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Abstract—In this paper, we develop a specification methodology that documents and specifies a cache coherence protocol in eight
tables: the states, events, actions, and transitions of the cache and memory controllers. We then use this methodology to specify a
detailed, modern three-state broadcast snooping protocol with an unordered data network and an ordered address network that allows
arbitrary skew. We also present a detailed specification of a new protocol called Multicast Snooping [6] and, in doing so, we better
illustrate the utility of the table-based specification methodology. Finally, we demonstrate a technique for verification of the Multicast
Snooping protocol, through the sketch of a manual proof that the specification satisfies a sequentially consistent memory model.
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1 INTRODUCTION

A cache coherence protocol is a scheme for coordinating
access to shared blocks of memory. Processors and
memories exchange messages to share data and to
determine which processors have read-only or read-write
access to data blocks that are in their caches. A processor’s
access to a cache block is determined by the state of that
block in its cache, and this state is generally one of the five
MOESI (Modified, Owned, Exclusive, Shared, Invalid)
states [32]. Processors issue requests, such as Get Exclusive
or Get-Shared, to gain access to blocks. They can also lose
access to blocks, either by choice (e.g., a cache replacement)
or when another processor’s request steals a block away.
Many invalidate protocols maintain the invariant that there
can either be one writer and no readers or no writer and any
number of readers.

What is protocol specification? Cache coherence proto-
cols for shared memory multiprocessors are implemented
via the actions of numerous system components and the
interactions between them. These components include
cache controllers, directory controllers, and networks,
among others. The specification of a cache coherence
protocol must detail the actions of each of these components
for every combination of state it could be in and event that
could happen. For example, it must specify the actions
performed by a cache controller that has Exclusive access to
a cache block when a Get-Shared request for that block
arrives from another node, and it must specify the new state
that the cache controller enters.
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What is protocol verification? Verification of a cache
coherence protocol involves proving that a protocol
specification obeys a desired memory consistency model,
such as sequential consistency (SC) [21]. To verify that a
protocol satisfies a consistency model requires proving that
it obeys certain invariants about what value a load from
memory can return. For example, to satisfy SC, the loads
and stores from the different processors must appear to the
programmer to be in some total order where 1) the value of
a load equals the value of the most recent store to the same
address in the total order, and 2) the total order respects the
program order at each of the processors.

Why is verification difficult? At a high level, protocols
can be represented as in Fig. 1, which illustrates the
specification of a cache controller for a three state (Mod-
ified, Shared, Invalid) protocol. There are a handful of
states, with atomic transitions between them.

Since cache coherence protocols are simply finite state
machines, it would appear at first glance that it would be
easy to specify and verify a common three state (MSI)
broadcast snooping protocol. Unfortunately, at the level of
detail required for an actual implementation, even see-
mingly straightforward protocols have numerous transient
states and possible race conditions that complicate the tasks
of specification and verification. While older protocols only
permitted one outstanding miss and required that a request
and its responses were atomic, current protocols allow
transactions to be split and allow multiple outstanding
requests. Thus, other requests and responses can be
interleaved between a request and its response. This
additional concurrency enables h1gher performance, but it
increases the complexity bv
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What is protocol verification? Verification of a cache
coherence protocol involves proving that a protocol
specification obeys a desired memory consistency model,
such as sequential consistency (SC) [21]. To verify that a
protocol satisfies a consistency model requires proving that
it obeys certain invariants about what value a load from
memory can return. For example, to satisfy SC, the loads
and stores from the different processors must appear to the
programmer to be in some total order where 1) the value of
a load equals the value of the most recent store to the same
address in the total order, and 2) the total order respects the
program order at each of the processors.

Why is verification difficult? At a high level, protocols
can be represented as in Fig. 1, which illustrates the
specification of a cache controller for a three state (Mod-
ified, Shared, Invalid) protocol. There are a handful of
states, with atomic transitions between them.

Since cache coherence protocols are simply finite state
machines, it would appear at first glance that it would be
easy to specify and verify a common three state (MSI)
broadcast snooping protocol. Unfortunately, at the level of
detail required for an actual implementation, even see-
mingly straightforward protocols have numerous transient
states and possible race conditions that complicate the tasks
of specification and verification. While older protocols only
permitted one outstanding miss and required that a request
and its responses were atomic, current protocols allow
transactions to be split and allow multiple outstanding
requests. Thus, other requests and responses can be
interleaved between a request and its response. This
additional concurrency enables higher performance, but it
increases the complexity by often introducing transient
states. For example, a single cache controller in a “simple”
MSI protocol that we w111 spec1fy in Sectlon 2.1has 11 states

‘0 1 1 NN 1A1

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Put Shared
or
Invalidate

Downgrade

Upgrade

Fig. 1. High-level specification for cache controller.

components are difficult to specify and verify. Moreover,
the number of states in the system is roughly proportional
to the number of states in each coherence controller to the
power of the number of controllers. This state space
explosion makes the use of tools such as model checkers
prohibitive when the number of processors is large, even
when proving that simple invariants are maintained.

Why is verification important? Rigorous verification is
important, since the complexity of a detailed, implemen-
table protocol makes it difficult to design without any
errors. Many protocol errors can be uncovered by simula-
tion. Simulation with random testing has been shown to be
effective at finding certain classes of bugs, such as lost
protocol messages and some deadlock conditions [33].
However, simulation tends not to be effective at uncovering
subtle bugs, especially those related to the consistency
model. Subtle consistency bugs often occur only under
unusual combinations of circumstances, and it is unlikely
that undirected (or random) simulation will drive the
protocol to these situations. Thus, complete and perhaps
more formal verification techniques are needed to expose
these subtle bugs.

What kind of specification is required for verification?
Complete verification of a cache coherence protocol should
be undertaken at a level that is independent of details that
are specific to the hardware, yet models transient states,
queues, and race conditions that typically introduce subtle
bugs. Verifying a high-level specification without transient
states and race conditions may show that invariants hold
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for this abstraction of the protocol, but it will not show that
an implementable version of the protocol obeys these
invariants.

What are the limitations of current specifications? In
the industrial groups with which we are familiar, there are
three classes of people—architects, implementors, and
verifiers—who work together to develop systems. How-
ever, current specifications are generally not accessible to all
three classes. For a specification to be accessible to all three
groups, a balance must be struck between having a concise,
visually informative format while still incorporating suffi-
cient detail. Specifications that have been published in the
literature are often visually accessible, but they have not
been sufficiently detailed for purposes of implementation or
verification. In academia, protocol specifications tend to be
high-level because a complete, detailed specification may
not be necessary for the goal of publishing research [5], [8],
[15]. In industry, low-level, detailed specifications are
necessary and exist, but, to the best of our knowledge,
none have been published in the literature. Moreover, these
detailed specifications often match the hardware closely,
which complicates verification and limits alternative im-
plementations but eliminates the problem of verifying that
the implementation satisfies the specification. Formal
specifications, which are used in both academia and in
industry, are well-suited to verification with tools such as
model checkers, but they are generally unusable by less
mathematically-inclined implementors and architects.

A new, widely-accessible table-based specification
technique. To address the need for concise, detailed
specifications that are widely accessible, we have developed
a table-based specification methodology for cache coher-
ence protocols. While tables have been used widely to
describe state machines [18], the concise format of our tables
allows for substantial detail while retaining visual clarity. It
is useful to have a complete table on one page so that, for
example, a missing entry or an entry that differs slightly
from all others in its column is conspicuous. Other table-
based specification schemes, such as Johnson’s behavior
tables [19], are both formal and visually informative, but
they are not tailored for coherence protocols and, as such,
do not represent them concisely.

In our scheme, for each system component that partici-
pates in the coherence protocol, there is a table that specifies
the component’s behavior with respect to a given cache
block. As an illustrative example, Table 1 shows a

TABLE 1
Simplified Atomic Cache Controller Transitions
Event
Load Store Other GETS | Other GETX
/S /M
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specification for a simplified atomic cache controller. The
rows of the table correspond to the states that the
component can enter, the columns correspond to the events
that can occur, and the entries themselves are the actions
taken and resulting state that occur for that combination of
state and event. The actions are coded with letters which are
defined below the table. For example, the entry a/S denotes
that a Load event at the cache controller for a block in state I
causes the cache controller to perform a Get-Shared and
enter state S.

This simple example, however, does not show the power
of our specification methodology because it does not
include the many transient states possessed by realistic
coherence protocols. For simple atomic protocols, the
traditional specification approach of drawing up state
transition diagrams is tractable. However, nonatomic
transactions cause an explosion in the state space, since
events can occur between when a request is issued and
when it completes, and numerous transient states are used
to capture this behavior. Section 2 illustrates the methodol-
ogy with a more realistic broadcast snooping protocol and a
multicast snooping protocol [6].

In our specification methodology, we aim for a middle
ground that can be used by architects, implementors, and
verifiers. While the tables themselves do not enable a
specific level of detail, we choose a level of detail that can be
used for many purposes and in which actions that are
specified as atomic could be implemented atomically.
Verification of a protocol at this level must handle many
of the most subtle issues, such as those that arise from
considering the queues between state machines. It is also
important to note that a specification at this level allows us
to verify this level of implementation, but it also aids the
verification of more complex implementations. To verify a
system at a lower level of detail, one must now only verify
that the lower level implementation is equivalent to this
specification. For example, one might verify that a pipelined
implementation of a given set of actions still appears to be
atomic.

We have developed software that automatically maps
specifications in our format to different levels of abstraction,
including simulator code and documentation, and we use
the specifications as input for a manual proof technique
presented in this paper. Mapping specifications to input for
automated verification tools is future work.

A methodology for proving that table-based specifica-
tions are correct. Using our table-based specification
methodology, we present a methodology for proving that
a specification is sequentially consistent, and we show how
this scheme can be used to prove that our multicast protocol
satisfies SC. Our method uses an extension of Lamport’s
logical clocks [20] to timestamp the load and store
operations performed by the protocol. Timestamps deter-
mine how operations should be reordered to witness SC, as
intended by the designer of the protocol. Thus, associated
with any execution of the augmented protocol is a sequence
of timestamped operations that witnesses sequential con-
sistency of that execution. Logical clocks and the associated
timestamping actions are, in effect, a conceptual augmenta-
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protocol equals that of the augmented protocol, and that the
logical clocks are purely conceptual devices introduced for
verification purposes and are never implemented in hard-
ware. We consider the process of specifying logical clocks
and their actions to be intuitive for the designer of the
protocol, and indeed the process is a valuable debugging
tool in its own right.

A straightforward invariant of the augmented protocol
guarantees that the protocol is sequentially consistent.
Namely, for all executions of the augmented protocol,
the associated timestamped sequence of loads (LDs) and
stores (STs) is consistent with the program order of
operations at all processors and the value of each LD
equals that of the most recent ST. To prove this invariant,
numerous other “support” invariants are added as
needed. It can be shown that all executions of the protocol
satisfy all invariants by induction on the length of the
execution. This involves a tedious case-by-case analysis of
each possible transition of the protocol that could possibly
be automated with a model checker.

To summarize, the strengths of our methodology are that
the process of augmenting the protocol with timestamping
is useful in designing correct protocols, and an easily-stated
invariant of the augmented protocol guarantees sequential
consistency. However, our methodology also involves
tedious case-by-case proofs that protocol state transitions
respect certain invariants. Because the problem of auto-
matically verifying SC is undecidable, automated ap-
proaches have been proved to work only for a limited
class of protocols [16], [29]. We will discuss other verifica-
tions techniques and compare them to ours in Section 4.

What have we contributed? This paper makes four
contributions. First, we develop a table-based specification
methodology that allows us to concisely describe cache
coherence protocols. Second, we provide a detailed speci-
fication of a modern three-state broadcast snooping proto-
col with an unordered data network and an address
network which allows arbitrary skew. Third, we present a
detailed specification of multicast snooping [6], and, in
doing so, we better illustrate the utility of the table-based
specification methodology. The specification of this more
complicated protocol is thorough enough to warrant
verification. Fourth, we demonstrate a technique for
verification of the multicast snooping protocol, through
the sketch of a manual proof that the specification satisfies a
sequentially consistent memory model.

2 SPECIFYING BROADCAST AND MULTICAST
SNOOPING PROTOCOLS

In this section, we demonstrate our protocol specification
methodology by developing two protocols: a broadcast
snooping protocol and a multicast snooping protocol. Both
protocols are MSI (Modified, Shared, Invalid) and use eight
tables to document and specify:

e the states, events, actions, and transitions of the
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Fig. 2. Broadcast snooping system.

The controllers are state machines that communicate via
queues, and events correspond to messages being processed
from incoming queues. The actions taken when a controller
services an incoming queue, including enqueuing messages
on outgoing queues, are considered atomic.

2.1 Specifying a Broadcast Snooping Protocol

In this section, we shall specify the behavior of an MSI
broadcast snooping protocol. While three state broadcast
protocols are simple to describe at an abstract level, realistic
protocols can have significant complexity due to transient
states and nonatomic transactions.

2.1.1 System Model and Assumptions

The broadcast snooping system is a collection of processor
nodes and memory nodes (possibly collocated) connected
by two logical networks (possibly sharing the same physical
network), as shown in Fig. 2.

A processor node contains a CPU, cache, and a cache
controller which includes logic for implementing the
coherence protocol. It also contains queues between the
CPU and the cache controller. The Mandatory queue
contains Loads (LDs) and Stores (STs) requested by
the CPU, and they are ordered by program order. LD
and ST entries have addresses, and STs have data. The
Optional queue contains Read-Only and Read-Write
Prefetches requested by the CPU, and these entries
have addresses. The Load/Store Data queue contains the
LD/ST from the Mandatory queue and its associated data
(in the case of a LD). A diagram of a processor node is
also shown in Fig. 2.

The memory space is partitioned among one or more
memory nodes. It is responsible for responding to coher-
ence requests with data if it is the current owner (i.e., no
processor node has the block Modified). It also receives
writebacks from processors and stores this data to memory.

The two logrcal networks are a totally ordered broadcast
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Broadcast
Address Network

Point to Point Data Network

GETX (Get-Exclusive), and PUTX (Dirty-Writeback). Cache
controllers issue coherence requests in response to memory
accesses (LD/ST) and prefetches received from the CPUs.
Protocol transactions are address messages that contain a
data block address, coherence request type (GETX, GETS,
PUTX), and the ID of the requesting processor. Data
messages contain the data and the data block address.

All of the components in the system make transitions
based on their current state and current event (e.g., an
incoming request), and we will specify the states, events,
and transitions for each component in the rest of this
section. There are many components that make transitions
on many blocks of memory, and these transitions can
happen concurrently. We assume, however, that the system
appears to behave as if all transitions occur atomically.

2.1.2 Network Specification

The network consists of two logical networks. The address
network is a totally ordered broadcast network, as in all
known broadcast snooping protocols. Total ordering does
not, however, imply that all messages are delivered at the
same time. For example, in an asynchronous implementa-
tion, the path to one node may take longer than the path to
another node. The address network carries coherence
request messages. A transition of the address network is
modeled as atomically transferring a coherence request
from the output queue of a node to the input queues of all
of the nodes, thus inserting the request into the total order
of requests. Note that a total order of requests does not
imply a total order of memory accesses (LD/ST), since
requests are issued to gain permission to access data, but
they are not the accesses themselves.

The data network is an unordered point-to-point net-
work for delivering responses to coherence requests. A
transition of the data network is modeled as atomically
transferring a data message from the output queue of a
node to the input queue of the destination node.
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