
9.1 SCHEMATIC ENTRY 329

(a) (b)

19

26

5

26

D-
"spade"

D- 26
and

NAND
"shovel"

exclusive-OR

FIGURE 9.1 IEEE-recommended dimensions and their construction for logic-gate sym­
bols. (a) NAND gate (b) exclusive-OR gate (an OR gate is a subset).

Figure 9.2 shows some pictorial definitions of objects you can use in a simple
schematic. We shall discuss the different types of objects that might appear in an
ASIC schematic first and then discuss the different types of connections.

connection

fanout = 2

/ carryout

symbol inv1

OR

~or1
instance attribute: cell fanin = 2 connector
instance name

net attribute:
net name

GND

net fanout = 4

1 --r- VDD

FIGURE 9.2 Terms used in circuit schematics.

net fanin =4

346

330 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

Schematic-entry tools for ASIC design are similar to those for printed-circuit
board (PCB) design. The basic object on a PCB schematic is a component or
device-a TTL IC or resistor, for example. There may be several hundred compo­
nents on a typical PCB. If we think of a logic gate on an ASIC as being equivalent to
a component on a PCB, then a large ASIC contains hundreds of thousands of com­
ponents. We can normally draw every component on a few schematic sheets for a
PCB, but drawing every component on an ASIC schematic is impractical.

9.1.1 Hierarchical Design
Hierarchy reduces the size and complexity of a schematic. Suppose a building has
10 floors and contains several hundred offices but only three different basic office
plans. Furthermore, suppose each of the floors above the ground floor that contains
the lobby is identical. Then the plans for the whole building need only show detailed
plans for the ground floor and one of the upper floors. The plans for the upper floor
need only show the locations of each office and the office type. We can then use a
separate set of three detailed plans for each of the different office types. All these
different plans together form a nested structure that is a hierarchical design. The
plan for the whole building is the top-level plan. The plans for the individual offices
are the lowest level. To clarify the relationship between different levels of hierarchy
we say that a subschematic (an office) is a child of the parent schematic (the floor
containing offices). An electrical schematic can contain subschematics. The subsche­
matic, in turn, may contain other subschematics. Figure 9.3 illustrates the principles
of schematic hierarchical design.

The alternative to hierarchical design is to draw all of the ASIC components on
one giant schematic, with no hierarchy, in a flat design. For a modern ASIC contain­
ing thousands or more logic gates using a flat design or a flat schematic would be
hopelessly impractical. Sometimes we do use flat netlists though.

9.1.2 The Cell Library
Components in an ASIC schematic are chosen from a library of cells. Library ele­
ments for all types of ASICs are sometimes also known as modules. Unfortunately
the term module will have a very specific meaning when we come to discuss hard­
ware description languages. To avoid any chance of confusion I use the term cell to
mean either a cell, a module, a macro, or a book from an ASIC library. Library cells
are equivalent to the offices in our office building.

Most ASIC companies provide a schematic library of primitive gates to be
used for schematic entry. The first problem with ASIC schematic libraries is that
there are no naming conventions. For example, a primitive two-input NAND gate in
a Xilinx FPGA library does not have the same name as the two-input NAND gate in
an LSI Logic gate-array library. This means that you cannot take a schematic that
you used to create a prototype product using a Xilinx FPGA and use that schematic
to create an LSI Logic gate array for production (something you might very likely
want to do). As soon as you start entering a schematic using a library from an ASIC

347

cell: HADD

(a)

cell: OR

cell: HADD
instance: ha2

(c)

9.1 SCHEMATIC ENTRY 331

multiple instances of
the same cell

(b)

cell: HADD ~ parent

cell: INV
instance: INV1

cell: OR t 111 instance: OR1

4 cell:AND
children instance: and1

instance: and2

(d)

FIGURE 9.3 Schematic example showing hierarchical design. (a) The schematic of a half­
adder, the subschematic of cell HADD. (b) A schematic symbol for the half adder. (c) A sche­
matic that uses the half-adder cell. (d) The hierarchy of cell HADD.

vendor, you are, to some extent, making a commitment to use that vendor's ASIC.
Most ASIC designers are much happier maintaining a large degree of vendor inde­
pendence.

A second problem with ASIC schematic libraries is that there are no standards
for cell behavior. For example, a two-input MUX in an Actellibrary operates so that
the input labeled A is selected when the MUX select input S = '0'. A two-input MUX
in a VLSI Technology library operates in the reverse fashion, so that the input
labeled B is selected when S = '0'. These types of differences can cause hard-to-find
problems when trying to convert a schematic from one vendor to another by hand.
These problems make changing or retargeting schematics from one vendor to
another difficult. This process is sometimes known as porting a design.

348

332 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

Library cells that represent basic logic gates, such as a NAND gate, are known
as primitive cells, usually referred to just as cells. In a hierarchical ASIC design a
cell may be a NAND gate, a flip-flop, a multiplier, or even a microprocessor, for
example. To use the office building analogy again, each of the three basic office
types is a primitive cell. However, the plan for the second floor is also a cell. The
second-floor cell is a subschematic of the schematic for the whole building. Now we
see why the commonly accepted use of the term cell in schematic entry can be so
confusing. The term cell is used to represent both primitive cells and subschematics.
These are two different, but closely related, things.

There are two types of macros for MGAs and programmable ASICs. The most
common type of macro is a hard macro that includes placement information. A
hard macro can change in position and orientation, but the relative location of the
transistors, other layout, and wiring inside the macro is fixed. A soft macro contains
only connection information (between transistors for a gate array or between logic
cells for a programmable ASIC). Thus the placement and wiring for a soft macro can
vary. This means that the timing parameters for a soft macro can only be determined
after you complete the place-and-route step. For this reason the basic library ele­
ments for MGAs and programmable ASICs, such as NAND gates, flip-flops, and so
on, are hard macros.

A standard cell contains layout information on all mask levels. An MGA hard
macro contains layout information on just the metal, contact, and via layers. An
MGA soft macro or programmable ASIC macro does not contain any layout infor­
mation at all, just the details of connections to be made inside the macro.

We can stretch the office building analogy to explain the difference between
hard and soft macros. A hard macro would be an office with fixed walls in which
you are not allowed to move the furniture. A soft macro would be an office with par­
titions in which you can move the furniture around and you can also change the
shape of your office by moving the partitions.

9.1.3 Names
Each of the cells, primitive or not, that you place on an ASIC schematic has a cell
name. Each use of a cell is a different instance of that cell, and we give each
instance a unique instance name. A cell instance is somewhere between a copy and
a reference to a cell in a library. An analogy would be the pictures of hamburgers on
the wall in a fast-food restaurant. The pictures are somewhere between a copy and a
reference to a real hamburger.

We represent each cell instance by a picture or icon, also known as a symbol.
We can represent primitive cells, such as NAND and NOR gates, with familiar icons
that look like spades and shovels. Some schematic editors offer the option of switch­
ing between these familiar icons and using the rectangular IEEE standard symbols
for logic gates. Unfortunately the term icon is also often used to refer to any of the
pictures on a schematic, including those that represent subschematics. There is no
accepted way to differentiate between an icon that represents a primitive cell and

349

9.1 SCHEMATIC ENTRY 333

one that represents a subschematic that may be in tum a collection of primitive cells.
In fact, there is usually no easy way to tell by looking at a schematic which icons
represent primitive cells and which represent subschematics.

We will have three different icons for each of the three different primitive offices
in the imaginary office building example of Section 9.1.1. We also will have icons to
represent the ground floor and the plan for the other floors. We shall call the common
plan for the second through tenth floors, Floor. Then we say that the second floor is
an instance of the cell name Floor. The third through tenth floors are also instances
of the cell name Floor. The same icon will be used to represent the second through
tenth floors, but each will have a unique instance name. We shall give them instance
names: FloorTwo, FloorThree, ... , FloorTen. We say that FloorTwo through
FloorTen are unique instance names of the cell name Floor.

At the risk of further confusion I should point out that, strictly speaking, the
definition of a primitive cell depends on the type of library being used. Schematic­
entry libraries for the ASIC designer stop at the level of NAND gates and other sim­
ilar low-level logic gates. Then, as far as the ASIC designer is concerned, the primi­
tive cells are these logic gates. However, from the view of the library designer there
is another level of hierarchy below the level of logic gates. The library designer
needs to work with libraries that contain schematics of the gates themselves, and so
at this level the primitive cells are transistors.

Let us look at the building analogy again to understand the subtleties of primi­
tive cells. A building contractor need only concern himself with the plans for our
office building down to the level of the offices. To the building contractor the primi­
tive cells are the offices. Suppose that the first of the three different office types is a
comer office, the second office type has a window, and a third office type is without
a window. We shall call these office cells: CornerOffice, WindowOffice, and
NoWindowOffice. These cells are primitive cells as far as the contractor is con­
cerned. However, when discussing the plans with a client, the architect of our build­
ing will also need to see how each offices is furnished. The architect needs to see a
level of detail of each office that is more complicated than needed by the building
contractor. The architect needs to see the cells that represent the tables, chairs, and
desks that make up each type of office. To the architect the primitive cells are a
library containing cells such as chair, table, and desk.

9.1.4 Schematic Icons and Symbols
Most schematic-entry programs allow the designer to draw special or custom icons.
In addition, the schematic-entry tool will also usually create an icon automatically
for a subschematic that is used in a higher-level schematic. This is a derived icon,
or derived symbol. The external connections of the subschematic are automatically
attached to the icon, usually a rectangle.

Figure 9.4(c) shows what a derived icon for a cell, DLAT, might look like (we
could also have drawn this by hand). The subschematic for DLAT is shown in
Figure 9.4(b). We say that the inverter with the instance name invl in the subsche-

350

334 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

(a)

matic is a sub cell (or submodule) of the cell DLAT. Alternatively we say that cell
instance invl is a child of the cell DLAT, and cell DLAT is a parent of cell instance
invl.

schematic
internal node

instance name ~

cell library Trigger

connector

primitive
cells

external node name
(b) (c)

FIGURE 9.4 A cell and its subschematic. (a) A schematic library containing icons for the
primitive cells. (b) A subschematic for a cell, DLAT, showing the instance names for the prim­
itive cells. (c) A symbol for cell DLAT.

Figure 9.S(a) shows a more complex subschematic for a 4-bit latch. Each primi­
tive cell instance in this schematic must have a unique name. This can get very tire­
some for large circuits. Instead of creating complex, but repetitive, subschematics
for complex cells we can use hierarchy.

Figure 9.S(b) shows a hierarchical subschematic for a cell FourBit, which in
turn uses four instances of the cell DLAT. The four instances of DLAT in Figure 9 .S(b)
have different instance names: Ll, L2, L3, and L4. Notice that we cannot use just
one name for the four instances of DLAT to indicate that they are all the same cell. If
we did, we could not differentiate between Ll and L2, for example.

The vertical row of instances in Figure 9.S(b) looks like a vector of elements.
Figure 9.5(c) shows a vectOl'ed instance representing four copies of the DLAT cell.
We say the cardinality of this instance is 4. Tools normally use bold lines or some
other distinguishing feature to represent a vectored instance. The cardinality infor­
mation is often shown as a vector. Thus L [1: 4] represents four instances: L [1],

L [2], L [3], L [4]. This is convenient because now we can see that all subcells are
identical copies of L, but we have a unique name for each.

Finally, as shown in Figure 9.S(d) we can create a new symbol for the 4-bit
latch, FourBi t. The symbol for FourBi t has a 4-bit-wide input bus for the four D
inputs, and a 4-bit wide output bus for the four Q outputs. The subschematic for
FourBit could be either Figure 9.S(a), (b), or (c) (though the exact naming of the
inputs and outputs and their attachment to the buses may be different in each case).

351

9.1 SCHEMATIC ENTRY 335

vectored name

~Lff~l!

(c)

bus

,-----

vectored
instance

width", .•

~
bU~~;

Four~it

(a) (b) (d)

FIGURE 9.5 A 4-bit latch: (a) drawn as a flat schematic from gate-level primitives,
(b) drawn as four instances of the cell symbol DLAT, (c) drawn using a vectored instance of
the DLAT cell symbol with cardinality of 4, (d) drawn using a new cell symbol with cell name
FourBit.

We need a convention to distinguish, for example, between the inverter subcells,
invl, which are children of the cell DLAT, which are in turn children of the cell
FourBi t. Most schematic-entry tools do this by combining the instance names of
the subcells in a hierarchical manner using a special character as a delimiter. For
example, if we drew the subschematic as in Figure 9.S(b), the four inverters in
FourBit might be named Ll. invl, L2. invl, L3. invl, and L4. invl. Once
again this makes it clear that the inverters, invl, are identical in all four subcells.

In our office building example, the offices are subcells of the cell Floor. Sup­
pose you and I both have corner offices. Mine is on the second floor and yours is
above mine on the third floor. My office is 211 and your office is 311. Another way
to name our offices on a building plan might be FloorTwo. 11 for my office and
FloorThree.ll for your office. This shows that FloorTwo. II is a subcell of

352

336 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

FloorTwo and also makes it clear that, apart from being on different floors, your
office and mine are identical. Both our offices have instance names 11 and are
instances of cell name Corner.

9.1.5 Nets
The schematics shown in Figure 9.4 contain both local nets and external nets. An
example of a local net in Figure 9.4(b) is nl, the connection between the output ter­
minal of the AND cell andl to the OR cell orlo When the four copies of this circuit
are placed in the parent cell FourBit in Figure 9.S(d), four copies of net nl are cre­
ated. Since the four nets named nl are not actually electrically connected, even
though they have the same name at the lowest hierarchical level, we must somehow
find a way to uniquely identify each net.

The usual convention for naming nets in a hierarchical schematic uses the par­
ent cell instance name as a prefix to the local net name. A special character (, : I

• / I I $ I I # I for example) that is not allowed to appear in names is used as a
delimiter to separate the net name from the cell instance name. Supposing that we
drew the subschematic for cell FourBi t as shown in Figure 9 .S(b), the four differ­
ent nets labeled nl might then become:

FourBi t. Ll: nl FourBi t. L2 : nl FourBi t. L3: nl FourBit .L4 :nl

This naming is usually done automatically by the schematic-entry tool.
The schematic DLAT also contains three external nets: D, EN, and Q. The ter­

minals on the symbol DLAT connect these nets to other nets in the hierarchical level
above. For example, the signal Trigger: f lag in Figure 9.4(c) is also
Trigger. DLAT: Q. Each schematic tool handles this situation differently, and life
becomes especially difficult when we need to refer to these nodes from a simulator
outside the schematic tool, for example. HDLs such as VHDL and Verilog have a
very precise and well-defined standard for naming nets in hierarchical structures.

9.1.6 Schematic Entry for ASICs and PCBs
A symbol on a schematic may represent a component, which may contain compo­
nent parts. You are more likely to come across the use of components in a PCB sche­
matic. A component is slightly different from an ASIC library cell. A simple example
of a component would be a TTL gate, an SN74LSOON, that contains four 2-input
NAND gates. We call an SN74LSOON a component and each of the individual NAND
gates inside is a component part. Another common example of a component would be
a resistor pack-a single package that contains several identical resistors.

In PCB design language a component label or name is a reference designator.
A reference designator is a unique name attribute, such as R9 9, attached to each
component. A reference designator, such as R99, has two pieces: an alpha prefix R

and a numerical suffix 99. To understand the difference between reference designa­
tors and instance names, we need to look at the special requirements of PCB design.

353

9.1 SCHEMATIC ENTRY 337

PCBs usually contain packaged ASICs and other ICs that have pins that are sol­
dered to a board. For rectangular, dual-in-line (DIP) packages the pins are numbered
counterclockwise from the upper-left corner looking down on the package.

IC symbols have a pin number for each part in the package. For example, the
TTL 74174 hex D flip-flop with clear, contains six parts: six identical D flip-flops.
The IC symbol representing this device has six pinNumber attribute entries for the
D input corresponding to the six possible input pins. They are pins 3, 4, 6, 11, 13,
and 14.

When we need a flip-flop in our design, we use a symbol for a 74174 from a
schematic library, suppose the symbol name is dffClr. We shall assign a unique
instance name to the symbol, CarryFF. Now suppose we need another, identical,
flip-flop and we call this Bi tFF. We do not mind which of the six flip-flop parts in a
74174 we use for CarryFF and Bi tFF. In fact they do not even have to be in the
same package. We shall delay the choice of assigning CarryFF and Bi tFF to spe­
cific packages until we get to the PCB routing step. So at this point on our schematic
we do not even know the pin numbers for CarryFF and Bi tFF. For example the D
input to CarryFF could be pin 3, 4, 6, 11, 13, or 14.

The number of wire crossings on a PCB is minimized by careful assignment of
components to packages and choice of parts within a package. So the placement­
and-routing software may decide which part of which package to use for CarryFF
and BitFF depending on which is easier to route. Then, only after the placement and
routing is complete, are unique reference designators assigned to the component
parts. Only at this point do we know where CarryFF is actually located on the PCB
by referring to the reference designator, which points to a specific part in a specific
package. Thus CarryFF might be located in IC4 on our PCB. At this point we also
know which pins are used for each symbol. So we now know, for example, that the
D-input to CarryFF is pin 3 of IC4.

There is no process in ASIC design directly equivalent to the process of part
assignment described above and thus no need to use reference designators. The
reference-designator naming convention quickly becomes unwieldy if there are a
large number of components in a design. For example, how will we find a NAND
gate named X3146 in an ASIC schematic with 100 pages? Instead, for ASICs, we
use a naming scheme based on hierarchy.

In large hierarchical ASIC designs it is difficult to provide a unique reference
designator to each element. For this reason ASIC designs use instance names to
identify the individual components. Meaningful names can be assigned to low-level
components and also the symbols that represent hierarchy. We derive the component
names by joining all of the higher level cell names together. A special character is
used as a delimiter and separates each level.

Examples of hierarchical instance names are:

cpu.alu.adder.andOl

MotherBoard:Cache:RAM4:ReadBit4:Inverter2

354

338 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

9.1.7 Connections
Cell instances have terminals that are the inputs and outputs of the cell. Terminals
are also known as pins, connectors, or signals. The term pin is widely used, but we
shall try to use terminal, and reserve the term pin for the metal leads on an ASIC
package. The term pin is used in schematic entry and routing programs that are pri­
marily intended for PCB design.

3
21----t--'

1 I----t---.

o

31---+-r4-------~

21-----r~------~

1 I-----j----------_j
Ol----~--------_j

(a)

c

B

A

3
2
1
0

bus ripper

DO?
DO? D06
D06 D03
D05 D02
D04 D05

8 D04
D02

D03 DOO

D02 D03

D01 D02

DOO D01
DOO

(b)

FIGURE 9.6 An example of the use of a bus to simplify a schematic. (a) An address
decoder without using a bus. (b) A bus with bus rippers simplifies the schematic and reduces
the possibility of making a mistake in creating and reading the schematic.

Electrical connections between cell instances use wire segments or nets. We
can group closely related nets, such as the 32 bits of a 32-bit digital word, together
into a bus or into buses (not busses). If signals on a bus are not closely related, we
usually use the term bundle or array instead of bus. An example of a bundle might
be a bus for a SCSI disk system, containing not only data bits but handshake and
control signals too. Figure 9.6 shows an example of a bus in a schematic. If we need
to access individual nets in a bus or a bundle, we use a breakout (also known as a
ripper, an EDIF term, or extractor). For example, a breakout is used to access bits
0-7 of a 32-bit bus. If we need to realTange bits on a bus, some schematic editors
offer something called a swizzle. For example, we might use a swizzle to reorder the
bits on an 8-bit bus so that the MSB becomes the LSB and so on down to the LSB,
which now becomes the MSB. Swizzles can be useful. For example, we can multi­
ply or divide a number by 2 by swizzling all the bits up or down one place on a bus.

9.1.8 Vectored Instances and Buses
So far the naming conventions are fairly standard and easy to follow. However,
when we start to use vectored instances and buses (as is now common in large

355

9.1 SCHEMATIC ENTRY 339

ASICs), there are potential areas of difficulty and confusion. Figure 9.7(a) shows a
schematic for a 16-bit latch that uses multiple copies of the cell FourBi t. The buses
are labeled with the appropriate bits. Figure 9.7(b) shows a new cell symbol for the
16-bit latch with 16-bit wide buses for the inputs, D, and outputs, Q.

FourBit

(a)

mismatch in
cardinality

(b)

vectored

(c)

mismatch in
cardinality

FIGURE 9.7 A 16-bit latch: (a) drawn as four instances of cell FourBit; (b) drawn as a cell
named SixteenBit; (c) drawn as four multiple instances of cell FourBit.

Figure 9.7(c) shows an alternative representation of the 16-bit latch using a vec­
tored instance of FourBi t with cardinality 4. Suppose we wish to make a connec­
tion to expressly one bit, D 1 (we have used D 1 as the first bit rather than the more
conventional DO so that numbering is easier to follow). We also wish to make a con­
nection to bits D9-D 12, represented as D[9: 12]. We do this using a bus ripper. Now

356

340 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

we have the rather awkward situation of bus naming shown in Figure 9.7(c). Prob­
lems arise when we have "buses of buses" because the numbers for the bus widths
do not match on either side of a ripper. For this reason it is best to use the single-bus
approach shown in Figure 9.7(b) rather than the vectored-bus approach of
Figure 9.7(c).

9.1.9 Edit-in-Place
Figure 9.7(b) shows a symbol sixteenBit, which uses the subschematic shown in
Figure 9.7(a) containing four copies of FourBit, named NB1, NB2, NB3, and NB4
(the NB stands for nibble, which is half of a word; a nibble is 4 bits for 8-bit words).
Suppose we use the schematic-entry program to edit the sub cell NB1.Ll, which is an
instance of DLAT inside NBl. Perhaps we wish to change the D latch to a D latch
with a reset, for example. If the schematic editor supports edit-in-place, we can edit
a cell instance directly. After we edit the cell, the program will update all the DLAT
subcells in the cell that is currently loaded to reflect the changes that have been
made.

To see how edit-in-place works, consider our office building again. Suppose we
wish to change some of the offices on each floor from offices without windows to
offices with windows. We select the cell instance FloorTwo-that is, an instance of
cell Floor. Now we choose the edit mode in the schematic-entry program. But wait!
Do we want to edit the cell Floor, or do we want to edit the cell instance
FloorTwo? If we edit the cell Floor, we will be making changes to all of the floors
that use cell name Floor-that is, instances FloorTwo through FloorTen. If we
edit the ceIl instance FloorTwo, then the second floor will become different from all
the other floors. It will no longer be an instance of cell name Floor and we will
have to create another cell name for the cell used by instance FloorTwo. This is like
the difference between ordering just one hamburger without pickles and changing
the picture on the wall that will change all future hamburgers.

Using edit-in-place we can edit the cell Floor. Suppose we change some of the cell
instances of cell name NoWindowOffice to instances of cell name WindowOffice.
When we finish editing and save the cell Floor, we have effectively changed all of the
floors that contain instances of this cell.

Instead of editing a cell in place, you may really want to edit just one instance
of a cell and leave any other instances unchanged. In this case you must create a
new cell with a new symbol and new, unique cell name. It might also be wise to
change the instance name of the new cell to avoid any confusion.

For example, we might change the third-floor plan of our office to be different
from the other upper floors. Suppose the third floor is now an instance of cell name
FloorVIP instead of Floor. We could continue to call the third floor cell instance
FloorThree, but it would be better to rename the instance differently, FloorSpecial
for example, to make it clear that it is different from all the other floors.

357

9.1 SCHEMATIC ENTRY 341

Some tools have the ability to alias nets. Aliasing creates a net name from the
highest level in the design. Local names are net names at the lowest level such as D,

and Q in a flip-flop cell. These local names are automatically replaced by the appro­
priate top-level names such as Clockl, or Data2, using a dictionary. This greatly
speeds tracing of signals through a design containing many levels of hierarchy.

9.1.10 Attributes
You can attach a name, also known as an identifier or label, to a component, cell
instance, net, terminal, or connector. You can also attach an attribute, or property,
which describes some aspect of the component, cell instance, net, or connector. Each
attribute has a name, and some attributes also have values. The most common prob­
lems in working with schematics and netlists, especially when you try to exchange
schematic information between different tools, are problems in naming.

Since cells and their contents have to be stored in a database, a cell name fre­
quently corresponds (or is mapped to) a filename. This then raises the problems of
naming conventions including: case sensitivity, name-collision resolution, dictionaries,
handling of "common" special characters (such as embedded blanks or underscores),
other special characters (such as characters in foreign alphabets), first-character
restrictions, name-length problems (only 28 characters are permitted on an NFS com­
patible filename), and so on.

9.1.11 Nellist Screener
A surprising number of problems can be found by checking a schematic for obvi­
ously fatal errors. A program that analyzes a schematic netlist for simple errors is
sometimes called a schematic screener or netiist screener. Errors that can be found
by a netlist screener include:

• unconnected cell inputs,

• unconnected cell outputs,

0. nets not driven by any cells,

• too many nets driven by one cell,

o nets driven by more than one celL

The screener can work continuously as the designer is creating the schematic or
can be run as a separate program independently from schematic entry. Usually the
designer provides attributes that give the screener the information necessary to per­
form the checks. A few of the typical attributes that schematic-entry programs use
are described next.

A screener usually generates a list of errors together with the locations of the
problem on the schematic where appropriate. Some editors associate an identifier, or
handle, to every piece of a schematic, including comments and every net. Normally
there is some convention to the assigned names such as a grid on a schematic. This
works like the locator codes on a map, so that a net with Al as part of the name is in

358

342 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

the upper-Ieft-hand corner, for example. This allows you to quickly and uniquely
find any problems found by a screener. The term handle is a computer programming
term that is used in referring to a location in memory. Each piece of information on
a schematic is stored in lists in memory. This technique breaks down completely
when we move to HDLs.

Most schematic-entry programs work on a grid. The designer can control the
size of the grid and whether it is visible or not. When you place components or wires
you can instruct the editor to force your drawing to snap to grid. This means that
drawing a schematic is like drawing on graph paper. You can only locate symbols,
wires, and connections on grid points. This simplifies the internal mechanics of the
schematic-entry program. It also makes the transfer of schematics between different
EDA systems more manageable. Finally, it allows the designer to produce schematic
diagrams that are cleaner in appearance and thus easier to read.

Most schematic-entry programs allow you to find components by instance name
or cell name. The editor may either jump to the component location and center the
graphic window on the component or highlight the component. More sophisticated
options allow more complex searches, perhaps using wildcard matching. For exam­
ple, to find all three-input NAND gates (primitive cell name ND3) or three-input
NOR gates (primitive cell name N03), you could search for cell name N*3, where *
is a wildcard symbol standing for any character. The editor may generate a list of
components, perhaps with page number and coordinate locations. Extensive find fea­
tures are useful for large schematics where it quickly becomes impossible to find
individual components.

Some schematic editors can complete automatic naming of reference designa­
tors or instance names to the schematic symbols either as the editor is running or as
a postprocessing step. A component attribute, called a prefix, defines the prefix for
the name for each type of component. For example, the prefix for all resistor compo­
nent types may be R. Each time a prefix is found or a new instance is placed, the
number in the reference designator or name is automatically incremented. Thus if
the last resistor component type you placed was R9 9, the next time you place a resis­
tor it would automatically be named RIOO.

For large schematics it is useful to be able to generate a report on the used and
unused reference designators. An example would be:

Reference designator prefix: R

Unused reference designator numbers: 153, 154

Last used reference designator number: 180

If you need this feature, you probably are not using enough hierarchy to simplify
your design.

During schematic entry of an ASIC design you will frequently need multiple cop­
ies of components. This often occurs during datapath design, where operations are
carried out across multiple signals on a bus. A common example would be multiple
copies of a latch, one for each signal on a bus. It is tedious and inefficient to have to
draw and label the same cell many times on a schematic. To simplify this task, most

359

9.1 SCHEMATIC ENTRY 343

editors allow you to place a special vectored cell instance of a cell. A vectored cell
instance, or vectored instance for short, uses the same icon for a single instance but
with a special attribute, the cell cardinality, that denotes the number of copies of the
cell. Connections between signals on a bus and vectored instances should be handled
automatically. The width or cardinality of the bus and the cell cardinality must match,
and the design-entry tool should issue a warning if this is not the case.

A schematic-entry program can use a terminal attribute to determine which cell
terminals are output terminals and which terminals are input terminals. This attribute
is usually called terminal polarity or terminal direction. Possible values for termi­
nal polarity might be: input, output, and bidirectional. Checking the terminal
polarity of the terminals on a net can help find problems such as a net with all input
terminals or all output terminals.

The fanout of a cell measures the driving capability of an output terminal. The
fanin of a cell measures the number of input terminals. Fanout is normally measured
using a standard load. A standard load is the load presented by one input of a prim­
itive cell, usually a two-input NAND. For example, a library cell counter may have
an input terminal, Clock, that is connected to the input terminals of five primitive
cells. The loading at this terminal is then five standard loads. We say that the fanout
of Clock is five. In a similar fashion, we say that if a cell Buffer is capable of driv­
ing the inputs of three primitive cells, the fanout of Buffer is three. Using the fanin
and fanout attributes a netlist screener can check to see if the fanout driving a net is
greater than the sum of all loads on that net. (See Figure 9.2 on page 329.)

9.1.12 Schematic-Entry Tools
Some editors offer icon edit-in-place in a similar fashion as schematic edit-in-place
for cells. Often you have to toggle editing modes in the schematic-entry program to
switch between editing cells and editing cell icons. A schematic-entry program must
keep track of when cells are edited. Normally this is done by using a timestamp or
datestamp for each cell. This is a text field within the data file for each cell that
holds the date and time that the cell was last modified. When a new schematic or cell
is loaded, the program needs to compare its timestamp with the timestamps of any
subcells. If any of the sub cell timestamps are more recent, then the designer needs to
be alerted. Usually a message appears to inform you that changes have been made to
subcells since the last time the cell currently loaded was saved. This may be what
you expect or it may be a warning that somehow a subcell has been changed inad­
vertently (perhaps someone else changed it) since you last loaded that cell.

Normally the primitive cells in a library are locked and cannot be edited. If you
can edit a primitive cell, you have to make a copy, edit the copy, and rename it. Nor­
mally the ASIC designer cannot do this and does not want to. For example, to edit a
primitive NAND gate stored in an ASIC schematic library would require that the

360

344 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

subschematic of the primitive cell be available (usually not the case) and also that
the next lower level primitives (symbols for the transistors making up the NAND
gate) also be available to the designer (also usually not the case).

What do you do if somehow changes were made to a cell by mistake, perhaps
by someone else, and you don't want the new cell, you want the old version? Most
schematic-entry and other EDA tools keep old versions of files as a back-up in case
this kind of problem occurs. Most EDA software automatically keeps track of the
different versions of a file by appending a version number to each file. Usually this
is transparent to the designer. Thus when you edit a cell named Floor, the file on
disk might be called Floor. 6. When you save the changes, the software will not
overwrite Floor. 6, but write out a new file and automatically name it Floor. 7.

Some design-entry tools are more sophisticated and allow users to create their
own libraries as they complete an ASIC design. Designers can then control access to
libraries and the cells that they build during a design. This normally requires that a
schematic editor, for example, be part of a larger EDA system or framework rather
than work as a stand-alone tool. Sometimes the process of library control operates as
a separate tool, as a design manager or library manager. Often there is a program
similar to the UNIX make command that keeps track of all files, their dependencies,
and the tools that are necessary to create and update each file.

You can normally set the number of back-up versions of files that EDA software
keeps. The version history controls the number of files the software will keep. If
you accidentally update, overwrite, or delete a file, there is usually an option to
select and revert to an earlier version. More advanced systems have check-out ser­
vices (which work just as in source control systems in computer programming data­
bases) that prevent these kinds of problems when many people are working on the
same design. Whenever possible, the management of design files and different ver­
sions should be left under software control because the process can become very
complicated. Reverting to an earlier version of a cell can have drastic consequences
for other cells that reference the cell you are working with. Attempts to manually
edit files by changing version numbers and timestamps can quickly lead to chaos.

Most schematic-entry programs allow you to undo commands. This feature may
be restricted to simply undoing the last command that you entered, or may be an
unlimited undo and redo, allowing you to back up as many commands as you want
in the current editing session.

You can spend a lot of time in a schematic editor placing components and draw­
ing the connections between them. Features that simplify initial entry and allow
modifications to be made easily can make an enormous difference to the efficiency
of the schematic-entry process.

Most schematic editors allow you to make connections by dragging the cursor
with the wire following behind, in a process known as rubber banding. The con­
nection snaps to a right angle when the connection is completed. For wire connec­
tions that require more than two line segments, an automatic wiring feature is useful.
This allows you to define the wire path roughly using mouse clicks and have the edi­
tor complete the connection.

361

9.2· LOW-LEVEL DESIGN LANGUAGES 345

It is exceedingly painful to move components if you have to rewire connections
each time. Most schematic editors allow you to move the components and drag any
wires along with them.

One of the most annoying problems that can arise in schematic entry is to think
that you have joined two wires on a schematic but find that in reality they do not
quite meet. This error can be almost impossible to find. A good editing program will
have a way of avoiding this problem. Some editors provide a visual (flash) or audi­
ble (beep) feedback when the designer draws a wire that makes an electrical connec­
tion with another. Some editors will also automatically insert a dot at a "T"
connection to show that an electrical connection is present. Other editors refuse to
allow four-way connections to be made, so there can be no ambiguity when wires
cross each other if an electrical connection is present or not.

A cell library or a collection of libraries is a key part of the schematic-entry pro­
cess. The ability to handle and control these libraries is an important feature of any
schematic editor. It should be easy to select components from the library to be
placed on a schematic.

In large schematics it is necessary to continue large nets and signals across sev­
eral pages of schematics. Signals such as power and ground, VDD and GND, can be
connected using global nets or special connectors. Global nets allow the designer
to label a net with the same name at different places on a schematic page or on dif­
ferent pages without having to draw a connection explicitly. The schematic editor
treats these nets as though they were electrically connected. Special connector sym­
bols can be used for connections that cross schematic pages. An off-page connector
or multi page connector is a special symbol that will show and label a connection to
different schematic pages. More sophisticated editors can automatically label these
connectors with the page numbers of the destination connectors.

9.1.13 Back-Annotation
After you enter a schematic you simulate the design to make sure it works as
expected. This completes the logical design. Next you move to ASIC physical
design and complete the layout. Only after you complete the layout do you know the
parasitic capacitance and therefore the delay associated with the interconnect. This
postroute delay information must be returned to the schematic in a process known as
back-annotation. Then you can complete a final, postlayout simulation to make
sure that the specifications for the ASIC are met. Chapter 13 covers simulation, and
the physical design steps are covered in Chapters IS to 17.

9.2 Low-Level Design Languages

Schematics can be a very effective way to convey design information because pic­
tures are such a powerful medium. There are two major problems with schematic
entry, however. The first problem is that making changes to a schematic can be diffi-

362

346 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

cult. When you need to include an extra few gates in the middle of a schematic
sheet, you may have to redraw the whole sheet. The second problem is that for many
years there were no standards on how symbols should be drawn or how the sche­
matic information should be stored in a netlist. These problems led to the develop­
ment of design-entry tools based on text rather than graphics. As TTL gave way to
PLDs, these text-based design tools became increasingly popular as de facto stan­
dards began to emerge for the format of the design files.

PLDs are closely related to FPGAs. The major advantage of PLD tools is their
low cost, their ease of use, and the tremendous amount of knowledge and number of
designs, application notes, textbooks, and examples that have been built up over
years of their use. It is natural then that designers would want to use PLD develop­
ment systems and languages to design FPGAs and other ASICs. For example, there
is a tremendous amount of PLD design expertise and working designs that can be
reused.

In the case of ASIC design it is important to use the right tool for the job. This
may mean that you need to convelt from a low-level design medium you have used
for PLD design to one more appropriate for ASIC design. Often this is because you
are merging several PLDs into a single, much larger, ASIC. The reason for covering
the PLD design languages here is not to try and teach you how to use them, but to
allow you to read and understand a PLD language and, if necessary, convert it to a
form that you can use in another ASIC design system.

9.2.1 ABEL
ABEL is a PLD programming language from Data I/O. Table 9.2 shows some exam­
ples of the ABEL statements. The following example code describes a 4: 1 MUX
(equivalent to the LS153 TTL part):

module MUX4

title '4:1 MUX'

MyDevice device 'P16L8'
@ALTERNATE

"inputs

A, B, /P1G1, /P1G2 pin 17,18,1,6 "LS153 pins 14,2,1,15
P1CO, P1C1, P1C2, P1C3 pin 2,3,4,5 "LS153 pins 6,5,4,3

P2CO, P2C1, P2C2, P2C3 pin 7,8,9,11 "LS153 pins 10,11,12,13
"outputs

PlY, P2Y pin 19, 12 "LS153 pins 7,9
equations

PlY = P1G*(/B*/A*P1CO + /B*A*P1C1 + B*/A*P1C2 + B*A*P1C3)i
PlY = P1G*(/B*/A*P1CO + /B*A*P1C1 + B*/A*P1C2 + B*A*P1C3)i

end MUX4

363

TABLE 9.2 ABEL.

Statement

Module

Title

Device

Comment

Example

module MyModule

title 'Title in a String'

MYDEV device '22VI0'

"comments go between double

quotes"
"end of line is end of comment

9.2 LOW-LEVEL DESIGN LANGUAGES 347

Comment

You can have multiple modules.

A string is a character series between quotes.

MYDEV is Device ID for documentation.
22VI0 is checked by the compiler.

The end of a line signifies the end of a com­
ment; there is no need for an end quote.

@ALTERNATE @ALTERNATE "use alternate

symbols

Pin declaration MY1NPUT pin 2; 13, 14 pin 3, 4
/MYOUTPUT pin 22; 103,104 pin
21,20 ;

~ .. -• - - ~ .. -.... -- -.... -... ~" .. -.. --.-... -.. -"."' ... -.--... _--_ .. _-_. __ ... _ .. _ _ .. _. ""_ .. _ _.--_._._ .. _ .. ,, .. _ ... _._ .. _..... . , "_.".-," .. " .. _ _._.--

Equations equations

Assignments

104 = HELPER ; HELPER

MYOUTPUT = /MY1NPUT ;

103 : = 14 ;

/14

operator

AND
OR

NOT
XOR

XNOR

alternate

*
+
/

: +:
: *:

default

&

$

! $
._._------

Pin 22 is the 10 for input on pin 2 for a 22V10.
MYOUTPUT is active-low at the chip pin.
Signal names must start with a letter.

. _ _._ __ . __ ._ _ ... - ", _ .. _ _.-

Defines combinational logic.

Two-pass logic

Equals '=' is unlocked assignment.

Clocked assignment operator (registered 10)
........... _ .. __ ._ .. _ _.- ... _ -_._ ... __ ._-.. _ --" ... _._-... _ .. _ ... _-,,-.-.-_ ... -_ .. _._._._._-_._ .. _ __ ._ ... _ ..••.. __ __ ._._-_ .. __ _ _._--_._- .. --.-.-.-.-....... -.... ----~-.--.~ ... - .-"'-.--.-..... ~.~.~ .•...... -~ -~.-..... _ .. -_._ ... _ .. _--._ ,. ... _ ... _._ " ... -_ _ ... _ __ ._ - ... ""'-... "-.. - --' ----_ ... _. --_ .. --_ _. __ ... _ .. _.-

Signal sets

Suffix

Addition

Enable

Constants

Relational

End

D = [DO, D1, D2, D3] ;
Q = [QO, Ql, Q2, Q3];

Q := D ;

MYOUTPUT.RE

MYOUTPUT.PR

CLR

PRE

COUNT = [DO, Dl, D2];
COUNT := COUNT + 1;

ENABLE 103 = I02;
103 = MY1NPUT;

K = [1, 0, 1]

10# = D K5

end MyModule

A signal set, an ABEL bus

4-bit-wide register

Register reset

Register preset

Can't use @ALTERNATE
if you use' +' to add.

Three-state enable (ENABLE is a keyword).
103 must be a three-state pin.

K is 5.

Operators:
!= < > <= >=

Last statement in module

364

348 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

9.2.2 CUPL
CUPL is a PLD design language from Logical Devices. We shall review the CUPL
4.0 language here. The following code is a simple CUPL example describing
sequential logic:

SEQUENCE BayBridgeTollPlaza {
PRESENT red

IF car NEXT green OUT go:

DEFAULT NEXT red;
PRESENT green

NEXT red; }

/* conditional synchronous output */

/* default next state */

/* unconditional next state */

This code describes a state machine with two states. Table 9.3 shows the different
state machine assignment statements.

TABLE 9.3 CUPL statements for state-machine entry.

IF

IF

IF

DEFAULT

DEFAULT

DEFAULT

Statement Description

NEXT Conditional next state transition

NEXT OUT Conditional next state transition with synchronous output

NEXT Unconditional next state transition

NEXT OUT Unconditional next state transition with asynchronous output

OUT Unconditional asynchronous output

OUT Conditional asynchronous output

NEXT Default next state transition

OUT Default asynchronous output

NEXT OUT Default next state transition with synchronous output

You may also encode state machines as truth tables in CUPL. Here is another
simple example:

FIELD input = [inl .. 0]:
FIELD output = [out3 .. 0];

TABLE input => output {OO => 01; 01 => 02: 10 => 04; 11 => 08: }

The advantage of the CUPL language, and text-based PLD languages in general,
is now apparent. First, we do not have to enter the detailed logic for the state decod­
ing ourselves-the software does it for us. Second, to make changes only requires
simple text editing-fast and convenient.

365

9.2_ LOW-LEVEL DESIGN LANGUAGES 349

Table 9.4 shows some examples of CUPL statements. In CUPL Boolean equa­
tions may use variables that contain a suffix, or an extension, as in the following
example:

output.ext = (Boolean expression);

TABLE 9.4 CUPL.

Statement Example

Boolean expression A ! B;

A = B & C· ,
A B # c;
A B $ C· ,

Comment A B & C /*

Pin declaration

comment */

Comment

Logical negation

Logical AND

Logical OR

Logical exclusive-OR

Device dependent

Device independent

PIN 1 = CLK;

PIN = CLK;

NODE A;
--_._--_ .. -

Node declaration

NODE [BO .. 7] i

Pinnode declaration PINNODE 99 = Ai

Number automatically assigned

Array of buried nodes

Node assigned by designer

PINNODE [10 .. 17] [BO .. 7] i Array of pinnodes
--.-.,-------.-~.-------.-.-------------.-----~--.---.--'-'-'--"-" ..

Bit-field declaration FIELD Address = [BO .. 7] ; 8-bit address field

Bit-field operations add_one = Address:FF;

add_zero = !(Address:&);

True if Address = OxFF

True if Address = OxOO

add_range = Address: [OF .. FF]; True if OF.LE.Address.LE.FF

The extensions steer the software, known as a fitter, in assigning the logic. For
example, a signal-name suffix of .OE marks that signal as an output enable.

Here is an example of a CUPL file for a 4-bit counter placed in an ATMEL PLD
part that illustrates the use of some common extensions:

Name 4B1T; Device V2500Bi
/* inputs */

pin 1 = CLK; pin 3 = LD_i pin 17 = RST_i

pin [18,19,20,21] = [10,11,12,13];

/* outputs */

pin [4,5,6,7) = [QO,Q1,Q2,Q3];

field CNT = [Q3,Q2,Q1,QO);
/* equations */

Q3.T = (!Q2 & !Q1 & !QO) & LD & RST /* count down */

366

350 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

Q3 & !RST /* ReSeT */

(Q3 $ 13) & !LD ; /* LoaD*/ -
Q2.T (!Ql & !QO) & LD & RST # Q2 & !RST # (Q2 $ 12) & !LD ; - -
Ql.T !QO & LD & RST # Ql & !RST # (Ql $ Il) & !LD ;

QO.T LD & RST # QO & !RST # (QO $ 10) & !LD ; - -
CNT.CK = CLK; CNT.OE = 'h'F; CNT.AR = 'h' 0; CNT.SP = 'h' 0;

In this example the suffix extensions have the following effects: • CK marks the
clock; . T configures sequential logic as T flip-flops; .OE (wired high) is the output
enable; .AR (wired low) is the asynchronous reset; and. SP (wired low) is the syn­
chronous preset. Table 9.5 shows the different CUPL extensions.

The 4-bit counter is a very simple example of the use of the Atmel ATV2500B.
This PLD is quite complex and has many extra "buried" features. In order to use
these features in CUPL (and ABEL) you need to refer to special pin numbers and
node numbers that are given in tables in the manufacturer's data sheets. You may
need the pin-number tables to reverse engineer or convert a complicated CUPL (or
ABEL) design from one format to another.

Atmel also gives skeleton headers and pin declarations for their parts in their
data sheets. Table 9.6 shows the headers and pin declarations in ABEL and CUPL
format for the ATMEL ATV2500B.

9.2.3 PALASM

PALASM is a PLD design language from AMD/MMI. Table 9.7 shows the format of
PALASM statements. The following simple example (a video shift register) shows
the most basic features of the PALASM 2 language:

TITLE video ; shift register

CHIP video PAL20X8

CK /LD DO Dl D2 D3 D4 D5 D6 D7 CURS GND NC REV Q7 Q6 Q5 Q4 Q3 Q2 Ql QO
/RST VCC

STRING Load 'LD*/REV*/CURS*RST' ; load data

STRING LoadInv 'LD*REV*/CURS*RST' ; load inverted of data

STRING Shift '/LD*/CURS*/RST' ; shift data from MSB to LSB
EQUATIONS

/QO := /DO*Load+DO*LoadInv:+:/Ql*Shift+RST

/Ql := /Dl*Load+Dl*LoadInv:+:/Q2*Shift+RST
/Q2 := /D2*Load+D2*LoadInv:+:/Q3*Shift+RST
/Q3 "= /D3*Load+D3*LoadInv:+:/Q4*Shift+RST
/Q4 := /D4*Load+D4*LoadInv:+:/Q5*Shift+RST
/Q5 := /D5*Load+D5*LoadInv:+:/Q6*Shift+RST
/Q6 := /D6*Load+D6*LoadInv:+:/Q7*Shift+RST
/Q7 := /D7*Load+D7*LoadInv:+:Shift+RSTi

367

9.2 LOW-LEVEL DESIGN LANGUAGES 351

TABLE 9.5 CUPL 4.0 extensions.

Extension1 Explanation Extension Explanation

D L D input to a D register DFB R D register feedback of
combinational output

........... -.................. _--.. __ _-_ .. _.-" _ ... _.-....................... -...... --.. -........ " _." _ ... " .. _ _._.

L L L input to a latch LFB R Latched feedback of
combinational output

....... _._ .. _ ... -.--..... -.~ .. -... "-.. -.-.---.. -... - ... ---..... - .. -.--...... __ ... _.----_._...... _.... .._ .. _.-.. _._ -... _-,,_ '--.. -.- -. -." .. . -. -•...•. -............. ~ -.. -.-..•........... -.-. -.. __ .-... -_._ ...• _ .. _ .. _ ... _ .. _._ __ ._._._._. __ _ _._._._ .. -.... -.. -..... .

J, K L J-K-input to a J-K register TFB R T register feedback of
combinational output

---_. __ . __ ... _--------_._---_._._-_. -_ .. __ .-._._--_ .. _._-------_._-. __ .-._---_._---------_.-----_._._---
S, R L S-R input to an S-R register INT R Internal feedback

......... _ --.~ -... -.-....... -.-... -.. -'" .. _ ... -. __ . __ __ .. _-........•... _ _ ,_._ .. _ _ ... _ _ .. _ .. _ .. _ -"._ __ _ _.- _ .. _ _ -........ _..._ _ __ ,..,_ ... _ .. _._ .. _ _ .. _....... _--_ _............ -_ .. _ -

T L T input to a T register 10 R Pin feedback of registered output
--,.----.. --.~ ... -.-.... _-_ .. _ .. _-_._----_ .. _._--_ .. __ . __ . __ ... -._--_ .. __ .,_ .. _-_ _--_._ - _._ ... _ _ ... _ -..... _....... -_. _ _ .. -.. _ _._ __ ._ _ _,-_._-_ .. __ ._ .. - -._ .. __ . __ ._._-_. __ .. _ .. _. __ ._----- ._ _ _ .. -_ _._ _._ __ .-._ _-----'"-_.

DO R D output of an input D register 10DfT R DfT register on pin feedback path
selection

_ _._._ _._....... __ -.... _ .. _-_ .. _.-......... __••. _ -.--'.-",-."""-- _........ -........... - _ ... _ _ ... _ _ ... _ ..

LO R 0 output of an input latch

_ .. -... _ _ ... -..... - - ~.--- ---.-.. --......... --.... -....... -- ... __ ... -..... .

AP, AR L Asynchronous preset/reset

SP, SR

CK

OE

CA

L Synchronous preset/reset

L Product clock term (async.)
.... _ ..•..• __ ... - .. _ .. _ .. _ _ -...._..•..........

L Product-term output enable

L Complement array

PR L Programmable preload

10L R Latch on pin feedback path
selection

......... _ _........ _ __ _............ -.... _ _ .. _ _ ... _ ... _-_ _............ _ ... _ - __ _ _ .. .

10AP, 10AR L Asynchronous preset/reset of
register on feedback path

..

10SP, 10SR L Synchronous preset/reset of

lOCK

APMUX,
ARMUX

CKMUX

register on feedback path

L Clock for pin feedback register

L Asynchronous preset/reset
multiplexor selection

L Clock multiplexor selector

LEMUX L Latch enable multiplexor selector
-------_._-_ _-- .. -_._-._._-_._. __ ... -_ .. _------_._-.. _ .. _. __ ... - .. _ .. _----_ .. ,_ .. - .. _--_ .. <--_ ... __ .. _ .. _- ~- .. -- ••• -~ -----.--~---.-•• - ••••• _.... ..- -_.-._--_._-_._._----_._-----_ __ ._---_ ... --_ •• _ ... -_ •• - • __ ._-----_ .. - ••• _ •• _. .- ~< .. -_.-----

CE L CE input of a D-CE register OEMUX L Output enable multiplexor
selector

... _-_. -~.-.-------.----.-------.... --..... __ .--------- '-_._-' ... _ ... _-_._._ .. _-----_.- ._. -_. -_._ ... _- .---.. ----.--- .. ~------.----".-----.----.. ---<---.-.~----. -... -------.... - .. ---~.---."- ... - "-'-

LE L Product-term latch enable IMUX L Input multiplexor selector of
two pins

._.

OBS L Programmable observability of TEC L Technology-dependent fuse
buried nodes selection

BYP L Programmable register bypass T1 L T1 input of 2-T register

1 L means that the extension is used only on the LHS of an equation; R means that the extension is used only on
the RHS of an equation.

368

352 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

TABLE 9.6 ABEL and CUPL pin declarations for an ATMEL ATV2500B.

ABEL

device id device 'P2500B';

"device id used for JEDEC filename
11,12,13,117,118 pin 1,2,3,17,18;

04,05 pin 4,5 istype 'reg_d,buffer';
06,07 pin 6,7 istype 'com';

04Q2,07Q2 node 41,44 istype 'reg_d';
06F2 node 43 istype 'com';

07Q1 node 220 istype 'reg_d';

TABLE 9.7 PALASM 2.

Statement Example

Chip CHIP abc 22V10

CUPL

device V2500B;

pin [1,2,3,17,18] = [11,12,13,117,118];
pin [7,6,5,4) = [07,06,05,04];

pinnode [41,65,44] = [04Q2,04Q1,07Q2];

pinnode [43,68] = [06Q2,07Q1);

Comment

Specific PAL type

CHIP xyz USER Free-form equation entry
., ... -... ---~----.-..... ----.-... --~.---.--------.. -.-.---.--.-----.------.~-.-.-----~.-----<--.-.--.. --.~---.----._. __ ._"-- -.-.-.--,---~.-.-------

Pinlist

String

Equations

Polarity inversion

Assignment

<-

Comment

Functional equation

CLK ILD DO D1 D2 D3 D4 GND NC Part of CHIP statement; PAL pins in numerical
Q4 Q3 Q2 Q1 QO IRST VCC order starting with pin 1

STRING string_name 'text'

EQUATIONS

A IB

A B * C

A B + C

A B :+: C

A B :*: C

IA = I(B + C)

A = B + C

A := B + C

A = B + C ; comment

name.TRST

name.CLKF

name.RSTF

name.SETF

Before EQUATIONS statement

After CHIP statement

Logical negation

Logical AND

Logical OR

Logical exclusive-OR

Logical exclusive-NOR

Same as A = B + C

Combinational assignment

Registered assignment

Comment

Output enable control

Register clock control

Register reset control

Register set control

369

9.3 PLA TOOLS 353

The order of the pin numbers in the previous example is important; the order
must correspond to the order of pins for the DEVICE. This means that you probably
need the device data sheet in order to be able to translate a design from PALASM
to another format by hand. The alternative is to use utilities that many PLD and
FPGA companies offer that automatically translate from PALASM to their own
formats.

9.3 PLATools

We shall use the Berkeley PLA tools to illustrate logic mInImIzation using an
example to minimize the logic required to implement the following three logic
functions:

Fl = AIBI !Ci F2 = !B&Ci F3 = A&BICi

These equations are in eqntott input format. The eqntott (for "equation to
truth table") program converts the input equations into a tabular format. Table 9.8
shows the truth table and eqntott output for functions Fl, F2, and F3 that use the
six minterms: A, B, ! C, ! B&C, A&B, C.

TABLE 9.8 A PLA tools example.

(6 minterms): Fl = A I B I ! C i F2 !B&C; F3 = A&Blc;

A B C F1 F2 F3 eqntott output espresso output

0 0 0 1 0 0 .i 3 .i 3

0 0 1 0 1 1
.0 3 .0 3

.p 6 .p 6
0 1 0 1 0 0 --0 100 1-- 100

0 1 1 1 0 1 --1 001 11- 001

0
-01 010 --0 100

1 0 0 1 0
-1- 100 -01 011

1 0 1 1 1 1 1-- 100 -11 101

1 1 0 1 0 1 11- 001 .e

.e
1 1 1 1 0 1

Output (5 minterms): Fl = AI!cl(B&C); F2 !B&C; F3 = A&BI (!B&C) I (B&C);

370

354 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

This eqntott output is not really a truth table since each line corresponds to a min­
term. The output forms the input to the espresso logic-minimization program. Table 9.9
shows the format for espresso input and output files. Table 9.10 explains the fOlmat of
the input and output planes of the espresso input and output files. The espresso out­
put in Table 9.8 corresponds to the eqntott logic equations on the next page.

TABLE 9.9 The format of the input and output files used by the PLA design tool espresso.

Expression

comment

[d]

[s]

.i [d]

.0 [d]

• P [d]

. ilb [sl] [s2] ... [sn]

. ob [sl] [s2] ... [sn]

. type f

.type fd

.type fr

.type fdr

. e

Explanation

must be first character on a line.

Decimal number

Character string

Number of input variables

Number of output variables

Number of product terms

Names of the binary-valued variables must be after • i and • o .

Names of the output functions must be after. i and • o .

Following table describes the ON set; DC set is empty .

Following table describes the ON set and DC set.

Following table describes the ON set and OFF set.

Following table describes the ON set, OFF set, and DC set.

Optional, marks the end of the PLA description .

TABLE 9.10 The format of the plane part of the input and output files for espresso.

Plane

I

o
o
o
o

Character Explanation

1 The input literal appears in the product term.

o The input literal appears complemented in the product term.

1 or 4

o
2 or -

3 or -

The input literal does not appear in the product term.

This product term appears in the ON set.

This product term appears in the OFF set.

This product term appears in the don't care set.

No meaning for the value of this function.

371

FI = AI!CI(B&C); F2 = !B&C; F3 = A&BI(!B&C)I(B&C);

We see that espresso reduced the original six minterms to these five: A, A&B, ! C,
!B&C, B&C.

The Berkeley PLA tools were widely used in the 1980s. They were important
stepping stones to modern logic synthesis tools. There are so many testbenches,
examples, and old designs that used these tools that we occasionally need to convert
files in the Berkeley PLA format to formats used in new tools.

9.4 EDIF

An ASIC designer spends an increasing amount of time forcing different tools to
communicate. One standard for exchanging information between EDA tools is the
electronic design interchange format (EDIF). We will describe EDIF version
200. The most important features added in ED IF 300 were to handle buses, bus
rippers, and buses across schematic pages. ED IF 4 0 0 includes new extensions for
PCB and multi chip module (MCM) data. The Library of Parameterized Modules
(LPM) standard is also based on ED IF. The newer versions of EDIF have a richer
feature set, but the ASIC industry seems to have standardized on ED IF 2 0 O. Most
EDA companies now support EDIF. The FPGA companies Altera and Actel use
EDIF as their netlist format, and Xilinx has announced its intention to switch from
its own XNF format to EDIF. We only have room for a brief description of the EDIF
format here. A complete description of the EDIF standard is contained in the Elec­
tronic Industries Association (EIA) publication, Electronic Design Interchange
Format Version 200 (ANSI/EIA Standard 548-1988) [EDIF, 1988].

9.4.1 EDIF Syntax
The structure of EDIF is similar to the Lisp programming language or the Postscript
printer language. This makes EDIF a very hard language to read and almost impossi­
ble to write by hand. ED IF is intended as an exchange format between tools, not as a
design-entry language. Since ED IF is so flexible each company reads and writes dif­
ferent "flavors" of EDIF. Inevitably EDIF from one company does not quite work
when we try and use it with a tool from another company, though this situation is
improving with the gradual adoption of EDIF 3 0 O. We need to know just enough
about EDIF to be able to fix these problems.

Figure 9.8 illustrates the hierarchy of the EDIF file. Within an ED IF file are one
or more libraries of cell descriptions. Each library contains technology information
that is used in describing the characteristics of the cells it contains. Each cell
description contains one or more user-named views of the cell. Each view is defined
as a particular viewType and contains an interface description that identifies
where the cell may be connected to and, possibly, a contents description that iden­
tifies the components and related interconnections that make up the cell.

9.4 EDIF 355

372

356 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

FIGURE 9.8 The hierarchical nature of an EDIF file.

EDIF file

library 1
library

I technology I
cell 1

cell

view
view

interface
contents

I

.. L!:==:::....J
.. -..... ---------

The EDIF syntax consists of a series of statements in the following format:

(keywordName {form})

A left parenthesis (round bracket) is always followed by a keyword name, followed
by one or more ED IF forms (a form is a sequence of identifiers, primitive data, sym­
bolic constants, or ED IF statements), ending with a right parenthesis. If you have
programmed in Lisp or Postscript, you may understand that EDIF uses a "define it
before you use it" approach and why there are so many parentheses in an EDIF file.

The semantics of ED IF are defined by the ED IF keywords. Keywords are the
only types of name that can immediately follow a left parenthesis. Case is not signif­
icant in keywords.

An ED IF identifier represents the name of an object or group of data. Identifi­
ers are used for name definition, name reference, keywords, and symbolic constants.
Valid ED IF identifiers consist of alphanumeric or underscore characters and must be
preceded by an ampersand (&) if the first character is not alphabetic. The ampersand
is not considered part of the name. The length of an identifier is from 1 to 255 char­
acters and case is not significant. Thus &clock, Clock, and clock all represent the
same EDIF name (very confusing).

Numbers in ED IF are 32-bit signed integers. Real numbers use a special EDIF
format. For example, the real number 1.4 is represented as (e 14 -1). The e form
requires a mantissa (14) and an exponent (-1). Reals are restricted to the range
± 1 x 1 O±35. Numbers in EDIF are dimensionless and the units are determined
according to where the number occurs in the file. Coordinates and line widths are
units of distance and must be related to meters. Each coordinate value is converted

373

to meters by applying a scale factor. Each EDIF library has a technology section
that contains a required numberDefinition. The scale keyword is used with the
numberDefinition to relate ED IF numbers to physical units.

Valid EDIF strings consist of sequences of ASCII characters enclosed in double
quotes. Any alphanumeric character is allowed as well as any of the following charac­
ters:! # $ & I () * + , _ . / : ; < = > ? @ [\] A '{ I } -.
Special characters, such as " and % are entered as escape sequences: %number%, where
number is the integer value of the ASCII character. For example, "A quote is %
3 4 %" is a string with an embedded double-quote character. Blank, tab, line feed, and
carriage-return characters (white space) are used as delimiters in EDIF. Blank and tab
characters are also significant when they appear in strings.

The rename keyword can be used to create a new ED IF identifier as follows:

(cell (rename TEST_l "test$I") ...

In this example the EDIF string contains the original name, test$l, and a new
name, TEST_I, is created as an EDIF identifier.

9.4.2 An EDIF Netlist Example
Table 9.11 shows an EDIF netlist. This ED IF description corresponds to the halfgate
example in Chapter 8 and describes an inverter. We shall explain the functions of the
EDIF in Table 9.11 by showing a piece of the code at a time followed by an explana­
tion.

(edif halfgate_p

(edifVersion 2 0 0) (edifLevel 0) (keywordMap (keywordLevel 0»
(status (written (timeStamp 1996 7 10 22 5 10)

(program "COMPASS Design Automation -- EDIF Interface"

(version "v9rl.2 last updated 26-Mar-96"» (author "mikes"»)

Every ED IF file must have an edif form. The edif form must have a name, an
edifVersion, an edifLevel, and a keywordMap. The edifVersion consists of
three integers describing the major (first number) and minor version of EDIF. The
keywordMap must have a keywordLevel. The optional status can contain a
written form that must have a timeStamp and, optionally, author or program
forms.

(library xc4000d (edifLevel 0) (technology

(The unbalanced parentheses are deliberate since we are showing segments of the
ED IF code.) The library form must have a name, edifLevel and technology.
The edifLevel is normally o. The xc4000d library contains the cells we are using
in our schematic.

9.4 EDIF 357

374

358 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

TABLE 9.11 EDiF file for the halfgate netlistfrom Chapter 8.

(edif halfgate_p

(edifVersion 2 0 0)
(edifLevel 0)
(keywordMap

(keywordLevelO»
(status

(written

(timeStamp 1996 7 10 22
5 10)

(program "COMPASS Design
Automation -- EDIF Interface"

(version "v9rl.2 last

updated 26-Mar-96"»
(author "mikes"»)

(library xc4000d

(edifLevel 0)
(technology

(numberDefinition
(simulationInfo

(logicValue H)

(logicValue L»)
(cell

(rename INV "inv")
(cellType GENERIC)

(view COMPASS mde view

(viewType NETLIST)

(interface
(port I
(direction INPUT»

(port 0

(direction OUTPUT»

(designator "@@Label"»»)

(library working
(edifLevel 0)

(technology
(numberDefinition

(simulationInfo

(logicValue H)

(logicValue L»)
(cell

(rename HALFGATE_P

"halfgate_p")
(cellType GENERIC)

(view COMPASS_nls_view

(viewType NETLIST)
(interface
(port myInput

(direction INPUT»

(port myOutput
(direction OUTPUT»

(designator "@@Label"»

(contents

(instance Bl il

(viewRef
COMPASS mde view

(cellRef INV
(libraryRef

xc4000d»»
(net myInput

(joined

(portRef myInput)
(portRef I
(instanceRef

Bl_il»»
(net myOutput

(joined

(portRef myOutput)
(portRef 0

(instanceRef

Bl ill»~)
(net VDD

(joined »
(net VSS

(joined »»»
(design HALFGATE_P
(cellRef HALFGATE_P

(libraryRef working»»

(numberDefinition) (simulationInfo (logicValue H) (logicValue L»)

The simulationInfo form is used by simulation tools; we do not need that infor­
mation for netlist purposes for this cell. We shall discuss numberDefini tion in the
next example. It is not needed in a netlist.

(cell (rename INV "inv") (cellType GENERIC)

This cell form defines the name and type of a cell inv that we are going to use in
the schematic.

(view COMPASS_mde view (viewType NETLIST)

(interface (port I (direction INPUT» (port 0 (direction OUTPUT»
(designator "@@Label"»»)

375

The NETLIST view of this inverter cell has an input port I and an output port o.
There is also a place holder" @@Label" for the instance name of the cell.

(library working ...

This begins the description of our schematic that is in our library working. The
lines that follow this library form are similar to the preamble for the cell library
xc4000d that we just explained.

(cell (rename HALFGATE_P "ha1fgate_p") (ce1lType GENERIC)

(view COMPASS_nls_view (viewType NETLIST)

This cell form is for our schematic named halfgate _po

(interface (port myInput (direction INPUT»

(port myOutput (direction OUTPUT»

The interface form defines the names of the ports that were used in our sche­
matic, mylnput and myOutput. At this point we have not associated these ports
with the ports of the cell INV in the cell library.

(designator "@@Labe1"» (contents (instance B1_i1

This gives an instance name Bl_il to the cell in our schematic.

(viewRef COMPASS_mde_view (ce1lRef INV (libraryRef xc4000d»»

The cellRef form links the cell instance name B1 i1 in our schematic to the cell
INV in the library xc4000d.

(net myInput (joined (portRef myInput)

(portRef I (instanceRef B1 ill»~)

The net form for mylnput (and the one that follows it for myOutput) ties the net
names in our schematic to the ports I and 0 of the library cell INV.

(net VDD (joined » (net VSS (joined »»»

These forms for the global VDD and VSS nets are often handled differently by differ­
ent tools (one company might call the negative supply GND instead of VSS, for exam­
ple). This section is where you most often have to edit the EDIF.

(design HALFGATE_P (cellRef HALFGATE_P (libraryRef working»»

The design form names and places our design in library working, and completes
the EDIF description.

9.4.3 An EDIF Schematic Icon
EDIF is capable of handling many different representations. The next EDIF example
is another view of an inverter that describes how to draw the icon (the picture that
appears on the printed schematic or on the screen) shown in Figure 9.9. We shall

9.4 EDIF 359

376

360 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

examine the EDIF created by the CAD/CAM Group's Engineering Capture System
(ECS) schematic editor.

(0,0) ______ _
---1

INV

,

+instance
~value

,
-------- --,

(76, -32)

FIGURE 9.9 An EDIF view of an inverter icon. The coordinates shown are in EDIF units.
The crosses that show the text location origins and the dotted bounding box do not print as
part of the icon.

This time we shall give more detailed explanations after each piece of ED IF
code. We shall also maintain balanced parentheses to make the structure easier to
follow. To shorten the often lengthy EDIF code, we shall use an ellipsis (...) to
indicate any code that has been left out.

(edif ECS

(edifVersion 2 0 0)
(edifLevel 0)

(keywordMap (keywordLevel 0))
(status

(written
(timeStamp 1987 8 20 0 50 23)
(program "CAD/CAM Group, Inc. ECS" (Version "1"))))

(library USER ...

This preamble is virtually identical to the previous netlist example (and demon­
strates that EDIF is useful to store design information as software tools come and go
over many years). The first line of the file defines the name of the file. This is fol­
lowed by lines that identify the version of EDIF being used and the highest ED IF
level used in the file (each library may use its own level up to this maximum). EDIF
level 0 supports only literal constants and basic constructs. Higher EDIF levels sup­
port parameters, expressions, and flow control constructs. EDIF keywords may be

377

mapped to aliases, and keyword macros may be defined within the keywordMap

form. These features are not often used in ASIC design because of a lack of stan­
dardization. The keywordLevel 0 indicates these capabilities are not used here.
The status construct is used for administration: when the file was created, the soft­
ware used to create the file, and so on. Following this preamble is the main section
of the file, which contains design information.

(library USER (edifLevel 0)

(technology

(numberDefinition

(scale 4 (e 254 -5) (unit distance)))
(figureGroup NORMAL

(pathWidth 0) (borderWidth 0)

(textHeight 5))
(figureGroup WIDE

(pathWidth 1) (borderWidth 1)

(textHeight 5)))
(cell 7404 ...

)

The technology form has a numberDefinition that defines the scaling informa­
tion (we did not use this form for a netlist, but the form must be present). The first
numberValue after scale represents EDIF numbers and the second numberValue

represents the units specified by the unit form. The EDIF unit for distance is the
meter. The numberValue can be an integer or an exponential number. The e form
has a mantissa and an exponent. In this example, within the USER library, a distance
of 4 EDIF units equals 254 x 10-5 meters (or 4 ED IF units equals 0.1 inch).

After the numberDefinition in the technology form there are one or more
figureGroup definitions. A figureGroup defines drawing information such as
pathWidth, borderWidth, color, fillPattern, borderPattern, and
textHeight. The figureGroup form must have a name, which will be used later
in the iibrary to refer back to these definitions. In this example the USER library has
one figureGroup (NORMAL) for lines and paths of zero width (the actual width
will be implementation dependent) and another figureGroup (WIDE) that will be
used for buses with a wider width (for bold lines). The borderWidth is used for
drawing filled areas such as rectangles, circles, and polygons. The pathWidth is
used for open figures such as lines (paths) and open arcs.

Following the technology section the cell forms each represent a symbol.
The cell form has a name that will appear in the names of any files produced. The
cellType form GENERIC type is required by this schematic editor. The property

form is used to list properties of the cell.

(cell 7404 (cellType GENERIC)
(property SymbolType (string "GATE"))

(view PCB_Symbol (viewType SCHEMATIC)

9.4 EDIF 361

378

362 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

(interface

The Symbol Type property is used to distinguish between purely graphical sym­
bols that do not occur in the parts list (a ground connection, for example), gate or
component symbols, and block or cell symbols (for hierarchical schematics). The
Symbol Type property is a string that may be COMPONENT, GATE, CELL, BLOCK, or
GRAPHIC. Each cell may contain view forms and each view must have a name. Fol­
lowing the name of the view must be a viewType that is either GRAPHIC or SCHE­

MATIC. Following the viewType is the interface form, which contains the
symbol and terminal information. The interface form contains the actual symbol
data.

(interface
(port Pin_l

(designator "2")

(direction OUTPUT)
(dcMaxFanout 50))

(port Pin_2
(designator "I")

(direction INPUT)
(dcFanoutLoad 8)
(property Cap

(string "22")))
(property Value

(string "45"))
(symbol

)

If the symbol has terminals, they are listed before the symbol form. The port

form defines each terminal. The required port name is used later in the symbol

form to refer back to the port. Since this example is from a PCB design, the termi­
nals have pin numbers that correspond to the IC package leads. The pin numbers are
defined in the designator form with the pin number as a string. The polarity of the
pin is indicated by the direction form, which may be INPUT, OUTPUT, or INOUT. If
the pin is an output pin, its Drive can be represented by dcMaxFanout and if it is
an input pin its Load can be represented by dcFanoutLoad. The port form can also
contain forms unused, dcMaxFanin, dcFaninLoad, acLoad, and portDelay. All
other attributes for pins besides PinNumber, Polarity, Load, and Drive are con­
tained in the property form.

An attribute string follows the name of the property in the string form. In this
example port Pin _2 has a property Cap whose value is 22. This is the input capac­
itance of the inverter, but the interpretation and use of this value depends on the
tools. In ASIC design pins do not have pin numbers, so designator is not used.

379

Instead, the pin names use the property form. So (property NetName (string

"I" » would replace the (designator "1") in this example on Pin_ 2. The
interface form may also contain attributes of the symbol.

Symbol attributes are similar to pin attributes. In this example the property
name Value has an attribute string "45". The names occurring in the property

form may be referenced later in the interface under the symbol form to refer
back to the property.

(symbol
(boundingBox (rectangle (pt 0 0) (pt 76 -32»)
(portlmplementation Pin_1

(connectLocation (figure NORMAL (dot (pt 60 -16»»)
(keywordDisplay designator

(display NORMAL
(justify LOWERCENTER) (origin (pt 60 -14»»)

(portlmplementation Pin_2
(connectLocation (figure NORMAL (dot (pt 0 -16»»)
(keywordDisplay designator

(display NORMAL
(justify LOWERCENTER) (origin (pt 0 -14»»)

(keywordDisplay cell
(display NORMAL (justify CENTERLEFT) (origin (pt 25 -5»»

(keywordDisplay instance
(display NORMAL

(justify CENTERLEFT) (origin (pt 36 -28»»
(keywordDisplay designator

(display (figureGroupOverride NORMAL (textHeight 7»
(justify CENTERLEFT) (origin (pt 13 -16»»

(propertyDisplay Value
(display (figureGroupOverride NORMAL (textHeight 9»

(justify CENTERRIGHT) (origin (pt 76 -24»»
(figure ...)

The interface contains a symbol that contains the pin locations and graphi­
cal information about the icon. The optional boundingBox form encloses all the
graphical data. The x- and y-Iocations of two opposite corners of the bounding rect­
angle use the pt form. The scale section of the numberDefinition from the tech­
nology section of the library determines the units of these coordinates. The pt

construct is used to specify coordinate locations in EDIF. The keyword pt must be
followed by the x-location and the y-location. For example: (pt 100 200) is at
x= 100, y=200.

• Each pin in the symbol is given a location using a port Implementation.

• The port Implementation refers back to the port defined in the
interface.

• The connectLocation defines the point to connect to the pin.

9.4 EDIF 363

380

364 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

• The connectLocation is specified as a figure, a dot with a single pt for
its location.

(symbol

(

(figure WIDE
(path (pointList (pt 12 0) (pt 12 -32)))

(path (pointList (pt 12 -32) (pt 44 -16)))
(path (pointList (pt 12 0) (pt 44 -16))))

(figure NORMAL
(path (pointList (pt 48 -16) (pt 60 -16)))

(circle (pt 44 -16) (pt 48 -16))
(path (pointList (pt 0 -16) (pt 12 -16))))

(annotate
(stringDisplay "INV"

(display NORMAL
(justify CENTERLEFT) (origin (pt 12 -12)))))

The figure form has either a name, previously defined as a figureGroup in
the technology section, or a figureGroupOverride form. The figure has all
the attributes (pathWidth, borderWidth, and so on) that were defined in the
figureGroup unless they are specifically overridden with a figureGroupOverride.

Other objects that may appear in a figure are: circle, openShape, path,

polygon, rectangle, and shape. Most schematic editors use a grid, and the pins
are only allowed to occur on grid.

A portlmplementation can contain a keywordDisplay or a propertyDisplay

for the location to display the pin number or pin name. For a GATE or COMPONENT,

keywordDisplay will display the designator (pin number), and designator is
the only keyword that can be displayed. For a BLOCK or CELL, propertyDisplay

will display the NetName. The display form displays text in the same way that the
figure displays graphics. The display must have either a name previously defined
as a figureGroup in the technology section or a figureGroupOverride form.
The display will have all the attributes (text Height for example) defined in the
figureGroup unless they are overridden with a figureGroupOverride.

A symbolic constant is an ED IF name with a predefined meaning. For exam­
ple, LOWERLEFT is used to specify text justification. The display form can contain
a justify to override the default LOWERLEFT. The display can also contain an
orientation that overrides the default RO (zero rotation). The choices for orienta­
tion are rotations (RO I R90 I Rl80 I R27 0), mirror about axis (MX I MY), and mirror
with rotation (MXR90 I MYR90). The display can contain an origin to override the
default (pt 0 0).

The symbol itself can have either keywordDisplay or propertyDisplay forms
such as the ones in the portlmplementation. The choices for keywordDisplay

are: cell for attribute Type, instance for attribute InstName, and designator for

381

attribute Ref Des. In the preceding example an attribute window currently mapped to
attribute Value is displayed at location (76, -24) using right-justified text, and a font
size is set with (textHeight 9).

The graphical data in the symbol are contained in figure forms. The path
form must contain pointList with two or more points. The figure may also con­
tain a rectangle or circle. Two points in a rectangle define the opposite cor­
ners. Two points in a circle represent opposite ends of the diameter. In this
example a figure from figureGroup WIDE has three lines representing the trian­
gle of the inverter symbol.

Arcs use the openShape form. The openShape must contain a curve that con­
tains an arc with three points. The three points in an arc correspond to the starting
point, any point on the arc, and the end point. For example, (openShape (curve
(arc (pt - 5 0) (pt 0 5) (pt 5 0»» is an arc with a radius of 5, cen­
tered at the origin. Arcs and lines use the pathWidth from the figureGroup or
figureGroupOverride; circles and rectangles use borderWidth.

The fixed text for a symbol uses annotate forms. The stringDisplay in
annotate contains the text as a string. The stringDisplay contains a display
with the textHeight, justification, and location. The symbol form can con­
tain multiple figure and annotate forms.

9.4.4 An EDIF Example
In this section we shall illustrate the use of EDIF in translating a cell library from
one set of tools to another-from a Compass Design Automation cell library to the
Cadence schematic-entry tools. The code in Table 9.12 shows the ED IF description
of the symbol for a two-input AND gate, an02dl, from the Compass cell library.

The Cadence schematic tools do contain a procedure, EDIFIN, that reads the
Compass ED IF files. This procedure works, but, as we shall see, results in some
problems when you use the icons in the Cadence schematic-entry tool. Instead we
shall make some changes to the original files before we use EDIFIN to transfer the
information to the Cadence database, cdba.

The original Compass EDIF file contains a figureGroup for each of the fol­
lowing four EDIF cell symbols:

connector FG icon FG instance FG net FG bus FG

The EDIFIN application translates each figureGroup to a Cadence layer-purpose
pair definition that must be defined in the Cadence technology file associated with
the library. If we use the original EDIF file with EDIFIN this results in the auto­
matic modification of the Cadence technology file to define layer names, purposes,
and the required properties to enable use of the figureGroup names. This results
in non-Cadence layer names in the Cadence database.

9.4 EDIF 365

382

366 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

TABLE 9.12 EDIF file for a Compass standard-cell schematic icon.

{edif pvsc37 Od
{edifVersion 2 0 O}
(edifLevel 0)
{keywordMap

{keywordLevel OJ}
{status
{written

(timeStamp 1993 2 9 22 38 36)
{program "COMPASS"
{version "v8"}}

(author "mikes"»}
(library pvsc370d
(edifLevel O)
(technology
(numberDefinition
(figureGroup connector_FG
(color 100 100 100)
(textHeight 30)
(visible
(true)}}

(figureGroup icon FG
(color 100 100 100)
{textHeight 30}
(visible
(true»)

(figureGroup instance FG
(color 100 100 100)
(textHeight 30)
(visible
(true»)

(figureGroup net_FG
(color 100 100 100)
(textHeight 30)
(visible
(true »)

(figureGroup bus_FG
(color 100 100 100)
(textHeight 30)
(visible
(true »

(pathWidth 4»)
(cell an02d1
(cellType GENERIC)
(view Icon_view

(viewType SCHEYiliTIC)
(interface

(port A2
(direction INPUT»

(port Al
(direction INPUT»

(port z
(direction OUTPUT»

(property label
(string ""»

(symbol
(portlmplementation

(name A2
(display connector FG
(origin
(pt -5 1»»

(connectLocation
(figure connector FG
{dot
(pt 0 0»»)

(portlmplementation
(name Al
(display connector FG
(origin
(pt -5 21»»

(connectLocation
(figure connector FG
(dot
(pt 0 20»»)

(portlmplementation
(name Z
(display connector FG
(origin
(pt 60 15»»

(connectLocation
(figure connector_FG
(dot
(pt 60 10»»)

(figure icon FG
(path
(pointList
(pt 0 20)
(pt 10 20»}

(path
(pointList
(pt 0 0)
(pt 10 O}»

(path

{pointList
(pt 10 -5)
(pt 10 25)}}

(path
(pointList
(pt 10 -5)
(pt 30 -5)}}

{path
{pointList
(pt 10 25)
(pt 30 25»)

{path
{pointList
(pt 45 10)
(pt 60 10»)

{openShape
{curve
{arc

(pt 30 -5)
(pt 45 10)
(pt 30 25)))))

{boundingBox
(rectangle
(pt -15 -28)
(pt 13 4 2 7)))

{keywordDisplay instance
{display icon FG
{origin
(pt 20 29»»

(propertyDisplay label
{display icon FG

(origin
(pt 20 -1»»

{keywordDisplay cell
(display icon FG
{origin

(pt 20 -10»»
{commentGraphics

(annotate
{stringDisplay "Ix"
{display icon FG

(origin
(pt 20 10»»»)}»»

383

First then, we need to modify the ED IF file to use the standard Cadence layer
names shown in Table 9.13. These layer names and their associated purposes and
properties are defined in the default Cadence technology file, default. tf. There is
one more layer name in the Compass files (bus FG figureGroup), but since this is
not used in the library we can remove this definition from the EDIF input file.

TABLE 9.13 Compass and corresponding Cadence f igureGroup names.

9.4 EDIF 367

Compass name Cadence name Compass name Cadence name

connector FG

icon FG

instance FG

pin

device

instance

net FG wire

bus FG not used

Internal scaling differences lead to giant characters in the Cadence tools if we
use the textHeight of 30 defined in the EDIF file. Reducing the textHeight to 5
results in a reasonable text height.

The EDIF numberDefinition construct, together with the scale construct,
defines measurement scaling in an ED IF file. In a Cadence schematic ED IF file the
numberDef ini tion and scale construct is determined by an entry in the associ­
ated library technology file that defines the edifUni t to userUni t ratio. This ratio
affects the printed size of an icon.

For example, the distance defined by the following path construct is 10 ED IF
units:

(path (pointlist (pt 0 0) (pt 0 10)))

What is the length of 10 ED IF units? The numberDefinition and scale con­
struct associates EDIF units with a physical dimension. The following construct

(numberDefinition (scale 100 (e 25400 -6) unit DISTANCE))

specifies that 100 EDIF units equal 25400x 10-6 m or approximately 1 inch.
Cadence defines schematic measurements in inches by defining the userUni t prop­
erty of the affected viewType or viewName as inch in the Cadence technology file.
The Compass ED IF files do not provide values for the numberDefinition and
scale construct, and the Cadence tools default to a value of 160 EDIF units to 1
user unit. We thus need to add a numberDef ini tion and scale construct to the
Compass ED IF file to control the printed size of icons.

The EDIF file defines blank label placeholders for each cell using the ED IF
property construct. Cadence EDIFIN does recognize and translate EDIF proper­
ties, but to attach a label property to a cellview object it must be defined (not
blank) and identified as a property using the EDIF owner construct in the ED IF file.
Since the intent of a placeholder is to hold an empty spot for later use and since

384

368 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

Cadence Composer (the schematic-entry tool) supports label additions to instanti­
ated icons, we can remove the EDIF label property construct in each cell and the
associated propertyDisplay construct from the Compass file.

There is a problem that we need to resolve with naming. This is a problem that
sooner or later everyone must tackle in ASIC design-case sensitivity.

In EDIF, input and output pins are called ports and they are identified using
portlrnplernentation constructs. In order that the ports of a particular cell
icon_view are correctly associated with the ports in the related functional, layout,
and abstract views, they must all have the same name. The Cadence tools are case
sensitive in this respect. The Verilog and CIF files corresponding to each cell in the
Compass library use lowercase names for each port of a given cell, whereas the
EDIF file uses uppercase. The EDIFIN translator allows the case of cell, view, and
port names to be automatically changed on translation. Thus pin names such as 'AI'

become 'aI' and the original view name 'Icon_view' becomes ' icon_view'.

The boundingBox construct defines a bounding box around a symbol (icon).
Schematic-capture tools use this to implement various functions. The Cadence Com­
poser tool, for example, uses the bounding box to control the wiring between cells
and as a highlight box when selecting components of a schematic. Compass uses a
large boundingBox definition for the cells to allow space for long hierarchical
names. Figure 9.1O(a) shows the original an02dI cell bounding box that is larger
than the cell icon.

autoroute ----.....,---________ ----.

[@instanceNarne] 10 11 [@instanceName]
r-----------------------, ;-------------- --I---I----------------~

:al~_ : :al :al al~--l
a2~z

[@cellnarne]
:a2~z : :a2 z:a2' Ix z
• [@cellnarne] . an02dl:: an02dl . . . -------------~ -b;~-~di-~g box . -----------------L__ J. - - - - - - - - - - - - - - - -,

(a) (b) (c)

FIGURE 9.10 The bounding box problem. (a) The original bounding box for the an02d1
icon. (b) Problems in Cadence Composer due to overlapping bounding boxes. (c) A "shrink­
wrapped" bounding box created using SKILL.

Icons with large bounding boxes create two problems in Composer. Highlight­
ing all or part of a complex design consisting of many closely spaced cells results in
a confusion of overlapped highlight boxes. Also, large boxes force strange wiring
patterns between cells that are placed too closely together when Composer's auto­
matic routing algorithm is used. Figure 9.1 O(b) shows an example of this problem.

There are two solutions to the bounding-box problem. We could modify each
boundingBox definition in the original ED IF file before translation to conform to
the outline of the icon. This involves identifying the outline of each icon in the

385

9.5 CFI DESIGN REPRESENTATION 369

EDIF file and is difficult. A simpler approach is to use the Cadence tool program­
ming language, SKILL. SKILL provides direct access to the Cadence database,
cdba, in order to modify and create objects. Using SKILL you can use a batch file to
call functions normally accessed interactively. The solution to the bounding box
problem is:

1. Use EDIFIN to create the views in the Cadence database, cdba.

2. Use the schCreateInstBox () command on each icon_view object to elim­
inate the original bounding box and create a new, minimum-sized, bounding
box that is "shrink-wrapped" to each icon.

Figure 9.1O(c) shows the results of this process. This modification fixes the prob­
lems with highlighting and wiring in Cadence Composer.

This completes the steps required to translate the schematic icons from one set
of tools to another. The process can be automated in three ways:

• Write UNIX sed and awk scripts to make the changes to the EDIF file
before using EDIFIN and SKILL.

• Write custom C programs to make the changes to the EDIF file and then pro­
ceed as in the first option.

• Perform all the work using SKILL.

The last approach is the most elegant and most easily maintained but is the most dif­
ficult to implement (mostly because of the time required to learn SKILL). The whole
project took several weeks (including the time it took to learn how to use each of the
tools). This is typical of the problems you face when trying to convert data from one
system to another.

9.5 CFI Design Representation

The CAD Framework Initiative (CF1) is an independent nonprofit organization
working on the creation of standards for the electronic CAD industry. One of the
areas in which CFI is working is the definition of standards for design representa D

tion (DR). The CFI 1.0 standard [CFI, 1992] has tackled the problems of ambiguity
in the area of definitions and terms for schematics by defining an information
model (1M) for electrical connectivity information.

What this means is that a group of engineers got together and proposed a stan­
dard way of using the terms and definitions that we have discussed. There are good
things and bad things about standards, and one aspect of the CFI 1.0 DR standard
illustrates this point. A good thing about the CFI 1.0 DR standard is that it precisely
defines what we mean by terms and definitions in schematics, for example. A bad

386

370 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

thing about the CFI DR standard is that in order to be precise it introduces yet more
terms that are difficult to understand. A very brief discussion of the CFI 1.0 DR
standard is included here, at the end of this chapter, for several reasons:

• It helps to solidify the concepts of the terms and definitions such as cell, net,
and instance that we have already discussed. However, there are additional
new concepts and terms to define in order to present the standard model, so
this is not a good way to introduce schematic terminology.

• The ASIC design engineer is becoming more of a programmer and less of a
circuit designer. This trend shows no sign of stopping as ASICs grow larger
and systems more complex. A precise understanding of how tools operate and
interact is becoming increasingly important.

9.5.1 CFI Connectivity Model
The CFI connectivity model is defined using the EXPRESS language and its graph­
ical equivalent EXPRESS-G. EXPRESS is an International Standards Organization
(ISO) standard [EXPRESS, 1991]. EDIF 3 00 and higher also use EXPRESS as the
internal formal description of the language. EXPRESS is used to define objects and
their relationships. Figure 9.11 shows some simple examples of the EXPRESS-G
notation.

The following EXPRESS code (a schema) is equivalent to the EXPRESS-G
family model shown in Figure 9.11(c):

SCHEMA family_model;
ENTITY person

ABSTRACT SUPERTYPE OF (ONEOF (man, woman, child));
name: STRING;
date of birth: STRING;

END_ENTITY;

ENTITY man

SUBTYPE OF (person);

wife: SET[O:l] OF woman;
children: SET[O:?] OF child;

END_ENTITY;

ENTITY woman

SUBTYPE OF (person);

husband: SET[O:l] OF man;
children: SET[O:?] OF child;

END_ENTITY;

ENTITY child

SUBTYPE OF (person);
father: man;
mother: woman;

387

9.5 CFI DESIGN REPRESENTATION 371

days in
f"

day
January

'---'
number

shopping grocery
list ············C item

L[1 :31] 8[0:?]
'-------'

(a) (b)

person

man wife 1 woman

husband 1

father 1 child mother 1
.. ~ .. ~--_.- ----- ------------ -------------------------_ ..

children 8[0:?] children 8[0:?]

(c)

FIGURE 9.11 Examples of EXPRESS-G. (a) Each day in January has a number from 1 to
31. (b) A shopping list may contain a list of items. (c) An EXPRESS-G model for a family.

END_ENTITY;

END_SCHEMA;

This EXPRESS description is a formal way of saying the following:

o "Men, women, and children are people."

o "A man can have one woman as a wife, but does not have to."

e "A wife can have one man as a husband, but does not have to."

o "A man or a woman can have several children."

o "A child has one father and one mother."

Computers can deal more easily with the formal language version of these state­
ments. The formal language and graphical forms are more precise for very complex
models.

388

372 CHAPTER 9 LOW-LEVEL DE81GN ENTRY

Figure 9.12 shows the basic structure of the CFI 1.0.0 Base Connectivity
Model (BCM). The actual EXPRESS-G diagram for the BCM defined in the CFI
1.0.0 standard is only a little more complicated than Figure 9.12 (containing 21
boxes or types rather than just six). The extra types are used for bundles (a group of
nets) and different views of cells (other than the netlist view).

Library

contains
8[0:7]

()
presents 8[0:7]

Cell " '--' Port A contains
8[0:7]

()has contains Net ~~!:1_~§_~!~_Y ()
has

describer 8[0:7]
connectsc) describer ()
8[0:7]

Celllnst presents 8[0:7]
"

Port Inst
'---'

FIGURE 9.12 The original "five-box" model of electrical connectivity. There are actually six
boxes or types in this figure; the Library type was added later.

Figure 9.12 says the following ("presents" as used in Figure 9.12 is the Express
jargon for "have"):

• "A library contains cells."

• "Cells have ports, contain nets, and can contain other cells."

Q "Cell instances are copies of a cell and have port instances."

• "A port instance is a copy of the port in the library cell."

o "You connect to a port using a net."

o "Nets connect port instances together."

Once you understand Figure 9 .12 you will see that it replaces the first half of this
chapter. Unfortunately you have to read the first half of this chapter to understand
Figure 9.12.

389

9.6 Summary

The important concepts that we covered in this chapter are:

o Schematic entry using a cell library

• Cells and cell instances, nets and ports

• Bus naming, vectored instances in datapath

• Hierarchy

• Editing cells

• PLD languages: ABEL, PALASM, and CUPL

• Logic minimization

• The functions of EDIF

• CFI representation of design information

9.7 Problems

9.1 (EDIF description)

9.6 SUMMARY 373

a. (5 min.) Write an EDIF description for an icon for an inverter (just the input
and output wires, a triangle, and a bubble). What problems do you face and
what assumptions did you make?

b. (30 min. +) Try and import your symbol into your schematic-entry tool. If you
fail (as you might) explain what the problem is and suggest a direction of
attack. Hint: If you can, try Problem 9.2 first.

9.2 (EDIF inverter, 15 min.) If you have access to a tool that generates EDIF
for the icons, write out the ED IF for an inverter icon. Explain the code.

9.3 (EDIF netlist, 20 min.) Starting with an empty directory and using a sche­
matic editor (such as Viewlogic) draw a schematic with a single inverter (from any
cell library).

a. List the files that are created in the directory.

b. Print each one (check first to make sure it is ASCII, not binary).

c. Try and explain the contents.

9.4 (Minitutorial, 60 min.) Write a mini tutorial (no more than five pages) that
explains how to set up your system (location and nature of any start-up files such as
. ini files for Viewlogic and so on); how to choose or change a library (for cell
icons); how to choose cells, instantiate, label, and connect them; how to select, copy
and delete symbols; and how to save a schematic. Use a single inverter connected to
an input and output pad as an example.

390

374 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

9.5 (Icons, 30 min.) With an example show how to edit and create a symbol
icon. Make a triangular icon (the same size as an inverter in your library but without
a bubble) for a series connection of two inverters and call it myBuffer.

9.6 (Buses, 30 min.)

a. Create an example of a l6-bit bus: connect 8 inverters to bit zero (the MSB or
leftmost bit) and bits 10-16 (as if we were taking the sign bit, bit zero, and
the seven least-significant bits from a 16-bit signed number). Name the
inverter connected to the sign bit, SIGN. Name the other inverters BITO

through BIT7.

b. Write the netlist as an EDIF file, number the lines, and explain the contents
by referencing line numbers.

9.7 (VDD and VSS, 30 min.) Using a simple example of two inverters (one
with input connected to VDD, the other with input connected to VSS or GND)
explain how your schematic-entry system handles global power and ground nets and
their connection to cell pins. Can you connect VDD or VSS to an output pin in your
system? If your schematic software has a netlist screener, try it on this example.

9.8 (Hierarchy, 30 min.) Create a very simple hierarchical cell. The lowest
level, named bottom, contains a single inverter (named invB). The highest level,
called top, contains another inverter, invT, whose input is connected to the output
of cell bottom. Write out the netlist (in internal and EDIF format) and explain how
the tool labels a hierarchical cell.

9.9 (Vectored instances, 30 min.) Create a vectored instance of eight inverters,
invO through inv7. Write the netlist in internal and EDIF form and explain the con­
tents.

9.10 (Dangling wires, 30 min.) Create a cell, danglel, containing two invert­
ers, invl and inv2. Connect the input of invl to an external connector, inl, and
the output of inv2 to an external connector out2. Write the netlist and explain what
happens to the unlabeled and unused nets. If you have a netlist screener, run it on
this example.

9.11 (PLD languages, 60 min.) Conduct a Web search on ABEL, CUPL, or
PALASM (start by searching for "Logical Devices" not "ABEL"). Try and find
examples of these files and write an explanation of their function using the descrip­
tions of these languages in this chapter.

9.12 (ED IF 3 0 0, 10 min.) Download the EDIF 3 0 0 example schematic file
from http://www.ediLorg/edif/workshop.edf and see if your ED IF reader
will accept it. What is it?

9.13 (EXPRESS-G, 15 min.) Draw an EXPRESS-G diagram for the govern­
ment of your country. For example, in the United States you would start with the
president and the White House and work down through the House and Senate, show­
ing the senators and congressional representatives. In the United Kingdom you
would draw the prime minister, the House of Commons, and HOllse of Lords with
the various MPs.

391

9.7 PROBLEMS 375

9.14 (ABEL PCl Target) (10 min.) Download the Xilinx Application Note,
Designing Flexible PCl Interfaces with Xilinx EPLDs, January 1995
(pci epld. pdf at www.xilinx.com). The Appendix of this App. Note contains the
ABEL source code for a PCI Bus Interface Target. The code is long but straightfor­
ward; most of it describes the next-state transitions for the bus-controller state
machine. Extract the ABEL source code using Adobe Acrobat. Hint: This is not
easy; Acrobat does a poor job of selecting text; you will lose many semicolons at the
end of lines that you will have to add by hand. Use Replace ... to search for end-of­
line, ""p", and replace by" ; "p" in Word. (60 min.+) Try to convert this code to
a system where you can compile it. You may need conversion utilities to do this. For
example Altera (www.altera.com) has utilities (EAU018.EXE and EAU019.EXE

located at ftp.altera. com/pub) to convert from ABEL 4.0 to AHDL.

9.15 (CUPL, 60 min.) Download and install the CUPL demonstration package
from http://www.protel.com/download.htm. Write a two-page help sheet on
what you did, where the software is installed, and how to run it.

9.16 (PALASM) (30 min.) Download and install PALASM4 v1.5 from the
AMD Web site at ftp: I I ftp. amd. com/pub/pldl software/palasm.

9.17 (CUPL)

a. (15 min.) Check the equations III the CUPL code for the 4-bit counter in
Section 9.2.

b. (10 min.) Add a count-enable signal to the code.

c. (30 min.) If you have access to CUPL, compile your answer.

9.18 (ED IF)

a. (30 min.) Using the syntax definitions below and the example schematic icon
shown in Table 9.12 to help you, "stitch" back together the EDIF definition
for the 7404 inverter symbol used as an example in Section 9.4.3.

b. (60 min.+) Try to import the ED IF into your schematic entry system. Com­
ment on any problems and how you attempted to resolve them (including
failures).

The ED IF Reference Manual [EDIF, 1988] uses the following metasyntax rules:

[optional] <at most once> {may be repeated zero or more times}

{thisithat} indicates any number of this or that in any order

syntactic names are italic

literal words are bold
SYMBOLIC constants are uppercase
IdentifierNameDef means the name is being defined

IdentifierNameRef means the name is being referenced

The syntax definitions of the most common EDIF constructs for schematics are
as follows:

(edif edifFileNameDef

edifVersion

392

376 CHAPTER 9 LOW-LEVEL DESIGN ENTRY

edifLevel

keywordMap

{<status>!external!library!design!comment!userdata}

(library libraryNameDef

edifLevel

technology

{<status>!cell!comment!userdata}

(technology numberDefinition

{figureGroup!fabricate!
<simulationInfos>!<physicalDesignRule>!comment!userdata }

(cell cellNameDef

cell Type

{<status>!view!<viewMap>!property!comment!userdata}

(view viewNameDef

viewType

interface

{<status> ! <contents> ! comment !property! userdata}

(interface
{port !portBundle !<symbol>!<protectionFrame>!

<arrayRelatedInfo>!parameter!joined!mustJoin!weakJoined!
permutable! timing! simulate ! <designator>!property! commen t!userdata}

(contents
{instance!offPageconnector! figure! section !

net!netBundle!page!commentGraphics!portImplementation!

timing!simulate!when!follow!logicPort!<boundingBox>!

comment!userdata})

(vieWMap
{portMap!portBackAnnotate!instanceMap!instanceBackAnnotatel

netMap!netBackAnnotate!comment!userdata})

9.8 Bibliography

The data books from AMD, Atmel, and other PLD manufacturers are excellent
sources of tutorials, examples, and information on PLD design. The EDIF tutorials
produced by the EIA [EDIF, 1988, 1989] are hard to find, but there are few other
texts or sources that explain EDIF. EDIF does have a World Wide Web site at
http://'www . edif. org. The EDIF Technical Centre at the University of Manches­
ter (http://www.cs.man.ac.uk/cad. I shall refer to this as -EDIF) serves as a
resource center for EDIF, including the formal information models of the ED IF lan­
guage in EXPRESS format and the BNF definitions of the language syntax. There is
a hypertext version of an EDIF 3 0 0 schematic file with hypertext links at
-EDIF /EDIFTechnicalCenter / software. CFI has a home page and links to
other sites at http://www.cfi. org.

393

9.9 REFERENCES 377

PALASM4 v1.5 is available as "freeware" from AMD at
ftp://ftp.amd.com/pub/pld/software/palasm. The Data I/O home page at
http://www.data-io.comis devoted mainly to Synario. The Viewlogic home
page is http://www.viewlogic.com. Capilano Computing has a Web page at
http://www.capilano.com with DesignWorks and MacABEL software. ProteI
(http://www.protel.com/download.htm) has Windows-based schematic-entry
tools for FPGAs and a CUPL demonstration package. Logical Devices has a site at
http://www.logicaldevices.com. Atmel has several demonstration and code
examples for ABEL and CUPL at ftp: Ilwww.atmel.com/pub/atmel.

9.9 References

Page numbers in brackets after a reference indicate its location in the chapter body.
CFI Standards for Electronic Design Automation Release 1.0. 1992. CFI published a

four-volume set in 1992, ISBN 1-882750-00-4 (set). The first volume, ISBN 1-882750-01-2,
is approximately 300 pages and contains a brief introduction (approximately 10 pages) and
the Electrical Connectivity model. Unfortunately two of the volumes were labeled as volume
three. The (first) third volume is the Tool Encapsulation Specification, ISBN 1-882750-03-
09 (approximately 100 pages). The (second) third volume, ISBN 1-882750-02-0, covers the
Inter-Tool Communication Programming Interface (approximately 150 pages). The fourth
volume, ISBN 1-882750-04-7, is approximately 100 pages long and covers the Computing
Environment Services requirement [po 369].

EDIF is maintained by the EIA, EIA Standards Sales Office, 2001 Pennsylvania Ave., N.W.,
Washington, DC 20006, (202) 457-4966 [po 355]:
EDIF Steering Committee. 1988. EDIF Reference Manual Version 2.0.0. Washington, DC:
Electronic Industries Association. ISBN 0-7908-0000-4.
EDIF Steering Committee. 1988. Introduction to EDIF. Washington, DC: Electronic Indus­
tries Association. ISBN 0-7908-0001-2.
ED IF Steering Committee. 1989. ED IF Connectivity. Washington, DC: Electronic Indus­
tries Association. ISBN 0-7908-0002-0.
EDIFSchematic Technical Subcommittee. 1989. Using EDIF 2.0.0 for Schematic Transfer.
Washington, DC: Electronic Industries Association.

EXPRESS Language Reference Manual. ISO TCI84/SC4/WG5 Document N14, March 29,
1991 [po 370].

394

VHDL

10.1 A Counter 10.11 Operators

10.2 A 4-bit Multiplier 10.12 Arithmetic

10.3 Syntax and Semantics of VHDL 10.13 Concurrent Statements

10.4 Identifiers and Literals 10.14 Execution

10.5 Entities and Architectures 10.15 Configurations and Specifications

10.6 Packages and Libraries 10.16 An Engine Controller

10.7 Interface Declarations 10.17 Summary

10.8 Type Declarations 10.18 Problems

10.9 Other Declarations 10.19 Bibliography

10.10 Sequential Statements 10.20 References

The U.S. Department of Defense (DoD) supported the development of VHDL
(VHSIC hardware description language) as part of the VHSIC (very high-speed
IC) program in the early 1980s. The companies in the VHSIC program found they
needed something more than schematic entry to describe large ASICs, and proposed
the creation of a hardware description language. VHDL was then handed over to the
Institute of Electrical and Electronics Engineers (IEEE) in order to develop and
approve the IEEE Standard 1076-1987. 1 As part of its standardization process the
DoD has specified the use of VHDL as the documentation, simulation, and verifica­
tion medium for ASICs (MIL-STD-454). Partly for this reason VHDL has gained

lSome of the material in this chapter is reprinted with permission from IEEE Std 1076-
1993, © 1993 IEEE. All rights reserved.

379

395

380 CHAPTER 10 VHDL

rapid acceptance, initially for description and documentation, and then for design
entry, simulation, and synthesis as well.

The first revision of the 1076 standard was approved in 1993. References to the
VHDL Language Reference Manual (LRM) in this chapter-[VHDL 87LRM2.1,
93LRM2.2] for example-point to the 1987 and 1993 versions of the LRM [IEEE,
1076-1987 and 1076-1993]. The prefixes 87 and 93 are omitted if the references are
the same in both editions. Technically 1076-1987 (known as VHDL-87) is now
obsolete and replaced by 1076-1993 (known as VHDL-93). Except for code that is
marked I VHDL-93 only I the examples in this chapter can be analyzed (the VHDL
word for "compiled") and simulated using both VHDL-87 and VHDL-93 systems.

10.1 A Counter

The following VHDL model describes an electrical "black box" that contains a
50MHz clock generator and a counter. The counter increments on the negative edge
of the clock, counting from zero to seven, and then begins at zero again. The model
contains separate processes that execute at the same time as each other. Modeling
concurrent execution is the major difference between HDLs and computer program­
ming languages such as C.

entity Counter_1 is end; -- declare a "black box" called Counter_1

library STD; use STD.TEXTIO.all; -- we need this library to print
architecture Behave 1 of Counter 1 is -- describe the "black box"

-- declare a signal for the clock, type BIT, initial value '0'
signal Clock: BIT := '0';

-- declare a signal for the count, type INTEGER, initial value 0
signal Count: INTEGER := 0;

begin
process begin -- process to generate the clock

wait for 10 ns; -- a delay of 10 ns is half the clock cycle
Clock <= not Clock;

if (now> 340 ns) then waiti end ifi -- stop after 340 ns

end process;
-- process to do the counting, runs concurrently with other processes

process begin

wait here until the clock goes from 1 to 0

wait until (Clock = 'O')i
now handle the counting

if (Count = 7) then Count <= 0;
else Count <= Count + 1;
end if;

end process;

process (Count) variable L: LINE; begin -- process to print
write(L, now); write(L, STRING'(" Count="»;
write(L, Count); writeline(output, L);

end process;

end;

396

10.2 A 4-BIT MULTIPLIER 381

Throughout this book VHDL keywords (reserved words that are part of the lan­
guage) are shown in bold type in code examples (but not in the text). The code
examples use the bold keywords to improve readability. VHDL code is often lengthy
and the code in this book is always complete wherever possible. In order to save
space many of the code examples do not use the conventional spacing and format­
ting that is normally considered good practice. So "Do as I say and not as I do."

The steps to simulate the model and the printed results for Counter 1 using the
Model Technology V-System/Plus common-kernel simulator are as follows:

> vlib work

> vcom Counter 1.vhd

Model Technology VCOM v-System VHDL/Verilog 4.5b

Loading package standard

Compiling entity counter_l

Loading package textio

Compiling architecture behave_l of counter 1

> vsim -c counter 1

Loading / .. /std.standard

Loading / .. /std.textio(body)

Loading work.counter_l(behave_l)

VSIM 1> run 500

0 ns Count=O

20 ns Count=l

(... 15 lines omitted ...)

340 ns Count=l

VSIM 2> quit

>

10.2 A 4-bit Multiplier

This section presents a more complex VHDL example to motivate the study of the
syntax and semantics of VHDL in the rest of this chapter.

10.2.1 An 8-bit Adder
Table 10.1 shows a VHDL model for the full adder that we described in Section 2.6,
"Datapath Logic Cells." Table 10.2 shows a VHDL model for an 8-bit ripple-carry
adder that uses eight instances of the full adder.

10.2.2 A Register Accumulator
Table 10.3 shows a VHDL model for a positive-edge-triggered D flip-flop with an
active-high asynchronous clear. Table 10.4 shows an 8-bit register that uses this D
flip-flop model (this model only provides the Q output from the register and leaves
the QN flip-flop outputs unconnected).

397

382 CHAPTER 10 VHDL

TABLE 10.1 A full adder.

entity Full_Adder is

generic (TS : TIME := 0.11 ns; TC : TIME := 0.1 ns);

port (X, Y, Cin: in BIT; Cout, Sum: out BIT);

end Full_Adder;

architecture Behave of Full Adder is

begin

Sum <= X xor Y xor Cin after TS;

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after TC;

end;

TABLE 10.2 An 8-bit ripple-carry adder.

entity Adder8 is

port (A, B: in BIT_VECTOR(7 downto 0);

Cin: in BIT; Cout: out BIT;

Sum: out BIT_VECTOR(7 downto 0»;

end Adder8;

architecture Structure of Adder8 is

component Full_Adder

port (X, Y, Cin: in BIT; Cout, Sum: out BIT);

end component;

signal C: BIT_VECTOR(7 downto 0);

begin

Stages: for i in 7 downto 0 generate

LowBit: if i = 0 generate

FA:Fu1l Adder port map (A(O),B(O),Cin,C(O),Sum(O»:
end generate;

OtherBits: if i /= 0 generate

FA:Ful1_Adder port map

(A(i) ,B (i) r C(i-I) , C (i) ,Sum(i)) ;

end generate;

end generate;

Cout <= C(7);

end;

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10
--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

--22

--1

--2

--3

--4

--5

--6

--7

--8

--9

Cout

~$sum
Cin

Timing:
TS (Input to Sum) = 0.11 ns
TC (Input to Cout) = 0.1 ns

Cout
A(7)
8(7)
A(6)
8(6)
A(5)
8(5)
A(4)
8(4)
A(3)
8(3)
A(2)
8(2)
A(1)
8(1)
A(O)
8(0)

Cin

Cout

A

Sum

8

Cin

398

10.2 A 4-BIT MULTIPLIER 383

TABLE 10.3 Positive-edge-triggered D flip-flop with asynchronous clear.

entity DFFClr is

generic(TRQ : TIME := 2 ns; TCQ : TIME := 2 ns);

port (CLR, CLK, D : in BIT; Q, QB : out BIT);

end;

architecture Behave of DFFClr is

signal Qi : BIT;

begin QB <= not Qi; Q <= Qi;

process (CLR, CLK) begin

if CLR = '1' then Qi <= '0' after TRQ;

elsif CLK'EVENT and CLK = '1'

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10 Timing:

o
ClK

o
ON

ClR

then Qi <= Dafter TCQ;

end if;

--11

--12

TRQ (ClR to O/ON) = 2ns
TCQ (ClK to O/ON) = 2ns

end process; --13

end; --14

TABLE 10.4 An 8-bit register.

entity Register8 is

port (D : in BIT_VECTOR(7 downto 0);

Clk, Clr: in BIT; Q : out BIT_VECTOR(7 downto 0));

end;

architecture Structure of Register8 is

component DFFClr

port (Clr, Clk, D : in BIT; Q, QB

end component;

out BIT);

--1

--2

--3

--4

--5

--6 Clk

--7 Clr

--8

--9 begin

,STAGES: for i in 7 downto 0 generate

FF: DFFClr port map (Clr, Clk, D(i), Q(i), open);

end generate;

--10

--11

--12

8-bit register. Uses
DFFClr positive edge­
triggered flip-flop model.

end; --13

Table 10.5 shows a model for a datapath multiplexer that consists of eight 2: 1
mUltiplexers with a common select input (this select signal would normally be a
control signal in a datapath). The multiplier will use the register and multiplexer
components to implement a register accumulator.

10.2.3 Zero Detector
Table 10.6 shows a model for a variable-width zero detector that accepts a bus of
any width and will produce a single-bit output of ' 1 I if all input bits are zero.

399

384 CHAPTER 10 VHDL

TABLE 10.5 An 8-bit mUltiplexer.

entity Mux8 is --1
generic (TPD : TIME := 1 ns); --2
port (A, B : in BIT_VECTOR (7 downto 0); --3
Sel : in BIT := '0'; Y : out BIT VECTOR (7 downto 0»; --4

end; --5

architecture Behave of Mux8 is
begin

Y <= A after TPD when Sel = '1' else B after TPD;
end;

TABLE 10.6 A zero detector.

entity AIIZero is
generic (TPD : TIME := 1 ns);
port (X : BIT_VECTOR; F : out BIT);

end;

--6

--7

--8

--9

--1

--2
--3

--4

Eight 2:1 MUXs with
single select input.
Timing:
TPD(input to Y)=1 ns

architecture Behave of AIIZero is
begin process (X) begin F <= '1' after TPD;

for j in X'RANGE loop

--5

--6

--7

Variable-width zero detector.
Timing:

if X(j) = '1' then F <= '0' after TPD; end if;
end loop;

--8

--9

end process; --10
end; --11

10.2.4 A Shift Register

TPD(X to F) = 1 ns

Table 10.7 shows a variable-width shift register that shifts (left or right under input
control, DIR) on the positive edge of the clock, CLK, gated by a shift enable, SH. The
parallel load, LD, is synchronous and aligns the input LSB to the LSB of the output,
filling unused MSBs with zero. Bits vacated during shifts are zero filled. The clear,
CLR, is asynchronous.

10.2.5 A State Ma.chine

To mUltiply two binary numbers A and B, we can use the following algorithm:

1. If the LSB of A is ' 1 ' , then add B into an accumulator.

2. Shift A one bit to the right and B one bit to the left.

3. Stop when all bits of A are zero.

400

10.2 A 4-BIT MULTIPLIER 385

TABLE 10.7 A variable-width shift register.

entity ShiftN is --1

generic (TCQ : TIME := 0.3 ns; TLQ : TIME := 0.5 ns;
TSQ : TIME := 0.7 ns);

--2

--3

port(CLK, CLR, LD, SH, DIR: in BIT; --4

D: in BIT_VECTOR; Q: out BIT_VECTOR);
begin assert (D'LENGTH <= Q'LENGTH)

--5

--6
report liD wider than output Q" severity Failure;

end ShiftN;
--7

--8

architecture Behave of ShiftN is --9
begin Shift: process (CLR, CLK) --10
subtype InB is NATURAL range D'LENGTH-1 downto 0; --11
subtype OutB is NATURAL range Q'LENGTH-1 downto 0; --12
variable St: BIT_VECTOR(OutB); --13
begin --14

if CLR = 'I' then --15
St := (others => '0'); Q <= St after TCQ; --16

elsif CLK'EVENT and CLK='l' then --17
if LD = 'I' then --18

St := (others => '0'); --19
St(InB) := D; --20
Q <= St after TLQ; --21

elsif SH = 'I' then --22
case DIR is --23

when '0' => St := 'a' & St(St'LEFT downto 1); --24
when 'I' => St := St(St'LEFT-1 downto 0) & 'a'; --25
end case;
Q <= St after TSQ;

end if;
end if;

--26
--27
--28
--29

end process; --30
end; --31

D
LD
SH
DIR
CLK

n

CLK Clock

m
Q

CLR Clear, active high
LD Load, active high
SH Shift, active high
DIR Direction, 1 = left
D Data in
Q Data out

Variable-width shift register.
Input width must be less than
output width. Output is left­
shifted or right-shifted under
control of DIR. Unused MSBs
are zero-padded during load.
Clear is asynchronous. Load
is synchronous.

Timing:
TeQ (CLR to Q) = 0.3ns
TLQ (LD to Q) = 0.5ns
TSQ (SH to Q) = O. 7ns

Table 10.8 shows the VHDL model for a Moore (outputs depend only on the
state) finite-state machine for the multiplier, together with its state diagram.

10.2.6 A Multiplier
Table 10.9 shows a schematic and the VHDL code that describes the interconnection
of all the components for the multiplier. Notice that the schematic comprises two
halves: an 8-bit-wide datapath section (consisting of the registers, adder, multiplexer,

401

386 CHAPTER 10 VHDL

TABLE 10.8 A Moore state machine for the multiplier.

entity SM_l is --1

generic (TPD : TIME := 1 ns); --2

port(Start, Clk, LSB, Stop, Reset: in BIT; --3

Init, Shift, Add, Done: out BIT); --4

end; --5

architecture Moore of SM 1 is --6

type STATETYPE is (I, C, A, S, E); --7

signal State: STATETYPE; --8

begin --9

Init <= 'I' after TPD when State I

else '0' after TPD;

Add <= 'I' after TPD when State = A

else '0' after TPD;

Shift <= 'I' after TPD when State = S

else '0' after TPD;

Done <= 'I' after TPD when State = E

else '0' after TPD;

process (CLK, Reset) begin

if Reset = 'I' then State <= E;

elsif CLK'EVENT and CLK = 'I' then

case State is

when I => State <= C;

when C =>

if LSB = 'I' then State <= Ai

elsif Stop = '0' then State <= Si

else State <= E;

end if;

when A => State <= Si

when S => State <= C;

when E =>

if Start = 'I' then State <= I; end if;

end case;

end if;

end process;

end;

--10
--11

--12

--13

--14

--15

--16

--17

--18

--19

--20
--21

--22

--23

--24

--25

--26

--27

--28
--29

--30

--31

--32

--33

--34

--35

LSB/Stop = 00

State

E
I

C

A

S

inputs

Start
Stop
LSB
Clk

Reset

Function

outputs

Shift
Add
Init
Done

End of multiply cycle.
Initialize: clear output
register and load input
registers.
Check if LSB of register A
is zero.
Add shift register B to
accumulator.
Shift input register A right
and input register B left.

and zero detector) and a control section (the finite-state machine). The arrows in the
schematic denote the inputs and outputs of each component. As we shall see in
Section 10.7, VHDL has strict rules about the direction of connections.

402

10.2 A 4-BIT MULTIPLIER 387

TABLE 10.9 A 4-bit by 4-bit multiplier.

r··· .. ················i\iiliits····1
iStart F1 i r-.---.---.---------------.---------,

Shift
.. -----.---.-------------------------, Z1

Q SRA [·X'···········F·!
'"""""' --.:~-.~ = 0 I-~_..!..F_....:=~"-j

SH
DIR

8

Add
Init 8

l~!!~~.~~ :
ClK

L~b!!~.~........ ~~~
SRi Reset

iSM 1
:---------::------SRA(O)

Reset

Ai
OFl(not used)

iAdder8 Add r-----------------------------------, . . R1
D 4 Q! SRB i A 8

~'""":"'"+--'~l~D--!--I
[R'eg'fste'rs']

Sell i i
SH

'1' DIR
ClK

lShiftN --.-------.---.---.--
SR2 Reset

B

'0'

Suml

Cin
------------,

yiMUXouti 8

!Mux8 l '-----------------_ ..
M1

REGclr = Reset or Init

Donel

Resultl

8

! Reset REGout · ~ '-____ ~ __ ~ ______ ~ ________________________ _J .

· . · . , ________ • ___ • ___ • ______ ._._. ___ • _____________________ ._. __ w __ • _______________ • ___________ • ____ • _______ • _______ ._._. ______ •• ________________________________ ._ ••• ______ w ___ • ______________________ •

entity Mult8 is

port (A, B: in BIT_VECTOR(3 downto G)i Start, CLK, Reset: in BITi
Result: out BIT_VECTOR(7 downto G)i Done: out BIT)i end Mu1t8i

architecture Structure of Mult8 is use work.Mult_Components.alli
signal SRA, SRB, ADDout, MUXout, REGout: BIT_VECTOR(7 downto G)i

signal Zero, Init, Shift, Add, Low: BIT := 'G'; signal High: BIT := '1';

signal F, OFL, REGclr: BITi

--1

--2

--3

--4

--5

--6

--7

begin --8
REGclr <= Init or Reset; Result <= REGout; --9
SRI: ShiftN port map(CLK=>CLK,CLR=>Reset,LD=>Init,SH=>Shift,DIR=>Low ,D=>A,Q=>SRA)i --IG
SR2 : ShiftN port map(CLK=>CLK,CLR=>Reset,LD=>Init,SH=>Shift,DIR=>High,D=>B,Q=>SRB)i --11

ZI
Al

Ml
Rl
Fl

endi

AllZero port map(X=>SRA,F=>Zero);
Adder8 port map(A=>SRB,B=>REGout,Cin=>Low,Cout=>OFL,Sum=>ADDout);

Mux8 port map(A=>ADDout,B=>REGout,Sel=>Add,Y=>MUXout)i
Register8 port map(D=>MUXout,Q=>REGout,Clk=>CLK,Clr=>REGclr);

SM 1 port map(Start,CLK,SRA(G),Zero,Reset,Init,Shift,Add,Done)i

--12
--13

--14

--15
--16

--17

403

388 CHAPTER 10 VHDL

10.2.7 Packages and Testbench
To complete and test the multiplier design we need a few more items. First we need
the following "components list" for the items in Table 10.9:

package Mult_Components is

component Mux8 port (A,B:BIT_VECTOR(7 downto 0);

Sel:BIT;Y:out BIT_VECTOR(7 downto O));end component;

component AllZero port (X : BIT_VECTOR;

F:out BIT);end component;

component Adder8 port (A,B:BIT_VECTOR(7 downto O);Cin:BIT;

Cout:out BIT;Sum:out BIT_VECTOR(7 downto O));end component;

component Register8 port (D:BIT_VECTOR(7 downto 0);

Clk,Clr:BIT; Q:out BIT_VECTOR(7 downto O));end component;

component ShiftN port (CLK,CLR,LD,SH,DIR:BIT;D:BIT_VECTOR;

Q:out BIT_VECTOR)iend component;

component SM_1 port (Start,CLK,LSB,Stop,Reset:BITi

Init,Shift,Add,Done:out BIT);end component;

end;

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10

--11

--12

--13

--14

Next we need some utility code to help test the multiplier. The following VHDL
generates a clock with programmable "high" time (HT) and "low" time (LT):

package Clock_Utils is

procedure Clock (signal C: out Bit; HT, LT:TIME);

end Clock_Utils;

package body Clock_Utils is

procedure Clock (signal C: out Bit; HT, LT:TIME) is

begin

loop C<='l' after LT, '0' after LT + HT; wait for LT + HT;

end loop;

end;

end Clock_Utils;

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10

Finally, the following code defines two functions that we shall also use for test­
ing-the functions convert an array of bits to a number and vice versa:

package utils is

function Convert (N,L: NATURAL) return BIT_VECTOR;

function Convert (B: BIT_VECTOR) return NATURAL;
end Utils;

package body Utils is

function Convert (N,L: NATURAL) return BIT VECTOR

variable T:BIT_VECTOR(L-1 downto 0);

variable V: NATURAL: = Ni

begin for i in T'RIGHT to T'LEFT loop

T(i) := BIT'VAL(V mod 2); V:= V/2;

end loop; return T;

end;

--1

--2

--3

--4

--5
is --6

--7

--8

--9

--10

--11

--12

404

function Convert (B: BIT_VECTOR) return NATURAL is

variable T:BIT_VECTOR(B'LENGTH-1 downto 0) := B;

variable V:NATURAL:= 0;

begin for i in T'RIGHT to T'LEFT loop

if T(i) = '1' then V:= V + (2**i); end if;

end loop; return V;

end;

end Utils;

10.2 A4-BIT MULTIPLIER 389

--13

--14

--15

--16

--17

--IS

--19

--20

The following code tests the multiplier model. This is a testbench (this simple
example is not a comprehensive test). First we reset the logic (line 17) and then
apply a series of values to the inputs, A and B. The clock generator (line 14) supplies
a clock with a 20 ns period. The inputs are changed 1 ns after a positive clock edge,
and remain stable for 20ns through the next positive clock edge.

entity Test_MultS_1 is end; -- runs forever, use break!!

architecture Structure of Test MultS 1 is - -
use Work.Utils.all; use Work.Clock_Utils.all;

component MultS port

(A, B : BIT_VECTOR(3 downto 0); Start, CLK, Reset: BIT;

Result: out BIT_VECTOR(7 downto 0); Done: out BIT);

end component;

signal A, B : BIT_VECTOR(3 downto 0);

signal Start, Done: BIT := '0';

signal CLK, Reset : BIT;

signal Result: BIT_VECTOR(7 downto 0);

signal DA, DB, DR : INTEGER range 0 to 255;

begin

C: Clock(CLK, 10 ns, 10 ns);

UUT: MultS port map (A, B, Start, CLK, Reset, Result, Done);

DR <= Convert(Result);

Reset <= '1', '0' after 1 ns;

process begin

for, i in 1 to 3 loop for j in 4 to 7 loop

DA <= ii DB <= ji

A<=Convert(i,A'Length);B<=Convert(j,B'Length);

wait until CLK'EVENT and CLK='l'; wait for 1 ns;

Start <= '1', '0' after 20 ns; wait until Done = '1';

wait until CLK'EVENT and CLK='l';

end loop; end loop;

for i in 0 to 1 loop for j in 0 to 15 loop

DA <= i; DB <= j;

A<=Convert(i,A'Length);B<=Convert(j,B'Length);

wait until CLK'EVENT and CLK='l'; wait for 1 ns;

Start <= '1', '0' after 20 ns; wait until Done = '1';

wait until CLK'EVENT and CLK='l';

end loop; end loop;

wait;

--1

--2

--3

--4

--5

--6

--7
--S
--9

--10

--11

--12

--13

--14

--15

--16

--17

--IS

--19

--20,

--21

--22

--23

--24

--25

--26

--27

--2S

--29

--30

--31

--32

--33

405

390 CHAPTER 10 VHDL

end process;

end;

Here is the signal trace output from the Compass Scout simulator:

Time(fs) + Cycle da db dr

---------------------- ------------ ------------ ------------
0+ 0: 0 0 0

0+ 1 : * 1 * 4 * 0

92000000+ 3 : 1 4 * 4

150000000+ 1 : * 1 * 5 4

193000000+ 3 : 1 5 * 0

252000000+ 3 : 1 5 * 5

310000000+ 1 : * 1 * 6 5

353000000+ 3 : 1 6 * 0

412000000+ 3 : 1 6 * 6

--34

--35

Positive clock edges occur at 10, 30, 50, 70, 90, ... ns. You can see that the out­
put (dr) changes from '0 ' to '4' at 92 ns, after five clock edges (with a 2 ns delay
due to the output register, Rl).

10.3 Syntax and Semantics of VHDL

We might define the syntax of a very small subset of the English language III

Backus-Naur form (BNF) using constructs as follows:

sentence ::= subject verb object.

subject ::= ThelA noun

object

article

noun

verb

::= [article] noun {, and article noun}

::= the I a

::= manlsharklhouselfood
::= eatslpaints

::= means "can be replaced by"
means "or"

[] means "contents optional"

{} means "contents can be left out, used once, or repeated"

406

10.3 SYNTAX AND SEMANTICS OF VHDL 391

The following two English sentences are correct according to these syntax rules:

A shark eats food.
The house paints the shark, and the house, and a man.

We need semantic rules to tell us that the second sentence does not make much
sense. Most of the VHDL LRM is dedicated to the definition of the language seman­
tics. Appendix A of the LRM (which is not officially part of the standard) explains
the complete VHDL syntax using BNF.

The rules that determine the characters you can use (the "alphabet" of VHDL),
where you can put spaces, and so on are lexical rules [VHDL LRM13]. Any VHDL
description may be written using a subset of the VHDL character set:

basic_character ::= upper_case_letterldigitlspecial_character
I space_character I format_effector

The two space characters are: space (sp) and the nonbreaking space (NBSP). The
five format effectors are: horizontal tabulation (HT), vertical tabulation (VT), carriage
return (CR), line feed (LF), and form feed (FF). The characters that are legal in
VHDL constructs are defined as the following subsets of the complete character set:

graphic_character ::= [10.1]
upper_case_letter I digit I special_character I space_charac ter

Ilower_case_letterlother_special_character

special_character ::= " # & • () * + , - . / [10.2]

The 11 other special characters are:! $ % @ ? \ A , { } -, and (in VHDL-93
only) 34 other characters from the ISO Latin-l set [ISO, 1987]. If you edit code
using a word processor, you either need to turn smart quotes off or override this fea­
ture (use Tools ... Preferences ... General in MS Word; and use CTRL- I and CTRL-"

in Frame).
When you learn a language it is difficult to understand how to use a noun with­

out using it in a sentence. Strictly this means that we ought to define a sentence
before we define a noun and so on. In this chapter I shall often break the "Define it
before you use it" rule and use code examples and BNF definitions that contain
VHDL constructs that we have not yet defined. This is often frustrating. You can use
the book index and the table of important VHDL constructs at the end of this chapter
(Table 10.28) to help find definitions if you need them.

We shall occasionally refer to the VHDL BNF syntax definitions in this chapter
using references-BNF [10.1], for example. Only the most important BNF con­
structs for VHDL are included here in this chapter, but a complete description of the
VHDL language syntax is contained in Appendix A.

407

392 CHAPTER 10 VHDL

10.4 Identifiers and Literals

Names (the "nouns" of VHDL) are known as identifiers [VHDL LRM13.3]. The
correct "spelling" of an identifier is defined in BNF as follows:

identifier ::=

letter {[underline] letter_or_digit}

I\graphic character{graphic character}\

[10.3]

In this book an underline in VHDL BNF marks items that are new or that have
changed in VHDL-93 from VHDL-87. The following are examples of identifiers:

s -- A simple name.
S -- A simple name, the same as s. VHDL is not case sensitive.

a name -- Imbedded underscores are OK.
Successive underscores are illegal in names: Ill __ egal

-- Names can't start with underscore: _Illegal

-- Names can't end with underscore: Illegal_

Too Good -- Names must start with a letter.

-- Names can't start with a number: 2 Bad

\74LSOO\ Extended identifier to break rules (VHDL-93 only).

VHDL \vhdl\ \VHDL\ -- Three different names (VHDL-93 only).

A static indexed name (known at analysis time).

s_array(i) -- A non-static indexed name, if i is a variable.

You may not use a reserved word as a declared identifier, and it is wise not to
use units, special characters, and function names: ns, ms, FF, read, write, and so
on. You may attach qualifiers to names as follows [VHDL LRM6]:

CMOS.all -- A selected or expanded name, all units in library CMOS.

Data'LEFT(I) -- An attribute name, LEFT is the attribute designator.

Data(24 downto 1) -- A slice name, part of an array: Data(31 downto 0)

Data(l) -- An indexed name, one element of an array.

Comments follow two hyphens 1 --' and instruct the analyzer to ignore the rest
of the line. There are no multiline comments in VHDL. Tabs improve readability,
but it is best not to rely on a tab as a space in case the tabs are lost or deleted in con­
version. You should thus write code that is still legal if all tabs are deleted.

There are various forms of literals (fixed-value items) in VHDL [VHDL
LRM13.4-13.7]. The following code shows some examples:

entity Literals_l is end;

architecture Behave of Literals 1 is
begin process

variable II : integer; variable Rl : real;

variable Cl : CHARACTER; variable 516 : STRING(1 to 16);

variable BV4: BIT_VECTOR(O to 3);

variable BV12 BIT_VECTOR(O to 11);

variable BV16 : BIT_VECTOR(O to 15);

408

10.5 ENTITIES AND ARCHITECTURES 393

begin

Abstract literals are decimal or based literals.
Decimal literals are integer or real literals.

Integer literal examples (each of these is the same):
II := 120000; II := 12e4; II := 120_000;

Based literal examples (each of these is the same):
II := 2#1111_1111#; II := 16#FF#;

Base must be an integer from 2 to 16:

II := 16:FF:; -- you may use a : if you don't have #
Real literal examples (each of these is the same):

Rl := 120000.0; Rl := 1.2e5; Rl := 12.0E4;

Character literal must be one of the 191 graphic characters.

65 of the 256 ISO Latin-l set are non-printing control characters
Cl := 'A'; Cl := 'a'; -- different

String literal examples:

SI6:= string" & " literal";
S16 := """Hello,"" I said!";

S16 := % string literal%;

S16 := %Sale: 50%% off!!!%;

Bit-string literal examples:

from each other

concatenate long strings

doubled quotes

can use % instead of "
doubled %

BV4 := B"llOO"; binary bit-string literal

BV12 := 0"7777";

BV16 := X"FFFF";

-- octal bit-string literal
-- hex bit-string literal

wait; end process; -- the wait prevents an endless loop

end;

10.5 Entities and Architectures

The highest-level VHDL construct is the design file [VHDL LRMl1.1]. A design
file contains design units that contain one or more library units. Library units in
turn contain: entity, configuration, and package declarations (primary units); and
architecture and package bodies (secondary units).

design_file ::=
{library_clauseluse_clause} library_unit

{{library_clauseluse_clause} library_unit}

library_unit ::= primary_unitlsecondary_unit

[10.4)

primary_unit::= [10.5)

entity_declaration I configuration_declaration Ipackage_d eclaration

secondary_unit ::= architecture_body I package_body [10.6)

Using the written language analogy: a VHDL library unit is a "book," a VHDL
design file is a "bookshelf," and a VHDL library is a collection of bookshelves. A

409

394 CHAPTER 10 VHDL

VHDL primary unit is a little like the chapter title and contents that appear on the
first page of each chapter in this book and a VHDL secondary unit is like the chapter
contents (though this is stretching our analogy a little far).

I shall describe the very important concepts of entities and architectures in this
section and then cover libraries, packages, and package bodies. You define an entity,
a black box, using an entity declaration [VHDL LRM1.l]. This is the BNF defini­
tion:

entity_declaration ::=

entity identifier is

[generic (formal_generic_interface_list)i]

[port (formal-port_interface_list)i]

{entity_declarative_item}

[begin
{[label:] [postponed] assertion

\[label:] [postponed] passive_procedure_call

\passive_process_statement}]

end [entity] [entity_identifier] ;

[10.7]

The following is an example of an entity declaration for a black box with two
inputs and an output:

entity Half_Adder is

port (X, Y : in BIT := 'O'i Sum, Cout : out BIT)i -- formals

endi

Matching the parts of this code with the constructs in BNF [10.7] you can see
that the identifier is Half_Adder and that (X, Y: in BIT := '0 ' ; Sum,

Cout: out BIT) corresponds to (port _interface_list) in the BNF. The ports
X, Y, Sum, and Cout are formal ports or formals. This particular entity Half_Adder

does not use any of the other optional constructs that are legal in an entity declara­
tion.

The architecture body [VHDL LRM1.2] describes what an entity does, or the
contents of the black box (it is architecture body and not architecture declaration).

architecture_body ::=

architecture identifier of entity_name is

{block_declarative_item}

begin

{concurrent_statement}

end [architecture] [architecture_identifier] i

[10.8]

For example, the following architecture body (1 shall just call it an architecture
from now on) describes the contents of the entity Half_Adder:

architecture Behave of Half Adder is

begin Sum <= X xor Yi Cout <= X and Yi

end Behave;

410

1 O~5 ENTITIES AND ARCHITECTURES 395

We use the same signal names (the formals: Sum, x, Y, and cout) in the architec­
ture as we use in the entity (we say the signals of the "parent" entity are visible
inside the architecture "child"). An architecture can refer to other entity-architecture
pairs-so we can nest black boxes. We shall often refer to an entity-architecture pair
as entity (archi tecture). For example, the architecture Behave of the entity
Half_Adder is Half_Adder(Behave).

Why would we want to describe the outside of a black box (an entity) separately
from the description of its contents (its architecture)? Separating the two makes it
easier to move between different architectures for an entity (there must be at least
one). For example, one architecture may model an entity at a behavioral level, while
another architecture may be a structural model.

A structural model that uses an entity in an architecture must declare that entity
and its interface using a component declaration as follows [VHDL LRM4.5]:

component_declaration ::=

component identifier [is]

[generic (local generic_interface_Iist);]

[port (local-port_interface_list);]

end component [component identifier];

[10.9]

For example, the following architecture, Netlist, is a structural version of the
behavioral architecture, Behave:

architecture Netlist of Half Adder is

component MyXor port (A_Xor,B_Xor : in BIT; Z Xor

end component; -- component with locals

component MyAnd port (A_And,B_And : in BIT; Z And

end component; -- component with locals
begin

out BIT);

out BIT);

Xorl: MyXor port map (X, Y, Sum);

Andl : MyAnd port map (X, Y, Cout);

instance with actuals

end;

instance with actuals

Notice that:

• We declare the components: MyAnd, MyXor and their local ports (or locals):
A_Xor,B_Xor, Z_Xor, A_And, B_And, Z_And .

.. We instantiate the components with instance names: Andl and Xorl.

.. We connect instances using actual ports (or actuals): x, Y, Sum, Couto

Next we define the entities and architectures that we shall use for the compo­
nents MyAnd and MyXor. You can think of an entity-architecture pair (and its formal
ports) as a data-book specification for a logic cell; the component (and its local
ports) corresponds to a software model for the logic cell; and an instance (and its
actual ports) is the logic cell.

411

396 CHAPTER 10 VHDL

We do not need to write VHDL code for :t-1yAnd and :t-1yXor; the code is provided
as a technology library (also called an ASIC vendor library because it is often
sold or distributed by the ASIC company that will manufacture the chip-the ASIC
vendor-and not the software company):

-- These definitions are part of a technology library:

entity AndGate is
port (And_in_I, And in 2 : in BIT; And out: out BIT); -- formals

end;

architecture Simple of AndGate is

begin And out <= And in I and And_in_2;

end;

entity XorGate is
port (Xor_in_I, Xor in 2

end;

in BIT; Xor out

architecture Simple of XorGate is
begin Xor out <= Xor in I xor Xor_in_2;

end;

out BIT); -- formals

If we keep the description of a circuit's interface (the entity) separate from its
contents (the architecture), we need a way to link or bind them together. A
configuration declaration [VHDL LRM1.3] binds entities and architectures.

configuration_declaration ::=

configuration identifier of entity_name is

{use_clauselattribute_specificationlgroup declaration}
block_configuration

end [configuration] [configuration_identifier] ;

[lO.lO]

An entity-architecture pair is a design entity. The following configuration dec­
laration defines which design entities we wish to use and associates the formal ports
(from the entity declaration) with the local ports (from the component declaration):

configuration Simplest of Half Adder is
use work. all;

for Netlist

for Andl : MyAnd use entity AndGate(Simple)

port map -- association: formals => locals
(And_in I => A_And, And_in_2 => B_And, And out => Z_And);

end for;

for Xorl : MyXor use entity XorGate(Simple)
port map

(Xor_in_1 => A_Xor, Xor in 2 => B_Xor, Xor out => Z_Xor);
end for;

end for;

end;

412

10.5 ENTITIES AND ARCHITECTURES 397

Figure 10.1 diagrams the use of entities, architectures, components, and config­
urations. This figure seems very complicated, but there are two reasons that VHDL
works this way:

• Separating the entity, architecture, component, and configuration makes it
easier to reuse code and change libraries. All we have to do is change names
in the port maps and configuration declaration.

• We only have to alter and reanalyze the configuration declaration to change
which architectures we use in a model-giving us a fast debug cycle.

x

Y

entity HalCAdder

Cout

Sum

ports

[61 actual

[£J formal

OJ local

architecture Netlist of HalCAdder

}---------------IA Cout

}----------------IA Sum

~..............
Xor1 : My)(Or; port map (X, Y,$um);

component

A_Xor
B_Xor

MyXor

port (A_Xor,B_Xor : in BIT;:Z:].>\O:r : out BIT)

,forXor1:MyXor use entity XorGate(Simple). port map

configuration Simplest
of HalCAdder

Xocout

entity architecture Simple
~~~ ~~~~ 

FIGURE 10.1 Entities, architectures, components, ports, port maps, and configurations. 

413



398 CHAPTER 10 VHDL 

You can think of design units, the analyzed entity-architecture pairs, as com­
piled object-code modules. The configuration then determines which object-code 
modules are linked together to form executable binary code. 

You may also think of an entity as a block diagram, an architecture for an entity 
a more detailed circuit schematic for the block diagram, and a configuration as a 
parts list of the circuit components with their part numbers and manufacturers (also 
known as a BOM for bill of materials, rather like a shopping list). Most manufac­
turers (including the U.S. DoD) use schematics and BOMs as control documents for 
electronic systems. This is part of the rationale behind the structure of VHDL. 

10.6 Packages and Libraries 

After the VHDL tool has analyzed entities, architectures, and configurations, it 
stores the resulting design units in a library. Much of the power of VHDL comes 
from the use of predefined libraries and packages. A VHDL design library [VHDL 
LRMll.2] is either the current working library (things we are currently analyzing) 
or a predefined resource library (something we did yesterday, or we bought, or that 
came with the tool). The working library is named work and is the place where the 
code currently being analyzed is stored. Architectures must be in the same library 
(but they do not have to be in the same physical file on disk) as their parent entities. 

You can use a VHDL package [VHDL LRM2.S-2.6] to define subprograms 
(procedures and functions), declare special types, modify the behavior of operators, 
or to hide complex code. Here is the BNF for a package declaration: 

[10.11] package_declaration ::= 

package identifier is 

{subprogram_declaration 

constant declaration 
alias declaration 

attribute declaration 

subtype_declaration 
file declaration 

type_declaration 

signal_declaration 
component_declaration 

attribute_specification 
disconnection_specification use_clause 

shared variable declaration I group declaration 
group template declaration} 

end [package] [package_identifier] ; 

You need a package body if you declare any subprograms in the package decla­
ration (a package declaration and its body do not have to be in the same file): 

package_body :: = 

package body package_identifier is 
{subprogram_declaration 

type_declaration 

constant declaration 
use clause 

subprogram_body 
subtype_declaration 

file declaration alias declaration 

414



I shared variable declaration I group declaration 

I group template declaration} 

end Ipackage bodYl [package_identifier] ; 

10.6 PACKAGES AND LIBRARIES 399 

To make a package visible [VHDL LRMlO.3] (or accessible, so you can see and 
use the package and its contents), you must include a library clause before a design 
unit and a use clause either before a design unit or inside a unit, like this: 

library MyLib; -- library clause 
use MyLib.MyPackage.all; -- use clause 

design unit (entity + architecture, etc.) follows: 

The STD and WORK libraries and the STANDARD package are always visible. 
Things that are visible to an entity are visible to its architecture bodies. 

10.6.1 Standard Package 
The VHDL STANDARD package [VHDL LRM14.2] is defined in the LRM and 
implicitly declares the following implementation dependent types: TIME, INTEGER, 

REAL. We shall use uppercase for types defined in an IEEE standard package. Here 
is part of the STANDARD package showing the explicit type and subtype declarations: 

package Part_STANDARD is 

type BOOLEAN is (FALSE, TRUE); type BIT is ('0', '1'); 

type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE); 
subtype NATURAL is INTEGER range 0 to INTEGER'HIGH; 

subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH; 
type BIT_VECTOR is array (NATURAL range <» of BIT; 

type STRING is array (POSITIVE range <» of CHARACTER; 
-- the following declarations are VHDL-93 only: 

attribute FOREIGN: STRING; -- for links to other languages 
subtype DELAY_LENGTH is TIME range 0 fs to TIME'HIGH; 

type FILE_OPEN_KIND is (READ_MODE,WRITE_MODE,APPEND_MODE); 
type FILE_OPEN_STATUS is 

(OPEN_OK,STATUS_ERROR,NAME_ERROR,MODE_ERROR); 

end Part_STANDARD; 

Notice that a STRING array must have a positive index. The type TIME IS 

declared in the STANDARD package as follows: 

type TIME is range implementation_defined -- and varies with software 

units fs; ps = 1000 fs; ns = 1000 PSi us = 1000 ns; ms = 1000 us; 
sec = 1000 ms; min = 60 sec; hr = 60 min; end units; 

The STANDARD package also declares the function now that returns the current simu­
lation time (with type TIME in VHDL-87 and sUbtype DELAY LENGTH in VHDL-93). 

415



400 CHAPTER 10 VHDL 

In VHDL-93 the CHARACTER type declaration extends the VHDL-87 declaration 
(the 128 ASCII characters): 

type Part CHARACTER is ( -- 128 ASCII characters in VHDL-87 

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, 

BS, HT, LF, VT, FF, CR, SO, SI, 
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, 

CAN, EM, SUB, ESC, FSP, GSP, RSP, USP, 

1 ( I, t) I, 

, 0 t, I l' 1 

, 8 " '9', 

'@', 'A', 

'H', II I I 

I P', t Q 1, 

I X 1, 'Y I I 

, .... I, 'a', 
I h 1, 

'pI, 

I i I I 

'q' , 

'* ' 

'. , . , 
I B I, 

IJ', 

JR' , 

I Z I, 

I b I, 

1 j I I 

I r " 

1+1, , I 

'3', '41, 

, ; I, '<', 

I C I I 'D I I 

'K I I 'L'I 

'S', I T' I 

, [', '\', 

I S I, 

'd' , 

'1' , 

It' , 

'5' I 

IE', 

'M', 

'U', 

I ] 1 , 

Ie' , 

1m' , 

'u l
, 

I { I, 'I', '} 1 1 

. , 
16' 1 

,>' , 

'P', 

'N', 

'V', 
,A, 

I fl I 

In' , 

'v' , 

'-' 

'/' , 
17 1 

I 

'? ' , 
'G 1

, 

10' 1 

'WI I 

'g' , 

DEL 

33 control characters 

including: 

format effectors: 
horizontal tab = HT 

line feed = LF 
vertical tab = VT 

form feed = FF 

carriage return = CR 
and others: 

FSP, GSP, RSP, USP use P 

suffix to avoid conflict 
with TIME units 

-- delete = DEL 

VHDL-93 includes 96 more Latin-l characters, like ¥ (Yen) and 
32 more control characters, better not to use any of them. 

) ; 

The VHDL-87 character set is the 7-bit coded ISO 646-1983 standard known as 
the ASCII character set. Each of the printable ASCII graphic character codes 
(there are 33 nonprintable control codes, like DEL for delete) is represented by a 
graphic symbol (the shapes of letters on the keyboard, on the display, and that actu­
ally print). VHDL-93 uses the 8-bit coded character set ISO 8859-1:1987(E), 
known as ISO Latin-I. The first 128 characters of the 256 characters in ISO Latin-1 
correspond to the 128-character ASCII code. The graphic symbols for the printable 
ASCII characters are well defined, but not part of the standard (for example, the 
shape of the graphic symbol that represents 'lowercase a' is recognizable on every 
keyboard, display, and font). However, the graphic symbols that represent the print­
able characters from other 128-character codes of the ISO 8-bit character set are dif­
ferent in various fonts, languages, and computer systems. For example, a pound 
sterling sign in a U.K. character set looks like this-'f', but in some fonts the same 
character code prints as '#' (known as number sign, hash, or pound). If you use such 
characters and want to share your models with people in different countries, this can 
cause problems (you can see all 256 characters in a character set by using 
Insert... Symbol in MS Word). 

10.6.2 Std_logic_1164 Package 
VHDL does not have a built-in logic-value system. The STANDARD package pre­
defines the type BIT with two logic values, '0' and '1', but we normally need at 

416



10.6 PACKAGES AND LIBRARIES 401 

least two more values: 'X' (unknown) and 'Z' (high-impedance). Unknown is a 
metalogical value because it does not exist in real hardware but is needed for simu­
lation purposes. We could define our own logic-value system with four logic values: 

type MVL4 is ('X', '0', '1', 'Z'); -- a four-value logic system 

The proliferation of VHDL logic-value systems prompted the creation of the 
Std _logic _1164 package (defined in IEEE Std 1164-1993) that includes functions to 
perform logical, shift, resolution, and conversion functions for types defined in the 
Std logic 1164 system. To use this package in a design unit, you must include - -
the following library clause (before each design unit) and a use clause (either before 
or inside the unit): 

library IEEE; use IEEE.std_logic_1164.all; 

This Std _Log ic _1164 package contains definitions for a nine-value logic sys­
tem. The following code and comments show the definitions and use of the most 
important parts of the package2: 

package Part_STD_LOGIC_1164 is 

type STD_ULOGIC is 

( 'U', Unini tialized 
I X " Forcing Unknown 

'0' , Forcing 0 
11' , Forcing 1 
, Z I 1 High Impedance 

'W', Weak Unknown 
IL' , Weak 0 
'HI, Weak 1 
, - , Don't Care) ; 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 
--11 

type STD_ULOGIC_VECTOR is array (NATURAL range <» of STD_ULOGIC; --12 

function resolved (s : STD_ULOGIC_VECTOR) return STD_ULOGICi --13 

subtype STD_LOGIC is resolved STD_ULOGICi --14 
type STD LOGIC VECTOR is array (NATURAL range <» of STD_LOGIC; 

- - --15 

subtype XOI is resolved STD ULOGIC range 'X' to I I' ; --16 

subtype XOIZ is resolved STD ULOGIC range 'X' to 1 Z ' ; --17 

subtype UXOI is resolved STD ULOGIC range 'U' te ' l' ; --18 

subtype UXOIZ is resolved STD ULOGIC range 'U' to 'Z '; --19 

-- Vectorized overloaded logical operators: --20 

function "and" (L: STD_ULOGIC; R : STD_ULOGIC) return UXOli --21 

Logical operators not, and, nand, or, nor, xor, xnor (VHDL-93), --22 

overloaded for STD ULOGIC STD ULOGIC VECTOR STD LOGIC VECTOR. --23 

Strength strippers and type conversion functions: --24 

function To_T (X : F) return T; --25 

defined for types, T and F, where --26 

F=BIT BIT VECTOR STD ULOGIC STD ULOGIC VECTOR STD LOGIC VECTOR --27 

T=types F plus types XOI XOIZ UXOI (but not type UXOIZ) --28 

2The code in this section is adapted with permission from IEEE Std 1164-1993, © Copy­
right IEEE. All ri;hts reserved. 

417



402 CHAPTER 10 VHDL 

Exclude 's in T in name: TO STDULOGIC not TO STD ULOGIC --29 

To X01 : L->O, H->1 others->X --30 
To X01Z: Z->Z, others as To X01 --31 

To UX01: U->U, others as To X01 --32 

Edge detection functions: --33 
function rising_edge (signal s: STD_ULOGIC) return BOOLEAN; --34 
function falling_edge (signal s: STD_ULOGIC) return BOOLEAN; --35 

Unknown detection (returns true if s = U, x, Z, W): --36 
function Is X (s : T) return BOOLEAN; --37 
defined for T = STD ULOGIC STD ULOGIC VECTOR STD LOGIC VECTOR. --38 

Notice: 

.. The type STD_ULOGIC has nine logic values. For this reason IEEE Std 1164 
is sometimes referred to as MVL9-multivalued logic nine. There are sim­
pler, but nonstandard, MVL4 and MVL 7 packages, as well as packages with 
more than nine logic values, available. Values 'U I, I X I, and I W I are all 
metalogical values. 

• There are weak and forcing logic-value strengths. If more than one logic 
gate drives a node (there is more than one driver) as in wired-OR logic or a 
three-state bus, for example, the simulator checks the driver strengths to 
resolve the actual logic value of the node using the resolution function, 
resol ved, defined in the package . 

.. The subtype STD _LOGIC is the resolved version of the unresolved type 
STD _ ULOGIC. Since sUbtypes are compatible with types (you can assign one 
to the other) you can use either STD _LOGIC or STD _ ULOGIC for a signal with 
a single driver, but it is generally safer to use STD _LOGIC. 

• The type STD _LOGIC_VECTOR is the resolved version of unresolved type 
STD_ULOGIC_VECTOR. Since these are two different types and are not com­
patible, you should use STD _LOGIC_VECTOR. That way you will not run into a 
problem when you try to connect a STD LOGIC VECTOR to a 
STD ULOGIC VECTOR. 

o The don't care logic value I - I (hyphen), is principally for use by synthesis 
tools. The value I - I is almost always treated the same as I x I. 

o The 1164 standard defines (or overloads) the logical operators for the 
STD_LOGIC types but not the arithmetic operators (see Section 10.12). 

10.6.3 TEXTIO Package 
You can use the TEXTIO package, which is part of the library STD, for text input and 
output [VHDL LRM14.3]. The following code is a part of the TEXTIO package 

418



10.6 PACKAGES AND LIBRARIES 403 

header and, together with the comments, shows the declarations of types, subtypes, 
and the use of the procedures in the package: 

package Part_TEXTIO is 

type LINE is access STRING; 
type TEXT is file of STRING; 

type SIDE is (RIGHT, LEFT); 

VHDL-93 version. 

LINE is a pointer to a STRING value. 
File of ASCII records. 
for justifying output data. 

subtype WIDTH is NATURAL; for specifying widths of output fields. 
file INPUT: TEXT open READ_MODE is "STD_INPUT"; -- Default input file. 

file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT"; -- Default output. 

The following procedures are defined for types, T, where 
T = BIT BIT VECTOR BOOLEAN CHARACTER INTEGER REAL TIME STRING 

procedure READLINE(file F : TEXT; L : out LINE); 

procedure READ(L : inout LINE; VALUE: out T); 
procedure READ(L : inout LINE; VALUE: out T; GOOD: out BOOLEAN); 

procedure WRITELINE(F : out TEXT; L : inout LINE); 

procedure WRITE( 
L : inout LINE; 

VALUE : in T; 

JUSTIFIED: in SIDE:= RIGHT; 
FIELD:in WIDTH := 0; 

DIGITS:in NATURAL := 0; -- for T = REAL only 
UNIT:in TIME:= ns); -- for T = TIME only 

function ENDFILE(F : in TEXT) return BOOLEAN; 

end Part_TEXTIO; 

Here is an example that illustrates how to write to the screen (STD _OUTPUT): 

library std; use std.textio.all; entity Text is end; 
architecture Behave of Text is signal count: INTEGER ;= 0; 
begin count <= 1 after 10 ns, 2 after 20 ns, 3 after 30 ns; 

process (count) variable L: LINE; begin 

if (count> 0) then 

write(L, now); -- Write time. 

write(L, STRING'(" count="»; -- STRING' is a type qualification. 

write(L, count); writeline(output, L); 
end if; end process; end; 

10 ns count=1 
20 ns count=2 

30 ns count=3 

10.6.4 Other Packages 
VHDL does not predefine arithmetic operators on types that hold bits. Many VHDL 
simulators provide one or more arithmetic packages that allow you to perform 
arithmetic operations on std_logic_1l64 types. Some companies also provide one 

419



404 CHAPTER 10 VHDL 

or more math packages that contain functions for floating-point algebra, trigonome­
try, complex algebra, queueing, and statistics (see also [IEEE 1076.2, 1996]). 

Synthesis tool companies often provide a special version of an arithmetic pack­
age, a synthesis package, that allows you to synthesize VHDL that includes arith­
metic operators. This type of package may contain special instructions (normally 
comments that are recognized by the synthesis software) that map common func­
tions (adders, subtracters, multipliers, shift registers, counters, and so on) to ASIC 
library cells. I shall introduce the IEEE synthesis package in Section 10.12. 

Synthesis companies may also provide component packages for such cells as 
power and ground pads, I/O buffers, clock drivers, three-state pads, and bus keepers. 
These components may be technology-independent (generic) and are mapped to 
primitives from technology-dependent libraries after synthesis. 

10.6.5 Creating Packages 
It is often useful to define constants in one central place rather than using literals 
wherever you need a specific value in your code. One way to do this is by using 
VHDL packaged constants [VHDL LRM4.3.1.1] that you define in a package. 
Packages that you define are initially part of the working library, work. Here are two 
example packages [VHDL LRM2.S-2.7]: 

package Adder_Pkg is -- a package declaration 
constant BUSWIDTH : INTEGER := 16; 

end Adder_Pkg; 

use work.Adder_Pkg.all; -- a use clause 
entity Adder is end Adder; 

architecture Flexible of Adder is -- work.Adder_Pkg is visible here 
begin process begin 

MyLoop : for j in 0 to BUSWIDTH loop adder code goes here 

end loop; wait; -- the wait prevents an endless cycle 
end process; 

end Flexible; 

package GLOBALS is 

constant HI : BIT := '1'; constant LO: BIT := '0'; 
end GLOBALSi 

Here is a package that declares a function and thus requires a package body: 

package Add_Pkg_Fn is 

function add(a, b, c : BIT_VECTOR(3 downto 0» return BIT_VECTOR; 
end Add_Pkg_Fn; 

package body Add_Pk9_Fn is 

function add(a, b, c : BIT_VECTOR(3 downto 0» return BIT VECTOR is 
begin return a xor b xor Ci end; 

end Add_Pk9_Fni 

420



.10.7 INTERFACE DECLARATIONS 405 

The following example is similar to the VITAL (VHDL Initiative Toward 
ASIC Libraries) package that provides two alternative methods (procedures or 
functions) to model primitive gates (I shall describe functions and procedures in 
more detail in Section 10.9.2): 

package And_Pkg is 

procedure V_And(a, b : BIT; signal c : out BIT); 
function V_And(a, b : BIT) return BIT; 

end; 

package body And_Pkg is 
procedure V_And(a, b : BIT; signal c : out BIT) is 

begin c <= a and b; end; 
function V_And(a, b : BIT) return BIT is 

begin return a and b; end; 

end And_Pkg; 

The software determines where it stores the design units that we analyze. Sup­
pose the package Add _ Pkg_Fn is in library MyLib. Then we need a library clause 
(before each design unit) and use clause with a selected name to use the package: 

library MyLib; -- use MyLib.Add_Pkg.all; -- use all the package 

use MyLib.Add_Pkg_Fn.add; -- just function 'add' from the package 

entity Lib_l is port (s : out BIT_VECTOR(3 downto 0) := "0000"); end; 
architecture Behave of Lib_l is begin process 

begin s <= add ("0001", "0010", "1000"); wait; end process; end; 

The VHDL software dictates how you create the library MyLib from the library 
work and the actual name and directory location for the physical file or directory on 
the disk that holds the library. The mechanism to create the links between the file 
and directory names in the computer world and the library names in the VHDL 
world depends on the software. There are three common methods: 

• Use a UNIX environment variable (SETENV MyLib - /MyDirectory / 

,MyLibFile, for example). 

.. Create a separate file that establishes the links between the filename known 
to the operating system and the library name known to the VHDL software. 

o Include the links in an initialization file (often with an ' . ini 1 suffix). 

10.7 Interface Declarations 

An interface declaration declares interface objects that may be interface con­
stants, signals, variables, or files [VHDL 87LRM4.3.3, 93LRM4.3.2]. Interface 
constants are generics of a design entity, a component, or a block, or parameters of 
subprograms. Interface signals are ports of a design entity, component, or block, 

421



406 CHAPTER 10 VHDL 

and parameters of subprograms. Interface variables and interface files are parame­
ters of subprograms. 

Each interface object has a mode that indicates the direction of information 
flow. The most common modes are in (the default), out, inout, and buffer (a 
fifth mode, linkage, is used to communicate with other languages and is infre­
quently used in ASIC design). The restrictions on the use of objects with these 
modes are listed in Table 10.10. An interface object is read when you use it on the 
RHS of an assignment statement, for example, or when the object is associated with 
another interface object of modes in, inout (or linkage). An interface object is 
updated when you use it on the LHS side of an assignment statement or when the 
object is associated with another interface object of mode out, buffer, inout (or 
linkage). The restrictions on reading and updating objects generate the diagram at 
the bottom of Table 10.10 that shows the 10 allowed types of interconnections (these 
rules for modes buffer and inout are the same). The interface objects (Inside 

and Outside) in the example in this table are ports (and thus interface signals), but 
remember that interface objects may also be interface constants, variables, and files. 

There are other special-case rules for reading and updating interface signals, 
constants, variables, and files that I shall cover in the following sections. The situa­
tion is like the spelling rule, "i before e except after c." Table 10.10 corresponds to 
the rule "i before e." 

1 0.7.1 Port Declaration 
Interface objects that are signals are called ports [VHDL 93LRM 1.1.1.2]. You may 
think of ports as "connectors" and you must declare them as follows: 

port (port_interface_list) 

interface list ::= [10.12] 

port_interface_declaration {i port_interface_declaration} 

A port interface declaration is a list of ports that are the inputs and outputs of an 
entity, a block, or a component declaration: 

interface declaration ::= 

[signal] 

identifier {, identifier}: [inloutlinoutlbufferllinkage] 

subtype_indication [bus] [:= static_expression] 

[10.13) 

Each port forms an implicit signal declaration and has a port mode. I shall 
discuss bus, which is a signal kind, in Section 10.13.1. Here is an example of an 
entity declaration that has five ports: 

entity Association_1 is 

port (signal x, y : in BIT := '0'; ZI, Z2, Z3 

end; 
out BIT); 

422



10.7 INTERFACE DECLARATIONS 407 

TABLE 10.10 Modes of interface objects and their properties. 

entitYEl is port (Inside: in BIT); end; architecture Behave of El is begin end; 

entity E2 is port (Outside: inout BIT := '1'); end; architecture Behave of E2 is 
component E1 port (Inside: in BIT); end component; signal UpdateMe : BIT; begin 

II : E1 port map (Inside => Outside); formal/local (mode in) => actual (mode inout) 

UpdateMe <= Outside; 
Outside <= '0' after 10 ns; 
end; 

Possible modes of interface object, Outside 

OK to read Outside (mode inout) 

and OK to update Outside (mode inout) 

in (default) out inout buffer 
_. __ .-_ .. _ .. _ ... _. __ .... _. __ ._ ..... --------_ .. _ .. _-_._---_ ...... -..... _ ..... __ .. _._--_ ..•... -....... -.- _ ....... __ ." .... _._-.--.... __ •.... _ ...................... . . .. " . --.. -._ ... _ .. __ ... _ ........ _-- -._ ........... -._-_. __ .. _--_ ... _ ... _ ... _-._._ .. _ ........ -_ .. -................. - .......... __ ._ .... -._._ ........ _ .•... -....... _. . .. __ ........ _._ .. _ ...... _-_. __ .•..... _-...... . 

Can you read Outside (RHS of assignment)? 

Can you update outside (LHS of assignment)? 

Modes of Inside that Outside may connect to (see 
below)1 

E2 

~s No ~s 

No 

in 

1 

3 

Yes 

out 

Yes 

any 

Yes 

Yes 

any 

2 

4 

interface object: 
signal, variable, 
constant, or file 

[AJ actual means "legal to associate interface 
object (Outside) of mode X with 
formal (Inside) of mode Y" 

1There are additional rules for interface objects that are signals (ports)-see Tables 10.11 and 10.12. 

In the preceding declaration the keyword signal is redundant (because all 
ports are signals) and may be omitted. You may also omit the port mode in because 
it is the default mode. In this example, the input ports X and y are driven by a 
default value (in general a default expression) of ' 0 I if (and only if) the ports are 
left unconnected or open. If you do leave an input port open, the port must have a 
default expression. 

You use a port map and either positional association or named association to 
connect the formals of an entity with the locals of a component. Port maps also asso­
ciate (connect) the locals of a component with the actuals of an instance. For an 
example of formal, local, and actual ports, and explanation of their function, see 
Section 10.5, where we declared an entity AndGate. The following example shows 

423



408 CHAPTER 10 VHDL 

how to bind a component to the entity AndGate (in this case we use the default 
binding) and associate the ports. Notice that if we mix positional and named associ­
ation then all positional associations must come first. 

use work. all; -- makes analyzed design entity AndGate(Simple) visible. 
architecture Netlist of Association_1 is 
-- The formal port clause for entity AndGate looks like this: 

-- port (And_in_1, And_in_2: in BIT; And_out out BIT); -- Formals. 

component AndGate port 
(And_in_1, And_in_2 in BIT; And out: out BIT); -- Locals. 

end component; 
begin 

The component and entity have the same names: AndGate. 
The port names are also the same: And_in_1, And_in_2, And_out, 
so we can use default binding without a configuration. 
The last (and only) architecture for AndGate will be used: Simple. 

A1:AndGate port map (X, Y, Zl); -- positional association 
A2:AndGate port map (And_in_2=>Y, And_out=>Z2, And_in_1=>X); named 
A3:AndGate port map (X, And out => Z3, And in 2 => Y); both 

end; 

The interface object rules of Table 10.10 apply to ports. The rule that forbids 
updating an interface object of mode in prevents modifying an input port (by plac­
ing the input signal on the left-hand side of an assignment statement, for example). 
Less obviously, you cannot read a port of mode out (that is you cannot place an out­
put signal on the right-hand side of an assignment statement). This stops you from 
accidentally reading an output signal that may be connected to a net with multiple 
drivers. In this case the value you would read (the unresolved output signal) might 
not be the same as the resolved signal value. For example, in the following code, 
since Clock is a port of mode out, you cannot read Clock directly. Instead you can 
transfer Clock to an intermediate variable and read the intermediate variable 
instead: 

entity ClockGen_1'is port (Clock: out BIT); end; 
architecture Behave of ClockGen 1 is 
begin process variable Temp: BIT := '1'; 

begin 
-- Clock <= not CloCki Illegal, you cannot read Clock (mode out), 

Temp := not Temp; use a temporary variable instead. 
Clock <= Temp after 10 ns; wait for 10 ns; 
if (now> 100 ns) then wait; end if; end process; 

end; 

Table 10.10 lists the restnctions on reading and updating interface objects 
including interface signals that form ports. Table 10.11 lists additional special rules 
for reading and updating the attributes of interface signals. 

424



10.7 INTERFACE DECLARATIONS 409 

TABLE 10.11 Properties of ports. 

Example entity declaration: 
entity E is port (F_l:BIT; F 2:out BIT; F 3:inout BIT; F_4:buffer BIT); end; -- formals 

Example component declaration: 
component C port (L_l:BIT; L 2:out BIT; L 3:inout BIT; L 4:buffer BIT); -- locals 

end component; 

Example component instantiation: 
II : C port map 

(L_l => A_I, L_2 => A_2, L 3 => A_3, L 4 => A_4); -- locals => actuals 

Example configuration: 
for II : C use entity E(Behave) port map 

(F_l => L_l, F_2 => L_2, F 3 => L_3, F 4 => L_4); -- formals => locals 

Interface object, port F F 1 F 2 

Mode of F in (default) out 
.... _ .. _ ..... _--_ ..... _ .. _. __ ....... _-_ .. - ......... _-_ ...... _ ...... _ .... _ .. __ ... _ .. _-,. ....... _."'-_ .. _ .... _._._._ .... __ ... . ..... --~.-.-.. -.-.--... -....•. -.... - ... -... " ...... --.. - .. _ ..... _._. __ ..... _ .. _ ... _._ ... __ ._ ... __ . ..-.. " ....... -. __ .. " ...... _ .. . 

Can you read attributes of F? 
[VHDL LRM4.3.2] 

Yes, but not the Yes, but not the 
attributes: attributes: 
'STABLE 'STABLE 'QUIET 
'QUIET 'DELAYED 
'DELAYED 'TRANSACTION 
'TRANSACTION 'EVENT 'ACTIVE 

'LAST EVENT 
'LAST ACTIVE 
'LAST VALUE 

F 3 

inout 

Yes, but not the 
attributes: 
'STABLE 
'QUIET 
'DELAYED 
'TRANSACTION 

There is one more set of rules that apply to port connections [VHDL LRM 
1.1.1.2]. If design entity E2 contains an instance, 11, of design entity El, then the 
formals (of design entity El) are associated with actuals (of instance Il). The actu­
als (of instance Il) are themselves formal ports (of design entity E2). The restric­
tions illustrated in Table 10.12 apply to the modes of the port connections from E 1 

to E2 (looking from the inside to the outside). 
Notice that the allowed connections diagrammed in Table 10.12 (looking from 

inside to the outside) are a superset of those of Table 10.10 (looking from the out­
side to the inside). Only the seven types of connections shown in Table 10.12 are 
allowed between the ports of nested design entities. The additional rule that ports of 
mode buffer may only have one source, together with the restrictions on port mode 
interconnections, limits the use of ports of mode buffer. 

F 4 

buffer 

Yes 

425



410 CHAPTER 10 VHDL 

TABLE 10.12 Connection rules for port modes. 

entity El is port (Inside: in BIT); end; architecture Behave of El is begin end; 
entity E2 is port (Outside: inout BIT := '1'); end; architecture Behave of E2 is 
component El port (Inside: in BIT); end component; begin 
II : El port map (Inside => Outside); formal/local (mode in) => actual (mode inout) 
end; 

Possible modes of interface object, Inside in (default) out inout buffer 

Modes of Outside that Inside may connect to (see below) in inout 
buffer 

E2 

I£] formal 
ports 

[A] actual 

1 

3 

ou ti~;;;;t.r--bu f f ~~2 
inout 

2 

4 

means "legal to associate formal port 
(Inside) of mode Y with actual port 
(Outside) of mode X" 

1 A signal of mode inout can be updated by any number of sources [VHDL 87LRM 4.3.3, 93LRM4.3.2]. 
2A signal of mode buffer can be updated by at most one source [VHDL LRM1.1.1.2]. 

10.7.2 Generics 
Ports are signals that carry changing information between entities. A generic is sim­
ilar to a port, except generics carry constant, static information. A generic is an 
interface constant that, unlike normal VHDL constants, may be given a value in a 
component instantiation statement or in a configuration specification. You declare 
generics in an entity declaration and you use generics in a similar fashion to ports. 
The following example uses a generic parameter to alter the size of a gate: 

entity AndGateNWide is 
generic (N : NATURAL := 2); 
port (Inputs: BIT_VECTOR(1 to N); Result: out BIT); 

end; 

Notice that the generic interface list precedes the port interface list. Generics are 
useful to carry timing (delay) information, as in the next example: 

entity AndT is 
generic (TPD : TIME := 1 ns); 
port (at b : BIT := '0'; q: out BIT); 

426



endi 
architecture Behave of AndT is 

begin q <= a and b after TPDi 
endi 

entity AndT_Test_1 is endi 
architecture Netlist 1 of AndT Test 1 is 

component MyAnd 

port (a, b : BITi q : out BIT); 
end component; 
signal aI, b1, q1 : BIT := 'I'; 

begin 

And1 : MyAnd port map (aI, b1, q1); 

end Netlist_1i 

configuration Simplest_1 of AndT_Test 1 is use work.alli 
for Netlist_1 for And1 : MyAnd 

use entity AndT(Behave) generic map (2 nS)i 

end fori end fori 
end Simplest_Ii 

10.8 TYPE DECLARATIONS 411 

The configuration declaration, Simplest_I, changes the default delay (equal to 
1 ns, declared as a default expression in the entity) to 2ns. Techniques based on this 
method are useful in ASIC design. Prelayout simulation uses the default timing val­
ues. Back-annotation alters the delay in the configuration for postlayout simulation. 
When we change the delay we only need to reanalyze the configuration, not the rest 
of the ASIC model. 

There was initially no standard in VHDL for how timing generics should be 
used, and the lack of a standard was a major problem for ASIC designers. The IEEE 
1076.4 VITAL standard addresses this problem (see Section 13.5.5). 

10.8 Type Declarations 

In some programming languages you must declare objects to be integer, real, Bool­
ean, and so on. VHDL (and ADA, the DoD programming language to which VHDL 
is related) goes further: You must declare the type of an object, and there are strict 
rules on mixing objects of different types. We say VHDL is strongly typed. For 
example, you can use one type for temperatures in Centigrade and a different type 
for Fahrenheit, even though both types are real numbers. If you try to add a tempera­
ture in Centigrade to a temperature in Fahrenheit, VHDL catches your error and tells 
you that you have a type mismatch. 

This is the fOlmal (expanded) BNF definition of a type declaration: 

type_declaration ::= 

type identifier i 

I type identifier is 

[10.14] 

427



412 CHAPTER 10 VHDL 

(identifier I 'graphic_character' {, identifier I 'graphic_character'}) 

I range_constraint ; I physical_type_definition ; 

I record_type_definition I access subtype indication ; 

I file of type_name ; I file of subtype name ; 
I array index_constraint of element_subtype_indication 

I array 
(type_name I subtype_name range <> 

{, type_namelsubtype_name range <>}) of 

element_subtype_indication ; 

There are four type classes in VHDL [VHDL LRM3]: scalar types, composite 
types, access types, and file types. The scalar types are: integer type, fioating­
point type, physical type, and enumeration type. Integer and enumeration types 
are discrete types. Integer, floating-point, and physical types are numeric types. 
The range of an integer is implementation dependent but is guaranteed to include 
-2147483647 to +2147483647. Notice the integer range is symmetric and equal to 
_(231 _1) to (231 _1). Floating-point size is implementation dependent, but the range 
includes the bounds -1.0E38 and + 1.0E38, and must include a minimum of six deci­
mal digits of precision. Physical types correspond to time, voltage, current, and so 
on and have dimensions-a unit of measure (seconds, for example). Access types 
are pointers, useful in abstract data structures, but less so in ASIC design. File types 
are used for file I/O. 

You may also declare a subset of an existing type, known as a subtype, in a 
subtype declaration. We shall discuss the different treatment of types and subtypes 
in expressions in Section 10.12. 

Here are some examples of scalar type [VHDL LRM4.1] and subtype declara­
tions [VHDL LRM4.2]: 

entity Declaration_1 is end; architecture Behave of Declaration_1 is 

type F is range 32 to 212; -- Integer type, ascending range. 
type C is range 0 to 100; -- Range 0 to 100 is the range constraint. 

subtype G is INTEGER range 9 to 0; -- Base type INTEGER, descending. 
-- This is illegal: type BadlOO is INTEGER range 0 to 100; 

-- don't use INTEGER in declaration of type (but OK in subtype). 
type Rainbow is (R, 0, Y, G, B, I, V); -- An enumeration type. 

-- Enumeration types always have an ascending range. 

type MVL4 is (' X " '0', '1', 'Z'); 
Note that 'X' and 'x' are different character literals. 
The default initial value is MVL4'LEFT = 'X', 

We say '0' and 'I' (already enumeration literals 
for predefined type BIT) are overloaded. 
Illegal enumeration type: type Bad4 is ("X", "0", "1", "Z"); 

Enumeration literals must be character literals or identifiers. 
begin end; 

428



10.9 OTHER DECLARATIONS 413 

The most common composite type is the array type [VHDL LRM3.2.1]. The 
following examples illustrate the semantics of array declarations: 

entity Arrays_I is end; architecture Behave of Arrays_I is 

type Word is array (0 to 31) of BIT; -- a 32-bit array, ascending 

type Byte is array (NATURAL range 7 downto 0) of BIT; -- descending 
type BigBit is array (NATURAL range <» of BIT; 

We call <> a box, it means the range is undefined for now. 

We call BigBit an unconstrained array. 

This is OK, we constrain the range of an object that uses 
type BigBit when we declare the object, like this: 

subtype Nibble is BigBit(3 downto 0); 
type TI is array (POSITIVE range 1 to 32) of BIT; 

-- TI, a constrained array declaration, is equivalent to a type T2 

-- with the following three declarations: 
subtype index_subtype is POSITIVE range 1 to 32; 

type array_type is array (index_subtype range <» of BIT; 

subtype T2 is array_type (index_subtype); 
-- We refer to index_subtype and array_type as being 

-- anonymous subtypes of TI (since they don't really exist). 
begin end; 

You can assign values to an array using aggregate notation [VHDL LRM7.3.2]: 

entity Aggregate_I is end; architecture Behave of Aggregate_I is 
type D is array (0 to 3) of BIT; type Hask is array (1 to 2) of BIT; 
signal MyData D:= ('0', others => 'I'); -- positional aggregate 

signal MyMask Mask:= (2 => '0', 1 => 'I'); -- named aggregate 

begin end; 

The other composite type is the record type that groups elements together: 

entity Record_2 is end; architecture Behave of Record_2 is 

type Complex is record real : INTEGER; imag : INTEGER; end record; 
signal sl : Complex := (0, others => I); signal s2: Complex; 

begin s2 <= (imag => 2, real => 1); end; 

10.9 Other Declarations 

A declaration is one of the following [VHDL LRM4]: 

[10.15] declaration ::= 
type_declaration 

interface declaration 
component_declaration 

subtype_declaration 

alias declaration 
entity_declaration 

object_declaration 
attribute declaration 

configuration_declaration 

subprogram_declaration I package_declaration 
group template declaration I group declaration 

429



414 CHAPTER 10 VHDL 

I discussed entity, configuration, component, package, interface, type, and sub­
type declarations in Sections 10.5-10.8. Next I shall discuss the other types of dec­
larations (except for groups or group templates [VHDL 93LRM4.6-4.7], new to 
VHDL-93, that are not often used in ASIC design). 

10.9.1 Object Declarations 
There are four object classes in VHDL: constant, variable, signal, and file [VHDL 
LRM 4.3.1.1-4.3.1.3]. You use a constant declaration, signal declaration, variable 
declaration, or file declaration together with a type. Signals can only be declared 
in the declarative region (before the first begin) of an architecture or block, or in a 
package (not in a package body). Variables can only be declared in the declarative 
region of a process or subprogram (before the first begin). You can think of signals 
as representing real wires in hardware. You can think of variables as memory loca­
tions in the computer. Variables are more efficient than signals because they require 
less overhead. 

You may assign an (explicit) initial value when you declare a type. If you do 
not provide initial values, the (implicit) default initial value of a type or subtype T 

is T I LEFT (the leftmost item in the range of the type). For example: 

entity Initial_1 is end; architecture Behave of Initial_1 is 

type Fahrenheit is range 32 to 212; Default initial value is 32. 
type Rainbow is (R, 0, Y, G, B, I, V); Default initial value is R. 
type MVL4 is (. X', • 0 ., • 1 ., . Z • ) ; MVL4 • LEFT = • X' . 

begin end; 

The details of initialization and assignment of initial values are important-it is 
difficult to implement the assignment of initial values in hardware-instead it is bet­
ter to mimic the hardware and use explicit reset signals. 

Here are the formal definitions of constant and signal declarations: 

constant declaration ::= constant [10.16] 
identifier {, identifier}:subtype_indication [:= expression] 

signal_declaration::= signal [10.17] 

identifier {, identifier}:subtype_indication [registerlbus) [:=expression); 

I shall explain the use of signals of kind register or bus in Section 10.13.1. Sig­
nal declarations are explicit signal declarations (ports declared in an interface dec­
laration are implicit signal declarations). Here is an example that uses a constant and 
several signal declarations: 

entity Constant_2 is end; 

library IEEE; use IEEE.STD_LOGIC 1164.all; 
architecture Behave of Constant 2 is 
constant pi : REAL := 3.14159; 

signal B : BOOLEAN; signal sl, s2: BIT; 

signal sum: INTEGER range 0 to 15; 
signal SmallBus : BIT VECTOR (15 downto 0); 

A constant declaration. 

Not a new type. 

16-bit bus. 

430



10.9 OTHER DECLARATIONS 415 

signal GBus 

begin end; 
STD LOGIC VECTOR (31 downto 0) bus; -- A guarded signal. 

Here is the formal definition of a variable declaration: 

variable_declaration ::= [shared] variable [10.18] 
identifier {, identifier}:subtype_indication [:= expression] ; 

A shared variable can be used to model a varying quantity that is common across 
several parts of a model, temperature, for example, but shared variables are rarely 
used in ASIC design. The following examples show that variable declarations 
belong inside a process statement, after the keyword process and before the first 
appearance of the keyword begin inside a process: 

library IEEE; use IEEE.STD_LOGIC_1164.all; entity Variables_1 is end; 

architecture Behave of variables_1 is begin process 

variable i : INTEGER range 1 to 10 := 10; -- Initial value = 10. 

variable v : STD_LOGIC_VECTOR (0 to 31) := (others => '0'); 

begin wait; end process; -- The wait stops an endless cycle. 

end; 

10.9.2 Subprogram Declarations 
VHDL code that you use several. times can be declared and specified as 
subprograms (functions or procedures) [VHDL LRM2.1J. A function is a form of 
expression, may only use parameters of mode in, and may not contain delays or 
sequence events during simulation (no wait statements, for example). Functions are 
useful to model combinational logic. A procedure is a form of statement and allows 
you to control the scheduling of simulation events without incurring the overhead of 
defining several separate design entities. There are thus two forms of subprogram 
declaration: a function declaration or a procedure declaration. 

subprogram_declaration ::= subprogram_specification; ::= 

procedure 

identifierlstring_literal [(parameter_interface_list)] 

I [purelimpure] function 
identifier I string_literal [(parameter_interface_list)] 

return type_name I subtype_name; 

[10.19] 

Here are a function and a procedure declaration that illustrate the difference: 

function add(a, b, c : BIT_VECTOR(3 downto 0» return BIT VECTOR is 

-- A function declaration, a function can't modify a, b, or c. 

procedure IS_A_Eq_B (signal A, B : BIT; signal Y : out BIT); 

-- A procedure declaration, a procedure can change Y. 

431



416 CHAPTER 10 VHDL 

Parameter names in subprogram declarations are called formal parameters (or 
formals). During a call to a subprogram, known as subprogram invocation, the 
passed values are actual parameters (or actuals). An impure function, such as the 
function now or a function that writes to or reads from a file, may return different 
values each time it is called (even with the same actuals). A pure function (the 
default) returns the same value if it is given the same actuals. You may call subpro­
grams recursively. Table 10.13 shows the properties of subprogram parameters. 

TABLE 10.13 Properties of subprogram parameters. 

Example subprogram declarations: 
function my_function(Ff) return BIT is -- Formal function parameter, Ff. 

procedure my_procedure(Fp)i -- Formal procedure parameter, Fp. 

Example subprogram calls: 
my_result := my_function(Af)i -- Calling a function with an actual parameter, Af. 

MY_LABEL:my_procedure(Ap)i Using a procedure with an actual parameter, Ap . 

... _ .........•. _...... • ... , .... _ ....... _ ..•. ····_· ... ··_·······_· ..... ,_.··· ___ ·_._·'·.e····_·····_ •. _ ...... _ ... _ ........... _ . 

Mode of Ff or Fp (formals) in out inout No mode 
----_._-- ---_._._-----_._--
Permissible classes for Af 
(function actual parameter) 

constant (default) 
signal 

Permissible classes for Ap constant (default) 
(procedure actual parameter) variable 

Can you read attributes of 
Ff or Fp (formals)? 

signal 

Yes, except: 
'STABLE 
'QUIET 
'DELAYED 
'TRANSACTION 

of a signal 

Not allowed 

constant 
variable (default) 
signal 

Yes,except: 
'STABLE 'QUIET 
'DELAYED 
'TRANSACTION 

Not allowed 

constant 

var iable (default) 
signal 

Yes, except: 
'STABLE 
'QUIET 
'DELAYED 

'EVENT 'ACTIVE 'TRANSACTION 
'LAST EVENT of a signal 
'LAST ACTIVE 
'LAST VALUE 

of a signal 

file 

file 

A subprogram declaration is optional, but a subprogram specification must be 
included in the subprogram body (and must be identical in syntax to the subpro­
gram declaration-see BNF [10.19]): 

subprogram_body ::= 

subprogram_specification is 

{subprogram_declaration I subprogram_body 

I type_declaration I subtype_declaration 

Iconstant_declarationlvariable_declarationlfile_declarat ion 

[10.20] 

432



10.9 OTHER DECLARATIONS 417 

I alias_declaration I attribute_declaration I attribute_spe cification 

luse_clauselgroup template declaration I group declaration} 
begin 

{sequential_statement} 

end [procedure I function] [identifierlstring_literal] ; 

You can include a subprogram declaration or subprogram body in a package or 
package body (see Section 10.6) or in the declarative region of an entity or process 

statement. The following is an example of a function declaration and its body: 

function subsetO(soutO : in BIT) return BIT VECTOR -- declaration 

-- Declaration can be separate from the body_ 

function subsetO(soutO : in BIT) return BIT VECTOR is -- body 

variable y : BIT_VECTOR(2 downto 0); 

begin 

if (soutO = '0') then y := "000"; else y := "100"; end if; 

return result; 

end; 

procedure clockGen (clk out BIT) 

procedure clockGen (clk out BIT) is 

begin -- Careful this process runs forever: 

Declaration 

Specification 

process begin wait for 10 ns; clk <= not clk; end process; 

I:md; 

One reason for having the optional (and seemingly redundant) subprogram dec­
laration is to allow companies to show the subprogram declarations (to document 
the interface) in a package declaration, but to hide the subprogram bodies (the actual 
code) in the package body. If a separate subprogram declaration is present, it must 
conform to the specification in the subprogram body [VHDL 93LRM2.7J. This 
means the specification and declaration must be almost identical; the safest method 
is to copy and paste. If you define common procedures and functions in packages 
(instead of in each entity or architecture, for example), it will be easier to reuse sub­
programs. In order to make a subprogram included in a package body visible outside 
the package, you must declare the subprogram in the package declaration (otherwise 
the subprogram is private). 

You may call a function from any expression, as follows: 

entity F_1 is port (s : out BIT_VECTOR(3 downto 0) := "0000"); end; 

architecture Behave of F_1 is begin process 

function add(a, b, c : BIT_VECTOR(3 downto 0)) return BIT VECTOR is 

begin return a xor b xor c; end; 

begin s <= add("OOOl", "0010", "1000"); wait; end process; end; 

package And_Pkg is 

procedure V And(a, b : BIT; signal c : out BIT); 

function V_And(a, b : BIT) return BIT; 

433



418 CHAPTER 10 VHDL 

end; 

package body And_Pkg is 

procedure V_And(a,b : BIT;signal c : out BIT) is 

begin c <= a and b; end; 

function V_And(a,b : BIT) return BIT is 

begin return a and b; end; 

end And_Pkg; 

entity F_2 is port (s: out BIT := '0'); end; 

use work.And_Pkg.all; -- use package already analyzed 

architecture Behave of F_2 is begin process begin 

s <= V_And( '1', '1'); wait; end process; end; 

I shall discuss the two different ways to call a procedure in Sections 10.10.4 and 
10.13.3. 

10.9.3 Alias and Attribute Declarations 
An alias declaration [VHDL 87LRM4.3.4, 93LRM4.3.3] names parts of a type: 

alias declaration ::= [10.21] 

alias 

identifier I character 1iteralloperator symbol 1 :subtype_indicationl 

is name [signaturel; 

(the subtype indication is required in VHDL-87, but not in VHDL-93). 
Here is an example of alias declarations for parts of a floating-point number: 

entity Alias_1 is end; architecture Behave of Alias_1 is 

begin process variable Nmbr: BIT_VECTOR (31 downto 0); 

-- alias declarations to split Nmbr into 3 pieces : 

alias Sign: BIT is Nmbr(31); 

alias Mantissa : 

alias Exponent : 

BIT_VECTOR (23 downto 0) is Nmbr (30 downto 7); 

BIT_VECTOR ( 6 downto 0) is Nmbr ( 6 downto 0); 

begin wait; end process; end; -- the wait prevents an endless cycle 

An attribute declaration [VHDL LRM4.4] defines attribute properties: 

attribute declaration ::= 

attribute identifier:type_name 

Here is an example: 

[10.22] 

I attribute identifier:subtype_name 

entity Attribute_1 is end; architecture Behave of Attribute_l is 

begin process type COORD is record X, Y : INTEGER; end record; 

attribute LOCATION : COORD; -- the attribute declaration 

begin wait ; -- the wait prevents an endless cycle 
end process; end; 

434



10.10 SEQUENTIAL STATEMENTS 419 

You define the attribute properties in an attribute specification (the following 
example specifies an attribute of a component label). You probably will not need to 
use your own attributes very much in ASIC design. 

attribute LOCATION of adderl : label is (10,15); 

You can then refer to your attribute as follows: 

positionOfComponent := adderl'LOCATION; 

10.9.4 Predefined Attributes 
The predefined attributes for scalar and array types III VHDL-93 are shown in 
Table 10.14 [VHDL 93LRM14.l]. There are two attributes, I STRUCTURE and 

I BEHAVIOR, that are present in VHDL-87, but removed in VHDL-93. Both of these 
attributes apply to architecture bodies. The attribute name A I BEHAVIOR is TRUE if the 
architecture A does not contain component instantiations. The attribute name 
A I STRUCTURE is TRUE if the architecture A contains only passive processes (those 
with no assignments to signals) and component instantiations. These two attributes 
were not widely used. The attributes shown in Table 10.14, however, are used exten­
sively to create packages and functions for type conversion and overloading operators, 
but should not be needed by an ASIC designer. Many of the attributes do not corre­
spond to "real" hardware and cannot be implemented by a synthesis tool. 

The attribute I LEFT is important because it determines the default initial value 
of a type. For example, the default initial value for type BIT is BIT' LEFT, which 
is '0 I. The predefined attributes of signals are listed in Table 10.15. The most 
important signal attribute is 'EVENT, which is frequently used to detect a clock edge. 
Notice that Clock I EVENT, for example, is a function that returns a value of type 
BOOLEAN, whereas the otherwise equivalent not (Clock I STABLE), is a signal. The 
difference is subtle but important when these attributes are used in the wait state­
ment that treats signals and values differently. 

10.10 Sequential Statements 

A sequential statement [VHDL LRM8] is defined as follows: 

sequential_statement ::= 

wait statement I assertion_statement 
signal_assignment_statement 

variable_assignment_statement I procedure_call statement 
if statement case statement I loop_statement 

next statement 

return statement 

exit statement 
null statement report statement 

[10.23] 

435



420 CHAPTER 10 VHDL 

TABLE 10.14 Predefined attributes for scalar and array types. 

Prefix Parameter Result 
Attribute Kind1 T,A, E2 XorN3 type3 Result 

T'BASE T any base(T) base(T), use only with other attribute 

T'LEFT V scalar T Left bound of T 

T'RIGHT V scalar T Right bound of T 

T'HIGH V scalar T Upper bound of T 

T'LOW V scalar T Lower bound of T 

T'ASCENDING V scalar BOOLEAN True if range of Tis ascending4 

T'IMAGE(X) F scalar base(T) STRING String representation of X in T4 

T'VALUE(X) F scalar STRING base(T) Value in Twith representation X4 

T'POS(X) F discrete base(T) UI Position number of X in T (starts at 0) 

T'VAL(X) F discrete UI base(T) Value of position X in T 

T'SUCC(X) F discrete base(T) base(T) Value of position X in T plus one 

T'PRED(X) F discrete base(T) base(T) Value of position X in T minus one 

T'LEFTOF(X) F discrete base(T) base(T) Value to the left of X in T 

T'RIGHTOF(X) F discrete base(T) base(T) Value to the right of X in T 

A ' LEFT [ (N) ] F array UI T(Result) Left bound of index N of array A 

A I RIGHT [ (N) ] F array UI T(Result) Right bound of index N of array A 

A I HIGH [ (N) ] F array UI T(Result) Upper bound of index N of array A 

A' LOW [ (N) ] F array UI T(Result) Lower bound of index N of array A 

A' RANGE [ (N) ] R array UI T(Result) Range A'LEFT(N) to A'RIGHT(N)5 

A'REVERSE_RANGE[(N) R array UI T(Result) Opposite range to A'RANGE[(N)] 
] 

A' LENGTH [ (N) ] V array UI UI Number of values in index N of array A 

A'ASCENDING[(N)] V array UI BOOLEAN True if index N of A is ascending4 

E'SIMPLE NAME V name STRING Simple name of E4 

E'INSTANCE NAME V name STRING Path includes instantiated entities4 

E'PATH NAME V name STRING Path excludes instantiated entities4 

1T = Type, F=Function, V=Value, R=Range. 
2any=any type or subtype, scalar=scalar type or subtype, discrete=discrete or physical type or subtype, 
name=entity name=identifier, character literal, or operator symbol. 

3base(T)=base type of T, T =type of T, UI= universaUnteger,T(Result)=type of object described in result column. 
40nly available in VHDL-93. For' ASCENDING all enumeration types are ascending. 
50r reverse for descending ranges. 

436



TABLE 10.15 Predefined attributes for signals. 

Attribute Kind1 Parameter T2 Result type3 

S'DELAYED [ (T) ] S TIME base(S) 

S 'STABLE [( T) ] S TIME BOOLEAN 

S 'QUIET [( T) ] S TIME BOOLEAN 

S'TRANSACTION S BIT 

S'EVENT F BOOLEAN 

S'ACTIVE F BOOLEAN 

S'LAST EVENT F TIME 

S'LAST ACTIVE F TIME 

S'LAST VALUE F base(S) 

S'DRIVING F BOOLEAN 

S'DRIVING VALUE F base(S) 

1 F=function, S=signal. 
2Time T;:::O ns. The default, if T is not present, is T =0 ns. 
3base(S)=base type of S. 

· 10.10 SEQUENTIAL STATEMENTS 421 

Result/restrictions 

S delayed by time T 

TRUE if no event on S for time T 

TRUE if S is quiet for time T 

Toggles each cycle if S becomes active 

TRUE when event occurs on S 

TRUE if S is active 

Elapsed time since the last event on S 

Elapsed time since S was active 

Previous value of S, before last event4 

TRUE if every element of Sis driven5 

Value of the driver for S in the current process5 

4VHDL-93 returns last value of each signal in array separately as an aggregate, VHDL-87 returns the last value 
of the composite signal. 

5VHDL-93 only. 

Sequential statements may only appear in processes and subprograms. In the 
following sections I shall describe each of these different types of sequential state­
ments in turn. 

10.10.1 Wait Statement 
The wait statement is central to VHDL, here are the BNF definitions [VHDL 
93LRM8.1]: 

wait statement ::= [label:] wait [sensitivity_clause] 

[condition_clause] [timeout_clause] i 

sensitivity_clause ::= on sensitivity_list 

sensitivity_list ::= signal_name { , signal name} 

condition clause ::= until condition 

condition ::= boolean_expression 

timeout_clause ::= for time_expression 

[10.24] 

A wait statement suspends (stops) a process or procedure (you cannot use a 
wai t statement in a function). The wait statement may be made sensitive to events 
(changes) on static signals (the value of the signal must be known at analysis time) 

437



422 CHAPTER 10 VHDL 

that appear in the sensitivity list after the keyword on. These signals form the 
sensitivity set of a wait statement. The process will resume (restart) when an event 
occurs on any signal (and only signals) in the sensitivity set. 

A wait statement may also contain a condition to be met before the process 
resumes. If there is no sensitivity clause (there is no keyword on) the sensitivity set 
is made from signals (and only signals) from the condition clause that appears after 
the keyword until (the rules are quite complicated [VHDL 93LRM8.1]). 

Finally a wait statement may also contain a timeout (following the keyword 
for) after which the process will resume. Here is the expanded BNF definition, 
which makes the structure of the wait statement easier to see (but we lose the defi­
nitions of the clauses and the sensitivity list): 

wait_statement ::= [label:] wait 

[on signal_name {, signal_name}] 

[until boolean_expression] 

[for time_expression] ; 

For example, the statement, wait on light, makes you wait until a traffic 
light changes (any change). The statement, wait until light = green, makes 
you wait (even at a green light) until the traffic signal changes to green. The state­
ment, 

if light = (red or yellow) then wait until light = green; end if; 

accurately describes the basic rules at a traffic intersection. 
The most common use of the wait statement is to describe synchronous logic, 

as in the following model of a D flip-flop: 

entity DFF is port (CLK, D : BIT; Q : out BIT)i end; 

architecture Behave of DFF is 
process begin wait until elk = 'l'i Q <= D i end processi 

end; 

--1 

--2 

--3 

--4 

Notice that the statement in line 3 above, wait until elk = '1', is equiva­
lent to wait on elk until elk = '1', and detects a clock edge and not the 
clock level. Here are some more complex examples of the use of the wait state­
ment: 

entity Wait_1 is port (Clk, sl, s2 :in BIT); end; 
architecture Behave of Wait 1 is 

signal x : BIT_VECTOR (0 to 15); 

begin process variable v : BIT; begin 
wait; -- Wait forever, stops simulation. 

wait on sl until s2 = '1'; -- Legal, but sl, s2 are signals so 

-- sl is in sensitivity list, and s2 is not in the sensitivity set. 
-- Sensitivity set is sl and process will not resume at event on s2. 
wait on sl, 52; resumes at event on signal sl or s2. 
wait on sl for 10 ns; resumes at event on sl or after 10 ns. 
wait on Xi resumes when any element of array x 

has an event. 

438



10.10 SEQUENTIAL STATEMENTS 423 

-- wait on x(l to v); -- Illegal, nonstatic name, since v is a variable. 
end process; 

end; 

entity Wait_2 is port (elk, sl, s2:in BIT); end; 
architecture Behave of wait 2 is 

begin process variable v : BIT; begin 

wait on elk; -- resumes when elk has an event: rlslng or falling. 
wait until elk = 'I'; resumes on rising edge. 

wait on elk until elk = 'I'; equivalent to the last statement. 
wait on elk until v = '1'; 

The above is legal, but v is a variable so 

-- elk is in sensitivity list, v is not in the sensitivity set. 
-- Sensitivity set is elk and process will not resume at event on v. 

wait on elk until sl = '1'; 

The above is legal, but sl is a signal so 
-- elk is in sensitivity list, sl is not in the sensitivity set. 

-- Sensitivity set is elk, process will not resume at event on sl. 
end process; 

end; 

You may only use interface signals that may be read (port modes in, inout, 
and buffer-see Section 10.7) in the sensitivity list of a wait statement. 

10.10.2 Assertion and Report Statements 
You can use an assertion statement to conditionally issue warnings. The report 
statement (VHDL-93 only) prints an expression and is useful for debugging. 

assertion_statement ::= [label:] assert 
boolean_expression [report expression] [severity expression] 

report_statement ::= 
[label:) report expression [severity expression] 

Here is an example of an assertion statement: 

entity Assert 1 is port (I:INTEGER:=O); end; 

architecture Behave of Assert 1 is 

begin process begin 
assert (I > 0) report "I is negative or zero"; wait; 

end process; 

end; 

[10.25] 

The expression after the keyword report must be of type STRING (the default is 
II Assertion violation II for the assertion statement), and the expression after 
the keyword severity must be of type SEVERITY_LEVEL (default ERROR for the 
assertion statement, and NOTE for the report statement) defined in the STANDARD 

439



424 CHAPTER 10 VHDL 

package. The assertion statement prints if the assertion condition (after the keyword 
assert) is FALSE. Simulation normally halts for severity of ERROR or FAILURE (you 
can normally control this threshold in the simulator). 

10.10.3 Assignment Statements 
There are two sorts of VHDL assignment statements: one for signals and one for 
variables [VHDL 93LRM8.4-8.5]. The difference is in the timing of the update of 
the LHS. A variable assignment statement is the closest equivalent to the assign­
ment statement in a computer programming language. Variable assignment state­
ments are always sequential statements and the LHS of a variable assignment 
statement is always updated immediately. Here is the definition and an example: 

variable_assignment_statement ::= 

[label:] namelaggregate := expression 

entity Var_Assignment is end; 

architecture Behave of Var_Assignment is 
signal sl : INTEGER := 0; 

begin process variable vl,v2 INTEGER:= 0; begin 

assert (vl/=O) report "vI is 0" severity note; this prints 
vI := vI + 1; -- after this statement vI is 1 

assert (vl=O) report "vI isn't 0" severity note; -- this prints 
v2 := v2 + sl; -- signal and variable types must match 
wait; 

end process; 

end; 

This is the output from Cadence Leapfrog for the preceding example: 

ASSERT/NOTE (time 0 FS) from :$PROCESS_OOO (design unit 
WORK.VAR_ASSIGNMENT:BEHAVE) vI is 0 

ASSERT/NOTE (time 0 FS) from :$PROCESS_OOO (design unit 
WORK.VAR_ASSIGNMENT:BEHAVE) vI isn't 0 

A signal assignment statement schedules a future assignment to a signal: 

signal_assignment_statement::= 
[label:] target <= 

[transport I [ reject time expression] inertial] waveform; 

[10.26] 

[10.27] 

The following example shows that, even with no delay, a signal is updated at 
the end of a simulation cycle after all the other assignments have been scheduled, 
just before simulation time is advanced: 

entity Sig_Assignment_l is end; 
architecture Behave of Sig_Assignment 1 is 

signal sl,s2,s3 : INTEGER := 0; 

begin process variable vI : INTEGER := 1; begin 
assert (sl /= 0) report "sl is 0" severity note -- this prints. 

440



10.10 SEQUENTIAL STATEMENTS 425 

sl <= sl + 1; after this statement sl is still o. 
assert (sl /= 0) report "sl still 0" severity note; -- this prints. 

wait; 

end process; 

end; 

ASSERT/NOTE (time 0 FS) from :$PROCESS_OOO (design unit 

WORK.SIG_ASSIGNMENT_l:BEHAVE) sl is 0 

ASSERT/NOTE (time 0 FS) from :$PROCESS_OOO (design unit 

WORK.SIG_ASSIGNMENT_l:BEHAVE) sl still 0 

Here is an another example to illustrate how time is handled: 

entity Sig_Assignment_2 is end; 

architecture Behave of Sig_Assignment_2 is 

signal sl, s2, s3 : INTEGER := 0; 

begin process variable vI : INTEGER := 1; begin 

sl, s2, s3 are initially 0; now consider the following: 

sl <= 1 ; -- schedules updates to sl at end of 0 ns cycle. 

s2 <= sl; -- s2 is 0, not 1. 

wait for 1 ns; 

s3 <= sl; -- now s3 will be 1 at 1 ns. 

wait; 

end process; 

end; 

The Compass simulator produces the following trace file for this example: 

Time(fs) + Cycle sl s2 s3 

0+ 0: 

0+ 1: * 

1000000+ 1: 

o 
1 * 

1 

o 
o 

o * 

o 
o 

1 

Time is indicated in femtoseconds for each simulation cycle plus the number of 
delta cycles (we call this delta time, measured in units of delta, 0) needed to calcu­
late all transactions on signals. A transaction consists of a new value for a signal 
(which may be the same as the old value) and the time delay for the value to take 
effect. An asterisk '*' before a value in the preceding trace indicates that a transac­
tion has occurred and the corresponding signal updated at that time. A transaction 
that does result in a change in value is an event. In the preceding simulation trace 
forSig_Assignment_2:Behave 

• At 0 ns + 00: all signals are o. 
o At 0 ns+ 10: sl is updated to 1, s2 is updated to 0 (not to 1). 

• At 1 ns+ 10: s3 is updated to a l. 

441



426 CHAPTER 10 VHDL 

The following example shows the behavior of the different delay models: 
transport and inertial (the default): 

entity Transport_1 is end; 

architecture Behave of Transport 1 is 

signal sl, SLOW, FAST, WIRE: BIT := '0'; 
begin process begin 
sl <= '1' after 1 ns, '0' after 2 ns, '1' after 3 ns ; 

-- schedules sl to be '1' at t+1 ns, '0' at t+2 ns,'l' at t+3 ns 

wait; end process; 

-- inertial delay: SLOW rejects pulsewidths less than 5ns: 
process (sl) begin SLOW <= slafter 5 ns ; end process; 

-- inertial delay: FAST rejects pulsewidths less than 0.5ns: 
process (sl) begin FAST <= sl after 0.5 ns ; end process; 

-- transport delay: WIRE passes all pulsewidths ... 

process (sl) begin WIRE <= transport sl after 5 ns ; end process; 

end; 

Here is the trace file from the Compass simulator: 

Time(fs) + Cycle sl slmV' fast wire 

----------------------
0+ 0: '0 ' '0 ' '0 ' '0 ' 

500000+ 0: '0 ' '0 ' *'0' '0 ' 
1000000+ 0: *'1' '0 ' '0 ' '0 ' 
1500000+ 0: '1 ' '0 ' *'1' '0 ' 
2000000+ 0: *'0' '0 ' '1 ' '0 ' 
2500000+ 0: '0 ' '0 ' *'0' '0 ' 
3000000+ 0: *'1' '0 ' '0 ' '0 ' 
3500000+ 0: '1 ' '0 ' *'11 '0 ' 
5000000+ 0: ' l' '0 ' '1 ' *'0' 
6000000+ 0: '1 ' '0 ' '1 ' *11' 

7000000+ 0: ' l' '0 ' '1 ' *'0' 
8000000+ 0: '1 ' *'1' '1 ' *'1' 

Inertial delay mimics the behavior of real logic gates, whereas transport delay 
·more closely models the behavior of wires. In VHDL-93 you can also add a separate 
pulse rejection limit for the inertial delay model as in the following example: 

process (sl) begin RJCT <= reject 2 ns sl after 5 ns ; end process; 

10.10.4 Procedure Call 

A procedure call in VHDL corresponds to calling a subroutine in a conventional 
programming language [VHDL LRMS.6]. The parameters in a procedure call state­
ment are the actual procedure parameters (or actuals); the parameters in the proce­
dure definition are the formal procedure parameters (or formals), The two are linked 

442



10.10 SEQUENTIAL STATEMENTS 427 

using an aSSOcIatIOn list, which may use either positional or named association 
(association works just as it does for ports-see Section 10.7.1): 

procedure_call_statement ::= 

[label:] procedure_name [(parameter_association list)]; 

Here is an example: 

package And_Pkg is 

procedure V_And(a, b : BIT; signal c : out BIT); 

function V_And(a, b : BIT) return BIT; 
end; 

package body And_Pkg is 

procedure V_And(a, b : BIT; signal c: out BIT) is 

begin c <= a and b; end; 
function V_And(a, b: BIT) return BIT is 

begin return a and b; end; 
end And _ Pkg ; 

use work.And_Pkg.all; entity Proc_Call_1 is end; 

architecture Behave of Proc Call 1 is signal A, B, Y: BIT := '0'; 
begin process begin V And (A, B, Y); wait; end process; 

end; 

[10.28] 

Table 10.13 on page 416 explains the rules for formal procedure parameters. 
There is one other way to call procedures, which we shall cover in Section 10.13.3. 

10.10.5 If Statement 
An if statement evaluates one or more Boolean expressions and conditionally exe­
cutes a corresponding sequence of statements [VHDL LRMS.7]. 

if statement :: = 

[if label:] if boolean_expression then {sequential_statement} 
{elsif boolean_expression then {sequential_statement}} 

[else {sequential_statement}] 
end if [if label]; 

The simplest form of an if statement is thus: 

if boolean_expression then {sequential_statement} end if; 

Here are some examples of the if statement: 

entity If_Then_Else_1 is end; 
architecture Behave of If Then_Else_1 is signal a, b, c: BIT :='1'; 

begin process begin 
if c = '1' then c <= a ; else c <= b; end if; wait; 

end process; 
end; 

[10.29] 

443



428 CHAPTER 10 VHDL 

entity If_Then_1 is end; 

architecture Behave of If_Then_1 is signal A, B, Y 
begin process begin 

if A = B then Y <= A; end if; wait; 
end process; 

end; 

10.10.6 Case Statement 

BIT := 'I' ; 

A case statement [VHDL LRMS.S] is a multiway decision statement that selects a 
sequence of statements by matching an expression with a list of (locally static 
[VHDL LRM7.4.1]) choices. 

case statement ::= 

[case label:] case expression is 

when choice {I choice} => {sequential_statement} 
{when choice {I choice} => {sequential_statement}} 

end case [case label]; 

[10.30] 

Case statements are useful to model state machines. Here IS an example of a 
Mealy state machine with an asynchronous reset: 

library IEEE; use IEEE.STD_LOGIC_1164.all; 
entity sm_mealy is 

port (reset, clock, iI, i2 : STD_LOGIC; 01, 02 
end sm_mealy; 

architecture Behave of sm_mealy is 

out STD_LOGIC); 

type STATES is (sO, sl, s2, s3); signal current, new STATES; 
begin 

synchronous : process (clock, reset) begin 

if To_X01(reset) = '0' then current <= sO; 
elsif rising_edge (clock) then current <= new; end if; 

end process; 
combinational: process (current, iI, i2) begin 
case current is 

when sO => 

'I' then 02 <='0'; 01 <='0'; new <= s2; 
else 02 <= 'I'; 01 <= '1'; new <= sl; end if; 

when sl => 

if To_X01(i2) = 'I' then 02 <='1'; 01 <='0'; new <= sl; 

else 02 <='0'; 01 <='1'; new <= s3; end if; 
when s2 => 

if To_X01(i2) = 'I' then 02 <='0'; 01 <='1'; new <= s2; 
else 02 <= 'I'; 01 <= '0'; new <= sO; end if; 

when s3 => 02 <= '0'; 01 <= '0'; new <= sO; 

when others => 02 <= '0'; 01 <= '0'; new <= sO; 
end case; 

end process; 
end Behave; 

--1 

--2 

--3 

--4 

--5 

--6 

--7 
--8 

--9 

--10 
--11 

--12 

--13 
--14 

--15 

--16 
--17 

--18 

--19 

--20 

--21 
--22 

--23 

--24 
--25 

--26 
--27 

444



10.10 SEQUENTIAL STATEMENTS 429 

Each possible value of the case expression must be present once, and once only, 
in the list of choices (or arms) of the case statement (the list must be exhaustive). 
You can use ' I' (that means 'or') or 'to' to denote a range in the expression for 
choice. You may also use the keyword others as the last, default choice (even if 
the list is already exhaustive, as in the preceding example). 

10.10.7 Other Sequential Control Statements 
A loop statement repeats execution of a series of sequential statements [VHDL 
LRM8.9]: 

loop_statement ::= 

[loop_label: ] 

[while boolean_expression I for identifier in discrete_range] 

loop 

{sequential_statement} 

end loop [loop_label]; 

[10.31] 

If the loop variable (after the keyword for) is used, it is only visible inside the 
loop. A while loop evaluates the Boolean expression before each execution of the 
sequence of statements; if the expression is TRUE, the statements are executed. In a 
for loop the sequence of statements is executed once for each value of the discrete 
range. 

package And_Pkg is function V_And(a, b : BIT) return BIT; end; 

package body And_Pkg is function V_And(a, b 

begin return a and b; end; end And_Pkg; 

BIT) return BIT is 

entity Loop_l is port (x, y 

use work.And_Pkg.all; 

in BIT := 'I'; s out BIT := '0'); end; 

architecture Behave of Loop_l is 

begin loop 

s <= V_And(x, y); wait on x, y; 

end loop; 

end; 

The next statement [VHDL LRMS.l 0] forces completion of the curTent itera­
tion of a loop (the containing loop unless another loop label is specified). Comple­
tion is forced if the condition following the keyword then is TRUE (or if there is no 
condition). 

next statement ::= [10.32] 

[label:] next [loop_label] [when boolean_expression]; 

445



430 CHAPTER 10 VHDL 

An exit statement [VHDL LRM8.11] forces an exit from a loop. 

exit statement ::= 
[label:] exit [loop_label] [when condition] ; 

As an example: 

loop wait on elk; exit when elk = '0'; end loop; 

-- equivalent to: wait until elk = '0'; 

[10.33] 

The return statement [VHDL LRM8.12] completes execution of a procedure 
or function. 

return_statement ::= [label:] return [expression]; [lO.34] 

A null statement [VHDL LRM8.13] does nothing (but is useful in a case 

statement where all choices must be covered, but for some of the choices you do not 
want to do anything). 

null statement ::= [label:] null; [10.35] 

1 0 .. 11 Operators 

Table 10.16 shows the predefined VHDL operators, listed by their (increasing) 
order of precedence [VHDL 93LRM7.2]. The shift operators and the xnor operator 
were added in VHDL-93. 

TABLE 10.16 VHDL predefined operators (listed by increasing order of precedence). 1 

logical_operator2 ::= 

relational_operator ::= 

shift_operatot ::= 

adding_operator ::= 

sign ::= 

multiplying_operator ::= 

miscellaneous_operator ::= 

and I or I nand I nor I xor xnor 

= I /= I < I <= I > I >= 

sll I srl I sla I sra I rol ror 

+ I I & 

+ I 
* I / I mod I rem 

** I abs I not 

1The not operator is a logical operator but has the precedence of a miscellaneous operator. 
2Underline means "new to VHDL-93:' 

446



10.11 OPERATORS 431 

The binary logical operators (and, or, nand, nor, xor, xnor) and the unary 
not logical operator are predefined for types BIT or BOOLEAN and one-dimensional 
arrays whose element type is BIT or BOOLEAN. The operands must be of the same 
base type for the binary logical operators and the same length if they are arrays. 

Both operands of relational operators must be of the same type and the result 
type is BOOLEAN. The equality operator and inequality operator (, =' and' /=') are 
defined for all types (other than file types). The remaining relational operators, 
ordering operators, are predefined for any scalar type, and for anyone-dimensional 
array whose elements are of a discrete type (enumeration or integer type). 

The left operand of the shift operators (VHDL-93 only) is a one-dimensional 
array with element type of BIT or BOOLEAN; the right operand must be INTEGER. 

The adding operators (, +' and '-') are predefined for any numeric type. You 
cannot use the adding operators on BIT or BIT_VECTOR without overloading. The 
concatenation operator '&' is predefined for anyone-dimensional array type. The 
signs ( , +' and '-') are defined for any numeric type. 

The multiplying operators are: '*', '/', mod, and rem. The operators '*' and 
, /' are predefined for any integer or floating-point type, and the operands and the 
result are of the same type. The operators mod and rem are predefined for any inte­
ger type, and the operands and the result are of the same type. In addition, you can 
multiply an INTEGER or REAL by any physical type and the result is the physical 
type. You can also divide a physical type by REAL or INTEGER and the result is the 
physical type. If you divide a physical type by the same physical type, the result is 
an INTEGER (actually type UNIVERSAL_INTEGER, which is a predefined anony­
mous type [VHDL LRM7.S]). Once again-you cannot use the multiplying opera­
tors on BIT or BIT_VECTOR types without overloading the operators. 

The exponentiating operator, '**', is predefined for integer and floating-point 
types. The right operand, the exponent, is type INTEGER. You can only use a nega­
tive exponent with a left operand that is a floating-point type, and the result is the 
same type as the left operand. The unary operator abs (absolute value) is pre­
defined for any numeric type and the result is the same type. The operators abs, 

, * * , , and not are grouped as miscellaneous operators. 
Here are some examples of the use of VHDL operators: 

entity Operator_1 is end; architecture Behave of Operator_1 is --1 

begin process 

variable b : BOOLEAN; variable bt : BIT := '1'; variable i 

variable pi : REAL := 3.14; variable epsilon: REAL := 0.01; 

variable bv4 BIT VECTOR (3 downto 0) : = "0001"; 

variable bv8 : BIT VECTOR (0 to 7); 

begin 

--2 

INTEGER i--3 

--4 

--5 

--6 

--7 

b := "0000" < bv4; b is TRUE, "0000" treated as BIT VECTOR. --8 -
b := 'f' > I 9 I; b is FALSE, 'dictionary' comparison. --9 

bt := '0 ' and bt; bt is '0 1 
I analyzer knows '0 ' is BIT. --10 

bv4 := not bv4; bv4 is now "1110". --11 

i := 1 + 2 ; Addition, must be compatible types. --12 

447



432 CHAPTER 10 VHDL 

i .= 2 ** 3; 

i .= 7/3; 

i .= 12 rem 

i := 12 mod 

7 i 

7; 

Exponentiation, exponent must be integer. 

Division, L/R rounded towards zero, i=2. 

Remainder, i=5. In general: 

L rem R = L-«L/R)*R). 

modulus, i=5. In general: 

L mod R = L-(R*N) for an integer N. 

-- shift := sll I srl I sla I sra I rol I ror (VHDL-93 only) 
bv4 := "1001" srl 2; -- Shift right logical, now bv4="0100". 

-- Logical shift fills with T'LEFT. 

bv4 := "1001" sra 2; -- Shift right arithmetic, now bv4="0111". 

-- Arithmetic shift fills with element at end being vacated. 

bv4 := "1001" ror 2; -- Rotate right, now bv4="0110". 

Rotate wraps around. 

Integer argument to any shift operator may be negative or zero. 

--13 

--14 

--15 

--16 

--17 

--18 

--19 

--20 

--21 

--22 

--23 

--24 

--25 

--26 

if (pi*2.718)/2.718 = 3.14 then wait; end ifi This is unreliable.--27 

if (abs«(pi*2.718)/2.718)-3.14)<epsilon) thenwaiti end if; --Better.--28 

bv8 := bv8(1 to 7) & bv8(0); -- Concatenation, a left rotation. --29 

wait; end processi 

end; 

10.12 Arithmetic 

--30 

--31 

The following example illustrates type checking and type conversion In VHDL 
arithmetic operations [VHDL 93LRM7.3.4-7.3.S]: 

entity Arithmetic_1 is end; architecture Behave of Arithmetic 1 is --1 

begin process 

variable i : INTEGER := 1; variable r : REAL := 3.33i --2 

variable b : BIT := 1 I' i 

variable bv4 BIT VECTOR 

variable bv8 BIT VECTOR 
begin 

i := r' , 
bv4 .= bv4 + 2; 
bv4 .= I I' ; 

bv8 := bv4; 

r : = REAL ( i ) ; 

i := INTEGER(r); 

bv4 := "001" & '1'; 

bv8 := "0001" & bv4i 

wait; end process; end; 

--3 
(3 downto 0) := "0001"; --4 
( 7 downto 0) := B"1000 0000"; --5 -

--6 

you can't assign REAL to INTEGER. --7 

you can't add BIT VECTOR and INTEGER. --8 

you can't assign BIT to BIT_VECTOR. --9 

an error, the arrays are different sizes.--10 

OK, uses a type conversion. --11 

OK (0.5 rounds up or down). --12 

OK, you can mix an array and a scalar. --13 

OK, if arguments are the correct lengths.--14 

--15 

448



10.12 ARITHMETIC 433 

The next example shows arithmetic operations between types and subtypes, and 
also illustrates range checking during analysis and simulation: 

entity Arithmetic_2 is end; architecture Behave of Arithmetic 2 is 

type TC is range 0 to 100; Type INTEGER. 

type TF is range 32 to 212; Type INTEGER. 

subtype STC is INTEGER range 0 to 100; 

subtype STF is INTEGER range 32 to 212; 

begin process 

Subtype of type INTEGER. 

Base type is INTEGER. 

variable t1 : TC := 25; 

variable st1 : STC := 25; 

begin 

t1 := t2; 

tl := st1; 
st2 := st1; 

st2 := st1 + l' , 
st2 := 213; 
st2 := 212 + 1; 

st1 := st1 + 100; 

wait; end process; end; 

variable t2 : TF := 32; 

variable st2 : STF := 32; 

Illegal, different types. 

Illegal, different types and subtypes. 

OK to use same base types. 

OK to use subtype and base type. 

Error, outside range at analysis time. 

Error, outside range at analysis time. 

Error, outside range at initialization. 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 
--11 

--12 

--13 

--14 

--15 

--16 

The MTI simulator, for example, gives the following informative error message 
during simulation of the preceding model: 

# ** Fatal: Value 25 is out of range 32 to 212 

t Time: 0 ns Iteration: 0 Instance:/ 

# Stopped at Arithmetic_2.vhd line 12 

# Fatal error at Arithmetic 2.vhd line 12 

The assignment st2 := stl causes this error (since stl is initialized to 25). 
Operations between array types and subtypes are a little more complicated as 

the following example illustrates: 

entity Arithmetic_3 is end; architecture Behave of Arithmetic 3 is --1 

type TYPE_1 is array (INTEGER range 3 downto 0) of BIT; --2 

type TYPE_2 is array (INTEGER range 3 downto 0) of BIT; --3 

subtype SUBTYPE_1 is BIT VECTOR (3 downto 0); --4 

subtype SUBTYPE_2 is BIT_VECTOR (3 downto 0); --5 

begin process 

variable bv4 

variable st1 

variable st2 

begin 

--6 

BIT_VECTOR (3 downto 0) := "0001"; --7 

SUBTYPE 1 .= "0001"; variable t1 TYPE 1 .= "0001"; --8 

SUBTYPE 2 .= "0001"; variable t2 TYPE 2 .= "0001"; --9 

--10 

bv4 

bv4 

bv4 

st1 

st1 

st1 

:= st1; OK, compatible type and subtype. --11 

:= t1; 

:= BIT _VECTOR ( tl ) ; 

:= bv4; 

:= tl; 
:= SUBTYPE 1 (t1) ; 

Illegal, different types. --12 

OK, type conversion. --13 

OK, compatible subtype and base type.--14 

Illegal, different types. --15 

OK, type conversion. --16 

449



434 CHAPTER 10 VHDL 

tl . = stl; Illegal, different types . --17 
tl := bv4; Illegal, different types. --18 
tl := TYPE 1 (bv4); OK, type conversion. --19 
tl . = t2; Illegal, different types . --20 
tl := TYPE_l(t2) ; OK, type conversion. --21 
stl .= st2; OK, compatible subtypes. --22 

wait; end process; end; --23 

The preceding example uses BIT and BIT VECTOR types, but exactly the same 
considerations apply to STD_LOGIC and STD_LOGIC_VECTOR types or other arrays. 
Notice the use of type conversion, written as type_mark I (expression), to con­
vert between closely related types. Two types are closely related if they are abstract 
numeric types (integer or floating-point) or arrays with the same dimension, each 
index type is the same (or are themselves closely related), and each element has the 
same type [VHDL 93LRM7.3.S]. 

10.12.1 IEEE Synthesis Packages 
The IEEE 1076.3 standard synthesis packages allow you to perform arithmetic on 
arrays of the type BIT and STD_LOGIC.3 The NUMERIC_BIT package defines all of 
the operators in Table 10.16 (except for the exponentiating operator I * * ,) for arrays 
of type BIT. Here is part of the package header, showing the declaration of the two 
types UNSIGNED and SIGNED, and an example of one of the function declarations 
that overloads the addition operator I + I for UNSIGNED arguments: 

package Part_NUMERIC_BIT is 

type UNSIGNED is array (NATURAL range <> ) of BIT; 

type SIGNED is array (NATURAL range <> ) of BIT; 

function n+" (L, R : UNSIGNED) return UNSIGNED; 

-- other function definitions that overload +, -, 

end Part_NUMERIC_BIT; 

, >, and so on. 

The package bodies included in the 1076.3 standard define the functionality of 
the packages. Companies may implement the functions in any way they wish-as 
long as the results are the same as those defined by the standard. Here is an example 
of the parts of the NUMERIC_BIT package body that overload the addition operator 

I + I for two arguments of type UNSIGNED (even with my added comments the code 
is rather dense and terse, but remember this is code that we normally never see or 
need to understand): 

package body Part NUMERIC BIT is 

constant NAU : UNSIGNED(O downto 1) := (others =>'0'); -- Null array. 

3IEEE Std 1076.3-1997 was approved by the IEEE Standards Board on 20 March 1997. The 
synthesis package code on the following pages is reprinted with permission from IEEE Std 
1076.3-1997, Copyright © 1997 IEEE. All rights reserved. 

450



10.12 ARITHMETIC 435 

constant NAS : SIGNED(O downto 1):=(others => '0'); -- Null array. 
constant NO WARNING: BOOLEAN := FALSE; -- Default to emit warnings. 

function MAX (LEFT, RIGHT : INTEGER) return INTEGER is 

begin -- Internal function used to find longest of two inputs. 

if LEFT> RIGHT then return LEFT; else return RIGHT; end if; end MAX; 

function ADD_UNSIGNED (L, R : UNSIGNED; C: BIT) return UNSIGNED is 

constant L_LEFT : INTEGER := L'LENGTH-l; -- L, R must be same length. 
alias XL : UNSIGNED(L_LEFT downto 0) is L; -- Descending alias, 

alias XR : UNSIGNED(L_LEFT downto 0) is R; -- aligns left ends. 
variable RESULT: UNSIGNED(L_LEFT downto 0); variable CBIT : BIT := C; 

begin for I in 0 to L_LEFT loop -- Descending alias allows loop. 

RESULT(I) := CBIT xor XL(I) xor XR(I); -- CBIT = carry, initially = C. 

CBIT := (CBIT and XL(I)) or (CBIT and XR(I)) or (XL(I) and XR(I)); 
end loop; return RESULT; end ADD_UNSIGNED; 

function RESIZE (ARG : UNSIGNED; NEW_SIZE : NATURAL) return UNSIGNED is 
constant ARG LEFT : INTEGER := ARG'LENGTH-l; 

alias XARG : UNSIGNED(ARG_LEFT downto 0) is ARG; -- Descending range. 
variable RESULT: UNSIGNED(NEW_SIZE-l downto 0) := (others => '0'); 

begin -- resize the input ARG to length NEW_SIZE 

if (NEW_SIZE < 1) then return NAU; end if; -- Return null array. 
if XARG'LENGTH = 0 then return RESULT; end if; -- Null to empty. 

if (RESULT'LENGTH < ARG'LENGTH) then -- Check lengths. 
RESULT(RESULT'LEFT downto 0) := XARG(RESULT'LEFT downto 0); 

else -- Need to pad the result with some 'O's. 
RESULT(RESULT'LEFT downto XARG'LEFT + 1) := (others => '0'); 

RESULT(XARG'LEFT downto 0) := XARG; 
end if; return RESULT; 

end RESIZE; 

function "+" (L, R : UNSIGNED) return UNSIGNED is -- Overloaded '+'. 
constant SIZE: NATURAL := MAX(L'LENGTH, R'LENGTH); 
begin -- If length of L or R < 1 return a null array. 

if ((L'LENGTH < 1) or (R'LENGTH < 1)) then return NAU; end if; 

return ADD_UNSIGNED(RESIZE(L, SIZE), RESIZE(R, SIZE), '0'); end "+"i 

The following conversion functions are also part of the NUMERIC_BIT package: 

function TO_INTEGER (ARG : UNSIGNED) return NATURAL; 
function TO_INTEGER (ARG : SIGNED) return INTEGER; 

function TO_UNSIGNED (ARG, SIZE : NATURAL) return UNSIGNED; 

function TO_SIGNED (ARG : INTEGER; SIZE : NATURAL) return SIGNEDi 
function RESIZE (ARG : SIGNED; NEW_SIZE : NATURAL) return SIGNED; 
function RESIZE (ARG : UNSIGNED; NEW_SIZE : NATURAL) return UNSIGNED; 

-- set XMAP to convert unknown values, default is 'X'->'O' 
function TO_Ol(S UNSIGNED; XMAP : STD_LOGIC := '0') return UNSIGNED; 

function TO_Ol(S : SIGNED; XMAP : STD LOGIC := '0') return SIGNED; 

451



436 CHAPTER 10 VHDL 

The NUMERIC _ STD package is almost identical to the NUMERIC_BIT package 
except that the UNSIGNED and SIGNED types are declared in terms of the 
STD_LOGIC type from the Std_Logic_1164 package as follows: 

library IEEE; use IEEE.STD_LOGIC_1164.all; 

package Part_NUMERIC_STD is 

type UNSIGNED is array (NATURAL range <» of STD_LOGICi 

type SIGNED is array (NATURAL range <» of STD_LOGIC; 

end part_NUMERIC_STD; 

The NUMERIC_STD package body is similar to NUMERIC_BIT with the addition 
of a comparison function called STD _MATCH, illustrated by the following: 

function STD_MATCH (L, R: T) return BOOLEAN; 

T = STD ULOGIC UNSIGNED SIGNED STD LOGIC VECTOR STD ULOGIC VECTOR 

The STD _MATCH function uses the following table to compare logic values: 

type BOOLEAN_TABLE is array(STD_ULOGIC, STD_ULOGIC) of BOOLEAN; 

constant MATCH_TABLE : BOOLEAN_TABLE := ( 

-- U x o 1 z w L H 

(FALSE,FALSE, FALSE, FALSE, FALSE, FALSE, FALSE,FALSE, TRUE), I U 

(FALSE,FALSE, FALSE, FALSE, FALSE,FALSE, FALSE,FALSE, TRUE), I X 

(FALSE, FALSE, TRUE, FALSE, FALSE,FALSE, TRUE, FALSE, TRUE), I 0 

(FALSE,FALSE, FALSE , TRUE ,FALSE ,FALSE, FALSE, TRUE, TRUE), I 1 

(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, TRUE), I z 

(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE, TRUE), I w 
(FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE,FALSE, TRUE), I L 

(FALSE,FALSE,FALSE, TRUE,FALSE, FALSE, FALSE, TRUE, TRUE), I H 

TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE»;-- I -

Thus, for example (notice we need type conversions): 

1M TRUE STD_MATCH(STD_LOGIC_VECTOR 

STD LOGIC VECTOR 

("10HLXWZ-"), 

("HL10----"» is TRUE 

The following code is similar to the first simple example of Section 10.1, but 
illustrates the use of the Std_Logic_1164 and NUMERIC_STD packages: 

entity Counter_l is end; 

library STD; use STD.TEXTIO.all; 

library IEEE; use IEEE.STD_LOGIC_1164.all; 

use work.NUMERIC_STD.alli 

architecture Behave 2 of Counter 1 is 

signal Clock STD_LOGIC:= '0'; 

signal Count: UNSIGNED (2 downto 0) := "000"; 

begin 

process begin 

wait for 10 ns; Clock <= not Clock; 

--1 

--2 

--3 
--4 

--5 
--6 

--7 

--8 

--9 

--10 

452



10.13 CONCURRENT STATEMENTS 437 

if (now> 340 ns) then wait; 
end if; 

end process; 
process begin 

wait until (Clock = '0'); 
if (Count = 7) 

then Count <= "000"; 

--11 

--12 
--13 

--14 

--15 
--16 

--17 
else Count <= Count + 1; --18 

end if; --19 
end process; --20 
process (Count) variable L: LINE; begin write(L, now); --21 
write(L, STRING' (" Count=")); write(L, TO_INTEGER(Count)); --22 
write line (output, L); --23 
end process; --24 

end; --25 

The preceding code looks similar to the code in Section 10.1 (and the output is 
identical), but there is more going on here: 

• Line 3 is a library clause and a use clause for the std_Iogic_1l64 pack­
age, so you can use the STD _LOGIC type and the NUMERIC _STD package. 

o Line 4 is a use clause for NUMERIC_STD package that was previously ana­
lyzed into the library work. If the package is instead analyzed into the 
library IEEE, you would use the name IEEE. NUMERIC _ STD. all here. The 
NUMERIC _STD package allows you to use the type UNSIGNED. 

o Line 6 declares Clock to be type STD LOGIC and initializes it to '0', 

instead of the default initial value STD _LOGIC' LEFT (which is 'U') . 

• Line 7 declares Count to be a 3-bit array of type UNSIGNED from 
NUMERIC _STD and initializes it using a bit-string literal. 

• Line 10 uses the overloaded' not' operator from std_Iogic_1l64. 

• Line 15 uses the overloaded '=' operator from std_Iogic_1l64. 

• Line 16 uses the overloaded '=' operator from NUMERIC_STD . 

.. Line 17 requires a bit-string literal, you cannot use Count <= 0 here. 

G Line 18 uses the overloaded '+' operator from NUMERIC_STD. 

• Line 22 converts Count, type UNSIGNED, to type INTEGER. 

1 0 .. 13 Concurrent Statements 

A concurrent statement [VHDL LRM9] is one of the following statements: 

concurrent statement ::= 
block statement 

process_statement 

[10.36] 

453



438 CHAPTER 10 VHDL 

label 

label 

label 

label 

~P&o~s~t~p~o_n_e_d~ procedure_call i 

postponed assertion i --"---'£:.=-:::...=£:..=.::.::..::....:..--"-

~p~o~s~t~p~o~n_e_d~ conditional_signal_assignment 

--,,---,p~o~s~t~p~o=n=e~d--,,- selected_signal_assignment 

component_instantiation_statement 

generate_statement 

(The presence of the semicolons J ; J in some lines and absence in others in the pre­
ceding is correct.) The following sections describe each of these statements in turn. 

10.13.1 Block Statement 
A block statement has the following format [VHDL LRM9.1]: 

block statement ::= 

block label: block [(guard_expression)] [is] 

[generic (generic_interface_list)i 

[generic map (generic_association_list)i]] 

[port (port_interfac8_list)i 

[port map (port_association_list)i]] 

{block_declarative_item} 

begin 

{concurrent_statement} 

end block [block_label] i 

[10.37] 

Blocks may have their own ports and generics and may be used to split an archi­
tecture into several hierarchical parts (blocks can also be nested). As a very general 
rule, for the same reason that it is better to split a computer program into separate 
small modules, it is usually better to split a large architecture into smaller separate 
entity-architecture pairs rather than several nested blocks. 

A block does have a unique feature: It is possible to specify a guard expression 
for a block. This creates a special signal, GUARD, that you can use within the block to 
control execution [VHDL LRM9.S]. It also allows you to model three-state buses by 
declaring guarded signals (signal kinds register and bus). 

When you make an assignment statement to a signal, you define a driver for 
that signal. If you make assignments to guarded signals in a block, the driver for that 
signal is turned off, or disconnected, when the GUARD signal is FALSE. The use of 
guarded signals and guarded blocks can become quite complicated, and not all syn­
thesis tools support these VHDL features. 

454



10.13 CONCURRENT STATEMENTS 439 

The following example shows two drivers, A and B, on a three-state bus 
TSTATE, enabled by signals OEA and OEB. The drivers are enabled by declaring a 
guard expression after the block declaration and using the keyword guarded in the 
assignment statements. A disconnect statement [VHDL LRMS.3] models the driver 
delay from driving the bus to the high-impedance state (time to "float"). 

library ieee; use ieee.std_logic_1164.all; 

entity bus_drivers is end; 

architecture Structure 1 of bus drivers is 

signal TSTATE: STD_LOGIC bus; signal A, B, OEA, OEB : STD_LOGIC:= '0'; 

begin 

process begin OEA <= 'I' after 100 ns, '0' after 200 ns; 

OEB <= 'I' after 300 ns; wait; end process; 

B1 : block (OEA = 'I') 

disconnect all : STD LOGIC after 5 ns; -- Only needed for float time. 
begin TSTATE <= guarded not A after 3 ns; end block; 

B2 : block (OEB = 'I') 

disconnect all : STD_LOGIC after 5 ns; -- Float time 
begin TSTATE <= guarded not B after 3 ns; end block; 

5 ns. 

end; 

1 2 3 4 5 6 

Time(fs) + Cycle tstate a b oea oeb b1.GUARD 

---------------------- ------ --------
0+ 0: 'U' '0 ' '0 ' '0 ' '0 ' FALSE 

0+ 1: * 'Z' '0 ' '0 ' '0 ' '0 ' FALSE 

100000000+ 0: 'Z' '0 ' '0 ' *'1' '0 ' * TRUE 

103000000+ 0: * , 1 ' '0 ' '0 ' , I' '0 ' TRUE 

200000000+ 0: ' I' '0 ' '0 ' *'0' '0 ' * FALSE 

200000000+ 1 : * 'Z' '0 ' '0 ' '0 ' '0 ' FALSE 

300000000+ 0: 'Z' '0 ' '0 ' '0 ' * I I' FALSE 

303000000+ 0: * , 1 ' '0 ' '0 ' '0 ' '1 ' FALSE 

7 

b2.GUARD 

--------
FALSE 

FALSE 
FALSE 

FALSE 
FALSE 

FALSE 

* TRUE 

TRUE 

Notice the creation of implicit guard signals bl. GUARD and b2. GUARD for each 
guarded block. There is another, equivalent, method that uses the high-impedance 
value explicitly as in the following example: 

architecture Structure 2 of bus drivers is - -
signal TSTATE STD_LOGIC; signal A, B, OEA r OEB STD LOGIC := '0'; 

begin 

process begin 
OEA <= 'I' after 100 ns, '0' after 200 ns; OEB <= 'I' after 300 nSi 

wait; end process; 
process (OEA, OEB, A, B) begin 

if (OEA = 'I') then TSTATE <= not A after 3 ns; 
elsif (OEB = 'I') then TSTATE <= not B after 3 ns; 

else TSTATE <= 'Z' after 5 nSi 

455



440 CHAPTER 10 VHDL 

end if; 
end process; 
end; 

This last method is more widely used than the first, and what is more important, 
more widely accepted by synthesis tools. Most synthesis tools are capable of recog­
nizing the value I Z I on the RHS of an assignment statement as a cue to synthesize a 
three-state driver. It is up to you to make sure that multiple drivers are never enabled 
simultaneously to cause contention. 

10.13.2 Process Statement 
A process statement has the following format [VHDL LRM9.2]: 

process_statement ::= 

[process _label: ] 
[postponed] process [(signal_name {, signal name})] 
[is) {subprogram_declaration subprogram_body 

I type_declaration subtype_declaration 
I constant declaration variable declaration 
I file declaration alias declaration 
I attribute declaration attribute_specification 
I use clause 
I group declaration group template declaration} 

begin 
{sequential_statement} 

end [postponed] process [process_label]; 

The following process models a 2:1 MUX (combinational logic): 

[10.38] 

entity Mux_l is port (iO , il, sel : in BIT := 'O'i y : out BIT); end; 
architecture Behave of Mux 1 is 

begin process (iO , il, sell begin -- iO , il, sel = sensitivity set 
case sel is when '0' => Y <= iO; when '1' => Y <= il; end case; 

end process; end; 

This process executes whenever an event occurs on any of the signals in the process 
sensitivity set (iO I il, sel). The execution of a process occurs during a simula­
tion cycle-a delta cycle. Assignment statements to signals may trigger further delta 
cycles. Time advances when all transactions for the current time step are complete 
and all signals updated. 

The following code models a two-input AND gate (combinational logic): 

entity And_l is port (aT b : in BIT := 'O'i y : out BIT); end; 
architecture Behave of And 1 is 
begin process (a , b) begin y <= a and bi end process; end; 

The next example models a D flip-flop (sequential logic). The process state­
ment is executed whenever there is an event on clk. The if statement updates the 
output q with the input d on the rising edge of the signal clk. If the if statement 

456



10.13 CONCURRENT STATEMENTS 441 

condition is false (as it is on the falling edge of clk), then the assignment statement 
q <= d will not be executed, and q will keep its previous value. The process thus 
requires the value of q to be stored between successive process executions, and this 
implies sequential logic. 

entity FF_1 is port (clk, d: in BIT := '0'; q 

architecture Behave of FF 1 is 

begin process (clk) begin 

out BIT); end; 

if clk'EVENT and clk = '1' then q <= d; end if; 

end process; end; 

The behavior of the next example is identical to the previous model. Notice that 
the wait statement is at the end of the equivalent process with the signals in the 
sensitivity set (in this case just one signal, clk) included in the sensitivity list (that 
follows the keyword on). 

entity FF_2 is port (clk, d: in BIT := '0'; q : out BIT); end; 

architecture Behave of FF 2 is 

begin process begin -- The equivalent process has a wait at the end: 

if clk'event and clk = '1' then q <= d; end if; wait on clk; 

end process; end; 

If we use a wait statement in a process statement, then we may not use a 
process sensitivity set (the reverse is true: If we do not have a sensitivity set for a 
process, we must include a wai t statement or the process will execute endlessly): 

entity FF_3 is port (clk, d: in BIT := '0'; q : out BIT); end; 

architecture Behave of FF 3 is 

begin process begin -- No sensitivity set with a wait statement. 

wait until clk = '1'; q <= d; 

end process; end; 

If you include ports (interface signals) in the sensItIvIty set of a process 
statement, they must be ports that can be read (they must be of mode in, inout, or 
buffer, see Section 10.7). 

10.13.3 Concurrent Procedure Call 
A concurrent procedure call appears outside a proces s statement [VHDL 
LRM9.3]. The concurrent procedure call is a shorthand way of writing an equivalent 
process statement that contains a procedure call (Section 10.1004): 

package And_Pkg is procedure V_And(a,b:BIT; signal c:out BIT); end; 

package body And_Pkg is procedure V_And(a,b:BIT; signal c:out BIT) is 

begin c <= a and b; end; end And_Pkgi 

use work.And_Pkg.all; entity proc_Call_2 is end; 

architecture Behave of Proc_Call_2 is signal A, B, Y : BIT := '0'; 

begin V And (A, B, Y); -- Concurrent procedure call. 

457



442 CHAPTER 10 VHDL 

process begin wait; end process; -- Extra process to stop. 

end; 

10.13.4 Concurrent Signal Assignment 
There are two forms of concurrent signal assignment statement. A selected signal 
assignment statement is equivalent to a case statement inside a process state­
ment [VHDL LRM9.5.2]: 

selected_signal_assignment ::= 
with expression select 

namelaggregate <= [guarded] 

[transport I [reject time expression] inertial] 
waveform when choice {I choice} 

{, waveform when choice {I choice} } ; 

[10.39] 

The following design unit, Selected _1, uses a selected signal assignment. The 
equivalent unit, Selected 2, uses a case statement inside a process statement. 

entity Selected_l is end; architecture Behave of Selected_l is 

signal y,il,i2 : INTEGER; signal sel : INTEGER range 0 to 1; 
begin with sel select y <= il when 0, i2 when 1; end; 

entity Selected_2 is end; architecture Behave of Selected 2 is 

signal il,i2,y : INTEGER; signal sel : INTEGER range 0 to 1; 
begin process begin 

case sel is when 0 => Y <= il; when 1 => Y <= i2; end case; 
wait on iI, i2; 

end process; end; 

The other form of concurrent signal assignment is a conditional signal assign­
ment statement that, in its most general form, is equivalent to an if statement 
inside a process statement [VHDL LRM9.5.1]: 

conditional_signal_assignment ::= 

namelaggregate <= [guarded] 
[transport I [reject time expression] inertial] 

{waveform when boolean_expression else} 

waveform [when boolean expression]; 

[10.40] 

Notice that in VHDL-93 the else clause is optional. Here is an example of a 
conditional signal assignment, followed by a model using the equivalent process 
with an if statement: 

entity Conditional_l is end; architecture Behave of Conditional 1 is 
signal y,i,j : INTEGER; signal clk : BIT; 

begin y <= i when clk = 'I' else j; -- conditional signal assignment 
end; 

entity Conditional_2 is end; architecture Behave of Conditional 2 is 
signal y,i : INTEGER; signal clk : BIT; 
begin process begin 

458



10.13 CONCURRENT STATEMENTS 443 

if clk = 'I' then y <= i; else y <= Y 
end process; end; 

end if; wait on clk; 

A concurrent signal assignment statement can look just like a sequential signal 
assignment statement, as in the following example: 

entity Assign_l is end; architecture Behave of Assign_l is 

signal Target, Source : INTEGER; 
begin Target <= Source after 1 ns; -- looks like signal assignment 

end; 

However, outside a process statement, this statement is a concurrent signal assign­
ment and has its own equivalent process statement. Here is the equivalent process 
for the example: 

entity Assign_2 is end; architecture Behave of Assign_2 is 
signal Target, Source : INTEGER; 

begin process begin 

Target <= Source after 1 ns; wait on Source; 

end process; end; 

Every process is executed once during initialization. In the previous example, 
an initial value will be scheduled to be assigned to Target even though there is no 
event on Source. If, for some reason, you do not want this to happen, you need to 
rewrite the concurrent assignment statement as a proces s statement with a wait 
statement before the assignment statement: 

entity Assign_3 is end; architecture Behave of Assign_3 is 

signal Target, Source : INTEGER; begin process begin 

wait on Source; Target <= Source after 1 ns; 

end process; end; 

10.13.5 Concurrent Assertion Statement 
A concurrent assertion statement is equivalent to a passive process statement 
(without a sensitivity list) that contains an assertion statement followed by a 
wait statement [VHDL LRM9.4]. 

concurrent assertion statement [10.41] 

::= [ label: 1 [ postponed 1 assertion 

If the assertion condition contains a signal, then the equivalent proces s 
statement will include a final wait statement with a sensitivity clause. A concurrent 
assertion statement with a condition that is static expression is equivalent to a 
process statement that ends in a wait statement that has no sensitivity clause. The 
equivalent process will execute once, at the beginning of simulation, and then wait 
indefini tel y. 

459



444 CHAPTER 10 VHDL 

10.13.6 Component Instantiation 
A component instantiation statement in VHDL is similar to placement of a compo­
nent in a schematic-an instantiated component is somewhere between a copy of the 
component and a reference to the component. Here is the definition [VHDL LRM9.6]: 

component_instantiation_statement ::= 

instantiation label: 

[component] component_name 

lentity entity name [(architecture identifier)] 

Iconfiguration configuration name 

[generic map (generic_association_list)] 

[port map (port_association_list)] ; 

[10.42] 

We examined component instantiation using a component _name in 
Section 10.5. If we instantiate a component in this way we must declare the compo­
nent (see BNF [10.9]). To bind a component to an entity-architecture pair we can 
use a configuration, as illustrated in Figure 10.1, or we can use the default binding 
as described in Section 10.7. In VHDL-93 we have another alternative-we can 
directly instantiate an entity or configuration. For example: 

entity And_ 2 is port (iI, i2 : in BIT; Y : out BIT) ; end; 

architecture Behave of And 2 is begin y <= il and i2; end; 

entity Xor 2 is port (iI, i2 : in BIT; y : out BIT) ; end; 
architecture Behave of Xor 2 is begin y <= il xor i2; end; 

entity Half_Adder_2 is port (a,b : BIT := '0'; sum, cry: out BIT); end; 

architecture Netlist 2 of Half Adder 2 is 

use work. all; -- need this to see the entities Xor 2 and And 2 
begin 

Xl 

Al 

end; 

entity Xor_2(Behave) port map (a, b, sum); 

entity And_2(Behave) port map (a, b, cry); 

10.13.7 Generate Statement 

VHDL-93 only 

VHDL-93 only 

A generate statement [VHDL LRM9.7] simplifies repetitive code: 

generate_statement ::= 

generate_label: for generate_parameter_specification 

lif boolean_expression 

generate [{block declarative item} begin] 
{concurrent_statement} 

end generate [generate_label] ; 

Here is an example (notice the labels are required): 

[10.43] 

entity Full_Adder is port (X, Y, Cin : BIT; Cout, Sum: out BIT); end; 

architecture Behave of Full_Adder is begin Sum <= X xor Y xor Cin; 

Cout <= (X and Y) or (X and Cin) or (Y and Cin); end; 

460



entity Adder_l is 

port (A, B : in BIT VECTOR (7 downto 0) := (others => '0'); 

Cin: in BIT := '0'; Sum: out BIT VECTOR (7 downto 0); 

Cout : out BIT); 

end; 

architecture Structure of Adder_l is use work. all; 

component Full_Adder port (X, Y, Cin: BIT; Cout, Sum: out BIT); 

end component; 

signal C : BIT_VECTOR(7 downto 0); 
begin AllBits : for i in 7 downto 0 generate 

LowBit : if i = 0 generate 

FA : Full_Adder port map (A(O), B(O), Cin, C(O), Sum(O)); 

end generate; 

OtherBits : if i /= 0 generate 

FA : Full Adder port map (A(i), B(i), C(i-l), C(i), Sum(i)); 

end generate; 

end generate; 

Cout <= C(7); 

end; 

10.14 EXECUTION 445 

The instance names within a generate loop include the generate parameter. 
For example for i=6, FA ' INSTANCE_NAME is 

:adder_l(structure):allbits(6):otherbits:fa: 

1 O. 14 Execution 

Two successive statements may execute in either a concurrent or sequential fashion 
depending on where the statements appear. 

In sequential execution, statement _1 in this sequence is always evaluated before 
statement 2. In concurrent execution, statement_1 and statement_2 are 
evaluated at the same time (as far as we are concerned-obviously on most comput­
ers exactly parallel execution is not possible). Concurrent execution is the most 
important difference between VHDL and a computer programming language. Sup­
pose we have two signal assignment statements inside a process statement. In this 
case statement _1 and statement _ 2 are sequential assignment statements: 

entity Sequential_l is end; architecture Behave of Sequential_l is 

signal sl, s2 : INTEGER := 0; 

begin 

process begin 

sl <= 1; 

s2 <= sl + 1; 

wait on sl, s2 

sequential signal assignment 1 

sequential signal assignment 2 

461



446 CHAPTER 10 VHDL 

end process; 
end; 

Time(fs) + Cycle sl s2 

0+ 0: 

0+ 1 : * 
0+ 2 : * 
0+ 3 : * 

0 

1 
1 
1 

* 
* 
* 

o 
1 

2 

2 

If the two statements are outside a process statement they are concurrent 
assignment statements, as in the following example: 

entity Concurrent_1 is end; architecture Behave of Concurrent 1 is 
signal sl, s2 : INTEGER := 0; begin 

L1 sl <= 1; concurrent signal assignment 1 
L2 : s2 <= sl + 1; -- concurrent signal assignment 2 

end; 

Time(fs) + Cycle sl s2 

0+ 0: 

0+ 1: * 
0+ 2: 

o 
1 * 
1 * 

o 
1 

2 

The two conCUlTent signal assignment statements in the previous example are 
equivalent to the two processes, labeled as PI and P2, in the following model. 

entity concurrent_2 is end; architecture Behave of Concurrent_2 is 
signal sl, s2 : INTEGER := 0; begin 

P1 process begin sl <= 1; wait on s2 end process; 
P2 process begin s2 <= sl + 1; wait on sl end process; 

end; 

Time(fs) + Cycle sl s2 

0+ 0: 0 0 

0+ 1 : * 1 * 1 
0+ 2: * 1 * 2 
0+ 3 : * 1 2 

Notice that the results are the same (though the trace files are slightly different) 
for the architectures Sequential_I, Concurrent_I, and Concurrent_2. 
Updates to signals occur at the end of the simulation cycle, so the values used will 
always be the old values. So far things seem fairly simple: We have sequential exe­
cution or concurrent execution. However, variables are updated immediately, so the 
variable values that are used are always the new values. The examples in 
Table 10.17 illustrate this very important difference. 

The various concurrent and sequential statements in VHDL are summarized in 
Table 10.18. 

462



10.15 CONFIGURATIONS AND SPECIFICATIONS 447 

TABLE 10.17 Variables and signals in VHDL. 

Variables 

entity Execute_l is end; 

architecture Behave of Execute 1 is 
begin 

process 

variable vI 

variable v2 

begin 

vI := v2; 

v2 := vI; 

wait; 

end process; 

end; 

INTEGER 

INTEGER 

before: 

after: 

:= l' f 

.= 2 . 
f 

vI 1 f v2 

vI 2 f v2 

2 

2 

Signals 

entity Execute - 2 is end; 
architecture Behave of Execute 
signal sl INTEGER := 1 ; 

signal s2 INTEGER := 2 . 
f 

begin 

process 

begin 

sl <= s2; before: 

s2 <= sl; after: 

wait; 

end process; 

end; 

sl 

sl 

TABLE 10.18 Concurrent and sequential statements in VHDL. 

2 is 

1 f s2 

2 f s2 

Concurrent [VHDL LRM9] Sequential [VHDL LRM8] 

block 
process 
concurrent_procedure_call 
concurrent assertion 
concurrent_signal_assignmen 
t 

component_instantiation 
generate 

wait 
assertion 
signal_assignment 
variable_assignment 
procedure_call 
if 

1 0 .. 15 Configurations and Specifications 

The difference between, the interaction, and the use of component/configuration 
declarations and specifications is probably the most confusing aspect of VHDL. For­
tunately this aspect of VHDL is not normally important for ASIC design. The syntax 
of component/configuration declarations and specifications IS shown ll1 

Table 10.19. 

G A configuration declaration defines a configuration-it is a library unit and 
is one of the basic units of VHDL code. 

o A block configuration defines the configuration of a block statement or a 
design entity. A block configuration appears inside a configuration declm'a­
tion, a component configuration, or nested in another block configuration. 

case 
loop 
next 
exit 
return 
null 

2 

1 

463



448 CHAPTER 10 VHDL 

TABLE 10.19 VHDL binding. 

configuration 

declaration l 

[VHDL LRM1.3] 

block 
configuration 

[VHDL LRMl. 3.1] 

configuration 

specification l 

[VHDL LRM5.2] 

component 

declaration l 

[VHDL LRM4.5] 

component 

configuration l 

[VHDL LRMl. 3.2] 

configuration identifier of entity_name is 

{use_clauselattribute_specificationlgroup declaration} 

block_configuration 

end [configuration] [configuration_identifier]; 

for architecture name 

Iblock_statement_label 

Igenerate_statement_label [(index_specification)] 

{use selected_name {, selected_name};} 

{block_configuration I component_configuration} 

end for 

for 
instantiation_label{,instantiation_label}:component name 

lothers:component_name 

lall:component name 

entity entity name [(architecture_identifier)] 

Iconfiguration configuration_name 

lopenl 
[generic map (generic_association_list)] 

[port map (port_association_list)]; 
................................. 

component identifier [is] 

[generic (local_generic_interface list);] 

[port (local_port_interface_list);] 
end component 

for 

instantiation_label {, instantiation_label}:component_name 

lothers:component name 

I all: component_name 

[luse 
entity entity_name [(architecture_identifier)] 

Iconfiguration configuration_name 

lopenl 
[generic map (generic_association_list)] 

[port map (port_association_list)];] 

[block_configuration] 

end for; 

1 Underline means "new to VHDL-93". 

464



10.16 AN ENGINE CONTROLLER 449 

• A configuration specification may appear in the declarative region of a gen­
erate statement, block statement, or architecture body. 

• A component declaration may appear in the declarative region of a generate 
statement, block statement, architecture body, or package. 

• A component configuration defines the configuration of a component and 
appears in a block configuration. 

Table 10.20 shows a simple example (identical in structure to the example of 
Section 10.5) that illustrates the use of each of the preceding constructs. 

TABLE 10.20 VHDL binding examples. 

entity AD2 is port (AI, A2: in BIT; Y: out BIT) ; end; 

architecture B of AD2 is begin Y <= Al and A2; end; 

entity XR2 is port (Xl, X2: in BIT; Y: out BIT) ; end; 

architecture B of XR2 is begin Y <= Xl xor X2; end; 

entity Half Adder is port (X, Y: BIT; Sum, Cout: out 

architecture Netlist of Half_Adder is use work. all; 

BIT) ; 

component component MX port (A, B: BIT; Z :out BIT);end component; 
declaration component MA port (A, B: BIT; Z :out BIT);end component; 

end; 

configuration 
specification 

for Gl:MX use entity XR2(B) port map(Xl => A,X2 => B,Y => Z); 

begin 

configuration 
declaration 
block 
configuration 

component 
configuration 

Gl:MX port map(X, Y, Sum); G2:MA port map(X, Y, Cout); 

end; 

configuration Cl of Half Adder is 

use work. all; 

for Netlist 

for G2:MA 

use entity AD2(B) port map(Al => A,A2 => B,Y => Z); 

end for; 

end for; 

end; 

10 .. 16 An Engine Controller 

This section describes part of a controller for an automobile engine. 
Table 10.21 shows a temperature converter that converts digitized temperature read­
ings from a sensor from degrees Centigrade to degrees Fahrenheit. 

To save area the temperature conversion is approximate. Instead of multiplying 
by 9/5 and adding 32 (so O°C becomes 32°F and lOO°C becomes 212°F) we multi­
ply by 1.75 and add 32 (so lOO°C becomes 207°F). Since 1.75 = 1 + 0.5 + 0.25, we 
can multiply by 1.75 using shifts (for divide by 2, and divide by 4) together with a 
very simple constant addition (since 32= II 100000 "). Using shift to multiply and 
divide by powers of 2 is free in hardware (we just change connections to a bus). For 

465



450 CHAPTER 10 VHDL 

TABLE 10.21 A temperature converter. 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; -- type STD_LOGIC, rising_edge 
use IEEE.NUMERIC_STD.all ; -- type UNSIGNED, "+", "I" 
entity tconv is generic TPD : TIME:= 1 ns; 

T = temperature in °C 

T _out = temperature in of 
port (T : in UNSIGNED(ll downto 0); 
T_out : out UNSIGNED(ll down to 0)); 

end; 
The conversion formula from 
Centigrade to Fahrenheit is: 

architecture rtl of tconv is T(OF) = (9/5)xT(OC)+ 32 
constant T2 

constant T4 

constant T32 
begin 

UNSIGNED(l downto 0) := "10" ; 

UNSIGNED(2 downto 0) := "100" ; 
UNSIGNED(5 downto 0) .= "100000" 

This converter uses the 
approximation: 
9/5""1.75=1 +0.5+0.25 

process(T) begin 
Tout <= T + T/T2 + T/T4 + T32 after TPD; 

end process; 

end rtl; 

large temperatures the error approaches 0.05/1.8 or approximately 3 percent. We 
play these kinds of tricks often in hardware computation. Notice also that tempera­
tures measured in °C and of are defined as unsigned integers of the same width. We 
could have defined these as separate types to take advantage of VHDL's type check­
mg. 

Table 10.22 describes a digital filter to compute a "moving average" over four 
successive samples in time (i (0), i (1), i (2), and i (3), with i ( 0) being the first 
sample). 

The filter uses the following formula: 

Tout <= ( i(O) + i(l) + i(2) + i(3) )/T4 

Division by T4 = " 100" is free in hardware. If instead, we performed the divi­
sions before the additions, this would reduce the number of bits to be added for two 
of the additions and saves us worrying about overflow. The drawback to this 
approach is round-off errors. We can use the register shown in Table 1 0.23 to regis­
ter the inputs. 

Table 1 0.24 shows a first-in, first-out stack (FIFO). This allows us to buffer 
the signals coming from the sensor until the microprocessor has a chance to read 
them. The depth of the FIFO will depend on the maximum amount of time that can 
pass without the microcontroller being able to read from the bus. We have to deter­
mine this with statistical simulations taking into account other traffic on the bus. 

466



10.16 AN ENGINE CONTROLLER 451 

TABLE 10.22 A digital filter. 

library IEEE; 
use IEEE.STD LOGIC 1164.all; -- STD LOGIC type, rising_edge 

use IEEE.NUMERIC_STD.all; -- UNSIGNED type, "+" and "I" 
entity filter is 

generic TPD : TIME := 1 ns; 

port (T_in : in UNSIGNED(ll downto 0); 
rst, clk : in STD_LOGIC; 

T out: out UNSIGNED(ll downto 0)); 

end; 
architecture rtl of filter is 

type arr is array (0 to 3) of UNSIGNED(ll downto 0); 
signal i : arr ; 

constant T4 : UNSIGNED(2 downto 0) := "100"; 

begin 

process(rst, clk) begin 
if (rst = '1') then 

for n in 0 to 3 loop i(n) <= (others =>'0') after TPD; 

end loop; 
else 

if(rising_edge(clk)) then 
i(O) <= T in after TPD;i(l) <= i(O) after TPD; 
i(2) <= i(l) after TPD;i(3) <= i(2) after TPD; 

end if; 

end if; 
end process; 

process (i) begin 
T_out <= ( i(O) + i(l) + i(2) + i(3) )/T4 after TPD; 

end process; 

end rtl; 

The filter computes a moving 
average over four successive 
samples in time. 

Notice 
i(O) i(l) i(2) i(3) 
are each 12 bits wide. 

Then the sum 
i(O) + i(l) + i(2) + i(3) 
is 14 bits wide, and the 
average 

( i(O) + i(l) + i(2) + 
i(3) )/T4 

is 12 bits wide. 

All delays are generic TPD. 

The FIFO has flags, empty and full, that signify its state. It uses a function to 
increment two circular pointers. One pointer keeps track of the address to write to 
next, the other pointer tracks the address to read from. The FIFO memory may be 
implemented in a number of ways in hardware. We shall assume for the moment that 
it will be synthesized as a bank of flip-flops. 

Table 10.25 shows a controller for the two FIFOs. The controller handles the 
reading and writing to the FIFO. The microcontroller attached to the bus signals 
which of the FIFOs it wishes to read from. The controller then places the appropriate 
data on the bus. The microcontroller can also ask for the FIFO flags to be placed in 
the low-order bits of the bus on a read cycle. If none of these actions are requested 
by the microcontroller, the FIFO controller three-states its output drivers. 

467



452 CHAPTER 10 VHDL 

TABLE 10.23 The input register. 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; -- type STD_LOGIC, rlslng_edge 

use IEEE.NUMERIC_STD.all ; -- type UNSIGNED 

entity register_in is 

generic ( TPD : TIME := 1 ns); 

port (T_in : in UNSIGNED(ll downto 0); 

clk, rst : in STD_LOGIC; T_out : out UNSIGNED(ll downto 0)); end; 

architecture rtl of register_in is 
begin 

process(elk, rst) begin 

if (rst = '1') then T_out <= (others => '0') after TPD; 

else 

if (rising_edge(clk)) then Tout <= T in after TPD; end if; 

end if; 

end process; 

end rtl ; 

12-bit-wide register for 
the temperature input 
signals. 

If the input is asynchro­
nous (from an ND 
converter with a separate 
clock, for example), we 
would need to worry 
about metastability. 

All delays are generic 
TPD. 

Table 10.25 shows the top level of the controller. To complete our model we 
shall use a package for the component declarations: 

package TC_Components is 

component register_in generic (TPD : TIME := 1 ns); 

port (T_in : in UNSIGNED(ll downto 0); 

elk, rst : in STD_LOGIC; T_out : out UNSIGNED(ll downto 0)); 

end component; 

component tconv generic (TPD : TIME := 1 ns); 

port (T : in UNSIGNED (11 downto 0); 

Tout: out UNSIGNED(ll downto 0)); 

end component; 

component filter generic (TPD : TIME := 1 ns); 

port (T_in : in UNSIGNED (11 downto 0); 

rst, elk: in STD_LOGIC; T_out : out UNSIGNED(ll downto 0)); 

end component; 

component fifo generic (width:INTEGER := 12; depth: INTEGER := 16); 

port (clk, rst, push, pop STD_LOGICi' 

Di: UNSIGNED (width-l downto O)i 
Do : out UNSIGNED (width-l downto 0); 

empty, full: out STD_LOGIC); 

end component; 

component fifo_control generic (TPD:TIME := 1 ns); 

port (D_l, D_2 : in UNSIGNED(ll downto 0); 

select: in UNSIGNED(l down to 0); read, fl, f2, el, e2 : in STD_LOGIC; 

rl, r2, w12 : out STD_LOGIC; D : out UNSIGNED(ll downto O}} ; 

468



10.16 AN ENGINE CONTROLLER 453 

TABLE 10.24 A first-in, first-out stack (FIFO). 

library IEEE; use IEEE.NUMERIC_STD.all ; -- UNSIGNED type 

use ieee.std_logic_1164.all; -- STD_LOGIC type, rising_edge 
entity fifo is 

generic (width: INTEGER := 12; depth: INTEGER := 16); 

port (clk, rst, push, pop : STD_LOGIC; 

Di : in UNSIGNED (width-1 downto 0); 

Do : out UNSIGNED (width-1 downto 0); 

empty, full: out STD_LOGIC); 
end fifo; 

architecture rtl of fifo is 
subtype ptype is INTEGER range 0 to (depth-I); 
signal diff, Ai, Ao : ptype; signal f, e : STD LOGIC; 

type a is array (ptype) of UNSIGNED(width-1 downto 0); 

signal mem : a ; 
function bump(signal ptr : INTEGER range 0 to (depth-I» 

return INTEGER is begin 

if (ptr = (depth-I» then return 0; 
else return (ptr + 1); 
end if; 

end; 
begin 

process(f,e) begin full <= f ; empty <= e; end process; 

process(diff) begin 
if (diff = depth -1) then f <= 'I'; else f <= 'a'; end if; 

if (diff = 0) then e <= 'I'; else e <= 'a'; end if; 

end process; 
process(clk, Ai, Ao, Di, mem, push, pop, e, f) begin 

if(rising_edge(clk» then 
if(push='O')and(pop='l' )and(e='O') then Do <= mem(Ao); end if; 
if(push='l')and(pop='O' )and(f='O') then mem(Ai) <= Di; end if; 

end if ; 

end process; 
process(rst, clk) begin 

if(rst = '1') then Ai <= 0; Ao <= 0; diff <= 0; 

else if(rising_edge(clk» then 
if (push = 'I') and (f = '0') and (pop = 'a') then 

Ai <= bump(Ai); diff <= diff + 1; 

elsif (pop = '1') and (e = '0') and (push = '0') then 
Ao <= bump(Ao); diff <= diff - 1; 

end if; 

end if; 

end if; 
end process; 

end; 

FIFO (first-in, first-out) 
register 

Reads (pop = 1) and 
writes (push = 1) are syn­
chronous to the rising 
edge of the clock. 
Read and write should not 
occur at the same time. 
The width (number of bits 
in each word) and depth 
(number of words) are 
generics. 

External signals: 
elk, clock 
rst, reset active-high 
push, write to FIFO 
pop, read from FI FO 
Di, data in 
Do, data out 
empty, FIFO flag 
full, FIFO flag 

Internal signals: 
diff, difference pointer 
Ai, input address 
Ao, output address 
f, full flag 
e, empty flag 

No delays in this model. 

469



454 CHAPTER 10 VHDL 

TABLE 10.25 A FIFO controller. 

library IEEE;use IEEE.STD_LOGIC_1164.al1;use IEEE.NUMERIC_STD.all; 

entity fifo_control is generic TPD : TIME := 1 ns; 

port (D_1, D_2 : in UNSIGNED(ll downto 0); 

sel : in UNSIGNED(l downto 0) ; 

read, f1, f2, e1, e2 : in STD_LOGIC; 

r1, r2, w12 : out STD_LOGIC; D : out UNSIGNED(11 downto 0)) 
end; 

architecture rtl of fifo control is 

begin process 

(read, sel, D_1, D_2, f1, f2, e1, e2) 
begin 

r1 <= '0' after TPD; r2 <= '0' after TPD; 

if (read = '1') then 

w12 <= '0' after TPD; 

case sel is 

when "01" => 

when "10" => 

when ''~O'' => 

D <= D 1 after TPD; r1 <= 'I' after TPD; 

D <= D 2 after TPD; r2 <= '1' after TPD; 

D(3) <= f1 after TPD; D(2) <= f2 after TPD; 

D(l) <= e1 after TPD; D(O) <= e2 after TPD; 

when others => D <= "ZZZZZZZZZZZZ" after TPD; 

end case; 

elsif (read = '0') then 

D <= "ZZZZZZZZZZZZ" after TPD; w12 <= 'I' after TPD; 

else D <= "ZZZZZZZZZZZZ" after TPD; 

end if; 

end process; 

end rtl; 

end component; 

end; 

This handles the reading 
and writing to the FIFOs 
under control of the 
processor (mpu). The 
mpu can ask for data from 
either FI FO or for status 
flags to be placed on the 
bus. 

Inputs: 
D 1 

data in from FIF01 
D 2 

data in from FI F02 
sel 

FIFO select from mpu 
read 

FIFO read from mpu 
f1,f2,e1,e2 

flags from FI FOs 

Outputs: 
r1, r2 

read enables for FIFOs 
w12 

write enable for FIFOs 
D 

data out to mpu bus 

The following testbench completes a set of reads and writes to the FIFOs: 

library IEEE; 

use IEEE.std_logic_1164.al1i -- type STD_LOGIC 

use IEEE.numeric_std.a1l; 

entity test_TC is end; 
type UNSIGNED 

architecture testbench of test TC is 

component T_Control port (T_1, T_2 : in UNSIGNED(11 downto 0); 

clk : in STD_LOGIC; sensor: in UNSIGNED ( 1 downto 0) ; 
read: in STD_LOGIC; rst : in STD_LOGIC; 

D : out UNSIGNED(11 downto 0)); end component; 

signal T_1, T 2 : UNSIGNED(11 downto 0); 

470



10.16 AN ENGINE CONTROLLER 455 

TABLE 10.26 Top level of temperature controller. 

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD.all; 

entity T_Control is port (T_in1, T_in2 : in UNSIGNED (11 downto 0); 
sensor: in UNSIGNED(l downto 0); 

elk, RD, rst : in STD_LOGIC; D : out UNSIGNED(ll downto 0)); 
end; 
architecture structure of T Control is use work.TC_Components.all; 

signal F, E : UNSIGNED (2 downto 1); 
signal T_out1, T_out2, R_out1, R_out2, F1, F2, FIF01, FIF02 : UNSIGNED(ll downto 0); 

signal RD1, RD2, WR: STD_LOGIC ; 
begin 

RG1 

RG2 

TC1 

TC2 
TF1 

TF2 

FIl 

register_in generic map 
register_in generic map 

teonv generic map (Ins) 

teonv generic map (Ins) 
filter generic map (Ins) 

filter generic map (Ins) 

fifo generic map (12,16) 
FI2 fifo generic map (12,16) 

FC1 fifo control port map 

(Ins) port map (T_in1, elk, rst, R_out1); 

(Ins) port map (T_in2, elk, rst, R_out2) ; 

port map (R_out1, T_out1) ; 
port map (R_out2, T_out2) ; 
port map (T_out1, rst, elk, F1) ; 
port map (T_out2, rst, elk, F2) ; 
port map (elk, rst, WR, RD1, F1, FIF01, 

port map (elk, rst, WR, RD2, F2, FIF02, 

(FIF01, FIF02, sensor, RD, F(l), F(2), E(l), E(2), RD1, RD2, WR, D); 

end structure; 

signal elk, read, rst : STD_LOGIC; 
signal sensor: UNSIGNED(l downto 0); 

signal D : UNSIGNED(ll downto 0); 
begin TTl: T_Control port map (T_1, T_2, elk, sensor, read, rst, D); 

process begin 
rst <= '0'; elk <= '0'; 

wait for 5 ns; rst <= 'I'; wait for 5 ns; rst <= '0'; 
T_1 <= "000000000011"; T_2 <= "000000000111"; read <= '0'; 

for i in 0 to 15 loop -- fill the FIFOs 

elk <= '0'; wait for 5ns; elk <= 'I'; wait for 5 ns; 

end loop; 
assert (false) report "FIFOs full" severity NOTE; 

elk <= '0'; wait for 5ns; elk <= 'I'; wait for 5 ns; 

read <= 'I'; sensor <= "01"; 
for i in 0 to 15 loop -- empty the FIFOs 

elk <= '0'; wait for 5ns; elk <= 'I'; wait for 5 ns; 

end loop; 
assert (false) report "FIFOs empty" severity NOTE; 

elk <= '0'; wait for 5ns; elk <= 'I'; wait; 

end process; 

end; 

E (1), F( 1)); 
E (2) , F (2) ) ; 

471



456 CHAPTER 10 VHDL 

10.17 Summary 

Table 10.27 shows the essential elements of the VHDL language. Table 10.28 shows 
the most important BNF definitions and their locations in this chapter. The key 
points covered in this chapter are as follows: 

• The use of an entity and an architecture 

• The use of a configuration to bind entities and their architectures 

• The compile, elaboration, initialization, and simulation steps 

• Types, SUbtypes, and their use in expressions 

• The logic systems based on BIT and Std_Logic_1l64 types 

• The use of the IEEE synthesis packages for BIT arithmetic 

• Ports and port modes 

• Initial values and the difference between simulation and hardware 

• The difference between a signal and a variable 

• The different assignment statements and the timing of updates 

• The process and wait statements 

VHDL is a "wordy" language. The examples in this chapter are complete rather 
than code fragments. To write VHDL "nicely," with indentation and nesting of con­
structs, requires a large amount of space. Some of the VHDL code examples in this 
chapter are deliberately dense (with reduced indentation and nesting), but the bold 
keywords help you to see the code structure. Most of the time, of course, we do not 
have the lUXury of bold fonts (or color) to highlight code. In this case, you should 
add additional space, indentation, nesting, and comments. 

Appendix A contains more detailed definitions and technical reference material. 

472



10.17 SUMMARY 457 

TABLE 10.27 VHDL summary_ 

VHDL feature 

Comments 

Literals (fixed-value items) 

Identifiers 
(case-insensitive, start with letter) 

Several basic units of code 

Example 

-- this is a comment 

12 1. OE6 , I' 

2#1111 1111# 
STRING' ("110") 

"110" 'Z' 
"Hello world" 

a_good_name 
2 Bad bad 

Same same 
bad very_bad 

entity architecture configuration 

Connections made through ports port (signal in i : BIT; out 0 : BIT); 

Default expression port (i : BIT := 'I'); 
-- i='I' if left open 

Book 93LRM 

10.3 13.8 

1 0.4 13.4 

10.4 13.3 

10.5 1.1-1.3 
- ... " .,' ..•...•..... _. . ..... -..... -...... " ... ~-.~.~,.-.. ~.~~ .. --.~.-.-

10.7 4.3 

10.7 4.3 

"_"~'_"""""'~_'~'~'.~.'_.. ",,·.· .... h._._ .. _ .. _..... ~.~ .. ~~_ .. _._._ ... _ ... _.~._ ... __ ... ____ .. _ ... ,.... ..._" .. __ .. _. ___ .. _._.~ .. ~.~ ....... _ .. _._._ ... _ ..... _.... . .... _ .. _ .... _ ...... ___ ... _._.", .. ___ ..... _ ..... " ..... _ .... __ ... _ ............ _ .......... _ .. __ ................ _ ....... _ _ ... _~. ." __ ....... _. _ ._ ..... _ .. _ ... _ .. _ ..... " .. __ _ 

No built-in logic-value system. 
BIT and BIT_VECTOR (STD). 

type BIT is ('0', '1'); predefined 10.8 
signal myArray: BIT_VECTOR (7 downto 0); 

Arrays myArray(1 downto 0) <= ('0', 'I'); 
............. ' ........................................ _ ..... _ ............................ . 

Two basic types of logic signals a signal corresponds to a real wire 
a variable is a memory location in RAM 

.-..... "-.......... -..... -.~-"-.-... ,, ..... -.... -... , .. -............. - ......... _ ................... " .. ...... . ................. -............ ..... . ............... __ ................ ,............. .... .. . .. . ................. . 

Types and explicit initial/default value signal ONE : BIT : = '1' ; 

Implicit initial/default value 

Predefined attributes 

Sequential statements inside 
processes model things that happen 
one after another and repeat 

Timing with wait statement 

BIT'LEFT = '0' 

clk'EVENT, clk'STABLE 

process begin 
wait until alarm = ring; 
eat; work; sleep; 
end process; 

wait for 1 ns; -- not wait 1 ns 
wait on light until light = green; 

Update to signals occurs atthe end of signal <= 1; -- delta time delay 
a simulation cycle signal <= variablel after 2 ns; 

Update to variables is immediate variable : = 1; -- immediate update 

Processes and concurrent process begin rain ; end process; 
statements model things that happen process begin sing ; end process; 
at the same time process begin dance; end process; 

IEEE Std_Logic_1164 
(defines logic operators on 1164 
types) 

STD_ULOGIC,STD_LOGIC, STD_ULOGIC_VECToR,and 
STD LOGIC VECTOR 
type STD_ULOGIC is 
('U',IX',10','11,'ZI,'W',IL','HI,I_I); 

IEEE Numeric_Bit and NumericStd UNSIGNED and SIGNED 
(defines arithmetic operators on BIT x <= "Ion * "01" 
and 1164 types) -- OK with numeric pkgs. 

10.8 

10.9 

10.9 

10.9 

10.9.4 

10.10 

10.10.1 

10.10.3 

10.10.3 

10.13 

10.6 

10.12 

14.2 

3.2.1 

4.3.1.2 
4.3.1.3 

4.3.2 

4.3.2 
...... __ ._------

14.1 
.... _ .............. -.. _ .. _ .... 

8 

8.1 

8.3 

8.4 

9.2 

473



458 CHAPTER 10 VHDL 

TABLE 10.28 VHDL definitions. 

Structure Page BNF Structure Page BNF 

alias declaration 418 10.21 next statement 429 10.32 

architecture body 394 10.8 null statement 430 10.35 
-------

assertion statement 423 10.25 package declaration 398 10.11 
._--_._-----_ .. _--_._------_._------. __ ._-_ ... _--_._ ..... _._._ .. __ ._---_._---... _._-_ ....... __ ._----_._ ... _----_._---_._-------_ .... -_._._. __ .. _. __ ._ ... _ ... _-_._._ .. _._ .. _---_._. __ .... _._ ...•... -... _-_ ... __ ..... _-_.---_. __ .. _ ..•... _---_ ...... _ ... _ ... " .. -... .-....... _ ... _.---_ ... _ .... _-_ .. _._-_. __ ... -_._._._. __ .-

attribute declaration 418 10.22 port interface declaration 406 1 0.13 
------_._---------- . 

block statement 438 10.37 port interface list 406 10.12 

case statement 428 10.30 primary unit 393 10.5 

component declaration 395 10.9 procedure call statement 427 10.28 
._.--_ .. __ ._---_._-_._--------_.-----------.--------_.--------------------_._-_.--_._---------.-_._----_ .. _ .. _._ .. _------_ .. -... _-----------_ .. _-----_ .. _-------_ ... 
component instantiation 444 10.42 process statement 440 10.38 

concurrent statement 437 10.36 return statement 430 10.34 
_"._ •• _ ••• _ ... , •• _.~ •••• ,·.·. __ •• _.~ ___ ~. __ ._.~_._. __ m ...... __ •••• _ •• " ........ _._ •••• ~._ •• ~._ .... _ •• _. __ •• h_ ..... _<. __ . ___ ..•. ~ ....••. _ ..... _ ..... , ...•.• _. __ .. __ •.•• "~._ ... _ ... _._._... ._._._ .. _ .. ~ __ ... _ .. __ .....•.. _w ••• _. __ ._ •••• _.~ •• _._ ••• __ ,." .. _ •• _ •••••• _. __ ... _ •••• __ • ___ •• ____ • __ ._ ••••••••• _._ •• _. __ .~._. ___ ._".~ 

conditional signal assignment 442 10.40 secondary unit 393 10.6 
-.---"--.. ~ ...... -.-----.. -.. -.------.. --.--.--.. -.--.. ~ .. --... -.... --... --..... --... -.... --.-.-.---.. --." .. ---_ ... _._.,_._-"-_._._. __ .. _._._-._---_._.-,-_._ .. _---_.--.-.--.-----... --.-----... --.---... -.. ~"-.--... ,,--.. --.. -.-~-.-'" ... -.. ~."-,- ..... _ .... _ ...... _-_ .... _ ... __ .-.. _ ... _ ... ,_._ .. -... _-_.--"'--_"_'_'''''-

configuration declaration 396 10.10 selected signal assignment 442 10.39 

constant declaration 414 10.16 sequential statement 419 10.23 

declaration 413 10.15 signal assignment statement 

design file 393 10.4 signal declaration 

entity declaration 394 10.7 special character 
.... , ... _. __ .• __ ........ _._ .... __ . ____ . ___ ._. ___ .. ____ .. _ ... _._, ...... _ .. _ ..... _... . ..... _ ... __ ._m .. _··· .. ___ .... ·_._.· ___ ._· ...... _.·· __ ._,_ ... _ ..... _ ..... _. __ . __ ..... _ ...... __ ..... _ ......... __ .... __ .......... __ .... __ .-....... _ ....................... _ .... _ .. -......... _-_ ....•.. 

exit statement 430 10.33 

generate statement 

graphic character 

identifier 

444 10.43 

391 10.1 
.•............ _ ..... -....... - .................... __ .. __ ........ _ .... _ ..... _--_ .. -

392 10.3 

subprogram body 

subprogram declaration 
._-_.-

type declaration 

variable assignment statement 

424 10.27 

414 10.17 

391 10.2 

-
411 10.14 

424 10.26 
...... _ ...•.• __ ........... -..... -._ .. --_ ...... -... _ ...... _---..... ---"'- _ .................... -.. --.-.. -_._ ...... _ .... _ .. _ .. -..... _ .......................... _ .. __ ....... -........... _ ............ -. . ........ _ .. _ ....... _._ ..... _.-...... -._............ , ...... _-._, ........... __ ........... .. ....... _. 

if statement 427 10.29 variable declaration 415 10.18 
... ----... ~-,-.. -----.-----.-.---.------.. -------------.--------------.----------~------------.-----.----.------.--

loop statement 429 10.31 wait statement 421 10.24 

474



10.18 PROBLEMS 459 

1 0.18 Problems 

* = Difficult **= Very difficult ***=Extremely difficult 

10.1 (Hello World, 10 min.) Set up a new, empty, directory (use mkdir VHDL, 

for example) to run your VHDL simulator (the exact details will depend on your 
computer and simulator). Copy the code below to a file called hw 1. vhd in your 
VHDL directory (leave out comments to save typing). Hint: Use ~he vi editor (i 
inserts text, x deletes text, dd deletes a line, ESC : w writes the file, ESC : q quits) 
or use cat> hw_1.vhd and type in the code (use CTRL-D to end typing) on a 
UNIX machine. Remember to save in 'Text Only' mode (Frame or MS Word) on an 
IBM PC or Apple Macintosh. 

Analyze, elaborate, and simulate your model (include the output in your 
answer). Comment on how easy or hard it was to follow the instructions to use the 
software and suggest improvements. 

entity HW_l is end; architecture Behave of HW_l is 

constant M : STRING := "hello, world"; signal Ch : CHARACTER := ' '; 

begin process begin 

for i in M'RANGE loop Ch <= M(i); wait for 1 ns; end loop; wait; 

end process; end; 

10.2 (Running a VHDL simulation, 20 min.) Copy the example from 
Section 10.1 into a file called Counterl. vhd in your VHDL directory (leave out the 
comments to save typing). Complete the compile (analyze), elaborate (build), and 
execute (initialize and simulate) or other equivalent steps for your simulator. After 
each step list the contents of your directory VHDL and any subdirectories and files 
that are created (use Is -aIR on a UNIX system). 

10.3 (Simulator commands, 10 min.) Make a "cheat sheet" for your simulator, 
listing the commands that can be used to control simulation. 

10.4 (BNF addresses, 10 min.) Create a BNF description of a name including: 
optional title (Prof., Dr., Mrs., Mr., Miss, or Ms.), optional first name and middle ini­
tials (allow up to two), and last name (including unusual hyphenated and foreign 
names, such as Miss A-S. de La Salle, and Prof. John T. P. McTavish-fFiennes). The 
lowest level constructs are letter :: = a-Z, '. ' (period) and '-' (hyphen). Add 
BNF productions for a postal address in the form: company name, mail stop, street 
address, address lines (1 to 4), and country. 

10.5 (BNF e-mail, 10 min.) Create a BNF description of a valid internet e-mail 
address in terms of letters, '@', '.', 'gov', 'com', 'org', and 'edu'. Create a 
state diagram that "parses" an e-mail address for validity. 

10.6 (BNF equivalence) Are the following BNF productions exactly equiva­
lent? If they are not, produce a counterexample that shows a difference. 

term ::= factor { multiplying_operator factor} 

term ::= factor I term multiplying_operator factor 

475



460 CHAPTER 10 VHDL 

10.7 (Environment, 20 min.) Write a simple VHDL model to check and demon­
strate that you can get to the IEEE library and have the environment variables, 
library statements, and such correctly set up for your simulator. 

10.8 (Work, 20 min.) Write simple VHDL models to demonstrate that you can 
retrieve and use previously analyzed design units from the library work and that 
you can also remove design units from work. Explain how your models prove that 
access to work is functioning correctly. 

10.9 (Packages, 60 min.) Write a simple package (use filename PackH. vhd) and 
package body (filename PackB. vhd). Demonstrate that you can store your package 
(call it MyPackage) in the library work. Then store, move, or rename (the details will 
depend on your software) your package to a library called MyLibrary in a directory 
called MyDir, and use its contents with a library clause (library MyLibrary) and a 
use clause (use MyLibrary . MyPackage • all) in a testbench called PackTest (file­
name PackT. vhd) in another directory MyWork. You mayor may not be amazed at 
how complicated this can be and how poorly most software companies document this 
process. 

10.10 (***IEEE Std 1164, 60 min.) Prior to VHDL-93 the xnor function was 
not available, and therefore older versions of the std _logic _1164 library did not 
provide the xnor function for STD LOGIC types either (it was actually included but 
commented out). Write a simple model that checks to see if you have the newer ver­
sion of std_logic_1164. Can you do this without crashing the simulator? 

You are an engineer on a very large project and find that your design fails to 
compile because your design must use the xnor function and the library setup on 
your company's system still points to the old IEEE std_logic_1164 library, even 
though the new library was installed. You are apparently the first person to realize 
the problem. Your company has a policy that any time a library is changed all design 
units that use that library must be rebuilt from source. This might require days or 
weeks of work. Explain in detail, using code, the alternative solutions. What will 
you recommend to your manager? 

10.11 (**VHDL-93 test, 20 min.) Write a simple test to check if your simulator 
is a VHDL-87 or VHDL-93 environment-without crashing the simulator. 

10.12 (Declarations, 10 min.) Analyze the following changes to the code III 

Section 10.8 and include the simulator output in your answers: 

a. Uncomment the declarations for BadlOO and Bad4 in Declaration 1. 

b. Add the following to Constant_2: 

signal wacky: wackytype (31 downto 0); -- wacky 

c. Remove the library and use clause in Constant _ 2. 

10.13 (STRING type, 10 min.) Replace the write statement that prints the 
string " count=" in Text (Behave) in Section 1 0.6.3 with the following, compile 
it, and explain the result: 

write(L, " count=" ); -- No type qualification. 

476



10.18 PROBLEMS 461 

10.14 (Sequential statements, 10 min.) Uncomment the following line in 
wai t _1 (Behave) in Section 10.10, analyze the code, and explain the result: 

wait on x{l to v); -- v is a variable. 

10.15 (VHDL logical operators, 10 min.) 

a. Explain the problem with the following VHDL statement: 

Z <= A nand B nand C; 

b. Explain why this problem does not occur with this statement: 

Z <= A and Band C; 

c. What can you say about the logical operators: and, or, nand, nor, xnor, 
xor? 

d. Is the following code legal? 

Z <= A and B or C; 

10.16 (*Initialization, 45 min.) Consider the following code: 

entity DFF_P1ain is port (Clk, D : in BIT; Q : out BIT); end; 

architecture Bad of DFF_Plain is begin process (Clk) begin 
if Clk = '0' and Clk'EVENT then Q <= Dafter 1 ns; end if; 

end process; end; 

a. Analyze and simulate this model using a testbench. 

b. Rewrite architecture Bad using an equivalent process including a wait 
statement. Simulate this equivalent model and confirm the behaviors are 
identical. 

c. What is the behavior of the output Q during initial execution of the process? 

d. Why does this happen? 

e. Why does this not happen with the following code: 

architecture Good of DFF Plain is 
begin process begin wait until Clk = '0'; Q <= Dafter 1 ns; 

end process; end; 

10.17 (Initial and default values, 20 min.) Use code examples to explain the 
difference between: default expression, default value, implicit default value, initial 
value, initial value expression, and default initial value. 

10.18 (Enumeration types, 20 min.) Explain the analysis results for the follow-
mg: 

type MVL4 is (' X', '0', '1', 'Z'); signal test : MVL4; 

process begin 
test <= 1; test <= Z; test <= Z; test <= 'I'; test <= 'Z'; 

end process; 

Alter the type declaration to the following, analyze your code again, and comment: 

type Mixed4 is (X , '0', '1', Z); 

477



462 CHAPTER 10 VHDL 

10.19 (Type declarations, 10 min.) Correct these declarations: 

type BadArray is array (0 to 7) of BIT_VECTOR; 

type Byte is array (NATURAL range 7 downto 0) of BIT; 

subtype BadNibb1e is Byte(3 downto 0); 

type BadByte is array (range 7 downto 0) of BIT; 

10.20 (Procedure parameters, 10 min.) Analyze the following package; explain 
and correct the error. Finally, build a testbench to check your solution. 

package And_Pkg_Bad is procedure V_And(a, b : BIT; c: out BIT); end; 

package body And_Pkg_Bad is 

procedure V_And(a,b : BIT;c : out BIT) is begin c <= a and b;end; 

end And_Pkg_Bad; 

10.21 (Type checking, 20 min.) Test the following code and explain the results: 

type T is INTEGER range 0 to 32; variable a: T; 

a := (16 + 17) - 12; a := 16 - 12 + 17; a := 16 + (17 - 12); 

10.22 (Debugging VHDL code, 30 min.) Find and correct the errors in the fol­
lowing code. Create a testbench for your code to check that it works correctly. 

entity UpDownCount_Bad is 

port(clock, reset, up: STD_LOGIC; D: STD LOGIC VECTOR (7 to 0)); 

end UpDownCount_Bad; 

architecture Behave of UpDownCount_Bad is 

begin process (clock, reset, up); begin 

if (reset = '0') then D <= '0000000'; 

elseif (rising_edge(clock)) then 

if (up = 1) D <= D+1; else D <= D-1; end if; 

end if; end process; end Behave; 

10.23 (Subprograms, 20 min.) Write and test subprograms for these declara­
tions: 

function Is_X_Zero (signal X : in BIT) return BIT; 

procedure Is_A_Eq_B (signal A, B : BIT; signal Y : out BIT); 

10.24 (Simulator error messages,lO min.) Analyze and attempt to simulate 
Ar i thmetic _ 2 (Behave) from Section 10.12 and compare the error message you 
receive with that from the MTI simulator (not all simulators are as informative). 
There are no standards for error messages. 

10.25 (Exhaustive property of case statement, 30 min.) Write and simulate a 
testbench for the state machine of Table 10.8 and include your results. Is every state 
transition tested by your program and is every transition covered by an assignment 
statement in the code? (Hint: Think very carefully.) Repeat this exercise for the state 
machine in Section 10.10.6. 

478



10.18 PROBLEMS 463 

10.26 (Default values for inputs, 20 min.) Replace the interface declaration for 
entity Half_Adder in Section 10.5 with the following (to remove the default val­
ues): 

port (X, Y: in BIT; Sum, Caut: out BIT); 

Attempt to compile, elaborate, and simulate configuration Simplest (the other 
entities needed, AndGate and XorGate, must already be in work or in the same 
file). You should get an error at some stage (different systems find this error at differ­
ent points-just because an entity compiles, that does not mean it is error-free). 

The LRM says" ... A port of mode in may be unconnected ... only if its declara­
tion includes a default expression ... " [VHDL 93LRMl. 1. 1.2]. 

We face a dilemma here. If we do not drive inputs with test signals and leave an 
input port unconnected, we can compile the model (since it is syntactically correct) 
but the model is not semantically correct. On the other hand, if we give the inputs 
default values, we might accidentally forget to make a connection and not notice. 

10.27 (Adder generation, 10 min.) Draw the schematic for Adder 1 (Struc­
ture) of Section 10.13.7, labeling each instance with the VHDL instance name. 

10.28 (Generate statement, 20 min.) Draw a schematic corresponding to the 
following code (label the cells with their instance names): 

Bl: block begin Ll : C port map (T, B, A(O), B(O» 
L2: for i in 1 to 3 generate L3 : for j in 1 to 3 generate 

L4: if i+j > 4 generate L5: C port map (A(i-l), B(j-l), A(i), B(j» 
end generate; end generate; end generate; 
L6: for i in 1 to 3 generate L7: for j in 1 to 3 generate 

L8: if i+j < 4 generate L9: C port map (A(i+l), B(j+l), A(i), B(j» 
end generate; end generate; end generate; 

end block Bl; 

Rewrite the code without generate statements. How would you prove that your 
code really is exactly equivalent to the original? 

10.29 (Case statement, 20 min.) Create a package (my_equal) that overloads 
the equality operator so that' x' = ' 0' and' x' = '1' are both TRUE. Test your pack­
age. Simulate the following design unit and explain the result. 

entity Case_l is end; architecture Behave of Case_l is 

signal r : BIT; use wark.my_equal.alli 

begin process variable twabit:STD LOGIC_VECTOR(l to 2); begin 
twabit := "XO"; 

case twabit is 
when "10" => r <= '1'; 
when "00" => r <= '1'; 

when others => r <= '0'; 
end case; wait; 

end process; end; 

479



464 CHAPTER 10 VHDL 

10.30 (State machine) Create a testbench for the state machine of 
Section 10.2.5. 

10.31 (Mealy state machine, 60 min.) Rewrite the state machine of 
Section 10.2.5 as a Mealy state machine (the outputs depend on the inputs and on 
the current state). 

10.32 (Gate-level D flip-flop, 30 min.) Draw the schematic for the following D 
flip-flop model. Create a testbench (check for correct operation with combinations of 
Clear, Preset, Clock, and Data). Have you covered all possible modes of opera­
tion? Justify your answer of yes or no. 

architecture RTL of DFF To Test is 
signal A, B, C, D, QI, QBarI : BIT; begin 

A <= not (Preset and D and B) after 1 ns; 
B <= not (A and Clear and Clock) after 1 ns; 

C <= not (B and Clock and D) after 1 ns; 
D <= not (C and Clear and Data) after 1 ns; 

QI <= not (Preset and Band QBarI) after 1 ns; 
QBarI <= not (QI and Clear and C) after 1 ns; 

Q <= QI; QBar <= QBarI; 

end; 

10.33 (Flip-flop model, 20 min.) Add an asynchronous active-low preset to the 
D flip-flop model of Table 10.3. Generate a testbench that includes interaction of the 
preset and clear inputs. What issue do you face and how did you solve it? 

10.34 (Register, 45 min.) Design a testbench for the register of Table 10.4. 
Adapt the 8-bit register design to a 4-bit version with the following interface decla­
ration: 

entity Reg4 is port (D : in STD_LOGIC_VECTOR(7 downto O)i 

Clk,Pre,Clr : in STD_LOGICiQ,QB : out STD_LOGIC_VECTOR(7 downto 0»; 
end Reg8; 

Create a testbench for your 4-bit register with the following component declara-
tion: 

component DFF 

port(preset,Clear,clock,Data:STD_LOGIC;Q,QBar:out STD LOGIC VECTOR)i 
end component; 

10.35 (*Conversion functions, 30 min.) Write a conversion function from 
NATURAL to STD_LOGIC_VECTOR using the following declaration: 

function Convert (N, L: NATURAL) return STD_LOGIC_VECTORi 
-- N is NATURAL, L is length of STD_LOGIC_VECTOR 

Write a similar conversion function from STD LOGIC VECTOR to NATURAL: 

function Convert (B: STD_LOGIC_VECTOR) return NATURAL; 

Create a testbench to test your functions by including them in a package. 

480



10.18 PROBLEMS 465 

10.36 (Clock procedure, 20 min.) Design a clock procedure for a two-phase 
clock (Cl, C2) with variable high times (HT1, HT2) and low times (LT1, LT2) and the 
following interface. Include your procedure in a package and write a model to test it. 

procedure Clock (C1, C2 : out STD_LOGIC; HT1, HT2, LT1, LT2 : TIME); 

10.37 (Random number, 20 min.) Design a testbench for the following proce­
dure: 

procedure uniform (seed: inout INTEGER range 0 to 15) is 

variable x : INTEGER; 

begin x := (seed*ll) + 7; seed := x mod 16; 
end uniform; 

10.38 (Full-adder, 30 min.) Design and test a behavioral model of a full adder 
with the following interface: 

entity FA is port (X, Y, cin : STD_LOGIC; Cout, Sum: out STD_LOGIC); 

end; 

Repeat the exercise for inputs and outputs of type UNSIGNED. 

10.39 (8-bit adder testbench, 60 min.) Write out the code corresponding to the 
generate statements of Adder _1 (Structure) in Section 10.13.7. Write a testbench 
to check your adder. What problems do you encounter? How thorough do you 
believe your tests are? 

10.40 (Shift-register testbench, 60 min.) Design a testbench for the shift regis­
ter of Table lOA. Convert this model to use STD _LOGIC types with the following 
interface: 

entity ShiftN is 

port (CLK, CLR, LD, SH, DIR : STD_LOGIC; 
D : STD_LOGIC_VECTOR; Q out STD LOGIC_VECTOR); 

end; 

10.41 (Multiplier, 60 min.) Design and test a multiplier with the following 
interface: 

entity Mult8 is 

port (A, B : STD_LOGIC VECTOR(3 downto 0); 
Start, CLK, Reset : in STD_LOGICi 

Result: out STD_LOGIC_VECTOR(7 downto 0); Done 

end; 

a. Create testbench code to check your model. 

out BIT); 

b. Catalog each compile step with the syntax errors as you debug your code. 

c. Include a listing of the first code you write together with the final version. 

An interesting class project is to collect statistics from other students working on 
this problem and create a table showing the types and frequency of syntax errors 
made with each compile step, and the number of compile steps required. Does this 

481



466 CHAPTER 10 VHDL 

information suggest ways that you could improve the compiler, or suggest a new 
type of tool to use when writing VHDL? 

10.42 (Port maps, 5 min.) What is wrong with this VHDL statement? 

Ul : nand2 port map (a <= set, b <= qb, c <= q); 

10.43 (DRIVING VALUE, 15 min.) Use the VHDL-93 attribute 
Clock'DRIVING VALUE to rewrite the following clock generator model without 
using a temporary variable. 

entity ClockGen_2 is port (Clock: out BIT); end; 

architecture Behave of ClockGen_2 is 

begin process variable Temp: BIT := '1'; begin 
Temp := not Temp; Clock <= Temp after 10 ns; wait for 10 ns; 

if (now> 100 ns) then wait; end if; end process; 

end; 

10.44 (Records, 15 min.) Write an architecture (based on the following skele­
ton) that uses the record structure shown: 

entity Test_Record_l is end; architecture Behave of Test Record 1 is 

begin process type Coordinate is record X, Y : INTEGER; end record; 

-- a record declaration for an attribute declaration: 
attribute Location:Coordinatej -- an attribute declaration 

begin wait; end process; end Behave; 

10.45 (**Communication between processes, 30 min.) Explain and correct the 
problem with the following skeleton code: 

variable vI : INTEGER := 1; process begin vI := vl+3; wait; end process; 

process variable v2 : INTEGER := 2; begin v2 0= vI wait; end process; 

10.46 (*Resolution, 30 min.) Explain and correct the problems with the following: 

entity R_Bad_l is port (i : in BIT; 0 out BIT); end; 
architecture Behave of R Bad 1 is 

begin 0 <= not i after 1 ns; 0 <= i after 2 ns; end; 

10.47 (*Inputs, 30 min.) Analyze the following and explain the result: 

entity And2 is port (AI, A2: in BIT; ZN: out BIT); end; 

architecture Simple of And2 is begin ZN <= Al and A2; end; 

entity Input_Bad_l is end; architecture Netlist of Input_Bad_l is 

component And2 port (AI, A2 : in BIT; ZN : out BIT); end component; 
signal X, Z : BIT begin Gl : And2 port map (X, X, Z)i end; 

10.48 (Association, 15 min.) Analyze the following and explain the problem: 

entity And2 is port (AI, A2 : in BIT; ZN : out BIT); end; 

architecture Simple of And2 is begin ZN <= Al and A2; end; 

entity Assoc_Bad_l is port (signal X, Y : in BIT; Z : out BIT); end; 
architecture Netlist of Assoc Bad 1 is 

component And2 port (AI, A2 : in BIT; ZN : out BIT); end component; 

482



begin 

GI: And2 port map (X, Y, Z) ; 
G2 : And2 port map (A2 => Y, ZN => Z, Al => X) ; 

G3: And2 port map (X, ZN => Z, A2 => Y) ; 
end; 

10.49 (Modes, 30 min.) Analyze and explain the errors in the following: 

entity And2 is port (AI, A2 : in BIT; ZN : out BIT); end; 

architecture Simple of And2 is begin ZN <= Al and A2; end; 

10.18 PROBLEMS 467 

entity Mode_Bad_1 is port (X : in BIT; Y 
architecture Netlist of Mode Bad I is 

component And2 port (AI, A2 : in BIT; ZN 

begin GI : And2 port map (X, Y, Z); end; 

out BIT; Z : inout BIT); end; 

entity Mode_Bad_2 is port (X : in BIT; Y 

architecture Netlist of Mode Bad I is 

component And2 port (AI, A2 : in BIT; ZN 
begin GI : And2 port map (X, Y, Z); end; 

out BIT); end component; 

out BIT; Z : inout BIT); end; 

inout BIT); end component; 

10.50 (*Mode association, 60 min.) Analyze and explain the errors in the fol­
lowing code. The number of en-ors, types of error, and the information in the error 
messages given by different simulators vary tremendously in this area. 

entity Allmode is port 

(I : in BIT; 0 : out BIT; 10 : inout BIT; B : buffer BIT); 

end; 
architecture Simple of Allmode is begin 0<=1; 10<=1; B<=I; end; 

entity Mode_l is port 

(I : in BIT; 0 : out BIT; 10 inout BIT; B 

end; 
architecture Netlist of Mode I is 

component Allmode port 
(I : in BIT; 0 : out BIT; 10 : inout BIT; B 

component; 
begin 

GI :Allmode port map (I , 0 , 10, B ) ; 

G2:Allmode port map (0 , 10, B , I ) ; 

G3:Allmode port map (10, B I , 0 ) ; 

G4:Allmode port map (B , I , 0 , 10) ; 

end; 

buffer BIT); 

buffer BIT); end 

10.51 (**Declarations, 60 min.) Write a tutorial (approximately two pages of 
text, five pages with code) with examples explaining the difference between: a com­
ponent declaration, a component configuration, a configuration declaration, a config­
uration specification, and a block configuration. 

10.52 (**Guards and guarded signals, 60 min.) Write some simple models to 
illustrate the use of guards, guarded signals, and the disconnect statement. Include 
an experiment that shows and explains the use of the implicit signal GUARD in 
assignment statements. 

483



468 CHAPTER 10 VHDL 

10.53 (**std_logic_1l64, 120 min.) Write a short (two pages of text) tuto­
rial, with (tested) code examples, explaining the std_logic_1l64 types, their 
default values, the difference between the I ulogic I and I logic I types, and their 
vector forms. Include an example that shows and explains the problem of connecting 
a std_logic_vector to a std_ulogic_vector. 

10.54 (Data swap, 20 min.) Consider the following code: 

library ieee; use ieee.std_logic_1164.all; 

package config is 

type typel is record 

fl : std_logic_vector(3l downto 0); f2 std_logic_vector(3 downto 0); 

end record; 

type type2 is record 

fl : std_logic_vector(3l downto 0); f2 

end record; 

std_logic_vector(3 downto 0); 

end config; 

library ieee; use ieee.STD_LOGIC_1164.all; use work.config.all; 

entity Swap_l is 

port (Datal : typel; Data2 : type2; sel : STD_LOGIC; 

DatalSwap : out typel; Data2Swap : out type2)i end Swap_I; 

architecture Behave of Swap_l is begin 

Swap: process (Datal, Data2, sell begin case sel is 

when '0' => Data1Swap <= Datal; Data2Swap <= Data2; 

when others => Data1Swap <= Data2; Data2Swap <= Datal; 

end case; end process Swap; end Behave; 

Compile this code. What is the problem? Suggest a fix. Now write a testbench and 
test your code. Have you considered all possibilities? 

10.55 (***RTL, 30 min.) "RTL stands for register-transfer level. ... when ref­
erencing VHDL, the term means that the description includes only concurrent signal 
assignment statements and possibly block statements. In particular, VHDL data flow 
descriptions explicitly do not contain either process statements (which describe 
behavior) or component instantiation statements (which describe structure)" 
(Dr. VHDL from VHDL International). 

a. With your knowledge of process statements and components, comment on 
Dr. VHDL's explanation. 

b. In less than 100 words offer your own definition of the difference between 
RTL, data flow, behavioral, and structural models. 

10.56 (*Operators mod and rem, 20 min.) Confirm and explain the following: 

i 1 : = (-12) rem 7 ; i1 - 5 

i2 := 12 

i3 := (12 ) 

i4 := 12 

i5 := (-12) 

i6 := 12 

i7 := (12 ) 

rem 

rem 

mod 

mod 

mod 

mod 

(-7) ; 

(-7) ; 

7 ; 

7 ; 

(-7); 

(-7) ; 

i2 5 

i3 -5 
i4 5 

i5 2 

i6 -2 

i7 -5 

484



10.18 PROBLEMS 469 

Evaluate -5 rem 2 and explain the result. 

10.57 (***Event and stable, 60 min.) Investigate the differences between 
elk' EVENT and elk' STABLE. Write a minitutorial (in the form of a "cheat sheet") 
with examples showing the differences and potential dangers of using elk' STABLE. 

10.58 (PREP benchmark #2, 60 min.) The following code models a benchmark 
circuit used by PREP to measure the capacity of FPGAs. Rewrite the concurrent 
signal assignment statements (labeled mux and comparator) as equivalent pro­
cesses. Draw a datapath schematic corresponding to PREP2 (Behave _1). Write a 
testbench for the model. Finally (for extra credit) rewrite the model and testbench to 
use STD _LOGIC instead of BIT types. 

library ieee; use ieee.STD_LOGIC_1164.all; 

use ieee.NUMERIC_BIT.all; use ieee.NUMERIC_STD.all; 
entity PREP2 is 

port (CLK,Reset,Se1,Ld1i,Ldhi BIT; D1,D2 STD LOGIC_VECTOR(7 downto 0); 

DQ:out STD_LOGIC_VECTOR(7 downto 0»; 
end; 

architecture Behave 1 of PREP2 is 

signal EQ : BIT; signal y,lo,hi,Q_i 
begin 

outputDriver: Q <= Q_i; 
mux: with Se1 select y <= hi when '0', D1 when '1'; 

comparator: EQ <= '1' when Q_i = 10 else '0'; 

register: process(Reset, CLK) begin 
if Reset = '1' then hi <= "00000000"; 10 <= "00000000"; 
elsif CLK = 'I' and CLK'EVENT then 

if Ldhi='l' then hi<=D2;end if;if Ld1o='l' then 10<=D2;end if; 

end if; 
end process register; 

counter: process (Reset, CLK) begin 
if Reset = 'I' then Q_i <= "00000000"; 
elsif CLK = 'I' and CLK'EVENT then 

if EQ = 'I' then Q_i <= y; 
elsif EQ = '0' then Q_i <= Q_i + "00000001"; 

end if; 

end if; 

end process counter; 
end; 

10.59 (PREP #3, state machine) Draw the state diagram for the following 
PREP benchmark (see Problem 10.58). Is this a Mealy or Moore machine? Write a 
testbench and test this code. 

library ieee; use ieee.STD_LOGIC_1164.all; 
entity prep3_1 is port(C1k, Reset: STD_LOGIC; 

I : STD_LOGIC_VECTOR(7 downto 0); 0 : out STD_LOGIC_VECTOR(7 downto 0»; 

end prep3 1; 
architecture Behave of prep3_1 is 

485



470 CHAPTER 10 VHDL 

type STATE_TYPE is (sX,sO,sa,sb,sc,sd,se,sf,sg); 
signal state STATE_TYPE; signal Oi STD LOGIC_VECTOR(7 downto O)i 

begin 
o <= oi; 

process (Reset, Clk) begin 
if (Reset = 'I') then state <= sO; Oi <= (others => '0'); 

elsif rising_edge(Clk) then 

case state is 
when sO => 

if (I = X"3c") then state <= sa; Oi <= X"B2"; 

else state <= sQ; Oi <= (others => '0'); 

end if; 
when sa => 

if (I = X"2A") then state <= SCi oi <= X"40"; 

elsif (I = X"lF") then state <= sb; Oi <= X"20"; 

else state <= sa; Oi <= X"04"; 
end if; 

when sb => 

if (I = X"AA") then state <= se; Oi <= X"ll"; 

else state <= sf; Oi <= X"30"; 
end if; 

when sc => 

when sd => 

when se => 

when sf => 

when sg => 

when others 

end casei 

end if; 

state <= 

state <= 

state <= 

state <= 

state <= 

=> state 

sd; Oi <= X"OB"; 

sg; Oi <= X"BO"; 

sO; Oi <= X"40"; 
sg; Oi <= X"02"; 

sO; Oi <= X"Ol"; 
<= SXi Oi <= (others => 'X' ) ; 

end process; 

end; 

10.60 (Edge detection, 30 min) Explain the construction of the IEEE 1164 
function to detect the rising edge of a signal, rising_edge (s). List all the changes 
in signal s that correspond to a rising edge. 

function rising_edge (signal s : STD_ULOGIC) return BOOLEAN is 
begin return 

(s'EVENT and (TO_XOl(s) 'I') and (To_XOl(s'LAST_VALUE) = '0'»; 
end; 

10.61 (*Real, 10 min.) Determine the smallest r~al in your VHDL environment. 

10.62 (*Stop, 30 min.) How many ways are there to stop a VHDL simulator? 

10.63 (* Arithmetic package, 60 min.) Write a function for an arithmetic pack-
age to subtract two's complement numbers. Create a test bench to check your func­
tion. Your declarations in the package header should look like this: 

type TC is array (INTEGER range <» of STD_LOGIC; 

function "-"(L : TC; R : TC) return TC; 

486



10.18 PROBLEMS 471 

10.64 (***Reading documentation, hours) There are a few gray areas in the 
interpretation of the VHDL-87 LRM some of which were clarified in the VHDL-93 
revision. One VHDL system has a "compatibility mode" that allows alternative 
interpretations. For each of the following "issues" taken from the actual tool docu­
mentation try to interpret what was meant, determine the interpretation taken by 
your own software, and then rewrite the explanation clearly using examples. 

a. * "Unassociated variable and signal parameters. Compatibility mode allows 
variable and signal parameters to subprograms to be unassociated if they 
have a default value. Otherwise, an error is generated." 

Example answer: Consider the following code: 

package Util_2 is 
procedure C(signal Clk 
end Util_2; 
package body Util_2 is 

out BIT; signal P TIME := 10 ns); 

procedure C(signal Clk : out BIT; signal P : TIME := 10 ns) is 
begin loop Clk <= 'I' after P/2, '0' after P; 
wait for P; end loop; end; end Util_2; 
entity Test_Compatibility_l is end; use work.Util_2.all; 
architecture Behave of Test_Compatibility_l is 
signal v,w,x,y,z : BIT; signal s : TIME := 5 ns; 
begin process variable v : TIME := 5 ns; begin 
C(v, s); parameter s is OK since P is declared as signal 

C(w, v); would be OK if P is declared as variable instead 
C(x, 5 ns); would be OK if P is declared as constant instead 
C(y); unassociated, an error if P is signal or variable 
C(z,open); open, an error if P is signal or variable 

end process; end; 

The Compass Scout simulator (which does not have a compatibility mode) generates 
an error during analysis if a signal or variable subprogram parameter is open or 
unassodated (a constant subprogram parameter may be unassociated or open). 

b. * "Allow others in an aggregate within a record aggregate. The LRM 
[7.3.2.2] defines nine situations where others may appear in an aggregate. 
In compatibility mode, a tenth case is added. In this case, others is allowed 
in an aggregate that appears as an element association in a record element." 

c. * "BIT' ( , 1 ' ) parsed as BIT ' (' 1 J ). The tick (,) character is being used 
twice in this example. In the first case as an attribute indicator, in the second 
case, to form a character literal. Without the compatibility option, the ana­
lyzer adopts a strict interpretation of the LRM, and without white space 
around the first tick, the fragment is parsed as BIT • ( , 1 • ), that is, the left 
parenthesis (' ( ,) is the character literal." 

d. ** "Generate statement declarative region. Generate statements form their 
own declarative region. In compatibility mode, configuration specifications 
will apply to items being instantiated within a generate statement." 

487



472 CHAPTER 10 VHDL 

e. ** "Allow type conversion functions on open parameters. If a parameter is 
specified as open, it indicates a parameter without an explicit association. In 
such cases, the presence of a type conversion function is meaningless. Com­
patibility mode allows the type conversion functions." 

f. *** "Entity class flexibility. Section [3.1.2] of the LRM defines the process of 
creating a new integer type. The type name given is actually assigned to a 
subtype name, related to an anonymous base type. This implies that the entity 
class used during an attribute specification [LRM 5.1] should indicate sub­
type, rather than type. Because the supplied declaration was type rather than 
subtype, compatibility mode allows type." 

g. *** "Allowing declarations beyond an all/others specification. Section [5.1] of 
the LRM states that the first occurrence of the reserved word all or others in 
an attribute specification terminates the declaration of the related entity class. 
The LRM declares that the entity/architecture and package/package body 
library units form single declaration regions [LRM 10.1] that are the concate­
nation of the two individual library declarative regions. For example, if a sig­
nal attribute specification with all or others was specified in the entity, it 
would be impossible to declare a signal in the architecture. In compatibility 
mode, this LRM limitation is removed." 

h. *** "User-defined attributes on overloaded functions. In compatibility mode, 
user-defined attributes are allowed to be associated with overloaded func­
tions. Note: Even in compatibility mode, there is no way to retrieve the dif­
ferent attributes." 

10.65 (*1076 interpretations, 30 min.) In a DAC paper, the author writes: 'It 
was experienced that (company R) might have interpreted IEEE 1076 differently 
than (company S) did, e.g. concatenations (&) are not allowed in "case selector" 
expressions for (company S).' Can you use concatenation in your VHDL tool for 
either the expression or choices for a case statement? 

10.66 (**Interface declarations, 15 min.) Analyze the following and comment: 

entity Interface_1 is 

generic (I : INTEGER; J : INTEGER := I; K, L : INTEGER); 

port (A : BIT_VECTOR; B : BIT_VECTOR{A'RANGE); C : BIT_VECTOR (K to L)); 

procedure X{P, Q : INTEGER; R INTEGER range P to Q); 

procedure Y{S : INTEGER range K to L); 
end Interf ace _1 ; 

10.67 (**Wait statement, 10. min.) Construct the senSItlVIty set and thus the 
sensitivity list for the following wait statement (that is, rewrite the wait statement 
in the form wait on sensitivity_list until condition). 

entity Complex_Wait is end; 

architecture Behave of Complex_Wait is 

type A is array (1 to 5) of BOOLEAN; 

--1 

--2 

--3 

488



function F (P : BOOLEAN) return BOOLEAN; 

signal S : A; signal i, j : INTEGER range 1 to 5; 

begin process begin 

wait until F(S(3)) and (S(i) or S(j)); 

end process; 
end; 

10.18 PROBLEMS 473 

--4 

--5 

--6 

--7 
--8 
--9 

1 0.68 (**Shared variables, 20 min.) Investigate the following code and com­
ment: 

architecture Behave of Shared 1 is 

subtype S is INTEGER range 0 to 1; shared variable C 

process begin C := C + 1; wait; end process; 

process begin C := C - 1; wait; end process; 
end; 

S := 0; begin 

10.69 (Undocumented code and ranges, 20 min.) Explain the purpose of the 
following function (part of a package from a well-known synthesis company) with a 
parameter of type SIGNED. Write a testbench to check your explanation. Investigate 
what happens when you call this function with a string-literal argument, for example 
with the statement X <= IM ( .. 11100" ). What is the problem and why does it hap­
pen? Rewrite the code, including documentation, to avoid this problem. 

type SIGNED is array (NATURAL range <> ) of BIT; 

function 1M (L : SIGNED) return INTEGER is variable M 

begin M := L'RIGHT-l; 

for i in L'LEFT-l downto L'RIGHT loop 

INTEGER; 

if (L(i) = (not L(L'LEFT))) then M := i; exit; end if; 

end loop; return M; 

end; 

10.70 (Timing parameters, 20 min.) Write a model and a testbench for a two­
input AND gate with separate rising (tpLH) and falling (tpHL) delays using the fol­
lowing interface: 

entity And_process is 

generic (tpLH, tpHL : TIME); port (a, b : BIT; z : out BIT) end; 

10.71 (Passive code in entities, 30 min.) Write a procedure (CheckTiming, part 
of a package Timing_Pkg) to check that two timing parameters (tPLH and tPHL) 

are both greater than zero. Include this procedure in a two-input AND gate model 
(And_process). Write a testbench to show your procedure and gate model both 
work. Rewrite the entity for And_Process to include the timing check as part of the 
entity declaration. You are allowed to include passive code (no assignments to sig­
nals and so on) directly in each entity. This avoids having to include the timing 
checks in each architecture. 

489



474 CHAPTER 10 VHDL 

10.72 (Buried code, 30 min.) Some companies bury instructions to the software 
within their packages. Here is an example of part of the arithmetic package from an 
imaginary company called SissyN: 

function UN_plus(A, B : UN) return UN is --1 
variable CRY: STD_ULOGIC; variable X,SUM UN (A'LEFT downto 0); --2 

pragma map_to_operator ADD_UNS_OP --3 

pragma type_function LEFT_UN_ARG --4 

pragma return_port_name Z 

begin 

-- sissyn synthesis_off 

if (A(A'LEFT) = 'X' or B(B'LEFT) 

return (SUM) ; 

end if; 
-- sissyn synthesis_on 

CRY := '0'; X := B; 

for i in 0 to A'LEFT loop 

SUM(i) := A(i) xor X(i) xor carry; 

'X') then SUM := (others => 

CRY := (A(i) and X(i» or (A(i) and CRY) or (CRY and X(i»; 

end loop; return SUM; 

end; 

--5 

--6 

--7 

'X' ) i --8 
--9 

--10 
--11 

--12 

--13 

--14 

--15 

--16 

--17 

Explain what this function does. Can you now hazard a guess at what each of the 
comments means? What are the repercussions of using comments in this fashion? 

1 0.73 (*Deferred constants, 15 min.) "If the assignment symbol' : =' followed 
by an expression is not present in a constant declaration, then the declaration declares 
a deferred constant. Such a constant declaration may only appear in a package dec­
laration. The corresponding full constant declaration, which defines the value of the 
constant, must appear in the body of the package" [VHDL 93LRM4.3.1.1]. 

package Constant is constant sl, s2 : BIT_VECTOR; end Constant; 

package body Constant is 

constant sO : BIT VECTOR := "00"; constant sl : BIT_VECTOR := "01"; 

end Constant; 

It is tempting to use deferred constants to hide information. However, there are 
problems with this approach. Analyze the following code, explain the results, and 
correct the problems: 

entity Deferred_l is end; architecture Behave of Deferred_l is 

use work. all; signal y,il,i2 : INTEGER; signal sel : INTEGER range 0 to 1; 

begin with sel select y <= il when sO, i2 when sl; end; 

10.74 (***Viterbi code, days) Convert the Verilog model of the Viterbi decoder 
in Chapter 11 to VHDL. This problem is tedious without the help of some sort of 
Verilog to VHDL conversion process. There are two main approaches to this prob­
lem. The first uses a synthesis tool to read the behavioral Verilog and write structural 
VHDL (the Compass ASIC Synthesizer can do this, for example). The second 
approach uses conversion programs (Alternative System Concepts Inc. at 

490



10.18 PROBLEMS 475 

http://www.ascinc.comis one source). Some of these companies allow you to 
e-mail code to them and they will automatically return a translated version. 

10.75 (*Wait statement, 30 min.) Rewrite the code below using a single wait 
statement and write a testbench to prove that both approaches are exactly equivalent: 

entity Wait_Exit is port (Clk : in BIT); end; 

architecture Behave of Wait Exit is 

begin process begin 
loop wait on Clk; exit when Clk 

end process; 

end; 

'I'; end loop; 

10.76 (Expressions, 10 min.) Explain and correct the problems with the following: 

variable b : BOOLEAN; b := "00" < "11"; --1 

variable bv8 : BIT_VECTOR (7 downto 0) := "1000_0000"; --2 

10.77 (Combinational logic using case statement, 10 min.) A Verilog user sug­
gests the following method to model combinational logic. What are the problems 
with this approach? Can you get it to work? 

entity AndCase is port (a, b : BIT; y out BIT); end; 
architecture Behave of AndCase is begin process (a , b) begin 

case a & b is 
when '1'&'1' => y <= '1'; when others => y <= '0'; 

end case; 

end process; end; 

10.78 (*Generics and back -annotation, 60 min.) 

a. Construct design entities And 3 (Behave), a two-input AND gate, and 
Xor _ 3 (Behave), a two-input XOR gate. Include generic constants to model 
the propagation delay from each input to the output separately. Use the fol­
lowing entity declaration for And _ 3: 

entity And_3 is port (II, I2 : BIT; 0 out BIT); 
generic (IltoO, I2toO : DELAY_LENGTH := 0.4 ns); end; 

b. Create and test a package, P_1, that contains And_3 and Xor_3 as compo­
nents. 

c. Create and test a design entity Half_Adder _ 3 (structure _ 3) that uses 
P _1, with the following interface: 

entity Half_Adder_3 is port (X, Y : BIT; Sum, Carry: out BIT); end; 

d. Modify and test the architecture Structure_3 for Half Adder 3 so that 
you can use the following configuration: 

configuration Structure_3 of Half_Adder_3 is 

for Structure 3 
for L1 : XOR generic map (O.66 ns,0.69 ns); end for; 
for L2 : AND generic map (O.S ns, 0.6 ns) port map (I2 => HI); end for; 

end for; end; 

491



476 CHAPTER 10 VHDL 

10.79 (SNUG'95, *60 min.) In 1995 John Cooley organized a contest between 
VHDL and Verilog for ASIC designers. The goal was to design the fastest 9-bit 
counter in under one hour using Synopsys synthesis tools and an LSI Logic vendor 
technology library. The VHDL interface is as follows: 

library ieee; use ieee.std_logic_1164.all; 

-- use ieee.std_logic_arith.all; -- substitute your package here 

entity counter is port ( 
data in in std_logic_vector(8 downto 0); 

up in std_logic; 

in std_logic; 
in std_logic; 

down 

clock 

count out 
carry_out 

inout std_logic_vector(8 downto 0); 
out std_logic; 

borrow out out std_logic; 
parity_out out std_logic ); end counter; 
architecture example of counter is begin 

-- insert your design here 

end example; 

The counter is positive-edge triggered, counts up with up = '1' and down with 
down = '1 I • The contestants had the advantage of a predefined testbench with a set 
of test vectors, you do not. Design a model for the counter and a testbench. How 
confident are you that you have thoroughly tested your model? (In the real contest 
none of the VHDL contestants managed to even complete a working design in under 
one hour. In addition, the VHDL experts that had designed the testbench omitted a 
test case for one of the design specifications.) 

10.80 (*A test procedure, 45 min.) Write a procedure all (for a package test) 

that serially generates all possible input values for a signal spaced in time by a 
delay, dly. Use the following interface: 

library ieee; use ieee.std_logic_1164.all; package test is 

procedure all (signal SLY : out STD_LOGIC_VECTOR; dly : in TIME); 
end package test ; 

10.81 (Direct instantiation, 20 min.) Write an architecture for a full-adder, 
entity Full_Adder_2, that directly instantiates units And_2 (Behave) and 
Xor _ 2 (Behave). This is only possible in a VHDL-93 environment. 

entity And_2 is port (iI, i2 : BIT; y : out BIT); end; 

entity Xor_2 is port (iI, i2 : BIT; y : out BIT); end; 

entity Full_Adder_2 is port (a, b, c : BIT; sum, cout : out BIT); end; 

10.82 (**Shift operators for 1164, 60 min.) Write a package body to implement 
the VHDL-93 shift operators, sll and srl, for the type STD_LOGIC_VECTOR. Use 
the following package header: 

package 1164_shift is 

function "sll"(x : STD_LOGIC_VECTOR; n 
return STD_LOGIC_VECTOR; 

INTEGER) 

492



function "srl"(x : STD_LOGIC_VECTORi n INTEGER) 

return STD_LOGIC_VECTORi 

end package 1164_shift; 

10.19 BIBLIOGRAPHY 477 

10.83 (**VHDL wait statement, 60 min.) What is the problem with the fol­
lowing VHDL code? Hint: You may need to consult the VHDL LRM. 

procedure P is begin wait on b; end; 

process (a) is begin procedure Pi end processi 

10.84 (**Null range, 45 min.) A range such as 1 to -lor 0 downto 1 is a 
null range (0 to 0 is a legal range). Write a one-page summary on null ranges, 
including code examples. Is a null range treated as an ascending or descending 
range? 

10.85 (**Loops, 45 min.) Investigate the following issues with loops, including 
code examples and the results of analysis and simulation: 

a. Try to alter the loop parameter within a loop. What happens? 

b. What is the type of the loop parameter? 

c. Can the condition inside a loop depend on a loop parameter? 

d. What happens in a for loop if the range is null? 

e. Can you pass a loop parameter out of a procedure as a procedure parameter? 

10.86 (Signals and variables, 30 min.) Write a summary on signals and vari-
ables, including code examples. 

10.87 (Type conversion, 60 min.) There are some very subtle rules involving 
type conversion, [VHDL 93LRM7.3.5]. Does the following work? Explain the type 
conversion rules. 

BV <= BIT_VECTOR("llll")i 

1 0.,19 Bibliography 

The definitive reference guide to VHDL is the IEEE VHDL LRM [IEEE, 1076-
1993]. The LRM is initially difficult to read because it is concise and precise (the 
LRM is intended for tool builders and experienced tool users, not as a tutorial). The 
LRM does form a useful reference-as does a dictionary for serious users of any 
language. You might think of the LRM as a legal contract between you and the com­
pany that sells you software that is compliant with the standard. VHDL software 
uses the terminology of the LRM for error messages, so it is necessary to understand 
the terms and definitions of the LRM. The WAVES standard [IEEE 1029.1-1991] 
deals with the problems of interfacing VHDL testbenches to testers. 

VHDL International maintains VIUF (VHDL International Users' Forum) Inter­
net Services (http: /www. vhdl. org) and links to other groups working on VHDL 
including the IEEE synthesis packages, IEEE WAVES packages, and IEEE VITAL 
packages (see also Appendix A). 

493



478 CHAPTER 10 VHDL 

The frequently asked questions (FAQ) list for the VHDL newsgroup 
comp .lang. vhdl is a useful starting point (the list is archived at 
gopher:/ /kona.ee.pitt.edu/hO/NewsGroupArchives). Information on char­
acter sets and the problems of exchanging information across national boundaries can 
be found at ftp: / /watsun. cc. columbia. edu/kermi t/ charsets. 

1 0.20 References 

Page numbers in brackets after the reference indicate the location in the chapter body. 
IEEE 1029.1-1991. IEEE Standard for Waveform and Vector Exchange (WAVES). IEEE Std 

1029.1-1991. The Institute of Electrical and Electronics Engineers, Inc., New York. Avail­
able from The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, 
New York, NY 10017 USA. 

IEEE 1076-1993. IEEE Standard VHDLLanguage Reference Manual (ANSI). IEEE Std. 1076-
1993. The Institute of Electrical and Electronics Engineers, Inc., New York. Available from 
The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, 
NY 10017 USA. [po 380] 

IEEE 1076.2-1996. Standard VHDL Language Mathematical Packages. IEEE Ref. AD129-
NYF. Approved by IEEE Standards Board on 19 September 1996. [po 404]. 

ISO 8859-1. 1987 (E). Information Processing-8-bit single-byte coded graphic character 
sets-Part 1: Latin Alphabet No.1. American National Standards Institute, Hackensack, 
NJ; 1987. Available from Sales Department, American National Standards Institute, 105-
111 South State Street, Hackensack, NJ 07601 USA. [po 391] 

494



VERILOG HDL 

11.1 A Counter 11.10 Modeling Delay 

11.2 Basics of the Verilog Language 11.11 Altering Parameters 

11.3 Operators 11.12 A Viterbi Decoder 

11.4 Hierarchy 11.13 Other Verilog Features 

11.5 Procedures and Assignments 11.14 Summary 

11.6 Timing Controls and Delay 11.15 Problems 

11.7 Tasks and Functions 11.16 Bibliography 

11.8 Control Statements 11.17 References 

11.9 Logic-Gate Modeling 

In this chapter we look at the Verilog hardware description language. Gateway 
Design Automation developed Verilog as a simulation language. The use of the 
Verilog-XL simulator is discussed in more detail in Chapter 13. Cadence purchased 
Gateway in 1989 and, after some study, placed the Verilog language in the public 
domain. Open Verilog International (OVI) was created to develop the Verilog lan­
guage as an IEEE standard. The definitive reference guide to the Verilog language is 
now the Verilog LRM, IEEE Std 1364-1995 [1995].1 This does not mean that all 
Verilog simulators and tools adhere strictly to the IEEE Standard-we must abide by 
the reference manual for the software we are using. Verilog is a fairly simple lan­
guage to learn, especially if you are familiar with the C programming language. In 
this chapter we shall concentrate on the features of Verilog applied to high-level 
design entry and synthesis for ASICs. 

1 Some of the material in this chapter is reprinted with permission from IEEE Std 1364-
1995, © Copyright 1995 IEEE. All rights reserved. 479 

495



480 CHAPTER 11 VERILOG HDL 

11.1 A Counter 

The following Verilog code models a "black box" that contains a 50MHz clock 
(period 20 ns), counts from 0 to 7, resets, and then begins counting at 0 again: 

'timescale 1nsl1ns II Set the units of time to be nanoseconds. III 
module counter; 112 

reg clock; II Declare a reg data type for the clock. 113 
integer count; II Declare an integer data type for the count. 114 

initial II Initialize things; this executes once at t=O. liS 
begin 116 

clock = 0; count = 0; 

#340 $finish; 

II Initialize signals. 

II Finish after 340 time ticks. 

1/7 
118 

end 119 
1* An always statement to generate the clock; only one statement 

follows the always so we don't need a begin and an end. *1 1110 
always 1111 

#10 clock = - clock; II Delay (IOns) is set to half the clock cycle.1112 
1* An always statement to do the counting; this executes at the same 

time (concurrently) as the preceding always statement. *1 1113 
always 

begin 

II Wait here until the clock goes from 1 to o. 
@ (negedge clock); 

II Now handle the counting. 

if (count == 7) 

count 

else 

O· , 

count = count + 1; 

$display("time = ",$time," count 

end 

endmodule 

count) ; 

1114 
IllS 
1116 
1117 
1118 
1/19 
1120 
1121 
1122 
1123 
1124 
1125 

Verilog keywords (reserved words that are part of the Verilog language) are 
shown in bold type in the code listings (but not in the text). References in this chap­
ter such as [Verilog LRM 1.1] refer you to the IEEE Verilog LRM. 

The following output is from the Cadence Verilog-XL simulator. This example 
includes the system input so you can see how the tool is run and when it is finished. 
Some of the banner information is omitted in the listing that follows to save space 
(we can use "quiet" mode using a '-q' flag, but then the version and other useful 
information is also suppressed): 

> verilog counter.v 

VERILOG-XL 2.2.1 Apr 17, 1996 11:48:18 

... Banner information omitted here ... 

Compiling source file "counter.v" 

Highest level modules: 

496



11.1 

counter 

time 20 count 1 
time 40 count 2 
( ... 12 lines omitted ... ) 
time 300 count = 7 
time 320 count = 0 
LI0 "counter. v": $finish at simulation time 340 
223 simulation events 
CPU time: 0.6 secs to compile + 0.2 secs to link + 0.0 secs in 
simulation 

End of VERI LOG-XL 2.2.1 Apr 17, 1996 11:48:20 

> 

Here is the output of the VeriWell simulator from the console window (future 
examples do not show all of the compiler output- just the model output): 

veriwell -k Veriwell.key -1 Veriwell.log -s :counter.v 

... banner information omitted .... 

Memory Available: 0 
Entering Phase I ... 

Compiling source file: :counter.v 
The size of this model is [1%, 1%] of the capacity of the free version 

Entering Phase II .. . 
Entering Phase III .. . 

No errors in compilation 

Top-level modules: 
counter 

Cl> . 
time 

time 

20 
40 

( ... 12 lines omitted ... ) 

time 300 

time 320 

count 
count 

count 

count 

Exiting veriwell for Macintosh at time 340 
o Errors, 0 Warnings, Memory Used: 29468 

1 
2 

7 

0 

Compile time = 0.6, Load time = 0.7, Simulation time 4.7 

Normal exit 
Thank you for using VeriWell for Macintosh 

A COUNTER 481 

497



482 CHAPTER 11 VERILOG HDL 

11.2 Basics of the Verilog Language 

A Verilog identifier [Verilog LRM2.7], including the names of variables, may con­
tain any sequence of letters, digits, a dollar sign I $ I, and the underscore I _ I 

symbol. The first character of an identifier must be a letter or underscore; it cannot 
be a dollar sign I $ I, for example. We cannot use characters such as ,_, (hyphen), 
brackets, or I # I (for active-low signals) in Verilog names (escaped identifiers are an 
exception). The following is a shorthand way of saying the same thing: 

identifier ::= simple_identifier I escaped identifier 

simple_identifier ::= [ a-zA-Z_ ][ a-zA-Z_$ ] 
escaped_identifier ::= 

\ {Any_ASCII_character_except_white_space} white_space 

white_space ::= space I tab I newline 

(In the 1995 LRM the underscore ' _' is missing from the first bracket.) If we 
think of I : : = I as an equal sign, then the preceding "equation" defines the syntax 
of an identifier. Usually we use the Backus-Naur form (BNF) to write these equa­
tions. We also use the BNF to describe the syntax of VHDL. There is an explana­
tion of the BNF in Appendix A. Verilog syntax definitions are given in Appendix B. 
In Verilog all names, including keywords and identifiers, are case-sensitive. Spe­
cial commands for the simulator (a system task or a system function) begin with a 
dollar sign I $ I [Verilog LRM 2.7]. Here are some examples of Verilog identifiers: 

module identifiers; 

1* Multiline comments in verilog 

look like C comments and II is OK in here. *1 
II Single-line comment in verilog. 

III 
112 
113 
114 

reg legal_identifier,two __ underscores; 115 
reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive; 116 
reg \/clock ,\a*b ; II Add white_space after escaped identifier. 117 
Ilreg $_BAD,123_BAD; II Bad names even if we declare them! 118 
initial begin 

legal_identifier 
two underscores 

OK 0; 

OK 0; 

OK$ O· , 

0; 

0; 

II Embedded underscores are OK, 
II even two underscores in a row. 

119 
1/10 
1/11 

II Identifiers can start with underscore 1112 
II and end with underscore. 1113 
II $ sign is OK, but beware foreign keyboards.1114 

OK_123 =0; II Embedded digits are OK. 1115 
CASE SENSITIVE 0; II Verilog is case-sensitive (unlike VHDL). 1116 
case sensitive 1; 1117 
\/clock = 0; II An escaped identifier with \ breaks rules,1118 
\a*b = 0; II but be careful to watch the spaces! 1119 
$display( "Variable CASE_SENSITIVE= %d" ,CASE_SENSITIVE); 1120 
$display("Variable case_sensitive= %d",case_sensitive); 
$displaY("Variable \/clock = %d",\/clock ); 
$display("Variable \\a*b = %d",\a*b ); 

1/21 
1122 
1123 

498



11.2 BASICS OF THE VERILOG LANGUAGE 483 

end 
endmodule 

//24 
//25 

The following is the output from this model (future examples in this chapter list 
the simulator output directly after the Verilog code). 

variable CASE SENSITIVE= 0 
Variable case sensitive= 1 
Variable /clock 0 
Variable \a*b = 0 

11.2.1 Verilog Logic Values 
Verilog has a predefined logic-value system or value set [Verilog LRM 3.1] that uses 
four logic values: '0', '1', 'x', and 'z' (lowercase 'x' and lowercase 'z'). The 
value 'x' represents an uninitialized or an unknown logic value-an unknown value 
is either '1', '0', 'z', or a value that is in a state of change. The logic value 'z' 
represents a high-impedance value, which is usually treated as an 'x' value. Verilog 
uses a more complicated internal logic-value system in order to resolve conflicts 
between different drivers on the same node. This hidden logic-value system is useful 
for switch-level simulation, but for most ASIC simulation and synthesis purposes we 
do not need to worry about the internal logic-value system. 

11.2.2 Verilog Data Types 
There are several data types in Verilog-all except one need to be declared before 
we can use them. The two main data types are nets and registers [Verilog LRM 3.2]. 
Nets are further divided into several net types. The most common and important net 
types are: wire and tri (which are identical); supplyl and supplyO (which are equiv­
alent to the positive and negative power supplies respectively). The wire data type 
(which we shall refer to as just wire from now on) is analogous to a wire in an 
ASIC. A wire cannot store or hold a value. A wire must be continuously driven by 
an assignment statement (see Section 11.5). The default initial value for a wire is 
, z' [Verilog LRM3.6]. There are also integer, time, event, and real data types. 

module declarations_I; //1 
wire pwr_good, pwr_on, pwr_stable; /1 Explicitly declare wires. 112 
integer i; II 32-bit, signed (2's complement). 113 
time t; II 64-bit, unsigned, behaves like a 64-bit reg. 114 
event e; II Declare an event data type. 1/5 
real r; /1 Real data type of implementation defined size. 1/6 
// An assign statement continuously drives a wire: //7 
assign pwr stable = l'bl; assign pwr_on = 1; // 1 or l'bl //8 
assign pwr_good = pwr_on & pwr_stable; //9 
initial begin 
i 123.456; 
r = 123456e-3; 

// There must be a digit on either side 
1/ of the decimal point if it is present. 

//10 

//11 
/ /12 

499



484 CHAPTER 11 VERILOG HDL 

t = 123456e-3; // Time is rounded to 1 second by default. 
$display("i=%Og",i," t=%6.2f",t," r=%f",r); 
#2 $display("TIME=%Od",$time," ON=",pwr_on, 

" STABLE=" ,pwr_stable," GOOD=" ,pwr_good); 
$finish; end 
endmodule 

i=123 t=123.00 r=123.456000 
TIME=2 ON=l STABLE=l GOOD=l 

/ /l3 
//14 
//15 
//16 
//17 

//18 

A register data type is declared using the keyword reg and is comparable to a 
variable in a programming language. On the LHS of an assignment a register data 
type (which we shall refer to as just reg from now on) is updated immediately and 
holds its value until changed again. The default initial value for a reg is I x I • We can 
transfer information directly from a wire to a reg as shown in the following code: 

module declarations_2; //1 
reg Q, elk; wire D; //2 
// Drive the wire (D): //3 
assign D = 1; //4 
// At a +ve clock edge assign the value of wire D to the reg Q: //5 
always @(posedge elk) Q = D; //6 
initial elk = 0; always #10 elk - elk; //7 
initial begin #50; $finish; end //8 

always begin //9 

$display("T=%2g", $time," D=",D," elk=",elk," Q=",Q); #10; end //10 
endmodule //11 

T= 0 D=z elk=O Q=x 
T=10 D=l elk=l Q=x 
T=20 D=l elk=O Q=l 
T=30 D=l elk=l Q=l 
T=40 D=l elk=O Q=l 

We shall discuss assignment statements in Section 11.5. For now, it is important 
to recognize that a reg is not always equivalent to a hardware register, flip-flop, or 
latch. For example, the following code describes purely combinational logic: 

module declarations_3; 
reg a,b,c,d,e; 
initial begin 

#10; a = O;b 
#lOi a = O;b 

end 
always begin 

O;c 

Oi C 

O;d 
l;d 

0; #10; a = O;b 
1; #10; $stop; 

@(a or b or c or d) e = (alb)&(cld); 
$display( "T=%Og" ,$time," e=" ,e); 

end 
endmodule 

T=10 e=O 

1iC 1 ;d 0; 

//1 

//2 

//3 
//4 

//5 

//6 

//7 
//8 

//9 

/ /10 

/ /11 

500



T=20 e=l 

T=30 e=O 

11.2 BASICS OF THE VERILOG LANGUAGE 485 

A single-bit wire or reg is a scalar (the default). We may also declare a wire 
or reg as a vector with a range of bits [Verilog LRM 3.3]. In some situations we 
may use implicit declaration for a scalar wire; it is the only data type we do not 
always need to declare. We must use explicit declaration for a vector wire or any 
reg. We may access (or expand) the range of bits in a vector one at a time, using a 
bit-select, or as a contiguous subgroup of bits (a continuous sequence of numbers­
like a straight in poker) using a part-select [Verilog LRM 4.2]. The following code 
shows some examples: 

module declarations_4; III 
wire Data; II A scalar net of type wire. 112 
wire [31:0] ABus, DBus; II Two 32-bit-wide vector wires: 113 
II DBus[31] = leftmost = most-significant bit = msb 114 
II DBus[O] = rightmost = least-significant bit = Isb liS 
II Notice the size declaration precedes the names. 116 
II wire [31:0] TheBus, [15:0] BigBus; II This is illegal. 117 
reg [3:0] vector; II A 4-bit vector register. 118 
reg [4:7] nibble; II msb index < Isb index is OK. 119 
integer i; 1110 
initial begin 1111 
i = 1; 1/12 
vector = 'b1010; II Vector without an index. 1113 
nibble = vector; II This is OK too. 1114 
#1; $display("T=%Og",$time," vector=", vector," nibble=", nibble); IllS 
#2; $display("T=%Og",$time," Bus=%b",DBus[15:0J); 1116 
end 1117 
assign DBus [1] = 1; II This is a bit-select. 1118 
assign DBus[3:0] = 'b1111; II This is a part-select. 1119 
II assign DBus [0:3] = 'b1111; II Illegal: wrong direction. 1120 
endmodule 1121 

T=l vector=10 nibble=10 

T=3 Bus=zzzzzzzzzzzzllll 

There are no multidimensional arrays in Verilog, but we may declare a memory 
data type as an array of registers [Verilog LRM 3.8]: 

module declarations_5; III 
reg [31:0] VideoRam [7:0]; II An 8-word by 32-bit wide memory. 112 
initial begin 

VideoRam[ 1] 

VideoRam[2] 

VideoRam[7] 

VideoRam[8] 

1/3 
'bxz; II We must specify an index for a memory. 114 
1; liS 
VideoRam[VideoRam[2]]; II Need 2 clock cycles for this.116 

1; II Careful! the compiler won't complain about this! 117 
II Verify what we entered: 118 

501



486 CHAPTER 11 VERILOG HDL 

$display( "VideORam[ 0] is %b" I VideoRam[ 0]); 

$display ( "VideoRam[ 1] is %b" I VideoRam[ 1] ) ; 

$display ( "VideORam[ 2] is %b" I VideoRam[ 2] ) ; 

$display( "VideoRam[ 7] is %b" I VideoRam[ 7]); 

end 

endmodule 

VideoRam[O] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

VideoRam[1] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz 

VideoRam[2] is 00000000000000000000000000000001 

VideoRam[7] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz 

//9 

//10 

/ /11 
//12 

/ /13 
//14 

We may also declare an integer array or time array in the same way as an 
array of reg, but there are no real arrays [Verilog LRM 3.9]: 

//1 module declarations_6; 

integer Number [1:100]; 

time Time_Log [1:1000]; 

// real Illegal [1:10]; 

endmodule 

// Notice that size follows name //2 

// - as in an array of reg. //3 

// Illegal. There are no real arrays.//4 

//5 

11.2.3 Other Wire Types 
There are the following other Verilog wire types (rarely used in ASIC design) 
[Verilog LRM 3.7.2]: 

• wand, wor, triand, and trior model wired logic. Wiring, or dotting, the 
outputs of two gates generates a logic function (in emitter-coupled logic, 
ECL, or in an EPROM, for example). This is one area in which the logic val­
ues 'z' and' x' are treated differently. 

• triO and tril model resistive connections to VSS or VDD. 

• trireg is like a wire but associates some capacitance with the net, so it can 
model charge storage. 

There are also other keywords that may appear in declarations: 

• scalared and vectored are properties of vectors [Verilog LRM 3.3.2]. 

• small, medium, and large model the charge strength of trireg connections 
[Verilog LRM 7]. 

11.2.4 Numbers 
Constant numbers are integer or real constants [Verilog LRM 2.5]. Integer 
constants are written as 

width'radix value 

where width and radix are optional. The radix (or base) indicates the type of num­
ber: decimal (d or D), hex (h or H), octal (0 or 0), or binary (b or B). A number may 
be sized or unsized. The length of an unsized number is implementation dependent. 

502



11.2 BASICS OFTHE VERILOG LANGUAGE 487 

We can use '1' and '0' as numbers since they cannot be identifiers, but we must 
write l' bx and l' bz for 'x' and 'z'. A number may be declared as a parameter 
[Verilog LRM 3.10]. A parameter assignment belongs inside a module declaration 
and has local scope [Verilog LRM3.1l]. Real constants are written using decimal 
(100.0) or scientific notation (le2) and follow IEEE Std 754-1985 for double­
precision floating-point numbers. Reals are rounded to the nearest integer, ties (num­
bers that end in .5) round away from zero [Verilog LRM 3.9.2], but not all imple­
mentations follow this rule (the output from the following code is from VeriWell, 
which rounds ties toward zero for negative integers). 

module constants; 
parameter H12_UNSIZED = 'h 12; 
parameter H12_SIZED = 6'h 12; 

//1 

// Unsized hex 12 = decimal 18. //2 
// Sized hex 12 = decimal 18. //3 

// Note: a space between base and value is OK. //4 
// Note: " (single apostrophes) are not the same as the' character.//5 
parameter D42 = 8'B0010_1010; // bin 101010 = dec 42 //6 
// OK to use underscores to increase readability. //7 
parameter D123 = 123; / / Unsized decimal (the default). / /8 
parameter D63 = 8'0 77; // Sized octal, decimal 63. //9 
// parameter ILLEGAL = 1'09; // No 9's in octal numbers! //10 
// A = 'hx and B = 'ox assume a 32 bit width. //11 
parameter A = 'h x, B = '0 x, C = 8'b x, D = 'h z, E = 16'h ????; //12 
// Note the use of ? instead of z, 16'h ???? is the same as 16'h zzzz.//13 
// Also note the automatic extension to a width of 16 bits. //14 
reg [3:0] B0011,Bxxx1,Bzzz1; real R1,R2,R3; integer 11,13,1_3; //15 
parameter BXZ = 8'b1xOx1z0z; //16 
initial begin 
B0011 = 4'b11; Bxxx1 = 4'bx1; Bzzz1 
R1 = 0.le1; R2 = 2.0; R3 = 30E-01; 
II = 1.1; 13 = 2.5; I 3 = -2.5; 

//17 
4 'bz 1; / / Left padded. / / 18 

// Real numbers. //19 
/ / IEEE rounds away from o. //20 

end //21 
initial begin #1; //22 
$display //23 
("H12_UNSIZED, H12_SIZED (hex) = %h, %h" ,H12_UNSIZED, H12_SIZED); //24 
$display("D42 (bin) = %b",D42," (dec) = %d",D42); //25 
$display("D123 (hex) = %h",D123," (dec) = %d",D123); //26 
$display("D63 (oct) = %0",D63)i //27 

$display("A (hex) = %h",A," B (hex) = %h",B)i //28 
$display("C (hex) = %h",C," D (hex) = %h",D," E (hex) = %h",E)i //29 
$display("BXZ (bin) = %b",BXZ," (hex) = %h",BXZ)i //30 
$display("B0011, Bxxx1, Bzzz1 (bin) = %b, %b, %b",B0011,Bxxx1,Bzzz1)i//31 
$display("R1, R2, R3 (e, f, g) = Ie, %f, %g", R1, R2, R3); //32 
$display("I1, 13, I 3 (d) = %d, %d, %d", II, 13, 1_3); //33 
end 

endmodule 

H12_UNSIZED, H12_S1ZED (hex) = 00000012, 12 
D42 (bin) = 00101010 (dec) = 42 
D123 (hex) = 0000007b (dec) = 123 

/ /34 
/ /35 

503



488 CHAPTER 11 VERILOG HDL 

D63 (oct) = 077 
A (hex) = xxxxxxxx B (hex) = xxxxxxxx 
C (hex) = xx D (hex) = zzzzzzzz E (hex) = zzzz 
BXZ (bin) = 1xOx1z0z (hex) = XZ 
B0011, Bxxx1, Bzzzi (bin) = 0011, xxxI, zzzi 
R1, R2, R3 (e, f, g) = 1.000000e+00, 2.000000, 3 
II, 13, I 3 (d) = 1, 3, -2 

11.2.5 Negative Numbers 

Integer numbers are signed (two's complement) or unsigned. The following 
example illustrates the handling of negative constants [Verilog LRM 3.2.2, 4.1.3]: 

module negative_numbers; //1 
parameter PA = -12, PB = -'d12, PC = -32'd12, PD = -4'd12; //2 
integer IA , IB , IC , ID ; reg [31:0] RA , RB , RC , RD ; //3 
initial begin #1; //4 
IA = -12; IB -'d12; IC = -32'd12; ID -4'd12; //5 

RA = -12; RB = -'d12; RC = -32'd12; RD -4'd12; #1; //6 
$disp1ay ( " parameter integer reg [31: 0 ] " ) ; / /7 

$disp1ay ("-12 =" ,PA, lA, , ,RA); / /8 
II , , , ,PA, , , 1 IA 1 , , I ,RA) ; $disp1ayh(" 

$disp1ay ("-'d12 
$disp1ayh(" 

=""PB,IB",RB); 
" , , , , PB, , , , IB, , , , , RB) ; 

$disp1ay ("-32'd12 =""PC,IC",RC); 

$disp1ayh(" "", ,PC"" IC"" ,RC); 
$disp1ay ("-4'd12 =""""""PD,ID",RD); 
$disp1ayh(" """""",PD""ID"",RD); 
end 
endmodule 

parameter integer reg[31:0] 
-12 -12 -12 4294967284 

fffffff4 fffffff4 fffffff4 
-'d12 4294967284 -12 4294967284 

fffffff4 fffffff4 fffffff4 
-32'd12 4294967284 -12 4294967284 

fffffff4 fffffff4 fffffff4 
-4'd12 4 -12 4294967284 

4 fffffff4 fffffff4 

//9 

//10 
/ /11 
//12 
/ /13 
//14 
//15 

//16 
//17 

Verilog only "keeps track" of the sign of a negative constant if it is (1) assigned 
to an integer or (2) assigned to a parameter without using a base (essentially the 
same thing). In other cases (even though the bit representations may be identical to 
the signed number-hexadecimal fffffff4 in the previous example), a negative 
constant is treated as an unsigned number. Once Verilog "loses" the sign, keeping 
track of signed numbers becomes your responsibility (see also Section 11.3.1). 

504



11.2 BASICS OF THE VERILOG LANGUAGE 489 

11.2.6 Strings 

The code listings in this book use Courier font. The ISO/ANSI standard for the 
ASCII code defines the characters, but not the appearance of the graphic symbol in 
any particular font. The confusing characters are the quote and accent characters: 

module characters; /* //1 
is ASCII 34 (hex 22), double quote. //2 

is ASCII 39 (hex 27), tick or apostrophe. //3 

/ is ASCII 47 (hex 2F) , forward slash. //4 

\ is ASCII 92 (hex 5C) , back slash. //5 
- is ASCII 96 (hex 60) , accent grave. //6 

is ASCII 124 (hex 7C) , vertical bar. //7 

There are no standards for the graphic symbols for codes above 128. //8 
~ is 171 (hex AB), accent acute in almost all fonts. //9 

is 210 (hex 02), open double quote, like 66 (in some fonts) . //10 

" is 211 (hex 03) , close double quote, like 99 (in some fonts) . / /11 
J is 212 (hex 04) , open single quote, like 6 (in some fonts) . //12 
f is 213 (hex 05) , close single quote, like 9 (in some fonts). //13 

*/ endmodule //14 

Here is an example showing the use of string constants [Verilog LRM 2.6]: 

module text; //1 

parameter A_String = "abc"; // string constant, must be on one line //2 

parameter Say = "Say \"Hey!\""; //3 
// use escape quote \" for an embedded quote //4 

parameter Tab = "\t"; // tab character //5 
parameter NewLine = "\n"; 

parameter BackSlash = "\\"; 

// newline character 
// back slash 

//6 

//7 
parameter Tick = "\047"; / / ASCII code for tick in octal //8 

II parameter Illegal = "\500"; II illegal - no such ASCII code /19 
initial begin //10 
$display("A_String(str) = %s ",A_String," (hex) = %h ",A_String); //11 
$display("Say = %s ",Say," Say \"Hey!\""); //12 

$display("NewLine(str) = %s ",NewLine," (hex) = %h ",NewLine); //13 

$display("\\(str) = %s ",BackSlash," (hex) = %h ",BackSlash); //14 
$display("Tab(str) = %s ",Tab," (hex) = %h ",Tab,"l newline ... "); //15 

$display("\n"); //16 
$display("Tick(str) = %s ",Tick," (hex) = %h ",Tick); 

#1.23; $display("Time is %t", $time); 

end 
endmodule 

A_String(str) = abc (hex) = 616263 
Say = Say \"Hey!\" Say "Hey!" 

NewLine(str) = \n (hex) = Oa 

\(str) = \\ (hex) = 5c 

//17 
//18 
//19 

//20 

505



490 CHAPTER 11 VERILOG HDL 

Tab(str) 

Tick(str) 

Time is 

\t (hex) 

(hex) 

09 1 newline ... 

27 

1 

Instead of parameters you may use a define directive that is a compiler 
directive, and not a statement [Verilog LRM 16]. The define directive has global 
scope: 

module define; 
'define G BUSWIDTH 32 II Bus width parameter (G_ for global). 

1* Note: there is no semicolon at end of a compiler directive. The 

character' is ASCII 96 (hex 60), accent grave, it slopes down from 

left to right. It is not the tick or apostrophe character ' (ASCII 39 

III 
112 

or hex 27)*1 113 
wire ['G_BUSWIDTH:O]MyBus; II A 32-bit bus. 

endmodule 

11.3 Operators 

114 
lis 

An expression uses any of the three types of operators: unary operators, binary oper­
ators, and a single ternary operator [Verilog LRM 4.1]. The Verilog operators are 
similar to those in the C programming language-except there is no 
autoincrement (++) or autodecrement (- -) in Verilog. Table 11.1 shows the opera­
tors in their (increasing) order of precedence and Table 11.2 shows the unary opera­
tors. Here is an example that illustrates the use of the Verilog operators: 

module operators; III 
parameter A10xz = {l'b1,l'bO,l'bx,l'bz}; II Concatenation and 112 
parameter A01010101 = {4{2'b01}}; II replication, illegal for real.113 
II Arithmetic operators: +, -, *, I, and modulus % 114 
parameter Al = (3+2) %2; II The sign of a % b is the same' as sign of a.IIS 
II Logical shift operators: « (left), » (right) 116 
parameter A2 = 4 » 1; parameter A4 = 1 « 2; 

II Relational operators: <, <=, >, >= 

initial if (1 > 2) $stop; 

II Note: zero fill. 117 
118 
119 

II Logical operators: ! (negation), && (and), I I (or) 1/10 
parameter BO = !12; parameter B1 = 1 && 2; 1/11 
reg [2:0] AOOx; initial begin AOOx = 'bIll; AOOx = !2'bx1; end 1/12 
parameter C1 = 1 I I (1/0); 1* This mayor may not cause an 1113 
error: the short-circuit behavior of && and I I is undefined. An 1114 
evaluation including && or I I may stop when an expression is known IllS 
to be true or false. *1 1116 
II (logical equality), != (logical inequality) 1117 

506



11.3 OPERATORS 491 

TABLE 11.1 Verilog operators (in increasing order of precedence). 

?: (conditional) [legal for real; associates right to left (others associate left to right)] 

II (logical or) [A smaller operand is zero-filled from its msb (O-fill); legal for real] 

&& (logical and) [O-fill, legal for real] 

(bitwise or) -I (bitwise nor) [O-fill] 

A (bitwise xor) A _A (bitwise xnor, equivalence) [O-fill] 

& (bihvise and) -& (bitwise nand) [O-fill] 

== (logical) != (logical) === (case) !== (case) [O-fill, logical versions are legal for real] 

< (It) <= (It or equal) > (gt) >= (gt or equal) [O-fill, all are legal for real] 

« (shift left) » (shift right) [zero fill; no -ve shifts; shift by x or z results in unknown] 

+ (addition) - (subtraction) [if any bit is x or z for + - * / % then entire result is unknown] 

* (multiply) / (divide) % (modulus) [integer divide truncates fraction; + - * / legal for real] 

Unary operators: ! - & -& 1 -I + - [see Table 11.2 for precedence] 

TABLE 11.2 Verilog unary operators. 

Name Operator Examples 

& 

-& 

1 

-'I 

+ 

logical negation 

bitwise unary negation 

unary reduction and 

unary reduction nand 

unary reduction or 

unary reduction nor 

unary reduction xor 

unary reduction xnor 

unary plus 

unary minus 

!123 is 'bO [0, 1, or x for ambiguous; legal for real] 

-1'b10xz is l'b01xx 

& 4'b1111 is l'b1, & 2'bx1 is l'bx, & 2'bz1 is l'bx 

-& 4'b1111 is l'bO, -& 2'bx1 is l'bx 

Note: 

Reduction is performed left (first bit) to right 

Beware of the non-associative reduction operators 

z is treated as x for all unary operators 

+2'bxz is +2'bxz [+m is the same as m; legal for real] 

-2'bxz is x [-m is unary minus m; legal for real] 

parameter Ax = (l==l'bx); parameter Bx = (l'bx!=l'bz); 

parameter DO = (1==0); parameter D1 = (1==1); 

//18 

//19 

//20 

//21 

//22 

//23 

// === case equality, !== (case inequality) 

// The case operators only return true (1) or false (0). 

parameter EO (l===l'bx); parameter E1 = 4'b01xz === 4'b01xz; 

parameter F1 = (4'bxxxx === 4'bxxxx); 

507



492 CHAPTER 11 VERILOG HDL 

// Bitwise logical operators: 
// - (negation), & (and), 1 (inclusive or), 
// A (exclusive or), _A or A_ (equivalence) 

parameter AOO = 2'b01 & 2'b10i 

// Unary logical reduction operators: 

// & (and), -& (nand), 1 (or), -I (nor), 
// A (xor), _A or A_ (xnor) 

//24 
//25 
//26 

//27 
//28 

//29 

//30 

parameter G1= & 4'b1111i //31 

// Conditional expression f = a ? b : c [if (a) then f=b else f=c] //32 
// if a=(x or z), then (bitwise) f=O if b=c=O, f=l if b=c=l, else f=x//33 
reg HO, a, b, Ci initial begin a=li b=Oi c=li HO=a?b:c; end //34 
reg[2:0] J01x, Jxxx, J01z, J011; //35 
initial begin Jxxx 3'bxxx; J01z 3'b01z; J011 = 3'b011i 

J01x = Jxxx ? J01z : J011i end // A bitwise result. 
initial begin #li 

$display("A10xz=%b",A10xz," A01010101=%b",A01010101)i 
$display("A1=%Od",A1," A2=%Od",A2," A4=%Od",A4)i 
$display("B1=%b",B1," BO=%b",BO," AOOx=%b",AOOx); 
$display( "C1=%b" ,C1," Ax=%b" ,Ax," Bx=%b" ,Bx) i 
$display("DO=%b",DO," D1=%b",D1)i 

$display("EO=%b",EO," E1=%b",E1," F1=%b",F1)i 
$display("AOO=%b",AOO," G1=%b",G1," HO=%b",HO)i 
$display("J01x=%b",J01x)i end 
endmodule 

A10xz=10xz A01010101=01010101 
A1=1 A2=2 A4=4 
B1=1 BO=O AOOx=OOx 
C1=1 Ax=x Bx=x 

D1=1 DO=O 
EO=O 
AOO=OO 

E1=1 F1=1 
G1=1 HO=O 

J01x=01x 

11.3.1 Arithmetic 
Arithmetic operations on n-bit objects are performed modulo 21Z in Verilog, 

module moduloi reg [2:0] Seveni 

initial begin 

#1 Seven 7; #1 $display("Before=", Seven); 
#1 Seven = Seven + 1; #1 $display("After =", Seven); 
end 
endmodule 

Before=7 
After =0 

//36 

//37 

/ /38 
//39 

//40 
//41 
//42 
//43 
//44 
//45 
//46 

//47 

//1 

//2 
//3 

//4 

//5 

//6 

508



11.3 OPERATORS 493 

Arithmetic operations in Verilog (addition, subtraction, comparison, and so on) 
on vectors (reg or wire) are predefined (Tables 11.1 and 11.2 show which operators 
are legal for real). This is a very important difference for ASIC designers from the 
situation in VHDL. However, there are some subtleties with Verilog arithmetic and 
negative numbers that are illustrated by the following example (based on an exam­
ple in the LRM [Verilog LRM4.1.3]): 

module LRM_arithmetici III 
integer lA, IB, IC, ID, IE; reg [15:0] RA, RB, RC; 112 

113 initial begin 

IA -4'd12; 

RB -4'd12; 

RA 

IB 

IC -4'd12 I 3; 

ID -12 I 3; 

RC 

IE 

end 

initial begin #1; 
$display(" 

$displaY("IA = -4'd12 

$display( "RA IA I 3 

$display( "RB -4'd12 

$display("IB RB I 3 

$display("IC -4'd12 I 3 

$display( "RC -12 I 3 

$display("ID -12 I 3 

$display("IE IA I 3 
end 

endmodule 

hex 

IA -4'd12 fffffff4 

RA IA I 3 fffc 

RB -4'd12 fff4 

IB RB I 3 00005551 

IC -4'd12 I 3 55555551 

RC -12 I 3 fffc 

ID -12 I 3 fffffffc 

IE IA I 3 fffffffc 

IA I 
RB I 

-12 I 
IA I 

3; 

3; 

3 ; 

3; 

II 
II 
II 
II 

reg is treated as unsigned. 114 
115 

real is treated as signed 116 
(two's complement). 117 

hex default"); 

118 
119 

1110 
I III 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
1120 

%h%d", lA, IA); 

%h 

%h 

%d" ,RA,RA); 

%d" ,RB,RB); 

%h%d",IB,IB); 

%h%d",IC,IC); 

%h %d",RC,RC); 

%h%d" ,ID,ID); 

%h%d",IE,IE); 

default 

-12 

65532 

65524 

21841 

1431655761 

65532 

-4 

-4 

We might expect the results of all these divisions to be - 4 = -12/3. For integer 
assignments, the results are correctly signed (ID and IE). Hex fffc (decimal 65532) 
is the 16-bit two's complement of - 4, so RA and RC are also correct if we keep track 
of the signs ourselves. The integer result IB is incorrect because Verilog treats RB as 
an unsigned number. Verilog also treats -4' d12 as an unsigned number in the cal­
culation of IC. Once Verilog "loses" a sign, it cannot get it back (see also 
Section 11.2.5). 

509



494 CHAPTER 11 VERILOG HDL 

11.4 Hierarchy 

The module is the basic unit of code in the Verilog language [Verilog LRM 12.1], 

module holiday_1(sat, sun, weekend); III 
input sat, sun; output weekend; 

assign weekend = sat I sun; 
endmodule 

112 
113 
114 

We do not have to explicitly declare the scalar wires: saturday, sunday, 

weekend because, since these wires appear in the module interface, they must be 
declared in an input, output, or inout statement and are thus implicitly declared. 
The module interface provides the means to interconnect two Verilog modules 
using ports [Verilog LRM 12.3]. Each port must be explicitly declared as one of 
input, output, or inout. Table 11.3 shows the characteristics of ports. Notice that a 
reg cannot be an input port or an inout port. This is to stop us trying to connect a 
reg to another reg that may hold a different value. 

TABLE 11.3 Verilog ports. 

Verilog port input output inout 

Characteristics wire (or other net) reg or wire (or other net) wire (or other net) 
We can read an output port inside a module 

Within a module we may instantiate other modules, but we cannot declare other 
modules. Ports are linked using named association or positional association, 

'timescale 100s1ls II Units are 100 seconds with precision of 1s. III 
module life; wire [3:0] n; integer days; 112 

wire wake_7am, wake_8am; II Wake at 7 on weekdays else at 8. 113 
assign n = 1 + (days % 7); II n is day of the week (1-7) 114 

always@(wake_8am or wake_7am) 115 
$display("Day=",n," hours=%Od ",($time/36)%24," 8am = ", 116 

wake_8am," 7am = ",wake_7am," m2.weekday =" m2 .weekday); 117 
initial days = 0; 

initial begin #(24*36*10);$finish; end II Run for 10 days. 
always #(24*36) days = days + 1; II Bump day every 24hrs. 

rest m1(n, wake_8am); II Module instantiation. 
II Creates a copy of module rest with instance name m1, 
II ports are linked using positional notation. 

work m2(.weekday(wake_7am), .day(n)); 
II Creates a copy of module work with instance name m2, 

118 
119 

1110 
I III 
1112 
1113 
1114 
1115 

510



11.5 PROCEDURES AND ASSIGNMENTS 495 

II Ports are linked using named association. 1116 
endmodule /117 

module rest(day, weekend); II Module definition. //1 

II Notice the port names are different from the parent. 112 
input [3:0] day; output weekend; reg weekend; 113 
always begin #36 weekend = day> 5; end 1/ Need a delay here. 1/4 

endmodule 1/5 

module work(day, weekday); //1 

input [3:0] day; output weekday; reg weekday; 112 
always begin #36 weekday = day < 6; end II Need a delay here. 113 

endmodule 114 

Day= 1 hours=O 

Day= 1 hours=l 
Day= 6 hours=l 

Day= 1 hours=l 

8am 
8am 

8am 
8am = 

0 

0 

1 

0 

7am = 0 m2.weekday 0 

7am 1 m2.weekday 1 

7am 0 m2.weekday 0 

7am 1 m2.weekday 1 

The port names in a module definition and the port names in the parent module 
may be different. We can associate (link or map) ports using the same order in the 
instantiating statement as we use in the module definition-such as instance ml in 
module life. Alternatively we can associate the ports by naming them-such as 
instance m2 in module life (using a period I. I before the port name that we 
declared in the module definition). Identifiers in a module have local scope. If we 
want to refer to an identifier outside a module, we use a hierarchical name [Verilog 
LRM12.4] such as mI. weekend or m2. weekday (as in module life), for example. 
The compiler will first search downward (or inward) then upward (outward) to 
resolve a hierarchical name [Verilog LRM 12.4-12.5]. 

11.5 Procedures and Assignments 

A Verilog procedure [Verilog LRM 9.9] is an always or initial statement, a 
task, or a function. The statements within a sequential block (statements that 
appear between a begin and an end) that is part of a procedure execute sequentially 
in the order in which they appear, but the procedure executes concurrently with 
other procedures. This is a fundamental difference from computer programming lan­
guages. Think of each procedure as a microprocessor running on its own and at the 
same time as all the other microprocessors (procedures). Before I discuss procedures 
in more detail, I shall discuss the two different types of assignment statements: 

e continuous assignments that appear outside procedures 

• procedural assignments that appear inside procedures 

511



496 CHAPTER 11 VERILOG HDL 

To illustrate the difference between these two types of assignments, consider 
again the example used in Section 11.4: 

module holiday_1(sat, sun, weekend); //1 
input sat, sun; output weekend; //2 
assign weekend = sat I sun; // Assignment outside a procedure. //3 

endmodule //4 

We can change weekend to a reg instead of a wire, but then we must declare 
weekend and use a procedural assignment (inside a procedure-an always state­
ment, for example) instead of a continuous assignment. We also need to add some 
delay (one time tick in the example that follows); otherwise the computer will never 
be able to get out of the always procedure to execute any other procedures: 

module holiday_2(sat, sun, weekend); //1 
input sat, sun; output weekend; reg weekend; //2 
always #1 weekend = sat I sun; // Assignment inside a procedure. //3 

endmodule //4 

We shall cover the continuous assignment statement in the next section, which 
is followed by an explanation of sequential blocks and procedural assignment state­
ments. Here is some skeleton code that illustrates where we may use these assign­
ment statements: 

module assignments 
// ... Continuous assignments go here. 
always // beginning of a procedure 

begin // beginning of sequential block 
// ... Procedural assignments go here. 
end 

endmodule 

//1 

//2 

//3 

//4 

//5 

//6 

//7 

Table 11.4 at the end of Section 11.6 summarizes assignment statements, includ­
ing two more forms of assignment-you may want to look at this table now. 

11.5.1 Continuous Assignment Statement 
A continuous assignment statement [Verilog LRM 6.1] assigns a value to a wire 
in a similar way that a real logic gate drives a real wire, 

module assignment_1(); //1 
wire pwr_good, pwr_on, pWT_stable; reg Ok, Fire; //2 
assign pwr_stable = Ok & (!Fire); //3 
assign pwr_on = 1; 
assign pwr_good = pwr_on & pwr_stable; 
initial begin Ok = 0; Fire = 0; #1 Ok = 1; #5 Fire = 1; end 

//4 

//5 

//6 
initial begin $monitor("TIME=%Od",$time," ON=",pwr_on, "STABLE=", //7 

pwr_stable," OK=" ,Ok," FIRE=" ,Fire," GOOD=" ,pwr_good); / /8 

512



11.5 PROCEDURES AND ASSIGNMENTS 497 

#10 $finish; end 
endmodule 

TIME=O ON=l STABLE=O OK=O FIRE=O GOOD=O 
TIME=l ON=l STABLE=l OK=l FIRE=O GOOD=l 
TIME=6 ON=l STABLE=O OK=l FIRE=l GOOD=O 

The assignment statement in this next example models a three-state bus: 

module assignment_2; reg Enable; wire [31:0] Data; 

1* The following single statement is equivalent to a declaration and 
continuous assignment. *1 
wire [31:0] DataBus = Enable? Data: 32'bz; 

assign Data = 32'b10101101101011101111000010100001; 
initial begin 

$monitor("Enab1e=%b DataBus=%b ", Enable, DataBus); 

Enable = 0; #1; Enable = 1; #1; end 
endmodule 

Enable 0 DataBus =zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz 

Enable 1 DataBus =10101101101011101111000010100001 

11.5.2 Sequential Block 

119 
1/10 

III 

112 
113 
114 
liS 
116 
1/7 
118 

A sequential block [Verilog LRM 9.8] is a group of statements between a begin and 
an end. We may declare new variables within a sequential block, but then we must 
name the block. A sequential block is considered a statement, so that we may nest 
sequential blocks. 

A sequential block may appear in an always statement [Verilog LRM9.9.2], in 
which case the block executes repeatedly. In contrast, an initial statement [Verilog 
LRM9.9.1] executes only once, so a sequential block within an initial statement 
only executes once-at the beginning of a simulation. It does not matter where the 
ini tial statement appears-it still executes first. Here is an example: 

module always_I; reg Y, elk; 

always II Statements in an always statement execute repeatedly: 
begin: my_block II Start of sequential block. 

@(posedge elk) #5 Y 1; II At +ve edge set Y=l, 

@(posedge elk) #5 Y 0; II at the NEXT +ve edge set Y=O. 
end II End of sequential block. 

III 
112 
113 
114 
liS 
116 

always #10 elk = - elk; 

initial Y = 0; 

initial elk = 0; 

II We need a clock. 117 
II These initial statements execute 118 
II only once, but first. 119 

initial $monitor("T=%2g",$time," elk=",elk," Y=",Y); 

initial #70 $finish; 
endmodule 

T= 0 elk=O Y=O 
T=10 elk=l Y=O 
T=15 elk=l Y=l 

1110 
I III 
1112 

513



498 CHAPTER 11 VERILOG HDL 

T=20 elk=O Y=l 
T=30 elk=l Y=l 
T=35 elk=l y=o 
T=40 elk=O y=o 

T=50 elk=l y=o 

T=55 elk=l Y=l 
T=60 elk=O Y=l 

11.5.3 Procedural Assignments 
A procedural assignment [Verilog LRM 9.2] is similar to an assignment statement 
in a computer programming language such as C. In Verilog the value of an expres­
sion on the RHS of an assignment within a procedure (a procedural assignment) 
updates a reg (or memory element) on the LHS. In the absence of any timing 
controls (see Section 11.6), the reg is updated immediately when the statement exe­
cutes. The reg holds its value until changed by another procedural assignment. Here 
is the BNF definition: 

blocking_assignment ::= reg_lvalue = [delay_or_event_controll expression 

(Notice this BNF definition is for a blocking assignment-a type of procedural 
assignment-see Section 11.6.4.) Here is an example of a procedural assignment 
(notice that a wire can only appear on the RHS of a procedural assignment): 

module procedural_assign; reg Y, A; 

always @(A) 
Y = A; II Procedural assignment. 

initial begin A=O; *5; A=l; *5; A=O; *5; $finish; end 
initial $monitor( "T=%2g", $time" "A=" ,A", "Y=", Y); 
endmodule 

T= 0 A=O Y=O 
T= 5 A=l Y=l 
T=10 A=O y=o 

11 .. 6 Timing Controls and Delay 

111 
112 
113 
114 
115 
116 

The statements within a sequential block are executed in order, but, in the absence 
of any delay, they all execute at the same simulation time-the current time step. In 
reality there are delays that are modeled using a timing control. 

11.6.1 Timing Control 
A timing control is either a delay control or an event control [Verilog LRM 9.7]. A 
delay control delays an assignment by a specified amount of time. A timescale 

514



11.6 TIMING CONTROLS AND DELAY 499 

compiler directive is used to specify the units of time followed by the precision 
used to calculate time expressions, 

'timescale lnsllOps II units of time are ns. Round times to 10 ps. 

Time units may only be s, ns, ps, or fs and the multiplier must be 1, 10, or 
100. We can delay an assignment in two different ways: 

• Sample the RHS immediately and then delay the assignment to the LHS. 

• Wait for a specified time and then assign the value of the RHS to the LHS. 

Here is an example of the first alternative (an intra-assignment delay): 

x = #1 y; II intra-assignment delay 

The second alternative is delayed assignment: 

#1 x = y; II delayed assignment 

These two alternatives are not the same. The intra-assignment delay is equiva­
lent to the following code: 

begin 

hold = y; 

#1; 

x = hold; 

end 

II 
II 
II 
II 

Equivalent 

Sample and 

Delay. 

Assignment 

to intra-assignment delay. 

hold y immediately. 

to x. Overall same as x = #1 y. 

In contrast, the delayed assignment is equivalent to a delay followed by an assign­
ment as follows: 

begin 

#1; 
x = y; 

end 

II Equivalent to delayed assignment. 

II Delay. 
II Assign y to x. Overall same as #1 x = y. 

The other type of timing control, an event control, delays an assignment until a 
specified event occurs. Here is the formal definition: 

event_control ::= @ event_identifier I @ (event_expression) 

event_expression ::= expression I event_identifier 

I posedge expression I negedge expression 

I event_expression or event_expression 

(Notice there are two different uses of 'or' in this simplified BNF definition-the 
last one, in bold, is part of the Verilog language, a keyword.) A positive edge 
(denoted by the keyword posedge) is a transition from' 0' to '1' or 'x', or a tran­
sition from' x' to '1'. A negative edge (negedge) is a transition from' l' to '0' or 

515



500 CHAPTER 11 VERILOG HDL 

I X I , or a transition from I x I to I 0 I • Transitions to or from I z I do not count. Here 
are examples of event controls: 

module delay_controls; reg X, Y, elk, DummYi 
always #1 Dummy=!Dummy; II Dummy clock, just for graphics. 

II Examples of delay controls: 
always begin #25 X=I;#10 X=Oi#5i end 

II An event control: 
always @(posedge elk) Y=X; II Wait for +ve clock edge. 

always #10 elk = !elk; II The real clock. 

initial begin elk = 0; 
$display("T elk X Y"); 

$monitor( "%2g", $time" ,elk", ,X" Y); 
$dumpvarsi#100 $finish; end 

endmodule 

T elk X Y 

0 0 x x 

10 1 x x 

20 0 x x 

25 0 1 x 

30 1 1 1 

35 1 0 1 

40 0 0 1 

50 1 0 0 

60 0 0 0 

65 0 1 0 
70 1 1 1 

75 1 0 1 

80 0 0 1 

90 1 0 0 

III 
112 
113 
114 
liS 
116 
1/7 
118 
119 

1110 
I III 
1112 

The dummy clock in delay_controls helps in the graphical waveform display 
of the results (it provides a one-time-tick timing grid when we zoom in, for exam­
pIe). Figure 11.1 shows the graphical output from the Waves viewer in Veri Well 
(white is used to represent the initial unknown values). The assignment statements to 

I X I in the always statement repeat (every 25 + 10 + 5 = 40 time ticks). 

FIGURE 11.1 Output 
from the module 
delay_controls. 

elk <delay_con 

x < de I al::J_con tt-.o I 
···············································1 ___ _ 
v < de I ely_con tt-.o I 
•••••••••••••••••••••••••••••••••••••••••••••••• 1 ____ _ 

516



11.6 TIMING CONTROLS AND DELAY 501 

Events can be declared (as named events), triggered, and detected as follows: 

module show_event; III 
reg clock; 112 

event event 1, event_2; II Declare two named events. 113 

always @(posedge clock) -> event_I; II Trigger event_I. 114 

always @ event_1 /15 
begin $display("Strike I!!"); -> event_2; end II Trigger event 2. /16 
always @ event_2 begin $display("Strike 2!!"); 1/7 
$finish; end 1/ Stop on detection of event 2. //8 
always #10 clock = - clock; II We need a clock. 119 

initial clock = 0; 1/10 

endmodule /111 

Strike I!! 
Strike 2!! 

11.6.2 Data Slip 
Consider this model for a shift register and the simulation output that follows: 

module data_slip_1 (); reg Clk, D, Q1, Q2; 
1************* bad sequential logic below ***************1 

always @(posedge Clk) Q1 = D; 
always @(posedge Clk) Q2 = Q1; II Data slips here! 
1************* bad sequential logic above ***************1 

initial begin Clk = 0; D = 1; end always #50 Clk = -Clk; 
initial begin $display("t Clk D Q1 Q2")i 

$monitor("%3g",$time"Clk""D"Q1",Q2); end 
initial #400 $finish; II Run for 8 cycles. 
initial $dumpvars; 
endmodule 

t Clk D Q1 Q2 

0 0 1 x x 

50 1 1 1 1 
100 0 1 1 1 
150 1 1 1 1 
200 0 1 1 1 
250 1 1 1 1 
300 0 1 1 1 
350 1 1 1 1 

III 
112 

113 

/14 

liS 
//6 

1/7 
/18 
119 

/110 

/ III 

The first clock edge at t = 50 causes Q 1 to be updated to the value of D at the 
clock edge (a '1'), and at the same time Q2 is updated to this new value of Ql. The 
data, D, has passed through both always statements. We call this problem data slip. 

517



502 CHAPTER 11 VERI LOG HDL 

If we include delays in the always statements (labeled 3 and 4) in the preceding 
example, like this-

always @(posedge Clk) Q1 #1 D; // The delays in the assignments //3 

always @(posedge Clk) Q2 #1 Q1; // fix the data slip. //4 

-we obtain the correct output: 

t Clk D Q1 Q2 
0 0 1 x x 

50 1 1 x x 
51 1 1 1 x 

100 0 1 1 x 

150 1 1 1 x 

151 1 1 1 1 

200 0 1 1 1 

250 1 1 1 1 

300 0 1 1 1 

350 1 1 1 1 

11.6.3 Wait Statement 

The wait statement [Verilog LRM9.7.S] suspends a procedure until a condition 
becomes true. There must be another concurrent procedure that alters the condition 
(in this case the variable Done-in general the condition is an expression) in the fol­
lowing wai t statement; otherwise we are placed on "infinite hold": 

wait (Done) $stop; // wait until Done = 1 then stop. 

Notice that the Verilog wait statement does not look for an event or a change in 
the condition; instead it is level-sensitive-it only cares that the condition is true. 

module test_dff_wait; //1 
reg D, Clock, Reset; dff_wait u1(D, Q, Clock, Reset); //2 
initial begin D=l; Clock=0;Reset=l'b1; #15 Reset=l'bO; #20 D=O; end //3 
always #10 Clock = !Clock; //4 
initial begin $display( "T Clk D Q Reset"); / /5 

$monitor( "%2g", $time"Clock" "D"Q"Reset); #50 $finish; end / /6 
endmodule //7 

module dff_wait(D, Q, Clock, Reset); 
output Q; input D, Clock, Reset; reg Q; wire D; 
always @(posedge Clock) if (Reset !== 1) Q D; 
always begin wait (Reset == 1) Q = 0; wait (Reset !== 1); end 
endmodule 

T Clk D Q Reset 
0 0 1 0 1 

10 1 1 0 1 
15 1 1 0 0 
20 0 1 0 0 

//1 

//2 

//3 

//4 

//5 

518



11.6 TIMING CONTROLS AND DELAY 503 

30 1 1 1 0 

35 1 0 1 0 

40 0 0 1 0 

We must include wait statements in module dff wait above to wait for both 
Reset==l and Reset==O. If we were to omit the wait statement for Reset==O, as 
in the following code: 

module dff_wait(D,Q,Clock,Reset); 
output Q; input D,Clock,Reset; reg Q; wire D; 
always @(posedge Clock) if (Reset 1== 1) Q D; 

//1 
//2 

//3 

// We need another wait statement here or we shall spin forever. //4 
always begin wait (Reset == 1) Q = 0; end //5 
endmodule //6 

the simulator would cycle endlessly, and we would need to press the I Stop I button 
or I CTRL-C I to halt the simulator. Here is the console window in VeriWell: 

C1> . 

T Clk D Q Reset 
Interrupt at time 0 
C1> 

<- at this point nothing happens, so press CTRL-C 

11.6.4 Blocking and Nonblocking Assignments 
If a procedural assignment in a sequential block contains a timing control, then the 
execution of the following statement is delayed or blocked. For this reason a proce­
dural assignment statement is also known as a blocking procedural assignment 
statement [Verilog LRM 9.2]. We covered this type of statement in Section 11.5.3. 
The nonblocking procedural assignment statement allows execution in a sequen­
tial block to continue and registers are all updated together at the end of the current 
time step. Both types of procedural assignment may contain timing controls. Here is 
an artificially complicated example that illustrates the different types of assignment: 

module delay; 
reg a,b,c,d,e,f,g,bds,bsd; 
initial begin 
a = 1; b = 0; 

#1 b = 1; 

c = 

#1; 
d = 

#1 1; 

1· , 

// No delay control. 
// Delayed assignment. 
// Intra-assignment delay_ 
// Delay control. 

// 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

e <= #1 1 ; // Intra-assignment delay, nonblocking assignment //9 

#1 f <= 1· , // Delayed nonblocking assignment. //10 

g <= 

end 
1-, // Nonblocking assignment. //11 

initial begin #1 bds = b; end // Delay then sample (ds). 
initial begin bsd = #1 b; end // Sample then delay (sd). 
initial begin $display("t abc d e f g bds bsd"); 

//12 

//13 

//14 

//15 

519



504 CHAPTER 11 VERILOG HDL 

$monitor( U%gU ,$time, ,a, ,b, ,c, ,d, ,e, ,f, ,g, ,bds", ,bsd); end 
endmodule 

t abc d e f g bds bsd 

0 1 0 x x x x x x x 
1 1 1 x x x x x 1 0 
2 1 1 1 x x x x 1 0 

3 1 1 1 1 x x x 1 0 

4 1 1 1 1 1 1 1 1 0 

//16 

//17 

Many synthesis tools will not allow us to use blocking and nonblocking proce­
dural assignments to the same reg within the same sequential block. 

11.6.5 Procedural Continuous Assignment 

A procedural continuous assignment statement [Verilog LRM 9.3] (sometimes 
called a quasicontinuous assignment statement) is a special form of the assign 

statement that we use within a sequential block. For example, the following flip-flop 
model assigns to q depending on the clear, clr , and preset, pre , inputs (in gen-- -
eral it is considered very bad form to use a trailing underscore to signify active-low 
signals as I have done to save space; you might use II nil instead). 

module dff_procedural_assign; //1 

reg d,clr_,pre_,clk; wire q; dff_clr_pre dff_1(q,d,clr_,pre_,clk); //2 
always #10 clk = -clk; //3 

initial begin clk = 0; clr_ = 1; pre_ = 1; d = 1; 

#20; d = 0i #20; pre_ 0; #20; pre_ = Ii #20; clr 
#20; clr_ Ii #20i d = Ii #20i $finishi end 

initial begin 
$display(UT CLK PRE CLR D QU); 

Oi 

$monitor( U%3g U, $time" ,clk", ,pre_", ,clr_", ,d, ,q) i end 
endmodule 

module dff_clr_pre(q,d,clear_,preset_,clock)i 
output qi input d,clear_,preset_,clocki reg qi 

always @(clear_ or preset_) 

if (!clear_) assign q = 0; // active-low clear 
else if(!preset_) assign q 
else deassign qi 

always @(posedge clock) q = d; 
endmodule 

T CLK PRE CLR D Q 
0 0 1 1 1 x 

10 1 1 1 1 1 
20 0 1 1 0 1 

30 1 1 1 0 0 
40 0 0 1 0 1 

50 1 0 1 0 1 

1; // active-low preset 

//4 
//5 

//6 

//7 
//8 

//9 

//10 

//1 

//2 

//3 

//4 

//5 

//6 

//7 

//8 

520



11.6 TIMING CONTROLS AND DELAY 505 

60 0 1 1 0 1 
70 1 1 1 0 0 
80 0 1 0 0 0 
90 1 1 0 0 0 

100 0 1 1 0 0 
110 1 1 1 0 0 
120 0 1 1 1 0 
l30 1 1 1 1 1 

We have now seen all of the different forms of Verilog assignment statements. 
The following skeleton code shows where each type of statement belongs: 

module all_assignments 

II ... continuous assignments. 

always II beginning of procedure 

begin II beginning of sequential block 

II ... blocking procedural assignments. 

II ... nonblocking procedural assignments. 

II ... procedural continuous assignments. 
end 

endmodule 

Table 11.4 summarizes the different types of assignments. 

TABLE 11.4 Verilog assignment statements. 

Type of Verilog 
assignment 

Where it can 
occur 

Example 

Valid LHS of 
assignment 

Valid RHS of 
assignment 

Continuous 
assignment 
statement 

Procedural 
assignment 
statement 

outside an always or inside an always or 
ini tial statement, initial statement, 
task, or function task, or function 

wire [31:0] 
DataBus; 

assign DataBus 
= Enable ? Data 

32 ' bz 

net 

<expression> 
net, reg or memory 
element 

reg Y; 
always 

@(posedge 
clock) Y = 1; 

register or memory 
element 

<expression> 
net, reg or memory 
element 

III 
112 
113 
114 
115 
116 
1/7 
118 
119 

Nonblocking 
procedural assign­

ment statement 

inside an always or 
initial statement, 
task, or function 

reg Y; 
always 
Y <= 1; 

register or memory 
element 

<expression> 
net, reg or memory 
element 

Procedural 
continuous assign­

ment statement 

always or initial 
statement, task, or 
function 

always @(Enable) 
if(Enable) 
assign Q = D; 
else deassign Qi 

net 

<expression> 
net, reg or memory 
element 

----------------------------------------------------------------- -------------------------

Book 

Verilog LRM 

11.5.1 

6.1 

11.5.3 

9.2 

11.6.4 11.6.5 

9.2.2 9.3 

521



506 CHAPTER 11 VERI LOG HDL 

11 .. 7 Tasks and Functions 

A task [Verilog LRM 10.2] is a type of procedure, called from another procedure. A 
task has both inputs and outputs but does not return a value. A task may call other 
tasks and functions. A function [Verilog LRM 10.3] is a procedure used in any 
expression, has at least one input, no outputs, and returns a single value. A function 
may not call a task. In Section 1l.S we covered all of the different Verilog proce­
dures except for tasks and functions. Now that we have covered timing controls, we 
can explain the difference between tasks and functions: Tasks may contain timing 
controls but functions may not. The following two statements help illustrate the dif­
ference between a function and a task: 

Call_A_Task_And_Wait (Input1, Input2, Output)i 
Result_Immediate = Call_A_Function (All_Inputs); 

Functions are useful to model combinational logic (rather like a subroutine): 

module F_subset_decode; reg [2:0JA, B, C, D, E, F; 

initial begin A = 1; B = 0; D = 2; E = 3; 

C = subset_decode (A, B); F = subset_decode(D,E); 

$display("A BCD E F"); $display(A"B"C"D"E"F); end 
function [2:0J subset_decode; input [2:0J a, b; 

begin if (a <= b) subset decode = ai else subset decode 
end function 
endmodule 

ABC D E F 
1 0 0 2 3 2 

11.8 Control Statements 

b; end 

/11 
//2 

//3 

//4 

//5 

//6 

//7 

//8 

In this section we shall discuss the Verilog if, case, loop, disable, fork, and 
join statements that control the flow of code execution. 

11.8.1 Case and If Statement 
An if statement [Verilog LRM 9.4] represents a two-way branch. In the following 
example, switch has to be true to execute I Y = 1 '; otherwise . Y = 0 I is exe­
cuted: 

if(switch) Y = Ii else Y = 0; 

The case statement [Verilog LRM 9.5] represents a multiway branch. A 
controlling expression is matched with case expressions in each of the case items 
(or arms) to determine a match, 

module test_mux; reg a, b, select; wire out; 
mux mux_1(a, b, out, select); 

III 
112 

522



11.8 CONTROL STATEMENTS 507 

initial begin #2; select = 0; a = 0; b = 1; 
#2; select = l'bx; #2; select = l'bz; #2; select = 1; end 

//3 

//4 

initial $monitor("T=%2g",$time," Select=",select," Out=",out); //5 
initial #10 $finish; //6 

endmodule //7 

module mux(a, b, mux_output, mux_select); input a, b, mux_select; //1 
output mux_output; reg mux_output; //2 
always begin //3 

case(mux_select) //4 

0: mux_output = a; //5 

1: mux_output = b; 
default mux_output 

endcase 

//6 

l'bx; // If select = x or z set output to x. //7 

//8 

#1; // Need some delay, otherwise we'll spin forever. 
end 
endmodule 

T= 0 

T= 2 

T= 3 

T= 4 

T= 5 

T= 6 

T= 8 

T= 9 

Select=x 
Select=O 
Select=O 
Select=x 
Select=x 
Select=z 
Select=l 
Select=l 

Out=x 
Out=x 
Out=O 
Out=O 
Out=x 
Out=x 
Out=x 
Out=l 

//9 

//10 

/ /11 

Notice that the case statement must be inside a sequential block (inside an 
always statement). Because the case statement is inside an always statement, it 
needs some delay; otherwise the simulation runs forever without advancing simula­
tion time. The casex statement handles both' z' and I x I as don't care (so that they 
match any bit value), the casez statement handles 'z I bits, and only I z I bits, as 
don't care. Bits in case expressions may be set to '? I representing don't care values, 
as follows: 

casex (instruction_register[31:29]) 
3b' ?? 1 

3b'?1? 
3b'l?? 

endcase 

11.8.2 

add; 
subtract; 
branch; 

Loop Statement 
A loop statement [Verilog LRM 9.6] is a for, while, repeat, or forever statement. 
Here are four examples, one for each different type of loop statement, each of which 
performs the same function. The comments with each type of loop statement illus­
trate how the controls work: 

module loop_I; 
integer i; reg [31:0] DataBus; initial DataBus O' , 

//1 
//2 

523



508 CHAPTER 11 VERILOG HDL 

initial begin 1/3 
1************** Insert loop code after here. **********~*******I 

1* for (Execute this assignment once before starting loop; exit loop if 
this expression is false; execute this assignment at end of loop before 

the check for end of loop.) *1 
for(i = 0; i <= 15; i = i+1) DataBus[i] = 1; 114 
1*************** Insert loop code before here. ****************1 
end 

initial begin 
$display("DataBus = %b",DataBus); 
#2; $display("DataBus = %b",DataBus); $finish; 

end 

115 
116 
1/7 
118 
119 

endmodule 1110 

Here is the while statement code (to replace line 4 in module loop_I): 

i = 0; 
1* while(Execute next statement while this expression is true.) *1 
while(i <= 15) begin DataBus[i] = 1; i = i+1; end 114 

Here is the repeat statement code (to replace line 4 in module loop_I): 

i = 0; 

1* repeat(Execute next statement the number of times corresponding to 
the evaluation of this expression at the beginning of the loop.) *1 
repeat(16) begin DataBus[i] = 1; i = i+1; end 114 

Here is the forever statement code (to replace line 4 in module loop_I): 

i = 0; 

1* A forever statement loops continuously. *1 
forever begin : my_loop 

DataBus[i] = 1; 

if (i == 15) #1 disable my_loop; II Need to let time advance to exit. 
i = i+1; 

end 

The output for all four forms of looping statement is the same: 

DataBus 
DataBus 

11.8.3 

00000000000000000000000000000000 
00000000000000001111111111111111 

Disable 

114 

The disable statement [Verilog LRM 11] stops the execution of a labeled sequential 
block and skips to the end of the block: 

forever 

begin: microprocessor_block II Labeled sequential block. 
@(posedge clock) 

if (reset) disable microprocessor_block; II Skip to end of block. 

524



11.9 LOGIC-GATE MODELING 509 

else Execute_code; 
end 

Use the disable statement with caution in ASIC design. It is difficult to imple­
ment directly in hardware. 

11.8.4 Fork and Join 
The fork statement and join statement [Verilog LRM 9.8.2] allows the execution of 
two or more parallel threads in a parallel block: 

module fork 1 

event eat_breakfast, read_paper; 
initial begin 

fork 

@eat_breakfasti @read_paperi 
join 

end 

endmodule 

This is another Verilog language feature that should be used with 
design, because it is difficult to implement in hardware. 

11.9 Logic-Gate Modeling 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

care in ASIC 

Verilog has a set of built-in logic models and you may also define your own models. 

11.9.1 BUilt-in Logic Models 
Verilog's built-in logic models are the following primitives [Verilog LRM7]: 

and, nand, nor, or, xor, xnor 

You may use these primitives as you use modules. For example: 

module primitivei 

nand (strongO, strong1) #2.2 

Nand_1(n001, n004, nOOS), 

Nand_2(n003, n001, nOOS, n002)i 

nand (n006, nOOS, n002)i 

endmodule 

//1 

//2 

//3 

//4 

//5 

//6 

This module models three NAND gates (Figure 11.2). The first gate (line 3) is a 
two-input gate named Nand_I; the second gate (line 4) is a three-input gate named 
Nand _ 2; the third gate (line 5) is unnamed. The first two gates have strong drive 
strengths [Verilog LRM3.4] (these are the defaults anyway) and 2.2 ns delay; the 
third gate takes the default values for drive strength (strong) and delay (zero). The 
first port of a primitive gate is always the output port. The remaining ports for a 
primitive gate (any number of them) are the input ports. 

525



510 CHAPTER 11 VERILOG HDL 

n004 n001 

n005 

FIGURE 11.2 An example schematic (drawn with Capilano's DesignWorks) to illustrate 
the use of Verilog primitive gates. 

Table 11.5 shows the definition of the and gate pnrmtlVe (I use lowercase 
, and' as the name of the Verilog primitive, rather than 'AND', since Verilog is case­
sensitive). Notice that if one input to the primitive' and' gate is zero, the output is 
zero, no matter what the other input is. 

TABLE 11.5 Definition of the Verilog primitive 'and' gate. 

'and' 

0 

1 

x 

z 

0 1 x z 

0 0 0 0 

0 1 x x 

0 x x x 

0 x x x 

11.9.2 User-Defined Primitives 
We can define primitive gates (a user-defined primitive or UDP) using a truth-table 
specification [Verilog LRM8]. The first port of a UDP must be an output port, and 
this must be the only output port (we may not use vector or inout ports): 

primitive Adder(Sum, InA, InB) ; /11 
output Sum; input Ina, InB; //2 
table //3 
// inputs output //4 
00 0; //5 
01 1-, //6 
10 1-, //7 

526



11 : 0; 

endtable 
endprimitive 

11.9 LOGIC-GATE MODELING 511 

//8 

//9 

//10 

We may only specify the values '0', '1', and 'x' as inputs in a UDP truth 
table. Any 'z' input is treated as an 'x'. If there is no entry in a UDP truth table 
that exactly matches a set of inputs, the output is 'x' (unknown). 

We can construct a UDP model for sequential logic by including a state in the 
UDP truth-table definition. The state goes between an input and an output in the 
table and the output then represents the next state. The following sequential UDP 
model also illustrates the use of shorthand notation in a UDP truth table: 

primitive DLatch(Q, Clock, Data); //1 
output Q; reg Q; input Clock, Data; //2 
table //3 
//inputs : present state: output (next state) //4 
1 0 ? 0; // ? represents 0,1, or x (input or present state). //5 
1 1 b 1; // b represents 0 or 1 (input or present state). //6 
1 1 x 1; // Could have combined this with previous line. //7 
O?? // - represents no change in an output. //8 
endtable //9 
endprimitive //10 

Be careful not to confuse the '?' in a UDP table (shorthand for '0', '1', or 
, x ') with the '?' in a constant that represents an extension to 'z' (Section 11.2.4) 
or the'?' in a case statement that represents don't care values (Section 11.8.1). 

For sequential UDP models that need to detect edge transitions on inputs, there 
is another special truth-table notation (ab) that represents a change in logic value 
from a to b. For example, (01) represents a rising edge. There are also shorthand 
notations for various edges: 

• * IS ( ?? ) 

• r IS (01) 

0 f IS ( 10) 

0 P IS (01) , (Ox) , or (xl) 

• n IS ( 10) I ( 1x) , or (xO) 

primitive DFlipFlop(Q, Clock, Data) i //1 

output Q; reg Q; input Clock, Data; //2 

table //3 

//inputs present state : output (next state) //4 

r 0 ? 0 // rising edge, next state output 0 //5 

r 1 ? 1 // rising edge, next state output 1 //6 

(Ox) 0 0 0 // rising edge, next state output 0 /17 

(Ox) 1 1 1 // rising edge, next state output 1 //8 

(?O) ? ? // falling edge, no change in output //9 

? (?? ) ? // no clock edge, no change in output //10 

527



512 CHAPTER 11 VERILOG HDL 

endtable 

endprimitive 

11.1 0 Modeling Delay 

I III 
1112 

Verilog has a set of built-in methods to define delays. This is very important in ASIC 
physical design. Before we start layout, we can use ASIC cell library models written 
in Verilog that include logic delays as a function of fanout and estimated wiring 
loads. After we have completed layout, we can extract the wiring capacitance, allow­
ing us to calculate the exact delay values. Using the techniques described in this sec­
tion, we can then back-annotate our Verilog netlist with postlayout delays and 
complete a postlayout simulation. 

We can complete this back-annotation process in a standard fashion since delay 
specification is part of the Verilog language. This makes working with an ASIC cell 
library and the ASIC foundry that will fabricate our ASIC much easier. Typically an 
ASIC library company might sell us a cell library complete with Verilog models that 
include all the minimum, typical, and maximum delays as well as the different val­
ues for rising and falling transitions. The ASIC foundry will provide us with a delay 
calculator that calculates the net delays (this is usually proprietary technology) from 
the layout. These delays are held in a separate file (the Standard Delay Format, 
SDF, is widely used) and then mapped to parameters in the Verilog models. If we 
complete back-annotation and a postlayout simulation using an approved cell 
library, the ASIC foundry will "sign off' on our design. This is basically a guarantee 
that our chip will work according to the simulation. This ability to design sign-off 
quality ASIC cell libraries is very important in the ASIC design process. 

11.10.1 Net and Gate Delay 

We saw how to specify a delay control for any statement in Section 11.6. In fact, 
Verilog allows us to specify minimum, typical, and maximum values for the delay as 
follows [Verilog LRM7.1S]: 

#(1.1:1.3:1.7) assign delay_a = a; II min:typ:max 

We can also specify the delay properties of a wire in a similar fashion: 

wire #(1.1:1.3:1.7) a_delay; II min:typ:max 

We can specify delay in a wire declaration together with a continuous assign­
ment as in the following example: 

wire #(1.1:1.3:1.7) a_delay = a; II min:typ:max 

but in this case the delay is associated with the driver and not with the wire. 

528



11.10 MODELING DELAY 513 

In Section 11.9.1 we explained that we can specify a delay for a logic primitive. 
We can also specify minimum, typical, and maximum delays as well as separate 
delays for rising and falling transitions for primitives as follows [Verilog LRM4.3]: 

nand #3.0 nd01(c, a, b); 

nand #(2.6:3.0:3.4) nd02(d, a, b); // min:typ:max 
nand #(2.8:3.2:3.4, 2.6:2.8:2.9) nd03(e, a, b); 

// #(rising, falling) delay 

The first NAND gate, nd01, has a delay of 3 ns (assuming we specified nanoseconds 
as the timescale) for both rising and falling delays. The NAND gate nd02 has a trip­
let for the delay; this conesponds to a minimum (2.6 ns), typical (3.0 ns), and a 
maximum delay (3.4 ns). The NAND gate nd03 has two triplets for the delay: The 
first triplet specifies the min/typ/max rising delay (, 0' or 'x' or 'z' to '1'), and 
the second triplet specifies the min/typ/max falling delay (, l' or 'x' or 'z' to 
'0' ). 

Some primitives can produce a high-impedance output, 'z'. In this case we can 
specify a triplet of delay values corresponding to rising transition, falling transition, 
and the delay to transition to 'z' (from '0' or '1' to 'z '-this is usually the delay 
for a three-state driver to turn off or float). We can do the same thing for net types, 

wire #(0.5,0.6,0.7) a_z = a; // rise/fall/float delays 

11.10.2 Pin-to-Pin Delay 
The specify block [Verilog LRM 13] is a special construct in Verilog that allows the 
definition of pin-to-pin delays across a module. The use of a specify block can 
include the use of built-in system functions to check setup and hold times, for exam­
ple. The following example illustrates how to specify pin-to-pin timing for a D flip­
flop. We declare the timing parameters first followed by the paths. This example 
uses the UDP from Section 11.9.2, which does not include preset and clear (so only 
part of the flip-flop function is modeled), but includes the timing for preset and clear 
for illustration purposes. 

module DFF_Spec; reg D, clk; 
DFF_Part DFF1 (Q, clk, D, pre, clr); 

initial begin D = 0; clk = 0; #1; clk = 1; end 
initial $monitor( "T=%2g", $time," clk=", clk," Q=", Q); 

endmodule 

module DFF_Part(Q, clk, D, pre, clr); 
input clk, D, pre, clr; output Q; 

DFlipFlop(Q, clk, D); // No preset or clear in this UDP. 

specify 
specparam 
tPLH clk Q = 3, tPHL_clk_Q = 2.9, 
tPLH_set_Q = 1.2, tPHL_set_Q = 1.1; 

(clk => Q) = (tPLH_clk_Q, tPHL_clk_Q); 
(pre, clr *> Q) = (tPLH_set_Q, tPHL set_Q); 

//1 

//2 

//3 

//4 

//5 

//1 

//2 

//3 

//4 

//5 

//6 

//7 

//8 

//9 

529



514 CHAPTER 11 VERILOG HDL 

endspecify //10 
endmodule / /11 

T= 0 clk=O Q=x 
T= 1 clk=l Q=x 
T= 4 clk=l Q=O 

There are the following two ways to specify paths (module DFF _part above 
uses both) [Verilog LRM13.3]: 

• x => y specifies a parallel connection (or parallel path) between x and y (x 
and y must have the same number of bits). 

• x *> y specifies a full connection (or full path) between x and y (every bit in 
x is connected to y). In this case x and y may be different sizes. 

The delay of some logic cells depends on the state of the inputs. This can be 
modeled using a state-dependent path delay. Here is an example: 

'timescale 1 ns / 100 fs //1 

module M_Spec; reg AI, A2, B; M M1 (Z, AI, A2, B); //2 

initial begin A1=0;A2=1;B=1;*5;B=0;*5;A1=1;A2=0;B=1;*5;B=0; end //3 
initial //4 

$monitor("T=%4g",$realtime," A1=",A1," A2=",A2," B=",B," Z=",Z); //5 

endmodule //6 

'timescale 

module M(Z, 

or (Z 1, AI, 
/*A1 A2 B Z 

0 0 0 1 
0 0 1 1 

0 1 0 1 

0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

100 ps / 10 fs 
AI, A2, B) ; input AI, A2, B· , output z· , 
A2) ; nand ( Z, Zl, B) ; // OAI21 

Delay=10*100 ps unless indicated in the 

B:O->l Z:l->O delay=t2 
B: 1->0 Z:O->l delay=t1 
B:O->l Z:l->O delay=t4 
B: 1->0 Z:O->l delay=t3 

*/ 

table below. 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 
//10 

/ /11 

//12 
specify specparam t1 = 11, t2 = 12; specparam t3 = 13, t4 = 14; //13 

(AI => Z) = 10; (A2 => Z) = 10; //14 

if (-AI) (B => Z) = (tl, t2); if (AI) (B => Z) = (t3, t4)i //15 
endspecify //16 
endmodule //17 

T= 0 A1=0 A2=1 B=l Z=x 
T= 1 A1=0 A2=1 B=l Z=O 
T= 5 A1=0 A2=1 B=O z=o 
T= 6.1 A1=0 A2=1 B=O Z=l 
T= 10 A1=1 A2=0 B=l Z=l 
T= 11 A1=1 A2=0 B=l Z=O 
T= 15 A1=1 A2=0 B=O Z=O 
T=16.3 A1=1 A2=0 B=O Z=l 

530



11.11 ALTERING PARAMETERS 515 

11 .11 Altering Parameters 

Here is an example of a module that uses a parameter [Verilog LRM3.10, 12.2]: 

module Vector_And(Z, A, B); 
parameter CARDINALITY = 1; 
input [CARDINALITY-1:0] A, B; 
output [CARDINALITY-1:0] Z; 
wire [CARDINALITY-1:0] Z = A & B; 

endmodule 

We can override this parameter when we instantiate the module as follows: 

//1 

//2 

//3 

//4 

//5 

//6 

module Four_And_Gates(OutBus, InBusA, InBusB); //1 
input [3:0] InBusA, InBusB; output [3:0] OutBus; //2 
Vector And #(4) My_AND (OutBus, InBusA, InBusB); // 4 AND gates //3 

endmodule //4 

The parameters of a module have local scope, but we may override them using a 
defparam statement and a hierarchical name, as in the following example: 

module And_Gates(OutBus, InBusA, InBusB); //1 
parameter WIDTH = 1; / /2 
input [WIDTH-1:0] InBusA, InBusB; output [WIDTH-1:0] OutBus; //3 
Vector And #(WIDTH) My_And (OutBus, InBusA, InBusB); //4 

endmodule / / 5 

module Super_Size; de£param And_Gates.WIDTH = 4; endmodule //1 

11 .12 A Viterbi Decoder 

This section describes an ASIC design for a Viterbi decoder using Verilog. Christeen 
Gray completed the original design as her MS thesis at the University of Hawaii 
(UH) working with VLSI Technology, using the Compass ASIC Synthesizer and a 
VLSI Technology cell library. The design was mapped from VLSI Technology 
design rules to Hewlett-Packard design rules; prototypes were fabricated by 
Hewlett-Packard (through Mosis) and tested at UR. 

11.12.1 Viterbi Encoder 
Viterbi encoding is widely used for satellite and other noisy communications 
channels. There are two important components of a channel using Viterbi encoding: 
the Viterbi encoder (at the transmitter) and the Viterbi decoder (at the receiver). A 

531



516 CHAPTER 11 VERILOG HDL 

Viterbi encoder includes extra information in the transmitted signal to reduce the 
probability of errors in the received signal that may be corrupted by noise. 

I shall describe an encoder in which every two bits of a data stream are encoded 
into three bits for transmission. The ratio of input to output information in an 
encoder is the rate of the encoder; this is a rate 2/3 encoder. The following equa­
tions relate the three encoder output bits .(y~, y!, and y~) to the two encoder input 
bits (X2 and X l ) at a time nT: 

11 n 

y2 X2 
11 n 

yl 
n 

Xl EB Xl (11.1) 
11 /1-2 

yO Xl 
n n-l 

We can write the input bits as a single number. Thus, for example, if X; = 1 
and X ~ = 0, we can write X n = 2. Equation 11.1 defines a state machine with two 
memory elements for the two last input values for X ~ : X ~ _ 1 and X ~ _ 2 . These two 
state variables define four states: {Xl~_1,X~_2}' with So={O,O}, Sl={1,O}, 
S2 = {O, I}, and S3 = { 1, I}. The 3-bit output Y n is a function of the state and current 
2-bit input Xn . 

The following Verilog code describes the rate 2/3 encoder. This model uses two 
D flip-flops as the state register. When reset (using active-high input signal res) the 
encoder starts in state So. In Verilog I represent y~ by Y2N, for example. 

/******************************************************/ 
/* module viterbi encode */ 

/******************************************************/ 
/* This is the encoder. X2N (msb) and XIN form the 2-bit input 
message, XN. Example: if X2N=1, XIN=O, then XN=2. Y2N (msb), YIN, and 

YON form the 3-bit encoded signal, YN (for a total constellation of 8 

PSK signals that will be transmitted). The encoder uses a state 
machine with four states to generate the 3-bit output, YN, from the 

2-bit input, XN. Example: the repeated input sequence XN = (X2N, XIN) 
= 0, 1, 2, 3 produces the repeated output sequence YN = (Y2N, YIN, 
YON) = 1, 0, 5, 4. */ 
module viterbi_encode(X2N,XlN,Y2N,YlN,YON,clk,res)i 

input X2N,XIN,clk,res; output Y2N,YIN,YON; 
wire XIN_l,XlN_2,Y2N,YlN,YON; 
dff dff_l(XlN,XlN_l,clk,res); dff dff_2(XIN_l,XlN_2,clk,res); 
assign Y2N=X2N; assign YIN=XIN A XIN_2; assign YON=XIN_l; 
endmodule 

532



11.12 A VITERBI DECODER 517 

Figure 11.3 shows the state diagram for this encoder. The first four rows of 
Table 11.6 show the four different transitions that can be made from state So. For 
example, if we reset the encoder and the input is X/

1 
= 3 (X2 = 1 and X l = 1), 

2 IOn n 
then the output will be Y = 6 (Y = 1, Y = 1, Y = 0) and the next state n n n n 
will be Sl' 

0/0 

2/4 

So 

1/1 X~_1 = 0 01 
X~_2 = 0 0 

1/2 

83 
10 0 

81 

X~_1 = 1 X~_1 = 1 

X~_2 = 1 X~-2 = 0 
0/2 

0/3 S2 
2/5 

X~_1 = 0 1/0 
X~_2 = 1 00 

3/4 

FIGURE 11.3 A state diagram for a rate 2/3 Viterbi encoder. The inputs and outputs are 

shown in binary as X~X~I Y~ Y ~ Y~ , and in decimal as X nl Y n . 

As an example, the repeated encoder input sequence Xn = 0, 1,2,3, ... pro­
duces the encoder output sequence Y 11 = 1, 0, 5, 4, ... repeated. Table 11.7 shows 
the state transitions for this sequence, including the initialization steps. 

Next we transmit the eight possible encoder outputs (Y = 0-7) as signals 
11 

over our noisy communications channel (perhaps a microwave signal to a satellite) 
using the signal constellation shown in Figure 11.4. Typically this is done using 
phase-shift keying (PSK) with each signal position corresponding to a different 
phase shift in the transmitted carrier signal. 

533



518 CHAPTER 11 VERILOG HDL 

TABLE 11.6 State table for the rate 2/3 Viterbi encoder. 

Outputs 

Inputs State variables Next state 

Present X2 Xi 1 1 X2 Xi 1 1 1 1 
X n_ i X n _ 2 = = EB X n _ 2 = X n _ 1 {X n _ 1' X n _ 2} 

state n n n n 

So 0 0 0 0 0 0 0 00 So 
So 0 1 0 0 0 1 0 10 S1 
So 1 0 0 0 1 0 0 00 So 
So 1 1 0 0 1 1 0 10 S1 

-----

S1 0 0 1 0 0 0 1 01 S2 
S1 0 1 1 0 0 1 1 11 S3 
S1 1 0 1 0 1 0 1 01 S2 
S1 1 1 1 0 1 1 1 11 S3 

.. _ ...... _._ ... __ .. __ .... __ ..... __ ...... _.- -- .... --_.-._ .. __ ._--._ .. _ ... _-_._ .. _-_. __ ._ ... _ ... _. __ . .. _-----_. __ ._ .. _-----_ .. _._._ ..•.. _-.-.... - .. _ .. __ ....• -... __ .. _._. __ ._-_._._._-_._.-..... _._-.-.. _ ...• ._ .... _ .. _-_._ .. _-_._. ... _-_. __ .. _ .... _._ .. __ ._ .... 0-.- -_._._._---_ ............ - ...... -.-. .._ ..... _ .... _ .... __ .•.... __ .. _ .. __ . __ .-. 
S2 0 0 0 1 0 1 0 00 So 
S2 0 1 0 1 0 0 0 10 S1 
S2 1 0 0 1 1 1 0 00 So 
S2 1 1 0 1 1 0 0 10 S1 

... _ .. _._ .. _. __ .......... _ ... _ .. _ .... __ .-_ .. _ ....... _-------_._._--_ ... _-_ ......... __ ........ _-, ....... -._.-.-.-... _-_ ...... _.-----"._-_ ... __ ... _-... _ .. __ ... _---- ...... -.----._ ................. _.-.. _ .... __ .... _._.- ... _ ..... -.~.-.. ~--~---~-,-.--.... -.- .. _ ............. _,.,.,_.-._ ...... _-.... _ ... -. ... , ... , .. ,._ ....... _ ...... ,,_._._-_ .. 
S3 0 0 1 1 0 1 1 01 S2 
S3 0 1 1 1 0 0 1 11 S3 
S3 1 0 1 1 1 1 1 01 S2 
S3 1 1 1 1 1 0 1 11 S3 

.......4--=--....,. (1, 1) 

FIGURE 11.4 The signal constellation for an 8PSK (phase-
shift keyed) code. 4+-__ --t=_----"~ .. 

a. 2 sin (nI8) 
b. 2 sin (2nI8) 

6 
c. 2 sin (3nI8) 

534



11.12 A VITERBI DECODER 519 

TABLE 11.7 A sequence of transmitted signals for the rate 2/3 Viterbi encoder 

Inputs State variables Outputs 

Time X2 X1 1 1 y2 yl yO 
X n-1 X n _ 2 ns n n n n n 

0 1 1 x x 1 x X 

10 1 1 0 0 1 1 0 

50 0 0 1 0 0 0 1 

150 0 1 0 1 0 0 0 

250 1 0 1 0 1 0 1 

350 1 1 0 1 1 0 0 

450 0 0 1 0 0 0 1 

550 0 1 0 1 0 0 0 

650 1 0 1 0 1 0 1 

750 1 1 0 1 1 0 0 

850 0 0 1 0 0 0 1 

950 0 1 0 1 0 0 0 

11.12.2 The Received Signal 
The noisy signal enters the receiver. It is now our task to discover which of the eight 
possible signals were transmitted at each time step. First we calculate the distance of 
each received signal from each of the known eight positions in the signal constella­
tion. Table 11.8 shows the distances between signals in the 8PSK constellation. We 
are going to assume that there is no noise in the channel to illustrate the operation of 
the Viterbi decoder, so that the distances in Table 11.8 represent the possible dis­
tance measures of our received signal from the 8PSK signals. 

The distances, X, in the first column of Table 11.8 are the geometric or algebraic 
distances. We measure the Euclidean distance, E = X2 shown as B (the binary quan­
tized value of E) in Table 11.8. The rounding errors that result from conversion to 
fixed-width binary are quantization errors and are important in any practical 
implementation of the Viterbi decoder. The effect of the quantization error is to add 
a form of noise to the received signal. 

The following code models the receiver section that digitizes the noisy analog 
received signal and computes the binary distance measures. Eight binary-distance 
measures, inO-in 7, are generated each time a signal is received. Since each of the 
distance measures is 3 bits wide, there are a total of 24 bits (8 x 3) that form the 
digital inputs to the Viterbi decoder. 

Present 
state Next state 

$? $? 

$0 $1 

$1 $2 

$2 $1 

$1 $2 

$2 $1 

$1 $2 

$2 $1 

$1 $2 

$2 $1 

$1 $2 

$2 $1 

535



520 CHAPTER 11 VERILOG HDL 

TABLE 11.8 Distance measures for Viterbi encoding (8PSK). 

Signal 

0 

1 

2 

3 

4 

5 

6 

7 

Algebraic Euclidean B=binary Quantization 
distance from X=Distance distance quantized D=decimal error 

signal 0 from signal 0 E=X2 value of E value of B Q=D-1.75E 

2sin (On/8) 0.00 0.00 000 0 0 

2sin (1 n/8) 0.77 0.59 001 1 -0.0325 

2sin (2n/8) 1.41 2.00 100 4 0.5 

2 sin (3n/8) 1.85 3.41 110 6 0.0325 

2sin (4n/8) 2.00 4.00 111 7 0 

2sin (5n/8) 1.85 3.41 110 6 0.0325 

2sin (6n/8) 1.41 2.00 100 4 0.5 

2sin (7n/8) 0.77 0.59 001 1 -0.0325 

/******************************************************/ 
/* module viterbi distances */ 

/******************************************************/ 
/* This module simulates the front end of a receiver. Normally the 

received analog signal (with noise) is converted into a series of 

distance measures from the known eight possible transmitted PSK 

signals: sO, ... ,s7. We are not simulating the analog part or noise in 

this version, so we just take the digitally encoded 3-bit signal, Y, 

from the encoder and convert it directly to the distance measures. 

d[N] is the distance from signal = N to signal = 0 

d[N] = (2*sin(N*PI/8»**2 in 3-bit binary (on the scale 2=100) 

Example: d[3] = 1.85**2 = 3.41 = 110 

inN is the distance from signal = N to encoder signal. 

Example: in3 is the distance from signal = 3 to encoder signal. 

d[N] is the distance from signal = N to encoder signal = O. 

If encoder signal = J, shift the distances by 8-J positions. 

Example: if signal = 2, inO is d[6], in1 is 0[7], in2 is 0[0], etc. */ 
module viterbi distances 

(Y2N,Y1N,YON,clk,res,inO,in1,in2,in3,in4,in5,in6,in7); 

input clk,res,Y2N,Y1N,YON; output inO,in1,in2,in3,in4,in5,in6,in7; 

reg [2:0] J,inO,in1,in2,in3,in4,in5,in6,in7; reg [2:0] d [7:0]; 

initial begin d[0]='bOOO;d[1]='b001;d[2]='b100;d[3]='b110; 

d[4]='b111;d[5]='b110;d[6]='b100;d[7]='b001; end 
always @(Y2N or YIN or YON) begin 

J[0]=YON;J[1]=Y1N;J[2]=Y2N; 

J=8-J;inO=d[J];J=J+1;in1=d[J];J=J+1;in2=d[J];J=J+1;in3=d[J]; 

J=J+1;in4=d[J];J=J+1;in5=d[J];J=J+1;in6=d[J];J=J+1;in7=d[J]; 
end endmodule 

536



11.12 A VITERBI DECODER 521 

As an example, Table 11.9 shows the distance measures for the transmitted 
encoder output sequence Y n = 1,0,5,4, ... (repeated) corresponding to an encoder 
input of Xn = 0, 1,2,3, ... (repeated). 

TABLE 11.9 Receiver distance measures for an example transmission sequence. 

Time Input Output Present Next 
ns Xn Yn state state inO in1 in2 in3 in4 

0 3 x S? S? X X X X X 

10 3 6 So S1 4 6 7 6 4 

50 0 1 S1 S2 1 0 1 4 6 

150 1 0 S2 S1 0 1 4 6 7 

250 2 5 S1 S2 6 7 6 4 1 

350 3 4 S2 S1 7 6 4 1 0 

450 0 1 S1 S2 1 0 1 4 6 

550 1 0 S2 S1 0 4 6 7 

650 2 5 S1 S2 6 7 6 4 1 

750 3 4 S2 S1 7 6 4 1 0 

850 0 1 S1 S2 1 0 4 6 

950 0 S2 S1 0 1 4 6 7 

11.12.3 Testing the System 
Here is a testbench for the entire system: encoder, receiver front end, and decoder: 

j*****************************************************/ 

/* module viterbi test CDD */ 

j*****************************************************/ 

/* This is the top-level module, viterbi_test_CDD, that models the 
communications link. It contains three modules: viterbi_encode, 
viterbi_distances, and viterbi. There is no analog and no noise in 

this version. The 2-bit message, X, is encoded to a 3-bit signal, Y. 

In this module the message X is generated using a simple counter. 
The digital 3-bit signal Y is transmitted, received with noise as an 

analog signal (not modeled here), and converted to a set of eight 
3-bit distance measures, inO, ... , in7. The distance measures form 

the input to the Viterbi decoder that reconstructs the transmitted 
signal Y, with an error signal if the measures are inconsistent. 
CDD = counter input, digital transmission, digital reception */ 

module viterbi_test_CDD; 

in5 in6 in7 

X X x 

1 0 1 

7 6 4 

6 4 1 

0 1 4 

1 4 6 

7 6 4 

6 4 1 

0 1 4 

4 6 

7 6 4 

6 4 1 

537



522 CHAPTER 11 VERILOG HDL 

wire Error; II decoder out 

wire [2: 0] Y, Out; II encoder out, decoder out 

reg [ 1: 0] X· , II encoder inputs 

reg Clk, Res; II clock and reset 

wire [2:0] inO,in1,in2,in3,in4,in5,in6,in7; 

always #500 $display("t Clk X Y Out Error"); 
initial $rnonitor (" %4g" , $tirne, , Clk, , , , X, , Y, , Out, , , ,Error) ; 

initial $durnpvars; initial #3000 $finish; 
always #50 Clk = -Clk; initial begin Clk = 0; 
X = 3; II No special reason to start at 3. 

#60 Res = 1;#10 Res = O;end II Hit reset after inputs are stable. 

always @(posedge Clk) #1 X = X + 1; II Drive the input with a counter. 

viterbi encode v 1 
(X[1],X[0],Y[2],Y[1],Y[0],Clk,Res); 

viterbi distances v 2 
(Y[2],Y[1],Y[0],Clk,Res,inO,in1,in2,in3,in4,in5,in6,in7); 

viterbi v 3 
(inO,in1,in2,in3,in4,in5,in6,in7,Out,Clk,Res,Error); 

endrnodule 

The Viterbi decoder takes the distance measures and calculates the most likely 
transmitted signal. It does this by keeping a running history of the previously 
received signals in a path memory. The path-memory length of this decoder is 12. 
By keeping a history of possible sequences and using the knowledge that the signals 
were generated by a state machine, it is possible to select the most likely sequences. 

TABLE 11.10 Output from the Viterbi testbench 

t Clk X Y Out Error t Clk X Y Out Error 

0 0 3 x x 0 1351 1 1 0 0 0 

50 1 3 x x 0 1400 0 1 0 0 0 
51 1 0 x x 0 1450 1 1 0 0 0 

60 1 0 0 0 0 1451 1 2 5 2 0 
100 0 0 0 0 0 1500 0 2 5 2 0 
150 1 0 0 0 0 1550 1 2 5 2 0 
151 1 1 2 0 0 1551 1 3 4 5 0 

Table 11.10 shows part of the simulation results from the testbench, 
vi terbi test CDD, in tabular form. Figure 11.5 shows the Verilog simulator out-- - ~ 

put from the testbench (displayed using Veri Well from Wellspring). 
The system input or message, X [ 1 : 0 ], is driven by a counter that repeats the 

sequence 0, 1, 2, 3, ... incrementing by I at each positive clock edge (with a delay of 
one time unit), starting with x equal to 3 at t = O. The active-high reset signal, Res, 

is asserted at t = 60 for 10 time units. The encoder output, Y [ 2 : 0 ], changes at t = 
151, which is one time unit (the positive-edge-triggered D flip-flop model contains a 

538



11.12 AVITERBI DECODER 523 

elk <viterbi_tes 

OI..-It[2:0] <vi tet-·b 

Res <viterbi_tes 
................................................ ~~ 
x [ 1 : 0] < I.} i tet-.b i _ 
............................................... ~~~~~~ 
Y[2:0] <viterbi_ 

t=151 

OI..-It[2:0] (I.)i 

............................................... ~~~~~~~~~~~~~ 
Y [2 : 0] ( I.) i ter·b i 

t=1451 

FIGURE 11.5 Viterbi encoder testbench simulation results. (Top) Initialization and the start 
of the encoder output sequence 2,5,4, 1,0, ... on Y[2:0] at t = 151. (Bottom) The appearance 
of the same encoder output sequence at the output of the decoder, Out[2:0], at t = 1451, 
1300 time units (13 positive clock edges) later. 

one-time-unit delay) after the first positive clock edge (at t = 150) following the 
deassertion of the reset at t = 70. The encoder output sequence beginning at t = 151 
is 2,5,4, 1,0, ... and then the sequence 5,4, 1, 0, ... repeats. This encoder output 
sequence is then imagined to be transmitted and received. The receiver module cal­
culates the distance measures and passes them to the decoder. After 13 positive 
clock-edges (1300 time ticks) the transmitted sequence appears at the output, 
Out[2:0], beginning at t = 1451 with 2,5,4,1,0, ... , exactly the same as the 
encoder output. 

11.12.4 Verilog Decoder Model 

The Viterbi decoder model presented in this section is written for both simulation 
and synthesis. The Viterbi decoder makes extensive use of vector D flip-flops (regis­
ters). Early versions of Verilog-XL did not support vector instantiations of modules. 
In addition the inputs of UDPs may not be vectors and there are no primitive D flip­
flops in Verilog. This makes instantiation of a register difficult other than by writing 
a separate module instance for each flip-flop. 

539



524 CHAPTER 11 VERILOG HDL 

The first solution to this problem is to use flip-flop models supplied with the 
synthesis tool such as the following: 

asDff #(3) suboutO(inO, subO, clk, reset); 

The aSDff is a model in the Compass ASIC Synthesizer standard component library. 
This statement triggers the synthesis of three D flip-flops, with an input vector ina 

(with a range of three) connected to the D inputs, an output vector subO (also with a 
range of three) connected to the Q flip-flop outputs, a common scalar clock signal, 
elk, and a common scalar reset signaL The disadvantage of this approach is that 
the names, functional behavior, and interfaces of the standard components are differ­
ent for every software system. 

The second solution, in new versions of Verilog-XL and other tools that support 
the IEEE standard, is to use vector instantiation as follows [LRM 7.5.1, 12.1.2]: 

myDff suboutO[0:2] (inO, subO, clk, reset); 

This instantiates three copies of a user-defined module or UDP called myDff. The 
disadvantage of this approach is that not all simulators and synthesizers support vec­
tor instantiation. 

The third solution (which is used in the Viterbi decoder model) is to write a 
model that supports vector inputs and outputs. Here is an example D flip-flop model: 

/******************************************************/ 
/* module dff */ 

/******************************************************/ 

/* A D flip-flop module. */ 

module dff(D,Q,Clock,Reset); 1/ N.B. reset is active-low. 

output Qi input D,Clock,Reseti 

parameter CARDINALITY = 1; reg [CARDINALITY-I: 0] Qi 

wire [CARDINALITY-l:0j Di 

always @(posedge Clock) if (Reset !== 0) #1 Q = D; 

always begin wait (Reset == 0); Q = 0; wait (Reset 

endmodule 

1); end 

We use this model by defining a parameter that specifies the bus width as fol­
lows: 

dff #(3) suboutO(inO, subO, clk, reset); 

The code that models the entire Viterbi decoder is listed below (Figure 12.6 on 
page 578 shows the block diagram). Notice the following: 

" Comments explain the function of each module. 

• Each module is about a page or less of code. 

540



11.12 A VITERBI DECODER 525 

• Each module can be tested by itself. 

• The code is as simple as possible avoiding clever coding techniques. 

The code is not flexible, because bit widths are fixed rather than using parameters. A 
model with parameters for rate, signal constellation, distance measure resolution, 
and path memory length is considerably more complex. We shall use this Viterbi 
decoder design again when we discuss logic synthesis in Chapter 12, test in Chapter 
14, floorplanning and placement in Chapter 16, and routing in Chapter 17. 

/* Verilog code for a Viterbi decoder. The decoder assumes a rate 

2/3 encoder, 8 PSK modulation, and trellis coding. The viterbi module 

contains eight submodules: subset_decode, metric, compute_metric, 
compare_select, reduce, pathin, path_memory, and output_decision. 

The decoder accepts eight 3-bit measures of 1 Ir-sil 1**2 and, after 
an initial delay of thirteen clock cycles, the output is the best 

estimate of the signal transmitted. The distance measures are the 

Euclidean distances between the received signal r (with noise) and 

each of the (in this case eight) possible transmitted signals sO to s7. 
Original by Christeen Gray, University of Hawaii. Heavily modified 

by MJSS; any errors are mine. Use freely. */ 

/******************************************************/ 
/* module viterbi */ 

/******************************************************/ 
/* This is the top level of the Viterbi decoder. The eight input 

signals {inO, ... ,in7} represent the distance measures, 1 Ir-sil 1**2. 
The other input signals are clk and reset. The output signals are 

out and error. */ 

module viterbi 
(inO,in1,in2,in3,in4,in5,in6,in7, 

out,clk,reset,error); 
input [2:0] inO,in1,in2,in3,in4,in5,in6,in7; 

output [2:0] out; input clk,reset; output error; 

wire ~outO,sout1,sout2,sout3; 

wire [2:0] sO,s1,s2,s3; 
wire [4:0] m inO,m in1,m in2,m_in3; 
wire [4:0] m_outO,m_out1,m_out2,m_out3; 

wire [4:0] pO_O,p2_0,pO_1,p2_1,p1_2,p3_2,p1_3,p3_3; 

wire ACSO,ACS1,ACS2,ACS3; 
wire [4:0] outO,out1,out2,out3i 

wire [1:0] control; 
wire [2:0] pO,p1,p2,p3; 

wire [11:0] pathO; 

subset_decode u1(inO,in1,in2,in3,in4,in5,in6,in7, 

sO,s1,s2,s3,soutO,sout1,sout2,sout3,clk,reset); 
metric u2(m_inO,m_in1,m_in2,m_in3,m_outO, 

m_out1,m_out2,m_out3,clk,reset); 
compute_metric u3(m_outO,m_out1,m_out2,m_out3,sO,s1,s2,s3, 

541



526 CHAPTER 11 VERILOG HDL 

pO_O,p2_0,pO_1,p2_1,p1_2,p3_2,p1_3,p3_3,error)i 

compare_select u4(pO_O,p2_0,pO_1,p2_1,p1_2,p3_2,pl_3,p3_3, 

outO,out1,out2,out3,ACSO,ACS1,ACS2,ACS3)i 

reduce uS(outO,outl,out2,out3, 

m_inO,m_in1,m_in2,m_in3,control)i 

path in u6(soutO,sout1,sout2,sout3, 

ACSO,ACS1,ACS2,ACS3,pathO,clk,reset)i 

path_memory u7(pO,p1,p2,p3,pathO,clk,reset, 

ACSO,ACS1,ACS2,ACS3)i 

output_decision u8(pO,p1,p2,p3,control,out)i 

endmodule 

j******************************************************j 

j* module subset decode *j 

j******************************************************j 

j* This module chooses the signal corresponding to the smallest of 

each set {llr-sOII**2, Ilr-s411**2}, {llr-s111**2, Ilr-sSII**2}, 

{llr-s211**2, Ilr-s611**2}, {llr-s311**2, Ilr-s711**2}. Therefore 
there are eight input signals and four output signals for the 

distance measures. The signals soutO, ... , sout3 are used to control 

the path memory. The statement dff #(3) instantiates a vector array 

of 3 D flip-flops. *j 

module subset decode 

(inO,in1,in2,in3,in4,inS,in6,in7, 

sO,sl,s2,s3, 

soutO,sout1,sout2,sout3, 

clk,reset)i 

input [2:0] inO,in1,in2,in3,in4,inS,in6,in7; 

output [2:0] sO,sl,s2,s3; 

output soutO,sout1,sout2,sout3; 

input clk,reset; 

wire [2: 0] subO,sub1,sub2,sub3,sub4,subS,sub6,sub7; 

dff # (3) suboutO(inO, subO, clk, reset) ; 
dff # (3) subout1(in1, sub1, clk, reset) ; 

dff # (3) subout2(in2, sub2, clk, reset) i 
dff # (3) subout3(in3, sub3, clk, reset) ; 
dff # (3) subout4(in4, sub4, clk, reset) ; 
dff # (3) suboutS(inS, subS, clk, reset) ; 
dff # (3) subout6(in6, sub6, clk, reset) ; 
dff # (3) subout7(in7, sub7, clk, reset) ; 

function [2:0] subset_decode; input [2:0] arb; 
begin 

subset_decode = 0; 

if (a<=b) subset decode 

end 
endfunction 

a; else subset decode b· , 

542



function set_control; input [2:0] a,b; 
begin 

if (a<=b) set control = 0; else set control 

end 

endfunction 

assign sO subset decode (subO,sub4); 
assign sl subset decode (subl,sub5); 
assign s2 subset decode (sub2,sub6); 

assign s3 subset decode (sub3,sub7); 
assign soutO set_control(subO,sub4); 

assign soutl set_control(subl,sub5); 

assign sout2 set_control(sub2,sub6); 
assign sout3 set_control(sub3,sub7); 

endmodule 

l' , 

/******************************************************/ 
/* module compute_metric */ 

/******************************************************/ 

11.12 A VITERBI DECODER 527 

/* This module computes the sum of path memory and the distance for 

each path entering a state of the trellis. For the four states, 

there are two paths entering it; therefore eight sums are computed 

in this module. The path metrics and output sums are 5 bits wide. 

The output sum is bounded and should never be greater than S bits 

for a valid input signal. The overflow from the sum is the error 

output and indicates an invalid input signal.*/ 

module compute_metric 

(m_outO,m_outl,m_out2,m_out3, 

sO,sl,s2,s3,pO_0,p2_0, 

pO_l,p2_1,pl_2,p3_2,pl_3,p3_3, 

error) ; 

input [4:0] m_outO,m_outl,m_out2,m_out3; 

input [2:0] sO,sl,s2,s3; 

output [4:0] pO_0,p2_0,pO_l,p2_1,pl_2,p3_2,pl_3,p3_3; 

output error; 

assign 

pO ° m outO + sO, 

p2 ° m out2 + s2, 

pO 1 m outO + s2, 

p2_1 m out2 + sO, 

pl_2 m outl + sl, 

p3 2 m out3 + s3, 

pl_ 3 m outl + s3, 

p3 3 m out3 + sl; 

function is_error; input xl,x2,x3,x4,xS,x6,x7,x8; 

begin 

if (xlllx21Ix31Ix41Ixsllx61Ix71IX8) is error l' , 

543



528 CHAPTER 11 VERILOG HDL 

else is error 0; 
end 
endfunction 

assign error = is_error(pO_0[4],p2_0[4],pO_I[4],p2_1[4], 

pl_2[4],p3_2[4],pl_3[4],p3_3[4]); 
endmodule 

/******************************************************/ 
/* module compare_select */ 

/******************************************************/ 
/* This module compares the summations from the compute metric 

module and selects the metric and path with the lowest value. The 
output of this module is saved as the new path metric for each 

state. The ACS output signals are used to control the path memory of 

the decoder. */ 
module compare_select 

(pO_O,p2_0,pO_I,p2_1,pl_2,p3_2,pl_3,p3_3, 
outO,outl,out2,out3, 

ACSO,ACSl,ACS2,ACS3); 

input [4:0] pO_O,p2_0,pO_I,p2_1,pl_2,p3_2,pl_3,p3_3; 
output [4:0] outO,outl,out2,out3; 
output ACSO,ACSl,ACS2,ACS3; 

function [4:0] find_min_metric; input [4:0] a,b; 
begin 

if (a <= b) find min metric a; else find min metric 
end 

end function 

function set_control; input [4:0] a,b; 
begin 

if (a <= b) set control 
end 

0; else set control l' , 

endfunction 

assign outO find_min_metric(pO_O,p2_0); 
assign outl find_min_metric(pO_l,p2_1); 
assign out2 find_min_metric(pl_2,p3_2); 
assign out3 find_min_metric(pl_3,p3_3); 
assign ACSO set control (pO 0,p2 0) ; -
assign ACSI set control (pO l,p2 1) ; 
assign ACS2 set control (pI 2,p3 2) ; -
assign ACS3 set control (pl_3,p3_ 3) ; 
endmodule 

/******************************************************/ 
/* module path */ 

/******************************************************/ 
/* This is the basic unit for the path memory of the Viterbi 

b' , 

544



11.12 A VITERBI DECODER 529 

decoder. It consists of four 3-bit D flip-flops in parallel. There 

is a 2:1 mux at each D flip-flop input. The statement dff #(12) 

instantiates a vector array of 12 flip-flops. *j 

module path(in,out,clk,reset,ACSO,ACS1,ACS2,ACS3); 

input [11:0] in; output [11:0] out; 

input clk,reset,ACSO,ACS1,ACS2,ACS3; wire [11:0] p_in; 

dff #(12) pathO(p_in,out,clk,reset); 

function [2:0] shift_path; input [2:0] a,b; input control; 

begin 

if (control == 0) shift_path = a; else shift_path = b; 

end 

endfunction 

assign p_in[11:9] 
assign p-in[ S:6] 

assign p-in[ 5:3] 
assign p_in[ 2: 0] 

endmodule 

shift_path(in[11:9],in[S:3],ACSO); 

shift_path(in[11:9],in[S:3],ACS1); 

shift_path(in[S: 6],in[2:0],ACS2); 

shift_path(in[S: 6],in[2:0],ACS3); 

j******************************************************j 
j* module path_memory *j 

j******************************************************j 

j* This module consists of an array of memory elements (D 
flip-flops) that store and shift the path memory as new signals are 

added to the four paths (or four most likely sequences of signals). 

This module instantiates 11 instances of the path module. *j 

module path_memory 

(pO,p1,p2,p3, 

pathO,clk,reset, 

ACSO,ACS1,ACS2,ACS3); 

output [2:0] pO,p1,p2,p3; input [11:0] pathO; 

input clk,reset,ACSO,ACS1,ACS2,ACS3; 

wire [11:0]out1,out2,out3,out4,outS,out6,out7,outS,out9,out10,out11; 

path xl (pathO,out1 ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x2 (out1, out2 ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x3 (out2, out3 ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x4 (out3, out4 ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

xS (out4, outS ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x6 (outS, out6 ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x7 (out6, out7 ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

xS (out7, outS ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x9 (outS, out9 ,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x10(out9, out10,clk,reset,ACSO,ACS1,ACS2,ACS3), 

x11(out10,out11,clk,reset,ACSO,ACS1,ACS2,ACS3); 

assign pO out11[11:9]; 

assign pI 

assign p2 

out 11 [ S:6]; 

ou t 11 [ 5: 3 ] ; 

545



530 CHAPTER 11 VERILOG HDL 

assign p3 

endmodule 

outll [ 2: 0] ; 

/******************************************************/ 

/* module pathin */ 

/******************************************************/ 
/* This module determines the input signal to the path for each of 

the four paths. Control signals from the subset decoder and compare 

select modules are used to store the correct signal. The statement 

dff #(12) instantiates a vector array of 12 flip-flops. */ 

module pathin 

(soutO,sout1,sout2,sout3, 

ACSO,ACS1,ACS2,ACS3, 

pathO,clk,reset); 

input soutO,sout1,sout2,sout3,ACSO,ACS1,ACS2,ACS3; 

input clk,reset; output [11:0] pathO; 

wire [2:0] sigO,sig1,sig2,sig3; wire [11:0] path_in; 

dff #(12) firstpath(path_in,pathO,clk,reset); 

function [2:0] subsetO; input soutO; 
begin 

if(soutO -- 0) subsetO = 0; else subsetO 4 • , 
end 

end function 

function [2:0] subset1; input sout1 ; 
begin 

if(sout1 -- 0) subset1 = 1 ; else subset1 5; 

end 

endfunction 

function [2: 0] subset2; input sout2; 

begin 

if(sout2 -- 0) subset2 = 2; else subset2 6; 

end 
endfunction 

function [2: 0] subset3; input sout3; 
begin 

if(sout3 -- 0) subset3 = 3; else subset3 7; 
end 

endfunction 

function [2:0] find_path; input [2:0] a,b; input control; 
begin 

if(control==O) find_path 
end 

endfunction 

assign sigO = subsetO(soutO)i 

a; else find_path = b; 

546



assign sigl subsetl(soutl); 
assign sig2 subset2(sout2); 

assign sig3 subset3(sout3); 

assign path_in[11:9] find_path(sigO,sig2,ACSO); 

assign path_in[ 8:6] find_path(sig2,sigO,ACSl); 

assign path_in[ 5:3] 

assign path_in [ 2:0] 
endmodule 

find_path(sigl,sig3,ACS2); 

find_path(sig3,sigl,ACS3); 

/******************************************************/ 

/* module metric */ 
/******************************************************/ 

11.12 A VITERBI DECODER 531 

/* The registers created in this module (using D flip-flops) store 

the four path metrics. Each register is 5 bits wide. The statement 

dff #(5) instantiates a vector array of 5 flip-flops. */ 

module metric 

(m_inO,m_inl,m in2,m_in3, 

m_outO,m_outl,m_out2,m_out3, 

clk, reset) ; 

input [4:0] m_inO,m_inl,m_in2,m_in3; 

output [4:0] m_outO,m_outl,m_out2,m_out3; 
input clk,reset; 

dff #(5) metric3(m_in3, m_out3, clk, reset) ; 
dff #(5) metric2(m_in2, m_out2, clk, reset) ; 
dff #(5) metricl (m _ inl, m_outl, clk, reset) ; 

dff # (5) metricO (m_ inO, m_outO, clk, reset) ; 
endmodule 

/******************************************************/ 

/* module output_decision */ 

/******************************************************/ 
/* This module decides the output signal based on the path that 

corresponds to the smallest metric. The control signal comes from 

the reduce module. */ 

module output_decision(pO,pl,p2,p3,control,out); 

input [2:0] pO,pl,p2,p3; input [1:0] control; output [2:0] out; 

function [2:0] decide; 

input [2:0] pO,pl,p2,p3; input [1:0] control; 

begin 

if(control == 0) decide = pO; 

else if(control == 1) decide pI; 

else if(control == 2) decide = p2; 

else decide = p3i 

end 

endfunction 

assign out = decide(pO,pl,p2,p3,control); 

endmodule 

547



532 CHAPTER 11 VERILOG HDL 

j******************************************************j 
j* module reduce *j 

j******************************************************j 

j* This module reduces the metrics after the addition and compare 

operations. This algorithm selects the smallest metric and subtracts 

it from all the other metrics. *j 

module reduce 

(inO,in1,in2,in3, 
m_inO,m_in1,m_in2,m_in3, 

control) ; 
input [4:0] inO,in1,in2,in3; 

output [4:0] m_inO,m_in1,m_in2,m_in3; 
output [1:0] control; wire [4:0] smallest; 

function [4:0] find_smallest; 
input [4:0] inO,in1,in2,in3; reg [4:0] a,b; 

begin 
if(inO <= in1) a = inO; else a = in1; 
if(in2 <= in3) b = in2; else b in3; 

if(a <= b) find_smallest = a; 
else find smallest = b; 

end 
endfunction 

function [1:0] smallest_no; 
input [4:0] inO,in1,in2,in3,smallest; 

begin 

if(smallest == inO) smallest_no = 0; 
else if (smallest == in1) smallest no 
else if (smallest == in2) smallest no 
else smallest no = 3; 

end 
endfunction 

l' , 
2; 

assign smallest = find_smallest(inO,in1,in2,in3); 
assign m inO 
assign m in1 
assign m in2 
assign m in3 
assign control 
endmodule 

inO smallest; 
in1 smallest; 
in2 smallest; 
in3 smallest; 

smallest_no(inO,in1,in2,in3,smallest); 

11 ,,13 Other Verilog Features 

This section covers some of the more advanced Verilog features. System tasks and 
functions are defined as part of the IEEE Verilog standard [Verilog LRM14]. 

548



11.13 OTHERVERILOG FEATURES 533 

11.13.1 Display Tasks 
The following code illustrates the display system tasks [Verilog LRM 14.1]: 

module test_display; II display system tasks: 

initial begin $display ("string, variables, or expression"); 
1* format specifications work like printf in c: 

%d=decimal %b=binary %s=string %h=hex %o=octal 
%c=character %m=hierarchical name %v=strength %t=time format 

%e=scientific %f=decimal %g=shortest 

examples: %d uses default width %Od uses minimum width 

%7.3g uses 7 spaces with 3 digits after decimal point *1 
II $displayb, $displayh, $displayo print in b, h, 0 formats 

II $write, $strobe, $monitor also have b, h, 0 versions 

$write("write"); II as $display, but without newline at end of line 

$strobe("strobe"); II as $display, values at end of simulation cycle 

$monitor(v); II disp. @change of v (except v= $time,$stime,$realtime) 
$monitoron; $monitoroff; II toggle monitor mode onloff 

end endmodule 

11.13.2 File 110 Tasks 
The following example illustrates the file I/O system tasks [Verilog LRM 14.2]: 

module file_I; integer f1, chi initial begin f1 = $fopen("f1.out")i 

if(f1==0) $stop(2); if(f1==2)$display("f1 open"); 
ch = £111; $fdisplay(ch,"Hello"); $fclose(f1); end endmodule 

> vlog file_I. v 

> vsim -c file 1 

* Loading work.file_1 
VSIM 1> run 10 

* £1 open 
* Hello 
VSIM 2> q 

> more f1.out 

Hello 

> 

The $fopen system task returns a 32-bit unsigned integer called a multichannel 
descriptor (fl in this example) unique to each file. The multichannel descriptor con­
tains 32 flags, one for each of 32 possible channels or files (subject to limitations of 
the operating system). Channel 0 is the standard output (normally the screen), which is 
always open. The first call to $fopen opens channel 1 and sets bit 1 of the multichan­
nel descriptor. Subsequent calls set higher bits. The file I/O system tasks: $fdisplay, 

$fwrite, $fmonitor, and $fstrobe; correspond to their display counterparts. The 
first parameter for the file system tasks is a multichannel descriptor that may have 

549



534 CHAPTER 11 VERILOG HDL 

.multiple bits set. Thus, the preceding example writes the string "Hello" to the screen 
and to file 1 . out. The task $fclose closes a file and allows the channel to be 
reused. 

The file I/O tasks $readmemb and $readmemh read a text file into a memory. 
The file may contain only spaces, new lines, tabs, form feeds, comments, addresses, 
and binary (for $readmemb) or hex (for $readmemh) numbers, as in the following 
example: 

mem.dat 

@2 1010 1111 @4 0101 1111 1010 1111 II @address in hex 

xlxl zzzz 1111 0000 1* x or z is OK *1 

module load; reg [7:0] mem[0:7]; integer i; initial begin 

$readmemb("mem.dat", mem, 1, 6); II start_address=l, end_address=6 

for (i= 0; i<8; i=i+l) $displaY("mem[%Od] %b", i, mem[i]); 

end endmodule 

> vsim -c load 

# Loading work. load 

VSIM 1> run 10 

# ** Warning: $readmem (memory mem) file mem.dat line 2: 

# More patterns than index range (hex 1:6) 

# Time: 0 ns Iteration: 0 Instance: I 

# 

# 
# 

# 
# 
# 

# 

mem[O] 

mem[l] 

mem[2] 

mem[3] 

mem[4] 

mem[5] 

mem[6] 

xxxxxxxx 

xxxxxxxx 

10101111 

xxxxxxxx 

01011111 

10101111 

xlxlzzzz 

# mem[7] xxxxxxxx 

VSIM 2> q 

> 

11.13.3 Timescale, Simulation, and Timing-Check Tasks 
There are two timescale tasks, $printtimescale and $timeformat [Verilog 
LRM 14.3]. The $timeformat specifies the %t format specification for the display 
and file I/O system tasks as well as the time unit for delays entered interactively and 
from files. Here are examples of the timescale tasks: 

II timescale tasks: 

module a; initial $printtimescale(b.cl); endmodule 

module b; c cl (); endmodule 

'timescale 10 ns I 1 fs 

module c_dat; endmodule 

'timescale 1 ms I 1 ns 

module Ttime; initial $timeformat(-9, 5, " ns", 10); endmodule 

1* $timeformat [ ( n, p, suffix , min field width ) ] ; 

550



11.13 OTHER VERILOG FEATURES 535 

units = 1 second ** (-n), n = 0->15, e.g. for n = 9, units = ns 

p = digits after decimal point for %t e.g. p = 5 gives 0.00000 

suffix for %t (despite timescale directive) 

min_field_width is number of character positions for %t *1 

The simulation control tasks are $stop and $finish [Verilog LRM 14.4]: 

module test_simulation_control; II simulation control system tasks: 

initial begin $stop; II enter interactive mode (default parameter 1) 

$finish(2); II graceful exit with optional parameter as follows: 

II 0 = nothing 1 = time and location 2 = time, location, and statistics 
end endmodule 

The timing-check tasks [Verilog LRM 14.5] are used in specify blocks. The 
following code and comments illustrate the definitions and use of timing-check sys­
tem tasks. The arguments to the tasks are defined and explained in Table 11.11. 

TABLE 11.11 Timing-check system task parameters. 

Timing task argument Description of argument Type of argument 

reference event to establish reference time module input or inout 

(scalar or vector net) 

data event signal to check against reference_event module input or inout 

(scalar or vector net) 

limit time limit to detect timing violation on data_event constant expression 

Orspecparam 

threshold largest pulse width ignored by timing check $width constant expression 

Orspecparam 

notifier flags a timing violation (before -> after): 
x->O, 0->1, 1->0, z->z 

module timing_checks (data, clock, clock_1,clock_2); 

input data,clock,clock_1,clock_2; reg tSU,tH,tHIGH,tP,tSK,tR; 

specify II timing check system tasks: 

1* $setup (data_event, reference_event, limit [, notifier]); 

violation = (T_reference_event)-(T_data_event) < limit *1 
$setup(data, posedge clock, tSU); 

1* $hold (reference_event, data_event, limit [, notifier]); 

violation = 
(time_of_data_event)-(time_of_reference_event) < limit *1 

$hold(posedge clock, data, tH); 

1* $setuphold (reference_event, data_event, setup_limit, 

hold_limit [, notifier]); 

parameter_restriction setup_limit + hold limit> 0 *1 

register 

III 
112 
1/3 
114 
liS 
116 
1/7 
118 
119 

1110 
I III 
1112 
1113 

551



536 CHAPTER 11 VERILOG HDL 

$setuphold(posedge clock, data, tSU, tH); 

/* $width (reference_event, limit, threshold [, notifier]); 

violation = 

threshold < (T_data_event) - (T_reference_event) < limit 

reference_event = edge 

data_event = opposite_edge_of_reference_event */ 

$width(posedge clock, tHIGH); 

/* $period (reference_event, limit [, notifier]); 

violation = (T_data_event) - (T_reference_event) < limit 

reference_event = edge 

data_event = same_edge_of_reference event */ 

$period(posedge clock, tP); 

/* $skew (reference_event, data_event, limit [, notifier]); 

violation = (T_data_event) - (T_reference_event) > limit */ 

$skew(posedge clock_I, posedge clock_2, tSK); 

/* $recovery (reference_event, data_event, limit, [, notifier]); 

violation = (T_data_event) - (T_reference_event) < limit */ 

$recovery(posedge clock, posedge clock_2, tR); 

/* $nochange (reference_event, data_event, start_edge_offset, 

end_edge_offset [, notifier]); 

reference_event = posedge I negedge 

violation = change while reference high (posedge)/low (negedge) 

+ve start_edge_offset moves start of window later 

+ve end_edge_offset moves end of window later */ 

$nochange (posedge clock, data, 0, 0); 

endspecify endmodule 

//14 

//15 

//16 

//17 

//18 

//19 

//20 

//21 

//22 

//23 

//24 

//25 

//26 

//27 

//28 

//29 

//30 

//31 

//32 

//33 

/ /34 
//35 

//36 

//37 

//38 

//39 

You can use edge specifiers as parameters for the timing-check events (except 
for the reference event in $nochange): 

edge_control_specifier ::= edge [edge_descriptor {, edge_descriptor}] 

edge_descriptor ::= 01 Ox I 10 I Ix I xO I xl 

For example, I edge [0 I, Ox, xl] clock I is equivalent to I posedge clock I. 
Edge transitions with I z I are treated the same as transitions with I x I • 

Here is a D flip-flop model that uses timing checks and a notifier register. The 
register, notifier, is changed when a timing-check task detects a violation and the 
last entry in the table then sets the flip-flop output to unknown. 

primitive dff _udp(q, clock, data, notifier) ; 

output q; reg q; input clock, data, notifier; 

table // clock data notifier:state: q 
r 0 ? ? 0 

r 1 ? ? 1 

n ? ? ? 

? * ? ? 

? ? * ? x endtab1e // notifier 

552



11.13 OTHERVERILOG FEATURES 537 

endprimitive 

'timescale 100 fs I 1 fs 

module dff(q, clock, data); output q; input clock, data; reg notifieri 
dff_udp(q1, clock, data, notifier); buf(q, q1); 
specify 

specparam tSU = 5, tH = 1, tPW = 20, tPLH = 4:5:6, tPHL = 4:5:6; 

(clock *> q) = (tPLH, tPHL); 
$setup(data, posedge clock, tSU, notifier); II setup: data to clock 

$hold(posedge clock, data, tH, notifier); II hold: clock to data 
$period(posedge clock, tPW, notifier)i II clock: period 

endspecify 

endmodule 

11.13.4 PLA Tasks 
The PLA modeling tasks model two-level logic [Verilog LRM 14.6]. As an 
example, the following eqntott logic equations can be implemented using a PLA: 

b1 = a1 & a2; b2 = a3 & a4 & a5 ; b3 = a5 & a6 & a7; 

The following module loads a PLA model for the equations above (in AND 
logic) using the array format (the array format allows only' I' or '0' in the PLA 
memory, or personality array). The file array. dat is similar to the espresso 
input plane format. 

array.dat 

1100000 
0011100 

0000111 

module pla_1 (a1,a2,a3,a4,a5,a6,a7,b1,b2,b3); 
input aI, a2, a3, a4, a5, a6, a7 ; output b1, b2, b3; 

reg [1:7] mem[1:3]; reg b1, b2, b3; 
initial. begin 

$readmemb( "array.dat", mem); 

#li b1=1; b2=1; b3=1; 

$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3}); 
end 

initial $moni tor (" %4g" , $time, , b1, , b2, , b3) ; 
endmodule 

The next example illustrates the use of the plane format, which allows I 1 " '0', 

as well as '? I or 'z' (either may be used for don't care) in the personality array. 

b1 = a1 & !a2; b2 = a3; b3 = !a1 & Ja3; b4 = 1; 

module pla_2; reg [1:3] a, mem[1:4]; reg [1:4] b; 

initial begin 

$async$and$plane(mem,{a[1],a[2],a[3]},{b[1],b[2],b[3],b[4]}); 
mem[l] = 3'b10?; mem[2] = 3'b??1; mem[3] = 3'bO?Oi mem[4] = 3'b???; 

553



538 CHAPTER 11 VERILOG HDL 

#10 a = 3'b111i #10 $displayb(a, .. -> .. b) ; 

#10 a = 3'bOOO; #10 $displayb(a, .. -> .. b) ; 
#10 a = 3'bxxXi #10 $displayb(a, .. -> .. b) ; 

#10 a = 3'b101; #10 $displayb(a, .. -> .. b) ; 

end endrnodule 

111 -> 0101 

000 -> 0011 

xxx -> xxxI 

101 -> 1101 

11.13.5 Stochastic Analysis Tasks 
The stochastic analysis tasks model queues [Verilog LRM 14.7]. Each of the tasks 
return a status as shown in Table 11.12. 

TABLE 11.12 Status values for the stochastic analysis tasks. 

Status value 

° 
2 

3 

4 

5 

6 

7 

Meaning 

OK 

queue full, cannot add 

undefined q_ id 

queue empty, cannot remove 

unsupported q_ type, cannot create queue 

max_length <= 0, cannot create queue 

duplicate q_ id, cannot create queue 

not enough memory, cannot create queue 

The following module illustrates the interface and parameters for these tasks: 

module stochastic; initial begin II stochastic analysis system tasks: 

1* $q_initialize (q_id, q_type, max_length, status) ; 

q_id is an integer that uniquely identifies the queue 

q_type l=FIFO 2=LIFO 

max_length is an integer defining the maximum number of entries *1 
$q_initialize (q_id, q_type, max_length, status) 

1* $q_add (q_id, jOb_id, inform_id, status) ; 

job_id = integer input 

inform_id = user-defined integer input for queue entry *1 
$q_add (q_id, jOb_id, inform_id, status) ; 

1* $q_remove (q_id, jOb_id, inform_id, status) *1 
$q_remove (q_id, job_id, inform_id, status) ; 

554



1* $q_full (q_id, status) 

status = 0 = queue is not full, status 

$q_full (q_id, status) ; 

1 

11.13 OTHERVERILOG FEATURES 539 

queue full *1 

1* $q_exam (q_id, q_stat_code, q_stat_value, status) ; 
q_stat_code is input request as follows: 

l=current queue length 2=mean inter-arrival time 3=max. queue length 

4=shortest wait time ever 

5=longest wait time for jobs still in queue 6=ave. wait time in queue 

q_stat_value is output containing requested value *1 
$q_exam (q_id, q_stat_code, q_stat_value, status) ; 

end endmodule 

11.13.6 Simulation Time Functions 
The simulation time functions return the time as follows [Veri1og LRM 14.8]: 

module test_time; initial begin II simulation time system functions: 

$time ; 

II returns 64-bit integer scaled to timescale unit of invoking module 

$stime ; 

II returns 32-bit integer scaled to timescale unit of invoking module 

$realtime i 

II returns real scaled to timescale unit of invoking module 

end endmodule 

11.13.7 Conversion Functions 
The conversion functions for reals handle real numbers [Verilog LRM 14.9]: 

module test_convert; II conversion functions for reals: 

integer ii real r; reg [63:0] bits; 

initial begin #1 r=256;#1 i = $rtoi(r); 

#1; r = $itor(2 * i) ; #1 bits = $realtobits(2.0 * r) 

#1; r = $bitstoreal(bits) i end 

initial $monitor( "%3f", $time, ,i, ,r, ,bits); 1* 
$rtoi converts reals to integers wltruncation e.g. 123.45 -> 123 

$itor converts integers to reals e.g. 123 -> 123.0 

$realtobits converts reals to 64-bit vector 

$bitstoreal converts bit pattern to real 

Real numbers in these functions conform to IEEE Std 754. Conversion 

rounds to the nearest valid number. *1 
endmodule 

# 0.000000 x 0 x 

# 1.000000 x 256 x 

# 2.000000 256 256 x 

# 3.000000 256 512 x 

555



540 CHAPTER 11 VERILOG HDL 

# 4.000000 
# 5.000000 

256 512 4652218415073722368 
256 1024 4652218415073722368 

Here is an example using the conversion functions in port connections: 

module test_real;wire [63:0]a; driver d (a); receiver r (a); 

initial $monitor("%3g",$time"a"d.r1"r.r2); endmodule 

module driver (real_net); 
output real_net; real r1; wire [64:1] real net 
initial #1 r1 = 123.456; endmodule 

module receiver (real_net); 

input real_net; wire [64:1] real_net; real r2; 
initial assign r2 = $bitstoreal(real_net); 

endmodule 

# 0 0 0 0 

# 1 4638387860618067575 123.456 123.456 

$realtobits(r1); 

11.13.8 Probability Distribution Functions 
The probability distribution functions are as follows [Verilog LRM 14.10]: 

module probability; // probability distribution functions: 

/* $random [( seed) ] returns random 32-bit signed integer 
seed = register, integer, or time */ 

reg [23:0] r1,r2; integer r3,r4,r5,r6,r7,r8,r9; 

integer seed, start, \end , mean, standard_deviation; 
integer degree_of_freedom, k_stage; 

initial begin seed=l; start=O; \end =6; mean=5; 
standard_deviation=2; degree_of_freedom=2; k_stage=l; #1; 

r1 = $random % 60; // random -59 to 59 

r2 = {$random} % 60; // positive value 0-59 
r3=$dist_uniform (seed, start, \end ) ; 
r4=$dist_normal (seed, mean, standard_deviation) 

r5=$dist_exponential (seed, mean) 
r6=$dist_poisson (seed, mean) ; 

r7=$dist_chi_square (seed, degree_of_freedom) 

r8=$dist_t (seed, degree_of_freedom) ; 
r9=$dist_erlang (seed, k_stage, mean) ; end 

initial #2 $display ("%3f",$time"r1"r2"r3"r4"r5); 
initial begin #3; $display ("%3f",$time"r6"r7"r8"r9); end 
/* All parameters are integer values. 

Each function returns a pseudo-random number 
e.g. $dist_uniform returns uniformly distributed random numbers 
mean, degree_of_freedom, k_stage 

(exponential, poisson, chi-square, t, erlang) > O. 
seed = inout integer initialized by user, updated by function 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 

//10 
//11 

//12 
//13 

//14 

//15 

/ /16 
//17 

/ /18 
//19 
//20 

//21 
//22 

//23 
//24 

//25 

556



start, end ($dist_uniform) 
endmodule 

2.000000 

3.000000 
8 57 

7 

integer bounding return values */ 

o 4 9 

3 o 2 

11.13.9 Programming Language Interface 

11.14 SUMMARY 541 

//26 

//27 

The C language Programming Language Interface (PLI) allows you to access the 
internal Verilog data structure [Verilog LRM 17-23 , A-E]. For example, you can 
use the PLI to implement the following extensions to a Verilog simulator: 

• C language delay calculator for a cell library 

• C language interface to a Verilog-based or other logic or fault simulator 

• Graphical waveform display and debugging 

• C language simulation models 

• Hardware interfaces 

There are three generations of PLI routines (see Appendix B for an example): 

• Task/function (TF) routines (or utility routines), the first generation of the 
PLI, start with 'tf _' . 

• Access (ACC) routines, the second generation of the PLI, start with the 
characters 'ace _' and access delay and logic values. There is some overlap 
between the ACC routines and TF routines. 

• Verilog Procedural Interface (VPI) routines, the third generation of the PLI, 
start with the characters' vpi_' and are a superset of the TF and ACC 
routines. 

11 .. 14 Summary 

Table 11.13 lists the key features of Verilog HDL. The most important concepts cov­
ered in this chapter are: 

• Concurrent processes and sequential execution 

o Difference between a reg and a wire, and between a scalar and a vector 

• Arithmetic operations on reg and wire 

• Data slip 

o Delays and events 

557



542 CHAPTER 11 VERILOG HDL 

TABLE 11.13 Verilog on one page. 

Verilog feature 

Comments 

Constants: string and numeric 

Names (case-sensitive, start with letter or '_') 
" ..........•... ,."'.-.--... _ ........•...... _._._ ... _ .. ,. .. _ e.· .. · .... ___ ..... __ ........ __ ...... ,.,._ .••. ,.~._._ ... _ .......... __ .. _ ... __ ..... _ ..... __ ._... _ .. '_." ___ .•... 

Two basic types of logic signals: wire and reg 
..... -..... _ ...... _ ........ __ ... _._- ...... _ .. -._ .... _._ ... -_._ ...... __ ._- ...... _ .... --_ .. ,-.-.•.. - ...... ~.-.. -..•.. -.-.... -.-.- .~... . .. _ ...... -.-."-'" ....... " ....... __ ............. _ .... _. --
Use a continuous assignment statement with wire 

Use a procedural assignment statement with reg 

Example 

a = 0; II comment ends with newline 

1* This is a multiline or block 

comment *1 

parameter BW = 32 II local, use BW 

'define G BUS 32 II global, use 'G BUS 

4' b2 I' bx 

12name A name $ BAD NotSame notsame 

wire my wire; reg myReg; 
.........•.......• -.......... _ .. _ .•....... _ .. _ ...•........................................•........................... 

assign my Wire = 1; 

always myReg = my Wire; 
•..............•... - ... -- •..•...•.•............................. 

Buses and vectors use square brackets 

We can perform arithmetic on bit vectors 

Arithmetic is performed modulo 

Operators: as in C (but not ++ or --) 

Fixed logic-value system 

Basic unit of code is the module 

Ports 

Procedures model things that happen at the same time 
and may be sensitive to an edge, posedge, negedge, 

or to a level. 

Sequential blocks model repeating things: 
always: executes forever 
ini Hal: executes once only at start of simulation 

Functions and tasks 

Output 

Control simulation 

Compiler directives 

Delay 

reg [31:0] DBus; DBus[12] = l'bx; 

reg [31:0] DBus; DBus = DBus + 2; 

reg [2:0] R; R = 7 + 1; II now R = 0 

.... _ ........ _- ..•.... _._ .... - ".- .. __ ..... ...- ...... _ .. " .. , ......... - .. _....... ., .... " ... , ... "-, ........ _.-.. ,, .. 

I, 0, x (unknown), z (high-impedance) 

module bake (chips, dough, cookies); 

input chips, dough; output cookies; 

assign cookies = chips & dough; 

endmodule 

input or input/output ports are wire 
output ports are wire or reg 

always @rain sing; always @rain dance; 

always @(posedge clock) D Q; II flop 

always @(a or b) c = a & b; II and gate 

initial born; 

always @alarm_clock begin : a_day 

metro=commute; boulot=work; dodo=sleep; 

end 

function ... endfunction 

task ... endtask 

$display("a=%f",a);$dumpvars;$monitor(a) 

$stop; $finish II sudden or gentle halt 

-timescale Insllps II units/resolution 

#1 a = b; 
a = #1 b; 

II delay then sample b 
II sample b then delay 

558



11.15 PROBLEMS 543 

11 .15 Problems 

*=Difficult, **=Very difficult, ***=Extremely difficult 

11.1 (Counter, 30 min.) Download the VeriWell simulator from http://www . 

wellspring.com and simulate the counter from Section 11.1 (exclude the com­
ments to save typing). Include the complete input and output listings in your report. 

11.2 (Simulator, 30 min.) Build a "cheat sheet" for your simulator, listing the 
commands for running the simulator and using it in interactive mode. 

11.3 (Verilog examples, 10 min.) The Cadence Verilog-XL simulator comes 
with a directory examples. Make a list of the examples from the README files in the 
various directories. 

11.4 (Gotchas, 60 min.) Build a "most common Verilog mistakes" file. Start 
with: 

• Extra or missing semicolon I;' 

• Forgetting to declare a reg 

• Using a reg instead of a wire for an input or inout port 

• Bad declarations: reg bus [ 0 : 31] instead of reg [31: 0 ] bus 

• Mixing vector declarations: wire [31: 0] BusA, [15: 0] BusB 

• The case-sensitivity of Verilog 

• No delay in an always statement (simulator loops forever) 

• Mixing up - (accent grave) for - define and I (tick or apostrophe) for I' bl 

with / (accent acute) or I (open single quote) or ' (close single quote) 

• Mixing" (double quote) with /I (open quotes) or " (close quotes) 

11.5 (Sensitivity, 10 min.) Explore and explain what happens if you write this: 

always @(a or b or c) e = (aib)&(cid); 

11.6 (Verilog if statement, 10 min.) Build test code to simulate the following 
Verilog fragment. Explain what is wrong and fix the problem. 

if (i > 0) 
if (i < 2) $display ("i is 1"); 

else $display ("i is less than O")i 

11.7 (Effect of delay, 30 min.). Write code to test the four different code frag­
ments shown in Table 11.14 and print the value of I a I at time = 0 and time = 1 for 
each case. Explain the differences in your simulation results. 

11.8 (Verilog events, 10 min.). Simulate the following and explain the results: 

event event_I, event_2; 

always @ event_l -> event_2; 

initial @event_2 $stop; 

initial -> event_I; 

559



544 CHAPTER 11 VERILOG HDL 

TABLE 11.14 Code fragments for Problem 11.7. 

Code fragment 

(a) (b) (c) (d) 

reg a; reg a; reg a; reg a; 

initial initial initial initial 

begin begin begin begin 

a = 0; #0 a 0; a <= 0; #1 a 0; 

a = a + 1 ; #0 a a + 1· , a <= a + 1 ; #1 a a + 1· , 
end end end end 

11.9 (Blocking and nonblocking assignment statements, 30 min.). Write code to 
test the different code fragments shown in Table 11.15 and print the value of I outp I 

at time = 0 and time = 10 for each case. Explain the difference in simulation results. 

TABLE 11.15 Code fragments for Problem 11.9. 

Code fragment 

(a) (b) (c) (d) 

reg outp; reg outpi reg outp; 
always 
begin 

reg outp; 
always 

begin 
always always 

begin begin 

#10 outp 0; outp <= #10 1· , #10 outp = 0; 
#10 outp <= 1; 

end 

#10 outp <= 0; 
#10 outp = 1; 

end 
#10 outp 1· , outp <= #10 0; 
end end 

11.10 (Verilog UDPs, 20 min.). Use this primitive to build a half adder: 

primitive Adder(Sum, InA, InB); output Sum; input Ina, InB; 

table 00 : 0; 01 : 1; 10 : 1; 11 : 0; endtable 
endprimitive 

Apply unknowns to the inputs. What is the output? 

11.11 (Verilog UDPs, 30 min.). Use the following primitive model for a D 
latch: 

primitive DLatch(Q, Clock, Data); output Q; reg Q; input Clock, Data; 
table 1 0 : ? : 0; 1 1 : ? : 1; 0 1 : ? : -; endtable 
endprimitive 

Check to see what happens when you apply unknown inputs (including clock 
transitions to unknown). What happens if you apply high-impedance values to the 
inputs (again including transitions)? 

11.12 (Propagation of unknowns in primitives, 45 min.) Use the following 
primitive model for a D flip-flop: 

primitive DFF(Q, Clock, Data); output Q; reg Q; input Clock, Data; 

560



11.15 PROBLEMS 545 

table 
r 0 ? 0 

r 1 ? 1 ; 

(Ox) 0 0 : 0 ; 

(Ox) 1 1 : 1 ; 

(?O) ? ? 
? (??) ? 
endtable 
endprimitive 

Check to see what happens when you apply unknown inputs (including a clock 
transition to an unknown value). What happens if you apply high-impedance values 
to the inputs (again including transitions)? 

11.13 (D flip-flop UDP, 60 min.) Table 11.16 shows a UDP for a D flip-flop 
with QN output and asynchronous reset and set. 

TABLE 11.16 D flip-flop UDP for Problem 11.13. 

primitive DFlipFlop2 (QN, Data, Clock, Res, Set) ; 
output QN; reg QN; input Data, Clock, Res, Set; 
table 

II Data Clock Res Set : state :next state 
1 (01 ) 0 0 : ? : 0; II line 1 
1 (01) 0 x : ? : 0; 

? ? 0 x :0 : 0; 

0 (01) 0 0 : ? : 1; 

0 (01) x 0 : ? : 1; 

? ? x 0 : 1 : 1; 

1 (xl) 0 0 :0 : 0; 

0 (xl) 0 0 : 1 : 1; 

1 (Ox) 0 0 :0 : 0; 
0 (Ox) 0 0 : 1 : 1; 

? ? 1 ? : ? : 1; 

? ? 0 1 : ? : 0; 

? n 0 0 : ? :-; 

* ? ? ? : ? : -; 

? ? (?O) ? : ? : -; 
? ? ? (?O) : ? : -; 

? ? ? ? : ? :x; II line 17 

endtable 
endprimitive 

a. Explain the purpose of each line in the truth table. 

b. Write a module to test each line of the UDP. 

c. Can you find any errors, omissions, or other problems in this UDP? 

561



546 CHAPTER 11 VERILOG HDL 

11.14 (JK flip-flop, 30 min.) Test the following model for a JK flip-flop: 

module JKFF (Q, J, K, elk, Rst); 

parameter width = 1, reset_value = 0; 

input [width-l:O] J, K; output [width-l:O] Q; reg [width-l:O] Q; 

input elk, Rst; initial Q = {width{l'bx}}; 

always @ (posedge elk or negedge Rst ) 

if (Rst==O ) Q <= #1 reset_value; 

else Q <= #1 (J & -K) I (J & K & -Q) (-J & -K & Q); 

endmodule 

11.15 (Overriding Verilog parameters, 20 min.) The following module has a 
parameter specification that allows you to change the number of AND gates that it 
models (the cardinality or width): 

module vector~ND(Z, A, B); 
parameter card = 2; input [card-l:O] A,B; output [card-l:O] Z; 

wire [card-l:O] Z = A & B; 

endmodule 

The next module changes the parameter value by specifying an overriding value 
in the module instantiation: 

module Four_AND_Gates(OutBus, InBusA, InBusB); 

input [3:0] InBusA, InBusB; output [3:0] OutBus; 

Vector AND #(4) My_AND(OutBus, InBusA, InBusB); 

endmodule 

These next two modules change the parameter value by using a defparam state­
ment, which overrides the declared parameter value: 

module X_AND_GateS(OutBus, InBusA, InBusB); 

parameter X = 2;input [X-l:O] InBusA, InBusB;output [X-l:O] OutBus; 

Vector AND #(X) My_AND (OutBus, InBusA, InBusB); 

endmodule 

module size; defparam X_AND Gates.X = 4; endmodule 

a. Check that the two alternative methods of specifying parameters are equiva­
lent by instantiating the modules Four_AND _Gates and X_AND _Gates In 

another module and simulating. 

b. List and comment on the advantages and disadvantages of both methods. 

11.16 (Default Verilog delays, 10 min.). Demonstrate, using simulation, that the 
following NAND gates have the delays you expect: 

nand (strongO, strongl) #1 

Nand_l(nOOl, n004, nOOS), 

Nand_2(n003, nOOl, nOOS, n002); 
nand (n006, nOOS, n002); 

11.17 (Arrays of modules, 30 min.) Newer versions of Verilog allow the instan­
tiating of arrays of modules (in this book we usually call this a vector since we are 

562



11.15 PROBLEMS 547 

only allowed one row). You specify the number in the array by u.sing a range after 
the instance name as follows: 

nand #2 nand_array[0:7] {zn, a, b); 

Create and test a model for an 8-bit register using an array of flip-flops. 

11.18 (Assigning Verilog real to integer data types, 10 min.). What is the value 
of ImInteger in the following code? 

real ImReal; integer Imlnteger; 
initial begin ImReal = -1.5; Imlnteger = ImReal; end 

11.19 (BNF syntax, 10 min.) Use the BNF syntax definitions in Appendix B to 
answer the following questions. In each case explain how you arrive at the answer: 

a. What is the highest-level construct? 

b. What is the lowest-level construct? 

c. Can you nest begin and end statements? 

d. Where is a legal place for a case statement? 

e. Is the following code legal: reg [31:0] rega, [32:1] regb; 

f. Where is it legal to include sequential statements? 

11.20 (Old syntax definitions, 10 min.) Prior to the IEEE LRM, Verilog BNF 
was expressed using a different notation. For example, an event expression was 
defined as follows: 

<event_expression> ::= <expression> 

or «posedge or negedge> <SCALAR_EVENT_EXPRESSION» 
or «event_expression> or <event_expression» 

Notice that we are using I or I as part of the BNF to mean "alternatively" and 
also 'or I as a Verilog keyword. The keyword 'or I is in bold-the difference is 
fairly obvious. Here is an alternative definition for an event expression: 

<event_expression> ::= <expression> 

11= po sedge <SCALAR_EVENT_EXPRESSION> 

11= negedge <SCALAR_EVENT_EXPRESSION> 
11= <event_expression> <or <event_expression»* 

Are these definitions equivalent (given, of course, that we replaced I I = with or 

in the simplified syntax)? Explain carefully how you would attempt to prove that 
they are the same. 

11.21 (Operators, 20 min.) Explain Table 1l.17 (see next page). 

11.22 (Unary reduction, 10 min.) Complete Table 11.18 (see next page). 

11.23 (Coerced ports, 20 min.) Perform some experiments to test the behavior 
of your Verilog simulator in the following situation: "NOTE-A port that is 
declared as input (output) but used as an output (input) or inout may be coerced to 
inout. If not coerced to inout, a warning must be issued" [Veri log LRM 12.3.6]. 

563



548 CHAPTER 11 VERILOG HDL 

TABLE 11.17 Unary operators (Problem 11.21). 

(a) 

Code module unary; 

reg [4:0] u; 
initial u=! 'bOllz; 

initial 

$display("%b",u); 

endmodule 

Output OOOOx 

(b) 

module unary; 

wire u; 

assign u=!'bOllz; 

initial 

$display("%b",u); 

endmodule 

z 

TABLE 11.18 Unary reduction (Problem 11.22). 

Operand 

4'bOOOO 

4'bllll 

4'bOlxO 

4'bzOOO 

& -& 

(c) 

module unary; 

wire u; 

assign u=! 'bOllz; 

initial 

#1 $display("%b",u); 

endmodule 

x 

-I 

(d) 

module unary; 

wire u; 
assign u=&'bl; 

initial 

#1 $display("%b",u); 

endmodule 

o 

11.24 (*Difficult delay code, 20 min.) Perform some experiments to explain 
what this difficult to interpret statement does: 

#2 a <= repeat(2) @(posedge elk) d; 

11.25 (Fork-join, 20 min.) Write some test code to compare the behavior of the 
code fragments shown in Table 11.19. 

TABLE 11.19 Fork-and-join examples for Problem 11.25. 

(a) (b) (c) (d) 

Code fragment fork fork fork fork 

a = bo a <= b; , #1 a b' a = #1 bo , , 
b = ao b <= ao , , #1 b a; b = #1 a; 
join join join join 

11.26 (Blocking and nonblocking assignments, 20 min.) Simulate the following 
code and explain the results: 

module nonbloeking; reg Y; 

always begin Y <= #10 I;Y <= #20 0;#10; end 

always begin $display($time,,"Y=",Y); #10; end 

564



initial #100 $finish; 
endmodule 

11.27 (*Flip-flop code, 10 min.) Explain why this flip-flop does not work: 

module Dff_Res_Bad(D,Q,Clock,Reset); 
output Q; input D,Clock,Reset; reg Q; wire D; 

11.15 PROBLEMS 549 

always @(posedge Clock) if (Reset !== 1) Q = D; always if (Reset 1) 

Q = 0; 

end endmodule 

11.28 (D flip-flop, 10 min.) Test the following D flip-flop model: 

module DFF (D, Q, Clk, Rst); 
parameter width = I, reset value = 0; 

input [width-l:0] D; output [width-l:0] Q; reg [width-l:0] Q; 

input Clk,Rst; 

initial Q = {width{I'bx}}; 
always @ ( posedge Clk or negedge Rst ) 
if ( Rst == 0 ) Q <= #1 reset_value; else Q <= #1 D; 

endmodule 

11.29 (D flip-flop with scan, 10 min.) Explain the following model: 

module DFFSCAN (D, Q, Clk, Rst, ScEn, ScIn, ScOut); 

parameter width = I, reset_value = 0; 

input [width-l:0] D; output [width-l:0] Q; reg [width-1:0] Q; 
input Clk,Rst,ScEn,ScIn; output ScOut; 

initial Q = {width{I'bx}}; 

always @ ( posedge 

if ( Rst == 0 ) 
else if (ScEn) 

else 
end 

Clk or neg edge Rst ) begin 

Q <= #1 reset_value; 

Q <= #1 {Q,ScIn}; 
Q <= #1 D; 

assign ScOut=Q[width-l]; 
endmodule 

11.30 (Pads, 30 min.) Test the following model for a bidirectional I/O pad: 

module PadBidir (C, Pad, I, Oen); II active low enable 
parameter width=I, pinNumbers="I, \strength =1, level=ICMOS", 

pull=" none ", externaIVdd=5; 
output [width-l:0] C; inout [width-l:0] Pad; input [width-l:0] I; 

input Oen; 
assign #1 Pad = Oen ? {width{I'bz}} : I; 

assign #1 C = Pad; 

endmodule 

Construct and test a model for a three-state pad from the above. 

11.31 (Loops, 15 min.) Explain and correct the problem in the following code: 

module Loop_Bad; reg [3:0] i; reg [31:0] DBus; 

initial DBus = 0; 

565



550 CHAPTER 11 VERILOG HDL 

initial begin #1; for (i=O; i<=15; i=i+1) DBus[i]=l; end 
initial begin 

$display("DBus = %b",DBus); #2; $display("DBus = %b",DBUS); $stop; 

end endmodule 

11.32 (Arithmetic, 10 min.) Explain the following: 

integer IntA; 

IntA = -12 I 3; II result is -4 
IntA = -'d 12 I 3; II result is 1431655761 

Determine and explain the values of intA and regA after each assignment 
statement in the following code: 

integer intA; reg [15:0] regA; 

intA = -4'd12; regA = intA/3; regA = -4'd12; 
intA = regA/3; intA = -4'd12/3; regA = -12/3; 

11.33 (Arithmetic overflow, 30 min.) Consider the following: 

reg [7:0] a, b, sum; sum = (a + b) » 1; 

The intent is to add a and b, which may cause an overflow, and then shift sum to 
keep the carry bit. However, because all operands in the expression are of an 8-bit 
width, the expression (a + b) is only 8 bits wide, and we lose the carry bit before 
the shift. One solution forces the expression (a + b) to use at least 9 bits. For 
example, adding an integer value of 0 to the expression will cause the evaluation to 
be performed using the bit size of integers [LRM 4.4.2]. Check to see if the follow­
ing alternatives produce the intended result: 

sum (a + b + 0) » 1; 

sum {O,a} + {O,b} » 1; 

11.34 (*Data slip, 60 min.) Table 11.20 shows several different ways to model 
the connection of a 2-bit shift register. Determine which of these models suffer from 
data slip. In each case show your simulation results. 

11.35 (**Timing, 30 min.) What does a simulator display for the following? 

assign p = q; initial begin q = 0; #1 q = 1; $display(p); end 

What is the problem here? Conduct some experiments to illustrate your answer. 

11.36 (Port connections, 10 min.) Explain the following declaration: 

module test (.a(c), .b(c»; 

11.37 (**Functions and tasks, 30 min.) Experiment to determine whether invo­
cation of a function (or task) behaves as a blocking or nonblocking assignment. 

11 .38 (Nonblocking assignments, 10 min.) Predict the output of the following model: 

module e1; reg a, b, c; 

initial begin a = 0; b = 1; c = 0; end 

always c = #5 -c; always @(posedge c) begin a <= b; b <= a; end 
endmodule 

566



11.15 PROBLEMS 551 

TABLE 11.20 Data slip (Problem 11.34). 

Alternative 

1 always @(posedge elk) begin Q2 Ql; Ql Dl; end 

2 always @(posedge elk) begin Ql Dl; Q2 Ql; end 

3 always @(posedge elk) begin Ql <= #1 Dl; Q2 <= #1 Ql; end 

4 always @(posedge elk) Ql Dl; always @(posedge elk) Q2 Ql; 

5 always @(posedge elk) Ql #1 Dl; always @(posedge elk) Q2 = #1 Ql; 

6 always @(posedge elk) #1 Ql Dl; always @(posedge elk) #1 Q2 = Ql; 

7 always @(posedge elk) Ql <= Dl; always @(posedge elk) Q2 <= Ql; 

8 module FF 1 (elk, Dl, Ql); always @(posedge elk) Ql Dl; endmodule 
module FF 2 (elk, Ql, Q2) ; always @(posedge elk) Q2 Ql; endmodule 

9 module FF 1 (elk, Dl, Ql); always @(posedge elk) Ql <= Dl ; endmodule 
module FF 2 (elk, Ql, Q2) ; always @(posedge elk) Q2 <= Ql; endmodule 

11.39 (Assignment timing, 20 min.) Predict the output of the following module 
and explain the timing of the assignments: 

module e2j reg a, b, c, d, e, f; 

initial begin a = #10 1; b = #2 0; c #4 1; end 
initial begin d <= #10 1; e <= #2 0; f <= #4 1; end 
endmodule 

11.40 (Swap, 10 min.) Explain carefully what happens in the following code: 

module e3; reg a, b; 

initial begin a = 0; b = 1; a <= b; b <= a; end 
endmodule 

11.41 (*Overwriting, 30 min.) Explain the problem in the following code, 
determine what happens, and conduct some experiments to explore the problem fur­
ther: 

module ml; reg a; 

initial a = 1; 
initial begin a <= #4 0; a <= #4 1; end 

endmodule 

11.42 ("'Multiple assignments, 30 min.) Explain what happens in the following: 

module m2; reg rl; reg [2:0] i; 

initial begin 

rl = 0; for (i = 0; i <= 5; i = i+l) rl <= # (i*10) i[O]; end 

endmodule 

11.43 (Timing, 30min) Write a model to mimic the behavior of a traffic light 
signal. The clock input is 1 MHz. You are to drive the lights as follows (times that 
the lights are on are shown in parentheses): green (60s), yellow (1 s), red (60s). 

Data slip? 

y 

N 

567



552 CHAPTER 11 VERILOG HDL 

11.44 (Port declarations, 30 min.) The rules for port declarations are as follows: 
"The port expression in the port definition can be one of the following: 

• a simple identifier 

• a bit-select of a vector declared within the module 

• a part-select of a vector declared within the module 

• a concatenation of any of the above 

Each port listed in the module definition's list of ports shall be declared in the 
body of the module as an input, output, or inout (bidirectional). This is in addition to 
any other declaration for a particular port-for example, a reg, or wire. A port can 
be declared in both a port declaration and a net or register declaration. If a port is 
declared as a vector, the range specification between the two declarations of a port 
shall be identical" [Verilog LRM 12.3.2]. 

Compile the following and comment (you may be surprised at the results): 

module stop ()i initial #1 $finishi endmodule 

module Outs 1 (a)i output [3:0] ai reg [3:0] ai 

initial a <= 4'blOxZi endmodule 

module Outs 2 (a) i output [2: 0] a· , reg [3: 0] ai -
initial a <= 4'blOxZi endmodule 

module Outs 3 (a) i output - [3: 0] ai reg [2: 0] ai 
initial a <= 4'blOxZi endmodule 

module Outs 4 (a) i output - [2: 0] ai reg [2: 0] ai 
initial a <= 4'blOxZi endmodule 

module Outs 5 (a) i - output a· , reg [3: 0] ai 
initial a <= 4'blOxZi endmodule 

module Outs_6 (a[2:0])i output [3:0] ai reg [3:0] ai 

initial a <= 4'blOxZi endmodule 

module Outs_7 (a[l])i output [3:0] ai reg [3:0] ai 
initial a <= 4'blOxZi endmodule 

module Outs_8 (a[l]); output a; reg [3:0] a; 

always a <= 4'blOxz; endmodule 

11.45 (Specify blocks, 30 min.) 

3. Describe the pin-to-pin timing of the following module. Build a testbench to 
demonstrate your explanation. 

module XOR_spec (a, b, Z)i input a, b: output Zi xor xl (z, a, b); 
specify 

specparam tnr = 1, tnf = 2 specparam tir = 3, tif = 4; 

if ( a) (b => z) (tir, tif); if ( b) (a => z) (tir, tif); 

if (-a)(b => z) = (tnr, tnf); if (-b)(a => z) = (tnr, tnf); 
endspecify 

endmodule 

b. Write and test a module for a 2:1 MUX with inputs AO, AI, and sel; output 
z; and the following delays: AO to Z: 0.3ns (rise) and OAns (fall); Al to Z: 

0.2ns (rise) and 0.3 ns (fall); sel to z=O.S ns. 

568



11.15 PROBLEMS 553 

11.46 (Design contest, **60 min.) In 1995 John Cooley organized a contest 
between VHDL and Verilog for ASIC designers. The goal was to design the fastest 
9-bit counter in under one hour using Synopsys synthesis tools and an LSI Logic 
vendor technology library. The Verilog interface is as follows: 

module counter (data_in, up, down, clock, 
count_out, carry_out, borrow_out, parity_out); 

output [8:0] count_out; 
output carry_out, borrow_out, parity_out; 

input [8:0] data_in; input clock, up, down; 

reg [8:0] count_out; reg carry_out, borrow_out, parity_out; 

II Insert your design here. 
endmodule 

The counter is positive-edge triggered, counts up with up= • l' and down with 
down= • 1 • . The contestants had the advantage of a predefined testbench with a set of 
test vectors; you do not. Design a model for the counter and a testbench. 

11.47 (Timing checks, ***60 min.+) Flip-flops with preset and clear require 
more complex timing -check constructs than those described in Section 11.13.3. The 
following BNF defines a controlled timing-check event: 

controlled_timing_check_event ::= timing_check_event_control 
specify_terminal_descriptor [ &&& timing_check_condition 

timing_check_condition ::= 

scalar_expression I -scalar_expression 
scalar_expression == scalar constant 
scalar_expression === scalar constant 

scalar_expression != scalar constant 
scalar_expression !== scalar constant 

The scalar expression that forms the conditioning signal must be a scalar net, or 
else the least significant bit of a vector net or a multibit expression value is used. 
The comparisons in the timing check condition may be deterministic (using ===, 
! ==, -, or no operator) or nondeterministic (using == or ! =). For deterministic 
comparisons, an . x' result disables the timing check. For nondeterministic compari­
sons, an . x' result enables the timing check. 

As an example the following unconditioned timing check, 

$setup(data, posedge clock, 10); 

performs a setup timing check on every positive edge of clock, as was explained in 
Section 11.13.3. The following controlled timing check is enabled only when clear 

is high, which is what is required in a flip-l1op model, for example. 

$setup(data, posedge clock &&& clear, 10); 

The next example shows two alternative ways to enable a timing check only 
when clear is low. The second method uses a nondeterministic operator. 

$setup(data,posedge clock &&&(-clear),10)i II clear=x disables check 

$setup(data,posedge clock &&&(clear==O),10); II clear=x enables check 

569



------- ~----

554 CHAPTER 11 VERILOG HDL 

To perform the setup check only when clear and preset signals are high, you 
can add a gate outside the specify block, as follows: 

and g1(clear_and_preset, clear, set); 

A controlled timing check event can then use this clear_and _preset signal: 

$setup(data, posedge clock &&& clear_and_preset, 10); 

Use the preceding techniques to expand the D flip-flop model, dff_udp, from 
Section 11.13.3 to include asynchronous active-low preset and clear signals as well 
as an output, qbar. Use the following module interface: 

module dff(q, qbar, clock, data, preset, clear); 

11.48 (Verilog BNF, 30 min.) Here is the "old" BNF definition of a sequential 
block (used in the Verilog reference manuals and the OVI LRM). Are there any dif­
ferences from the "new" version? 

<sequential_block> ::= 

begin <statement>* end 

or 

begin: <block_IDENTIFIER> <block declaration>* 
<statement>* 

end 

<block_declaration> ::= parameter <list_of_param_assignment>; 
or reg <range>? <attribute_decl>* 

<list_of_register_variable>; 
or integer <attribute decl>* <list_of_register_variable>; 

or real <attribute_decI>* <list_of_variable_IDENTIFIER>; 

or time <attribute_decI>* <list_of_register_variable>; 

or event <attribute decl>* <list_of_event IDENTIFIER>; 

<statement> :: = 
<blocking_assignment>; 

or <non-blocking_assignment>; 
or if«expression» <statement_or null> 

<else <statement or null> >? 

or <case or casez or casex> 

«expression» <case item>+ endcase 
or forever <statement> 

or repeat«expression» <statement> 
or while«expression» <statement> 
or for«assignment>; 

<expression>; <assignment» <statement> 
or wait«expression» <statement_or_null> 
or disable <task_IDENTIFIER>; 

or disable <block_IDENTIFIER>; 

or force <assignment>; or release <value>; 
or <timing_control> <statement_or_null> 
or -> <event IDENTIFIER>; 

570



or <sequential_block> or <parallel_block> 
or <task_enable> or <system_task_enable> 

11.15 PROBLEMS 555 

11.49 (Conditional compiler directives, 30 min.) The conditional compiler 
directives: 'define, 'ifdef, 'else, 'endif, and 'undef; work much as in C. 
Write and compile a module that models an AND gate as I z = a&b I if the variable 
behavioral is defined. If behavioral is not defined, then model the AND gate as 
I and al (z, a, b) I • 

11.50 (*Macros, 30 min.) According to the IEEE Verilog LRM [16.3.1] you can 
create a macro with parameters using 'define, as the following example illus­
trates. This is a particularly difficult area of compliance.· Does your software allow 
the following? You may have to experiment considerably to get this to work. Hint: 
Check to see if your software is substituting for the macro text literally or if it does 
in fact substitute for parameters. 

'define M_MAX(a, b) ((a) > (b) ? (a) : (b)) 
'define M_ADD(a,b) (a+b) 

module macro; 

reg ml, m2, m3, sO, sl; 

'define var_nand(delay) nand *delay 
'var_nand (2) g121 (q21, n10, nIl); 

'var_nand (3) g122 (q22, n10, nIl); 
initial begin sO=O; sl=l; 

m1 = 'M_MAX (sO, sl); m2 = 'M_ADD (sO,sl); m3 = sO > sl ? sO sl; 
end 

initial *1 $display(" m1=",m1," m2=",m2," m3=",m3); 
endmodule 

11.51 (**Verilog hazards, 30 min.) The MTI simulator, VSIM, is capable of 
detecting the following kinds of Verilog hazards: 

1. WRITE/WRITE: Two processes writing to the same variable at the same time. 

2. READ/WRITE: One process reading a variable at the same time it is being 
written to by another process. VSIM calls this a READ/WRITE hazard if it 
executed the read first. 

3. WRITE/READ: Same as a READ/WRITE hazard except that VSIM executed 
the write first. 

For example, the following log shows how to simulate Verilog code in hazard 
mode for the example in Section 11.6.2: 

> vlib work 

> vlog -hazards data_slip_1.v 
> vsim -c -hazards data_slip_1 

... (lines omitted) ... 

* 100 0 I 1 x 
* ** Error: Write/Read hazard detected on Q1 (ALWAYS 3 followed by 
ALWAYS 4) 
* Time: 150 ns Iteration: 1 Instance:/ 

571



556 CHAPTER 11 VERI LOG HDL 

TABLE 11.21 

input inO in1 

5 6 7 

4 7 6 

1 1 0 

0 0 1 

# 150 1 1 1 1 

... (lines omitted) ... 

There are a total of five hazards in the module data slip_I, four are on Q1, 

but there is another. If you correct the code as suggested in Section 11.6.2 and run 
VSIM, you will find this fifth hazard. If you do not have access to MTI's simulator, 
can you spot this additional read/write hazard? Hint: It occurs at time zero on elk. 

Explain. 

11.15.1 The Viterbi Decoder 
11.52 (Understanding, 20 min.) Calculate the values shown in Table 11.8 if we 

use 4 bits for the distance measures instead of 3. 

11.53 (Testbenches) 

a. (30 min.) Write a testbench for the encoder, vi terbi encode, in 
Section 11.12 and reproduce the results of Table 11.7. 

b. (30 min.) Write a testbench for the receiver front-end viterbi_distances 

and reproduce the results of Table 11.9 (you can write this stand-alone or use 
the answer to part a to generate the input). Hint: You will need a model for a 
D flip-flop. The sequence of results is more important than the exact timing. 
If you do have timing differences, explain them carefully. 

11.54 (Things go wrong, 60 min.) Things do not always go as smoothly as the 
examples in this book might indicate. Suppose you accidentally invert the sense of 
the reset for the D flip-flops in the encoder. Simulate the output of the faulty encoder 
with an input sequence Xn = 0, 1,2, 3, ... (in other words run the encoder with the 
flip-flops being reset continually). The output sequence looks reasonable (you 
should find that it is Y n = 0, 2, 4, 6, ... ). Explain this result using the state diagram of 
Figure 11.3. If you had constructed a testbench for the entire decoder and did not 
check the intermediate signals against expected values you would probably never 
find this error. 

11.55 (Subset decoder) Table 11.21 shows the inputs and outputs from the first­
stage of the Viterbi decoder, the subset decoder. Calculate the expected output and 
then confirm your predictions using simulation. 

Subset decoder (Problem 11.55). 

in2 in3 in4 in5 in6 in7 sO s1 s2 s3 soutO sout1 sout2 sout3 

6 4 1 0 4 1 0 1 4 

4 1 0 1 4 6 0 1 4 1 

1 4 6 7 6 4 1 0 4 

4 6 7 6 4 1 0 1 4 1 

572



11.16 BIBLIOGRAPHY 557 

11.16 Bibliography 

The IEEE Verilog LRM [1995] is less intimidating than the IEEE VHDL LRM, 
because it is based on the OVI LRM, which in turn was based on the Verilog-XL 
simulator reference manual. Thus it has more of a "User's Guide" flavor and is 
required reading for serious Verilog users. It is the only source for detailed informa­
tion on the PLI. 

Phil Moorby was one of the original architects of the Verilog language. The 
Thomas and Moorby text is a good introduction to Verilog [1991]. The code exam­
ples from this book can be obtained from the World Wide Web. Palnitkar's book 
includes an example of the use of the PLI routines [1996]. 

Open Verilog International (OVI) has a Web site maintained by Chronologic 
(http://www.chronologic.com/ovi) with membership information and addresses 
and an ftp site maintained by META-Software (ftp:1 Iftp.metasw.com in 
Ipub/oVI/). OVI sells reference material, including proceedings from the Interna­
tional Verilog HDL Conference. 

The newsgroup comp .lang. ver ilog (with a FAQ-frequently asked questions) is 
accessible from a number of online sources. The FAQ includes a list of reference materials 
and book reviews. Cray Research maintained an archive for comp . lang . verilog going 
back to 1993 but this was lost in January 1997 and is still currently unavailable. Cadence 
has a discussion group at talkverilog@cadence.com. Wellspring Solutions offers 
VeriWell, a no-cost, limited capability, Verilog simulator for UNIX, PC, and Macintosh 
platforms. 

There is a free, "copylefted" Verilog simulator, vbs, written by Jimen Ching 
and Lay Hoon Tho as part of their Master's theses at the University of Hawaii, 
which is part of the comp .lang. veri log archive. The package includes explana­
tions of the mechanics of a digital event-driven simulator, including event queues 
and time wheels. 

More technical references are included as part of Appendix B. 

11 ,,17 References 

IEEE Std 1364-95, Verilog LRM. 1995. The Institute of Electrical and Electronics Engineers. 
Available from The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th 
Street, New York, NY 100l7 USA. [cited on p. 479] 

Palnitkar, S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Upper Saddle River, 
NJ: Prentice-Hall, 396 p. ISBN 0-13-451675-3. 

Thomas, D. E., and P. Moorby. 1991. The Verilog Hard,;vare Description Language. 1st ed. Dor­
drecht, Netherlands: Kluwer, 223 p. ISBN 0-7923-9126-8, TK7885.7.T48 (1st ed.). ISBN 0-
7923-9523-9 (2nd ed.). 

573



LOGIC 
SYNTHESIS 

12.1 A Logic-Synthesis Example 

12.2 A Comparator/MUX 

12.3 Inside a Logic Synthesizer 

12.9 The Multiplier 

12.10 The Engine Controller 

12.11 Performance-Driven Synthesis 

12.4 Synthesis of the Viterbi Decoder 12.12 Optimization of the Viterbi Decoder 

12.5 Verilog and Logic Synthesis 12.13 Summary 

12.6 VHDL and Logic Synthesis 12.14 Problems 

12.7 Finite-State Machine Synthesis 12.15 Bibliography 

12.8 Memory Synthesis 12.16 References 

Logic synthesis provides a link between an HDL (Verilog or VHDL) and a netlist 
similarly to the way that a C compiler provides a link between C code and machine 
language. However, the parallel is not exact. C was developed for use with compil­
ers, but HDLs were not developed for use with logic-synthesis tools. Verilog was 
designed as a simulation language and VHDL was designed as a documentation and 
description language. Both Verilog and VHDL were developed in the early 1980s, 
well before the introduction of commercial logic-synthesis software. Because these 
HDLs are now being used for purposes for which they were not intended, the state 
of the art in logic synthesis falls far short of that for computer-language compilers. 
Logic synthesis forces designers to use a subset of both Verilog and VHDL. This 
makes using logic synthesis more difficult rather than less difficult. The current state 
of synthesis software is rather like learning a foreign language, and then having to 
talk to a five-year-old. When talking to a logic-synthesis tool using an HDL, it is 
necessary to think like hardware, anticipating the netlist that logic synthesis will 
produce. This situation should improve in the next five years, as logic synthesizers 
mature. 

559 

574



560 CHAPTER 12 LOGIC SYNTHESIS 

Designers use graphic or text design entry to create an HDL behavioral model, 
which does not contain any references to logic cells. State diagrams, graphical data­
path descriptions, truth tables, RAMIROM templates, and gate-level schematics may 
be used together with an HDL description. Once a behavioral HDL model is com­
plete, two items are required to proceed: a logic synthesizer (software and docu­
mentation) and a cell library (the logic cells-NAND gates and such) that is called 
the target library. Most synthesis software companies produce only software. Most 
ASIC vendors produce only cell libraries. The behavioral model is simulated to 
check that the design meets the specifications and then the logic synthesizer is used 
to generate a netlist, a structural model, which contains only references to logic 
cells. There is no standard format for the netlists that logic synthesis produces, but 
ED IF is widely used. Some logic-synthesis tools can also create structural HDL 
(Verilog, VHDL, or both). Following logic synthesis the design is simulated again, 
and the results are compared with the earlier behavioral simulation. Layout for any 
type of ASIC may be generated from the structural model produced by logic synthe­
sis. 

12.1 A Logic-Synthesis Example 

As an example of logic synthesis, we will compare two implementations of the 
Viterbi decoder described in Chapter 11. Both versions used logic cells from a VLSI 
Technology cell library. The first ASIC was designed by hand using schematic entry 
and a data book. The second version of the ASIC (the one that was fabricated) used 
Verilog for design entry and a logic synthesizer. Table 12.1 compares the two ver­
sions. The synthesized ASIC is 16 percent smaller and 13 percent faster than the 
hand-designed version. 

How does logic synthesis generate smaller and faster circuits? 
Figure 12.1 shows the schematic for a hand-designed comparator and MUX used in 
the Viterbi decoder ASIC, called here the comparator/MUX example. The Verilog 
code and the schematic in Figure 12.1 describe the same function. The comparison, 

TABLE 12.1 A comparison of hand design with synthesis (using a 1.01lm VLSI Technology cell library). 

Path delay! No. of standard Chip area! 
ns(1) cells No. of transistors mils2(2) 

Hand design 41.6 1,359 16,545 21,877 

Synthesized design 36.3 1,493 11,946 18,322 

1These delays are under nominal operating conditions with no wiring capacitance. This is the only stage at 
which a comparison could be made because the hand design was not completed. 

575



12.2 ACOMPARATOR/MUX 561 

2Soth figures are initial layout estimates using default power-bus and signal routing widths. 

in Table 12.2, of the two design approaches shows that the synthesized version is 
smaller and faster than the hand design, even though the synthesized design uses 
more cells. 

II comp_mux.v 

a[2] --H-<I-+-\ 

b[2] --+-4>-1-1 

module comp_mux(a, b, outp)i 

input [2:0] a, bi 
output [2:0] outpi 

function [2:0] compare; 

input [2:0] ina, inb; 
begin a[ 1 ] -+--<1-+-\ 

b[1]--'--H 
if (ina <= inb) compare ina; 
else compare = inbi 

a [0] --+-4'"1"+1 

b[O] --+-1++-1 

end 
endfunction 

assign outp compare(a, b)i 

endmodule 

FIGURE 12.1 Schematic and HDL design entry. 

TABLE 12.2 Comparison of the comparator/MUX designs using a 1.01lm standard-cell library. 

Delay Ins No. of standard No. of transistors 
cells 

Hand design 4.3 12 116 

Synthesized 2.9 15 66 

12.2 A Comparator/MUX 

With the Veri log behavioral model of Figure 12.1 as the input, logic-synthesis soft­
ware generates logic that performs the same function as the Verilog. The software 
then optimizes the logic to produce a structural model, which references logic cells 
from the cell library and details their connections. 

Before running a logic synthesizer, it is necessary to set up paths and startup files 
(synopsys _ dc. setup, compass. boo, view. ini, or similar). These files set the tar­
get library and directory locations. Normally it is easier to run logic synthesis in text 

Area Imils2 

68.68 

46.43 

576



562 CHAPTER 12 LOGIC SYNTHESIS 

'timescale Ins / lOps 

module comp~ux_u (a, b, outp); 

input [2:0] a; input [2:0] b; 

output [2:0] outp; 

supplyl VDD; supplyO VSS; 

inOldO u2 (.I(b[l]), .ZN(u2 ZN)) ; -
nd02dO u3 ( . Al (a [ 1] ) , .A2 (u2_ZN) , .ZN(u3_ZN)); 

inOldO u4 (.I(a[l]), .ZN(u4_ZN)); 

nd02dO uS (.Al (u4_ZN), .A2 (b[ 1] ) , . ZN(u5_ZN)); 
inOldO u6 (. I (a[ 0]), .ZN(u6_ZN)); 
nd02dO u7 (.Al(u6_ZN) , .A2(u3_ZN) , .ZN(u7_ZN)); 

nd02dO u8 ( . Al (b [ 0 ] ) , .A2 (u3_ZN), . ZN(u8_ZN) ); 

nd03dO u9 (.Al(u5_ZN), .A2(u7_ZN), .A3(u8_ZN), 

.ZN(u9_ZN)) ; 

inOldO ulO (.I(a[2]), .ZN(ulO_ZN)); 

nd02dO ull (.Al(ulO_ZN), .A2(u9 ZN), .ZN(ull_ZN)); 

nd02dO u12 (.Al(b[2]), .A2(u9 ZN), .ZN(u12_ZN)); 

nd02dO u13 (.Al(ulO_ZN), .A2(b[2]), .ZN(u13_ZN)); 

nd03dO u14 (.Al(ull ZN), .A2(u12 ZN), .A3(u13 ZN), 

.ZN(u14 ZN)); 

nd02dO u15 

inOldO u16 

nd02dO u17 

nd02dO u18 

nd02dO u19 

nd02dO u20 

nd02dO u21 

nd02dO u22 

nd02dO u23 

nd02dO u24 

endmodule 

(.Al(a[2]), .A2(u14_ZN), .ZN(u15_ZN)); 

(.I(u14_ZN), .ZN(u16_ZN)); 

(.Al(b[2]), .A2(u16_ZN), .ZN(u17_ZN)); 

(.Al(u15_ZN), :A2(u17_ZN), .ZN(outp[2])); 

(.Al(a[l]), .A2(u14_ZN), .ZN(u19_ZN)); 

(.Al(b[l]), .A2(u16_ZN), .ZN(u20_ZN)); 

(.A1(u19_ZN), .A2(u20_ZN), .ZN(outp[l])); 

(.A1(a[O]), .A2(u14_ZN), .ZN(u22_ZN)); 

(.A1(b[O]), .A2(u16 ZN), .ZN(u23_ZN)); 

(.A1(u22_ZN), .A2(u23_ZN), .ZN(outp[O])); 

b[1 ] 

a[1] a[1] a[O] 

outp[1] outp[2] 

b[1 ] 

logic cell names 

INV (inOldO) 

NAND2 (nd02dO) 
NAND3 (nd03dO) 

a[O] 

outp[O] 

FIGURE 12.2 The comparator/MUX after logic synthesis, but before logic optimization. 
This figure shows the structural netlist, comp _ mux _ u • v, and its derived schematic. 

mode using a script. A script is a text file that directs a software tool to execute a 
series of synthesis commands (we call this a synthesis run). Figure 12.2 shows a 
structural netlist, comp _ mux _ u. v, and the derived schematic after logic synthesis, but 

577



12.2 A COMPARATOR/MUX 563 

'timescale Ins / lOps 
module comp_mux_o (a, b, outp); 

input [2:0] a; input [2:0] b; 

output [2:0] outp; 
supplyl VDD; supplyO VSS; 

inOldO B1 il (.I(a[2]), 

· ZN(BI_il_ZN»; 
inOldO B1_i2 (.I(b[l]), 

.ZN(BI_i2_ZN» ; 
oaOldl B1_i3 (.AI(a[O]), 

.A2(BI_i4_ZN), .BI(B1_i2_ZN), 

.B2(a[1]), .ZN(B1_i3_Z; 

fnOSdl B1_i4 (.A1(a[1]), 

.B1(b[1]), .ZN(B1_i4_ZN)}; 
fn02d1 B1_iS (.A(B1_i3_ZN), 

.B(B1 i1 ZN), .C(b[2]}, 

· ZN(B1_i5_ZN}}; 
mx21d1 B1_i6 (.IO(a[O]), 

.Il(b[O]}, .S(B1_iS_ZN}, 

· Z (outp [ 0 ] ) } ; 
mx21d1 B1_i7 (.IO(a[I]), 
.I1(b[1]}, .S(B1_iS_ZN}, 

.Z(outp[1]}}; 
mx21dl B1_i8 (.IO(a[2]), 

.Il(b[2]}, .S(B1_iS_ZN}, 

· Z (outp [ 2 ] ) } ; 

endmodule 

b[1 ] 

INV 
(in01dO) 

a[2] 

INV 
(inOldO) 

a[1 ] 

b[1 ] 

NOR1-1 
(fn05dl) 

a[O] 

OAI22 
(oaOldl) 

b[2] critical path 

sel 

b[O] a[O] 

MUX 
'-----T-......J (mx2 1 dl) 

outp[O] 

b[2] a[2] 

outp[2] 

a[1 ] 

b[1] a[1] 

outp[1 ] 

FIGURE 12.3 The comparator/MUX after logic synthesis and logic optimization with the 
default settings. This figure shows the structural netlist, comp mux o. v, and its derived 
schematic. - -

before any logic optimization. A derived schematic is created by software from a 
structural netlist (as opposed to a schematic drawn by hand). Figure 12.3 shows the 
structural netlist, comp mux o. v, and the derived schematic after logic optimization - -
is performed (with the default settings). Figures 12.2 and 12.3 show the results of the 
two separate steps: logic synthesis and logic optimization. Confusingly, the whole pro-

578



564 CHAPTER 12 LOGIC SYNTHESIS 

cess, which includes synthesis and optimization (and other steps as well), is refened to 
as logic synthesis. We also refer to the software that performs all of these steps (even 
if the software consists of more than one program) as a logic synthesizer. 

Logic synthesis parses (in a process sometimes called analysis) and translates 
(sometimes called elaboration) the input HDL to a data structure. This data structure 
is then converted to a network of generic logic cells. For example, the network in 
Figure 12.2 uses NAND gates (each with three or fewer inputs in this case) and invert­
ers. This network of generic logic cells is technology-independent since cell libraries 
in any technology normally contain NAND gates and inverters. The next step, logic 
optimization, attempts to improve this technology-independent network under the 
controls of the designer. The output of the optimization step is an optimized, but still 
technology-independent, network. Finally, in the logic-mapping step, the synthesizer 
maps the optimized logic to a specified technology-dependent target cell library. 
Figure 12.3 shows the results of using a standard-cell library as the target. 

Text reports such as the one shown in Table 12.3 may be the only output that the 
designer sees from the logic-synthesis tool. Often, synthesized ASIC netlists and the 
derived schematics containing thousands of logic cells are far too large to follow. To 
make things even more difficult, the net names and instance names in synthesized 
netlists are automatically generated. This makes it hard to see which lines of code in 
the HDL generated which logic cells in the synthesized netlist or derived schematic. 

In the comparator/MUX example the derived schematics are simple enough 
that, with hindsight, it is clear that the XOR logic cell used in the hand design is log­
ically inefficient. Using XOR logic cells does, however, result in the simple sche­
matic of Figure 12.1. The synthesized version of the comparator/MUX in 
Figure 12.3 uses complex combinational logic cells that are logically efficient, but 
the schematic is not as easy to read. Of course, the computer does not care about 
this-and neither do we since we usually never see the schematic. 

Which version is best-the hand-designed or the synthesized version? 
Table 12.3 shows statIstIcs generated by the logic synthesizer for the 
comparator/MUX. To calculate the performance of each circuit that it evaluates dur­
ing synthesis, there is a timing-analysis tool (also known as a timing engine) built 
into the logic synthesizer. The timing-analysis tool reports that the critical path in 
the optimized comparator/MUX is 2.43 ns. This critical path is highlighted on the 
derived schematic of Figure 12.3 and consists of the following delays: 

e 0.33 ns due to cell fn05dl, instance name Bl_i4, a two-input NOR cell with 
an inverted input. We might call this a NOR 1-1 or (A + B ')' logic cell. 

o 0.39ns due to cell oaOldl, instance name Bl_i3, an OAI22 logic cell. 

o 1.03 ns due to logic cell fn02dl, instance name Bl_ i5, a three-input major­
ity function, MAJ3 (A, B, C). 

• 0.68 ns due to logic cell mx21dl, instance name Bl_ i6, a 2: 1 MUX. 

(In this cell library the' dl' suffix indicates normal drive strength.) 

579



12.2 ACOMPARATOR/MUX 565 

TABLE 12.3 Reports from the logic synthesizer for the Veri log version of the comparator/MUX. 

Command 

> synthesize 

> optimize 

> report 

timing 

Cell Name 

---------
inOldO 

nd02dO 

nd03dO 

---------
Totals: 

Cell Name 

fn02dl 

fnOSdl 

inOldO 

mx21dl 

oaOldl 

Totals: 

Num 

lnsts 

5 

16 

2 

23 

Num 

lnsts 

1 

1 

2 

3 

1 

8 

instance name 

inPin --> outPin 

a[l] 

Bl i4 

Al --> ZN 

Bl i3 

A2 --> ZN 

Bl is 

A --> ZN 

Bl i6 

S --> Z 

Synthesizer output1 

Gate Count 

Per Cell 

----------
.8 

1.0 

1.3 

----------

Gate Count 

Per Cell 

1.8 

1.3 

.8 

2.2 

1.5 

Tot Gate 

Count 

--------

3.8 

16.0 

2.5 
--------

22.2 

Tot Gate 

Count 

--------

1.8 

1.3 

1.5 

6.8 

1.5 
--------

12.8 

Width 

Per Cell 

--------

7.2 

9.6 

12.0 
--------

Width 

Per Cell 

--------

16.8 

12.0 

7.2 

21.6 

14.4 

--------

incr arrival trs rampDel cap 

(ns) (ns) (ns) (pf) 

.00 .00 R .00 .04 

.33 .33 R .17 .03 

.39 .72 F .33 .06 

1. 03 1. 75 R .67 .ll 

.68 2.43 R .09 .02 

Total 

width 

--------

36.0 

153.6 

24.0 

--------

2l3.6 

Total 

Width 

16.8 

12.0 

14.4 

64.8 

14.4 

122.4 

cell 

comp_ m ... 

fnOSdl 

oaOldl 

fn02dl 

mx21dl 

1Cell Name = cell name from the ASIC library (Compass Passport, 0.6 /lm high-density, 5 V standard-cell 
library, cb60hd230); Num lnsts = number of cell instances; Gate Count Per Cell = equivalent gates with 
two-input NAND = 1 gate (with number of transistors"", equivalent gates x 4); width Per Cell = width in /lm 
(cell height in this library is 72 A or 21.6 /lm); iner = incremental delay time due to logic cell delay; 
trs = transition; R = rising; F = falling; rampDel = ramp delay; cap == capacitance at node or cell output pin. 

580



566 CHAPTER 12 LOGIC SYNTHESIS 

TABLE 12.4 Logic cell comparisons between the two comparator/MUX designs. 

C2. c: 
(j) "0 "0 
0 (1) (1) "0 
c: c: (J) (J) c: (1) 

"0 .~ 
::J ::J 0) .!::! 

(J) c: (J) (J) .- E E Ul - m Ul 
- c: 

..... Ul (1) 
c: .c: (1) c: 0) c: (1) ::i. 

>-~ .c: 
~ c: c:"O (1) ._ (1)"0 i:: .0 c: 

..... 
m .- "0 - (J) ca"O c: 
.2: "0 "0 (1) ~ (1) > Q) (1) "00) ~E (1) .!::! .- "0 .- N 0 (1) '-
::J (1) 

::J"O ::J '- - Ul Ul -~ Library 0- Ul Ul Ul o-Ul 0 ::J (1) o c: (1) ::J c: ::J (1) o-c: (1) (1) .c:"O 
2tPLH Ul .~ Ul..t: (1) m 

(1):5 
.c: .c:0) 

cell tpHL (1) - - $.c: - ..... "0 -'-- =Ul - c: ..... c: "0 "0 c: "0 Ul 
Cell type name1 Ins Ins m (1) (1) (1) >- m >- m >- ~ 

.- m .- (1) 
G U"O U Ul G.o G Ul ~.c: :s:"O 

Inverter in01dO 0.37 0.36 0.8 2 2 1.6 1.6 7.2 14.4 14.4 

2-input XOR xo02d1 0.93 0.62 1.8 3 5.3 16.8 50.4 

2-input AND an02d1 0.34 0.46 1.3 1.3 12.0 12.0 

3-inputAND an03d1 0.38 0.52 1.5 1.5 14.4 14.4 

4-inputAND an04d1 0.41 0.98 1.8 1.8 16.8 16.8 

3-input OR or03d1 0.60 0.44 1.8 1 1.8 16.8 16.8 

2-input MUX mx21d1 0.69 0.68 2.2 3 3 6.6 6.6 21.6 64.8 64.8 

AOl22 oa01d1 0.51 0.42 1.5 1 1.5 14.4 14.4 

MAJ3 fn02d1 0.84 0.81 1.8 1 1.8 16.8 16.8 

NOR1-1= (A'+B)' fn05d1 5 0.42 0.46 1.3 1 1.3 12.0 12.0 

Totals 12 8 19.8 12.8 189.6 122.4 

10.6 /lm, 5 V, high-density Compass standard-cell library, cb60hd230. 
2Average over all inputs with load capacitance equal to two standard loads (one standard load = 0.016 pF). 
3 2-input NAND = 1 gate equivalent. 
4Cell height is 72 Ie (21.6/lm). 
5Rise and fall delays are different for the two inputs, A and B, of this cell: tpLHA = 0.48 ns; tpLHB = 0.36 ns; 
tpHLA = 0.59 ns; tpHLB = 0.33 ns. 

Table 12.4 lists the name, type, the number of transistors, the area, and the delay 
of each logic cell used in the hand-designed and synthesized comparator/MUX. We 
could have performed this analysis by hand using the cell-library data book and a 
calculator or spreadsheet, but it would have been tedious work-especially calculat­
ing the delays. The computer is excellent at this type of bookkeeping. We can think 
of the timing engine of a logic synthesizer as a logic calculator. 

We see from Table 12.4 that the sum of the widths of all the cells used in the 
synthesized design (122.4 /-lm) is less than for the hand design (189.6/-lm). All the 
standard cells in a library are the same height, 72 A or 21.6 /-lm, in this case. Thus the 
synthesized design is smaller. We could estimate the critical path of the hand design 

581



12.2 A COMPARATOR/MUX 567 

using the information from the cell-library data book (summarized in Table 12.4). 
Instead we will use the timing engine in the logic synthesizer as a logic calculator to 
extract the critical path for the hand-designed comparator/MUX. 

Table 12.5 shows a timing analysis obtained by loading the hand-designed sche­
matic netlist into the logic synthesizer. Table 12.5 shows that the hand-designed 
(critical path 2.42 ns) and synthesized versions (critical path 2.43 ns) of the compar­
ator/MUX are approximately the same speed. Remember, though, that we used the 
default settings during logic optimization. Section 12.11 shows that the logic synthe­
sizer can do much better. 

TABLE 12.5 Timing report for the hand-designed version of the comparator/MUX using the logic 
synthesizer to calculate the critical path (compare with Table 12.3). 

Command Synthesizer output1 

> report instance name 
timing inPin --> outPin incr arrival trs rampDel cap cell 

(ns) (ns) (ns) (pf) 

----------------------------------------------------------------------
a[l] .00 .00 F .00 .04 

B1 i4 

Al --> ZN .61 .61 F .14 .03 

B1 i3 

A2 --> ZN .85 1. 46 F .19 .05 

B1 is -
A --> ZN .42 1. 88 F .23 .09 

B1 i6 

S --> Z .54 2.42 R .09 .02 

outp[O] .00 2.42 R .00 .00 

1 See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table. 

12.2.1 An Actel Version of the Comparator/MUX 
Figure 12.4 shows the results of targeting the comparator/MUX design to the Actel 
ACT 2/3 FPGA architecture. (The EDIF converter prefixes all internal nodes in this 
netlist with . block _ 0 _ DEF _NET _ '. This prefix was replaced with I n _ I in the 
Verilog file, camp _ mux _ actel_ 0 _ adl_ e. v, derived from the . adl netlist.) As can 
be seen by comparing the netlists and schematics in Figures 12.3 and 12.4, the results 
are very different between a standard-cell library and the Actel library. Each of the 
symbols in the schematic in Figure 12.4 represents the eight-input ACT 2/3 C-Module 
(see Figure 5.4a). The logic synthesizer, during the technology-mapping step, has 
decided which connections should be made to the inputs to the combinational logic 

comp_mux 

xo02d1 

an04d1 

or03d1 

mx21d1 

comp_mux 

582



568 CHAPTER 12 LOGIC SYNTHESIS 

'timescale I lls/IOO ps 

module camp_mux_actel_o (a, b, outp); 

input [2:0] a, b; output [2:0] outp; 

wire ll_l3, ll_17, ll_19, ll_21, n_23, ll_27, n_29, 

n_31, ll_62; 

CMS I 5 CMS(.DO(ll_31), .DI(n_62), .D2(a[0]), 

.D3(ll_62), .SOO(ll_62), .SOI(ll_13), .SI0(ll_23), 

.Sl1(ll_2l), .Y(outp[O]»; 

CMS I_2_Ci'1S(.DO(ll_31), .DI(ll_19), .D2(ll_62), 

.D3(ll_62), .SOO(ll_62), .SOI(b[I]), .SIO(ll_31), 

.SII(ll_l7), .Y(outp[l]»; 

CMS I_I_CM8( .DO(ll_31), .DI(ll_31), .D2(b[2]), 

.D3(ll_3l), .SOO(ll_62), .SOI(ll_31), .SIO(ll_31), 

.SII(a[2]), .Y(outp[2]»; 

VCC VCC_I(.Y(ll_62»; 

CM8 I_4_CM8( .DO(a[2]), .DI(ll_31), .D2(ll_62), 

.D3(ll_62), .SOO(ll_62), .SOI(b[2]), .SI0(ll_31), 

.Sl1(a[l]), .Y(ll_19»; 

CM8 I_7_CM8(.DO(b[I]), .Dl(b[2]), .D2(ll_31), 

.D3(ll_31), .SOO(a[2]), .SOI(b[I]), .SIO(ll_31), 

.Sl1(a[l]), .Y(ll_23»; 

CM8 I_9_CM8(.DO(ll_31), .DI(ll_31), .D2(a[I]), 

.D3(ll_31), .SOO(ll_62), .SOI(b[l]), .SIO(ll_31), 

.Sl1(b[O]), .Y(ll_27»; 

CM8 I_8_CM8( .DO(ll_29), .DI(ll_62), .D2(ll_31), 

.D3(a[2]), .SOO(ll_62), .SOI(ll_27), .SIO(n_31), 

.Sl1(b[2]), .Y(ll_13»; 

CM8 I_3_CM8(.DO(ll_31), .Dl(n_31), .D2(a[I]), 

.D3(n_31), .SOO(n_62), .SOI(a[2]), .SI0(n_31), 

.SII(b[2]), .Y(n_17»; 

CM8 I_6_CM8( .DO(b[2]), .DI(n_31), .D2(n_62), 

.D3(n_62), .SOO(n_62), .SOl(a[2]), .SI0(n_31), 

.Sl1(b[O]), .Y(ll_21»; 

CM8 I_IO_CM8( .DO(n_31), .DI(n_31), .D2(b[O]), 

.D3(n_31), .SOO(n_62), .SOl(n_31), .SIO(n_31), 

.Sl1(a[2]), .Y(n_29»; 

GND GND_I(.Y(n_31»; 

endmodule 

b[O] b[2] b[2] a[1] 

a;.[2R]:t;=======:r=a[f:
2

]Mf=====i1 n_ 62 

S10 SOO D3 Dl 
Sl1 SOl D2 DO 

eM8 

Y 

Actel ACT2/3 
C-Module 

a[1] a[2] 
b[2] 

outp[1 ] 

FIGURE 12.4 The Actel version of the comparator/MUX after logic optimization. This figure 
shows the structural netlist, camp _ mux _ actel_ a _ adl_ e. v, and its derived schematic. 

macro, eM8. The eM8 names and the ACT2/3 C-Module names (in parentheses) corre­
spond as follows: SOO(AO), SOl(BO), SlO(Al), Sll(A2), DO(DOO), Dl(D01), 

D2(DIO), D3(Dll), and Y(Y). 

583



12.3 INSIDE A LOGIC SYNTHESIZER 569 

12.3 I nside a Logic Synthesizer 

The logic synthesizer parses the Verilog of Figure 12.1 and builds an internal data 
structure (usually a graph represented by linked lists). Such an abstract representa­
tion is not easy to visualize, so we shall use pictures instead. The first Karnaugh 
map in Figure 12.5(a) is a picture that represents the sel signal (labeled as the input 
to the three MUXes in the schematic of Figure 12.1) for the case when the inputs are 
such that a[2]b[2] = 00. The signal sel is responsible for steering the smallest 
input, a or b, to the output of the comparator/MUX. We insert a tIt in the Karnaugh 
map (which will select the input b to be the output) whenever b is smaller than a. 
When a = b we do not care whether we select a or b (since a and b are equal), so 
we insert an txt, a don't care logic value, in the Karnaugh map of Figure 12.5(a). 
There are four Karnaugh maps for the signal sel, one each for the values 
a [ 2 ] b [ 2] = 00, a [ 2 ] b [ 2 ] = 01, a [ 2 ] b [ 2 ] = 10, and a [ 2 ] b [ 2 ] = II. 

Next, logic minimization tries to find a minimum cover for the Karnaugh 
maps-the smallest number of the largest possible circles to cover all the tIt s. One 
possible cover is shown in Figure 12.5(b). 

In order to understand the steps that follow we shall use some notation from the 
Berkeley Logic Interchange Format (BLIF) and from the Berkeley tools misII 

and sis. We shall use the logic operators (in decreasing order of their precedence): 
t ! t (negation), t * t (AND), t + t (OR). We shall also abbreviate Verilog signal 
names; writing a [2] as a2, for example. We can write equations for sel and the 
output signals of the comparator/MUX in the format that is produced by sis, as fol­
lows (this is the same format as input file for the Berkeley tool eqntott): 

sel = al*!b1*!b2 + aO*!b1*!b2 + aO*a1*!b2 + a1*!b1*a2 + aO*!b1*a2 + 

aO*a1*a2 + a2*!b2; 

outp2 !sel*a2 + sel*b2; 

outp1 !sel*a1 + sel*b1; 

outpO !sel*aO + sel*bO; 

[12.1) 

[12.2) 

[12.3) 

[ 12 .4) 

Equations 12.1-12.4 describe the synthesized network. There are seven prod­
uct terms in Eq. 12.1-the logic equation for sel (numbered and labeled in the 
drawing of the cover for sel in Figure 12.5). We shall keep track of the sel signal 
separately even though this is not exactly the way the logic synthesizer works-the 
synthesizer looks at all the signals at once. 

Logic optimization uses a series of factoring, substitution, and elimination 
steps to simplify the equations that represent the synthesized network. A simple 
analogy would be the simplification of arithmetic expressions. Thus, for example, 
we can simplify 189/315 to 0.6 by factoring the top and bottom lines and eliminat­
ing common factors as follows: (3 x 7 x 9) / (5 x 7 x 9) = 3 /5. Boolean algebra is 
more complicated than ordinary algebra. To make logic optimization tractable, most 
tools use algorithms based on algebraic factors rather than Boolean factors. 

584



570 CHAPTER 12 LOGIC SYNTHESIS 

(a) 

(b) 

sel 
a[O]b[O] 

00 01 11 10 
a[1]b[1] 00 x 0 x 1 

a[1 ]b[1] 

01 0 0 0 0 
a[2]b[2] = 00 

11 x 0 x 1 

10 1 1 1 1 

sel 
a[O]b[O] 

00 01 11 10 
a[1 ]b[1] 

00 1 1 1 1 
a[1 ]b[1] 

01 1 1 1 1 
a[2]b[2] = 10 

11 1 1 1 1 

10 1 1 1 1 

-aO 2 

l ._J 
I 

a2' b2' b 
I 
1 r- I 

~ 

a2'b2 

v ~ 
1 

a2 b2' 
7 

1 4 

" 
- bO-

2 

2 

5 
6 
3 

_t:_ ~"_= ___ :5i. : 

a2 b2 

sel 
a[O]b[O] 

00 01 11 10 

00 0 0 0 0 

01 0 0 0 0 
a[2]b[2] = 01 

11 0 0 0 0 

10 0 0 0 0 

sel 
a[O]b[O] 

00 01 11 10 

00 x 0 x 1 

01 0 0 0 0 
a[2]b[2] = 11 

11 x 0 x 1 

10 1 1 1 1 

sel = al*!bl*!b2 + aO*!bl*!b2 + aO*al*!b2 + al*!bl*a2 + aO*!bl*a2 + aO*al*a2 + a2*!bl 
0000=000010000 DD+DDDDD2DDDDDD+DDDDDD3DDDD+DDDDD4DDDDD+DDDDDsDDDDD+DD00060000+007 

FIGURE 12.5 Logic maps for the comparator/MUX. (a) If the input b is less than a, then 
sel is 11 ' . If a = b, then sel = 'x' (don't care). (b) A cover for sel. 

585



12.3 INSIDE A LOGIC SYNTHESIZER 571 

Logic optimization attempts to simplify the equations in the hope that this will 
also minimize area and maximize speed. In the synthesis results presented in 
Table 12.3, we accepted the default optimization settings without setting any con­
straints. Thus only a minimum amount of logic optimization is attempted that did 
not alter the synthesized network in this case. 

The technology-decomposition step builds a generic network from the opti­
mized logic network. The generic network is usually simple NAND gates (sis uses 
either AND, or NOR gates, or both). This generic network is in a technology­
independent form. To build this generic network involves creating intermediate 
nodes. The program s is labels these intermediate nodes [n], starting at n = 100. 

sel = [100] * [101] * [102] [12.5] 
[100] ! ( !a2 * [103] ) ; 

[101] ! ( b2 * [103] ) ; 

[102] ! ( !a2 * b2 ) ; 

[103] ! ( [104] * [105] * [106] ) ; 

[104] ! ( !a1 * b1 ) ; 

[105] ! ( bO * [107] ) ; 

[106] ! ( aD' * [107] ) ; 

[107] ! ( a1 * !b1 ) ; 

outp2 ! ( [108] * [109] ) ; [ 12 . 6] 
[108] ! ( a2 * !sel ) ; 

[109] ! ( sel * b2 ) ; 

There are two other sets of equations, similar to Eq. 12.6, for outp1 and outpo. 

Notice the polarity of the sel signal in Eq. 12.5 is correct and represents an AND 
gate (a consequence of labeling sel as the MUX select input in Figure 12.1). 

Next, the technology-mapping step (or logic-mapping step) implements the 
technology-independent network by matching pieces of the network with the logic 
cells that are available in a technology-dependent cell library (an FPGA or standard­
cell library, for example). While performing the logic mapping, the algorithms 
attempt to minimize area (the default constraint) while meeting any other user con­
straints (timing or power constraints, for example). 

Working backward from the outputs the logic mapper recognizes that each of 
the three output nodes (outp2, outp1, and outpo) may be mapped to a MUX. (We 
are using the term "node mapping to a logic cell" rather loosely here-an exact par­
allel is a compiler mapping patterns of source code to object code.) Here is the equa­
tion that shows the mapping for outp2: 

outp2 = MUX(a, b, c) = ac + b!c 

a = b2 ; b = a2 ; c = sel 

The equations for outp1 and outpO are similar. 

[12.7] 

The node sel can be mapped to the three-input majority function as follows: 

sel = MAJ3(w, x, y) = !(wx + wy + xy) 
w = !a2 ; x = b2 ; Y = [103] ; 

[12.8] 

586



572 CHAPTER 12 LOGIC SYNTHESIS 

Next node [103] is mapped to an OAI22 cell, 

[ 103] = OAl2 2 (w, x, y, z) ( (w + x) (y + z)) 

(!w!x + !y!z) [12.9] 

w = aO ; x = a1 ; y = !b1 z = [107] 

Finally, node [107] is mapped to a two-input NOR with one inverted input, 

[107] = !(b1 + !a1) [12.10] 

Putting Equations 12.7-12.10 together describes the following optimized logic 
network (conesponding to the structural netlist and schematic shown in 
Figure 12.3): 

sel = ! ((( laO * !(al&!bl) I (bl*!al) ) * (!a2Ib2) ) I (!a2*b2)) ;[12.11] 

outp2 

outpl 
outpO 

!sel * a2 sel * b2; 

!sel * al I sel * bl; 

!sel * aO I sel * bO; 

The comparator/MUX example illustrates how logic synthesis takes the behav­
ioral model (the HDL input) and, in a series of steps, converts this to a structural 
model describing the connections of logic cells from a cell library. 

When we write a C program we almost never think of the object code that will 
result. When we write HDL it is always necessary to consider the hardware. In C 
there is not much difference between i*j and ifj. In an HDL, if i and j are 32-bit 
numbers, i * j will take up a large amount of silicon. If j is a constant, equal to 2, 
then i * j take up hardly any space at all. Most logic synthesizers cannot even pro­
duce logic to implement if j. In the following sections we shall examine the Verilog 
and VHDL languages as a way to communicate with a logic synthesizer. Using one 
of these HDLs we have to tell the logic synthesizer what hardware we want-we 
imply A. The logic synthesizer then has to figure out what we want-it has to infer 
B. The problem is making sure that we write the HDL code such that A = B. As will 
become apparent, the more clearly we imply what we mean, the easier the logic syn­
thesizer can infer what we want. 

12.4 Synthesis of the Viterbi Decoder 

In this section we return to the Viterbi decoder from Chapter 11. After an initial syn­
thesis run that shows how logic synthesis works with a real example, we step back 
and study some of the issues and problems of using HDLs for logic synthesis. 

12.4.1 ASIC 1/0 

Some logic synthesizers can include I/O cells automatically, but the designer may 

587



12.4 SYNTHESIS OF THE VITERBI DECODER 573 

have to use directives to designate special pads (clock buffers, for example). It may 
also be necessary to use commands to set I/O cell features such as selection of pull­
up resistor, slew rate, and so on. Unfortunately there are no standards in this area. 
Worse, there is currently no accepted way to set these parameters from an HDL. 
Designers may also use either generic technology-independent I/O models or instan­
tiate I/O cells directly from an I/O cell library. Thus, for example, in the Compass 
tools the statement 

asPadIn #(3,"1,2,3") uO (inO, padinO); 

uses a generic I/O cell model, asPadln. This statement will generate three input 
pads (with pin numbers II 1 ", II 2 ", and II 3 ") if inO is a 3-bit-wide bus. 

The next example illustrates the use of generic I/O cells from a standard­
component library. These components are technology independent (so they may 
equally well be used with a 0.6!-lm or 0.35 !-lm technology). 

module allpads(padTri, padOut, clkOut, padBidir, padIn, padClk); III 
output padTri, padOut, clkOut; inout padBidir; 112 
input [3:0] padIn; input padClk; wire [3:0] in; 113 

Ilcompass dontTouch u* 114 
II asPadln #(W, N, L, P) I (toCore, Pad) also asPadInInv lis 
II asPadOut #(W, N, L, P) I (Pad, frCore) 116 
II asPadTri #(W, N, S, L, P) I (Pad, frCore, OEN) 117 
II asPadBidir #(W, N, S, L, P) I (Pad, toCore, frCore, OEN) 118 
II asPadClk #(N, S, L) I (Clk, Pad) also asPadClkInv 119 
II asPadVxx #(N, subnet) I (Vxx) 1110 
II W width, integer (default=l) 1111 
II N 

II S 

pin number string, e.g. "1:3,5:8" 

strength = {2, 4, 8, 16} in rnA drive 
II L level = {cmos, ttl, schmitt} (default = cmos) 

II P pull-up resistor = {down, float, none, up} 
II Vxx = {Vss, Vdd} 

II subnet = connect supply to {pad, core, both} 
asPadIn #(4,"1:4","","none") u1 (in, padIn); 

asPadOut #(1,"5",13) u2 (padOut, d); 

asPadTri 
aSPadBidir 

asPadClk 
asPadOut 

asPadVdd 

aSPadVss 
asPadVdd 

asPadVss 
asPadVdd 
aSPadVss 

endmodule 

#(1,"6",11) u3 (padTri, in[l], in[O]); 
#(1,"7",2,"","") u4 (d, padBidir, in[3], in[2]); 

#(8) uS (clk, padClk); 
#(1, "9") u6 (clkOut, clk); 
#("10:11","pads") u7 (vddr); 

#("12,13","pads") u8 (vssr); 
#("14","core") u9 (vddc); 

#("15","core") u10 (vssc); 
#("16","both") u11 (vddb); 
#("17","both") u12 (vssb); 

1112 
1113 
1114 
IllS 
1116 
1/17 
1118 
1/19 
1120 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
1/30 

588



574 CHAPTER 12 LOGIC SYNTHESIS 

The following code is an example of the contents of a generic model for a three­
state I/O cell (provided in a standard-component library or in an I/O cell library): 

module PadTri (Pad, I, Oen); // active-low output enable 

parameter width = 1, pinNumbers = "", \strength = 1, 

level = "CMOS", externalVdd = 5; 

output [width-l:0] Pad; input [width-l:0] I; input Oen; 

assign #1 Pad = (Oen ? {width{l'bz}} : I); 

endmodule 

//1 

//2 

//3 
//4 

//5 

//6 

The module PadTri can be used for simulation and as the basis for synthesizing 
an I/O cell. However, the synthesizer also has to be told to synthesize an I/O cell 
connected to a bonding pad and the outside world and not just an internal three-state 
buffer. There is currently no standard mechanism for doing this, and every tool and 
every ASIC company handles it differently. 

The following model is a generic model for a bidirectional pad. We could use 
this model as a basis for input-only and output-only I/O cell models. 

module PadBidir (C, Pad, I, Oen); // active-low output enable 

parameter width = 1, pinNumbers = "", \strength = 1, 

level = "CMOS", pull = "none", externalVdd = 5; 

output [width-1:0] C; inout [width-l:0] Pad; 

input [width-l:0] I; input Oen; 

assign #1 Pad = Oen ? {width{l'bz}} : I; assign #1 C 

endmodule 

Pad; 

//1 

//2 

//3 

//4 

//5 

//6 

//7 

In Chapter 8 we used the halfgate example to demonstrate an FPGA design 
flow-including I/O. If the synthesis tool is not capable of synthesizing I/O cells, 
then we may have to instantiate them by hand; the following code is a hand­
instantiated version of lines 19-22 in module allPads: 

pc5005 u2 2 (.PAD(padOut), .I(d)); 

pc5t04r u3_2 (.PAD(padTri), .I(in[l]), .0EN(in[O])); 

pc5bO lr u4 3 (. PAD (padBidir), . I (in [3] ), . CIN (d), . OEN ( in [2] ) ) ; 

pc5dOlr u5_in_l (.PAD(padClk), .CIN(u5toClkBuf[O])); 

The designer must find the names of the I/O cells (pc5005 and so on), and the 
names, positions, meanings, and defaults for the parameters from the cell-library 
dDcumentation. 

I/O cell models allow us to simulate the behavior of the synthesized logic inside 
an ASIC "all the way to the pads." To simulate "outside the pads" at a system level, 
we should use these same I/O cell models. This is important in ASIC design. For 
example, the designers forgot to put pull-up resistors on the outputs of some of the 
SparcStation ASICs. This was one of the very few errors in a complex project, but 
an error that could have been caught if a system-level simulation had included com­
plete I/O cell models for the ASICs. 

589



12.4 SYNTHESIS OF THE VITERBI DECODER 575 

12.4.2 Flip-Flops 
In Chapter 11 we used this D flip-flop model to simulate the Viterbi decoder: 

module dff(D,Q,Clock,Reset); // N.B. reset is active-low 
output Q; input D,Clock,Reset; 
parameter CARDINALITY = 1; reg [CARDINALITY-I: 0] Q; 
wire [CARDINALITY-I: 0] D; 
always @(posedge Clock) if (Reset!==O) #1 Q=D; 
always begin wait (Reset==O); Q=O; wait (Reset==l); end 
endmodule 

//1 

//2 

//3 
//4 

//5 

//6 

//7 

Most simulators cannot synthesize this model because there are two wait state­
ments in one always statement (line 6). We could change the code to use flip-flops 
from the synthesizer standard-component library by using the following code: 

asDff ftl (.Q(y), .D(x), .Clk(clk), .Rst(vdd)); 

Unfortunately we would have to change all the flip-flop models from I dff I to 
I asDff I and the code would become dependent on a particular synthesis tool. 
Instead, to maintain independence from vendors, we shall use the following D flip­
flop model for synthesis and simulation: 

module dff(D, Q, Clk, Rst); // new flip-flop for Viterbi decoder //1 
parameter width = 1, reset_value = 0; input [width - 1 : 0] D; //2 
output [width - 1 : 0] Q; reg [width - 1 : 0] Q; input Clk, Rst; //3 
initial Q <= {width{l'bx}}; //4 
always @ ( posedge Clk or negedge Rst ) //5 

if ( Rst == 0 ) Q <= #1 reset_value; else Q <= #1 D; //6 
endmodule //7 

12.4.3 The Top-level Model 
The following code models the top-level Viterbi decoder and instantiates (with 
instance name v_I) a copy of the Verilog module viterbi from 
Chapter 11. The model uses generic input, output, power, and clock I/O cells from 
the standard-component library supplied with the synthesis software. The synthe­
sizer will take these generic I/O cells and map them to I/O cells from a technology­
specific library. We do not need three-state I/O cells or bidirectional I/O cells for the 
Viterbi ASIC. 

/* This is the top-level module, viterbi ASIC.v */ //1 

module viterbi ASIC //2 
(padinO, padin1, padin2, padin3, padin4, padinS, padin6, padin7, //3 
padOut, padClk, padRes, padError); //4 
input [2:0] padinO, padin1, padin2, padin3, //5 

padin4, padinS, padin6, padin7; //6 
input padRes, padClk; output padError; output [2:0] padOut; //7 
wire Error, Clk, Res; wire [2:0] Out; // core //8 

590



576 CHAPTER 12 LOGIC SYNTHESIS 

wire padError, padClk, padRes; wire [2:0] padOut; 

wire [2:0] inO,in1,in2,in3,in4,inS,in6,in7; // core 

wire [2:0] 

padinO, padin1,padin2,padin3,padin4,padinS,padin6,padin7; 

// Do not let the software mess with the pads. 

//compass dontTouch u* 

asPadln *(3,"1,2,3") uO (inO, padinO) ; 

asPadln *(3,"4,5,6") u1 (in1, padin1) ; 

asPadln *(3,"7,8,9") u2 (in2, padin2) ; 

asPadln * (3, "10,11,12" ) u3 (in3, padin3) ; 

asPadln * (3, "13,14,15" ) u4 (in4, padin4) ; 

asPadln *(3,"16,17,18") uS (inS, padinS); 

asPadln *(3,"19,20,21") u6 (in6, padin6) ; 

asPadln *(3,"22,23,24") u7 (in7, padin7); 

asPadVdd *("2S","both") u2S (vddb) ; 
asPadVss *("26","both") u26 (vssb) ; 

asPadClk * ("27") u27 (Clk, padClk) ; 

asPadOut *(1,"28") u28 (padError, Error) ; 

asPadin *(1,"29") u29 (Res, padRes) ; 

asPadOut *(3,"30,31,32") u30 (padOut, Out) ; 

// Here is the core module: 

viterbi v 1 

(inO,in1,in2,in3,in4,inS,in6,in7,Out,Clk,Res,Error); 

endmodule 

//9 

//10 

/ /11 
/ /12 

/ /l3 
//14 

//15 

//16 

//17 

//18 

//19 

//20 

//21 

//22 

//23 

//24 

//25 

//26 

//27 

//28 

//29 

//30 

//31 

//32 

At this point we are ready to begin synthesis. In order to demonstrate how syn­
thesis works, I am cheating here. The· code that was presented in 
Chapter 11 has already been simulated and synthesized (requiring several iterations 
to produce error-free code). What I am doing is a little like the Galloping Gourmet's 
television presentation: "And then we put the souffle in the oven ... and look at the 
souffle that I prepared earlier." The synthesis results for the Viterbi decoder are 
shown in Table 12.6. Normally the worst thing we can do is prepare a large amount 
of code, put it in the synthesis oven, close the door, push the "synthesize and opti­
mize" button, and wait. Unfortunately, it is easy to do. In our case it works (at least 
we may think so at this point) because this is a small ASIC by today's standards­
only a few thousand gates. I made the bus widths small and chose this example so 
that the code was of a reasonable size. Modern ASICs may be over one million 
gates, hundreds of times more complicated than our Viterbi decoder example. 

The derived schematic for the synthesized core logic is shown in 
Figure 12.6. There are eight boxes in Figure 12.6 that represent the eight modules in 
the Verilog code. The schematics for each of these eight blocks are too complex to 
be useful. With practice it is possible to "see" the synthesized logic from reports 
such as Table 12.6. First we check the following cells at the top level: 

• pc5cOl is an I/O cell that drives the clock node into the logic core. ASIC 
designers also call an I/O cell a pad cell, and often refer to the pad cells (the 

591



12.4 SYNTHESIS OF THE VITERBI DECODER 577 

TABLE 12.6 Initial synthesis results of the Viterbi decoder ASIC. 

Command Synthesizer output1, 2 

> optimize Num Gate Count Tot Gate 

Cell Name Insts Per Cell Count 

--------- ---------- --------

pc5c01 1 315.4 315.4 

pc5d01r 26 315.4 8200.4 

pc5006 4 315.4 1261. 6 

pvOf 1 315.4 315.4 

pvdf 1 315.4 315.4 

Width 
Per Cell 
--------

100.8 

100.8 
100.8 

100.8 

100.8 

Total 

width 

100.8 

2620.8 
403.2 

100.8 

100.8 
viterbi_p 1 1880.0 1880.0 18048.0 18048.0 

1 See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table. 
21/0 cell height (I/O cells have prefixes peS and pv) is approximately 650 11m in this cell library. 

bonding pads and associated logic) as just "the pads." From the library data 
book we find this is a "core-driven, noninverting clock buffer capable of 
driving 125 pF." This is a large logic cell and does not have a bonding pad, 
but is placed in a pad site (a slot in the ring of pads around the perimeter of 
the die) as if it were an I/O cell with a bonding pad. 

• peSdO 1r is a 5V CMOS input-only I/O cell with a bus repeater. Twenty-four 
of these I/O cells are used for the 24 inputs (inO to in7). Two more are used 
for Res and elk. The I/O cell for elk receives the clock signal from the 
bonding pad and drives the clock buffer cell (peSeO 1). The peSeO 1 cell then 
buffers and drives the clock back into the core. The power-hungry clock 
buffer is placed in the pad ring near the VDD and VSS pads. 

• peSo06 is a CMOS output-only I/O cell with 6X drive strength (6 rnA AC 
drive and 4mA DC drive). There are four output pads: three pads for the sig­
nal outputs, outp[ 2: 0], and one pad for the output signal, error. 

• pvO f is a power pad that connects all VSS power buses on the chip. 

e pvdf is a power pad that connects all VDD power buses on the chip. 

• vi terbi p is the core logic. This cell takes its name from the top-level 
Verilog module (viterbi). The software has appended a "_p" suffix (the 
default) to prevent input files being accidentally overwritten. 

The software does not tell us any of this directly. We learn what is going on by look­
ing at the names and number of the synthesized cells, reading the synthesis tool doc­
umentation, and from experience. We shall learn more about I/O pads and the layout 
of power supply buses in Chapter 16. 

Next we examine the cells used in the logic core. Most synthesis tools can pro­
duce reports, such as that shown in Table 12.7, which lists all the synthesized cells. 

592



578 CHAPTER 12 LOGIC SYNTHESIS 

subset decode 
sout2 
sout3 pathin - -
sout1 ACS1 
soutO clk ACS3 

inO-7 

,----11-----

1 L 
sout1 
sout2 
sout3 
ACSO 
ACS2 

ACS3 

reset 

elk 
~ 

ACSO 

ACS1 
ACS2 
ACS3 

pathO[11 :0] 

sO-3 

pO-3 

...... ---_.--..... ___ ....1-"'" 

control 

clk 
ACS1 reduce metric 

~ ACS2 ,--
ACSO 

compare_select 

reset 

................. I ...... _~ 
I 

out[2:0] 
~ 

'---:--
output decision 

~ 

compute_metric 

FIGURE 12.6 The core logic of the Viterbi decoder ASIC. Bus names are abbreviated in 
this figure for clarity. For example the label m_outO-3 denotes the four buses: m_outO, 
m_out1, m_out2, and m_out3. 

:0] 

The most important types of cells to check are the sequential elements: flip-flops and 
latches (I have omitted all but the sequential logic cells in Table 12.7). One of the 
most common mistakes in synthesis is to accidentally leave variables unassigned in 
all situations in the HDL. Unassigned variables require memory and will generate 
unnecessary sequential logic. In the Viterbi decoder it is easy to identify the sequen­
tial logic cells that should be present in the synthesized logic because we used the 
module dff explicitly whenever we required a flip-flop. By scanning the code in 

593



12.4 SYNTHESIS OF THE VITERBI DECODER 579 

Chapter 11 and counting the references to the dff model, we can see that the only 
flip-flops that should be inferred are the following: 

• 24 (3 x 8) D flip-flops in instance subset decode 

• 132 (11 x 12) D flip-flops in instance path_memory that contains 11 
instances of path (12 D flip-flops in each instance of path) 

• 12 D flip-flops in instance path in 

• 20 (5 x4) D flip-flops in instance metric 

The total is 24 + 132 + 12 + 20 = 188 D flip-flops, which is the same as the number of 
dfctnb cell instances in Table 12.7. 

TABLE 12.7 Number of synthesized flip-flops in the Viterbi ASIC. 

Command 

> report 

area -flat 
Cell Name 

dfctnb 

Totals: 

Num 
lnsts 

188 

1383 

Synthesizer output1 

Gate Count Tot Gate 
Per Cell Count 

---------- --------

5.8 1081.0 

---------- --------

12716.5 

width 

Per Cell 
--------

55.2 

--------

Total 

width 

10377.6 

25485.6 

1 See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table. Logic cell dfctnb is a D 
flip-flop with clear in this standard-cell library. 

Table 12.6 gives the total width of the standard cells in the logic core after logic 
optimization as 18,048 ~Lm. Since the standard-cell height for this library is 72 Iv 
(21.6 11m), we can make a first estimate of the total logic cell area as 

2 390 k (~m2) . 2 
(18, 048 ~lm) (21.6 ~m) = 390 k (~m ) ~ ') ~ 600 mil. (12.12) 

(25.4 ~m)-

In the physical layout we shall need additional space for routing. The ratio of 
routing to logic cell area is called the routing factor. The routing factor depends 
primarily on whether we Llse two levels or three levels of metal. With two levels of 
metal the routing factor is typically between 1 and 2. With three levels of metal, 
where we may use over-the-cell routing, the routing factor is usually zero to 1. We 
thus expect a logic core area of 600-1000 mils2 for the Viterbi decoder using this 
cell library. 

594



580 CHAPTER 12 LOGIC SYNTHESIS 

From Table 12.6 we see the I/O cells in this library are 100.8!lm wide or 
approximately 4 mil (the width of a single pad site). From the I/O cell data book we 
find the I/O cell height is 650!lm (actually 648.825 !lm) or approximately 26 mil. 
Each I/O cell thus occupies 104 mil2. Our 33 pad sites will thus require approxi­
mately 3400 mil2 which is larger than the estimated core logic area. 

Let us go back and take a closer look at what it usually takes to get to this point. 
Remember we used an already prepared Verilog model for the Viterbi decoder. 

12.5 Verilog and Logic Synthesis 

A top-down design approach using Verilog begins with a single module at the top of 
the hierarchy to model the input and output response of the ASIC: 

module MyChip_ASIC()i ... (code to model ASIC I/O) ... endmodulei 

This top-level Verilog module is used to simulate the ASIC I/O connections and any 
bus I/O during the earliest stages of design. Often the reason that designs fail is lack 
of attention to the connection between the ASIC and the rest of the system. 

As a designer, you proceed down through the hierarchy as you add lower-level 
modules to the top-level Verilog module. Initially the lower-level modules are just 
empty placeholders, or stubs, containing a minimum of code. For example, you 
might start by using inverters just to connect inputs directly to the outputs. You 
expand these stubs before moving down to the next level of modules. 

module MyChip_ASIC() 
// behavioral "always", etc .... 

SecondLevelStubl port mapping 
SecondLevelStub2 port mapping 

. .. endmodule 

module SecondLevelStubl() 

module SecondLevelStub2() 
endmodule 

assign Outputl 

assign Output2 

-Inputl; endmodule 

-Input2; 

Eventually the Verilog modules will correspond to the various component pieces of 
the ASIC. 

12.5.1 Verilog Modeling 
Before we could start synthesis of the Viterbi decoder we had to alter the model for 
the D flip-flop. This was because the original flip-flop model contained syntax (mul­
tiple wait statements in an always statement) that was acceptable to the simulation 
tool but not by the synthesis tool. This example was artificial because we had 
already prepared and tested the Veri log code so that it was acceptable to the synthe-

595



12.5 VERILOG AND LOGIC SYNTHESIS 581 

sis software (we say we created synthesizable code). However, finding ourselves 
with nonsynthesizable code arises frequently in logic synthesis. The original OVI 
LRM included a synthesis policy, a set of guidelines that outline which parts of the 
Verilog language a synthesis tool should support and which parts are optional. Some 
EDA vendors call their synthesis policy a modeling style. There is no current stan­
dard on which parts of an HDL (either Verilog or VHDL) a synthesis tool should 
support. 

It is essential that the structural model created by a synthesis tool is 
functionally identical, or functionally equivalent, to your behavioral model. 
Hopefully, we know this is true if the synthesis tool is working properly. In this case 
the logic is "correct by construction." If you use different HDL code for simulation 
and for synthesis, you have a problem. The process of formal verification can prove 
that two logic descriptions (perhaps structural and behavioral HDL descriptions) are 
identical in their behavior. We shall return to this issue in Chapter 13. 

Next we shall examine Verilog and VHDL from the following viewpoint: "How 
do I write synthesizable code?" 

12.5.2 Delays in Verilog 
Synthesis tools ignore delay values. They must-how can a synthesis tool guarantee 
that logic will have a certain delay? For example, a synthesizer cannot generate 
hardware to implement the following Verilog code: 

module Step_Time {clk, phase)i 
input clki output [2:0] phasei reg [2:0] phasei 

always @(posedge clk) begin 
phase <= 4'bOOOOi 

phase <= #1 4'bOO01i 

phase <= #3 4'bOOlli 
end, 

endmodule 

phase 

phase 

<= 

<= 

#2 4'b0010i 

#4 4'b0100i 

We can avoid this type of timing problem by dividing a clock as follows: 

module Step_count (clk_5x, phase); 

input clk_5xi output [2:0] phasei reg [2:0] phase; 

always@{posedge clk_5x) 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//1 

//2 

//3 

case (phase) //4 
O:phase = #1 Ii l:phase = #1 2; 2:phase #1 3; 3:phase #1 4; //5 

default: phase = #1 Oi //6 

endcase 
endmodule 

//7 

//8 

596



582 CHAPTER 12 LOGIC SYNTHESIS 

12.5.3 Blocking and Nonblocking Assignments 
There are some synthesis limitations that arise from the different types of Verilog 
assignment statements. Consider the following shift-register model: 

module race(clk, gO); input clk, gO; reg gl, g2; 
always @(posedge clk) gl = #1 gO; always @(posedge clk) g2 = #1 gl; 

endmodule 

This example has a race condition (or a race) that occurs as follows. The synthe­
sizer ignores delays and the two always statements are procedures that execute con-

. currently. So, do we update ql first and then assign the new value of ql to q2? or do 
we update q2 first (with the old value of ql), and then update ql? In real hardware 
two signals would be racing each other-and the winner is unclear. We must think 
like the hardware to guide the synthesis tool. Combining the assignment statements 
into a single always statement, as follows, is one way to solve this problem: 

module no_race_l(clk, gO, g2); input clk, gO; output g2; reg gl, g2; 

always @(posedge clk) begin g2 = ql; ql = qO; end 

endmodule 

Evaluation is sequential within an always statement, and the order of the assign­
ment statements now ensures q2 gets the old value of ql-before we update ql. 

We can also avoid the problem if we use nonblocking assignment statements, 

module no_race_2(clk, qO, q2); input clk, gO; output q2; reg gl, q2; 

always @(posedge clk) ql <= #1 qO; always @(posedge clk) q2 <= #1 gl; 

endmodule 

This code updates all the'registers together, at the end of a time step, so q2 always 
gets the old value of ql. 

12.5.4 Combinational logic in Verilog 
To model combinational logic, the sensitivity list of a Verilog always statement 
must contain only signals with no edges (no reference to keywords posedge or 
negedge). This is a level-sensitive sensitivity list-as in the following example that 
implies a two-input AND gate: 

module And_Always(x, y, z); input X,Yi output Zi reg Z; 
always @(x or y) Z <= x & Yi II combinational logic method 1 
endmodule 

Continuous assignment statements also imply combinational logic (notice that z 
is now a wire rather than a reg), 

module And_Assign(x, y, Z)i input X,Yi output Zi wire Z; 
assign Z <= x & Yi II combinational logic method 2 = method 1 
endmodule 

597



125 VERILOG AND LOGIC SYNTHESIS 583 

We may also use concatenation or bit reduction to synthesize combinational 
logic functions, 

module And Or (a,b,c,z)i input a,b,c; output Z; reg [1:0]z; 
always @(a or b or c) begin z[I]<= &{a,b,C}i z[2]<= I{a,b,c}; end 
endmodule 

module Parity (BusIn, outp)i input[7:0] BusIni output outPj reg outpj 
always @(BusIn) if (ABusin == 0) outp = Ij else outp = OJ 

endmodule 

The number of inputs, the types, and the drive strengths of the synthesized combina­
tional logic cells will depend on the speed, area, and load requirements that you set 
as constraints. 

You must be careful if you reference a signal (reg or wire) in a level-sensitive 
always statement and do not include that signal in the sensitivity list. In the follow­
ing example, signal b is missing from the sensitivity list, and so this code should be 
flagged with a warning or an error by the synthesis tool-even though the code is 
perfectly legal and acceptable to the Verilog simulator: 

module And_Bad(a, b, c)j input a, bj output Cj reg Cj 
always@(a) C <= a & bi II b is missing from this sensitivity list 

endmodule 

It is easy to write Verilog code that will simulate, but that does not make sense 
to the synthesis software. You must think like the hardware. To avoid this type of 
problem with combinational logic inside an always statement you should either: 

• include all variables in the event expression or 

o assign to the variables before you use them 

For example, consider the following two models: 

module CL_good(a, b, c)j input a, bj output Cj reg Cj 

always@(a or b) 
begin C = a + bj d = a & bj e = C + d; end II c, d: LHS before RHS 

endmodule 

module CL bad(a, b, c) ; input a, bi output C; reg c· , -
always@(a or b) 
begin e = c + d' C = a + b; d = a & b' end II c, d: RHS before LHS , , 
endmodule 

In CL bad. the signals c and d are used on the right-hand side (RHS) of an assign­
ment statement before they are defined on the left-hand side (LHS) of an assignment 
statement. If the logic synthesizer produces combinational logic for CL _bad, it 
should warn us that the synthesized logic may not match the simulation results. 

When you are describing combinational logic you should be aware of the com­
plexity of logic optimization. Some combinational logic functions are too difficult 
for the optimization algorithms to handle. The following module, Achilles, and 

598



584 CHAPTER 12 LOGIC SYNTHESIS 

large parity functions are examples of hard-to-synthesize functions. This is because 
most logic-optimization algorithms calculate the complement of the functions at 
some point. The complements of certain functions grow exponentially in the number 
of their product terms. 

II The complement of this function is too big for synthesis. 

module Achilles (out, in)j output outj input [30:1] inj 
assign out = in[30]&in[29]&in[28] in[27]&in[26]&in[25] 

endmodule 

in[24]&in[23]&in[22] 

in[18]&in[17]&in[16] 
in[12]&in[11]&in[10] 

in[6] & in[5]&in[4] 

in[2l]&in[20]&in[19] 
in[15]&in[14]&in[13] 

in[9] & in[8]&in[7] 

in[3] & in[2]&in[1]j 

In a case like this you can isolate the problem function in a separate module. Then, 
after synthesis, you can use directives to tell the synthesizer not to try and optimize 
the problem function. 

12.5.5 Multiplexers In Verilog 
We imply a MUX using a case statement, as in the following example: 

module Mux_2la(sel, a, b, z)j input sel, a , bj output Zj reg Zj 

always @(a or b or sell 
begin case(sel) l'bO: Z <= aj l'bl: Z <= bj end 
endmodule 

Be careful using 'x' in a case statement. Metalogical values (such as 'x ,) are 
not "real" and are only valid in simulation (and they are sometimes known as 
simbits for that reason). For example, a synthesizer cannot make logic to model the 
following and will usually issue a warning to that effect: 

module Mux_x(sel, a, b, z)j input sel, a, bj output z; reg Zi 

always @(a or b or sell 

begin case(sel) l'bO: Z <= 0; l'bl: Z <= 1; l'bx: Z <= 'x'; end 
endmodule 

For the same reason you should avoid using casex and casez statements. 
An if statement can also be used to imply a MUX as follows: 

module Mux_2lb(sel, a, b, z); input sel, a, b; output z; reg Zi 

always @(a or b or sell begin if (sel) Z <= a else Z <= bi end 
endmodule 

599



12.5 VERILOG AND LOGIC SYNTHESIS 585 

However, if you do not always assign to an output, as in the following code, you 
will get a latch: 

module MUX_Latch(sel, a, b, z); input sel, a, b; output z; reg z; 

always @(a or sel) begin if (sel) z <= a; end 

endmodule 

It is important to understand why this code implies a sequential latch and not a com­
binational MUX. Think like the hardware and you will see the problem. When sel 
is zero, you can pass through the always statement whenever a change occurs on 
the input a without updating the value of the output z. In this situation you need to 
"remember" the value of z when a changes. This implies sequential logic using a as 
the latch input, sel as the active-high latch enable, and z as the latch output. 

The following code implies an 8: 1 MUX with a three-state output: 

module Mux_81(InBus, sel, OE, OutBit); 

input [7:0] InBus; input [2:0] Sel; 

input OE; output OutBit; reg OutBit; 

always @(OE or sel or InBus) 

begin 

if (OE 

end 

endmodule 

1) OutBit = InBus[sel]; else OutBit l'bz; 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

When you synthesize a large MUX the required speed and area, the output load, 
as well as the cells that are available in the cell library will determine whether the 
synthesizer uses a large MUX cell, several smaller MUX cells, or equivalent random 
logic cells. The synthesized logic may also use different logic cells depending on 
whether you want the fastest path from the select input to the MUX output or from 
the data inputs to the MUX output. 

12.5.6 The Verilog Case Statement 
Consider the following model: 

module case8 oneHot(oneHot, a, b, c, z); 

input a, b l c; input [2:0] oneHot; output z; reg z; 

always @(oneHot or a or b or c) 

begin case(oneHot) //synopsys full_case 

3'bOOl: z <= a; 3'b010: z <= b; 3'b100: z <= Ci 

default: z <= l'bx; endcase 

end 

endmodule 

//1 

//2 

//3 
//4 

//5 

//6 

//7 
//8 

By including the default choice, the case statement is exhaustive. This means 
that every possible value of the select variable (oneHot) is accounted for in the arms 
of the case statement. In some synthesizers (Synopsys, for example) you may indi­
cate the arms are exhaustive and imply a MUX by using a compiler directive or 
synthesis directive. A compiler directive is also called a pseudocomment if it uses 

600



586 CHAPTER 12 LOGIC SYNTHESIS 

the comment format (such as / / synopsys full_case). The format of pseudocom­
ments is very specific. Thus, for example, / / synopsys maybe recognized but 
/ / synopsys (with an extra space) or / /Synopsys (uppercase) may not. The use 
of pseudocomments shows the problems of using an HDL for a purpose for which it 
was not intended. When we start "extending" the language we lose the advantages of 
a standard and sacrifice portability. A compiler directive in module case8 _ oneHot 
is unnecessary if the default choice is included. If you omit the default choice 
and you do not have the ability to use the full_case directive (or you use a differ­
ent tool), the synthesizer will infer latches for the output z. 

If the default in a case statement is 'x' (signifying a synthesis don't care 
value), this gives the synthesizer flexibility in optimizing the logic. It does not mean 
that the synthesized logic output will be unknown when the default applies. The 
combinational logic that results from a case statement when a don't care (' x') is 
included as a default mayor may not include a MUX, depending on how the logic is 
optimized. 

In case8 oneHot the choices in the arms of the case statement are exhaustive 
and also mutually exclusive. Consider the following alternative model: 

module case8_priority(oneHot, a, b, c, Z)i 

input a, b, Ci input [2:0] oneHoti output Zi reg Zi 
always @(oneHot or a or b or c) begin 
case(l'b1) //synopsys parallel_case 

oneHot[O]: Z <= ai 
oneHot[l]: Z <= bi 

oneHot[2]: Z <= ci 

default: Z <= l'bxi endcase 
end 

endmodule 

//1 

//2 

//3 
//4 

//5 

//6 

//7 
//8 

//9 

/ /10 

In this version of the case statement the choices are not necessarily mutually exclu­
si ve (oneHot [ 0] and oneHot [ 2] may both be equal to l' b 1, for example). Thus 
the code implies a priority encoder. This may not be what you intended. Some logic 
synthesizers allow you to indicate mutually exclusive choices by using a directive 
(1/ synopsys parallel case, for example). It is probably wiser not to use these 
"outside-the-language" directives if they can be avoided. 

12.5.7 Decoders In Verilog 
The following code models a 4: 16 decoder with enable and three-state output: 

module Decoder_4T016(enable, In_4, Out_16); // 4-to-16 

input enablei input [3:0] In_4i output [15:0] Out_16i 
reg [15:0] Out_16; 
always @(enable or In_4) 

begin Out_16 = 16'hzzzz; 

if (enable == 1) 

begin Out 16 = 16'hOOOOi Out_16[In_4] 1; end 

decoder //1 

//2 

//3 
//4 

//5 

//6 

//7 

601



12.5 VERILOG AND LOGIC SYNTHESIS 587 

end 

endmodule 
//8 

//9 

In line 7 the binary-encoded 4-bit input sets the corresponding bit of the 16-bit out­
put to '1'. The synthesizer infers a three-state buffer from the assignment in line 5. 
Using the equality operator, '==', rather than the case equality operator, '===', 
makes sense in line 6, because the synthesizer cannot generate logic that will check 
for enable being 'x' or 'z'. So, for example, do not write the following (though 
some synthesis tools will still accept it): 

if (enable === 1) // can't make logic to check for enable = x or z 

12.5.8 Priority Encoder in Verilog 
The following Verilog code models a priority encoder with three-state output: 

module Pri_Encoder32 (InBus, Clk, OE, OutBus); 
input [31:0]InBus; input OE, Clk; output [4:0]OutBus; 

reg j; reg [4:0]OutBus; 
always@(posedge Clk) 
begin 

if (OE == 0) OutBus = 5'bz 
else 

begin OutBus = 0; 

for (j = 31; j >= 0; j = j - 1) 
begin if (InBuS[j] == 1) OutBus 

end 
end 

endmodule 

j; end 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 

//10 

/ /11 
//12 

/ /13 

In lines 9-11 the binary-encoded output is set to the position of the lowest-indexed 
, l' in the input bus. The logic synthesizer must be able to unroll the loop in a for 

statement. Normally the synthesizer will check for fixed (or static) bounds on the 
loop limits, as in line 9 above. 

12.5.9 Arithmetic in Verilog 
You need to make room for the carry bit when you add two numbers in Verilog. You 
may do this using concatenation on the LHS of an assignment as follows: 

module Adder_8 (A, B, Z, Cin, Cout); 
input [7:0] A, B; input Cin; output [7:0] Z; output Cout; 

assign {Cout, Z} = A + B + Cin; 
endmodule 

//1 
//2 

//3 
//4 

In the following example, the synthesizer should recognize' l' as a carry-in bit 
of an adder and should synthesize one adder and not two: 

module Adder 16 (A, B, Sum, Cout); 
input [15:0] A, B; output [15:0] Sum; output Cout; 

//1 

//2 

602



588 CHAPTER 12 LOGIC SYNTHESIS 

reg [15:0] Sum; reg Cout; 
always @(A or B) {Cout, Sum} = A + B + 1; 
endmodule 

//3 
//4 

//5 

It is always possible to synthesize adders (and other arithmetic functions) using 
random logic, but they may not be as efficient as using datapath synthesis (see 
Section 12.5.12). 

A logic sythesizer may infer two adders from the following description rather 
than shaping a single adder. 

module Add_A (sel, a, b, c, d, y); 
input a, b, c, d, sel; output y; reg y; 
always@(sel or a or b or c or d) 

begin if (sel == 0) y <= a + b; else y <= C + d; end 
endmodule 

//1 
//2 

//3 

//4 

//5 

To imply the presence of a MUX before a single adder we can use temporary vari­
ables. For example, the synthesizer should use only one adder for the following code: 

module Add_B (sel, a, b, c, d, y); 
input a, b, c, d, sel; output y; reg t1, t2, y; 
always@(sel or a or b or c or d) begin 

if (sel == 0) begin t1 a; t2 b; end // Temporary 
else begin t1 = C; t2 = dr end // variables. 
y = t1 + t2; end 

endmodule 

//1 

//2 

//3 

//4 

//5 

//6 

//7 

If a synthesis tool is capable of performing resource allocation and resource 
sharing in these situations, the coding style may not matter. However we may want 
to use a different tool, which may not be as advanced, at a later date-so it is better 
to use Add _B rather than Add _A if we wish to conserve area. This example shows 
that the simplest code (Add_A) does not always result in the simplest logic 
(Add_B). 

Multiplication in Verilog assumes nets are unsigned numbers: 

module Multiply_unsigned (A, B, Z); 
input [1:0] A, B; output [3:0] Z; 
assign Z <= A * B; 
endmodule 

//1 
//2 

//3 
//4 

To multiply signed numbers we need to extend the multiplicands with their sign 
bits as follows (some simulators have trouble with the concatenation I { } I struc­
tures, in which case we have to write them out "long hand"): 

module Multiply_signed (A, B, Z); 
input [1:0] A, B; output [3:0] Z; 
// 00 -> 00 00 01 -> 00 01 10 -> 11 10 11 -> 11 11 
assign Z = { { 2{A[1]} }, A} * { { 2{B[1]} }, B}; 
endmodule 

//1 
//2 

//3 
//4 

//5 

How the logic synthesizer implements the multiplication depends on the software. 

603



12;5 VERILOG AND LOGIC SYNTHESIS 589 

12.5.10 Sequential Logic in Verilog 
The following statement implies a positive-edge-triggered D flip-flop: 

always@(posedge clock) Q_flipflop = D; II A flip-flop. 

When you use edges (posedge or negedge) in the sensitivity list of an always 
statement, you imply a clocked storage element. However, an always statement 
does not have to be edge-sensitive to imply sequential logic. As another example of 
sequential logic, the following statement implies a level-sensitive transparent latch: 

always@(clock or D) if (clock) Q_Iatch = D; II A latch. 

On the negative edge of the clock the always statement is executed, but no assign­
ment is made to Q_latch. These last two code examples concisely illustrate the dif­
ference between a flip-flop and a latch. 

Any sequential logic cell or memory element must be initialized. Although you 
could use an initial statement to simulate power-up, generating logic to mimic an 
ini tial statement is hard. Instead use a reset as follows: 

always@(posedge clock or negedge reset) 

A problem now arises. When we use two edges, the synthesizer must infer 
which edge is the clock, and which is the reset. Synthesis tools cannot read any sig­
nificance into the names we have chosen. For example, we could have written 

always@(posedge day or negedge year) 

-but which is the clock and which is the reset in this case? 
For most synthesis tools you must solve this problem by writing HDL code in a 

certain format or pattern so that the logic synthesizer may correctly infer the clock 
and reset signals. The following examples show one possible pattern or template. 
These templates and their use are usually described in a synthesis style guide that is 
part of the synthesis software documentation. 

always@(posedge elk or negedge reset) begin 

if (reset == 0) Q = 0; 
else Q = D; 

end 

II template for reset: 
II initialize, 

II normal clocking 

module Counter_With_Reset (count, clock, reset); 
input clock, reset; output count; reg [7:0J count; 

always @ (posedge clock or negedge reset) 

if (reset == 0) count 0; else count = count + 1; 

III 
112 
113 
114 

endmodule 115 

module DFF MasterSlave (D, clock, reset, Q); II D type flip-flop III 
input D, clock, reset; output Q; reg Q, latch; 112 
always @(posedge clock or posedge reset) 113 

if (reset == 1) latch = 0; else latch = D; II the master. 114 

604



590 CHAPTER 12 LOGIC SYNTHESIS 

always @(latch) Q = latch; II the slave. 

endrnodule 
115 
116 

The synthesis tool can now infer that, in these templates, the signal that is tested in 
the if statement is the reset, and that the other signal must therefore be the clock. 

12.5.11 Component Instantiation in Verilog 
When we give an HDL description to a synthesis tool, it will synthesize a netlist that 
contains generic logic gates. By generic we mean the logic is technology­
independent (it could be CMOS standard cell, FPGA, TTL, GaAs, or something 
else-we have not decided yet). Only after logic optimization and mapping to a spe­
cific ASIC cell library do the speed or area constraints determine the cell choices 
from a cell library: NAND gates, OAI gates, and so on. 

The only way to ensure that the synthesizer uses a particular cell, J special • 

for example, from a specific library is to write structural Verilog and instantiate the 
cell, 'special', in the Verilog. We call this hand instantiation. We must then 
decide whether to allow logic optimization to replace or change 'special'. If we 
insist on using logic cell 'special' and do not want it changed, we flag the cell 
with a synthesizer command. Most logic synthesizers currently use a pseudocom­
ment statement or set an attribute to do this. 

For example, we might include the following statement to tell the Compass syn­
thesizer-"Do not change cell instance my _ inv _ 8x." This is not a standard con­
struct, and it is not portable from tool to tool either. 

IICompass dontTouch my_inv_8x or II synopsys dont_touch 

INVD8 my_inv_8x(.I(a), .ZN(b) ); 

(some compiler directives are trademarks). Notice, in this example, instantIatIOn 
involves declaring the instance name and defining a structural port mapping. 

There is no standard name for technology-independent models or components­
we shall call them soft models or standard components. We can use the standard 
components for synthesis or for behavioral Verilog simulation. Here is an example 
of using standard components for flip-flops (remember there are no primitive Verilog 
flip-flop models-only primitives for the elementary logic cells): 

module Count4(clk, reset, QO, Q1, Q2, Q3) ; III 
input clk, reset; output QO, Q1, Q2, Q3; wire QO, Q1, Q2, Q3; 112 
II Q , D , elk, reset 1/3 
asDff dffO( QO, -QO, clk, reset) ; II The asDff is a 114 
asDff dff1( Q1, -Ql, QO, reset) ; II standard component, 115 
asDff dff2( Q2, -Q2, Q1, reset) ; II unique to one set of tools. 116 
asDff dfn ( Q3, -Q3, Q2, reset) ; 1/7 
endmodule 118 

The asDff and other standard components are provided with the synthesis tool. 
The standard components have specific names and interfaces that are part of the 

605



12.5 VERI LOG AND LOGIC SYNTHESIS 591 

software documentation. When we use a standard component such as asDff we are 
saying: "I want a D flip-flop, but I do not know which ASIC technology I want to 
use-give me a generic version. I do not want to write a Verilog model for the D 
flip-flop myself because I do not want to bother to synthesize each and every 
instance of a flip-flop. When the time comes, just map this generic flip-flop to what­
ever is available in the technology-dependent (vendor-specific) library." 

If we try and simulate Count4 we will get an error, 

:Count4.v: L5: error: Module 'asDff' not defined 

(and three more like this) because asDff is not a primitive Verilog model. The syn­
thesis tool should provide us with a model for the standard component. For example, 
the following code models the behavior of the standard component, asDff: 

module asDff (D, Q, Clk, Rst); 

parameter width = 1, reset_value = 0; 

input [width-l:0] D; output [width-l:0] Q; reg [width-1:0] Q; 

input Clk,Rst; initial Q = {width{l'bx}}; 

always @ ( posedge Clk or negedge Rst ) 

if ( Rst==O ) Q <= #1 reset_value; else Q <= #1 D; 

endmodule 

//1 

//2 

//3 
//4 

//5 

//6 

//7 

When the synthesizer compiles the HDL code in Count4, it does not parse the 
asDff model. The software recognizes asDff and says "I see you want a flip-flop." 
The first steps that the synthesis software and the simulation software take are often 
referred to as compilation, but the two steps are different for each of these tools. 

Synopsys has an extensive set of libraries, called DesignWare, that contains 
standard components not only for flip-flops but for arithmetic and other complex 
logic elements. These standard components are kept protected from optimization 
until it is time to map to a vendor technology. ASIC or EDA companies that produce 
design software and cell libraries can tune the synthesizer to the silicon and achieve 
a more efficient mapping. Even though we call them standard components, there are 
no standards that cover their names, use, interfaces, or models. 

12.5.12 Datapath Synthesis in Verilog 
Datapath synthesis is used for bus-wide arithmetic and other bus-wide operations. 
For example, synthesis of a 32-bit multiplier in random logic is much less efficient 
than using datapath synthesis. There are several approaches to datapath synthesis: 

o Synopsys VHDL Design Ware. This models generic arithmetic and other 
large functions (counters, shift registers, and so on) using standard compo­
nents. We can either let the synthesis tool map operators (such as '+,) to 
VHDL Design Ware components, or we can hand instantiate them in the 
code. Many ASIC vendors support the Design Ware libraries. Thus, for exam-

606



592 CHAPTER 12 LOGIC SYNTHESIS 

pIe, we can instantiate a Design Ware counter in VHDL and map that to a cell 
predesigned and preoptimized by Actel for an Actel FPGA. 

• Compiler directives. This approach uses synthesis directives in the code to 
steer the mapping of datapath operators either to specific components (a 
two-port RAM or a register file, for example) or flags certain operators to be 
implemented using a certain style (' + I to be implemented using a ripple­
carry adder or a carry-lookahead adder, for example). 

• X-BLOX is a system from Xilinx that allows us to keep the logic of certain 
functions (counters, arithmetic elements) together. This is so that the layout 
tool does not splatter the synthesized CLBs all over your FPGA, reducing the 
performance of the logic. 

• LPM (library of parameterized modules) and RPM (relationally placed mod­
ules) are other techniques used principally by FPGA companies to keep logic 
that operates on related data close together. This approach is based on the use 
of the EDIF language to describe the modules. 

In all cases the disadvantage is that the code becomes specific to a certain piece 
of software. Here are two examples of datapath synthesis directives: 

module DP_Csum(Al,Bl,Zl); input [3:0] Al,Bl; output Zl; reg [3:0] Zl; 
always@(Al or Bl) Zl <= Al + Bl;IICompass adder arch cond sum add 

endmodule 

module DP_ripp(A2,B2,Z2); input [3:0] A2,B2; output Z2; reg [3:0] Z2; 

always@(A2 or B2) Z2 <= A2 + B2iliCompass adder_arch ripple_add 
endmodule 

These directives steer the synthesis of a conditional-sum adder (usually the fastest 
adder implementation) or a rippIe:-carry adder (small but slow). 

There are some limitations to datapath synthesis. Sometimes, complex opera­
tions are not synthesized as we might expect. For example, a datapath library may 
contain a subtracter that has a carry input; however, the following code may synthe­
size to random logic, because the synthesizer may not be able to infer that the signal 
Carryln is a subtracter carry: 

module DP_sub_A(A,B,OutBus,CarryIn); 

input [3:0] A, B ; input CarryIn ; 
output OutBus ; reg [3:0] OutBus ; 
always@(A or B or CarryIn) OutBus <= A - B - CarryIn ; 
endmodule 

III 
112 
113 
114 
115 

If we rewrite the code and subtract the carry as a constant, the synthesizer can 
more easily infer that it should use the carry-in of a datapath subtracter: 

module DP_sub_B (A, B, CarryIn, Z) 

input [3:0] A, B, CarryIn ; output [3:0] Z; reg [3:0] Z; 
always@(A or B or CarryIn) begin 

case (CarryIn) 

III 
112 
113 
114 

607



12.6 VHDL AND LOGIC SYNTHESIS 593 

l'bl : 

default 
end 

endmodule 

Z <= A - B - l'bl; 

Z <= A - B - l'bO; endcase 
//5 

//6 

//7 
//8 

This is another example of thinking like the hardware in order to help the synthesis 
tool infer what we are trying to imply. 

12.6 VHDL and Logic Synthesis 

Most logic synthesizers insist we follow a set of rules when we use a logic system to 
ensure that what we synthesize matches the behavioral description. Here is a typical 
set of rules for use with the IEEE VHDL nine-value system: 

You can use logic values corresponding to states 'I', I H', '0 I, and I L I in 
any manner. 

• Some synthesis tools do not accept the uninitialized logic state I U I • 

• You can use logic states I Z I, I X I, 'W', and I - I in signal and variable 
assignments in any manner. I Z I is synthesized to three-state logic. 

• The states I x I, I W', and I - I are treated as unknown or don't care values. 

The values I Z I, I X I, 'W I , and '- I may be used in conditional clauses such as 
the comparison in an if or case statement. However, some synthesis tools will 
ignore them and only match surrounding I I I and '0' bits. Consequently, a synthe­
sized design may behave differently from the simulation if a stimulus uses I Z I, I X I, 

I W I or I - I • The IEEE synthesis packages provide the STD _IvIATCH function for com­
parisons. 

12.6.1 Initialization and Reset 
You can use a VHDL process with a sensitivity list to synthesize clocked logic 
with a reset, as in the following code: 

process (signal 1, signal_2) begin 
if (signal_2'EVENT and signal_2 = '0') 

then -- Insert initialization and reset statements. 
elsif (signal_l'EVENT and signal_l = '1') 

then -- Insert clocking statements. 

end ifi 
end process; 

Using a specific pattern the synthesizer can infer that you are implying a positive­
edge clock (signal_I) and a negative-edge reset (signal_ 2). In order to be able to 
recognize sequential logic in this way, most synthesizers restrict you to using a max­
imum of two edges in a sensitivity list. 

608



594 CHAPTER 12 LOGIC SYNTHESIS 

12.6.2 Combinational Logic Synthesis in VHDL 
In VHDL a level-sensitive process is a process statement that has a sensitivity 
list with signals that are not tested for event attributes (, EVENT or 'STABLE, for 
example) within the process. To synthesize combinational logic we use a VHDL 
level-sensitive process or a concurrent assignment statement. Some synthesizers 
do not allow reference to a signal inside a level-sensitive process unless that sig­
nal is in the sensitivity list. In this example, signal b is missing from the sensitivity 
list: 

entity And_Bad is port (a, b: in BIT; c: out BIT); end And_Bad; 

architecture Synthesis_Bad of And Bad is 

begin process (a) -- this should be process (a, b) 

begin c <= a and b; 

end process; 

end Synthesis_Bad; 

This situation is similar but not exactly the same as omlttmg a variable from an 
event control in a Verilog always statement. Some logic synthesizers accept the 
VHDL version of And_Bad but not the Verilog version or vice versa. To ensure that 
the VHDL simulation will match the behavior of the synthesized logic, the logic 
synthesizer usually checks the sensitivity list of a level-sensitive process and 
issues a warning if signals seem to be missing. 

12.6.3 Multiplexers in VHDL 
Multiplexers can be synthesized using a case statement (avoiding the VHDL 
reserved word 'select'), as the following example illustrates: 

entity Mux4 is port 

(i: BIT_VECTOR(3 downto O)i sel: BIT_VECTOR(l downto 0); s: out BIT)i 

end Mux4 i 

architecture Synthesis_1 of Mux4 is 

begin process(sel, i) begin 

case sel is 

when "00" => s <= i(O)i when "01" => s <= i(l); 

when "10" => s <= i(2); when "11" => s <= i(3)i 
end casei 

end process; 

end Synthesis_1i 

The following code, using a concurrent signal assignment is equivalent: 

architecture Synthesis_2 of Mux4 is 

begin with sel select s <= 

i ( 0) when " 0 0 ", i ( 1) when " 0 1 ", i ( 2) when "10", i ( 3) when "11" i 
end Synthesis_2i 

609



12.6 VHDL AND LOGIC SYNTHESIS 595 

In VHDL the case statement must be exhaustive in either form, so there is no 
question of any priority in the choices as there may be in Verilog. 

For larger MUXes we can use an array, as in the following example: 

library IEEE: use ieee.std_logic_1164.all: 

entity Mux8 is port 

(InBus : in STD_LOGIC_VECTOR(7 downto 0): 

Sel : in INTEGER range 0 to 7: 

Out Bit out STD_LOGIC): 

end Mux8: 

architecture Synthesis_l of Mux8 is 

begin process(InBus, Sell 

begin OutBit <= InBus(Sel): 

end process: 

end Synthesis_I: 

Most synthesis tools can infer that, in this case, Sel requires three bits. If not, you 
have to d~clare the signal as a STD LOGIC VECTOR, - -

Sel : in STD_LOGIC_VECTOR(2 downto 0): 

and use a conversion routine from the STD _NUMERIC package like this: 

OutBit <= InBus(TO_INTEGER ( UNSIGNED (Sel) ) ) : 

At some point you have to convert from an INTEGER to BIT logic anyway, since you 
cannot connect an INTEGER to the input of a chip! The VHDL case, if, and 
select statements produce similar results. Assigning don't care bits (, x ,) in these 
statements will make it easier for the synthesizer to optimize the logic. 

12.6.4 Decoders in VHDL 
The following code implies a decoder: 

library IEEE: 

use IEEE.STD_LOGIC_1164.all: use IEEE.NUMERIC_STD.all: 

entity Decoder is port (enable : in BIT: 

Din: STD_LOGIC_VECTOR (2 downto 0); 

Dout: out STD LOGIC VECTOR (7 downto 0)); 

end Decoder; 

architecture Synthesis_l of Decoder is 

begin 

with enable select Dout <= 

STD LOGIC VECTOR 
- -

(UNSIGNED' 

(shift_left 
("00000001", TO INTEGER (UNSIGNED(Din)) 

) 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 
--11 

--12 
--13 

--14 

610



596 CHAPTER 12 LOGIC SYNTHESIS 

when 'I', 

"11111111" when '0', "00000000" when othersi 

end Synthesis_Ii 

There are reasons for this seemingly complex code: 

--15 

--16 

--17 

--18 
--19 

• Line 1 declares the IEEE library. The synthesizer does not parse the VHDL 
code inside the library packages, but the synthesis company should be able to 
guarantee that the logic will behave exactly the same way as predicted by a 
simulator that uses the IEEE libraries and does parse the code . 

.. Line 2 declares the STD_LOGIC_1l64 package, for STD_LOGIC types, and the 
NUMERIC _STD package for conversion and shift functions. The shift operators 
(sll and so on-the infix operators) were introduced in VHDL-93, they are not 
defined for STD LOGIC types in the 1164 standard. The shift jUnctions defined 
in NUMERIC_STD are not operators and are called shift_left and so on. 
Some synthesis tools support NUMERIC _STD, but not VHDL-93. 

• Line 10 performs a type conversion to STD_LOGIC_VECTOR from UNSIGNED. 

.. Line 11 is a type qualification to tell the software that the argument to the 
type conversion function is type UNSIGNED. 

.. Line 12 is the shift function, shift_left, from the NUMERIC _STD package. 

.. Line 13 converts the STD _LOGIC_VECTOR, Din, to UNSIGNED before con­
verting to INTEGER. We cannot convert directly from STD _LOGIC_VECTOR to 
INTEGER. 

.. The others clause in line 18 is required by the logic synthesizer even though 
type BIT may only be '0' or ' 1 ' . 

If we model a decoder using a process, we can use a case statement inside the 
process. A MUX model may be used as a decoder if the input bits are set at '1' 

(active-high decoder) or at '0' (active-low decoder), as in the following example: 

library IEEEi 

use IEEE.NUMERIC_STD.alli use IEEE.STD_LOGIC_1164.a11i 

entity Concurrent_Decoder is port ( 

enable : in BIT; 

Din: in STD_LOGIC_VECTOR (2 downto O)i 

Dout : out STD LOGIC VECTOR (7 downto O))i 

end Concurrent_Decoder; 

architecture Synthesis_1 of Concurrent Decoder is 

begin process (Din, enable) 

variable T STD_LOGIC_VECTOR(7 downto 0); 
begin 

if (enable '1') then 

--1 

--2 

--3 

--4 

--5 
--6 

--7 

--8 

--9 

--10 
--11 

--12 

611



12.6 VHDL AND LOGIC SYNTHESIS 597 

T := "00000000"; T( TO_INTEGER (UNSIGNED(Din}}) := '1'; 
Dout <= T ; 

else Dout <= (others => 'Z'); 

end if; 

end process; 

end Synthesis_I; 

--13 

--14 

--15 

--16 
--17 

--18 

Notice that T must be a variable for proper timing of the update to the output. The 
else clause in the if statement is necessary to avoid inferring latches. 

12.6.5 Adders in VHDL 
To add two n-bit numbers and keep the overflow bit, we need to assign to a signal or 
variable with more bits, as follows: 

library IEEE; --1 

use IEEE.NUMERIC_STD.all; use IEEE.STD_LOGIC_II64.all; --2 

entity Adder_I is --3 

port (A, B: in UNSIGNED(3 downto O); C: out UNSIGNED(4 downto O}}; --4 

end Adder_I; --5 

architecture Synthesis 1 of Adder_I is --6 

begin C <= (' 0' & A) + (' 0' & B); --7 

end Synthesis_I; --8 

Notice that both A and B have to be SIGNED or UNSIGNED as we cannot add 
STD _LOGIC_VECTOR types directly using the IEEE 1164 packages. You will get an 
error if a result is a different length from the target of an assignment, as in the fol­
lowing example (in which the arguments are not resized): 

adder 1: begin C <= A + B; 
Error: Width mis-match: right expression is 4 bits wide, c is 5 bits 

wide 

The following code may generate three adders stacked three deep: 

Z <= a + b + C + d; 

Depending on how the expressIOn is parsed, the first adder may perform 
x = a + b, a second adder y = x + c, and a third adder z = y + d. The following code 
should generate faster logic with three adders stacked only two deep: 

Z <= (a + b) + (c + d); 

12.6.6 Sequential Logic In VHDL 
Sensitivity to an edge implies sequential logic in VHDL. A synthesis tool can locate 
edges in VHDL by finding a process statement that has either: 

.. no sensitivity list with a wait until statement 

.. a sensitivity list and test for 'EVENT plus a specific level 

612



598 CHAPTER 12 LOGIC SYNTHESIS 

Any signal assigned in an edge-sensitive process statement should also be 
reset-but be careful to distinguish between asynchronous and synchronous resets. 
The following example illustrates these points: 

library IEEE; use IEEE.STD_LOGIC_1164.all; entity DFF_With_Reset is 

port(D, Clk, Reset: in STD_LOGIC; Q : out STD_LOGIC); 

end DFF_With_Reset; 

architecture Synthesis_l of DFF With Reset is 

begin process(Clk, Reset) begin 
if (Reset = '0') then Q <= '0'; -- asynchronous reset 

elsif rising_edge(Clk) then Q <= D; 

end if; 
end process; 

end Synthesis_I; 

architecture Synthesis_2 of DFF_With_Reset is 

begin process begin 
wait until rising_edge(Clk); 

-- This reset is gated with the clock and is synchronous: 
if (Reset = '0') then Q <= '0'; else Q <= D; end if; 

end process; 
end Synthesis_2; 

Sequential logic results when we have to "remember" something between suc­
cessive executions of a process statement. This occurs when a process statement 
contains one or more of the following situations: 

• A signal is read but is not in the sensitivity list of a process statement. 

• A signal or variable is read before it is updated. 

• A signal is not always updated. 

• There are multiple wait statements. 

Not all of the models that we could write using the above constructs will be synthe­
sizable. Any models that do use one or more of these constructs and that are synthe­
sizable will result in sequential logic. 

12.6.1 Instantiation in VHDl 
The easiest way to find out how to hand instantiate a component is to generate a 
structural netlist from a simple HDL input-for example, the following Verilog 
behavioral description (VHDL could have been used, but the Verilog is shorter): 

'timescale Ins/Ins 

module halfgate (myInput, myOutput); 
input myInput; output myOutput; wire myOutput; 

assign myOutput = -myInput; 
endmodule 

/11 
//2 

//3 
//4 

//5 

613



12.6 VHDL AND LOGIC SYNTHESIS 599 

We synthesize this module and generate the following VHDL structural netlist: 

library IEEE; use IEEE.STD_LOGIC_1164.all; 

library COMPASS_LIB; use COMPASS_LIB.COMPASS.all; 

--compass compile_off -- synopsys etc. 

use COMPASS_LIB. COMPASS_ETC. all; 

--compass compile_on -- synopsys etc. 

entity halfgate_u is 

--compass compile_off -- synopsys etc. 

generic ( 

myOutput_cap : Real := 0.01; 

INSTANCE_NII..ME : string := "halfgate_u" ); 

--compass compile_on -- synopsys etc. 

port ( mylnput : in Std_Logic := 'U'; 

myOutput : out Std_Logic := 'U' ); 

end halfgate_u; 

architecture halfgate_u of halfgate u is 

component inOldO 

port ( I : in Std Logic; ZN : out Std_Logic ); end component; 

begin 

u2: in01dO port map ( I => mylnput, ZN => myOutput ); 

end halfgate_u; 

--compass compile_off -- synopsys etc. 

library cb60hd230d; 
configuration ha1fgate_u_CON of halfgate_u is 

for halfgate_u 
for u2 : inOldO use configuration cb60hd230d.in01dO CON 

generic map ( 

ZN_cap => 0.0100 + myOutput_cap, 

INSTANCE NAME => INSTANCE NAME&"/u2" 

port map ( I => I, ZN => ZN); 

e.nd for; 

end for; 

end halfgate_u_CON; 

--compass compile_on -- synopsys etc. 

--1 

--2 

--3 

--4 

--5 

--6 

--7 
--8 

--9 

--10 
--11 

--12 

--13 

--14 

--15 

--16 

--17 

--18 
--19 

--20 

--21 

--22 

--23 

--24 

--25 

--26 

--27 

--28 
--29 

--30 

--31 

--32 

--33 

This gives a template to follow when hand instantiating logic cells. Instantiating a 
standard component requires the name of the component and its parameters: 

component ASDFF 
generic (WIDTH : POSITIVE := 1; 

RESET VALUE: STD LOGIC VECTOR := "0" ); 

port (Q out STD LOGIC VECTOR (WIDTH-l downto 0); 

D in STD LOGIC VECTOR (WIDTH-l downto 0); 

CLK in STD_LOGIC; 

614



600 CHAPTER 12 LOGIC SYNTHESIS 

RST in STD LOGIC ); 

end component; 

Now you have enough information to be able to instantiate both logic cells from a 
cell library and standard components. The following model illustrates instantiation: 

library IEEE, COMPASS_LIB; 

use IEEE.STD_LOGIC_1164.all; use COMPASS_LIB.STDCOMP.all; 
entity Ripple_4 is 

port (Trig, Reset: STD_LOGIC; QNO_5x: out STD_LOGIC; 

Q : inout STD_LOGIC_VECTOR(O to 3»; 
end Ripple_4; 

architecture structure of Ripple_4 is 

signal QN : STD_LOGIC_VECTOR(O to 3); 
component inOldl 

port ( I : in Std_Logic; ZN out Std_Logic ) ; end component; 

component inOld5 

port ( I : in Std_Logic; ZN out Std_Logic ) ; end component; 
begin 

--compass dontTouch inv5x -- synopsys dont_touch etc. 

-- Named association for hand-instantiated library cells: 
inv5x: INOID5 port map ( I=>Q(O), ZN=>QNO_5x ); 

invO INOIDI port map ( I=>Q(O), ZN=>QN(O) ); 
invl INOIDI port map( I=>Q(l), ZN=>QN(I) ); 

inv2 INOIDI port map ( I=>Q(2), ZN=>QN(2) ); 
inv3 IN01Dl port map( I=>Q(3), ZN=>QN(3) ); 

-- Positional association for standard components: 

Q D Clk 
dO: asDFF port map(Q ( 0 to 0) , QN(O to 0) , Trig, 
dl: asDFF port map(Q ( 1 to 1) , QN(1 to 1) , Q (0) , 
d2: asDFF port map(Q (2 to 2) , QN(2 to 2) , Q( 1), 
d3: asDFF port map(Q ( 3 to 3) , QN(3 to 3) , Q(2) , 

end structure; 

Rst 

Reset) ; 
Reset) ; 

Reset) ; 
Reset) ; 

--1 

--2 

--3 
--4 

--5 

--6 

--7 

--8 
--9 

--10 
--11 

--12 
--13 

--14 

--15 

--16 
--17 

--18 
--19 

--20 
--21 

--22 
--23 

--24 
--25 

--26 
--27 

• Lines 5 and 8. Type STD _LOGIC_VECTOR must be used for standard compo­
nent ports, because the standard components are defined using this type. 

e Line 5. Mode inout has to be used for Q since it has to be read/write and 
this is a structural model. You cannot use mode buffer since the formal out­
puts of the standard components are declared to be of mode out. 

e Line 14. This synthesis directive prevents the synthesis tool from removing 
the 5X drive strength inverter invSx. This statement ties the code to a partic­
ular synthesis tool. 

• Lines 16-20. Named association for the hand-instantiated library cells. The 
names (INO IDS and INO IDI) and port names (I and ZN) come from the cell 
library data book or from a template (such as the one created for the INO IDI 

logic cell). These statements tie the code to a particular cell library. 

615



12.6 VHDLAND LOGIC SYNTHESIS 601 

• Lines 23-26. Positional port mapping of the standard components. The port 
locations are from the synthesis standard component library documentation. 
These asDFF standard components will be mapped to D flip-flop library 
cells. These statements tie the code to a particular synthesis tool. 

You would receive the following warning from the logic synthesizer when it 
synthesizes this input code (entity Ripple _ 4): 

Warning: Net has more than one driver: d3_Q[0]; connected to: 

ripple_4_p.q[3], inv3.I, d3.Q 

There is potentially more than one driver on a net because Q was declared as inout. 

There are a total of four warnings of this type for each of the flip-flop outputs. You 
can check the output netlist to make sure that you have the logic you expected as 
follows (the Verilog netlist is shorter and easier to read): 

'timescale Ins / lOps 

module ripple_4_u (trig, reset, qnO_5x, q); 

input trig; input reset; output qnO 5x; inout [3:0] q; 

wire [3:0] qn; supply! VDD; supplyO VSS; 

in01d5 inv5x (.I(q[O]),.ZN(qnO 5x»; 

in01d1 invO (.I(q[O]), .ZN(qn[O]»; 

in01d1 inv1 (.I(q[l]),.ZN(qn[l]»; 

in01d1 inv2 (.I(q[2]),.ZN(qn[2]»; 

inO 1d1 inv3 (. I (q [3] ) , . ZN (qn [3] ) ) ; 

dfctnb dO(.D(qn[O]),.CP(trig),.CDN(reset),.Q(q[O]),.QN(\dO.QN 

dfctnb d1 ( . D (qn [ 1] ) , . CP (q [0] ) , . CDN (reset) , . Q (q [ 1] ) , . QN (\dl. QN 

dfctnb d2(.D(qn[2]),.CP(q[1]),.CDN(reset),.Q(q[2]),.QN(\d2.QN 

dfctnb d3(.D(qn[3]),.CP(q[2]),.CDN(reset),.Q(q[3]),.QN(\d3.QN 

endmodule 

12.6.8 Shift Registers and Clocking in VHDl 
The following code implies a serial-in/parallel-out (SIPO) shift register: 

library IEEE; 

use IEEE.STD_LOGIC_1164.alli use IEEE.NUMERIC_STD.all; 

entity SIPO_1 is port ( 

Clk: in STD_LOGIC; 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 

) ) ; //10 

» ; //11 
»; //12 

) ) ; //13 
//14 

--1 

--2 

--3 

--4 

81: in STD_LOGICi 

po: buffer STD_LOGIC_VECTOR(3 downto 0»; 

end SIPO Ii 

serial in --5 

parallel out --6 

--7 

architecture Synthesis 1 of SIPO 1 is 

begin process (Clk) begin 

if (Clk = '1') then PO <= SI & PO(3 downto 1); end if; 

end process; 

end Synthesis 1; 

--8 

--9 

--10 

--11 
--12 

616



602 CHAPTER 12 LOGIC SYNTHESIS 

Here is the Verilog structural netlist that results (dfntnb IS a positive­
edge-triggered D flip-flop without clear or reset): 

module sipo_1_u (clk, si, po); //1 

input clk; input si; output [3:0] po; //2 
supply! VDD; supplyO VSS; //3 

dfntnb pO_ff_bO (.D{po[l]),.CP{clk),.Q{po[O]),.QN{\po_ff_bO.QN»; //4 

dfntnb po_ff_bl (.D{po[2]),.CP{clk),.Q{po[I]),.QN{\po_ff_bl.QN»; //5 
dfntnb po_ff_b2 (.D{po[3]),.CP{clk),.Q{po[2]),.QN{\po_ff_b2.QN»; //6 

dfntnb po_ff_b3 (.D{si),.CP{clk),.Q{po[3]), .QN{\po_ff_b3.QN »; //7 
endmodule //8 

The synthesized design consists of four flip-flops. Notice that (line 6 in the 
VHDL input) signal PO is of mode buffer because we cannot read a signal of mode 
out inside a process. This is acceptable for synthesis but not usually a good idea for 
simulation models. We can modify the code to eliminate the buffer port and at the 
same time we shall include a reset signal, as follows: 

library IEEE; --1 
use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD.all; --2 

entity SIPO_R is port ( --3 
clk : in STD_LOGIC ; res in STD_LOGIC ; --4 
SI : in STD LOGIC; PO : out STD_LOGIC_VECTOR{3 downto 0»; --5 

end; --6 

architecture Synthesis_l of SIPO R is --7 

signal PO_t : STD_LOGIC_VECTOR{3 downto 0); --8 

begin --9 
process (PO_t) begin PO <= PO_t; end process; --10 

process (clk, res) begin --11 
if (res = '0') then PO_t <= (others => '0'); --12 

elsif (rising_edge(clk» then PO t <= SI & PO_t(3 downto 1); --13 

end if; --14 

end process; --15 
end Synthesis_I; --16 

Notice the following: 

o Line 10 uses a temporary signal, PO t, to avoid using a port of mode buffer 
for the output signal po. We could have used a variable instead of a signal and 
the variable would consume less overhead during simulation. However, we 
must complete an assignment to a variable inside the clocked process (not in a 
separate process as we can for the signal). Assignment between a variable and 
a signal inside a single process creates its own set of problems. 

o Line 11 is sensitive to the clock, elk, and the reset, res. It is not sensitive to 
PO _tor S I and this is what indicates the sequential logic. 

o Line 13 uses the rising_edge function from the STD_LOGIC_1l64 pack­
age. 

617



12.6 VHDL AND LOGIC SYNTHESIS 603 

The software synthesizes four positive-edge-triggered D flip-flops for design 
entity SIPO _ R(Synthesis _1) as it did for design entity SIPO _l(Synthesis _1). 
The difference is that the synthesized flip-flops in SIPO R have active-low resets. 
However, the simulation behavior of these two design entities will be different. In 
SIPO_R, the function rising_edge only evaluates to TRUE for a transition from 
'0' or 'L' to '1' or 'H'.In SIPO_1we only tested for Clk = 'l'.Sincenearly 
all synthesis tools now accept rising_edge and falling_edge, it is probably 
wiser to use these functions consistently. 

12.6.9 Adders and Arithmetic Functions 
If you wish to perform BIT_VECTOR or STD _LOGIC_VECTOR arithmetic you have 
three choices: 

• Use a vendor-supplied package (there are no standard vendor packages­
even if a company puts its own package in the IEEE library). 

• Convert to SIGNED (or UNSIGNED) and use the IEEE standard synthesis 
packages (IEEE Std 1076.3-1997). 

• Use overloaded functions in packages or functions that you define yourself. 

Here is an example of addition using a ripple-carry architecture: 

library IEEE; 

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD.all; 

entity Adder4 is port ( 

inl, in2 : in 

mySum : out 

end Adder4; 

BIT_VECTOR(3 downto 0) 

BIT_VECTOR(3 downto 0) 

--1 

--2 

--3 

--4 

--5 

--6 

architecture Behave A of Adder4 is --7 

function DIY(L,R: BIT_VECTOR(3 downto 0)) return BIT_VECTOR is --8 

variable sum:BIT_VECTOR(3 do~mto O);variable It,rt,st,cry: BIT; --9 

begin cry := '0'; --10 

for i in L'REVERSE_RANGE loop --11 

It := L(i); rt := R(i); st := It xor rt; --12 

sum(i):= st xor cry; cry:= (It and rt) or (st and cry); --13 

end loop; --14 

return sum; --15 

end; --16 

begin mySum <= DIY (inl, in2); -- do it yourself (DIY) add --17 

end Behave_A; --18 

This model results in random logic. 
An alternative is to use UNSIGNED or UNSIGNED from the IEEE NUMERIC STD 

or NUMERIC_BIT packages as in the following example: 

library IEEE; --1 

use IEEE.STD_LOGIC_1164.all; use IEEE.NUMERIC_STD.all; --2 

618



604 CHAPTER 12 LOGIC SYNTHESIS 

entity Adder4 is port ( 
in1, in2 : in UNSIGNED (3 downto 0) 
mySum : out UNSIGNED(3 downto 0) 

end Adder4; 

architecture Behave B of Adder4 is 
begin mySum <= in1 + in2; -- This uses an overloaded '+'. 

end Behave_B; 

In this case, the synthesized logic will depend on the logic synthesizer. 

12.6.10 Adder/Subtracter and Don't Cares 

--3 

--4 
--5 

--6 

--7 

--8 

--9 

The following code models a 16-bit sequential adder and subtracter. The input sig­
nal, xin, is added to output signal, result, when signal addsub is high; otherwise 
resul t is subtracted from xin. The internal signal addout temporarily stores the 
result until the next rising edge of the clock: 

library IEEE; 
use IEEE.STD_LOGIC_1164.alli use IEEE.NUMERIC_STD.a1li 
entity Adder_Subtracter is port ( 

xin : in UNSIGNED(15 downto 0); 
STD_LOGIC; clk, addsub, clr: in 

result : out UNSIGNED(15 downto O))i 

end Adder_Subtracter; 

architecture Behave A of Adder Subtracter is 

signal addout, result_t: UNSIGNED(15 downto O)i 

begin 
result <= result_ti 

with addsub select 
addout <= (xin + result_t) 

(xin - result_t) 

(others => '-') 

process (clr, clk) begin 

when '1', 

when '0', 

when others; 

if (clr = '0') then result_t <= (others => '0'); 

elsif rising_edge(clk) then result t <= addout; 
end if; 

end process; 
end Behave_A; 

Notice the following: 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 

--11 

--12 

--13 
--14 

--15 
--16 

--17 

--18 

--19 

--20 

--21 

• Line 11 is a concurrent assignment to avoid using a port of mode buffer. 

• Lines 12-15 define an exhaustive list of choices for the selected signal 
assignment statement. The default choice sets the result to' '(don't care) 
to allow the synthesizer to optimize the logic. 

619



12.7 FINITE-STATE MACHINE SYNTHESIS 605 

Line 18 includes a reference to signal addout that could be eliminated by mov­
ing the selected signal assignment statement inside the clocked process as follows: 

architecture Behave B of Adder Subtracter is - -
signal result_t: UNSIGNED(15 downto 0); 

begin 

result <= result_t; 

process (clr, elk) begin 

if (clr = '0') then result_t <= (others => '0'); 

elsif rising_edge(clk) then 

case addsub is 

when 'I' 

when '0' 

when others 

end case; 

end if; 

end process; 

end Behave_B; 

=> result t <= (xin + result_t); 

=> result t <= (xin - result_t); 

=> result t <= (others => '-'); 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 

--11 

--12 

--13 

--14 

--15 

This code is simpler than architecture Behave_A, but the synthesized logic should 
be identical for both architectures. Since the logic that results is an adder/subtracter 
followed by a register (bank of flip-flops) the Behave _A model more clearly reflects 
the hardware. 

12.7 Finite-State Machine Synthesis 

There are three ways to synthesize a finite-state machine (FSM): 

1. Omit any special synthesis directives and let the logic synthesizer operate on 
the state machine as though it were random logic. This will prevent any reas­
signment of states or state machine optimization. It is the easiest method and 
independent of any particular synthesis tool, but is the most inefficient 
approach in terms of area and performance. 

2. Use directives to guide the logic synthesis tool to improve or modify state 
assignment. This approach is dependent on the software that you use. 

3. Use a special state-machine compiler, separate from the logic synthesizer, to 
optimize the state machine. You then merge the resulting state machine with 
the rest of your logic. This method leads to the best results but is harder to use 
and ties your code to a particular set of software tools, not just the logic syn­
thesizer. 

620



606 CHAPTER 12 LOGIC SYNTHESIS 

Most synthesis tools require that you write a state machine using a certain 
style-a special format or template. Synthesis tools may also require that you 
declare an FSM, the encoding, and the state register using a synthesis directive or 
special software command. Common FSM encoding options are: 

• Adjacent encoding assigns states by the minimum logic difference in the 
state transition graph. This normally reduces the amount of logic needed to 
decode each state. The minimum number of bits in the state register for an 
FSM with n states is log 2n. In some tools you may increase the state register 
width up to n to generate encoding based on Gray codes. 

• One-hot encoding sets one bit in the state register for each state. This tech­
nique seems wasteful. For example, an FSM with 16 states requires 16 flip­
flops for one-hot encoding but only four if you use a binary encoding. How­
ever, one-hot encoding simplifies the logic and also the interconnect between 
the logic. One-hot encoding often results in smaller and faster FSMs. This is 
especially true in programmable ASICs with large amounts of sequential 
logic relative to combinational logic resources. 

• Random encoding assigns a random code for each state. 

• User-specified encoding keeps the explicit state assignment from the HDL. 

• Moore encoding is useful for FSMs that require fast outputs. A Moore state 
machine has outputs that depend only on the current state (Mealy state 
machine outputs depend on the current state and the inputs). 

You need to consider how the reset of the state register will be handled in the 
synthesized hardware. In a programmable ASIC there are often limitations on the 
polarity of the flip-flop resets. For example, in some FPGAs all flip-flop resets must 
all be of the same polarity (and this restriction mayor may not be present or differ­
ent for the internal flip-flops and the flip-flops in the I/O cells). Thus, for example, if 
you try to assign the reset state as '0101', it may not be possible to set two flip­
flops to '0' and two flip-flops to '1' at the same time in an FPGA. This may be 
handled by assigning the reset state, resSt, to '0000' or ' 1111' and inverting the 
appropriate two bits of the state register wherever they are used. 

You also need to consider the initial value of the state register in the synthesized 
hardware. In some reprogrammable FPGAs, after programming is complete the flip­
flops may all be initialized to a value that may not correspond to the reset state. Thus 
if the flip-flops are all set to '1' at start-up and the reset state is '0000', the initial 
state is '1111' and not the reset state. For this reason, and also to ensure fail-safe 
behavior, it is important that the behavior of the FSM is defined for every possible 
value of the state register. 

621



12.7 FINITE-STATE MACHINE SYNTHESIS 607 

12.7.1 FSM Synthesis in Verilog 

The following FSM model uses paired processes. The first process synthesizes to 
sequential logic and the second process synthesizes to combinational logic: 

'define resSt 0 

'define 81 1 

'define 82 2 

'define 83 3 

module StateMaehine 1 (reset, elk, yOutReg); 

input reset, elk; output yOutReg; 

reg yOutReg, yOut; reg [1:0] curSt, nextSt; 

always @(posedge elk or posedge reset) 

begin:8eq //Compass statemaehine oneHot eurSt 

if (reset == 1) 

begin yOut ~ 0; yOutReg = yOut; eurSt = 'resSt; end 

else begin 

case (eurSt) 

'resSt:yOut = O;'Sl:yOut 

default:yOut = 0; 

endease 

1;'S2:yOut 1;'S3:yOut 1-, 

yOutReg = yOut; eurSt nextSt; // ___ update the state_ 

end 

end 

always @(eurSt or yOut) // Assign the next state: 

begin: Comb 

case (eurSt) 

'resSt:nextSt = 'S3; 

'82:nextSt = 'Sl; 

default:nextSt = 'resSt; 

endcase 

end 

endmodule 

'Sl :nextSt 

'S3:nextSt 

'S2; 

'Sl; 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 

//10 

/ /11 
//12 

//13 

//14 

//15 

//16 

/ /17 
//18 

/ /19 
//20 

//21 

//22 

//23 

//24 

//25 

//26 

//27 

//28 

Synopsys uses separate pseudocomments to define the states and state vector as 
in the following example: 

module StateMaehine_2 (reset, elk, yOutReg)i 

input reset, elk; output yOutReg; reg yOutReg, yOut; 

parameter [1:0] //synopsys enum states 

resSt = 2'bOO, Sl = 2'b01, S2 = 2'b10, S3 = 2'b11; 

reg [1:0] /* synopsys enum states */ eurSt, nextSt; 

//synopsys state_vector eurSt 

always @(posedge elk or posedge reset) begin 

if (reset == 1) 

begin yOut = 0; yOutReg = yOut; curSt = resSt; end 

else begin 

case (eurSt) resSt:yOut = O;Sl:yOut = 1;S2:yOut = 1;S3:yOut 1-, 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 

//10 

//11 

622



608 CHAPTER 12 LOGIC SYNTHESIS 

default:yOut = 0; endcase 

yOutReg = yOut; curSt = nextSt; end 

end 
always @(curSt or yOut) begin 

case (curSt) 

resSt:nextSt = S3; Sl:nextSt 
default:nextSt = Sl; endcase 

end 

endmodule 

S2; S2:nextSt 

//12 

/ /13 
//14 
//15 

1/16 

Sl; S3:nextSt Sl; //17 

//18 

//19 
//20 

To change encoding we can assign states explicitly by altering lines 3-4 to the 
following, for example: 

parameter [3:0] //synopsys enum states 
resSt = 4'bOOOO, Sl = 4'b0010, S2 = 4'b0100, S3 4'b1000; 

12.7.2 FSM Synthesis in VHDL 
The first architecture that follows is a template for a Moore state machine: 

library IEEE; use IEEE.STD_LOGIC_1164.all; 
entity SM1 is 

port (aIn, clk : in Std_logic; yOut: out Std_logic); 

end SM1; 

architecture Moore of SM1 is 

type state is (sl, s2, s3, s4); 
signal pS, nS : state; 
begin 

process (aIn, pS) begin 
case pS is 

when sl => yOut <= '0 1 
; 

when s2 => yOut <= '1' ; 

when s3 => yOut <= '11 ; 

when s4 => yOut <= I I' ; 

end case; 
end process; 

process begin 

-- synopsys etc. 

nS <= 

nS <= 

nS <= 

nS <= 

s4; 

s3; 

sl; 
s2; 

--compass Statemachine adj pS 
wait until clk = '1'; pS <= nS; 

end process; 
end Moore; 

--1 

--2 

--3 

--4 

--5 
--6 

--7 

--8 
--9 

--10 
--11 

--12 
--13 

--14 

--15 
--16 

--17 

--18 
--19 

--20 
--21 
--22 

An example input, aln, is included but not used in the next state assignments. A 
reset is also omitted to further simplify this example. 

An FSM compiler extracts the state machine. Some companies use FSM com­
pilers that are separate from the logic synthesizers (and priced separately) because 

623



12.7 FINITE-STATE MACHINE SYNTHESIS 609 

the algorithms for FSM optimization are different from those for optimizing combi­
national logic. We can see what is happening by asking the Compass synthesizer to 
write out intermediate results. The synthesizer extracts the FSM and produces the 
following output in a state-machine language used by the tools: 

sm sm1 _ps_ smi 
inputs; outputs yout smoi clock clk; 
STATE Sl { let yout_smo=O } --> S4; 
STATE S2 { let yout_ smo=l } --> S3i 
STATE S3 { let yout_ smo=l } --> Sl; 
STATE S4 { let yout_ smo=l } --> S2i 
end 

You can use this language to modify the FSM and then use this modified code as an 
input to the synthesizer if you wish. In our case, it serves as documentation that 
explains the FSM behavior. 

Using one-hot encoding generates the following structural Verilog netlist 
(dfntnb is positive-edge-triggered D flip-flop, and nd03dO is a three-input 
NAND): 

dfntnb sm_ps4(.D(sm_ps1_Q),.CP(clk),.Q(sm_ps4_Q),.QN(Sm_ps4_QN»; 

dfntnb sm_ps3(.D(sm_ps2_Q),.CP(clk),.Q(sm_ps3_Q),.QN(sm_ps3_QN»i 

dfntnb sm_ps2(.D(sm_ps4_Q),.CP(clk),.Q(sm_ps2_Q),.QN(Sm_ps2_QN»; 

dfntnb sm_ps1(.D(sm_ps3_Q),.CP(clk),.Q(sm_ps1_Q),.QN(\sm_ps1.QN »i 

nd03dO i_6(.A1(sm_ps4_QN),.A2(sm_ps3_QN),.A3(sm_ps2_QN), .ZN(yout_smo»; 

(Each example shows only the logic cells and their interconnection in the Verilog 
structural netlists.) The synthesizer has assigned one flip-flop to each of the four 
states to form a 4-bit state register. The FSM output (renamed from yout to 
yout_smo by the software) is taken from the output of the three-input NAND gate 
that decodes the outputs from the flip-flops in the state register. 

Using adjacent encoding gives a simpler result, 

dfntnb sm_ps2(.D(i_4_ZN),.CP(clk), .Q(\sm_ps2.Q ),.QN(sm_ps2_QN»; 
dfntnb sm_ps1(.D(Sm_ps1_QN),.CP(clk),.Q(\sm_ps1.Q ),.QN(sm_ps1_QN»; 

oa04d1 i_4(.A1(sm_ps1_QN),.A2(sm_ps2_QN),.B(yout_smo),.ZN(i_4_ZN»; 
nd02dO i_5(.A1(sm_ps2_QN), .A2(sm_ps1_QN), .ZN(yout_smo»; 

(oa04dl is an OAI21 logic cell, nd02dO is a two-input NAND). In this case binary 
encoding for the four states uses only two flip-flops. The two-input NAND gate 
decodes the states to produce the output. The OAI21 logic cell implements the 
logic that determines the next state. The combinational logic in this example is 
only slightly more complex than that for the one-hot encoding, but, in general, 
combinational logic for one-hot encoding is simpler than the other forms of encod­
mg. 

624



610 CHAPTER 12 LOGIC SYNTHESIS 

Using the option' moore' for Moore encoding, we receive the following mes­
sage from the FSM compiler: 

The states were assigned these codes: 

O?? : SI 100 : S2 101 : S3 llO : S4 

The FSM compiler has assigned three bits to the state register. The first bit in the 
state register is used as the output. We can see more clearly what has happened by 
looking at the Verilog structural netlist: 

dfntnb sm_ps3(.D(i_6_ZN),.CP(clk),.Q(yout_smo),.QN(sm_ps3_QN)); 

dfntnb sm_ps2(.D(sm_ps3_QN),.CP(clk),.Q(sm_ps2_Q),.QN(\sm_ps2.QN )); 

dfntnb sm_psl(.D(i_5_ZN),.CP(clk),.Q(sm_psl_Q),.QN(\sm_psl.QN )); 

nr02dO i_5(.Al(sm_ps3_QN),.A2(sm_ps2_Q),.ZN(i_5_ZN)); 

nd02dO i_6(.Al(sm_psl_Q),.A2(yout_smo),.zN(i_6_ZN)); 

The output, yout _sma, is now taken directly from a flip-flop. This means that the 
output appears after the clock edge with no combinational logic delay (only the 
clock-to-Q delay). This is useful for FSMs that are required to produce outputs as 
soon as possible after the active clock edge (in pel bus controllers, for example). 

The following code is a template for a Mealy state machine: 

library IEEE; use IEEE.STD_LOGIC_1164.all; 

entity SM2 is 
port (aIn, clk : in Std_logic; yOut: out Std_logic); 

end SM2; 

architecture Mealy of SM2 is 

type state is (sl, s2, s3, s4); 

signal pS, nS : state; 

begin 

process(aIn, pS) begin 

case pS is 

when sl => if (aIn = 'I') 

then yOut <= '0'; nS <= s4; 

else yOut <= 'I'; nS <= s3; 

end if; 

when s2 => yOut <= 11' i nS <= 

when s3 => yOut <= 11' ; nS <= 

when s4 => if (aIn = '1' ) 

then yOut <= 'I'; nS <= s2; 

else yOut <= '0'; nS <= sl; 

end if; 

end case; 

end process; 

process begin 

wait until clk = 'I' ; 

s3; 

sl; 

--Compass Statemachine oneHot pS 

pS <= nS; 

--1 

--2 

--3 

--4 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 

--11 

--12 

--13 

--14 

--15 

--16 

--17 

--18 

--19 

--20 

--21 

--22 

625



end process; 
end Mealy; 

12.8 Memory Synthesis 

There are several approaches to memory synthesis: 

1. Random logic using flip-flops or latches 

2. Register files in datapaths 

3. RAM standard components 

4. RAM compilers 

12.8 MEMORY SYNTHESIS 611 

--23 
--24 

The first approach uses large vectors or arrays in the HDL code. The synthesizer 
will map these elements to arrays of flip-flops or latches depending on how the tim­
ing of the assignments is handled. This approach is independent of any software or 
type of ASIC and is the easiest to use but inefficient in terms of area. A flip-flop may 
take up 10 to 20 times the area of a six-transistor static RAM cell. 

The second approach uses a synthesis directive or hand instantiation to synthe­
size a memory to a datapath component. Usually the datapath components are con­
structed from latches in a regular array. These are slightly more efficient than a 
random arrangement of logic cells, but the way we create the memory then depends 
on the software and the ASIC technology we are using. 

The third approach uses standard components supplied by an ASIC vendor. For 
example, we can instantiate a small RAM using CLBs in a Xilinx FPGA. This 
approach is very dependent on the technology. For example, we could not easily 
transfer a design that uses Xilinx CLBs as SRAM to an Actel FPGA. 

The last approach, using a custom RAM compiler, is the most area-efficient 
approach. It depends on having the capability to call a compiler from within the syn­
thesis tool or to instantiate a component that has already been compiled. 

12.8.1 Memory Synthesis in Verilog 
Most synthesizers implement a Verilog memory array, such as the one shown in the 
following code, as an array of latches or flip-flops. 

reg [31:0] MyMemory [3:0]; // a 4 x 32-bit register 

For example, the following code models a small RAM, and the synthesizer 
maps the memory array to sequential logic: 

module RAM_l (A, CEB, liJEB, OEB, INN, OUTT); / /1 
input [6:0] A; input CEB,WEB,OEB; input [4:0]INN; //2 
output [4:0] OUTT; //3 
reg [4:0] OUTT; reg [4:0] int_bus; reg [4:0] memory [127:0]; //4 

always@(negedge CEB) begin //5 
if (CEB == 0) begin //6 

626



612 CHAPTER 12 LOGIC SYNTHESIS 

if (WEB == 1) int_bus = memory[A]; 

else if (WEB == 0) begin memory [A] 
else int bus = S'bxxxxx; 

end 
end 
always@(OEB or int_bus) begin 

case (OEB) 0 : OUTT = int_bus; 
default: OUTT = S'bzzzzz; endcase 

end 

endmodule 

INN; int bus INN; end 
1/7 
118 
119 

1110 
I III 
1112 
1113 
1114 
1115 
1116 

Memory synthesis using random control logic and transparent latches for each 
bit is reasonable only for small, fast register files, or for local RAM on an MGA or 
CBIC. For large RAMs synthesized memory becomes very expensive and instead 
you should normally use a dedicated RAM compiler. 

Typically there will be restrictions on synthesizing RAM with multiple 
read/writes: 

• If you write to the same memory in two different processes, be careful to 
avoid address contention. 

o You need a multiport RAM if you read or write to multiple locations simulta­
neously. 

• If you write and read the same memory location, you have to be very careful. 
To mimic hardware you need to read before you write so that you read the old 
memory value. If you attempt to write before reading, the difference between 
blocking and nonblocking assignments can lead to trouble. 

You cannot make a memory access that depends on another memory access in 
the same clock cycle. For example, you cannot do this: 

memory[i + 1] = memory[i]; II needs two clock cycles 

or this: 

pointer = memory[memory[i]]; II needs two clock cycles 

For the same reason (but less obviously) we cannot do this: 

pc = memory[addr1]; memory[addr2] = pc + 1; II not on the same cycle 

12.8.2 Memory Synthesis in VHDl 
VHDL allows multidimensional arrays so that we can synthesize a memory as an 
array of latches by declaring a two-dimensional array as follows: 

type memStor is array(3 downto 0) of integer; -- This is OK. 

subtype MemReg is STD_LOGIC_VECTOR(lS downto 0); -- So is this. 

type memStor is array(3 downto 0) of MemReg; 
-- other code ... 
signal Mem1 : memStor; 

627



12.8 MEMORY SYNTHESIS 613 

As an example, the following code models a standard-cell RAM: 

library IEEE; 

use IEEE.STD LOGIC 1164.all; 

package RAM_package is 

constant numOut : INTEGER := 8; 

constant wordDepth: INTEGER := 8; 

constant numAddr : INTEGER := 3; 

subtype MEMV is STD_LOGIC_VECTOR(numOut-1 downto 0); 

type MEM is array (wordDepth-1 downto 0) of MEMV; 

end RAM_package; 

library IEEE; 

use IEEE.STD LOGIC 1164.all; use IEEE.NUMERIC_STD.all; 

use work.RAM_package.all; 

entity RAM_I is 

port (signal A : in STD_LOGIC_VECTOR(numAddr-1 downto 0); 

signal CEB, WEB, OEB : in STD_LOGIC; 

signal INN : in MEMV; 

signalOUTT : out MEMV); 

end RAM_I; 

architecture Synthesis_1 of RAM_1 is 

signal i bus : MEMV; -- RAM internal data latch 

signal mem : MEM; -- RAM data 

begin 

process begin 

wait until CEB = '0'; 

if WEB = '1' then i_bus <= mem(TO_INTEGER(UNSIGNED(A»); 

elsif WEB = '0' then 

mem(TO_INTEGER(UNSIGNED(A») <= INN; 

i_bus <= INN; 

else i bus <= (others=> 'X'); 

end if; 

end process; 

process (OEB, int_bus) begin -- control output drivers: 

case (OEB) is 

when '0' 

~lhen '1' 

=> OUTT <= i_bus; 

=> OUTT <= (others => 'Z'); 

when others => OUTT <= (others => 'X'); 

end case; 

end process; 

end Synthesis_Ii 

--1 

--2 
--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 

--11 

--12 

--13 

--14 

--15 

--16 

--17 

--18 

--19 

--20 

--21 

--22 

--23 

--24 

--25 

--26 

--27 

--28 

--29 

--30 

--31 

--32 

---33 

--34 

--35 

--36 

--37 

--38 

--39 

628



614 CHAPTER 12 LOGIC SYNTHESIS 

12.9 The Multiplier 

This section looks at the messages that result from attempting to synthesize the 
VHDL code from Section 10.2, "A 4-bit Multiplier." The following examples use 
the line numbers that were assigned in the comments at the end of each line of code 
in Tables 10.1-10.9. The first problem arises in the following code (line 7 of the full 
adder in Table 10.1): 

Sum <= X xor Y xor Cin after TS; 

warning: AFTER clause in a waveform element is not supported 

This is not a serious problem if you are using a synchronous design style. If you are, 
then your logic will work whatever the delays (it may run slowly but it will work). 

The next problem is from lines 3-4 of the 8-bit MUX in Table 10.5, 

port (A, B : in BIT_VECTOR (7 downto 0); Sel : in BIT := '0'; Y : out 

BIT_VECTOR (7 downto 0)); 

warning: Default values on interface signals are not supported 

The synthesis tool cannot mimic the behavior of a default value on a port in the soft­
ware model. The default value is the value given to an input if nothing is connected 
(' open' in VHDL). In hardware either an input is connected or it is not. If it is con­
nected, there will be a voltage on the wire. If it is not connected, the node will be 
floating. Default values are useful in VHDL-without a default value on an input 
port, an entity-architecture pair will not compile. The default value may be omitted 
in this model because this input port is connected at the next higher level of hierar­
chy. 

The next problem illustrates what happens when a designer fails to think like 
the hardware (from line 3 of the zero-detector in Table 10.6), 

port (X:BIT_VECTOR; F:out BIT ); 

Error: An index range must be specified for this data type 

This code has the advantage of being flexible, but the synthesizer needs to know 
exactly how wide the bus will be. There are two other similar errors in shiftn, the 
variable-width shift register (from lines 4-5 in Table 10.7). There are also three 
more errors generated by the same problem in the component statement for AllZ­

ero (from lines 4-5 of package Mult_Components) and the component statement 
for shiftn (from lines 10-11 of package Mult_Components). 

All of these index range problems may be fixed by sacrificing the flexible nature 
of the code and specifying an index range explicitly, as in the following example: 

port (X:BIT_VECTOR(7 down to 0); F:out BIT ); 

629



12.9 THE MULTIPLIER 615 

Table 12.8 shows the synthesizable version of the shift-register model. The con­
strained index ranges in lines 6, 7, 11, 18,22, and 23 fix the problem, but are rather 
ugly. It would be better to use generic parameters for the input and output bus 
widths. However, a shift register with different input and output widths is not that 
common so, for now, we will leave the code as it is. 

TABLE 12.8 A synthesizable version of the shift register shown in Table 10.7. 

entity ShiftN is 

generic (TCQ:TIME := 0.3 ns; TLQ:TIME := 0.5 ns; 

TSQ:TIME := 0.7 ns); 

port ( 

CLK, CLR, LO, SH, OIR: in BIT; 

0: in BIT_VECTOR(3 downto 0); 

Q: out BIT_VECTOR(7 downto 0) ); 

end ShiftN; 

architecture Behave of ShiftN is 

begin Shift: process (CLR, CLK) 

variable St: BIT_VECTOR(7 downto 0); 

begin 

if CLR = '1' then 

St := (others => '0'); Q <= St after TCQ; 

elsif CLK'EVENT and CLK='l' then 

if LO = '1' then 

St := (others => '0'); 

St(3 downto 0) := 0; 

Q <= St after TLQ; 

elsif SH = '1' then 

case OIR is 

when 'O'=>St:='O' & St(7 downto 1); 

when '1'=>St:=St(6 downto 0) & '0'; 

end case; 

Q <= St after TSQ; 

end if; 

end if; 

end process; 

end; 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

D 
lD 
SH 
DIR 
ClK 

n m 
Q 

--10 ClK Clock 
--11 ClR Clear, active high 

load, active high 
Shift, active high 
Direction, 1 =Ieft 
Data in 

--12 lD 
--13 SH 
--14 DIR 
--15 D 
--16 Q Data out 
--17 

--18 

--19 

--20 

--21 

--22 

--23 

--24 

--25 

--26 

--27 

--28 

--29 

Shift register. Input width = 4. Out­
put width = 8. Output is left-shifted 
or right-shifted under control of 
DIR. Unused MSBs are zero-pad­
ded during load. Clear is asyn­
chronous. load is synchronous. 

Timing: 
TCQ (ClR to Q) = 0.3 ns 
TLQ (lD to Q) = 0.5 ns 
TSQ (SH to Q) =0. 7 ns 

630



616 CHAPTER 12 LOGIC SYNTHESIS 

The next problem occurs because VHDL is not a synthesis language (from lines 
6-7 of the variable-width shift register in Table 10.7), 

begin assert (D'LENGTH <= Q'LENGTH) 

report "D wider than output Q" severity Failure; 

Warning: Assertion statements are ignored 

Error: Statements in entity declarations are not supported 

The synthesis tool warns us it does not know how to generate hardware that writes 
to our screen to implement an assertion statement. The error occurs because a 
synthesis tool cannot support any of the passive statements (no assignments to sig­
nals, for example) that VHDL allows in an entity declaration. Synthesis software 
usually provides a way around these problems by providing switches to turn the syn­
thesizer on and off. For example, we might be able to write the following: 

//Compass compile_off 

begin assert (D'LENGTH <= Q'LENGTH) 

report "D wider than output Q" severity Failure; 

//Compass compile_on 

The disadvantage of this approach is that the code now becomes tied to a particular 
synthesis tool. The alternative is to move the statement to the architecture to elimi­
nate the error, and ignore the warning. 

The next error message is, at first sight, confusing (from lines 15-16 of the vari­
able-width shift register in Table 10.7), 

if CLR = 'I' then St := (others => '0'); Q <= St after TCQ; 

Error: Illegal use of aggregate with the choice "others": the derived 

subtype of an array aggregate that has a choice "others" must be a 
constrained array subtype 

This error message is precise and uses the terminology of the LRM but does not 
reveal the source of the problem. To discover the problem we work backward 
through the model. We declared variable St as follows (lines 12-13 of Table 10.7): 

subtype OutB is NATURAL range Q'LENGTH-1 downto 0; 

variable St: BIT_VECTOR{OutB}; 

(to keep the model flexible). Continuing backward we see Q is declared as type 
BIT VECTOR with no index range as follows (lines 4-5 of Table 10.7): 

port{CLK, CLR, LD, SH, DIR: in BIT; 

D: in BIT_VECTOR; Q: out BIT_VECTOR}; 

The error is thus linked to the previous problem (undeclared bus widths) in this 
entity-architecture pair. Because the synthesizer does not know the width of Q, it 
does not know how many I 0 I S to put in St when it has to implement St : = 

(others => '0 ' ). There is one more error like this one in the second assignment 
to St (line 19 in Table 10.7). Again the problem may be solved by sacrificing flexi­
bility and constraining the width of Q to be a fixed value. 

631



12.9 THE MULTIPLIER 617 

The next warning involves names (line 5 in Table 10.9), 

signal SRA, SRB, ADDout, MUXout, REGout: BIT_VECTOR(7 downto 0); 

Warning: Name is reserved word in VHDL-93: sra 

This problem can be fixed by (a) changing the signal name, (b) using an escaped 
name, or (c) accepting that this code will not work in a VHDL-93 environment. 

Finally, there is the following warning (line 6 in Table 10.9): 

signal Zero, Init, Shift, Add, Low: BIT := '0'; signal High: BIT := '1'; 

Warning: Initial values on signals are only for simulation and setting 

the value of undriven signals in synthesis. A synthesized circuit can 

not be guaranteed to be in any known state when the power is turned on. 

Signals Low and High are used to tie inputs to a logic '0' and to a logic '1', 

respectively. This is because VHDL-87 does not allow '1' or '0', which are liter­
als, as actual parameters. Thus one way to solve this problem is to change to a 
VHDL-93 environment, where this restriction was lifted. Some synthesis systems 
handle VDD and GND nets in a specific fashion. For example, VDD and GND may 
be declared as constants in a synthesis package. It does not really matter how inputs 
are connected to VDD and GND as long as they are connected in the synthesized 
logic. 

12.9.1 Messages During Synthesis 
After fixing the error and warning messages, we can synthesize the multiplier. Dur­
ing synthesis we see these messages: 

These unused instances are being removed: in full_adder_p_dupS: uS, u2, 

u3, u4 

These unused instances are being removed: in dffclr_p_dup1: u2 

and seven more similar to this for dffclr_p_dup2: u2 to dffclr_p_dup8: u2. 

We are suspicious because we did not include any redundant or unused logic in our 
input code. Let us dig deeper. 

Turning to the second set of messages fIrst, we need to discover the locations of 
dffclr _p _ dupl: u2 and the other seven similarly named unused instances. We 
can ask the synthesizer to produce the following hierarchy map of the design: 

************* Hierarchy of cell "multS_p" 

multS_p 

adder8_p 

full_adder_p [x8] 

allzero_p 

muxS_p 

register8_p 

dffclr_p [xS] 

************* 

632



618 CHAPTER 12 LOGIC SYNTHESIS 

shiftn_p [x2] 

sm_1_p 

The eight unused instances in question are inside the 8-bit shift register, 
register8 _po The only models in this shift register are eight copies of the D flip­
flop model, DFFClr. Let us look more closely at the following code: 

architecture Behave of DFFClr is 

signal Qi : BIT; 
begin QB <= not Qi; Q <= Qi; 

process (CLR, CLK) begin 
if CLR = 'I' then Qi <= '0' after TRQ; 

elsif CLK'EVENT and CLK = 'I' then Qi <= Dafter TCQ; 
end if; 

end process; 

end; 

--1 

--2 

--3 

--4 
--5 
--6 

--7 

--8 

--9 

The synthesizer infers an inverter from the first statement in line 3 (QB <= not Qi). 

What we meant to imply (A) was: "I am trying to describe the function of a D flip­
flop and it has two outputs; one output is the complement of the other." What the 
synthesizer inferred (B) was: "You described a D flip-flop with an inverter con­
nected to Q." Unfortunately A does not equal B. 

Why were four cell instances (us, u2, u3, u4) removed from inside a cell with 
instance name full_adder _p _ dup8? The top-level cell mul t8 _p contains cell 
adder8 _p, which in turn contains full_adder _p [x8]. This last entry in the hier­
archy map represents eight occurrences or instances of cell full_adder _po The 
logic synthesizer appends the suffix I _p' by default to the names of the design units 
to avoid overwriting any existing netlists (it also converts all names to lowercase). 
The synthesizer has then added the suffix 'dup8' to create the instance name 
full_adder _p _ dup8 for the eighth copy of cell full_adder _po 

What is so special about the eighth instance of full_adder_p inside cell 
adder8 p? The following (line 13 in Table 10.9) instantiates Adder8: 

A1:Adder8 port map(A=>SRB,B=>REGout,Cin=>Low,cout=>OFL,Sum=>ADDout); 

The signal OFL is declared but not used. This means that the formal port name 
Cout for the entity Adder8 in Table 10.2 is unconnected in the instance 
full_adder _p _ dup8. Since the carry-out bit is unused, the synthesizer deletes 
some logic. Before dismissing this message as harmless, let us look a little closer. In 
the architecture for entity Adder8 we wrote: 

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after TC; 

In one of the instances of Adder8, named full_adder _p _ dup8, this statement 
is redundant since we never use Cout in that particular cell instance. If we look at the 
synthesized netlist for full_adder _p _ dup8 before optimization, we find four 

633



12.10 THE ENGINE CONTROLLER 619 

NAND cells that produce the signal Couto During logic optimization the synthesizer 
removes these four instances. Their instance names are full_adder _P _ dup8 : u2 I 

u3 I u4 I us. 

12.1 0 The Engine Controller 

This section returns to the example from Section 10.16, "An Engine Controller." 
This ASIC gathers sampled temperature measurements from sensors, converts the 
temperature values from Fahrenheit to Centigrade, averages them, and stores them 
in a FIFO before passing the values to a microprocessor on a three-state bus. We 
receive the following message from the logic synthesizer when we use the FIFO­
controller code shown in Table 10.25: 

Warning: Made latches to store values on: net d(4), d(S), d(6), d(7), 

d(8), d(9), d(lO), d(ll), in module fifo_control 

This message often indicates that we forgot to initialize a variable. 
Here is the part of the code from Table 10.25 that assigns to the vector D (the 

error message for d is in lowercase-remember VHDL is case insensitive): 

case sel is 
when "01" => 

when "10" => 

when "00" => 

when others 

end case; 

=> 

D <= 

D <= 

D(3) 

D( 1) 
D <= 

D_1 after TPD; rl <= '1' after TPD; 

D_2 after TPD; r2 <= '1' after TPD; 
<= f1 after TPD; D(2) <= f2 after TPD; 

<= e1 after TPD; D(O) <= e2 after TPD; 
"ZZZZZZZZZZZZ" after TPD; 

When sel = "00", there is no assignment to D ( 4) through D ( 11 ). This did not 
matter in the simulation, but to reproduce the exact behavior of the HDL code the 
logic synthesizer generates latches to remember the values of D ( 4) through D ( 11) . 

This problem may be corrected by replacing the" 0 0" choice with the following: 

when "00" => D(3) <= f1 after TPD; D(2) <= f2 after TPD; 

D(l) <= e1 after TPD; D(O) <= e2 after TPD; 
D(ll downto 4) <= "ZZZZZZZZ" after TPD; 

The synthesizer recognizes the assignment of the high-impedance logic value' Z 1 

to a signal as an indication to implement a three-state buffer. However, there are two 
kinds of three-state buffers: core logic three-state buffers and three-state I/O cells. We 
want a three-state I/O cell containing a bonding pad and not a three-state buffer 
located in the core logic. If we synthesize the code in Table 10.25, we get a three-state 
buffer in the core. Table 12.9 shows the modified code that will synthesize to three­
state I/O cells. The signal OE_b drives the output enable (active-low) of the three-state 
buffers. Table 12.10 shows the top-level code including all the I/O cells. 

634



620 CHAPTER 12 LOGIC SYNTHESIS 

TABLE 12.9 A modified version of the FIFO controller to drive three-state 1/0 cells. 

library IEEE;use IEEE.STD_LOGIC_1164.all;use IEEE.NUMERIC_STD.all; 

entity fifo_control is generic TPD:TIME := 1 nSi 

port(D_1, D_2: in UNSIGNED(ll downto 0); 

sel : in UNSIGNED(l downto 0) i 

read, f1, f2, e1, e2 : in STD_LOGICi 

r1, r2, w12:out STD_LOGIC; D: out UNSIGNED(ll downto 0); 

OE:out STD_LOGIC ) ; 

end; 

architecture rtl of fifo control is 

begin process (read, sel, D_1, D_2, f1, f2, e1, e2) 

begin 

r1 <= '0' after TPD; r2 <= '0' after TPDi OE b <= '0' after TPDi 

if (read = 'I') then 

w12 <= '0' after TPDi 

case sel is 

when "01" => 

when "10" => 

when "00" => 

D <= 

D <= 

D(3) 

D( 1) 

D 

D -
<= 

<= 

1 

2 

after TPDi'r1 <= ' I' 

after TPD; r2 <= ' l' 

fl after TPD; D(2) <= 

e1 after TPDi D(O) <= 

D(l1 downto 4 ) <= "00000000" 

when others 

end case; 

=> OE b <= 

elsif (read = '0') then 

' l' after TPD; 

OE b <= '0' after TPD; w12 <= 'I' after TPDi 

else OE b <= '0' after TPD; 

end if; 

end processi 

end rtl; 

after TPD; 

after TPD; 

f2 after TPDi 

e2 after TPD; 

after TPD; 

Performance-Driven Synthesis 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 
--11 

--12 
--l3 

--14 

--15 

--16 

--17 

--18 

--19 

--20 

--21 

--22 

--23 

--24 

--25 

--26 

--27 

--28 

Many logic synthesizers allow the use of directives. The pseudocomment in the fol­
lowing code directs the logic synthesizer to minimize the delay of an addition: 

module add_directive (a, b, Z)i input [3:0] a, bi output [3:0] zi 

//compass maxDelay 2 ns 

//synopsys and so on. 

assign Z = a + bi 

endmodule 

635



12.11 PERFORMANCE-DRIVEN SYNTHESIS 

TABLE 12.10 The top-level VHDL code for the engine controller ASIC. 

library COMPASS_LIB, IEEE ; 

use IEEE.STD.all; use IEEE.NUMERIC_STD.all; 

use COMPASS_LIB.STDCOMP.all; use COMPASS_LIB.COMPASS.all; 

entity t_control_ASIC is port( 

PadTri : out 

padClk, Padlnreset, Padlnreadv 

Padlnpl, Padlnp2 : in 

PadlnSens : in 

end t control ASIC 

in 

STD LOGIC VECTOR (11 downto 0) 

STD LOGIC VECTOR ( 0 downto 0) 

STD LOGIC VECTOR (11 downto 0) 

STD LOGIC VECTOR ( 1 downto 0) 

architecture structure of t control ASIC is 

for 

for 

for 

for 

all 

all 

all 

all 

aSPadln 

asPadClk 

asPadTri 

asPadVdd 

use entity COMPASS_LIB.aspadln(aspadln) 

use entity COMPASS_LIB.aspadClk(aspadClk); 

use entity COMPASS_LIB.aspadTri(aspadTri) 

use entity COMPASS_LIB.aspadVdd(aspadVdd) 

for all aSPadVss use entity COMPASS_LIB.aspadVss(aspadVss) 

component 

component 

pc3c01 port ( cclk : in STD_LOGIC; cp : out STD_LOGIC ); end component; 

t_control port(T_in1, T_in2 : in UNSIGNED(ll downto 0); 

SENSOR: in UNSIGNED( 1 downto 0) ; clk, rd, rst : in STD_LOGIC; 

D : out UNSIGNED(ll downto 0); oe bout STD_LOGIC ); end component 

signal T_in1 sv, T in2 sv STD_LOGIC_VECTOR(ll downto 0) ; 

signal T_in1_un, T in2 un 

signal sensor sv 

signal sensor un 

signal clk_sv, rd_fifo_sv, reset sv 

signal clk_core, oe_b : 

signal D_un : UNSIGNED(ll downto 0) 

UNSIGNED(ll downto 0) ; 

STD_LOGIC_VECTOR(l downto 0) ; 

UNSIGNED(l downto 0) ; 

STD_LOGIC_VECTOR (0 do.~to 0) 

STD_LOGIC ; 

signal D_SV : STD_LOGIC VECTOR(ll downto 0) 

begin --compass dontTouch u* -- synopsys dont touch etc. 

u1 aSPadln generic map(12,"2:13") port map(t_in1_sv,padlnp1) 

u2 asPadln generic map(12,"14:2S") port map(t_in2_sv,Padlnp2) 

u3 asPadln generic map(2,"26:27") port map(sensor_sv, PadlnSens 

u4 

uS 

u6 

u7 

u8 

u9 

aSPadln generic map(l,"29"} 

asPadIn generic map(1,"30"} 

aSPadIn generic map(l,"32"} 

pc3c01 

port map(rd_fifo_sv, PadInReadv 

port map(reset_sv, Padlnreset 

port map(clk_sv, PadClk) ; 

port map(clk_sv(O), clk core) 

aSPadTri generic map(12,"3S:38,41:44,47:S0"} port map(PadTri,D_sv,oe_b); 

asPadVdd generic map("1,3I,34,40,45,52") port map(Vdd) ; 

ulO: asPadVss generic map("28,33,39,46,SI,53") port map(Vss) ; 

T_in1_un <= UNSIGNED(T_inl sv) i T_in2_un <= UNSIGNED (T_in2_sv) 

sensor_un <= UNSIGNED(sensor_sv) ; D_sV <= STD_LOGIC_VECTOR(D_un) 

v_I : t_control port map 

(T_in1_un, T_in2_un, sensor_un, Clk_core, rd fifo sv(O), reset_sv(O),D_un, oe_b) 

end; 

621 

--1 

--2 

--3 

--4 

--S 
--6 

--7 

--8 

--9 

--10 

--11 

--12 

--13 

--14 

--IS 

--16 

--17 

--18 

--19 

--20 

--21 

--22 

--23 

--24 

--2S 

--26 

--27 

--28 

--29 

--30 

--31 

--32 

--33 

--34 

--35 

--36 

--37 

--38 

--39 

--40 

--41 

--42 

--43 

--44 

636



622 CHAPTER 12 LOGIC SYNTHESIS 

These directives become complicated when we need to describe complex timing 
constraints. Figure 12.7(a) shows an example of a more flexible method to measure 
and specify delay using timing arcs (or timing paths). Suppose we wish to improve 
the performance of the comparator/MUX example from Section 12.2. First we 
define a pathcluster (a group of circuit nodes-see Figure 12.7b). Next, we specify 
the required time for a signal to reach the output nodes (the end set) as 2 ns. 
Finally, we specify the arrival time of the signals at all the inputs as 0 ns. We have 
thus constrained the delay of the comparator/MUX to be 2 ns-measured between 
any input and any output. The logic-optimization step will simplify the logic net­
work and then map it to a cell library while attempting to meet the timing con­
straints. 

timing arcs 

comparator/MUX 
r-- _____________________________________ , 

: / / comp mux.v 

arrival time = 0 ns 

allinputs~ 
~ pathcluster 

constraint 
,----: module -;;-omp_mux (a, b, outp); 

'----+-i'input [2:0] a, b; 
: ~l1tput [2:0] outp; 

Qutp[O] 

a[l] 
b[l] 

start set 

: function [2.: 0] compare; outp [1] 
: input [2 :OJ . ina, inb; 
: begin. . ... 
: 'if (ina <= .. inb) cemipare ina; 
: else compare =inb; .. 

: end . c"'O : 
: endfunction»' ......... ,-: .r---
: assign outp=compare(a,b);' : 
, endmodule ~: 
: ____________________________ ---- ______ 1 

pathcluster . 
constraint end set 

start set + end set = pathcluster 

(a) 

required time = 2 ns 

example: 

> set patheluster pel 
> set requiredTime 2 

Qutp[O] Qutp[l] Qutp[2] 
-patheluster pel 

> set arrival Time 0 * 
-patheluster pel 

(b) 

FIGURE 12.7 Timing constraints. (a) A pathcluster. (b) Defining constraints. 

Table 12.11 shows the results of a timing-driven logic optimization for the com­
parator/MUX. Comparing these results with the default optimization results shown 
in Table 12.3 reveals that the timing has dramatically improved (critical path delay 
was 2.43 ns with default optimization settings, and the delay varies between 0.31 ns 
and 1.64 ns for the timing-driven optimization). 

Figure 12.8 shows that timing-driven optimization and the subsequent mapping 
have simplified the logic considerably. For example, the logic for Qutp [ 2] has been 

637



12.11 PERFORMANCE-DRIVEN SYNTHESIS 623 

TABLE 12.11 Timing-driven synthesis reports for the comparator/MUX example of Section 12.2. 

Command Synthesizer output1 

> set pathcluster pc1 

> set requiredTime 2 outp[O] outp[l] outp[2] -pathcluster pc1 

> set arrivalTime 0 * -pathcluster pc1 

> optimize 

> report 

timing 

-allpaths 

Cell Name 

an02d1 

in01dO 

mx21d1 

nd02dO 

oa03d1 

oa04d1 

Totals: 

Num 

lnsts 

1 

2 

2 

2 

1 

1 

9 

path cluster name: pc1 

path type: maximum 

Gate Count Tot Gate 

Per Cell Count 

---------- --------

1.3 1.3 

.8 1.5 

2.2 4.5 

1.0 2.0 

1.8 1.8 

1.3 1.3 

---------- --------

12.2 

Width 

Per Cell 
--------

12.0 

7.2 

21.6 

9.6 

16.8 

12.0 
--------

end node current required slack 

outp[l] 

outp[O] 

outp[2] 

1. 64 

1. 64 

.31 

2.00 

2.00 

2.00 

1 See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table. 

.36 MET 

.36 MET 

1. 69 MET 

reduced to a two-input AND gate. Using sis reveals how optimization works in this 
case. Table 12.12 shows the equations for the intermediate signal se1 and the three 
comparator/MUX outputs in the BLIF. Thus, for example, the following line of the 
BLIF code in Table 12.12 (the first line following. names aO bO al bl a2 b2 

se1) includes the term aO· bO ' . aI' . bI' . a2 ' . b2' in the equation for se1: 

100000 1 

There are six similar lines that describe the six other product terms for sel. These 
seven product terms form a cover for se1 in the Karnaugh maps of Figure 12.5. 

In addition sis must be informed of the don't care values (called the external 
don't care set) in these Karnaugh maps. This is the function of the PLA-format 
input that follows the. exdc line. Now sis can simplify the equations including the 
don't care values using a standard script, rugged. script, that contains a sequence 

Total 

Width 
--------

12.0 

14.4 
43.2 

19.2 

16.8 

12.0 

--------

117.6 

638



624 CHAPTER 12 LOGIC SYNTHESIS 

'timescale lns / lOps 

module comp_mux_o (a, b, outp)i 

input [2:0] ai input [2:0] bi 

output [2:0] outPi 
supplyl VOOi supplyO VSSi 

mx2ldl Bl il (.IO(a[O]), 

.Il(b[O]), .S(Bl_i6_ZN), 

.Z(outp[O]))i 

oa03dl Bl_i2 (.Al(Bl_i9_ZN), 

.A2(a[2]), .Bl(a[O]), .B2(a[l]), 

.C(Bl_i4_ZN), .ZN(Bl_i2_ZN))i 

nd02dO Bl_i3 (.Al(a[l]), 

.A2(a[0]), .ZN(Bl_i3_ZN)); 

nd02dO Bl_i4 (.Al(b[l]), 

.A2(Bl_i3_ZN), .ZN(Bl_i4_ZN))i 

mx2ldl Bl_i5 (.IO(a[l]), 

.Il(b[l]), .S(Bl_i6_ZN), 

.Z(outp[l])) i 

oa04dl Bl_i6 (.Al(b[2]), 

.A2(Bl_i7_ZN), .B(Bl_i2_ZN), 

.ZN(Bl_i6_ZN)) ; 

inOldO Bl_i7 (.I(a[2]), 

. ZN(Bl_i7_ZN)); 

an02dl Bl_i8 (.Al(b[2]), 

.A2(a[2]), .Z(outp[2])); 

inOldO Bl_i9 (.I(b[2]), 

.ZN(Bl_i9_ZN)) i 

endmodule 

a[O] a[1] 

NAND2 
(nd02dO) 

b[1 ] 

NAND2 INV 

b[2] 

(nd02dO) (inOldO) 

a[2] 

INV 
(inOldO) 

AND2 
(an02dl) 

b[O] a~o] a[2]y b[2] 

outp[O] outp[2] 

MUX 
(mx:21dl) 

b[1] a[1] 

FIGURE 12.8 The comparator/MUX example of Section 12.2 after logic optimization with 
timing constraints. The figure shows the structural netlist, comp mux 02. v, and its derived 
schematic. Compare this with Figures 12.2 and 12.3. --

of sis commands. This particular script uses a series of factoring and substitution 
steps. The output (Table 12.12) reveals that sis finds the same equation for 
outp [2] (named outp2 in the sis equations): 

{outp2} = a2 b2 

The other logic equations in Table 12.12 that sis produces are also equivalent to the 
logic in Figure 12.8. The technology-mapping step hides the exact details of the con­
version between the internal representation and the optimized logic. 

639



12.12 OPTIMIZATION OF THE VITERBI DECODER 625 

TABLE 12.12 Optimizing the comparator/MUX equations using sis. 

sis input file (BUF) sis results 

.model comp_mux </usr/user1/msmith/sis> sis 

.inputs aO bO a1 b1 a2 b2 

.outputs outpO outp1 outp2 

.names aO bO a1 b1 a2 b2 sel 

UC Berkeley, SIS Development Version 

(compiled 11-0ct-95 at 11:50 AM) 
sis> read blif comp_mux.blif 

100000 1 sis> print 

101100 1 {outpO} aO sel' + bO sel 

--1000 1 {outp1} a1 sel' + b1 sel 

----10 1 {outp2} a2 sel' + b2 sel 

100011 

101111 
1 

1 

sel = aO a1 a2 bO' b1 b2 

+ aO a1 a2' bO' b1 b2' 

--1011 1 + aO aI' a2 bO' b1' b2 

. names sel aO bO outpO + aO aI' a2' bO' b1' b2' 

1-1 1 + a1 a2 b1' b2 

OI- l + a1 a2' b1' b2' 

.names sel a1 b1 outp1 + a2 b2' 

1-1 

OI-

1 

l 

sis> source script.rugged 

sis> print 

. names sel a2 b2 outp2 

1-1 1 
OI- l 

.exdc 

. names aO bO a1 b1 a2 b2 sel 

000000 1 
110000 1 
001100 1 

111100 1 
000011 1 

110011 1 
001111 1 

111111 1 
.end 

{outpO} aO sel' 

{outp1} a1 sel' 

{outp2} a2 b2 

sel = [ 9] a2 bO' 

+ [ 9] bO' b2' 

+ a1 a2 b1' 
+ a1 b1' b2' 

+ a2 b2' 

[9] = a1 + b1' 
sis> quit 
</usr/user1/msmith/sis> 

12 .. 12 Optimization of the Viterbi Decoder 

Returning to the Viterbi decoder example (from Section 12.4), we first set the 
environment for the design using the following worst-case conditions: a die tempera­
ture of 25°C (fastest logic) to 120°C (slowest logic); a power supply voltage of 
VDD =5.5V (fastest logic) to VDD =4.5V (slowest logic); and worst process (slowest 
logic) to best process (fastest logic). Assume that this ASIC should run at a clock fre­
quency of at least 33 MHz (clock period of 30ns). An initial synthesis run gives a criti-

+ bO sel 

+ b1 sel 

640



626 CHAPTER 12 LOGIC SYNTHESIS 

cal path delay at nominal conditions (the default setting) of about 25 ns and nearly 35 ns 
under worst-case conditions using a high-density O.61lm standard-cell target library. 

Estimates (using simulation and calculation) show that data arrives at the input 
pins 5 ns (worst-case) after the rising edge of the clock. The reset signal arrives 
10 ns ( worst-case) after the rising edge of the clock. The outputs of the Viterbi 
decoder must be stable at least 4 ns before the rising edge of the clock. This allows 
these signals to be driven to another ASIC in time to be clocked. These timing con­
straints are particularly devastating. Together they effectively reduce the clock 
period that is available for use by 9 ns. However, these figures are typical for board­
level delays. 

The initial synthesis runs reveal the critical path is through the following six 
modules: 

subset_decode -> compute_metric -> 

compare_select -> reduce -> metric -> output_decision 

The logic synthesizer can do little or no optimization across these module bound­
aries. The next step, then, is to rearrange the design hierarchy for synthesis. 
Flattening (merging or ungrouping) the six modules into a new cell, called 
cr i tical, allows the synthesizer to reduce the critical path delay by optimizing one 
large module. 

At present the last module in the critical path is output decision. This com­
binational logic adds 2-3 ns to the output delay requirement of 4 ns (this means the 
outputs of the module metric must be stable 6-7 ns before the rising clock edge). 
Registering the output reduces this overhead and removes the module 
output_decision from the critical path. The disadvantage is an increase in latency 
by one clock cycle, but the latency is already 12 clock cycles in this design. If regis­
tering the output decreases the critical path delay by more than a factor of 12/13, 
performance will still improve. 

To register the output, alter the code (on pages 575-576) as follows: 

module viterbi ASIC 

wire [2:0) Out, Out_ri II Change: add Out r. 

asPadOut #(3,"30,31,32") u30 (padOut, Out_r); II Change: Out_r. 

Outreg a 1 (Out, Out_r, Clk, Res); II Change: add output register. 

endmodule 

module Outreg (Out, Out_r, Clk, Res); II Change: add this module. 

input [2:0) Out; input C1k, Rsti output [2:0) Out_r; 
dff #(3) reg1(Out, Out_r, Clk, Res)i 

endmodule 

These changes move the performance closer to the target. Prelayout estimates indi­
cate the die perimeter required for the I/O pads will allow more than enough area to 

641



12.12 OPTIMIZATION OFTHE VITERBI DECODER 627 

hold the core logic. Since there is unused area in the core, it makes sense to switch 
to a high-performance standard-cell library with a slightly larger cell height (96A 
versus 72A). This cell library is less dense, but faster. 

Typically, at this point, the design is improved by altering the HDL, the hierar­
chy, and the synthesis controls in an iterative manner until the desired performance 
is achieved. However, remember there is still no information from the layout. The 
best that can be done is to estimate the contribution of the interconnect using wire­
load models. As soon as possible the netlist should be passed to the floorplanner (or 
the place-and-route software in the absence of a floorplanner) to generate better esti­
mates of interconnect delays. 

TABLE 12.13 Critical-path timing report for the Viterbi decoder. 

Instance name Delay information1 

v 1. u100 inPin --> outPin incr arrival trs rampDel 

u1. subout5 . Q ff bO CP --> QN 1. 65 1. 65 F .20 - -
B1 i67 Al --> ZN .63 2.27 R .14 
B1 i66 B --> ZN .84 3.12 F .15 
B1 i64 B2 --> ZN .91 4.03 F .35 
B1 i68 I --> ZN .39 4.43 R .23 
B1 i316 S --> Z .91 5.33 F .34 
u3.add_ripl.u4 BO --> co 2.20 7.54 F .24 

.. . 28 other cell instances omitted ... 

u5.sub_rip1.u6 BO --> co 2.25 23.17 F .23 
u5.sub_rip1.u8 CI --> co .53 23.70 F .21 
B1 i301 Al --> Z .69 24.39 R .19 
u2.metric3.Q ff b4 setup: D --> CP .17 24.56 R .00 - -

slack: MET .44 

1 See the text for explanations of the column headings. 

Table 12.13 is a timing report for the Viterbi decoder, which shows the critical 
path starts at a sequential logic cell (a D flip-flop in the present example), ends at a 
sequential logic cell (another D flip-flop), with 37 other combinational logic cells in­
between. The first delay is the clock-to-Q delay of the first flip-flop. The last delay is 
the setup time of the last flip-flop. The critical path delay is 24.56 ns, which gives a 
slack of 0.44 ns from the constraint of 25 ns (reduced from 30 ns to give an extra 
margin). We have met the timing constraint (otherwise we say it is violated). 

cap(pF) cell 

.10 dfctnb 

.08 ao01d1 

.08 ao04d1 

.17 fn03d1 

.12 in01d1 

.17 mx21d1 

.14 ad02d1 

.13 ad02d1 

.09 ad01d1 

.07 xo02d1 

.00 dfctnb 

642



628 CHAPTER 12 LOGIC SYNTHESIS 

In Table 12.13 all instances in the critical path are inside instance v _1. u 100. 
Instance name ulOO is the new cell (cell name critical) formed by merging six 
blocks in module viterbi (instance name v_I). 

The second column in Table 12.13 shows the timing arc of the cell involved on 
the critical path. For example, CP --> QN represents the path from the clock pin, 
CP, to the flip-flop output pin, QN, of a D flip-flop (cell name dfctnb). The pin 
names and their functions come from the library data book. Each company adopts a 
different naming convention (in this case CP represents a positive clock edge, for 
example). The conventions are not always explicitly shown in the data books but are 
normally easy to discover by looking at examples. As another example, EO --> CO 

represents the path from the B input to the carry output of a 2-bit full adder (cell 
name ad02dl). 

The third column (incr) represents the incremental delay contribution of the 
logic cell to the critical path. 

The fourth column (arrival) shows the arrival time of the signal at the output 
pin of the logic celL This is the cumulative delay to that point on the critical path. 

The fifth column (trs) describes whether the transition at the output node is 
rising (R) or falling (F). The timing analyzer examines each possible combination of 
rising and falling delays to find the critical path. 

The sixth column (rampDel) is a measure of the input slope (ramp delay, or 
slew rate). In submicron ASIC design this is an important contribution to delay. 

The seventh column (cap) is the capacitance at the output node of the logic cell. 
This determines the logic cell delay and also the signal slew rate at the node. 

The last column (cell) is the cell name (from the cell-library data book). In 
this library suffix' dl' represents normal drive strength with' dO', 'd2', and' d5 ' 
being the other available strengths. 

12.13 Summary 

A logic synthesizer may contain over 500,000 lines of code. With such a complex 
system, complex inputs, and little feedback at the output there is a danger of the 
"garbage in, garbage out" syndrome. Ask yourself "What do I expect to see at the 
output?" and "Does the output make sense?" If you cannot answer these questions, 
you should simplify the input (reduce the width of the buses, simplify or partition 
the code, and so on). The worst thing you can do is write and simulate a huge 
amount of code, read it into the synthesis tool, and try and optimize it all at once 
with the default settings. 

With experience it is possible to recognize what the logic synthesizer is doing 
by looking at the number of cells, their types, and the drive strengths. For example, 
if there are many minimum drive strength cells on the critical path it is usually an 
indication that the synthesizer has room to increase speed by substituting cells with 
stronger drive. This is not always true, sometimes a higher-drive cell may actually 

643



12.14 PROBLEMS 629 

slow down the circuit. This is because adding the larger cell increases load capaci­
tance, but not enough drive to make up for it. This is why logical effort is a useful 
measure. 

Because interconnect delay is increasingly dominant, it is important to begin the 
physical design steps as early as possible. Ideally floorplanning and logic synthesis 
should be completed at the same time. This ensures that the estimated interconnect 
delays are close to the actual delays after routing is complete. 

12.14 Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

12.1 (Comparator/MUX) 

a. (30 min.) Build a Design Works (or use another tool) model for the schematic 
in Figure 12.1 and simulate the operation of this circuit to check that it per­
forms the same function as the Verilog code. Hint: You could also use 
VeriWell to simulate the Verilog netlist. 

b. (30 min.) Simulate the schematic (or the Verilog netlist) shown in 
Figure 12.2 and check that it performs the comparator/MUX function cor­
rectly. 

c. (30 min.) Simulate the schematic (or the Verilog netlist) of Figure 12.3. If you 
have access to a logic synthesizer and cell library, you might resynthesize the 
comparator/MUX and compare the results with those shown in Figures 12.2 
and 12.3. 

d. (20 min.) Build a schematic (or Verilog model) for macro em8 III 

Figure 12.4. 

e. (30 min.) Simulate the schematic (or Verilog netlist) shown lJ1 

Figure 12.4. 

12.2 (*Verilog assignments, 15 min.) Simulate and test the following model 
paying attention to initialization. Attempt to synthesize it. Explain your results. 

module dff (D, Q, elk, Rst); 

parameter width = 1, reset_value = 0; input [width - 1 : 0] D; 

output [width - 1 : 0] Q; reg [width - 1 : 0] Q; input elk,Rst; 

initial Q = {width{l'bx}}; 

always @ ( posedge elk or negedge Rst ) 

if ( Rst == 0 ) Q <= #1 reset_value; else Q <= #1 D; 

endmodule 

12.3 (Digital filter) (30 min.) Write HDL code to model the following filter: 

yO <= c(0)*X(0)+c(l)*x(1)+b(2)*x(2) 

644



630 CHAPTER 12 LOGIC SYNTHESIS 

Use c (0) = -4, c (0) = +5, C (0) = -3, but make your code flexible so that these coef­
ficients may be changed. (120 min.) Simulate, test, and synthesize your model. Hint: 
You should use the transfer equation in your code (Verilog or VHDL). 

12.4 (Hand design, 60 min.) Use hand calculation and gate delay values 
obtained from a data book to estimate the critical path of the comparator/MUX 
shown in Figure 12.1. Assume the critical path (the one with the longest delay) is 
from the a [ 2] input (the input with the largest load) -> XOR -> inverter -> four­
input NAND -> three-input OR -> select input of two-input MUX (the symbol -> 
means "through the"). You will need to find the tpHL (falling) and tpLH (rising) prop­
agation delays for each gate used in the critical path. Do not adjust the delays for the 
loading (fanout) at the output of each gate on the critical path, assume a loading 
equal to one input of a two-input NAND gate. Change the AND-NOR gate combi­
nation to a NAND-NAND gate combination and recalculate the critical path delay. 

12.5 (Critical path, 30 min.) Enter the schematic shown in Figure 12.1 and, 
using a gate-level simulator or a timing analyzer, obtain the delays from the a and b 

inputs to the outputs. What is the critical path? 

12.6 (Verilog sensitivity list, 30 min.) Simulate the following Verilog module 
with the test pattern shown and explain your results. 

module and2_bad(a, b, c); input a, b; output c; reg c; 

II test pattern: (a b) = (11) (0 1) (0 0) (10) (11) 

always@(a) c <= a & b; 

endmodule 

Can you synthesize this module as it is? What is the error message if you get one? If 
you can synthesize this module as it is, simulate the synthesized logic and compare 
the output with the Verilog simulation. 

12.7 (Verilog decoder, 30 min.) Synthesize the following Verilog module with 
minimum-area constraint and then with maximum-speed constraint. Compare the 
resulting logic in each case. 

module Decoder4_to_16 (Enable, In_4, Out_16); 

input Enable; input [3:0] In_4i output [15:0] Out_16i 

reg [15:0] Out_16; 

always @(Enable or In_4) 

begin 

Out_16 = 16'hzzZZi 

if (Enable == 1) begin Out 16 

end 

endmodule 

1; end 

What happens if you change the if statement to if (Enable === l)? 

12.8 (Verilog eight-input MUX, 20 min.) Synthesize the following code with 
maximum-speed constraint and then minimum-area constraint. Compare the results. 

module Mux8_to_1(InBus, Select, OutEnable, OutBit)i 

645



input [7:0] lnBus; input [2:0] Select; input OutEnable; 

output OutBit; reg OutBit; 

always @(OutEnable or Select or lnBus) 

begin 

12.14 PROBLEMS 631 

if (OutEnable 1) OutBit = lnBus[Select]; else OutBit 1'bz; 
end 

endmodule 

12.9 (Veri log parity generator, 30 min.) Synthesize the fonowing code with 
maximum-speed constraint and then minimum-area constraint. Compare the results. 

module Parity (Busln, ParityB); 

input[8:0] Busln; output ParityB; reg ParityB; 

always @(Busln) if (ABusin == 0 ) ParityB =1; else ParityB = 0; 

endmodule 

12.10 (Verilog edges and levels, 30 min.) What is the function of the following 
model? List the cells produced by a logic synthesizer, their function, and an explana­
tion of why they were synthesized. 

module DD(D, C, R, Q, QB); input D, C, R; output Q, QB; reg Q, QB, L; 

always @(posedge C or posedge R) if (R 1) L = 0; else L = D; 

always @(L) begin Q = L; QB = -L; end 

endmodule 

12.11 (Verilog adders, 120 min.) Synthesize the following code with maximum­
speed constraint and then minimum-area constraint. What type of adder architecture 
does the synthesis tool produce in each case (ripple-carry, lookahead, etc.)? Show 
exactly how you reached your conclusion. If you can, use either synthesis tool direc­
tives, shell commands, or standard components (Synopsys Design Ware or Xilinx 
X-BLOX, for example) to direct the synthesis tool to a specific adder implementa­
tion. Check that when you optimize the synthesized logic the adder architecture is 
not broken up. Next, if you can, find a way to make the synthesis tool break up the 
adder and reoptimize the logic. Does anything change? 

module adder1(a, a, outp); 

input [3:0] ai input [3:0J b; output [3:0] outpi reg [3:0] outp; 

II if you can, change the next line to drive your synthesis tool 

II pragmalcompasslsynopsyslwhatever max_delay constraint 

begin 

outp <= a + b; II Map me to DesignWare, X-Blox etc., if you can. 

end 

endmodule 

12.12 (Elementary gates in Verilog, 60 min.) Synthesize and optimize the fol­
lowing (you will have to write some more code to go around these statements): 

And3 = &{In1,ln2,ln3}; Or3 = I{Inl,ln2,ln3}; Xor3 = A{lnl,ln2,In3}; 

This should produce three-input AND, OR, and XOR gates. Now synthesize and 
optimize eight-input AND, OR, and XOR gates in the same way with minimum-area 

646



632 CHAPTER 12 LOGIC SYNTHESIS 

constraint and then maximum-speed constraint. Compare your results. How and why 
do the synthesis results and your answers change if you place a large capacitive load 
on the outputs. Hint: Try a load equivalent to 16 minimum-size inverters. Can you 
explain these results using logical effort? 

12.13 (Synthesizable VHDL, 20 min.) Complete the following code fragment 
and try to synthesize the VHDL: 

process begin 

wait until Clk = '1'; 

Phase <= "0" after 0 ns; Phase <= "1" after 10 ns; 

end process; 

What is the error message? Synthesize this code, and explain the results: 

process begin 

wait until Clk_x_2 = '1'; 

case (Phase) is 

when '0' => Phase <= '1'; when others => Phase <= '0'; 

end case; 

end process; 

12.14 (VHDL and process sensitivity list, 15 min.) Simulate the following code 
with the test input vectors shown: 

entity AND2 is port (a, b in BIT; c out: BIT); end AND2; 

architecture Bad behavior of AND2 is begin 

test inputs: (a b) = (1 1) (0 1) (0 0) (1 0) (1 1) 

process (a) begin c <= a and b; end process; 

end; 

Now try to synthesize this code. Do you get an error message? If not, try simulating 
the synthesized logic and compare with your earlier simulation results. 

12.15 (MUX logic, 20 min.) Synthesize the following VHDL: 

entity MuxLogic is 

port (InBus : in BIT_VECTOR(3 downto 0); 

Sel : in BIT_VECTOR(l downto 0); 

OutBit : put BIT); 

end MuxL09ici 

architecture Synthesis_1 of MuxLogic is 

begin process (Sel, InBus) 
begin 

case Sel is 

't-lhen liDO" => OutBit <= not(InBus(O)); 
when "01 t1 => OutBit <= InBus(l) and InBus(2); 
when 1110 11 => OutBit <= InBus(2) or InBus(l); 
when "II" => OutBit <= InBus(3) xor InBus(O); 
end case; 

647



end process; 

end Synthesis_1 i 

12.14 PROBLEMS 633 

Does the synthesizer implement the case statement using a MUX? Explain your 
answer carefully by using the synthesis reports and the synthesized netlist. Try syn­
thesizing again with minimum-area constraint and then maximum-speed constraint. 
Does this alter the implementation chosen by the synthesis tool? Explain. 

12.16 (Arithmetic overflow in VHDL) Synthesize the following model (you 
will need arithmetic packages): 

entity Adder1 is port (InBusA, 

InBusB : in Std_logic_vector(3 downto 0); 
OutBus : out Std_logic_vector(3 downto 0»; 

end Adderl; 

architecture Behavior of Adder1 is begin OutBus <= InBusA + InBusB; 

end Behavior; 

Repeat the synthesis with the following modification and explain the difference: 

OutBus : out Std_logic_vector(4 downto 0»; 

Finally, make the following additional modification and explain all your results: 

OutBus <= ( "0" & InBusA) + ("0" & InBusB) ; 

12.17 (Verilog integers, 30 min.) Consider the following Verilog module: 

module Testlntegers (clk, out) 

integer i; reg [1:0] out; input clk; output out; 
always @(posedge clk) begin i = i + 1; out = i; end 

endmodule 

Write a test module for Testlntegers and simulate the behavior. Try to synthesize 
Testlntegers and explain what happens. 

12.18 (Verilog shift register, 30 min.) Consider this code for a shift register: 

module Shiftl (clk, qO, ql, q2) 
input clk, qO; output q2, ql; reg q2, ql; 

always (@ posedge clk) ql = qO; always (@ posedge clk) q2 = q1i 

endmodule 

Write a module Test to exercise this module. Does it simulate correctly? Can 
you synthesize your code for Shift 1 as it is? Change the body of the code as fol­
lows (call this module Shift2): 

always (@ posedge c1k) ql = #1 qO; always (@ posedge clk) q2 = #1 ql; 

Does this simulate correctly? Now change the code as follows (Shift3): 

always (@ posedge clk) begin q1 = qO; q2 = ql; end 

648



634 CHAPTER 12 LOGIC SYNTHESIS 

Does this simulate correctly? Can you synthesize Shift3? Finally, change the 
code to the following (Shift4): 

always (@ posedge clk) q1 <= qO; always (@ posedge clk) q2 <= ql 

Does this simulate correctly? Can you synthesize Shift4? 

12.19 (Reset, 20 min.) Use simulation results to explain the difference between: 

always (@posedge clk) if(clr) Q 0; 

always (@posedge clk) if(rst) Q = 1; 

and 

always (@ posedge clk) begin if (clr) Q = 0; if (rst) Q = 1; end 

12.20 (Verilog assignments, 30 min.) Consider the following Verilog module: 

module TestAssign1(sel) input sel; reg outp; 

always @sel begin outp <= 1; if (sel) outp <= 0; end 
endmodule 

Write a module to drive TestAssignl and simulate your code. Now consider the 
following modification (call this TestAssign2): 

if (sel) outp <= 0; else outp <= 1; 

Simulate TestAssign2 and compare your results. Try to synthesize TestAssignl 
and TestAssign2. Comment on any problems you have and how you resolved 
them. Compare the behavior of the synthesized logic with the simulations. 

12.21 (VHDL sequential logic, 60 min.) Consider the following processes: 

81: process (clk) begin 
if clk'EVENT and clk = 'I' then count <= count + inc; end if; 

end process; 

82: process (clk) begin 

if rst = 'I' then count <= 0; 
elsif clk'EVENT and clk = 'I' then count <= count + inc; 

end if; 

end process; 

83: process (clk, rst) begin 
if rst = 'I' then count <= 0; elsif clk'EVENT and elk 

count <= count + inc; sum <= count + sum; 
end if; 

end process; 

84: process (clk) begin 

'I' then 

if clk'EVENT and clk = 'I' then if rst 
else count <= count + inc; end if; 

end if; 

'1' then count <= 0; 

end process; 

649



S5: process (clk, rst) begin 
if rst = 'I' then count <= 0; 

elsif clk'EVENT and clk = 'I' then count <= count + inc; 

else count <= count + 1; 
end if; 

end process; 

S6: process (clk, rst) begin 
if rst = 'I' then count <= 0; 

elsif clk'EVENT and clk = 'I' then count <= count + inc; 

end if; inc <= not dec; 

end process; 

12.14 PROBLEMS 635 

Write code to drive each of these processes and simulate them. Explain any 
errors or problems you encounter. Try to synthesize your code and check that the 
results behave correctly and match the simulation results. Explain any differences in 
behavior or any problems you encounter. 

12.22 (Verilog signed multiplication, 30 min.) Show, by simulation, that the 
following code performs signed multiplication. Synthesize the code and compare the 
results with the simulation. 

module Smpy (inl, in2, out); input [2:0] inl, in2; output [5:0] out; 

assign out = {{3{inl[2]}},inl}*{{3{in2[2]}},in2}; 
endmodule 

12.23 (Verilog arithmetic, 30 min.) Synthesize the following code and explain 
in detail the implementation that results: 

module Arithmetic (in_4, out_2, out_3, out 7, out 14); 
input [3:0] in_4; output [7:0] out_2, out_3, out_7, out_14; 

assign out_2 = in_4*2; assign out_3 in_4*3; assign out 7 in_4*7; 
assign out_14 in 4 * 4'blll0; 

endmodule 

12.24 (Verilog overflow bit, 15 min.) Synthesize the following code and explain 
the implementation that results: 

module Overflow (a, b, sum, cout); 

input [7:0] a, b; output [7:0] sum; output cout; 

assign {cout, sum} = a + b; 
endmodule 

12.25 (*VHDL latches, 60 min.) Consider the following two architectures: 

entity latchl is port(data: in BIT_VECTOR(1 to 4); 

reset: in BIT; delay: out BIT_VECTOR(1 to 4)); 

end latchl; 

architecture Synthesis 1 of latchl is 

begin SI: process (data, reset) variable hold BIT VECTOR (1 to 4); 

650



636 CHAPTER 12 LOGIC SYNTHESIS 

begin 

if reset = 'I' then hold := "0000"; end if; 

delay <= hold; hold := data; 

end process; 

end Synthesis_I; 

architecture Synthesis_2 of latchl is 
begin S2: process (data, enable, reset) 

variable hold: BIT_VECTOR (1 to 4); 

begin 

if enable = 'I' then hold := data; end if; 

delay <= hold; 

if reset = '0' then hold := "0000"; 

end process; 

end Synthesis_2; 

Try to synthesize both versions. Does the synthesizer accept the code? Hint: It 
should not. Explain any problems that you encounter, and how to correct them. 
Resynthesize your working code. 

12.26 (*VHDL data slip, 60 min.) Consider the following process, a shift regis­
ter core: 

SI: process (data, enable) begin 

if enable = 'I' then Q <= Q(7 downto 0) & data; end if; 

end process; 

Complete the VHDL code and simulate to ensure your model operates correctly. Try 
to synthesize your code and compare the operation of the resulting implementation 
with the simulation results. Explain any problems you encounter. 

12.27 (**Synchronous logic, hours) Investigate the following alternative ways 
to synthesize synchronous logic in VHDL. Hint: A few of these methods are illegal 
in both VHDL-87 and VHDL-93, some methods are only illegal in VHDL-87. Cre­
ate a table for QI-Q17 that summarizes your results. Assume all signals are 
STD LOGIC. Can you create any more methods (positive-edge only)? 

-- Let me count the ways to count. 

-- Using wait statement: 

process begin wait on clk; QI <= D; end process; -- 2 edges 

process begin wait on elk until elk = 'I'; Q2 <= D; end process; 

process begin wait until elk 'I'; Q3 <= D; end process; 

process begin wait until elk = 'I' and clk'EVENT; Q4 <= D; 

end process; 

-- Using process and sensitivity list: 

process(elk) begin if elk'EVENT and elk = '1' then Q5 <= Di end if; 

end process; 

process(clk) begin if not elk'STABLE and elk = '1' then Q6 <= Di 

end if; end process; 

process(elk) begin 

if elk'LAST VALUE = '0' and elk 'I' then Q7 <= D; end if; 

651



end process; 

-- Using rising_edge func~ion from STD_LOGIC_1164: 
process(clk) begin if rising_edge(clk) then Q8 <= D; end if; 

end process; 

process begin wait until rising_edge(clk); Q9 <= D; end process; 
process begin wait on rising edge(clk); QlO <= D; end process; 

-- rising_edge expanded: 
process(clk) begin 

if clk'EVENT and To_XOl(clk) 'I' 

and To_XOl(clk'LAST_VALUE) = '0' then Qll <= D; end if; 
end process; 

-- Using concurrent signal assignments: 

Q12 <= D when clk'EVENT and clk 'I'; -- VHDL-93 only ( ... else) 

Q13 <= D when clk'EVENT and clk 'I' else Q13; -- need buffer 
Q14 <= D when clk'EVENT and clk 'I' else unaffected; -- VHDL-93 

Q15 <= D when clk'EVENT and clk 'I' 

else Q15'DRIVING_VALUE; -- VHDL-93 

-- Using blocks: 
Fl:block(not clk'STABLE and clk = 'I') 

begin Q16 <= guarded D;end block; 

F2:block(clk'EVENT and clk = 'I') 
begin Q17 <= guarded D;end block; 

-- The bizarre and variations using '0' I 'L', 'H', and 'I': 

process(clk) begin 
if clk'LAST VALUE = 'L' and clk = 'H' or clk = 'I' then Q18 <= D; 

end if; end process; 
process begin wait until clk = 'H' or clk = 'I'; 

Q19 <= D; end process; 
More? 

12.14 PROBLEMS 637 

12.28 (*State assignment, 30 min) If we have a state machine with r states and 
So variables, how many different state assignments are there, for So = 1 and r = 2? 
List the different state assignments with So = 2, r = 3 and for So = 2, r = 4. How many 
of these are distinct? For five states and three state variables there are 6720 different 
state assignments, of which 140 are distinct. For nine states and four state variables 
there are over 4 x 109 different possible state assignments and nearly 11 million of 
these are distinct. This makes the task of performing sequential logic synthesis by 
exhaustively considering all possible state assignments virtually impossible. Hint: 
McCluskey's book discusses the problem of state assignment [1965, pp. 266-267]. 

12.29 (*Synthesis scripts, hours) Write and document a script to synthesize the 
Viterbi decoder using a logic synthesizer of your choice. 

12.30 (*Floorplanning, hours) Write and document a script to perform timing­
driven synthesis and fioorplanning for the Viterbi decoder. 

652



638 CHAPTER 12 LOGIC SYNTHESIS 

12.31 (***Patents, 120 min.) Obtain a copy of U.S. Patent 5,530,841 "Method 
for converting a hardware independent user description of a logic circuit into hard­
ware components." This patent caused controversy during the approval of the IEEE 
synthesis packages. Research this topic (including a visit to the Web site of the syn­
thesis package working group and checking other synthesis patents). Do you feel (as 
an engineer) that the IEEE should be concerned? 

12 .. 15 Bibliography 

One way to learn more about logic synthesis is to obtain a copy of misII or sis (or 
their newest derivatives) from the University of California at Berkeley (UCB). 
These tools form the basis of most commercially available logic-synthesis software. 
Included with the sis distribution is a PostScript copy of a tutorial paper (available 
also as ERL Memorandum UCB/ERL M92/41) on logic synthesis by the UCB syn­
thesis group. The internal help in sis explains the theory and purpose of each com­
mand. In addition each logic-synthesis step is available separately so it is possible to 
see the logic being synthesized, optimized, and mapped. 

Programmable ASIC vendors, Xilinx, Altera, and Actel have each produced 
reports explaining how to use Synopsys, Mentor, Cadence, and other synthesis tools 
with their products. These are available on these companies' Web sites. 

Brayton [1984] describes the detailed operation of espresso, one of the first 
logic-minimization programs, and the foundation of most modem commercial logic­
synthesis tools. Edited books by Birtwistle and Subrahmanyam [1988] and Dutton 
[1991] contain a collection of papers on logic synthesis. The book by Thomas et a1. 
[1990] describes an early logic-synthesis system. A tutorial paper by Brayton, Hach­
tel, and Sangiovanni-Vincentelli [1990] is an advanced description of multilevel 
logic optimization. In this chapter we have focused on RTL synthesis; the edited 
books by Camposano and Wolf [1991]; Walker and Camposano [1991]; and Michel, 
Lauther, and Duzy [1992] contain papers on higher-level, or behavioral-level syn­
thesis. Edwards provides an overview of synthesis including references to earlier 
work [1992]. Gebotys and Elmasry [1992] cover system-level synthesis. Sasao 
[1993] is a selection of papers from a conference on logic synthesis. Kurup and 
Abbasi [1995] describe the Synopsys logic-synthesis tools. The book by Murgai et 
al. [1995] focuses on logic synthesis for FPGAs. De Micheli's book (1994] is a 
detailed work on logic-synthesis algorithms. Ashar et al. [1992] and Lavagno and 
Sangiovanni-Vincentelli [1993] cover sequential logic synthesis in their books. The 
book by Airiau, Berge, and Olive [1994] covers VHDL-93 from the perspective of 
logic synthesis. A book by Knapp [1996], describing the Synopsys behavioral com­
piler, is the closest to this book's treatment of logic synthesis, and includes several 
practical examples. 

I have included references for a number of books (some not yet published) that I 
was unable to obtain before this book went to press including titles by Rushton 

653



12.16 REFERENCES 639 

[1995] on logic synthesis using VHDL; Saucier [1995] on architectural synthesis; 
Hachtel and Somenzi [1996] on verification; Romdhane, Madisetti, and Hines 
[1996] on behavioral synthesis; and Villa et al. [1997] on FSM synthesis. I have 
included as much information as possible for these references including the LOC 
catalog information (it is possible to obtain an ISBN before publication). 

12 B 16 References 

Airiau, R., J.-Nt Berge, and V. Olive. 1994. Circuit Synthesis with VHDL. Boston, 221 p. ISBN 
0792394291. TK7885.7.A37. 

Ashar, P. et al. 1992. Sequential Logic Synthesis. Norwell, MA: Kluwer, 225 p. ISBN 0-7923-
9187-X. TK7868.L6.A84. 

Birtwistle, G., and P. A. Subrahmanyam (Ed.). 1988. VLSI Specification, Verification, and 
Synthesis. Boston: Kluwer, 404 p. ISBN 0898382467. TK7874.V564. A collection of papers 
presented at a workshop held in Calgary, Canada, Jan. 1987. 

Brayton, R. K. 1984. Logic Minimization Algorithms for VLSI Synthesis. Boston: Kluwer, 
193 p. ISBN 0-89838-164-9. TK7868.L6L626. Includes an extensive bibliography. A com­
plete description of espresso, the basis of virtually all commercial logic-synthesis tools. Dif­
ficult to read at first, but an excellent and clear description of the development of the 
algorithms used for two-level logic minimization. 

Brayton, R. K., G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. 1990. "Multilevel logic 
synthesis." Proceedings of the IEEE, Vol. 78, no. 2, pp. 264-300. 

Camposano, R., and W. Wolf (Ed.). 1991. High-level VLSI Synthesis. Boston: Kluwer, 390 p. 
ISBN 0792391594. TK7874.H5243. 

De Micheli, G. 1994. Synthesis and Optimization of Digital Circuits. New York: McGraw-Hill, 
579 p. ISBN 0070163332. TK7874.65.D4. 

Dutton, R. W. (Eel.). 1991. VLSI Logic Synthesis and Design. lOS Press. ISBN 90S 199046-4. 

Edwards, M. D. 1992. AutomatedLogic Synthesis Techniques for Digital Systems. New York: 
McGraw-Hill, 186 p. ISBN 0-07-019417-3. TK7874.6.E34. Also Macmillan Press, 
Basingstoke, England, 1992. Includes an introduction to logic minimization and synthesis, 
and the topic of synthesis and testing. 

Gebotys, C. H., and M. 1. Elmasry. 1992. Optimal VLSI Architectural Synthesis: Area, 
Pelformance, and Testability. Boston, 289 p. ISBN 079239223X. QA 76.9.A 73.G42. 

Hachtel, G. D., and F. Somenzi. 1996. Logic Synthesis and Verification Algorithms. Boston: 
Kluwer, 564 p. ISBN 0792397460. TK7874.7S.H33.16 pages of references. 

Knapp, D. W. 1996. Be/un'ioral Synthesis: Digital System Design using the S)'1I0PSYS 
Behavioral Compiler. Upper Saddle River, NJ: Prentice-Hall, 231 p. ISBN 0-13-S69252-0. 
A description of the Synopsys software. Includes the following code examples: FIR and JIR 
filters; Inverse Discrete Cosine Transform; random logic for a Data Encryption Standard 
(DES) ASIC; and a packet router. Appendix A contains a description of the details of creat­
ing Design Ware components. Appendix B describes the subsets of VHDL and Veri log that 
are understood by the Synopsys compiler. Includes a diskette containing the code from the 
book. 

Kurup, P., and T. Abbasi. 1995. Logic Synthesis Using Synops)·s. Boston: Kluwer, 304 p. ISBN 
0-7923-9582-4. TK7874.6.K87. Hints, tips, and problems with Synopsys synthesis tools. 

654



640 CHAPTER 12 LOGIC SYNTHESIS 

Synopsys has a technical support site on the World Wide Web for registered users of their 
tools. See also 2nd ed., 1997 ISBN 079239786X. 

Lavagno, L., and A. Sangiovanni-Vincentelli. 1993. Algorithms for Synthesis and Testing of 
Asynchronous Circuits. Boston: Kluwer, 339 p. ISBN 0792393643. TK7888.4 .L38. 

McCluskey, E. J. 1965. Introduction to the Theory of Switching Circuits. New York: McGraw­
Hill, 318 p. TK7888.3.M25. 

Michel, P., U. Lauther, and P. Duzy (Ed.). 1992. The Synthesis Approach to Digital System 
Design. Norwell: Kluwer, 415 p. ISBN 0792391993. TK7868.D5.S96. Includes 30 pages of 
references. 

Murgai, R., et al. 1995. Logic Synthesis for Field-Programmable Gate Arrays. Boston: Kluwer, 
427 p. ISBN 0-7923-9596-4. TK7895.G36M87. 

Romdhane, M. S. B., V. K. Madisetti, and J. W. Hines. 1996. Quick-Turnaround ASIC Design in 
VHDL: Core-Based Behavioral Synthesis. Boston: Kluwer, 180 p. ISBN 0792397444. 
TK7874.6.R66. Includes 6 pages of references. 

Rushton, A. 1995. VHDLfor Logic Synthesis: An Introductory Guide for Achieving Design 
Requirements. New York: McGraw-Hill, 254 p. ISBN 0077090926. TK7885.7.R87. 

Sasao, T. (Eel.). 1993. Logic Synthesis and Optimization. Boston: Kluwer. ISBN 0-7923-9308-
2. TK7868.L6 L627. Papers from the International Symposium on Logic Synthesis and 
Microprocessor Architecture, Iizuka, Japan, July 1992. 

Saucier, G. 1995. Logic and Architecture Synthesis. New York: Chapman & Hall. ISBN 
0412726904. Not cataloged by the Library of Congress at the time of this book's 
publication. 

Thomas, D. E., et al. 1990. Algorithmic and Register-Tramjer Level Synthesis: The System 
Architect's Workbench. Boston: Kluwer. ISBN 0792390539. TK7874.A418. 

Villa, T., et a1. 1997. Synthesis of Finite State Machines: Logic Optimization. Boston: Kluwer. 
ISBN 0792398920. TK7868.L6.S944. In Library of Congress catalog, but was not available 
at the time of this book's publication. 

Walker, R. A., and R. Camposano (Ed.). 1991. A Survey of High-Level Synthesis Systems. 
Boston: Kluwer, 182 p. ISBN 0792391586. TK7874.S857. 

655



SIMULATION 

13.1 Types of Simulation 13.8 Formal Verification 

13.2 The Comparator/MUX Example 13.9 Switch-Level Simulation 

13.3 Logic Systems 13.10 Transistor-Level Simulation 

13.4 How Logic Simulation Works 13.11 Summary 

13.5 Cell Models 13.12 Problems 

13.6 Delay Models 13.13 Bibliography 

13.7 Static Timing Analysis 13.14 References 

Engineers used to prototype systems to check their designs, often using a breadboard 
with connector holes, allowing them to plug in ICs and wires. Breadboarding was 
feasible when it was possible to construct systems from a few off-the-shelf TTL 
parts. It is impractical for prototyping an ASIC. Instead most ASIC design engineers 
tum to simulation as the modem equivalent of breadboarding. 

13.1 Types of Simulation 

Simulators are usually divided into the fol1owing categories or simulation modes: 

• Behavioral simulation 

o Functional simulation 

5 Static timing analysis 

o Gate-level simulation 

o Switch-level simulation 

o Transistor-level or circuit-level simulation 

641 

656



642 CHAPTER 13 SIMULATION 

This list is ordered from high-level to low-level simulation (high-level being 
more abstract, and low-level being more detailed). Proceeding from high-level to 
low-level simulation, the simulations become more accurate, but they also become 
progressively more complex and take longer to run. While it is just possible to per­
form a behavioral-level simulation of a complete system, it is impossible to perform 
a circuit-level simulation of more than a few hundred transistors. 

There are several ways to create an imaginary simulation model of a system. 
One method models large pieces of a system as black boxes with inputs and outputs. 
This type of simulation (often using VHDL or Verilog) is called behavioral 
simulation. Functional simulation ignores timing and includes unit-delay 
simulation, which sets delays to a fixed value (for example, 1 ns). Once a behavioral 
or functional simulation predicts that a system works correctly, the next step is to 
check the timing performance. At this point a system is partitioned into ASICs and a 
timing simulation is performed for each ASIC separately (otherwise the simulation 
run times become too long). One class of timing simulators employs timing 
analysis that analyzes logic in a static manner, computing the delay times for each 
path. This is called static timing analysis because it does not require the creation of 
a set of test (or stimulus) vectors (an enormous job for a large ASIC). Timing analy­
sis works best with synchronous systems whose maximum operating frequency is 
determined by the longest path delay between successive flip-flops. The path with 
the longest delay is the critical path. 

Logic simulation or gate-level simulation can also be used to check the timing 
performance of an ASIC. In a gate-level simulator a logic gate or logic cell (NAND, 
NOR, and so on) is treated as a black box modeled by a function whose variables are 
the input signals. The function may also model the delay through the logic cell. Set­
ting all the delays to unit value is the equivalent of functional simulation. If the tim­
ing simulation provided by a black-box model of a logic gate is not accurate enough, 
the next, more detailed, level of simulation is switch-level simulation which models 
transistors as switches-on or off. Switch-level simulation can provide more accu­
rate timing predictions than gate-level simulation, but without the ability to use 
logic-cell delays as parameters of the models. The most accurate, but also the most 
complex and time-consuming, form of simulation is transistor-level simulation. A 
transistor-level simulator requires models of transistors, describing their nonlinear 
voltage and current characteristics. 

Each type of simulation normally uses a different software tool. A mixed-mode 
simulator permits different parts of an ASIC simulation to use different simulation 
modes. For example, a critical part of an ASIC might be simulated at the transistor 
level while another part is simulated at the functional level. Be careful not to con­
fuse mixed-level simulation with a mixed analog/digital simulator, these are 
mixed-level simulators. 

Simulation is used at many stages during ASIC design. Initial prelayout 
simulations include logic-cell delays but no interconnect delays. Estimates of 
capacitance may be included after completing logic synthesis, but only after physi­
cal design is it possible to perform an accurate postlayout simulation. 

657



13.2 THE COMPARATOR/MUX EXAMPLE 643 

13.2 The Comparator/MUX Example 

As an example we borrow the model from Section 12.2, "A Comparator/MUX," 

// comp_mux.v //1 

module comp_mux{a, b, outp)i input [2:0] a, bi output [2:0] outPi //2 
function [2:0] comparei input [2:0] ina, inbi //3 
begin if (ina <= inb) compare = ina; else compare = inb; end //4 
endfunction 
assign outp 
endmodule 

compare{a, b) i 

//5 

//6 

//7 

We can use the following testbench to generate a sequence of input values (we 
call these input vectors) that test or exercise the behavioral model, camp mux. v: 

// testbench.v 
module comp_mux_testbenchi 
integer i, ji 

reg [2:0] x, y, smalleri wire [2:0] Zi 

always @ (x) $display{ "t x y actual calculated") i 

initial $monitor{"%4g",$time"x"y"z""",smaller)i 
initial $dumpvars; initial #1000 $finishi 
initial 
begin 

for (i = 0; i <= 7i i = i + 1) 
begin 

for {j 
begin 

0; j <= 7; j j + 1) 

x = i; y j; smaller = (x <= y) ? x : y; 
#1 if (z 1= smaller) $display{"error"); 
end 

end 
end 

comp~mux v 1 (x, y, z); 
endmodule 

The results from the behavioral simulation are as follows: 

t x y actual calculated 

0 0 0 0 0 

1 0 1 0 0 
... 60 lines omitted ... 

62 7 6 6 6 
63 7 7 7 7 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 

//10 

/ /11 
//12 
//13 
//14 

//15 

//16 
//17 

//18 

//19 

//20 

We included a delay of one Verilog time unit in line 15 of the testbench model 
(allowing time to progress), but we did not specify the units-they could be 
nanoseconds or days. Thus, behavioral simulation can only tell us if our design does 
not work; it cannot tell us that real hardware will work. 

658



644 CHAPTER 13 SIMULATION 

13.2.1 Structural Simulation 

We use logic synthesis to produce a structural model from a behavioral model. The 
following comparator/MUX model is adapted from the example in Section 12.11, 
"Performance-Driven Synthesis" (optimized for a O.6)lm standard-cell library): 

'timescale Ins / lOps // comp_mux_o2.v //1 
module comp_mux_o (a, b, outp); //2 
input [2:0] a; input [2:0] b; //3 
output [2:0] outp; //4 
supplyl VDD; supplyO VSS; //5 
mx2ldl bl il (.iO(a[O]), .il(b[O]), .s(bl_i6_zn), .z(outp[O]»; //6 
oa03dl bl i2 (.al(bl_i9_zn), .a2(a[2]), .bl(a[O]), .b2(a[1]), //7 

.c(bl_i4_zn), .zn(bl_i2_zn»; //8 
nd02dO bl i3 (.al(a[l]), .a2(a[0]), .zn(bl_i3_zn»; //9 
nd02dO bl i4 (.al(b[l]), .a2(bl_i3_zn), .zn(bl_i4_zn»; //10 
mx2ldl bl is (.iO(a[l]), .il(b[l]), .s(bl_i6_zn), .z(outp[l]»; //11 
oa04dl bl i6 (.al(b[2]), .a2(bl_i7 zn), .b(bl_i2_zn), //12 

. zn(bl_i6_zn»; / /l3 
inOldO bl i7 (.i(a[2]), .zn(bl_i7_zn»; //14 
an02dl bl i8 (.al(b[2]), .a2(a[2]), .z(outp[2]»; //IS 
inOldO bl i9 (.i(b[2J), .zn(bl_i9_zn»; //16 
endmodule //17 

Logic simulation requires Verilog models for the following six logic cells: 
mx21dl (2:1 MUX), oa03dl (OAI221), nd02dO (two-input NAND), oa04dl 

(OAI21), inOldO (inverter), and an02dl (two-input AND). These models are part of 
an ASIC library (often encoded so that they cannot be seen) and thus, from this point 
on, the designer is dependent on a particular ASIC library company. As an example of 
this dependence, notice that some of the names in the preceding code have changed 
from uppercase (in Figure 12.8 on p. 624) to lowercase. Verilog is case sensitive and 
we are using a cell library that uses lowercase. Most unfortunately, there are no stan­
dards for names, cell functions, or the use of case in ASIC libraries. 

The following code (a simplified model from a O.8)lm standard-cell library) 
models a 2: 1 MUX and uses fixed delays: 

'timescale 1 ns / 10 ps 
module mx2ldl (z, iO, iI, s); input iO, iI, S; output Z; 

not G3 (N3, s); 
and G4(N4, iO, N3), GS(NS, s, ill, G6(N6, iO, ill; 
or G7(z, N4, NS, N6); 

specify 
(iO*>z) 
(il*>z) 
(s*>z) 

(0.279:0.S04:0.900, 0.276:0.498:0.890); 
(0.248:0.448:0.800, 0.264:0.476:0.8S0); 
(0.28S:0.SlS:0.920, 0.298:0.S38:0.960); 

//1 

//2 

//3 

//4 

//S 

//6 

//7 
//8 

//9 

659



13.2 THE COMPARATOR/MUX EXAMPLE 645 

endspecify 
endmodule 

//10 

/ /11 

This code uses Verilog primitive models (not, and, or) to describe the behavior of a 
MUX, but this is not how the logic cell is implemented. 

To simulate the optimized structural model, module comp _ mux_ 02 • v, we use 
the library cell models (module mx21dl and the other five that are not shown here) 
together with the following new testbench model: 

'timescale 1 ps / 1 ps // comp_mux_testbench2.v 
module comp_mux_testbench2; 
integer i, j; integer error; 
reg [2:0] x, y, smaller; wire [2:0] z, ref; 
always @(x) $display{"t x y derived reference"); 

/ / initial $monitor{ "%8.2f" ,$time/1e3"x"y"z""""ref); 
initial $dumpvars; 
initial begin 

error = 0; #le6 $display{"%4g", error, " errors"); 
$finish; 

end 
initial begin 

for (i = 0; i <= 7; i = i + 1) begin 
for (j = 0; j <= 7; j = j + 1) begin 

//1 

//2 

//3 

//4 

//5 

//6 

//7 
//8 

//9 

//10 

/ /11 
/ /12 
/ /13 
//14 

x = i; y = j; #10e3; //15 
$display{ "%8. 2f", $time/1e3"x, ,y" z, """ ,ref); / /16 
if (z 1= ref) //17 
begin $display{"error"); error = error + 1; end //18 
end / /19 

end //20 
end //21 
comp mux_o v_I (x, y, z); // comp_mux_o2.v //22 
reference v 2 (x, y, ref); //23 
endmodule //24 

// reference.v //1 
module reference{a, b, outp); //2 
input [2:0] a, b;output [2:0] outp; //3 

assign outp = (a <= b) ? a : b; // different from comp_mux //4 
endmodule //5 

In this testbench we have instantiated two models: a reference model (module 
reference) and a derived model (module comp mux 0, the optimized structural - -
model). The high-level behavioral model that represents the initial system specifica-
tion (module reference) may be different from the model that we use as input to 
the logic-synthesis tool (module comp _ mux). Which is the real reference model? We 

660



646 CHAPTER 13 SIMULATION 

postpone this question until we discuss formal verification in Section 13.8. For the 
moment, we shall simply perform simulations to check the reference model against 
the derived model. The simulation results are as follows: 

t x y derived reference 

10.00 0 0 0 0 
20.00 0 1 0 0 

... 60 lines omitted ... 
630.00 7 6 6 6 

640.00 7 7 7 7 

o errors 

(A summary is printed at the end of the simulation to catch any errors.) The next 
step is to examine the timing of the structural model (by switching .the leading '/ / ' 
from line 6 to 16 in module comp_mux_testbench2). It is important to simulate 
using the worst-case delays by using a command-line switch as follows: verilog 

+maxdelays. We can then find the longest path delay by searching through the sim­
ulator output, part of which follows: 

t x y derived reference 
lines omitted ... 

260.00 3 2 1 2 
260.80 3 2 3 2 
260.85 3 2 2 2 
270.00 3 3 2 3 
270.80 3 3 3 3 
280.00 3 4 3 3 
280.85 3 4 0 3 
283.17 3 4 3 3 

lines omitted ... 

At time 280 ns, the input vectors, x and y, switch from (x = 3, Y = 3) to (x = 3, 

Y = 4). The output of the derived model (which should be equal to the smaller of x 
and y) is the same for both of these input vectors and should remain unchanged. In 
fact there is a glitch at the output of the derived model, as it changes from 3 to 0 and 
back to 3 again, taking 3.17 ns to settle to its final value (this is the longest delay 
that occurs using this testbench). The glitch occurs because one of the input vectors 
(input y) changes from' 011' (3 in decimal) to '100' (decimal 4). Changing sev­
eral input bits simultaneously causes the output to vacillate. 

Notice that the nominal and worst-case simulations will not necessarily give the 
same longest path delay. In addition the longest path delay found using this test­
bench is not necessarily the critical path delay. For example, the longest, and there­
fore critical, path delay might result from a transition from x = 3, Y = 4 to x = 4, 

Y = 3 (to choose a random but possible candidate set of input vectors). This testbench 
does not include tests with such transitions. To find the critical path using logic sim­
ulation requires simulating all possible input transitions (64 x 64 = 4096) and then 
sifting through the output to find the critical path. 

661



13.2 THE COMPARATOR/MUX EXAMPLE 647 

Vector-based simulation (or dynamic simulation) can show us that our design 
functions correctly-hence the name functional simulation. However, functional 
simulation does not work well if we wish to find the critical path. For this we turn to 
a different type of simulation-static simulation or static timing analysis. 

TABLE 13.1 Timing analysis of the comparator/MUX structural model, comp _ mux _ 02 . v, from 
Figure 12.8. 

Command Timing analyzer/logic synthesizer output1 

> report instance name 
timing inPin --> outPin incr 

(ns) 

a[O] .00 

b1 i3 

A2 --> ZN .31 

b1 i4 
A2 --> ZN .41 

b1 i2 

C --> ZN 1. 36 

b1 i6 

B --> ZN .94 

b1 is 

S --> Z 1. 04 

autp[O] .00 

arrival trs rampDel 

(ns) (ns) 

.00 R .00 

.31 F .23 

.72 R .26 

2.08 F .13 

3.01 R .24 

4.06 F .08 

4.06 F .00 

cap 

(pf) 

.12 

.08 

.07 

.07 

.14 

.04 

.00 

cell 

camp_m ... 

nd02dO 

nd02dO 

oa03d1 

oa04d1 

rnx21d1 

camp_m ... 

1 Using a 0.8 ~m standard-cell library, VLSI Technology vsc450. Worst-case environment: worst-case process, 
VDD =4.75 V, and T = 70°C. No wire capacitance, no input or output capacitance, prop-ramp timing model. The 
structural model was synthesized and optimized using a 0.6 ~m library, but this timing analysis was performed 
using the 0.8 ~m library. This is because the library models are simpler for the 0.8 ~m library and thus easier to 
explain in the text. 

13.2.2 Static Timing Analysis 
A timing analyzer answers the question: "What is the longest delay in my circuit?" 
Table 13.1 shows the timing analysis of the comparator/MUX structural model, mod­
ule comp _ mux _02 . v. The longest or critical path delay is 4.06 ns under the following 
worst-case operating conditions: worst-case process, VDD =4.75 V, and T=70°C (the 
same conditions as used for the library data book delay values). The timing analyzer 
gives us only the critical path and its delay. A timing analyzer does not give us the 
input vectors that will activate the critical path. In fact input vectors may not exist to 
activate the critical path. For example, it may be that the decimal values of the input 
vectors to the comparator/MUX may never differ by more than four, but the timing­
analysis tool cannot use this information. Future timing-analysis tools may consider 
such factors, called Boolean relations, but at present they do not. 

662



648 CHAPTER 13 SIMULATION 

Section 13 .2.1 explained why dynamic functional simulation does not necessar­
ily find the critical path delay. Nevertheless, the difference between the longest path 
delay found using functional simulation, 3.17 ns, and the critical path delay reported 
by the static timing-analysis tool, 4.06 ns, is surprising. This difference occurs . 
because the timing analysis accounts for the loading of each logic cell by the input 
capacitance of the logic cells that follow, but the simplified Verilog models used for 
functional simulation in Section 13.2.1 did not include the effects of capacitive load­
ing. For example, in the model for the logic cell mx21dl, the (rising) delay from the 
iO input to the output z, was fixed at 0.900 ns worst case (the maximum delay value 
is the third number in the first triplet in line 7 of module mx21dl). Normally library 
models include another portion that adjusts the timing of each logic cell-this 
portion was removed to simplify the model mx21dl shown in Section 13.2.1. 

Most timing analyzers do not consider the function of the logic when they 
search for the critical path. Thus, for example, the following code models 
Z = NAND (a, NOT (a) ), which means that the output, z, is always '1'. 

module check_critical_path_l (a, Z)i 

input ai output Zi supply! VDDi supplyO VSSi 

nd02dO bl i3 (.al(a), .a2(b), .zn(z))i II 2-input NAND 
inOldO bl_i7 (.i(a), .zn(b))i II inverter 

endmodule 

III 
112 
113 
114 
115 

A timing-analyzer report for this model might show the following critical path: 

inPin --> outpin incr arrival trs rampDel cap cell 
(ns) ( ns ) ( ns ) (pf ) 

a .00 .00 R .00 .08 check " . 
bl i7 
I --> ZN .38 .38 F .30 .07 inOldO 
bl i3 
A2 --> ZN .28 .66 R .13 .04 nd02dO 
z .00 .66 R .00 .00 check " . 
Paths such as this, which are impossible to activate, are known as false paths. 
Timing analysis is essential to ASIC design but has limitations. A timing-analysis 
tool is more logic calculator than logic simulator. 

13.2.3 Gate-level Simulation 
To illustrate the differences between functional simulation, timing analysis, and 
gate-level simulation, we shall simulate the comparator/MUX critical path (the path 
is shown in Table 13.1). We start by trying to find vectors that activate this critical 
path by working forward from the beginning of the critical path, the input a [ 0 ] , 

toward the end of the critical path, output Qutp [0], as follows: 

1. Input a[ 0] to the two-input NAND, nd02dO, cell instance bl_i3, changes 
from a '0' to a ' 1 ' . We know this because there is an 'R' (for rising) under 

663



13.2 THE COMPARATOR/MUX EXAMPLE 649 

the trs (for transition) heading on the first line of the critical path timing anal­
ysis report in Table 13.1. 

2. Input a [1] to the two-input NAND, nd02dO, cell instance b1 i3, must be a ' l' . 
This allows the change on a [ 0] to propagate toward the output, outp [ 0 ]. 

3. Similarly, input b [ 1] to the two-input NAND, cell instance b 1 _ i 4, must be a ' 1 ' . 

4. We skip over the required inputs to cells b1_i2 and b1_i6 for the moment. 

5. From the last line of Table 13.1 we know the output of MUX, mx21d1, cell 
instance b1 is, changes from '1' to a '0'. From the previous line in 
Table 13.1 we know that the select input of this MUX changes from' 0' to a 
, l' . This means that the final value of input b [0] (the i1 input, selected when 
the select input is '1') must be '0' (since this is the final value that must 
appear at the MUX output). Similarly, the initial value of a [ 0] must be a ' l' . 

We have now contradicted ourselves. In step 1 we saw that the initial value of a [ 0 ] 

must be a '0'. The critical path is thus a false path. Nevertheless we shall proceed. 
We set the initial input vector to (a= '110', b= '111') and then to (a= '111', 

b = ' 110 ' ). These vectors allow the change on a [ 0] to propagate to the select signal 
of the MUX, mx21d1, cell instance b1_iS. In decimal we are changing a from 6 to 
7, and b from 7 to 6; the output should remain unchanged at 6. The simulation 
results from the gate-level simulator we shall use (CompassSim) can be displayed 
graphically or in the text form that follows: 

# The calibration was done at Vdd=4.65V, Vss=O.IV, T=70 degrees C 
Time = 0:0 [0 ns] 

a 'D6 [0 ] (input) (display) 
b 'D7 [0 ] (input) (display) 

outp 'Buuu ( 'Du) [0 ] (display) 
outp --> 'Bluu ( 'Du) [ .47] 
outp --> 'Bllu ( 'Du) [ .97] 
outp --> 'D6 [4.08 ] 

a --> 'D7 [10] 
b --> 'D6 [10 ] 

outp --> 'D7 [10.97] 
outp --> 'D6 [14.15] 

Time = 0:0 +20ns [20 ns] 

The code 'Buuu denotes that the output is initially, at t = 0 ns, a binary vector of 
three unknown or unsettled signals. The output bits become valid as follows: 
outp [2] at 0.47 I1S, outp [1] at 0.97 I1S, and outp [0] at 4.08 ns. The output is sta­
ble at 'D6 (decimal 6) or ' 110' at t = IOns when the input vectors are changed in an 
attempt to activate the critical path. The output glitches from 'D6 (, 110') to 'D7 

(' 111') at t = 10.97 ns and back to 'D6 again at t = 14.15 I1S. Thus, the output bit, 
outp [ 0 ], takes a total of 4.15 ns to settle. 

664



650 CHAPTER 13 SIMULATION 

Can we explain this behavior? The data book entry for the mx21dl logic cell 
gives the following equation for the rising delay as a function of Cld (the load 
capacitance, excluding the output capacitance of the logic cell itself, expressed in 
picofarads): 

tIO Z (IO->Z) = 0 . 90 + 0 • 07 + ( 1 .76 x Cld) ns (13.1) 

The capacitance, Cld, at the output of each MUX is zero (because nothing is con­
nected to the outputs). From Eq. 13.1, the path delay from the input, a[ 0], to the 
output, outp [0], is thus 0.97 ns. This explains why the output, outp [0], changes 
from • o· to . l' at t = 10.97 ns, 0.97 ns after a change occurs on a [0]. 

The gate-level simulation predicts that the input, a [ 0 ], to the MUX will change 
before the changes on the inputs have time to propagate to the MUX select. Finally, 
at t = 14.15 ns, the MUX select will change and switch the output, outp [0], back to 
• O' again. The total delay for this input vector stimulus is thus 4.15 ns. Even though 
this path is a false path (as far as timing analysis is concerned), it is a critical path. It 
is indeed necessary to wait for 4.15 ns before using the output signal of this circuit. 
A timing analyzer can only offer us a guarantee that there is no other path that is 
slower than the critical path. 

13.2.4 Net Capacitance 
The timing analyzer predicted a critical path delay of 4.06 ns compared to the gate­
level simulation prediction of 4.15 ns. We can check our results by using another 
gate-level simulator (QSim) which uses a slightly different algorithm. Here is the 
output (with the same input vectors as before): 

@nodes 

a RIO WI; a[2] a[l] a[O] 
b RIO WI; b[2] b[ 1] b[O] 
outp RIO WI; outp[2] outp[l] outp[O] 
@data 

.00 a -> 'D6 

.00 b -> 'D7 

.00 outp -> 'Du 

.53 outp -> 'Du 

.93 outp -> 'Du 
4.42 outp -> 'D6 

10.00 a -> 'D7 
10.00 b -> 'D6 
11. 03 outp -> 'D7 
14.43 outp -> 'D6 

### END OF SIMULATION TIME = 20 ns 
@end 

665



13.2· THE COMPARATOR/MUX EXAMPLE 651 

The output is similar but gives yet another value, 4.43 ns, for the path delay. 
Can this be explained? The simulator prints the following messages as a clue: 

defcapacitance 
incCapacitance 

= .IE-Ol pF 
= .IE-Ol pF/pin 

The simulator is adding capacitance to the outputs of each of the logic cells to model 
the parasitic net capacitance (interconnect capacitance or wire capacitance) that 
will be present in the physical layout. The simulator adds 0.01 pF 
(defCapacitance) on each node and another 0.01 pF (incCapacitance) for each 
pin (logic cell input) attached to a node. The model that predicts these values is 
known as a wire-load model, wire-delay model, or interconnect model. Changing 
the wire-load model parameters to zero and repeating the simulation changes the 
critical-path delay to 4.06 ns, which agrees exactly with the logic-synthesizer timing 
analysis. This emphasizes that the net capacitance may contribute a significant delay. 

The library data book (VLSI Technology, vsc450) lists the cell input and output 
capacitances. For example, the values for the nd02dO logic cell are as follows: 

Cin(inputs, al and a2)=O.042pF Cout(output, zn)=O.038pF 
(13.2) 

Armed with this information, let us return to the timing analysis report of Table 
13.1 on page 647 (the part of this table we shall focus on follows) and examine how 
a timing analyzer handles net capacitance. 

inPin --> outPin 

a[O] 
bl i3 

A2 --> ZN 

incr 

(ns) 

.00 

.31 

arrival 
(ns) 

.00 

.31 

trs 

R 

F 

rampDel 

(ns) 

.00 

.23 

cap 

(pf) 

.12 

.08 

cell 

comp_m ... 

nd02dO 

The total capacitance at the output node of logic cell instance bl_ i3 is 0.08 pF. This 
figure is the sum of the logic cell (nd02dO) output capacitance of cell instance 
bl_ i3 (equal to 0.038 pF) and Cld, the input capacitance of the next cell, bl_ i2 

(also an nd02dO), equal to 0.042 pF. 
The capacitance at the input node, a [0], is equal to the sum of the input capaci­

tances of the logic cells connected to that node. These capacitances (and their 
sources) are as follows: 

l. 0.042 pF (the a2 input of the two-input NAND, instance bl i3, cell nd02dO) 

2. 0.038 pF (the iO input of the 2:1 MUX, instance bl_il, cell mx21dl) 

3. 0.038pF (the bl input of the OAI221, instance bl_i2, cell oa03dl) 

The sum of these capacitances is the 0.12 pF shown in the timing -anal ysis report. 

666



652 CHAPTER 13 SIMULATION 

Having explained the capacitance figures in the timing-analysis report, let us 
tum to the delay figures. The fall-time delay equation for a nd02dO logic cell (again 
from the vsc450 library data book) is as follows: 

tD (AX->ZN) =0.08+ 0.11+ (2.89 XCld) ns (13.3) 

Notice 0.11 ns = 2.89 nspp-lx 0.038 pF, and this figure in Eq. 13.3 is the part of the 
cell delay attributed to the cell output capacitance. The ramp delay in the timing 
analysis (under the heading rampDel in Table 13.1) is the sum of the last two terms 
in Eq.13.3. Thus, the ramp delay is 0.11 +(2.89xO.042)=0.231ns (since Cld is 
0.042 pF). The total delay (under iner in Table 13.1) is 0.08 + 0.231 = 0.31 ns. 

There are thus the following four figures for the critical path delay: 

1. 4.06 ns from a static timing analysis using the logic-synthesizer timing engine 
(worst-case process, V DD = 4.50 V, and T = 70°C). No wire capacitance. 

2. 4.15 ns from a gate-level functional simulation (worst-case process, 
V SS = 0.1 V, V DD = 4.65 V, and T = 70°C). No wire capacitance. 

3. 4.43 ns from a gate-level functional simulation. Default wire-capacitance 
model (0.01 pF + 0.01 pF fpin). 

4. 4.06 ns from a gate-level functional simulation. No wire capacitance. 

Normally we do not check our simulation results this thoroughly. However, we 
can only trust the tools if we understand what they are doing, how they work, their 
limitations, and we are able to check that the results are reasonable. 

13.3 Logic Systems 

Digital signals are actually analog voltage (or current) levels that vary continuously 
as they change. Digital simulation assumes that digital signals may only take on a 
set of logic values (or logic states-here we will consider the two terms equivalent) 
from a logic system. A logic system must be chosen carefully. Too many values will 
make the simulation ccnnplicated and slow. With too· few values the simulation may 
not accurately reflect the hardware performance. 

A two-value logic system (or two-state logic system) has a logic value' 0' cor­
responding to a logic level 'zero' and a logic value '1' corresponding to a logic 
level 'one'. However, when the power to a system is initially turned on, we do not 
immediately know whether the logic value of a flip-flop output is '1' or '0' (it will 
be one or the other, but we do not know which). To model this situation we intro­
duce a logic value 'X', with an unknown logic level, or unknown. An unknown can 
propagate through a circuit. For example, if the inputs to a two-input NAND gate 
are logic values '1' and 'X', the output is logic value 'X' or unknown. Next, in 
order to model a three-state bus, we need a high-impedance state. A high-imped­
ance state may have a logic level of 'zero' or 'one', but it is not being driven-we say 

667



13.3 LOGIC SYSTEMS 653 

it is floating. This will occur if none of the gates connected to a three-state bus is 
driving the bus. A four-value logic system is shown in Table 13.2. 

TABLE 13.2 A four-value logic system. 

Logic state Logic level Logic value 

0 zero zero 

1 one one 

x zero or one unknown 

z zero, one, or neither high impedance 

13.3.1 Signal Resolution 
What happens if multiple drivers try to drive different logic values onto a bus? 
Table 13.3 shows a signal-resolution function for a four-value logic system that 
will predict the result. 

TABLE 13.3 A resolution function R {A, B} that predicts the result of two drivers 
simultaneously attempting to drive signals with values A and B onto a bus. 

R{A, B} 

A=O 
A=1 
A=X 
A=Z 

B=O 
o 

x 
x 
o 

B=1 
X 

1 

x 
1 

B=X 
x 

x 
x 
x 

B=Z 
o 

1 

X 

Z 

A resolution function, R {A, B }, must be commutative and associative. That is, 

R{A,B} =R{B,A} and R{R{A,B},C} =R{A,R{B,C}}. (13.4) 

Equation 13.4 ensures that, if we have three (or more) signals to resolve, it does not 
matter in which order we resolve them. Suppose we have four drivers on a bus driv­
ing values '0', 'I!, 'X', and 'Z'. If we use Table 13.3 three times to resolve these 
signals, the answer is always 'x' whatever order we use. 

13.3.2 logiC Strength 
In CMOS logic we use n-channel transistors to produce a logic level 'zero' (with a 
forcing strength) and we use p-channel transistors to force a logic level 'one'. An 

668



654 CHAPTER 13 SIMULATION 

TABLE 13.4 

n-channel transistor provides a weak logic level 'one'. This is a new logic value, a 
resistive 'one', which has a logic level of 'one', but with resistive strength. Simi­
larly, a p-channel transistor produces a resistive 'zero'. A resistive strength is not as 
strong as a forcing strength. At a high-impedance node there is nothing to keep the 
node at any logic level. We say that the logic strength is high impedance. A high­
impedance strength is the weakest strength and we can treat it as either a very high­
resistance connection to a power supply or no connection at all. 

A 12-state logic·system. 

Logic level 

Logic strength zero unknown one 

strong SO SX S1 

weak WO WX W1 

high impedance ZO ZX Z1 

unknown UO UX U1 

With the introduction of logic strength, a logic value may now have two proper­
ties: level and strength. Suppose we were to measure a voltage at a node N with a 
digital voltmeter (with a very high input impedance). Suppose the measured voltage 
at node N was 4.98 V (and the measured positive supply, V DD = 5.00 V). We can say 
that node N is a logic level 'one', but we do not know the logic strength. Now sup­
pose you connect one end of a 1 kQ resistor to node N, the other to GND, and the 
voltage at N changes to 4.95 V. Now we can say that whatever is driving node N has 
a strong forcing strength. In fact, we know that whatever is driving N is capable of 
supplying a current of at least 4.95 V / 1 kQ::::: 5 mAo Depending on the logic-value 
system we are using, we can assign a logic value to N. If we allow all possible com­
binations of logic level with logic strength, we end up with a matrix of logic values 
and logic states. Table 13.4 shows the 12 states that result with three logic levels 
(zero, one, unknown) and four logic strengths (strong, weak, high-impedance, and 
unknown). In this logic system, node N has logic value Sl-a logic level of 'one' 
with a logic strength of 'strong '. 

The Verilog logic system has three logic levels that are called I 1 " I 0 I, and 
. x'; and the eight logic strengths shown in Table 13.5. The designer does not nor­
mally see the logic values that result-only the three logic levels. 

The IEEE Std 1164-1993 logic system defines a variable type, std_ulogic, 

with the nine logic values shown in Table 13.6. When we wish to simulate logic 
cells using this logic system, we must define the primitive-gate operations. We also 

669



13.3 LOGIC SYSTEMS 655 

TABLE 13.5 Veri log logic strengths. 

Strength 
Logic strength number Models Abbreviation 

supply drive 7 power supply supply 

strong drive 6 default gate and assign output strength strong 

pull drive 5 gate and assign output strength pull 

large capacitor 4 size of trireg net capacitor large 

weak drive 3 gate and assign output strength weak 

medium capacitor 2 size of trireg net capacitor medium 

small capacitor 1 size of trireg net capacitor small 

high impedance 0 not applicable highz 

TABLE 13.6 The nine-value logic system, IEEE Std 1164-1993. 

Logic state Logic value Logic state Logic value 

'0 ' strong low 'X' strong unknown 

, I' strong high 'W' weak unknown 

'L' weak low 'Z' high impedance 

'H' weak high , - , don't care 

'U' uninitialized 

need to define the process of VHDL signal resolution using VHDL signal-resolu­
tion functions. For example, the function in the IEEE Std_Logic_1164 package that 
defines the and operation is as follows 1: 

function "and"(l,r : std_ulogic_vector) return std_ulogic_vector 

alias Iv : std_ulogic_vector (1 to l'LENGTH ) is Ii 

alias rv : std_ulogic_vector (1 to r'LENGTH ) is ri 

variable result: std_ulogic_vector (1 to l'LENGTH )i 

constant and_table : stdlogic_table := ( 

--I u X 0 1 Z W L H 

-----------------------------------------------------------
'U' , 'U' , '0 ' I 'U' r 'u' I 'u' I '0 ' , 'u· I 'U' ) I U 1 

'U' I 'X' , '0 • I 
1 X I I 'X' I 'X' I '0 ' I 'X' , 'X' ) I X 1 

'0 1
, 10 ' , • O· 

I 10' 1 . o· I '0 ' I '0 ' I 'U' I '0 ' ) I 0 1 

JIEEE Std 1164-1993, © Copyright 1993 IEEE. All rights reserved. 

is --1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 

--11 

Su 

St 

Pu 

La 

We 

Me 

Sm 

Hi 

670



656 CHAPTER 13 SIMULATION 

'U' , 'X' , '0' , ' I' , 'X' , 'X' , to I, I I' 1 'X' ) , I 1 I 
'U I, 'X' , lOt I 'X' , 'X· I 'X' , 10 I f 'X' , 'X' ) , I z I 
lUI , IX' , 10' , I X' 1 'X' , I X I, 10 1

, 'X· , 'X' ) , I w I 
'0' , '0' , ' 0 ' , ' 0' , 10 1 I • 0 I I ' 0 ' , '0' , '0 ' ) , I L I 
lUI , I X I I '0' , 11' , I X I, I X I I '0' , I I' I 'X' ) , I H I 
'U' , 'X' , lOt I 'X' , 'X' , 'X· , '0' , 'X' , 'X' ) , I - I ) i 

begin 

if (l'LENGTH /= r'LENGTH) then assert false report 

"arguments of overloaded 'and' operator are not of the same 

length" 

severity failure; 

else 
for i in result'RANGE loop 

result(i) := and table lv(i), rv(i) ); 

end loop; 
end if; 
return result; 

end "and"; 

--12 
--13 

--14 

--15 

--16 

--17 
--18 

--19 

--20 

--21 

--22 

--23 

--24 
--25 

--26 

--27 

--28 

--29 

If a = 'X' and b = ' 0 ' , then (a and b) is '0' no matter whether a is, in fact, '0' or 
'1' . 

13.4 How Logic Simulation Works 

The most common type of digital simulator is an event-driven simulator. When a 
circuit node changes in value the time, the node, and the new value are collectively 
known as an event. The event is scheduled by putting it in an event queue or event 
list. When the specified time is reached, the logic value of the node is changed. The 
change affects logic cells that have this node as an input. All of the affected logic 
cells must be evaluated, which may add more events to the event list. The simula­
tor keeps track of the current time, the current time step, and the event list that 
holds future events. For each circuit node the simulator keeps a record of the logic 
state and the strength of the source or sources driving the node. When a node 
changes logic state, whether as an input or as an output of a logic cell, this causes 
an event. 

An interpreted-code simulator uses the HDL model as data, compiling an exe­
cutable model as part of the simulator structure, and then executes the model. This 
type of simulator usually has a short compile time but a longer execution time com­
pared to other types of simulator. An example is Verilog-XL. A compiled-code 
simulator converts the HDL model to an intermediate form (usually C) and then 
uses a separate compiler to create executable binary code (an executable). This 
results in a longer compile time but shorter execution time than an interpreted-code 
simulator. A native-code simulator converts the HDL directly to an executable and 
offers the shortest execution time. 

671



13.4- HOW LOGIC SIMULATION WORKS 657 

The logic cells for each of these types of event-driven simulator are modeled 
using a primitive modeling language (primitive in the sense of "fundamental"). 
There are no standards for this primitive modeling language. For example, the fol­
lowing code is a primitive model of a two-input NAND logic cell: 

model ndOldl (a, b, zn) 

function (a, b) !(a & b); function end 
model end 

The model has three ports: a, b, and zn. These ports are connected to nodes 
when a NAND gate is instantiated in an input structural netlist, 

nand ndOldl(a2, b3, r7) 

An event occurs when one of the circuit nodes a2 or b3 changes, and the func­
tion defined in the primitive model is called. For example, when a2 changes, it 
affects the port a of the model. The function will be called to set zn to the logical 
NAND of a and b. The implementation of the primitive functions is unique to each 
simulator and carefully coded to reduce execution time. 

The data associated with an event consists of the affected node, a new logic 
value for the node, a time for the change to take effect, and the node that caused the 
event. Written in C, the data structure for an event might look like the following: 

struct Event { 

} ; 

event ptr fwd_link, back_link; 
event_ptr node_link; 

node_ptr event_node; 
node_ptr cause; 

port_ptr port; 

long event_time; 
char new_value; 

/* event list */ 

/* list of node events */ 

/* node for the event */ 

/* node causing event */ 

/* port which caused this event */ 

/* event time, in units of delta */ 

/* new value: '1' '0' etc. */ 

The event list keeps track of logic cells whose outputs are changing and the new 
values for each output. The evaluation list keeps track of logic cells whose inputs 
have changed. Using separate event and evaluation lists avoids any dependence on 
the order in which events are processed, since the evaluations occur only after all 
nodes have been updated. The sequence of event-list processing followed by the 
evaluation-list processing is called a simulation cycle, or an event-evaluation 
cycle (or event-eval cycle for short). 

Delays are tracked using a time wheel divided into ticks or slots, with each slot 
representing a unit of time. A software pointer marks the current time on the timing 
wheel. As simulation progresses, the pointer moves forward by one slot for each 
time step. The event list tracks the events pending and, as the pointer moves, the 
simulator processes the event list for the current time. 

672



658 CHAPTER 13 SIMULATION 

13.4.1 VHDL Simulation Cycle 
We shall use VHDL as an example to illustrate the steps in a simulation cycle 
(which is precisely defined in the LRM). In VHDL, before simulation begins, the 
design hierarchy is first elaborated. This means all the pieces of the model code 
(entities, architectures, and configurations) are put together. Then the nets in the 
model are initialized just before simulation starts. The simulation cycle is then con­
tinuously repeated during which processes are executed and signals are updated. A 
VHDL simulation cycle consists of the following steps: 

1. The current time, te is set equal to t]1" 

2. Each active signal in the model is updated and events may occur as a result. 

3. For each process P, if P is currently sensitive to a signal S, and an event has 
occurred on signal S in this simulation cycle, then process Presumes. 

4. Each resumed process is executed until it suspends. 

5. The time of the next simulation cycle, tn' is set to the earliest of: 

a. the next time at which a driver becomes active or 
b. the next time at which a process resumes 

6. If tn = te, then the next simulation cycle is a delta cycle. 

Simulation is complete when we run out of time (tn = TIME I HIGH) and there are 
no active drivers or process resumptions at tn (there are some slight modifications to 
these rules involving postponed processes-which we rarely use in ASIC design). 

Time in an event-driven simulator has two dimensions. A delta cycle takes 
delta time, which does not result in a change in real time. Each event that occurs at 
the same time step executes in delta time. Only when all events have been com­
pleted and signals updated does real time advance to the next time step. 

13.4.2 Delay 
In VHDL you may assign a delay mechanism to an assignment statement. 
Transport delay is characteristic of wires and transmission lines that exhibit nearly 
infinite frequency response and will transmit any pulse, no matter how short. 
Inertial delay more closely models the real behavior of logic cells. Typically, a 
logic cell will not transmit a pulse that is shorter than the switching time of the cir­
cuit, and this is the default pulse-rejection limit. If we explicitly specify a pulse­
rejection limit, the assignment will not transmit a pulse shorter than the limit. As an 
example, the following three assignments are equivalent to each other: 

op <= Ip after 10 ns; --1 

Op <= inertial Ip after 10 ns; --2 
Op <= reject 10 ns inertial Ip after 10 ns; --3 

673



13.5 CELL MODELS 659 

Every assignment that uses transport delay can be written using inertial delay 
with a pulse-rejection limit, as the following examples illustrate. 

Assignments using transport delay: --1 

Op <= transport Ip after 10 ns; --2 
Op <= transport Ip after 10 ns, not Ip after 20 ns; --3 

Their equivalent assignments: --4 
Op <= reject 0 ns inertial Ip after 10 ns; --S 
Op <= reject 0 ns inertial Ip after 10 ns, not Ip after 10 ns; --6 

13.5 Cell Models 

There are several different kinds of logic cell models: 

• Primitive models, which are produced by the ASIC library company and 
describe the function and properties of each logic cell (NAND, D flip-flop, 
and so on) using primitive functions. 

• Verilog and VHDL models that are produced by an ASIC library company 
from the primitive models. 

• Proprietary models produced by library companies that describe either small 
logic cells or larger functions such as microprocessors. 

A logic cell model is different from the cell delay model, which is used to calcu­
late the delay of the logic cell, from the power model, which is used to calculate 
power dissipation of the logic cell, and from the interconnect timing model, which is 
used to calculate the delays between logic cells (we return to these in Section 13.6). 

13.5.1 Primitive Models 
The following is an example of a primitive model from an ASIC library company 
(Compass Design Automation). This particular model (for a two-input NAND cell) 
is complex because it is intended for a 0.35).lm process and has some advanced 
delay modeling features. The contents are not important to an ASIC designer, but 
almost all of the information about a logic cell is derived from the primitive model. 
The designer does not normally see this primitive model; it may only be used by an 
ASIC library company to generate other models-Verilog or VHDL, for example. 

Function 

(timingModel = oneOf("ism","pr"); powerModel = oneOf("pin"); 

Rec 
Logic = Function (AI; A2; )Rec ZN = not (AI AND A2); End; End; 

miscInfo = Rec Title = "2-Input NAND, IX Drive"; freq_fact O.S; 

tml = "nd02d1 nand 2 * zn a1 a2"; 
MaxParallel = 1; Transistors = 4; power 
Width = 4.2; Height = 12.6; productName 

"cb3Ssc"; End; 

0.179018; 
"stdcel13S"; libraryName 

674



660 CHAPTER 13 SIMULATION 

Pin = Rec 
Al Rec input; cap = 0.010; doc = "Data Input" ; End;· 

A2 = Rec input; cap = 0.010; doc = "Data Input" ; End; 

ZN = Rec output; cap = 0.009; doc = "Data Output"; End; 
Symbol = Select 
timingModel 
On pr Do Rec 
tA1D fr I ( Rec prop 0.078; ramp 2.749; End) ; 

tA1D rf I ( Rec prop 0.047; ramp 2.506; End) ; 

tA2D fr I ( Rec prop 0.063; ramp 2.750; End) ; 

tA2D rf I ( Rec prop 0.052; ramp 2.507; End) ; End 

On ism Do Rec 
tA1D fr = I ( Rec AO = 0.0015; dA = 0.0789; DO -0.2828; 

dD = 4.6642; B = 0.6879; Z = 0.5630; End ) ; 

tA1D rf = I ( Rec AO = 0.0185; dA= 0.0477; DO -0.1380; 
-

dD = 4.0678; B = 0.5329; Z = 0.3785; End ) ; 

tA2D fr = I ( Rec AO = 0.0079; dA = 0.0462; DO -0.2819; 

dD = 4.6646; B = 0.6856; Z = 0.5282; End ) ; 

tA2D rf = I ( Rec AD = 0.0060; dA = 0.0464; DO -0.1408; 
dD = 4.0731; B 0.6152; Z = 0.4064; End ); End; End; 
Delay = I ( Rec from = pin.A1; to = pin.ZN; 

End; 

edges = Rec fr = Symbol.tA1D_fr; rf = Symbol.tA1D_rf; End; End, Rec 
from = pin.A2; to = pin.ZN; edges = Rec fr = Symbol.tA2D_fr; rf = 
Symbol.tA2D_rf; End; End ); 
MaxRampTime = I( Rec check = pin.A1; riseTime = 3.000; fallTime = 
3.000; End, Rec check = pin.A2; riseTime = 3.000; fallTime = 3.000; 
End, Rec check pin.ZN; riseTime = 3.000; fallTime = 3.000; End); 
DynamicPower = 1< Rec rise = { ZN}; val = 0.003; End); End; End 

This primitive model contains the following information: 

• The logic cell name, the logic cell function expressed using primitive func­
tions, and port names. 

• A list of supported delay models (ism stands for input-slope delay model, 
and pr for prop-ramp delay model-see Section 13.6). 

• Miscellaneous data on the logic cell size, the number of transistors and so 
on-primarily for use by logic-synthesis tools and for data book generation. 

o Information for power dissipation models and timing analysis. 

13.5.2 Synopsys Models 
The ASIC library company may provide vendor models in formats unique to each 
CAD tool company. The following is an example of a Synopsys model derived from 
a primitive model similar to the example in Section 13.5.1. In a Synopsys library, 

675



13.5 CELL MODELS 661 

each logic cell is part of a large file that also contains wire-load models and other 
characterization information for the cell library. 

cell (nd02d1) { 
/* title: 2-Input NAND, IX Drive */ 

/* pmd checksum: 'HBA7EB26C */ 

area : 1; 
pin(a1) { direction : input; capacitance 

fanout_load: 0.088; } 
pin(a2) { direction: input; capacitance 

fanout_load: 0.087; } 
pin(zn) { direction: output; max fanout 
max transition: 3; function: "(a1 a2)'"; 
timing() { 

timing_sense : "negative_unate" 

0.088; 

0.087; 

1.786; 

intrinsic rise: 0.24 intrinsic fall: 0.17 
rise resistance: 1.68 fall resistance 1.13 
related_pin: "a1" } 

timing() { timing_sense: "negative_unate" 
intrinsic rise: 0.32 intrinsic fall: 0.18 
rise resistance: 1.68 fall resistance: 1.13 
related_pin : "a2" 

} } } /* end of cell */ 

This file contains the only information the Synopsys logic synthesizer, simula­
tor, and other design tools use. If the information is not in this model, the tools can­
not produce it. You can see that not all of the information from a primitive model is 
necessarily present in a vendor model. 

13.5.3 Verilog Models 
The following is a Verilog model for an inverter (derived from a primitive model): 

'celldefine 

'delay-.:..mode_path 
'suppress_faults 
'enable_portfaults 
'timescale 1 ns / 1 ps 
module inOId1 (zn, i); input i; output zn; not G2{zn, i); 

//1 

//2 

//3 

//4 

//5 

//6 

specify specparam //7 
InCap$i = 0.060, OutCap$zn = 0.038, MaxLoad$zn = 1.538, //8 
R_Ramp$i$zn = 0.542:0.980:1.750, F_Ramp$i$zn = 0.605:1.092:1.950; //9 
specparam cell_count = 1.000000; specparam Transistors = 4 
specparam Power = 1.400000; specparam MaxLoadedRamp = 3 ; 

(i => zn) = (0.031:0.056:0.100, 0.028:0.050:0.090); 

endspecify 
endmodule 
nosuppress_faults 

//10 

/ /11 
/ /12 
/ /13 
//14 
//15 

676



662 CHAPTER 13 SIMULATION 

'disable_portfaults 
'endcelldefine 

//16 
//17 

This is very similar in form to the model for the MUX of Section 13.2.1, except that 
this model includes additional timing parameters (at the beginning of the specify 
block). These timing parameters were omitted to simplify the model of 
Section 13.2.1 (see Section 13.6 for an explanation of their function). 

There are no standards on writing Verilog logic cell models. In the Verilog 
model, inOldl, fixed delays (corresponding to zero load capacitance) are embedded 
in a specify block. The parameters describing the delay equations for the timing 
model and other logic cell parameters (area, power-model parameters, and so on) are 
specified using the Verilog specparam feature. Writing the model in this way allows 
the model information to be accessed using the Verilog PLI routines. It also allows 
us to back-annotate timing information by overriding the data in the specify block. 

The following Verilog code tests the model for logic cell inOldl: 

'timescale 1 ns / 1 ps 

module SDF_b; reg A; in01d1 i1 (B, A); 

initial begin A = 0; *5; A = 1; *5; A = 0; end 
initial $monitor("T=%6g",$realtime," A=",A," B=",B); 

endmodule 

T= 0 A=O B=x 

T= 0.056 A=O B=l 

T= 5 A=l B=l 

T= 5.05 A=l B=O 

T= 10 A=O B=O 

T=10.056 A=O B=l 

//1 

//2 

//3 

//4 

//5 

In this case the simulator has used the fixed, typical timing delays (0.056 ns for the 
rising delay, and 0.05 ns for the falling delay-both from line 12 in module 
inOldl). Here is an example SDF file (filename SDF_b.sdf) containing back­
annotation timing delays: 

(DELAYFILE 
(SDFVERSION "3.0") (DESIGN "SDF.v") (DATE "Aug-13-96") 

(VENDOR "MJSS") (PROGRAM "MJSS") (VERSION "vO") 

(DIVIDER .) (TIMESCALE 1 ns) 
(CELL (CELLTYPE "in01d1") 

(INSTANCE SDF_b.i1) 
(DELAY (ABSOLUTE 

(IOPATH i zn (1.151:1.151:1.151) (1.363:1.363:1.363» 
) ) 

(Notice that since Verilog is case sensitive, the instance names and node names in 
the SDF file are also case sensitive.) This SDF file describes the path delay between 
input (pin i) and output (pin zn) as 1.151 ns (rising delay-minimum, typical, and 

677



13.5 CELL MODELS 663 

maximum are identical in this simple example) and 1.363 ns (falling delay). These 
delays are calculated by a delay calculator. The delay calculator may be a stand­
alone tool or part of the simulator. This tool calculates the delay values by using the 
delay parameters in the logic cell model (lines 8-9 in module inO Idl). 

We call a system task, $sdf_annotate, to perform back-annotation, 

'timescale 1 ns / 1 ps //1 

module SDF_b; reg A; in01d1 i1 (B, A); //2 
initial begin //3 
$sdf_annotate ( "SDF_b.sdf", SDF b, , "sdf_b.log", "minimum", ,); //4 
A = 0; #S; A = 1; #S; A = 0; end 
initial $monitor("T=%6g",$realtime," A=",A," B=",B); 
endmodule 

Here is the output (from MTI V-System/Plus) including back-annotated timing: 

T= 0 A=O B=x 
T= 1.1S1 A=O B=l 
T= S A=l B=l 
T= 6.363 A=l B=O 
T= 10 A=O B=O 
T=11.1S1 A=O B=l 

The delay information from the SDF file has been passed to the simulator. 

lis 
//6 

/17 

Back-annotation is not part of the IEEE 1364 Verilog standard, although many 
Verilog-compatible simulators do support the $sdf_annotate system task. Many 
ASIC vendors require the use of Verilog to complete a back-annotated timing simu­
lation before they will accept a design for manufacture. Used in this way Verilog is 
referred to as a golden simulator, since an ASIC vendor uses Verilog to judge 
whether an ASIC design fabricated using its process will work. 

13.5.4 VHDl Models 
Initially VHDL did not offer a standard way to perform back-annotation. Here is an 
example of a VHDL model for an inverter used to perform a back-annotated timing 
simulation using an Altera programmable ASIC: 

library IEEE; use IEEE.STD_LOGIC_1164.all; 
library COMPASS_LIB; use COMPASS LIB.COMPASS_ETC.all; 
enti ty bknot is 

generic (derating: REAL := 1.0; Zl_cap : REAL "= 0.000; 
INSTANCE NAME: STRING := "bknot"); 

port (Z2 : in Std_Logic; Zl : out STD_LOGIC); 

end bknot; 
architecture bknot of bknot is 
constant tplh_Z2_Z1 
constant tphl_Z2_Z1 
begin 

process(Z2) 

TIME := (1.00 ns + (0.01 ns * Zl_Cap)) * derating; 
TIME := (1.00 ns + (0.01 ns * Zl_Cap)) * derating; 

678



664 CHAPTER 13 SIMULATION 

variable int_Z1 : Std_Logic := 'U'; 

variable tplh_Z1, tphl_Z1, Zl_delay 

variable CHANGED : BOOLEAN; 

begin 

int_Z1 := not (Z2); 

if Z2'EVENT then 

time := 0 ns; 

tplh_Z1 := tplh_Z2_Z1; tphl_Z1 := tphl_Z2_Z1; 

end if; 

Zl_delay := F_Delay(int_z1, tplh_Z1, tphl_Z1); 

Zl <= int Zl after Zl_delaYi 

end process; 

end bknot; 

configuration bknot_CON of bknot is for bknot end for; 

end bknot_CON; 

This model accepts two generic parameters: load capacitance, Z 1_ cap, and a 
derating factor, derating, used to adjust postlayout timing delays. The proliferation 
of different VHDL back-annotation techniques drove the VHDL community to 
develop a standard method to complete back-annotation-VITAL. 

13.5.5 VITAL Models 
VITAL is the VHDL Initiative Toward ASIC Libraries, IEEE Std 1076.4 [1995].2 
VITAL allows the use of sign-off quality ASIC libraries with VHDL simulators. 
Sign-off is the transfer of a design from a customer to an ASIC vendor. If the cus­
tomer has completed simulation of a design using sign-off quality models from an 
approved cell library and a golden simulator, the customer and ASIC vendor will 
sign off the design (by signing a contract) and the vendor guarantees that the silicon 
will match the simulation. 

VITAL models, like Verilog models, may be generated from primitive models. 
Here is an example of a VITAL-compliant model for an inverter, 

library IEEE; use IEEE.STD_LOGIC_1164.all; 

use IEEE. VITAL_timing. all; use IEEE.VITAL_primitives.all; 
entity IN01D1 is 

generic ( 

tipd_I 

tpd_I_ZN 

port ( 

I 

VitalDelayType01 := (0 ns, 0 ns); 

VitalDelayType01 := (0 ns, 0 ns) ); 

in STD_LOGIC := 'U'; 

ZN out STD LOGIC := 'U' ); 
attribute VITAL LEVELO of IN01D1 : entity is TRUE; 

end IN01D1i 

architecture IN01D1 of IN01D1 is 

attribute VITAL LEVELl of IN01D1 architecture is TRUE; 

signal I_ipd STD LOGIC := 'X'i 
begin 

2IEEE Std 1076.4-1995, © 1995 IEEE. All rights reserved. 

--1 

--2 
--3 

--4 

--5 

--6 

--7 

--8 

--9 
--10 

--11 

--12 

--13 
--14 

--15 

679



WIREDELAY:block 

begin VitalWireDelay(I_ipd, I, tipd_I)j end block; 

VITALbehavior : process (I_ipd) 

variable ZN zd STD_LOGICj 

variable ZN GlitchData 

begin 

: VitalGlitchDataTypej 

ZN_zd := VitalINV(I ipd)j 

VitalPathDelay01( 

OutSignal 

OutSignalName 

OutTemp 

Paths 

GlitchData 

DefaultDelay 

Mode 

MsgOn 

XOn 

MsgSeverity 

end processj 
end IN01D1j 

=> ZN, 

=> "ZN" , 

=> ZN_zd, 

=> (0 => (I_ipd'LAST_EVENT, tpd_I_ZN, TRUE», 

=> ZN_GlitchData, 

=> VitalZeroDelay01, 

=> OnEvent, 

=> FALSE, 

=> TRUE, 

=> ERROR) j 

13.5 CELL MODELS 665 

--16 

--17 

--18 

--19 

--20 

--21 

--22 

--23 

--24 

--25 

--26 

--27 
--28 

--29 

--30 

--31 

--32 

--33 

--34 

--35 

The following testbench, SDF _ testbench, contains an entity, SDF, that in turn 
instantiates a copy of an inverter, inO Idl: 

library IEEEj use IEEE.STD_LOGIC_1164.allj --1 

entity SDF is port ( A : in STD_LOGICj B : out STD LOGIC )j --2 
end SDFj --3 

architecture SDF of SDF is --4 

component in01d1 port (I in STD_LOGICj ZN : out STD LOGIC )j --5 

end componentj --6 

begin i1: in01d1 port map ( I => A, ZN => B)j --7 

end SDFj --8 

library STDj use STD.TEXTIO.allj --1 

library IEEEj use IEEE.STD_LOGIC_1164.all; --2 

entity SDF_testbench is end SDF_testbench; --3 

architecture SDF testbench of SDF testbench is --4 

component SDF port ( A : in STD_LOGIC; B : out STD LOGIC )j --5 

end component; --6 

signal A, B : STD LOGIC ,= '0'; --7 

begin --8 
SDF b : SDF port map ( A => A, B => B); --9 

process begin 
A <= '0'; wait for 5 ns; A <= 'I'; 

wait for 5 ns; A <= '0'; wait; 

end process; 

process (A, B) variable L: LINE; begin 
write(L, now, right, 10, TIME'(ps»; 

write(L, STRING' (" A="»; write(L, TO_BIT(A»; 

write(L, STRING' (" B="»; write(L, TO_BIT(B»; 

--10 

--11 

--12 

--13 

--14 

--15 

--16 

--17 

680



666 CHAPTER 13 SIMULATION 

writeline(output, L); 
end process; 

end SDF_testbench; 

--18 
--19 

--20 

Here is an SDF file (SDF _b. sdf) that contains back-annotation timing informa­
tion (min/typ/max timing values are identical in this example): 

(DELAYFILE 
(SDFVERSION "3.0") (DESIGN "SDF. vhd") (DATE "Aug-13-96") 

(VENDOR "MJSS") (PROGRAM "MJSS") (VERSION "vO") 

(DIVIDER .) (TIMESCALE 1 ns) 
(CELL (CELLTYPE "in01d1") 

(INSTANCE i1) 
(DELAY (ABSOLUTE 

» 

(IOPATH i zn (1.151:1.151:1.151) (1.363:1.363:1.363» 

(PORT i (0.021:0.021:0.021) (0.025:0.025:0.025» 

(VHDL is case insensitive, but to allow the use of an SDF file with both Verilog and 
VHDL we must maintain case.) As in the Verilog example in Section l3.5.3 the 
logic cell delay (from the input pin of the inverter, i, to the output pin, zn) follows 
the IOPATH keyword. In this example there is also an interconnect delay that follows 
the PORT keyword. The interconnect delay has been placed, or lumped, at the input 
of the inverter. In order to include back -annotation timing using the SDF file, 
SDF _b. sdf, we use a command-line switch to the simulator. In the case of MTI 
V-System/Plus the command is as follows: 

<msmith/MTI/vital> vsim -c -sdfmax /sdf b=SDF b.sdf sdf testbench 

# 0 ps A=O B=O 

# 0 ps A=O B=O 

# 1176 ps A=O B=l 

# 5000 ps A=l B=l 

# 6384 ps A=l B=O 

# 10000 ps A=O B=O 

# 11176 ps A=O B=l 

We have to explain to the simulator where in the design hierarchy to apply the 
timing information in the SDF file. The situation is like giving someone directions 
"Go North on the Ml and turn left at the third intersection," but where do we start? 
London or Birmingham? VHDL needs much more precise directions. Using VITAL 
we say we back-annotate to a region. The switch ISdf_b=SDF_b. sdf specifies that 
all instance names in the SDF file, SDF _b. sdf, are relative to the region I sdf _b. 

The region refers to instance name sdf _b (line 9 in entity SDF _ testbench), 

which is an instance of component SDF. Component SDF in turn contains an instance 

681



13.5 CELL MODELS 667 

of a component, inOldl, with instance name il (line 7 in architecture SDF). 

Through this rather (for us) difficult-to-follow set of directions, the simulator knows 
that 

..• (CELL (CELLTYPE "in01d1") (INSTANCE i1) ... 

refers to (SDF) cell or (VHDL) component inOldl with instance name il in 
instance SDF _ b of the compiled model sdf _ testbench. 

Notice that we cannot use an SDF file of the following form (as we did for the 
Verilog version of this example): 

. .. (CELL (CELLTYPE "inO 1d1") (INSTANCE SDF _b. il) ... 

There is no instance in the VHDL model "higher" than instance name SDF_b 

that we can use as a starting point for VITAL back-annotation. In the Verilog SDF 
file we can refer to the name of the top-level module (SDF _b in line 2 in module 
SDF _b). We cannot do this in VHDL; we must name an instance. The result is that, 
unless you are careful in constructing the hierarchy of your VHDL design, you may 
not be able to use the same SDF file for back-annotating both VHDL and Verilog. 

13.5.6 SDF in Simulation 
SDF was developed to handle back-annotation, but it is also used to describe 
forward-annotation of timing constraints from logic synthesis. Here is an example of 
an SDF file that contains the timing information for the halfgate ASIC design: 

(DELAYFILE 

(SDFVERSION "1.0") 

(DESIGN "halfgate_ASIC_u") 
(DATE "Aug-13-96") 

(VENDOR "Compass") 
(PROGRAM "HDL Asst") 

(VERSION "v9r1.2") 
(DIVIDER. ) 

(TI!1ESCALE 1 ns) 
(CELL (CELLTYPE "in01dO") 

(INSTANCE v_1.B1_i1) 

(DELAY (ABSOLUTE 
(IOPATH I ZN (1.151:1.151:1.151) (1.363:1.363:1.363)) 

) ) 

(CELL (CELLTYPE "pc5006") 

(INSTANCE u1_2) 

(DELAY (ABSOLUTE 
(IOPATH I PAD (1.216:1.216:1.216) (1.249:1.249:1.249)) 

) ) 

(CELL (CELLTYPE "pc5d01r") 

(INSTANCE uO_2) 

682



668 CHAPTER 13 SIMULATION 

(DELAY (ABSOLUTE 

(IOPATH PAD CIN (.169:.169:.169) (.199:.199:.199» 

» 

This SDF file describes the delay due to the input pad (cell pc5dOlr, instance name 
uO_2), our inverter (cell inOldO, instance name v_l.Bl_il), and the output pad 
(cell pc5006, instance name ul_2). Since this SDF file was produced before any 
physical layout, there are no estimates for interconnect delay. The following partial 
SDF file illustrates how interconnect delay can be specified in SDF. 

(DELAYFILE 

(PROCESS "FAST-FAST") 

(TEMPERATURE 0:55:100) 

(TIMESCALE lOOps) 

(CELL (CELLTYPE "CHIP") 

(INSTANCE TOP) 

(DELAY (ABSOLUTE 

(INTERCONNECT A.INV8.0UT B.DFF1.Q (:0.6:) (:0.6:» 

») 
This SDF file specifies an interconnect delay (using the keyword INTERCONNECT) of 
60 ps (0.6 units with a timescale of 100 ps per unit) between the output port of an 
inverter with instance name A. INV8 (note that' . ' is the hierarchy divider) in block 
A and the Q input port of a D flip-flop (instance name B. DFFl) in block B. 

The triplet notation (min : typ : max) in SDF con'esponds to minimum, typi­
cal, and maximum values of a parameter. Specifying two triplets corresponds to rising 
(the first triplet) and falling delays. A single triplet corresponds to both. A third triplet cor­
responds to tum-off delay (transitions to or from 'z'). You can also specify six triplets 
(rising, falling, '0' to 'z', 'z' to '1', '1' to 'Z', and 'z' to '0'). When only the 
typical value is specified, the minimum and maximum are set equal to the typical value. 

Logic cell delays can use several models in SDF. Here is one example: 

(INSTANCE B.DFF1) 

(DELAY (ABSOLUTE 

(IOPATH (POSEDGE CLK) Q (12:14:15) (11:13:15»» 

The IOPATH construct specifies a delay between the input pin and the output pin of a 
cell. In this example the delay is between the positive edge of the clock (input port) 
and the flip-flop output. 

The following example SDF file is for an A0221 logic cell: 

(DELAYFILE 

(DESIGN "MYDESIGN") 

(DATE "26 AUG 1996") 

(VENDOR "ASICS_INC") 

683



(PROGRAM "SDF _ GEN" ) 

(VERSION" 3.0") 
(DIVIDER. ) 

(VOLTAGE 3.6:3.3:3.0) 

(PROCESS "-3.0:0.0:3.0") 
(TEMPERATURE 0.0:25.0:115.0) 

(TIMESCALE ) 

(CELL 
(CELLTYPE "AOI221") 

(INSTANCE XO) 

(DELAY (ABSOLUTE 
(IOPATH Al Y (1.11:1.42:2.47) (1.39:1.78:3.19» 

(IOPATH 

(IOPATH 

(IOPATH 

(IOPATH 

) ) ) ) 

13.6 

A2 Y (0.97:1.30:2.34) 

B1 Y (1. 26: 1. 59: 2.72) 

B2 Y (1.10:1.45:2.56) 

C1 Y (0.79:1.04:1.91) 

Delay Models 

(1.53:1.94:3.50» 
(1.52:2.01:3.79» 

(1.66:2.18:4.10» 

(1.36:1.62:2.61» 

13.6 DELAY MODELS 669 

We shall use the term timing model to describe delays outside logic cells and the 
term delay model to describe delays inside logic cells. These terms are not standard 
and often people use them interchangeably. There are also different terms for vari­
ous types of delay: 

• A pin-to-pin delay is a delay between an input pin and an output pin of a 
logic cell. This usually represents the delay of the logic cell excluding any 
delay contributed by interconnect. 

• A pin delay is a delay lumped to a certain pin of a logic cell (usually an 
input). This usually represents the delay of the interconnect, but may also 
represent the delay of the logic cell. 

e A net delay or wire delay is a delay outside a logic cell. This always repre­
sents the delay of interconnect. 

In this section we shall focus on delay models and logic cell delays. In 
Chapter 3 we modeled logic cell delay as follows (Eq. 3.10): 

(13.5) 

684



670 CHAPTER 13 SIMULATION 

A linear delay model is also known as a prop-ramp delay model, because the 
delay comprises a fixed propagation delay (the intrinsic delay) and a ramp delay (the 
extrinsic delay). As an example, the data book entry for the inverter, cell inOIdO, in 
a 0.8 ~m standard-cell library gives the following delay information (with delay 
measured in nanoseconds and capacitance in picofarads): 

RISE=O.IO+O.07+ (1.75XCld) FALL=O.09+0.07+ (1.95XCld) (13.6) 

The first two terms in each of these equations represents the intrinsic delay, with the 
last term in each equation representing the extrinsic delay. We see that the Cld cor­
responds to Cout, Rpu=1.75kQ, and Rpd= 1.95kQ (Rpu is the pull-up resistance 
and Rpd is the pull-down resistance). 

From the data book the pin capacitances for this logic cell are as follows: 

pin I (input) = O.060pF pin ZN(output) = O.038pF (13.7) 

Thus, Cp = 0.038 pF and we can calculate the component of the intrinsic delay due to 
the output pin capacitance as follows: 

Cp xRpu = 0.038 x 1.75 = 0.0665 ns and Cp xRpd= 0.038 x 1.95 = 0.0741 ns (13.8) 

Suppose tqr and tqf are the parasitic delays for the rising and falling waveforms 
respectively. By comparing the data book equations for the rise and fall delays with 
Eq. 13.5 and 13.8, we can identify tqr =0.10ns and tqf= 0.09 ns. 

Now we can explain the timing section of the inO IdO model (Section 13.5.3), 

specify specparam //1 
InCap$i = 0.060, OutCap$zn = 0.038, MaxLoad$zn = 1.538, //2 
R_Ramp$i$zn = 0.542:0.980:1.750, F_Ramp$i$zn = 0.605:1.092:1.950; //3 
specparam cell_count = 1.000000; specparam Transistors = 4 
specparam Power = 1.400000; specparam MaxLoadedRamp = 3 

(i=>zn)=(0.031:0.056:0.100, 0.028:0.050:0.090); 

//4 

//5 
//6 

The parameter OutCap$ zn is C p' The maximum value of the parameter 
R_Ramp$i$zn is Rpu, and the maximum value of parameter F_Ramp$i$zn is Rpd ' 

Finally, the maximum values of the fixed-delay triplets correspond to tqr and tqf' 

13.6.1 Using a Library Data Book 
ASIC library data books typically contain two types of information for each cell in 
the library-capacitance loading and delay. Table 13.7 shows the input capacitances 
for the inverter family for both an area-optimized library (small) and a 
performance-optimized library (fast). 

From Table 13.7, the input capacitance of the small library version of the invl 

(a IX inverter gate) is 0.034 pF. Any logic cell that is driving an invl from the 
small library sees this as a load capacitance. This capacitance consists of the gate 
capacitance of a p-channel transistor, the gate capacitance of an n-channel transistor, 

685



13.6 DELAY MODELS 671 

and the internal cell routing. Similarly, 0.145 pF is the input capacitance of a fast 
invl. We can deduce that the transistors in the fast library are approximately 
0.145/0.034 = 4 times larger than those in the small version. The small library and 
fast library may not have the same cell height (they usually do not), so that we can­
not mix cells from different libraries in the same standard-cell area. 

TABLE 13.7 Input capacitances for an inverter family (pF).1 

Library inv1 invh invs inv8 

Area 0.034 0.067 0.133 0.265 

Performance 0.145 0.292 0.584 1.169 

inv12 

0.397 

1.753 

1 Suffix '1' denotes normal drive strength, suffix 'hI denotes high-power drive strength (approximately x 2) , suffix 
IS' denotes superpower drive strength (approximately x4), and a suffix 'm' (177==8 or 12) denotes inverter blocks 
containing m inverters. 

The delay table for a 2:1 MUX is shown in Table 13.8. For example, Dol to z/, 
indicates the path delay from the DO input rising to the z output rising. Rising delay 
is denoted by I I I and falling delay by I \ I • 

TABLE 13.8 Delay information for a 2:1 MUX. 

Propagation delay 

Area Performance 

Extrinsic! Intrinsic! Extrinsic! Intrinsic! 
From input To output nspF-1 ns ns ns 

00\ Z\ 2.10 1.42 0.5 0.8 

DOl ZI 3.66 1.23 0.68 0.70 

01\ Z\ 2.10 1.42 0.50 0.80 

Oil ZI 3.66 1.23 0.68 0.70 

SD\ Z\ 2.10 1.42 0.50 0.80 

SD\ ZI 3.66 1.09 0.70 0.73 

SOl Z\ 2.10 2.09 0.5 1.09 

SOl ZI 3.66 1.23 0.68 0.70 

I = rising and \ = falling. 

686



672 CHAPTER 13 SIMULATION 

Both intrinsic delay and extrinsic delay values are given in Table 13.8. For 
example, the delay tpD (from DO\ to z\) of a 2:1 MUX from the small library is 

tpD = 1.42 ns + (2.10 ns/pF) x CL (pF). (13.9) 

ASIC cell libraries may be characterized and the delay information presented in 
several ways in a data book. Some manufacturers simulate under worst-case slow 
conditions (4.5 V, 100°C, and slow process conditions, for example) and then derate 
each delay value to convert delays to nominal conditions (5.0 V, 25°C, and nominal 
process). This allows nominal delays to be used in the data book while maintaining 
accurate predictions for worst-case behavior. Other manufacturers characterize using 
nominal conditions and include worst-case values in the data book. In either case, 
we always design with worst-case values. Data books normally include process, 
voltage, and temperature derating factors as tables or graphs such as those shown in 
Tables 13.9 and 13.10. 

For example, suppose we are measuring the performance of an ASIC on the 
bench and the lab temperature (25°C) and the power supply voltage (5 V) corre­
spond to nominal operating conditions. We shall assume, in the absence of other 
information, that we have an ASIC from a nominal process lot. We have data book 
values given as worst case (worst-case temperature, 100°C; worst-case voltage, 
4.5 V; slow process) and we wish to find nominal values for delay to compare them 
with our measured results. From Table 13.9 the derating factor from nominal pro­
cess to slow process is 1.31. From Table 13.10 the derating factor from 100°C and 
4.5 V to nominal (25°C and 5 V) is 1.60. The derating factor from nominal to worst­
case (data book values) is thus: 

worst-case = nominal x 1.31 (slow process) x 1.60 (4.5 V, 100°C). (13.10) 

To get from the data book values to nominal operating conditions we use the follow­
ing equation: 

nominal = worst-case/(1.31 x 1.60) = 0.477 x worst-case. (13.11) 

13.6.2 Input-Slope Delay Model 
It is increasingly important for submicron technologies to account for the effects of 
the rise (and fall) time of the input waveforms to a logic cell. The nonlinear delay 
model described in this section was developed by Mike Misheloff at VLSI 
Technology and then at Compass. There are, however, no standards in this area­
each ASIC company has its own, often proprietary, model. 

We begin with some definitions: 

• D tO is the time from the beginning of the input to beginning of the output. 

• Dtl is the time from the beginning of the input to the end of the output. 

• IRis the time from the beginning to the end of the input ramp. 

687



13.6 DELAY MODELS 673 

TABLE 13.9 Process derating TABLE 13.10 Temperature and voltage derating factors. 
factors. 

Process Derating factor Supply voltage 

Slow 1.31 Temperature/oC 4.SV 4.7SV S.OOV 

Nominal 1.0 -40 0.77 0.73 0.68 

Fast 0.75 0 1.00 0.93 0.87 

25 1.14 1.07 1.00 

85 1.50 1.40 1.33 

100 1.60 1.49 1.41 

125 1.76 1.65 1.56 

In these definitions "beginning" and "end" refer to the projected intersections of 
the input waveform or the output waveform with VDD and Vss as appropriate. Then 
we can calculate the delay, D (measured with 0.5 trip points at input and output), 
and output ramp, OR, as follows: 

(13.12) 

(13.13) 

Experimentally we find that the times, DtO and Dtl' are accurately modeled by 
the following equations: 

(13.14) 

and 

(13.15) 

C R is the critical ramp that separates two regions of operation, we call these 
slow ramp and fast ramp. A sensible definition for CR is the point at which the end 
of the input ramp occurs at the same time the output reaches the 0.5 trip point. This 
leads to the following equation for C R: 

AO+Al + (Do+D1)CL 
CR = 2 (1- B) 

(13.16) 

It is convenient to define two more parameters: 

(13.17) 

S.2SV 

0.64 

0.82 

0.94 

1.26 

1.34 

1.47 

S.SOV 

0.61 

0.78 

0.90 

1.20 

1.28 

1.41 

688



674 CHAPTER 13 SIMULATION 

In the region that CR >IR, we can simplify Eqs. 13.14 and by using the defini­
tions in Eq. 13.17, as follows: 

D = (D tl + D tO -IR)/2 =Ao + DOCL + dA /2 + dDCd 2 

and OR=Dtl-Dto=dA +dDCL · 

(13.18) 

(13.19) 

Now we can understand the timing parameters in the primitive model in 
Section 13.5.1. For example, the following parameter, tAID _ fr, models the falling 
input to rising output waveform delay for the logic cell (the units are a consistent 
set: all times are measured in nanoseconds and capacitances in picofarads): 

AO = 0.0015;dA = 0.0789;DO = -0.2828;dD = 4.6642;B = 0.6879;Z = 0.5630; 

The input-slope model predicts delay in the fast-ramp region, D ISM (50 %, FR), 
as follows (0.5 trip points): 

DISM (50 %, FR) =Ao+DoCL +0.50R =Ao+DoCL +dA/2+dDCd2 

= 0.0015 + 0.5 x 0.0789 + (-0.2828 + 0.5 x 4.6642) CL 

= 0.041 + 2.05CL . (13.20) 

We can adjust this delay to 0.35/0.65 trip points as follows: 

DISM (65 %, FR) = Ao + DOCL + 0.65 OR 

= 0.0015 + 0.65 xO.0789 + (-0.2828CL + 0.65 x4.6642) CL 

= 0.053 + 2.749CL . (13.21) 

We can now compare Eq. 13.21 with the prop-ramp model. The prop-ramp 
parameters for this logic cell (from the primitive model in Section 13.5.1) are: 

tAID_fr = i( Rec prop = 0.078; ramp = 2.749; End); 

These parameters predict the following prop-ramp delay (0.35/0.65 trip points): 

DpR (65%)=0.078+2.749CL · (13.22) 

The input-slope delay model and the prop-ramp delay model predict similar delays 
in the fast-ramp region, but for slower inputs the differences can become significant. 

13.6.3 limitations of Logic Simulation 
Table 13.11 shows the switching characteristics of a two-input NAND gate (IX 
drive) from a commercial l!-lm gate-atTay family. The difference in propagation 
delay (with FO = 0) between the inputs A and B is 

(0.25 -0.17) x 2 / (0.25 + 0.17) = 38 %. 

This difference is taken into account only by a pin-to-pin delay model. 

689



13.7 STATIC TIMING ANALYSIS 675 

TABLE 13.11 Switching characteristics of a two-input NAND gate. 

Fanout 

FO=O FO = 1 FO=2 FO=4 FO=8 K 
Symbol Parameter Ins Ins Ins Ins Ins InspF1 

tpLH Propagation delay, A to X 0.25 0.35 0.45 0.65 1.05 1.25 

tpHL Propagation delay, B to X 0.17 0.24 0.30 0.42 0.68 0.79 

tr Output rise time, X 1.01 1.28 1.56 2.10 3.19 3.40 

tf Output fall time, X 0.54 0.69 0.84 1.13 1.71 1.83 

FO = fanout in standard loads (one standard load = 0.08pF). Nominal conditions: Voo=5 V, TA =25 cC. 

Timing information for most gate-level simulators is calculated once, before 
simulation, using a delay calculator. This works as long as the logic cell delays and 
signal ramps do not change. There are some cases in which this is not true. 
Table 13.12 shows the switching characteristics of a half adder. In addition to pin-to­
pin timing differences there is a timing difference depending on state. For example, 
the pin-to-pin timing from input pin A to the output pin S depends on the state of the 
input pin B. Depending on whether B = '0' or B = '1' the difference in propagation 
delay (at FO = 0) is 

(0.93 - 0.58) x 2 / (0.93 + 0.58) = 46 %. 

This state-dependent timing is not taken into account by simple pin-to-pin delay 
models and is not accounted for by most gate-level simulators. 

13.7 Static Timing Analysis 

We return to the comparator/MUX example to see how timing analysis is applied to 
sequential logic. We shall use the same input code (COffip_ffiUX.V in Section 13.2), 
but this time we shall target the design to an Actel FPGA. 

Before routing we obtain the following static timing analysis: 

Instance name in pin-->out pin tr total incr cell 

END OF PATH 

outp_2_ R 27.26 

OUT1 D--->PAD R 27.26 7.55 OUTBUF 

I 1 eM8 S11--->Y R 19.71 4.40 eM8 

I 2 eM8 S11--->Y R 15.31 5.20 eM8 

I 3 eM8 S11--->Y R 10.11 4.80 eM8 

690



676 CHAPTER 13 SIMULATION 

TABLE 13.12 Switching characteristics of a half adder. 

Fanout 

FO=O FO= 1 FO=2 FO=4 FO=8 K 
Symbol Parameter Ins Ins Ins Ins Ins InspF-1 

tpLH Delay, A to S (8 = '0') 0.58 0.68 0.78 0.98 1.38 1.25 

tpHL Delay, A to S (8 = '1') 0.93 0.97 1.00 1.08 1.24 0.48 

tpLH Delay, 8 to S (8 = '0') 0.89 0.99 1.09 1.29 1.69 1.25 

tpHL Delay, 8 to S (8 = '1') 1.00 1.04 1.08 1.15 1.31 0.48 

tpLH Delay, A to CO 0.43 0.53 0.63 0.83 1.23 1.25 

tpHL Delay, A to CO 0.59 0.63 0.67 0.75 0.90 0.48 

tr Output rise time, X 1.01 1.28 1.56 2.10 3.19 3.40 

tf Output fa" time, X 0.54 0.69 0.84 1.13 1.71 1.83 

FO = fanout in standard loads (one standard load = 0.08 pF). Nominal conditions: Voo= 5 V, TA = 25 cC. 

IN1 

a 2 

BEGIN OF PATH 

PAD--->Y R 

R 

5.32 

0.00 

5.32 

0.00 

INBUF 

The estimated prelayout critical path delay is nearly 30 ns including the I/O-cell 
delays (ACT 3, worst-case, standard speed grade). This limits the operating fre­
quency to 33 MHz (assuming we can get the signals to and from the chip pins with 
no further delays-highly unlikely). The operating frequency can be increased by 
pipelining the design as follows (by including three register stages: at the inputs, the 
outputs, and between the comparison and the select functions): 

// comp_mux_rrr.v 

module comp_mux_rrr(a, b, clock, outp)i 

input [2:0] a, bi output [2:0] outPi input clock; 

reg [2:0] a_r, a_rr, b_r, b_rr, outp; reg sel_r; 

wire sel = ( a_r <= b_r ) ? 0 : 1; 

always @ (posedge clock) begin a_r <= a; b_r <= b; end 

always @ (posedge clock) begin a_rr <= a_ri b_rr <= b_r; 

always @ (posedge clock) outp <= sel_r ? b rr a_rr; 

always @ (posedge clock) sel_r <= sel; 

//1 

//2 

//3 

//4 

//5 

//6 

end / /7 
//8 

//9 

endmodule //10 

Following synthesis we optimize module comp _ mux _ rrr for maximum speed. 
Static timing analysis gives the following preroute critical paths: 

---------------------INPAD to SETUP longest path--------------------­
Rise delay, Worst case 

691




