
(19) United States

Mayhew et al.

US 20050228952A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0228952 A1
(43) Pub. Date: Oct. 13, 2005

(54)

(76)

(21)

(22)

(51)
(52)

CACHE COHERENCY MECHANISM (57) ABSTRACT

Inventors: 1?; iflévlaly llvlaw’ NCwhEOrFHgtIbIg/IAUS _ The present invention minimizes the amount of traf?c that
()’ ar _ eler’ 6 es 6y’ ()’ traverses the fabric in support of the cache coherency
Todd Comms’ Chelmsford’ MA (Us) protocol. It also alloWs rapid transmission of all traf?c

_ associated With the cache coherency protocol, so as to
Correspondence Address. . . . 1 d . . f A f b . .

NIELDS & LEMACK IIllIléIIllZtJ atency an maxémizef per ormance.~ a r1131 is
176 EAST MAIN STREET’ SUITE 7 use to 'interconnect a num er 0' processing units toget er.
WESTBORO MA 01581 The switches are able to recogniZe incoming traf?c related

, (Us) _ to the cache coherency protocol and then move these mes
A 1' N ‘I 10 823 300 sages to the head of that sWitch’s output queue to insure fast
pp 0 / ’ transmission. Also, the traffic related to the cache coherency

Filed: Apt 13’ 2004 protocol can interrupt an outgoing message, further reducing
latency. The switch incorporates a memory element, dedi

Publication Classi?cation cated to the cache coherency protocol, Which tracks the
contents of all of the caches of all of the processors con

Int. Cl.7 G06F 12/00 nected to the fabric. In this Way, the fabric can selectively
US. Cl. 711/133; 711/144; 711/145 transmit tra?ic only to the processors Where it is relevant.

Disk

ll '

b M /0

I40

CPU 0 CPU 1 2 CPU N l/‘
I rzr ‘ l I 4 I

Local Cache Local Cache Local Cache
‘1° ‘Memory Memory Memory Memory Memory Memory

I23 ‘7'1 I33 I32. H3 r42.

A distn'buted system with a single switch using shared memory

1 APPLE 1019f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Patent Application Publication Oct. 13, 2005 Sheet 1 0f 3 US 2005/0228952 A1

Disk
Controller

HO HS

CPUO a" CPU1 2 CPUN /__7 l I \ l- I |~H

Local Cache Local Cache Local Cache
‘7-0 ‘Memory Memory Memory Memory Memory Memory

r23 ‘7-1- l3'5 I37, H3 142.

Figure l. A distributed system with a single switch using shared memory

Disk .

Controller _ D'sk

z ‘I 0
CPU 0 CPU 1 CPU 0 CPU 1 CPU 0 CPU 1

11 u oea Local Local 1 oca
Memory Memory Memory Memory Memory
Hiera Hiera Hiera Hiera - Hierareh

11/0

26 0

Figure 2. A distributed system with multiple switches using shared memory

2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Patent Application Publication Oct. 13, 2005 Sheet 2 of 3 US 2005/0228952 A1

Time

Packet 1 Packet 2 Message

+ 30 o 3 l 0 3 7- 0

Message T0
Generated

Figure 3a. Message inserted at tail of queue.

Time

Packet 1 Message Packet 2

+ 3 0 O + 3 3 l 0

Message T1 T0
Generated

Figure 3b, Message inserted when packet in transmission is completed. Speed-up over
Figure 3a is T0 — Tl.

Time
4>

30*’ 3a’

p/o Packet 1 C Message C p/o Packet 1 Packet 2

300 + 320 + 390 3 i O +

I T2 T1 T0
Message
Generated

Figure 30. Message inserted at earliest possible moment. Speed-up over Figure 3a is T0
— T2. Speed-up over Figure 3b is Tl — T2.

3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Patent Application Publication Oct. 13, 2005 Sheet 3 of 3 US 2005/0228952 A1

Figure 4. Representative Directory Structure

0 4 l U P C 0 0 l h

SIISISM
o 3 .l U P C 0 0 l h .W.

SISSMOI
0 2 l U P C O 0 1 m .w

SESSIII m m

e S s m m .m s?msnm n ‘mwo‘mo .Offfm m WOOOOOO 234344 Allllll
Figure 5. Directory Entries for Switch 100

0 l 24

SP1 IIIIIII
0 H6 0 27

SP1 1111111
0 MO 5 N4 5 0 26

SPI 1.118811
5 m7 5 m0

SPE ESIIIIS
m4

SPI IIMMMMO
O 0 26

SP1 $811118
0 0 27

SPE SSIIIII
0 0 20

SP1 1111111
5 s m m

.0 rmmrmmmmm w mewmmwwmw A 2m2222222

Figure 6. Directory Entries for Switches 200, 205 and 210

4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

US 2005/0228952 A1

CACHE COHERENCY MECHANISM

BACKGROUND OF THE INVENTION

[0001] Today’s computer systems continue to become
increasingly complex. First, there Were single central pro
cessing units, or CPUs, used to perform a speci?c function.
As the complexity of software increased, neW computer
systems emerged, such as symmetric multiprocessing, or
SMP, systems, Which have multiple CPUs operating simul
taneously, typically utiliZing a common high-speed bus.
These CPUs all have access to the same memory and storage
elements, With each having the ability to read and Write to
these elements. More recently, another form of multi-pro
cessor system has emerged, knoWn as Non-Uniform
Memory Access, or “NUMA”. NUMA refers to a con?gu
ration of CPUs, all sharing common memory space and disk
storage, but having distinct processor and memory sub
systems. Computer systems having processing elements that
are not tightly coupled are also knoWn as distributed com
puting systems. NUMA systems can be con?gured to have
a global shared memory, or alternatively can be con?gured
such that the total amount of memory is distributed among
the various processors. In either embodiment, the processors
are not as tightly bound together as With SMP over a single
high-speed bus. Rather, they have their oWn high-speed bus
to communicate With their local resources, such as cache and
local memory. A different communication mechanism is
employed When the CPU requires data elements that are not
resident in its local subsystem. Because the performance is
very different When the processor accesses data that is not
local to its subsystem, this con?guration results in non
uniform memory access. Information in its local memory
Will be accessed most quickly, While information in other
processor’s local memory is accessed more quickly than
accesses to disk storage.

[0002] In most embodiments, these CPUs possess a dedi
cated cache memory, Which is used to store duplicate
versions of data found in the main memory and storage
elements, such as disk drives. Typically, these caches con
tain data that the processor has recently used, or Will use
shortly. These cache memories can be accessed extremely
quickly, at much loWer latency than typical main memory,
thereby alloWing the processor to execute instructions With
out stalling to Wait for data. Data elements are added to the
cache in “lines”, Which is typically a ?xed number of bytes,
depending on the architecture of the processor and the
system.

[0003] Through the use of cache memory, performance of
the machine therefore increases, since many softWare pro
grams execute code that contains “loops” in Which a set of
instructions is executed and then repeated several times.
Most programs typically execute code from sequential loca
tions, alloWing caches to predictively obtain data before the
CPU needs it—a concept knoWn as prefetching. Caches,
Which hold recently used data and prefetch data that is likely
to be used, alloW the processor to operate more ef?ciently,
since the CPU does not need to stop and Wait for data to be
read from main memory or disk.

[0004] With multiple CPUs each having their oWn cache
and the ability to modify data, it is desirous to alloW the
caches to communicate With each other to minimiZe the
number of main memory and disk accesses. In addition, in

Oct. 13, 2005

systems that alloW a cache to modify its contents Without
Writing it back to main memory, it is essential that the caches
communicate to insure that the most recent version of the
data is used. Therefore, the caches monitor, or “snoop”, each
other’s activities, and can intercept memory read requests
When they have a local cached copy of the requested data.

[0005] In systems With multiple processors and caches, it
is imperative that the caches all contain consistent data; that
is, if one processor modi?es a particular data element, that
change must be communicated and re?ected in any other
caches containing that same data element. This feature is
knoWn as “cache coherence”.

[0006] Thus, a mechanism is needed to insure that all of
the CPUs are using the most recently updated data. For
example, suppose one CPU reads a memory location and
copies it into its cache and later it modi?es that data element
in its cache. If a second CPU reads that element from
memory, it Will contain the old, or “stale” version of the data,
since the most up-to-date, modi?ed version of that data
element only resides in the cache of the ?rst CPU.

[0007] The easiest mechanism to insure that all caches
have consistent data is to force the cache to Write any
modi?cation back to main memory immediately. In this Way,
CPUs can continuously read items in their cache, but once
they modify a data element, it must be Written to main
memory. This trivial approach to maintaining consistent
caches, or cache coherency, is knoWn as Write through
caching. While it insures cache coherency, it affects perfor
mance by forcing the system to Wait Whenever data needs to
be Written to main memory, a process Which is much sloWer
than accessing the cache.

[0008] There are several more sophisticated cache coher
ency protocols that are Widely used. The ?rst is referred to
as “MESI”, Which is an acronym for Modi?ed, Exclusive,
Shared, and Invalid. These four Words describe the potential
state of each cache line.

[0009] To illustrate the use of the MESI protocol, assume
that CPU 1 needs a particular data element, Which is not
contained in its cache. It issues a request for the particular
cache line. If none of the other caches has the data, it is
retrieved from main memory or disk and loaded into the
cache of CPU 1, and is marked “E” for exclusive, indicating
that it is the only cache that has this data element. If CPU 2
later needs the same data element, it issues the same request
that CPU 1 had issued earlier. HoWever, in this case, the
cache for CPU 1 responds With the requested data. Recog
niZing that the data came from another cache, the line is
saved in the cache of CPU 2, With a marking of “S”, or
shared. The cache line of CPU 1 is noW modi?ed to “S”,
since it shared the data With the cache of CPU 2, and
therefore no longer has exclusive access to it. Continuing on,
if CPU 2 (or CPU 1) needs to modify the data, it checks the
cache line marker and since it is shared, issues an invalidate
message to the other caches, signaling that their copy of the
cache line is no longer valid since it has been modi?ed by
CPU 2. CPU 2 also changes the marker for this cache line
to “M”, to signify that the line has been modi?ed and that
main memory does not have the correct data. Thus, CPU 2
must Write this cache line back to main memory before other
caches can use it, to restore the integrity of main memory.
Therefore, if CPU 1 needs this data element, CPU 2 Will
detect the request, it Will then Write the modi?ed cache line

5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

