A LOW-OVERHEAD COHERENCE SOLUTION FOR MULTIPROCESSORS
WITH PRIVATE CACHE MEMORIES

Mark S. Papamarcos and Janak H. Patel
Coordinated Science Laboratory
University of Illinois
1101 W. Springfield
Urbana, IL 61801

ABSTRACT

This paper presents a cache coherence solu-
tion for multiprocessors organized around a single
time-shared bus. The solution aims at reducing
bus traffic and hence bus wait time. This in turn
increases the overall processor utilization.
Unlike most traditional high~performance coherence
solutions, this solution does not use any global
tables. Furthermore, this coherence scheme is
modular and easily extensible, requiring no modif-
ication of cache modules to add more processors to
a system. The performance of this scheme is
evaluated by using an approximate analysis method.
It is shown that the performance of this scheme is
closely tied with the miss ratio and the amount of
sharing between processors.

I. INTRODUCTION

The use of cache memory has long been recog-
nized as a cost-effective means of increasing the
performance of uniprocessor systems [Conti69,
Meade70, Kaplan73, Strecker76, Rao78, Smith82].
In this paper, we will consider the application of
cache memory in a tightly-coupled multiprocessor
system organized around a timeshared bus. Many
computer systems, particularly the ones which use
microprocessors, are heavily bus-~limited. Without
some type of local memory, it is physically impos-
sible to gain a significant performance advantage

PROC PROC PROC

CACHE CACHE CACHE

l [ 1

Timeshared Bus |

I

MAIN
MEMORY

Fig. 1 System Organization

than one cache, it is possible for one processor
to modify its local copy independently of the rest
of the system.

The simplest way to solve the coherence prob-
lem is to require that the address of the block
being written in cache be transmitted throughout
the system. Each cache must then check its own

through multiple microprocessors on a single bus. directory and purge the block if present. This
Generally, there are two different implemen- scheme 1s most frequently referred to as
tations of multiprocessor cache systems. One broadcast~invalidate. Obviously, the invalidate

involves a single shared cache for all processors

traffic grows very quickly and, assuming that

[Yeh83]. This organization has some distinct writes constitute 25§ of the memory references,
advantages, in particular, efficient cache utili- the system becomes saturated with less than four
zation. However, this organization requires a processors. In [Bean79], a bias filter is pro-

crossbar between the processors and the shared
cache. It is impractical to provide communication
between each processor and the shared cache using
a shared bus. The other alternative is private
cache for each processor, as shown in Fig. 1.
However, this organization suffers from the well

known data consistency or gache coherence problem.
Should the same writeable data block exist in more

ACKNOWLEDGEMENTS: This research was supported
by the Naval Electronies Systems Command
under VHSIC contract N00039-80-C~0556 and by
the Joint Services Electronics Program under
contract NOOO14-84-C-0149.

0194-7111/84/0000/0348%$01.00©1984 IEEE

348

posed to reduce the cache directory interference
that results from this scheme. The filter con-
sists of a samall associative memory between the
bus and each cache. The associative memory keeps
a record of the most recently invalidated blocks,
ithibiting some subsequent wasteful invalidations.
However, this only serves to reduce the amount of
cache directory interference without actually
reducing the bus traffiec.

Another class of coherence solutions are of
the global-directory type. Status bits are asso-
ciated with each block in main memory. Upon a
cache miss or the first write to a block in cache,
the block's global status is checked. An invali-
date signal is sent only if another cache has a

Memory Integrity, LLC
IPR2015-00158, -00159, -00163
EXHIBIT
Memory Integrity - 2023

DOCKET

_ ARM

Find authenticated court documents without watermarks at docketala \



peichman
ALL-2023

https://www.docketalarm.com/

D
A

OCKET
A

copy. Requests for transfers due to misses are
also screened by the global table to eliminate
unnecessary cache directory interference. The
performance associated with these solutions is
very high if one ignores the interference in the
global directory. The hardware required to imple-
ment a global directory for low access interfer-
ence is extensive, requiring a distributed direc-
tory with full crossbar. These schemes and their
variations have been analyzed by several authors
[Tang76,CensierT8,Dubois82,Yen82, Archibald83].

A solution more appropriate for bus organized
multiprocessors has been proposed by Goodman
[Goodman83]. In this scheme, an invalidate
request is broadcast only when a block is written
in cache for the first time. The updated block is
simultaneously written through to main memory.
Only if a block in cache is written to more than
once is it necessary to write it back before
replacing it. This particular write strategy, a
combination of write-through and write-back, is
called write-once. A dual cache directory system
is employed in order to reduce cache interference.

We seek to integrate the high performance of
global directory solutions associated with the
inhibition of all ineffective invalidations and
the modularity and easy adaptability to micropro-
cessors of Goodman's scheme. In a bus-organized
system with dual directories for interrogation, it
is possible to determine at miss time if a block
is resident in another cache. Therefore a status
may be kept for each block in cache indicating
whether it is Exclusive or Shared. All unneces-
sary invalidate requests can be cut off at the
point of origin. Bus traffic is therefore reduced
to cache misses, actual invalidations and writes
to main memory. Of these, the traffic generated
by cache misses and actual invalidations
represents the minimum unavoidable traffic. The
number of writes to main memory is determined by
the particular policy of write-through or write-
back. Therefore, for a multiprocessor on a
timeshared bus, performance should then approach
the maximum possible for a cache coherent system
under the given write policy.

The cache coherence solution to be presented
is applicable to both write-through and write-back
policies. However, it has been shown that write-
back generates less bus traffic than write-through
[Norton82]. This has been verified by our perfor-
mance studies. Therefore, we have chosen a
write-back policy in the rest of this paper.
Under a write-back policy, coherence is not main-
tained between a cache and a main memory as can be
done with a write-through policy. This in turn
implies that I/O processors must follow the same
protocol as a cache for data transfer to and from
memory.

II. PROPOSED COHERENCE SOLUTION

In this section we present a low-overhead
cache coherence algorithm. To implement this
algorithm, it is necessary to associate two status
bits with each block in cache. No status bits are
associated with the main memory. The first bit

L R M

indicates either Shared or Exclusive ownership of
a block, while the second bit is set if the block
has been 1locally modified. Because the state
Shared~Modified is not allowed in our scheme, this
status is used instead to denote a block contain-
ing invalid data. A write-back policy is assumed.
The four possible statuses of a block in cache at
any given time are then:

1. Invalid: Block does not contailn valid data.

2.  Exclusive-Unmodified (Excl-Unmod): No other
cache has this block. Data in block is con-
sistent with main memory.

3. Shared-Unmodified (Shared-Unmod): Some other
caches may have this block. Data in block is
consistent with main memory.

4.  Exclusive-Modified (Excl-Mod): No other cache
has this block. Data in block has been
locally modified and is therefore incon-
sistent with main memory.

4 block is written back to main memory when
evicted only if its status is Excl-Mod. If a
write-through cache was desired then one would not
need to differentiate between Excl-Mod and Excl-
Unmod. Writes to an Exclusive block result only
in modification of the cached block and the set-
ting of the Modified status. The status of
Shared-Unmod says that some other caches ay have
this block. Initially, when a block is declared
Shared-Unmod, at least two caches must have this

block. However, at a later time when all but one
cache evicts this bloek, it is no longer truly
Shared. But the status is not altered in favor of

simplicity of implementation.

Detailed flow charts of the proposed coher-
ence algorithm are given in Figs. 2 and 3. Fig. 2
gives the required operations during a read cycle
and Fig. 3 describes the write cycle. The follow-
ing is a summary of the algorithm and some imple-
mentation details which are not present in the
flow charts.

Upon a cache miss, a read request is broad~
cast to all caches and the main memory. If the
miss was caused by a write operation, an invali-
date signal accompanies the request. If a cache
directory matches the requested address then it
inhibits the main memory from putting data on the
bus. Assuming cache operations are asynchronous
with each other and the bus, possible multiple
cache responses can be resolved with a simple
priority network, such as a daisy chain. The
highest priority cache among the responding caches
will then put the data on the bus. If no cache
has the block then the memory provides the block.
A unique response is thus guaranteed. On a read
operation, all caches which match the requested
address set the status of the corresponding block
to Shared-Unmod. In addition, the block is writ-
ten back to main memory concurrently with the
transfer if its status was Excl-Mod. On a write,
matching caches set the block status to Invalid.
The requesting cache sets the status of the block
to Shared-Umnmod if the block came from another
cache and to Excl-Unmod if the block came from

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

hit @ miss

read select block
cache to replace

read block
into cache

cache ® memory

set status to set status to
shared—unmod excl-unmod

N |

Fig. 2 Cache Read Operation

main memory. Upon a subsequent cache write, an
invalidation signal is broadcast with the block
address only if the status is Shared-Unmod, thus
minimizing unnecessary invalidation traffic.

As will be seen in the following sections,
the performance of the proposed coherence algo~-
rithm is directly dependent on the miss ratio and
the degree of sharing, while in algorithms not
utilizing global tables the performance is tied
closely with the write frequency. Since the
number of cache misses are far fewer than the
number of writes, intuitively it is clear that the
proposed algorithm should perform better than
other modular algorithms.

Most multiprocessing systems require the use
of synchronization and mutual exclusion primi-
tives. These primitives can be implemented with
indivisible read-modify-write operations (e.g.,
test-and-set) to memory. Indivisible read-
modify-write operations are a challenge to most
cache coherence solutions. However, in our sys-
tem, the bus provides a convenient "lock" opera~
tion with which to solve the read-modify-write
problem. In our scheme if the block is either
Excl-Ummod or Excl-Mod no special action is
required to perform an indivisible read-modify-
write operation on that block. However, if the

block is declared Shared-Ummod, we must account

for the contingency in which two processors are
simultaneously accessing a Shared block. If the
operation being performed is designated as indi-
visible, then the cache controllers must first
capture the bus before proceeding to execute the
instruction. Through the normal bus arbitration
mechanism, only one cache controller will get the
bus. This controller can then complete the indi-
visible operation, 1In the process, of course, the

DOCKET

_ ARM

select block
to replace

read block into
cache and send
invalidate

write in cache
and set modified

)

Fig. 3 Cache Write Operation

other bilock is invalidated and the other processor
treats the access as a cache miss and proceeds on
that basis. An implicit assumption in this scheme
is that the controller must know before it starts
executing the instruction that it is an indivisi-
ble operation. Some current microprocessors are
capable of locking the bus for the duration of an
instruction. Unfortunately, with some others it
is not possible to recognize a read-modify-write
before the read is complete; it is then too late
to backtrack. For specific processors we have
devised elaborate methods using interrupts and
system calls to handle such situations. We will
not present the specifics here, but it suffices to
say that the schemes involve either the aborting
and retrying of instructions or decoding instruc-
tions in the cache controller.

III. PERFORMANCE ANALYSIS

The analysis of this coherence solution stems
from an approximate method proposed by Patel
[Patel82]. In this method, a request for a block.
transfer is broken up into several unit requests
for service. The waiting time is also treated as
a series of unit requests. Furthermore, these
unit requests are treated as independent and ran-
dom requests to the bus., It was shown in that
paper that this rather non-obvious transformation
of the problem results in a mnmuch simpler but
fairly accurate analysis. The errors introduced
by the approximation are less than 5% for a low
miss ratio. First, let us define the system param-
eters:

N number of processors
a processor memory reference rate
m miss ratio

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

w fraction of memory references that are writes

d probability that a block in cache has been
locally modified before eviction, i.e., the
block is "dirty"

u fraction of write requests that reference
Unmodified blocks in cache
8 fraction of write requests that reference

Shared blocks, equivalent to the fraction of
Shared blocks in cache if references are
assumed to be equally distributed throughout

cache

A number of cycles required for bus arbitration
logic

T number of c¢ycles required for a block
transfer

I number of cycles required for a block invali-
date

To analyze our cache system, consider an
interval of time comprising k units of useful pro-
cessor activity. In that time, kb bus requests
will be issued, where

b = ma + (1-m)awsu

The term ma in the above expression represents the
bus accesses due to cache misses and the term
(1-m)awsu accounts for the invalidate requests
resulting from writes to Shared-Unmmod blocks.

The actual execution time for 1 useful unit of
work, disregarding cache interference, will be

1 + bA + maT + mwadT + (1-m)awsul + bW

where W is the average waiting time per bus
request. The cpu idle times per useful cpu cycle
are the factors bA for bus arbitration, maT for
fetching blocks on misses, madT for write-back of
Modified blocks, (1~-m)awsul for invalidate cycles,
and bW for waiting time to acquire the bus.

Now we account for cache interference fram
other processors. If no dual cache directory is
assumed the performance degradation due to cache
interference can be extremely severe. Therefore,
we have assumed dual directories in cache. In
this case, the cache interference will occur only
in the following situations:

1. A given processor recelives invalidate
requests from (N-1) other processors at the
rate of (N-1)(1-m)awsu. We assume that all
invalidates are effective and that, on the
average, one cache is invalidated. The
penalty for an invalidate is assumed to be
one cache cycle.

2. Transfer requests occur at the rate (N-1)ma,
of which (N~1)mas are for Shared blocks. We
again assume that, on the average, one cache
responds to the request. The penalty for a
transfer is T cycles.

We define Q to be the sum of these two
effects, namely

Q = (1 - m)awsu + masT

OCKET

LARM

Cache interference is assumed to be distributed
over the processor execution time, yielding

Z =1+ bA + maT + madT + (1-m)awsul + bW + J% (1)
Z

where Z is the real execution time for 1 useful
unit of work. The unit request rate for each of
the N processors as seen by the bus is

Z-1- bA~- Q22
Z

The probability that no processor is requesting
the bus is given by

Z - 1-bA- Q22N
- 7 )
Therefore, the probability that at least one pro-

cessor is requesting the bus, that is, the average
bus utilization B, is,

1

Z-1-DbA- Q/z2)N
Z

To solve for B, W and Z, we need one more expres-—

sion for the bus utilization. That can be

obtained by multiplying N by the actual bus time
used, averaged over the execution period, giving

B=1-(1-~

(2)

_N(z=-1-Dba-bW-022)

B 7 (3)

Now we can solve for B, W and Z using equations
(1), (2) and (3). Similar derivations exist for
the case of no coherence, no coherence and no bus
contention (4infinite crossbar), and Goodman's
scheme, The processor utilization U is simply
1/2.

IV. DISCUSSION OF RESULTS

In this section we present the analytical
results to demonstrate the effect of various
parameters on the cpu performance and bus traffic.
The values of cache parameters used span a reason-
able range covering most practical situations. In
some cases we have chosen pessimistic values to
emphasize the fact that our cache coherence solu-
tion still gives good performance. The following
values were used as default cache parameters:

m= 5% Miss ratio: It may actually be lower for
reasonable cache sizes, so this is a pes-
simistic assumption. Lower miss ratios
would be appropriate for single-tasking
processors, while the 7.5% figure may be
appropriate for multi-tasking environ-
ments involving many context switches.

a = 90% Processor to memory access rate: Here we
assume 90% of cpu cycles result in a
cache request, although a smaller frac-
tion is more likely in processors with a
large register set.

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

d = 50% Write-back probability: Assume here that
approximately half of all blocks are
locally modified before eviction,
although 20% and 80% are tried in order
to see the effect of this parameter.

w = 20§ Write frequency: Assumed to be about 20%
of all memory references. This is a
fairly standard number. Since it only
appears as a factor in the generation of
invalidate requests with u and s, its
actual value is not critical.

u = 30§ Fraction of writes to unmodified blocks:
Assume that roughly one third of all
write hits are first-time writes to a
given ummodified block and the remainder
are subsequent writes to the modified
block. '

Degree of sharing: In most cases we have
assumed that 5% of writes are to a block
which is declared Shared-Unmod. This
should be a pessimistic assumption except
for programs which pass large amounts of
data between processors in which case s =
15¢ is more reasonable. In systems where
most sharing occurs only on semaphores,
the 1% figure is more likely.

A=1 Bus arbitration time: Assume that the
logic for determining the next bus master
settles within one cache cycle.

T=2 Block transfer time: 1In a microprocessor
enviromment blocks are likely to be
small. Therefore, in most cases we have
assumed that it takes approximately two
cache cycles to transfer a block to a
cache. We have also considered the
effect of varying block transfer times
due to differing technologies or larger
cache blocks.

I=2 Block invalidate time: We have assumed
that the time taken for an invalidate
cycle should be only slightly longer than
a normal cache cycle, since the invali-
date operation consists only of transmit-
ting an address and modifying the
affected cache directories.

The analytical method was verified using a
time-driven simulator of the performance model.
In all cases tested, the predicted performance
differed by no more than 5% from the simulated
performance. This error tended to approach 0 with
heavier bus loading. Because of the comparative
ease of generating data using the analytical solu-
tion, all results shown have been derived analyti-
cally. On each graph, all parameters assume their
default values except the one being varied.

Figs. 4 through 6 illustrate the effects of
different miss ratios on bus utilization, system
performance, and processor utilization as function
of the number of processors. System performance
is expressed as NU, where N is the number of pro~
cessors and U is the single processor utilization.
The system performance is limited primarily by the
bus. From Fig. 4 we see that for 7.5% miss ratio
the bus saturates with about 8 processors. As the
miss ratio decreases to 2.5¢ the bus saturates

DOCKET

_ ARM

with about 18 processors. The effect of bus
saturation on system performance can be seen in
Fig. 5. Note that, in general, bus utilization
and system performance increase almost linearly
with N until the bus reaches saturation. At this
point, processor utilization begins to approach a
curve proportional to 1/N as seen in Fig. 6. If a
14 miss ratio could be achieved, performance would
top out with NU=29.

1 _B
miss=7.5%
81 miss=5%
6t miss=2.5%
4L
24
0 . A ; ) ; ; A \ : y N

0 2 4 6 8 10 12 14 16 18 20

Fig. 4 Effect of Miss Ratio m:
Bus Utilization vs. Number of Processors

NU

14 miss=2.5%
121
10}
8t miss=5%
6|
miss=7.5%
41
2L
o 1 'l L

Il L 'l 'l L 1 ) N
0 2 4 6 8 10 12 14 16 18 20
Fig. 5 Effect of Miss Ratio m:
System Performance vs. Number of Processors

1 -U

iss=2.5%
B ) N
Bl

miss=5%

4L
2F miss=7.5%
0 1 L 1

0 2 4 6 8 10 12 14 16 18 20
Fig. 6. Effect of Miss Ratio m:
Processor Utilization vs. No. of Processors

Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




