 655

656

Petitioner Apple Inc. - Exhibit 1002, p. 656

657

Petitioner Apple Inc. - Exhibit 1002, p. 657

658

Petitioner Apple Inc. - Exhibit 1002, p. 658

659

Petitioner Apple Inc. - Exhibit 1002, p. 659

660

Petitioner Apple Inc. - Exhibit 1002, p. 660

661

Petitioner Apple Inc. - Exhibit 1002, p. 661

662

Petitioner Apple Inc. - Exhibit 1002, p. 662

663

Petitioner Apple Inc. - Exhibit 1002, p. 663

664

Petitioner Apple Inc. - Exhibit 1002, p. 664

665

Petitioner Apple Inc. - Exhibit 1002, p. 665

666

Petitioner Apple Inc. - Exhibit 1002, p. 666

667

Petitioner Apple Inc. - Exhibit 1002, p. 667

668

Petitioner Apple Inc. - Exhibit 1002, p. 668

669

Petitioner Apple Inc. - Exhibit 1002, p. 669

670

Petitioner Apple Inc. - Exhibit 1002, p. 670

671

Petitioner Apple Inc. - Exhibit 1002, p. 671

672

Petitioner Apple Inc. - Exhibit 1002, p. 672

673

Petitioner Apple Inc. - Exhibit 1002, p. 673

674

Petitioner Apple Inc. - Exhibit 1002, p. 674

675

Petitioner Apple Inc. - Exhibit 1002, p. 675

676

Petitioner Apple Inc. - Exhibit 1002, p. 676

677

Petitioner Apple Inc. - Exhibit 1002, p. 677

678

Petitioner Apple Inc. - Exhibit 1002, p. 678

679

Petitioner Apple Inc. - Exhibit 1002, p. 679

680

Petitioner Apple Inc. - Exhibit 1002, p. 680

681

Petitioner Apple Inc. - Exhibit 1002, p. 681

682

Petitioner Apple Inc. - Exhibit 1002, p. 682

683

Petitioner Apple Inc. - Exhibit 1002, p. 683

684

Petitioner Apple Inc. - Exhibit 1002, p. 684

685

Petitioner Apple Inc. - Exhibit 1002, p. 685

686

Petitioner Apple Inc. - Exhibit 1002, p. 686

687

Petitioner Apple Inc. - Exhibit 1002, p. 687

688

Petitioner Apple Inc. - Exhibit 1002, p. 688

689

Petitioner Apple Inc. - Exhibit 1002, p. 689

690

Petitioner Apple Inc. - Exhibit 1002, p. 690

691

Petitioner Apple Inc. - Exhibit 1002, p. 691

692

Petitioner Apple Inc. - Exhibit 1002, p. 692

693

Petitioner Apple Inc. - Exhibit 1002, p. 693

694

Petitioner Apple Inc. - Exhibit 1002, p. 694

695

Petitioner Apple Inc. - Exhibit 1002, p. 695

696

Petitioner Apple Inc. - Exhibit 1002, p. 696

697

Petitioner Apple Inc. - Exhibit 1002, p. 697

698

Petitioner Apple Inc. - Exhibit 1002, p. 698

699

Petitioner Apple Inc. - Exhibit 1002, p. 699

700

Petitioner Apple Inc. - Exhibit 1002, p. 700

701

Petitioner Apple Inc. - Exhibit 1002, p. 701

702

Petitioner Apple Inc. - Exhibit 1002, p. 702

703

Petitioner Apple Inc. - Exhibit 1002, p. 703

704

Petitioner Apple Inc. - Exhibit 1002, p. 704

705

Petitioner Apple Inc. - Exhibit 1002, p. 705

706

Petitioner Apple Inc. - Exhibit 1002, p. 706

707

Petitioner Apple Inc. - Exhibit 1002, p. 707

708

Petitioner Apple Inc. - Exhibit 1002, p. 708

709

Petitioner Apple Inc. - Exhibit 1002, p. 709

710

Petitioner Apple Inc. - Exhibit 1002, p. 710

711

Petitioner Apple Inc. - Exhibit 1002, p. 711

712

Petitioner Apple Inc. - Exhibit 1002, p. 712

713

Petitioner Apple Inc. - Exhibit 1002, p. 713

714

Petitioner Apple Inc. - Exhibit 1002, p. 714

715

Petitioner Apple Inc. - Exhibit 1002, p. 715

716

Petitioner Apple Inc. - Exhibit 1002, p. 716

717

Petitioner Apple Inc. - Exhibit 1002, p. 717

718

Petitioner Apple Inc. - Exhibit 1002, p. 718

719

Petitioner Apple Inc. - Exhibit 1002, p. 719

720

Petitioner Apple Inc. - Exhibit 1002, p. 720

721

Petitioner Apple Inc. - Exhibit 1002, p. 721

722

Petitioner Apple Inc. - Exhibit 1002, p. 722

723

Petitioner Apple Inc. - Exhibit 1002, p. 723

724

Petitioner Apple Inc. - Exhibit 1002, p. 724

725

Petitioner Apple Inc. - Exhibit 1002, p. 725

726

Petitioner Apple Inc. - Exhibit 1002, p. 726

727

Petitioner Apple Inc. - Exhibit 1002, p. 727

728

Petitioner Apple Inc. - Exhibit 1002, p. 728

729

Petitioner Apple Inc. - Exhibit 1002, p. 729

730

Petitioner Apple Inc. - Exhibit 1002, p. 730

731

Petitioner Apple Inc. - Exhibit 1002, p. 731

732

Petitioner Apple Inc. - Exhibit 1002, p. 732

733

Petitioner Apple Inc. - Exhibit 1002, p. 733

734

Petitioner Apple Inc. - Exhibit 1002, p. 734

735

Petitioner Apple Inc. - Exhibit 1002, p. 735

736

Petitioner Apple Inc. - Exhibit 1002, p. 736

737

Petitioner Apple Inc. - Exhibit 1002, p. 737

738

Petitioner Apple Inc. - Exhibit 1002, p. 738

739

Petitioner Apple Inc. - Exhibit 1002, p. 739

740

Petitioner Apple Inc. - Exhibit 1002, p. 740

741

Petitioner Apple Inc. - Exhibit 1002, p. 741

742

Petitioner Apple Inc. - Exhibit 1002, p. 742

743

Petitioner Apple Inc. - Exhibit 1002, p. 743

744

Petitioner Apple Inc. - Exhibit 1002, p. 744

745

Petitioner Apple Inc. - Exhibit 1002, p. 745

746

Petitioner Apple Inc. - Exhibit 1002, p. 746

747

Petitioner Apple Inc. - Exhibit 1002, p. 747

748

Petitioner Apple Inc. - Exhibit 1002, p. 748

749

Petitioner Apple Inc. - Exhibit 1002, p. 749

750

Petitioner Apple Inc. - Exhibit 1002, p. 750

751

Petitioner Apple Inc. - Exhibit 1002, p. 751

752

Petitioner Apple Inc. - Exhibit 1002, p. 752

753

Petitioner Apple Inc. - Exhibit 1002, p. 753

754

Petitioner Apple Inc. - Exhibit 1002, p. 754

755

Petitioner Apple Inc. - Exhibit 1002, p. 755

756

Petitioner Apple Inc. - Exhibit 1002, p. 756

757

Petitioner Apple Inc. - Exhibit 1002, p. 757

758

Petitioner Apple Inc. - Exhibit 1002, p. 758

759

Petitioner Apple Inc. - Exhibit 1002, p. 759

760

Petitioner Apple Inc. - Exhibit 1002, p. 760

761

Petitioner Apple Inc. - Exhibit 1002, p. 761

762

Petitioner Apple Inc. - Exhibit 1002, p. 762

763

Petitioner Apple Inc. - Exhibit 1002, p. 763

764

Petitioner Apple Inc. - Exhibit 1002, p. 764

765

Petitioner Apple Inc. - Exhibit 1002, p. 765

766

Petitioner Apple Inc. - Exhibit 1002, p. 766

767

Petitioner Apple Inc. - Exhibit 1002, p. 767

768

Petitioner Apple Inc. - Exhibit 1002, p. 768

769

Petitioner Apple Inc. - Exhibit 1002, p. 769

770

Petitioner Apple Inc. - Exhibit 1002, p. 770

771

Petitioner Apple Inc. - Exhibit 1002, p. 771

772

Petitioner Apple Inc. - Exhibit 1002, p. 772

773

Petitioner Apple Inc. - Exhibit 1002, p. 773

774

Petitioner Apple Inc. - Exhibit 1002, p. 774

775

Petitioner Apple Inc. - Exhibit 1002, p. 775

776

Petitioner Apple Inc. - Exhibit 1002, p. 776

777

Petitioner Apple Inc. - Exhibit 1002, p. 777

778

Petitioner Apple Inc. - Exhibit 1002, p. 778

779

Petitioner Apple Inc. - Exhibit 1002, p. 779

780

Petitioner Apple Inc. - Exhibit 1002, p. 780

781

Petitioner Apple Inc. - Exhibit 1002, p. 781

782

Petitioner Apple Inc. - Exhibit 1002, p. 782

783

Petitioner Apple Inc. - Exhibit 1002, p. 783

784

Petitioner Apple Inc. - Exhibit 1002, p. 784

785

Petitioner Apple Inc. - Exhibit 1002, p. 785

786

Petitioner Apple Inc. - Exhibit 1002, p. 786

787

Petitioner Apple Inc. - Exhibit 1002, p. 787

788

Petitioner Apple Inc. - Exhibit 1002, p. 788

789

Petitioner Apple Inc. - Exhibit 1002, p. 789

790

Petitioner Apple Inc. - Exhibit 1002, p. 790

791

Petitioner Apple Inc. - Exhibit 1002, p. 791

792

Petitioner Apple Inc. - Exhibit 1002, p. 792

793

Petitioner Apple Inc. - Exhibit 1002, p. 793

794

Petitioner Apple Inc. - Exhibit 1002, p. 794

795

Petitioner Apple Inc. - Exhibit 1002, p. 795

796

Petitioner Apple Inc. - Exhibit 1002, p. 796

797

Petitioner Apple Inc. - Exhibit 1002, p. 797

798

Petitioner Apple Inc. - Exhibit 1002, p. 798

799

Petitioner Apple Inc. - Exhibit 1002, p. 799

800

Petitioner Apple Inc. - Exhibit 1002, p. 800

801

Petitioner Apple Inc. - Exhibit 1002, p. 801

802

Petitioner Apple Inc. - Exhibit 1002, p. 802

803

Petitioner Apple Inc. - Exhibit 1002, p. 803

804

Petitioner Apple Inc. - Exhibit 1002, p. 804

805

Petitioner Apple Inc. - Exhibit 1002, p. 805

806

Petitioner Apple Inc. - Exhibit 1002, p. 806

807

Petitioner Apple Inc. - Exhibit 1002, p. 807

808

Petitioner Apple Inc. - Exhibit 1002, p. 808

809

Petitioner Apple Inc. - Exhibit 1002, p. 809

810

Petitioner Apple Inc. - Exhibit 1002, p. 810

811

Petitioner Apple Inc. - Exhibit 1002, p. 811

812

Petitioner Apple Inc. - Exhibit 1002, p. 812

813

Petitioner Apple Inc. - Exhibit 1002, p. 813

814

Petitioner Apple Inc. - Exhibit 1002, p. 814

815

Petitioner Apple Inc. - Exhibit 1002, p. 815

816

Petitioner Apple Inc. - Exhibit 1002, p. 816

817

Petitioner Apple Inc. - Exhibit 1002, p. 817

818

Petitioner Apple Inc. - Exhibit 1002, p. 818

819

Petitioner Apple Inc. - Exhibit 1002, p. 819

820

Petitioner Apple Inc. - Exhibit 1002, p. 820

821

Petitioner Apple Inc. - Exhibit 1002, p. 821

822

Petitioner Apple Inc. - Exhibit 1002, p. 822

823

Petitioner Apple Inc. - Exhibit 1002, p. 823

824

Petitioner Apple Inc. - Exhibit 1002, p. 824

825

Petitioner Apple Inc. - Exhibit 1002, p. 825

826

Petitioner Apple Inc. - Exhibit 1002, p. 826

827

Petitioner Apple Inc. - Exhibit 1002, p. 827

828

Petitioner Apple Inc. - Exhibit 1002, p. 828

829

Petitioner Apple Inc. - Exhibit 1002, p. 829

830

Petitioner Apple Inc. - Exhibit 1002, p. 830

831

Petitioner Apple Inc. - Exhibit 1002, p. 831

832

Petitioner Apple Inc. - Exhibit 1002, p. 832

833

Petitioner Apple Inc. - Exhibit 1002, p. 833

834

Petitioner Apple Inc. - Exhibit 1002, p. 834

835

Petitioner Apple Inc. - Exhibit 1002, p. 835

836

Petitioner Apple Inc. - Exhibit 1002, p. 836

837

Petitioner Apple Inc. - Exhibit 1002, p. 837

838

Petitioner Apple Inc. - Exhibit 1002, p. 838

839

Petitioner Apple Inc. - Exhibit 1002, p. 839

840

Petitioner Apple Inc. - Exhibit 1002, p. 840

841

Petitioner Apple Inc. - Exhibit 1002, p. 841

842

Petitioner Apple Inc. - Exhibit 1002, p. 842

843

Petitioner Apple Inc. - Exhibit 1002, p. 843

844

Petitioner Apple Inc. - Exhibit 1002, p. 844

845

Petitioner Apple Inc. - Exhibit 1002, p. 845

846

Petitioner Apple Inc. - Exhibit 1002, p. 846

847

Petitioner Apple Inc. - Exhibit 1002, p. 847

848

Petitioner Apple Inc. - Exhibit 1002, p. 848

849

Petitioner Apple Inc. - Exhibit 1002, p. 849

850

Petitioner Apple Inc. - Exhibit 1002, p. 850

851

Petitioner Apple Inc. - Exhibit 1002, p. 851

852

Petitioner Apple Inc. - Exhibit 1002, p. 852

853

Petitioner Apple Inc. - Exhibit 1002, p. 853

854

Petitioner Apple Inc. - Exhibit 1002, p. 854

855

Petitioner Apple Inc. - Exhibit 1002, p. 855

856

Petitioner Apple Inc. - Exhibit 1002, p. 856

857

Petitioner Apple Inc. - Exhibit 1002, p. 857

858

Petitioner Apple Inc. - Exhibit 1002, p. 858

859

Petitioner Apple Inc. - Exhibit 1002, p. 859

860

Petitioner Apple Inc. - Exhibit 1002, p. 860

861

Petitioner Apple Inc. - Exhibit 1002, p. 861

862

Petitioner Apple Inc. - Exhibit 1002, p. 862

863

Petitioner Apple Inc. - Exhibit 1002, p. 863

864

Petitioner Apple Inc. - Exhibit 1002, p. 864

865

Petitioner Apple Inc. - Exhibit 1002, p. 865

866

Petitioner Apple Inc. - Exhibit 1002, p. 866

867

Petitioner Apple Inc. - Exhibit 1002, p. 867

868

Petitioner Apple Inc. - Exhibit 1002, p. 868

869

Petitioner Apple Inc. - Exhibit 1002, p. 869

870

Petitioner Apple Inc. - Exhibit 1002, p. 870

871

Petitioner Apple Inc. - Exhibit 1002, p. 871

872

Petitioner Apple Inc. - Exhibit 1002, p. 872

873

Petitioner Apple Inc. - Exhibit 1002, p. 873

874

Petitioner Apple Inc. - Exhibit 1002, p. 874

875

Petitioner Apple Inc. - Exhibit 1002, p. 875

876

Petitioner Apple Inc. - Exhibit 1002, p. 876

877

Petitioner Apple Inc. - Exhibit 1002, p. 877

878

Petitioner Apple Inc. - Exhibit 1002, p. 878

879

Petitioner Apple Inc. - Exhibit 1002, p. 879

880

Petitioner Apple Inc. - Exhibit 1002, p. 880

881

Petitioner Apple Inc. - Exhibit 1002, p. 881

882

Petitioner Apple Inc. - Exhibit 1002, p. 882

883

Petitioner Apple Inc. - Exhibit 1002, p. 883

884

Petitioner Apple Inc. - Exhibit 1002, p. 884

885

Petitioner Apple Inc. - Exhibit 1002, p. 885

886

Petitioner Apple Inc. - Exhibit 1002, p. 886

887

Petitioner Apple Inc. - Exhibit 1002, p. 887

888

Petitioner Apple Inc. - Exhibit 1002, p. 888

889

Petitioner Apple Inc. - Exhibit 1002, p. 889

890

Petitioner Apple Inc. - Exhibit 1002, p. 890

891

Petitioner Apple Inc. - Exhibit 1002, p. 891

892

Petitioner Apple Inc. - Exhibit 1002, p. 892

893

Petitioner Apple Inc. - Exhibit 1002, p. 893

894

Petitioner Apple Inc. - Exhibit 1002, p. 894

895

Petitioner Apple Inc. - Exhibit 1002, p. 895

896

Petitioner Apple Inc. - Exhibit 1002, p. 896

897

Petitioner Apple Inc. - Exhibit 1002, p. 897

898

Petitioner Apple Inc. - Exhibit 1002, p. 898

899

Petitioner Apple Inc. - Exhibit 1002, p. 899

900

Petitioner Apple Inc. - Exhibit 1002, p. 900

901

Petitioner Apple Inc. - Exhibit 1002, p. 901

902

Petitioner Apple Inc. - Exhibit 1002, p. 902

903

Petitioner Apple Inc. - Exhibit 1002, p. 903

904

Petitioner Apple Inc. - Exhibit 1002, p. 904

905

Petitioner Apple Inc. - Exhibit 1002, p. 905

906

Petitioner Apple Inc. - Exhibit 1002, p. 906

