85 Memory-Based Directory Protocols: The SGI Origin System 611

cally very expensive, which often annuls the advantage of doing the migration. The

major reason for the high cost is not so much moving the page (which with the

block transfer engine in the Hub takes about 25-30 s for a 16-KB page) as changing

the virtual-to-physical mappings in the TLBs of all processors that have referenced

the page. Migrating a page keeps the virtual address the same but changes the physi-

cal address, so the old mappings in the page tables of processes are now invalid. As

page table entries are changed, it is important that the cached versions of those ,

, entries in the TLBs of processors be invalidated (much like TLB shootdown dis- 3
Y cussed in Chapter 6), In fact, all processors must be sent a TLB invalidation message :
since we don’t know which ones have a mapping for the page cached in their TLB, |

g The processors aré interrupted, and the invalidating processor has to wait for the last
among them to respond before it can update the page table entry and continue. This |
process typically takes over 100 s, in addition to the cost to move the page itself. |

To reduce this cost, Origin uses a distributed, lazy TLB invalidation mechanism ‘
supported by its seventh directory state, the poisoned state. The idea is not to inval- ' ’

| idate TLB entries when the page is moved but rather to invalidate a processor’s TLB ’ |
entry only when that processor next references the page. Not only is the time to |
invalidate all TLBs removed from the critical path of the processor that manages the [
migration, but TLB entries end up being invalidated for only those processors that !

‘ subsequently reference the page. Let’s see how this works. To migrate a page, a block
transfer engine reads all cache blocks from the source page location using special

“uncached read-exclusive” requests. This request type returns the latest coherent

copy of the data and invalidates any existing' cached copies (like a regular read-

exclusive request), but it also causes the destination main memory to be updated

with the latest version of the block and puts the directory in the poisoned state. The

migration itself takes only the time to do this block transfer, When a processor next

. tries to access a block from the old physical page, using its stale TLB entry, it will Lo
miss in the cache and will find the block in poisoned state at the directory. At that N

time, the poisoned state will cause the requesting processor to see a bus error. The ‘

special OS handler for this bus error invalidates the processor’s TLB entry so that it b

will obtain the new mapping from the page table when it retries the access, Of TR

course, the old physical page must be reclaimed by the system at some point to

avoid wasting storage. Once the block transfer has completed, the OS invalidates

one TLB entry per time quantum of the OS scheduler so that after some fixed .

amount of time the old page can be moved on to the free list. |

Support for Synchronization ‘

.

Origin provides two types of support for synchronization. First, the load-locked
store-conditional (LL-SC) instructions of the R10000 processor are available to com-
pose synchronization operations, as we saw in the previous chapters. Second, for sit-
/ uations'in which many processors contend to update a location, such as a global
counter. or a barriet, uncached fetch&op primitives are provided. These fetch&op
operations are performed at the main memory; the block is not replicated in the
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caches, so successive nodes trying to update the location do not have to retrieve it
from the previous writer’s cache. The cacheable LL-SC is better when the same node
tends to-repeatedly access the shared (synchronization) variable, and the uncached
fetch&op is better when different nodes tend to update in an interleaved or con-
tended way. Producer-consumer communication of event Synchronization can also
be aided by uncached write and read operations since at most two network transac-
tions are needed instead of four and since the producer and consumer transactions
may even overlap on their way to the home node. However, spinning on a remote
uncached location may cause a lot of traffic. ‘

8.5.5 Overview of the Origin2000 Hardware

The preceding protocol discussion has provided us with a fairly complete picture of
how a flat, memory-based directory protocol is implemented out of network trans-
actions and state transitions, just as a bus-based protocol was implemented out of
bus transactions and state transitions. Let us now turn our attention to the actual
hardware of the Origin2000 machine that implements this protocol. This subsection
provides an overview of the system hardware organization and is followed by a
deeper examination of how the Hub controller is actually implemented (in Section
8.5.6). Finally, the performance of the machine is discussed in Section 8.5.7. (Read-
ers interested in only the protocol ean skip the rest of this section without loss of
continuity.)

In addition to the two MIPS R10000 processors connected by a system bus, each
node of the Origin2000 contains a fraction of the main memory on the machine
(1-4 GB per node), the Hub (which is the combined communication/coherence
controller and network interface), and an 1/0 interface called the Xbow. All compo-
nents but the Xbow are on a single 16" x 11" printed circuit board. Each processor
in a node has its own separate L and Ly caches, with the L, cache configurable from
1 to 4 MB with a cache block size of 128 bytes and two-way set associativity. There is
one directory entry per main memory block. Memory is interleaved from 4 ways to

37 ways, depending on the number of modules plugged in (4-way interleaving at
4.KB granularity within a module and up to 32-way at 512-MB granularity across
modules). The system has up to 512 such nodes, that is, up to 1,024 processors.
With a 195-MHz R10000 processor, the peak performance per processor is 390
MFLOPS or 780 MIPS (four instructions per cycle),leading to an aggregate peak
performance of almost 500 GFLOPS in a maximally sized machine. The peak band-
width of the SysAD bus that connects the two processors is 780 MB/s, as is that of
the Hub’s connection to memory. Memory bandwidth itself for data is about 670 MB/s.
The Hub connections to the off-board network router chip and Xbow 1/O interface ¢
are 1.56 GB/s each, using the same link technology. A detailed picture of the node
board is shown in Figure 8.19. . :

The Hub chip is the heart of the machine. Tt sits on the system bus of the node '
and connects the processors, local memory, network, and Xbow, which communi-
cate with one another through it. All cache misses, whether to local or remote mem-
ory, go through the Hub (which implements the coherence protocol), as do all
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. FIGURE 8.19 A node board on the Origin multiprocessor. “L, $” stands for second- o
ary cache chips and “B ctrl” for memory bank controller, .

uncached operations. It is a highly integrated, 500-K gate standard-cell design in
0.5-L CMOS technology. It contains outstanding transaction buffers for each of its n
two processors (each processor itself allows four outstanding requests), a pair of
block transfer engines that support block memory copy and fill operations at full B
system bus bandwidth, and interfaces for the network, the SysAD bus, the memory/ k
directory, and the /O subsystem. The Hub also implements the at-memory, un- I
cached fetch&op instructions and page migration support discussed earlier. /!
The interconnection network has a hypercube topology, for machines with up to
64 processors but a different topology, called a fat cube, beyond that. (This topology
is discussed in Chapter 10.) Fach router supports six links. The network links have
high bandwidth (1.56 GB/s total per link in the two directions) and low latency (41
ns pin-to‘pin through a router) and can use flexible cabling up to three feet long for
the links. Each link supports four virtual channels. Virtual channels are described in
Chapter 10; for now, we can think of the machine as having four distinct networks
such that each has about one-fourth of the physical link bandwidth. One of these -
virtual channels is reserved for request network transactions, one for responses, Two
N can be used for congestion relief and high-priority transactions, thereby violating el
: ' point-to-point order, or can be reserved for /O as is usually done. o
The Xbow chip connects the Hub to other /O interfaces. It is itself implemented
. as a crossbar with eight ports. Typically, two nodes (Hubs) might be connected to
‘ one Xbow and, through it, to six external /O cards as shown in Figure 8.20. The
Xbow is quite similar to the router chip (called SPIDER) but with simpler buffering
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FIGURE 8.20 Typical Origin I/0 configuration shared by two nodes. High-performance graphics
devices connect directly to the Xbow, while other 170 devices connect to /O buses that are linked to the
Xbow through bridges.

and arbitration that allow eight ports to fit on the chip rather than six. The arbiter
also supports the reservation of bandwidth for certain devices to support real-time
needs like video 1/O. High-performance /O cards like graphics connect directly to
the Xbow ports, but most other ports are connected through a bridge and an /O bus
that allows multiple cards to plug into it. Any processor can reference any physical
/O device in the machine, either through uncached references to a special /O
address space or through coherent DMA operations. An 1/O device, too, can transfer
data to‘and from any memory in the system, not just the memory on the node to
which it is directly connected through the Xbow, thus taking advantage of the shared
address space. Communication between the processor and the appropriate Xbow is ‘ ‘
handled transparently by the Hubs and network routers. Thus, like-memory, I/O is

physically distributed but globally accessible, so locality in /O distribution is alsoa
performance rather than correctness issue. ’

,
»

8.5.6 Hub Impfementation

The communication assist—the Hub—must have certain basic abilities to imple-
ment the coherence protocol. It must be able to observe all cache misses, synchro-
nization events, and uncached operations; keep track of outgoing requests while
‘moving on to handle other outgoing and incoming transactions; guarantee the sink-
ing of responses coming in from the network; invalidate cache blocks; and intervene
in the caches to retrieve data. It must also coordinate the activities and dependences
of all the different types of transactions that flow through it from different com-
ponents and implement the necessary pathways and control. The design of such
controllers is, therefore, challenging. This subsection briefly describes the major
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\

components of the Hub controller used in the Origin2000 and points out some of its B
salient features used to implement the coherence protocol. Further details of the
actual data and control pathways through the Hub, as well as the mechanisms used |
to actually control the interactions among messages, are also useful for under- ! !
standing how scalable cache coherence is implemented and can be read elsewhere |
(Singh 1997). f
The Hubtis divided into four major interfaces, one for each type of external entity |
that it connects together: the processor interface or PI, the memory/directory inter- }
face or MI, the network interface or NI, and the /O interface or 11 (see Figure 8.21). |
These interfaces communicate with one another through an on-chip crossbar switch, | , {
Each interface is divided into a few major structures, including FIFO queues to buffer |
messages to/from other interfaces and to/from external entities. A key property of the }

. design is for each interface to shield js external entity from the details of other inter- ,
faces and entities (and vice versa). For example, the PI hides the processors from the i

rest of the world, so any other interface must only know the behavior of the P and ;

not of the processors and SysAD bus themselves. Let us discuss the structures of the |

P1, MI, and NI briefly, as well as some examples of the shielding provided by the {

interfaces. |

The Processor Interface (PD | f

The PI has the most complex control mechanisms among the interfaces since it |
keeps track of outstanding protocol requests and responses and must match them.,
The PI interfaces-with the memory (SysAD) buses of the two R10000 processors on
one side-and-with incoming and outgoing FIFO queues connecting it to each of the
other Hub interfaces on the other side (Figure 8.21). Fach physical FIFO is logically
separated into independent request and response “virtual FIFQs” by providing sepa-
rate logic and staging buffers. In addition, the PI itself contains three pairs of coher-
ence control buffers that keep track of outstanding transactions, control the flow of |
messages through the PI, and implement the interactjons among messages dictated S
by the protocol. These buffers do not, however, Hold the messages themselves. There l
are two read request buffers (RRBs) that track outstanding read requests from each ]
processor, two write request buffers (WRBs) that track outstanding write requests, (e
and two intervention request. buffers (IRBs) that rack incoming invalidation and ,J
intervention requests. Access to the three sets of buffers is through a single bus, so ‘
all messages contend for access to them. o i

A message that is recorded ini one type of buffer may also need to look up another ' { Ul
type to check for conflicting accesses or interventions to the same address from the e
processor. For example, an outgoing read request performs an associative lookup in ' i

|
|

the WRB to see if a write back to the same address is pending as well. If there is g
conflicting WRB entry, a read request is not placed in the PI's ou tgoing request FIFQ:;
rather, a bit is set in the RRB entry to indicate that when the WRB entry is freed, the
read request should be reissued (i.e., when the write back is acknowledged or is can-

|

I

!

celed by an incoming invalidation as per the protocol). Buffers are also looked up to ‘ ,‘
close an outstanding PI transaction in them when a completion response comes in ay ,’ -

|

i

I

|
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FIGURE 8.21 Layout of the Hub chip. The crossbar at the center connects.the buffers
of the four different interfaces. Clockwise from the bottom left, the BTEs are the block
transfer engines. The top left corner is the YO interface or Il {the SSD and SSR translate sig-
nals to and from the /O ports). Next is the network interface (N}, including the routing
tables. The bottom right is the memory/directory interface (MI), and at the bottom is the
processor interface (PI) with its request tracking buffers.

from either the processors in the node or from another interface. Since the order of
transactions closing is not deterministic, a new transaction must go into any avail-
able slot, so these tracking buffers are implemeﬁted as fully associative rather than
FIFO buffers (the queues that hold the actual messages are FIFO). The buffer 1901(—
ups determine whether the PI should issue a request to either a processor or the
other interfaces.
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The PLis a good example of the shielding provided by interfaces. If the processor
(or cache) provides data as a reply to an incoming intervention, it is the logic in the
PTs outgoing FIFO that expands the reply into the two responses required by the pro-
tocol, one to the home as a sharing write-back revision message and one to the
requestor. The processor itself does not have to be modified to generate two replies,
Another example is in the mechanisms used to keep track of and match incoming
and outgoing requests and responses. All requests passing through the PI in either di-

rection are given request numbers, and responses carry these request numbers_as "

well. However, the processor itself does not know about request numbers, and it is
the PTs job to ensure that when it passes on incoming requests (interventions or
invalidations) to the processor, it can match the-processor’s responses to the out-
standing interventions/invalidations without the processor having to deal with
request numbers, ‘

The Memory/Directory Interface (MI) '

The MI also has FIFOs between it and the Hub crossbar. The FIFO from the Hub

crossbar to the MI separates headers from data so that the header of the next
message can be examined by the directory while the current one is being serviced:
this allows writes to be pipelined and performed at peak memory bandwidth. The
MI also contains a directory interface, a memory interface, and a controller, The
directory interface contains the logic and tables that determine what protocol
actions to take and+hence jmplement the coherence protocol. It also contains the
logic that generates outgoing message headers, while the memory interface contains
the logic that generates outgoing message data. Both the memory and directory
RAMS have their own address and data buses, Some messages, like revision mes-
sages coming to the home, may not access the memory but only the directory,

On a read request, the read is issued to memory at the home speculatively, simul-
taneously with starting the directory operation. The directory state is available a
cycle before the memory data, and the controller uses this (plus the message type
and initiator) to look up the directory protocol table. This hardwired table directs

the controller to the action to be taken and the message to send. The directory block ‘

sends the latter information to the memory interface, where the message headers are
assembled and inserted into the outgoing FIFO together with the data returning
from memory. The directory lookup itself is a read-modify-write operation. For this,
the MI provides support for partial writes of memory blocks and a one-entry merge
buffer to hold the bytes from the time they are read from memory to the time they
are written back. Finally, to speed up the at-memory fetch&op accesseg provided for
synchronization, the MI contains a four-entry LRU fetch&op cache to hold the data
for recent fetch&op variables and, hence, to avoid a memory or directory access.
This reduces the best-case serialization time at memory for a fetch&op to 41 ns,
about four 100-MHz Hub cycles, .
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8.5.7

The Network Interface (ND)

The NI interfaces the Hub crossbar to the network router for that node. The router
and the Hub internals use different data transport formats, protocols, and speeds
(100 MHz in the Hub versus 400 MHz in the router), so one major function of the
Nl is to translate between the two. Toward the router side, the NI implements a flow
control mechanism to avoid network congestion (Singh 1997). The FIFOs between
the NI and the network also implement separate virtual FIFOs for requests and
responses, thus implementing separate virtual networks. The outgoing FIFO also
has an invalidation destination generator that takes the bit vector of nodes to be
invalidated and generates individual messages for them, a routing table that prede-
termines the routing decisions based on source and destination nodes, and virtual
channel selection logic. ‘

Performance Characteristics

The peak hardware bandwidths of the Origin2000 system were stated earlier: 780-
MB/s SysAD bus, 670-MB/s local memory, and 780-MB/s node-to-network each way.
The occupancy of the Hub at the home for a transaction on a cache block is about 20
Hub cycles (about 40 processor cycles), though it varies between 18 and 30 Hub
cycles depending on whether successive directory pages accessed are in the same
bank of the directory RAM and on the exact pattern of successive transactions. The
latencies of memory operations depend on marly factors, such as the type of opera-
tion, whether the home is local or not, where and.in what state the data is currently
cached, and how much contention there is for resources along the way. The latencies
can be measured using microbenchmarks. Let us examine microbenchmark results
for latency and bandwidth first, followed by the performance and scaling of our six
parallel applications. .

)

Characterization with Microbenchmarks

Unlike the MIPS R4400 processor used in the SG1 Challenge, the Origin’s MIPS
R10000 processor is dynamically scheduled and does not stall on a read miss. This
makes it more difficult to measure read latency, raising an interesting methodologi-
cal issue. We cannot, for example, measure the unloaded latency of a read miss by
simply executing the microbenchmark from Chapter 4 that reads the elements of an
array with stride greater than the cache block size. Since the misses are to different
locations, subsequent misses will simply be overlapped with one another and the
processor will not see their full latency. Instead, this ‘microbenchmark will give us a
measure of the throughput that the system can provide on successive read misses
issued from a processor. The throughput is the inverse of the latency remaining after
overlap, which we can call the pipelined latency.

To measure the full latency, we need to ensure that subsequent operations are
dependent on each other. To do this, we can use a microbenchmark that chases
pointers down a linked list: the address for the next read is not available to the pro-
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Table 8.1 Back-to-Back and True Unloaded Latencies for Different System Sizes

Where Miss is Network Routers Back-to-Back True Unloaded
Satisfied Traversed Latency (ns) Latency (ns)
Ly cache 0 5.5 5.5
L, cache 0 569 56.9
Local memory 0 c 472 329
4P remote memory 1 582 449
8P remote memory 2 775 621
16P remote memory 3 826 702

The first column shows where in the extended memory hierarchy the misses are satisfied.
For the 8P case, for example, the misses are satisfied in the node furthest away from the
requestor in a system of 8 processors. Given the Origin2000 topology, this means travers-
ing through two network routers in this case.

cessor until the previous read (of the pointer) completes, so the reads cannot be
overlapped. However, it turns out this is a little pessimistic in determining the
unloaded read latency. The reason is that the processor implements critical word
restart; that is, it can use the value returned by a read as soon as that word is
returned to the processor, without waiting for the rest of the cache block to be
loaded in the caches. With the pointer-chasing microbenchmark, the next read will
be issued before the previous block has been loaded and will contend for cache
access with the loading of the rest of that block. The latency obtained from this
microbenchmark, which includes this contention, can be called back-to-back latency
(one read miss issued just as the previous one completes). Avoiding this contention
between successive accesses requires that we put some computation between the
read misses; the computation should depend on the data being read, so it cannot
execute in parallel with the read miss, but should not access the cache between two
misses. The goal is to have this computation overlap the time it takes for the rest of
the cache block to load into the caches after a read miss so that the next read miss
will not have to stall on cache access. The time for this overlap computation must, of
course, ‘be subtracted from the elapsed time of the microbenchmark to measure the
true unloaded read-miss latency, assuming critical word restart. We can call this the
true unloaded latency. Table 8.1 shows the back-to-back and true unloaded latencies
measured on the Origin2000. Only one processor executes the microbenchmark,
but the data that is accessed is distributed among the memories of different numbers
of processors. The back-to-back latency is usually about 13 SysAD bus cycles (133
ns) longer because the L, cache block size (128 B) is 12 double words longer than
the Ly cache block size (32 B) and there is one cycle for bus turnaround.

Table 8.2 lists the back-to-back latencies for different initial states of the block
being referenced (Hristea, Lenoski, and Keen 1997). Recall that the owner node is
the home node when the block is in unowned or shared state at the directory and is
the node that has a cached copy when the block is in exclusive state. The true
unloaded latency for the case where both the home and the owner are the local node
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Table 8.2 Back-to-Back Latencies (in ns) for Different Initial States of the Block

State of Block

Home Owner Unowned  Clean-Exclusive Modified

Local ‘ Local 472 707" 1,036

Remote Local 704 930 1,272 ’
Local Remote 472" 930 1,159

Remote Remote 704 917 1,097

The first column indicates whether the home of the block is local or not, the second indi-
cates whether the current owner is local or not, and the last three columns give the laten-
cies for the block being in different states. Of course, the owner node should be ignored
for the unowned state. :

(i.e., if the block is owned by main memory, the other processor in the same node) is
338 ns for the unowned state, 656 ns for the clean-exclusive state, and 892 ns for the
modified state. Note that no contention is encountered with operations from other
processors in this microbenchmark: latencies under real workloads will be larger.

Application Speedups

Figure 8.22 shows the speedups for the six parallel applications on a 32-processor
Origin2000, using two problem sizes for each application. We see that most of the
applications speed up well, especially once the problem size is large enough. The
dependence on problem size is particularly stark in applications like Ocean and Ray-
trace. The exceptions to good speedup at this scale are Radiosity and, to an extent,
Radix. In the case of Radiosity, even the larger problem is relatively small for a
machine of this size and power. We can expect Lo see better speedups for larger
scenes. For Radix, the problem is the highly scattered, bursty pattern of writes in the ‘
permutation phase. These writes are inostly to locations that are allocated remotely,
and the flood of requests to and from the directories, invalidations, acknowledg-
ments, and replies that they generate causes tremendous contention and hot spot-
ting at Hubs and memories. Running larger problems alleviates only false sharing,
since there is no other computation than the data permutation during this phase so
the communication-to-computation ratio is essentially independent of problem size;
in fact, the situation worsens once a processor’s partition of the keys does not fit in
its cache, at which point frequent write-back transactions are also thrown into the
mix. For applications like Radix (and an FFT, not shown) that exhibit all-to-all
bursty communication, the fact that two processors share a Hub and two Hubs share
a router also causes contention at these resources, despite their high peak band-
widths (Jiang and Singh 1998). For these applications, the machine would perform
better if it had only a single processor per Hub and per router. However, the sharing
of resources does reduce cost and does not get in the way of the other applications.
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FIGURE 8.22  Speedups for the parallel applications on the Origin2000. Two problem sizes are
shown for each application. The Radix sorting program does not scale well, and the Radiosity applica-

Breakdowns of execution time into components on a per-processor basis on this
machine were shown in Chapters 3 and 4, giving us a good idea of where time is
spent.

Scaling

Figure 8.23 shows the speedups under different scaling models for the Barnes-Hut
galaxy simulation on the Origin2000. The results are quite similar to those on the
SGI Challenge in Chapter 6—although extended to more processors—and the anal-
ysis there largely applies. For applications like Ocean (not shown), in which an im-
portant working set is proportional to the data set size per processor, machines like
the Origin2000 display an interesting effect in comparing scaling models when we
start from a problem size where the working set does not fit in the cache on a uni-
processor. Under PC and TC scaling, the data set size per processor diminishes with
an increasing number of processors. Thus, although the communication-to-
computation ratio increases, we observe superlinear speedups once the working set
starts to fit in the cache (since the performance within each node becomes much
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FIGURE 8.23 Scaling of speedups and number of bodies simulated under different scaling
models for the Barnes-Hut galaxy simulation on the Origin2000. As with the results for bus-based
machines in Chapter 6, the speedups are very good under all scaling models, and the number of bodies
that can be simulated grows much more slowly under realistic TC scaling than under MC or naive TC
scaling.

better when the working set fits in the cache). Under MC scaling, the communication-
to-computation ratio does not change, but neither does the working set size per pro-
cessor. As a result, although the demands on the communication architecture scale
more favorably under MC scaling than under TC or PC scaling (the capacity misses
due to the working sets are almost entirely local), speedups are not so good because
the beneficial effect on node performance of the working set suddenly fitting in the
cache is no longer observed. Also, even local capacity misses occupy the Hub and
memory, contributing to contention.

8.6 CACHE-BASED DIRECTORY PROTOCOLS:
THE SEQUENT NUMA-Q

The flat, cache-based directory protocol described in our second case study is the
1EEE standard Scalable Coherent Interface (SCI) protocol (Gustavson 1992). Asa
case study of this protocol, we examine the NUMA-Q machine from Sequent Com-
puter Systems, Inc., a machine targeted toward commercial workloads such as data-
bases and transaction processing (Lovett and Clapp 1996). This machine relies
heavily on third-party commodity hardware, using stock Intel SMPs as the process-
ing nodes, stock /O links, and the DataPump network interface from Vitesse Semi-
conductor Corporation to move data between the node and the network. The only
customization is in the 1Q-Link board used to implement the SCI directory protocol.
A similar directory protocol is also used (with much more customization) in the
Convex Exemplar series of machines (Convex Computer Corporation 1993; Thek-
kath et al. 1997), which, like the SGI Origin, is targeted more toward scientific
computing.
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FIGURE 8.24  Block diagram of the Sequent NUMA-Q multiprocessor. The diagram shows the
high-level organization of the machine, both across nodes and within a node. The photograph shows
an |Q-Link board. Source: Photo courtesy of Sequent Computer Systems, Inc,

NUMA-Q is a collection of homogeneous processing nodes interconnected by
high-speed links in a ring configuration (Figure 8.24). Fach processing node is an
inexpensive Intel quad bus-based multiprocessor with four Intel Pentium Pro micro-
processors, which illustrates the use of high-volume SMPs as building blocks for
larger systems. Systems from Data General (Clark and Alnes 1996) and from HAL
Computer Systems (Weber et al. 1997) also use Pentium Pro quads as their process-
ing nodes, the former also using an SCI protocol similar to NUMA-Q across quads
and the latter using a memory-based protocol inspired by the Stanford DASH proto-
col. (In the Convex Exemplar series, the individual nodes connected by the SCI pro-
tocol are not bus based but are small directory-based multiprocessors kept internally
coherent by a different directory protocol.) We described the quad SMP node in
Chapter 1 (see Figure 1.17) and so do not discuss it further,

The IQ-Link board in each quad plugs into the quad memory bus and takes the
place of the Hub in the SGI Origin. In addition to the directory logic and storage and
the datapath between the quad bus and the network, it also contains a large (ex-
pandable) 32-MB, four-way set-associative remote access cache for blocks that are
fetched to the node from remote memory. This remote access cache, hereafter called
the remote cache, represents the quad to the cross-node SCI directory protocol. Tt is
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the only cache in the quad that is visible to that protocol; the individual processor

caches are kept coherent with the remote cache through the snooping bus protocol

within the quad. The directory protocol is for the most part oblivious to how many

processors there are within a node and even to the bus protocol itself. Inclusion is

preserved between the remote cache and the processor caches within the node, so if “
a block is replaced from the remote cache it is invalidated in the processor caches,

and if a block is placed in modified state in a processor cache then the state in the re-

mote cache reflects this. The cache block size of the remote cache is 64 bytes, which

is therefore the granularity of both communication and coherence across quads.

8.6.1 Cache Coherence Protocol

While two interacting coherence protocols are used in the Sequent NUMA-Q
machine, this section focuses on the SCI directory protocol across remote caches
and ignores the multiprocessor nature of the quad nodes. Interactions with the
snooping MESI protocol within the quads are discussed in Section 8.6.5.

Directory Structure

The directory structure of SCI is the flat, cache-based distributed doubly linked-list
scheme that was described in Section 8.2.3 and illustrated in Figure 8.8. There is a
linked list of sharers per block, and the pointer to the head of this list is stored with
the main memory that is the home of the corresponding memory block. An entry in
the list corresponds to a remote cache in a quad. The remote cache is stored in
synchronous DRAM memory in the 1Q-Link board of that quad, together with the
forward and backward pointers for the list. Figure 8.25 shows a simplified represen-
tation of a list. The first element (node) is called the head of the list and the last
node the tail. The head node has both read and write permission on its cached block
whereas the other nodes have only read permission (except in a special-case exten-
sion, called pairwise sharing, that we discuss briefly in Section 8.6.3). The pointer in
a node that points to its neighbor in the direction toward the tail of the list is called
the forward or downstream pointer, and the other is called the backward or
upstream pointer. Let us see how the cross-node SCI coherence protocol uses this
directory representation.

States

Since processor caches are not visible to the directory protocol, and since a block
never enters the remote cache at its home node, unlike in the Origin, the directory ~
protocol in the NUMA-Q does not keep track of cached copies at the home. Keeping
the copy in the home memory coherent with these cached copies is the job of the
bus protocol. A block in main memory can be in one of three directory states whose
names are defined by the SCI protocol as follows. The states are similar to but not
the same as the directory states in the Origin protocol.
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FIGURE 8.25  An SCl sharing list. Each element of the list in NUMA-Q is a multiproces-
sor node, represented by its remote cache.

® Home: No remote cache (quad) in the system contains a copy of the block (of
course, a processor cache in the home quad itself may have a copy since this is
not visible to the SCI coherence protocol but is managed by the bus protocol
within the quad). This is like the unowned directory state in the Origin.

B Fresh: One or more remote caches may have a read-only copy, and the copy in
memory is valid. This is like the shared state in the Origin.

B Gone: Another remote cache contains a writable (exclusive or dirty) copy. No
valid copy exists on the local node. This is like the exclusive directory state in J
the Origin.

Consider the cache states for blocks in a remote cache. While the processor
caches within a quad use the standard MESI stable states, the SCI scheme that gov-
erns the remote caches has a large number of possible cache states. In fact, 7 bits are
used to represent the state of a block in a remote cache, and the standard describes
29 stable states and many pending (busy) or transient states, Fach stable state can be |
thought of as having two parts, which is reflected in the naming structure of the o
states. The first part describes where that cache entry is located in the sharing list for i
that block. This may be ONLY (for a single-node list), HEAD, TATL, or MID (which
means neither the head nor the tail of a multiple-node list). The second part
describes the actual state of the cached block. This includes states like dirty (modi- e
fied and writable); clean (unmodified, same contents as memory, but writable, like - Pa
the exclusive state in MESTI); fresh (data may be read but may not be written until
memory is informed): copy (unmodified and readable); and several others. A full i
description can be found in the SCI standards document (IEEE Computer Society i
1993). We shall encounter some of these states (such as HEAD-DIRTY, TAII.- L

i
i
!

CLEAN, etc.) as we go along.

The SCI standard defines three primitive operations that can be performed on a
distributed sharing list. Memory operations such as read misses, write misses, write
backs, and replacements are implemented using these three primitive operations:

f
|
L. List construction: adding a new node (sharer) to the head of a sharing list, ; 1{

2. Rollout: removing a node from a list, which requires that a node communicate ol
with its upstream and downstream neighbors, informing them of their new :
neighbors so they can update their pointers. !

3. Purging (invalidation): the node at the head may purge or invalidate all other 5 ;
nodes, thus resulting in a single-element list. Only the head node of a list can |
issue a purge.
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N The SCI standard also describes three levels of increasingly sophisticated SCI pro-
tocols. The minimal protocol does not permit even read sharing; that is, only one
node at a time can have a cached copy of a block. The typical protocol is what most
systems are expected to implement. It has provisions for read sharing (multiple cop-
ies), efficient access to data that is in FRESH state in memory, as well as options for
efficient DMA transfers and robust recovery from errors. Finally, the full protocol
implements all of the options defined by the standard, including optimizations for
pairwise sharing between only two nodes and queue-on-lock-bit (QOLB) synchroni- A
zation (to be discussed later). The NUMA-Q system implements the typical proto-
col, and this is the one we discuss. Let us see how different types of memory
operations—read misses, write misses, and replacements (including write backs)—
are handled. In each case, the identity of the home node is first determined from the
address of the block.

Handling Read Requests

Suppose the read request needs to be propagated off quad. We can think of this

node’s remote cache as the requesting cache as far as the SCI protocol is concerned.

The requesting cache first allocates an entry for the block if necessary and sets the

cache state of the block to a pending (busy) state; in this state, it will not process

other requests for that block that come to it. (The SCI protocol often puts cached

blocks in busy states at requestors in this way, to keep transactions for a block

atomic and to facilitate serialization, much like the Origin protocol did with its busy ‘
states at the directory. However, it does not use NACKs, as we shall see.) It then
begins a list construction operation to add itself to the head of the sharing list by
sending a request to the home node. When the home receives the request, its block
may be in one of the three directory states identified earlier: HOME, FRESH, or GONE.

If the directory state is HOME, there are no cached copies and the copy in memory
is valid. On receiving the read request, the home updates its state for the block to
FRESH and sets its head pointer to point to the requesting node. The home then
replies to the requestor with the data, which upon receipt updates its state from
PENDING to ONLY_FRESH. All actions at a node in response to a given transaction
are atomic (the processing for one is completed before the next one is handled), and
a strict request-response protocol is followed in all cases (unlike in Origin).

If the directory state is FRESH, there is already a sharing list, but the copy at the
home is also valid. The home changes its head pointer to point to the requesting
cache instead of the previous head of the list. It then sends back a transaction to the
requestor containing the data as well as a pointer to the previous head. On receipt,
the requestor moves to a different pending state and sends a transaction to that pre-
vious head asking to be attached as the new head of the list (the list construction
operation). The previous head reacts to this message by changing its state from
HEAD_FRESH to MID_VALID or from ONLY_FRESH to TATL_VALID as the case
may be, updating its backward pointer to point to the requestor and sending an
acknowledgment to the requestor. When the requestor receives this acknowledg-
ment, it sets its forward pointer to point to the previous head and changes its state
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FIGURE 8.26  An example of a read miss in the SCl protocol. The figure shows the messages and
state transitions for a read miss to a block that is initially in the FRESH state at home, with one node on

the sharing list. Solid lines are the pointers in the sharing list, whereas dotted lines represent network
transactions. Null pointers are not shown,

from the pending state to HEAD FRESH. The sequence of transactions and actions is
shown in Figure 8.26 for the case where the previous head is in state HEAD FRESH
when the request comes to it,

If the directory state is GONE, the cache at the head of the sharing list has an
exclusive (clean or modified) copy of the block. Now, the memory does not reply
with the data but simply stays in the GONE state and sends a pointer to the previous
head back to the requestor. The requestor goes to a new pending state and sends a
request to the previous head, asking both for the data and to attach to the head of
the list (list construction). The previous head changes its state from HEAD_DIRTY to
MID_VALID or from ONLY DIRTY to TAIL_VALID (or whatever is appropriate),
sets its backward pointer to point to the requestor, and returns the data to the
requestor. (The data may have to be retrieved from a processor cache in the previous
head node.) The requestor then updates its copy, sets its state to HEAD_DIRTY, and
sets its forward pointer t6 point to the new head, all in a single atomic action as
always. Note that even though the reference was a read, the head of the sharing list is
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left in HEAD_DIRTY state. This does not have the standard meaning of dirty that we
are familiar with; that is, that the head node can write that data without having to
invalidate any other caches. It means that it can indeed write the data into the cache
without communicating with the home (and even before sending out the invalida-
tions), but it must invalidate the other nodes in the sharing list since they are in
valid state.

It is possible to fetch a block in HEAD_DIRTY state even when the directory state
is not GONE, for example, when the requesting node is expected to write that block
soon afterward. In this case, if the directory state is FRESH the memory returns the
data to the requestor, together with a pointer to the old head of the sharing list, and
then puts itself in GONE state. The requestor then prepends itself to the sharing list by
sending a request to the old head and puts itself in the HEAD_DIRTY state. The old
head changes its state from HEAD_FRESH to MID_VALID or from ONLY_FRESH to
TAIL_VALID as appropriate, and other nodes on the sharing list remain unchanged.

In the preceding cases, a requestor is always directed by the home to the old head. .
It is possible that the old head (lets call it A) is in a pending state when the request
from the new requestor (B) reaches it since it may itself have a memory operation
outstanding on that block. This is dealt with not by buffering the request at the old
head or NACKing it but by extending the sharing list backward into a (still distrib-
uted) pending list. That is, node B will indeed be physically attached to the head of
the list but in a pending state waiting to truly become the head. If another node C
now makes a request to the home, it will be forwarded to node B and will also attach
itself to the pending list (the home will now point to C, so subsequent requests will
be directed there, and so on). At any time, we call the “true head” (here A) simply
the head of the sharing list, we call the part of the list before the true head the pend-
ing list, and we call the latest element to have joined the pending list (here C) the
pending head (see Figure 8.27). When A leaves the pending state and completes its \
operation, it will pass on the “true head” status to B, which will in turn pass it on to ’
C when its request is completed. Note also that, unlike in the Origin, no pending or
busy state exists at the directory, which always simply takes atomic actions to
change its state and head pointer and returns the previous state/pointer information
to the requestor, a point we will revisit when discussing how correctness issues are
addressed.

Handling Write Requests

The head node of a sharing list is assumed to always have the latest copy of the
block (unless the head node is in a pending state). Thus, only the head node is
allowed to write a block and issue invalidations. When a node incurs a write miss,
three cases are possible. In the first case, the writer is already at the head of the list,
but it does not have the sole modified copy (e.g., there may be other sharers). It first
ensures that it is in the appropriate state for this case, by communicating with the
home if necessary (and in the process ensuring that the home block is already in or
transitions to the GONE state). It then modifies the data locally and invalidates the
rest of the nodes in the sharing list. (This case is elaborated on in the next two para-

A
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FIGURE 8.27 Pending lists in the SCl protocol. The pending list is a continuation (in
the reverse direction) of the regular sharing list. The true head (called the head) and the
nodes in the pending list are in pending states.

graphs.) In the second case, the writer is not in the sharing list at all. The writer
must first allocate space for and obtain a copy of the block, then add itself to the
head of the list using the list construction operation, and then perform the preced-
ing steps to complete the write. The third case is when the writer is in the sharing
list but not at the head. In this case, it must remove itself from the list (rollout), then
add itself to the head (list construction), and finally perform the preceding steps. We
discuss rollout further in the context of replacement, where it is also needed, and we
have already seen list construction. Let us focus now on the case where the writing
node is already at the head of the list.

If the block is in the HEAD_DIRTY state in the writer’s cache, it is modified right
away (since the directory must already be in GONE state) and then the writing node
purges the rest of the sharing list. The purge operation is done in a serialized
request-response manner: an invalidation request is sent to the next node in the
sharing list, which rolls itself out from the list and sends back to the head a pointer
to the next node in the list. The head then sends this node a similar request, and so
on until all entries are purged (i.e., until the response to the head contains a null
pointer; see also Figure 8.28). The writer, or head node, stays in a pending state
while the purging is in progress. During this time, new attempts to add to the shar-
ing list are delayed in a pending list as usual. The latency of purging a sharing list is
a few serialized round-trips (invalidation request, acknowledgment, and the rollout
transactions) plus the associated actions per sharing list entry, so it is important that
long sharing lists are not encountered often on writes, It is possible to reduce the
number of network transactions in the critical path by having each node pass on an
invalidation request to the next node and perhaps acknowledge the previous node
rather than return the identity to the writer. This is not part of the SCI standard
since it distributes the state of the invalidation progress and hence complicates
protocol-level recovery from errors; however, practical systems may be tempted to
take advantage of this shortcut, especially if sharing lists are long,

If the writer is the head of the sharing list but has the block in HEAD_FRESH
state, then it must be changed to HEAD_DIRTY before the block can be modified and
the rest of the entries purged. The writer goes into a pending state and sends a
request to the home, the home changes from FRESH to GONE state and replies to the
message, and then the writer goes into a different pending state and purges the rest

N
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FIGURE 8.28 Purging a sharing list from a HEAD_DIRTY node in SCI. Solid arrows connecting list
nodes are list pointers, while dashed arrows indicate network transactions that implement the transition
to the next configuration.

of the blocks as was just described. It may be t}-(at when the request reaches the
home the home is no longer in FRESH state, buy it points to a newly queued node

that got there in the meantime and has been directed to the writer. When the home

looks up its state, it detects this situation and sends the writer a corresponding

response that is like a NACK. When the writer receives this response, based on its

local pending state it deletes itself from the sharing list (how it does this, given that

a request is coming at it, is discussed in the next subsection) and tries to reattach as

the head in HEAD_DIRTY or ONLY_DTRTY state by sending the appropriate new

request to the home. This is not a retry, in the sense that the writer does not try the b
same request again, but is a suitably modified request to reflect the new state of itself ’
and the home (similar to modifying an upgrade to a read exclusive in the race condi-

tion due to nonatomic state transitions discussed in Chapter 6). The last case for a

write by a head node is if the writer has the block in ONLY_DIRTY state, in which

case it can modify the block without generating any network transactions.

Handling Write-Back and Replacement Requests

A node that is in a sharing list for a block may need to delete itself, either because it
must become the head in order to perform a write operation, or because it must be
replaced in its remote cache for capacity or conflict reasons, or because it is being
invalidated. In the case of a replacement, even if the block is in shared state and does
not have to write data back, the space in the cache (and the pointers) will now be
used for another block and its list pointers, so to preserve a correct representation
the block being replaced must be removed from its sharing list. These replacements
and list removals use the rollout operation.

Consider the general case of a node trying to roll out from the middle of a sharing
list. The node first sets itself to a pending state, then sends a request each to its
upstream and downstream neighbors asking them to update their forward and back-
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ward pointers, respectively, to skip that node. The pending state is needed since
there is nothing to prevent two adjacent nodes in a sharing list from trying to roll
themselves out at the same time, which can lead to a race condition in the updating
of pointers. Even with the pending state, if two adjacent nodes indeed try to roll out
at the same time, they may set themselves to pending state simultaneously and send
messages to each other. This can cause deadlock since neither will respond while it is
in pending state. A simple priority system is used to avoid such deadlock: by conven-
tion, the node closer to the tail of the list has priority and is rolled out first. The roll-
out operation is completed by setting the state of the rolled-out cache entry to invalid
when both the neighbors have replied. The neighbors of the node that is rolling out
do not have to change their state except when the node being rolled out is the second
in a two-node list; in that case, the head of the list may change its state from
HEAD_DIRTY or HEAD_FRESH to ONLY_DIRTY or ONLY_FRESH as appropriate,

If the entry to be rolled out is the head of the list, then the entry may be in dirty
state (a write back) or in fresh state (a replacement). The same set of transactions is
used in either case. The head puts itself in a pending state and first sends a trans-
action to its downstream neighbor. This causes the latter to set its backward pointer
to the home memory and change its state appropriately (e.g., from TATL_VALTD or
MID_VALID to HEAD_DIRTY or from MID_FRESH (o HEAD_FRESH). When the
replacing (head) node receives a response, it sends a transaction to the home, which
updates its pointer to point to the new head but need not change its state. The home
sends a response o the replacer, which is now out of the list and sets its state to
INVALID. Of course, if the replacer is the only node in the list, then it needs to com-
municate only with memory, which will set its state to HOME.

This scenario of a head node rolling out provides another example of the state at ,
the recipient of a request not being compatible with that request when it arrives. By \
the time the message from the replacer gets to the home, the home may have set its
head pointer to point to a different node X from which it has received a request for
the block in the interim. In general, whenever a transaction comes in, the recipient
looks up its local state and the incoming request type; if it detects a mismatch, the
general strategy adopted by the protocol is as we saw earlier in the example of a
write to a block in HEAD_FRESH state: the recipient does not perform the operation
that the request solicits but issues a response that is a lot like a NACK. The requestor
will then check its local state again and take an appropriate action. In this specific
case, the home detects that the incoming transaction type requires that the requestor
be the current head; this is not true, so it NACKs the request. The replacer keeps
retrying the request to the home and keeps being NACKed. At some point, the
request from node X that was redirected to the replacer will reach the replacer, ask-
ing to be prepended to the list. The replacer will look up its (pending) state and send ,
aresponse to that requestor, telling it to instead go to the downstream neighbor (the b
real head since the replacer is rolling out of the list). The replacer is now off the list
and in a different pending state; it is waiting to go to INVALTD state, which it will do
when the next NACK from the home reaches it. Thus, the SCI protocol does include
NACKs, but not in the traditional sense of asking requests to retry when a node or
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resource is busy. NACKs are used just to indicate inappropriate requests and facili-
tate changes of state at the requestor; the difference is that in this case a request that
is NACKed will never succeed in its original form but-may-cause a new type of
request to be generated, which may succeed.

Finally, when a block needs to be written back upon a miss, an important perfor-
mance question is whether the miss should be satisfied first or the block should be
written back first. In discussing bus-based protocols, we saw that most often the

“miss is serviced first and the block to be written back is put in a write-back buffer. In
NUMA-Q, the simplifying decision is made to service the write back (rollout) first
and only then satisfy the miss. Although this slows down the miss, the complexity of
the buffering solution is greater here’ than in bus-based systems (where the write-
back buffer can simply be snooped). Also, the replacements and hence write backs
we are concerned with here are from the remote cache, which is large enough (tens
of megabytes) that replacements are likely to be very infrequent.

8.6.2 Dealing with Correctness Issues

A major emphasis in the SCI standard is providing well-defined, uniform mecha-
nisms for preserving serialization, resolving race conditions, and avoiding deadlock,
livelock, and starvation. The standard takes a stronger position on starvation and
fairness than many other coherence protocols. It was mentioned earlier that most of
the correctness considerations are satisfied by the use of distributed lists of sharers
as well as pending requests, but let us look at how this works in more detail.

Serialization of Operations to a Given Location '

In the SCI protocol, the home node is the entity that determines the order in which
cache misses to a block are serialized. However, unlike in the Origin protocol, here
the order is that in which the requests first arrive at the home, and the mechanism
used for ensuring this order is very different. There is no busy state at the home.
Generally (except for some race conditions described earlier), the home accepts
every request that comes to it, either satisfying it wholly by itself or directing it to
the node that it sees as the current head of the sharing list (the pending head if there
is a pending list). Before it directs the request to another node, it first updates its
head pointer to point to the current requestor. The next request for the block from
any node will see the updated state and pointer (i.e., to the current requestor) even
though the operation corresponding to the current request is not globally complete.
This ensures that the home does not direct two conflicting requests for a block to the
same node at the same time, avoiding race conditions. As we have seen, if a request
cannot be satisfied at the head node to which it was directed—that is, if that node is
in pending state—the requestor will attach itself to the distributed pending list for -
that block and await its turn as long as necessary (see Figure 8.27). Nodes in the
pending list obtain access to the block in FIFO order, ensuring that the order in
which they complete is indeed the same as that in which they first reached the
home.
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While the home may NACK requests when some race conditions are encoun-
tered, those requests will never succeed in their current form, so they do not count
in the serialization. They may be modified to new, different requests that will suc-
ceed, and in that case those new requests will be serialized in the order in which
they first reach the home.

‘

Memory Consistency Model

The SCI standard defines both a coherence protocol and a transport layer, including
a network interface design. However, it does not specify many other aspects, like
details of the physical implementation or even the memory consistency model. Such
matters are left to the system implementor. NUMA-Q does not satisfy sequential
consistency but uses a more relaxed memory consistency model called processor con-
sistency that we shall discuss in Section 9.1, Interestingly, as in Origin, the consis-
tency model chosen for the system is the one supported by the underlying
microprocessor.

Deadlock, Livelock, and Starvation

The fact that a distributed pending list is used to hold waiting requests at the
requestors themselves, rather than a hardware queue shared at the home node by all
blocks allocated in it, implies that there is no danger of input buffers filling ap and, |
hence, no deadlock problem at the protocol level. A strict request-response protocol B
is used as well. Since requests are not NACKed from the home to alleviate blockages "
or contention (only under certain race conditions when they must be altered) but - R
will simply join the pending list and always make progress, livelock does not oceur. i
The list mechanism also ensures that the requests are handled in FIFO order as they
first come to the home, thus preventing starvation. |

The total number of pending lists that a node can be a part of is the number of |
requests it can have outstanding, and the storage for the pending lists is already ;
available in the cache entries, so there is little need for extra buffering at the protocol “
level. (Replacement of a pending entry is not allowed; the memory operation that o
causes the replacement stalls until the entry is no longer pending.) While the SCI | f
standard does not take a position on queuing and buffering issues at the lower trans- )
port level, most implementations, including NUMA-Q, use separate request and |
response queues on each of the incoming and outgoing paths. |

Error Handling

The SCI standard provides some options in the typical protocol to recover from
errors at the hardware link level. NUMA-Q does not implement these but, rather,
assumes that the hardware links are reliable. Standard ECC and CRC checks are pro-
vided to detect and recover from hardware errors in the memory and network links,
Robustness to errors at the protocol level often comes at the cost of performance.
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8.6.3

For example, SCI’s decision to have the writer send all the invalidations one by one,
serialized by responses, simplifies error recovery since the writer knows how many
invalidations have been completed when an error occurs; however, it but compro-
mises performance. While NUMA-Q retains this feature, other systems may choose
not to.

Protocol Extensions

While the SCI protocol is fair and quite robust to errors, many types.of operations
can generate several serialized network transactions and therefore become quite
expensive. A read miss requires two network transactions with the home, at least
two with the head node if there is one, and perhaps more with the head node if it is
in pending state. A replacement requires a rollout, which requires communication
with both neighbors. But, potentially, the most troublesome operation from a scal-
ability viewpoint is invalidation on a write since the cost of the invalidation scales
linearly with the number of nodes on the sharing list with a fairly large constant
(more than a round-trip time). The use of distributed pending lists can increase
latency too, and, in general, the latency of misses tends to be larger than in memory-
based protocols. Extensions have been proposed to SCI to deal with widely shared
data through a combination of hardware organization and protocol. For example,
instead of a single large ring interconnect, the SCI standard envisions building large
systems by connecting many smaller rings together in a hierarchy using bridges and
switches; the protocol can exploit combining transactions in this hierarchy. Some
extensions require changes to the basic protocol and hardware structures whereas
others are compatible with the basic SCI protocol and only require new implementa-
tions of the bridges. The complexity of the extensions may reduce performance for
low degrees of sharing. They are not finalized in the standard and are beyond the
scope of this discussion. More information can be found in (IEEE Computer Society
1995: Kaxiras and Goodman 1996; Kaxiras 1996). One extension that is included in
the standard specializes the protocol for the case in which only two nodes share a
cache block and they ping-pong ownership of it back and forth between themselves
by both writing it repeatedly. This is described in the SCI protocol document (IEEE
Computer Society 1993), NUMA-Q includes another protocol extension that is a
special protocol operation that enables a processor to obtain a copy of a block even
while it is invalidating the (nonhome) source of the block.

Unlike Origin, NUMA-Q does not provide hardware or OS support for dynamic
page migration. With the very large remote caches, capacity misses in the processor
caches to remotely allocated data are almost always satisfied in the remote cache in
the local node. However, proper page placement can still be useful when a processor
writes and has to obtain ownership for data. If nobody else has a copy (e.g., in the
interior portion of a processor’s partition in the equation solver kernel or in Ocean),
then if the home is local, obtaining ownership does not generate network traffic;
however, if home is remote, a round-trip to the home is needed to look up directory
state. The NUMA-Q position is that data migration in main memory is the responsi-
bility of user-level software. The exception is when a process migrates, in which case
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the OS uses a heuristic to possibly migrate that process’s active pages as well, making
them local at the new location. The designers considered this to be the important
context for page migration. Similarly, little hardware support is provided for syn-
chronization beyond simple atomic exchange primitives like test&rset.

Overview of NUMA-Q Hardware

Within a quad multiprocessor node, the second-level caches per processor currently
shipped in NUMA-Q systems are 512 KB or 1 MB large and four-way set associative
with a 32-byte block size. The quad bus is a 532-MB/s split-transaction in-order bus,
with limited facilities for out-of-order responses that are needed by a two-level
coherence scheme. (Even if the bus within an SMP node provides in-order re-
sponses, when a request must go to a remote node it is infeasible to have its response
be in-order with respect to responses generated within the local node.) A quad also
contains up to 4 GB of globally addressable main memory; two 32-bit-wide 133-MB/
s peripheral component interface (PCI) buses connected to the quad bus by PCI
bridges and to which /O devices and a memory and diagnostic controller can attach;

_and the IQ-Link board that plugs into the memory bus and includes the communi-
“cation assist and the network interface.

In addition to the directory information for locally allocated data and the tags for
remotely allocated but locally cached data (which it keeps on both the bus side and
the directory side), the 1Q-Link board consists of four major functional blocks as
shown in Figure 8.29: the bus interface controller, the DataPump, the SCI link inter-
face controller, and the RAM arrays. The Orion bus interface controller (OBIC) pro-
vides the interface to the shared quad bus, managing the remote cache data arrays
and the bus snooping and requesting logic. It acts as both a pseudo memory control-
ler that snoops and translates accesses to nonlocal data as well as a pseudo-processor
that puts incoming transactions from the network onto the bus, The DataPump, a
gallium arsenide chip built by Vitesse Semiconductor Corporation, provides the link
and packet-level transport protocol of the SCI standard. It provides an interface to a
ring interconnect, pulling off packets that are destined for its quad node and letting
other packets go by. The SCI link interface controller (SCLIC) interfaces to the Data-
Pump and the OBIC as well as to the interrupt controller and the directory tags. Tts
main function is to manage the SCI coherence protocol, using one or more program-
mable protocol engines. The RAM arrays implement the data and the different tags
needed for the remote cache. These components are described further when we dis-
cuss the implementation of the IQ-Link in Section 8.6.6.

For the interconnection across quads, the SCI standard defines both a transport
layer and a cache coherence protocol. The transport layer defines a functional speci-
fication for a node-to-network interface and a network topology that consists of
rings made of point-to-point links, In particular, it defines a 1-GB/s ring intercon-
nect and the transactions that can be generated on it. The NUMA-Q system is ini-
tially a single-ring topology of up to eight quads as shown in Figure 8.24. Cables
from the quads connect to the ports of a ring that is contained in a single box called
the 1Q-Plus. Larger systems will include multiple eight-quad systems connected




636 CHAPTER 8 Directory-Based Cache Coherence

\_» Network —/4
sa interface 5l
rnng in (DataPump) ring out = — — — 9
A | I
L | ]
Direct ' | ] |
irector ,
Comro“g; Remote | Local lNeévxéqu—SIde tags
(SCLIC) $ tag | directory |a” irectory
4 | i [
A | |
\i | l
1 ] oy
Orion bus Remote Remote i Local | Bus-side tags
interface ; and directory
controller $ data $ tag | | directory |
(OBIC) * * | * |
Lo

\
Quad bus |

FIGURE 8.29 Functional block diagram of the NUMA-Q 1Q-Link board. The remote cache data is
implemented in synchronous DRAM (SDRAM). The bus-side tags and directory are implemented in
Static RAM (SRAM) whereas the network-side tags and directory can afford to be slower and are there-
fore implemented in SDRAM.

with local area networks. As mentioned earlier, the SCI standard envisions that, \
because of the high latency of long rings, larger systems will generally be built out of

multiple rings interconnected by switches. With a small number of outstanding

requests per node, the latency of a long ring severely limits the node-to-network

bandwidth that a node can achieve (see Chapter 11). The transport layer of SCI will

be discussed further in Chapter 10.

Since the machine is targeted toward database and transaction processing work-
loads, 1/O is an important focus of the NUMA-Q design. As in Origin, /O is globally
addressable, so any processor can directly write to or read from any VO device, not
just those attached to the local quad. A nonlocal processor does not have to send an
explicit message to the quad to which the device is attached and have a processor on
that quad issue the access. This is very convenient for commercial applications, which
are not often structured so that a processor need only access its local disks. I/O devices
are connected to the two PCI buses that attach through PCI bridges to the quad bus.
Each PCI bus is clocked at half the speed of the memory bus and is half as wide,
yielding roughly one-quarter the bandwidth. Physically, there are two ways for a pro-
cessor to access 1/0 devices on other quads. One is through the SCI rings, whether
through the cache coherence protocol or through uncached writes, just as Origin
does thirough its Hubs and network. However, bandwidth is a precious resource on a
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FIGURE 8.30 /0 subsystem of the Sequent NUMA-Q. /O is globally addressable, and 1/O data
transfers among nodes can travel through FiberChannel via PCI buses or through the SCl ring used for
memory operations.

8.6.5

ring network. /O transfers can occupy substantial bandwidth, interfering with
memory accesses. NUMA-Q therefore provides a Separate communication substrate
through the PCI buses for interquad I/O transfers, which is the default /O path. A
“FiberChannel” link connects to a PCI bus on each node. These links are connected
to all the shared disks in the system through either point-to-point connections, an
arbitrated FiberChannel loop, or a FiberChannel switch, depending on the scale of
the processing and /O systems (Figure 8.30).

FiberChannel talks to the disks at over 50 MB/s sustained through a bridge that
converts the FiberChannel data format to the SCSI format that the disks accept. 1/0
to any disk in the system usually takes a path through the local PCI bus and the
FiberChannel switch; however, if this path fails for some reason, the operating sys-
tem causes I/O transfers to go through the SCI ring to another quad and through its
PCI bus and FiberChannel link to the disk. FiberChannel may also be used to con-
nect multiple NUMA-Q systems in a loosely coupled fashion and to have multiple
Systems share disks. Finally, a management and diagnostic controller connects to a
PCl bus on each quad; these controllers are linked with one another and to a system
console through a private local area network like Ethernet for system maintenance
and diagnosis.

Protocol Interactions with SMP Node

The earlier discussion of the SCI protocol ignored the multiprocessor nature of the
quad node and the bus-based protocol within it. Now that we understand the hard-
ware structure of the node and the IQ-Link, let us examine the interactions of the
two protocols, the requirements that the interacting protocols place upon the quad
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and 1Q-Link, and some particular problems raised by the use of an off-the-shelf SMP
as a node.

A read request illustrates some of the interactions. A read miss in a processor’s
second-level cache first appears on the quad bus. In addition to being snooped by
the other processor caches, it is snooped by the OBIC bus controller on the IQ-Link
board. The OBIC looks up the remote cache as well as the directory state bits for
locally allocated blocks to see if the read can be satisfied within the quad or if it must
be propagated off node. In the former case, main memory or one of the other caches
satisfies the read, and the appropriate MESI state changes occur. (Snoop results are
reported, in order, after a fixed number of bus cycles [fourl; if a controller cannot
finish its snoop within this time, it asserts a stall signal for another two bus cycles,
after which memory checks for the snoop result again. This continues until all
snoop results are available.) The quad bus implements in-order data responses to
requests. However, if the OBIC detects that the request must be propagated off node,
then it must intervene. It does this by asserting a deferred response signal, telling the
bus to violate its in-order response property and proceed with other transactions and
that the OBIC will take responsibility for responding to this request. This would not
have been necessary if the quad bus implemented out-of-order responses. The OBIC
then passes on the request to the SCLIC to engage the directory protocol. When the
response comes back, it is passed from the SCLIC back to the OBIC, which places it
on the bus and completes the deferred transaction. Note that when extending any
bus-based system to be the node of a larger cache-coherent machine, it is essential
that the bus be split transaction, not only for performance but also to simplify cor-
rectness, Otherwise, the bus will be held up for the entire duration of a remote trans-
action, not allowing even local misses to complete and not allowing incoming
network transactions to be serviced by processor caches (potentially causing dead-
lock).

Writes take a similar path out of and back into a quad. The state of the block in
the remote cache, snooped by the OBIC, indicates whether the block is owned by
the local quad or a request must be propagated to the home through the SCLIC. Put-
ting the node at the head of the sharing list and invalidating other nodes, if neces-
sary, is taken care of by the SCLIC. When the SCLIC is done, it places a response on
the quad bus (via the OBIC), which completes the operation. An interesting situa-
tion arises due to a limitation of the quad itself. Consider a read miss or write miss
to a locally allocated block that is cached remotely in a modified state. When the
response returns and is placed on the bus as a deferred response, it should update
the main memory. However, the quad memory was not implemented to deal with
deferred requests and responses and does not update itself on seeing a deferred
response. Thus, when a deferred response is passed down to the bus through the
OBIC, the OBIC must also ensure that it updates the memory through a special
action before it gives up the bus. Another limitation arises from how the OBIC uses
the quad bus protocol. If two processors in a quad issue read-exclusive requests back
to back, and the first one propagates to the SCLIC, we would like the second one to
be buffered and accept the response from the first in the appropriate state. However,
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the implementation NACKs the second request, which will then have to retry until
" the first one returns and it succeeds.

Finally, consider serialization. Since serialization at the SC] protocol level is done
at the home, incoming transactions at the home have to be serialized not only with
respect to one another but also with respect to accesses by the processors in the
home quad. For example, suppose a block is in the HOME state at the home. At the
SCI protocol level, this means that no remote cache in the system (which must be on
some other node) has a valid copy of the block. However, unlike the unowned state
in the Origin protocol, this does not mean that no processor cache in the home node
has a copy of the block. In fact, the directory will be in HOME state even if one of the
processor caches at the home has a dirty copy of the block. Even to obtain the right
value, a request coming in for a locally allocated block at a home node must there-
fore be broadcast on the quad bus as well and cannot be handled entirely by the
SCLIC and OBIC. Similarly, an incoming request that makes the directory state
change from HOME or FRESH to GONE must be put on the quad bus so that the copies
in the processor caches can be invalidated. Since both incoming requests and local
misses to data at the home appear on the quad bus, it is natural to let this bus be the
actual serializing agent at the home.

Similarly, serialization issues need to be addressed in a requesting quad for
accesses to remotely allocated blocks. Activities within a quad relating to remotely
allocated blocks are serialized at the local SCLIC rather than the local bus, Thus,
requests from local processors for a block in the remote cache and incoming
requests from the SCI interconnect for the same block are serialized at the local
SCLIC. Similarly, the SCLIC takes care of the local serialization between outstanding
invalidations at a requestor and incoming requests. Other interactions with the node
protocol are discussed once we have considered the implementation of the IQ-Link
board components,

IQ-Link Implementation

Unlike the single-chip Hub in Origin, the SCLIC directory controller, the OBIC bus
interface controller, and the DataPump are separate chips on the 1Q-Link board,
which also contains some SRAM and SDRAM chips for tags, state, and remote cache
data (see Figure 8.29).

The data in the remote cache is directly accessible by the OBIC. Two sets of tags
are used to reduce communication between the SCLIC and the OBIC: the network-
side tags for access by the SCLIC and the bus-side tags for access by the OBIC. The
same is true for the directory state for locally allocated blocks. The bus-side tags and
directory state contain only the information that is needed for the bus snooping and
are implemented in SRAM so they can be looked up at bus speed. The network-side
tags and state need more information and can be slower, so they are implemented in
synchronous DRAM (SDRAM). The bus-side local directory SRAM contains only the
2 bits of directory state per 64-byte block (to distinguish the HOME, FRESH, and
GONE states) whereas the network-side directory contains the 6-bit SCI head pointer




pr———— e

640 cHAPTER 8 Directory-Based Cache Coherence

as well. The bus-side remote cache tags also have only 4 bits of state and do not con-
tain the SCI forward and backward list pointers. They keep track of 14 states, some
of which are transient states that ensure forward progress within the quad (e.g., that
keep track of blocks that are being rolled out or of the particular bus agent that has
an outstanding retry on the bus and so must get priority for that block). The
network-side remote cache tags, which are part of the directory protocol, contain 7
bits to represent all protocol states plus two 6-bit pointers per block (as well as the
13-bit cache tags themselves).

Unlike the hardwired protocol tables in Origin, the SCLIC coherence controller
in NUMA-Q is programmable. This means the protocol can be written in software or
firmware rather than hardwired into a finite state machine. Every protocol-invoking
operation from a local processor, as well as every incoming transaction from the net-
work, invokes a software “handler” or task that runs on the protocol engine. These
software handlers, written in microcode, may manipulate directory state, put inter-
yentions on the quad bus, generate network transactions, and so on. The SCLIC
engine has multiple register sets to support 12 read/write/invalidate transactions and
1 interrupt transaction concurrently. To allow the standard intraquad interrupt inter-
face to be used across quads, the SCLIC provides a bridge for routing standard
intraquad interrupts between quads and provides some extra bits to include the des-
tination quad number when generating such interrupts.

A programmable protocol engine has several potential advantages. It allows the
protocol to be debugged in software and corrected by simply downloading new pro-
tocol code. It provides the flexibility to experiment with or change protocols even
after the machine is built and bottlenecks are discovered, and allows multiple proto-
cols to be supported by the machine. And it enables code to be inserted into the han-
dlers to monitor chosen events for performance debugging, which is especially
valuable given the implicit nature of communication and the potential impact of
artifactual communication in a shared address space. The disadvantage is that a pro-
grammable protocol engine has higher occupancy per transaction than a hardwired
one, so a performance cost is associated with this decision. Attempts are made to
reduce this performance impact in the NUMA-Q SCLIC. The protocol processor has
a three-stage pipeline and issues up to two instructions (a branch and another
instruction) every cycle. It uses a cache to hold recently used directory state and tag
information rather than accessing the directory RAMs every time. Finally, it is spe-
cialized to support the kinds of bit-field manipulation operations that are commonly
needed in directory protocols as well as useful instructions that speed up handler
dispatch and management, like “queue on buffer full” and “branch on queue space
available” instructions. A somewhat different programmable protocol engine is used
in the Stanford FLASH multiprocessor (Kuskin et al. 1994), the successor to the
hardwired Stanford DASH machine.

Each Pentium Pro processor can have up to four requests outstanding, The quad
bus can have eight requests outstanding at a time and ensures that snoop and data
responses come in order (except when deferred responses are used, as discussed ear-
lier). The OBIC can have four external requests outstanding to the SCLIC and can
buffer two incoming transactions to the quad bus at a time. If a fifth request from the
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quad bus needs to go off quad, the OBIC will NACK it until a buffer entry is free but
will not cause the quad bus to stall for local operations. The SCLIC can have up to
eight requests outstanding and can buffer four incoming requests at a time. A simpli-
fied illustration of the SCLIC is shown in Figure 8.31. Finally, the DataPump request
and response buffers are each two entries deep outgoing to the network and four
entries deep incoming. All request and response buffers, whether incoming or out-
going, are physically separate in this implementation.

In addition to the ability to instrument protocol handlers in software, all three
components of the IQ-Link board also provide performance counters to enable non-
intrusive measurement of various events and statistics. There are three 40-bit
memory-mapped counters in the SCLIC and four in the OBIC. Each can be set in
software to count any of a large number of events, such as protocol engine
utilization, memory and bus utilization, queue occupancies, the occurrence of SCI
command types, and the occurrence of transaction types on the quad bus. The
counters can be read by software on the main processors at any time or can be pro-
grammed to generate interrupts when they cross a predefined threshold value, The
Pentium Pro processor module itself provides a number of performance counters to
count first- and second-level cache misses as well as the frequencies of request types
and the occupancies of internal resources, among other properties. Together with
the programmable handlers, these counters can provide a wealth of information
about the behavior of the machine when running workloads.

Performance Characteristics

The quad bus has a peak Bandwidth of 532 MB/s, and the SCI ring interconnect can
transfer 500 MB/s in each direction across the node-to-network interface. The 1Q-
Link board can transfer data between these two interconnects at about 30 MB/s in
each direction (note that only a small fraction of the transactions appearing on the
quad bus or on the SCI ring are expected to be relevant to the other interconnect).
The latency for a local read miss satisfied in main memory (or the remote cache) is
expected to average about 250 ns under ideal conditions. The latency for a read sat-
isfied in remote memory in a two-quad system is expected to be about 2.5 us, a ratio
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Table 8.3 ~ Characteristics of Microbenchmarks and Workloads Running on an Eight-

Quad NUMA-Q
SCLIC
Workload. . Latency of L, Misses - Utilization Percentage of L, Misses Satisfied in
All Remotely Local = Other Local - Local Remote
Satisfied Memory Cache “Remote Node
: Cache”

Remote Read /
Misses 8,020ns 8,300 ns 95% 1.5% 0% 2% 96.5%
Remote Write
Misses 9,350ns  9,625ns 95% 1% 0% 2% 97%
TPC-B-like 630ns 4,300 ns 54% 80% 2% 11.5% 6.5%
TPC-D (Q9) 580 ns 3,950 ns 40% 85% 5.5% 4% 5.5%

of about 10 to 1. However, the inclusion of a remote access cache keeps the fre-
quency of artifactual communication very low. The latency through the DataPump
network interface for the first 18 bits of a transaction is 16 ns and then 2 ns for every
18 bits thereafter. In the network itself, it takes about 26 ns for the first bit to get
from the DataPump output of a quad into the 1Q-Plus box that implements the ring
and back out to the DataPump of the next quad along the ring,

The designers of the NUMA-Q have performed several experiments on the
machine with microbenchmarks and with database and transaction processing
workloads. To obtain a flavor for the microbenchmark performance capabilities of
the machine, how latencies vary under load, and the characteristics of such work-
loads, let us take a brief look at the results. For a single-quad system with all four
processors simultaneously generating cache misses as quickly as they can, back-to-
back read misses are found to take 600 ns each and obtain a combined transfer
bandwidth to the processors of 290 MB/s. Under similar conditions, hack-to-back
write misses, which cause a read followed by a write back, take 585 ns, and sustain
195 MB/s. For a single-quad system with multiple /O controllers on each PCI VO
bus generating inbound writes from the /O devices to the local memory as quickly
as possible, each cache block transfer takes 360 ns at 111 MB/s sustained bandwidth.

Table 8.3 shows the latencies and characteristics under load as seen in various
workloads running on multiple-quad systems. The first two rows are for microbench-
marks designed to have all quads simultaneously issuing read misses that are satisfied
in remote memory. The third row is for the Transaction Processing Council's on-line
transaction processing benchmark TPC-B (se€ Appendix). The last row is for Query 9
of the TPC-D benchmark suite, which represents decision support applications. The
latencies are measured using the performance counters embedded in the OBIC and
SCLIC and are measured not from the processor but from the bus request to the first
data response. All workloads are run with four quads (16 processors), except the
decision support workload, which is run with eight. Write misses to locally allocated
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FIGURE 8.32 Components of average remote miss latency in two workloads on

an eight-quad NUMA-Q. In both cases, most of the time is spent in the IQ-Link board, ;
which includes data transfers between the SCLIC and the DataPump or the OBIC. Time in !
the OBIC chip itself is included in bus time in this figure.

data that cause invalidations to be sent remotely are very few and are included in the (|
last column,

Remote data access latencies are clearly significantly higher than the unloaded
latencies. In general, the SCI ting and protocol have higher latencies than those of i
more distributed networks and memory-based protocols, as discussed earlier, How- !
ever, at least in these transaction processing and decision support workloads, much i
of the time in a remote access is spent passing through the IQ-Link board itself and
not in the bus or ring. Figure 8.32 shows the breakdowns of average remote latency
into three components for two workloads on four- and eight-quad systems. The path
to improved remote access performance, both under load and not under load, is to
make the IQ-Link board more efficient, The designers are considering a number of .
opportunities, including redesigning the SCLIC, perhaps using two instruction Lo
sequencers instead of one in the programmable SCLIC, and optimizing the OBIC, P
with the hope of reducing the remote access latency to about 2 ps under heavy load ‘
in the next generation. The remote cache is found to be very useful in keeping }
capacity misses local. The TPC-D (Q9) workload has lower SCLIC utilization than ;

|

the TPC-B workload because it generates fewer invalidations.

Comparison Case Study: The HAL S1 Multiprocessor

The S1 multiprocessor from HAL Computer Systems is an interesting combination
of some features of the NUMA-Q and the Origin2000. Like the NUMA-Q, the S1 ;‘
also uses Pentium Pro quads as the processing nodes; however, it uses a memory- P
based directory protocol like that of the Origin2000 across quads rather than the
cache-based SCI protocol. In addition, to reduce latency and assist occupancy, it
integrates the coherence machinery more tightly with the node than the NUMA-Q
does, coming closer to the Origin in this regard. Instead of using separate chips for
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the directory protocol controller (SCLIC), bus interface controller (OBIC), and net-
work interface (DataPump), the S1 integrates the entire communication assist and
the network interface into a single chip called the mesh coherence unit (MCU), with
separate chips used for storage. On the other hand, the cache-coherent design scales
to only four quads, does not have the flexibility of a programmable controller, and
does not include a remote access cache to reduce remote capacity misses.

Since the memory-based protocol does not require the use of forward and back-
ward pointers with each cache entry, there is no need for a quad-level remote data
cache to provide this functionality (which processor caches do not provide); in
memory-based protocols, remote caches are useful only to reduce capacity misses,
and the S1 does not use them. The directory information is maintained in separate
SRAM chips, but the directory storage needed is greatly reduced by maintaining
directory information not for all memory blocks but only for those blocks that are in
fact cached remotely, organizing the directory itself as a cache (as discussed in
Section 8.10.1). The MCU also contains a DMA engine to support explicit message
passing as well as block data transfers in a cache-coherent shared address space (see
Chapter 11). Message passing or explicit data transfers can be implemented either
through the DMA engine (preferred for large messages) or through the transfer
mechanism used for cache blocks (preferred for small messages). The MCU is hard-
wired instead of programmable, which reduces its occupancy for protocol process-
ing and hence improves its performance under contention. The MCU also has
substantial hardware support for performance monitoring. Other than the MCU, the
only custom chip used is the network router, which is a six-ported crossbar with 1.9
million transistors, optimized for speed. The network is clocked at 200 MHz. The
latency through a single router is 42 ns, and the usable per-link bandwidth is 1.6
GB/s in each direction—both similar to that of the Origin2000 network. The initial
S1 interconnect implementation scales to 32 nodes (128 processors).

A major goal of integrating all the assist functionality into a single chip in S1 was
to reduce remote access latency and increase remote bandwidth. From the designers’
simulated measurements, the best-case unloaded latency for a read miss that is satis-
fied in local memory is 240 ns, for a read miss to a block that is clean at a nearby
remote home is 1,065 ns, and for a read miss to a block that is dirty in a (nearby)
third node is 1,365 ns. The remote-to-local latency ratio ranges from 4 to 5 (includ-
ing contention), which is a little worse than on the SGI Origin2000 but better than
on the NUMA-Q. However, microbenchmark comparisons of latencies are not very
meaningful as predictors of overall performance on workloads since they ignore
important considerations like remote caches and flexibility that can greatly affect the
frequency of communication.

The bandwidths achieved by the HAL Sl in copying a single 4-KB page are
instructive. The achieved bandwidth is 105 MB/s from local memory to local mem-
ory through processor reads and writes (limited primarily by the quad memory con-
wroller that has to handle both the reads and writes of memory), about 70 MB/s
between local memory and a remote memory (in either direction) when accom-
plished through processor reads and writes, and about 270 MB/s in either direction
between local and remote memory when performed through the DMA engines in the
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MCUs. The case of remote transfers through processor reads and writes is limited
primarily by the limit on the number of outstanding memory operations from a pro-

tention across transfers, the local quad bus becomes a bandwidth bottleneck long
before the interconnection network does. !

Now that we understand the protocol layer that implements the coherent shared
address space programming model in some depth for both memory-based and
cache-based protocols, let us briefly examine some key interactions of protocols
with the basic performance parameters of the communication architecture in deter- |
mining the performance of applications. l

8.7 PERFORMANCE PARAMETERS AND PROTOCOL PERFORMANCE

Recall that there are four major performance parameters in a communication archi-
tecture: overhead on the main processor, occupancy of the communication assist,
network transit delay, and network bandwidth. Processor overhead is usually quite !
small on cache-coherent machines (unlike on message-passing systems, where it |
often dominates) and is determined entirely by the underlying node. In the best 0
case, the portion that we can call processor overhead, and which cannot be hidden "
from the processor through overlap, is the cost of issuipg the memory operation, In
the worst case, it is the cost of traversing the processor’s cache hierarchy and reach- R £
ing the assist (which can be quite significant). All other protocol processing actions
are off-loaded to the communication assist (e.g., the Hub or the IQ-Link). Network
link bandwidth, too, is usually adequate for most applications in high-performance
multiprocessor networks (Holt et al. 1995). The more critical issues under the i
control of the communication architecture are, therefore, network delay and assist
occupancy.

As we have seen, the communication assist has many roles in protocol process-
ing, including generating a request, looking up the directory state, accessing the data
for a response, and sending out and receiving invalidations and acknowledgments.
The occupancy of the assist for processing a transaction not only contributes to the
uncontended latency of that transaction but can also cause contention at the assist
and hence increase the cost of other transactions. This is especially true in cache-
coherent machines because of the large number of small transactions—both data-
carrying transactions and others like requests, invalidations, and acknowledg-
ments—which implies that the occupancy is incurred very frequently and not
amortized very well. The situation is better than in shared address space machines
that are not cache coherent, where a transaction transfers only the referenced word
rather than a whole cache block because replication and coherence must be man-
aged by the programmer (see the discussion in Section 3.6), but the amortization is
still small. In fact, assist occupancy very often dominates the data transfer band-
width of the node-to-network interface as the key bottleneck to throughput at the
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endpoints (Holt et al. 1995). It is therefore very important to keep assist occupancy
small. At the protocol level, it is important both to ensure that the assist is not tied
up by an outstanding transaction while other unrelated transactions are available for
it to process and to reduce the amount of processing needed from the assist per
transaction. For example, if the home forwards a request to a dirty node, the home
assist should not be held up until the dirty node returns a response—which would
dramatically increase its effective occupancy—but should go on to service the next
transaction and deal with the response later when it comes. At the hardware design
level, it is important to specialize the assist enough and integrate it tightly with the
node’s memory system so that its effective occupancy per transaction is low. The
tighter the integration and the greater the specialization, the less commodity
oriented the design but the lower the occupancy.

Impact of Network Delay and Assist Occupancy

Figure 8.33 shows the impact of assist occupancy and network latency on perfor-
mance, assuming an efficient memory-based directory protocol similar to that of the
SGI Origin2000. In the absence of contention, assist occupancy behaves just like
network transit delay or any other component of the latency in a transaction’s path:
increasing occupancy by d cycles would have the same impact as keeping occupancy
constant but increasing network delay by d cycles. Since the x-axis is total uncon-
tended round-trip latency for a remote read miss (including the cost of network
delay and assist occupancies incurred along the way), if no contentjon is induced by
increasing occupancy, then all the curves for different values of occupancy will be
identical. In fact, they are not, and the separation of the curves indicates the impact
of the contention induced by increasing assist occupancy.

The smallest value of occupancy (o) in the graphs is intended to represent that of
an aggressive hardwired assist that is tightly integrated with the cache or memory
controller, such as the one used in the Origin2000. The least aggressive one repre-
sents placing a slow general-purpose processor on the memory bus to play the role
of communication assist. The most aggressive network delays used represent mod-
ern high-end multiprocessor interconnects whereas the least aggressive ones are
closer to using commodity system area networks like asynchronous transfer mode
(ATM). We can see that for an aggressive occupancy, the latency curves take the
expected 1/1 shape. The contention induced by assist occupancy has a major impact
on performance for applications that stress communication throughput (especially
those in which communication is bursty), particularly for the low-delay networks
used in multiprocessors. Thus the curves for higher occupancies are far apart from
one another toward their left ends. For reasonable occupancies, the curves become
closer to one another at larger network delays, since the greater time spent by trans-
actions in the network keeps the assist less busy and hence keeps contention at the
assist smaller. For higher occupancies, the curve almost flattens, at least with lower
network delays, indicating that the assist is saturated. The problem is especially
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FIGURE 8.33 Impact of assist occupancy and network latency on the performance of
memory-based cache coherence protocols. The y-axis is the parallel efficiency, which is the speedup
over a sequential execution divided by the number of processors used (1 is ideal speedup). The x-axis is
the uncontended round-trip latency of a read miss that is satisfied in main memory at the home, includ-
ing all components of cost {occupancy, transit latency, time in buffers, and network bandwidth). Each
curve is for a different value of assist occupancy (o), while along a curve the only parameter that varies
is the network transit delay (/). The lowest occupancy assumed is 7 processor cycles, which is labeled 0Oy.
O, corresponds to twice that occupancy (14 processor cycles) and so on. All other costs, such as the
time to propagate through the cache hierarchy and through buffers and the node-to-network band-
width, are held constant. The graphs are for simulated 64-processor executions. The main conclusion is
that the contention induced by assist occupancy is very important to-performance, especially in low-
latency networks.

severe for applications with bursty communication, such as sorting and FFTs, since
there the rate of communication relative to computation during the communication
phase does not change much with problem size, so larger problem sizes do not help

alleviate the contention during that phase. Assist occupancy is a less severe problem -
for applications in which communication events are separated by significant compu-

tation and whose communication bandwidth demands are small (e, g., Barnes-Hut).
When latency tolerance techniques are used (discussed in Chapter 11), bandwidth
is stressed even further, so the impact of assist occupancy is much greater even at
higher transit latencies, and the curyes at the highest occupancies are almost com-
pletely flat for FFT and sorting (Holt et al. 1995). This data shows that it is very
important to keep assist occupancy low in machines that communicate and main-
tain coherence at a fine granularity such as that of cache blocks, The impact of con-
tention due to assist occupancy tends to increase with the number of processors
used to solve a given problem since the communication-to-computation ratio tends
to increase.
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Effects of Assist Occupancy on Protocol Trade-Offs

The occupancy of the assist has an impact not only on the performance of a given
protocol but also on the trade-offs among protocols. We have seen that cache-based
protocols can have higher latency on write operations than memory-based protocols
since the transactions needed to invalidate sharers are serialized. The SCI cache-
based protocol also tends to have more protocol processing to do on a given memory
operation than a memory-based protocol, so the effective occupancy of the assist
tends to be significantly higher, especially when assists are programmable rather
than hardwired. Combined with the higher latency on writes, this would tend to
cause memory-based protocols to perform better. This difference between the per-
formance of the protocols will become greater as assist occupancy and its perfor-
mance impact increase. On the other hand, the protocol processing occupancy fora
given memory operation (e.g., a write) in SCl is distributed over more nodes and
assists, so, depending on the communication patterns of the application, it may
experience less contention at a given assist. For example, when hot spotting
becomes a problem due to bursty irregular communication in memory-based proto-
cols (as in radix sgrt'mg), it may be somewhat alleviated in SCL. How these trade-offs
play out in practice will depend on the characteristics of real programs and
machines, although overall we might expect memory-based protocols to perform
better in optimized implementations.

Improving Performance Parameters in Hardware

There are many ways to use more aggressive, specialized hardware to improve pet-
formance characteristics such as delay, occupancy, and bandwidth. Some notable
techniques include the following. First, an SRAM directory cache may be placed
close to the assist to reduce directory lookup cost, as is done in NUMA-Q and in the
Stanford FLASH multiprocessor (Kuskin et al. 1994). Second, a single bit of SRAM
can be maintained per memory block at the home to keep track of whether or not
the block is in clean state in the local memory. If it is, then on a read miss to a locally
allocated block, there is no need to invoke the communication assist any further.
Third, if the assist occupancy is high, it can be pipelined into stages of protocol pro-
cessing, as is also done in the NUMA-Q and Stanford FLASH (e.g., decoding a
request, looking up the directory, generating a response), or its occupancy can be
overlapped with other actions. Pipelining the assist reduces contention but not the
uncontended latency of individual memory operations; the opposite (and comple-
mentary) result can be achieved by having the assist generate and send out a
response or a forwarded request even before all the cleanup it needs to do is done.

8.8 SYNCHRONIZATION

Software algorithms for synchronization on scalable non-cache-coherent shared
address space systems using atomic exchange instructions or LL-SC are discussed in
Section 7.9. Recall that the major focus of these algorithms compared to those for
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bus-based machines is to exploit the parallelism of independent paths in the inter-
connect and to ensure that processors will spin on local rather than nonlocal vari-
ables. The same algorithms are applicable to scalable cache-coherent machines.
However, there are two differences. First, the performance implications of spinning
on remotely allocated variables are likely to be much less significant since a proces-
sor caches the variable and then spins on it locally until it is invalidated. Having pro-
cessors spin on different variables rather than the same one is of course useful in
preventing all processors from rushing out to the same home memory when the
variable is written and invalidated, thereby reducing contention. And good place-
ment of synchronization variables has the benefit of converting the misses that occur
after invalidation into two-hop misses from three-hop misses. However, there is only
one (very unlikely) situation when it may actually be very important to performance
that the variable a processor spins on be allocated locally: if all levels of the cache
hierarchy are unified and direct mapped and the instructions for the spin loop con-
flict with the variable itself, in which case conflict misses will be satisfied locally.
Second, while these performance aspects of synchronization algorithms are less crit-
ical, implementing atomic primitives and LL-SC is more interesting when it interacts
with a coherence protocol. This section examines the performance and implementa-
tion aspects, first comparing the performance of the different synchronization algo-
rithms for the locks described in Chapters 5 and 7 on the SGI Origin2000 and then
discussing some new implementation issues for atomic primitives beyond the issues
already encountered in Chapter 6 for bus-based machines,

Performance of Synchronization Algorithms

The experiments used here to illustrate synchronization performance are the same
as those used on the bus-based SGI Challenge in Section 5.5, again using LL-SC as
the primitive to construct atomic operations. The delays used are the same in pro-
cessor cycles and therefore different in actual microseconds. The results for the lock
algorithms described in Chapters 5 and 7 are shown in Figure 8.34 for 16-processor
executions. Here again, three different sets of values are used for the delays within
and after the critical section for which processors repeatedly contend,

Here too, until we use delays between critical sections, the simple locks behave

unfairly and yield higher throughput. Exponential backoff often helps the simple’

LL-SClock in the event of a null critical section since this is the case where signifi-
cant contention needs to be alleviated. The ticket lock scales quite poorly in this
case, as it did on a bus, but scales very well when proportional backoff is used. The
array-based lock also scales very well, With coherent caches, the better placement of
lock variables in main memory afforded by the software queuing lock is not particu-
larly useful. If we force the simple locks to behave fairly, they behave much like the
ticket lock without proportional backoff,

If we use a non-null critical section and a delay between lock accesses
(Figure 8.34[c]), all locks behave fairly. Now the simple LL-SC locks don’t have
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formance of the queuning lock at two processors is due to a specific interaction in
constructing the software queue (Mellor-Crummey and Scott 1991). While experi-
ments with larger-scale machines are warranted, the flattening of the curves indi-
cates that, overall, the array-based lock and the ticket lock perform quite well and

also performs well with delays between unlock and lock.
More aggressive hardware support for locks has been proposed. The most promi-
nent example is a hardware version of the queuing lock called QOLB (queue on lock

marks, and, as with all system features, its true value to performance is best evali-
ated with real applications and workloads.

Algorithms and hardware support for barriers are discussed in Section 7.9. Since
barriers reached simultaneously by multiple nodes cause contention for read-
modify-write access to a shared counter, a number of interesting questions arise:
Should this counter variable he a cacheable location or an uncached location
accessed at main memory? Or can mechanisms be developed to allow processors to
spin in their caches and either be updated at the release or read the release value
from main memory rather than from the releaser’s cache? Or is the hardware support
for at-memory fetch&op operations particularly valuable as provided by machines
like the Origin2000?

Implementing Atomic Primitives

*
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once the write has obtained ownership and even before invalidation acknowledg-
ments have returned. Atomic operations can also be implemented at the memory,
but it is easier to do this if we disallow the block from being cached in dirty state by
any processor. Then all writes go to memory, and the read-modify-write can be seri-
alized with respect to other writes as soon as it gets to memory. Memory can send a
response to the read component in parallel with sending out invalidations corre-
sponding to the write component.

Implementing LL-SC requires all the same consideration to avoid livelock as it
did for bus-based machines, with one further complication. Recall that a store-
conditional should not send out invalidations or updates if it fails since, otherwise,
two processors may keep invalidating or updating each other and failing, causing
livelock. To detect failure of a store-conditional, the requesting processor needs to
determine if some other processor’s write to the block has been serialized before the
store-conditional. In a bus-based system, the cache controller can do this by check-
ing upon a store-conditional whether the cache no longer has a valid copy of the
block or whether there are incoming invalidations or updates for the block that have
already appeared on the bus. The latter detection of serialization order cannot be
done locally by the cache controller with a distributed interconnect, so a different
mechanism is necessary. In an invalidation-based protocol, if the block is still in
valid state in the cache, then the read-exclusive request corresponding to the store-
conditional goes to the directory at the home. There it checks to see if the requestor
is still on the sharing list. If it isn’t, then the directory knows that another conflicting
write has been serialized before the store-conditional, so it does not send out invali-
dations corresponding to the store-conditional and the store-conditional fails.
Otherwise, it succeeds. In an update protocol, this is more difficult since, even if
another write has been serialized before the store-conditional, the store-conditional
requestor will still be on the sharing list. One solution (Gharachorloo 1995) is to
again use a two-phase protocol as was used to provide write atomicity for updates.
When the store-conditional reaches the directory, it locks down the entry for that
block so that no other requests can access it. Then, the directory sends a message
back to the store-conditional requestor, which upon receipt checks to see if the lock
flag for the LL-SC has been cleared (by an update that arrived between the current
time and the time the store-conditional request was sent out). If so, the store-
conditional has failed and a message is sent back to the directory to this effect (and
to unlock the directory entry). If not, then as long as point-to-point order is guaran-
teed in the network, we can conclude that no conflicting write beat the store-
conditional to the directory, so the store-conditional should succeed. The requestor
sends an acknowledgment back to the directory, which unlocks the directory entry
and sends out the updates corresponding to the store-conditional, and the store-
conditional succeeds.

8.9 IMPLICATIONS FOR PARALLEL SOFTWARE

Let us now consider the implications for parallel software more generally than for
synchronization. What distinguishes the coherent shared address space systems
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described in this chapter from those described in Chapters 5 and 6 is that they have
physically distributed rather than centralized main memory. Distributed memory is
at once an opportunity to improve performance and scalability through data locality
and a burden on software to exploit this locality. As we saw in Chapter 3, on cache-
coherent architectures with physically distributed memory (or CC-NUMA ma-
chines), such as those discussed in this chapter, parallel programs may need to be
aware of physically distributed memory, particularly when their important working
sets don’t fit in the cache. Artifactual communication occurs when data is not allo.
cated in the memory of a node that incurs capacity, conflict, or cold misses on that
data. This situation can lead to some artifactual communication even when data
does fit in the cache since looking up the directory on write misses (including up-
grades) will generate network traffic and contention. Finally, consider a multipro-
grammed workload in which application processes are migrated among processing
nodes for load balancing, Migrating a process will turn what should be local misses

data be allocated appropriately across the distributed memories,

In the CC-NUMA machines discussed in this chapter, the management of main
memory is typically done at the fairly large granularity of pages. The large granular-
ity can make it difficult to distribute shared data structures appropriately since data
that should be allocated on two different nodes may fall on the same unit of alloca-
tion. The operating system may transparently migrate pages to the nodes that incur
cache misses on them most often, using information obtained from hardware
counters; or the run-time system of a programming language may migrate pages
based on user-supplied hints or compiler analysis, (We saw that the Origin2000 pro-
vides protocol support for efficient migration.) More commonly today, the program-
mer may direct the operating system to place pages in the memories closest to
particular processes. This may be as simple as providing these directives to the sys-

tem—such as, “Place the pages in this range of virtual addresses in this process Xs

local memory”—or it may additionally involve padding and aligning data structures
to page boundaries so they can be placed properly, or it may even require that data
structures be organized differently to allow such placement at page granularity, We
saw examples of the need for all three in using four-dimensional instead of two.-
dimensional arrays in the equation solver kernel and in Ocean., Simple, regular cases
like these may also be handled by sophisticated compilers. In Barnes-Hut, on the
other hand, proper placement would require a significant reorganization of data
structures as well as code. Instead of having a single linear array for all particles (or
cells), each process would have an array or list of its own assigned particles that it
could allocate in its local memory; between time-steps, particles that were reas-
signed would be moved from one array or list to another. However, as we have seen,
data placement is not very useful for this application due to the small working sets
and low capacity miss rate and may even hurt performance due to its high costs. It is
important that we understand the costs and potential benefits of data migration
before using it. Similar issues hold for software-controlled replication of data instead
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of migration, and the next chapter discusses alternative approaches to coherent rep-
lication and migration in main memory. ,

One of the most difficult problems for a programmer to deal with in a coherent
shared address space is contention. Contention can be caused not only by data
traffic that is implicit and often unpredictable but also by “invisible” protocol trans-
actions, such as ownership requests, invalidations, and acknowledgments that a pro-
grammer is not inclined to think about at all and that are now point-to-point rather
than amortized by a broadcast medium. All of these types of transactions occupy the
protocol processing portion of the communication assist, reinforcing the importance
of keeping the occupancy of the assist per transaction very low to contain endpoint
contention. Invisible protocol messages and contention make performance problems
like false sharing all the more important for a programmer to avoid, particularly
when they cause a lot of protocol transactions to be directed toward the same node.
Thus, while the software techniques for inherent communication and for spatial lo-
cality and false sharing at cache block granularity are the same as on bus-based ma-
chines, the potential impact on performance is different. For example, we are often
tempted to structure some kinds of data as an array with one entry per process. If the
entries are smaller than a page, several of them will fall on the same page. If these ar-
ray entries are not padded to avoid false sharing or if they incur conflict misses in
the cache, all the misses and traffic will be directed at the home of that page, causing
considerable contention. In a distributed-memory machine it is advantageous not
only to structure such data as an array of records rather than multiple arrays of sca-
lars (as we do in Chapter 5 to avoid false sharing) but also to pad and align the
records to a page and place the pages in the appropriate local memories.

An interesting example of how contention can cause different orchestration strat-
egies to be used in message-passing and shared address space systems is illustrated
by a high-performance parallel FFT. Conceptually, the computation is structured in
phases. Phases of local computation are separated by phases of communication,
which involve the transposition of a matrix. A process reads columns from a source
matrix and writes them into its assigned rows of a destination matrix and then per-
forms local computation on its assigned rows of the destination matrix. In a
message-passing system, it is important to coalesce data into large messages, so it is
necessary for performance to structure the communication this way (as a phase sep-
arate from computation). However, in a cache-coherent shared address space there
are two differences. First, transfers are always done at cache block granularity. Sec-
ond, each fine-grained transfer involves invalidations and acknowledgments (each
local block that a process writes is likely to be in shared state in the cache of another
processor from a previous phase and so must be invalidated), which cause conten-
tion at the coherence controllers. It may therefore be preferable to perform the com-
munication on demand at fine grain while the computation is in progress, rather
than all at once in a separate transpose phase, thus staggering the communication
and easing the contention on the controller: a process that otherwise computes
using a row of the destination matrix after the transpose can read the words of the
corresponding source matrix column from a remote node on demand while it is
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computing, performing the transpose in the process. Which method is better may
depend on the architecture.

Finally, synchronization can be expensive in scalable systems, so programs should
make a special effort to reduce the frequency of high-contention locks or global bar-
rier synchronization.

- 8.10 ADVANCED TOPICS

Before concluding the chapter, we cover two additional topics. The first deals with
the actual techniques used to reduce directory storage overhead in flat, memory-
based schemes. The second addresses techniques for hierarchical coherence, both
snooping and directory based.

8.10.1  Reducing Directory Storage Overhead

The discussion of flat, memory-based directories in Section 8.2.3 stated that the size
or width of a directory entry can be reduced by using a limited number of pointers
rather than a full bit vector and that doing so requires some overflow mechanism
when the number of copies of the block exceeds the number of available pointers,
Based on the empirical data about sharing patterns, the number of hardware point-
ers likely to be provided in limited pointer directories is very small, so it is important
that the overflow mechanism be efficient. This section first discusses some possible
overflow methods. It then examines techniques to reduce the number of directory
entries, or directory “height,” by organizing the directory as a cache rather than hay-
ing an entry for every memory block in the system. The limited pointer schemes
with i pointers are named Dir; followed by an abbreviation of their overflow meth-
ods, which include broadcast, no broadcast, coarse vector, software overflow, and
dynamic pointers. 3

Overflow Methods for Reduced Directory Width ' i

The overflow strategy in the broadcast or Dir;B scheme (Agarwal et al. 1988) is to set o
a broadcast bit in the directory entry when the number of available pointers i is s
exceeded. When that block is written again, invalidation messages are sent to all ]
nodes in the system, regardless of whether or not they were caching the block. It is
not semantically incorrect to send an invalidation message to a processor not cach-
ing the block; however, network bandwidth may be wasted and latency stalls may be
increased if the processor performing the write must wait for acknowledgments
before proceeding. The advantage of the method is its simplicity.

The no broadcast or Dir;NB scheme (Agarwal et al. 1988) avoids broadcast by
never allowing the number of valid copies of a block to exceed i. Whenever the
number of sharers is i and another node requests a shared copy of the block, the pro-
tocol invalidates the copy in one of the existing sharers and frees up that pointer in
the directory entry for the new requestor. A major drawback of this scheme is that it
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FIGURE 8.35 The change in representation in going from limited pointer representation to
coarse vector representation on overflow. Upon overflow, the two 4-bit pointers (for a 16-node
system) are viewed as an 8-bit coarse vector, each bit corresponding to a group of two nodes. The over-
flow bit is also set, so the nature of the representation can be easily determined. The dotted lines in (b)
indicate the correspondence between bits and node groups.

does not deal well with data that is actively read by many processors during a period
(e.g., tables of precomputed values or even program code), since copies will unnec-
essarily be invalidated and a continual stream of misses generated. Although special
provisions can be made for blocks containing code (e.g., their consistency may be

‘managed by software instead of hardware), it is not clear how to handle widely
shared read-mostly data well in this scheme.

The coarse vector or Dir;CV, scheme (Gupta, Weber, and Mowry 1990) also uses i
pointers in its initial representation, but on overflow the representation changes to a
coarse bit vector like the one used by the Origin2000 for large machines. In this rep-
resentation, each bit of the directory entry indicates not a node but a unique group
of the nodes in the machine (the subscript r in Dir;CV, indicates the size of the
group), and that bit is turned ON whenever any node in that partition is caching that
block (see Figure 8.35). When a processor writes that block, all nodes in the groups
whose bits are turned ON are sent an invalidation message, regardless of whether
they have actually accessed or are caching the block. As an example, consider a 256-
node machine for which we store eight pointers in the directory entry. Since each
pointer needs to be 8 bits wide, 64 bits are available for the coarse vector on over-
flow. Thus, we can implement a DirgCV,; scheme, with each coarse vector bit point-
ing to a group of 256/64 or four nodes. An additional single bit per entry keeps track
of whether the current representation is that of the normal limited pointer or the
coarse vector. As shown in Figure 8.36, an advantage of a scheme like Dir,CV, (and,
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FIGURE 8.36  Robustness of the coarse vector overflow method relative to broad-
cast and no broadcast. The figure shows a comparison of invalidation traffic generated
by DiryB, DiryNB, and DiryCV, schemes normalized to that generated by the full bit vector
scheme (represented as 100 invalidations). The results are taken from (Weber 1993), so the
simulation parameters are different from those used in this book. The number of processors
(1 per node) is 64. The data for the LocusRoute wire-routing application, which has data
that is written quite frequently and read by many nodes, shows the potential pitfalls of the
DirB scheme. Cholesky and Barnes-Hut, which have data that is read shared by large num-
bers of processors (e.g., nodes close to the root of the tree in Barnes-Hut) show the poten-
tial pitfalls of the DirNB scheme. The Dir,CV, scheme is found to be reasonably robust.

even more so, of the following schemes) over Dir;B and Dir;NB is that its behavior is
more robust to different sharing patterns.

The software overflow or Dir,SW scheme is different from the previous ones in that
it does not throw away the precise caching status of a block when overflow occurs.
Rather, the current i pointers and a pointer to the new sharer are saved into a special
portion of the node’s local main memory by software. This frees up space for new
pointers, so i new sharers can be handled by hardware before software must be
invoked to store pointers away into memory again. The overflow also causes an
overflow bit to be set in hardware. This bit ensures that when a subsequent write is
encountered the pointers that were stored away in memory will be read out, and
invalidation messages will be sent to those nodes as well. In the absence of a very
sophisticated (programmable) communication assist, the overflow situations (both
when pointers must be stored into memory and when they must be read out and
invalidations sent) are handled by software running on the main processor, so the
processor must be interrupted or a trap generated upon these events. The advan-
tages of this scheme are that precise information is kept about sharers even upon
overflow, so there is no extra invalidation traffic generated compared to a full bit vec-
tor (or unlimited pointer) representation, and that the complexity of overflow han-
dling is managed by software. The major overhead is the cost of the interrupts and
software processing, This disadvantage takes three forms: (1) the processor at the
home of the block spends time handling the interrupt instead of performing the
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user’s computation; (2) the overhead of interrupts and of handling these requests is
large, thus potentally becoming a bottleneck for contention and slowing down
other requests; and (3) the requesting processor may stall longer because of the
higher latency of the requests that can cause interrupts as well as increased
contention.

Software overflow for limited pointer directories was used in the MIT Alewife
research prototype (Agarwal et al. 1995) and was called the LimitLESS scheme
(Agarwal et al. 1991). The Alewife machine is designed to scale to 512 processors
with one processor per node. Each directory entry is 64 bits wide. It contains five 9-
bit pointers to record remote nodes caching the block and 1 dedicated bit to indicate
whether the local node is also caching the block (thus saving 8 bits when this is
true). Overflow pointers are stored in a hash table in the main memory. The main
processor in Alewife has hardware support for multithreading (see Chapter 11),
with support for fast handling of traps upon overflow. Nonetheless, although the
latency of a request that causes five invalidations and can be handled in hardware is
only 84 cycles on a 16-processor system, a request requiring six invalidations and,
hence, software intervention takes 707 cycles.

The dynamic pointers or Dir;DP scheme (Simoni and Horowitz 1991) is a variation
of the Dir;SW scheme. In addition to the i hardware pointers, each directory entry in
this scheme contains a hardware pointer into a special portion of the local node’s
main memory. This special memory has a free list associated with it, from which
pointer structures can be dynamically allocated to processors as needed. The key dif-
ference from Dir;SW is that all linked-list manipulation is done in hardware by a
special-purpose protocol processor rather than by the general-purpose processor of
the local node. As a result, interrupts are not needed and the overhead of manipulat-
ing the linked lists is small. Because it also contains a hardware pointer to memory,
the number of hardware pointers i used in this scheme is typically very small. The
Dir;DP scheme is the default directory organization for the Stanford FLASH multi-
processor (Kuskin et al. 1994). Because the pool of dynamic pointers is limited and
because lists are traversed on invalidations, the use of replacement hints usually
accompanies this approach.

Among these many alternative schemes for maintaining directory information in
a memory-based protocol, it is quite clear that the Dir;B and Dir;NB schemes are not
very robust to different sharing patterns. However, the actual performance (and
cost-performance) trade-offs among the schemes are not very well understood for
real applications on large-scale machines. The general consensus seems to be that
full bit vectors are appropriate for machines that have a moderate number of pro-
cessing nodes that are visible to the directory protocol. The most likely candidates
for hardware overflow schemes are coarse vector and dynamic pointer: the former
may suffer from lack of accuracy on overflow, while the latter has greater processing
cost due to hardware list manipulation and free list management.

. Itis actually possible to respond to a requestor before the trap is handled and thus not affect the latency
seen by it. However, that simply means that the next processor’s request to that node is delayed and that
processor may experience a stall.

|
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Reducing Directory Height

In addition to reducing directory entry width, an orthogonal way to reduce directory
memory overhead is to reduce the total number of directory entries used by not
using one per memory block (Gupta, Weber, and Mowry 1990; O'Kratka and New-
ton 1990); that is, to go after the M term in the P*M expression for directory mem-
ory overhead. Since the two methods of reducing overhead are orthogonal, they can
be traded off against each other: reducing the number of entries allows us to make
entries wider (use more hardware pointers) without increasing cost and vice versa,

The observation that motivates the use of fewer directory entries is that the total
amount of cache memory is much less than the total main memory in the machine.
This means that only a very small fraction of the memory blocks will be cached at a
given time. For example, each processing node may have a 1-MB cache and 64 MB
of main memory associated with it. If there were one directory entry per memory
block, then across the whole machine 63/64 or 98.5% of the directory entries will
correspond to memory blocks that are not cached anywhere in the machine. That is
a tremendous number of directory entries lying idle with no bits turned ON (espe-
cially when replacement hints are used). This waste of memory can be avoided by
organizing the directory as a cache and dynamically allocating the entries in it to di-
rectory entries, just as cache lines are allocated to memory blocks containing pro-
gram data. In fact, if the number of entries in this directory cache is small enough, it
may enable us to use fast SRAMs instead of slower DRAMs for directories, thus re-
ducing the access time to directory information. As we know, this access time is in
the critical path that determines the latency seen by the processor for many types of
memory references. Such a directory organization is called a sparse directory, for ob-
vious reasons, (The HAL S1 system, described in Section 8.6.8, uses this approach.)

While a sparse directory operates quite like a regular processor cache, there are
some significant differences. First, this cache has no need for a backing store: when
an entry is replaced from it, if any node’s bits (or pointers) in it are turned on then
we can simply send invalidations or flush messages to those nodes. Second, there is
only one directory entry per block in this cache, so spatial locality is not an issue.
Third, a sparse directory handles references from potentially all processors, whereas
a processor cache is only accessed by the processor(s) attached to it. And finally, the
references stream that the sparse directory sees is heavily filtered, consisting of only
those references that were not satisfied in the processor caches. For a sparse direc-
tory not to become a bottleneck, it is essential that it be large enough and have
enough associativity that it does mot incur too many replacements of actively
accessed blocks. Some experiments and analysis studying the sizing of the sparse
dire[c‘tory can be found in (Weber 1993).

Hierarchical Coherence

The introduction to this chapter mentions that one way to build scalable coherent .
machines is to hierarchically extend the snoopy coherence protocols based on the
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buses and rings that are discussed in Chapters 5 and 6. We have also been intro-
duced to hierarchical directory schemes in this chapter. This section describes these
hierarchical approaches to coherence further. Although hierarchical ring-based
snooping has been used in commercial systems (e.g., in the Kendall Square Research
KSR1 [Frank, Burkhardt, and Rothnie 1993]) as well as research prototypes (e.g., in
the University of Toronto’s Hector system [Vranesic et al. 1991; Farkas, Vranesic,
and Stumm 1992]), and hierarchical directories have been studied in academic
research, these approaches have not gained much favor. Nonetheless, building large
systems hierarchically out of smaller ones is an attractive abstraction, and it is useful
to understand the basic techniques.

Hierarchical Snooping

The issues in hierarchical snooping are similar for buses and rings, so we study them
mainly through the former. A bus hierarchy is a tree of buses. The leaves are bus-
based multiprocessors that contain the processors. The buses that constitute the
internal nodes of the tree don’t contain processors but are used for interconnection
i and coherence control: they allow transactions to be snooped and propagated up
and down the hierarchy as necessaty. Hierarchical machines can be built with main
memory either centralized at the root or distributed among the leaf multiprocessors
(see Figure 8.37). While a centralized main memory may simplify programming,
distributed memory has advantages in bandwidth and performance if locality is
exploited. (Note, however, that if data is not distributed such that most cache misses
are satisfied locally, remote data may actually be further away than the root of the
hierarchy in the worst case, potentially leading to worse performance.) In addition,
with distributed memory, a leaf in the hierarchy is a complete bus-based multipro-
cessor, which is already a commodity product with cost advantages. Let us focus on
hierarchies with distributed memory, leaving centralized memory hierarchies to be
explored in the exercises.

The processor caches within a leaf node (multiprocessor) are kept coherent by
any of the snooping protocols discussed in Chapter 5. In a simple, two-level hierar-
chy, we connect several of these bus-based systems together using another bus (By).
(The extension to multilevel hierarchies is straightforward.) What we need is 2
‘ coherence monitor associated with each By bus that monitors (snoops) the transac-
i ‘ tions on both buses and decides which transactions on its By bus should be for-
warded to the B, bus and which ones that appear on the B, bus should be forwarded
| to its By bus. This device acts as a filter, forwarding only the necessary transactions
in both directions, and thus reduces the bandwidth demands on the buses.

In a system with distributed memory, the coherence monitor for a node has to
worry about two types of data for which transactions may appear on either the By or
B, bus: data that is allocated remotely but cached by some processor in the local
node and data that is allocated locally but cached remotely. To watch for the former
data, a remote access cache or remote cache per node can be used as in the Sequent
NUMA-Q. This cache maintains inclusion (see Section 6.3.1) with regard to remote
data cached in any of the processor caches on that node, including a dirty-but-Sfal'2
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FIGURE 8.37 Hierarchical bus-based multiprocessors, shown with a two-level hi-
erarchy. Main memory may be centralized at the root or physically distributed, and co-
herence monitors connect parent and child buses.

bit per block indicating when a processor cache in the node has the block dirty (data
allocated in local memory does not enter the remote cache). This gives it enough
information to determine which transactions are relevant in each direction and pass
them along.

For locally allocated data, bus transactions can be handled entirely by the local
memory or caches, except when the data is cached by processors in other (remote)
nodes. For the latter data, there is no need to keep the data itself in the coherence
monitor since the valid data is either already available locally or is in modified state
remotely; in fact, we would not want to keep it there since the amount of data may be
as large as the local memory. However, the monitor keeps state information for this
data and snoops the local By bus so that relevant transactions for this data can be for-
warded to the B, bus if necessary. Lets call this part of the coherence monitor the
local state monitor: Finally, the coherence monitor also watches the B, bus for transac-
tions to its local addresses and passes them onto the local B bus unless the local state
monitor says they are cached remotely in a modified state. Both the remote cache and
the local state monitor are looked up on By and B, bus transactions.

Consider the three coherence protocol functions outlined in Section 8.1:
(1) enough information about the state in other nodes of the hierarchy is implicitly
available in the local node’s coherence monitor (remote cache and local state moni-
tor) to determine what action to take; (2) if this information indicates a need to find
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L] other copies beyond the local node, the request or search is broadcast on the next |
bus (and so on hierarchically in deeper hierarchies), and other relevant monitors
will respond; and (3) communication with the other copies is performed simulta-
neously as part of finding them through the hierarchical broadcasts on buses.

Let us examine the path of a read miss more closely, assuming a shared physical
address space. A BusRd request appears on the local B; bus. If the remote access
cache, the local memory, or another local processor cache has a valid copy of the
block, they will supply the data. Otherwise, either the remote cache or the local state
monitor will know to pass the request onto the B, bus. When the request appears on
B,, the coherence monitors of other nodes will snoop it. If a node’s local state moni-
tor determines that a valid copy of the data exists in that node, it will pass the
request onto its By bus, wait for the response, and put it back on the B, bus. If a
node’s remote cache contains the data and has it in shared state, it may simply place
a reply on the B, bus; if in dirty state, it will reply and broadcast a read request on its
By bus to have the dirty processor cache downgrade the block to shared; and if dirty-
but-stale, it will simply broadcast the read request on its By bus and reply with the
result obtained. In the last case, the processor cache that has the data dirty will
change its state from dirty to shared and put the data on the By bus. The remote
cache will accept the data reply from the B; bus, change its state from dirty-but-stale
to shared, and pass the reply onto the B, bus. When the data reply appears on B,, the
requestor’s coherence monitor picks it up, installs it and changes state in its remote
cache if appropriate, and places it on its local By bus. (If the block has to be installed
in the remote cache, it may replace some other block, which will trigger a flush/
invalidation request on that B} bus to ensure the inclusion property.) Finally, the
requesting cache picks up the response to its BusRd request from the B bus and
stores it in shared state.

For writes, consider the specific situation shown in Figure 8.37(b), with Py in the
left node issuing a write to location A, which is allocated in the memory of a third
node (not shown). Since Pys own cache has the data only in shared state, an owner-
ship request (BusUpgr) is issued on the local B bus. As a result, the copy of A in Py’
| cache is invalidated. Since the block is not available in the remote cache in dirty-but-
| " stale state (which would have been incorrect since P; had it in shared state), the
monitor passes the BusUpgr request to bus B,, to invalidate any other copies in the
system, and at the same time updates the state for the block in the remote cache to
dirty-but-stale. In another node, P, and P3 have the block in their caches in shared
state. Because of the inclusion property, their associated remote cache is also guaran-
teed to have the block in shared state. This remote cache therefore passes the
BusUpgr request from B, onto its local By bus and invalidates its own copy. When
the request appears on the B; bus, the copies of A in P, and P5’s caches are invali-
dated. If there is a node on the B, bus whose processors are not caching the block
containing A, the upgrade request will not pass onto its By bus. Now suppose
another processor P, in the left node issues a store to location B. This request will be
satisfied within the local node, with Pys cache supplying the data and the remote
cache retaining the data in dirty-but-stale state, and no transaction will be passed
onto the B, bus.
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The implementation requirements on the processor caches and cache controllers
remain unchanged from those discussed in Chapter 6. However, some constraints do
apply to the remote access cache. It should be larger than the sum of the processor
caches and quite associative to maintain inclusion without excessive replacements,
It should also be lockup-free; that is, able to handle multiple requests at a time from
processors in the local node while some requests are still outstanding (more on this
in Chapter 11). Finally, whenever a block is replaced from the remote cache, an
invalidation or flush request must be issued on the B; bus, depending on the state of
the replaced block (shared or dirty-but-stale, respectively). Minimizing the access
time for the remote cache is less critical than increasing its hit rate since it is not in
the critical path that affects the clock rate of the processor. Remote caches are there-
fore more likely to be built out of DRAM than SRAM. The remote cache controller
must also deal with the nonatomicity issues in requesting and acquiring the buses
that were discussed in Chapter 6.

Finally, consider write serialization and determining store completion. From our
earlier discussion of how these work on a single bus in Chapter 6, it should be clear
that serialization between two requests will be determined by the order in which
those requests appear on the closest bus to the root on which they both appear. For
writes that are satisfied entirely within the same leaf node, the order in which they
may be seen by other processors—within or without that leal—is their serialization
order provided by the local B, bus. Likewise, for writes that are satisfied entirely
within the same subtree, the order in which they are seen by other processors—
within or without that subtree—is the serialization order determined by the root bus
of that subtree. It is easy to see this if we view each bus hanging off a common bus as
a processor and recursively use the same reasoning applied to a single bus in Chap-
ters 5 and 6. Similarly, for the store completion detection needed for sequential con-
sistency, a processor cannot assume its store has committed until it appears on the
closest bus to the root on which it will appear. An acknowledgment (which now
may have to be an explicit bus transaction) cannot be generated until that time, and
even then the appropriate orders must be preserved between this acknowledgment
and other transactions on the way back to the requesting processor (see Exercise
8.26). Once this acknowledgment is sent back from a bus, the invalidations them-
selves no longer need to be acknowledged as they make their way down toward the
processor caches, as long as the appropriate orders are maintained along this path
(just as with multilevel cache hierarchies in Chapter 6).

One of the earliest machines that used the approach of hierarchical snooping
buses with distributed memory was the Gigamax (Wilson 1987; Woodbury et al.
1989) from Encore Corporation. The system consisted of up to eight Encore Multi-
max machines (each a regular snooping bus-based multiprocessor) connected
together by fiber-optic links to a ninth global bus, forming a two-level hierarchy.
Figure 8.38 shows a block diagram. Each node is augmented with a uniform inter-
connection card (UIC) and a uniform cluster (node) cache (UCQ) card. The UCC is
the remote access cache, and the UIC is the local state monitor. The monitoring of
the global bus is done differently in the Gigamax due to its particular organization.
Nodes are connected to the global bus through a fiber-optic link, so while a node’s
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FIGURE 8.38 Block diagram for the Encore Gigamax multiprocessor. A two-level hierarchy of
buses is used with memory distributed among the leaf nodes.

remote access cache (the UCC) caches remote data, it does not snoop the global bus
directly. Rather, every node also has a second UIC on the global bus, which monitors
global bus transactions for remote memory blocks that are cached in this local node.
It then passes on the relevant requests to the local bus. If the UCC indeed sat
directly on the global bus as well, the UIC on the global bus would not be necessary.
The reason the Gigamax uses fiber-optic links and not a single UIC per node that sits
on both buses is that high-speed buses are usually short; the Nanobus used in the
Encore Multimax and Gigamax is 1 foot long (light travels 1 foot in a nanosecond,
hence the name Nanobus). Since each node is at least 1 foot wide and the global bus
is also 1 foot wide, flexible cabling is needed to hook these together. With fiber, links
can be made quite long without affecting their transmission capabilities.

The extension of snooping cache coherence to hierarchies of rings is much like
the extension to hierarchies of buses with distributed memory. Figure 8.39 shows a
block diagram. The local rings and the associated processors constitute nodes, and
these are connected by one or more global rings. The coherence monitor takes the
form of an inter-ring interface, serving the same roles as the coherence monitor in a
bus hierarchy.

Hierarchical Directory Schemes

Hierarchical directory schemes use point-to-point network transactions rather than
snooping. However, as discussed earlier, unlike in flat directory schemes, the source
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FIGURE 839 Block diagram for a hierarchical ring-based multiprocessor. In the
two-level hierarchy shown, each local ring is a node as viewed by the global ring, and an
inter-ring interface propagates relevant transactions between the two.

of the directory information in hierarchical directories is not found by going to a
fixed node. The locations of copies are found neither at a fixed home node nor by
traversing a distributed list pointed to by that home. Invalidation messages are not
sent directly to the nodes with copies. Rather, all these activities are performed by
sending messages up and down a hierarchy (tree) built upon the nodes, with the
only direct communication being between parents and children in the tree,

At first blush, the organization of hierarchical directories is much like hierarchi-
cal snooping. Consider the example shown in Figure 8.40. The processing nodes are
at the leaves of the tree and main memory is distributed along with the processing
nodes. Every block has a home memory (leaf) in which it is allocated, but this does
not mean that the directory information is maintained or rooted there. The internal
nodes of the tree are not processing nodes but only hold directory information. Each
such directory node keeps track of all memory blocks that are being cached or
recorded by its subtrees. It uses a presence vector per block to tell which of its sub-
trees have copies of the block and a bit to tell whether one of them has it dirty. It also
records information about local memory blocks (i.e., blocks allocated in the local
memory of one of its descendants) that are being cached by processing nodes out-
side its subtree. As with hierarchical snooping, this information is used to decide
when requests originating within the subtree should be propagated further up the
hierarchy. Since the amount of directory information to be maintained by a directory
node that is close to the root can become very large, the directory information is
usually organized as a cache to reduce its size and maintains the inclusion property
with respect to its children’s caches or directories. This requires that on a replace-
ment from a directory cache at a certain level of the tree, the replaced block must be
flushed out of all of its descendent directories in the tree as well. Similarly, replace-
ment of the information about a block allocated within that subtree requires that
copies of the block in nodes outside the subtree be invalidated or flushed. These
operations can be quite expensive.

|
i
!
i
i
i
i
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FIGURE 8.40 Organization of hierarchical directories. The processing nodes are at the leaves of
the logical tree, and the internal nodes contain only directory information. There is one logical tree for
each cached memory block. Logical trees may be embedded in any physical hierarchy.

A read miss from a node flows up the hierarchy either until a directory indicates
that its subtree has a copy (clean or dirty) of the memory block being requested or
until the request reaches the directory that is the first common ancestor of the
requesting node and the home node for that block, and that directory indicates the
block is not dirty outside that subtree. The request then flows down the hierarchy to
the appropriate processing node to pick up the data. The data reply follows the same
path back, updating the directories on its way. If the block was dirty, a copy of the
block also finds its way to the home node.

A write miss in the cache flows up the hierarchy until it reaches a directory whose
subtree contains the current owner of the requested memory block. The owner is
either the home node, if the block is clean, or a dirty cache. The request travels
down to the owner to pick up the data, and the requesting node becomes the new
owner. If the block was previously in clean state, invalidations are also propagated
through the hierarchy to all nodes caching that memory block. Finally, all directories
involved in the preceding memory operation are updated to reflect the new owner
and the invalidated copies.

In hierarchical snoopy schemes, the interconnection network is physically hierar-
chical to permit the snooping. With point-to-point communication, hierarchical
directories do not need to rely on physically hierarchical interconnects. The hier-
archy discussed here is a logical hierarchy, or a hierarchical data structure. It can be
implemented either on a network that is physically hierarchical (that is, an actual
tree network with directory caches at the internal nodes and processing nodes at the
leaves) or on a general, nonhierarchical network such as a mesh with the hierar-
chical directory embedded in this general network. In fact, there is a separate
hierarchical directory structure for every block that is cached. Thus, the same physi-
cal node in a general network can be a leaf (processing) node for some blocks and an
internal (directory) node for others (see Figure 8.41).
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FIGURE 8.41 A multirooted hierarchical directory embedded in an arbitrary network. A 16-
node hierarchy is shown. For the blocks in the portion of main memory that is located at a processing
node, that node itself is the root of the (logical) directory tree. Thus, for P processing nodes, there are P
directory trees. The figure shows only two of these. In addition to being the root for its local memory’s
directory tree, a processing node is also an internal node in the directory trees for the other processing
nodes. The address of a memory block implicitly specifies a particular directory tree and guides the phys-
ical traversals to get from parents to children and vice versa in this directory tree.

Finally, the storage overhead of the hierarchical directory has attractive scaling
properties. It is the cost of the directory caches at each level. The number of entries
in the directory goes up as we go further up the hierarchy toward the root (to main-
tain inclusion without excessive replacements), but the number of directories
becomes smaller. As a result, the total directory memory needed for all directories at
any given level of the hierarchy is typically about the same. The directory storage
needed is not proportional to the size of main memory but rather to that of the
caches in the processing nodes, which is attractive. The overall directory memory
overhead relative to main memory is proportional to

CXxlog,P
MxB

where C is the cache size per processing node at the leaf, M is the main memory per
node, B is the memory block size in bits, b is the branching factor of the hierarchy,
and P is the number of processing nodes at the leaves (so log P is the number of lev-
els in the tree). More information about hierarchical directory schemes can be found
in the literature (Scott 1991; Wallach 1992; Hagersten 1992; Joe 1995).
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Performance Implications of Hierarchical Coherence

Hierarchical protocols, whether snoopy or directory, have some potential perfor-
mance advantages that are extensions of the advantages of the two-level protocols
discussed earlier. One is the combining of requests for a block as they go up and
down the hierarchy. If a processing node is waiting for a memory block to arrive,
another processing node that requests the same block can observe at their common
ancestor directory that the block has already been requested. It can then wait at the
intermediate directory and accept the response when it comes back rather than send
a duplicate request. This combining of transactions can reduce traffic and, hence,
contention. The sending of invalidations and gathering of invalidation acknowledg-
ments can also be done hierarchically through the tree structure. Another advantage
is that upon a miss, if a nearby node in the hierarchy has a cached copy of the block,
then the block can be obtained from that nearby node (cache-to-cache sharing)

) rather than having to go to the home, which may be much further away in the net-

: work topology. This can reduce transit latency as well as contention at the home. Of
course, this second advantage depends on how well locality in the hierarchy maps to
locality in the underlying physical network as well as how well the sharing patterns
of the application match the hierarchy.

While locality in the tree network can reduce transit delay on links, particularly
for very large machines, the overall latency and bandwidth characteristics are
usually not advantageous for hierarchical schemes. Consider hierarchical snooping
schemes first. With buses, there is a bus transaction and snooping latency at every
bus along the way. With rings, traversing rings at every level of the hierarchy further
increases latency to potentially very high levels. For example, the uncontended
latency to access a location on a remote ring in a fully populated Kendall Square
Research KSR1 machine (Frank, Burkhardt, and Rothnie 1993) was higher than 25
microseconds (Saavedra, Gaines, and Carlton 1993), so other architectural tech-
niques (discussed in Chapter 9) were used to reduce ring remote capacity misses.
The commercial systems that have used hierarchical snooping have tended to use
quite shallow hierarchies (the largest KSR machine was a two-level ring hierarchy
with up to 32 nodes per ring). The fact that there are several processors per node
also implies that the bandwidth between a node and its parent or child must be large

) enough to sustain their combined demands. The processors within a node will
compete not only for bus or link bandwidth but also for snoop bandwidth and for
the occupancy, buffers, and request tracking mechanisms of the node-to-network
interface. To alleviate link bandwidth limitations near the root of the hierarchy, mul-
tiple buses or rings can be used closer to the root; however, bandwidth scalability in
practical hierarchical systems remains quite limited.

For hierarchical directories, the latency problem is that the number of network
transactions sent up and down the hierarchy to satisfy a request tends to be larger
than in a flat, memory-based scheme. Even though these transactions may be more
localized in the network, each one is a full-fledged network transaction that also
requires either looking up or modifying the directory at its (intermediate) destina-
tion node. This increased endpoint overhead at the nodes along the critical path
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tends to far outweigh any reduction in the total number of network hops traversed
and hence network delay, especially given the characteristics of modern networks,
Although some pipelining can be used—for example, the data reply can be for-
warded toward the requesting node while a directory node is being updated-—in
practice, the latencies can still become quite large compared to machines with no
hierarchy (Hagersten 1992; Joe 1995). Hierarchies with large branching factors can
alleviate the latency problem but they increase contention. As with hierarchical
snooping, the root of the directory hierarchy can become a bandwidth bottleneck,
for both link bandwidth and directory lookup bandwidth. Multiple links may be
used closer to the root (particularly appropriate for physically hierarchical networks
[Leiserson et al. 1996]), and the directory cache may be interleaved among them.
Alternatively, since each block has a separate logical hierarchy, a multirooted direc-
tory hierarchy may be embedded in a nonhierarchical, scalable point-to-point inter-
connect (Scott 1991; Wallach 1992; Scott and Goodman 1993). Figure 8.41 shows a
possible organization. Like hierarchical directory schemes themselves, however,
these techniques have only been in the realm of research so far.

CONCLUDING REMARKS

Scalable systems that support a coherent shared address space are an increasingly
important part of the multiprocessing landscape since they combine the ease of pro-
gramming of a coherent shared address space programming model with the scaling
advantages of a distributed memory and interconnect. Hardware support for cache
coherence is becoming increasingly popular in commercial multiprocessors de-
signed for both technical and commercial workloads. Most of these systems use
directory-based protocols, whether memory based or cache based. They are found to
perform well, at least at the moderate scales at which they have been built so far, and
to afford significant ease of programming compared to explicit message passing for
many applications.

Directory-based cache coherence protocols are quite complex, with many tran-
sient states and “corner cases” to deal with. Figure 8.42 conveys a sense of the com-
plexity by showing the almost complete state transition diagrams of the Origin2000
and NUMA-Q protocols.

While supporting cache coherence in hardware has a significant design cost, it is
alleviated by increased experience; the appearance of standards, and the fact that
microprocessors themselves provide support for cache coherence. Once the micro-
processor coherence protocol is available designers can develop the multiprocessor
protocol and communication architecture even before the microprocessor is ready so
that not so much of a lag occurs between the two. Commercial multiprocessors
today typically use the latest microprocessors available at the time they ship, allevi-
ating the fear that multiprogrammers would have to play catch-up with the proces-
sor technology curve.

Some interesting open questions for hardware-coherent shared address space
systems include whether their performance on real applications will indeed scale to
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FIGURE 8.42 Expanded directory state diagrams for the case study multiproces-
sors of this chapter. The state diagram for the SGI Origin2000 in (a) is quite simplified: it
shows the busy states at the directory but leaves out I/O operations, the poisoned state,
and several race conditions. To show the use of busy states, accesses from two nodes A and
B are shown. For example, a state labeled “Excl A" means that the directory thinks the
block is in exclusive state in node A, and an arc labeled “RdEx B” indicates a read-exclusive
operation from node B. The transfer operation and the wait state are used to handle write
backs, as described in the text. The state diagram for the Sequent NUMA-Q in (b) is much
more complete, though it also excludes a few corner cases. The arcs are not labeled in this
diagram and several of the state labels are not explained; the purpose of this diagram is not

‘ to convey the complete protocol but simply to show that full-blown state transition dia-
grams can become quite complex in real systems.

large processor counts (and whether significant changes to current protocols will be
needed for this), whether the appropriate node for a scalable system will be a small-
scale multiprocessor or a uniprocessor, the extent to which commodity communica-
tion architectures will be successful in supporting this abstraction efficiently, and the
success with which a communication assist can be designed that supports the most
appropriate mechanisms for both cache coherence and explicit message passing.
Some critical hardware/software trade-offs for coherent shared address space systems
are discussed in the next chapter.
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8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

EXERCISES

What are the inefficiencies and efficiencies in emulating message passing on a cache-
coherent machine compared to the kinds of machines discussed in Chapter 7?

a. For which of the case study parallel applications used in this book do you
expect a substantial advantage in using multiprocessor rather than uniproces-
sor nodes (assuming the same total number of processors)? For which do you
think there might be disadvantages, and under what circumstances?

b. How might your answer to the previous question differ with increasing scale
of the machine? That is, how do you expect the performance benefits of using
fixed-size multiprocessor nodes to change as the machine size is increased to
hundreds of processors?

c. Are there any special benefits that the Illinois MESI coherence scheme offers
for organizations with multiprocessor nodes?

Given a 512-processor system in which each node visible to the directory has 8 pro-
cessors and 1 GB of main memory and a cache block size of 64 bytes, what is the
directory memory overhead for (a) a full bit vector scheme, and (b) DirB with
i=3?

The chapter provided diagrams showing the network transactions for strict request-
response, intervention forwarding, and reply forwarding for read operations in a
flat, memory-based protocol like that of the SGI Origin (see Figure 8.12). Do the
same for write operations.

The Origin protocol assumed that acknowledgments for invalidations are gathered
at the requestor, An alternative is to have the acknowledgments sent back to the
home (from where the invalidation requests come) and have the home send a single
acknowledgment back to the requestor. This solution is used in the Stanford FLASH
multiprocessor. What are the main performance and complexity trade-offs between
these two choices?

Draw the network transaction diagrams (like those in Figure 8.16) for an uncached
read-shared request, an uncached read-exclusive request, and a write-invalidate
request in the Origin protocol. State one example of a use of each.

Instead of the doubly linked list used in the SCI protocol, it is possible to use a sin-
gly linked list. What is the advantage? Describe what modifications would need to
be made to the following operations if a singly linked list were used:

a. Replacement of a cache block that is in a sharing list.
b. Write to a cache block that is in a sharing list.

Qualitatively discuss the effects this might have on large-scale multiprocessor
performance.

How might you reduce the latency of writes that cause invalidations in the SCI pro-
tocol? Draw the network transactions. What are the major trade-offs?
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When a variable exhibits migratory sharing, a processor that reads the variable will
be the next one to write it. What kinds of protocol optimizations could you use to
reduce traffic and latency in this case, and how would you detect the situation
dynamically? Describe a scheme or two in some detail.

Another pattern that might be detected dynamically is a producer-consumer
pattern, in which one processor repeatedly writes (produces) a variable and another
processor repeatedly reads (consumes) it. Is the standard MESI invalidation-based
protocol well suited to this? Why or why not? What enhancements or protocol
might be better, and what are the savings in latency or traffic? How would you
dynamically detect and employ the changes?

Why is write atomicity more difficult to provide with update protocols than with
invalidation-based protocols in directory-based systems? How would you solve the
problem? Does the same difficulty exist in a bus-based system?

Consider the following program fragment running on a cache-coherent multipro-
cessor, assuming all values to be 0 initially. ‘

There is only one shared variable (a). Suppose that a writer magically knows where
the cached copies are and sends updates to them directly without consulting a
directory node. Construct a situation in which write atomicity may be violated,
assuming an update-based protocol.

a. Show the violation of sequential consistency that occurs in the results.

b. Can you produce a case where coherence is violated as well? How would you
solve these problems?

c¢. Can you construct the same problems for an invalidation-based protocol?
d. Can you construct them for update protocols on a bus?

In handling write backs in the Origin protocol, we said that when the node doing
the write back receives an intervention, it ignores it. Given a network that does not
preserve point-to-point order, of what situations do we have to be careful in decid-
ing to ignore the intervention? How do we detect that this intervention should be
dropped? Would there be a problem with a network that preserved point-to-point
order?

Can the serialization problems discussed for Origin in Section 8.5.2 arise even with
a strict request-response protocol, and do the same guidelines apply? Show example
situations, including the examples discussed in that section.

Consider the serialization of writes in NUMA-Q, given the two-level hierarchical
coherence protocol. If a node has the block dirty in its remote cache, how might
writes from other nodes that come to it get serialized with respect to writes from
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8.16

8.17

8.18

processors in this node? What transactions would have to be generated to ensure
the serialization?

In the Origin implementation, incoming request messages to the memory/directory
interface are given priority over incoming responses unless there is a danger of
responses being starved. Why do you think this choice of giving priorities to
requests was made? Describe some methods for how you might detect when to
invert the priority. What would be the danger with responses being starved?

a. Why is it necessary to flush TLBs when doing migration or replication of
pages?

b. For a CC-NUMA multiprocessor with software-reloaded TLBs, suppose a
page needs to be migrated. Which one of the following TLB flushing schemes
would you pick and why: (i) only TLBs that currently have an entry for a
page, (i) only TLBs that have loaded an entry for a page since the last flush,
or (iii) all TLBs in the system. [Hint: the selection should be based on the fol-
lowing two criteria: the cost of doing the actual TLB flush and the difficulty of
tracking necessary information to implement the scheme.]

For a simple two-processor CC-NUMA system, the traces of cache misses for three
virtual pages X, Y, Z from the two processors Py and Py are shown. Time goes from
left to right. “R” is a read miss and “W” is a write miss. There are two memories M,
and My, local to Py and Py respectively. A local miss costs 1.time unit and a remote
miss costs 4 units. Assume that read misses and write misses cost the same.

Page X:

Py RRRR R R RRRRR RRR

Pi:R R RRR RRRR RR
Page Y:

Py: no accesses

P;: RR WW RRRR RWRWRW WWWR

Page Z:
PR W RW R R RRWRWRWRW
Pi: WR RW RW W W R

a. In which local memories would you place pages X, Y, and Z, assuming com-
plete knowledge of the entire trace?

b. Assume that all three pages were initially placed in M. You have prior knowl-
edge of the entire trace. You can do one migration, or one replication, or noth-
ing for each page at the beginning of the trace at zero cost. What action would
be appropriate for each of the pages?

c. Answer part (b) where a page migration or replication costs 10 units. In addi-
tion, give the final memory access cost for each page.

d. Answer part (c) where a migration or replication costs 60 units.

e. Answer part (d) where the cache miss trace for each page is the shown trace
repeated 10 times. (You still can only do one migration or replication at the
beginning of the entire trace.)
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Full-empty bits, introduced in Section 5.5, provide hardware support for fine-
grained synchronization and have been proposed for CC-NUMA machines. What
are the advantages and disadvantages of full-empty bits, and why do you think they
are not used in modern systems?

With an invalidation-based protocol, lock transfers take more network transactions
than necessary. An alternative to cached locks is to use uncached locks, where the
lock variable stays in main memory and is always accessed at the memory itself,

a. Write pseudocode for a simple lock and a ticket lock using uncached opera-
tions,

b. What are the advantages and disadvantages relative to using cached locks?
Which would you deploy in a production system?

¢. Can you describe a scheme that uses both cached and uncached read and
write operations to improve the performance of locks? What specific opera-
tions would your scheme require?

Since high-contention and low-contention situations are best served by different
lock algorithms, one strategy that has been proposed is to have a library of syn-
chronization algorithms and provide hardware support to switch between them
“reactively” at run time based on observed access patterns to the synchronization
variable.

a. Which locks would you provide in your library?

b. Assuming a memory-based directory protocol, design simple hardware sup-
port and a policy for switching between locks at run time.

c. Describe an example where this support might be particularly useful.
d. What are the potential disadvantages?

You are performing an architectural study using four applications: Ocean, blocked
LU factorization, an FFT that performs local calculations on rows separated by a
matrix transposition, and Barnes-Hut. For each application, answer the following
questions, assuming a CC-NUMA system:

a. What modifications or enhancements in data structuring or layout would you
use to ensure good interactions with the extended memory hierarchy?

b. What are the interactions with cache size and granularities of allocation,
coherence, and communication that you would be particularly careful to rep-
resent or not represent?

Consider the example of transposing a matrix of data in parallel, as is used in com-
putations such as high-performance FFTs. Figure 8.43 shows the transpose pictori-
ally. Every process transposes one “patch” of its assigned rows to every other
processor, including one to itself. Before the transpose, a process has read and writ-
ten its assigned rows of the source matrix of the transpose, and after the transpose it
reads and writes its assigned rows of the destination matrix. The rows assigned to a
process in both the source and destination matrix are allocated in its local memory.
There are two ways to perform the transpose: a process can read the local elements
from its rows of the source matrix and write them to the appropriate elements of the
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Source matrix Destination matrix
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process 0
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process 1
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process 3

FIGURE 8.43 Sender-initiated matrix transposition. The source and destination matrices are parti-
tioning among processes in groups of contiguous rows. Each process divides its set of n/p rows into p
patches of size (n/p)*(n/p). Consider process 2 as a representative example: one patch assigned to it
ends up in the assigned set of rows of every other process, and it transposes one patch (third from left,
in this case) locally.

destination matrix, whether they are local or remote, as shown in the figure (called
a sender-initiated transpose); or a process can write the local rows of the destination
matrix and read the appropriate elements of the source matrix, whether they are
local or remote (called a receiver-initiated transpose).
4. Given an invalidation-based directory protocol, which method do you think
will perform better and why?
b. How do you expect the answer to (a) to change if you assume an update-
based directory protocol?
¢. Consider the following implementation of a matrix transpose, which you plan
to run on eight processors. Each processor has one level of cache, which is
fully associative, 8 KB, with 128 byte lines. (Note: AT and A are not the same
matrix.)

Transpose (double **A, double **AT)
(

int i,j,mynum;

GETPID (mynum) ;

for (i=mynum*nrows/p; i< ( (mynum+1) * (nrows/p)) i44+) |
for (j=0; j<1024; J++) {
AT[1]1[§] = A[31[i];




8.24

8.25

8.26

8.27

8.28

8.29

8.30

8.12 FExercises 677

The input data set is a 1,024 x 1,024 matrix of double-precision floating-point
numbers (i.e., nrows in 1,024), decomposed so that each processor is respon-
sible for generating a contiguous block of rows in the transposed matrix AT
(Le., a receiver-initiated transpose). Ignoring the contention problem caused
by all processors first going to processor 0, what is the major performance
problem with this code? What technique would you use to solve it? Restruc-
ture the code to alleviate all performance problems as much as possible. Write
the entire restructured loop.

Consider a hierarchical bus-based system with a centralized nmemory at the root of
the hierarchy rather than distributed memory as discussed in the chapter. What
would be the main differences in how reads and writes are satisfied? Briefly describe
the path taken by reads and writes.

Could you construct a hierarchical bus-based system with centralized memory
(say) without pursuing the inclusion property between the remote access cache and
the Ly caches in a node? If so, what complications would it cause?

To ensure sequential consistency in a two-level hierarchical bus design, is it okay to
return an acknowledgment when the invalidation request reaches the B, bus? If so,
what constraints are imposed on the design and implementation of the caches and
the orders preserved among transactions? If not, why not? Would it be okay if the
hierarchy had more than two levels?

Suppose two processors in two different nodes of a hierarchical bus-based machine
issue an upgrade for a block at the same time. Trace their paths through the system,
discussing all state changes and when they must happen as well as what precau-
tions prevent deadlock and prevent both processors from gaining ownership.

An optimization in distributed-memory bus-based hierarchies is cache-to-cache
sharing: if another processor’s cache on the local bus can supply the data, we do not
have to go to the global bus and remote node. What are the trade-offs of supporting
this optimization in ring-based hierarchies?

What branching factor would you choose in a machine with a hierarchical direc-
tory? Highlight the major trade-offs. What techniques might you use to alleviate the
performance trade-offs? Be as specific in your description as possible.

Is it possible to implement hierarchical directories without maintaining inclusion in
the directory caches? Design a protocol that does that and discuss the advantages
and disadvantages.




