Directory-Based Cache
Coherence

This chapter examines an important part of the development of parallel architec-
tures: putting together cache coherence and a scalable, distributed-memory machine
organization. We have studied cache coherence for bus-based machines with cen-
tralized memory. We have also seen that in order to scale up machines, memory is
distributed, a scalable point-to-point interconnection network is introduced, and a
communication assist provides varying degrees of interpretation of network transac-
tions to support programming models, Regardless of the sophistication of that assist,
all of the scalable machines we have studied have the generic structure depicted in
Figure 8.1,

At the final point in our design spectrum so far, the communication assist pro-
vides a shared address space in hardware. However, while the natural inclination of
caches is to replicate referenced data in a shared address space, we have not yet
examined how cache coherence may be provided. In fact, to avoid the coherence
problem and simplify memory consistency, the machines in that final design point
disable the hardware caching of logically shared but physically remote data, restrict-
ing the programming model.

This chapter takes on the important issue of how implicit caching and coherence
may be provided in hardware on a machine with physically distributed memory,
without the benefits of a globally snoopable interconnect such as a bus. Not only
must the hardware latency and bandwidth scale well, as we have seen, but so must
the protocols used for coherence, at least up to the scales of practical interest. We
focus on full hardware support for cache coherence and particularly on the most
common approach called directory-based cache coherence. In terms of the layers of
abstraction, the shared address space programming model with coherent replication
is supported directly at the hardware/software interface, as shown in Figure 8.2.
Other programming models, such as message passing, can be implemented in soft-
ware. The next chapter describes some alternative approaches that take different
positions on hardware/software trade-offs, such as coherent replication in main mem-
ory rather than in the caches, coherence under software control, and alternative
memory consistency models,
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Mem Mem

Scalable interconnection network

FIGURE 8.1 A generic scalable multiprocessor. This diagram represents the generic structure of
the machines discussed in Chapter 7: processing nodes with physically distributed memory and a scal-
able interconnect. The processing nodes may be uniprocessors (as shown) or multiprocessors.

Message passing Programming model

Compilation
or library

Communication abstraction
User/system boundary

Shared address space Operating systems support

Hardware/software boundary

Communication hardware

Physical communication medium

FIGURE 8.2 Layers of abstraction for systems discussed in this chapter. A coherent, shared
physical address space is supported directly in hardware and message passing through software layers.

Scalable cache coherence is typically based on the concept of a directory. Since
the state of a block in the caches can no longer be determined implicitly by placing a
request on a shared bus and having it snooped by the cache controllers, the idea is to
maintain this state explicitly in a place—called a directory—where requests can go
and look it up. Consider a simple example. Imagine that each cache-line-sized block
of main memory has associated with it a record of the caches that currently contain a
copy of the block and the state of the block in those caches. This record is called the
directory entry for that block (see Figure 8.3). As in bus-based systems, there may be
many caches with a clean, readable block, but if the block is writable (possibly mod-
ified) in one cache, then only that cache may have a valid copy. When a node incurs
a cache miss, it first communicates with the directory entry for the block using
point-to-point network transactions. Since the directory entry is colocated with the
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FIGURE 8.3 A scalable multiprocessor with directories. Every block of main memory, the size of a
cache block, has a directory entry that keeps track of its cached copies and their state.

main memory for the block, its location can be determined from the address of the
block. From the directory, the node determines where the valid cached copies (if
any) are and what further actions to take. It then communicates with the cached
copies as necessary using additional network transactions. For example, it may
obtain a modified block from another node or, on a write operation, send invalida-
tions to other nodes and receive acknowledgments from them. The resulting
changes to the states of cached blocks are also communicated to the directory entry
through networlk transactions, so the directory stays up-to-date.

In a directory protocol, requests, replies, invalidations, updates, and acknowledg-
ments across nodes are all network transactions like those of the previous chapter,
only here the endpoint processing at the destination of the transaction (invalidating
blocks, retrieving and replying with data) is typically done by the communication
assist rather than the main processor. (As in previous chapters, we will call response
transactions that carry data “replies” and all others simply “responses.”) Since direc-
tory schemes rely on point-to-point network transactions, they can be used with any
interconnection network. Important questions for directories include the form in
which the directory information is stored and how correct, efficient protocols may
be designed using these representations.

While directories constitute the dominant approach to scalable cache coherence,
other approaches can be contemplated. One approach that has been tried is to
extend the broadcast and snooping mechanism, using a hierarchy of broadcast
media like buses or rings. This is conceptually attractive because it builds larger sys-
tems hierarchically out of existing small-scale mechanisms. However, it does not
apply to general network topologies such as meshes and cubes, and we will see that
it has problems with latency and bandwidth, so it has not become very popular. An
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approach that is popular is a limited, two-level protocol hierarchy. Each node of the
machine is itself a multiprocessor. The caches within a node are kept coherent by
one coherence protocol called the inner protocol. Coherence across nodes is main-
tained by another, possibly different protocol called the outer protocol. To the outer
protocol, each multiprocessor node looks like a single cache, and coherence within
the node is the responsibility of the inner protocol. Usually, an adapter or a shared
tertiary cache is used to represent a node to the outer protocol. A common organiza-
tion is for the outer protocol to be a directory protocol and the inner one to be a
snooping protocol (Lovett and Clapp 1996; Lenoski et al. 1993; Clark and Alnes
1996; Weber et al. 1997). However, other combinations such as snooping-snooping
(Frank, Burkhardt, and Rothnie 1993), directory-directory (Convex Computer Cor-
poration 1993), and even snooping-directory may be used (see Figure 8.4).

Putting together smaller-scale machines to build larger machines in a two-level
organization is an attractive engineering option: it amortizes fixed per-node costs
over the processors in a node, may take advantage of packaging hierarchies, and may
satisfy much of the interprocessor communication less expensively within a node.
The main focus of this chapter will be on directory protocols across nodes, regard-
less of whether the node is a uni- or multiprocessor or what coherence method it
uses. The interactions among two-level protocols are also discussed. While we focus
on directory protocols because they have been most successful and are likely to
remain the most popular, we will briefly examine the less popular hierarchical
approaches as well. As we examine the organizational structure of the directory, the
protocols used to support coherence and consistency, and the requirements placed
on the communication assist, we will find another rich and interesting design space.

The first section of this chapter presents a framework for understanding the dif-
ferent approaches to providing coherent replication in a shared address space,
including snooping, directories, and hierarchical snooping. Section 8.2 introduces
the basic operation of a directory protocol using a simple directory representation
and then provides an overview of alternative directory organizations and protocols.
This is followed by a quantitative assessment of some high-level issues and architec-
tural trade-offs for directory protocols in Section 8.3.

The next few sections cover the issues and techniques involved in actually
designing correct, efficient protocols. Section 8.4 discusses the major new chal-
lenges introduced by the presence of multiple copies of data without a serializing
interconnect. The next two sections delve deeply into the two most popular types of
directory-based protocols, discussing various design alternatives and using two
commercial architectures as case studies: the Origin2000 from Silicon Graphics, Inc.
and the NUMA-Q from Sequent Computer Systems, Inc. Section 8.7 examines the
impact of key performance parameters of the communication architecture on the
end performance of parallel programs under directory protocols.

Synchronization for directory-based multiprocessors is discussed in Section 8.8
and the implications for parallel software in Section 8.9. Section 8.10 covers some
advanced topics, including the approaches of hierarchically extending snooping and
directory protocols for scalable coherence.
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8.1 SCALABLE CACHE COHERENCE

This section briefly lays out the major organizational alternatives for providing
coherent replication in a multiprocessor’s extended memory hierarchy and intro-
duces the basic mechanisms that any approach to coherence must provide.

On a machine with physically distributed memory, nonlocal data may be repli-
cated either only in the processors’ caches or in the local main memory. If coherent
replication is provided in main memory, additional support for keeping caches
coherent may not be necessary since only data that is already coherent in the local
main memory may enter the cache. This chapter assumes that data is automatically
replicated only in the caches, not in main memory, and that it is kept coherent in
hardware at the granularity of cache blocks, just as in bus-based machines. Since
main memory is physically distributed and has nonuniform access costs to a proces-
sor, architectures of this type are often called cache-coherent, nonuniform memory
access or CC-NUMA architectures. More generally, systems that provide a shared
address space programming model with physically distributed memory and coher-
ent replication (either in caches or main memory) are called distributed shared mem-
ory (DSM) systems.

Any approach to coherence, including the snooping coherence discussed in
Chapters 5 and 6, must provide certain critical mechanisms. First, a block can be in
each cache (or local replication store) in one of a number of states, potentially in dif-
ferent states in different caches. The protocol must provide these cache states as well
as the state transition diagram, according to which blocks in different caches inde-
pendently change states, and the set of actions associated with the state transition
diagram. Directory-based protocols also have a directory state for each block, which
is the state of the block as known to the directory. The protocol may be invalidation
based, update based, or hybrid, and the stable cache states themselves are very often
the same (e.g., MESD), regardless of whether the system is based on snooping or
directories. The trade-offs in the choices of stable cache states are very similar to
those discussed in Chapter 5 and are not revisited in this chapter. Conceptually, for
any protocol, the cache state of a memory block is a vector containing its state in
every cache in the system. The same state transition diagram governs the copies in
different caches, though the current state of the block at any given time may be dif-
ferent in different caches. The state changes for a block in different caches are coor-
dinated through transactions on the interconnect, whether bus transactions or more
general network transactions.

Given a protocol at the cache state transition level, a coherent system must pro-
vide mechanisms for managing the protocol. First, a mechanism is needed to deter-
mine when (i.e., on which operations) to invoke the protocol. This is done in the
same way on most systems: through an access fault (cache miss) detection mecha-
nism. The protocol is invoked if the processor makes an access that its cache cannot
satisfy by itself, for example, an access to a block that is not in the cache or a write
access to a block that is present but in shared state. However, even when they use the
same set of cache states, transitions, and access fault mechanisms, approaches to
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cache coherence differ substantially in the mechanisms they provide for three impor-
tant functions that may need to be performed when an access fault occurs:

1. Finding out enough information about the state of the location (cache block)
in other caches to determine what action to take

Locating those other copies, if needed (e.g., to invalidate them)

Communicating with the other copies (e.g., obtaining data from them or
invalidating or updating them)

In snooping protocols, all three functions are performed by the broadcast and
snooping mechanism. The processor puts a “search” request on the bus, containing
the address of the block, and other cache controllers snoop and respond. It is possi-
ble to use a broadcast and “snooping” method in distributed machines as well; the
assist at the node incurring the miss can broadcast messages to all nodes, and their
assists can examine the incoming request and respond as appropriate. However,
broadcast does not scale since it generates a large amount of traffic (at least p net-
work transactions on every miss on a p-node machine). Scalable approaches include
hierarchical snooping and directory-based approaches.

In a hierarchical snooping approach, the interconnection network is not a single
broadcast bus (or ring) but a tree of buses. The processors are in the bus-based
snooping multiprocessors at the leaves of the tree. Parent buses are connected to
children by interfaces that snoop the buses on both sides and propagate relevant
transactions upward or downward in the hierarchy. Main memory may be central-
ized at the root or distributed among the leaves. In this case, all of the preceding
functions are performed by the hierarchical extension of the broadcast and snooping
mechanism: a processor puts a search request on its bus as before, and it is propa-
gated up and down the hierarchy as necessary based on snoop results. The hope is
that most of the time a request will not have to be propagated very far. Hierarchical
snooping systems are discussed further in Section 8.10.2.

In the simple directory approach introduced earlier in the chapter, information ,
about the state of blocks in other caches is found by looking up the directory |
through network transactions. The location of the copies is also found from the i
directory, and the copies are communicated with using point-to-point network
transactions in an arbitrary interconnection network, without resorting to broadcast.
How the directory information is actually organized influences how protocols might ‘
be structured around this organization using network transactions and, hence, how Lo
the protocol addresses the three key functions required for coherence.

8.2 OVERVIEW OF DIRECTORY-BASED APPROACHES

This section begins by more fully describing a simple directory scheme and how it
might operate using cache states, directory states, and network transactions. It then
discusses the organizational issues in scaling directories to large numbers of nodes, B
provides a classification of scalable directory organizations, and discusses the basics |
of protocols associated with these organizations.
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The following definitions are useful for our discussion of directory protocols. For
a given cache or memory block:

& The home node is the node in whose main memory the block is allocated.

@ The dirty node is the node that has a copy of the block in its cache in modified
(dirty) state. Note that the home node and the dirty node for a block may be
the same.

@ The owner node is the node that currently holds the valid copy of a block and
must supply the data when needed; in directory protocols, this is either the
home node (when the block is not in dirty state in a cache) or the dirty node.

@ The exclusive node is the node that has a copy of the block in its cache in an
exclusive state, either dirty or (clean) exclusive as the case may be. (Recall
from Chapter 5 that the cache state called exclusive means this is the only
valid cached copy and that the block in main memory is up-to-date.) Thus, the
dirty node is also the exclusive node.

@ The local node, or requesting node, is the node containing the processor that
issues a request for the block.

@ Blocks whose home is local to the issuing processor are called locally allocated
or simply local blocks, whereas all others are called remotely allocated or remote
blocks.

Let us begin with the basic operation of directory-based protocols, using a very
simple directory organization.

8.2.1 Operationof a Simple Directory Scheme

When a cache miss (access control fault) is incurred, the local node sends a request
network transaction to the home node where the directory information for the block
is located. On a read miss, the directory indicates from which node the data may be
obtained, as shown in Figure 8.5(a). On a write miss, the directory identifies the
copies of the block, and invalidation or update networl transactions may be sent to
these copies (Figure 8.5[b]). (Recall that a write to a block in shared state is also
considered a write miss.) Since invalidations or updates are sent to multiple copies
through potentially disjoint paths in the network, determining the completion or
commitment of a write now requires that all copies reply to invalidations with
explicit acknowledgment transactions, we cannot assume completion or commit-
ment when the read-exclusive or update request obtains access to the interconnect
as we did on a shared bus since we cannot guarantee ordering with respect to other
transactions within the interconnect.

A natural way to organize a directory is to maintain the directory information for
a block together with the block in main memory, that is, at the home node for the
block. A simple organization for the directory information for a block is as a bit vec-
tor of p presence hits—which indicate for each of the p nodes (uniprocessor or mult-
processor) whether that node has a cached copy of the block—together with one of
more state bits (see Figure 8.6). Let us assume for simplicity that there is only one
state bit, called the dirty bit, which indicates if the block is dirty in one of the node
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FIGURE 8.6 Directory information for a distributed-memory multiprocessor. In simple organi-
zation, the directory entry for a block is a vector of p presence bits, one for each node, and a dirty bit
indicating whether any node has the block in modified state.

caches. Of course, if the dirty bit is ON, then only one node (the dirty node) should
be caching that block and only that node’s presence bit should be ON. With this
structure, a read miss can easily determine from looking up the directory which
node, if any, has a dirty copy of the block or if the block is valid in main memory at
the home, and a write miss can determine which nodes are the sharers that must be
invalidated.

The directory information for a block is simply main memory’s view of the cache
state of that block in different caches. The directory does not necessarily need to
know the exact state (e.g., MESI) in each cache but only enough information to
determine what actions to take. The number of states at the directory is therefore
typically smaller than the number of cache states. In fact, since the directory and the
caches communicate through a distributed interconnect, there will be periods when
a directory’s knowledge of a cache state is incorrect since the cache state has been
modified but notice of the modification has not reached the directory. During this
time, the directory may send a message to the cache based on its old (no longer
valid) knowledge. The race conditions caused by this distribution of state make
directory protocols interesting, and we see how they are handled using transient
states or other means in Sections 8.4 through 8.6.

To see in greater detail how a read miss and write miss might interact with this bit
vector directory organization, consider a protocol with three stable cache states
(MS1), a single level of cache per processor, and a single processor per node. The
protocol is orchestrated by the assists, which are also referred to as coherence control-
lers or directory controllers. On a read miss or a write miss at node i (including an
upgrade from shared state), the local communication assist or controller looks up
the address of the memory block to determine if the home is local or remote. If it is
remote, a network transaction is sent to the home node for the block. There, the
directory entry for the block is looked up, and the assist at the home may treat the
miss as follows, using network transactions similar to those that were shown in
Figure 8.5 (other, more optimized treatments are discussed later in the chapter):
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® If the dirty bit is OFF, then the assist obtains the block from main memory, sup-
plies it to the requestor in a reply network transaction, and turns the ith pres-
ence bit, presence[i], ON,

B If the dirty bit is ON, then the assist responds to the requestor with the identity of
the node whose presence bit is ON (i.e., the owner or dirty node). The requestor
then sends a request network transaction to that owner node. At the owner, the
cache changes its state to shared and supplies the block to both the requesting
node, which stores the block in its cache in shared state, as well as to main mem-
ory at the home node. At memory, the dirty bit is turned OFF, and presenceli] is
turned ON,

A write miss by processor i goes to memory and is handled as follows:

® If the dirty bit is OFF, then main memory has a clean copy of the data. Invalida-
tion request transactions must be sent to all nodes j for which presence[j] is ON.
Assuming a strict request-response scenario, as in Figure 8.5, the home node
supplies the block to the requesting node i together with the presence bit
vector. The directory entry is cleared, leaving only presence[i] and the dirty bit
ON. (If the request is an upgrade instead of a read exclusive, an acknowledg-
ment containing the bit vector is returned to the requestor instead of the data
itself.) The assist at the requestor sends invalidation requests to the required
nodes and waits for invalidation acknowledgment transactions from the
nodes, indicating that the write has completed with respect to them. Finally,
the requestor places the block in its cache in dirty state.

® If the dirty bit is ON, then the block is first recalled from the dirty node (whose
presence bit is ON), using network transactions with the home and the dirty
node. That cache changes its state to invalid, and then the block is supplied to
the requesting processor, which places the block in its cache in dirty state. The
directory entry is cleared, leaving only presence[i] and the dirty bit on.

On a replacement of a dirty block by node i, the dirty data being replaced is writ-
ten back to main memory, and the directory is updated to turn off the dirty bit and
presence[i]. (As in bus-based machines, write backs cause interesting race conditions
that are discussed later in the context of real protocols.) Finally, if a block in shared
state is replaced from a cache, a message may or may not be sent to the directory to
turn off the corresponding presence bit so an invalidation is not sent to this node the
next time the block is written. This message is called a replacement hint, whether it is
sent or not does not affect the correctness of the protocol or the execution.

A directory scheme similar to this one was introduced as early as 1978 (Censier
and Feautrier 1978). 1t was designed for use in systems with a few processors and a
centralized main memory and was used in the S-1 multiprocessor project at
Lawrence Livermore National Laboratories (Widdoes and Correll 1980). However,
directory schemes in one form or another were in use even before this. The earliest
scheme was used in IBM mainframes, which had a few processors connected to a
centralized memory through a high-bandwidth switch rather than a bus. With no
broadcast medium to snoop on, a duplicate copy of the cache tags for each processor
was maintained at the main memory, and it served as the directory. Requests coming
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8.2.2

to the memory looked up all the tags to determine the states of the block in the dif-
ferent caches (Tang 1976; Tucker 1986). Of course, the tag copies at main memory
had to be kept up-to-date. Since the directory was centralized in these early
schemes, they are called centralized directory schemes.

The value of directories is that they keep track of which nodes have copies of a
block, eliminating the need for broadcast. This is clearly very valuable on read
misses since a request for a block will either be satisfied at the main memory or the
directory will tell it exactly where to go to retrieve the exclusive copy. On write
misses, the value of directories over the simpler broadcast approach is greatest if the
number of sharers of the block (to which invalidations or updates must be sent) is
usually small and does not scale up quickly with the number of processing nodes.

We might already expect the typical number of sharers to be small from our
understanding of parallel applications. For example, in a near-neighbor grid compu-
tation, usually two, and at most four, processes should share a block at a partition
boundary, regardless of the grid size or the number of processors. Even when a loca-
tion is actively read and written by all processes in an application, the number of
sharers to be invalidated at a write depends upon the temporal interleaving of reads
and writes by processors. A common example is migratory data, which is read and
written by one processor, then read and written by another processor, and so on (for
example, a global sum into which processes accumulate their values). Although all
processors read and write the location, only one other processor on a write—the
previous writer—has a valid copy and must be invalidated since all others were
invalidated before the previous write.

Empirical measurements of program behavior show that the number of valid cop-
ies on most writes to shared data is indeed very small the vast majority of the time,
that this number does not grow quickly with the number of processors used, and
that the frequency of writes that generate many invalidations is very low. Such data
for our parallel applications will be presented and analyzed in light of application
characteristics in Section 8.3.1. (Note that even if all processors running the applica-
tion have to be invalidated on most writes, directories are still valuable for writes if
the application does not run on all nodes of the multiprocessor.) These facts are also
promising for the scalability of directory-based approaches and help us understand
how to organize directories cost-effectively.

Scaling

The main goal of using directory protocols is to allow cache coherence to scale
beyond the number of processors that may be sustained by a bus. It is important to
understand the scalability of directory protocols in terms of both performance and
the storage overhead for directory information. A system with distributed memory
and interconnect already provides good scalability of raw latency and bandwidth
under well-behaved loads. The major performance scaling issues for a protocol are
how the latency and bandwidth demands it presents to the system scale with the
number of processors used. The bandwidth demands are governed by the number of
network transactions generated per miss (multiplied by the frequency of misses) and
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latency by the number of these transactions that are in the critical path of the miss.
In turn, these quantities are affected both by the directory organization and by how
well the flow of network transactions is optimized in the protocol (given a directory
organization). Storage, however, is affected only by how the directory information is
organized. For the simple bit vector organization, the number of presence bits
needed scales linearly with both the number of processing nodes (p bits per memory
block) and the amount of main memory (1 bit vector per memory block), leading to
a potentially large storage overhead for the directory. With a 64-byte block size and
64 processors, the directory storage overhead as a fraction of nondirectory (i.e.,
data) memory is 64 bits (plus state bits) divided by 64 bytes, or 12.5%, which is not
so bad. With 256 processors and the same block size, the overhead is 50%, and with
1,024 processors it is 200%! The directory overhead does not scale well, though it
may be acceptable if the number of nodes visible to the directory at the target
machine scale is not very large.

Fortunately, there are many other ways to organize directory information that
improve the scalability of directory storage. The different organizations naturally
lead to different high-level protocols with different ways of addressing the three pro-
tocol functions presented in Section 8.1 and different performance characteristics.
The rest of this section lays out the space of directory organizations and briefly
describes how individual read and write misses might be handled in straightforward
protocols that use these organizations. The discussion assumes that no other cache
misses are in progress at the time, hence no race conditions, so the directory and the
caches are always encountered as being in stable states. Deeper protocol issues are
discussed in Sections 8.4 through 8.6.

8.2.3  Alternatives for Organizing Directories

Since communication with cached copies is always done through network trans-
actions, the real differentiation among approaches is in the first two functions of
coherence protocols: finding the source of the directory information upon a miss
and determining the locations of the relevant copies.

The two major classes of alternatives for finding the source of the directory infor-
mation for a block are known as flat directory schemes and hierarchical directory
schemes.

The simple directory scheme described earlier is a flat scheme. Flat schemes are
so named because the source of the directory information for a block is in a fixed
place, usually at the home that is determined from the address of the block; on a
miss, a single request network transaction is sent directly to the home node to look
up the directory (if the home is remote) regardless of how far away the home is.

In hierarchical schemes, the source of directory information is not known a pri-
ori. Memory is again distributed with the processors, but the directory information
for each block is logically organized as a hierarchical data structure (a tree). The pro-
cessing nodes, each with its portion of memory, are at the leaves of the tree. The
internal nodes of the tree are simply hierarchically maintained directory information
for the block: a node keeps track of whether each of its children has a copy of a
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block. Upon a miss, the directory information for the block is found by traversing up
the hierarchy level by level through network transactions until a directory node is
reached that indicates its subtree has the block in the appropriate state. Thus, a pro-
cessor that misses simply sends a search message up to its parent, and so on, rather
than directly to the home node for the block with a single network transaction. The
directory tree for a block is logical, not necessarily physical, and can be embedded in
any general interconnection network. Every block has its own logical directory tree.
In fact, in practice, every processing node in the system not only serves as a leaf
node for the blocks it contains but also stores directory information as an internal
tree node for other blocks.

In the hierarchical case, the information about locations of copies is also main-
tained through the hierarchy itself; copies are found and communicated with by tra-
versing up and down the hierarchy guided by directory information. For example, a
directory entry at a node may indicate not only whether its subtree has valid copies
of the block but also if copies of blocks allocated within its subtree may exist beyond
its subtree. In flat schemes, how this information about copies is stored varies con-
siderably. At the highest level, flat schemes can be divided into two classes: memory-
based schemes and cache-based schemes. Memory-based schemes store the directory
information about all cached copies at the home node of the block. The basic bit
vector scheme described earlier is memory based: the locations of all copies are dis-
covered at the home, and they can be communicated with directly through point-to-
point messages. In cache-based schemes, the information about cached copies is not
all contained at the home but is distributed among the copies themselves. The home
simply contains a pointer to one cached copy of the block. Each cached copy then
contains a pointer to (or the identity of) the node that has the next cached copy of
the block, in a distributed linked-list organization. The locations of copies are there-
fore determined by traversing this list via network transactions.

Figure 8.7 summarizes the taxonomy. Hierarchical directories have some poten-
tial advantages. For example, a read miss to a block whose home is far away in the
interconnection network topology might be satisfied closer to the issuing processor
if another copy is found nearby as the request traverses up and down the hierarchy,
instead of going all the way to the home. In addition, requests from different nodes
can potentially be combined at a common ancestor in the hierarchy, with only one
request sent on from there. These advantages depend on how well the logical hier-
archy matches the underlying physical network topology. However, instead of only a
few point-to-point network transactions needed to satisfy a miss in many flat
schemes, the number of network transactions needed to traverse up and down the
hierarchy can be much larger, which tends to have much greater impact on perfor-
mance than distance traversed in the network (since the endpoint cost of initiating
and handling network transactions dominates the per-hop cost). Each transaction
along the way needs to look up (and perhaps modify) the directory information at
its destination node, making transactions more expensive. As a result, the latency
and bandwidth characteristics of hierarchical directory schemes tend to be much
worse than for flat schemes, and these organizations are not popular on modern sys-
tems. Hierarchical directories are not, therefore, discussed much in this chapter but
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FIGURE 8.7  Alternatives for storing directory information. The two-level taxonomy is based on
how the source of directory information and the copies themselves are located. In the hierarchical case,
the same mechanism performs both functions.

are described briefly together with hierarchical snooping approaches in
Section 8.10.2. The rest of this section examines flat directory schemes, both mem-
ory based and cache based, looking at directory organizations, storage overhead, the
structure of protocols, and the impact on performance characteristics.

Flat, Memory-Based Directory Schemes

The bit vector organization described earlier, called a full bit vector organization, is
the most straightforward way to store directory information in a flat, memory-based
scheme. The style of protocol that results has already been discussed. Consider its
basic performance characteristics on writes. Since it preserves information about
sharers precisely and at the home, the number of network transactions per invalidat-
ing write grows only with the number of actual sharers. Because the identity of all
sharers is available at the home, invalidations sent to them can be overlapped or
even sent in parallel; the number of fully serialized network transactions in the criti-
cal path is thus not proportional to the number of sharers, reducing latency.

The main disadvantage of full bit vector schemes, as discussed earlier, is storage
overhead. There are two ways to reduce this overhead for a given number of proces-
sors while still using full bit vectors. The first is to increase the cache block size. The
second is to put multiple processors, rather than just one, in a node that is visible to
the directory protocol; that is, to use a two-level protocol. For example, the Stanford
DASH machine uses a full bit vector scheme, and its nodes are four-processor bus-
based multiprocessors. These two methods actually make full bit vector directories
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quite attractive for even fairly large machines: using four-processor nodes and 128-
byte cache blocks, the directory memory overhead for a 256-processor machine is
only 6.25%. As small-scale multiprocessors become increasingly attractive building
blocks, this storage problem may not be severe.

However, these methods reduce the overhead by only a small constant factor
each. The total directory storage is still proportional to P*M, where P is the number
of processing nodes and M is the number of total memory blocks in the machine
(M = P*m, where m is the number of blocks per local memory), and would become
intolerable in very large machines. The overhead can be reduced further by address-
ing each of the factors in the P*M expression. We can reduce the number of bits per
directory entry, or directory width, by not letting it grow proportionally to P. Or we
can reduce the total number of directory entries, or directory height, by not having an
entry per memory block.

Directory width is reduced by using what are called limited pointer directories,
which are motivated by the earlier observation that most of the time only a few
caches have a copy of a block when the block is written. Limited pointer schemes
therefore do not store yes or no information for all nodes but simply maintain a
fixed number of pointers (say, i), each pointing to a node that currently caches a
copy of the block (Agarwal et al. 1988). Each pointer takes log P bits of storage for P
nodes, but the number of pointers used is small. For example, for a machine with
1,024 nodes, each pointer needs 10 bits, so even having 100 pointers uses less stor-
age than a full bit vector scheme. In practice, five or less pointers seem to suffice. Of
course, these schemes need some kind of backup or overflow strategy for the situa-
tion when more than i readable copies are cached since they can keep track of only i
copies precisely. One strategy is to resort to broadcasting invalidations to all nodes
when there are more than i copies. Many other strategies have been developed to
avoid broadcast even in these cases. Different limited pointer schemes differ primar-
ily in their overflow strategies and in the number of pointers they use.

Directory height can be reduced by organizing the directory itself as a cache, tak-
ing advantage of the fact that since the total amount of cache in the machine is much
smaller than the total amount of memory, only a very small fraction of the memory
blocks will actually be present in caches at a given time, so most of the directory
entries will be unused anyway (Gupta, Weber, and Mowry 1990; O'Krafka and New-
ton 1990). Section 8.10 discusses techniques reducing directory width and height in
more detail.

Regardless of these storage-reducing optimizations, the basic approach to finding
copies and communicating with them (protocol functions [2] and [3]) remains the
same for the different flat, memory-based schemes. The identities of the sharers are
maintained at the home and (at least when there is no overflow) the copies are com-
municated with by sending point-to-point transactions to each.

Flat, Cache-Based Directory Schemes

In flat, cache-based schemes, there is still a home main memory for the block;
however, the directory entry at the home node does not contain the identities of all
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FIGURE 8.8 A doubly linked-list distributed directory organization. A cache line
contains not only data and state for the block but also forward and backward pointers for
the distributed linked list.

sharers but only a pointer to the first sharer in the list plus a few state bits. This
pointer is called the head pointer for the block, The remaining nodes caching that
block are joined together (using additional pointers that are associated with each
cache line in a node) in a distributed, doubly linked list—that is, a cache that contains
a copy of the block also contains pointers to the next and previous caches that have
a copy, called the forward and backward pointers, respectively (see Figure 8.8).

On a read miss, the requesting node sends a network transaction to the home
memory to find out the identity of the head node of the linked list, if any, for that
block. If the head pointer is null (no current sharers), the home replies with the
data. If the head pointer is not null, then the requestor must be added to the list of
sharers. The home responds to the requestor with the head pointer. The requestor
then sends a message to the head node, asking to be inserted at the head of the list
and hence to become the new head node. The net effect is that the head pointer at
the home now points to the requestor, the forward pointer of the requestor’s own
cache entry points to the old head node (which is now the second node in the linked
list), and the backward pointer of the old head node points to the requestor. The
data for the block is provided by the home if it has the latest copy or by the head
node, which always has the latest copy (is the owner) otherwise.

On a write miss, the writer again obtains the identity of the head node, if any,
from the home. It then inserts itself into the list as the head node as before (if the
writer was already in the list as a sharer and is now performing an upgrade, it is
deleted from its current position in the list and inserted as the new head). Following
this, the rest of the distributed linked list is traversed node by node via network
transactions to find and invalidate successive copies of the block. If a block that is
written is shared by three nodes A, B, and C, the home only knows about A so the
writer sends an invalidation message to it; the identity of the next sharer B can only
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be known once A is reached, and so on. Acknowledgments for these invalidations
are sent to the writer. Once again, if the data for the block is needed by the writer, it
is provided by either the home or the head node as appropriate. The number of mes-
sages per invalidating write—the bandwidth demand—is proportional to the num-
ber of sharers as in the memory-based schemes, but now so is the number of
messages in the critical path, that is, the latency. Each of these serialized messages
invokes the communication assist at its destination, increasing latency and overall
assist occupancy further. In fact, even a read miss to a clean block involves the
assists of three nodes to insert the node in the linked list.

Write backs or other replacements from the cache also require that the node
delete itself from the sharing list, which means communicating with the nodes that
are before and after it in the list. This is necessary because the new block that
replaces the old one in the cache will need the forward and backward pointer slots of
the cache entry for its own sharing list. Synchronization is required to avoid simulta-
neous replacement of adjacent nodes in the list, and the involvement of multiple
nodes increases overall assist occupancy. An example cache-based protocol is
described in more depth in Section 8.6.

To counter the latency and occupancy disadvantages, cache-based schemes have
some important advantages over memory-based schemes. First, the directory
overhead is small. Every block in main memory has only a single head pointer. The
number of forward and backward pointers is proportional to the number of cache
blocks in the machine, which is much smaller than the number of memory blocks.
The second advantage is that a linked list records the order in which accesses were
made to memory for the block, thus making it easier to provide fairness and to avoid
livelock in a protocol (most memory-based schemes do not keep track of request
order, as we will see). Third, the work to be done by assists in sending invalidations
is not centralized at the home but rather distributed among sharers, thus perhaps
spreading out assist occupancy and reducing the corresponding bandwidth demands
placed on a particularly busy home assist.

Manipulating insertion in and deletion from distributed linked lists can lead to
complex protocol implementations. For example, deleting a node from a sharing list
requires careful coordination and mutual exclusion with processors ahead of and
behind it in the linked list since those processors may also be trying to replace the
same block concurrently. These complexity issues have been greatly alleviated by the
formalization and publication of a standard for a cache-based directory organization
and protocol: the IEEE 1596-1992 Scalable Coherent Interface (SCI) standard
(Gustavson 1992). The standard includes a full specification and C code for the pro-
tocol. Several commercial machines use this protocol (e.g., Sequent NUMA-Q
[Lovett and Clapp 1996], Convex Exemplar [Convex Computer Corporation 1993;
Thekkath et al. 1997], and Data General [Clark and Alnes 1996]), and variants that
use alternative list representations (singly linked lists instead of the doubly linked
lists in SCI) have also been explored (Thapar and Delagi 1990). We shall examine
the SCI protocol itself in more detail in Section 8.6 and so defer detailed discussion
of advantages and disadvantages.
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Summary of Directory Organization Alternatives

To summarize, there are many different ways to organize how directories store the
cache state of memory blocks. Simple bit vector representations work well for |
machines that have a moderate number of nodes visible to the directory protocol. Lo
For larger machines, many alternatives are available to reduce the memory over- |
head. The organization chosen does, however, affect the complexity of the coher- ’§
ence protocol and the performance of the directory scheme against various sharing [
patterns. Hierarchical directories have not been popular on real machines, whereas "
machines with flat memory-based and cache-based (linked-list) directories have }
been built and used for some years now. |

The next section quantitatively assesses the behavior of parallel programs and the
implications for directory-based approaches as well as some important protocol and
architectural trade-offs at this basic level.

8.3 ASSESSING DIRECTORY PROTOCOLS AND TRADE-OFFS

As in Chapter 5, this section uses a simulator to examine some relevant characteristics
of applications that can inform architectural trade-offs but that cannot be measured on I
real machines. Issues such as three-state versus four-state or invalidation-based versus ‘ :
update protocols that were discussed in Chapter 5 are not revisited here. The focus is '

on invalidation-based protocols, since update protocols have an additional disadvan- |

tage in scalable machines: useless updates incur a separate network transaction for L
each destination rather than a single bus transaction that is snooped by all caches. In !

addition, update-based protocols make it much more difficult to preserve the desired
memory consistency model in directory-based systems. This section quantifies the dis-
tribution of invalidation patterns in directory protocols, examines how the distribu- ’
tion of traffic between local and remote changes as the number of processors is iy
increased for a fixed problem size, and revisits the impact of cache block size on traffic,
In all cases, the experiments assume a memory-based flat directory protocol. Two
changes are made from the experiments in Chapter 5. Since Radix sorting would
exhibit a lot of false sharing at larger processor counts (our default here is 32 rather
than 16 processors), we use a problem size of 1M rather than 256K keys. And we use
8-KB rather than 64-KB caches in all our smaller cache size experiments, to see the |
effect of even fewer working sets fitting in the cache.

8.3.1 Data Sharing Patterns for Directory Schemes |

It was claimed earlier that the number of invalidations that need to be sent out on a I
write is usually small, which makes directories especially valuable and can reduce " s
directory storage overhead without hurting performance. This subsection quantifies o
that claim for our parallel application case studies, It also develops a framework for ol
categorizing data structures in terms of sharing patterns and understanding how the
invalidation patterns scale, and explains the behavior of the application case studies o
in light of this framework. The simulated protocol assumes only the three basic ' |
cache states (MSI) for simplicity.
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Sharing Patterns for Application Case Studies

For invalidation-based directory protocols, it is important to understand two aspects
of an application’s data sharing patterns: (1) the frequency with which processors
issue writes that may require invalidating other copies (i.e., writes to data that is not
in modified state in the writer’s cache in an MSI protocol, or invalidating writes),
called the invalidation frequency; and (2) the distribution of the number of invalida-
tions (sharers) needed upon these writes, called the invalidation size distribution,
Directory schemes are particularly advantageous if the average invalidation size is
small and the frequency is significant enough that using broadcast all the time
would indeed be a performance problem. Figure 8.9 shows the invalidation size dis-
tributions for our parallel application case studies running on 64-node systems (one
processor per node) for the default problem sizes presented in Chapter 4. Infinite
per-processor caches are used in these simulations to capture inherent sharing pat-
terns, With finite caches, replacement hints sent to the directory may turn off pres-
ence bits and reduce the number of invalidations sent on writes in some cases
(though traffic will not be reduced since the replacement hints have to be sent). A
write may send zero invalidations in an MSI protocol if the block was loaded in
shared state but there are currently no other sharers. This would not happen with
infinite caches in a MESI protocol. With infinite caches, invalidation frequency is
proportional to the communication-to-computation ratio.

It is clear that the invalidation sizes are usually small, indicating both that direc-
tories are indeed likely to be very useful in containing traffic and that it is not neces-
sary for the directory to maintain a presence bit per processor in a flat memory-
based scheme. The nonzero frequencies of very large invalidation sizes are usually
due to synchronization variables, where many processors spin on a variable and one
processor writes it, invalidating them all. We are interested not just in the results for
a given problem size and number of processors but also in how they scale. The
communication-to-computation ratios discussed in Chapter 4 give us a good idea
about how the frequency of invalidating writes should scale. For the size distribu-
tions, we can appeal to our understanding of applications and their usage of data
structures (and validate with experiments), which can also help explain the basic
results observed in Figure 8.9.

A Framework for Sharing Patterns

Data access patterns in applications can be categorized in many ways: predictable
versus unpredictable, regular versus irregular, coarse-grained versus fine-grained (or
contiguous versus noncontiguous in the address space), near-neighbor versus long-
range in an interconnection topology, and so on. For understanding invalidation pat-
terns, the relevant categories are read-only, producer-consumer, migratory, and irreg-
ular read-write. (A similar categorization can be found in [Gupta and Weber 1992].)

B Read-only. Read-only data structures are never written once they have been ini-
tialized. There are no invalidating writes, so data in this category is not an
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issue for directories. Examples include program code and the scene data in the
Raytrace application.

B Producer-consumer. A processor produces (writes) a data item, then one or
more processors consume (read) it, then a processor produces it again, and so
on. Flag-based synchronization is an example, as is the near-neighbor sharing
in an iterative grid computation. The producer may be the same process every
time or it may change; for example, in a branch-and-bound algorithm, the
bound variable may be written by different processes as they find improved
bounds. The invalidation size for this category is determined by how many
consumers there have been each time the producer writes the value. We can
have situations with one consumer, all processes being consumers, or a few
processes being consumers, These situations may have different frequencies
and scaling properties, although for most applications either the size does not
scale quickly with the number of processors or the frequency has been found !
to be low.! N J

B Migratory. Migratory data bounces around, or migrates, from one processor to .
another, being written (and usually read) by each processor to which it b
bounces. An example is a global sum, into which different processes add their
partial sums. Each time a processor writes the variable, only the previous
writer has a copy (since it invalidated the previous “owner” when it did its
write); so only a single invalidation is generated upon a write, regardless of the
number of processors used.

B Irregular read-write. This corresponds to irregular or unpredictable read and
write access patterns to data by different processes. A simple example is a dis-
tributed task-queue system. Processes will probe (read) the head pointer of a
task queue when they are looking for work to steal, and this head pointer will
be written when a task is added at the head. These and other irregular patterns
usually lead to wide-ranging invalidation size distributions, but in most
observed applications the frequency concentration tends to be very much
toward the small end of the spectrum (see the Radiosity example in
Figure 8.9).

1. Examples of the producer-consumer size distribution not scaling up are the noncorner border elements
in a near-neighbor regular grid partition and the key permutations in Radix. They lead to an invalidation
size of one, which does not increase with the number of processors or the problem size. Examples of all
processes being consumers (invalidation size p — 1) are a global energy variable that is read by all pro-
cesses during a time-step of a physical simulation and then written by one at the end or a synchroniza-
tion variable on which all processes spin. While the invalidation size here is large, such writes fortunately
tend to happen very infrequently in real applications. Finally, examples of a few processes being consum-
ers are the corner elements of a grid partition or the flags used for tree-based synchronization. This leads
to an invalidation size of a few, which may or may not scale with the number of processors (it doesn’t in
these two examples).
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Applying the Framework to the Application Case Studies

Let us now look briefly at each of the applications in Figure 8.9 to interpret the
results in light of these four sharing patterns and to understand how the size distri-
butions might scale.

In the LU f[actorization program, when a block is written it has previously been
read only by the same processor that is doing the writing (the process to which it is
assigned). This means that no other processor should have a cached copy, and zero
invalidations should be sent. Once it is written, it is read by several other processes
and no longer written further. The reason that we see one invalidation being sent in
the figure is that the matrix is initialized by a single process; particularly with the
infinite caches we use, that process has a copy of the entire matrix in its cache and
will be invalidated the first time another processor does a write to a block. An insig-
nificant number of invalidating writes invalidates all processes, which is due to some
global variables and not the main matrix data structure. Scaling the problem size or
the number of processors does not change the invalidation size distribution for the
matrix but only for the global variables. Of course, the invalidation frequencies do
change with scaling, just like the communication-to-computation ratio.

In the Radix sorting kernel, invalidations are sent in two producer-consumer situ-
ations. In the permutation phase, the word or block written has been read since the
last write only by the process to which that key is assigned, so at most a single inval-
idation is sent out. The same key position in the destination array may be written by
different processes in different outer loop iterations of the sort; however, in each
iteration there is only one reader of a key, so even this infrequent case generates only
two invalidations (one to the reader and one to the previous writer). If there is false
sharing, all sharers are writing the block, so there is only one invalidation each time.
The other situation that generates invalidations is the histogram accumulation,
which is done in a tree-structured fashion and usually leads to a small number of
invalidations at a time. These invalidations to multiple sharers are clearly very infre-
quent. In Radix too, increasing the problem size does not change the invalidation
size in either phase (though it may change the relative invalidation frequencies in
the two phases), whereas increasing the number of processors increases the sizes but
only in some infrequent parts of the histogram accumulation phase. The dominant
pattern by far remains 0 or 1 invalidations.

The nearest-neighbor, producer-consumer communication pattern on a regular
grid in Ocean leads to most of the invalidations being sent to 0 or 1 processes (at the
borders of a partition). At partition corners, more frequently encountered in the
multigrid equation solver, two or three sharers may need to be invalidated. This does
not grow with problem size or number of processors. At the highest levels of the
multigrid hierarchy, the border elements of a few processors’ partitions might fall on
the same cache block, causing four or five sharers to be invalidated. There are also
some global accumulator variables, which display a migratory sharing pattern
(1 invalidation), and a couple of very infrequently used one-producer, all-consumer
global variables (other than synchronization variables).
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In Raytrace the dominant data structure is the scene data, which is read-only. The
major read-write data consists of the image and the task queues. Fach word in the
image is written only once by one processor per frame. This leads to either 0 invali-
dations if the same processor writes a given image pixel in consecutive frames (as is
usually the case) or 1 invalidation if different processors do, as might be the case
when tasks are stolen or if there is write-write false sharing. The task queues them-
selves lead to the irregular read-write access patterns discussed earlier, with a wide-
ranging distribution that is dominated in frequency by the low end (hence the very
small nonzeros all along the x-axis in this case). Here too we find some infrequently
written one-producer, all-consumer global variables.

In the Barnes-Hut application, the important data is the body and cell positions,
the pointers used to link up the tree, and some global variables used as energy val-
ues. The position data is of the producer-consumer type. A given body’s position is
usually read by one or a few processors during the force calculation (tree traversal)
phase. The positions (centers of mass) of the cells are read by many processes, the
number increasing toward the root, which is read by all. This data thus causes a
fairly wide range of invalidation sizes when it is written by its assigned processor in
the update and tree construction phases that follow force calculation. The root and
upper-level cells are responsible for invalidations being sent to all processors, but
their frequency is quite small. The tree pointers are similar in their behavior to the
cell centers of mass. The first write to a pointer in the tree-building phase invalidates
the caches of the processors that read it in the previous force calculation phase; sub-
sequent writes invalidate those processors that have read the pointer during the cur-
rent tree-building phase, which is an irregularly sized but mostly small set of
processors. As the number of processors is increased, the invalidation size distribu-
tion tends to shift to the right as more processors tend to read a given item, but the
shift is slow and the dominant invalidations are still to a small number of processors,
The reverse effect (also slow) is observed when the number of bodies is increased.

Finally, the Radiosity application has very irregular access patterns to many dif-
ferent types of data, including data that describes the scene (patches and elements)
and the task queues. The resulting invalidation patterns show a wide distribution;
however, even here the greatest frequency by far is concentrated toward 0 to 2 inval- 1
idations. Many of the accesses to the scene data behave in a migratory way, as do a
few counters, and a couple of global variables are one-producer, all-consumer.

The empirical data and categorization framework indicate that in most cases the
invalidation size distribution is dominated by small numbers of invalidations. The
common use of parallel machines as multiprogrammed compute servers for sequen-
tial or small-way parallel applications further limits the number of sharers (process
migration usually leads to invalidations of size 1). Sharing patterns that cause large
numbers of invalidations are empirically found to be very infrequent at run time. A
possible exception is highly contended synchronization variables, which are usually
handled specially by software or hardware, as we shall see. In addition to validating
the directory-based approach and suggesting its potential for performance scalabil-
ity, these results suggest that limited-pointer directory representations should be
successful since the frequency of overflows will be small.
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8.3.2 Local versus Remote Traffic

A key property for systems with distributed memory is how much of the traffic due
to cache misses or protocol activity is kept within a node (local) rather than going
on the interconnect (remote). For a given number of processors and machine orga-
nization, the fraction of traffic that is local depends on the problem size. However, it
{s instructive to examine how the traffic and its distribution change with the number
of processors even when the problem size is held fixed (i.e., under PC scaling).
Figure 8.10 shows the results for the default problem sizes, breaking down the
remote traffic into various categories such as sharing (true or false), capacity, cold
start, write back, and overhead. A MESI rather than MSI protocol is used in this and
the next subsection, Overhead includes the fixed header sent across the network
with each cache block of data as well as the traffic associated with protocol transac-
tions like invalidations and acknowledgments that do not carry any data. This proto-
col traffic component is different from that on a bus-based machine: each individual
point-to-point invalidation consumes traffic, and acknowledgments place traffic on
the interconnect too. Traffic is shown in bytes per FLOP or bytes per instruction for
different applications.

We can see that both local traffic and capacity-related remote traffic tend to
decrease when the number of processors increases, due to both decrease in per-
processor working sets and decrease in cold misses that are satisfied locally instead
of remotely. However, sharing-related traffic increases as expected. In applications
with small working sets, like Barnes-Hut, LU, and Radiosity, the fraction of capacity-
related traffic is very small, at least beyond a couple of processors. In irregular appli-
cations like Barnes-Hut and Raytrace, most of the capacity-related traffic is remote,
all the more so as the number of processors increases, since data cannot be distrib-
uted easily at page granularity for capacity misses to be satisfied locally. In cases like
Ocean, the capacity-related traffic is substantial even with the large cache and is
almost entirely local when pages are placed properly (which can be done quite easily
with 4D array data structures). With round-robin placement of shared pages, we
would have seen most of the local capacity misses in Ocean turn to remote ones.

When we use smaller caches to capture the realistic scenario of working sets not
fitting in the cache in Ocean and Raytrace, capacity traffic becomes much larger. In
Ocean, most of this traffic is still local due to good data distribution, and the trend
for remote traffic versus number of processors doesn’t change. Poor distribution of
pages would have swamped the network with traffic, but with proper distribution,
remote traffic is quite low. In Raytrace, however, the capacity-related traffic is mostly
remote, and the fact that it now dominates changes the slope of the curve of total re-
mote traffic compared to that with large caches, where sharing traffic dominates.
Remote traffic still increases with the number of processors but much more slowly
since the working set size and, hence, capacity miss rate does not depend as much on
the number of processors as the sharing miss rate.

When a miss is satisfied remotely, whether it s satisfied at the home or it needs
another message to obtain the data from a dirty node depends not only on whether it
is a sharing miss or a capacity/conflict/cold miss but also on the size of the cache. In
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a small cache, dirty data may be replaced and written back, so a sharing miss by
another processor may be satisfied at the home node rather than at the previously
dirty node. For applications like Ocean that allow data to be placed easily in the
memory of the node to which they are assigned (i.e., to be appropriately distributed
for locality), it is often the case that only that node writes the data, so even if the
data is found dirty, it is found so in a cache at the home node itself, The extent to
which this is true depends on the data access patterns of the application, the granu-
larity of data allocation in memory, and whether the data is indeed distributed prop-
erly by the program.

Cache Block Size Fffects

The effects of block size on cache miss rates and bus traffic were assessed in
Chapter 5, at least up to 16 processors. For miss rates, the trends beyond 16 proces-
sors extend quite naturally, except for threshold effects in the interaction of problem
size, number of processors, and block size, as discussed in Chapter 4. This section
examines the impact of block size on the components of local and remote traffic in
machines with distributed memory.

Figure 8.11 shows how traffic scales with block size for 32-processor executions of
the applications with 1-MB caches per processor. In Barnes-Hut, the overall traffic in-
creases slowly until about a 64-byte block size and more rapidly thereafter primarily
due to false sharing, However, the amount of traffic is small. Since the overhead per
block moved through the network is fixed (as is the cost of invalidations and ac-
knowledgments), the overhead component tends to shrink with increasing block size
to the extent that there is spatial locality (i.e., if larger blocks reduce the number of
blocks transferred). LU has perfect spatial locality, so the data traffic remains fixed as
block size increases. Overhead is reduced, so overall traffic in fact shrinks with in-
creasing block size. In Raytrace, the remote capacity traffic has poor spatial locality,
so it grows quickly with block size. In both Barnes-Hut and Raytrace, the true sharing
traffic has poor spatial locality too, as is the case in Ocean at column-oriented
partition borders (spatial locality even on remote data is good at row-oriented bor-
ders). Finally, the graph for Radix clearly shows the impact of false sharing on remote
traffic when it occurs past the threshold block size (here about 128 or 256 bytes).
Results with smaller caches show the behavior of capacity misses playing a dominant
role, as expected.

8.4 DESIGN CHALLENGES FOR DIRECTORY PROTOCOLS

Designing a correct, efficient directory protocol involves issues that are more com-
plex and subtle than the simple organizational choices we have discussed so far, just
as designing a bus-based protocol was more complex than choosing the number of
states and drawing the state transition diagram for stable states. We had to deal with
the nonatomicity of state transitions, split-transaction buses, serialization and order-
ing issues, deadlock, livelock, and starvation. Now that we understand the basics of
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8.4.1

directories, we are ready to dive into these issues for them as well. This section dis-
cusses the new protocol-level design challenges that arise in correctly implementing
directory protocols for high performance and identifies general techniques for
addressing these challenges. In the next two sections, the techniques are specialized
in the case studies of memory-based and cache-based directory protocols.

As always, the design challenges for scalable coherence protocols are to provide
high performance while preserving correctness and to contain the complexity that
results. Let us look at performance and correctness in turn, focusing on issues that
were not already addressed for bus-based or noncaching systems. Since performance
optimizations tend to increase concurrency and complicate correctness, let us exam-
ine them first.

Performance

The network transactions on which cache coherence protocols are built differ from
those used in explicit message passing in two ways. First, they are automatically
generated by the system—in particular, by the communication assists or control-
lers—in accordance with the protocol. Second, they are individually small, each car-
rying either a request, an acknowledgment, or a cache block of data plus some
control bits, However, the basic performance model for network transactions devel-
oped in earlier chapters applies here as well. A typical network transaction incurs
some overhead on the processor at its source (traversing the cache hierarchy on the
way out and back in); some work or occupancy on the communication assists at its
endpoints (typically looking up state, generating requests, or intervening in the
cache); and some delay in the network due to transit latency, network bandwidth,
and contention. Typically, the processor itself is not directly involved at the home,
the dirty node, or the sharers but only at the requestor (although it may suffer at the
other nodes as well due to contention).

It is useful to understand performance in terms of the layers of a multiprocessor
system introduced earlier (Figure 8.2). The protocol layer of a system implements
the programming model, using the network transactions provided by the communi-
cation abstraction. Thus, the protocol layer does not have much leverage on the
basic communication costs of a single network transaction—transit latency, network
bandwidth, assist occupancy, and processor overhead—but it can determine the
number and structure of the network transactions needed to realize memory opera-
tions like reads and writes under different circumstances. In general, there are three
classes of techniques for improving performance: (1) protocol optimizations, (2)
high-level machine organization, and (3) hardware specialization to improve the
basic communication parameters. The first two assume a fixed set of performance
parameters for the communication architecture and are discussed in this section.
The impact of varying the basic performance parameters will be examined in
Section 8.7.

.
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Protocol Optimizations

The two major performance goals at the protocol level are to reduce the number of
network transactions generated per memory operation, which reduces the band-
width demands placed on the network and the communication assists; and to reduce
the number of actions, especially network transactions, that are on the critical path
of the processor, thus reducing uncontended latency. The latter can be done by over-
lapping the transactions needed for a memory operation as much as possible. To
some extent, protocol design can also help reduce the endpoint assist occupancy per
transaction—especially when the assists are programmable—which reduces both
uncontended latency as well as endpoint contention. The traffic, latency, and occu-
pancy characteristics should not scale up quickly with the number of processing
nodes used and should perform gracefully under pathological conditions like hot
spots.

As we have seen, the manner in which directory information is stored determines
the number of network transactions in the critical path of a memory operation. For
example, a memory-based protocol can issue invalidations in an overlapped manner
from the home whereas, in a cache-based protocol, the distributed list must be
walked by network transactions to learn the identities of the sharers. However, even
within a class of protocols, there are many ways to improve performance.

Consider a read miss to a remotely allocated block that is dirty in a third node in
a flat, memory-based protocol. The strict request-response option described eatlier
is shown in Figure 8.12(a). The home responds to the requestor with a message con-
taining the identity of the owner node. The requestor then sends a request to the
owner, which replies to it with the data (the owner also sends a “revision” message
to the home, which updates memory with the data and sets the directory state to be
shared).

There are four network transactions in the critical path for the read operation and
five transactions in all. One way to reduce these numbers is intervention forwarding.
In this case, the home does not respond to the requestor but simply forwards the
request as an intervention transaction to the owner, asking it to retrieve the block
from its cache. An intervention is just like a request but is issued in reaction to a
request and is directed at a cache rather than memory (it is similar to an invalidation
in this sense but also seeks data from the cache). The owner then replies to the home
with the data or an acknowledgment (if the block is in exclusive rather than modi-
fied state), at which time the home updates its directory state and replies to the
requestor with the data (Figure 8.12[b]). Intervention forwarding reduces the total
number of transactions needed to four, reducing bandwidth needs, but all four are
still in the critical path. A more aggressive method is reply forwarding (Figure
8.12[c]). Here too, the home forwards the intervention message to the owner node,
but the intervention contains the identity of the requestor and the owner replies
directly to the requestor itself. The owner also sends a revision message to the home
so that the memory and directory can be updated, but this message is not in the crit-
ical path of the read miss. This keeps the number of transactions at four but reduces
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3: intervention

1:request  2: intervention

QRD

4: response  3: response

4a: revise

4by; response

(a) Strict request-response {b) Intervention forwarding

1:request  2:intervention

3b: response

(c) Reply forwarding

FIGURE 8.12 Reducing latency in a flat, memory-based protocol through for-
warding. The case shown is of a read request to a block in exclusive state. L represents the
local or requesting node, H is the home for the block, and R is the remote owner node that
has the exclusive copy of the block.

the number in the critical path to three (request — intervention — reply-to-
requestor); it is, therefore, called a three-message miss. Notice that with either of
intervention forwarding or reply forwarding the protocol is no longer strictly
request-response since a request to the home generates another request (to the
owner node, which in turn generates a response). This can complicate deadlock
avoidance, as we shall see later.

Besides being only intermediate in its latency and traffic characteristics, interven-
tion forwarding has the disadvantage that outstanding intervention requests are kept
track of at the home rather than at the requestor, since responses to the interven-
tions are sent to the home. Because requests that cause interventions may come from
any of the nodes, the home node must keep track of up to k*P interventions at a
time, where k is the number of outstanding requests allowed per node. A requestor,
on the other hand, would only have to keep track of at most k outstanding interven-
tions. Reply forwarding does not require the home to keep track of outstanding
requests and also has better performance characteristics, so systems prefer to use it.
Similar forwarding techniques can be used to reduce latency in cache-based schemes
at the cost of strict request-response simplicity, as shown in Figure 8.13.

In addition to forwarding, other protocol optimizations to reduce latency include
overlapping transactions and activities by performing them speculatively. For exam-
ple, when a request arrives at the home, the assist can read the data from memory in
parallel with the directory lookup, in the hope that in most cases the block will
indeed be clean at the home. If the directory lookup indicates that the block is dirty
in some cache, then the memory access is wasted and must be ignored. Finally, pro-
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1. inval 2a: inval 3a: inval

: 3b: ack
4b: ack

@ (b)

1: inval 2: inval 30 inval

FIGURE 8.13  Reducing latency in a flat, cache-based protocol. In this scenario, invalidations are
sent from the home H to the sharers S; on a write operation. In the strict request-response case (a), every
node includes in its acknowledgment (response) the identity of the next sharer on the list, and the home
then sends that sharer an invalidation. The total number of transactions in the invalidation sequence is
2s, where s is the number of sharers and all are in the critical path. In (b), each invalidated node forwards
the invalidation to the next sharer and in parallel sends an acknowledgment to the home. The total
number of transactions is still 2s, but only s + 1 are in the critical path. In (), only the last sharer on the
list sends a single acknowledgment telling the home that the sequence is done. The total number of
transactions is s + 1. (b) and (c) are not strict request-response cases.

tocols may also automatically detect common sharing patterns to which the stan-
dard invalidation-based protocol is not ideally suited and adjust themselves at run
time to interact better with these patterns (see Exercises 8.9 and 8.10).

High-Level Machine Organization

Machine organization can interact with the protocol to help improve performance as
well. For example, the use of large tertiary caches within a node can reduce the
number of protocol transactions generated by artifactual communication. For a
fixed total number of processors, using multiprocessor rather than uniprocessor
nodes in a two-level organization may be useful as well.

The potential advantages of a two-level organization are in both cost and perfor-
mance. On the cost side, certain fixed per-node costs may be amortized among the
processors within a node, and it is possible to use existing SMPs that may them-
selves be commodity parts. On the performance side, advantages may arise from
sharing characteristics that reduce the number of accesses that involve the directory
protocol and generate network transactions across nodes. If one processor brings a
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block of data into its cache, another processor in the same node may be able to sat-
isfy its miss to that block (for the same or a different word) more quickly through
the local protocol using cache-to-cache sharing, especially if the block is allocated
remotely. Requests may also be combined: if one processor has a request outstanding
to the directory protocol for a block, another processor’s request within the same
SMP can be combined with, and obtain the data from, the first processor’s response,
reducing latency, network traffic, and potential hot spot contention. These advan-
tages are similar to those of full hierarchical approaches and of shared caches. In
fact, within an SMP, processors may even share a cache at some level of the hierar-
chy, in which case all the trade-offs for shared caches discussed in Chapter 6 apply.
With fewer nodes, more of the main memory is local as well. Finally, cost and per-
formance characteristics may be improved by using a hierarchy of packaging tech-
nologies appropriately.

Of course, the extent to which the two-level sharing hierarchy can be exploited
depends on the locality in the sharing and data access patterns of applications, how
well processes are mapped to processors in the hierarchy, and the cost difference
between communicating within a node and across nodes. For example, applications
that have wide but physically localized read-only sharing in a phase of computation,
like the Barnes-Hut galaxy simulation, can benefit significantly from cache-to-cache
sharing if the miss rates are high to begin with. Applications that exhibit nearest-
neighbor sharing (like Ocean) can also have most of their accesses satisfied within a
multiprocessor node if processes are mapped properly to nodes. However, although
some processes may have all their accesses satisfied within their node, others will
have accesses along at least one border satisfied remotely, so load imbalances will
result and the benefits of the hierarchy will be diminished (performance will be lim-
ited by that of the most penalized processor). In all-to-all communication patterns,
the savings in inherent communication is more modest. Instead of communicating
with p — 1 remote processors in a p-processor system, a processor now communi-
cates with k — 1 local processors and p — k remote ones (where k is the number of
processors within a node), a savings of at most (p — k)/ (p-1in internode commu-
nication. Finally, with several processes sharing a main memory unit, it may also be
easier to distribute data appropriately among processors at page granularity. Some of
these trade-offs and application characteristics are explored quantitatively in (Weber
1993; Erlichson et al. 1995). Of our two case study machines, the Sequent NUMA-Q
uses four-processor, bus-based, cache-coherent SMPs as the nodes. The SGI Origin
takes an interesting position: two processors share a bus and memory (and a board)
to amortize cost, but they are not kept coherent by a snoopy protocol on the bus;
rather, a single directory protocol keeps all caches in the machine coherent.

Compared to using uniprocessor nodes, the major potential disadvantage of
using multiprocessor nodes is the sharing of communication resources by processors
within a node. When processors share a bus, an assist, or a network interface, they
amortize its cost but compete for its bandwidth. If their bandwidth demands are not
reduced much by locality in sharing patterns, the resulting contention can hurt per-
formance. The solution is to increase the throughput of these resources as well when
processors are added to the node, but this compromises the cost advantages. Sharing
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a bus within a node has some particular disadvantages. First, if the bus has to ?
accommodate several processors, it becomes longer and is not likely to be contained
in a single board or other packaging unit. These effects slow the bus down, increas-
ing the latency to both local and remote data. Second, if the bus supports snooping
coherence within the node, a request that must be satisfied remotely typically has to
wait for local snoop results to be reported before it is sent out to the network, caus-
ing unnecessary delays. Third, with a snooping bus at the remote node too, many
references that do go remote will require snoops and data transfers on the local bus
as well as the remote bus, increasing latency and reducing effective data access band-
width, Finally, snooping accesses second-level cache tags, which may cause unnec-
essary contention with processor accesses if the snoops are not often successful in
achieving cache-to-cache sharing. Nonetheless, several directory-based systems use
snoop-based coherent multiprocessors as their individual nodes (Lenoski et al.
1993; Lovett and Clapp 1996; Clark and Alnes 1996; Weber et al. 1997).

The final approach to improving protocol performance—improving the perfor-
mance parameters of the communication architecture—is discussed in Section 8.7.

8.4.2 Correctness

As with snoop-based systems, correctness considerations can be divided into three
classes. First, the protocol must ensure that the relevant blocks are invalidated/
updated and retrieved as needed and that the necessary state transitions occur. We
can assume this happens in all cases and not consider it much further. Second, the
serialization and ordering relationships defined by coherence and the consistency
model must be preserved. Third, the protocol and implementation must be free from
deadlock, livelock, and, ideally, starvation. Several aspects of scalable protocols and
systems complicate the latter two sets of issues beyond what we have seen for bus-
based cache-coherent machines or scalable noncoherent machines. There are two
basic problems. First, we now have multiple cached copies of a block but no single
agent that can see all relevant transactions and serialize them. Second, with many
processors, a large number of requests may be directed toward a single node, accen- 3
tuating the input buffer problem discussed in Chapter 7. These problems are aggra- ‘
vated by the high latencies in the system, which push us to exploit protocol
optimizations of the sort discussed previously; these optimizations allow more
transactions to be in progress simultaneously and do not preserve a strict request-
response nature, further complicating correctness. This subsection describes the
major new issues and types of solutions that are commonly employed in each area of
correctness. Some specific solutions used in the case study protocols are discussed in
more detail in subsequent sections.

Serialization to a Location for Coherence

Recall the write serialization clause of coherence. Not only must a given processor
be able to construct a serial order out of all the operations to a given location—at
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least out of all write operations and its own read operations—but all processors
must see the writes to a given location as having happened in the same order.

One mechanism we need for serialization is an entity that sees the necessary
memory operations to a given location from different processors (the operations that
are not contained entirely within a processing node) and determines their serializa-
tion. In a bus-based system, operations from different processors are serialized by
the order in which their requests appear on the bus. In a distributed system that
does not cache shared data, the consistent serializer for a location is the main mem-
ory that is the home of a location. For example, the order in which writes become vis-
ible to all processors is the order in which they reach the memory, and which write’s
value a read sees is determined by when that read reaches the memory. In a distributed
system with coherent caching, the home memory is again a likely candidate for the
entity that determines serialization to a given location, at least in a flat directory
scheme, since all relevant operations first come to the home. If the home could satisfy
all requests itself, then it could simply process them one by one in FIFO order of
arrival and determine serialization. However, with multiple copies, visibility of an
operation to the home does not imply visibility to all processors. It is easy to construct
scenarios where processors may see operations to a location appear to be serialized in
different orders than that in which the requests reached the home, as well as where dif-
ferent processors see operations complete in different orders.

As a simple example, consider an update-based protocol and a network that does
not preserve point-to-point order of transactions between the same endpoints. If two
write requests for shared data arrive at the home in one order, the updates they gen-
erate may arrive at the copies in different orders. As another example, suppose a
block is in modified state in a dirty node and two nodes issue read-exclusive
requests for it in an invalidation-based protocol. In a strict request-response
protocol, the home will provide the requestors with the identity of the dirty node,
and they will send requests to it. However, with different requestors, even in a net-
work that preserves point-to-point order there is no guarantee that the requests will
reach the dirty node in the same order as they reached the home. Which entity pro-
vides the globally consistent serialization in this case, and how is this orchestrated
when multiple operations for this block may be simultaneously in flight and poten-
tially needing service from different nodes?

Several types of solutions can be used to ensure serialization to a location. Most
of them use additional directory states called busy states or pending states. A block
being in busy state at the directory indicates that a previous request that came to the
home for that block is still in progress and has not been completed. When a new
request comes to the home and finds the directory state to be busy, serialization may
be provided by one of the following mechanisms.

m Buffer at the home. The request may be buffered at the home as a pending
request until the previous request that is in progress for the block has com-
pleted, regardless of whether the previous request was forwarded to a dirty
node or whether a strict request-response protocol was used (the home
should, of course, process requests for other blocks in the meantime). This
method ensures that requests will be serviced everywhere in FIFO order of




8.4 Design Challenges for Directory Protocols 591

their arrival at the home, but it reduces concurrency. It also requires that the
home be notified when a write has completed or, more commonly, when the
home’s involvement with the write is over. Finally, it increases the danger of
the input buffer at the home overflowing since this buffer holds pending
requests for all blocks for which it is the home. One strategy in this case is to
let the input buffer overflow into main memory, thus providing effectively infi-
nite buffering as long as there is enough main memory and avoiding potential
deadlock problems. This scheme is used in the MIT Alewife prototype (Agar-
wal et al. 1995),

B Buffer at the requestors. Pending requests may be buffered not at the home but
at the requestors themselves, by constructing a distributed linked list of pend-
ing requests. This is a natural extension of a cache-based approach, which
already has the support for distributed linked lists. It is used in the SCI proto-
col (Gustavson 1992: IEEE Computer Society 1993). Now the number of
pending requests that a node may need to keep track of is small and deter-
mined only by the node itself,

B NACK and retry. An incoming request may be NACKed by the home (i.e., a
negative acknowledgment sent to the requestor) rather than buffered when the
directory state is busy. The request will be retried later by the requestor’s assist
and will be serialized in the order in which it is actually accepted by the direc-
tory (attempts that are NACKed do not enter in the serialization order). This is
the approach used in the Origin2000 (Laudon and Lenoski 1997).

B Forward to the dirty node. If the directory state is busy because a request has
been forwarded to a dirty node, subsequent requests for that block are not
buffered at the home or NACKed. Rather, they too are forwarded to the dirty
node, which determines their serialization. The order of serialization is thus
determined by the home node when the block is clean at the home and by the
order in which requests reach the dirty node when the block is dirty. If the
block in the dirty node leaves the dirty state before a forwarded request
reaches it (for example, due to a write back or a previous forwarded request),
the request may be NACKed by the dirty node and retried. It will be serialized
at the home or a dirty node when the retry is successful. This approach was
used in the Stanford DASH protocol (Lenoski et al. 1990; Lenoski et al. 1993).

Unfortunately, with multiple copies in a distributed network, simply identifying a
serializing entity is not enough. The problem is that the home or serializing agent
may know (or be informed) when its involvement with a request is done, but this
does not mean that the request has completed with respect to other nodes. Some
transactions for the next request to that block may reach other nodes and perform
with respect to them before some remaining transactions for the previous request.
We see concrete examples and solutions in our case study protocols in Sections 8.5
and 8.6. Essentially, these show that, in addition to the system providing a global
serializing entity for a block, individual nodes (e. g, requestors) should also preserve
a local serialization with respect to each block; for example, they should not apply
an incoming transaction to a block while they still have a transaction outstanding
for that block.
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Serialization across Locations for Sequential Consistency

Recall the two most interesting components of preserving the sufficient conditions
for satisfying sequential consistency (SC): detecting write completion (needed to
preserve program order) and ensuring write atomicity. In a bus-based machine, we
saw that the restricted nature of the interconnect allows the requestor to detect write
completion early; the write commits and can be acknowledged to the processor as
soon as it obtains access to the bus, without waiting for it to actually invalidate or
update other caches (Chapter 6). By providing a centralized path through which all
transactions pass and ensuring FIFO ordering in the visibility of new data values
beyond that path, a bus-based system also makes write atomicity quite natural to
ensure.

In a machine that has a distributed network but does not cache shared data,
detecting the completion of a write requires an explicit acknowledgment from the
memory that holds the location (Chapter 7). In fact, the acknowledgment can be
generated early, once we know the write has reached that node and been inserted in
a FIFO queue to memory; at this point, the write has committed since it is clear that
all subsequent reads that enter the queue will no longer see the old value, and we
can use commitment as a substitute for completion to preserve program order. Write
atomicity falls out naturally: a write is visible only when it reaches main memory,
and at that point it is visible to all processors.

With both multiple copies and a distributed network, it is difficult to assume
write completion before the invalidations or updates have actually reached all the
nodes. A write cannot be acknowledged to the requestor once it has reached the
home and be assumed to have effectively completed. The reason is that a subsequent
write Y in program order may be issued by the same requestor after receiving such
an acknowledgment for a previous write X, but Y may become visible to another pro-
cessor before X, thus violating SC. This may happen because the invalidation or
update transactions corresponding to Y take a different path through the network or
because the network does not provide point-to-point order. Completion, or commit-
ment, can only be assumed once explicit acknowledgments are received from all
copies. Of course, a node with a copy can generate the acknowledgment as soon as it
receives the invalidation—before it is actually applied to the caches—as long as it
guarantees the appropriate ordering within its cache hierarchy (just as commitment
is used instead of completion in Chapter 6). To satisty the sufficient conditions for
SC, a processor may wait after issuing a write until all acknowledgments for that
write have been received and only then proceed past the write to a subsequent mem-
ory operation.

Write atomicity is similarly difficult when there are multiple copies and a distrib-
uted interconnect. To see this, Figure 8.14 shows how the semantics assumed by an
example code fragment from Chapter 5 (Figure 5.11) that relies on write atomicity
can be violated. The constraints of sequential consistency have to be satisfied by o1-
chestrating network transactions appropriately. A common solution for write atom-
icity in an invalidation-based scheme is for the current owner of a block (the main
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A=]l; —————— B while (A==0);

B=1; p- while (B==0);
print A;
$ $ A:0->1 $ A:0
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Interconnection network

FIGURE 8.14  Violation of write atomicity in a scalable system with caches. The
figure shows three processors and the code fragments that they execute. Assume that the
network preserves point-to-point order and every cache starts out with copies of A and B
initialized to 0. Transactions to look up directories and to satisfy read misses are ignored for
simplicity. Under SC, we expect P3 to print 1 as the value of A. However, P, sees the new
value of A and jumps out of its while loop to write B even before it knows whether the pre-
vious write of A by Py has become visible to P3. This write of B becomes visible to P3 before
the write of A by P;, because the invalidation or update corresponding to the latter was
delayed in a congested part of the network (that the other transactions did not have to go
through at all). Thus, P5 reads the new value of B but the old value of 2, yielding a nonintu-
itive result.

memory module or the processor holding the dirty copy in its cache) to provide the
appearance of atomicity by not allowing access to the new value by any process until
all invalidation acknowledgments for the write that generated that value have re-
turned. Thus, no processor can see the new value until it is visible to all processors,
Maintaining the appearance of atomicity is much more difficult for update-based
protocols since the data is sent to the sharers and, hence, is accessible immediately.
Ensuring that no sharer reads the value until it is visible to all sharers requires a two-
phase interaction. In the first phase, the copies of that memory block are updated in
all relevant processors’ caches, but those processors are prohibited from accessing
the new value. In the second phase, after the first phase is known to have completed
through acknowledgments as above, those processors are sent messages that allow
them to use the new value. This difficulty and its performance implications help to
make update protocols less attractive for scalable directory-based machines than for
bus-based machines.
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ory operation.
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can be violated. The constraints of sequential consistency have to be satisfied by or-
chestrating network transactions appropriately. A common solution for write atom-
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FIGURE 8.14  Violation of write atomicity in a scalable system with caches. The
figure shows three processors and the code fragments that they execute. Assume that the
network preserves point-to-point order and every cache starts out with copies of A and B
initialized to 0. Transactions to look up directories and to satisfy read misses are ignored for
simplicity. Under SC, we expect P3 to print 1 as the value of A. However, P, sees the new
value of A and jumps out of its while loop to write B even before it knows whether the pre-
vious write of A by Py has become visible to P3. This write of B becomes visible to P3 before
the write of A by Py, because the invalidation or update corresponding to the latter was
delayed in a congested part of the network (that the other transactions did not have to go
through at all). Thus, P5 reads the new value of B but the old value of A, yielding a nonintu-
itive result.

memory module or the processor holding the dirty copy in its cache) to provide the
appearance of atomicity by not allowing access to the new value by any process until
all invalidation acknowledgments for the write that generated that value have re-
turned. Thus, no processor can see the new value until it is visible to all processors.
Maintaining the appearance of atomicity is much more difficult for update-based
protocols since the data is sent to the sharers and, hence, is accessible immediately.
Ensuring that no sharer reads the value until it is visible to all sharers requires a two-
phase interaction. In the first phase, the copies of that memory block are updated in
all relevant processors’ caches, but those processors are prohibited from accessing
the new value. In the second phase, after the first phase is known to have completed
through acknowledgments as above, those processors are sent messages that allow
them to use the new value. This difficulty and its performance implications help to
make update protocols less attractive for scalable directory-based machines than for
bus-based machines.
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Deadlock

In Chapter 7, we discussed an important source of potential deadlock in request-
response protocols such as those of a shared address space: the filling up of a finite
input buffer. Three solutions were proposed for buffer deadlock: T :

@ Provide enough buffer space, either by buffering requests at the requestors

using distributed linked lists or by providing enough input buffer space (in
hardware or main memory) for the maximum number of possible incoming
transactions.

@ Use NACKs.

~37) Provide separate request and response networks, whether physically separate

/" or multiplexed with separate buffers, to prevent backups in the potentially
poorly behaved request network from blocking the progress of well-behaved
response transactions.

Two separate networks would suffice in a protocol that is strictly request-
response; that is, in which all transactions can be separated into requests and
responses such that a request transaction generates only a response (or nothing) and
a response generates no further transactions (and is, in this sense, better behaved
since it does not generate further dependences). However, we have seen that in the
interest of performance many practical coherence protocols use forwarding and are
not always strictly request-response, breaking the deadlock avoidance assumption.
In general, we need as many networks (physical or virtual) as the longest chain of
different transaction types needed to complete a given operation so that the trans-
action at the end of a chain (that does not generate further transactions) is always
guaranteed to make progress. However, using multiple networks is expensive and
many of them will be underutilized. In addition to the approaches that provide
enough buffering (as in the HAL S1 and MIT Alewife) or use NACKs throughout,
two different approaches deal with deadlock in protocols that are not strict request-
response. Both initially pretend that the protocol is strict request-response and pro-
vide two real or virtual networks, then rely on detecting situations when deadlock
appears possible and resort to a different mechanism to avoid deadlock in these
cases. That mechanism may be NACKs or reverting to a strict request-response
protocol.

The detection of potential deadlock situations may be done in many ways. In the
Stanford DASH machine, a node conservatively assumes that deadlock may be about
to happen when both its input request and output request buffers fill up beyond a
threshold and the request at the head of the input request buffer is one that may
need to generate further requests like interventions or invalidations (i.e., that
request is a violator of strict request-response operation and hence capable of caus-
ing deadlock). An alternative strategy is to assume the potential for deadlock when
the output request buffer is full and has not had a transaction removed from it for T
cycles. When potential deadlock is detected, the DASH system takes the first,
NACK-based approach to avoiding deadlock: the node takes such requests off from
the head of the input queue one by one and sends NACK messages back for them to
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the requestors. It does this until the request at the head is no longer one that can
generate further requests or until it finds that the output request queue is no longer
full. The NACKed requestors will retry their requests later.

A different deadlock avoidance approach is taken by the Origin2000. When
potential deadlock is detected, instead of sending a NACK to the requestor, the node
sends it a response asking it to send the intervention or invalidation requests
directly to the sharers; that is, the system dynamically backs off from a forwarding
protocol to a strict request-response protocol, compromising performance tempo-
rarily but not allowing deadlock cycles. The advantage of this approach is that
NACKing is a statistical rather than robust solution to such congestion-related
problems: requests may have to be retried several times in bad situations, leading to
increased network traffic and increased latency to the time the operation completes.
Dynamic backoff also has advantages related to livelock, as we shall see next.

Livelock

In protocols that avoid deadlock by providing enough buffering of requests, whether

centralized or through distributed linked lists, livelock and starvation are taken care

of automatically as long as the buffers are FIFO. The other cases do not, in them-

selves, address livelock and starvation. In these cases, the classic livelock problem

due to the race condition of multiple processors trying to write a block at the same

time is often taken care of by letting the first request to get to the home go through a

but NACKing all the others. ‘
NACKs are useful mechanisms for resolving race conditions like the preceding 1

without livelock. However, when used to avoid deadlock in the face of input buffer-

ing limitations, as in the DASH solution outlined previously, they have, in fact, the

potential to cause livelock. For example, when the node that detects a possible dead-

lock situation NACKs some requests, it is possible that all those requests are retried

at the same time. With extreme pathology, the same situation could repeat itself con-

tinually and livelock could result.? The alternative solution to deadlock, of switch-

ing to a strict request-response protocol in potential deadlock situations, does not

cause this livelock problem. It guarantees forward progress and removes the request-

request dependence at the home once and for all.

Starvation

The occurrence of starvation is unlikely in well-designed protocols; however, it is
not ruled out as a possibility. The fairest solution to starvation is to buffer all
requests in FIFO order, which also solves deadlock and livelock. However, this can b

2. While the DASH architecture is designed to use NACKs, the actual prototype implementation steps Lo
around this problem by using a large enough request input buffer since both the number of nodes and the i
number of possible outstanding requests per node are small. However, this is not a robust solution for
larger, more aggressive machines that cannot provide enough buffer space.
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have performance disadvantages, and for protocols that do not do this, avoiding
starvation can be difficult to guarantee. Deadlock or livelock solutions that use
NACKs and retries are often more susceptible to starvation, which is most likely
when many processors repeatedly compete for a resource, Some may keep succeed-
ing while one or more may be very unlucky in their timing and may always get
NACKed. .

A protocol could decide to do nothing about starvation and rely on the variability
of delays in the system not to allow such an indefinitely repeating pathological situ-
ation to occur. The DASH machine uses this solution and times out with a bus error
if the situation persists beyond a threshold time. Alternatively, a random delay can
be inserted between retries to further reduce the small probability of starvation.
Finally, requests may be assigned priorities based on the number of times they have
already been NACKed, a technique that is used in the Origin2000 protocol.

Having an understanding of the basic directory organizations and high-level
protocols as well as the key performance and correctness issues in a general context,
we are now ready to dive into actual case studies of memory-based and cache-based
protocols. We will see what protocol states and activities look like in actual realiza-
tions, how directory protocols interact with and are influenced by the underlying ‘
processing nodes, what scalable cache-coherent machines look like, and how actual
protocols trade off performance with the complexity of maintaining correctness and
of debugging or validating the protocol.

8.5 MEMORY-BASED DIRECTORY PROTOCOLS:
THE SGI ORIGIN SYSTEM

Our discussion begins with flat, memory-based directory protocols, using the SGI
Origin architecture as a case study. At least for moderate-scale systems, this machine
uses essentially a full bit vector directory representation. A similar directory repre-
sentation but slightly different protocol was also used in the Stanford DASH research
prototype (Lenoski et al. 1990), which was the first distributed-memory machine to
incorporate directory-based coherence. We follow a similar discussion template for
both this and the next case study (the SCI protocol as used in the Sequent NUMA-
Q). We begin with the basic coherence protocol, including the directory structure,
the directory and cache states, how operations such as reads, writes, and write backs
are handled, and the performance enhancements used. Then we will briefly discuss
the position taken on the major correctness issues, followed by some prominent pro-
tocol extensions for extra functionality. Next, we will examine the rest of the
machine as a multiprocessor and how the coherence machinery fits into it. This
includes the processing node, the interconnection network, the input/output sys-
tem, and any interesting interactions between the directory protocol and the under-
lying node. The case study ends with some important implementation issues
(illustrating how it all works and the important data and control pathways), the
basic performance characteristics (latency, occupancy, bandwidth) of the protocol,
and the resulting application performance for our sample applications.
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8.5.1 Cache Coherence Protocol

The Origin system is composed of a number of processing nodes connected by a
switch-based interconnection network (see Figure 8.15). Every processing node
contains(two MIPS R10000 processors, each with first- and second-level caches, a
) fraction of the total main memory on the machine, an 1/O interface, and a single- ;
e chip communication assist or coherence controller, called the Hub, tﬁhatﬁigplim\ents i
the coherence protocol. The Hub' is integrated into the memory system. It sees all |
(second-level) cache misses issued by the processors in that node, whether they are |
to be satisfied locally or remotely; it receives transactions coming in from the net-
work (in fact, the Hub implements the network interface); and it is capable of
retrieving data from the local processor caches.
In terms of the performance issues discussed in Section 8.4.1, at the protocol |
level, the Origin2000 uses reply forwarding as well as speculative memory opera-.
tions in parallel with directory lookup at the home. At the machine organization
level, the decision in Origin to have two processors per node is driven mostly by
cost: several other components on a node (the Hub, the system bus, and so on) are }
shared between the processors, thus amortizing their cost while hopefully still-pro- am
N viding substantial bandwidth per processor. The Origin designers believed that the a
I latency and bandwidth disadvantages of interacting with a snooping bus within a bl
node outweighed its advantages and chose not to maintain snooping coherence a
between the two processors within a node, Rat er, the SysAD (system address and b
data) bus is simply a shared physical link that is multiplexed between the two pro- T
cessors in a node. This sacrifices the potential advantage of cache-to-cache sharing ‘
within the node but eliminates the latency, occupancy, and cache tag contention Lo
added by snooping. In particular, with only two processors per node, the likelihood P
of successful cache-to-cache sharing is small, so the disadvantages may dominate, f ‘
With a Hub shared between two processors, the combining of requests to the net- Lo
work (not to the directory protocol) could nonetheless have been supported, but it |
is not, due to the additional implementation cost. When discussing the protocol in N
this section, let us assume for simplicity that each node contains only one processor, N
éOgether with its cache hierarchy, a Hub, and main memory. We consider the impact ¥
of using two processors per node on the directory structure and protocol later in this |
section. '
Other than reply forwarding, the most interesting aspects of the Origin protocol
are its use of busy states and NACKS to resolve race conditions and provide serializa- ,
tion to a location, its deadlock and livelock solution, the way in which it handles P
race conditions caused by write backs, and its nonreliance on any order preservation
among transactions in the network (not even point-to-point order among transac-
tions between the same endpoint nodes). To show how a complete protocol works in
the presence of races as well as to illustrate the performance enhancement tech-
niques used in different cases, we will look at how the Origin puts the techniques
together to process read and write operations.
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FIGURE 8.15 Block diagram of the Silicon Graphics Origin2000 multiprocessor. Each node con-
tains two processors, a communication assist-or controller called the Hub, and main memory with the
associated directory. The photograph shows a single node board. Source: Photo courtesy of Silicon

Graphics, Inc.

Directory Structure and Protocol States

The directory information for a memory block is maintained at the home node for
that block. We assume a full bit vector approach for now and examine how the di-
rectory organization changes with machine size later.
In the caches, the protocol uses the same MESI statesas used in Chapter\S At the
d1rectory, a block may be in one of seven states. Three of these are stable states:
unowned, or no cached copies in the system; shared, that is, zero or more read-only
cached copies whose whereabouts are indicated by the presence vector; and exclu-
sive, or one read-write cached copy in the system, indicated by the presence vector.
An exclusive directory state means the block may be in either dirty or (clean) exclu-
sive state in the cache (i.e., either the M or E states of the MESI protocol). Three
“other states are busy states, As discussed earlier, these imply that the home has
received a previous request for that block but was not able to complete that opera-
tion itself (e.g., the block may have been dirty in a cache in another node); transac-
tions to complete the request are still in progress in the system, so the directory at
the home is not yet ready to handle a new request for that block. The three busy
_ states correspond to three different types of requests that might still be in progress: a
read, a read excluswe or upgrade, and ‘an uncached read (a read whose result does ' .
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not enter the processor caches and is not kept coherent thereafter). Busy states and
NACKSs (rather than large amounts of buffering) are used by this protocol to avoid
race conditions and provide serialization to a location. The seventh state is'a poison,
! state, which is used to implement a lazy TLB shootdown method for migrating pages
among memories. (Protocol extensions like uncached operations and page migra-
‘tion are discussed in Section 8.5.4.) Given these states, let us see how the coherence
protocol handles read, write, and write-back requests from a node.

Handﬁng Read Requests -

Suppose a processor issues a read that misses in its cache hierarchy. The address of ,
the miss is examined by the local Hub to determine the home node, and a read 2
request transaction is sent to the home node to look up the directory entry. If the

home is local, the directory is looked up by the local Hub itself. At the home, the

data for the block is accessed speculatively in parallel with looking up the directory |
entry. The directory entry lookup, which completes a cycle earlier than the specula- |
tive data access, may indicate that the memory block is in one of several different |
states—and different actions are taken in each case. 1

B Shared or unowned. This means that main memory at the home has the latest 'l
copy of the data (so the speculative access was successful). If the state is g
shared, the bit corresponding to the requestor is set in the directory presence
vector; if it is unowned, the directory state is set to exclusive (achieving the ' t
functionality provided by the shared signal in snooping systems). The home
then sends the data for the block back to the requestor in a reply transaction.

These cases satisfy a strict request-response protocol, Of course, if the home
node is the same as the requesting node, then no network transactions or mes- ‘
sages are generated and it is a locally satisfied miss. il
® Busy. This means that the home should not handle the request at this time
since a previous request for the block is still in progress. The requestor is sent
a negative acknowledge (NACK) message, asking it to try again later. A NACK
is categorized as a response, but like an acknowledgment it does not carry
data. o

B Exclusive. This is the most interesting case. If the home is not the owner of the j
block, the valid data for the block must be obtained from the owner and must
find its way to the requestor as well as to the home (since the state will change /s
to shared). /The Origin protocol uses reply forwarding; the request is for-"

, warded to the owner, which replies directly to the requestor, sending a revision

\ message to the home, If the home itself is the owner, then the home can simply
teply to the requestor, change the directory-state--to shared, and set the
requestor’s bit in the presence vector, In fact, in general the directory treats a

cache at the home just like any other cache; the only difference is that a “mes-

</ sage” bétween the:home directory and a cache at the home does not translate

. to anetwork transaction. : ’”“ il

T
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Let us look in a little more detail at what really happens when a read request
arrives at the home and finds the state exclusive. (This and several other cases we
discuss are illustrated in Figure 8.16.) The main memory block is accessed specula-
tively in parallel with the directory as usual. When the directory state is discovered
to be exclusive, it is set to the busy-exclusive state to deal with subsequent requests,
and the request is forwarded to the exclusive node. We cannot set the directory state
to shared yet since memory does not yet have an up-to-date copy, and we do not
want to leave it as exclusive since then a subsequent request might chase the same
exclusive copy of the block as the current request does, requiring that serialization
be determined by the current owner node rather than by the home.

. Having set the directory entry to a busy state, the presence vector is changed to
set the requestor’s bit and unset the current owners. Why this is done at this time
becomes clear when we examine write-back requests. Now we see an interesting
aspect of the protocol: even though the directory state is exclusive, the home opti-
mistically assumes that the block will be in the (clean) exclusive rather than dirty
state in the owner’s cache and sends the speculatively accessed memory block at the
home as a speculative reply (i.e., a reply with data that may or may not be useful) to
the requestor. At the same time, the home forwards the intervention request to the
owner. The owner checks the state in its cache and performs one of the following
actions. If the block is in dirty state, it sends a reply with the data directly to the
requestor and a revision message containing the data to the home. At the requestor,
the response overwrites the stale speculative reply that was sent by the home. The
revision message with data sent to the home is called a sharing write back since it
writes the data back from the owning cache to main memory and tells it to set the
block to shared state. If the block is in exclusive state, the reply to the requestor and
the revision message to the home do not contain data since both already have the
latest copy (the requestor has it via the speculative reply from the home). The
response to the requestor is simply a completion acknowledgment, and the revision
message is called a downgrade since it asks the home to downgrade the state of the
block from (busy) exclusive to shared. In either case, when the home receives the
revision message, it changes the state from busy to shared.

You may have noticed that the use of speculative replies does not have any signif-
icant performance advantage in this case since the requestor has tO/Qvait to know the
real state at the exclusive node anyway before it can use the data/ In fact, a simpler
alternative to this scheme would be to simply assume that the block is dirty at the
owner, not send a speculative reply, and always have the owner send back a reply
with the data regardless of whether it has the block in dirty or (clean) exclusive
state. Why then does the Origin protocol use speculative replies? There are two rea-
sons, which illustrate how a protocol is influenced by the quirks of existing proces-
sors and how different protocol optimizations influence each other. First, the cache
controller of the RLO000 processor. that the Origin uses happens not to return data
when it receives an intervention to an exclusive (ratﬁer than dirty) cached block
since memory is assumed to have a valid copy. Second, speculative replies enable a
different optimization in the protocol, which is to allow a processor to simply drop a
(clean) exclusive block when it is replaced from the cache! rather than notify main
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1. Read/RdEx request , 1: Read/RdEx request 2b: Intervention

2. Shared or exclusive response -~

3a: Shared or exclusive response

(a) A read or read-exclusive request to a block in
unowned state at the directory or a read
request to a block in shared state. An exclusive
response is sent even in the read case if the
block is in unowned state at the directory so
that it may be loaded in E rather than S state in

(b) Read or RdEx to a block in the directory in
exclusive state. The intervention may be of type
shared or exclusive, respectively, with the latter
causing invalidation as well. The revision message
. Is a sharing write back or an ownership transfer.

the cache.
1. Read/RdEx/Upgrade request T RdEx/Upgrade request  2b: Invalidation request
2a: Exclusive
2- NACK 3a: Invalidation acknowled
(c) Read/RdEx request to directory in busy a: Invalldation ac nowe gmgnt
state or upgrade request to directory in‘ (d) RdEx or upgrade request to directory in
busy, unowned, or exclusive states. shared state.
17 Requesty 2b: Intervention,,
1. Write back : -7 o~ -7 ~
2¢: Speculative replyy  3b: Write-back
acknowledgment
2. Acknowledgment (f) Write-back request to directory in busy state {the
Write-back t to directory i ¥subscripted transactions and dashed arcs are
((ei)clusrilvi Ste;cte.reques o dfectoryin those for the other request that made the directory

~ ' busy). :

FIGURE 8.16 Pr!tocbl actions in response to requests in the Origin multiprocessor. The case or

cases under consideration appear below the diagram, indicating the type of request and the state of the
directory entry when the request arrives at the home. The messages or types of transactions are listed
next to each arc. Since the same diagram represents different combinations of request type and direc-
tory state, different message types are listed on each arc.

memory that it now has the only copy and should reply to subsequent requests since
main memory will in any case send a speculative reply when needed.

Handling Write Requests ’

As we saw in Chapter 5, write misses that invoke the protocol may generate either
read-exclusive requests, which request both data and ownership, or upgrade
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requests that request only ownership since the requestor’s data is valid. In either
case, the request goes to the home where the directory state is looked up to deter-
mine what actions to take. If the state at the directory is anything but unowned (or
busy, which NACKSs the, request), the copies in other caches must be invalidated. To
preserve the ordering model, invalidations must be explicitly acknowledged.

As in the read case, a strict reuest-response protocol, intervention forwarding, or
reply forwarding can be used (see Exercise 8.4). Origin chooses reply forwarding-te—
reduce latency: the home updates the directory state and sends the invalidations
directly; it also includes the identity of the requestor in the invalidations so that they
are acknowledged directly back to, the requestor itself. The actual handling of the
read-exclusive and upgrade requests depends on the state of the directory entry

“when the request arrives; that is, whether it is unowned, shared, exclusive, or busy.

m Unowned. If.the request is an upgrade, the state at the directory is expected to
be shared. The state being unowned means that the block has been replaced
from the req{iéstér‘s cache and the directory notified since it sent the upgrade
request (this is possible since the Origin protocol does not assume point-to-
point network order). An upgrade is no longer the appropriate request, SO itis
NACKed. The write operation will be retried, presumably as a read exclusive.
If the request is a read exclusive, the directory state is changed to exclusive
and the requestor’s presencé bit is set. The home replies with the data from
memory. :

m Shared. The block must be invalidated in the caches that have copies. The Hub
at the home first makes a list of sharers that are to be sent invalidations, using
the presence vector. It then sets the directory state (0 exclusive and sets the
presence bit for the requestor. This ensures that the next request for the block
will be forwarded to the requestor. If the request was a read exclusive, the
home next sends a response to the requestor (called an “exclusive reply with
invalidations pending”) that also contains the number of sharers from whom

‘to expect invalidation acknowledgments. If the request was an upgrade, the
home sends an “upgrade acknowledgment with invalidations pending” to the

' requestor, which is similar but does not carry the data for the block. In either
case, the home next sends invalidation requests to all the sharers, which in
rurn send acknowledgments to the requestor (not the home). The requestor
waits for all acknowledgments to come in before it “closes” or completes the
operation. 1f a new request for the block comes to the home in the meantime,
it will see the directory state as exclusive and will be forwarded as an interven-
tion to the current requestor. This current requestor will not handle the

" intervention immediately but will buffer it until it has received all acknowl-
edgments for its own request and closed that operation. (Further, requests
coming to the home in the meantime will find the block in busy-exclusive
state, as discussed earlier.)

m Exclusive. If the request is an upgrade, then an exclusive directory state means
another write has beaten this request to the home. An upgrade is no longer the
appropriate request and is NACKed. For a read-exclusive request, the follow-
ing actions are taken. As with reads, the home sets the directory to a busy




8.5 Memory-Based Directory Protocols: The SGI Origin System 603

state, sets the presence bit of the requestor, and sends a speculative reply to it.
An invalidation request is sent to the owner, containing the identity of the
write requestor (if the home is the owner, this is just an invalidation to the
local cache and not a network transaction). If the owner has the block in dirty
state, it sends a “transfer of ownership” revision message to the home (no
data) and a reply with the data to the requestor. This reply overrides the spec-

ulative reply that the requestor receives from the home. If the owner has the

block in (clean) exclusive state, it relies on the speculative. reply from the
home and simply sends an acknowledgment to the requestor and a “trarisfer of
ownership” revision message to the home.

'@ Busy. The request is NACKed as in the read case and must try again.

Handling Write-Back Requests and Replacements

When a node replaces a block that is dirty in its cache, it generates a write-back
request. This request carries data and is replied to with an acknowledgment by the

- home. The directory cannot be in unowned or shared state when a write-back
request arrives because the write-back requestor has a dirty copy. (A read request
cannot change the directory state to shared in between the generation of the vrite
back and its arrival at the home since such a request would have been forwarded to
the very node that is requesting the write back and the directory state would have
been set to busy.) Let us see what happens when the write-back request reaches the
home for the two possible directory states: exclusive and busy.

B Exclusive. The directory state transitions from exclusive to unowned (since the
only cached copy has been replaced from its cache), and an acknowledgment
is returned.

& -Busy. This indicates an interesting race condition. The directory state can only
be busy because an intervention for the block (due to a request from another
node Y, say) has been forwarded to the very node X that is doing the write
back. The intervention and write back hiave crossed each other in the intercon-
nect. Now we are in a funny situation. The other operation from Y is already in
progress and cannot be undone. We cannot let the write back be dropped, or
we would lose the only valid copy of the block. Nor can we NACK the write
back and retry it after the operation from Y completes, since then Y% cache will
have a valid copy while a different dirty copy is being written back to memory
from X% cache! This protocol solves the problem by essentially combining the
two operations, using the write back as the response to Y% request (see
Figure 8.16[f]). The write back that finds the directory state busy changes the
state to either shared (if the state was busy-shared, i.e., the request from Y was
for a read copy) or exclusive (f it was busy-exclusive). The data returned in
the write back is then forwarded by the home to the requestor Y. This serves as
the response to Y instead of the response it would have received directly from
X if there were no write back. When X receives an intervention for the block
due to Y% request, it simply ignores it (see Exercise 8.13). The directory also
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sends a write-back acknowledgment to X. Node Y5 operation is complete
when it receives the response, and the write back is complete when X receives
the write-back acknowledgment. We will see an exception to this treatment in
a more complex case when we discuss the serialization of operations. In
general, write backs introduce many subtle situations into directory-based
coherence protocols. ‘

+

If the block being replaced from a cache is in shared state, the node may or may

not choose to send a replacement hint message back to the home, askiné the home
to clear its presence bit in the directory. Replacement hints avoid the next useless

‘invalidation to that block and can reduce the occurrence in limited-pointer directory

representations, but they incur assist occupancy and do not reduce traffic. In fact, if
the block is not written again by another node, then the replacement hint is a waste.
The Origin protocol does not use a limited-pointer representation and does not use
replacement hints. B

Tn all, the number of transaction types for coherent memory operations in the
Origin protocol is 9 requests, 6 invalidations and interventions, and 39 responses.
For noncoherent operations such as uncached memory operations, 1/0 operations,

_.and special synchronization support, the number of transactions is 19 requests and

14 replies (no invalidations or interventions since there is no coherent caching),

Dealing with Correctness Issues

' So far, we have seen what happens at different nodes upon read and write misses and

how some important race conditions are resolved. Let us now take a different cut
through the Origin protocol, examining the specific solutions it adopts for the cor-
rectness issues discussed in Section 8.4.2 and the features that the machine provides
to deal with errors that may occur.

Serjalization to a Location for Coherence

The entity designated to serialize cache misses from different processors is the
home. As we have seen, serialization is provided not by buffering requests at the
home until previous ones have completed or forwarding them to the owner node
even when the directory is in a busy state but by NACKing requests from the home
when the state is busy and causing them to be retried. Requests are forwarded only
from stable directory states. Serialization is determined by the order in which the
home élccepts the requests—that is, satisfies them itself or forwards them—not the
order in which they first arrive at the home. ' )

The general discussion of serialization techniques in Section 8.4.2 suggested that
more was needed for serialization to a given location than simply a global serializing
entity since the serializing entity does not haye full knowledge of when transactions
related to a given operation are completed at all the relevant nodes. With a suffi-
ciently in-depth understanding of a protocol, we now examine some concrete exam-
ples of this problem (Lenoski 1992) and see how it might be addressed (see
Examples 8.1 and 8.2).
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EXAMPLE 8.1 Consider the following simple piece of code.

/
’

Py P> ,
rd A (1) wr A
BARRIER BARRTIER
{ rd A (ii) 07 s

The write of A may happen either before the first read of A or after it, but it
should be serializable with respect to that first read. The second read of A should in
-any case return the value written by P,. However, it is quite possible for the effect

, of the write to get lost if we are not careful. Show how this might happen in a -
{ v protocol like the Origin‘s, and discuss possible solutions.

Answer Figure 8.17 shows how the problem can occur, with the text in the figure
explaining the transactions, the sequence of events, and the problem. There are
two possible solutions. An unattractive one-is to have read replies themselves be
acknowledged explicitly and let the home go on to process the next request only
after it receives this acknowledgment. This further violates the request:response
nature of the protocol, causes buffering and poténtial deadlock problems, and
leads to long delays. The'more likely solution is to ensure that a node that has a re-
quest outstanding for a block, such as Py, does not allow access by another request,
such as the invalidation, to be applied to that block in its cache until its outstand-
ing request completes. Py may buffer the incoming invalidation request and apply
it only after the read reply is received and completed, Or P4 can apply the invalida-
tion even before the read reply is received and then consider the reply invalid (a
NACK) when it returns and retry the read. Origin uses the fornfer solution whereas
the latter is used in DASH. The order of Py's (first) read with respect to P,'s write is
different in the two machines, but both orders are valid. The buffering needed is
‘small and does not cause deadldck problems.

. EXAMPLE 8.2 'In addition to the requestor, the home too may have to disallow new
operations from actually being applied to a block (or its directory state) before pre-
vious ones have completed as far as it is concerned. Otherwise, directory informa-
tion may be corrupted. Show an example illustrating this need and discuss
solutions.

Answer This example is more subtle and is shown in Figure 8.18. The node issuing
the write request detects completion of the write (as far as its involvement is
concerned) through acknowledgments before processing another request for the
block. The problem is that the home does not wait for its involvement in the write ¢
operation—which includes waiting for the revision message and directory >
update—to complete before it allows another access (here the write back) to be
applied to the,block/”The Origin protocol prevents this from happening by using its -
busy state: the directory will be in busy-exclusive state when the write back arrives
' before the revision message. When the directory detects that the write back is
. coming from the same node whose request put the directory into busy-exclusive
|\ state, the write back is NACKed and must be retried. (Recall from the discussion of
handling write backs that the write back was treated differently if the request that
set the state to busy came from a different node than from the one doing the write
“back; in that case, the write back was not NACKed but was sent on as the response
to the requestor.) H :

< } . \
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1. Py sends read request to home node for a.

2. P, sends read-exclusive request to home (for the write
of a). Home (serializer) won't process it until it is done
with read from P4, which it receives first.

3. In response to (1), home sends reply to Py (and sets
directory presence bit). Home now thinks read is com-
plete (there are no acknowledgments for a read reply).
Unfortunately, the reply does not get to Py right away. " L

4a.n response to (2), home sends data reply to P, corred
sponding to request 2.

4b. In response to (2), home sends invalidation to Py; it
reaches P, before transaction 3 (no point-to-point order
is assumed in Origin, and in general the invalidation is a
request and 3 is a response, so they may travel on dif-
ferent networks). : '

5. P receives and applies invalidation, sends acknowledg-
ment to home.
Finally, the read reply (3) reaches Py and overwrites the
invalidated block. When P4 reads A after the barrier, it
reads this old valye rather than seeing an invalid block
and fetching the new value. The effect of the write by
P, is lost as far as Py is concerned. ‘ :

FIGURE 8.17 Example illustrating the need for local serialization of operations at
a requestor. The example shows how a write can be lost even though home thinks it is
doing things in order. Transactions associated with the first read operation are shown with
dotted lines, and those associated with the write operation are shown in solid lines. The
three solid bars through a transaction indicate that it is delayed in the network.

Initial condition: block is in dirty state in P4’s cache.
1. P, sends read-exclusive request to home.
' 2. Home forwards request to Py (dirty node).

3. Py sends data reply to P (3a) and “ownership
/ transfer” revision message to home to change
owner to P, (3b). ;

4. Py, having received its reply, considers write com-
plete..Proceeds, but incurs a replacement of the
just dirtied block, causing it to be written back in
transaction 4.

This write back is received by the home before the
ownership transfer revision message from Py {even
point-to-point network order wouldn't help), and the
block is written into memory. Then when the revision
message arrives at the home, the directory is made to
point to P, as having the dirty copy. But this is untrue,
and our protocol is corrupted: -

3b

]

FIGURE 8.18 Example illustrating the need for local serialization of opetrations at
a home node. The example shows how directory information can be corrupted if a home
node does not wait for its involvement with a previous request to be over (e.g., revision
message to be received from the owner node) before it allows a new access to the same
block. : .
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|

These examfales illustrate the importance “of another general requirement that
nodes must locally fulfill for proper serialization, beyond the existence of a global
serializing entity for a block: any node, not just the serializing entity, should not
apply a transaction corresponding to a new memory operation to a block until a pre-
viously outstanding memory operation on that block (that the node has begun to
handle) is complete as far as that node’s involvement is concerned,

Preserving the Memory lConsistency Model

r

[

|

|

|

l

|
The dynamically scheduled R10000 processor allows independent memory oper- [
ations to issue out of program order, allowing multiple operations to be outstanding
at a time and achieving some overlap among them. However, it ensures that opera- ;
tions complete in program order and, in fact, that writes leave the processor envi- i
, ronment and become visible to the memory system in program order Yyith respect to g |
other operations, thus preserving sequential consistency (Chapter 11 discusses the I
necessary processor mechanisms further). The processor does not satisfy the suffi- <
cient contlitions for sequential consistency spelled out in Chapter 5 in that it does |
not wait to issue the next operation until the previous one completes, but a system (
that uses this processor and provides atomicity satisfies the model itself.3 [
Since the processor guarantees visibility and completion in-program order, the |
extended memory hierarchy can perform any reorderings to different locations that ‘
At desires without violating this propgrty. The Origin protocol provides fwrite atomic-| L
&i;y, s discussed earlier: a node does not allow any incoming accesses to a block for !
which invalidations are outstanding until the acknowledgments for those invalida-
tions have returned (i.e., the write is committed), Nonetheless, one implementation
.consideration is important in maintaining SC that is due to the Origin protocol’s
interactions with the processor. Recall from Figure 8.16(d) what happens on a write
request (read exclusive or upgrade) to a block that is in shared state at the directory,
The requestor receives two types of responses: an exclusive reply from the home, dis-
cussed earlier, whose role is to indicate that the write has been serialized at memory
’ with respect to other operations for the block and perhaps to return data; and invali-
dation acknowledgments, indicating that the other copies have been invalidated and
the write has completed. The microprocessor, however, expects only a single re-
sponse to its write request, as in a uniprocessor system, so these different responses
have to be’dealt with by the requesting Hub. To ensure sequential consistency, the
Hub must pass the response on to the processor—allowing it to declare completion :
of the write—only when both the exclusive reply and the invalidation acknowledg- s
ments have been received. It must not pass on the response simply when the exclu- 1
sive reply has been received since that would allow the processor to complete later ol
accesses to other locations even before all invalidations for this one have been

3. This is true for accesses that are under the control of the coherence protocol. The processor also supports
memory operations that are not visible to the coherence protocol, called noncoherent memory opera- I
tions, for which the system does not guarantee any ordering: it is the user’s responsibility to insert syn- ‘
chronization to preserve a desired ordering in these cases.

o

/
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acknowledged, violating sequential consistency. We see in Section 9.1 that such vio-
lations are useful when more relaxed memory consistency models than SC are used.

Deadlock, Livelock, and Starvation

The Origin uses finite input bufférs and a protocol that is not strict request-
response. As discussed in Section 8.4.2, to avoid deadlock, it uses the technique of
reverting to a strict request-response protocol when it detects a high-contention

' situation that may cause deadlock. Since NACKs are not used to alleviate the con-
tention, livelock is avoided in these situations too. The classic livelock problem due
to multiple processors trying to write a block at the same time is avoided by using
busy states and NACKs (recall that NACKs avoid rather than cause livelock in this
case). The first of these requests to get to the home sets the state to busy and makes
forward progress while others are NACKed and must retry. ~ '

In general, the philosophy of the Origin protocol is twofold: (1) to be “memory-
less,” that is, every node reacts to incoming events using only current local state and
no history of previous events; and (2) not to allow an operation to hold globally . P
shared resources while it is requesting other resources. The latter leads to the
choices of NACKing rather than buffering .for a busy resource: and helps prevent
deadlock. These decisions greatly simplify’the hardware yet provide high perfor-
mance in most cases. However, since NACKs are used rather than FIFO ordering,
the problem of starvation still exists. This is addressed by associating a priority with
a request, which is a function of the number of times the request has been
NACKed.* '

Error Handling

Despite a correct protocol, hardware and software errors can occur at run time.
These can corrupt memory or write data to different locations than expected (e.g., if
the address on which to perform a write becomes corrupted). The Origin system
provides many standard mechanisms to handle hardware errors on components. All
caches and memories are protected by error correction codes (ECCs), and all router
and 1/0 links are protected by cyclic redundancy checks (CRCs) and a hardware
link-level protocol that automatically detects and retries failures. In addition, the
system provides mechanisms to contain failures within the part of the machine in
which the program that caused the failure is running. Access protection rights are

I i p

4. The priority mechanism works as follows. The directory entry for a block has a “current” priority associ-
ated with it. Incoming transactions that will not cause the directory state to become busy are always ser-__
viced. Other transactions will potentially be serviced only if their priority is greater than or equal to the
current directory priority. If such a transaction is NACKed (e.g., because the directory is in busy state §
when it arrives), the current priority of the ditectory is set to be equal to that of the NACKed request.
This ensures that the directory will o longer service another request of lower priority until this one is’
serviced upon retry. To prevent a monotonic increase and “topping out” of the directory entry priority, it
is reset to zero whenever a request of priority greater than or equal to it is serviced.
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provided on both memory and 1/0 devices, preventing unauthorized nodes from
making modifications. These access rights allow the operating system to be struc-
tured into cells or partitions, an organization called a cellular operating system. A cell
is a number of nodes, configured at boot time. If an application runs within a cell, it
may be disallowed from writing memory or /O outside that cell. If the application
fails and corrupts memory or I/0, it can only affect other applications or the system
running within that cell and cannot harm code running in other cells: Thus, a cell is
the unit of fault containment in the system.

Details of Directofy Structure

While we have assumed a full bit vector directory organization so far for simplicity,
the actital structure of the Origin directory entry is a little more complex for two rea-
sons: first) to deal with the two processors per node and, second, to allow the direc-
tory structure to scale to more than 64 nodes with a 64-bit entry. There are, in fact,
three possible formats or interpretations of the directory bits. If a block is in an

exclusive state (i’e., modified or exclusive) in a processor cache, then the rest of the |

directory entry is not a bit vector with one bit turned on but rather contains_a,ri;

- explicit pointer to that specific processor (not node). This means that interventions
forwarded from the home are targeted to a specific processor. Otherwise, for exam-

ple, if the directory state is shared, the directory entry is interpreted as.a bit vector.
Bits in the bit vector correspond to nodes, so even though the two processor caches
within a node are not kept coherent by the bus, the unit of visibility to the directory
in this format is a node or Hub, not a processor) If an invalidation is sent to a Hub,

unlike an intervention, it is broadcast to both processors in the-node over the SysAD

bus that connects the two processors and the Hub. There are two sizes for presence
bit vectors: 16 bit and 64 bit (in t\he 16-bit case, the directory entry is stored in the
same DRAM as the main memory whereas in the 64-bit case the rest of the bits are in
an extended directory memory module that is looked up in parallel). The 16-bit vec-
tor therefore'supports up to 32 processors, and the 64-bit vector supports up to 128

‘processors.

For larger systems, the interpretation of the bits changes to the third format. In a
p-node system, each bit now corresponds to a fixed set of p/64 nodes. The bit is set
when any one (or more) of the nodes in the corresponding set has a copy of the
block. If a bit is set when a write happens, then invalidations are sent to all the p/64
nodes represented by that bit (and are then broadcast to both processors in each of
those nodes). For example, with the maximum supported size of 1,024 processors
(512 nodes), each bit corresponds to 8 nodes. This is called a coarse vector represen-
tation, and we see it again when we discuss overflow strategies for directory repre-
sentations as an advanced topic in SectionB:10. In fact, the system dynamically
chooses between the bit vector and coarse vector representation on a large machine:
if all the nodes sharing the block are within the same 64-node octant of the machine,
a bit vector representation is used; otherwise, a coarse vector is used.

“
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8.5.4 Protocol Extensions

In addition to the protocol optimizations discussed earlier, the Origin protocol pro-
vides some extensions to support special operations and activities that interact with
the protocol. These include input/output and DMA operations, page migration, and
synchronization. ]

.

‘Support for Input/Output and DMA Operations

To suppor“t memory reads by a DMA device, the protocol provides “uncached read-

shared” requests. Such a request returns to the DMA device a snapshot of a coherent .
copy of the data, but that copy is then no longer kept coherent by the protocol. The

request is used primarily by the 1/O system and the block transfer engine provided in v
the Hub and as such is intended for use by the operating system. For writes to mem-
ory from a DMA devVice, the protocol provides “write invalidate” requests, A write
invalidate simply blasts the new value of a word into memory, overwriting the previ-
ous value. It also invalidates all-existing cached copies of the block in the system,
thus returning the directory entry to unowned state. From a protocol perspective, it
behaves much like a read-exclusive request, except that it modifies the block in
memory and leaves the directory in unowned state.

Support for Automatic Page Migration

As we discussed in Chapter 3, on a machine with physically distributed memory it is

often important to allocate data appropriately across physical memories so that most

capacity, conflict, and cold misses are satisfied locally. On CC-NUMA machines like

the Origin, data is allocated in memory at the granularity of a page (16 KB, in ‘this

case). Despite the very aggressive communication architecture in the Origin, the

latency of an access satisfied by remote memory is at least 2-3 times that of a local -
access even without contention. The appropriate distribution of pages among mem-

ories might change dynamically at run time, either because a parallel program’s .

access patterns change or because the operating system decides to migrate an appli-
cation process from one processor to another for better resource management across
multiprogrammed applications. It is therefore useful for the system to detect the
need for moving pages at run time and migrate them automatically to where they are
needed. - ’

For every page in main memory, Origin provides an array of miss counters, one
per node, to help determine when most of the.misses to a page are coming from a
nonlocal processor so that the page should be migrated. The miss counters are d
stored in directory memory at the home. When a request comes in for a page, the
miss counter for that node is incremented and compared with the miss counter for
the home node. If it exceeds the latter by more than a threshold, then the page can
be migrated to that remote node. (Sixty-four counters are providéd per page, and in
a system with more than 64 nodes, 8 nodes share a couiter.) Page migration is typi-




