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FIGURE 9.1 IEEE-recommended dimensions and their construction for logic-gate sym-
bols. (a) NAND gate (b) exclusive-OR gate (an OR gate is a subset).

Figure 9.2 shows some pictorial definitions of objects you can use in a simple
schematic. We shall discuss the different types of objects that might appear in an
ASIC schematic first and then discuss the different types of connections.
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FIGURE 9.2 Terms used in circuit schematics.
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Schematic-entry tools for ASIC design are similar to those for printed-circuit
board (PCB) design. The basic object on a PCB schematic is a component or
device—a TTL IC or resistor, for example. There may be several hundred compo-
nents on a typical PCB. If we think of a logic gate on an ASIC as being equivalent to
a component on a PCB, then a large ASIC contains hundreds of thousands of com-
ponents. We can normally draw every component on a few schematic sheets for a
PCB, but drawing every component on an ASIC schematic is impractical.

9.1.1  Hierarchical Design

Hierarchy reduces the size and complexity of a schematic. Suppose a building has
10 floors and contains several hundred offices but only three different basic office
plans. Furthermore, suppose each of the floors above the ground floor that contains
the lobby is identical. Then the plans for the whole building need only show detailed
plans for the ground floor and one of the upper floors. The plans for the upper floor
need only show the locations of each office and the office type. We can then use a
separate set of three detailed plans for each of the different office types. All these
different plans together form a nested structure that is a hierarchical design. The
plan for the whole building is the top-level plan. The plans for the individual offices
are the lowest level. To clarify the relationship between different levels of hierarchy
we say that a subschematic (an office) is a child of the parent schematic (the floor
containing offices). An electrical schematic can contain subschematics. The subsche-
matic, in turn, may contain other subschematics. Figure 9.3 illustrates the principles
of schematic hierarchical design.

The alternative to hierarchical design is to draw all of the ASIC components on
one giant schematic, with no hierarchy, in a flat design. For a modern ASIC contain-
ing thousands or more logic gates using a flat design or a flat schematic would be
hopelessly impractical. Sometimes we do use flat netlists though.

9.1.2  The Cell Library

Components in an ASIC schematic are chosen from a library of cells. Library ele-
ments for all types of ASICs are sometimes also known as modules. Unfortunately
the term module will have a very specific meaning when we come to discuss hard-
ware description languages. To avoid any chance of confusion I use the term cell to
mean either a cell, a module, a macro, or a book from an ASIC library. Library cells
are equivalent to the offices in our office building.

Most ASIC companies provide a schematic library of primitive gates to be
used for schematic entry. The first problem with ASIC schematic libraries is that
there are no naming conventions. For example, a primitive two-input NAND gate in
a Xilinx FPGA library does not have the same name as the two-input NAND gate in
an LSI Logic gate-array library. This means that you cannot take a schematic that
you used to create a prototype product using a Xilinx FPGA and use that schematic
to create an LSI Logic gate array for production (something you might very likely
want to do). As soon as you start entering a schematic using a library from an ASIC
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instance: inv1

(a) multiple instances of  (b)
the same cell
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cell: HADD
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instance: or1 [
cell: INV
instance: INV1
cell: OR
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cell: HADD instance: and2
instance: ha2
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FIGURE 9.3 Schematic example showing hierarchical design. (a) The schematic of a half-
adder, the subschematic of cell HADD. (b) A schematic symbol for the half adder. (c) A sche-
matic that uses the half-adder cell. (d) The hierarchy of cell HADD.

vendor, you are, to some extent, making a commitment to use that vendor’s ASIC.
Most ASIC designers are much happier maintaining a large degree of vendor inde-
pendence.

A second problem with ASIC schematic libraries is that there are no standards
for cell behavior. For example, a two-input MUX in an Actel library operates so that
the input labeled A is selected when the MUX select input S = '0". A two-input MUX
in a VLSI Technology library operates in the reverse fashion, so that the input
labeled B is selected when S = '0". These types of differences can cause hard-to-find
problems when trying to convert a schematic from one vendor to another by hand.
These problems make changing or retargeting schematics from one vendor to
another difficult. This process is sometimes known as porting a design.
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Library cells that represent basic logic gates, such as a NAND gate, are known
as primitive cells, usually referred to just as cells. In a hierarchical ASIC design a
cell may be a NAND gate, a flip-flop, a multiplier, or even a microprocessor, for
example. To use the office building analogy again, each of the three basic office
types is a primitive cell. However, the plan for the second floor is also a cell. The
second-floor cell is a subschematic of the schematic for the whole building. Now we
see why the commonly accepted use of the term cell in schematic entry can be so
confusing. The term cell is used to represent both primitive cells and subschematics.
These are two different, but closely related, things.

There are two types of macros for MGAs and programmable ASICs. The most
common type of macro is a hard macro that includes placement information. A
hard macro can change in position and orientation, but the relative location of the
transistors, other layout, and wiring inside the macro is fixed. A soft macro contains
only connection information (between transistors for a gate array or between logic
cells for a programmable ASIC). Thus the placement and wiring for a soft macro can
vary. This means that the timing parameters for a soft macro can only be determined
after you complete the place-and-route step. For this reason the basic library ele-
ments for MGAs and programmable ASICs, such as NAND gates, flip-flops, and so
on, are hard macros.

A standard cell contains layout information on all mask levels. An MGA hard
macro contains layout information on just the metal, contact, and via layers. An
MGA soft macro or programmable ASIC macro does not contain any layout infor-
mation at all, just the details of connections to be made inside the macro.

We can stretch the office building analogy to explain the difference between
hard and soft macros. A hard macro would be an office with fixed walls in which
you are not allowed to move the furniture. A soft macro would be an office with par-
titions in which you can move the furniture around and you can also change the
shape of your office by moving the partitions.

9.1.3 Names

Each of the cells, primitive or not, that you place on an ASIC schematic has a cell
name. Each use of a cell is a different instance of that cell, and we give each
instance a unique instance name. A cell instance is somewhere between a copy and
a reference to a cell in a library. An analogy would be the pictures of hamburgers on
the wall in a fast-food restaurant. The pictures are somewhere between a copy and a
reference to a real hamburger.

We represent each cell instance by a picture or icon, also known as a symbol.
We can represent primitive cells, such as NAND and NOR gates, with familiar icons
that look like spades and shovels. Some schematic editors offer the option of switch-
ing between these familiar icons and using the rectangular IEEE standard symbols
for logic gates. Unfortunately the term icon is also often used to refer to any of the
pictures on a schematic, including those that represent subschematics. There is no
accepted way to differentiate between an icon that represents a primitive cell and
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one that represents a subschematic that may be in turn a collection of primitive cells.
In fact, there is usually no easy way to tell by looking at a schematic which icons
represent primitive cells and which represent subschematics.

We will have three different icons for each of the three different primitive offices
in the imaginary office building example of Section 9.1.1. We also will have icons to
represent the ground floor and the plan for the other floors. We shall call the common
plan for the second through tenth floors, Floor. Then we say that the second floor is
an instance of the cell name Floor. The third through tenth floors are also instances
of the cell name Floor. The same icon will be used to represent the second through
tenth floors, but each will have a unique instance name. We shall give them instance
names: FloorTwo, FloorThree, ..., FloorTen. We say that FloorTwo through
FloorTen are unique instance names of the cell name Floor.

At the risk of further confusion I should point out that, strictly speaking, the
definition of a primitive cell depends on the type of library being used. Schematic-
entry libraries for the ASIC designer stop at the level of NAND gates and other sim-
ilar low-level logic gates. Then, as far as the ASIC designer is concerned, the primi-
tive cells are these logic gates. However, from the view of the library designer there
is another level of hierarchy below the level of logic gates. The library designer
needs to work with libraries that contain schematics of the gates themselves, and so
at this level the primitive cells are transistors.

Let us look at the building analogy again to understand the subtleties of primi-
tive cells. A building contractor need only concern himself with the plans for our
office building down to the level of the offices. To the building contractor the primi-
tive cells are the offices. Suppose that the first of the three different office types is a
corner office, the second office type has a window, and a third office type is without
a window. We shall call these office cells: CornerOffice, WindowOffice, and
NowWindowOffice. These cells are primitive cells as far as the contractor is con-
cerned. However, when discussing the plans with a client, the architect of our build-
ing will also need to see how each offices is furnished. The architect needs to see a
level of detail of each office that is more complicated than needed by the building
contractor. The architect needs to see the cells that represent the tables, chairs, and
desks that make up each type of office. To the architect the primitive cells are a
library containing cells such as chair, table, and desk.

8.1.4 Schematic Icons and Symbols

Most schematic-entry programs allow the designer to draw special or custom icons.
In addition, the schematic-entry tool will also usually create an icon automatically
for a subschematic that is used in a higher-level schematic. This is a derived icon,
or derived symbeol. The external connections of the subschematic are automatically
attached to the icon, usually a rectangle.

Figure 9.4(c) shows what a derived icon for a cell, DLAT, might look like (we
could also have drawn this by hand). The subschematic for DLAT is shown in
Figure 9.4(b). We say that the inverter with the instance name inv1 in the subsche-
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matic is a subcell (or submodule) of the cell DLAT. Alternatively we say that cell
instance inv1 is a child of the cell DLAT, and cell DLAT is a parent of cell instance

invl.
) schematic , instance name
- internal node N
cell library

connector
name

primitive
cells

name
(a) (b) external node ©)

FIGURE 9.4 Acell and its subschematic. (a) A schematic library containing icons for the
primitive cells. (b) A subschematic for a cell, DLAT, showing the instance names for the prim-
itive cells. (¢) A symbol for cell DLAT.

Figure 9.5(a) shows a more complex subschematic for a 4-bit latch. Each primi-
tive cell instance in this schematic must have a unique name. This can get very tire-
some for large circuits. Instead of creating complex, but repetitive, subschematics
for complex cells we can use hierarchy.

Figure 9.5(b) shows a hierarchical subschematic for a cell FourBit, which in
turn uses four instances of the cell DLAT. The four instances of DLAT in Figure 9.5(b)
have different instance names: L1, L2, L3, and L4. Notice that we cannot use just
one name for the four instances of DLAT to indicate that they are all the same cell. If
we did, we could not differentiate between L1 and L2, for example.

The vertical row of instances in Figure 9.5(b) looks like a vector of elements.
Figure 9.5(c) shows a vectored instance representing four copies of the DLAT cell.
We say the cardinality of this instance is 4. Tools normally use bold lines or some
other distinguishing feature to represent a vectored instance. The cardinality infor-
mation is often shown as a vector. Thus L{1:47] represents four instances: L{1],
L1271, L[37, L.147. This 1s convenient because now we can see that all subcells are
identical copies of L, but we have a unique name for each.

Finally, as shown in Figure 9.5(d) we can create a new symbol for the 4-bit
latch, FourBit. The symbol for FourBit has a 4-bit-wide input bus for the four D
inputs, and a 4-bit wide output bus for the four Q outputs. The subschematic for
FourBit could be either Figure 9.5(a), (b), or (c) (though the exact naming of the
inputs and outputs and their attachment to the buses may be different in each case).
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FIGURE 9.5 A 4-bit latch: (a) drawn as a flat schematic from gate-level primitives,
(b) drawn as four instances of the cell symbol DLAT, (c) drawn using a vectored instance of
the DLAT cell symbol with cardinality of 4, (d) drawn using a new cell symbol with cell name
FourBit.

We need a convention to distinguish, for example, between the inverter subcells,
invl, which are children of the cell DLAT, which are in turn children of the cell
FourBit. Most schematic-entry tools do this by combining the instance names of
the subcells in a hierarchical manner using a special character as a delimiter. For
example, if we drew the subschematic as in Figure 9.5(b), the four inverters in
FourBit might be named L1l.invl, L2.invl, L3.invl, and L4.invl. Once
again this makes it clear that the inverters, inv1, are identical in all four subcells.

In our office building example, the offices are subcells of the cell Floor. Sup-
pose you and I both have corner offices. Mine is on the second floor and yours is
above mine on the third floor. My office is 211 and your office is 311. Another way
to name our offices on a building plan might be FloorTwo.11 for my office and
FloorThree.11l for your office. This shows that FloorTwo.11l is a subcell of
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FloorTwo and also makes it clear that, apart from being on different floors, your
office and mine are identical. Both our offices have instance names 11 and are
instances of cell name Corner.

9.1.5 Nets

The schematics shown in Figure 9.4 contain both local nets and external nets. An
example of a local net in Figure 9.4(b) is n1, the connection between the output ter-
minal of the AND cell andl to the OR cell orl. When the four copies of this circuit
are placed in the parent cell FourBit in Figure 9.5(d), four copies of net n1l are cre-
ated. Since the four nets named nl are not actually electrically connected, even
though they have the same name at the lowest hierarchical level, we must somehow
find a way to uniquely identify each net.

The usual convention for naming nets in a hierarchical schematic uses the par-
ent cell instance name as a prefix to the local net name. A special character (' :*
*/* +$* ' for example) that is not allowed to appear in names is used as a
delimiter to separate the net name from the cell instance name. Supposing that we
drew the subschematic for cell FourBit as shown in Figure 9.5(b), the four differ-
ent nets labeled n1 might then become:

FourBit.Ll:nl FourBit.L2:nl FourBit.r3:nl FourBit.rd:nl

This naming is usually done automatically by the schematic-entry tool.

The schematic DLAT also contains three external nets: b, EN, and 0. The ter-
minals on the symbol DLAT connect these nets to other nets in the hierarchical level
above. For example, the signal Trigger:flag in Figure 9.4(c) is also
Trigger.DLAT:0Q. Bach schematic tool handles this situation differently, and life
becomes especially difficult when we need to refer to these nodes from a simulator
outside the schematic tool, for example. HDLs such as VHDL and Verilog have a
very precise and well-defined standard for naming nets in hierarchical structures.

9.1.6  Schematic Entry for ASICs and PCBs

A symbol on a schematic may represent a component, which may contain compo-
nent parts. You are more likely to come across the use of components in a PCB sche-
matic. A component is slightly different from an ASIC library cell. A simple example
of a component would be a TTL gate, an SN74LS0OON, that contains four 2-input
NAND gates. We call an SN74LSO0N a component and each of the individual NAND
gates inside is a component part. Another common example of a component would be
a resistor pack—a single package that contains several identical resistors.

In PCB design language a component label or name is a reference designator.
A reference designator is a unique name attribute, such as R99, attached to each
component. A reference designator, such as R99, has two pieces: an alpha prefix R
and a numerical suffix 99. To understand the difference between reference designa-
tors and instance names, we need to look at the special requirements of PCB design.
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PCBs usually contain packaged ASICs and other ICs that have pins that are sol-
dered to a board. For rectangular, dual-in-line (DIP) packages the pins are numbered
counterclockwise from the upper-left corner looking down on the package.

IC symbols have a pin number for each part in the package. For example, the
TTL 74174 hex D flip-flop with clear, contains six parts: six identical D flip-flops.
The IC symbol representing this device has six PinNumber attribute entries for the
D input corresponding to the six possible input pins. They are pins 3, 4, 6, 11, 13,
and 14.

When we need a flip-flop in our design, we use a symbol for a 74174 from a
schematic library, suppose the symbol name is dffCclr. We shall assign a unique
instance name to the symbol, CarryFF. Now suppose we need another, identical,
flip-flop and we call this BitFF. We do not mind which of the six flip-flop parts in a
74174 we use for CarryFF and BitFF. In fact they do not even have to be in the
same package. We shall delay the choice of assigning CarryFF and BitFF to spe-
cific packages until we get to the PCB routing step. So at this point on our schematic
we do not even know the pin numbers for CarryFF and BitFF. For example the D
input to CarryFF could be pin 3, 4, 6, 11, 13, or 14.

The number of wire crossings on a PCB is minimized by careful assignment of
components to packages and choice of parts within a package. So the placement-
and-routing software may decide which part of which package to use for CarryFF
and BitFF depending on which is easier to route. Then, only after the placement and
routing is complete, are unique reference designators assigned to the component
parts. Only at this point do we know where CarryFF is actually located on the PCB
by referring to the reference designator, which points to a specific part in a specific
package. Thus carryFF might be located in 1C4 on our PCB. At this point we also
know which pins are used for each symbol. So we now know, for example, that the
D-input to CarryFF is pin 3 of 1C4.

There is no process in ASIC design directly equivalent to the process of part
assignment described above and thus no need to use reference designators. The
reference-designator naming convention quickly becomes unwieldy if there are a
large number of components in a design. For example, how will we find a NAND
gate named X3146 in an ASIC schematic with 100 pages? Instead, for ASICs, we
use a naming scheme based on hierarchy.

In large hierarchical ASIC designs it is difficult to provide a unique reference
designator to each element. For this reason ASIC designs use instance names to
identify the individual components. Meaningful names can be assigned to low-level
components and also the symbols that represent hierarchy. We derive the component
names by joining all of the higher level cell names together. A special character is
used as a delimiter and separates each level.

Examples of hierarchical instance names are:

cpu.alu.adder.and0l1
MotherBoard:Cache:RAM4:ReadBitd:Inverter?2
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9.1.7 Connections

Cell instances have terminals that are the inputs and outputs of the cell. Terminals
are also known as pins, connectors, or signals. The term pin is widely used, but we
shall try to use terminal, and reserve the term pin for the metal leads on an ASIC
package. The term pin is used in schematic entry and routing programs that are pri-
marily intended for PCB design.
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FIGURE 9.6 An example of the use of a bus to simplify a schematic. (a) An address
decoder without using a bus. (b) A bus with bus rippers simplifies the schematic and reduces
the possibility of making a mistake in creating and reading the schematic.

Electrical connections between cell instances use wire segments or nets. We
can group closely related nets, such as the 32 bits of a 32-bit digital word, together
into a bus or into buses (not busses). If signals on a bus are not closely related, we
usually use the term bundle or array instead of bus. An example of a bundle might
be a bus for a SCSI disk system, containing not only data bits but handshake and
control signals too. Figure 9.6 shows an example of a bus in a schematic. If we need
to access individual nets in a bus or a bundle, we use a breakout (also known as a
ripper, an EDIF term, or extractor). For example, a breakout is used to access bits
0-7 of a 32-bit bus. If we need to rearrange bits on a bus, some schematic editors
offer something called a swizzle. For example, we might use a swizzle to reorder the
bits on an 8-bit bus so that the MSB becomes the LSB and so on down to the LSB,
which now becomes the MSB. Swizzles can be useful. For example, we can multi-
ply or divide a number by 2 by swizzling all the bits up or down one place on a bus.

9.1.8 Vectored Instances and Buses

So far the naming conventions are fairly standard and easy to follow. However,
when we start to use vectored instances and buses (as is now common in large
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ASICs), there are potential areas of difficulty and confusion. Figure 9.7(a) shows a
schematic for a 16-bit latch that uses multiple copies of the cell FourBit. The buses
are labeled with the appropriate bits. Figure 9.7(b) shows a new cell symbol for the
16-bit latch with 16-bit wide buses for the inputs, D, and outputs, Q.

vectored
instance

mismaitch in
cardinality

mismatch in
cardinality

EN|
 FourBit
; ()

FIGURE 9.7 A 16-bit latch: (a) drawn as four instances of cell FourBit; (b) drawn as a cell
named SixteenBit; (c) drawn as four multiple instances of cell FourBit.

Figure 9.7(c) shows an alternative representation of the 16-bit latch using a vec-
tored instance of FourBit with cardinality 4. Suppose we wish to make a connec-
tion to expressly one bit, D1 (we have used D1 as the first bit rather than the more
conventional DO so that numbering is easier to follow). We also wish to make a con-
nection to bits D9-D12, represented as D[9:12]. We do this using a bus ripper. Now
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we have the rather awkward situation of bus naming shown in Figure 9.7(c). Prob-
lems arise when we have “buses of buses” because the numbers for the bus widths
do not match on either side of a ripper. For this reason it is best to use the single-bus
approach shown in Figure 9.7(b) rather than the vectored-bus approach of
Figure 9.7(c).

9.1.9 Edit-in-Place

Figure 9.7(b) shows a symbol SixteenBit, which uses the subschematic shown in
Figure 9.7(a) containing four copies of FourBit, named NB1, NB2, NB3, and NB4
(the NB stands for nibble, which is half of a word; a nibble is 4 bits for 8-bit words).
Suppose we use the schematic-entry program to edit the subcell NB1.L1, which is an
instance of DLAT inside NB1. Perhaps we wish to change the D latch to a D latch
with a reset, for example. If the schematic editor supports edit-in-place, we can edit
a cell instance directly. After we edit the cell, the program will update all the DLAT
subcells in the cell that is currently loaded to reflect the changes that have been
made.

To see how edit-in-place works, consider our office building again. Suppose we
wish to change some of the offices on each floor from offices without windows to
offices with windows. We select the cell instance FloorTwo—that is, an instance of
cell Floor. Now we choose the edit mode in the schematic-entry program. But wait!
Do we want to edit the cell Floor, or do we want to edit the cell instance
FloorTwo? If we edit the cell Floor, we will be making changes to all of the floors
that use cell name Floor—that is, instances FloorTwo through FloorTen. If we
edit the cell instance FloorTwo, then the second floor will become different from all
the other floors. It will no longer be an instance of cell name Floor and we will
have to create another cell name for the cell used by instance FloorTwo. This is like
the difference between ordering just one hamburger without pickles and changing
the picture on the wall that will change all future hamburgers.

Using edit-in-place we can edit the cell Floor. Suppose we change some of the cell
instances of cell name NoWindowOffice to instances of cell name WindowOffice.
When we finish editing and save the cell Floor, we have effectively changed all of the
floors that contain instances of this cell.

Instead of editing a cell in place, you may really want to edit just one instance
of a cell and leave any other instances unchanged. In this case you must create a
new cell with a new symbol and new, unique cell name. It might also be wise to
change the instance name of the new cell to avoid any confusion.

For example, we might change the third-floor plan of our office to be different
from the other upper floors. Suppose the third floor is now an instance of cell name
FloorVIP instead of Floor. We could continue to call the third floor cell instance
FloorThree, but it would be better to rename the instance differently, FloorSpecial
for example, to make it clear that it is different from all the other floors.
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Some tools have the ability to alias nets. Aliasing creates a net name from the
highest level in the design. Local names are net names at the lowest level such as D,
and Q in a flip-flop cell. These local names are automatically replaced by the appro-
priate top-level names such as Clockl, or Data2, using a dictionary. This greatly
speeds tracing of signals through a design containing many levels of hierarchy.

9.1.10 Attributes

You can attach a name, also known as an identifier or label, to a component, cell
instance, net, terminal, or connector. You can also attach an attribute, or property,
which describes some aspect of the component, cell instance, net, or connector. Each
attribute has a name, and some attributes also have values. The most common prob-
lems in working with schematics and netlists, especially when you try to exchange
schematic information between different tools, are problems in naming.

Since cells and their contents have to be stored in a database, a cell name fre-
quently corresponds (or is mapped to) a filename. This then raises the problems of
naming conventions including: case sensitivity, name-collision resolution, dictionaries,
handling of “common” special characters (such as embedded blanks or underscores),
other special characters (such as characters in foreign alphabets), first-character
restrictions, name-length problems (only 28 characters are permitted on an NFS com-
patible filename), and so on.

9.1.11 Netlist Screener

A surprising number of problems can be found by checking a schematic for obvi-
ously fatal errors. A program that analyzes a schematic netlist for simple errors is
sometimes called a schematic screener or netlist screener. Errors that can be found
by a netlist screener include:

¢ unconnected cell inputs,

» unconnected cell outputs,

e, nets not driven by any cells,

¢ too many nets driven by one cell,
« nets driven by more than one cell.

The screener can work continuously as the designer is creating the schematic or
can be run as a separate program independently from schematic entry. Usually the
designer provides attributes that give the screener the information necessary to per-
form the checks. A few of the typical attributes that schematic-entry programs use
are described next.

A screener usually generates a list of errors together with the locations of the
problem on the schematic where appropriate. Some editors associate an identifier, or
handle, to every piece of a schematic, including comments and every net. Normally
there is some convention to the assigned names such as a grid on a schematic. This
works like the locator codes on a map, so that a net with Al as part of the name is in
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the upper-left-hand corner, for example. This allows you to quickly and uniquely
find any problems found by a screener. The term handle is a computer programming
term that is used in referring to a location in memory. Each piece of information on
a schematic is stored in lists in memory. This technique breaks down completely
when we move to HDLs.

Most schematic-entry programs work on a grid. The designer can control the
size of the grid and whether it is visible or not. When you place components or wires
you can instruct the editor to force your drawing to snap to grid. This means that
drawing a schematic is like drawing on graph paper. You can only locate symbols,
wires, and connections on grid points. This simplifies the internal mechanics of the
schematic-entry program. It also makes the transfer of schematics between different
EDA systems more manageable. Finally, it allows the designer to produce schematic
diagrams that are cleaner in appearance and thus easier to read.

Most schematic-entry programs allow you to find components by instance name
or cell name. The editor may either jump to the component location and center the
graphic window on the component or highlight the component. More sophisticated
options allow more complex searches, perhaps using wildcard matching. For exam-
ple, to find all three-input NAND gates (primitive cell name ND3) or three-input
NOR gates (primitive cell name NO3), you could search for cell name N*3, where *
is a wildcard symbol standing for any character. The editor may generate a list of
components, perhaps with page number and coordinate locations. Extensive find fea-
tures are useful for large schematics where it quickly becomes impossible to find
individual components.

Some schematic editors can complete antomatic naming of reference designa-
tors or instance names to the schematic symbols either as the editor is running or as
a postprocessing step. A component attribute, called a prefix, defines the prefix for
the name for each type of component. For example, the prefix for all resistor compo-
nent types may be R. Each time a prefix is found or a new instance is placed, the
number in the reference designator or name is automatically incremented. Thus if
the last resistor component type you placed was R99, the next time you place a resis-
tor it would automatically be named R100.

For large schematics it is useful to be able to generate a report on the used and
unused reference designators. An example would be:

Reference designator prefix: R
Unused reference designator numbers: 153, 154
Last used reference designator number: 180

If you need this feature, you probably are not using enough hierarchy to simplify
your design.

During schematic entry of an ASIC design you will frequently need multiple cop-
ies of components. This often occurs during datapath design, where operations are
carried out across multiple signals on a bus. A common example would be multiple
copies of a latch, one for each signal on a bus. It is tedious and inefficient to have to
draw and label the same cell many times on a schematic. To simplify this task, most
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editors allow you to place a special vectored cell instance of a cell. A vectored cell
instance, or vectored instance for short, uses the same icon for a single instance but
with a special attribute, the cell cardinality, that denotes the number of copies of the
cell. Connections between signals on a bus and vectored instances should be handled
automatically. The width or cardinality of the bus and the cell cardinality must match,
and the design-entry tool should issue a warning if this is not the case.

A schematic-entry program can use a terminal attribute to determine which cell
terminals are output terminals and which terminals are input terminals. This attribute

is usually called terminal polarity or terminal direction. Possible values for termi- -

nal polarity might be: input, output, and bidirectional. Checking the terminal
polarity of the terminals on a net can help find problems such as a net with all input
terminals or all output terminals.

The fanout of a cell measures the driving capability of an output terminal. The
fanin of a cell measures the number of input terminals. Fanout is normally measured
using a standard load. A standard load is the load presented by one input of a prim-
itive cell, usually a two-input NAND. For example, a library cell Counter may have
an input terminal, Clock, that is connected to the input terminals of five primitive
cells. The loading at this terminal is then five standard loads. We say that the fanout
of clock is five. In a similar fashion, we say that if a cell Buffer is capable of driv-
ing the inputs of three primitive cells, the fanout of Buffer is three. Using the fanin
and fanout attributes a netlist screener can check to see if the fanout driving a net is
greater than the sum of all loads on that net. (See Figure 9.2 on page 329.)

9.1.12 Schematic-Entry Tools

Some editors offer icon edit-in-place in a similar fashion as schematic edit-in-place
for cells. Often you have to toggle editing modes in the schematic-entry program to
switch between editing cells and editing cell icons. A schematic-entry program must
keep track of when cells are edited. Normally this is done by using a timestamp or
datestamp for each cell. This is a text field within the data file for each cell that
holds the date and time that the cell was last modified. When a new schematic or cell
is loaded, the program needs to compare its timestamp with the timestamps of any
subcells. If any of the subcell timestamps are more recent, then the designer needs to
be alerted. Usually a message appears to inform you that changes have been made to
subcells since the last time the cell currently loaded was saved. This may be what
you expect or it may be a warning that somehow a subcell has been changed inad-
vertently (perhaps someone else changed it) since you last loaded that cell.

Normally the primitive cells in a library are locked and cannot be edited. If you
can edit a primitive cell, you have to make a copy, edit the copy, and rename it. Nor-
mally the ASIC designer cannot do this and does not want to. For example, to edit a
primitive NAND gate stored in an ASIC schematic library would require that the
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subschematic of the primitive cell be available (usually not the case) and also that
the next lower level primitives (symbols for the transistors making up the NAND
gate) also be available to the designer (also usually not the case).

What do you do if somehow changes were made to a cell by mistake, perhaps
by someone else, and you don’t want the new cell, you want the old version? Most
schematic-entry and other EDA tools keep old versions of files as a back-up in case
this kind of problem occurs. Most EDA software automatically keeps track of the
different versions of a file by appending a version number to each file. Usually this
is transparent to the designer. Thus when you edit a cell named Floor, the file on
disk might be called Floor.6. When you save the changes, the software will not
overwrite Floor . 6, but write out a new file and automatically name it Floor.7.

Some design-entry tools are more sophisticated and allow users to create their
own libraries as they complete an ASIC design. Designers can then control access to
libraries and the cells that they build during a design. This normally requires that a
schematic editor, for example, be part of a larger EDA system or framework rather
than work as a stand-alone tool. Sometimes the process of library control operates as
a separate tool, as a design manager or library manager. Often there is a program
similar to the UNIX make command that keeps track of all files, their dependencies,
and the tools that are necessary to create and update each file.

You can normally set the number of back-up versions of files that EDA software
keeps. The version history controls the number of files the software will keep. If
you accidentally update, overwrite, or delete a file, there is usually an option to
select and revert to an earlier version. More advanced systems have check-out ser-
vices (which work just as in source control systems in computer programming data-
bases) that prevent these kinds of problems when many people are working on the
same design. Whenever possible, the management of design files and different ver-
sions should be left under software control because the process can become very
complicated. Reverting to an earlier version of a cell can have drastic consequences
for other cells that reference the cell you are working with. Attempts to manually
edit files by changing version numbers and timestamps can quickly lead to chaos.

Most schematic-entry programs allow you to undo commands. This feature may
be restricted to simply undoing the last command that you entered, or may be an
unlimited undo and redo, allowing you to back up as many commands as you want
in the current editing session.

You can spend a lot of time in a schematic editor placing components and draw-
ing the connections between them. Features that simplify initial entry and allow
modifications to be made easily can make an enormous difference to the efficiency
of the schematic-entry process.

Most schematic editors allow you to make connections by dragging the cursor
with the wire following behind, in a process known as rubber banding. The con-
nection snaps to a right angle when the connection is completed. For wire connec-
tions that require more than two line segments, an automatic wiring feature is useful.
This allows you to define the wire path roughly using mouse clicks and have the edi-
tor complete the connection.
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It is exceedingly painful to move components if you have to rewire connections
each time. Most schematic editors allow you to move the components and drag any
wires along with them.

One of the most annoying problems that can arise in schematic entry is to think
that you have joined two wires on a schematic but find that in reality they do not
quite meet. This error can be almost impossible to find. A good editing program will
have a way of avoiding this problem. Some editors provide a visual (flash) or audi-
ble (beep) feedback when the designer draws a wire that makes an electrical connec-
tion with another. Some editors will also automatically insert a dot at a “T”
connection to show that an electrical connection is present. Other editors refuse to
allow four-way connections to be made, so there can be no ambiguity when wires
cross each other if an electrical connection is present or not.

A cell library or a collection of libraries is a key part of the schematic-entry pro-
cess. The ability to handle and control these libraries is an important feature of any

schematic editor. It should be easy to select components from the library to be

placed on a schematic.

In large schematics it is necessary to continue large nets and signals across sev-
eral pages of schematics. Signals such as power and ground, VDD and GND, can be
connected using global nets or special connectors. Global nets allow the designer
to label a net with the same name at different places on a schematic page or on dif-
ferent pages without having to draw a connection explicitly. The schematic editor
treats these nets as though they were electrically connected. Special connector sym-
bols can be used for connections that cross schematic pages. An off-page connector
or multipage connector is a special symbol that will show and label a connection to
different schematic pages. More sophisticated editors can automatically label these
connectors with the page numbers of the destination connectors.

9.1.13 Back-Annotation

After you enter a schematic you simulate the design to make sure it works as
expected. This completes the logical design. Next you move to ASIC physical
design and complete the layout. Only after you complete the layout do you know the
parasitic capacitance and therefore the delay associated with the interconnect. This
postroute delay information must be returned to the schematic in a process known as
back-annotation. Then you can complete a final, postlayout simulation to make
sure that the specifications for the ASIC are met. Chapter 13 covers simulation, and
the physical design steps are covered in Chapters 15 to 17.

9.2  Low-Level Design Languages

Schematics can be a very effective way to convey design information because pic-
tures are such a powerful medium. There are two major problems with schematic
entry, however. The first problem is that making changes to a schematic can be diffi-
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cult. When you need to include an extra few gates in the middle of a schematic
sheet, you may have to redraw the whole sheet. The second problem is that for many
years there were no standards on how symbols should be drawn or how the sche-
matic information should be stored in a netlist. These problems led to the develop-
ment of design-entry tools based on text rather than graphics. As TTL gave way to
PLDs, these text-based design tools became increasingly popular as de facto stan-
dards began to emerge for the format of the design files.

PLDs are closely related to FPGAs. The major advantage of PLD tools is their
low cost, their ease of use, and the tremendous amount of knowledge and number of
designs, application notes, textbooks, and examples that have been built up over
years of their use. It is natural then that designers would want to use PLD develop-
ment systems and languages to design FPGAs and other ASICs. For example, there
is a tremendous amount of PLD design expertise and working designs that can be
reused.

In the case of ASIC design it is important to use the right tool for the job. This
may mean that you need to convert from a low-level design medium you have used
for PLD design to one more appropriate for ASIC design. Often this is because you
are merging several PLDs into a single, much larger, ASIC. The reason for covering
the PLD design languages here is not to try and teach you how to use them, but to
allow you to read and understand a PLD language and, if necessary, convert it to a
form that you can use in another ASIC design system.

9.2.1 ABEL

ABEL is a PLD programming language from Data I/O. Table 9.2 shows some exam-
ples of the ABEL statements. The following example code describes a 4:1 MUX
(equivalent to the LS153 TTL part):

module MUX4

title '4:1 MUX'

MyDevice device 'P1l6L8' ;

@ALTERNATE

"inputs

A, B, /P1Gl, /PlG2 pin 17,18,1,6 "LS153 pins 14,2,1,15

p1co, PlC1l, PlC2, PLC3 pin 2,3,4,5 "LS153 pins 6,5,4,3

p2C0, Pp2C1l, P2C2, P2C3 pin 7,8,9,11 "LS153 pins 10,11,12,13

"outputs

P1lY, P2Y pin 19, 12 "LS153 pins 7,9

equations
PlY = P1G*(/B*/A*P1C0 + /B*A*P1Cl + B*/A*P1C2 + B*A*P1C3);
PlY = P1G*(/B*/A*P1C0O0 + /B*A*P1Cl + B*/A*P1C2 + B*A*P1C3);

end MUX4
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TABLE 9.2 ABEL.
Statement Example Comment
Module module MyModule You can have multiple modules.
Title title 'Title in a String’ A string is a character series between quotes.
Device MYDEV device '22V10' ; MYDEV is Device ID for documentation.
22Vv10 is checked by the compiler.
Comment "comments go between double The end of a line signifies the end of a com-
quotes"” ment; there is no need for an end quote.
"end of line is end of comment
@ALTERNATE @ALTERNATE "use alternate operator alternate default
symbols
AND * &
OR #
NOT / !
XOR - S
XNOR 1 1$

Pin declaration

MYINPUT pin 2; I3, I4 pin 3, 4 ;
/MYQUTPUT pin 22; I03,I04 pin
21,20 ;

Pin 22 is the IO for input on pin 2 for a 22V10.
MYOUTPUT is active-low at the chip pin.
Signal names must start with a letter.

Equations equations Defines combinational logic.
I04 = HELPER ; HELPER = /I4 ; Two-pass logic
Assignments MYOUTPUT = /MYINPUT ; Equals '=" is unlocked assignment.
I03 := I4 ; Clocked assignment operator (registered 10)
Signal sets D = [{DO, D1, D2, D37 ; Asignal set, an ABEL bus
0 = [Q0, Q1, 02, Q3];
; Q :=D ; 4-bit-wide register
Suffix MYOUTPUT.RE = CLR ; Register reset
MYOUTPUT.PR = PRE ; Register preset
* Addition COUNT = [DO, D1, D2]; Can’t use @ALTERNATE
COUNT := COUNT + 1; ifyouuse "+' toadd.
Enable ENABLE I03 = I02; Three-state enable (E’NABLE ié“é"keyword).
I03 = MYINPUT; 103 must be a three-state pin.
F— STl 0,11 i
‘Relational I0% = D == K5 ; Operators:
== I= < > <= >=
End end MyModule Laststatement in module
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9.22 CUPL

CUPL is a PLD design language from Logical Devices. We shall review the CUPL
4.0 language here. The following code is a simple CUPL example describing
sequential logic:

SEQUENCE BayBridgeTollPlaza {
PRESENT red

IF car NEXT green OUT go; /* conditional synchronous output */
DEFAULT NEXT red; /* default next state */

PRESENT green
NEXT red; } /* unconditional next state */

This code describes a state machine with two states. Table 9.3 shows the different
state machine assignment statements.

TABLE 9.3 CUPL statements for state-machine entry.

Statement Description
IiF NEXT Conditional next state transition
IF NEXT  OUT Conditional next state transition with synchronous output
NEXT Unconditional next state transition
NEXT OUT Unconditional next state transition with asynchronous output
ouT Unconditional asynchronous output
IF OUT Conditional asynchronous output
DEFAULT NEXT Default next state transition
DEFAULT ouT Default asynchronous output
DEFAULT NEXT OUT Default next state transition with synchronous output

You may also encode state machines as truth tables in CUPL. Here is another
simple example:

FIELD input = [inl..0];
FIELD output = [out3..0];
TABLE input => output {00 => 01; 01 => 02; 10 => 04; 11 => 08; }

The advantage of the CUPL language, and text-based PLD languages in general,
is now apparent. First, we do not have to enter the detailed logic for the state decod-
ing ourselves—the software does it for us. Second, to make changes only requires
simple text editing—fast and convenient.
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Table 9.4 shows some examples of CUPL statements. In CUPL Boolean equa-
tions may use variables that contain a suffix, or an extension, as in the following
example:

output.ext = (Boolean expression);

TABLE 9.4 CUPL.

Statement Example Comment
Boolean expression A = IB; Logical negation
A =B & C; Logical AND
A=B#C; Logical OR
A=BSC; Logical exclusive-OR
Comment A =B & C /* comment */
Pin declaration PIN 1 = CLK; Device dependent
PIN = CLK; Device independent
Node declaration NODE A; Number automatically assigned
NODE [B0..71; Array of buried nodes
Pinnode declaration PINNODE 99 = A; Node assigned by designer
PINNODE [10..17] = [BO..7}; Array of pinnodes
Bit-field declaration FIELD Address = [B0..71]; 8-bit address field
Bit-field operations add_one = Address:FF; True if Address = OxFF
add zero = !(Address:&); True if Address = Ox00

add range = Address:[OF..FF]; Trueif OF.LE.Address.LE.FF

The extensions steer the software, known as a fitter, in assigning the logic. For
example, a signal-name suffix of . OE marks that signal as an output enable.

Here is an example of a CUPL file for a 4-bit counter placed in an ATMEL PLD
part that illustrates the use of some common extensions:

Name 4BIT; Device V2500B;
/* inputs */
pin 1 = CLK; pin 3 = LD_; pin 17 = RST ;

pin [18,19,20,21] = [I0,I1,I2,I3];
/* outputs */
pin [4,5,6,7] = [Q0,01,02,03];

field CNT = [03,02,01,00};
/* equations */
Q3.7 = (!Q2 & !0l & !Q0) & LD_ & RST_/* count down */
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# 03 & IRST /* ReSeT */

# (03 $ I3) & !LD ; /* LoaD*/
Q2.T = (!Q1 & !Q0) & LD_ & RST_# Q2 & IRST_# (Q2 $ I2) & !LD_;
Ql.T = !Q0 & LD & RST_ # Ol & !RST_ # (Ql $ Il) & !LD ;
Q0.T = LD_ & RST_# Q0 & !RST_ # (Q0 $ I0) & !LD_;

CNT.CK = CLK; CNT.OE = 'h'F; CNT.AR = 'h'0; CNT.SP = 'h'0;

In this example the suffix extensions have the following effects: .CK marks the
clock; .T configures sequential logic as T flip-flops; .OE (wired high) is the output
enable; .AR (wired low) is the asynchronous reset; and .sP (wired low) is the syn-
chronous preset. Table 9.5 shows the different CUPL extensions.

The 4-bit counter is a very simple example of the use of the Atmel ATV2500B.
This PLD is quite complex and has many extra “buried” features. In order to use
these features in CUPL (and ABEL) you need to refer to special pin numbers and
node numbers that are given in tables in the manufacturer’s data sheets. You may
need the pin-number tables to reverse engineer or convert a complicated CUPL (or
ABEL) design from one format to another.

Atmel also gives skeleton headers and pin declarations for their parts in their
data sheets. Table 9.6 shows the headers and pin declarations in ABEL and CUPL
format for the ATMEL ATV2500B.

9.2.3 PALASM

PALASM is a PLD design language from AMD/MMI. Table 9.7 shows the format of
PALASM statements. The following simple example (a video shift register) shows
the most basic features of the PALASM 2 language:

TITLE video ; shift register

CHIP video PAL20XS8 .

CK /LD DO D1 D2 D3 D4 D5 D6 D7 CURS GND NC REV Q7 Q6 Q5 Q4 03 Q2 01 Q0
/RST VCC

STRING Load 'LD*/REV*/CURS*RST' ; load data

STRING LoadInv 'LD*REV*/CURS*RST' ; load inverted of data

STRING Shift '/LD*/CURS*/RST' ; shift data from MSB to LSB

EQUATIONS

/00 := /DO0*Load+D0*LoadInv:+:/Q1l*Shift+RST
/01l := /Dl*Load+Dl1*LoadInv:+:/Q2*Shift+RST
/Q2 := /D2*Load+D2*LoadInv:+:/Q3*Shift+RST
/03 := /D3*Load+D3*LoadInvi+:/Q4*Shift+RST
/04 := /D4*Load+D4*LoadInv:+:/Q5%Shift+RST
/Q5 := /D5*Load+D5*LoadInv:+:/06*Shift+RST
/06 := /D6*Load+Dé6*LoadInv:+:/Q7*Shift+RST
/07 := /D7*Load+D7*LoadInv:+:Shift+RST;
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TABLE 9.5 CUPL 4.0 exiensions.

Extension Explanation Extension Explanation
D L Dinputto aD register DFB R D register feedback of
combinational output
L L Linputtoalatch LFB R Latched feedback of
combinational output
J, K L J-K-input to a J-K register  TFB R T register feedback of
combinational output
S, R L  S-Rinputto an S-R register INT R Internal feedback
T Tinputto a T register 0 R Pin feedback of registered output
DQ D output of an input D register 10D/T R D/T register on pin feedback path
selection
LQ R Qoutput of an in;ﬁﬁt latch IOL R Latch on pin feedback path
selection
AP, AR L  Asynchronous preset/reset IOAP, IOAR L Asynchronous preset/reset of
register on feedback path
SP, SR L  Synchronous preset/reset IOSP, IOSR L  Synchronous préset/reset of
register on feedback path
CK Product clock term (async.) IOCK L Clock for pin feedback register
OE L Product—termmbutput enable APMUX, Asynchronous preset/reset
ARMUX multiplexor selection
CA L Complement array CKMUX Clock multipleiar" selector
PR Programmable preload LEMUX Latch enable multipiexor selector
CE CE input of a D-CE register OEMUX Output enable multiplexor
selector
LE L Product-term latch enable IMUX L Input multiplexof selector of
two pins
OBS L Programmable observability of TEC L Teohnoiogi;:depéﬁaéyht fuse
buried nodes selection
v o Programmab ieregzsterbypass e T Tt ol 2T regls‘ter

T |_means that the extension is used only on the LHS of an equation; R means that the extension is used only on
the RHS of an equation.
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TABLE 9.6 ABEL and CUPL pin declarations for an ATMEL ATV2500B.

CUPL
device V2500B;

ABEL

device_id device 'P2500B';

"device_id used for JEDEC filename
I1,12,13,117,118 pin 1,2,3,17,18;

pin [1,2,3,17,18] =
pin [7,6,5,4] =

[I11,I2,I3,I17,118];
[07,06,05,041;

04,05 pin 4,5 istype 'reg d,buffer’; pinnode [41,65,44] = [040Q2,0401,07Q2];
06,07 pin 6,7 istype 'com'; pinnode [43,68] = [06Q2,07Q17;
0402,0702 node 41,44 istype 'reg d';

06F2 node 43 istype 'com';

0701 node

220 istype ‘reg d';

TABLE 9.7 PALASM 2.
Statement Example Comment
Chip CHIP abc 22V10 Specific PAL type
CHIP xyz USER Free-form equation entry
Pinlist CLK /LD DO D1 D2 D3 D4 GND NC Partof CHIP statement; PAL pins in numerical
04 03 02 Q1 QO /RST VCC order starting with pin 1
String STRING string name 'text' Before EQUATIONS statement
Equations EQUATIONS ' After CHIP statement
n=/B Logical negation
A =B *C Logical AND
A=B+C Logical OR
A =B :+: C Logical exclusive-OR
A =B :*: C Logical exclusive-NOR

‘Polarity inversion

SameasA =B + C

o —— o Combinational assigmment T
A :=B + C Registered assignment
Gomment A —Bic s comment T Comment
Fondiona ermton A AR Suiput anabie contial
name .CLKF Register clock control
name .RSTF Register reset control
name.SETF Register set control
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The order of the pin numbers in the previous example is important; the order
must correspond to the order of pins for the DEVICE. This means that you probably
need the device data sheet in order to be able to translate a design from PALASM
to another format by hand. The alternative is to use utilities that many PLD and
FPGA companies offer that automatically translate from PALASM to their own
formats.

9.3 PLATools

We shall use the Berkeley PLA tools to illustrate logic minimization using an
example to minimize the logic required to implement the following three logic
functions:

F1 = a|B]|!C; F2 = 1B&C; F3 = A&B|C;

These equations are in egntott input format. The egntott (for “equation to
truth table”) program converts the input equations into a tabular format. Table 9.8
shows the truth table and egntott output for functions F1, F2, and F3 that use the
six minterms: A, B, !C, !B&C, A&B, C.

PLATOOLS
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TABLE 9.8 A PLA tools example.

Input (6 minterms): F1 = A|B|!C; F2 = !B&C; F3 = A&B|C;
A B [ FI F2 F3 eqntott output espresso output
0 0 0 1 0 0 .i 3 .i3
0 0 1 0 1 1 .0 3 .0 3
.p 6 .p 6
0 1 0 1 0 0 --0 100 1-- 100
0 1 1 1 0 1 --1 001 11- 001
-01 010 --0 100
! 0 0 1 0 0 -1- 100 -01 011
1 0 1 1 1 1 1-- 100 -11 101
1 1 0 1 0 1 11- 001 .e
=
1 1 1 1 0 1
Output (5 minterms): F1 = A|!C|(B&C); F2 = !B&C; F3 = A&B]| (!B&C) | (B&C);
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This egqntott output is not really a truth table since each line corresponds to a min-
term. The output forms the input to the espresso logic-minimization program. Table 9.9
shows the format for espresso input and output files. Table 9.10 explains the format of
the input and output planes of the espresso input and output files. The espresso out-
put in Table 9.8 corresponds to the egntott logic equations on the next page.

TABLE 9.9 The format of the input and output files used by the PLA design tool espresso.

Expression Explanation

# comment # must be first character on a line.

(4] Decimal number

[s] Character string

i 14y Number of input variables

.o [d] Number of output variables

.p [d] Number of product terms

.ilb [s1] [s2]... [sn] Names of the binary-valued variables must be after . i and . o.
.ob [s1] [s2]... [sn] Names of the output functions must be after . 1 and .o.
.type £ Following table describes the ON set; DC set is empty.
.type fd Following table describes the ON set and DC set.

.type fr Following table describes the ON set and OFF set.

.type fdr Following table describes the ON set, OFF set, and DC set.
.e Optional, marks the end of the PLA description.

TABLE 9.10 The format of the plane part of the input and output files forespresso.

Plane Character Explanation
| 1 The input literal appears in the product term.
I 0 The input literal appears complemented in the product term.

| - The input literal does not appear in the product term.

O 1or 4 This product term appears in the ON set.

O 0 This product term appears in the OFF set.

O 2 or - This product term appears in the don’t care set.
O 3 or ~ No meaning for the value of this function.
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Fl = al!c|(Bs&C); F2 = !B&C; F3 = A&B|(!B&C)|(B&C);

We see that espresso reduced the original six minterms to these five: A, A&B, IC
IB&C, B&C.

The Berkeley PLA tools were widely used in the 1980s. They were important
stepping stones to modern logic synthesis tools. There are so many testbenches,
examples, and old designs that used these tools that we occasionally need to convert
files in the Berkeley PLA format to formats used in new tools.

>

9.4 EDIF

An ASIC designer spends an increasing amount of time forcing different tools to
communicate. One standard for exchanging information between EDA tools is the
electronic design interchange format (EDIF). We will describe EDIF version
2 0 0. The most important features added in EDIF 3 0 0 were to handle buses, bus
rippers, and buses across schematic pages. EDIF 4 0 0 includes new extensions for
PCB and multichip module (MCM) data. The Library of Parameterized Modules
(LPM) standard is also based on EDIF. The newer versions of EDIF have a richer
feature set, but the ASIC industry seems to have standardized on EDIF 2 0 0. Most
EDA companies now support EDIF. The FPGA companies Altera and Actel use
EDIF as their netlist format, and Xilinx has announced its intention to switch from
its own XNF format to EDIF. We only have room for a brief description of the EDIF
format here. A complete description of the EDIF standard is contained in the Elec-
tronic Industries Association (EIA) publication, Electronic Design Interchange
Format Version 2 0 0 (ANSI/EIA Standard 548-1988) [EDIF, 1988].

9.4.1 EDIF Syntax

The structure of EDIF is similar to the Lisp programming language or the Postscript
printer language. This makes EDIF a very hard language to read and almost impossi-
ble to ‘write by hand. EDIF is intended as an exchange format between tools, not as a
design-entry language. Since EDIF is so flexible each company reads and writes dif-
ferent “flavors” of EDIF. Inevitably EDIF from one company does not quite work
when we try and use it with a tool from another company, though this situation is
improving with the gradual adoption of EDIF 3 0 0. We need to know just enough
about EDIF to be able to fix these problems.

Figure 9.8 illustrates the hierarchy of the EDIF file. Within an EDIF file are one
or more libraries of cell descriptions. Each library contains technology information
that is used in describing the characteristics of the cells it contains. Each cell
description contains one or more user-named views of the cell. Each view is defined
as a particular viewType and contains an interface description that identifies
where the cell may be connected to and, possibly, a contents description that iden-
tifies the components and related interconnections that make up the cell.
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EDIF file
library T
library
technology }
cell —l
cell
FIGURE 9.8 The hierarchical nature of an EDIF file. o I
view
interface
contents

The EDIF syntax consists of a series of statements in the following format:

(keywordName {form})

A left parenthesis (round bracket) is always followed by a keyword name, followed
by one or more EDIF forms (a form is a sequence of identifiers, primitive data, sym-
bolic constants, or EDIF statements), ending with a right parenthesis. If you have
programmed in Lisp or Postscript, you may understand that EDIF uses a “define it
before you use it” approach and why there are so many parentheses in an EDIF file.

The semantics of EDIF are defined by the EDIF keywords. Keywords are the
only types of name that can immediately follow a left parenthesis. Case is not signif-
icant in keywords.

An EDIF identifier represents the name of an object or group of data. Identifi-
ers are used for name definition, name reference, keywords, and symbolic constants.
Valid EDIF identifiers consist of alphanumeric or underscore characters and must be
preceded by an ampersand (&) if the first character is not alphabetic. The ampersand
is not considered part of the name. The length of an identifier is from 1 to 255 char-
acters and case is not significant. Thus &clock, Clock, and clock all represent the
same EDIF name (very confusing).

Numbers in EDIF are 32-bit signed integers. Real numbers use a special EDIF
format. For example, the real number 1.4 is represented as (e 14 -1). The e form
requires a mantissa (14) and an exponent (-1). Reals are restricted to the range
+1x10%3°, Numbers in EDIF are dimensionless and the units are determined
according to where the number occurs in the file. Coordinates and line widths are
units of distance and must be related to meters. Each coordinate value is converted
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to meters by applying a scale factor. Each EDIF library has a technology section
that contains a required numberDefinition. The scale keyword is used with the
numberDefinition to relate EDIF numbers to physical units.

Valid EDIF strings consist of sequences of ASCII characters enclosed in double
quotes. Any alphanumeric character is allowed as well as any of the following charac-
ters: ! # $ & ' () * + , - /sy < =>2@ N1 T L]y ~
Special characters, such as " and % are entered as escape sequences: $number%, where
number is the integer value of the ASCII character. For example, "A quote is %
34 3" is a string with an embedded double-quote character. Blank, tab, line feed, and
carriage-return characters (white space) are used as delimiters in EDIF. Blank and tab
characters are also significant when they appear in strings.

The rename keyword can be used to create a new EDIF identifier as follows:

(cell (rename TEST 1 "test$l")

In this example the EDIF string contains the original name, test$1, and a new
name, TEST 1, is created as an EDIF identifier.

9.4.2 An EDIF Netlist Example

Table 9.11 shows an EDIF netlist. This EDIF description corresponds to the halfgate
example in Chapter 8 and describes an inverter. We shall explain the functions of the
EDIF in Table 9.11 by showing a piece of the code at a time followed by an explana-
tion.

(edif halfgate p
(edifvVersion 2 0 0) (edifLevel 0) (keywordMap (keywordLevel 0))
(status (written (timeStamp 1996 7 10 22 5 10)
(program "COMPASS Design Automation -- EDIF Interface"
(version "v9rl.2 last updated 26-Mar-96")) (author "mikes")))

Every EDIF file must have an edif form. The edif form must have a name, an
edifVersion, an edifLevel, and a keywordMap. The edifVersion consists of
three integers describing the major (first number) and minor version of EDIF. The
keywordMap must have a keywordLevel. The optional status can contain a
written form that must have a timeStamp and, optionally, author or program
forms.

(library xc4000d4 (edifLevel 0) (technology

(The unbalanced parentheses are deliberate since we are showing segments of the
EDIF code.) The 1ibrary form must have a name, edifLevel and technology.
The edifLevel is normally 0. The xc40004d library contains the cells we are using
in our schematic.
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TABLE 9.11 EDIF file for the hal fgate netlist from Chapter 8.

(edif halfgate p (viewType NETLIST)

(edifVersion 2 0 0) (interface
(ediflevel 0) (port I
(keywordMap (direction INPUT))
(keywordLevel 0)) (port O
(status (direction OUTPUT))
(written (designator "@@Label")))))
(timeStamp 1996 7 10 22 (library working
5 10) (edifLevel 0)
(program "COMPASS Design (technology
Automation -- EDIF Interface" (numberDefinition )
(version "v9rl.2 last (simulationiInfo

updated 26-Mar-96")) (logicvValue H)

(author "mikes"))) (logicvalue L)))
(library xc4000d (cell
(edifLevel 0) (rename HALFGATE P
(technology "halfgate p")

(numberDefinition )
(simulationInfo

(logicvalue H)

(logicvValue L)))
(cell

(rename INV "inv")
(cellType GENERIC)
(view COMPASS mde view

(cellType GENERIC)

(view COMPASS nls view
(viewType NETLIST)
(interface

(port myInput
(direction INPUT))
{port myOutput
(direction OUTPUT))
(designator "@@Label"))

(contents
(instance Bl il
(viewRef
COMPASS_mde view
(cellRef INV
(libraryRef
xc4000d))))
(net myInput
(joined
(portRef myInput)
(portRef I
(instanceRef
B1_il))))
(net myOutput
(joined
(portRef myOutput)
(portRef O
(instanceRef
Bl_il))))
(net VDD
(joined ))
(net VSS
(joined ))))))
(design HALFGATE P
(cellRef HALFGATE P
(libraryRef working))))

(numberDefinition )

(simulationInfo (logicValue

H) (logicValue L)))

The simulationInfo form is used by simulation tools; we do not need that infor-
mation for netlist purposes for this cell. We shall discuss numberDefinition in the

next example. It is not needed in a netlist.

(cell (rename INV "inv")

(cellType GENERIC)

This cell form defines the name and type of a cell inv that we are going to use in

the schematic.

{(view COMPASS mde view (viewType NETLIST)
(interface (port I (direction INPUT))
(designator "@@Label")))))
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The NETLIST view of this inverter cell has an input port I and an output port O.
There is also a place holder "@@Label" for the instance name of the cell.

(library working...

This begins the description of our schematic that is in our library working. The
lines that follow this library form are similar to the preamble for the cell library
xc4000d that we just explained.

(cell (rename HALFGATE P "halfgate p")(cellType GENERIC)
(view COMPASS nls view (viewType NETLIST)
This cell form is for our schematic named halfgate p..

(interface (port myInput (direction INPUT))
(port myOutput (direction OUTPUT))

The interface form defines the names of the ports that were used in our sche-
matic, myInput and myOutput. At this point we have not associated these ports
with the ports of the cell INV in the cell library.

(designator "@@Label")) (contents (instance Bl il
This gives an instance name B1_i1 to the cell in our schematic.

(viewRef COMPASS mde view (cellRef INV (libraryRef xc4000d))))
The cellRef form links the cell instance name B1_i1 in our schematic to the cell
INV in the library xc4000d.

(net myInput (joined (portRef myInput)

(portRef I (instanceRef Bl il))))
The net form for myInput (and the one that follows it for myOutput) ties the net
names in our schematic to the ports I and 0 of the library cell INV.

(net VDD (joined )) (net VSS (joined ))))))

These forms for the global vDD and vss nets are often handled differently by differ-
ent tools (one company might call the negative supply GND instead of vss, for exam-
ple). This section is where you most often have to edit the EDIF.

(design HALFGATE P (cellRef HALFGATE P (libraryRef working))))
The design form names and places our design in library working, and completes
the EDIF description.

9.4.3 An EDIF Schematic lcon

EDIF is capable of handling many different representations. The next EDIF example
is another view of an inverter that describes how to draw the icon (the picture that
appears on the printed schematic or on the screen) shown in Figure 9.9. We shall
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examine the EDIF created by the CAD/CAM Group’s Engineering Capture System
(ECS) schematic editor. '

instance
+

FIGURE 9.9 An EDIF view of an inverter icon. The coordinates shown are in EDIF units.
The crosses that show the text location origins and the dotted bounding box do not print as
part of the icon.

This time we shall give more detailed explanations after each piece of EDIF
code. We shall also maintain balanced parentheses to make the structure easier to
follow. To shorten the often lengthy EDIF code, we shall use an ellipsis (...) to
indicate any code that has been left out.

(edif ECS
(edifvVersion 2 0 0)
(edifLevel 0)
(keywordMap (keywordLevel 0))
(status
(written
(timeStamp 1987 8 20 0 50 23)
(program "CAD/CAM Group, Inc. ECS" (Version "1"))))
(library USER .
)

)

This preamble is virtually identical to the previous netlist example (and demon-
strates that EDIF is useful to store design information as software tools come and go
over many years). The first line of the file defines the name of the file. This is fol-
lowed by lines that identify the version of EDIF being used and the highest EDIF
level used in the file (each library may use its own level up to this maximum). EDIF
level O supports only literal constants and basic constructs. Higher EDIF levels sup-
port parameters, expressions, and flow control constructs. EDIF keywords may be
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mapped to aliases, and keyword macros may be defined within the keywordMap
form. These features are not often used in ASIC design because of a lack of stan-
dardization. The keywordLevel 0 indicates these capabilities are not used here.
The status construct is used for administration: when the file was created, the soft-
ware used to create the file, and so on. Following this preamble is the main section
of the file, which contains design information.

(library USER (edifLevel 0)
(technology
(numberDefinition
(scale 4 (e 254 -5) (unit distance)))
(figureGroup NORMAL
(pathwidth 0) (borderWidth 0)
(textHeight 5))
(figureGroup WIDE
(pathwWwidth 1) (borderwWidth 1)
(textHeight 5)))
(cell 7404 ...

)
)

The technology form has a numberDefinition that defines the scaling informa-
tion (we did not use this form for a netlist, but the form must be present). The first
numberValue after scale represents EDIF numbers and the second numbervalue
represents the units specified by the unit form. The EDIF unit for distance is the
meter. The numbervValue can be an integer or an exponential number. The e form
has a mantissa and an exponent. In this example, within the USER library, a distance
of 4 EDIF units equals 254 X 10 meters (or 4 EDIF units equals 0.1 inch).

After the numberDefinition in the technology form there are one or more
figureGroup definitions. A figureGroup defines drawing information such as
pathWidth, borderWidth, color, fillPattern, borderPattern, and
textHeight. The figureGroup form must have a name, which will be used later
in the library to refer back to these definitions. In this example the USER library has
one figureGroup (NORMAL) for lines and paths of zero width (the actual width
will be implementation dependent) and another figureGroup (WIDE) that will be
used for buses with a wider width (for bold lines). The bordexrWidth is used for
drawing filled areas such as rectangles, circles, and polygons. The pathWidth is
used for open figures such as lines (paths) and open arcs.

Following the technology section the cell forms each represent a symbol.
The cell form has a name that will appear in the names of any files produced. The
cellType form GENERIC type is required by this schematic editor. The property
form is used to list properties of the cell.

(cell 7404 (cellType GENERIC)
(property SymbolType (string "GATE"))
(view PCB_Symbol (viewType SCHEMATIC)
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(interface ..

)

The symbolType property is used to distinguish between purely graphical sym-
bols that do not occur in the parts list (a ground connection, for example), gate or
component symbols, and block or cell symbols (for hierarchical schematics). The
SymbolType property is a string that may be COMPONENT, GATE, CELL, BLOCK, Or
GRAPHIC. Each cell may contain view forms and each view must have a name. Fol-
lowing the name of the view must be a viewType that is either GRAPHIC or SCHE-
MATIC. Following the viewType is the interface form, which contains the
symbol and terminal information. The interface form contains the actual symbol
data.

(interface

(port Pin 1
(designator "2")
(direction OUTPUT)
(dcMaxFanout 50))

(port Pin_ 2
(designator "1%)
(direction INPUT)
(dcFanoutLoad 8)
(property Cap

(string "22")))

(property Value
(string "45"))

(symbol ..

)

If the symbol has terminals, they are listed before the symbol form. The port
form defines each terminal. The required port name is used later in the symbol
form to refer back to the port. Since this example is from a PCB design, the termi-
nals have pin numbers that correspond to the IC package leads. The pin numbers are
defined in the designator form with the pin number as a string. The polarity of the
pin is indicated by the direction form, which may be INPUT, OUTPUT, or INOUT. If
the pin is an output pin, its Drive can be represented by dcMaxFanout and if it is
an input pin its Load can be represented by dcFanoutLoad. The port form can also
contain forms unused, deMaxFanin, dcFaninLoad, acLoad, and portDelay. All
other attributes for pins besides PinNumber, Polarity, Load, and Drive are con-
tained in the property form.

An attribute string follows the name of the property in the string form. In this
example port Pin_2 has a property Cap whose value is 22. This is the input capac-
itance of the inverter, but the interpretation and use of this value depends on the
tools. In ASIC design pins do not have pin numbers, so designator is not used.
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Instead, the pin names use the property form. So (property NetName (string
"1")) would replace the (designator "1") in this example on Pin 2. The
interface form may also contain attributes of the symbol.

Symbol attributes are similar to pin attributes. In this example the property
name Value has an attribute string "45". The names occurring in the property
form may be referenced later in the interface under the symbol form to refer
back to the property.

(symbol
(boundingBox (rectangle (pt 0 0) (pt 76 -32)))
(portImplementation Pin 1
(connectLocation (figure NORMAL (dot (pt 60 -16)))))
(keywordDisplay designator
(display NORMAL
(justify LOWERCENTER) (origin (pt 60 -14)))))
(portImplementation Pin_2
(connectLocation (figure NORMAL (dot (pt 0 -16)))))
(keywordDisplay designator
(display NORMAL
(justify LOWERCENTER) (origin (pt 0 -14)))))
(keywordDisplay cell
(display NORMAL (justify CENTERLEFT) (origin (pt 25 -5))))
(keywordDisplay instance
(display NORMAL
(justify CENTERLEFT) (origin (pt 36 -28))))
(keywordDisplay designator
(display (figureGroupOverride NORMAL (textHeight 7))
(justify CENTERLEFT) (origin (pt 13 -16))))
(propertyDisplay Value
(display (figureGroupOverride NORMAL (textHeight 9))
(justify CENTERRIGHT) (origin (pt 76 -24))))
(figure ... )

)

The interface contains a symbol that contains the pin locations and graphi-
cal information about the icon. The optional boundingBox form encloses all the
graphical data. The x- and y-locations of two opposite corners of the bounding rect-
angle use the pt form. The scale section of the numberDefinition from the tech-
nology section of the library determines the units of these coordinates. The pt
construct is used to specify coordinate locations in EDIF. The keyword pt must be
followed by the x-location and the y-location. For example: (pt 100 200) is at
x=100, y=200.

+ Each pin in the symbol is given a location using a portImplementation.

e The portImplementation refers back to the port defined in the
interface.

» The connectLocation defines the point to connect to the pin.
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e The connectLocation is specified as a figure, a dot with a single pt for
its location.

(symbol
( ...
(figure WIDE
(path (pointList (pt 12 0) (pt 12 -32)))
(path (pointList (pt 12 -32) (pt 44 -16)))
(path (pointList (pt 12 0) (pt 44 -16))))
{(figure NORMAL
(path (pointList (pt 48 -16) (pt 60 -16)))
(circle (pt 44 -16) (pt 48 -16))
(path (pointList (pt 0 -16) (pt 12 -16))))
(annotate
(stringDisplay "INV"
(display NORMAL
(justify CENTERLEFT) (origin (pt 12 -12)))))

The figure form has either a name, previously defined as a figureGroup in
the technology section, or a figureGroupOverride form. The figure has all
the attributes (pathWwidth, borderWidth, and so on) that were defined in the
figureGroup unless they are specifically overridden with a figureGroupOverride.

Other objects that may appear in a figure are: circle, openShape, path,
polygon, rectangle, and shape. Most schematic editors use a grid, and the pins
are only allowed to occur on grid. .

A portImplementation can contain a keywordDisplay or a propertyDisplay
for the location to display the pin number or pin name. For a GATE or COMPONENT,
keywordDisplay will display the designator (pin number), and designator is
the only keyword that can be displayed. For a BLOCK or CELL, propertyDisplay
will display the NetName. The display form displays text in the same way that the
figure displays graphics. The display must have either a name previously defined
as a figureGroup in the technology section or a figureGroupOverride form.
The display will have all the attributes (textHeight for example) defined in the
figureGroup unless they are overridden with a £igureGroupOverride.

A symbolic constant is an EDIF name with a predefined meaning. For exam-
ple, LOWERLEFT is used to specify text justification. The display form can contain
a justify to override the default LOWERLEFT. The display can also contain an
orientation that overrides the default RO (zero rotation). The choices for orienta-
tion are rotations (R0, R90, R180, R270), mirror about axis (MX, MY), and mirror
with rotation (MXR90, MYR90). The display can contain an origin to override the
default (pt 0 0).

The symbol itself can have either keywordDisplay or propertyDisplay forms
such as the ones in the portImplementation. The choices for keywordbDisplay
are: cell for attribute Type, instance for attribute InstName, and designator for
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attribute RefDes. In the preceding example an attribute window currently mapped to
attribute value is displayed at location (76, —24) using right-justified text, and a font
size is set with (textHeight 9).

The graphical data in the symbol are contained in figure forms. The path
form must contain pointList with two or more points. The figure may also con-
tain a rectangle or circle. Two points in a rectangle define the opposite cor-
ners. Two points in a circle represent opposite ends of the diameter. In this
example a figure from figureGroup WIDE has three lines representing the trian-
gle of the inverter symbol.

Arcs use the openShape form. The openShape must contain a curve that con-
tains an arc with three points. The three points in an arc correspond to the starting
point, any point on the arc, and the end point. For example, (openShape (curve
(arc (pt - 5 0) (pt 0 5 ) (pt 5 0)))) is an arc with a radius of 5, cen-
tered at the origin. Arcs and lines use the pathwidth from the figureGroup or
figureGroupOverride; circles and rectangles use borderwWidth.

The fixed text for a symbol uses annotate forms. The stringDisplay in
annotate contains the text as a string. The stringDisplay contains a display
with the textHeight, justification, and location. The symbol form can con-
tain multiple figure and annotate forms.

94.4 An EDIF Example

In this section we shall illustrate the use of EDIF in translating a cell library from
one set of tools to another—from a Compass Design Automation cell library to the
Cadence schematic-entry tools. The code in Table 9.12 shows the EDIF description
of the symbol for a two-input AND gate, an02d1, from the Compass cell library.

The Cadence schematic tools do contain a procedure, EDIFIN, that reads the
Compass EDIF files. This procedure works, but, as we shall see, results in some
problems when you use the icons in the Cadence schematic-entry tool. Instead we
shall make some changes to the original files before we use EDIFIN to transfer the
information to the Cadence database, cdba.

The original Compass EDIF file contains a figureGroup for each of the fol-
lowing four EDIF cell symbols:

connector FG icon_FG instance_ FG net FG bus_FG

The EDIFIN application translates each figureGroup to a Cadence layer—purpose
pair definition that must be defined in the Cadence technology file associated with
the library. If we use the original EDIF file with EDIFIN this results in the auto-
matic modification of the Cadence technology file to define layer names, purposes,
and the required properties to enable use of the figureGroup names. This results
in non-Cadence layer names in the Cadence database.
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TABLE 9.12 EDIF file for a Compass standard-cell schematic icon.

(edif pvsc370d
(edifversion 2 0 0)
(edifLevel 0)
(keywordMap

(keywordLevel 0))
(status
(written
(timeStamp 1993 2 9 22 38 36)
(program "COMPASS"
(version "v8"))
(author "mikeg")))
(library pvsc370d
(edifLevel 0)
(technology
(numberDefinition )
(figureGroup connector FG
(coloxr 100 100 100)
(textHeight 30)
(visible
(true )))
(figureGroup icon FG
(color 100 100 100)
(textHeight 30)
(visible
(true )))
(figureGroup instance FG
(color 100 100 100)
(textHeight 30)
(visible
(true )))
(figureGroup net FG
(color 100 100 100)
(textHeight 30)
(visible
(true )))
(figureGroup bus FG
(color 100 100 100)
(textHeight 30)
(visible
{true ))
(pathWidth 4})))
(cell an02d1l
(cellType GENERIC)
(view Icon _view
(viewType SCHEMATIC)
(interface

(port A2
(direction INPUT))
(port Al
(direction INPUT))
(port 2
(direction OUTPUT))
{(property label
(string ""))
{(symbol
(portImplementation
(name A2
(display connector FG
(origin
(pt -5 1))))
(connectLocation
(figure connector_ FG
(dot
(pt 0 0)))))
(portImplementation
(name Al
(display connector_ FG
(origin
(pt -5 21))))
(connectLocation
(figure connector_ FG
(dot
(pt 0 20)))))
(portImplementation
(name 2
(display connector FG
(origin
(pt 60 15))))
(connectLocation
(figure connector FG
(dot

(pt 60 10)))))
(figure icon FG

(path
(pointList
(pt 0 20)
(pt 10 20)))
(path
(pointList
(pt 0 0)
{pt 10 0)))
(path

(pointList
(pt 10 -5)
(pt 10 25)))
(path
(pointList
(pt 10 -5)
(pt 30 -5)))
(path
(pointList
(pt 10 25)
(pt 30 25)))
(path
(pointList
(pt 45 10)
(pt 60 10)))
(openShape
(curve
(arc
(pt 30 -5)
(pt 45 10)
(pt 30 25)))))
(boundingBox
(rectangle
(pt -15 -28)
(pt 134 27)))
{keywordDisplay instance
(display icon FG
(origin
(pt 20 29))))
(propertyDisplay label
(display icon FG
(origin
(pt 20 -1))))
(keywordDisplay cell
(display icon FG
(origin
(pt 20 -10))))
(commentGraphics
(annotate
(stringDisplay "1x"
{display icon FG
(origin

(pt 20 10)))))))1)))))
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First then, we need to modify the EDIF file to use the standard Cadence layer
names shown in Table 9.13. These layer names and their associated purposes and
properties are defined in the default Cadence technology file, default.tf. There is
one more layer name in the Compass files (bus_FG figureGroup), but since this is
not used in the library we can remove this definition from the EDIF input file.

94 EDIF
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TABLE 9.13 Compass and corresponding Cadence figureGroup names.

Compass name Cadence name Compass name Cadence name
connector_ FG pin net FG wire

icon_FG device bus_FG not used
instance_ FG instance

Internal scaling differences lead to giant characters in the Cadence tools if we
use the textHeight of 30 defined in the EDIF file. Reducing the textHeight to 5
results in a reasonable text height.

The EDIF numberDefinition construct, together with the scale construct,
defines measurement scaling in an EDIF file. In a Cadence schematic EDIF file the
numberDefinition and scale construct is determined by an entry in the associ-
ated library technology file that defines the edifUnit to userUnit ratio. This ratio
affects the printed size of an icon.

For example, the distance defined by the following path construct is 10 EDIF
units:

(path (pointlist (pt 0 0) (pt 0 10)))

What is the length of 10 EDIF units? The numberDefinition and scale con-
struct associates EDIF units with a physical dimension. The following construct

(numberbefinition (scale 100 (e 25400 -6) unit DISTANCE))

specifies that 100 EDIF units equal 25400%107%m or approximately 1 inch.
Cadence defines schematic measurements in inches by defining the usertUnit prop-
erty of the affected viewType or viewName as inch in the Cadence technology file.
The Compass EDIF files do not provide values for the numberDefinition and
scale construct, and the Cadence tools default to a value of 160 EDIF units to 1
user unit. We thus need to add a numberDefinition and scale construct to the
Compass EDIF file to control the printed size of icons.

The EDIF file defines blank label placeholders for each cell using the EDIF
property construct. Cadence EDIFIN does recognize and translate EDIF proper-
ties, but to attach a label property to a cellview object it must be defined (not
blank) and identified as a property using the EDIF owner construct in the EDIF file.
Since the intent of a placeholder is to hold an empty spot for later use and since
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Cadence Composer (the schematic-entry tool) supports label additions to instanti-
ated icons, we can remove the EDIF label property construct in each cell and the
associated propertyDisplay construct from the Compass file.

There is a problem that we need to resolve with naming. This is a problem that
sooner or later everyone must tackle in ASIC design—case sensitivity.

In EDIF, input and output pins are called ports and they are identified using
portImplementation constructs. In order that the ports of a particular cell
icon view are correctly associated with the ports in the related functional, layout,
and abstract views, they must all have the same name. The Cadence tools are case
sensitive in this respect. The Verilog and CIF files corresponding to each cell in the
Compass library use lowercase names for each port of a given cell, whereas the
EDIF file uses uppercase. The EDIFIN translator allows the case of cell, view, and
port names to be automatically changed on translation. Thus pin names such as 'al’
become 'al'and the original view name 'Icon_view' becomes 'icon view'

The boundingBox construct defines a bounding box around a symbol (icon).
Schematic-capture tools use this to implement various functions. The Cadence Com-
poser tool, for example, uses the bounding box to control the wiring between cells
and as a highlight box when selecting components of a schematic. Compass uses a
large boundingBox definition for the cells to allow space for long hierarchical
names. Figure 9.10(a) shows the original an02d1 cell bounding box that is larger
than the cell icon.

autoroute —,
______ [@instanceName] [@instanceName]
jale— 1x z :l
: [@cellname] ‘ I [@cellname]
® bounding box

(@)

(b) (©)

FIGURE 9.10 The bounding box problem. (a) The original bounding box for the an02d1
icon. (b) Problems in Cadence Composer due to overlapping bounding boxes. {(c) A “shrink-
wrapped” bounding box created using SKILL.

Icons with large bounding boxes create two problems in Composer. Highlight-
ing all or part of a complex design consisting of many closely spaced cells results in
a confusion of overlapped highlight boxes. Also, large boxes force strange wiring
patterns between cells that are placed too closely together when Composer's auto-
matic routing algorithm is used. Figure 9.10(b) shows an example of this problem.

There are two solutions to the bounding-box problem. We could modify each
boundingBox definition in the original EDIF file before translation to conform to
the outline of the icon. This involves identifying the outline of each icon in the
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EDIF file and is difficult. A simpler approach is to use the Cadence tool program-
ming language, SKILL. SKILL provides direct access to the Cadence database,
cdba, in order to modify and create objects. Using SKILL you can use a batch file to
call functions normally accessed interactively. The solution to the bounding box
problem is:

Use EDIFIN to create the views in the Cadence database, cdba.

2. Use the schCreateInstBox () command on each icon view object to elim-
inate the original bounding box and create a new, minimum-sized, bounding
box that is “shrink-wrapped” to each icon.

Figure 9.10(c) shows the results of this process. This modification fixes the prob-
lems with highlighting and wiring in Cadence Composer.

This completes the steps required to translate the schematic icons from one set
of tools to another. The process can be automated in three ways:

» Write UNIX sed and awk scripts to make the changes to the EDIF file
before using EDIFIN and SKILL.

+ Write custom C programs to make the changes to the EDIF file and then pro-
ceed as in the first option.

» Perform all the work using SKILL.

The last approach is the most elegant and most easily maintained but is the most dif-
ficult to implement (mostly because of the time required to learn SKILL). The whole
project took several weeks (including the time it took to learn how to use each of the
tools). This is typical of the problems you face when trying to convert data from one
system to another.

9.5  CFI Design Representation

The CAD Framework Initiative (CFI) is an independent nonprofit organization
working on the creation of standards for the electronic CAD industry. One of the
areas in which CFI is working is the definition of standards for design representa-
tion (DR). The CFI 1.0 standard [CFI, 1992] has tackled the problems of ambiguity
in the area of definitions and terms for schematics by defining an information
model (IM) for electrical connectivity information.

What this means is that a group of engineers got together and proposed a stan-
dard way of using the terms and definitions that we have discussed. There are good
things and bad things about standards, and one aspect of the CFI 1.0 DR standard
illustrates this point. A good thing about the CFI 1.0 DR standard is that it precisely
defines what we mean by terms and definitions in schematics, for example. A bad
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thing about the CFI DR standard is that in order to be precise it introduces yet more
terms that are difficult to understand. A very brief discussion of the CFI 1.0 DR
standard is included here, at the end of this chapter, for several reasons:

» It helps to solidify the concepts of the terms and definitions such as cell, net,
and instance that we have already discussed. However, there are additional
new concepts and terms to define in order to present the standard model, so
this 1s not a good way to introduce schematic terminology. '

« The ASIC design engineer is becoming more of a programmer and less of a
circuit designer. This trend shows no sign of stopping as ASICs grow larger
and systems more complex. A precise understanding of how tools operate and
interact is becoming increasingly important.

9.5.1 CFl Connectivity Model

The CFI connectivity model is defined using the EXPRESS language and its graph-
ical equivalent EXPRESS-G. EXPRESS is an International Standards Organization
(ISO) standard [EXPRESS, 1991]. EDIF 3 0 0 and higher also use EXPRESS as the
internal formal description of the language. EXPRESS is used to define objects and
their relationships. Figure 9.11 shows some simple examples of the EXPRESS-G
notation.

The following EXPRESS code (a schema) is equivalent to the EXPRESS-G
family model shown in Figure 9.11(c):

SCHEMA family model;
ENTITY person
ABSTRACT SUPERTYPE OF (ONEOF (man, woman, child));
name: STRING;
date of birth: STRING;
END ENTITY;

ENTITY man
SUBTYPE OF (person);
wife: SET[0:1] OF woman;
children: SET[0:?] OF child;
END_ENTITY;

ENTITY woman
SUBTYPE OF (person);
husband: SET[{0:1] OF man;
children: SET[0:?] OF child;
END_ENTITY;

ENTITY child
SUBTYPE OF (person);
father: man;
mother: woman;
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days in day shopping grocery
January —— number list e () item
L[1:31] S[0:7]
(a) (b)
person

man W'fe1C woman
OF E—
husband 1
father 1 child mother 1
children S[0:7] children S[0:7]

(©)

FIGURE 9.11 Examples of EXPRESS-G. (a) Each day in January has a number from 1 to
31. (b) A shopping list may contain a list of items. (c) An EXPRESS-G model for a family.

END ENTITY;
END_SCHEMA;

This EXPRESS description is a formal way of saying the following:

o “Men, women, and children are people.”
- “A man can have one woman as a wife, but does not have to.”
= “A wife can have one man as a husband, but does not have to.”
o “A man or a woman can have several children.”
» “A child has one father and one mother.”
Computers can deal more easily with the formal language version of these state-

ments. The formal language and graphical forms are more precise for very complex
models.
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Figure 9.12 shows the basic structure of the CFI 1.0.0 Base Connectivity
Model (BCM). The actual EXPRESS-G diagram for the BCM defined in the CFI
1.0.0 standard is only a little more complicated than Figure 9.12 (containing 21
boxes or types rather than just six). The extra types are used for bundles (a group of
nets) and different views of cells (other than the netlist view).

Library
contains
S[0:7]
presents S[0:7]
Cell _ O Port
contains
S[0:7]
has contains | Net 99[‘!!?9?.3..9
describer  |S[0:7] Qas ib
connects escriber
S[0:7]
Cell Inst presents S[0:7] O Port Inst

FIGURE 9.12 The original “five-box” model of electrical connectivity. There are actually six
boxes or types in this figure; the Library type was added later.

Figure 9.12 says the following (“presents” as used in Figure 9.12 is the Express
jargon for “have”):

-]

o

“A library contains cells.”

“Cells have ports, contain nets, and can contain other cells.”

“Cell instances are copies of a cell and have port instances.”

“A port instance is a copy of the port in the library cell.”

“You connect to a port using a net.”

“Nets connect port instances together.”

Once you understand Figure 9.12 you will see that it replaces the first half of this
chapter. Unfortunately you have to read the first half of this chapter to understand
Figure 9.12.
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9.6 Summary

The important concepts that we covered in this chapter are:
» Schematic entry using a cell library
+ Cells and cell instances, nets and ports
» Bus naming, vectored instances in datapath
» Hierarchy
+ Editing cells
« PLD languages: ABEL, PALASM, and CUPL
» Logic minimization
» The functions of EDIF
» CFI representation of design information

9.7 Problems

9.1 (EDIF description)

a. (5 min.) Write an EDIF description for an icon for an inverter (just the input
and output wires, a triangle, and a bubble). What problems do you face and
what assumptions did you make?

b. (30 min.+) Try and import your symbol into your schematic-entry tool. If you
fail (as you might) explain what the problem is and suggest a direction of
attack. Hint: If you can, try Problem 9.2 first.

9.2 (EDIF inverter, 15 min.) If you have access to a tool that generates EDIF
for the icons, write out the EDIF for an inverter icon. Explain the code.

9.3 (EDIF netlist, 20 min.) Starting with an empty directory and using a sche-
matic editor (such as Viewlogic) draw a schematic with a single inverter (from any
cell library).

a. List the files that are created in the directory.
b. Print each one (check first to make sure it is ASCII, not binary).
¢. Try and explain the contents.

9.4 (Minitutorial, 60 min.) Write a minitutorial (no more than five pages) that
explains how to set up your system (location and nature of any start-up files such as
.ini files for Viewlogic and so on); how to choose or change a library (for cell
icons); how to choose cells, instantiate, label, and connect them; how to select, copy
and delete symbols; and how to save a schematic. Use a single inverter connected to
an input and output pad as an example.
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9.5 (Icons, 30 min.) With an example show how to edit and create a symbol
icon. Make a triangular icon (the same size as an inverter in your library but without
a bubble) for a series connection of two inverters and call it myBuffer.

9.6 (Buses, 30 min.)

a. Create an example of a 16-bit bus: connect 8 inverters to bit zero (the MSB or
leftmost bit) and bits 10-16 (as if we were taking the sign bit, bit zero, and
the seven least-significant bits from a 16-bit signed number). Name the
inverter connected to the sign bit, SIGN. Name the other inverters BITO
through BIT7.

b. Write the netlist as an EDIF file, number the lines, and explain the contents
by referencing line numbers.

9.7 (VDD and VSS, 30 min.) Using a simple example of two inverters (one
with input connected to VDD, the other with input connected to VSS or GND)
explain how your schematic-entry system handles global power and ground nets and
their connection to cell pins. Can you connect VDD or VSS to an output pin in your
system? If your schematic software has a netlist screener, try it on this example.

9.8 (Hierarchy, 30 min.) Create a very simple hierarchical cell. The lowest
level, named bottom, contains a single inverter (named invB). The highest level,
called top, contains another inverter, invT, whose input is connected to the output
of cell bottom. Write out the netlist (in internal and EDIF format) and explain how
the tool labels a hierarchical cell.

9.9 (Vectored instances, 30 min.) Create a vectored instance of eight inverters,
inv0 through inv7. Write the netlist in internal and EDIF form and explain the con-
tents.

9.10 (Dangling wires, 30 min.) Create a cell, danglel, containing two invert-
ers, invl and inv2. Connect the input of inv1 to an external connector, inl, and
the output of inv2 to an external connector out2. Write the netlist and explain what
happens to the unlabeled and unused nets. If you have a netlist screener, run it on
this example.

9.11 (PLD languages, 60 min.) Conduct a Web search on ABEL, CUPL, or
PALASM (start by searching for “Logical Devices” not “ABEL”). Try and find
examples of these files and write an explanation of their function using the descrip-
tions of these languages in this chapter.

9.12 (EDIF 300, 10 min.) Download the EDIF 3 0 0 example schematic file
from http://www.edif.org/edif/workshop.edf and see if your EDIF reader
will accept it. What is it?

9.13 (EXPRESS-G, 15 min.) Draw an EXPRESS-G diagram for the govern-
ment of your country. For example, in the United States you would start with the
president and the White House and work down through the House and Senate, show-
ing the senators and congressional representatives. In the United Kingdom you
would draw the prime minister, the House of Commons, and House of Lords with
the various MPs.
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9.14 (ABEL PCI Target) (10 min.) Download the Xilinx Application Note,
Designing Flexible PCI Interfaces with Xilinx EPLDs, January 1995
(pci_epld.pdf at www.xilinx.com). The Appendix of this App. Note contains the
ABEL source code for a PCI Bus Interface Target. The code is long but straightfor-
ward; most of it describes the next-state transitions for the bus-controller state
machine. Extract the ABEL source code using Adobe Acrobat. Hint: This is not
easy; Acrobat does a poor job of selecting text; you will lose many semicolons at the
end of lines that you will have to add by hand. Use Replace... to search for end-of-
line, "~p", and replace by " ; “p" in Word. (60 min.+) Try to convert this code to
a system where you can compile it. You may need conversion utilities to do this. For
example Altera (www.altera.com) has utilities (EAU018.EXE and EAU019.EXE
located at ftp.altera.com/pub) to convert from ABEL 4.0 to AHDL.

9.15 (CUPL, 60 min.) Download and install the CUPL demonstration package
from http://www.protel.com/download.htm. Write a two-page help sheet on
what you did, where the software is installed, and how to run it.

9.16 (PALASM) (30 min.) Download and install PALASM4 v1.5 from the
AMD Web site at ftp://ftp.amd.com/pub/pld/software/palasm.

9.17 (CUPL)

a. (15 min.) Check the equations in the CUPL code for the 4-bit counter in
Section 9.2.

b. (10 min.) Add a count-enable signal to the code.

¢. (30 min.) If you have access to CUPL, compile your answer.
9.18 (EDIF)

a. (30 min.) Using the syntax definitions below and the example schematic icon
shown in Table 9.12 to help you, “stitch” back together the EDIF definition
for the 7404 inverter symbol used as an example in Section 9.4.3.

b. (60 min.+) Try to import the EDIF into your schematic entry system. Com-
ment on any problems and how you attempted to resolve them (including
failures).

The EDIF Reference Manual [EDIF, 1988] uses the following metasyntax rules:

[optional] <at most once> {may be repeated zero or more times}
{this|that} indicates any number of this or that in any order
syntactic names are italic

literal words are bold

SYMBOLIC constants are uppercase

IdentifierNameDef means the name is being defined
IdentifierNameRef means the name is being referenced

The syntax definitions of the most common EDIF constructs for schematics are
as follows:

(edif edifFileNameDef
edifVersion
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edifLevel

keywordMap

{<status>|external|library|design|comment |userdata} )
(library libraryNameDef

edifLevel

technology

{<status>|cell|comment |userdata} )
(technology numberDefinition

{figureGroup|fabricate|

<simulationInfos>|<physicalDesignRule>|comment|userdata} )
(cell cellNameDef

cellType

{<status>|view|<viewMap>|property|comment|userdata} )
(view viewNameDef

viewType

interface

{<status>|<contents>|comment |property|userdata} )
(interface

{port |portBundle|<symbol>|<protectionFrame> |
<arrayRelatedInfo>|parameter|joined|mustJoin|weakJoined |
permutable|timing|simulate|<designator>|property|comment |userdata} )
(contents

{instance|offPageConnector| figure|section|
net |netBundle|page|commentGraphics|portImplementation |
timing|simulate|when|follow|logicPort|<boundingBox> |
comment |userdata} )
(viewMap

{portMap|portBackAnnotate|instanceMap|instanceBackAnnotate |
netMap |netBackAnnotate|comment |userdata} )

9.8 Bibliography

The data books from AMD, Atmel, and other PLD manufacturers are excellent
sources of tutorials, examples, and information on PLD design. The EDIF tutorials
produced by the EIA [EDIF, 1988, 1989] are hard to find, but there are few other
texts or sources that explain EDIF. EDIF does have a World Wide Web site at
http://www.edif.org. The EDIF Technical Centre at the University of Manches-
ter (http://www.cs.man.ac.uk/cad, I shall refer to this as ~EDIF) serves as a
resource center for EDIF, including the formal information models of the EDIF lan-
guage in EXPRESS format and the BNF definitions of the language syntax. There is
a hypertext version of an EDIF 300 schematic file with hypertext links at
~EDIF/EDIFTechnicalCenter/software. CFl has a home page and links to
other sites at http://www.cfi.org.
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PALASM4 v1.5 is available as “freeware” from AMD at
ftp://ftp.amd.com/pub/pld/software/palasm. The Data I/O home page at
http://www.data-io.com 1s devoted mainly to Synario. The Viewlogic home
page is http://www.viewlogic.com. Capilano Computing has a Web page at
http://www.capilano.com with DesignWorks and MacABEL software. Protel
(http://www.protel.com/download.htm) has Windows-based schematic-entry
tools for FPGAs and a CUPL demonstration package. Logical Devices has a site at
http://www.logicaldevices.com. Atmel has several demonstration and code
examples for ABEL and CUPL at ftp://www.atmel.com/pub/atmel.
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The U.S. Department of Defense (DoD) supported the development of VHDL
(VHSIC hardware description language) as part of the VHSIC (very high-speed
IC) program in the early 1980s. The companies in the VHSIC program found they
needed something more than schematic entry to describe large ASICs, and proposed
the creation of a hardware description language. VHDL was then handed over to the
Institute of Electrical and Electronics Engineers (IEEE) in order to develop and
approve the IEEE Standard 1076-1987.1 As part of its standardization process the
DoD has specified the use of VHDL as the documentation, simulation, and verifica-
tion medium for ASICs (MIL-STD-454). Partly for this reason VHDL has gained

ISome of the material in this chapter is reprinted with permission from IEEE Std 1076- 379
1993, © 1993 IEEE. All rights reserved.
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rapid acceptance, initially for description and documentation, and then for design
entry, simulation, and synthesis as well.

The first revision of the 1076 standard was approved in 1993. References to the
VHDL Language Reference Manual (LRM) in this chapter—[VHDL 87LRM2.1,
93LRM2.2] for example—point to the 1987 and 1993 versions of the LRM [IEEE,
1076-1987 and 1076-1993]. The prefixes 87 and 93 are omitted if the references are
the same in both editions. Technically 1076-1987 (known as VHDL-87) is now
obsolete and replaced by 1076-1993 (known as VHDL-93). Except for code that is
marked 'VHDL-93 only' the examples in this chapter can be analyzed (the VHDL
word for “compiled”) and simulated using both VHDL-87 and VHDL-93 systems.

10.1 A Counter

The following VHDL model describes an electrical “black box” that contains a
50MHz clock generator and a counter. The counter increments on the negative edge
of the clock, counting from zero to seven, and then begins at zero again. The model
contains separate processes that execute at the same time as each other. Modeling
concurrent execution is the major difference between HDLs and computer program-
ming languages such as C.

entity Counter 1 is end; -- declare a "black box" called Counter 1
library STD; use STD.TEXTIO.all; -- we need this library to print
architecture Behave 1 of Counter 1 is -- describe the "black box"

-- declare a signal for the clock, type BIT, initial value '0°
signal Clock : BIT := '0°';
-- declare a signal for the count, type INTEGER, initial value 0

signal Count : INTEGER := 0;
begin
process begin -- process to generate the clock
wait for 10 ns; -- a delay of 10 ns is half the clock cycle
Clock <= not Clock;
if (now > 340 ns) then wait; end if; -- stop after 340 ns

end process;
-— process to do the counting, runs concurrently with other processes
process begin
-- wait here until the clock goes from 1 to 0O
wait until (Clock = '0');
-— now handle the counting
if (Count = 7) then Count <= 0;
else Count <= Count + 1;
end if;
end process;
process (Count) variable L: LINE; begin ~- process to print
write(L, now); write(L, STRING'(" Count="));
write(L, Count); writeline(output, L);
end process;
end;
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Throughout this book VHDL keywords (reserved words that are part of the lan-
guage) are shown in bold type in code examples (but not in the text). The code
examples use the bold keywords to improve readability. VHDL code is often lengthy
and the code in this book is always complete wherever possible. In order to save
space many of the code examples do not use the conventional spacing and format-
ting that is normally considered good practice. So “Do as I say and not as I do.”

The steps to simulate the model and the printed results for Counter 1 using the
Model Technology V-System/Plus common-kernel simulator are as follows:

> vlib work

> vcom Counter 1.vhd

Model Technology VCOM V-System VHDL/Verilog 4.5b
-- Loading package standard

~~ Compiling entity counter 1

-- Loading package textio

-- Compiling architecture behave 1 of counter 1
> vsim -c counter 1

# Loading /../std.standard

# Loading /../std.textio(body)

# Loading work.counter_ 1(behave_1)

VSIM 1> run 500

# 0 ns Count=0

# 20 ns Count=l

(...15 lines omitted...)

# 340 ns Count=l

VSIM 2> quit

>

10.2 A 4-bit Multiplier

This section presents a more complex VHDL example to motivate the study of the
syntax and semantics of VHDL in the rest of this chapter.

10.2.1 An 8-bit Adder

Table 10.1 shows a VHDL model for the full adder that we described in Section 2.6,
“Datapath Logic Cells.” Table 10.2 shows a VHDL model for an 8-bit ripple-carry
adder that uses eight instances of the full adder.

10.2.2 A Register Accumulator

Table 10.3 shows a VHDL model for a positive-edge—triggered D flip-flop with an
active-high asynchronous clear. Table 10.4 shows an 8-bit register that uses this D
flip-flop model (this model only provides the Q output from the register and leaves
the oN flip-flop outputs unconnected).
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TABLE 10.1 A full adder.

entity Full Adder is
generic (TS : TIME := 0.11 ns; TC : TIME

0.1 ns);

port (X, Y, Cin: in BIT; Cout, Sum: out BIT);

end Full Adder;

architecture Behave of Full Adder is
begin

Sum <= X xor Y xor Cin after TS;

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after TC;

end;

Cout
)

+

Y —

— Sum

T
Cin

Timing:

TS (Inputto Sum)=0.11ns
TC (Input to Cout) =0.1 ns

TABLE 10.2 An 8-bit ripple-carry adder.

entity Adder8 is
port (A, B: in BIT VECTOR(7 downto 0);
Cin: in BIT; Cout: out BIT;
Sum: out BIT VECTOR(7 downto 0));

end Adders8;

architecture Structure of Adder8 is

component Full Adder

port (X, Y, Cin: in BIT; Cout, Sum: out BIT

end component;

signal C: BIT VECTOR(7 downto 0);

begin

Stages: for i in 7 downto (0 generate
LowBit: if i = 0 generate

)i

FA:Full Adder port map (A(0),B(0),Cin,C(0),Sum(0));

end generate;
OtherBits: if 1 /= 0 generate
FA:Full Adder port map
(A(1),B(i),C(i~1),C(1),Sum(i));

end generate;

end generate;

Cout <= C(7);

end;

--12
--13
~--14
--15
--16
—-17
--18
-=19
~--20
-—21
--22
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TABLE 10.3 Positive-edge-triggered D flip-flop with asynchronous clear.

entity DFFClr is
generic(TRQ : TIME := 2 ns; TCQ : TIME := 2 ns);
port (CLR, CLK, D : in BIT; Q, OB : out BIT);
end;

architecture Behave of DFFClr is
signal Qi : BIT;
begin QOB <= not Qi; Q <= Qi;
process (CLR, CLK) begin
if CLR = '1' then Qi <= '0' after TRQ;

elsif CLK'EVENT and CLK = '1°
then Qi <= D after TCQ;
end if;

end process;
end;

-1

-=-12
--13
--14

D Q
CLK|  |aN
>
lcLR

Timing:
TRQ (CLR to Q/QN) =2ns
TCQ (CLK to Q/QN) = 2ns

TABLE 10.4 An 8-bit register.

entity Register8 is

port (D : in BIT VECTOR(7 downto 0);

Clk, Clr: in BIT ; Q : out BIT VECTOR(7 downto 0));
end;

architecture Structure of Register8 is
component DFFClr
port (Clr, Clk, D :
end component;

in BIT; Q, OB : out BIT);
begin
s STAGES: for i in 7 downto 0 generate
FF: DFFClr port map (Clr, Clk, D(i), Q(i), open);
end generate;
end;

-2

--3

4 D Q_,

8 8

——b5 ~

-6 Clk

-7 Cir

--8

~=9
__10 OB-bitregister. Uses
_-11 DFFCIr positive edge-
__1o triggered flip-flop model.
—-13

Table 10.5 shows a model for a datapath multiplexer that consists of eight 2:1
multiplexers with a common select input (this select signal would normally be a
control signal in a datapath). The multiplier will use the register and multiplexer

components to implement a register accumulator.

10.2.3 Zero Detector

Table 10.6 shows a model for a variable-width zero detector that accepts a bus of
any width and will produce a single-bit output of ' 1" if all input bits are zero.
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TABLE 10.5 An 8-bit multiplexer.

entity Mux8 is

generic (TPD : TIME := 1 ns);

port (A, B : in BIT VECTOR (7 downto 0);

Sel : in BIT := '0'; Y : out BIT VECTOR (7 downto 0));
end;

architecture Behave of Mux8 is
begin

Y <= A after TPD when Sel = 'l' else B after TPD;
end;

--2

A—lSel
— T
-4 thio 8
—-5 8

-=6  Eight 2:1 MUXs with
single select input.
Timing:

-=9  7TpD(inputto Y)=1ns

TABLE 10.6 A zero detecior.

entity AllZero is

generic (TPD : TIME := 1 ns);
port (X : BIT VECTOR; F : out BIT );
end;

architecture Behave of AllZero is
begin process (X) begin F <= 'l' after TPD;
for j in X'RANGE loop
if X(j3) = '1' then F <= '0' after TPD; end if;
end loop;
end process;
end;

n

Variable-width zero detector.
Timing:
TPD(Xto F) =1ns

10.2.4 A Shift Register

Table 10.7 shows a variable-width shift register that shifts (left or right under input
control, DIR) on the positive edge of the clock, CLK, gated by a shift enable, sH. The
parallel load, LD, is synchronous and aligns the input LSB to the LSB of the output,
filling unused MSBs with zero. Bits vacated during shifts are zero filled. The clear,

CLR, is asynchronous.

10.2.5 A State Machine

To multiply two binary numbers A and B, we can use the following algorithm:

1. Ifthe LSB of A is '1°, then add B into an accumulator.
2. Shift A one bit to the right and B one bit to the left.

3. Stop when all bits of a are zero.
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TABLE 10.7 A variable-width shift register.

entity ShiftN is --1
generic (TCQ : TIME := 0.3 ns; TLQ : TIME := 0.5 ns; -2
TSQ : TIME := 0.7 ns); --3 n m
port(CLK, CLR, LD, SH, DIR: in BIT; - ED * A Q
D: in BIT VECTOR; Q: out BIT VECTOR); --5 SH
begin assert (D'LENGTH <= Q'LENGTH) --6 DIR ——]
report "D wider than output Q" severity Failure; -7 CLK —>
end ShiftN; -8
CLR
architecture Behave of ShiftN is -9
begin Shift: process (CLR, CLK --10
S gi InB ? NATURéL r;n ;'LENGTH 1 downto O 11 CLK Clock
u e is e - wnto 0; e . .
P ] d CLR Clear, active high
subtype OutB is NATURAL range Q'LENGTH-1 downto 0; -=12 . .
) LD Load, active high
variable St: BIT VECTOR(OutB); --13 . .
beqi - 12 SH Shift, active high
egin —— . .
g, DIR Direction, 1 = left
if CLR = 'l' then --15 .
St th > '0'); O <= 8t aft TCQ 16 D Data in
:= (others => '0'); = after H -
. ( i ' Q Data out
elsif CLK'EVENT and CLK='1l' then --17
if LD = '1' then --18 . . . .
Variable-width shift register.
St := (others => '0'); -=19 .
Input width must be less than
St(InB) := D; -=20 . .
0 <= st after TLO; o1 output width. Output is left-
1sif sH 1 tn ! s shifted or right-shifted under
elsi = '] en -
, control of DIR. Unused MSBs
case DIR is --23

are zero-padded during load.

when '0' => St := '0' & St(St'LEFT downto 1); --24 .
Clear is asynchronous. Load
when '1' => St := St(St'LEFT-1 downto 0) & '0'; --25 )
is synchronous.
end case; ~~26
<= St after TSQ; --27 .
f > © 28 Timing:
en 1x; ——
4 if ' 59 TCQ (CLR to Q) = 0.3ns
end if; —
d ss 30 TLQ (LD to Q)=0.5ns
en rocess; ——
P TSQ (SHto Q) =0.7ns
end; --31

Table 10.8 shows the VHDL model for a Moore (outputs depend only on the
state) finite-state machine for the multiplier, together with its state diagram.

10.2.6 A Multiplier

Table 10.9 shows a schematic and the VHDL code that describes the interconnection
of all the components for the multiplier. Notice that the schematic comprises two
halves: an 8-bit-wide datapath section (consisting of the registers, adder, multiplexer,
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TABLE 10.8 A Moore state machine for the mutltiplier.

entity SM 1 is
generic (TPD : TIME := 1 ns);

port(Start, Clk, LSB, Stop, Reset: in BIT;
Init, Shift, Add, Done out BIT);
end;

architecture Moore of SM 1 is
type STATETYPE is (I, C, A, S, E);
signal State: STATETYPE:

begin

Init <= '1' after TPD when State = I
else '0' after TPD;

Add <= '1' after TPD when State = A
else '0' after TPD;

Shift <= '1' after TPD when State = S
else '0' after TPD;

Done <= '1' after TPD when State = E
else '0*' after TPD;

process (CLK, Reset) begin

if Reset = '1' then State <= E;
elsif CLK'EVENT and CLK = 'l' then
case State is '
when I => State <= C;
when C =>
if LSB = 'l' then State <= A;
elsif Stop = '0' then State <= §;
else State <= E;
end if;

when A => State <= §;

when S => State <= C;
when E =>
if Start = 'l' then State <= I; end if;
end case;
end if;

end process;
end;

—=27
-—28
--29
--30
--31
--32
--33
--34
-=35

LSB/Stop =

State

00

inputs

Start
Stop
L.SB

Ctk

outputs
Shift
Add
Init
P Done
IReset
Function

End of multiply cycle.
Initialize: clear output
register and load input
registers.

Check if LSB of register A
is zero.

Add shift register B to
accumulator.

Shift input register A right
and input register B left.

and zero detector) and a control section (the finite-state machine). The arrows in the
schematic denote the inputs and outputs of each component. As we shall see in
Section 10.7, VHDL has strict rules about the direction of connections.
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TABLE 10.9 A 4-bit by 4-bit multiplier.
Sttt Mults
o Shift_y, Shift
A___ D Add 3 Add
i Init > LD B Ini b Init g
'Stm‘t 4 SH ., [Done I Done§
. 0 UDIR ; ! :
(CLK 5 CLK :SM_1 +Reset
iShiftN___
SR
Rl
B__| D , ; iRegisters |
PInit | g LD : | i A _|Sel i '; : -
{oohiftt o SH | : . yiMUXout; 8 | Result
el A i f P Ar
- Lok [ | | |
IMux8 CM>
STATLLN TN ek A I E NV E R L Clr
SR2 e j ------
Reset REGcl = Reset or Init
P
entity Mult8 is -1
port (A, B: in BIT VECTOR(3 downto 0); Start, CLK, Reset: in BIT; -2
Result: out BIT VECTOR(7 downto 0); Done: out BIT); end Mult8; -=3
architecture Structure of Mult8 is use work.Mult Components.all; -4
signal SRA, SRB, ADDout, MUXout, REGout: BIT VECTOR(7 downto 0); —--5
signal Zero, Init, Shift, Add, Low: BIT := '0'; signal High: BIT := '1'; -6
signal F, OFL, REGclr: BIT; -
begin --8
REGclr <= Init or Reset; Result <= REGout; -9
SR1 : ShiftN port map(CLK=>CLK,CLR=>Reset,LD=>Init,SH=>Shift,DIR=>Low ,D=>A,0=>SRA); --10
SR2 : ShiftN port map(CLK=>CLK,CLR=>Reset,LD=>Init,SH=>Shift,DIR=>High,D=>B,Q=>SRB); —-11
21 : AllZero port map(X=>SRA,F=>Zero); -=12
Al : Adder8 port map(A=>SRB,B=>REGout,Cin=>Low,Cout=>0FL, Sum=>ADDout); -~=13
M1 : Mux8 port map(A=>ADDout,B=>REGout,Sel=>Add, ¥Y=>MUXout) ; --14
Rl : Register8 port map(D=>MUXout,0=>REGout,Clk=>CLK,Clr=>REGclr):; --15
F1 : sM 1 port map(Start,CLK,SRA(0),%ero,Reset,Init,Shift,Add,Done); --16
end; --17
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10.2.7 Packages and Testbench

To complete and test the multiplier design we need a few more items. First we need
the following “components list” for the items in Table 10.9:

package Mult Components is -1
component Mux8 port (A,B:BIT VECTOR(7 downto 0); -2
Sel:BIT;Y:out BIT VECTOR(7 downto 0));end component; -=3
component AllZero port (X : BIT VECTOR; -4
F:out BIT );end component; -5
component Adder8 port (A,B:BIT VECTOR(7 downto 0);Cin:BIT; -—6
Cout:out BIT;Sum:out BIT VECTOR(7 downto 0));end component; -=7
component Register8 port (D:BIT VECTOR(7 downto 0); -~8
Clk,Clr:BIT; Q:out BIT VECTOR(7 downto 0));end component; --9
component ShiftN port (CLK,CLR,LD,SH,DIR:BIT;D:BIT VECTOR; --10
Q:out BIT VECTOR);end component; ~--11
component SM 1 port (Start,CLK,LSB,Stop,Reset:BIT; --12
Init,Shift,Add,Done:out BIT);end component; --13
end; --14

Next we need some utility code to help test the multiplier. The following VHDL
generates a clock with programmable “high” time (2T) and “low” time (LT):

package Clock Utils is -=1
procedure Clock (signal C: out Bit; HT, LT:TIME); -2
end Clock Utils; -3
package body Clock Utils is --4
procedure Clock (signal C: out Bit; HT, LT:TIME) is -=5
begin )

loop C<='1' after LT, '0' after LT + HT; wait for LT + HT; -=17

end loop; -8
end; -9
end Clock Utils; --10

Finally, the following code defines two functions that we shall also use for test-
ing—the functions convert an array of bits to a number and vice versa:

package Utils is --1
function Convert (N,L: NATURAL) return BIT VECTOR; -=2
function Convert (B: BIT VECTOR) return NATURAL; -3
end Utils; --4
prackage body Utils is -=5
function Convert (N,L: NATURAL) return BIT VECTOR is --6
variable T:BIT VECTOR(L~1 downto 0); -=7
variable V:NATURAL:= N; --8
begin for i in T'RIGHT to T'LEFT loop ~-~9

T(i) := BIT'VAL(V mod 2)y; Vi=V/2; ~-10

end loop; return T; --11

end; --12
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function Convert (B: BIT VECTOR) return NATURAL is --13
variable T:BIT VECTOR(B'LENGTH~1 downto 0) := Bj; --14
variable V:NATURAL:= 0; --15
begin for i in T'RIGHT to T'LEFT loop --16

if T(i) = '1' then V:= V + (2**i); end if; --17

end loop; return V; ~-18

end; --19

end Utils; --20

The following code tests the multiplier model. This is a testbench (this simple
example is not a comprehensive test). First we reset the logic (line 17) and then
apply a series of values to the inputs, A and B. The clock generator (line 14) supplies
a clock with a 20 ns period. The inputs are changed 1ns after a positive clock edge,
and remain stable for 20ns through the next positive clock edge.

entity Test Mult8 1 is end; -- runs forever, use break!! --1
architecture Structure of Test Mult8 1 is -2
use Work.Utils.all; use Work.Clock Utils.all; --3
component Mult8 port --4
(A, B : BIT VECTOR(3 downto 0); Start, CLK, Reset : BIT; -~5
Result : out BIT VECTOR(7 downto 0); Done : out BIT); --6

end component; -
signal A, B : BIT VECTOR(3 downto 0); --8
signal Start, Done : BIT := '0'; --9
signal CLK, Reset : BIT; --10
signal Result : BIT VECTOR(7 downto 0); ~-11
signal DA, DB, DR : INTEGER range 0 to 255; -=12
begin --13
C: Clock(CLK, 10 ns, 10 ns); --14
UUT: Mult8 port map (A, B, Start, CLK, Reset, Result, Done); --15
DR <= Convert(Result); --16
Reset <= *'1', '0' after 1 ns; -—17
process begin --18
for-i in 1 to 3 loop for j in 4 to 7 loop ~-19
DA <= i; DB <= j; -=20.
A<=Convert(i,A'Length);B<=Convert(j,B'Length); --21

wait until CLK'EVENT and CLK='1l'; wait for 1 ns; --22
Start <= '1', '0' after 20 ns; wait until Done = '1'; --23

wait until CLK'EVENT and CLK='1l"'; --24

end loop; end loop; --25
for i in 0 to 1 loop for j in 0 to 15 loop -—26
DA <= i; DB <= 3J; --27
A<=Convert(i,A'Length);B<=Convert(j,B'Length); ~~28
wait until CLK'EVENT and CLK='1l'; wait for 1 ns; --29
Start <= '1', '0' after 20 ns; wait until Done = '1'; --30

wait until CLK'EVENT and CLK='1l"'; --31

end loop; end loop; --32
wait; -=33
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end process; --34
end; ' --35

Here is the signal trace output from the Compass Scout simulator:

Time(fs) + Cycle da db dr
0+ 1: * 1 =* *

o 92000000+ 3: 1 4 * 4
o 150000000+ 1: * 1 =* 5 4
N 193000000+ 3: 1 5 * 0

. 252000000+ 3: 1 5 =% 5

o 310000000+ 1: * 1 * 6 5
h 353000000+ 3: 1 6 * 0

o 412000000+ 3: 1 6 * 6

Positive clock edges occur at 10, 30, 50, 70, 90, ... ns. You can see that the out-
put (dr) changes from '0' to '4' at 92 ns, after five clock edges (with a 2 ns delay
due to the output register, R1). '

10.3 Syntax and Semantics of VHDL

We might define the syntax of a very small subset of the English language in
Backus—Naur form (BNF) using constructs as follows:

sentence ::= subject verb object.

subject  ::= The|A noun

object ::= [article] noun {, and article noun}
article  ::= thela

noun ::= man|shark|house|food

verb ::= eats|paints

:= means "can be replaced by"

| means "or"

[1] means "contents optional®

{} means "contents can be left out, used once, or repeated"
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The following two English sentences are correct according to these syntax rules:

A shark eats food.
The house paints the shark, and the house, and a man.

We need semantic rules to tell us that the second sentence does not make much
sense. Most of the VHDL LRM is dedicated to the definition of the language seman-
tics. Appendix A of the LRM (which is not officially part of the standard) explains
the complete VHDL syntax using BNF.

The rules that determine the characters you can use (the “alphabet” of VHDL),
where you can put spaces, and so on are lexical rules [VHDL LRM13]. Any VHDL
description may be written using a subset of the VHDL character set:

basic_character ::= upper case_letter|digit|special_character
| space_character|format effector

The two space characters are: space (SP) and the nonbreaking space (NBSP). The
five format effectors are: horizontal tabulation (HT), vertical tabulation (VT), carriage
return (CR), line feed (LF), and form feed (¥F). The characters that are legal in
VHDL constructs are defined as the following subsets of the complete character set:

graphic_character ::= [10.1]
upper_case_ letter|digit|special character|space character
| lower case letter|other special_character

special_character ::= " # & ' () * + , -~ ./ ¢+ ; <=>[71_ | [10.2]

The 11 other special characters are: ! ¢ 3 @ 2 \ ~ ~ { } ~, and (in VHDL-93
only) 34 other characters from the ISO Latin-1 set [ISO, 1987]. If you edit code
using a word processor, you either need to turn smart quotes off or override this fea-
ture (use Tools... Preferences... General in MS Word; and use CTRL-' and CTRL-"
in Frame).

When you learn a language it is difficult to understand how to use a noun with-
out using it in a sentence. Strictly this means that we ought to define a sentence
before we define a noun and so on. In this chapter I shall often break the “Define it
before you use it” rule and use code examples and BNF definitions that contain
VHDL constructs that we have not yet defined. This is often frustrating. You can use
the book index and the table of important VHDL constructs at the end of this chapter
(Table 10.28) to help find definitions if you need them.

We shall occasionally refer to the VHDL BNF syntax definitions in this chapter
using references—BNF [10.1], for example. Only the most important BNF con-
structs for VHDL are included here in this chapter, but a complete description of the
VHDL language syntax is contained in Appendix A.
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10.4 Identifiers and Literals

Names (the “nouns” of VHDL) are known as identifiers [VHDL LLRM13.3]. The
correct “spelling” of an identifier is defined in BNF as follows:

identifier ::= [10.3]
letter {[underline] letter or digit}
I\graphic character{graphic character}\

In this book an underline in VHDL BNF marks items that are new or that have
changed in VHDL-93 from VHDL-87. The following are examples of identifiers:

S -— A simple name.
S -- A simple name, the same as s. VHDL is not case sensitive.
a name -- Imbedded underscores are OK.

-~ Successive underscores are illegal in names: Ill egal
-- Names can't start with underscore: Illegal
-- Names can't end with underscore: Illegal

Too Good -- Names must start with a letter.

-- Names can't start with a number: 2 Bad

\74L500\ -- Extended identifier to break rules (VHDL-93 only).
VHDL \vhdl\ \VHDL\ -- Three different names (VHDL-93 only).

s _array(0) -- A static indexed name (known at analysis time).
s _array(i) -- A non-static indexed name, if i is a variable.

You may not use a reserved word as a declared identifier, and it is wise not to
use units, special characters, and function names: ns, ms, FF, read, write, and so
on. You may attach qualifiers to names as follows [VHDL LRM®6]:

CMOS.all -- A selected or expanded name, all units in library CMOS.
Data'LEFT(1l) -- An attribute name, LEFT is the attribute designator.
Data(24 downto 1) —-- A slice name, part of an array: Data(31 downto 0)
Data(l) -- An indexed name, one element of an array.

Comments follow two hyphens '--' and instruct the analyzer to ignore the rest
of the line. There are no multiline comments in VHDL. Tabs improve readability,
but it is best not to rely on a tab as a space in case the tabs are lost or deleted in con-
version. You should thus write code that is still legal if all tabs are deleted.

There are various forms of literals (fixed-value items) in VHDL [VHDL
LRM13.4-13.7]. The following code shows some examples:

entity Literals_ 1 is end;
architecture Behave of Literals 1 is
begin process
variable Il : integer; variable Rl : real:
variable Cl : CHARACTER; variable S$16 : STRING(1 to 16);
variable BV4: BIT VECTOR(0 to 3);
variable BV12 : BIT VECTOR(0 to 11);
variable BV16 : BIT VECTOR(0 to 15);
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begin
—- Abstract literals are decimal or based literals.
-— Decimal literals are integer or real literals.
-~ Integer literal examples (each of these is the same):
I1 := 120000; Il := 12e4; Il := 120 000;
-- Based literal examples (each of these is the same):
I1 := 241111 _1111#; I1 := 16#FF#;
-~ Base must be an integer from 2 to 16:
I1 := 16:FF:; -- you may use a : if you don't have #
-- Real literal examples (each of these is the same):
R1 := 120000.0; Rl := 1.2e5; Rl := 12.0E4;
-- Character literal must be one of the 191 graphic characters.
-- 65 of the 256 ISO Latin-1 set are non-printing control characters

Cl := 'A'; C1 := 'a'; -- different from each other
-—- String literal examples:
816 := " string" & " literal”; -- concatenate long strings
816 := """Hello,"" I said!"; -- doubled quotes
S16 := % string literal$%; —-—- can use % instead of "
316 := %Sale: 50%% offl!l!%; -— doubled %
-~ Bit-string literal examples:
Bv4 := B"1100"; -- binary bit-string literal
BV12 := 0"7777"; -~ octal bit~string literal
BV16 := X"FFFF"; -- hex bit-string literal
wait; end process; -~ the wait prevents an endless loop

end;

10.5 Entities and Architectures

The highest-level VHDL construct is the design file [VHDL LRMI11.1]. A design
file contains design units that contain one or more library units. Library units in
turn contain: entity, configuration, and package declarations (primary units); and
architecture and package bodies (secondary units).

design_file ::= [10.4]
{library clause|use_clause} library unit
{{library clause|use_clause} library unit}

library unit ::= primary_unit|secondary unit

primary unit ::= [10.5]
entity declaration|configuration_declaration|package declaration

secondary_unit ::= architecture_body|package_ body [10.6]

Using the written language analogy: a VHDL library unit is a “book,” a VHDL
design file is a “bookshelf,” and a VHDL library is a collection of bookshelves. A
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VHDL primary unit is a little like the chapter title and contents that appear on the
first page of each chapter in this book and a VHDL secondary unit is like the chapter
contents (though this is stretching our analogy a little far).

1 shall describe the very important concepts of entities and architectures in this
section and then cover libraries, packages, and package bodies. You define an entity,
a black box, using an entity declaration [VHDL LRM1.1]. This is the BNF defini-
tion:

entity declaration ::= [10.7]
entity identifier is

[generic (formal_ generic interface list);]

[port (formal port_interface list);]

{entity_declarative item}

[begin

{[label:] [postponed] assertion ;

l[label:] [postponed] passive procedure call ;

}passive_processﬂstatement}]
end [entity] [entity identifier}] ;

The following is an example of an entity declaration for a black box with two
inputs and an output:

entity Half Adder is
port (X, Y : in BIT := '0'; Sum, Cout : out BIT); -- formals

end;

Matching the parts of this code with the constructs in BNF [10.7] you can see
that the identifier is Half Adder and that (¥, ¥: in BIT := '0'; Sum,
Cout: out BIT) corresponds to (port interface list) in the BNF The ports
X, Y, Sum, and Cout are formal ports or formals. This particular entity Half Adder
does not use any of the other optional constructs that are legal in an entity declara-
tion.

The architecture body [VHDL LRM1.2] describes what an entity does, or the
contents of the black box (it is architecture body and not architecture declaration).

architecture body ::= [10.8]
architecture identifier of entity name is
{block declarative_ item}
begin
{concurrent_statement}
end [architecture] [architecture identifier] ;

For example, the following architecture body (I shall just call it an architecture
from now on) describes the contents of the entity Half Adder:

architecture Behave of Half Adder is
begin Sum <= X xor Y; Cout <= X and Y;
end Behave;
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We use the same signal names (the formals: Sum, X, Y, and Cout) in the architec-
ture as we use in the entity (we say the signals of the “parent” entity are visible
inside the architecture “child”). An architecture can refer to other entity—architecture
pairs—so we can nest black boxes. We shall often refer to an entity—architecture pair
as entity(architecture). For example, the architecture Behave of the entity
Half Adder is Half Adder(Behave).

Why would we want to describe the outside of a black box (an entity) separately
from the description of its contents (its architecture)? Separating the two makes it
easier to move between different architectures for an entity (there must be at least
one). For example, one architecture may model an entity at a behavioral level, while
another architecture may be a structural model.

A structural model that uses an entity in an architecture must declare that entity
and its interface using a component declaration as follows [VHDL LRM4.5]:

component declaration ::= [10.9]
component identifier [is]
[generic (local_generic_interface list);]
[port (local port interface list);]
end component [component identifier];

For example, the following architecture, Netlist, is a structural version of the
behavioral architecture, Behave:

architecture Netlist of Half Adder is
component MyXor port (A Xor,B Xor : in BIT; Z Xor : out BIT);

end component; -~ component with locals
component MyAnd port (A And,B And : in BIT; Z And : out BIT);
end component; -- component with locals
begin
Xorl: MyXor port map (X, ¥, Sum); -~ instance with actuals
Andl : MyAnd port map (X, Y, Cout); -- instance with actuals
end;

Notice that:
» We declare the components: MyAnd, MyXor and their local ports (or locals):
A Xor, B Xor, Z_ZXor, A And, B _And, Z_And.
* We instantiate the components with instance names: Andl and Xorl.
¢ We connect instances using actual ports (or actuals): X, Y, Sum, Cout.

Next we define the entities and architectures that we shall use for the compo-
nents MyAnd and MyXor. You can think of an entity—architecture pair (and its formal
ports) as a data-book specification for a logic cell; the component (and 1ts local
ports) corresponds to a software model for the logic cell; and an instance (and its
actual ports) is the logic cell.
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We do not need to write VHDL code for MyAnd and MyXor; the code is provided
as a technology library (also called an ASIC vendor library because it is often
sold or distributed by the ASIC company that will manufacture the chip—the ASIC
vendor—and not the software company):

-- These definitions are part of a technology library:
entity AndGate is

port (And _in 1, And_in 2 : in BIT; And out : out BIT); -~ formals
end;

architecture Simple of AndGate is
begin And out <= And_in 1 and And_in_2;
end;

entity XorGate is
port (Xor in 1, Xor_in 2 : in BIT; Xor_out : out BIT); -- formals
end;

architecture Simple of XorGate is
begin Xor out <= Xor_in 1 xor Xor_ in 2;
end;

If we keep the description of a circuit’s interface (the entity) separate from its
contents (the architecture), we need a way to link or bind them together. A
configuration declaration [VHDL LRM1.3] binds entities and architectures.

configuration declaration ::= 10.10]
configuration identifier of entity name is
{use_clause|attribute specification|group declaration}
block configuration B
end [configuration] {[configuration_identifier] ;

An entity—architecture pair is a design entity. The following configuration dec-
laration defines which design entities we wish to use and associates the formal ports
(from the entity declaration) with the local ports (from the component declaration):

configuration Simplest of Half_ Adder is
use work.all:;
for Netlist
for Andl : MyAnd use entity AndGate(Simple)

port map -- association: formals => locals
(And_in 1 => A And, And in 2 => B And, And_out => Z_And);
end for;

for Xorl : MyXor use entity XorGate(Simple)
port map
(Xor_in_1 => A Xor, Xor_in 2 => B Xor, Xor_out => 7 Xor);
end for;
end for;
end;
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Figure 10.1 diagrams the use of entities, architectures, components, and config-
urations. This figure seems very complicated, but there are two reasons that VHDL
works this way:

» Separating the entity, architecture, component, and configuration makes it
easier to reuse code and change libraries. All we have to do is change names
in the port maps and configuration declaration.

» We only have to alter and reanalyze the configuration declaration to change
which architectures we use in a model—giving us a fast debug cycle.

entity Half_Adder architecture Netlist of Half_Adder

X[A And1 Al Cout

B

ports
actual

formal
local

—J

for Xort:MyXor use entity XorGate(Simple) port map

(Xor_in_1 => A_Xor, Xor_in_2 => B_Xor, Xor_out => Z Xor);

configuration Simplest
of Half_Adder

. , I |
Xor_in_1 «. Xor_out Xor_out <= Xor_in_1 xor Xor_in_2; ]
Xor_in_2 . ?

h J architecture Simple
XorGate of XorGate

FIGURE 10.1 Entities, architectures, components, ports, port maps, and configurations.
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You can think of design units, the analyzed entity—architecture pairs, as com-
piled object-code modules. The configuration then determines which object-code
modules are linked together to form executable binary code.

You may also think of an entity as a block diagram, an architecture for an entity
a more detailed circuit schematic for the block diagram, and a configuration as a
parts list of the circuit components with their part numbers and manufacturers (also
known as a BOM for bill of materials, rather like a shopping list). Most manufac-
turers (including the U.S. DoD) use schematics and BOMs as control documents for
electronic systems. This is part of the rationale behind the structure of VHDL.

10.6 Packages and Libraries

After the VHDL tool has analyzed entities, architectures, and configurations, it
stores the resulting design units in a library. Much of the power of VHDL comes
from the use of predefined libraries and packages. A VHDL design library [VHDL
LRM11.2] is either the current working library (things we are currently analyzing)
or a predefined resource library (something we did yesterday, or we bought, or that
came with the tool). The working library is named work and is the place where the
code currently being analyzed is stored. Architectures must be in the same library
(but they do not have to be in the same physical file on disk) as their parent entities.

You can use a VHDL package [VHDL LRM?2.5-2.6] to define subprograms
(procedures and functions), declare special types, modify the behavior of operators,
or to hide complex code. Here is the BNF for a package declaration:

package declaration ::= [10.11]
package identifier is
{subprogram declaration { type declaration | subtype declaration
| constant_declaration | signal declaration | file declaration
|

| alias_declaration
| attribute declaration | attribute specification

component declaration

| disconnection specification | use clause
| shared variable declaration | group declaration

| group template declaration}

end [pagkage] [pgckage_identifier] H

You need a package beody if you declare any subprograms in the package decla-
ration (a package declaration and its body do not have to be in the same file):

package body ::=
package body package identifier is

{subprogram_declaration l subprogram body
| type declaration | subtype declaration
| constant_declaration | file declaration | alias_declaration

| use clause
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| shared variable declaration | group declaration
| group Eemplate declaration}
end [package bod§l [package identifier] ;

To make a package visible [VHDL LRM10.3] (or accessible, so you can see and
use the package and its contents), you must include a library clause before a design
unit and a use clause either before a design unit or inside a unit, like this:

library MyLib; -- library clause
use MyLib.MyPackage.all; -- use clause
-- design unit (entity + architecture, etc.) follows:

The sTD and WORK libraries and the STANDARD package are always visible.
Things that are visible to an entity are visible to its architecture bodies.

10.6.1 Standard Package

The VHDL sTanDarD package [VHDL LRM14.2] is defined in the LRM and
implicitly declares the following implementation dependent types: TIME, INTEGER,
REAL. We shall use uppercase for types defined in an IEEE standard package. Here
1s part of the STANDARD package showing the explicit type and subtype declarations:

package Part STANDARD is

type BOOLEAN is (FALSE, TRUE); type BIT is ('0', '1');
type SEVERITY LEVEL is (NOTE, WARNING, ERROR, FAILURE);
subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;
subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

type BIT VECTOR is array (NATURAL range <>) of BIT;

type STRING is array (POSITIVE range <>) of CHARACTER;

-— the following declarations are VHDL-93 only:

attribute FOREIGN: STRING; -- for links to other languages
subtype DELAY LENGTH is TIME range 0 fs to TIME'HIGH;

type FILE OPEN_KIND is (READ_MODE,WRITE_MODE,APPEND MODE);
type FILE OPEN STATUS is

(OPEN_OK, STATUS_ERROR,NAME ERROR,MODE_ERROR) ;

end Part STANDARD;

Notice that a STRING array must have a positive index. The type TIME is
declared in the STANDARD package as follows:

type TIME is range implementation defined -- and varies with software
units fs; ps = 1000 fs; ns = 1000 ps; us = 1000 ns; ms = 1000 us;
sec = 1000 ms; min = 60 sec; hr = 60 min; end units;

The STANDARD package also declares the function now that returns the current simu-
lation time (with type TIME in VHDL-87 and subtype DELAY LENGTH in VHDL-93).
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In VHDL-93 the CHARACTER type declaration extends the VHDIL-87 declaration
(the 128 ASCII characters): '

type Part CHARACTER is ( -- 128 ASCII characters in VHDL-87

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL, -- 33 control characters
BS, HT, 1F, VT, FF, CR, S0, SI, -- including:

DLE, DC1l, DC2, DC3, DC4, NAK, SYN, ETB, -- format effectors:

CAN, EM, SUB, ESC, FSP, GSP, RSP, USP, -- horizontal tab = HT

o, rpr, v oage g g gt o line feed = LF

T, Ty, R, o, 0t et v, v/, -— vertical tab = VT

‘0, '1v, '2', '3', '4', '5', '6', '7', -- form feed = FF

T8, Y9, rpr, vy, <P, =, o> 12t oo carriage return = CR
g, *a*, 's', 'c', 'D', 'E', 'F', 'G', -- and others:

‘', '1', 'J', 'K', 'L', 'M', 'N', 'O', -- FSP, GSP, RSP, USP use P
‘p', 'Q', 'R', 'S', 'T', 'U', 'v', 'W', -- suffix to avoid conflict
X', 'y, oz, [y, '\', '1', ', ‘', -- with TIME units

rtt+, 'a', 'b', 'c', 'a’', 'e', 'f*, 'g',

‘h*, *i', '3+, 'k', '1', 'm', 'n', ‘o',

‘p', 'q', 'xr’', ‘'s', 't', ‘'u', 'v', 'w',

'x', 'y', 'z'y "¢, '|', '}, '~', DEL -- delete = DEL

-— VHDL-93 includes 96 more Latin-1 characters, like ¥ (Yen) and
-— 32 more control characters, better not to use any of them.

)i

The VHDL-87 character set is the 7-bit coded ISO 646-1983 standard known as
the ASCII character set. Each of the printable ASCII graphic character codes
(there are 33 nonprintable control codes, like DEL for delete) is represented by a
graphic symbol (the shapes of letters on the keyboard, on the display, and that actu-
ally print). VHDL-93 uses the 8-bit coded character set ISO 8859-1:1987(E),
known as ISO Latin-1. The first 128 characters of the 256 characters in ISO Latin-1
correspond to the 128-character ASCII code. The graphic symbols for the printable
ASCII characters are well defined, but not part of the standard (for example, the
shape of the graphic symbol that represents 'lowercase a' is recognizable on every
keyboard, display, and font). However, the graphic symbols that represent the print-
able characters from other 128-character codes of the ISO 8-bit character set are dif-
ferent in various fonts, languages, and computer systems. For example, a pound
sterling sign in a U.K. character set looks like this—'£', but in some fonts the same
character code prints as #' (known as number sign, hash, or pound). If you use such
characters and want to share your models with people in different countries, this can
cause problems (you can see all 256 characters in a character set by using
Insert... Symbol in MS Word).

10.6.2 Std_logic_1164 Package

VHDL does not have a built-in logic-value system. The STANDARD package pre-
defines the type BIT with two logic values, '0' and '1', but we normally need at
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least two more values: 'x' (unknown) and 'z’ (high-impedance). Unknown is a
metalogical value because it does not exist in real hardware but is needed for simu-
lation purposes. We could define our own logic-value system with four logic values:

type MVL4 is ('Xx', '0', '1', 'Z'); -- a four-value logic system

The proliferation of VHDL logic-value systems prompted the creation of the
Std_logic_1164 package (defined in IEEE Std 1164-1993) that includes functions to
perform logical, shift, resolution, and conversion functions for types defined in the
Std_logic_1164 system. To use this package in a design unit, you must include
the following library clause (before each design unit) and a use clause (either before
or inside the unit):

library IEEE; use IEEE.std logic_1164.all;

This std_Logic_1164 package contains definitions for a nine-value logic sys-
tem. The following code and comments show the definitions and use of the most
important parts of the package2:

package Part STD LOGIC 1164 is -1
type STD_ULOGIC is -2
( 'U', -=- Uninitialized --3

'X', -- Forcing Unknown -~4

'0', —-- Forcing 0 --5

'1l', -- Forcing 1 ~=6

'Z', -- High Impedance --7

'W', -- Weak Unknown -8

‘L', ~- Weak 0 --9

'H', -- Weak 1 10

'-' ~~ Don't Care); --11
type STD_ULOGIC_VECTOR is array (NATURAL range <>) of STD ULOGIC; ~-12
function resolved (s : STD ULOGIC VECTOR) return STD ULOGIC; --13
subtype STD LOGIC is resolved STD ULOGIC; --14
type STD LOGIC_VECTOR is array (NATURAL range <>) of STD LOGIC; --15
subtypeYX01 is resolved STD_ULOGIC range 'X' to 'l‘; -~16
subtype X01Z is resolved STD ULOGIC range 'X' to 'Z'; ~--17
subtype UX01 is resolved STD_ULOGIC range 'U' to 'l'; --18
subtype UX01Z is resolved STD ULOGIC range 'U' to 'Z'; --19
-— Vectorized overloaded logical operators: ~--20
function "and"® (L : STD_ULOGIC; R : STD_ULOGIC) return UX01l; --21
-- Logical operators not, and, nand, or, nor, xor, xnor (VHDL-93), --22
-- overloaded for STD_ULOGIC STD_ULOGIC_VECTOR STD LOGIC VECTOR. ~-23
-— Strength strippers and type conversion functions: ~—24
~- function To T (X : F) return T; --25
-- defined for types, T and F, where -=26
~— F=BIT BIT VECTOR STD ULOGIC STD_ULOGIC_VECTOR STD_ LOGIC VECTOR --27
-- T=types F plus types X01 X01Z UX01 (but not type UX013%Z) --28

2The code in this section is adapted with permission from IEEE Std 1164-1993, © Copy-
right IEEE. All rizhts reserved.
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-- Exclude 's in T in name: TO STDULOGIC not TO_STD_ULOGIC --29
-- To X0l : L->0, H->1 others->X ' --30
-- To X0lZ: Z->Z, others as To_XO01 --31
-- To_UX0l: U->U, others as To _X01 --32
-— Edge detection functions: --33
function rising edge (signal s: STD ULOGIC) return BOOLEAN; --34
function falling edge (signal s: STD ULOGIC) return BOOLEAN; --35
~- Unknown detection (returns true if s = U, X, %2, W): --36
~-— function Is X (s : T) return BOOLEAN; --37
-— defined for T = STD_ULOGIC STD_ULOGIC_ VECTOR STD_LOGIC_VECTOR. --38
end Part STD LOGIC_1164; --39
Notice:

o

The type STD_ULOGIC has nine logic values. For this reason IEEE Std 1164
is sometimes referred to as MVL9—multivalued logic nine. There are sim-
pler, but nonstandard, MVL4 and MVL7 packages, as well as packages with
more than nine logic values, available. Values 'u', 'X', and 'w' are all
metalogical values.

There are weak and forcing logic-value strengths. If more than one logic
gate drives a node (there is more than one driver) as in wired-OR logic or a
three-state bus, for example, the simulator checks the driver strengths to
resolve the actual logic value of the node using the resolution function,
resolved, defined in the package.

The subtype STD LOGIC is the resolved version of the unresolved type
STD_ULOGIC. Since subtypes are compatible with types (you can assign one
to the other) you can use either STD_LOGIC or STD_ULOGIC for a signal with
a single driver, but it is generally safer to use STD_LOGIC.

The type STD_LOGIC_VECTOR is the resolved version of unresolved type
STD_ULOGIC_VECTOR. Since these are two different types and are not com-
patible, you should use STD _LOGIC_ VECTOR. That way you will not run into a
problem when you try to connect a STD_LOGIC_VECTOR to a
STD ULOGIC VECTOR.

The don’t care logic value '~ (hyphen), is principally for use by synthesis
tools. The value '-' is almost always treated the same as 'X".

The 1164 standard defines (or overloads) the logical operators for the
STD LOGIC types but not the arithmetic operators (see Section 10.12).

10.6.3 TEXTIO Package

You can use the TEXTI0 package, which is part of the library STD, for text input and
output [VHDL LRM14.3]. The following code is a part of the TEXTIO package
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header and, together with the comments, shows the declarations of types, subtypes,
and the use of the procedures in the package:

package Part TEXTIO is -- VHDL-93 version.

type LINE is access STRING; -- LINE is a pointer to a STRING value.
type TEXT is file of STRING; -~ File of ASCII records.

type SIDE is (RIGHT, LEFT); -- for justifying output data.

subtype WIDTH is NATURAL; -— for specifying widths of output fields.
file INPUT : TEXT open READ MODE is "STD INPUT"; -- Default input file.
file OUTPUT : TEXT open WRITE MODE is "STD_OUTPUT"; -- Default output.

-- The following procedures are defined for types, T, where

-- T = BIT BIT VECTOR BOOLEAN CHARACTER INTEGER REAL TIME STRING

- procedure READLINE(file F : TEXT; L : out LINE);

-= procedure READ(L : inout LINE; VALUE : out T);

- procedure READ(L : inout LINE; VALUE : out T; GOOD: out BOOLEAN);
- procedure WRITELINE(F : out TEXT; L : inout LINE);

—-= procedure WRITE(

- L : inout LINE;

— VALUE : in T;

- JUSTIFIED : in SIDE:= RIGHT;

-— FIELD:in WIDTH := 0
—— DIGITS:in NATURAL 0; -—- for T = REAL only
- UNIT:in TIME:= ns); -—- for T = TIME only
~- function ENDFILE(F : in TEXT) return BOOLEAN;

I} ~e

end Part TEXTIO;

Here is an example that illustrates how to write to the screen (STD_OUTPUT):

library std; use std.textio.all; entity Text is end;

architecture Behave of Text is signal count : INTEGER := 0;

begin count <= 1 after 10 ns, 2 after 20 ns, 3 after 30 ns;

process (count) variable L: LINE; begin

if (count > 0) then
write(L, now); -— Write time.
write(L, STRING' (" count=")); ~~ STRING' is a type qualification.
write(L, count); writeline(output, L);

end if; end process; end;

10 ns count=1
20 ns count=2
30 ns count=3

10.6.4 Other Packages

VHDL does not predefine arithmetic operators on types that hold bits. Many VHDL
simulators provide one or more arithmetic packages that allow you to perform
arithmetic operations on std_logic_ 1164 types. Some companies also provide one
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or more math packages that contain functions for floating-point algebra, trigonome-
try, complex algebra, queueing, and statistics (see also [IEEE 1076.2, 1996]).

Synthesis tool companies often provide a special version of an arithmetic pack-
age, a synthesis package, that allows you to synthesize VHDL that includes arith-
metic operators. This type of package may contain special instructions (normally
comments that are recognized by the synthesis software) that map common func-
tions (adders, subtracters, multipliers, shift registers, counters, and so on) to ASIC
library cells. I shall introduce the IEEE synthesis package in Section 10.12.

Synthesis companies may also provide component packages for such cells as
power and ground pads, I/O buffers, clock drivers, three-state pads, and bus keepers.
These components may be technology-independent (generic) and are mapped to
primitives from technology-dependent libraries after synthesis.

10.6.5 Creating Packages

It is often useful to define constants in one central place rather than using literals
wherever you need a specific value in your code. One way to do this is by using
VHDL packaged constants [VHDL LRM4.3.1.1] that you define in a package.
Packages that you define are initially part of the working library, work. Here are two
example packages [VHDL LRM2.5-2.7]:

package Adder Pkg is -- a package declaration
constant BUSWIDTH : INTEGER := 16;
end Adder Pkg;

use work.Adder Pkg.all; -- a use clause
entity Adder is end Adder;
architecture Flexible of Adder is -~ work.Adder Pkg is visible here
begin process begin
MyLoop : for j in 0 to BUSWIDTH loop -~ adder code goes here
end loop; wait; -- the wait prevents an endless cycle

end process;
end Flexible;

package GLOBALS is
constant HI : BIT := 'l'; comnstant LO: BIT := '0°';
end GLOBALS;

Here is a package that declares a function and thus requires a package body:

package Add Pkg Fn is
function add(a, b, c : BIT VECTOR(3 downto 0)) return BIT_VECTOR;
end Add Pkg Fn;

package body Add Pkg Fn is

function add(a, b, c : BIT VECTOR(3 downto 0)) return BIT VECTOR is
begin return a xor b xor c; end;

end Add Pkg Fn;
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The following example is similar to the VITAL (VHDL Initiative Toward
ASIC Libraries) package that provides two alternative methods (procedures or
functions) to model primitive gates (I shall describe functions and procedures in
more detail in Section 10.9.2):

package And Pkg is
procedure V_And(a, b : BIT; signal ¢ : out BIT);
function V_And(a, b : BIT) return BIT;

end;

package body And Pkg is
procedure V_And(a, b : BIT; signal ¢ : out BIT) is
begin ¢ <= a and b; end;
function V_And(a, b : BIT) return BIT is
begin return a and b; end;
end And Pkg;

The software determines where it stores the design units that we analyze. Sup-
pose the package Add_Pkg Fn is in library MyLib. Then we need a library clause
(before each design unit) and use clause with a selected name to use the package:

library MyLib; -- use MyLib.Add _Pkg.all; -~ use all the package
use MyLib.Add Pkg Fn.add; -- just functicn 'add’' from the package

entity Lib 1 is port (s : out BIT VECTOR(3 downto 0) := "0000"); end;
architecture Behave of Lib 1 is begin process
begin s <= add ("0001", "0010", "1000"); wait; end process; end;

The VHDL software dictates how you create the library MyLib from the library
work and the actual name and directory location for the physical file or directory on
the disk that holds the library. The mechanism to create the links between the file
and directory names in the computer world and the library names in the VHDL
world depends on the software. There are three common methods:

e Use a UNIX environment variable (SETENV MyLib ~/MyDirectory/
MyLibFile, for example).

e Create a separate file that establishes the links between the filename known
to the operating system and the library name known to the VHDL software.

e Include the links in an initialization file (often with an * .ini" suffix).

10.7 Interface Declarations

An interface declaration declares interface objects that may be interface con-
stants, signals, variables, or files [VHDL 87LRM4.3.3, 93LRM4.3.2]. Interface
constants are generics of a design entity, a component, or a block, or parameters of
subprograms. Interface signals are ports of a design entity, component, or block,
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and parameters of subprograms. Interface variables and interface files are parame-
ters of subprograms. '

Each interface object has a mode that indicates the direction of information
flow. The most common modes are in (the default), out, inout, and buffer (a
fifth mode, linkage, is used to communicate with other languages and is infre-
quently used in ASIC design). The restrictions on the use of objects with these
modes are listed in Table 10.10. An interface object is read when you use it on the
RHS of an assignment statement, for example, or when the object is associated with
another interface object of modes in, inout (or linkage). An interface object is
updated when you use it on the LHS side of an assignment statement or when the
object is associated with another interface object of mode out, buffer, inout (or
linkage). The restrictions on reading and updating objects generate the diagram at
the bottom of Table 10.10 that shows the 10 allowed types of interconnections (these
rules for modes buffer and inout are the same). The interface objects (Inside
and outside) in the example in this table are ports (and thus interface signals), but
remember that interface objects may also be interface constants, variables, and files.

There are other special-case rules for reading and updating interface signals,
constants, variables, and files that I shall cover in the following sections. The situa-
tion is like the spelling rule, “i before e except after c.” Table 10.10 corresponds to
the rule “1 before e.”

10.7.1 Port Declaration

Interface objects that are signals are called ports [VHDL 93LRM1.1.1.2]. You may
think of ports as “connectors” and you must declare them as follows:

port (port interface list)

interface_list ::= [10.12]
port_interface declaration {; port_ interface declaration}

A port interface declaration is a list of ports that are the inputs and outputs of an
entity, a block, or a component declaration:

interface declaration ::= [10.13]
[signal]
identifier {, identifier}:[in|out|inout|buffer|linkage]
subtype indication [bus] [:= static expression]

Each port forms an implicit signal declaration and has a port mode. I shall
discuss bus, which is a signal kind, in Section 10.13.1. Here is an example of an
entity declaration that has five ports:

entity Association 1 is
port (signal X, Y : in BIT := '0'; %1, Z2, Z3 : out BIT);
end;
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TABLE 10.10 Modes of interface objects and their properties.

entity E1 is port (Inside : in BIT); end; architecture Behave of El1 is begin end;

entity E2 is port (Outside : inout BIT := '1'); end; architecture Behave of E2 is
component El port (Inside: in BIT); end component; signal UpdateMe : BIT; begin

I1 : El port map (Inside => Outside); -- formal/local (mode in) => actual (mode inout)
UpdateMe <= OQutside; -- OK to read Outside (mode inout)

Outside <= '0' after 10 ns; -— and OK to update Outside (mode inout)

end;

Possible modes of interface object, Outside in (default) out inout buffer
Can you read outside (RHS of assignment)? Yes No Yes Yes
Can you update outside (LHS of assignment)? No Yes Yes Yes
Modes of Inside that Outside may connect o (see in out 'any any
below)'

interface object: formal @

signal, variable, Al actual
constant, or file ¢

formal (Inside) of mode Y

means "legal to associate interface
object (Outside) of mode X with

There are additional rules for interface objects that are signals (ports)—see Tables 10.11 and 10.12.

In the preceding declaration the keyword signal is redundant (because all
ports are signals) and may be omitted. You may also omit the port mode in because
it is the default mode. In this example, the input ports X and Y are driven by a
default value (in general a default expression) of '0' if (and only if') the ports are
left unconnected or open. If you do leave an input port open, the port must have a
default expression.

You use a port map and either positional association or named association to
connect the formals of an entity with the locals of a component. Port maps also asso-
ciate (connect) the locals of a component with the actuals of an instance. For an
example of formal, local, and actual ports, and explanation of their function, see
Section 10.5, where we declared an entity AndGate. The following example shows
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how to bind a component to the entity AndGate (in this case we use the default
binding) and associate the ports. Notice that if we mix positional and named associ-
ation then all positional associations must come first.

use work.all; -- makes analyzed design entity AndGate(Simple) visible.
architecture Netlist of Association 1 is
-- The formal port clause for entity AndGate looks like this:
-- port (And in 1, And in_2: in BIT; And out : out BIT); -- Formals.
component AndGate port
(And_in 1, And_in_2 : in BIT; And out : out BIT); -- Locals.
end component;
begin
-- The component and entity have the same names: AndGate.
~~ The port names are also the same: And in 1, And in 2, And_out,
—- so we can use default binding without a configuration.
——~ The last (and only) architecture for AndGate will be used: Simple.

Al:AndGate port map (X, ¥, %l); -- positional association

A2:AndGate port map (And in 2=>Y, And out=>Z2, And in_ 1=>X); -~- named
A3:AndGate port map (X, And out => %3, And in 2 => Y); -- both
end;

The interface object rules of Table 10.10 apply to ports. The rule that forbids
updating an interface object of mode in prevents modifying an input port (by plac-
ing the input signal on the left-hand side of an assignment statement, for example).
Less obviously, you cannot read a port of mode out (that is you cannot place an out-
put signal on the right-hand side of an assignment statement). This stops you from
accidentally reading an output signal that may be connected to a net with multiple
drivers. In this case the value you would read (the unresolved output signal) might
not be the same as the resolved signal value. For example, in the following code,
since Clock is a port of mode out, you cannot read Clock directly. Instead you can
transfer Clock to an intermediate variable and read the intermediate variable
instead:

entity ClockGen 1 is port (Clock : out BIT); end;
architecture Behave of ClockGen 1 is

begin process variable Temp : BIT := '1';
begin

-— Clock <= not Clock; -—- Illegal, you cannot read Clock (mode out),
Temp := not Temp; -- use a temporary variable instead.

Clock <= Temp after 10 ns; wait for 10 ns;
if (now > 100 ns) then wait; end if; end process;
end;

Table 10.10 lists the restrictions on reading and updating interface objects
including interface signals that form ports. Table 10.11 lists additional special rules
for reading and updating the attributes of interface signals.
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TABLE 10.11 Properties of ports.

Example entity declaration: .
entity E is port (F_1:BIT; F_2:out BIT; F_3:inout BIT; F_4:buffer BIT); end; -- formals

Example component declaration:
component C port (L _1:BIT; L 2:out BIT; L 3:inout BIT; L_4:buffer BIT); ~- locals
end component;

Example component instantiation:
Il : C port map

(L1=>A1,L2=>A2,L3=>A3,L4=>A4d); -- locals => actuals

Example configuration:
for Il : C use entity E(Behave) port map

(F1=>L 1, F2=>1L2, F3=>L3, F4=>1L4); -~ formals => locals
Interface object, port F F 1 F 2 F_3 F 4
Mode of F in (default) out inout buffer
Can you read attributes of 7?7 Yes, but not the Yes, but not the Yes, but not the Yes
[VHDL LRM4.3.2] attributes: attributes: attributes:

' STABLE "STABLE 'QUIET 'STABLE

"QUIET 'DELAYED "QUIET

'DELAYED ' TRANSACTION 'DELAYED

'TRANSACTION '"EVENT 'ACTIVE 'TRANSACTION

_ 'LAST EVENT
'LAST ACTIVE
'LAST VALUE

There is one more set of rules that apply to port connections [VHDL LRM
1.1.1.2]. If design entity E2 contains an instance, I1, of design entity E1, then the
formals (of design entity E1) are associated with actuals (of instance 11). The actu-
als (of instance 11) are themselves formal ports (of design entity E2). The restric-
tions illustrated in Table 10.12 apply to the modes of the port connections from E1
to E2 (looking from the inside to the outside).

Notice that the allowed connections diagrammed in Table 10.12 (looking from
inside to the outside) are a superset of those of Table 10.10 (looking from the out-
side to the inside). Only the seven types of connections shown in Table 10.12 are
allowed between the ports of nested design entities. The additional rule that ports of
mode buf fer may only have one source, together with the restrictions on port mode
interconnections, limits the use of ports of mode buffer.
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TABLE 10.12 Connection rules for port modes.

entity E1 is port (Inside : in BIT); end; architecture Behave of El is begin end;

entity E2 is port (Outside : inout BIT := 'l'); end; architecture Behave of E2 is
component El port (Inside : in BIT); end component; begin
I1 : E1l port map (Inside => Outside); -— formal/local (mode in) => actual (mode inout)
end;
Possible modes of interface object, Inside in (default) out inout buffer
Modes of outside that Inside may connectto (see below) in inout out inout' buffers
buffer inout
E2

Outside

. formal 3
actual 9

means "legal to associate formal port

(Inside) of mode Y with actual port
(

Outside) of mode X"

A signal of mode inout can be updated by any number of sources [VHDL 87LRM 4.3.3, 93LRM4.3.2].
2A signal of mode buffer can be updated by at most one source [VHDL. LRM1.1.1.2].

10.7.2 Generics

Ports are signals that carry changing information between entities. A generic is sim-
ilar to a port, except generics carry constant, static information. A generic is an
interface constant that, unlike normal VHDL constants, may be given a value in a
component instantiation statement or in a configuration specification. You declare
generics in an entity declaration and you use generics in a similar fashion to ports.
The following example uses a generic parameter to alter the size of a gate:

entity AndGateNWide is

generic (N : NATURAL := 2);
port (Inputs : BIT VECTOR(1l to N); Result : out BIT);
end;

Notice that the generic interface list precedes the port interface list. Generics are
useful to carry timing (delay) information, as in the next example:

entity AndT is
generic (TPD : TIME := 1 ns);
port (a, b : BIT := '0'; g: out BIT);
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end;

architecture Behave of AndT is
begin g <= a and b after TPD;

end;

entity AndT Test 1 is end;
architecture Netlist 1 of AndT Test 1 is
component MyAnd
port (a, b : BIT; q : out BIT);
end component;
signal al, bl, gl : BIT := '1°';
begin
Andl : MyAnd port map (al, bl, ql);
end Netlist 1;

configuration Simplest 1 of AndT Test 1 is use work.all;
for Netlist 1 for Andl : MyAnd
use entity AndT(Behave) generic map (2 ns);
end for; end for;
end Simplest 1;

The configuration declaration, simplest 1, changes the default delay (equal to
1ns, declared as a default expression in the entity) to 2ns. Techniques based on this
method are useful in ASIC design. Prelayout simulation uses the default timing val-
ues. Back-annotation alters the delay in the configuration for postlayout simulation.
When we change the delay we only need to reanalyze the configuration, not the rest
of the ASIC model.

There was initially no standard in VHDL for how timing generics should be
used, and the lack of a standard was a major problem for ASIC designers. The IEEE
1076.4 VITAL standard addresses this problem (see Section 13.5.5).

10.8 Type Declarations

In some programming languages you must declare objects to be integer, real, Bool-
ean, and so on. VHDL (and ADA, the DoD programming language to which VHDL
is related) goes further: You must declare the type of an object, and there are strict
rules on mixing objects of different types. We say VHDL is strongly typed. For
example, you can use one type for temperatures in Centigrade and a different type
for Fahrenheit, even though both types are real numbers. If you try to add a tempera-
ture in Centigrade to a temperature in Fahrenheit, VHDL catches your error and tells
you that you have a type mismatch.
This is the formal (expanded) BNF definition of a type declaration:

type_declaration ::= [10.14]
type identifier ;
| type identifier is
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(identifier|'graphic_character' {, identifier|'graphic_character'}) ;

range_constraint ; | physical type definition ;
record type_definition ; | access subtype indication ;

|
|
| file of type name ; | file of subtype name ;
| array index _constraint of element_subtype indication ;
| array
(type name|subtype name range <>

{, type name|subtype name range <>}) of

element subtype indication ;

There are four type classes in VHDL [VHDL LRM3]: scalar types, composite
types, access types, and file types. The scalar types are: integer type, floating-
point type, physical type, and enumeration type. Integer and enumeration types
are discrete types. Integer, floating-point, and physical types are numeric types.
The range of an integer is implementation dependent but is guaranteed to include
~2147483647 to +2147483647. Notice the integer range is symmetric and equal to
~231-1D) to 2°1-1). Floating-point size is implementation dependent, but the range
includes the bounds —1.0E38 and +1.0E38, and must include a minimum of six deci-
mal digits of precision. Physical types correspond to time, voltage, current, and so
on and have dimensions—a unit of measure (seconds, for example). Access types
are pointers, useful in abstract data structures, but less so in ASIC design. File types
are used for file I/O.

You may also declare a subset of an existing type, known as a subtype, in a
subtype declaration. We shall discuss the different treatment of types and subtypes
in expressions in Section 10.12.

Here are some examples of scalar type [VHDL LRM4.1] and subtype declara-
tions [VHDL LRM4.2]:

entity Declaration 1 is end; architecture Behave of Declaration_l is

type F is range 32 to 212; -- Integer type, ascending range.
type C is range 0 to 100; -- Range 0 to 100 is the range constraint.
subtype G is INTEGER range 9 to 0; -- Base type INTEGER, descending.

-— This is illegal: type Badl00 is INTEGER range 0 to 100;

-- don't use INTEGER in declaration of type (but OK in subtype).
type Rainbow is (R, O, Y, G, B, I, V); -- An enumeration type.
—-— Enumeration types always have an ascending range.

type MVL4 is ('X', ‘0', ‘'1', '2');

-- Note that 'X' and 'x' are different character literals.

——- The default initial value is MVL4'LEFT = 'X'.

-- We say '0' and 'l' (already enumeration literals

~-- for predefined type BIT) are overloaded.

-~ Illegal enumeration type: type Bad4 is ("X", "0", "1", "Z2");
-—- Enumeration literals must be character literals or identifiers.
begin end;
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The most common composite type is the array type [VHDL LRM3.2.1]. The
following examples illustrate the semantics of array declarations:

entity Arrays_1 is end; architecture Behave of Arrays 1 is

type Word is array (0 to 31) of BIT; -- a 32-bit array, ascending
type Byte is array (NATURAL range 7 downto 0) of BIT; -- descending
type BigBit is array (NATURAL range <>) of BIT;

-—- We call <> a box, it means the range is undefined for now.

-- We call BigBit an unconstrained array.

-- This is OK, we constrain the range of an object that uses

-— type BigBit when we declare the object, like this:

subtype Nibble is BigBit(3 downto 0);

type Tl is array (POSITIVE range 1 to 32) of BIT;

—-- T1, a constrained array declaration, is equivalent to a type T2
-— with the following three declarations:

subtype index subtype is POSITIVE range 1 to 32;

type array type is array (index subtype range <>) of BIT;

subtype T2 is array type (index subtype);

-- We refer to index subtype and array_type as being

-- anonymous subtypes of Tl (since they don't really exist).

begin end;

You can assign values to an array using aggregate notation [VHDL LRM?7.3.2]:

entity Aggregate 1 is end; architecture Behave of Aggregate 1 is
type D is array (0 to 3) of BIT; type Mask is array (1 to 2) of BIT;
signal MyData : D := ('0', others => 'l'); -- positional aggregate
signal MyMask : Mask := (2 => '0', 1 => '1'); ~-- named aggregate
begin end;

The other composite type is the record type that groups elements together:

entity Record 2 is end; architecture Behave of Record 2 is

type Complex is record real : INTEGER; imag : INTEGER; end record;
signal sl : Complex := (0, others => 1); signal s2: Complex;
begin s2 <= (imag => 2, real => 1); end;

10.9 Other Declarations

A declaration is one of the following [VHDL LRM4]:

declaration ::= [10.15]
type_declaration | subtype declaration | object declaration
interface_declaration | alias_declaration | attribute declaration
component declaration | entity declaration

configuration declaration
subprogram declaration | package declaration

group template declaration | group declaration
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I discussed entity, configuration, component, package, interface, type, and sub-
type declarations in Sections 10.5-10.8. Next I shall discuss the other types of dec-
larations (except for groups or group templates [VHDL 93LRM4.6-4.7], new to
VHDIL-93, that are not often used in ASIC design).

10.9.1 Object Declarations

There are four object classes in VHDL.: constant, variable, signal, and file [VHDL
LRM 4.3.1.1-4.3.1.3]. You use a constant declaration, signal declaration, variable
declaration, or file declaration together with a type. Signals can only be declared
in the declarative region (before the first begin) of an architecture or block, or in a
package (not in a package body). Variables can only be declared in the declarative
region of a process or subprogram (before the first begin). You can think of signals
as representing real wires in hardware. You can think of variables as memory loca-
tions in the computer. Variables are more efficient than signals because they require
less overhead.

You may assign an (explicit) initial value when you declare a type. If you do
not provide initial values, the (implicit) default initial value of a type or subtype T
is T'LEFT (the leftmost item in the range of the type). For example:

entity Initial 1 is end; architecture Behave of Initial 1 is

type Fahrenheit is range 32 to 212; -— Default initial value is 32.
type Rainbow is (R, O, Y, G, B, I, V); -- Default initial value is R.
type MVL4 is ('X', '0', '1', '2'); -— MVL4'LEFT = 'X'.

begin end;

The details of initialization and assignment of initial values are important—it is
difficult to implement the assignment of initial values in hardware—instead it is bet-
ter to mimic the hardware and use explicit reset signals.

Here are the formal definitions of constant and signal declarations:

constant declaration ::= constant [10.16]
identifier {, identifier}:subtype indication [:= expression] ;
signal declaration ::= signal [10.17]

identifier {, identifier)}:subtype indication [register|bus] [:=expression];

I shall explain the use of signals of kind register or bus in Section 10.13.1. Sig-
nal declarations are explicit signal declarations (ports declared in an interface dec-
laration are implicit signal declarations). Here is an example that uses a constant and
several signal declarations:

entity Constant 2 is end;
library IEEE; use IEEE.STD_LOGIC 1164.all;
architecture Behave of Constant 2 is

constant Pi : REAL := 3.14159; -- A constant declaration.
signal B : BOOLEAN; signal sl, s2: BIT;

signal sum : INTEGER range 0 to 15; -- Not a new type.

signal SmallBus : BIT VECTOR (15 downto 0); -- 16-bit bus.
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signal GBus : STD_LOGIC_VECTOR (31 downto 0) bus; ~~ A guarded signal.
begin end;

Here is the formal definition of a variable declaration:

variable declaration ::= [shared] variable [10.18]
identifier {, identifier}:subtype indication [:= expression] ;

A shared variable can be used to model a varying quantity that is common across
several parts of a model, temperature, for example, but shared variables are rarely
used in ASIC design. The following examples show that variable declarations
belong inside a process statement, after the keyword process and before the first
appearance of the keyword begin inside a process:

library IEEE; use IEEE.STD LOGIC_l1164.all; entity Variables_ 1 is end;
architecture Behave of Variables_ 1 is begin process

variable i : INTEGER range 1 to 10 := 10; -- Initial value = 10.

variable v : STD LOGIC_VECTOR (0 to 31) := (others => '0');

begin wait; end process; -- The wait stops an endless cycle.
end;

10.9.2 Subprogram Declarations

VHDL code that you use several times can be declared and specified as
subprograms (functions or procedures) [VHDL LRM2.1]. A function is a form of
expression, may only use parameters of mode in, and may not contain delays or
sequence events during simulation (no wait statements, for example). Functions are
useful to model combinational logic. A procedure is a form of statement and allows
you to control the scheduling of simulation events without incurring the overhead of
defining several separate design entities. There are thus two forms of subprogram
declaration: a function declaration or a procedure declaration.

subprogram declaration ::= subprogram specification ; ::= [10.19]
procedure

identifier[string_literal [ (parameter interface list)]
| [pure|impure] function

identifierlstring_literal [ (parameter interface_list)]

return type_namelsubtype“name;

Here are a function and a procedure declaration that illustrate the difference:

function add(a, b, ¢ : BIT_VECTOR(3 downto 0)} return BIT_VECTOR is
-~ A function declaration, a function can't modify a, b, or c.

procedure Is_A Eq B {(signal A, B : BIT; signal Y : out BIT);
-~ A procedure declaration, a procedure can change Y.
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Parameter names in subprogram declarations are called formal parameters (or
formals). During a call to a subprogram, known as subprogram invocation, the
passed values are actual parameters (or actuals). An impure function, such as the
function now or a function that writes to or reads from a file, may return different
values each time it is called (even with the same actuals). A pure function (the
default) returns the same value if it is given the same actuals. You may call subpro-
grams recursively. Table 10.13 shows the properties of subprogram parameters.

TABLE 10.13 Properties of subprogram parameters.

Example subprogram declarations:
function my function(Ff) return BIT is -- Formal function parameter, FE£.
procedure my procedure(Fp); -- Formal procedure parameter, Fp.

Example subprogram calls:

my result := my_ function(aAf); -- Calling a function with an actual parameter, Af.
MY LABEL:my_procedure(Ap); -— Using a procedure with an actual parameter, Ap.
Mode of Ff or Fp (formals) in out inout No mode
Permissible classes for Af constant (default) Not allowed Not allowed file
(function actual parameter) signal
Permissible classes for Ap constant (default) constant constant file
(procedure actual parameter) variable variable (default) variable (default)
signal signal signal
Can you read attributes of Yes, except: Yes, except: Yes, except:
Ff or Fp {formals)? 'STABLE 'STABLE 'QUIET ' STABLE
"QUIET 'DELAYED "QUIET
"DELAYED ' TRANSACTION 'DELAYED
'TRANSACTION 'EVENT 'ACTIVE 'TRANSACTION
of a signal 'LAST_ EVENT of a signal
"LAST_ ACTIVE
'LAST VALUE
of a signal

A subprogram declaration is optional, but a subprogram specification must be
included in the subprogram bedy (and must be identical in syntax to the subpro-
gram declaration—see BNF [10.19]):

subprogram body ::= [10.20]
subprogram specification is
{subprogram declaration|subprogram body
Itype_declarationlsubtype_declaration
|constant_declaration|variable declaration|file declaration
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|alias_declaration|attribute declaration|attribute specification
luse_clause|group template declaration]|group declaration}

begin
{sequential_statement}
end [procedure]|function] [identifier|string literal] ;

You can include a subprogram declaration or subprogram body in a package or
package body (see Section 10.6) or in the declarative region of an entity or process
statement. The following is an example of a function declaration and its body:

function subsetO(sout0 : in BIT) return BIT VECTOR -- declaration

-— Declaration can be separate from the body.

function subsetO(sout0 : in BIT) return BIT VECTOR is -- body
variable y : BIT VECTOR(2 downto 0);
begin
if (sout0 = '0') then y := "000"; else y := "100"; end if;
return result;
end;
procedure clockGen (clk : out BIT) -— Declaration
procedure clockGen (clk : out BIT) is —— Specification
begin -- Careful this process runs forever:
process begin wait for 10 ns; clk <= not clk; end process;
and;

One reason for having the optional (and seemingly redundant) subprogram dec-
laration is to allow companies to show the subprogram declarations (to document
the interface) in a package declaration, but to hide the subprogram bodies (the actual
code) in the package body. If a separate subprogram declaration is present, it must
conform to the specification in the subprogram body [VHDL 93LRM2.7]. This
means the specification and declaration must be almost identical; the safest method
is to copy and paste. If you define common procedures and functions in packages
(instead of in each entity or architecture, for example), it will be easier to reuse sub-
programs. In order to make a subprogram included in a package body visible outside
the package, you must declare the subprogram in the package declaration (otherwise
the subprogram is private).

You may call a function from any expression, as follows:

entity F 1 is port (s : out BIT_VECTOR(3 downto 0) := "0000"); end;
architecture Behave of F_1 is begin process

function add(a, b, ¢ : BIT VECTOR(3 downtoc 0)) return BIT VECTOR is
begin return a xor b xor c; end;

begin s <= add("0001", "0010", "1000"); wait; end process; end;

package And Pkg is
procedure V_And(a, b : BIT; signal ¢ : out BIT);
function V_And(a, b : BIT) return BIT;
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end;

package body And Pkg is
procedure V_And(a,b : BIT;signal ¢ : out BIT) is
begin ¢ <= a and b; end;
function V_And(a,b : BIT) return BIT is
begin return a and b; end;
end And Pkg;

entity F_2 is port (s: out BIT := '0'); end;

use work.And Pkg.all; -- use package already analyzed
architecture Behave of F_2 is begin process begin

§ <=V And('1', 'l'); wait; end process; end;

I shall discuss the two different ways to call a procedure in Sections 10.10.4 and
10.13.3.

10.9.3 Alias and Attribute Declarations
An alias declaration [VHDL 871.LRM4.3.4, 931.LRM4.3.3] names parts of a type:
alias_declaration ::= [10.21]

alias
identifier|character literal|operator symbol [ :subtype indication]

is name [signature];

(the subtype indication is required in VHDL-87, but not in VHDL-93).
Here is an example of alias declarations for parts of a floating-point number:
entity Alias 1 is end; architecture Behave of Alias 1 is

begin process variable Nmbr: BIT VECTOR (31 downto 0);
-~ alias declarations to split Nmbr into 3 pieces

alias Sign : BIT is Nmbr(31);

alias Mantissa : BIT VECTOR (23 downto 0) is Nmbr (30 downto 7);
alias Exponent : BIT VECTOR ( 6 downto 0) is Nmbr ( 6 downto 0);
begin wait; end process; end; -- the wait prevents an endless cycle

An attribute declaration [VHDL LRM4.4] defines attribute properties:

attribute declaration ::= [10.22]
attribute identifier:type name ; | attribute identifier:subtype name ;

Here is an example:

entity Attribute 1 is end; architecture Behave of Attribute 1 is
begin process type COORD is record X, Y : INTEGER; end record;
attribute LOCATION : COORD; -- the attribute declaration

begin wait ; -~ the wait prevents an endless cycle

end process; end;

434



10.10  SEQUENTIAL STATEMENTS 419

You define the attribute properties in an attribute specification (the following
example specifies an attribute of a component label). You probably will not need to
use your own attributes very much in ASIC design.

attribute LOCATION of adderl : label is (10,15);

You can then refer to your attribute as follows:

positionOfComponent := adderl'LOCATION;

10.9.4 Predefined Attributes

The predefined attributes for scalar and array types in VHDL-93 are shown in
Table 10.14 [VHDL 93L.RM14.1]. There are two attributes, 'STRUCTURE and
'BEHAVIOR, that are present in VHDL-87, but removed in VHDL-93. Both of these
attributes apply to architecture bodies. The attribute name A'BEHAVIOR is TRUE if the
architecture A does not contain component instantiations. The attribute name
A'STRUCTURE is TRUE if the architecture A contains only passive processes (those
with no assignments to signals) and component instantiations. These two attributes
were not widely used. The attributes shown in Table 10.14, however, are used exten-
sively to create packages and functions for type conversion and overloading operators,
but should not be needed by an ASIC designer. Many of the attributes do not corre-
spond to “real” hardware and cannot be implemented by a synthesis tool.

The attribute *'LEFT is important because it determines the default initial value
of a type. For example, the default initial value for type BIT is BIT'LEFT, which
is '0'. The predefined attributes of signals are listed in Table 10.15. The most
important signal attribute is 'EVENT, which is frequently used to detect a clock edge.
Notice that Clock'EVENT, for example, is a function that returns a value of type
BOOLEAN, whereas the otherwise equivalent not (Clock'STABLE), is a signal. The
difference is subtle but important when these attributes are used in the wait state-
ment that treats signals and values differently.

10.10 Sequential Statements

A sequential statement [VHDL LRMS] is defined as follows:

sequential statement ::= [10.23]
wait statement | assertion statement
signal assignment statement

|

| variable assignment statement | procedure call statement
| if statement | case statement | loop statement

| next statement | exit statement

| return_statement | null statement | report statement
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TABLE 10.14 Predefined attributes for scalar and array types.

Prefix Parameter Resuit

Attribute Kind! T,A,E2 XorN® type® Result
T'BASE T any base(T) base(T), use only with other attribute
T'LEFT \ scalar T Leftbound of T
T'RIGHT \Y scalar T Right bound of T
T'HIGH \ scalar T Upper bound of T
T'LOW \ scalar T Lower bound of T
T 'ASCENDING \ scalar BOOLEAN True if range of T is ascending®
T'IMAGE (X) F scalar base(T) STRING String representation of X in T#
T'VALUE (X) F scalar STRING base(T) Value in T with representation x4
T'POS(X) F discrete  base(T) ul Position number of Xin T (starts at 0)
T'VAL(X) F discrete Ul base(T) Value of position XinT
T'SUCC(X) F discrete  base(T) base(T) Value of position X in T plus one
T'PRED(X) F discrete  base(T) base(T) Value of position Xin T minus one
T'LEFTOF (X) F discrete  base(T) base(T) Valuetotheleftof XinT
T'RIGHTOF (X) F discrete  base(T) base(T) Valuetotherightof XinT
A'LEFT[ (N)] F array Ul T(Result) Left bound of index N of array A
A'RIGHT[ (N)] F array Ul T(Result) Right bound of index N of array A
A'HIGH[ (N)] F array Ul T(Result) Upper bound of index N of array A
A'LOW[ (N) ] F array Ul T(Result) Lower bound of index N of array A
A'RANGE([ (N) ] R array Ul T(Result) Range A'LEFT(N) to ARIGHT(N)®
A'REVERSE_RANGE[ (N) R array ul T(Result) Opposite range to ARANGE[(N)]
1
A'LENGTH][ (N) ] \ array Ul Ul Number of values in index N of array A
A'ASCENDING{ (N)] V array Ul BOOLEAN Trueifindex NofAis asoending"‘
E'SIMPLE NAME \Y name STRING Simple name of E*
E'INSTANCE_ NAME \Y name STRING Path includes instantiated entities*
E'PATH NAME \Y% name STRING Path excludes instantiated entities*

"T=Type, F=Function, V=Value, R=Range.

2any:any type or subtype, scalar=scalar type or subtype, discrete=discrete or physical type or subtype,
name=entity name=identifier, character literal, or operator symbol.

3base(T):base type of T, T=type of T, Ul= universal_integer, T(Result)=type of object described in result column.

4Only available in VHDL-93. For ' ASCENDING all enumeration types are ascending.

50r reverse for descending ranges.
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TABLE 10.15 Predefined attributes for signals.

Attribute Kind' Parameter T2 Result type® Result/restrictions
S'DELAYED [ (T)] S TIME base(S) S delayed by time T
S'STABLE [ (T)] S TIME BOOLEAN TRUE ifnoeventon Sfortime T
S'QUIET [(T)] S TIME BOOLEAN TRUE if Sis quiet fortime T ’
S 'TRANSACTION S BIT Toggles each cycle if S becomes active
S'EVENT F BOOLEAN TRUE when event occurs on S
S'ACTIVE F BOOLEAN TRUE if S is active
S'LAST EVENT F TIME Elapsed time since the last eventon S
S'LAST ACTIVE F TIME Elapsed time since S was active
S'LAST VALUE F base(S) Previous value of S, before last event*
S'DRIVING F BOOLEAN TRUE if every element of S is driven®
S'DRIVING VALUE F base(S) Value of the driver for S in the current process®

T F=function, S=signal.

2Time T=20 ns. The default, if T is not present, is T=0 ns.

Sbase(S)=base type of S.

4VHDL-93 returns last value of each signal in array separately as an aggregate, VHDL-87 returns the last value
of the composite signal.

5VHDL-93 only.

Sequential statements may only appear in processes and subprograms. In the
following sections I shall describe each of these different types of sequential state-
ments in turn.

10.10.1 Wait Statement

The wait statement is central to VHDL, here are the BNF definitions [VHDL
93LRMS&.1]:

wait statement ::= [label:] wait [sensitivity_ clause] {10.24]
{condition clause] [timeout clause] ;

sensitivity clause ::= on sensitivity list

sensitivity list ::= signal name { , signal_ name }

condition clause ::= until condition

condition ::= boolean expression

timeout clause ::= for time_expression

A wait statement suspends (stops) a process or procedure (you cannot use a
wait statement in a function). The wait statement may be made sensitive to events
(changes) on static signals (the value of the signal must be known at analysis time)
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that appear in the sensitivity list after the keyword on. These signals form the
sensitivity set of a wait statement. The process will resume (restart) when an event
occurs on any signal (and only signals) in the sensitivity set.

A wait statement may also contain a condition to be met before the process
resumes. If there is no sensitivity clause (there is no keyword on) the sensitivity set
is made from signals (and only signals) from the condition clause that appears after
the keyword until (the rules are quite complicated [VHDL 93LRMS.1]).

Finally a wait statement may also contain a timeout (following the keyword
for) after which the process will resume. Here is the expanded BNF definition,
which makes the structure of the wait statement easier to see (but we lose the defi-
nitions of the clauses and the sensitivity list):

wait statement ::= [label:] wait
[on signal name {, signal name}]
[until boolean expression]
[for time_ expression] ;

For example, the statement, wait on light, makes you wait until a traffic
light changes (any change). The statement, wait until light = green, makes
you wait (even at a green light) until the traffic signal changes to green. The state-
ment,

if light = (red or yellow) then wait until light = green; end if;
accurately describes the basic rules at a traffic intersection.

The most common use of the wait statement is to describe synchronous logic,
as in the following model of a D flip-flop:

entity DFF is port (CLK, D : BIT; Q : out BIT); end; --1
architecture Behave of DFF is : -2
process begin wait until Clk = 'l'; Q <= D ; end process; --3
end; —d

Notice that the statement in line 3 above, wait until Clk = '1',is equiva-
lent to wait on Clk until Clk = '1', and detects a clock edge and not the

clock level. Here are some more complex examples of the use of the wait state-
ment:

entity Wait 1 is port (Clk, sl, s2 :in BIT); end;
architecture Behave of Wait 1 is
signal x : BIT VECTOR (0 to 15);
begin process variable v : BIT; begin
wait; -- Wait forever, stops simulation.
wait on sl until s2 = *1'; -~ Legal, but sl, s2 are signals so
-- sl is in sensitivity list, and s2 is not in the sensitivity set.
-- Sensitivity set is sl and process will not resume at event on s2.

wait on sl, s2; -- resumes at event on signal sl or s2.
wait on sl for 10 ns: -- resumes at event on sl or after 10 ns.
wait on x; -- resumes when any element of array x

-- has an event.
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-~ wait on x(1 to v); -~ Illegal, nonstatic name, since v is a variable.
end process;
end;

entity Wait 2 is port (Clk, sl, s2:in BIT); end;
architecture Behave of Wait 2 is
begin process variable v : BIT; begin

wait on Clk; -- resumes when Clk has an event: rising or falling.
wait until Clk = '1'; -- resumes on rising edge.

wait on Clk until Clk = 'l'; -- equivalent to the last statement.
wait on Clk until v = '1';

-— The above is legal, but v is a variable so
-— Clk is in sensitivity list, v is not in the sensitivity set.
-- Sensitivity set is Clk and process will not resume at event on v.
wait on Clk until sl = '1°';
-— The above is legal, but sl is a signal so
-~ Clk is in sensitivity 1list, sl is not in the sensitivity set.
-— Sensitivity set is Clk, process will not resume at event on sl.
end process;
end;

You may only use interface signals that may be read (port modes in, inout,
and buffer—see Section 10.7) in the sensitivity list of a wait statement.

10.10.2 Assertion and Report Statements

You can use an assertion statement to conditionally issue warnings. The report
statement (VHDL-93 only) prints an expression and is useful for debugging.

assertion_statement ::= [label:] assert [10.25]
boolean expression [report expression] [severity expression] ;

report statement ::=
[label:] report expression [severity expression] ;

Here is an example of an assertion statement:

entity Assert 1 is port (I:INTEGER:=0); end;
architecture Behave of Assert 1 is
begin process begin
assert (I > 0) report "I is negative or zero"; wait;
end process;
end;

The expression after the keyword report must be of type STRING (the default is
"Assertion violation" for the assertion statement), and the expression after
the keyword severity must be of type SEVERITY LEVEL (default ERROR for the
assertion statement, and NOTE for the report statement) defined in the STANDARD
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package. The assertion statement prints if the assertion condition (after the keyword
assert) is FALSE. Simulation normally halts for severity of ERROR or FAILURE (you
can normally control this threshold in the simulator).

10.10.3 Assignment Statements

There are two sorts of VHDL assignment statements: one for signals and one for
variables [VHDL 93LRMS8.4-8.5]. The difference is in the timing of the update of
the LHS. A variable assignment statement is the closest equivalent to the assign-
ment statement in a computer programming language. Variable assignment state-
ments are always sequential statements and the LHS of a variable assignment
statement is always updated immediately. Here is the definition and an example:

variable assignment statement ::= [10.26]
[label:] name|aggregate := expression ;

entity Var Assignment is end;
architecture Behave of Var Assignment is

signal sl : INTEGER := 0;

begin process variable v1,v2 : INTEGER := 0; begin

assert (v1/=0) report "vl is 0" severity note ; -- this prints
vl := vl + 1; -- after this statement vl is 1

assert (v1=0) report "vl isn't 0" severity note ; -- this prints
v2 = v2 + sl; -- signal and variable types must match

wait;

end process;
end;

This is the output from Cadence Leapfrog for the preceding example:

ASSERT/NOTE (time 0 FS) from :$PROCESS 000 (design unit
WORK.VAR ASSIGNMENT:BEHAVE) vl is 0

ASSERT/NOTE (time 0 FS) from :$PROCESS 000 (design unit
WORK.VAR ASSIGNMENT:BEHAVE) vl isn't 0

A signal assignment statement schedules a future assignment to a signal:

signal_assignment statement::= [10.27]
[label:] target <=
[transport | [ reject time expression ] inertial] waveform ;

The following example shows that, even with no delay, a signal is updated at
the end of a simulation cycle after all the other assignments have been scheduled,
just before simulation time is advanced:

entity Sig_Assignment 1 is end;
architecture Behave of Sig Assignment 1 is

signal sl,s2,83 : INTEGER := 0;
begin process variable vl : INTEGER := 1; begin
assert (sl /= 0) report "sl is 0" severity note ; -- this prints.
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sl <= sl + 1; -- after this statement sl is still 0.
assert (sl /= 0) report "sl still 0" severity note ; -- this prints.
wait;

end process;
end;

ASSERT/NOTE (time 0 FS) from :$PROCESS 000 (design unit
WORK.SIG ASSIGNMENT 1:BEHAVE) sl is 0

ASSERT/NOTE (time 0 FS) from :$PROCESS 000 (design unit
WORK.SIG ASSIGNMENT 1:BEHAVE) sl still 0

Here is an another example to illustrate how time is handled:

entity Sig Assignment 2 is end;
architecture Behave of Sig Assignment 2 is

signal sl, s2, s3 : INTEGER := 0;

begin process variable vl : INTEGER := 1; begin

-~ 81, 82, 83 are initially 0; now consider the following:
sl <= 1 ; -- schedules updates to sl at end of 0 ns cycle.
52 <= gl; -- s2 is 0, not 1.

wait for 1 ns;

s3 <= sl; -- now s3 will be 1 at 1 ns.

wait;

end process;
end;

The Compass simulator produces the following trace file for this example:

Time(fs) + Cycle sl s2 s3
0+ 0: 0 0

0+ 1: * 1 * 0
1000000+ 1: 1 0 * 1

Time is indicated in femtoseconds for each simulation cycle plus the number of
delta cycles (we call this delta time, measured in units of delta, ) needed to calcu-
late all transactions on signals. A transaction consists of a new value for a signal
(which may be the same as the old value) and the time delay for the value to take
effect. An asterisk '*' before a value in the preceding trace indicates that a transac-
tion has occurred and the corresponding signal updated at that time. A transaction
that does result in a change in value is an event. In the preceding simulation trace
for sig Assignment 2:Behave

s At 0 ns+ 090: all signals are 0.
« At 0 ns+ 198: sl isupdatedto 1, s2 is updated to 0 (not to 1).
+ At1l ns+ 10:s3isupdatedtoal.
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The following example shows the behavior of the different delay models:
transport and inertial (the default): :

entity Transport 1 is end;
architecture Behave of Transport 1 is
signal sl, SLOW, FAST, WIRE : BIT := '0';
begin process begin
sl <= '1' after 1 ns, '0' after 2 ns, 'l' after 3 ns ;
-- schedules sl to be '1' at t+1 ns, '0' at t+2 ns,'l' at t+3 ns
wait; end process;
—— inertial delay: SLOW rejects pulsewidths less than 5ns:
process (sl) begin SLOW <= sl .after 5 ns ; end process;
~— inertial delay: FAST rejects pulsewidths less than 0.5ns:
process (sl) begin FAST <= sl after 0.5 ns ; end process;
-- transport delay: WIRE passes all pulsewidths..
process (sl) begin WIRE <= transport sl after 5 ns ; end process;
end;

Here is the trace file from the Compass simulator:

Time(fs) + Cycle sl slow fast wire
0+ 0: IOI IO) IO! IOI

500000+ 0: ‘0!’ ‘0 x0? 0!
1000000+ 0: *'1° 0 ‘0! 'O

1500000+ 0: "1 o ox 1 ‘0
2000000+ 0: *'0° ‘0 "1 ‘o’
2500000+ 0: 'O 0 %10 '0"
3000000+ 0: *'1° 0 "0 ‘0
3500000+ 0: 1" or *r 1 0
5000000+ O: "1 ‘0 1t o * 0
6000000+ 0: '1° ‘0! A A
7000000+ 0: 1 ‘0’ ‘1 x0!
8000000+ O: LT okt Tiroxr e

Inertial delay mimics the behavior of real logic gates, whereas transport delay

-more closely models the behavior of wires. In VHDL-93 you can also add a separate

pulse rejection limit for the inertial delay model as in the following example:

process (sl) begin RJCT <= reject 2 ns sl after 5 ns ; end process;

10.10.4 Procedure Call

A procedure call in VHDL corresponds to calling a subroutine in a conventional
programming language [VHDL LRMS.6]. The parameters in a procedure call state-
ment are the actual procedure parameters (or actuals); the parameters in the proce-
dure definition are the formal procedure parameters (or formals). The two are linked
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using an association list, which may use either positional or named association
(association works just as it does for ports—see Section 10.7.1):

procedure_call statement ::= [10.28]
[label:] procedure name [(parameter association list)}];

Here is an example:

package And Pkg is
procedure V_And(a, b : BIT; signal c : out BIT);
function V And(a, b : BIT) return BIT;

end;

package body And Pkg is
procedure V_And(a, b : BIT; signal c: out BIT) is
begin c <= a and b; end;
function V_And(a, b: BIT) return BIT is
begin return a and b; end;
end And Pkg;

use work.And Pkg.all; entity Proc Call 1 is end;

architecture Behave of Proc _Call 1 is sigmal A, B, Y: BIT := '0’;
begin process begin V_And (A, B, Y); wait; end process;

end;

Table 10.13 on page 416 explains the rules for formal procedure parameters.
There is one other way to call procedures, which we shall cover in Section 10.13.3.

10.10.5 If Statement

An if statement evaluates one or more Boolean expressions and conditionally exe-
cutes a corresponding sequence of statements [ VHDL LRMS.7].

if statement ::= [10.29]
[if label:] if boolean expression then {sequential_ statement}
{éisif boolean expression then {sequential statement}}
[else {seguential_statement}]
end if [if label];

The simplest form of an if statement is thus:

if boolean expression then {sequential statement} end if;

Here are some examples of the if statement:

entity If Then Else 1 is end;
architecture Behave of If Then Else 1 is signal a, b, c¢: BIT :='l";
begin process begin
if ¢ = '1' then ¢ <= a ; else ¢ <= b; end if; wait;
end process;
end;
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entity If Then 1 is end;
architecture Behave of If Then 1 is signal A, B, Y : BIT':=‘1';
begin process begin
if A = B then Y <= A; end if; wait;
end process;
end;

10.10.6 Case Statement

A case statement [VHDL LRMS.8] is a multiway decision statement that selects a
sequence of statements by matching an expression with a list of (locally static
[VHDL LRM7.4.1]) choices.

case_statement ::= [10.30]
[case label:] case expression is

when choice {| choice} => {sequential statement}

{when choice {| choice} => {sequential statement}}

end case [case label];

Case statements are useful to model state machines. Here is an example of a
Mealy state machine with an asynchronous reset:

library IEEE; use IEEE.STD_LOGIC_1164.all; -1
entity sm mealy is ] -2
port (reset, clock, il, i2 : STD LOGIC; ol, 02 : out STD LOGIC); --3
end sm_mealy; -4
architecture Behave of sm mealy is --5
type STATES is (s0, sl, s2, s3); signal current, new : STATES; -6
begin -7
synchronous : process (clock, reset) begin -—8
if To X0l(reset) = '0' then current <= s0; --9
elsif rising edge(clock) then current <= new; end if; --10
end process; --11
combinational : process (current, il, i2) begin —--12
case current is --13
when s0 => --14
if To X01(il) = '1' then 02 <='0'; ol <='0"'; new <= 82; --15

else 02 <= '1'; 0l <= '1'; new <= sl; end if; --16
when sl => —17
if To _X01(i2) = '1' then 02 <='1l'; ol <='0'; new <= sl; --18

else 02 <='0'; ol <='1'; new <= g3; end if; --19

when s2 => —-—20
if To X01(i2) = *'1' then 02 <='0'; ol <='1'; new <= s2; --21

else 02 <= '1'; o0l <= '0'; new <= s0; end if; --22
when s3 => 02 <= '0'; 0l <= '0'; new <= s0; --23
when others => 02 <= '0'; 0ol <= '0'; new <= s0; ——24
end case; --25
end process; --26
end Behave; =27
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Each possible value of the case expression must be present once, and once only,
in the list of choices (or arms) of the case statement (the list must be exhaustive).
You can use '|' (that means 'or') or 'to' to denote a range in the expression for
choice. You may also use the keyword others as the last, default choice (even if
the list is already exhaustive, as in the preceding example).

10.10.7 Other Sequential Control Statements

A loop statement repeats execution of a series of sequential statements [VHDL
LRMS.9]:

loop_statement ::= [10.31]
[loop label:}
[while boolean expression|for identifier in discrete range]
loop
{sequential_statement}
end loop [loop label};

If the loop variable (after the keyword for) is used, it is only visible inside the
loop. A while loop evaluates the Boolean expression before each execution of the
sequence of statements; if the expression is TRUE, the statements are executed. In a
for loop the sequence of statements is executed once for each value of the discrete
range.

package And Pkg is function V_And(a, b : BIT) return BIT; end;

package body And Pkg is function V_And(a, b : BIT) return BIT is
begin return a and b; end; end And_ Pkg;

entity Loop 1 is port (%, y : in BIT := 'l*; s : out BIT := '0'); end;
use work.And Pkg.all;
architecture Behave of Loop_ 1 is
begin loop
s <= V_And(x, y); wait on X, y;
end loop;
end;

The next statement [VHDL LRMS.10] forces completion of the current itera-
tion of a loop (the containing loop unless another loop label is specified). Comple-
tion is forced if the condition following the keyword then is TRUE (or if there is no
condition).

next statement ::= [10.32]
[label:] next [loop_label] [when boolean expression];
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An exit statement [VHDL LLRMS.11] forces an exit from a loop.

exit statement ::= [10.33]
[label:] exit [loop label] [when condition] ;

As an example:

loop wait on Clk; exit when Clk = '0'; end loop;
-- equivalent to: wait until Clk = '0°;

The return statement [VHDL LRMS8.12] completes execution of a procedure
or function.

return_statement ::= [label:] return [expression]; [10.34]

A null statement [VHDL LRMS.13] does nothing (but is useful in a case
statement where all choices must be covered, but for some of the choices you do not
want to do anything).

null statement ::= [label:] null; [10.35]

10.11 Operators

Table 10.16 shows the predefined VHDL operators, listed by their (increasing)
order of precedence [VHDL 93LRM7.2]. The shift operators and the xnor operator
were added in VHDL-93.

TABLE 10.16 VHDL predefined operators (listed by increasing order of precedence). 1

logical operator? ::= and | or | nand | nor | xor | xnor
relational operator ::= = /= <] <=1]>]|>=
shift operatot ::= sll | srl | sla | sra | rol | ror

adding operator ::= + ] -] &
sign s:= + | -
multiplying operator ::= * | / | mod | rem

miscellaneous_operator ::= ** | abs | not

"The not operator is a logical operator but has the precedence of a miscellaneous operator.
2Underline means “new to VHDL-93”
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The binary logical operators (and, or, nand, nor, xor, xnor) and the unary
not logical operator are predefined for types BIT or BOOLEAN and one-dimensional
arrays whose element type is BIT or BOOLEAN. The operands must be of the same
base type for the binary logical operators and the same length if they are arrays.

Both operands of relational operators must be of the same type and the result
type is BOOLEAN. The equality operator and inequality operator ('=' and '/=") are
defined for all types (other than file types). The remaining relational operators,
ordering operators, are predefined for any scalar type, and for any one-dimensional
array whose elements are of a discrete type (enumeration or integer type).

The left operand of the shift operators (VHDL-93 only) is a one-dimensional
array with element type of BIT or BOOLEAN; the right operand must be INTEGER.

The adding operators ('+' and '—') are predefined for any numeric type. You
cannot use the adding operators on BIT or BIT VECTOR without overloading. The
concatenation operator '&' is predefined for any one-dimensional array type. The
signs ('+' and ' -') are defined for any numeric type.

The multiplying operators are: '*', ' /', mod, and rem. The operators ' *' and
/' are predefined for any integer or floating-point type, and the operands and the
result are of the same type. The operators mod and rem are predefined for any inte-
ger type, and the operands and the result are of the same type. In addition, you can
multiply an INTEGER or REAL by any physical type and the result is the physical
type. You can also divide a physical type by REAL or INTEGER and the result is the
physical type. If you divide a physical type by the same physical type, the result is
an INTEGER (actually type UNIVERSAL INTEGER, which is a predefined anony-
mous type [VHDL LRM7.5]). Once again—you cannot use the multiplying opera-
tors on BIT or BIT VECTOR types without overloading the operators.

The exponentiating operator, ' ** ' is predefined for integer and floating-point
types. The right operand, the exponent, is type INTEGER. You can only use a nega-
tive exponent with a left operand that is a floating-point type, and the result is the
same type as the left operand. The unary operator abs (absolute value) is pre-
defined for any numeric type and the result is the same type. The operators abs,
"=+ and not are grouped as miscellaneous operators.

Here are some examples of the use of VHDL operators:

entity Operator 1 is end; architecture Behave of Operator 1 is ~~1
begin process --2
variable b : BOOLEAN; wvariable bt : BIT := 'l'; variable i : INTEGER;--3
variable pi : REAL := 3.14; variable epsilon : REAL := 0.01; ——q
variable bv4 : BIT VECTOR (3 downto 0) := "(0001"; --5
variable bv8 : BIT VECTOR (0 to 7); )
begin -7
b 1= "0000" < bv4d; -— b is TRUE, "0000" treated as BIT VECTOR. -8
b 1= £ > ‘g’ -- b is FALSE, ‘dictionary' comparison. ~=9
bt := '0' and bt; —-— bt is '0', analyzer knows '0' is BIT. --10
bv4 := not bvié; -— bv4d is now "1110". --11
i =1 + 2; ~— Addition, must be compatible types. --12
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i = 2 ** 33 -- Exponentiation, exponent must be integer. --13
i = 7/3; —— Division, L/R rounded towards zero, i=2. --14
i := 12 rem 7; -—- Remainder, i=5. In general: --15

--— L rem R = L-((L/R)*R). --16
i := 12 mod 7; -- modulus, i=5. In general: --17

-— L mod R = L-(R*N) for an integer N. --18
-— shift := sl11 | srl | sla | sra | rol | ror (VHDL-93 only) --19
bv4 := "1001" srl 2; -- Shift right logical, now bv4="0100". --20
-- Logical shift fills with T'LEFT. --21
bvd := "1001" sra 2; -- Shift right arithmetic, now bv4="0111". -—22
-- Arithmetic shift fills with element at end being vacated. --23
bv4 := "1001" ror 2; ~-- Rotate right, now bv4="0110". -—24
-— Rotate wraps around. ~=~25
-~ Integer argument to any shift operator may be negative or zero. --26
if (pi*2.718)/2.718 = 3.14 then wait; end if; -~ This is unreliable.--27
if (abs(((pi*2.718)/2.718)-3.14)<epsilon) then wait; end if; -- Better.--28
bv8 := bv8(l1 to 7) & bv8(0); -- Concatenation, a left rotation. --29
wait; end process; —~=30
end; --31

10.12 Arithmetic

The following example illustrates type checking and type conversion in VHDL
arithmetic operations [VHDL 931L.RM7.3.4-7.3.5]:

entity Arithmetic_l is end; architecture Behave of Arithmetic 1 is --1
begin process
variable i : INTEGER := 1; variable r : REAL := 3.33; -2
variable b : BIT := '1'; --3
variable bv4 : BIT VECTOR (3 downto 0) := "0001"; --4
variable bv8 : BIT VECTOR (7 downto 0) := B"1000_0000"; --5
begin -6
- i = 1; -— you can't assign REAL to INTEGER. -7
- bvd := bvd + 2; -— you can't add BIT VECTOR and INTEGER. --8
- bvd := '1'; -— you can't assign BIT to BIT VECTOR. --9
- bv8 := bvi: -— an error, the arrays are different sizes.--10
r := REAL(1i); -— OK, uses a type conversion. -=11
i := INTEGER(r); ~-~ OK (0.5 rounds up or down). —-=12
bvd = "001" & '1°*; -— OK, you can mix an array and a scalar. --13
bv8 := "0001" & bv4; -— OK, if arguments are the correct lengths.--14
wait; end process; end; ~-15

448



10.12  ARITHMETIC

The next example shows arithmetic operations between types and subtypes, and
also illustrates range checking during analysis and simulation:

entity Arithmetic_2 is end; architecture Behave of Arithmetic 2 is -1
type TC is range 0 to 100; -—- Type INTEGER. -2
type TF is range 32 to 212; ~~ Type INTEGER. -=3
subtype STC is INTEGER range 0 to 100; -- Subtype of type INTEGER. --4
subtype STF is INTEGER range 32 to 212; ~- Base type is INTEGER. --5
begin process -=6
variable tl1 : TC := 25; variable t2 : TF := 32; ~=7
variable stl : STC := 25; variable st2 : STF := 32; --8
begin --9
—— t1 1= t2; —--— Illegal, different types. --10
- tl := stl; -- Illegal, different types and subtypes. ~--11

st2 := stl; -— OK to use same base types. --12

st2 = stl + 1; —--— OK to use subtype and base type. --13
- st2 := 213; —-- Error, outside range at analysis time. ~-14
- st2 := 212 + 1; -- Error, outside range at analysis time. --15

stl := stl + 100; -- Brror, outside range at initialization. --16

wait; end process; end;

The MTI simulator, for example, gives the following informative error message
during simulation of the preceding model:

# ** Fatal: Value 25 is out of range 32 to 212
¥ Time: 0 ns Iteration: 0 Instance:/

# Stopped at Arithmetic 2.vhd line 12

# Fatal error at Arithmetic_2.vhd line 12

The assignment st2 := st1 causes this error (since st1 is initialized to 25).
Operations between array types and subtypes are a little more complicated as
the following example illustrates:

entity Arithmetic_3 is end; architecture Behave of Arithmetic_3 is -=1
type TYPE_1 is array (INTEGER range 3 downto 0) of BIT; -=2
type TYPE 2 is array (INTEGER range 3 downto 0) of BIT; -=3
subtype SUBTYPE 1 is BIT_VECTOR (3 downto 0); —-—4
subtype SUBTYPE 2 is BIT VECTOR (3 downto 0); -=5
begin process --6
variable bv4 : BIT VECTOR (3 downto 0) := "0001"; -7
variable stl : SUBTYPE 1 := "0001"; variable tl1l : TYPE 1 := "0001"; --8
variable st2 : SUBTYPE 2 := "0001"; variable t2 : TYPE 2 := "0061"; ~-9
begin --10

bvd := stl; -- OK, compatible type and subtype. -=11
—— bvd := tl1; -- Illegal, different types. --12

bv4 := BIT VECTOR(tl); -- OK, type conversion. -=13

stl := bv4; -- OK, compatible subtype and base type.--14
- stl := tl; —-- Illegal, different types. --15

stl := SUBTYPE 1(tl); -~ OK, type conversion. ~--16
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- tl = stl; ~-- Illegal, different types. --17
- tl := bv4; -~ Illegal, different types. ~--18
tl := TYPE 1(bvd); -— OK, type conversion. --19
- tl = t2; -- Illegal, different types. --20
tl := TYPE 1(t2); -- OK, type conversion. --21
stl := st2; -— OK, compatible subtypes. --22
wait; end process; end; --23

The preceding example uses BIT and BIT VECTOR types, but exactly the same
considerations apply to STD LOGIC and STD LOGIC_ VECTOR types or other arrays.
Notice the use of type conversion, written as type mark' (expression), to con-
vert between closely related types. Two types are closely related if they are abstract
numeric types (integer or floating-point) or arrays with the same dimension, each
index type is the same (or are themselves closely related), and each element has the
same type [VHDL 93LRM?7.3.5].

10.12.1 IEEE Synthesis Packages

The IEEE 1076.3 standard synthesis packages allow you to perform arithmetic on
arrays of the type BIT and STD_LOGIC.3 The NUMERIC BIT package defines all of
the operators in Table 10.16 (except for the exponentiating operator * ** ') for arrays
of type BIT. Here is part of the package header, showing the declaration of the two
types UNSIGNED and SIGNED, and an example of one of the function declarations
that overloads the addition operator ' +' for UNSIGNED arguments:

package Part NUMERIC BIT is

type UNSIGNED is array (NATURAL range <> ) of BIT;

type SIGNED is array (NATURAL range <> ) of BIT;

function "+" (L, R : UNSIGNED) return UNSIGNED;

-—- other function definitions that overload +, -, = , >, and so on.
end Part NUMERIC_ BIT;

The package bodies included in the 1076.3 standard define the functionality of
the packages. Companies may implement the functions in any way they wish—as
long as the results are the same as those defined by the standard. Here is an example
of the parts of the NUMERIC BIT package body that overload the addition operator
'+ for two arguments of type UNSIGNED (even with my added comments the code
is rather dense and terse, but remember this is code that we normally never see or
need to understand):

package body Part_ NUMERIC BIT is
constant NAU : UNSIGNED(O downto 1) := (others =>'0'); -- Null array.

SIEEE Std 1076.3-1997 was approved by the IEEE Standards Board on 20 March 1997. The
synthesis package code on the following pages is reprinted with permission from IEEE Std
1076.3-1997, Copyright © 1997 IEEE. All rights reserved.
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constant NAS : SIGNED(0 downto 1):=(others => '0'); -- Null array.
constant NO WARNING : BOOLEAN := FALSE; -- Default to emit warnings.

function MAX (LEFT, RIGHT : INTEGER) return INTEGER is
begin -- Internal function used to find longest of two inputs.
if LEFT > RIGHT then return LEFT; else return RIGHT; end if; end MAX;

function ADD UNSIGNED (L, R : UNSIGNED; C: BIT) return UNSIGNED is

constant L LEFT : INTEGER := L'LENGTH-1; -- L, R must be same length.
alias XL : UNSIGNED(IL_LEFT downto 0) is L; -- Descending alias,

alias XR : UNSIGNED(L LEFT downto 0) is R; -~ aligns left ends.
variable RESULT : UNSIGNED(L LEFT downto 0); variable CBIT : BIT := C;
begin for I in 0 to L _LEFT loop -- Descending alias allows loop.
RESULT(I) := CBIT xor XL(I) xor XR(I); -- CBIT = carry, initially = C.
CBIT := (CBIT and XL(I)) or (CBIT and XR(I)) or (XL(I) and XR(I));

end loop; return RESULT; end ADD UNSIGNED;

function RESIZE (ARG : UNSIGNED; NEW SIZE : NATURAL) return UNSIGNED is

constant ARG_LEFT : INTEGER := ARG'LENGTH-1;
alias XARG : UNSIGNED(ARG_LEFT downto 0) is ARG; -- Descending range.
variable RESULT : UNSIGNED(NEW SIZE-1 downto Q) := (others => '0');
begin -- resize the input ARG to length NEW SIZE
if (NEW_SIZE < 1) then return NAU; end if; -- Return null array.
if XARG'LENGTH = 0 then return RESULT; end if; -~ Null to empty.
if (RESULT'LENGTH < ARG'LENGTH) then -~ Check lengths.
RESULT (RESULT'LEFT downto 0) := XARG(RESULT'LEFT downto 0);
else —-- Need to pad the result with some '0's.
RESULT(RESULT 'LEFT downto XARG'LEFT + 1) := (others => '0');
RESULT(XARG'LEFT downto 0) := XARG;
end if; return RESULT;
end RESIZE;
function "+" (L, R : UNSIGNED) return UNSIGNED is -- Overloaded '+'.
constant SIZE : NATURAL := MAX(L'LENGTH, R'LENGTH);
begin -- If length of L or R < 1 return a null array.
if ((L"LENGTH < 1) or (R'LENGTH < 1)) then return NAU; end if;
return ADD UNSIGNED(RESIZE(L, SIZE), RESIZE(R, SIZE), '0'); end "+";

end Part NUMERIC BIT;

The following conversion functions are also part of the NUMERIC BIT package:

function TO INTEGER (ARG : UNSIGNED) return NATURAL;

function TO_INTEGER (ARG : SIGNED) return INTEGER;

function TO UNSIGNED (ARG, SIZE : NATURAL) return UNSIGNED;

function TO SIGNED (ARG : INTEGER; SIZE : NATURAL) return SIGNED;
function RESIZE (ARG : SIGNED; NEW_SIZE : NATURAL) return SIGNED;
function RESIZE (ARG : UNSIGNED; NEW _SIZE : NATURAL) return UNSIGNED;
-— set XMAP to convert unknown values, default is 'X'->'0°

function TO_01(S : UNSIGNED; XMAP : STD LOGIC := '(Q’') return UNSIGNED;
function TO_01(S : SIGNED; XMAP : STD LOGIC := '0') return SIGNED;
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The NUMERIC STD package is almost identical to the NUMERIC BIT package
except that the UNSIGNED and SIGNED types are declared in terms of the
STD LOGIC type from the Std_Logic 1164 package as follows:

library IEEE; use IEEE.STD _LOGIC_1164.all;

package Part NUMERIC STD is

type UNSIGNED is array (NATURAL range <>) of STD LOGIC;
type SIGNED is array (NATURAL range <>) of STD_LOGIC;
end Part NUMERIC_ STD;

The NUMERIC STD package body is similar to NUMERIC BIT with the addition
of a comparison function called STD MATCH, illustrated by the following:

-— function STD _MATCH (L, R: T) return BOOLEAN;
-- T = STD_ULOGIC UNSIGNED SIGNED STD;LOGIC_VECTOR STD_ULOGIC VECTOR

The sTD_MATCH function uses the following table to compare logic values:

type BOOLEAN TABLE is array(STD_ULOGIC, STD ULOGIC) of BOOLEAN;
constant MATCH TABLE : BOOLEAN TABLE := (

(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE , FALSE, FALSE, TRUE), -- |
(FALSE,FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), —- |
(FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE,FALSE, TRUE), -- |
(FALSE,FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE, TRUE), -- |
(FALSE,FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), -- |
(FALSE,FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), —-- |
(FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE,FALSE, TRUE), -- |
(FALSE,FALSE,FALSE, TRUE,FALSE,FALSE,FALSE, TRUE, TRUE), —- |
( TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE));-- |

I
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Thus, for example (notice we need type conversions):

IM TRUE = STD MATCH(STD LOGIC_ VECTOR ("10HLXWZ-"),
STD_LOGIC_VECTOR ("HL10----")) -- is TRUE

The following code is similar to the first simple example of Section 10.1, but
illustrates the use of the Std_Logic_ 1164 and NUMERIC_STD packages:

entity Counter 1 is end; -1
library STD; use STD.TEXTIO.all; -2
library IEEE; use IEEE.STD_LOGIC_1164.all; -=3

use work.NUMERIC STD.all; -4

architecture Behave 2 of Counter 1 is ]
signal Clock : STD LOGIC := '0'; -6
signal Count : UNSIGNED (2 downto 0) := "000"; ~=7
begin --8
process begin --9

wait for 10 ns; Clock <= not Clock; --10
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if (now > 340 ns) then wait; ~=11
end if; =12
end process; -~13
process begin ~--14
wait until (Clock = '0'); -~15
if (Count = 7) --16
then Count <= "000"; --17

else Count <= Count + 1; --18

end if; ~-19
end process; --20
process (Count) variable L: LINE; begin write(L, now); --21
write(L, STRING' (" Count=")); write(L, TO_INTEGER(Count)); =22
writeline(output, L); --23
end process; --24
end; --25

The preceding code looks similar to the code in Section 10.1 (and the output is
identical), but there is more going on here:

° Line 3is a library clause and a use clause for the std_logic 1164 pack-
age, so you can use the STD_LOGIC type and the NUMERIC_STD package.

e Line 4 is a use clause for NUMERIC STD package that was previously ana-
lyzed into the library work. If the package is instead analyzed into the
library IEEE, you would use the name IEEE.NUMERIC STD.all here. The
NUMERIC_STD package allows you to use the type UNSIGNED.

* Line 6 declares Clock to be type STD LOGIC and initializes it to '0°',
instead of the default initial value STD_LOGIC'LEFT (whichis 'u").

* Line 7 declares Count to be a 3-bit array of type UNSIGNED from
NUMERIC_STD and initializes it using a bit-string literal.

* Line 10 uses the overloaded 'not' operator from std_logic 1164.
* Line 15 uses the overloaded '=' operator from std_logic 1164.

¢ Line 16 uses the overloaded '=' operator from NUMERIC_ STD.

» Line 17 requires a bit-string literal, you cannot use Count <= 0 here.
* Line 18 uses the overloaded *+' operator from NUMERIC STD.

» Line 22 converts Count, type UNSIGNED, to type INTEGER.

10.13 Concurrent Statements

A concurrent statement [VHDL LRM9] is one of the following statements:

concurrent_ statement ::= [10.36]
block statement
| process_statement
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[ label : ] [ postponed ] procedure call ;

[ label : ] [ postponed ] assertion ;

[ label : }

[ label : ] [ postponed ] selected signal_assignment

[ postponed ] conditional signal assignment

component instantiation_ statement

l
|
|
|
|
| generate statement

(The presence of the semicolons ‘; ’ in some lines and absence in others in the pre-
ceding is correct.) The following sections describe each of these statements in turn.

10.13.1 Block Statement
A block statement has the following format [VHDL LRM9.1]:

block statement ::= [10.37]
block label: block [(guard_expression)] [is]
[generic (generic interface list);
[generic map (generic_association list);]]
[port (port interface list);
[port map (port_association list);]]
{block declarative item}
begin
{concurrent statement}
end block [block label] ;

Blocks may have their own ports and generics and may be used to split an archi-
tecture into several hierarchical parts (blocks can also be nested). As a very general
rule, for the same reason that it is better to split a computer program into separate
small modules, it is usually better to split a large architecture into smaller separate
entity—architecture pairs rather than several nested blocks.

A block does have a unique feature: It is possible to specify a guard expression
for a block. This creates a special signal, GUARD, that you can use within the block to
control execution [VHDL LRM9.5]. It also allows you to model three-state buses by
declaring guarded signals (signal kinds register and bus).

When you make an assignment statement to a signal, you define a driver for
that signal. If you make assignments to guarded signals in a block, the driver for that
signal is turned off, or disconnected, when the GUARD signal is FALSE. The use of
guarded signals and guarded blocks can become quite complicated, and not all syn-
thesis tools support these VHDL features.
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The following example shows two drivers, A and B, on a three-state bus
TSTATE, enabled by signals OEA and OEB. The drivers are enabled by declaring a
guard expression after the block declaration and using the keyword guarded in the
assignment statements. A disconnect statement [VHDL LRMS5.3] models the driver
delay from driving the bus to the high-impedance state (time to “float”).

library ieee; use ieee.std logic_1164.all;
entity bus_drivers is end;

architecture Structure_ 1l of bus_drivers is

signal TSTATE: STD_LOGIC bus; signal A, B, OEA, OEB : STD _LOGIC:= '0';
begin

process begin OEA <= '1' after 100 ns, '0' after 200 ns;

OEB <= '1' after 300 ns; wait; end process;

Bl : block (OEA = '1')

disconnect all : STD LOGIC after 5 ns; -- Only needed for float time.
begin TSTATE <= guarded not A after 3 ns; end block;
B2 : block (OEB = '1'")
disconnect all : STD_LOGIC after 5 ns; -- Float time = 5 ns.
begin TSTATE <= guarded not B after 3 ns; end block;
end;
1 2 3 4 5 6 7
Time(fs) + Cycle tstate a b oea oeb bl.GUARD b2.GUARD
0+ O: ‘g ‘0 ‘o o 'O FALSE FALSE
0+ 1: * 'z 'O ‘0 0 0! FALSE FALSE
100000000+ O: g2 0 'O o*r1r Q% TRUE FALSE
103000000+ Qs * *1* '0* 'O* r1* 0 TRUE FALSE
200000000+ O: *1* 'O '0* *'0' '0' * FALSE FALSE
200000000+ 1: * 'Z* '0' *'O* 0" '0° FALSE FALSE
300000000+ O: 'z 0 0 0 *r1 FALSE * TRUE
303000000+ 0: * *1* Q' 'O' 0" 1 FALSE TRUE

Notice the creation of implicit guard signals b1.GUARD and b2 .GUARD for each
guarded block. There is another, equivalent, method that uses the high-impedance
value explicitly as in the following example:

architecture Structure 2 of bus drivers is
signal TSTATE : STD_LOGIC; signal A, B, OEA, OEB : STD_LOGIC = '0';
begin
process begin
OBA <= '1' after 100 ns, '0' after 200 ns; OEB <= '1' after 300 ns;
wait; end process;
process (OEA, OEB, A, B) begin
if (OEA = '1') then TSTATE <= not A after 3 ns;
elsif (OEB = 'l') then TSTATE <= not B after 3 ns;
else TSTATE <= 'Z' after 5 ns;
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end if;
end process;
end;

This last method is more widely used than the first, and what is more important,
more widely accepted by synthesis tools. Most synthesis tools are capable of recog-
nizing the value 'z* on the RHS of an assignment statement as a cue to synthesize a
three-state driver. It is up to you to make sure that multiple drivers are never enabled
simultaneously to cause contention.

10.13.2 Process Statement
A process statement has the following format [VHDL LRMO9.2]:

process_statement ::= [10.38]
[process_label:]
[postponed] process [(signal name {, signal_name})]
[is] {subprogram declaration | subprodram;body
| type declaration | subtype declaration
| constant declaration | variable declaration
| file declaration | alias_declaration
| attribute_declaration | attribute specification
| use_clause
| group declaration | group template declaration}

begin
{sequential statement}
end [postponed] process [process_label];

The following process models a 2:1 MUX (combinational logic):

entity Mux 1 is port (i0, il, sel : in BIT := '0'; y : out BIT); end;
architecture Behave of Mux 1 is
begin process (i0, il, sel) begin -- i0, il, sel = sensitivity set
case sel is when '0' => y <= i0; when 'l' => y <= il; end case;
end process; end;

This process executes whenever an event occurs on any of the signals in the process
sensitivity set (10, i1, sel). The execution of a process occurs during a simula-
tion cycle—a delta cycle. Assignment statements to signals may trigger further delta
cycles. Time advances when all transactions for the current time step are complete
and all signals updated.

The following code models a two-input AND gate (combinational logic):
entity And 1 is port (a, b : in BIT := '0'; y : out BIT); end;
architecture Behave of And 1 is
begin process (a, b) begin_y <= a and b; end process; end;

The next example models a D flip-flop (sequential logic). The process state-
ment is executed whenever there is an event on clk. The if statement updates the
output g with the input d on the rising edge of the signal clk. If the if statement
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condition is false (as it is on the falling edge of c1k), then the assignment statement
g <= d will not be executed, and g will keep its previous value. The process thus
requires the value of g to be stored between successive process executions, and this
implies sequential logic.
entity FF_1 is port (clk, d: in BIT := '0'; g : out BIT); end;
architecture Behave of FF 1 is
begin process (clk) begin

if clk'EVENT and clk = 'l' then g <= d; end if;
end process; end;

The behavior of the next example is identical to the previous model. Notice that
the wait statement is at the end of the equivalent process with the signals in the
sensitivity set (in this case just one signal, clk) included in the sensitivity list (that
follows the keyword on).

entity FF 2 is port (clk, d: in BIT := '0'; g : out BIT); end;

architecture Behave of FF 2 is

begin process begin -- The equivalent process has a wait at the end:
if clk'event and clk = '1' then q <= d; end if; wait on clk;

end process; end;

If we use a wait statement in a process statement, then we may not use a
process sensitivity set (the reverse is true: If we do not have a sensitivity set for a
process, we must include a wait statement or the process will execute endlessly):

entity FF_3 is port (clk, d: in BIT := '0’'; g : out BIT); end;

architecture Behave of FF 3 is

begin process begin -- No sensitivity set with a wait statement.
wait until clk = '1'; g <= d;

end process; end;

If you include ports (interface signals) in the sensitivity set of a process
statement, they must be ports that can be read (they must be of mode in, inout, or
buffer, see Section 10.7).

10.13.3 Concurrent Procedure Call

A concurrent procedure call appears outside a process statement [VHDL
LRMS9.3]. The concurrent procedure call is a shorthand way of writing an equivalent
process statement that contains a procedure call (Section 10.10.4):

package And Pkg is procedure V_And(a,b:BIT; signal c:out BIT); end;

package body And Pkg is procedure V_And(a,b:BIT; signal c:out BIT) is
begin ¢ <= a and b; end; end And Pkg;

use work.And Pkg.all; entity Proc_Call 2 is end;
architecture Behave of Proc_Call 2 is signal A, B, Y : BIT := '0';
begin V_And (A, B, Y); ~-- Concurrent procedure call.

457

441



442

CHAPTER 10

VHDL

process begin wait; end process; -- Extra process to stop.
end;

10.13.4 Concurrent Signal Assignment

There are two forms of concurrent signal assignment statement. A selected signal

assignment statement is equivalent to a case statement inside a process state-
ment [VHDL LRM9.5.2]:

selected signal assignment ::= [10.39]
with expression select
name|aggregate <= [guarded]
[transport|[reject time expression] inertial]

waveform when choice_kl choice}
{, waveform when choice {| choice} } ;

The following design unit, Selected 1, uses a selected signal assignment. The
equivalent unit, Selected 2, uses a case statement inside a process statement.

entity Selected 1 is end; architecture Behave of Selected 1 is
signal y,il,i2 : INTEGER; signal sel : INTEGER range 0 to 1;
begin with sel select y <= il when 0, i2 when 1; end;

entity Selected 2 is end; architecture Behave of Selected 2 is
signal il,i2,y : INTEGER; signal sel : INTEGER range 0 to 1;
begin process begin
case sel is when 0 => y <= il; when 1 => y <= i2; end case;
wait on il, i2;
end process; end;

The other form of concurrent signal assignment is a conditional signal assign-
ment statement that, in i1ts most general form, is equivalent to an if statement
inside a process statement [VHDL LRM9.5.1]:

conditional signal assignment ::= [10.40]
name|aggregate <= [guarded]
[transport]|[reject time expression] inertial]
{waveform when boojeanﬁexpression else}
waveform [when boolean expression];

Notice that in VHDL-93 the else clause is optional. Here is an example of a
conditional signal assignment, followed by a model using the equivalent process
with an if statement:

entity Conditional_ 1 is end; architecture Behave of Conditional 1 is
signal y,i,Jj : INTEGER; signal clk : BIT;

begin y <= i when clk = '1' else j; -- conditional signal assignment
end;

entity Conditional 2 is end; architecture Behave of Conditional 2 is
signal y,i : INTEGER; signal clk : BIT;
begin process begin
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if clk = '1l' then y <= i; else y <=y ; end if; wait on clk;
end process; end;

A concurrent signal assignment statement can look just like a sequential signal
assignment statement, as in the following example:

entity Assign 1 is end; architecture Behave of Assign 1 is
signal Target, Source : INTEGER;

begin Target <= Source after 1 ns; -- looks like signal assignment
end;

However, outside a process statement, this statement is a concurrent signal assign-
ment and has its own equivalent process statement. Here is the equivalent process
for the example:

entity Assign_2 is end; architecture Behave of Assign 2 is
signal Target, Source : INTEGER;
begin process begin
Target <= Source after 1 ns; wait on Source;
end process; end;

Every process is executed once during initialization. In the previous example,
an 1initial value will be scheduled to be assigned to Target even though there is no
event on Source. If, for some reason, you do not want this to happen, you need to
rewrite the concurrent assignment statement as a process statement with a wait
statement before the assignment statement:

entity Assign 3 is end; architecture Behave of Assign 3 is
signal Target, Source : INTEGER; begin process begin

wait on Source; Target <= Source after 1 ns;
end process; end;

10.1 35 Concurrent Assertion Statement

A concurrent assertion statement is equivalent to a passive process statement
(without a sensitivity list) that contains an assertion statement followed by a
wait statement [VHDL LRM9.4].

concurrent assertion_statement [10.41]
::= [ label : ] [ postponed ] assertion ;

If the assertion condition contains a signal, then the equivalent process
statement will include a final wait statement with a sensitivity clause. A concurrent
assertion statement with a condition that is static expression is equivalent to a
process statement that ends in a wait statement that has no sensitivity clause. The
equivalent process will execute once, at the beginning of simulation, and then wait
indefinitely.
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10.13.6 Component Instantiation

A component instantiation statement in VHDL is similar to placement of a compo-
nent in a schematic—an instantiated component is somewhere between a copy of the
component and a reference to the component. Here is the definition [VHDL LRM9.6]:

component instantiation statement ::= [10.42]
instantiation_label:

[component] component name

|entity entity name [(architecture identifier)]

lconfiguration_configuration name
[generic map (generic_association_list)]
[port map (port_association_list)] ;

We examined component instantiation using a component name in
Section 10.5. If we instantiate a component in this way we must declare the compo-
nent (see BNF [10.9]). To bind a component to an entity—architecture pair we can
use a configuration, as illustrated in Figure 10.1, or we can use the default binding
as described in Section 10.7. In VHDL-93 we have another alternative—we can
directly instantiate an entity or configuration. For example:

entity And 2 is port (il, i2 : in BIT; y : out BIT); end;
architecture Behave of And 2 is begin y <= il and i2; end;
entity Xor 2 is port (il, i2 : in BIT; y : out BIT); end;
architecture Behave of Xor 2 is begin y <= il xor i2; end;

entity Half Adder 2 is port (a,b : BIT := '0’'; sum, cry : out BIT); end;
architecture Netlist 2 of Half Adder 2 is
use work.all; -- need this to see the entities Xor 2 and And 2
begin
X1 : entity Xor 2(Behave) port map (a, b, sum); -- VHDL-93 only
Al : entity And 2(Behave) port map (a, b, cry); -—- VHDL-93 only
end;

10.13.7 Generate Statement
A generate statement [VHDL LRM9.7] simplifies repetitive code:

generate_statement ::= [10.43]}
generate_label: for generate parameter_ specification

|if boolean_ expression
generate [{block declarative item} begin]

{concurrent_séétement}
end generate [generate label] ;

Here is an example (notice the labels are required):

entity Full Adder is port (X, Y, Cin : BIT; Cout, Sum: out BIT); end;
architecture Behave of Full_Adder is begin Sum <= X xor Y xor Cin;
Cout <= (X and Y) or (X and Cin) or (Y and Cin); end;
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entity Adder 1 is
port (A, B : in BIT VECTOR (7 downto 0) := (others => '0');
Cin : in BIT := 'Q’'; Sum : out BIT VECTOR (7 downto 0);
Cout : ocut BIT);

end;

architecture Structure of Adder 1 is use work.all;

component Full Adder port (X, Y, Cin: BIT; Cout, Sum: out BIT);
end component;
signal C : BIT VECTOR(7 downto 0);
begin AllBits : for i in 7 downto 0 generate
LowBit : if i = 0 generate
FA : Full Adder port map (A(0), B(0), Cin, C(0), Sum(0));
end generate;
OtherBits : if i /= 0 generate
FA : Full Adder port map (A(i), B(i), C(i-1), C(i), Sum(i));
end generate;
end generate;
Cout <= C(7);
end;

The instance names within a generate loop include the generate parameter.
For example for i=6, FA' INSTANCE NAME is

:adder_1l(structure):allbits(6):otherbits:fa:

10.14 Execution

Two successive statements may execute in either a concurrent or sequential fashion
depending on where the statements appear.

statement 1; statement 2;

In sequential execution, statement 1 in this sequence is always evaluated before
statement 2. In concurrent execution, statement 1 and statement 2 are
evaluated at the same time (as far as we are concerned—obviously on most comput-
ers exactly parallel execution is not possible). Concurrent execution is the most
important difference between VHDL and a computer programming language. Sup-
pose we have two signal assignment statements inside a process statement. In this
case statement 1 and statement 2 are sequential assignment statements:

entity Sequential 1 is end; architecture Behave of Sequential 1 is

signal sl, s2 : INTEGER := 0;
begin
process begin
sl <= 1; -- sequential signal assignment 1
s2 <= sl + 1; -- sequential signal assignment 2

wait on sl, s2 ;
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end process;

end;
Time(fs) + Cycle sl s2
0+ 0: 0 0
O+ 1: * 1 * 1
0+ 2: * 1 =* 2
0+ 3: * 1 * 2

If the two statements are outside a process statement they are concurrent
assignment statements, as in the following example:

entity Concurrent 1 is end; architecture Behave of Concurrent_l is

signal sl1, s2 : INTEGER := 0; begin
L1 : sl <= 1; -- concurrent signal assignment 1
L2 : s2 <= sl + 1; -- concurrent signal assignment 2
end;
Time(fs) + Cycle sl s2
0+ 0: 0
0+ 1: * 1 = 1
0+ 2: 1 *

The two concurrent signal assignment statements in the previous example are
equivalent to the two processes, labeled as P1 and P2, in the following model.

entity Concurrent 2 is end; architecture Behave of Concurrent 2 is

signal sl, s2 : INTEGER := 0; begin
Pl : process begin sl <= 1; wait on s2 ; end process;
P2 : process begin s2 <= sl + 1; wait on sl ; end process;
end;
Time(fs) + Cycle sl s2
0+ 0: 0 0
0+ 1: * 1 * 1
0+ 2: =* 1 =* 2
0+ 3: * 1 2

Notice that the results are the same (though the trace files are slightly different)
for the architectures Sequential 1, Concurrent_1, and Concurrent 2.
Updates to signals occur at the end of the simulation cycle, so the values used will
always be the old values. So far things seem fairly simple: We have sequential exe-
cution or concurrent execution. However, variables are updated immediately, so the
variable values that are used are always the new values. The examples in
Table 10.17 illustrate this very important difference.

The various concurrent and sequential statements in VHDL are summarized in
Table 10.18.
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TABLE 10.17 Variables and signals in VHDL.

Variables Signals

entity Execute 1 is end;
architecture Behave of Execute_l is

entity Execute_2 is end;

architecture Behave of Execute 2 is

begin signal sl : INTEGER := 1;
process signal s2 : INTEGER := 2;
variable vl : INTEGER := 1; begin
variable v2 : INTEGER := 2; process
begin begin
vl := v2; -~ before: vl = 1, v2 = 2 sl <= s2; -- before: sl = 1, s2 =
v2 := vl; -- after: vl =2, v2 = 2 82 <= sgl; -- after: sl = 2, s2 =
wait; wait;
end process; end process;
end; end;
TABLE 10.18 Concurrent and sequential statements in VHDL.
Concurrent [VHDL LRM9] Sequential [VHDL LRMS8]
block wait case
process assertion loop
concurrent procedure_call signal_assignment next
concurrent assertion variable assignment exit
concurrent_ signal assignmen procedure call return
t if null
component_instantiation
generate

10.15 Configurations and Specifications

The difference between, the interaction, and the use of component/configuration
declarations and specifications is probably the most confusing aspect of VHDL. For-
tunately this aspect of VHDL is not normally important for ASIC design. The syntax
of component/configuration declarations and specifications is shown in
Table 10.19.

o A configuration declaration defines a configuration—it is a library unit and
is one of the basic units of VHDL code.

o A block configuration defines the configuration of a block statement or a
design entity. A block configuration appears inside a configuration declara-
tion, a component configuration, or nested in another block configuration.
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TABLE 10.19 VHDL binding.

configuration
declaration’
[VHDL LRM1.3]

configuration identifier of entity name is

{use_clause|attribute_specification|group declaration}
block configuration
end [configuration] [configuration identifier];

block
configuration
[VHDL LRM1.3.1]

for architecture name

|plock statement_ label

|generate_statement label [(index_specification)]
{use selected name {, selected name};}
{block_configuration}component_configuration}
end for ;

configuration
specification
[VHDL LRM5.2]

1

for
instantiation label{,instantiation_ label}:component name
|others:component name
|all:component name

[use

entity entity name [(architecture identifier)]
|configuration configuration name
|open]

[generic map (generic_association_list)]

[port map (port association_list)];

component

declaration®

[ VHDL. LRM4.5]

component identifier [is]
[generic (local generic_interface_list);]
[port (local port interface list);]

end component [component identifier];

component

configurationl

[VHDL LRM1.3.2]

for
instantiation label {, instantiation label}:component name
|others:component name
|all:component name
[[use
entity entity name [ (architecture identifier)]
|configuration configuration name
|open}
[generic map (generic_association list)]
[port map (port association list)];]
[block configuration]
end forf

TUnderline means “new to VHDL-93".
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* A configuration specification may appear in the declarative region of a gen-
erate statement, block statement, or architecture body.

* A component declaration may appear in the declarative region of a generate
statement, block statement, architecture body, or package.

» A component configuration defines the configuration of a component and
appears in a block configuration.

Table 10.20 shows a simple example (identical in structure to the example of
Section 10.5) that illustrates the use of each of the preceding constructs.
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TABLE 10.20 VHDL binding examples.

entity AD2 is port (Al, A2: in BIT; Y: out BIT); end;
architecture B of AD2 is begin Y <= Al and A2; end;
entity XR2 is port (X1, X2: in BIT; Y: out BIT); end;
architecture B of XR2 is begin Y <= X1 xor X2; end;

entity Half Adder is port (X, Y: BIT; Sum, Cout: out BIT); end;
architecture Netlist of Half Adder is use work.all;

component component MX port (A, B: BIT; Z :out BIT);end component;
decla?atlonl component MA port (A, B: BIT; Z :out BIT);end component;
configuration for Gl:MX use entity XR2(B) port map(Xl => A,X2 => B,Y => 7);
specification ,
begin
Gl:MX port map(X, Y, Sum); G2:MA port map(X, Y, Cout);
end;
configuration configuration Cl of Half Adder is
declaration use work.all;
block for Netlist
configuration for G2:MA
component use entity AD2(B) port map(Al => A,A2 => B,Y => 2);
configuration
end for;
end for;

end;

10.16 An Engine Controller

This section describes

part of a controller

an automobile

engine.

Table 10.21 shows a temperature converter that converts digitized temperature read-
ings from a sensor from degrees Centigrade to degrees Fahrenheit.

To save area the temperature conversion is approximate. Instead of multiplying
by 9/5 and adding 32 (so 0°C becomes 32°F and 100°C becomes 212°F) we multi-
ply by 1.75 and add 32 (so 100°C becomes 207°F). Since 1.75 =1 + 0.5 + 0.25, we
can multiply by 1.75 using shifts (for divide by 2, and divide by 4) together with a
very simple constant addition (since 32="100000"). Using shift to multiply and
divide by powers of 2 is free in hardware (we just change connections to a bus). For
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TABLE 10.21 A temperature converter.

library IEEE;

use IEEE.STD_LOGIC_1164.all; -- type STD_LOGIC, rising_edge
use IEEE.NUMERIC STD.all ; -~ type UNSIGNED, "+", VA
entity tconv is generic TPD : TIME:= 1 ns;

port (T : in UNSIGNED(11 downto 0);

T out : out UNSIGNED(1l downto 0));

T = temperature in °C
T out =temperature in °F

The conversion formula from

end; Centigrade to Fahrenheit is:
architecture rtl of tconv is T(°F) = (9/5)xT(°C)+ 32
constant T2 : UNSIGNED(l downto 0) := "10" ;

constant T4 : UNSIGNED(2 downto 0) := "100" This converter uses the
zonétant T32 : UNSIGNED(5 downto 0) := "100000" ; approximation:

egin

process(T) begin

T out <= T + T/T2 + T/T4 + T32 after TPD;

end process;
end rtl;

9/56=1.75=1+0.5+0.25

large temperatures the error approaches 0.05/1.8 or approximately 3 percent. We
play these kinds of tricks often in hardware computation. Notice also that tempera-
tures measured in °C and °F are defined as unsigned integers of the same width. We
could have defined these as separate types to take advantage of VHDL's type check-
ing.

Table 10.22 describes a digital filter to compute a “moving average” over four
successive samples in time (1(0), i(1), 1(2), and i(3), with 1(0) being the first
sample).

The filter uses the following formula:

T out <= ( i(0) + i(1) + i(2) + i(3) )/T4

Division by T4="100" is free in hardware. If instead, we performed the divi-
sions before the additions, this would reduce the number of bits to be added for two
of the additions and saves us worrying about overflow. The drawback to this
approach 1s round-off errors. We can use the register shown in Table 10.23 to regis-
ter the inputs.

Table 10.24 shows a first-in, first-out stack (FIFQO). This allows us to buffer
the signals coming from the sensor until the microprocessor has a chance to read
them. The depth of the FIFO will depend on the maximum amount of time that can
pass without the microcontroller being able to read from the bus. We have to deter-
mine this with statistical simulations taking into account other traffic on the bus.
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TABLE 10.22 A digital filter.

library IEEE;
use IEEE.STD LOGIC 1164.all; -- STD LOGIC type, rising_edge
use IEEE.NUMERIC STD.all; -~ UNSIGNED type, "+" and n/
entity filter is '
generic TPD :
port (T_in : in UNSIGNED(1l1l downto 0);
rst, clk : in STD LOGIC;
T out: out UNSIGNED(1ll downto 0));
end;

TIME := 1 ns;

architecture rtl of filter is
type arr is array (0 to 3) of UNSIGNED(1l1l downto 0);
signal i : arr ;

constant T4 : UNSIGNED(2 downto 0) := "100";
begin
process (rst, clk) begin
if (xrst = '1l') then
for n in 0 to 3 loop i(n) <= (others =>'0') after TPD;
end loop;
else

if(rising_edge(clk)) then
i(0) <= T _in after TPD;i(1l) <= i(0) after TPD;
i(2) <= i(1l) after TPD;i(3) <= i(2) after TPD;
end if;
end if;
end process;
process (i) begin
T out <= ( i(0) + i(l) + i(2) + i(3) )/T4 after TPD;
end process;
end rtl;

The filter computes a moving
average over four successive
samples in time.

Notice
1(0) i(1) i(2) i(3)
are each 12 bits wide.

Then the sum

i(0) + i(l) + i(2) + i(3)
is 14 bits wide, and the
average

( 1(0) + 1i(1) + i(2) +
i(3) )/T4

is 12 bits wide.

All delays are generic TPD.

The FIFO has flags, empty and full, that signify its state. It uses a function to
increment two circular pointers. One pointer keeps track of the address to write to
next, the other pointer tracks the address to read from. The FIFO memory may be
implemented in a number of ways in hardware. We shall assume for the moment that

it will be synthesized as a bank of flip-flops.

Table 10.25 shows a controller for the two FIFOs. The controller handles the
reading and writing to the FIFO. The microcontroller attached to the bus signals
which of the FIFOs it wishes to read from. The controller then places the appropriate
data on the bus. The microcontroller can also ask for the FIFO flags to be placed in
the low-order bits of the bus on a read cycle. If none of these actions are requested

by the microcontroller, the FIFO controller three-states its output drivers.
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TABLE 10.23 The input register.

library IEEE;

use IEEE.STD_LOGIC_1164.all; -- type STD_LOGIC, rising_edge
use IEEE.NUMERIC STD.all ; -~ type UNSIGNED

entity register in is

generic ( TPD : TIME := 1 ns); )

in UNSIGNED(11 downto 0);

port (T in :
clk, rst in STD LOGIC; T out out UNSIGNED(1ll downto 0)); end;
architecture rtl of registgr in is
begin -
process(clk, rst) begin
if (rst = '1') then T out <= (others => '0') after TPD;
else

if (rising edge(clk)) then T out <= T_in after TPD; end if;
end if;
end process;
end rtl ;

12-bit-wide register for
the temperature input
signals.

If the input is asynchro-
nous (from an A/D
converter with a separate
clock, for example), we
would need to worry
about metastability.

All delays are generic
TPD.

Table 10.25 shows the top level of the controller. To complete our model we

shall use a package for the component declarations:

package TC Components is

component register in generic (TPD : TIME := 1 ns)

port (T_in in UNSIGNED(1ll downto 0);

clk, rst :
end component;
component tconv generic (TPD TIME := 1 ns});
port (T : in UNSIGNED (11 downto 0);
T out : out UNSIGNED(1ll downto 0));
end component;
component filter generic (TPD TIME := 1 ns);

port (T in in UNSIGNED (11 downto 0);
rst, clk : in STD_LOGIC; T out
end component;

component fifo generic (width:INTEGER := 12; depth
port (clk, rst, push, pop : STD LOGIC;
Di : UNSIGNED (width-1 downto 0);
Do : out UNSIGNED (width-1 downto 0);
empty, full : out STD LOGIC);
end component;
component fifo control generic (TPD:TIME := 1 ns});

port (D 1, D 2 : in UNSIGNED(1l downto 0);

select
rl, wl2

r2, : out STD LOGIC; D
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in STD_LOGIC; T out : out UNSIGNED(1l downto 0));

out UNSIGNED(11l downto 0));

INTEGER := 16);

in UNSIGNED(1 downto 0); read, fl, £2, el, e2 : in STD_LOGIC;
out UNSIGNED(1l1l downto 0)}) ;
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TABLE 10.24 A first-in, first-out stack (FIFO).

library IEEE; use IEEE.NUMERIC STD.all ; -- UNSIGNED type
use ieee.std logic 1164.all; ~- STD_LOGIC type, rising_edge
entity fifo is

generic (width : INTEGER := 12; depth : INTEGER := 16);

port (clk, rst, push, pop : STD_LOGIC;
Di : in UNSIGNED (width-1 downto 0);
Do : out UNSIGNED (width-1 downto 0);
empty, full : out STD LOGIC);
end fifo;
architecture rtl of fifo is
subtype ptype is INTEGER range 0 to (depth-1);
signal diff, Ai, Ao : ptype; signal £, e : STD LOGIC;
type a is array (ptype) of UNSIGNED(width-1 downto 0);
signal mem : a ;
function bump(signal ptr : INTEGER range 0 to (depth-1))
return INTEGER is begin
if (ptr = (depth~1)) then return 0;
else return (ptr + 1);
end if;
end;
begin
process(f,e) begin full <= f ; empty <= e; end process;
process(diff) begin
if (diff = depth -1) then £ <= 'l1'; else f <= '0'; end if;
if (diff = 0) then e <= '1'; else e <= '0'; end if;
end process;
process(clk, Ai, Ao, Di, mem, push, pop, e, f) begin
if(rising _edge(clk)) then
if{push='0")and{pop='1')and{e='0"') then Do <= mem(Ao); end
if(push='1")and(pop='0')and(f='0"') then mem(Ai) <= Di; end
end if ;
end process;
process{rst, clk) begin
if(rst = "1') then Ai <= 0; Ao <= 0; diff <= 0;
else if(rising edge(clk)) then
if (push = '1') and (£ = '0') and (pop = '0') then
Ai <= bump(Ai); diff <= diff + 1;

elsif (pop = '1') and (e = '0') and (push = '0') then
Ao <= bump(Ao); diff <= diff - 1;
end if;
end if;
end if;

end process;
end;

if;

if;

FIFO (first-in, first-out)
register

Reads (pop = 1) and
writes (push = 1) are syn-
chronous to the rising
edge of the clock.

Read and write should not
occur at the same time.
The width (number of bits
in each word) and depth
(number of words) are
generics.

External signals:

clk, clock

rst, reset active-high
push, write to FIFO
pop, read from FIFO
Di, datain

Do, data out
empty, FIFO flag
full, FIFO flag

Internal signals:

dif £, difference pointer
Ai, input address

Ao, output address

£, full flag

e, empty flag

No delays in this model.
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TABLE 10.25 A FIFO controller.

library IEEE;use IEEE.STD_LOGIC 1164.all;use IEEE.NUMERIC STD.all;
entity fifo control is generic TPD : TIME := 1 ns;

port(D_1, D 2 : in UNSIGNED(1l downto 0);

sel : in UNSIGNED{1l downto 0) ;

read , f1, £2, el, e2 : in STD_LOGIC;

rl, r2, wl2 : out STD_LOGIC; D : out UNSIGNED(1l downto 0)) ;
end;
architecture rtl of fifo_control is

begin process

(read, sel, D 1, D 2, f1, £2, el, e2)

begin
rl <= '0' after TPD; r2 <= '0' after TPD;
if (read = '1l') then

wl2 <= 'Q' after TPD;

case sel is

when "01" =>
when "10" =>
when "00" =>

D <= D 1 after TPD; rl <= '1' after TPD;
D <= D 2 after TPD; r2 <= 'l' after TPD;
D(3) <= f1 after TPD; D(2) <= f2 after TPD;
D(1l) <= el after TPD; D(0) <= e2 after TPD;
when others => D <= "32222222722%2%2" after TPD;
end case;
elsif (read = '0') then
D <= "ZZ72722%2%2%7222%2" after TPD; wl2 <= '1°
else D <= "ZZZ27Z7Z%Z2ZZ27Z7" after TPD;
end if;

after TPD;

end process;
end rtl;

This handles the reading
and writing to the FIFOs
under control of the
processor (mpu). The
mpu can ask for data from
either FIFO or for status
flags to be placed on the
bus.

Inputs:
D 1

data in from FIFO1
D 2

data in from FIFO2
sel

FIFO select from mpu
read

FIFO read from mpu
£1,£2,el,e2

flags from FIFOs

Outputs:
rl, r2

read enables for FIFOs
wl2

write enable for FIFOs
D

data out to mpu bus

end component;
end;

The following testbench completes a set of reads and writes to the FIFOs:

library IEEE;

use IEEE.std_logic_1164.all; -- type STD_LOGIC
use IEEE.numeric std.all; -- type UNSIGNED
entity test TC is end;

architecture testbench of test TC is

component T Control port (T_1, T 2 : in UNSIGNED(11l downto 0);
clk : in STD LOGIC; sensor: in UNSIGNED( 1 downto 0) ;

read : in STD LOGIC; rst : in STD_LOGIC;
D : out UNSIGNED(11 downto 0));
signal T 1, T 2 : UNSIGNED(1ll downto 0);
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TABLE 10.26 Top level of temperature controller.

library IEEE; use IEEE.STD LOGIC 1164.all; use IEEE.NUMERIC STD.all;
entity T Control is port (T inl, T_in2 : in UNSIGNED (11 downto 0);

sensor: in UNSIGNED(l downto 0);

clk, RD, rst : in STD_LOGIC; D : out UNSIGNED(11 downto 0));
end;
architecture structure of T Control is use work.TC_Components.all;
signal F, E : UNSIGNED (2 downto 1);
signal T outl, T out2, R outl, R out2, Fl, F2, FIFOl, FIFO2 : UNSIGNED(1l downto 0);
signal RD1, RD2, WR: STD LOGIC ;
begin
RG1 : register in generic map (lns) port map (T_inl, clk, rst, R outl);
RG2 : register in generic map (1lns) port map (T_in2, clk, rst, R _out2);
TC1 tconv generic map (1lns) port map (R outl, T outl);
TC2 : tconv generic map (1lns) port map (R out2, T out2);
TF1 : filter generic map (lns) port map (T outl, rst, clk, Fl);
TF2 : filter generic map (lns) port map (T _out2, rst, clk, F2);
FI1 : fifo generic map (12,16) port map (clk, rst, WR, RD1l, Fl, FIFOl, E(1), F(1l)):;
FI2 : fifo generic map (12,16) port map (clk, rst, WR, RD2, F2, FIFO2, E(2), F(2)});
FCl : fifo control port map
(FIFOl, FIFO2, sensor, RD, F(1l), F(2), E(1), E(2), RD1l, RD2, WR, D);
end structure;

.

signal clk, read, rst : STD LOGIC;
signal sensor : UNSIGNED(1l downto 0);
signal D : UNSIGNED(1ll downto 0);
begin TT1 : T Control port map (T 1, T_ 2, clk, sensor, read, rst, D);
process begin
rst <= '0'; clk <= '0°;
wait for 5 ns; rst <= '1'; wait for 5 ns; rst <= '0';
T 1 <= "000000000011"; T 2 <= "000000000111"; read <= '0';
for i in 0 to 15 loop -- £ill the FIFOs
clk <= '0'; wait for 5ns; c¢lk <= '1'; wait for 5 ns;
end loop;
assert (false) report "FIFOs full" severity NOTE;
clk <= '0'; wait for 5ns; clk <= '1'; wait for 5 ns;
read <= '1'; sensor <= "(1%;

for i in 0 to 15 loop -- empty the FIFOs
clk <= '0'; wait for 5ns; clk <= '1'; wait for 5 ns;
end loop;

assert (false) report "FIFOs empty" severity NOTE;
clk <= '0'; wait for 5ns; clk <= '1'; wait;

end process;

end;
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10.17 Summary

Table 10.27 shows the essential elements of the VHDL language. Table 10.28 shows
the most important BNF definitions and their locations in this chapter. The key
points covered in this chapter are as follows:

The use of an entity and an architecture

The use of a configuration to bind entities and their architectures
The compile, elaboration, initialization, and simulation steps

Types, subtypes, and thelr use in expressions

The logic systems based on BIT and Std_Logic_1164 types

The use of the IEEE synthesis packages for BIT arithmetic

Ports and port modes

Initial values and the difference between simulation and hardware
The difference between a signal and a variable

The different assignment statements and the timing of updates

The process and wait statements

VHDL is a “wordy” language. The examples in this chapter are complete rather
than code fragments. To write VHDL “nicely,” with indentation and nesting of con-

structs,

requires a large amount of space. Some of the VHDL code examples in this

chapter are deliberately dense (with reduced indentation and nesting), but the bold
keywords help you to see the code structure. Most of the time, of course, we do not
have the luxury of bold fonts (or color) to highlight code. In this case, you should
add additional space, indentation, nesting, and comments.

Appendix A contains more detailed definitions and technical reference material.
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TABLE 10.27 VHDL summary.

VHDL feature Example Book 93LRM
Comments -~ this is a comment 10.3 13.8
Literals (fixed-value items) 12 1.0E6 1 "110" g 10.4 13.4

2#1111 11114 "Hello world"
STRING' ("110")
Identifiers a_good name Same  same 10.4 13.3
(case-insensitive, start with letter) 2_Bad bad_ _bad very_ bad
Several basic units of code entity  architecture  configuration 10.5 1.1-1.3
Connections made through ports port (signal in i : BIT; out o : BIT); 10.7 4.3
Default expression port (i : BIT := '1'); 10.7 4.3
-— i='1' if left open
No built-in logic-value system. type BIT is ('0', '1'); -- predefined 10.8 14.2
BIT and BIT_VECTOR (STD). signal myArray: BIT _VECTOR (7 downto 0);
Arrays myArray(1l downto 0) <= ('0', '1'); 10.8 3.2.1
Two basic types of logic signals a signal corresponds to a real wire 10.9 4.3.1.2
avariable is a memory location in RAM 4.31.3
Types and explicitinitial/default value signal ONE : BIT := '1' ; 10.9 432
Implicit initial/default value BIT'LEFT = '0' 10.9 4.3.2
Predefined attributes clk'EVENT, clk'STABLE 10.94 141
Sequential statements inside process begin 10.10 8
processes model things that happen wait until alarm = ring;
one after another and repeat eat; work; sleep;
end process;
Timing with wait statement wait for 1 ns; -- not wait 1 ns 10.10.1 8.1
wait on light until light = green;
Update to signals occurs atthe endof signal <= 1; -- delta time delay 10.10.3 8.3
a simulation cycle signal <= variablel after 2 ns;
Update to variables is immediate variable := 1; -- immediate update 10.10.3 8.4
PrOCeSSGS and COﬂCUl’ren'{ “ process beglnraln H end pProcess; 101 3 - Qé
statements model things that happen process begin sing ; end process;
at the same time process begin dance; end process;
IEEE Std_Logic_1164 ' STD_ULOGIC, STD_LOGIC, STD_ULOGIC_VECTOR,and  10.6 -
{defines logic operators on 1164 STD_LOGIC_VECTOR
types) type STD ULOGIC is
(|Ul,1xl,lol,!ll'lzl’|wl’IL!FIHl,!__I);
IEEE Numeric_Bit and Numeric_Std UNSIGNED and SIGNED 10.12 —

(defines arithmetic operators on BIT
and 1164 types)

X <= nlon +* u01u
~— OK with numeric pkgs.
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TABLE 10.28 VHDL definitions.

Structure Page BNF Structure Page BNF
alias declaration 418  10.21 next statement 429 10.32
architecture body 394 10.8 null statement 430 10.35
assertion statement 423 10.25 package declaration 398 10.11
attribute declaration 418 10.22 port interface declaration 406 10.13
block statement 438 10.37 port interface list 406 10.12
case statement 428 10.30 primary unit 393 105
component declaration 395 10.9 procedure call statement 427 10.28
component instantiation 444  10.42 process statement 440 10.38
concurrent statement 437 10.36 return statement 430 10.34
conditional signal assignment 442  10.40 secondary unit 393 10.6
configuration declaration 396 10.10 selected signal assignment 442  10.39
constant declaration 414  10.16 sequential statement 419 10.23
declaration 413  10.15 signal assignment statement 424  10.27
design file 393 104 signal declaration 414 1017
entity declaration 394 107 special character 391 102
exit statement 430 10.33 subprogram body 416  10.20
generate statement 444  10.43 subprogram declaration 415  10.19 ‘
graphic character 391 10.1 type declaration 411 10.14
identifier 392 103 variable assignment statement 424  10.26
if statement 427 10.29 variable declaration ' 415  10.18
Mlu&)'p statement 429  10.31 wait statement 421 10.24
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10.18 Problems

*=Difficult **=Very difficult ***=Extremely difficult

10.1 (Hello World, 10 min.) Set up a new, empty, directory (use mkdir VHDL,
for example) to run your VHDL simulator (the exact details will depend on your
computer and simulator). Copy the code below to a file called hw_1.vhd in your
VHDL directory (leave out comments to save typing). Hint: Use the vi editor (i
inserts text, x deletes text, dd deletes a line, ESC :w writes the file, ESC :q quits)
or use cat > hw_1.vhd and type in the code (use CTRL-D to end typing) on a
UNIX machine. Remember to save in 'Text Only' mode (Frame or MS Word) on an
IBM PC or Apple Macintosh.

Analyze, elaborate, and simulate your model (include the output in your
answer). Comment on how easy or hard it was to follow the instructions to use the
software and suggest improvements.
entity HW 1 is end; architecture Behave of HW 1 is
constant M : STRING := "hello, world"; signal Ch : CHARACTER := ' *;
begin process begin

for i in M'RANGE loop Ch <= M(i); wait for 1 ns; end loop; wait;
end process; end;

10.2 (Running a VHDL simulation, 20 min.) Copy the example from
Section 10.1 into a file called Counterl.vhd in your VHDL directory (leave out the
comments to save typing). Complete the compile (analyze), elaborate (build), and
execute (initialize and simulate) or other equivalent steps for your simulator. After
each step list the contents of your directory VHDL and any subdirectories and files
that are created (use 1s -alR on a UNIX system).

10.3 (Simulator commands, 10 min.) Make a “cheat sheet” for your simulator,
listing the commands that can be used to control simulation.

10.4 (BNF addresses, 10 min.) Create a BNF description of a name including:
optional title (Prof., Dr., Mrs., Mr., Miss, or Ms.), optional first name and middle ini-
tials (allow up to two), and last name (including unusual hyphenated and foreign
names, such as Miss A-S. de La Salle, and Prof. John T. P. McTavish-fFiennes). The
lowest level constructs are letter ::= a-Z, '.' (period) and '-' (hyphen). Add
BNF productions for a postal address in the form: company name, mail stop, street
address, address lines (1 to 4), and country.

10.5 (BNF e-mail, 10 min.) Create a BNF description of a valid internet e-mail
address In terms of letters, '@', *.', 'gov', ‘com, 'org, and ‘edu’'. Create a
state diagram that “parses” an e-mail address for validity.

10.6 (BNF equivalence) Are the following BNF productions exactly equiva-
lent? If they are not, produce a counterexample that shows a difference.

term ::= factor { multiplying operator factor }
term ::= factor | term multiplying operator factor
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10.7 (Environment, 20 min.) Write a simple VHDL model to check and demon-
strate that you can get to the IEEE library and have the environment variables,
library statements, and such correctly set up for your simulator.

10.8 (Work, 20 min.) Write simple VHDL models to demonstrate that you can
retrieve and use previously analyzed design units from the library work and that
you can also remove design units from work. Explain how your models prove that
access to work is functioning correctly.

10.9 (Packages, 60 min.) Write a simple package (use filename PackH.vhd) and
package body (filename PackB.vhd). Demonstrate that you can store your package
(call it MyPackage) in the library work. Then store, move, or rename (the details will
depend on your software) your package to a library called MyLibrary in a directory
called MyDir, and use its contents with a library clause (1ibrary MyLibrary) and a
use clause (use MyLibrary.MyPackage.all) in a testbench called PackTest (file-
name PackT.vhd) in another directory MyWork. You may or may not be amazed at
how complicated this can be and how poorly most software companies document this
process.

10.10 (***IEEE Std 1164, 60 min.) Prior to VHDL-93 the xnor function was
not available, and therefore older versions of the std logic_ 1164 library did not
provide the xnor function for STD_LOGIC types either (it was actually included but
commented out). Write a simple model that checks to see if you have the newer ver-
sion of std logic 1164. Can you do this without crashing the simulator?

You are an engineer on a very large project and find that your design fails to
compile because your design must use the xnor function and the library setup on
your company’s system still points to the old IEEE std logic 1164 library, even
though the new library was installed. You are apparently the first person to realize
the problem. Your company has a policy that any time a library is changed all design
units that use that library must be rebuilt from source. This might require days or
weeks of work. Explain in detail, using code, the alternative solutions. What will
you recommend to your manager?

10.11 (**VHDL-93 test, 20 min.) Write a simple test to check if your simulator
1s a VHDL-87 or VHDL-93 environment—without crashing the simulator.

10.12 (Declarations, 10 min.) Analyze the following changes to the code in
Section 10.8 and include the simulator output in your answers:

a. Uncomment the declarations for Bad100 and Bad4 in Declaration 1.
b. Add the following to Constant_2:

signal wacky : wackytype (31 downte 0); -- wacky

¢. Remove the library and use clause in Constant_2.

10.13 (STRING type, 10 min.) Replace the write statement that prints the
string " count=" in Text(Behave) in Section 10.6.3 with the following, compile
it, and explain the result:

n

write(L, count=" ); -- No type qualification.
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10.14 (Sequential statements, 10 min.) Uncomment the following line in
Wait_1(Behave) in Section 10.10, analyze the code, and explain the result:

wait on x(1 to v); -- v is a variable.

10.15 (VHDL logical operators, 10 min.)
a. Explain the problem with the following VHDL statement:

Z <= A nand B nand C;

b. Explain why this problem does not occur with this statement:
Z <= A and B and C;
¢. What can you say about the logical operators: and, or, nand, nor, xnor,
xor?
d. Is the following code legal?

Z <= A and B or C;

10.16 (*Initialization, 45 min.) Consider the following code:

entity DFF_Plain is port (Clk, D : in BIT; Q : out BIT); end;
architecture Bad of DFF Plain is begin process (Clk) begin

if Clk = '0' and Clk'EVENT then Q <= D after 1 ns; end if;
end process; end;

a. Analyze and simulate this model using a testbench.

b. Rewrite architecture Bad using an equivalent process including a wait
statement. Simulate this equivalent model and confirm the behaviors are
identical.

c. What is the behavior of the output 0 during initial execution of the process?
d. Why does this happen?
e. Why does this not happen with the following code:

architecture Good of DFF_Plain is
begin process begin wait until Clk = '0'; Q <= D after 1 ns;
end process; end;

10.17 (Initial and default values, 20 min.) Use code examples to explain the
difference between: default expression, default value, implicit default value, initial
value, initial value expression, and default initial value.

10.18 (Enumeration types, 20 min.) Explain the analysis results for the follow-
ing:
type MVL4 is ('X', '0', 1", 'Z'); signal test : MVL4;
process begin
test <= 1; test <= Z; test <= z; test <= 'l1'; test <= 'Z';
end process;

Alter the type declaration to the following, analyze your code again, and comment:

type Mixed4 is (X , '0', '1', Z);
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10.19 (Type declarations, 10 min.) Correct these declarations:

type BadArray is array (0 to 7) of BIT VECTOR;
type Byte is array (NATURAL range 7 downto 0) of BIT;

subtype Badnibble is Byte(3 downto 0);
type BadByte is array (range 7 downto 0) of BIT;

10.20 (Procedure parameters, 10 min.) Analyze the following package; explain
and correct the error. Finally, build a testbench to check your solution.
package And Pkg Bad is procedure V_And(a, b : BIT; c: out BIT); end;

package body And_Pkg Bad is
procedure V_And(a,b : BIT;c : out BIT) is begin ¢ <= a and b;end;

end And_Pkg_Bad;

10.21 (Type checking, 20 min.) Test the following code and explain the results:

type T is INTEGER range 0 to 32; variable a: T;
a := (16 + 17) - 12; a := 16 - 12 + 17; a := 16 + (17 - 12);

10.22 (Debugging VHDL code, 30 min.) Find and correct the errors in the fol-
lowing code. Create a testbench for your code to check that it works correctly.

entity UpDownCount Bad is
port(clock, reset, up: STD LOGIC; D: STD_LOGIC VECTOR (7 to 0));
end UpDownCount Bad;

architecture Behave of UpDownCount Bad is
begin process (clock, reset, up); begin

if (reset = '0') then D <= '0000000";

elseif (rising edge(clock)) then

if (up = 1) D <= D+1; else D <= D-1; end if;
end if; end process; end Behave;

10.23 (Subprograms, 20 min.) Write and test subprograms for these declara-
tions:

function Is X Zero (signal X : in BIT) return BIT;

procedure Is A Eq B (signal A, B : BIT; signal Y : out BIT);

10.24 (Simulator error messages, ‘10 min.) Analyze and attempt to simulate
Arithmetic 2(Behave) from Section 10.12 and compare the error message you
receive with that from the MTI simulator (not all simulators are as informative).
There are no standards for error messages.

10.25 (Exhaustive property of case statement, 30 min.) Write and simulate a
testbench for the state machine of Table 10.8 and include your results. Is every state
transition tested by your program and is every transition covered by an assignment
statement in the code? (Hint: Think very carefully.) Repeat this exercise for the state
machine in Section 10.10.6.
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10.26 (Default values for inputs, 20 min.) Replace the interface declaration for
entity Half Adder in Section 10.5 with the following (to remove the default val-
ues):

port (X, Y: in BIT ; Sum, Cout: out BIT);

Attempt to compile, elaborate, and simulate configuration Simplest (the other
entities needed, AndGate and XorGate, must already be in work or in the same
file). You should get an error at some stage (different systems find this error at differ-
ent points—just because an entity compiles, that does not mean it is error-free).

The LRM says “... A port of mode in may be unconnected ...only if its declara-
tion includes a default expression...” [VHDL 93L.RM1.1.1.2].

We face a dilemma here. If we do not drive inputs with test signals and leave an
input port unconnected, we can compile the model (since it is syntactically correct)
but the model is not semantically correct. On the other hand, if we give the inputs
default values, we might accidentally forget to make a connection and not notice.

10.27 (Adder generation, 10 min.) Draw the schematic for Adder 1(Struc-
ture) of Section 10.13.7, labeling each instance with the VHDL instance name.

10.28 (Generate statement, 20 min.) Draw a schematic corresponding to the
following code (label the cells with their instance names):

Bl: block begin L1 : C port map (T, B, A(0), B(0)) ;

L2: for i in 1 to 3 generate L3 : for j in 1 to 3 generate

L4: if i+j > 4 generate L5: C port map (A(i-1), B(j=1), A(i), B(3)) :
end generate; end generate; end generate;

L6: for i in 1 to 3 generate L7: for j in 1 to 3 generate

L8: if i+j < 4 generate L9: C port map (A(i+l), B(j+1), A(1i), B(J)) ;
end generate; end generate; end generate;

end block Bl;

Rewrite the code without generate statements. How would you prove that your
code really is exactly equivalent to the original?

10.29 (Case statement, 20 min.) Create a package (my_ equal) that overloads
the equality operator so that 'X'='0"' and 'X'='1"' are both TRUE. Test your pack-
age. Simulate the following design unit and explain the result.

entity Case 1 is end; architecture Behave of Case_ 1 is
signal r : BIT; use work.my equal.all;
begin process variable twobit:STD LOGIC VECTOR(1l to 2); begin
twobit := "x0";
case twobit is
when "10" => r <= '13
when "00" => r <= '13
when others => r <= TY;
end case; wait;
end process; end;

479

PROBLEMS

463



464

CHAPTER 10

VHDL

10.30 (State machine) Create a testbench for the state machine of
Section 10.2.5.

10.31 (Mealy state machine, 60 min.) Rewrite the state machine of
Section 10.2.5 as a Mealy state machine (the outputs depend on the inputs and on
the current state).

10.32 (Gate-level D flip-flop, 30 min.) Draw the schematic for the following D
flip-flop model. Create a testbench (check for correct operation with combinations of
Clear, Preset, Clock, and Data). Have you covered all possible modes of opera-
tion? Justify your answer of yes or no.

architecture RTL of DFF _To Test is

signal A, B, C, D, QI, QOBarI : BIT; begin

A <= not (Preset and D and B) after 1 ns;

B <= not (A and Clear and Clock) after 1 ns;

C <= not (B and Clock and D) after 1 ns;

D <= not (C and Clear and Data) after 1 ns;

QI <= not (Preset and B and 0OBarI) after 1 ns;
QBarl <= not (QI and Clear and C) after 1 ns;
Q <= QI; QBar <= QBarl;

end;

10.33 (Flip-flop model, 20 min.) Add an asynchronous active-low preset to the
D flip-flop model of Table 10.3. Generate a testbench that includes interaction of the
preset and clear inputs. What issue do you face and how did you solve it?

10.34 (Register, 45 min.) Design a testbench for the register of Table 10.4.
Adapt the 8-bit register design to a 4-bit version with the following interface decla-
ration:
entity Reg4 is port (D : in STD_LOGIC VECTOR(7 downto 0);

Clk,Pre,Clr : in STD_LOGIC;Q,Q0B : out STD LOGIC_VECTOR(7 downto 0));
end Reg8;

Create a testbench for your 4-bit register with the following component declara-
tion:
component DFF
port(Preset,Clear,Clock,Data:STD_LOGIC;Q,QBar:out STD_LOGIC VECTOR);
end component;

10.35 (*Conversion functions, 30 min.) Write a conversion function from
NATURAL to STD_LOGIC_VECTOR using the following declaration:

function Convert (N, L: NATURAL) return STD_LOGIC_VECTOR;
-— N is NATURAL, L is length of STD_LOGIC_ VECTOR

Write a similar conversion function from STD_LOGIC_VECTOR {0 NATURAL:

function Convert (B: STD _LOGIC_VECTOR) return NATURAL;

Create a testbench to test your functions by including them in a package.
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10.36 (Clock procedure, 20 min.) Design a clock procedure for a two-phase
clock (C1, c2) with variable high times (HT1, HT2) and low times (LT1, LT2) and the
following interface. Include your procedure in a package and write a model to test it.

procedure Clock (Cl, C2 : out STD_LOGIC; HT1, HT2, LT1, LT2 : TIME);

10.37 (Random number, 20 min.) Design a testbench for the following proce-
dure:

procedure uniform (seed : inout INTEGER range 0 to 15) is
variable x : INTEGER;
begin x := (seed*11) + 7; seed := x mod 16;

end uniform;

10.38 (Full-adder, 30 min.) Design and test a behavioral model of a full adder
with the following interface:

entity FA is port (X, Y, Cin : STD_LOGIC; Cout, Sum : out STD_LOGIC);
end;

Repeat the exercise for inputs and outputs of type UNSIGNED.

10.39 (8-bit adder testbench, 60 min.) Write out the code corresponding to the
generate statements of Adder 1 (Structure) in Section 10.13.7. Write a testbench
to check your adder. What problems do you encounter? How thorough do you
believe your tests are?

10.40 (Shift-register testbench, 60 min.) Design a testbench for the shift regis-
ter of Table 10.4. Convert this model to use STD LOGIC types with the following
interface:
entity ShiftN is
port (CLK, CLR, LD, SH, DIR : STD LOGIC;

D : STD LOGIC VECTOR; Q : out STD LOGIC_VECTOR);
end;

10.41 (Multiplier, 60 min.) Design and test a multiplier with the following
interface:

entity Mult8 is

port (A, B : STD LOGIC VECTOR(3 downto 0);

Start, CLK, Reset : in STD LOGIC;

Result : out STD_LOGIC VECTOR(7 downto 0); Done : out BIT);
end;

a. Create testbench code to check your model.
b. Catalog each compile step with the syntax errors as you debug your code.
¢. Include a listing of the first code you write together with the final version.

An interesting class project is to collect statistics from other students working on
this problem and create a table showing the types and frequency of syntax errors
made with each compile step, and the number of compile steps required. Does this
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information suggest ways that you could improve the compiler, or suggest a new
type of tool to use when writing VHDL?

10.42 (Port maps, 5 min.) What is wrong with this VHDL statement?
Ul : nand2 port map (a <= set, b <= gb, ¢ <= q);

10.43 (DRIVING VALUE, 15 min) Use the VHDL-93 attribute
Clock'DRIVING VALUE to rewrite the following clock generator model without
using a temporary variable.

entity ClockGen_ 2 is port (Clock : out BIT); end;

architecture Behave of ClockGen 2 is

begin process variable Temp : BIT := 'l'; begin
Temp := not Temp ; Clock <= Temp after 10 ns; wait for 10 ns;
if (now > 100 ns) then wait; end if; end process;

end;

10.44 (Records, 15 min.) Write an architecture (based on the following skele-
ton) that uses the record structure shown:

entity Test Record 1 is end; architecture Behave of Test Record 1 is
begin process type Coordinate is record X, Y : INTEGER; end record;
-— a record declaration for an attribute declaration:

attribute Location:Coordinate; -- an attribute declaration

begin wait; end process; end Behave;

10.45 (**Communication between processes, 30 min.) Explain and correct the
problem with the following skeleton code:

variable vl : INTEGER := 1; process begin vl := v1+3; wait; end process;
process variable v2 : INTEGER := 2; begin v2 := vl ; wait; end process;

10.46 (*Resolution, 30 min.) Explain and correct the problems with the following:

entity R Bad 1 is port (i : in BIT; o out BIT); end;

architecture Behave of R Bad 1 is

begin o <= not i after 1 ns; o <= i after 2 ns; end; -
10.47 (*Inputs, 30 min.) Analyze the following and explain the result:

entity And2 is port (Al, A2: in BIT; ZN: out BIT); end;

architecture Simple of And2 is begin ZN <= Al and A2; end;

entity Input Bad 1 is end; architecture Netlist of Input Bad 1 is
component And2 port (Al, A2 : in BIT; ZN : out BIT); end component;
signal X, Z : BIT begin Gl : And2 port map (X, X, 2); end;

10.48 (Association, 15 min.) Analyze the following and explain the problem:

entity And2 is port (Al, A2 : in BIT; ZN : out BIT); end;
architecture Simple of And2 is begin ZN <= Al and A2; end;

entity Assoc_Bad 1 is port (signal X, Y : in BIT; % : out BIT); end;
architecture Netlist of Assoc Bad 1 is
component And2 port (Al, A2 : in BIT; ZN : out BIT); end component;
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begin

Gl: And2 port map (X, Y, 2);

G2: And2 port map (A2 => Y, ZN => 7, Al => X);
G3: And2 port map (X, ZN => Z, A2 => Y);

end;

10.49 (Modes, 30 min.) Analyze and explain the errors in the following:

entity And2 is port (Al, A2 : in BIT; ZN : out BIT); end;
architecture Simple of And2 is begin ZN <= Al and A2; end;

entity Mode Bad 1 is port (X : in BIT; Y : out BIT; Z : inout BIT); end;
architecture Netlist of Mode Bad 1 is

component And2 port (Al, A2 : in BIT; ZN : out BIT); end component;
begin Gl : And2 port map (X, Y, Z); end;

entity Mode Bad 2 is port (X : im BIT; Y : out BIT; Z : inout BIT); end;
architecture Netlist of Mode Bad 1 is

component And2 port (Al, A2 : in BIT; ZN : inout BIT); end component;
begin Gl : And2 port map (X, Y, %); end;

10.50 (*Mode association, 60 min.) Analyze and explain the errors in the fol-
lowing code. The number of errors, types of error, and the information in the error
messages given by different simulators vary tremendously in this area.

entity Allmode is port

(I : in BIT; O : out BIT; IO : inout BIT; B : buffer BIT);

end;

architecture Simple of Allmode is begin O<=I; IO<=I; B<=I; end;

entity Mode 1 is port

(I : in BIT; O : out BIT; IO : inout BIT; B : buffer BIT);
end;

architecture Netlist of Mode 1 is

component Allmode port

(I : in BIT; O : out BIT; IO : inout BIT; B : buffer BIT); end
component;

begin

Gl:Allmode port map (I , O , IO, B );

G2:Allmode port map (O , IO, B , I );

G3:Allmode port map (IO, B , I , O );

G4:Allmode port map (B , I , O , IO);

end;

10.51 (**Declarations, 60 min.) Write a tutorial (approximately two pages of
text, five pages with code) with examples explaining the difference between: a com-
ponent declaration, a component configuration, a configuration declaration, a config-
uration specification, and a block configuration.

10.52 (**Guards and guarded signals, 60 min.) Write some simple models to
illustrate the use of guards, guarded signals, and the disconnect statement. Include
an experiment that shows and explains the use of the implicit signal GUARD in
assignment statements.
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10.53 (**std_logic_1164, 120 min.) Write a short (two pages of text) tuto-
rial, with (tested) code examples, explaining the std_logic_1164 types, their
default values, the difference between the 'ulogic' and 'logic’ types, and their
vector forms. Include an example that shows and explains the problem of connecting
astd logic vectortoastd ulogic vector.

10.54 (Data swap, 20 min.) Consider the following code:

library ieee; use ieee.std logic_1164.all;

package config is

type typel is record

£l : std_logic_vector(31 downto 0); f2 : std logic_vector(3 downto 0);
end record; :

type type2 is record

f1 : std _logic_vector(3l downto 0); f2 : std logic vector(3 downto 0);
end record;

end config;

library ieee; use ieee.STD LOGIC 1164.all; use work.config.all;

entity Swap_1 is

port (Datal : typel; Data2 : type2; sel : STD_LOGIC;

DatalSwap : out typel; Data2Swap : out type2); end Swap_ 1;

architecture Behave of Swap 1 is begin

Swap: process (Datal, Data2, sel) begin case sel is
when '0' => DatalSwap <= Datal; Data2Swap <= Data2l;
when others => DatalSwap <= Data2; Data2Swap <= Datal;
end case; end process Swap; end Behave;

Compile this code. What is the problem? Suggest a fix. Now write a testbench and
test your code. Have you considered all possibilities?

10.55 (***RTL, 30 min.) “RTL stands for register-transfer level. ...when ref-
erencing VHDL, the term means that the description includes only concurrent signal
assignment statements and possibly block statements. In particular, VHDL data flow
descriptions explicitly do not contain either process statements (which describe

behavior) or component instantiation statements (which describe structure)”
(Dr. VHDL from VHDL International).

a. With your knowledge of process statements and components, comment on
Dr. VHDL’s explanation.

b. In less than 100 words offer your own definition of the difference between
RTL, data flow, behavioral, and structural models.

10.56 (*Operators mod and rem, 20 min.) Confirm and explain the following:

il := (-12) rem 7; -— il = -5
i2 = 12 rem (-7); -- i2 = 5
i3 := (12) rem (-7); -- i3 = -5
id4 := 12 mod 7; -— 14 =

i5 := (-12) mod 7; - 15 = 2
i6 == 12 mod (-7); -— i6 = -2
i7 := (12) mod (-7); -- i7 = =5
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Evaluate -5 rem 2 and explain the result.

10.57 (***Event and stable, 60 min.) Investigate the differences between
clk'EVENT and clk'STABLE. Write a minitutorial (in the form of a “cheat sheet”)
with examples showing the differences and potential dangers of using c1k ' STABLE.

10.58 (PREP benchmark #2, 60 min.) The following code models a benchmark
circuit used by PREP to measure the capacity of FPGAs. Rewrite the concurrent
signal assignment statements (labeled mux and comparator) as equivalent pro-
cesses. Draw a datapath schematic corresponding to PREP2 (Behave 1). Write a
testbench for the model. Finally (for extra credit) rewrite the model and testbench to
use STD_LOGIC instead of BIT types.

library ieee; use ieee.STD_LOGIC_1164.all;

use ieee.NUMERIC BIT.all; use ieee.NUMERIC STD.all;

entity PREP2 is

port (CLK,Reset,Sel,Ldli,Ldhi : BIT; D1,D2 : STD_LOGIC VECTOR(7 downto 0);
DQ:out STD LOGIC _VECTOR(7 downto 0));

end;

architecture Behave 1 of PREP2 is
signal EQ : BIT; signal y,lo,hi,Q i : STD_LOGIC VECTOR(7 downto 0);
begin
outputDriver: Q <= Q i;
mux: with Sel select y <= hi when '0', D1 when '1';
comparator: EQ <= '1' when Q i = lo else '0";
register: process(Reset, CLK) begin

if Reset = 'l' then hi <= "00000000"; lo <= "(00000000";
elsif CLK = '1l' and CLK'EVENT then

if Ldhi='1' then hi<=D2;end if;if Ldlo='1l' then lo<=D2;end if;
end if; V

end process register;
counter: process(Reset, CLK) begin

if Reset = '1' then Q i <= "00000000";

elsif CLK = '1' and CLK'EVENT then

| if EQ = 'l' then Q i <= y;
elsif EQ = '0' then Q i <= Q i + "00000001";
end if;

end if;

end process counter;
end;

10.59 (PREP #3, state machine) Draw the state diagram for the following
PREP benchmark (see Problem 10.58). Is this a Mealy or Moore machine? Write a
testbench and test this code.

library ieee; use ieee.STD LOGIC_11l64.all;
entity prep3_1 is port(Clk, Reset: STD LOGIC;
I : STD LOGIC VECTOR(7 downto 0); O : out STD_LOGIC_VECTOR(7 downto 0));
end prep3_1;
architecture Behave of prep3_ 1 is
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type STATE TYPE is (sX,s0,sa,sb,sc,sd,se,sf,s9);
signal state : STATE_TYPE; signal Oi : STD_LOGIC_ VECTOR(7 downto 0);

begin
0 <= 0i;
process (Reset, Clk) begin
if (Reset = 'l') then state <= s0; 0i <= (others => '0');

elsif rising_edge(Clk) then
case state is
when s0 =>
if (I = X"3c") then state <= sa; 01 <= X"82";
else state <= s0; 0i <= (others => '0');
end if;
when sa =>
if (I = X"2A") then state <= sc; 0i <= X"40";
elsif (I = X"1F") then state <= sb; 0i <= X"20";
else state <= sa; 0i <= X"04";
end if;
when sb =>
if (I = X"AA") then state <= ge; 0i <
else state <= sf; 0i <= X"30";
end if;
when sc => state <= sd; 0i <= X"08";
when sd => state <= sg; 0i <= X"80";
when se => state <= s0; 0i <= X"40";
H
H

X“ll";

when sf => state <= sg; 0i <= X"02"
when sg => state <= s0; 0i <= X"01"
when others => state <= sX; 01 <= (others => 'X');
end case;
end if;
end process;
end;

10.60 (Edge detection, 30 min) Explain the construction of the IEEE 1164
function to detect the rising edge of a signal, rising edge(s). List all the changes
in signal s that correspond to a rising edge.

function rising edge (signal s : STD ULOGIC) return BOOLEAN is
begin return
(s'EVENT and (To_X01l(s) = "1') and (To_X01(s'LAST VALUE) = '0'});
end;

10.61 (*Real, 10 min.) Determine the smallest real in your VHDL environment.
10.62 (*Stop, 30 min.) How many ways are there to stop a VHDL simulator?

10.63 (*Arithmetic package, 60 min.) Write a function for an arithmetic pack-
age to subtract two’s complement numbers. Create a test bench to check your func-
tion. Your declarations in the package header should look like this:

type TC is array (INTEGER range <>) of STD LOGIC;
function "-"(L : TC; R : TC) returm TC;
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10.64 (***Reading documentation, hours) There are a few gray areas in the
interpretation of the VHDL-87 LRM some of which were clarified in the VHDL-93
revision. One VHDL system has a “compatibility mode” that allows alternative
interpretations. For each of the following “issues” taken from the actual tool docu-
mentation try to interpret what was meant, determine the interpretation taken by
your own software, and then rewrite the explanation clearly using examples.

a.

* “Unassociated variable and signal parameters. Compatibility mode allows
variable and signal parameters to subprograms to be unassociated if they
have a default value. Otherwise, an error is generated.”

Example answer: Consider the following code:

package Util 2 is

procedure C(signal Clk : out BIT; signal P : TIME := 10 ns);
end Util 2;

package body Util 2 is

procedure C(signal Clk : out BIT; signal P

begin

: TIME := 10 ns) is
loop Clk <= '1' after P/2, '0' after P;

wait for P; end loop; end; end Util 2;
entity Test Compatibility 1 is end; use work.Util 2.all;
architecture Behave of Test Compatibility 1 is

signal v,w,x,y,2 : BIT; signal s : TIME := 5 ns;

begin process variable v : TIME := 5 ns; begin

C(v, s); ~- parameter s is OK since P is declared as signal
- C(w, V)3 —- would be OK if P is declared as variable instead
-—- C(x, 5 ns); -- would be OK if P is declared as constant instead
-— C(y); —— unassociated, an error if P is signal or variable
-- C(z,open); -~ open, an error if P is signal or variable

end process; end;

The Compass Scout simulator (which does not have a compatibility mode) generates
an error during analysis if a signal or variable subprogram parameter is open or
unassociated (a constant subprogram parameter may be unassociated or open).

b.

o
e

d.

* “Allow others in an aggregate within a record aggregate. The LRM
7.3.2.2] defines nine situations where others may appear in an aggregate.
In compatibility mode, a tenth case is added. In this case, others is allowed
in an aggregate that appears as an element association in a record element.”

=3

#“BIT'('1') parsed as BIT ' ('1'). The tick (') character is being used
twice in this example. In the first case as an attribute indicator, in the second
case, to form a character literal. Without the compatibility option, the ana-
lyzer adopts a strict interpretation of the LRM, and without white space
around the first tick, the fragment is parsed as BIT ' ('1'), that is, the left
parenthesis (' (') is the character literal.”

.

*% “Generate statement declarative region. Generate statements form their
own declarative region. In compatibility mode, configuration specifications
will apply to items being instantiated within a generate statement.”
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e. ** “Allow type conversion functions on open parameters. If a parameter is
specified as open, it indicates a parameter without an explicit association. In
such cases, the presence of a type conversion function is meaningless. Com-
patibility mode allows the type conversion functions.”

f. *** “Entity class flexibility. Section [3.1.2] of the LRM defines the process of
creating a new integer type. The type name given is actually assigned to a
subtype name, related to an anonymous base type. This implies that the entity
class used during an attribute specification [LRM 5.1] should indicate sub-
type, rather than type. Because the supplied declaration was type rather than
subtype, compatibility mode allows type.”

g. *** “Allowing declarations beyond an all/others specification. Section [5.1] of
the LRM states that the first occurrence of the reserved word all or others in
an attribute specification terminates the declaration of the related entity class.
The LRM declares that the entity/architecture and package/package body
library units form single declaration regions [LRM 10.1] that are the concate-
nation of the two individual library declarative regions. For example, if a sig-
nal attribute specification with all or others was specified in the entity, it
would be impossible to declare a signal in the architecture. In compatibility
mode, this LRM limitation is removed.”

h. #** “User-defined attributes on overloaded functions. In compatibility mode,
user-defined attributes are allowed to be associated with overloaded func-
tions. Note: Even in compatibility mode, there is no way to retrieve the dif-
ferent attributes.”

10.65 (*1076 interpretations, 30 min.) In a DAC paper, the author writes: ‘It
was experienced that (company R) might have interpreted IEEE 1076 differently
than (company S) did, e.g. concatenations (&) are not allowed in “case selector”
expressions for (company S).” Can you use concatenation in your VHDL tool for
either the expression or choices for a case statement?

10.66 (**Interface declarations, 15 min.) Analyze the following and comment:

entity Interface 1 is
generic (I : INTEGER; J : INTEGER := I; K, L : INTEGER);
port (A : BIT VECTOR; B : BIT VECTOR(A'RANGE); C : BIT VECTOR (K to L));
procedure X(P, Q : INTEGER; R : INTEGER range P to Q);

procedure Y(S : INTEGER range K to L);
end Interface 1;

10.67 (**Wait statement, 10. min.) Construct the sensitivity set and thus the
sensitivity list for the following wait statement (that is, rewrite the wait statement
in the form wait on sensitivity list until condition).

entity Complex Wait is end; --1
architecture Behave of Complex Wait is -=2
type A is array (1 to 5) of BOOLEAN; ~=3
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function F (P : BOOLEAN) return BOOLEAN; ——4
signal S : A; signal i, j : INTEGER range 1 to 5; --5
begin process begin -~6
wait until F(S(3)) and (S(i) or S(3j)); -=7

end process; ) --8
end; -9

10.68 (**Shared variables, 20 min.) Investigate the following code and com-
ment:

architecture Behave of Shared 1 is
subtype S is INTEGER range 0 to 1; shared variable C : S := 0; begin
process begin C := C + 1; wait; end process;

It

process begin C :
end;

C — 1; wait; end process;

10.69 (Undocumented code and ranges, 20 min.) Explain the purpose of the
following function (part of a package from a well-known synthesis company) with a
parameter of type SIGNED. Write a testbench to check your explanation. Investigate
what happens when you call this function with a string-literal argument, for example
with the statement X <= IM("11100"). What is the problem and why does it hap-
pen? Rewrite the code, including documentation, to avoid this problem.

type SIGNED is array (NATURAL range <> ) of BIT;

function IM (L : SIGNED) return INTEGER is variable M : INTEGER;

begin M := L'RIGHT-1;
for i in L'LEFT-1 downto L'RIGHT loop
if (L(i) = (not L(L'LEFT))) then M := i; exit; end if;
end loop; return M;
end;

10.70 (Timing parameters, 20 min.) Write a model and a testbench for a two-
input AND gate with separate rising (tpLH) and falling (tpHL) delays using the fol-
lowing interface:

entity And Process is
generic (tplLH, tpHL : TIME); port (a, b : BIT; z : out BIT) end;

10.71 (Passive cede in entities, 30 min.) Write a procedure (CheckTiming, part
of a package Timing Pkg) to check that two timing parameters (tPLH and tPHL)
are both greater than zero. Include this procedure in a two-input AND gate model
(And_Process). Write a testbench to show your procedure and gate model both
work. Rewrite the entity for And_Process to include the timing check as part of the
entity declaration. You are allowed to include passive code (no assignments to sig-
nals and so on) directly in each entity. This avoids having to include the timing
checks in each architecture.
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10.72 (Buried code, 30 min.) Some companies bury instructions to the software
within their packages. Here is an example of part of the arithmetic package from an
imaginary company called SissyN:

function UN plus(a, B : UN) return UN is --1
variable CR§': STD_ULOGIC; variable X,SUM : UN (A'LEFT downto 0); -2
-~ pragma map_to_pperator ADD_UNS_OP -3
-- pragma type function LEFT_UN_ARG -—4
-~ pragma return port_name 2 -5
begin —_—
~- sissyn synthesis off -
if (A(A'LEFT) = 'X' or B(B'LEFT) = 'X') then SUM := (others => 'X'); --8
return(SUM); --9
end if; --10
-— sissyn synthesis _on --11
CRY := '0'; X := B; ——12
for i in 0 to A'LEFT loop -=13
SUM(i) := A(i) xor X(i) xor carry; =14
CRY := (A(i) and X(i)) or (A(i) and CRY) or (CRY and X(i)); --15
end loop; return SUM; —-~16
end; -17

Explain what this function does. Can you now hazard a guess at what each of the
comments means? What are the repercussions of using comments in this fashion?

10.73 (*Deferred constants, 15 min.) “If the assignment symbol ' : ="' followed
by an expression is not present in a constant declaration, then the declaration declares
a deferred constant. Such a constant declaration may only appear in a package dec-
laration. The corresponding full constant declaration, which defines the value of the
constant, must appear in the body of the package” [VHDL 93LRM4.3.1.1].

package Constant is constant sl, s2 : BIT VECTOR; end Constant;

package body Constant is
constant s0 : BIT VECTOR := "00"; comstant sl : BIT VECTOR := "QOl";
end Constant;

It is tempting to use deferred constants to hide information. However, there are
problems with this approach. Analyze the following code, explain the results, and
correct the problems:

entity Deferred 1 is end; architecture Behave of Deferred 1 is
use work.all; signal y,il,i2 : INTEGER; signal sel : INTEGER range 0 to 1;
begin with sel select y <= il when s0, i2 when sl; end;

10.74 (***Viterbi code, days) Convert the Verilog model of the Viterbi decoder
in Chapter 11 to VHDL. This problem is tedious without the help of some sort of
Verilog to VHDL conversion process. There are two main approaches to this prob-
lem. The first uses a synthesis tool to read the behavioral Verilog and write structural
VHDL (the Compass ASIC Synthesizer can do this, for example). The second
approach uses conversion programs (Alternative System Concepts Inc. at
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http://www.ascinc.com is one source). Some of these companies allow you to
e-mail code to them and they will automatically return a translated version.

10.75 (*Wait statement, 30 min.) Rewrite the code below using a single wait
statement and write a testbench to prove that both approaches are exactly equivalent:

entity Wait Exit is port (Clk : imn BIT); end;
architecture Behave of Wait Exit is
begin process begin
loop wait on Clk; exit when Clk = '1'; end loop;
end process;
end;

10.76 (Expressions, 10 min.) Explain and correct the problems with the following:

variable b : BOOLEAN; b := "00" < "11"; --1
variable bv8 : BIT VECTOR (7 downto 0) := "1000_0000"; --2

10.77 (Combinational logic using case statement, 10 min.) A Verilog user sug-
gests the following method to model combinational logic. What are the problems
with this approach? Can you get it to work?

entity AndCase is port (a, b : BIT; y : out BIT); end;
architecture Behave of AndCase is begin process (a , b) begin
case a & b is
when '1'&'1l' => y <= 'l'; when others => y <= '0°';
end case;
end process; end;

10.78 (*Generics and back-annotation, 60 min.)

a. Construct design entities And_ 3 (Behave), a two-input AND gate, and
Xor 3(Behave), a two-input XOR gate. Include generic constants to model
the propagation delay from each input to the output separately. Use the fol-
lowing entity declaration for And_3:

entity And 3 is port (I1, I2 : BIT; O : out BIT);
generic (IltoO, I2to0 : DELAY LENGTH := 0.4 ns); end;

b. Create and test a package, P_1, that contains And_3 and Xor_ 3 as compo-
nents.

c. Create and test a design entity Half Adder_ 3(Structure_3) that uses
P_1, with the following interface:

entity Half Adder 3 is port (X, Y : BIT; Sum, Carry : out BIT); end;

d. Modify and test the architecture Structure_ 3 for Half Adder_3 so that
you can use the following configuration:

configuration Structure 3 of Half Adder 3 is

for Structure_3

for L1 : XOR generic map (0.66 ns,0.69 ns); end for;

for L2 : AND generic map (0.5 ns, 0.6 ns) port map (I2 => HI); end for;
end for; end;
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10.79 (SNUG'95, #60 min.) In 1995 John Cooley organized a contest between
VHDL and Verilog for ASIC designers. The goal was to design the fastest 9-bit
counter in under one hour using Synopsys synthesis tools and an LSI Logic vendor
technology library. The VHDL interface is as follows:

library ieee; use ieee.std_logic_1164.all;

-~ use ieee.std logic_arith.all; -~ substitute your package here
entity counter is port (

data_in : in std_logic_vector(8 downto 0);

up : in std_logic;

down : in std _logic;

clock : in std_logic;

count out : inout std_logic_vector(8 downto 0);

carry out : out std logic;

borrow out : out std_logic;

parity out : out std logic ); end counter;

architecture example of counter is begin
-— insert your design here
end example;

The counter is positive-edge triggered, counts up with up = '1' and down with
down = '1°'. The contestants had the advantage of a predefined testbench with a set
of test vectors, you do not. Design a model for the counter and a testbench. How
confident are you that you have thoroughly tested your model? (In the real contest
none of the VHDL contestants managed to even complete a working design in under
one hour. In addition, the VHDL experts that had designed the testbench omitted a
test case for one of the design specifications.)

10.80 (*A test procedure, 45 min.) Write a procedure all (for a package test)
that serially generates all possible input values for a signal spaced in time by a
delay, d1y. Use the following interface:
library ieee; use ieee.std logic 1164.all; package test is
procedure all (signal SLV ? out ETD LOGIC VECTOR; dly : in TIME);
end package test ; B B

10.81 (Direct instantiation, 20 min.) Write an architecture for a full-adder,
entity Full_ Adder 2, that directly instantiates units And 2 (Behave) and
Xor_2(Behave). This is only possible in a VHDL-93 environment.
entity And 2 is port (il, i2 : BIT; y : out BIT); end;
entity Xor 2 is port (il, i2 : BIT; y : out BIT); end;
entity Full Adder 2 is port (a, b, ¢ : BIT ; sum, cout : eout BIT); end;

10.82 (**Shift operators for 1164, 60 min.) Write a package body to implement
the VHDL-93 shift operators, s11 and srl, for the type STD_LOGIC VECTOR. Use
the following package header:

package 1164 _shift is
function "sll"(x : STD_LOGIC VECTOR; n : INTEGER)
return STD_LOGIC VECTOR;
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function "srl"(x : STD_LOGIC VECTOR; n : INTEGER)
return STD_LOGIC_VECTOR;
end package 1164 shift;

10.83 (**VHDL wait statement, 60 min.) What is the problem with the fol-
lowing VHDL code? Hint: You may need to consult the VHDL LRM.

procedure p is begin wait on b; end;
process (a) is begin procedure p; end process;

10.84 (**Null range, 45 min.) A range such as 1 to -1 or 0 downto 1 is a
null range (0 to 0 is a legal range). Write a one-page summary on null ranges,
including code examples. Is a null range treated as an ascending or descending
range?

10.85 (**Loops, 45 min.) Investigate the following issues with loops, including
code examples and the results of analysis and simulation:

a. Try to alter the loop parameter within a loop. What happens?

b. What is the type of the loop parameter?

¢. Can the condition inside a loop depend on a loop parameter?

d. What happens in a for loop if the range is null?

e. Can you pass a loop parameter out of a procedure as a procedure parameter?

10.86 (Signals and variables, 30 min.) Write a summary on signals and vari-
ables, including code examples.

10.87 (Type conversion, 60 min.) There are some very subtle rules involving
type conversion, [VHDL 93LRM?7.3.5]. Does the following work? Explain the type
conversion rules.

BV <= BIT VECTOR("1111");

10.19 Bibliography

The definitive reference guide to VHDL is the IEEE VHDL LRM [IEEE, 1076-
1993]. The LRM is initially difficult to read because it is concise and precise (the
LRM is intended for tool builders and experienced tool users, not as a tutorial). The
LRM does form a useful reference—as does a dictionary for serious users of any
language. You might think of the LRM as a legal contract between you and the com-
pany that sells you software that is compliant with the standard. VHDL software
uses the terminology of the LRM for error messages, so it is necessary to understand
the terms and definitions of the LRM. The WAVES standard [IEEE 1029.1-1991]
deals with the problems of interfacing VHDL testbenches to testers.

VHDL International maintains VIUF (VHDL International Users’ Forum) Inter-
net Services (http:/www.vhdl.org) and links to other groups working on VHDL
including the IEEE synthesis packages, IEEE WAVES packages, and IEEE VITAL
packages (see also Appendix A).
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The frequently asked questions (FAQ) list for the VHDL newsgroup
comp.lang.vhdl is a wuseful starting point (the list is archived at
gopher://kona.ee.pitt.edu/h0/NewsGroupArchives). Information on char-
acter sets and the problems of exchanging information across national boundaries can
be found at ftp://watsun.cc.columbia.edu/kermit/charsets.
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In this chapter we look at the Verilog hardware description language. Gateway
Design Automation developed Verilog as a simulation language. The use of the
Verilog-XL simulator is discussed in more detail in Chapter 13. Cadence purchased
Gateway in 1989 and, after some study, placed the Verilog language in the public
domain. Open Verilog International (OVI) was created to develop the Verilog lan-
guage as an IEEE standard. The definitive reference guide to the Verilog language is
now the Verilog LRM, IEEE Std 1364-1995 [1995].1 This does not mean that all
Verilog simulators and tools adhere strictly to the IEEE Standard—we must abide by
the reference manual for the software we are using. Verilog is a fairly simple lan-
guage to learn, especially if you are familiar with the C programming language. In
this chapter we shall concentrate on the features of Verilog applied to high-level
design entry and synthesis for ASICs.

ISome of the material in this chapter is reprinted with permission from IEEE Std 1364-
1995, © Copyright 1995 IEEE. All rights reserved.
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11.1 A Counter

The following Verilog code models a “black box” that contains a 50MHz clock
(period 20 ns), counts from O to 7, resets, and then begins counting at 0 again:

“timescale 1ns/lns // Set the units of time to be nanoseconds. //1

module counter; //2

reg clock; // Declare a reg data type for the clock. /73

integer count; // Declare an integer data type for the count. /74

initial // Initialize things; this executes once at t=0. /75

begin //6

clock = 0; count = 0; // Initialize signals. /77

#340 $finish; // Finish after 340 time ticks. /78

end /79

/* An always statement to generate the clock; only one statement

follows the always so we don't need a begin and an end. */ /710

always //11

#10 clock = ~ clock; // Delay (10ns) is set to half the clock cycle.//12
/* An always statement to do the counting; this executes at the same

time (concurrently) as the preceding always statement. */ //13

always //14

begin //15

// Wait here until the clock goes from 1 to 0. //16

@ (negedge clock); /711

// Now handle the counting. //18

if (count == 7) //19

count = 0; /720

else //21

count = count + 1; //22

$display("time = ",$time," count = ", count); //23

end //24

endmodule //25

Verilog keywords (reserved words that are part of the Verilog language) are
shown in bold type in the code listings (but not in the text). References in this chap-
ter such as [Verilog LRM 1.1] refer you to the IEEE Verilog LRM.

The following output is from the Cadence Verilog-XL simulator. This example
includes the system input so you can see how the tool is run and when it is finished.
Some of the banner information is omitted in the listing that follows to save space
(we can use “quiet” mode using a '-g' flag, but then the version and other useful
information is also suppressed):

> verilog counter.v

VERILOG-XL 2.2.1 Apr 17, 1996 11:48:18
... Banner information omitted here...

Compiling source file "counter.v"

Highest level modules:
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counter

time = 20 count = 1
time = 40 count =

(... 12 lines omitted...)

time = 300 count = 7
time = 320 count = 0

L10 "counter.v": $finish at simulation time 340

223 simulation events

CPU time: 0.6 secs to compile + 0.2 secs to link + 0.0 secs in
simulation

End of VERILOG-XL 2.2.1 Apr 17, 1996 11:48:20

>

Here is the output of the VeriWell simulator from the console window (future
examples do not show all of the compiler output— just the model output):

Veriwell -k VeriWell.key -1 VeriWell.log -s :counter.v

... banner information omitted ....

Memory Available: 0

Entering Phase I...

Compiling source file : :counter.v

The size of this model is [1%, 1%] of the capacity of the free version

Entering Phase II...
Entering Phase III...

No errors in compilation
Top-level modules:

counter
Ccl> .
time = 20 count =
time = 40 count = 2
(... 12 lines omitted...)
time = 300 count =
time = 320 count = 0

Exiting VeriWell for Macintosh at time 340
0 Errors, 0 Warnings, Memory Used: 29468
Compile time = 0.6, Load time = 0.7, Simulation time = 4.7

Normal exit
Thank you for using VeriWell for Macintosh
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11.2 Basics of the Verilog Language

A Verilog identifier [Verilog LRM2.7], including the names of variables, may con-
tain any sequence of letters, digits, a dollar sign '$', and the underscore ' *
symbol. The first character of an identifier must be a letter or underscore; it cannot
be a dollar sign '$', for example. We cannot use characters such as '-' (hyphen),
brackets, or '#' (for active-low signals) in Verilog names (escaped identifiers are an
exception). The following is a shorthand way of saying the same thing:
identifier ::= simple_identifier | escaped_ identifier
simple identifier ::= [ a-zA-Z ][ a-zA-Z_$ ]
escaped_identifier ::=

\ {Any_ASCII_character_except white space} white_space
white space ::= space | tab | newline

(In the 1995 LRM the underscore ‘_’ is missing from the first bracket.) If we
think of '::=' as an equal sign, then the preceding “equation” defines the syntax
of an identifier. Usually we use the Backus—Naur form (BNF) to write these equa-
tions. We also use the BNF to describe the syntax of VHDL. There is an explana-
tion of the BNF in Appendix A. Verilog syntax definitions are given in Appendix B.
In Verilog all names, including keywords and identifiers, are case-sensitive. Spe-
cial commands for the simulator (a system task or a system function) begin with a
dollar sign '$' [Verilog LRM 2.7]. Here are some examples of Verilog identifiers:

module identifiers; //1
/* Multiline comments in Verilog /72
look like C comments and // is OK in here. */ //3
// Single-line comment in Verilog. //4
reg legal identifier,two_ underscores; /75
reg OK,0K ,0K $,0K_123,CASE_SENSITIVE, case sensitive; /76
reg \/clock ,\a*b ; // Add white space after escaped identifier. //7
//reg $_BAD,123_BAD; // Bad names even if we declare them! /78
initial begin //9
legal identifier = 0; // Embedded underscores are OK, //10
two underscores = 0; // even two underscores in a row. //11
_OK = 0; // Identifiers can start with underscore /712
OK_ = 0; // and end with underscore. //13
OKS$ = 0; // $ sign is OK, but beware foreign keyboards.//14
OK_123 =0; // Embedded digits are OK. //15
CASE _SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL). //16
case_sensitive = 1; /717
\/clock = 0; // An escaped identifier with \ breaks rules,//18
\a*b = 0; // but be careful to watch the spaces! //19
$display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE); //20
$display("Variable case sensitive= %d",case_sensitive); /721
$display(“"Variable \/clock = %d",\/clock }); /722
$display("Variable \\a*b = %d",\a*b ); //23
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end //24
endmodule //25

The following is the output from this model (future examples in this chapter list
the simulator output directly after the Verilog code).

Variable CASE__SENSITIVE= 0
Variable case sensitive= 1
Variable /clock = 0
Variable \a*b = 0

11.2.1  Verilog Logic Values

Verilog has a predefined logic-value system or value set [Verilog LRM 3.1] that uses
four logic values: '0', '1', *x', and 'z' (lowercase 'x' and lowercase 'z*). The
value 'x' represents an uninitialized or an unknown logic value—an unknown value
is either *1', *0', 'z', or a value that is in a state of change. The logic value 'z
represents a high-impedance value, which is usually treated as an 'x' value. Verilog
uses a more complicated internal logic-value system in order to resolve conflicts
between different drivers on the same node. This hidden logic-value system is useful
for switch-level simulation, but for most ASIC simulation and synthesis purposes we
do not need to worry about the internal logic-value system.

11.2.2 Verilog Data Types

There are several data types in Verilog—all except one need to be declared before
we can use them. The two main data types are nets and registers [Verilog LRM 3.2].
Nets are further divided into several net types. The most common and important net
types are: wire and tri (which are identical); supplyl and supply0 (which are equiv-
alent to the positive and negative power supplies respectively). The wire data type
(which we shall refer to as just wire from now on) is analogous to a wire in an
ASIC. A wire cannot store or hold a value. A wire must be continuously driven by
an assignment statement (see Section 11.5). The default initial value for a wire is
'z' [Verilog LRM3.6]. There are also integer, time, event, and real data types.

module declarations 1; //1
wire pwr_good, pwr_on, pwr_stable; // Explicitly declare wires. /72
integer 1i; // 32-bit, signed (2's complement). //3
time t; // 64-bit, unsigned, behaves like a 64-bit reg. /74
event e; // Declare an event data type. /75
real r; // Real data type of implementation defined size. //6
// An assign statement continuously drives a wire: /77
assign pwr stable = 1'bl; assign pwr_on = 1; // 1 or 1'bl //8
assign pwr good = pwr_on & pwr_stable; /79
initial begin /710
i = 123.456; // There must be a digit on either side //11
r = 123456e-3; // of the decimal point if it is present. //12

499



484

CHAPTER 11

VERILOG HDL
t = 123456e-3; // Time is rounded to 1 second by default. //13
$display("i=%0g",1i," t=%6.2f",t," r=%f",r); ' //14
#2 $display("TIME=3%0d",$time," ON=",pwr on, //15
" STABLE=",pwr stable," GOOD=",pwr good); //16
$finish; end //17
endmodule //18

i=123 t=123.00 r=123.456000
TIME=2 ON=1 STABLE=1 GOOD=1

A register data type is declared using the keyword reg and is comparable to a
variable in a programming language. On the LHS of an assignment a register data
type (which we shall refer to as just reg from now on) is updated immediately and
holds its value until changed again. The default initial value for a regis 'x'. We can
transfer information directly from a wire to a reg as shown in the following code:

module declarations 2; //1
reg Q, Clk; wire D; A //2
// Drive the wire (D): /73
assign D = 1; //4
// At a +ve clock edge assign the value of wire D to the reg Q: //5
always @(posedge Clk) Q = D; /76
initial Clk = 0; always #10 Clk = ~ Clk; /77
initial begin #50; $finish; end //8
always begin //9
$display("T=%2g", $time," D=",D," Clk=",Clk," Q=",Q); #10; end //10
endmodule //11
= 0 D=z Clk=0 0O=x
T=10 D=1 Clk=1 QO=x
T=20 D=1 Clk=0 Q=1
T=30 D=1 Clk=1 Q=1
T=40 D=1 Clk=0 0O=1

We shall discuss assignment statements in Section 11.5. For now, it is important
to recognize that a reg is not always equivalent to a hardware register, flip-flop, or
latch. For example, the following code describes purely combinational logic:

module declarations_3; /71
reg a,b,c,d,e; //2
initial begin //3
#10; a = 0;b = 0;¢c = 0;d = 0; #10; a = 0;b = 1l:c = 1;d = 0; //4
#10; a = 0;b = 0;c = 1;d = 1; #10; S$stop; /75
end /76
always begin /77
@(a or b or c or d) e = (a|b)&(c|d); //8
$display("T=%0g",$time," e=",e); /79
end /710
endmodule //11

T=10 e=0
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T=20 e=1
T=30 e=0

A single-bit wire or reg is a scalar (the default). We may also declare a wire
or reg as a vector with a range of bits [Verilog LRM 3.3]. In some situations we
may use implicit declaration for a scalar wire; it is the only data type we do not
always need to declare. We must use explicit declaration for a vector wire or any
reg. We may access (or expand) the range of bits in a vector one at a time, using a
bit-select, or as a contiguous subgroup of bits (a continuous sequence of numbers—
like a straight in poker) using a part-select [Verilog LRM 4.2]. The following code
shows some examples:

module declarations_4; //1
wire Data; // A scalar net of type wire. //2
wire [31:0] ABus, DBus; // Two 32-bit-wide vector wires: //3
// DBus[31] = leftmost = most-significant bit = msb /74
// DBus{0] = rightmost = least-significant bit = 1lsb /75
// Notice the size declaration precedes the names. /76
// wire [31:0] TheBus, [15:0] BigBus; // This is illegal. /17
reg [3:0] vector; // A 4-bit vector register. //8
reg [4:7] nibble; // msb index < lsb index is OK. /79
integer i; //10
initial begin /711
i=1; //12
vector = 'bl010; // Vector without an index. //13
nibble = vector; // This is OK too. //14
$1; $display("T=%0g",S$time," vector=", vector," nibble=", nibble); //15
#2; $display("T=3%0g",$time,"” Bus=%b",DBus|[15:0]); //16
end /117
assign DBus [1] = 1; // This is a bit-select. //18
assign DBus [3:0] = 'bl1lli; // This is a part-select. //19
// assign DBus [0:3] = 'bl11l; // Illegal : wrong direction. //20
endmodule /721

T=1 vector=10 nibble=10
T=3 Bus=zzzzzzzzzzzzll1lll

There are no multidimensional arrays in Verilog, but we may declare a memory
data type as an array of registers [Verilog LRM 3.8]:

module declarations 5; //1
reg [31:0] VideoRam [7:0]1; // An 8-word by 32-bit wide memory. /72
initial begin //3
VideoRam[1l] = 'bxz; // We must specify an index for a memory. /74
VideoRam[2] = 1; //5

vVideoRam[7] = VideoRam|[VideoRam{2]]; // Need 2 clock cycles for this.//6
VideoRam[8] 1; // careful! the compiler won't complain about this! //7
// Verify what we entered: //8
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$display("VideoRam[0] is %b",VideoRam[01]); /79
$display("vVideoRam{1l] is $b",VideoRam[11]); : //10
$display("VideoRam[2] is $%b",VideoRam[2]); //11
$display("VideoRam[7] is %b",VideoRam[7]); //12
end //13
endmodule //14

VideoRam[0] is XXXXXXKXXXXXXXXXXKXXXXKXXXXXXXKXKXKXXX
VideoRam{1l] is XXXXXXXXXXXXXXXXXXXXXXKXXKXXKXKXXKZ
videoRam[2] is 00000000000000000000000000000001
VideoRam{7] is XXXXXXXXXXXXXXXXAXKXXXXXKXXXXXXXZ

We may also declare an integer array or time array in the same way as an
array of reg, but there are no real arrays [Verilog LRM 3.9]:

module declarations 6; //1
integer Number [1:100}; // Notice that size follows name //2
time Time Log [1:10007]; // - as in an array of regq. //3
// real Illegal [1:10}; // Illegal. There are no real arrays.//4
endmodule //5

11.2.3 Other Wire Types

There are the following other Verilog wire types (rarely used in ASIC design)
[Verilog LRM 3.7.2]:

* wand, wor, triand, and trior model wired logic. Wiring, or dotting, the
outputs of two gates generates a logic function (in emitter-coupled logic,
ECL, or in an EPROM, for example). This is one area in which the logic val-
ues 'z' and 'x' are treated differently.

» tri0 and tril model resistive connections to VSS or VDD.

e trireg is like a wire but associates some capacitance with the net, so it can
model charge storage.

There are also other keywords that may appear in declarations:
* scalared and vectored are properties of vectors [Verilog LRM 3.3.2].

* small, medium, and large model the charge strength of trireg connections
[Verilog LRM 7].

11.2.4 Numbers

Constant numbers are integer or real constants [Verilog LRM 2.5]. Integer
constants are written as

width'radix value

where width and radix are optional. The radix (or base) indicates the type of num-
ber: decimal (d or D), hex (h or H), octal (o or 0), or binary (b or B). A number may
be sized or unsized. The length of an unsized number is implementation dependent.
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We can use '1' and '0°' as numbers since they cannot be identifiers, but we must
write 1'bx and 1'bz for 'x* and 'z'. A number may be declared as a parameter
[Verilog LRM 3.10]. A parameter assignment belongs inside a module declaration
and has local scope [Verilog LRM3.11]. Real constants are written using decimal
(100.0) or scientific notation (1e2) and follow IEEE Std 754-1985 for double-
precision floating-point numbers. Reals are rounded to the nearest integer, ties (num-
bers that end in .5) round away from zero [Verilog LRM 3.9.2], but not all imple-
mentations follow this rule (the output from the following code is from VeriWell,
which rounds ties toward zero for negative integers).

module constants; //1
parameter H12 UNSIZED = 'h 12; // Unsized hex 12 = decimal 18. //2
parameter H12 SIZED = 6'h 12; // Sized hex 12 = decimal 18. //3
// Note: a space between base and value is OK. //4
// Note: ‘'’ (single apostrophes) are not the same as the ' character.//5
parameter D42 = 8'B0010_1010; // bin 101010 = dec 42 /76
// OK to use underscores to increase readability. /717
parameter D123 = 123; // Unsized decimal (the default).//8
parameter D63 = 8'c 77; // Sized octal, decimal 63. /79
// parameter ILLEGAL = 1'09; // No 9's in octal numbers! //10
// A = 'hx and B = 'ox assume a 32 bit width. //11
parameter A = 'h x, B = 'o0x, C = 8'b x, D= 'h z, E = 16'h ?2?27?; //12
// Note the use of ? instead of z, 16'h ???? is the same as 16'h zzzz.//13
// Also note the automatic extension to a width of 16 bits. //14
reg [3:0] B0Oll,Bxxxl,Bzzzl; real R1,R2,R3; integer I1,I3,I 3; //15
parameter BXZ = 8'blx0x1z0z; //16
initial begin /717
B0011 = 4'bll; Bxxxl = 4'bxl; Bzzzl = 4'bzl; // Left padded. //18
Rl = 0.1lel; R2 = 2.0; R3 = 30E-01; // Real numbers. //19
I1 =1.1; I3 =2.5; I 3 = -2.5; // IEEE rounds away from 0. //20
end //21
initial begin #1; /722
$display /723
("HlZ;UNSIZED, Hl2_SIZED (hex) = %h, %h" ,H12_UNSIZED, HlZ_SIZED) H //24
$display("D42 (bin) = %b",D42," (dec) = %d",D42); //25
$display("D123 (hex) = %h",D123," (dec) = %d",D123); //26
$display("D63 (oct) = %0",D63); /727
$display("A (hex) = %h",A," B (hex) = %h",B); //28
$display{"C (hex) = %h",C," D (hex) = %h",D," E (hex) = %h",E); //29
$display("BX2 (bin) = %$b",BXZ," (hex) = %h",BX2); //30
$display("B0011, Bxxxl, Bzzzl (bin) = &b, %b, %b",B0011,Bxxxl,Bzzzl);//31
$display("R1, R2, R3 (e, £, g) = %e, %f, %g", R1, R2, R3); /732
$display("Il, I3, I 3 (d) = %d, %d, %d", I1, I3, I 3); /733
end //34
endmodule //35

H12 UNSIZED, H12 SIZED (hex) = 00000012, 12
D42 (bin) = 00101010 (dec) = 42
D123 (hex) = 0000007b (dec) = 123
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D63 (oct) = 077

A (hex) = xxxxxxxx B (hex) = XXXXXXXX

C (hex) = xx D (hex) = zzzzzzzz E (hex) = zzz2z

BXZ (bin) = 1x0x1z0z (hex) = X2

B0011, Bxxxl, Bzzzl (bin) = 0011, xxxl, zzzl

R1, R2, R3 (e, £, g) = 1.000000e+00, 2.000000, 3

I1, 13, I 3 (d) = 1, 3, -2

11.2.5 Negative Numbers

Integer numbers are signed (two’s complement) or unsigned. The following
example illustrates the handling of negative constants [Verilog LRM 3.2.2, 4.1.3]:

module negative numbers; //1
parameter PA = -12, PB = -'dl12, PC = -32'dl2, PD = -4'd12; /72
integer IA , IB , IC , ID ; reg [31:0] RA , RB , RC , RD ; /73
initial begin #1; //4
IA = -12; IB = -'dl2; IC = -32'dl12; ID = -4'd1l2; //5
RA = ~12; RB = ~'dl2; RC = -32'dl2; RD = -4'd12; #1; //6
$display (" parameter integer reg[31:01"); /77
$display ("-12 =" ,PA,IA,,,RA); //8
$displayh (" “,,+PRA,,,,IA,,,, ,RA); /79
$digplay ("~'d12 =",,PB,IB,,,RB); /710
$displayh(" “vy++PB,,,,IB,,,, ,RB); //11
$display ("-32'412 =",,PpC,IC,,,RC); /712
$displayh(" ", s+PC,,,+IC,,, ., RC); //13
$display ("-4'dl2 =",,,,¢+4+r,,,PD,ID,,,RD); //14
$displayh(" "ytrtrveeressPD,y,,ID,,,, ,RD); //15
end //16
endmodule //17

parameter integer reg[31:0]

-12 = -12 ~-12 4294967284

fEEfEE£4 fffffff4d fEEff£f4

-'dl2 = 4294967284 ~12 4294967284

fEfEff£4 o i e o o fEEfEF£f4

-32'dl2 = 4294967284 -12 4294967284

fEfffff4 fEff£££4 fEfEEff4

-4'dl2 = 4 -12 4294967284

4 fEEEEE£4 fffffff4

Verilog only “keeps track™ of the sign of a negative constant if it is (1) assigned
to an integer or (2) assigned to a parameter without using a base (essentially the
same thing). In other cases (even though the bit representations may be identical to
the signed number—hexadecimal ££ff£ff4 in the previous example), a negative
constant is treated as an unsigned number. Once Verilog “loses” the sign, keeping
track of signed numbers becomes your responsibility (see also Section 11.3.1).

504



11.2 BASICS OF THE VERILOG LANGUAGE 489

11.2.6 Strings

The code listings in this book use Courier font. The ISO/ANSI standard for the
ASCII code defines the characters, but not the appearance of the graphic symbol in
any particular font. The confusing characters are the quote and accent characters:

module characters; /* //1
" is ASCII 34 (hex 22), double quote. /72
' is ASCII 39 (hex 27), tick or apostrophe. //3
/ is ASCII 47 (hex 2F), forward slash. /74
\ is ASCII 92 (hex 5C), back slash. //5
T is ASCII 96 (hex 60), accent grave. /76
| is ASCII 124 (hex 7C), vertical bar. /17
There are no standards for the graphic symbols for codes above 128. //8
" is 171 (hex AB), accent acute in almost all fonts. //9
# is 210 (hex D2), open double guote, like 66 (in some fonts). //10
7 is 211 (hex D3), close double quote, like 99 (in some fonts). //11
‘ is 212 (hex D4), open single quote, like 6 (in some fonts). //12
* is 213 (hex D5), close single quote, like 9 (in some fonts). //13
*/ endmodule /714

Here is an example showing the use of string constants [Verilog LRM 2.6]:

module text; //1
parameter A String = "abc"; // string constant, must be on one line //2
parameter Say = "Say \"Hey!\""; /73
// use escape quote \" for an embedded quote //4
parameter Tab = "\t"; // tab character //5
parameter NewLine = "\n"; // newline character //6
parameter BackSlash = "\\"; // back slash /717
parameter Tick = "\047"; // ASCII code for tick in octal //8
// parameter Illegal = "\500"; // illegal - no such ASCII code /79
initial begin //10
$display("A String(str) = %s ",A String," (hex) = $h ",A String); //11
$display("Say = %s ",Say,"” Say \"Hey!\""}); //12
$display("NewLine(str) = %s ",NewLine,” (hex) = %h ",NewLine); //13
$display("\\(str) = %s ",BackSlash," (hex) = %h ",BackSlash); //14
$display("Tab(str) = %s ",Tab,"” (hex) = %h ",Tab,”1 newline..."); //15
$display("\n"); //16
$display("Tick(str) = %s ",Tick," (hex) = %h ",Tick); /717
#1.23; $display("Time is %t", S$time); //18
end //19
endmodule //20

A String(str) = abc (hex) = 616263
Say = Say \"Hey!\" Say "Hey!"
NewLine(str) = \n (hex) = 0Oa
\(str) = \\ (hex) = 5c
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Tab(str) = \t (hex) = 09 1 newline...
Tick(str) = ' (hex) = 27
Time is 1

Instead of parameters you may use a define directive that is a compiler
directive, and not a statement [Verilog LRM 16]. The define directive has global
scope:

module define; /71
“define G _BUSWIDTH 32 // Bus width parameter (G_ for global). //2
/* Note: there is no semicolon at end of a compiler directive. The
character ~ is ASCII 96 (hex 60), accent grave, it slopes down from

left to right. It is not the tick or apostrophe character ' (ASCII 39

or hex 27)*/ /73
wire [ G _BUSWIDTH:0]MyBus; // A 32-bit bus. //4
endmodule /75

11.3 Operators

An expression uses any of the three types of operators: unary operators, binary oper-
ators, and a single ternary operator [Verilog LRM 4.1]. The Verilog operators are
similar to those in the C programming language—except there is no
autoincrement (++) or autodecrement (~-) in Verilog. Table 11.1 shows the opera-
tors in their (increasing) order of precedence and Table 11.2 shows the unary opera-
tors. Here is an example that illustrates the use of the Verilog operators:

module operators; //1
parameter Al0xz = {1'bl,1'b0,1'bx,1'bz}; // Concatenation and //2
parameter A01010101 = {4{2'b01}}; // replication, illegal for real.//3
// Arithmetic operators: +, -, *, /, and modulus $% //4
parameter Al = (3+2) %2; // The sign of a $ b is the same as sign of a.//5
// Logical shift operators: << (left), >> (right) /76
parameter A2 = 4 >> 1; parameter A4 = 1 << 2; // Note: zero fill. //7
// Relational operators: <, <=, >, >= //8
initial if (1 > 2) $stop; /79
// Logical operators: ! (negation), && (and), || (or) //10
parameter B0 = !12; parameter Bl = 1 && 2; //11
reg [2:0] A00x; initial begin A0Ox = 'blll; A0Ox = !2'bxl; end /712
parameter Cl = 1 || (1/0); /* This may or may not cause an //13
error: the short-circuit behavior of && and || is undefined. 2an //14
evaluation including && or || may stop when an expression is known //15
to be true or false. */ //16
// == (logical equality), != (logical inequality) /717
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TABLE 11.1 Verilog operators (in increasing order of precedence).

?: {(conditional) [legal for real; associates right to left (others associate left to right)]
|| (logical or) [A smaller operand is zero-filled from its msb (0-fill); legal for real]
&& (logical and)[0-~-fill, legal for real}

| (bitwise or) ~| (bitwise nor) [0-fill]

~ ~ -~

(bitwise xor) "~ ~" (bitwise xnor, equivalence) [0-fill}

& (bitwise and) ~& (bitwise nand) [0-fill}

== (logical) != (logical) === (case) !== (case) [0-fill, logical versions are legal for real]
< (lt) <= (1t or equal) > (gt) >= (gt or equal) [0-fill, all arelegal for real]

<< (shift left) >> (shift right) [zero fill; no -ve shifts; shift by x or z results in unknown]
+ (addition) -~ (subtraction) [if any bit is x or z for + - * / % then entire result is unknown]
* (multiply) / (divide) % (modulus) [integer divide truncates fraction; + - * / legal for real]

Unary operators: ! — & =~& | ~] "~ =~ "~ 4+ .~ [see Table l1.2 for precedence]

TABLE 11.2 Verilog unary operators.

Operator Name Examples
! logical negation 1123 is 'b0 [0, 1, or x for ambiguous; legal for reai]
~ bitwise unary negation ~1'bl0xz is 1'b0lxx
& unary reduction and & 4'b1l111 is 1'bl, & 2'bxl is 1'bx, & 2'bzl is 1'bx
~& unary reduction nand ~& 4'bl111 is 1'b0, ~& 2'bxl is 1'bx
l unary reduction or Note:
~| unary reduction nor Reduction is performed left (first bit) to right
~ unary reduction xor Beware of the non-associative reduction operators

~* "~ unary reduction xnor z is treated as x for all unary operators

+ unary plus +2'bxz is +2'bxz [+m is the same as m; legal for real]
- unary minus -2'bxz is x [-m is unary minus m; legal for reall

parameter Ax = (l==1'bx); parameter Bx = (l'bx!=1'bz); //18
parameter DO = (1==0); parameter D1 = (l==1); //19
// === case equality, !== (case inequality) //20
// The case operators only return true (1) or false (0). //21
parameter E0 = (1l===1'bx); parameter El = 4'b0lxz === 4'b01xz; //22
parameter Fl = (4'bxxxx === 4'bXXXX); ‘ //23
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// Bitwise logical operators:

// ~ (negation), & (and), | (inclusive or}),
// ~ (exclusive or), ~" or "~ (equivalence)
parameter A00 = 2'b01 & 2'bl0;

// Unary logical reduction operators:

// & {(and), ~& (nand), | (or), ~| (nor),

// ~ (xor), ~" or "~ (xnor)

parameter Gl= & 4'bll1l1l;

// Conditional expression f = a ? b : ¢ [if (a) then f=b else f=c]

/724
/725
//26
/727
/728
/729
//30
/731
/732

// if a=(x or z), then (bitwise) £=0 if b=c=0, f=1 if b=c=1, else f=x//33

reg HO, a, b, c¢; initial begin a=1; b=0; c=1; HO=a?b:c; end

reg[2:0] J01x, Jxxx, J0lz, J011;
initial begin Jxxx = 3'bxxx; J0lz = 3'b0lz;

JOo1ll = 3'b011;

J01lx = Jxxx ? J01lz : J011l; end // A bitwise result.

initial begin #1;

$display("Al0xz=%b",Al0xz," A01010101=%b",A01010101);
$display("Al=%0d",Al," A2=30d4",A2," A4=304",Bd);

$display("Bl=%b”,B1l," BO=%b",B0," A00x=%b"

,A00X) ;

$display("Cl=%b",Cl,” Ax=%b",Ax," Bx=%b",Bx);

$display("D0=%b",D0," DIl=%b",D1);

$display("E0=%b",E0," El=%b",El," Fl=%b",Fl);

$display("A00=%b",A00," Gl=%b",Gl," HO=%b"
$display("J0lx=%b",J01lx); end
endmodule

Al0xz=10xz A01010101=01010101
Al=1 A2=2 Ad=4

Bl=1 B0=0 A00x=00x

Cl=1l Ax=x Bx=x

DO=0 DI1=1

E0=0 El1=1 Fl=1

A00=00 Gl=1 HO0=0

J01x=01x

11.3.1  Arithmetic

Arithmetic operations on n-bit objects are performed modulo 2" in Verilog,

module modulo; reg [2:0] Seven;

initial begin

#1 Seven = 7; #1 $display("Before=", Seven);
#1 Seven Seven + 1; #1 $display("After =",

end
endmodule

Before=7
After =0
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,HO);

Seven);

//34
//35
//36
/737
//38
/739
//40
//41
/742
/743
/744
/745
//46
/747

//1
/72
/73
/74
/75
/76
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Arithmetic operations in Verilog (addition, subtraction, comparison, and so on)
on vectors (reg or wire) are predefined (Tables 11.1 and 11.2 show which operators
are legal for real). This is a very important difference for ASIC designers from the
situation in VHDL. However, there are some subtleties with Verilog arithmetic and
negative numbers that are illustrated by the following example (based on an exam-
ple in the LRM [Verilog LRM4.1.3]):

module LRM arithmetic; /71
integer IA, IB, IC, ID, IE; reg [15:0] RA, RB, RC; //2
initial begin /73
IA = -4'd1l2; RA = IA / 3; // reg is treated as unsigned.//4
RB = -4'd12; IB= RB / 3; // //5
IC = -4'd12 / 3; RC = -12 / 3; // real is treated as signed //6
ID = -12 / 3; IE = IA / 3; // (two’s complement). /17
end //8
initial begin #1; /79
$display(" hex default"); //10
$display("IA = -4'd12 = %h%d",IA,IA); //11
$display("RA = IA / 3 = %h %d",RA,RA); //12
$display("RB = -4'd12 = $h %d",RB,RB); //13
$display("IB = RB / 3 = %h%d",IB,IB); //14
$display("IC = -4'dl12 / 3 = 3h%d",IC,IC); /715
$display("RC = -12 / 3 = sh %d" ,RC,RC); //16
$display("ID = -12 / 3 = $hsd",ID,ID); //17
$display("IE = IA / 3 = %hsd",IE,IE); //18
end //19
endmodule /720

hex . default

IA = -4'dl12 = fEfffff4 -12
RA = IA / 3 = fffc 65532
RB = -4'd1l2 = fff4 65524
IB = RB / 3 = 00005551 21841
IC = -4'dl2 / 3 = 55555551 1431655761
RC = -12 / 3 = fffc 65532
ID = -12 / 3 = fffffffc -4
IE= IA/ 3 = fffffffc ~4

We might expect the results of all these divisions to be —4 =-12/3. For integer
assignments, the results are correctly signed (ID and IE). Hex £ffc (decimal 65532)
is the 16-bit two’s complement of —4, so RA and RC are also correct if we keep track
of the signs ourselves. The integer result IB is incorrect because Verilog treats RB as
an unsigned number. Verilog also treats -4'd12 as an unsigned number in the cal-
culation of 1C. Once Verilog “loses” a sign, it cannot get it back (see also
Section 11.2.5).
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11.4 Hierarchy

The module is the basic unit of code in the Verilog language [Verilog LRM 12.1],

module holiday_1l(sat, sun, weekend); //1
input sat, sun; output weekend; /72
assign weekend = sat | sun; /73
endmodule /74

We do not have to explicitly declare the scalar wires: saturday, sunday,
weekend because, since these wires appear in the module interface, they must be
declared in an input, output, or inout statement and are thus implicitly declared.
The module interface provides the means to interconnect two Verilog modules
using ports [Verilog LRM 12.3]. Each port must be explicitly declared as one of
input, output, or inout. Table 11.3 shows the characteristics of ports. Notice that a
reg cannot be an input port or an inout port. This is to stop us trying to connect a
reg to another reg that may hold a different value.

TABLE 11.3 Verilog ports.

Verilog port

input output inout

Characteristics wire (orothernet) reg orwire (or other net) wire (orother net)

We can read an output port inside a module

Within a module we may instantiate other modules, but we cannot declare other
modules. Ports are linked using named association or positional association,

“timescale 100s/ls // Units are 100 seconds with precision of 1s. /71
module life; wire {3:0] n; integer days; //2
wire wake 7am, wake 8am; // Wake at 7 on weekdays else at 8. //3
assign n = 1 + (days % 7); // n is day of the week (1-7) /74
always@(wake 8am or wake_7am) //5
$display("Day=",n," hours=%0d ", ($time/36)%24," 8am = ", /76
wake_8am,"” 7am = ",wake 7am," m2.weekday = ", m2.weekday); /77
initial days = 0; //8
initial begin #(24*36%10);$finish; end // Run for 10 days. /79
always #(24*36) days = days + 1; // Bump day every 24hrs. //10
rest ml(n, wake 8am); // Module instantiation. //11
// Creates a copy of module rest with instance name ml, //12
// ports are linked using positional notation. //13
work m2(.weekday(wake 7am), .day(n)); //14
// Creates a copy of module work with instance name m2, //15
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// Ports are linked using named association. //16

endmodule /717

module rest(day, weekend); // Module definition. //1

// Notice the port names are different from the parent. //2
input [3:0] day; output weekend; reg weekend; //3
always begin #36 weekend = day > 5; end // Need a delay here. //4

endmodule //5

module work(day, weekday); //1
input [3:0] day; output weekday; reg weekday; //2
always begin #36 weekday = day < 6; end // Need a delay here. //3

endmodule //4

Day= 1 hours=0 8am = 0 7am = 0 m2.weekday = 0

Day= 1 hours=1 8am = 0 7am = 1 m2.weekday = 1

Day= 6 hours=1 8am = 1 7am = 0 m2.weekday = 0

Day= 1 hours=1l 8am = 0 7am =1 m2.weekday =1

The port names in a module definition and the port names in the parent module
may be different. We can associate (link or map) ports using the same order in the
instantiating statement as we use in the module definition—such as instance ml in
module 1ife. Alternatively we can associate the ports by naming them—such as
instance m2 in module 1ife (using a period '.' before the port name that we
declared in the module definition). Identifiers in a module have local scope. If we
want to refer to an identifier outside a module, we use a hierarchical name [Verilog
LRM12.4] such as m1.weekend or m2.weekday (as in module 1ife), for example.
The compiler will first search downward (or inward) then upward (outward) to
resolve a hierarchical name [Verilog LRM 12.4-12.5].

11.5 Procedures and Assignments

A Verilog procedure [Verilog LRM 9.9] is an always or initial statement, a
task, or a function. The statements within a sequential block (statements that
appear between a begin and an end) that is part of a procedure execute sequentially
in the order in which they appear, but the procedure executes concurrently with
other procedures. This is a fundamental difference from computer programming lan-
guages. Think of each procedure as a microprocessor running on its own and at the
same time as all the other microprocessors (procedures). Before I discuss procedures
in more detail, I shall discuss the two different types of assignment statements:

o continuous assignments that appear outside procedures

o procedural assignments that appear inside procedures
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To illustrate the difference between these two types of a531gnments consider
again the example used in Section 11.4:

module holiday 1(sat, sun, weekend); /71
input sat, sun; output weekend; /72
assign weekend = sat | sun; // Assignment outside a procedure. //3

endmodule //4

We can change weekend to a reg instead of a wire, but then we must declare
weekend and use a procedural assignment (inside a procedure—an always state-
ment, for example) instead of a continuous assignment. We also need to add some
delay (one time tick in the example that follows); otherwise the computer will never
be able to get out of the always procedure to execute any other procedures:

module holiday 2(sat, sun, weekend); //1
input sat, sun; output weekend; reg weekend; //2
always #1 weekend = sat | sun; // Assignment inside a procedure. //3
endmodule //4

We shall cover the continuous assignment statement in the next section, which
is followed by an explanation of sequential blocks and procedural assignment state-
ments. Here is some skeleton code that illustrates where we may use these assign-
ment statements:

module assignments //1
//... Continuous assignments go here. /72
always // beginning of a procedure //3
begin // beginning of sequential block //4
//... Procedural assignments go here. /75
end ' //6
endmodule /77

Table 11.4 at the end of Section 11.6 summarizes assignment statements, includ-
ing two more forms of assignment—you may want to look at this table now.

11.5.1 Continuous Assignment Statement

A continuous assignment statement [Verilog LRM 6.1] assigns a value to a wire
in a similar way that a real logic gate drives a real wire,

module assignment 1(); //1
wire pwr_good, pwr_on, pwr_stable; reg Ok, Fire; /712
assign pwr_stable = Ok & (!Fire); /73
assign pwr on = 1; //4
assign pwr_good = pwr_on & pwr_stable; //5
initial begin Ok = 0; Fire = 0; #1 Ok = 1; #5 Fire = 1; end /76
initial begin $monitor ("TIME=%0d",$time," ON=",pwr _on, " STABLE=", //7

pwr_stable," OK=",0k," FIRE=",Fire,” GOOD=",pwr good); //8
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#10 $finish; end /79
endmodule //10

TIME=0 ON=1 STABLE=0 OK=0 FIRE=0 GOOD=0
TIME=1 ON=1 STABLE=1 OK=1 FIRE=0 GOOD=1
TIME=6 ON=1 STABLE=0 OK=1 FIRE=1 GOOD=0

The assignment statement in this next example models a three-state bus:

module assignment 2; reg Enable; wire [31:0] Data; //1
/* The following single statement is equivalent to a declaration and
continuous assignment. */ //2
wire [31:0] DataBus = Enable ? Data : 32'bz; : //3
assign Data = 32'b10101101101011101111000010100001; //4
initial begin //5
$monitor("Enable=%b DataBus=%b ", Enable, DataBus); //6
Enable = 0; #1; Enable = 1; #1; end /77
endmodule //8
Enable = 0 DataBus =22222222222222222222222222222222

Enable 1 DataBus =10101101101011101111000010100001

11.5.2 Sequential Block

A sequential block [Verilog LRM 9.8] is a group of statements between a begin and
an end. We may declare new variables within a sequential block, but then we must
name the block. A sequential block is considered a statement, so that we may nest
sequential blocks.

A sequential block may appear in an always statement [Verilog LRM9.9.2], in
which case the block executes repeatedly. In contrast, an initial statement [Verilog
LRM9.9.1] executes only once, so a sequential block within an initial statement
only executes once—at the beginning of a simulation. It does not matter where the
initial statement appears—it still executes first. Here is an example:

module always 1; reg Y, Clk; //1
always // Statements in an always statement execute repeatedly: /72
begin: my block // Start of sequential block. //3

@ (posedge Clk) #5 Y = 1; // At +ve edge set ¥Y=1, //4

@ (posedge Clk) #5 Y = 0; // at the NEXT +ve edge set Y¥Y=0. //5
end // End of sequential block. /76
always #10 Clk = ~ Clk; // We need a clock. /17
initial Y = 0; // These initial statements execute //8
initial Clk = 0; // only once, but first. //9
initial S$monitor("T=%2g",$time," Clk=",Clk," =",Y); //10
initial #70 $finish; //11
endmodule ' //12

T= 0 Clk=0 Y=0
T=10 Clk=1 Y=0
T=15 Clk=1 Y=1
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T=20 Clk=0 Y=1
T=30 Clk=1 Y=1
T=35 Clk=1 Y=0
T=40 Clk=0 Y=0
T=50 Clk=1 Y=0
T=55 Clk=1 v=1
T=60 Clk=0 Y=1

11.5.3 Procedural Assignments

A procedural assignment [Verilog LRM 9.2] is similar to an assignment statement
in a computer programming language such as C. In Verilog the value of an expres-
sion on the RHS of an assignment within a procedure (a procedural assignment)
updates a reg (or memory element) on the LHS. In the absence of any timing
controls (see Section 11.6), the reg is updated immediately when the statement exe-
cutes. The reg holds its value until changed by another procedural assignment. Here
is the BNF definition:

blocking assignment ::= reg lvalue = [delay_or_event_ control] expression
(Notice this BNF definition is for a blocking assignment—a type of procedural

assignment—see Section 11.6.4.) Here is an example of a procedural assignment
(notice that a wire can only appear on the RHS of a procedural assignment):

module procedural assign; reg Y, A; //1
always @(4) //2

Y = A; // Procedural assignment. //3
initial begin A=0; #5; A=1; #5; A=0; #5; $finish; end /74
initial S$monitor("T=%2g",S$time,,"A=",A,,,"¥Y=",Y); //5
endmodule //6

T= 0 A=0 Y=0
T= 5 A=1 Y=1
T=10 A=0 Y=0

11.6 Timing Controls and Delay

The statements within a sequential block are executed in order, but, in the absence
of any delay, they all execute at the same simulation time—the current time step. In
reality there are delays that are modeled using a timing control.

11.6.1 Timing Control

A timing control is either a delay control or an event control [Verilog LRM 9.7]. A
delay control delays an assignment by a specified amount of time. A timescale
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compiler directive is used to specify the units of time followed by the precision
used to calculate time expressions,

“timescale 1ns/10ps // Units of time are ns. Round times to 10 ps.

Time units may only be s, ns, ps, or £s and the multiplier must be 1, 10, or
100. We can delay an assignment in two different ways:

» Sample the RHS immediately and then delay the assignment to the LHS.
* Wait for a specified time and then assign the value of the RHS to the LHS.

Here is an example of the first alternative (an intra-assignment delay):

x = #1 y; // intra-assignment delay

The second alternative is delayed assignment:

#1 x = y; // delayed assignment

These two alternatives are not the same. The intra-assignment delay is equiva-
lent to the following code:

begin // Equivalent to intra-assignment delay.
hold = y; // Sample and hold y immediately.
$1; // Delay.
x = hold; // Assignment to xX. Overall same as x = #1 y.
end

In contrast, the delayed assignment is equivalent to a delay followed by an assign-
ment as follows:

begin // Equivalent to delayed assignment.

#1; // Delay.

X = y; // Assign y to x. Overall same as #1 x = y.
end

The other type of timing control, an event control, delays an assignment until a
specified event occurs. Here is the formal definition:

event control ::= @ event_identifier | @ (event expression)

event expression ::= expression | event identifier
| posedge expression | negedge expression
| event_expression or event_expression

(Notice there are two different uses of 'or' in this simplified BNF definition—the
last one, in bold, is part of the Verilog language, a keyword.) A positive edge
(denoted by the keyword posedge) is a transition from '0' to '1' or 'x', Or a tran-
sition from 'x' to '1'. A negative edge (negedge) is a transition from '1' to '0* or
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*x', Or a transition from 'x' to '0'. Transitions to or from 'z do not count. Here
are examples of event controls:

module delay controls; reg X, Y, Clk, Dummy; /71
always #1 Du;ﬁy=!Dummy; // Dummy clock, just for graphics. //2
// Examples of delay controls: //3
always begin #25 X=1;#10 X=0;#5; end //4
// An event control: /75
always @ (posedge Clk) Y=X; // Wait for +ve clock edge. /76
always #10 clk = !Clk; // The real clock. /17
initial begin Clk = 0; //8
$display("T Clk X Y"); : /79
$monitor("%2g",$time,,,Clk,,, ,X,,¥); //10
Sdumpvars; #100 $finish; end //11
endmodule /712
T Clk X Y
0 0 X X
10 1 X X
20 O X X
25 O 1 x
30 1 11
35 1 01
40 O 01
50 1 00
60 O 00
65 0 10
70 1 11
75 1 01
80 O 01
90 1 00

The dummy clock in delay_controls helps in the graphical waveform display
of the results (it provides a one-time-tick timing grid when we zoom in, for exam-
ple). Figure 11.1 shows the graphical output from the Waves viewer in VeriWell
(white is used to represent the initial unknown values). The assignment statements to
'X' in the always statement repeat (every 25 + 10 + 5 = 40 time ticks).

Y ddelay_control
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Events can be declared (as named events), triggered, and detected as follows:

module show event;

reg clock;

event event 1, event 2; // Declare two named events.
always @(posedge clock) -> event 1; // Trigger event 1.
always @ event 1

begin $display("Strike 1!!"); -> event 2; end // Trigger event 2.
always @ event_2 begin $display("Strike 21!1");

$finish; end // Stop on detection of event 2.

always #10 clock = ~ clock; // We need a clock.

initial clock = 0;

endmodule

Strike 11!
Strike 21!

11.6.2 Data Slip

Consider this model for a shift register and the simulation output that follows:

module data slip 1 (); reg Clk, D, Q1, Q2;

JHxExkkkkxkkx*%x bad sequential logic below **kx*kkkkkkkkkk*/
always @(posedge Clk) Q1 = D;

always @(posedge Clk) Q2 = Ql1; // Data slips here!
/************* bad Sequential loglc above ***********‘k*‘k*/
initial begin Clk = 0; D = 1; end always #50 Clk = ~Clk;
initial begin $display("t Clk D Q01 Q2");
Smonitor("%3g",stime,,Clk,,,,D,,01,,,02); end

initial #400 S$finish; // Run for 8 cycles.

initial $dumpvars;

endmodule

t Clk D Q1 Q2

0
50
100
150
200
250
300
350

w

o O e O e O e O
[ = S N U S S S
[ T R S Sy S
= T = T = O = !

The first clock edge at £ = 50 causes Q1 to be updated to the value of D at the
clock edge (a '1'), and at the same time Q2 is updated to this new value of Q1. The

/71
/72
/73
/74
/75
//6
e
/78
//9
/710
/711

//1
/72
/73
//4
//5
//6
/717
//8
//9
//10
/711

data, D, has passed through both always statements. We call this problem data slip.
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If we include delays in the always statements (labeled 3 and 4) in the preceding
example, like this— |

#1 D; // The delays in the assignments //3
#1 Ql; // fix the data slip. //4

[

always @(posedge Clk) Q1
always @(posedge Clk) Q2

It

—we obtain the correct output:

t Clk D 01 Q2

0
50
51
100
150
151
200
250
300
350

p:¢

O R O R B O R O
[ T e T = SN SR S S Uy S Y
Ll T R R e =
[

11.6.3 Wait Statement

The wait statement [Verilog LRM9.7.5] suspends a procedure until a condition
becomes true. There must be another concurrent procedure that alters the condition
(in this case the variable Done—in general the condition is an expression) in the fol-
lowing wait statement; otherwise we are placed on “infinite hold™:

wait (Done) $stop; // Wait until Done = 1 then stop.

Notice that the Verilog wait statement does not look for an event or a change in
the condition; instead it is level-sensitive—it only cares that the condition is true.

module test dff wait; //1
reg D, Clock, Reset; dff wait ul(D, Q, Clock, Reset); /72
initial begin D=1; Clock=0;Reset=1'bl; #15 Reset=1'b0; #20 D=0; end //3
always #10 Clock = !Clock; //4
initial begin $display("T Clk D Q Reset"); //5
$monitor("%2g",S$time, ,Clock,,,,D,,0Q,,Reset); #50 $finish; end //6
endmodule /77
module dff wait(D, Q, Clock, Reset); //1
output Q; input D, Clock, Reset; reg (Q; wire D; /72
always @(posedge Clock) if (Reset !== 1) Q = D; /73
always begin wait (Reset == 1) Q = 0; wait (Reset !== 1); end //4
endmodule //5
T Clk D Q Reset
00 101
10 1 101
15 1 100
20 0 100
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40 0

We must include wait statements in module dff wait above to wait for both
Reset==1 and Reset==0. If we were to omit the wait statement for Reset==0, as
in the following code:

module dff wait(D,Q,Clock,Reset); //1
output Q; input D,Clock,Reset; reg Q; wire D; //2
always @(posedge Clock) if (Reset !== 1) Q = D; //3
// We need another wait statement here or we shall spin forever. //4
always begin wait (Reset == 1) Q = 0; end //5
endmodule /76

the simulator would cycle endlessly, and we would need to press the 'Stop' button
or 'CTRL~C' to halt the simulator. Here is the console window in VeriWell:

ci> .

T Clk D O Reset <- at this point nothing happens, so press CTRL-C
Interrupt at time 0

Cl>

11.6.4 Blocking and Nonblocking Assignments

If a procedural assignment in a sequential block contains a timing control, then the
execution of the following statement is delayed or blocked. For this reason a proce-
dural assignment statement is also known as a blocking procedural assignment
statement [Verilog LRM 9.2]. We covered this type of statement in Section 11.5.3.
The nonblocking procedural assignment statement allows execution in a sequen-
tial block to continue and registers are all updated together at the end of the current
time step. Both types of procedural assignment may contain timing controls. Here is
an artificially complicated example that illustrates the different types of assignment:

module delay; /71
reg a,b,c,d,e,f,qg,bds,bsd; /72
initial begin /73
a=1; b= 0; // No delay control. //4
#1 b = 1; // Delayed assignment. //5
c = #1 1; // Intra-assignment delay. //6
#1: // Delay control. /77
a = 1; /7 //8
e <= #1 1; // Intra-assignment delay, nonblocking assignment /79
#1 £ <= 1; // Delayed nonblocking assignment. //10
g <= 1; // Nonblocking assignment. //11
end //12
initial begin $#1 bds = b; end // Delay then sample (ds). //13
initial begin bsd = #1 b; end // Sample then delay (sd). //14
initial begin S$display("t a b ¢ d e £ g bds bsd"); //15
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$monitor("%g”, $time, ,a,,b,,c,,d,,e,,£,,9,,bds,,, ,bsd); end //16
endmodule /717
tabcde £ g bds bsd

010 xxxxxZX b'q

111xxxxx1 0

21 11xxxx1 0

31111x=xzx1 0

411111111 0

Many synthesis tools will not allow us to use blocking and nonblocking proce-
dural assignments to the same reg within the same sequential block.

11.6.5 Procedural Continuous Assignment

A procedural continuous assignment statement [Verilog LRM 9.3] (sometimes
called a quasicontinuous assignment statement) is a special form of the assign
statement that we use within a sequential block. For example, the following flip-flop
model assigns to g depending on the clear, clr_, and preset, pre_, inputs (in gen-
eral it is considered very bad form to use a trailing underscore to signify active-low
signals as I have done to save space; you might use " n" instead).

module dff procedural assign; /71
reg d,clr_,pre ,clk; wire qg; dff clr pre dff 1(qg,d,clr ,pre ,clk); /72
always #10 clk = ~clk; //3
initial begin clk = 0; clr_ = 1; pre_ = 1; 4 = 1; //4
#20; d = 0; #20; pre_ = 0; #20; pre_ = 1; #20; clr_ = 0; //5
#20; clr_ = 1; #20; d = 1; #20; $finish; end //6
initial begin /77
$display("T CLK PRE_CLR_ D Q"); //8
$monitor("%3g”,$time,,,clk,,,,pre_,,,,clr ,,,,d,,q); end //9
endmodule //10
module dff_ clr pre(q,d,clear ,preset ,clock); /71
output g; input d,clear ,preset ,clock; reg g; /72
always @(clear or preset ) /73
if (!clear ) assign g = 0; // active-low clear //4
else if(!preset_ ) assign q = 1; // active-low preset /75
else deassign q; //6
always @(posedge clock) g = d; /77
endmodule //8
T CLK PRE_ CLR_ D Q
0 0 1 1 1 x
10 1 1 1 11
20 0 1 1 01
30 1 1 1 00
40 O 0 1 01
50 1 0 1 01
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We have now seen all of the different forms of Verilog assignment statements.
The following skeleton code shows where each type of statement belongs:

module all assignments

/7.

continuous assignments.

always // beginning of procedure
begin // beginning of sequential block

VA
/...
/...
end
endmodule

Table 11.4 summarizes the different types of assignments.

blocking procedural assignments.
nonblocking procedural assignments.
procedural continuous assignments.

//1
/72
//3
//4
//5
//6
/717
//8
//9

505

TABLE 11.4 Verilog assignment statements.

Continuous Procedural Nonblocking Procedural
Type of Verilog assignment assignment procedural assign- continuous assign-
assignment statement statement ment statement ment statement
Where it can outsideanalwaysor inside analwaysor insideanalwaysor alwaysorinitial
occur initial statement, initial statement, initial statement, statement,task, or
1 task, or function task, or function task, or function function
Example wire [31:0] reqg Y; reg Y; always @(Enable)
DataBus; always always if (Enable)
assign DataBus @ (posedge Y <= 1; assign Q = D;
= Enable ? Data clock) Y = 1; else deassign Q;
: 32'bz
Valid LHS of net register or memory register or memory net
assignment element element
Valid RHS of <expression> <expression> <expression> <expression>
assignment net, reg or memory net, reg or memory net, reg or memory net, reg or memory
element element element element
Book 11.5.1 11.5.3 11.6.4 11.6.5
Verilog LRM 6.1 9.2 9.2.2 9.3
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11.7 Tasks and Functions

A task [Verilog LRM 10.2] is a type of procedure, called from another procedure. A
task has both inputs and outputs but does not return a value. A task may call other
tasks and functions. A function [Verilog LRM 10.3] is a procedure used in any
expression, has at least one input, no outputs, and returns a single value. A function
may not call a task. In Section 11.5 we covered all of the different Verilog proce-
dures except for tasks and functions. Now that we have covered timing controls, we
can explain the difference between tasks and functions: Tasks may contain timing
controls but functions may not. The following two statements help illustrate the dif-
ference between a function and a task:

Call A Task And Wait (Inputl, Input2, Output);
Result Immediate = Call A Function (All_Inputs);

Functions are useful to model combinational logic (rather like a subroutine):

module F subset decode; reg (2:0]A, B, C, D, E, F; /71
initial begin A = 1; B = 0; D= 2; E = 3; /72
C = subset_decode(A, B); F = subset_decode(D,E); //3
$display("A B C D E F"); S$display(A,,B,,C,,D,,E,,F); end //4
function [2:0] subset decode; input [2:0] a, b; //5
begin if (a <= b) subset decode = a; else subset decode = b; end //6
endfunction /77
endmodule //8

ABCDETF
100232

11.8 Control Statements

In this section we shall discuss the Verilog if, case, loop, disable, fork, and
join statements that control the flow of code execution.

11.8.1 Case and If Statement

An if statement [Verilog LRM 9.4] represents a two-way branch. In the following
example, switch has to be true to execute 'Y = 1'; otherwise 'Y = 0' is exe-
cuted:

if(switch) Y = 1; else Y = 0;

The case statement [Verilog LRM 9.5] represents a multiway branch. A
controlling expression is matched with case expressions in each of the case items
(or arms) to determine a match,

module test mux; reg a, b, select; wire out; ) //1
mux mux_l(a, b, out, select); /72
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initial begin #2; select = 0; a = 0; b = 1; //3
#2; select = 1'bx; #2; select = 1'bz; #2; select = 1; end //4

initial $monitor("T=%2g",$time,"” Select=",select,"” Out=",out); //5

initial #10 $finish; //6

endmodule /717

mcdule mux(a, b, mux output, mux_select); dinput a, b, mux_select; /71

output mux_ output; reg mux_output; /72

always begin /73

case(mux_select) /74
0: mux output = a; /75
1: mux output = b; //6
default mux output = 1'bx; // If select = x or z set output to x. //7

endcase //8

#1; // Need some delay, otherwise we'll spin forever. //9

end /710

endmodule /711

T= 0 Select=x Out=x

T= 2 Select=0 Out=x

T= 3 Select=0 Out=0

T= 4 Select=x Out=0

T= 5 Select=x Out=x

T= 6 Select=z Out=x

T= 8 Select=1 Out=x

T= 9 Select=1 Out=l

Notice that the case statement must be inside a sequential block (inside an
always statement). Because the case statement is inside an always statement, it
needs some delay; otherwise the simulation runs forever without advancing simula-
tion time. The casex statement handles both 'z' and 'x' as don’t care (so that they
match any bit value), the casez statement handles 'z' bits, and only 'z bits, as
don’t care. Bits in case expressions may be set to ' ? ' representing don’t care values,
as follows:

casex (instruction register[31:29])
3b'?2?21 : add;
3b'?1? : subtract;
3b'1?? : branch;

endcase

11.8.2 Loop Statement

A loop statement [Verilog LRM 9.6] is a for, while, repeat, or forever statement.
Here are four examples, one for each different type of loop statement, each of which
performs the same function. The comments with each type of loop statement illus-
trate how the controls work:

module loop 1; //1
integer i; reg [31:0] DataBus; initial DataBus = 0; /72
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initial begin /73
[**kkkkkxkxkx** Tnsert loop code after here. **&*kkxkkkkkkkkdix /

/* for(Execute this assignment once before starting loop; exit loop if
this expression is false; execute this assignment at end of loop before
the check for end of loop.) */

for(i = 0; i <= 15; i = i+1) DataBus[i] = 1; //4
[xFxkxkkxkxexixxx Insert loop code before here. **¥**xkxkikdikskis/

end //5
initial begin //6
$display(”DataBus = %b",DataBus); /77
#2; $display("DataBus = %b",DataBus); $finish; //8
end /79
endmodule //10

Here is the while statement code (to replace line 4 in module loop 1):

i= 0;
/* while(Execute next statement while this expression is true.) */
while(i <= 15) begin DataBus[i] = 1; i = i+l; end //4

Here is the repeat statement code (to replace line 4 in module loop 1):

i= 0;

/* repeat(Execute next statement the number of times corresponding to
the evaluation of this expression at the beginning of the loop.) */
repeat(16) begin DataBus{i] = 1; i = i+l; end //4

Here is the forever statement code (to replace line 4 in module loop 1):

i= 0;
/* A forever statement loops continuously. */
forever begin : my loop

DataBus{i] = 1;

if (i == 15) #1 disable my loop; // Need to let time advance to exit.
i = i+1;
end /14

The output for all four forms of looping statement is the same:

DataBus = 00000000000000000000000000000000
DataBus = 00000000000000001111111111111111

11.8.3 Disable

The disable statement [Verilog LRM 11] stops the execution of a labeled sequential
block and skips to the end of the block:

forever
begin: microprocessor block // Labeled sequential block.
@ (posedge clock)
if (reset) disable microprocessor block; // Skip to end of block.
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else Execute code;
end

Use the disable statement with caution in ASIC design. It is difficult to imple-
ment directly in hardware.

11.8.4 Fork and Join

The fork statement and join statement [Verilog LRM 9.8.2] allows the execution of
two or more parallel threads in a parallel block:

module fork 1 /71
event eat breakfast, read paper; //2
initial begin /73
fork //4
@eat_breakfast; @read_paper; //5
join //6
end /77
endmodule //8

This is another Verilog language feature that should be used with care in ASIC
design, because it is difficult to implement in hardware.

11.9 Logic-Gate Modeling

Verilog has a set of built-in logic models and you may also define your own models.

11.9.1  Built-in Logic Modeis
Verilog’s built-in logic models are the following primitives [Verilog LRM7]:
and, nand, nor, or, XOr, Xnor

You may use these primitives as you use modules. For example:

module primitive; //1
nand (strong0, strongl) #2.2 /72
Nand 1(n001, n004, n005), /73
Nand 2(n003, n001, n005, n002}); //4
nand (n006, n005, n002); //5
endmodule //6

This module models three NAND gates (Figure 11.2). The first gate (line 3) is a
two-input gate named Nand_1; the second gate (line 4) is a three-input gate named
Nand_2; the third gate (line 5) is unnamed. The first two gates have strong drive
strengths [Verilog LRM3.4] (these are the defaults anyway) and 2.2 ns delay; the
third gate takes the default values for drive strength (strong) and delay (zero). The
first port of a primitive gate is always the output port. The remaining ports for a
primitive gate (any number of them) are the input ports.
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MNand_1

% ni0d M‘: nooi
Mand_2

niis no03
g-; noo2
) nDo6 7

FIGURE 11.2 An example schematic (drawn with Capilano’s DesignWorks) to illustrate
the use of Verilog primitive gates.

Table 11.5 shows the definition of the and gate primitive (I use lowercase
rand’ as the name of the Verilog primitive, rather than 'AND", since Verilog is case-
sensitive). Notice that if one input to the primitive 'and' gate is zero, the output is
zero, no matter what the other input is.

TABLE 11.5 Definition of the Verilog primitive ‘and’ gate.

‘and’ 0 X z
0 0 0 0 0
1 0 1 X X
X 0 X X X
z 0 X X X

11.9.2 User-Defined Primitives

We can define primitive gates (a user-defined primitive or UDP) using a truth-table
specification [Verilog LRMS8]. The first port of a UDP must be an output port, and
this must be the only output port (we may not use vector or inout ports):

primitive Adder(Sum, InA, InB); //1
output Sum; input Ina, InB; /72
table //3
// inputs : output /74
00 : 0; /75
01 : 1; //6
10 : 1; /17
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11 : 0; //8
endtable //9
endprimitive //10

We may only specify the values '0', '1', and 'x' as inputs in a UDP truth
table. Any 'z’ input is treated as an 'x'. If there is no entry in a UDP truth table
that exactly matches a set of inputs, the output is 'x' (unknown).

We can construct a UDP model for sequential logic by including a state in the
UDP truth-table definition. The state goes between an input and an output in the
table and the output then represents the next state. The following sequential UDP
model also illustrates the use of shorthand notation in a UDP truth table:

primitive DLatch(Q, Clock, Data); //1
output Q; reg Q; input Clock, Data; //2
table //3
//inputs : present state : output (next state) /74
10: 2?2 : 0; // ? represents 0,1, or x (input or present state). //5
11 :b:1; // b represents 0 or 1 (input or present state). //6
11¢: x : 1; // Could have combined this with previous line. /77
0 ? : 2?2 : ~; // - represents no change in an output. //8
endtable //9
endprimitive //10

Be careful not to confuse the '?' in a UDP table (shorthand for '0', *1', or
'x') with the '?' in a constant that represents an extension to 'z' (Section 11.2.4)
or the '?' in a case statement that represents don’t care values (Section 11.8.1).

For sequential UDP models that need to detect edge transitions on inputs, there
is another special truth-table notation (ab) that represents a change in logic value
from a to b. For example, (01) represents a rising edge. There are also shorthand
notations for various edges:

o % 13 (27?)

s r 1S (01)

e £ 13 (10)

e p 1S (01), (0x), or (x1)

e nis (10), (1x), or (x0)
primitive DFlipFlop(Q, Clock, Data); /71
output Q; reg Q; input Clock, Data; /72
table //3
//inputs : present state : output (next state) //4
r 0 : ?2 : 0; // rising edge, next state = output = 0 //5
r 1 ? 1 ; // rising edge, next state = output = 1 //6
(0x) 0 0 0 ; // rising edge, next state = output = 0 /77
(0x) 1 1 1 ; // rising edge, next state = output = 1 //8
(?0) 2 : 2 : - ; // falling edge, no change in output //9
? (22?) ? - ; // no clock edge, no change in output //10

527



512

CHAPTER 11

VERILOG HDL
endtable //11
endprimitive ‘ //12

11.10 Modeling Delay

Verilog has a set of built-in methods to define delays. This is very important in ASIC
physical design. Before we start layout, we can use ASIC cell library models written
in Verilog that include logic delays as a function of fanout and estimated wiring
loads. After we have completed layout, we can extract the wiring capacitance, allow-
ing us to calculate the exact delay values. Using the techniques described in this sec-
tion, we can then back-annotate our Verilog netlist with postlayout delays and
complete a postlayout simulation.

We can complete this back-annotation process in a standard fashion since delay
specification is part of the Verilog language. This makes working with an ASIC cell
library and the ASIC foundry that will fabricate our ASIC much easier. Typically an
ASIC library company might sell us a cell library complete with Verilog models that
include all the minimum, typical, and maximum delays as well as the different val-
ues for rising and falling transitions. The ASIC foundry will provide us with a delay
calculator that calculates the net delays (this is usually proprietary technology) from
the layout. These delays are held in a separate file (the Standard Delay Format,
SDF, is widely used) and then mapped to parameters in the Verilog models. If we
complete back-annotation and a postlayout simulation using an approved cell
library, the ASIC foundry will “sign off”” on our design. This is basically a guarantee
that our chip will work according to the simulation. This ability to design sign-off
quality ASIC cell libraries is very important in the ASIC design process.

11.10.1 Net and Gate Delay

We saw how to specify a delay control for any statement in Section 11.6. In fact,
Verilog allows us to specify minimum, typical, and maximum values for the delay as
follows [Verilog LRM7.15]:

#(1.1:1.3:1.7) assign delay a = a; // min:typ:max
We can also specify the delay properties of a wire in a similar fashion:
wire #(1.1:1.3:1.7) a_delay; // min:typ:max

We can specify delay in a wire declaration together with a continuous assign-
ment as in the following example:

wire #(1.1:1.3:1.7) a_delay = a; // min:typ:max

but in this case the delay is associated with the driver and not with the wire.
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In Section 11.9.1 we explained that we can specify a delay for a logic primitive.
We can also specify minimum, typical, and maximum delays as well as separate
delays for rising and falling transitions for primitives as follows [Verilog LRM4.3]:

nand #3.0 nd0l(c, a, b);

nand #(2.6:3.0:3.4) nd02(d, a, b); // min:typ:max
nand #(2.8:3.2:3.4, 2.6:2.8:2.9) nd03(e, a, b);
// #(rising, falling) delay

The first NAND gate, nd01, has a delay of 3 ns (assuming we specified nanoseconds
as the timescale) for both rising and falling delays. The NAND gate nd02 has a trip-
let for the delay; this corresponds to a minimum (2.6 ns), typical (3.0 ns), and a
maximum delay (3.4 ns). The NAND gate nd03 has two triplets for the delay: The
first triplet specifies the min/typ/max rising delay (*0' or 'x' or 'z' to '1'), and
the second triplet specifies the min/typ/max falling delay (*1' or 'x' or 'z' to
'0').

Some primitives can produce a high-impedance output, 'z'. In this case we can
specify a triplet of delay values corresponding to rising transition, falling transition,
and the delay to transition to 'z (from '0' or '1' to ' z'—this is usually the delay
for a three-state driver to turn off or float). We can do the same thing for net types,

wire #(0.5,0.6,0.7) a z = a; // rise/fall/float delays

11.10.2 Pin-to-Pin Delay

The specify block [Verilog LRM 13] is a special construct in Verilog that allows the
definition of pin-to-pin delays across a module. The use of a specify block can
include the use of built-in system functions to check setup and hold times, for exam-
ple. The following example illustrates how to specify pin-to-pin timing for a D flip-
flop. We declare the timing parameters first followed by the paths. This example
uses the UDP from Section 11.9.2, which does not include preset and clear (so only
part of the flip-flop function is modeled), but includes the timing for preset and clear
for illustration purposes.

module DFF Spec; reg D, clk; //1
DFF_Part DFFl (Q, clk, D, pre, clr); /72
initial begin D = 0; clk = 0; #1; clk = 1; end /73
initial S$monitor("T=%2g", S$time," clk=", clk,” Q=", Q); //4
endmodule //5
module DFF Part(Q, clk, D, pre, clr); //1
input clk, D, pre, clr; output 0; /12
DFlipFlop(Q, clk, D); // No preset or clear in this UDP. //3
specify /74
specparam /75

tPLH clk_Q = 3, tPHL clk Q = 2.9, //6
tPLH set Q = 1.2, tPHL set O = 1.1; /17

(clk => Q) = (tPLH clk Q, tPHL clk Q); /78
(pre, clr *> Q) = (tPLH set Q, tPHL set Q); /79
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endspecify
endmodule

T= 0 clk=0 Q=x
T= 1 clk=1 Q=x
T= 4 clk=1 Q=0

Il

//10
/711

There are the following two ways to specify paths (module DFF part above

uses both) [Verilog LRM13.3]:

« x => y specifies a parallel connection (or parallel path) between x and y (%

and y must have the same number of bits).

« x *> y specifies a full connection (or full path) between x and y (every bit in

x is connected to y). In this case x and y may be different sizes.

The delay of some logic cells depends on the state of the inputs. This can be

modeled using a state-dependent path delay. Here is an example:

“timescale 1 ns / 100 fs

module M Spec; reg Al, A2, B; M M1 (Z, Al, A2, B);

initial begin Al=0;A2=1;B=1;#5;B=0;#5;A1=1;A2=0;B=1;#5;B=0; end
initial

$monitor("T=%4g",Srealtime,” Al=",Al," A2=",A2," B=",B," Z=",%7);

endmodule
“timescale 100 ps / 10 fs

module M(Z, Al, A2, B); input Al, A2, B; output Z;
or (21, Al, A2); nand (Z, Z1, B); // OAI2l

/*Al A2 B 2 Delay=10%100 ps unless indicated in the table below.
0 0 01
0 0 11
0 1 01 B:0->1 Z:1->0 delay=t2
0 1 10 B:1->0 Z:0->1 delay=tl
1 0 01 B:0->1 Z:1->0 delay=t4
1 0 10 B:1l1->0 Z:0->1 delay=t3
1 1 01

1 1 10 %/
specify specparam tl = 11, t2 = 12; specparam t3 = 13, t4 = 14;
(Al => 7) = 10; (A2 => 2) = 10;
if (~Al) (B => Z) = (tl, t2); if (Al) (B => Z) = (t3, t4);
endspecify

endmodule

T= 0 Al=0 A2=1 B= =
T= 1 Al=0 A2=] B= =
T= 5 Al=0 A2=1 B= =
T= 6.1 Al=0 A2=1

T= 10 Al=1l A2=0
T= 11 Al=1 A2=0
T= 15 Al=1 A2=0
T=16.3 Al=1 A2=0

1]

1

W ww Uitﬁ o W W
O O R H O O K

N N NN NN NN
i
= O O K = O O W

i
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11.11 Altering Parameters

Here is an example of a module that uses a parameter [Verilog LRM3.10, 12.2]:

module Vector And(Z, A, B); /71
parameter CARDINALITY = 1; /72
input [CARDINALITY-1:0] A, B; /73
output [CARDINALITY-1:0] 2; //4
wire [CARDINALITY-1:0] 2 = A & B; //5

endmodule /76

We can override this parameter when we instantiate the module as follows:

module Four And_Gates(OutBus, InBusA, InBusB); //1
input [3:0] InBusA, InBusB; output [3:0] OutBus; /72
Vector And #(4) My AND(OutBus, InBusA, InBusB); // 4 AND gates //3
endmodule //4

The parameters of a module have local scope, but we may override them using a
defparam statement and a hierarchical name, as in the following example:

module And Gates(OutBus, InBusA, InBusB); //1
parameter WIDTH = 1; //2
input [WIDTH-1:0] InBusA, InBusB; output [WIDTH-1:0] OutBus; //3
Vector And #(WIDTH) My And(OutBus, InBusA, InBusB); //4
endmodule //5
module Super Size; defparam And Gates.WIDTH = 4; endmodule //1

11.12 A Viterbi Decoder

This section describes an ASIC design for a Viterbi decoder using Verilog. Christeen
Gray completed the original design as her MS thesis at the University of Hawaii
(UH) working with VLSI Technology, using the Compass ASIC Synthesizer and a
VLSI Technology cell library. The design was mapped from VLSI Technology
design rules to Hewlett-Packard design rules; prototypes were fabricated by
Hewlett-Packard (through Mosis) and tested at UH.

11.12.1 Viterbi Encoder

Viterbi encoding is widely used for satellite and other noisy communications
channels. There are two important components of a channel using Viterbi encoding:
the Viterbi encoder (at the transmitter) and the Viterbi decoder (at the receiver). A
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Viterbi encoder includes extra information in the transmitted signal to reduce the
probability of errors in the received signal that may be corrupted by noise.

I shall describe an encoder in which every two bits of a data stream are encoded
into three bits for transmission. The ratio of input to output information in an
encoder is the rate of the encoder; this is a rate 2/3 encoder. The following equa-
tions relate the three encoder output bits (Y Y , and YS) to the two encoder input
bits (X 2 and X ,)ata time n'T:

2 2
YII = Xﬂ

1 1 1
vi=x ex (11.1)
Yo = x!

n -~ “n-1

We can write the input bits as a single number. Thus, for example, if X2 1
and X, 1= 0, we can write X, = 2. Equation 11.1 defines a state machme Wlth two
memory elements for the two 1ast input values for X, Vox) ! _4 and X} _,. These two
state variables define four states: {X } w1th So= {O, 0}, S$1=1{1, 0},
S,=1{0, 1}, and S3={1, 1}. The 3-bit output Yn is a function of the state and current
2-bitinput X

The following Verilog code describes the rate 2/3 encoder. This model uses two
D flip-flops as the state register. When reset (using active-high input signal res) the
encoder starts in state S. In Verilog I represent ¥ % by Y2N, for example.

/***************************-k**************************/

/* module viterbi encode */
/***-k**‘k**‘k‘k'k******************************************/

/* This is the encoder. X2N (msb) and X1IN form the 2-bit input
message, XN. Example: if X2N=1, XIN=(0, then XN=2. ¥Y2N (msb), YIN, and
YON form the 3-bit encoded signal, YN (for a total constellation of 8
PSK signals that will be transmitted). The encoder uses a state
machine with four states to generate the 3-bit output, YN, from the

2-bit input, XN. Example: the repeated input sequence XN = (X2N, X1IN)
= 0, 1, 2, 3 produces the repeated output sequence YN = (¥Y2N, YIN,
YON) = 1, 0, 5, 4. */

module viterbi encode(X2N,X1N,Y2N,Y1N,YON,clk,res);

input X2N,X1N,clk,res; output Y2N,YIN,YON;

wire XIN_1,XIN 2,Y2N,YIN,YON;

dff dff_ 1(X1IN,X1N 1,clk,res); dff dff 2(XIN_1,XIN 2,clk,res);
assign Y2N=X2N; assign YIN=XIN "~ X1N 2; assign YON=XIN 1;
endmodule
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Figure 11.3 shows the state diagram for this encoder. The first four rows of
Table 11.6 show the four different transitions that can be made from state S. For
example, if we reset the encoder and the input is X L =3 (X% =] and X ,12 = 1),
then the output will be Yn =6 (Yﬁ =1, vl = 1, YS = () and the next state

n

will be ;.
G000 0/0
FIGURE 11.3 A state diagram for a rate 2/3 Viterbi encoder. The inputs and outputs are
shown in binary as XiX;/ Yi Y:, YS ,and in decimalas X /Y .
As an example, the repeated encoder input sequence Xn =0,1,2,3,... pro-

duces the encoder output sequence Yn = 1,0,5,4, ... repeated. Table 11.7 shows
the state transitions for this sequence, including the initialization steps.

Next we transmit the eight possible encoder outputs (¥, = 0-7) as signals
over our noisy communications channel (perhaps a microwave signal to a satellite)
using the signal constellation shown in Figure 11.4. Typically this is done using
phase-shift keying (PSK) with each signal position corresponding to a different
phase shift in the transmitted carrier signal.
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TABLE 11.6 State table for the rate 2/3 Viterbi encoder.

Outputs
2 1 0
Inputs State variables Y Y Y Next state
2 1 1 1 2 1 1 1 1 1
P;c::fent X, X, Xy 4 Xp o =X, =X 00X, , =X, {X,_, X,_5}
S, 0 0 0 0 0 0 0 00 S,
S, 0 1 0 0 0 1 0 10 S
So 1 0 0 0 1 0 0 00 So
So 1 1 0 0 1 1 0 10 S
S 0 0 1 0 0 0 1 01 S,
S; 0 1 1 0 0 1 1 11 Ss
S 1 0 1 0 1 0 1 01 S,
S 1 1 1 0 1 1 1 11 S;
S, 0 0 0 1 0 1 0 00 S,
S, 0 1 0 1 0 0 0 10 S
S, 1 0 0 1 1 1 0 00 So
So 1 1 0 1 1 0 0 10 54
Ss 0 0 1 1 0 1 1 01 S,
S, 0 1 1 1 0 0 1 11 Ss
S, 1 0 1 1 1 1 1 01 S,
S, 1 1 1 1 1 0 1 11 S;
A
2 (1. 1)
3 i
< a
FIGURE 11.4 The signal constellation for an 8PSK (phase-
shift keyed) code. 4 Ob»
b a. 2 sin (/8)
b. 2 sin (2r/8)
5 . 7 ¢.2sin(3n/8)
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TABLE 11.7 A sequence of transmitted signals for the rate 2/3 Viterbi encoder

Inputs State variables Outputs

Tlnn;e X i X :7 X 1 X :7 -2 Yi Yjv Y(r)v P;?:teent Next state
0 1 1 X X 1 X X S, S,
10 1 1 0 0 1 1 0 Sp Sy
50 0 0 1 0 0 0 1 S Sy
150 0 1 0 1 0 0 0 S, S;
250 1 0 1 0 1 0 1 S S,
350 1 1 0 1 1 0 0 S Sy
450 0 0 1 0 0 0 1 Sy S,
550 0 1 0 1 0 0 0 S, F
650 1 0 1 0 1 0 1 S4 S,
750 1 1 0 1 1 0 0 So S
850 0 0 1 0 0 0 1 Sy S,
950 0 1 0 1 0 0 0 Sy S;

11.12.2 The Received Signal

The noisy signal enters the receiver. It is now our task to discover which of the eight
possible signals were transmitted at each time step. First we calculate the distance of
each received signal from each of the known eight positions in the signal constella-
tion. Table 11.8 shows the distances between signals in the 8PSK constellation. We
are going to assume that there is no noise in the channel to illustrate the operation of
the Viterbi decoder, so that the distances in Table 11.8 represent the possible dis-
tance measures of our received signal from the 8PSK signals.

The distances, X, in the first column of Table 11.8 are the geometric or algebraic
distances. We measure the Euclidean distance, E = X? shown as B (the binary quan-
tized value of E) in Table 11.8. The rounding errors that result from conversion to
fixed-width binary are quantization errors and are important in any practical
implementation of the Viterbi decoder. The effect of the quantization error is to add
a form of noise to the received signal.

The following code models the receiver section that digitizes the noisy analog
received signal and computes the binary distance measures. Eight binary-distance
measures, in0-in7, are generated each time a signal is received. Since each of the
distance measures is 3 bits wide, there are a total of 24 bits (8 x 3) that form the
digital inputs to the Viterbi decoder.
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TABLE 11.8 Distance measures for Viterbi encoding (8PSK).

Algebraic Euclidean B=binary Quantization
distance from  X=Distance distance quantized D=decimal error

Signal signal 0 from signal 0 E=X? value of E value of B Q=D-1.75E

0 2sin (Omt/8) 0.00 0.00 000 0 0

1 2sin (17/8) 0.77 0.59 001 1 -0.0325

2 2sin (21/8) 1.41 2.00 100 4 0.5

3 2sin (31/8) 1.85 3.41 110 6 0.0325

4 2sin (41/8) 2.00 4.00 111 7 0

5 2sin (51/8) 1.85 3.41 110 6 0.0325

6 2sin (61/8) 1.41 2.00 100 4 0.5

7 2sin (71/8) 0.77 0.59 001 1 -0.0325

/***‘k******************‘k****’k**************************/

/* module viterbi distances

*/

/**********************‘k*********-k********‘k************/

/* This module simulates the front end of a receiver. Normally the

received analog signal (with noise) is converted into a series of

distance measures from the known eight possible transmitted PSK

signals: s0,...,87. We are not simulating the analog part or noise in

this version, so we just take the digitally encoded 3-bit signal, Y,

from the encoder and convert it directly to the distance measures.

d[N] is the distance from signal = N to signal = 0

d[N] = (2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100)

Example: d[3] = 1.85*%*2 = 3.41 = 110

inN is the distance from signal = N to encoder signal.

Example: in3 is the distance from signal = 3 to encoder signal.

d[N] is the distance from signal = N to encoder signal = 0.

If encoder signal = J, shift the distances by 8-J positions.

Example: if signal = 2, in0 is d[6], inl is D{7], in2 is D[0], etc. */

module viterbi distances
(Y2N,Y1N,Y0ON,clk,res,in0,inl,in2,in3,in4,in5,in6,in7);

input clk,res,¥2N,Y1N,YON; output in0O,inl,in2,in3,in4,in5,in6,in7;

reg [2:0] J,in0,inl,in2,in3,in4,in5,1in6,in7; reg [2:0] 4 [7:0];

initial begin d[0]='b000;d[1]='b001;d[2]='b100;d[3]='bl10;

d[4]='blll;d[S]?'bllO;d[6]='b100;d[7]='b001; end

always @(Y2N or YIN or YON) begin

J[0]=YON;J[1]=Y1IN;J[2]=Y2N;

J=8-J;in0=d[J];J=J+1;inl=4[J];J=J+1;in2=d[J];TJ=J+1;in3=d[J];

J=J+1;in4=d[J};J=J+1;in5=d[J];J=J+1;in6=d[J];I=J+1;in7=d[J];

end endmodule
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As an example, Table 11.9 shows the distance measures for the transmitted
encoder output sequence ¥, = 1,0,5,4, ... (repeated) corresponding to an encoder
input of Xn = 0,1,2,3,... (repeated).
TABLE 11.9 Receiver distance measures for an example transmission sequence.
Time Input  Output PpPresent  Next
ns Xn Yn state state inG in1 in2 in3 ind in5 in6 in7
0 3 X 5, S, X X X X X X X X
10 3 6 So S, 4 6 7 6 4 1 0 1
50 0 1 S, S, 1 0 1 4 6 7 6 4
150 1 0 S, S 0 1 4 6 7 6 4 1
250 2 5 S S, 6 7 6 4 1 0 1 4
350 3 4 S, S, 7 6 4 1 0 1 4 6
450 0 1 Sy So 1 0 1 4 6 7 6 4
550 1 0 S, s, 0 1 4 6 7 6 4 1
650 2 5 Sy S 6 7 6 4 1 0 1 4
750 3 4 So 54 7 6 4 1 0 1 4 6
850 0 1 S; S, 1 0 1 4 6 7 6 4
950 1 0 S S o 1 4 6 7 6 4 A1

11.12.3 Testing the System

Here is a testbench for the entire system: encoder, receiver front end, and decoder:

/********************‘k********************************/

/* module viterbi test CDD */
/*‘k*‘k*****************************************7‘(*****‘k‘k/

/* This is the top-level module, viterbi test CDD, that models the
communications link. It contains three modules: viterbi encode,
viterbi distances, and viterbi. There is no analog and no noise in
this version. The 2-bit message, X, is encoded to a 3-bit signal, Y.
In this module the message X is generated using a simple counter.
The digital 3-bit signal Y is transmitted, received with noise as an
analog signal (not modeled here), and converted to a set of eight
3-bit distance measures, in0O, ..., in7. The distance measures form
the input to the Viterbi decoder that reconstructs the transmitted
signal Y, with an error signal if the measures are inconsistent.

CDD = counter input, digital transmission, digital reception */
module viterbi test CDD;
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wire Error; // decoder out
wire [2:0] Y, Out; // encoder out, decoder out
reg [1:0] X; // encoder inputs
reg Clk, Res; // clock and reset

wire [2:0] in0O,inl,in2,in3,in4,in5,in6,in7;
always #500 $display("t Clk X Y Out Error™);
initial $monitor("%4g",S$time,,Clk,,,,X,,¥,,0ut,,,, Exror);
initial $dumpvars; initial #3000 $finish;
always #50 Clk = ~Clk; initial begin Clk = 0;
X = 3; // No special reason to start at 3.
#60 Res = 1;#10 Res = 0;end // Hit reset after inputs are stable.
always @(posedge Clk) #1 X = X + 1; // Drive the input with a counter.
viterbi_ encode v_1
(X[1],%[0],¥[21,Y{1],Y[0],Clk,Res);
viterbi distances v_2
(Y[21,Y[1],¥[0],Clk,Res,in0,inl,in2,in3,ind4,in5,in6,in7);
viterbi v_3
(in0,inl1,in2,in3,in4,in5,1in6,1in7,0ut,Clk,Res,Error);
endmodule

The Viterbi decoder takes the distance measures and calculates the most likely
transmitted signal. It does this by keeping a running history of the previously
received signals in a path memory. The path-memory length of this decoder is 12.
By keeping a history of possible sequences and using the knowledge that the signals
were generated by a state machine, it is possible to select the most likely sequences.

TABLE 11.10 Output from the Viterbi testbench

t Clk X Y Out Exrror t Clk X Y Out Error
0 © 3 x x 0 1351 1 100 0
50 1 3 x % 0 1400 0 100 0
51 1 0 x x 0 1450 1 100 0
60 1 000 0 1451 1 252 0
100 O 000 0 1500 0 25 2 0
150 1 00O 0 1550 1 252 0
151 1 120 0 1551 1 345 0

Table 11.10 shows part of the simulation results from the testbench,
viterbi_ test CDD, in tabular form. Figure 11.5 shows the Verilog simulator out-
put from the testbench (displayed using VeriWell from Wellspring).

The system input or message, x[1:01], is driven by a counter that repeats the
sequence 0, 1, 2, 3, ... incrementing by 1 at each positive clock edge (with a delay of
one time unit), starting with X equal to 3 at r = 0. The active-high reset signal, Res,
is asserted at + = 60 for 10 time units. The encoder output, Y[ 2:0], changes at ¢t =
151, which is one time unit (the positive-edge—triggered D flip-flop model contains a
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Cllk <uiterhi

Outlz: 01 <uite

_te=

Fe=s <uitarbi

=151

Outl2:01 <ui

t=1451

FIGURE 11.5 Viterbi encoder testbench simulation results. (Top) Initialization and the start
of the encoder output sequence 2,5, 4, 1,0, ... on Y[2:0] at t = 151. (Bottom) The appearance
of the same encoder output sequence at the output of the decoder, Out[2:0], at t = 1451,
1300 time units (13 positive clock edges) later.

one-time-unit delay) after the first positive clock edge (at + = 150) following the
deassertion of the reset at t = 70. The encoder output sequence beginning at 7 = 151
is 2,5,4, 1,0, ... and then the sequence 5,4, 1, 0, ... repeats. This encoder output
sequence is then imagined to be transmitted and received. The receiver module cal-
culates the distance measures and passes them to the decoder. After 13 positive
clock-edges (1300 time ticks) the transmitted sequence appears at the output,
out[2:0], beginning at r = 1451 with 2,5,4,1,0, ..., exactly the same as the
encoder output.

11.12.4 Verilog Decoder Model

The Viterbi decoder model presented in this section is written for both simulation
and synthesis. The Viterbi decoder makes extensive use of vector D flip-flops (regis-
ters). Early versions of Verilog-XL did not support vector instantiations of modules.
In addition the inputs of UDPs may not be vectors and there are no primitive D flip-
flops in Verilog. This makes instantiation of a register difficult other than by writing
a separate module instance for each flip-flop.
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The first solution to this problem is to use flip-flop models supplied with the
synthesis tool such as the following:

asDff #(3) subout0(in0, sub0, clk, reset);

The asD£f is a model in the Compass ASIC Synthesizer standard component library.
This statement triggers the synthesis of three D flip-flops, with an input vector ina
(with a range of three) connected to the D inputs, an output vector sub0 (also with a
range of three) connected to the Q flip-flop outputs, a common scalar clock signal,
clk, and a common scalar reset signal. The disadvantage of this approach is that
the names, functional behavior, and interfaces of the standard components are differ-
ent for every software system.

The second solution, in new versions of Verilog-XL and other tools that support
the IEEE standard, is to use vector instantiation as follows [LRM 7.5.1, 12.1.2]:

myDEff subout0{0:2] (in0, sub0, clk, reset);

This instantiates three copies of a user-defined module or UDP called myp££. The
disadvantage of this approach is that not all simulators and synthesizers support vec-
tor instantiation.

The third solution (which is used in the Viterbi decoder model) is to write a
model that supports vector inputs and outputs. Here is an example D flip-flop model:

/************‘k*****************************************/

/* module dff */

/*-k*‘k*'k****;‘:*****‘k‘k'k***********************************/

/* A D flip-flop module. */

module dff(D,0,Clock,Reset); // N.B. reset is active-low.
output Q; iaput D,Clock,Reset;

parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q;

wire [CARDINALITY-1:0] D;

always @(posedge Clock) if (Reset !== 0) #1 Q = D;
always begin wait (Reset == 0); Q = 0; wait (Reset == 1); end
endmodule

We use this model by defining a parameter that specifies the bus width as fol-
lows:

dff #(3) subout0(in0, sub0, clk, reset):

The code that models the entire Viterbi decoder is listed below (Figure 12.6 on
page 578 shows the block diagram). Notice the following:

» Comments explain the function of each module.

» Each module is about a page or less of code.
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» Each module can be tested by itself.
» The code is as simple as possible avoiding clever coding techniques.

The code is not flexible, because bit widths are fixed rather than using parameters. A
model with parameters for rate, signal constellation, distance measure resolution,
and path memory length is considerably more complex. We shall use this Viterbi
decoder design again when we discuss logic synthesis in Chapter 12, test in Chapter
14, floorplanning and placement in Chapter 16, and routing in Chapter 17.

/* Verilog code for a Viterbi decoder. The decoder assumes a rate
2/3 encoder, 8 PSK modulation, and trellis coding. The viterbi module
contains eight submodules: subset_decode, metric, compute_metric,
compare_select, reduce, pathin, path_memory, and output decision.

The decoder accepts eight 3-bit measures of ||r-si||**2 and, after
an initial delay of thirteen clock cycles, the output is the best
estimate of the signal transmitted. The distance measures are the
Euclidean distances between the received signal r (with noise) and
each of the (in this case eight) possible transmitted signals s0 to s7.

Original by Christeen Gray, University of Hawaii. Heavily modified
by MJSS; any errors are mine. Use freely. */

/******‘k***********************************************/

/* module viterbi */
/******************************************************/

/* This is the top level of the Viterbi decoder. The eight input
signals {in0,...,in7} represent the distance measures, ||r-si}|**2.
The other input signals are clk and reset. The output signals are
out and error. */

module viterbi
(in0,inl,in2,in3,in4,in5,in6,in7,
out,clk,reset,error);
input [2:0] in0,inl,in2,in3,in4,in5,in6,1in7;
output [2:0] out; input clk,reset; output error;
wire sout0,soutl,sout2,sout3;
wire [2:0] s0,s1,s2,83;
wire [4:0] m in0,m inl,m in2,m in3;
wire [4:0] m_outO,m_outl,m_outz,mﬁput3;
wire [4:0] p0_0,p2 0,p0_1,p2 1,pl 2,p3_2,pl_3,p3_3;
wire ACS0,ACS1,ACS2,ACS3;
wire [4:0] out0,outl,out2,out3;
wire [1:0] control;
wire [2:0] p0,pl,p2,p3;
wire [11:0] pathO;

subset decode ul(in0,inl,in2,in3,in4,in5,iné,in7,
s0,s1,s2,83,so0ut0,soutl,sout2,sout3,clk,reset);

metric u2(m_in0,m _inl,m_in2,m_in3,m_outo,
m outl,m out2,m out3,clk,reset);

compute metric u3(m outl0,m outl,m out2,m out3,s0,sl,s2,s3,
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p0_0,p2_0,p0_1,p2_1,pl 2,p3_2,pl 3,p3_3,error);
compare_select u4(p0_0,p2_0,p0_1,p2 1,pl_2,p3_2,pl_3,p3_3,
out0,outl,out2,out3,ACS0,ACS1,ACS2,ACS3);
reduce u5(outl,outl,out2,out3,
m in0,m inl,m in2,m in3,control);
pathin ué(sout0,soutl,sout2,sout3,
ACSO0,ACS1,ACS2,ACS3,pathl0,clk,reset);
path_memory u7(p0,pl,p2,p3,pathl,clk,reset,
ACS0,ACS1,ACS2,ACS3);
output decision u8(p0,pl,p2,p3,control,out);
endmodule

/******************************************************/

/* module subset decode */
/*-k***********'k*************-k**************************/
/* This module chooses the signal corresponding to the smallest of
each set {||xr-sO||**2,]||r-s4]||**2}, {]||r-sl||**2, ||xr-s5]]|**2},
{||r-s2}|**2,||x-s6]|]|**2}, {||r-s3|]|**2,]||r-s7]|**2}. Therefore
there are eight input signals and four output signals for the
distance measures. The signals sout0, ..., sout3 are used to control
the path memory. The statement dff #(3) instantiates a vector array
of 3 D flip-flops. */
module subset decode

(in0,inl,in2,in3,in4,in5,in6,in7,

s0,s1,s82,s3,

sout0,soutl,sout2,sout3,

clk,reset);
input [2:0] in0,inl,in2,in3,in4,in5%,in6,in7;
output [2:0] s0,s1,82,s3;
output soutl,soutl,sout2,sout3;
input clk,reset;
wire [2:0] sub0,subl,sub2,sub3,sub4,sub5,sub6,sub’;

dff #(3) suboutO0(in0, subl, clk, reset);
dff #(3) suboutl(inl, subl, clk, reset);
dff #(3) subout2(in2, sub2, clk, reset);
dff #(3) subout3(in3, sub3, clk, reset);
dff #(3) suboutd4(in4d, sub4, clk, reset):
dff #(3) subout5(in5, sub5, clk, reset);
dff #(3) subouté6(in6, subé6, clk, reset);
dff #(3) subout7(in7, sub7, clk, reset):;

function [2:0] subset decode; input [2:0] a,b;

begin
subset decode = 0;
if (a<=b) subset decode = a; else subset decode = b;
end
endfunction
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function set_control; input [2:0] a,b;
begin
if (a<=b) set control = 0; else set control = 1;
end ’
endfunction

assign s0 = subset decode (sub0,sub4);
assign sl = subset_decode (subl,sub5);
assign s2 = subset decode (sub2,sub6);
assign s3 = subset decode (sub3,sub7);
assign sout0 = set control(sub0,sub4);
assign soutl set control(subl,sub5);
set control(sub2,sub6);
set_control(sub3,sub’7);

it

]

assign sout2

assign sout3
endmodule

/*****-k*********‘k**‘k***********************************/

/*  module compute metric */
/***********************'k******************‘k***********/
/* This module computes the sum of path memory and the distance for
each path entering a state of the trellis. For the four states,
there are two paths entering it; therefore eight sums are computed
in this module. The path metrics and output sums are 5 bits wide.
The output sum is bounded and should never be greater than 5 bits
for a valid input signal. The overflow from the sum is the error
output and indicates an invalid input signal.*/
module compute metric
(m out0,m outl,m out2,m out3,
s0,s1,s82,s83,p0_0,p2_ 0,
p0 1,p2 1,pl 2,p3 2,pl 3,p3 3,
error);
input [4:0] m out0,m outl,m out2,m out3;
input [2:0] s0,s1,s2,s3;
output [4:0] p0_0,p2 0,p0 _1,p2 1,pl 2,p3 2,pl 3,p3 3;
output error;

assign
p0_0 = m outl0 + s0,
p2 0 = m out2 + s2,
p0_1 = m_outO + s2,
p2 1 = m out2 + s0,
pl 2 = m_outl + sl,
p3_2 = m_out3 + s3,
pl 3 = m _outl + s3,
p3_3 = m_out3 + sl;

function is error; input x1,x2,x3,x4,x5,x6,%x7,x8;
begin
if (x1)|x2]||x3]||=4||x5]|=6||x7]|x8) is_error = 1;
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else is error = 0;
end
endfunction

assign error = is error(p0_0[4],p2 0{4],p0 _1{47,p2 1[4],
pl_2[4],p3_2(41,p1_3141,p3_3[41);
endmodule

/******************************************************/

/*  module compare select */
/**‘k***************************************************/
/* This module compares the summations from the compute metric
module and selects the metric and path with the lowest value. The
output of this module is saved as the new path metric for each
state. The ACS output signals are used to control the path memory of
the decoder. */
module compare select
(p0_0,p2_0,p0_1,p2 i,pl 2,p3 2,pl 3,p3_3,
out0,outl,out?2,out3,
ACS0,ACS1,ACS2,ACS3);
input [4:0] p0_0,p2 0,p0_1,p2 1,pl 2,p3_2,pl 3,p3_3;
output [4:0] out0,outl,out2,out3;
output ACS0,ACS1,ACS2,ACS3;

function [4:0] find min metric; input {4:0] a,b;
begin
if (a <= b) find min metric = a; else find min metric = b;
end
endfunction

function set control; input [4:0] a,b;
begin
if (a <= b) set_control = 0; else set_control = 1;
end
endfunction

assign out0 = find min metric(p0 0,p2 0);
assign outl = find min metric(p0 1,p2 1);
assign out2 = find min metric(pl 2,p3 2);
assign out3 = find min _metric(pl 3,p3_3);
assign ACS0 = set_control (p0 0,p2 0);
assign ACS1 = set_control (p0_1,p2 1);
assign ACS2 = set_control (pl 2,p3 2);
assign ACS3 = set_control (pl 3,p3 3);
endmodule

/*********’k*********************'}:**********************/

/* module path */

/******‘k*‘k*****************************************:’c***/

/* This is the basic unit for the path memory of the Viterbi
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decoder. It consists of four 3-bit D flip-flops in parallel. There
is a 2:1 mux at each D flip-flop input. The statement dff #(12)
instantiates a vector array of 12 flip-flops. */

module path(in,out,clk,reset,ACS0,ACS1,ACS2,ACS3);

input [11:0] in; output [11:0] out;

input clk,reset,ACS0,ACS1,ACS2,ACS3; wire [11:0] p_in;

dff #(12) pathO(p_in,out,clk,reset);

function [2:0] shift path; input [2:0] a,b; input control;
begin
if (control == 0) shift path = a; else shift path = b;
end
endfunction

i

assign p _in[11:9] shift path(in[11:9],in[5:3],ACS0);
assign p_in{[ 8:6] = shift path(in[{11:9],in[5:3],ACS1);
shift path(in[8: 6],in[2:0],ACS82);
shift path(in[8: 6],in[2:0],ACS3);

assign p in[ 5:3]
assign p_in[ 2:0]
endmodule

il

/****‘k********-k*k************7\-***************’k*‘k********/

/*  module path memory */
/***************‘k****’k****************‘k****************/
/* This module consists of an array of memory elements (D
flip-flops) that store and shift the path memory as new signals are
added to the four paths (or four most likely sequences of signals).
This module instantiates 11 instances of the path module. */
module path memory
(p0,pl,p2,p3,
path0,clk,reset,
ACS0,ACS1,ACS2,ACS3);
output [2:0] pO,pl,p2,p3; input [11:0] pathO;
input clk,reset,ACS0,ACS1,ACS2,ACS3;
wire [11:0]outl,out2,out3,out4,out5,outé,out7,out8,out9,outll,outll;
path x1 (pathO,outl ,clk,reset,ACS0,ACS1,ACS2,ACS3),

x2 (outl, out2 ,clk,reset,ACS0,ACS1,ACS2,ACS3),

x3 (out2, out3 ,clk,reset,ACS0,ACS1,ACS2,ACS3),

x4 (out3, outéd ,clk,reset,ACS0,ACS1,ACS2,ACS3),

x5 (out4d, out5 ,clk,reset,ACS0,ACS1,ACS2,ACS3),

X6 (outh, outé ,clk,reset,ACS0,ACS1,ACS2,ACS3),

x7 (outé, out7 ,clk,reset,ACSO,ACS1,ACS2,ACS3),

x8 (out7, out8 ,clk,reset,ACS0,ACS1,ACS2,ACS3),

X9 (out8, out9 ,clk,reset,ACS0,ACS1,ACS2,ACS3),

x10(out8, outll,clk,reset,ACS0,ACS1,ACS2,ACS3),

x11(outl0,outll,clk,reset,ACS0,ACS1,ACS2,ACS3);
outll1{11:97;
outll[ 8:67];
outll| 5:37;

i

assign pO

assign pl

assign p2
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assign p3 = outll[ 2:0];
endmodule

/******************************************************/
/* module pathin » */
/******************************************************/
/* This module determines the input signal to the path for each of
the four paths. Control signals from the subset decoder and compare
select modules are used to store the correct signal. The statement
dff #(12) instantiates a vector array of 12 flip-flops. */
module pathin
(sout0,soutl,sout2,sout3,
ACS0,ACS1,ACS2,ACS3,
pathO,clk,reset);
input sout0,soutl,sout2,sout3,ACS0,ACS1,ACS2,ACS3;
input clk,reset; output [11:0] pathO;
wire [2:0] sig0,sigl,sig2,sig3; wire [11:0] path in;

dff #(12) firstpath(path in,pathO,clk,reset);

function [2:0] subsetO; input sout0;

begin
if(sout0 == 0) subset0 = 0; else subset0 = 4;
end
endfunction
function [2:0] subsetl; input soutl;
begin
if(soutl == 0) subsetl = 1; else subsetl = 5;
end
endfunction
function [2:0] subset2; input sout2;
begin
if(sout2 == 0) subset2 = 2; else subset2 = 6;
end
endfunction
function [2:0] subset3; input sout3;
begin
if{sout3 == 0) subset3 = 3; else subset3 = 7;
end
endfunction

function [2:0] find path; input [2:0] a,b; input control;
begin
if(control==0) find path = a; else find path = b;
end
endfunction

assign sig0 = subsetO(sout0);
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assign sigl = subsetl(soutl);

subset2(sout2);

subset3(sout3);

assign path in[11:9] = find path(sig0,sig2,ACS0);
assign path in[ 8:6] find path(sig2,sig0,ACS1);
assign path_in[ 5:3] find path(sigl,sig3,ACS2);
assign path in[ 2:0) find path(sig3,sigl,ACS3);
endmodule

assign sig2

assign sig3

]

]

1]

/******’k**********************‘k************************/

/* module metric */
/***’k*****'k********************************************/
/* The registers created in this module (using D flip-flops) store
the four path metrics. Each register is 5 bits wide. The statement
dff #(5) instantiates a vector array of 5 flip-flops. */
module metric
(m_in0,m inl,m in2,m in3,
m _outl0,m outl,m out2,m out3,
clk, reset);
input [4:0] m_in0,m inl,m in2,m in3;
output [4:0] m out0,m outl,m out2,m out3;
input clk,reset;
dff #(5) metric3(m in3, m out3, clk, reset);
dff #(5) metric2(m in2, m out2, clk, reset);
dff #(5) metricl(m inl, m_outl, clk, reset);
dff #(5) metricO(m in0, m out0, clk, reset);
endmodule

/-k******-k*************'k*k*'k*'k*'k***********"k*********‘k***/

/*  module output decision */
/‘k*****'k***7‘:**'k*****************************‘k*********v\‘/

/* This module decides the output signal based on the path that
corresponds to the smallest metric. The control signal comes from
the reduce module. */

module output decision(p0,pl,p2,p3,control,ocut);
input {2:0] p0,pl,p2,p3; input [1:0] control; output [2:0] out;
function [2:0] decide;
input [2:0)] pO,pl,p2,p3; input [1:0] control;

begin
if(control == 0) decide = pO0;
else if(control == 1) decide = pl;
else if(control == 2) decide = p2;

else decide = p3;
end
endfunction

assign out = decide(p0,pl,p2,p3,control);
endmodule

547

531



532 CHAPTER 11 VERILOG HDL

/******************************************************/

/* module reduce */
/**********************'k*******************************/

/* This module reduces the metrics after the addition and compare
operations. This algorithm selects the smallest metric and subtracts
it from all the other metrics. */

module reduce
(in0,inl,in2,in3,
m _in0,m_inl,m in2,m in3,
control);
input [4:0] in0,inl,in2,in3;
output [4:0] m_in0,m inl,m in2,m_in3;
output [1:0] control; wire [4:0] smallest;

function [4:0] find smallest;
input [4:0] in0,inl,in2,in3; reg [4:0] a,b;

begin
if(in0 <= inl) a = in0; else a = inl;
if(in2 <= in3) b = in2; else b = in3;
if(a <= b) find smallest = a;
else find smallest = b;
end
endfunction
function [1:0] smallest no;
input [4:0] in0,inl,in2,in3,smallest;
begin
if(smallest == in0) smallest no = 0;
else if (smallest == inl) smallest no = 1;
else if (smallest == in2) smallest no = 2;
else smallest no = 3;
end
endfunction

assign smallest = find smallest(in0,inl,in2,in3);
assign m_in0 = in0 - smallest;

assign m_inl = inl - smallest;

assign m_in2 = in2 - smallest;

in3 - smallest;

assign control = smallest no(in0,inl,in2,in3,smallest);

I

assign m _in3

endmodule

11.13 Other Verilog Features

This section covers some of the more advanced Verilog features. System tasks and
functions are defined as part of the IEEE Verilog standard [Verilog LRM14].
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11.13.1 Display Tasks
The following code illustrates the display system tasks [Verilog LRM 14.1]:

module test display; // display system tasks:
initial begin S$display ("string, variables, or expression");
/* format specifications work like printf in C:
$d=decimal %b=binary $%s=string %h=hex %o=octal
%c=character %m=hierarchical name %v=strength %t=time format
ge=gcientific %f=decimal %g=shortest
examples: %d uses default width %0d uses minimum width
$7.3g uses 7 spaces with 3 digits after decimal point */
// $displayb, $displayh, $displayo print in b, h, o formats
// $write, S$strobe, S$monitor also have b, h, o versions

Swrite("write"); // as $display, but without newline at end of line
$strobe("strobe"); // as $display, values at end of simulation cycle

$monitor(v); // disp. @change of v (except v= $time,S$stime, $realtime)
smonitoron; S$monitoroff; // toggle monitor mode on/off

end endmodule

11.13.2 File I/O Tasks
The following example illustrates the file I/O system tasks [Verilog LRM 14.2]:

module file 1; integer fl, ch; initial begin £1 = $fopen("fl.out");
if(£1==0) $stop(2); if(fl==2)$display("£1 open");
ch = £1|1; $fdisplay(ch,"Hello"); $fclose(fl); end endmodule

> vlog file 1l.v

> vsim -c file 1

# Loading work.file 1
VSIM 1> run 10

# £1 open

# Hello

VSIM 2> q

> more fl.out

Hello

>

The $fopen system task returns a 32-bit unsigned integer called a multichannel
descriptor (£1 in this example) unique to each file. The multichannel descriptor con-
tains 32 flags, one for each of 32 possible channels or files (subject to limitations of
the operating system). Channel 0 is the standard output (normally the screen), which is
always open. The first call to $fopen opens channel 1 and sets bit 1 of the multichan-
nel descriptor. Subsequent calls set higher bits. The file I/O system tasks: $fdisplay,
Sfwrite, $fmonitor, and $fstrobe; correspond to their display counterparts. The
first parameter for the file system tasks is a multichannel descriptor that may have
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.multiple bits set. Thus, the preceding example writes the string "Hello" to the screen

and to filel.out. The task $fclose closes a file and allows the channel to be
reused.

The file 1/0 tasks $readmemb and $readmemh read a text file into a memory.
The file may contain only spaces, new lines, tabs, form feeds, comments, addresses,
and binary (for $readmemb) or hex (for $readmemh) numbers, as in the following
example:

mem.dat
@2 1010_1111 @4 0101_1111 1010_1111 // @address in hex
x1x1 zzzz 1111 0000 /* x or z is OK */

module load; reg [7:0] mem[0:7]; integer i; initial begin
$readmemb ("mem.dat", mem, 1, 6); // start _address=1, end_address=6
for (i= 0; i<8; i=i+l) Sdisplay("mem[%0d] %b", i, mem{i]);

end endmodule

> yvsim -c load

# Loading work.load
VSIM 1> run 10

# ** Warning: $readmem (memory mem) file mem.dat line 2:
# More patterns than index range (hex 1:6)

# Time: 0 ns Iteration: 0 1Instance:/

# mem[0] XXXXXXXX

# mem[1] XXXXXXXX

# mem[2] 10101111

# mem[3] XXXXXXXX

# mem[4] 01011111

# mem[5] 10101111

# mem[6] xlxlzzzz

# mem[7] XXXXXXXX

VSIM 2> g

>

11.13.3 Timescale, Simulation, and Timing-Check Tasks

There are two timescale tasks, $printtimescale and $timeformat [Verilog
LRM 14.3]. The $timeformat specifies the $t format specification for the display
and file I/O system tasks as well as the time unit for delays entered interactively and
from files. Here are examples of the timescale tasks:

// timescale tasks:

module a; initial S$printtimescale(b.cl); endmodule
module b; ¢ cl (); endmodule

“timescale 10 ns / 1 fs

module c_dat; endmodule

“timescale 1 ms / 1 ns
module Ttime; initial S$timeformat(-9, 5, " ns", 10); endmodule
/* Stimeformat [ ( n, p, suffix , min_ field width ) 1 ;
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units = 1 second ** (~-n), n = 0->15, e.g. for n = 9, units = ns
p = digits after decimal point for %t e.g. p = 5 gives 0.00000
suffix for %t (despite timescale directive)

min field width is number of character positions for %t */

The simulation control tasks are $stop and $finish [Verilog LRM 14.4]:

module test simulation control; // simulation control system tasks:
initial begin $stop; // enter interactive mode (default parameter 1)
$finish(2); // graceful exit with optional parameter as follows:

// 0 = nothing 1 = time and location 2 = time, location, and statistics
end endmodule

The timing-check tasks [Verilog LRM 14.5] are used in specify blocks. The
following code and comments illustrate the definitions and use of timing-check sys-
tem tasks. The arguments to the tasks are defined and explained in Table 11.11.
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TABLE 11.11 Timing-check system task parameters.

Timing task argument Description of argument Type of argument

reference event to establish reference time module input Or inout
(scalar or vector net)

data_event signal to check against reference_event module input Of inout
(scalar or vector net)

limit time limit to detect timing violation on data_event constant expression
Or specparam

threshold largest pulse width ignored by timing check $width constant expression
Ol specparam

notifier flags a timing violation (before -> after): register
x->0, 0->1, 1->0, z->z

module timing checks (data, clock, clock_1,clock 2); //1
input data,clock,clock 1,clock 2; reg tSU,tH,tHIGH,tP,tSK,tR; /72
specify // timing check system tasks: /73
/* $setup (data event, reference event, limit [, notifierl); /74
violation = (T reference event)-(T_data event) < limit */ //5
$setup(data, posedge clock, tSU); //6
/* $hold (reference event, data event, limit [, notifier]); /717
violation = //8
(time_of data_event)-(time_of reference event) < limit */ /79
$hold(posedge clock, data, tH); /710
/* $setuphold (reference_event, data event, setup limit, //11
hold limit [, notifier]); //12
parameter restriction = setup_ limit + hold limit > 0 */ //13
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$setuphold(posedge clock, data, tSU, tH);

/* $width (reference event, limit, threshold [, notifier7);
vioclation =
threshold < (T_data event) - (T reference event) < limit

reference event = edge

data_event = opposite edge of reference event */

$width(posedge clock, tHIGH);

/* $period (reference event, limit [, notifier]);

violation = (T_data_event) - (T reference event) < limit

reference event = edge

data_event = same_edge of reference event */

$period(posedge clock, tP);

/* $skew (reference_event, data event, limit [, notifier]);

violation = (T_data_event) - (T _reference event) > limit */

$skew(posedge clock 1, posedge clock 2, tSK);

/* $recovery (reference event, data event, limit, [, notifier]);

violation = (T_data_ event) - (T reference event) < limit */

$recovery(posedge clock, posedge clock 2, tR);

/* $nochange (reference_ event, data event, start_edge offset,
end_edge offset [, notifier]);

reference_event = posedge | negedge

violation = change while reference high (posedge)/low (negedge)

+ve start_edge offset moves start of window later

+ve end edge offset moves end of window later */

$nochange (posedge clock, data, 0, 0);

endspecify endmodule

//14
//15
//16
//17
//18
//19
/720
//21
/722
//23
/724
/725
/126
/727
/728
/729
/730
//31
/732
/733
/734
//35
/736
/737
/138
//39

You can use edge specifiers as parameters for the timing-check events (except

for the reference event in $nochange):

edge control specifier ::= edge [edge descriptor {, edge descriptor}]

edge_descriptor ::= 01 | O0x | 10 | 1x | x0 | x1

For example, 'edge [01, 0x, x1] clock' is equivalent to 'posedge clock’.

Edge transitions with 'z are treated the same as transitions with 'x'.

Here is a D flip-flop model that uses timing checks and a notifier register. The
register, notifier, is changed when a timing-check task detects a violation and the

last entry in the table then sets the flip-flop output to unknown.

primitive dff udp(g, clock, data, notifier);
output g; reg g; input clock, data, notifier;
table // clock data notifier:state: g

r 0 ? : 0?2 0
r 1 ? : 2 1 ;
n ? ? ? T -
? * ? L
? ? * ? x ; endtable // notifier
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endprimitive

“timescale 100 fs / 1 fs
module dff (g, clock, data); output g; input clock, data; reg notifier;
dff udp(qgl, clock, data, notifier); buf(g, ql);

specify
specparam tSU = 5, tH = 1, tPW = 20, tPLH = 4:5:6, tPHL = 4:5:6;
(clock *> g) = (tPLH, tPHL);

$setup(data, posedge clock, tSU, notifier); // setup: data to clock
Shold(posedge clock, data, tH, notifier); // hold: clock to data
$Speriod(posedge clock, tPW, notifier); // clock: period

endspecify

endmodule

11.13.4 PLA Tasks

The PLA modeling tasks model two-level logic [Verilog LRM 14.6]. As an
example, the following egntott logic equations can be implemented using a PLA:

bl = al & a2; b2 = a3 & a4 & a5 ; b3 = a5 & a6 & a7;

The following module loads a PLA model for the equations above (in AND
logic) using the array format (the array format allows only *1* or '0' in the PLA
memory, or personality array). The file array.dat is similar to the espresso
input plane format.

array.dat
1100000
0011100
0000111

module pla 1 (al,a2,a3,a4,a5,a6,a7,bl,b2,b3);
input al, a2, a3, a4, a5, a6, a7 ; output bl, b2, b3:
reg [1:7] mem[1l:3]; reg bl, b2, b3;
initial begin

$readmemb("array.dat”, mem);

#1; bl=1; b2=1; b3=1l;

$async$and$array(mem, {al,a2,a3,a4,a5,a6,a7},{bl,b2,b3});
end
initial S$monitor("%4g",$time,,bl,,b2,,b3);
endmodule

The next example illustrates the use of the plane format, which allows *1', 0,

as well as ' 2 or 'z (either may be used for don’t care) in the personality array.

bl = al & 'a2; b2 = a3; b3 = lal & !a3; bd = 1;

module pla 2; reg [1:3] a, mem[1:4]; reg [1:4] b;

initial begin
$async$and$Splane(mem, {a[l],a[2],a[3]1},{b[1],b[2],b[3]1,b[4]1});
mem[1l] = 3'b10?; mem[2] = 3'b??1; mem[3] = 3'b0?0; mem[4] = 3'b??7?;
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#10 a = 3'bl11l; #10 $displayb(a, " -> ", b);
#10 a = 3'b000; #10 S$displayb(a, " -> ", b);
#10 a = 3'bxxx; #10 $displayb(a, " -> ", b);:
#10 a = 3'b101; #10 $displayb(a, " -> ", b);

end endmodule

111 -> 0101
000 -> 0011
XXX -> xxx1
101 -> 1101

11.13.5 Stochastic Analysis Tasks

The stochastic analysis tasks model queues [Verilog LRM 14.7]. Each of the tasks
return a status as shown in Table 11.12.

TABLE 11.12 Status values for the stochastic'analysis tasks.

Status value Meaning

0 OK

queue full, cannot add

undefined g_id

queue empty, cannot remove

unsupported g_type, cannot create queue
max length <= 0, cannot create queue

duplicate g_id, cannot create queue

~N OO o W NN =

not enough memory, cannot create queue

The following module illustrates the interface and parameters for these tasks:
module stochastic; initial begin // stochastic analysis system tasks:

/* $q_initialize (g_id, g_type, max_length, status) ;

g _id is an integer that uniquely identifies the queue

gq_type 1=FIFO 2=LIFO

max_length is an integer defining the maximum number of entries */
$q_initialize (g_id, g_type, max length, status) ;

/* $q_add (qg_id, job_id, inform id, status) ;

job _id = integer input

inform id = user-defined integer input for queue entry */

$q_add (qg_id, job_id, inform id, status) ;

/* $q_remove (g_id, job_id, inform id, status) ; */
$q _remove (g_id, job_id, inform id, status) ;
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/* $q_full (g_id, status) ;
status = 0 = queue is not full, status = 1 = queue full */
$q_full (q_id, status) ;

/* $q_exam (q_id, g_stat_code, g_stat_value, status) ;

d_stat_code is input request as follows:

l=current queue length 2=mean inter-arrival time 3=max. queue length
4=shortest wait time ever

5=longest wait time for jobs still in queue 6=ave. wait time in queue
g _stat_value is output containing requested value */

$g_exam (g_id, g _stat code, ¢_stat value, status) ;

end endmodule

11.13.6 Simulation Time Functions
The simulation time functions return the time as follows [Verilog LRM 14.8]:

module test time; initial begin // simulation time system functions:
Stime
// returns 64-bit integer scaled to timescale unit of invoking module

$stime ;
// returns 32-bit integer scaled to timescale unit of invoking module

Srealtime ;
// returns real scaled to timescale unit of invoking module

end endmodule

11.13.7 Conversion Functions

The conversion functions for reals handle real numbers [Verilog LRM 14.9]:

module test convert; // conversion functions for reals:
integer i; real r; reg [63:0] bits;
initial begin #1 r=256;#1 i = $rtoi(r);

#1; r = Sitor(2 * i) ; #1 bits = $realtobits(2.0 * r) ;
#1; r = Sbitstoreal(bits) ; end
initial S$monitor("%3f",S$time,,i,,r,,bits); /*

$rtoi converts reals to integers w/truncation e.g. 123.45 -> 123
$itor converts integers to reals e.g. 123 -> 123.0

$realtobits converts reals to 64-bit vector

$bitstoreal converts bit pattern to real

Real numbers in these functions conform to IEEE Std 754. Conversion
rounds to the nearest valid number. */

endmodule

# 0.000000 x 0 X

# 1.000000 X 256 X
# 2.000000 256 256 X
# 3.000000 256 512 X
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# 4.000000 256 512 4652218415073722368
# 5.000000 256 1024 4652218415073722368

Here is an example using the conversion functions in port connections:

module test real;wire [63:0]a; driver d (a); receiver r (a);
initial S$monitor("%3g”,$time,,a,,d.rl,,r.r2); endmodule

module driver (real net);
output real net; real rl; wire [64:1] real net = $realtobits(rl);
initial #1 rl = 123.456; endmodule

module receiver (real net);

input real net; wire [64:1] real net; real r2;
initial assign r2 = $bitstoreal(real_net);
endmodule

0 000
1

#
# 4638387860618067575 123.456 123.456

11.13.8 Probability Distribution Functions
The probability distribution functions are as follows [Verilog LRM 14.10]:

module probability; // probability distribution functions: //1
/* $random [ ( seed) ] returns random 32-bit signed integer /72
seed = register, integer, or time */ //3
reg [23:0] rl,r2; integer r3,r4,r5,r6,r7,r8,r9; //4
integer seed, start, \end , mean, standard deviation; //5
integer degree_of freedom, k_stage; //6
initial begin seed=1; start=0; \end =6; mean=5; /77
standard deviation=2; degree of freedom=2; k_stage=1l; #1; //8
rl = $random % 60; // random -59 to 59 //9
r2 = {$random} % 60; // positive value 0-59 //10
r3=$dist uniform (seed, start, \end ) ; //11
r4=$dist_normal (seed, mean, standard deviation) ; //12
r5=$dist_exponential (