
Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

decode transactions, may handle conflicts, may interface with the snoop filter 204,
and may process transactions. In one embodiment, the protocol logic 202 may
comprise distributed protocol logic (DPL) 210 and centralized protocol logic (CPL)
212. In one embodiment, each p01i 200 has an associated DPL 210 to locally
implement p01i ions of the protocol logic 202 for the respective port 200. In
prui iculru·, the DPL 210 may comprise decode logic to decode incoming
transactions and may comprise one or more buffers or queues to store data and/or
other inf01mation associated with incoming and outgoing transactions while being
processed by the protocol logic 202 and/or awaiting responses from cache nodes
102, 104. ")

• [4:61-5:13] ("The CPL 212 may provide global functions for processing
transactions regru·dless of which p01i 200 the transaction originated. For exrunple,
the CPL 212 for each p01i 200 may check for-transaction conflicts, may prevent
transaction struvation, and may maintain data coherency in accordance with a
snoop-based protocol. In prui iculru·, the CPL 212 in response to processing a read,
snoop, or invalidate request may check the state of the line of the request in the
caches 114 and may issue requests to one or more cache nodes 102, 104 based upon
the state of the line. In one embodiment, the CPL 212 may use the coherency data
of the snoop filter 204 to reduce the number of requests sent to the cache nodes 102,
104 and may update coherency data in the snoop filter 204 based upon the
transaction type and snoop responses received from the cache nodes 102, 104. The
CPL 212 may fmiher comprise logic to bypass the snoop filter 204 and to maintain
data coherency without using the coherency data of the snoop filter 204. Moreover,
the CPL 212 may be divided into fom interleaves 214, and a separate CPL
interleave 214 may be associated with each of the fom SF interleaves 208.").

In addition, the claimed interconnection controller comprises protocol engines for

processing transactions in accordance with a cache coherence protocol. See, e.g. , '206 patent

claim 1.4. A cache coherence protocol facilitates cache coherency, thus the claimed

interconnection controller is necessru·ily operable to facilitate cache coherency in the computer

system.

Fmthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and Exhibits E-1- E-14 to include an interconnection controller operable to facilitate cache

coherency across the computer system, at least under Mem01y Integrity's appru·ent infringement

- 150 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruties

theories. See, e.g., Exhibits D-1- D-14, claim 15.1. For exrunple, it would have been obvious for

an interconnection controller that processes coherence transactions to process those tr·ansactions so

as to facilitate cache coherency across the computer system as described above with respect to the

"cache coherence controller."

8. "Cache Coherence Controller" "Constructed to Act As An Aggregate
Remote Cache"

Some of the Asse1ted Claims ru·e directed to a "cache coherence controller" "constm cted to

act as an aggregate remote cache." For example, claim 18.1 of the '409 patent recites "the cache

coherence contr·oller is constmcted to act as an aggregate remote cache." See also, e.g., '409

patent claim 4 7.1; and '636 patent claim 29 .1. At least lmder Mem01y Integrity's appru·ent

infringement theories, cache coherence contr·ollers "constructed to act as an aggregate remote

cache" were well-known in the rut before the priority dates of the Asse1ted Patents . See, e.g. ,

Exhibits A-1- A-9, claims 18.1 and 47.1; and Exhibits B-1- B-19, claim 29.1. The following

discussion ftnther shows that, at least under Mem01y Integrity's appru·ent infringement the01y , it

was well known and conventional to implement cache coherence controllers "constructed to act as

an aggregate remote cache" in multiprocessor systems.

At least under Mem01y Integrity's appru·ent infringement theories, there are many

examples of prior rut references that disclose implementing cache coherence contr·ollers

"constm cted to act as an aggregate remote cache." Examples of prior rut references that disclose

and ftnt her demonstrate that such was well known include:

• "The Direct01y-Based Cache Coherence Protocol for the DASH Multiprocessor."
Lenoski (1990): See, e.g. , p. 1, pru·a. 2 ("We ru·e cunently building a prototype of a
scalable shru·ed mem01y multiprocessor. The system provides high processor
perfonnance and scalability though the use of coherent caches and a direct01y-based
coherence protocol. The high-level organization of the prototype, called DASH
(Direct01y Architecture for SHared mem01y) [17]. is shown in Figure 1. The
ru·chitecture consists of a number of processing nodes connected through a
high-bandwidth low-latency interconnection network. The physical mem01y in the

- 151 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

machine is disu·ibuted among the nodes of the multiprocessor, with all mem01y
accessible to each node. Each processing node, or cluster, consists of a small number of
high-perfonnance processors with their individual caches, a p01iion of the
shru·ed-mem01y, a common cache for pending remote accesses, and a direct01y
controller interfacing the cluster to the network. A bus-based snoopy scheme is used to
keep caches coherent within a cluster, while inter-node cache consistency is maintained
using a distributed direct01y-based coherence protocol.")

Figure 1: Gencnl an:h.itecture of DASH.

Lenoski (1990), Figure 1

• Lenoski (1990): See, e.g. , p. 1, para. 4 ("In DASH, each processing node has a
direct01y mem01y conesponding to its p01iion of the shru·ed physical mem01y . For each
mem01y block, the direct01y mem01y stores the identities of all remote nodes caching
that block. Using the direct01y mem01y , a node writing a location can send
point-to-point invalidation or update messages to those processors that ru·e actually
caching that block.")

• Lenoski (1990): See, e.g. , p. 3, pru·a. 5 ("The direct01y conu·oller (DC) contains the
direct01y mem01y conesponding to the p01iion of main mem01y present within the
cluster. It also initiates out-bound network requests and replies. The pseudo-CPU
(PCPU) is responsible for buffering incoming requests and issuing such requests on the
cluster bus. It mimics a CPU on this bus on behalf of remote processors except that
responses from the bus ru·e sent out by the direct01y conu·oller. The reply conu·oller
(RC) u·acks outstanding requests made by the local processors and receives and buffers
the conesponding replies from remote clusters. It acts as mem01y when the local
processors ru·e allowed to retry their remote requests. The network interface and the
local p01iion of the network itself reside on the direct01y card. The interconnection
network consists of a pair of meshes. One mesh is dedicated to the request messages
while the other handles replies. These meshes utilize wonnhole routing [9] to minimize
latency. Finally, the board contains hru·dwru·e monitoring logic and miscellaneous
control and status registers. The monitoring logic samples a variety of direct01y board
and bus events from which usage and perf01mance statistics can be derived.")

- 152 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Lenoski (I990): See, e.g. , p. 4.5 , pru·a. 4 ("In the protocol, invalidation acknowledges
are sent to the local cluster that initiated the mem01y request. An altemative would be
for the home cluster to gather the acknowledges, and, when all have been received,
send a message to the requesting cluster indicating that the request has been completed.
We chose the fonner because it reduces the waiting time for completion of a
subsequent fence operation by the requesting cluster and reduces the potential of a hot
spot developing at the mem01y .")

• "The Direct01y-Based Cache Coherence Protocol for the DASH Multiprocessor."
Lenoski (I992): See, e.g. , p. I 50 ("A DASH system consists of a number of modified
4D/240 systems that have been supplemented with a direct01y controller boru·d. This
direct01y conu·oller boru·d is responsible for maintaining the cache coherence across the
nodes and serving as the interface to the interconnection network.")

Figure 2: Block diagram of sample 2 x 2 DASH system.

Lenoski (I992), Figure 2

• U.S. Patent No. 6,055,6IO to Smith: See, e.g., II :44-55 ("A flow chrui of the basic
method MI of handling a data request is flow chruied in FIG. 3. At step SI , processor
PII issues a read request of data stored in main mem01y MMO. At step S2, caches
CIO-C13 of requester cell MCI ru·e exrunined to detennine if the request can be met
locally. First, associated cache CII is checked. A hit allows the request to be met
locally. A miss refers the request to the requestor's coherency conu·oller CCI .
Coherency controller CCI initiates a local snoop while refening the request to owner
cell MCO. If the snoop results in a hit, the request can be met locally. If the data is held
privately by another local processor, e.g., processor PI2, coherency conu·oller requests
that the data be made public so that the request can be met. Only if the local snoop
misses is involvement of the owner cell MCO required.")

- 153 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Smith: See, e.g., 11:56-63 ("At step S3, coherency controller CCO of owner cell MCO
initiates a local snoop of its caches, accesses fast direct01y FDO, and initiates access of
main mem01y MMO. Coherency conu·oller CCO detennines whether or not the
fast-direct01y data calls for a recall and whether the direct01y cache data is consistent
with the local snoop results. If the direct01y data is consistent with the snoop results and
if a recall is indicated, it is initiated at step S4.")

• Smith: See, e.g., 12:3-8 ("Once the recall process is complete, the requested data is
u·ansfen ed to the requester cell MCl , coherency conu·oller CCI, cache Cll, and
processor Pll , at step S6. State inf01m ation in cache Cll, fast direct01y FDO, and the
coherency direct01y of main mem01y MMO is updated as necessa1y. This completes
method Ml.")

PROCESSOR REQUESTS DATA READ
a

1
CHECK IF REQUEST

CAN BE MET 8Y REQUESTOR CELL
££

1
CHECK OWNER DIRECTORY CACHE AND SNOOP

OWNER CACHES
ll

1
ISSUE PREDICTIVE RECALLS

Si

1
CHECK PREDICTION AGAINST MAIN DIRECTORY

TAKE CORRECTIVE ACTION AND ISSUE NEW
RECALL IF NECESSARY

S1

1
PROVIDE DATA TO REQUESTOR

& UPDATE STATES & FAST DIRECTORY
~

J"igure 3

Smith, Figure 3

• U.S. Patent No, 6,085,295 to Ekanadham: See, e.g. , 2:25-33 ("In a node where a
remote line is brought into the cache of a processor, but not into the node1s mem01y, the
adapter acts as a proxy mem01y representing the remote mem01y that the line is
mapped onto. More specifically, when a mem01y command is issued from a local
processor to a remote mem01y, the mem01y command is directed to the adapter which
is responsible for insuring that the command is executed at that remote mem01y.")

- 154 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Ekanadham: See, e.g. , 3:37-45 ("The prefened embodiment of our system that is based
on a network of switch-based SMP nodes with an adapter attached to each node. FIG. 1
illusu·ates a high-level diagram of such a multiprocessing system. Each node has a
plurality of processors P1, P2, . .. , PN interconnected to each other by a switch (SW).
The switch also interconnects the mem01y modules M1, M2, . .. , MN and adapters A.
The nodes in tum, ru·e connected to each other through a network as shown.")

• Ekanadham: See, e.g., 3:49-56 ("The adapter connects to the switch and plays the role
of either a mem01y or a processor. The behavior of the adapter is different for different
mem01y lines. When a line is homed at the local mem01y of the node, the adapter
behaves as a proxy processor for that line. When a line is homed at the mem01y of a
remote node, the adapter behaves as a proxy mem01y for that line. These roles ru·e
illusu·ated in FIGS. 3A-3C and are elaborated fmiher below.")

• Ekanadham: See, e.g. , 4:7-24 ("In a node in which a line is homed in the local mem01y ,
the adapter plays the role of a proxy processor representing the accesses to the line
made by the processors in other nodes of the system. In this role, the adapter maintains
a state for the line and the list of all nodes sharing that line. The state can be I
(indicating that no other node has this line), E (indicating that some other node has
exclusive copy of this line) or S (indicating that this line is shru·ed by this and other
nodes). As a proxy processor, the adapter receives requests from other adapters and
perfonns the reads and writes in this node on their behalf. Whenever a local processor
requires exclusive access to the line while it is in shared state, it cornmlmicates with
other adapters and invalidates the line in all other nodes. When another node requests
for exclusive copy of the line. The adapter only invalidates the copies in all other nodes,
but also requests the local memory to grant the exclusive access. The memory
controller u·eats the adapter as another processor.")

• Ekanadham: See, e.g. , 4:26-41 ("In a node in which a line is homed at a remote
mem01y , the adapter acts as a proxy memory. It captures all the u·ansactions for the
conesponding address and nms the memory protocol. In this role, the adapter
maintains a state for the line and the list of local caches shru·ing the line. The state can
be I (indicating that no local cache this line), E (indicating that some local cache has
exclusive copy of this line) or S (indicating that this line is shru·ed by this and other
nodes). As a proxy memory , the adapter responds to all requests to the line and obtains
the contents of the line from the remote node (where that line is backed by memory)
and supplies the contents to the local caches. It performs the usual coherence control
operations in the node and coordinates with other adapters. In order to maintain global
coherence, it may have to issue some bus u·ansactions as a master, as illustrated later.")

- 155 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

FIG.1
PRIOR ART

Ekanadham, Figure 1

• U.S. Patent No, 6,141 ,692 to Loewenstein: See, e.g. , 6:29-33 ("Requests for data and
responses to those requests ru·e exchanged between nodes by the respective HA, SA,
and RA of each global interface (i.e., 415, 425, 435, and 445) in the f01m of
data/conu·ol packets, thereby enabling each node to keep u·ack of the status of all data
cached therein.")

• Loewenstein: See, e.g., 11: 1-9 ("When the system is operating in NUMA mode, a
typical read request (e.g., a Read-- To-- Shru·e request) by processor 411a of node 410
occurs in the following manner. To initiate the request, processor 411 a presents a
virtual address (VA) to MMU 412a, which conve1is the VA into a GA and presents the
GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,
a shared or owned copy), then cache 413a provides the data to processor 411a via
MMU 412a, thereby completing the read request.")

• Loewenstein: See, e.g. , 11:10-15 ("However, if cache 413a does not have a valid copy,
then cache 413a presents the GA to the local interconnect 419 of its associated node. If
the GA is not pa1i of the node 410's local address space (i.e., node 410 is not the home
node for the requested address), then the request is f01warded to the appropriate home
node (i.e. , node 420).")

• Loewenstein: See, e.g., 11:40-50 ("If the home node is dete1mined to have a valid copy
of the requested data line, then the home node provides the data to the requesting node.
In the case where the requesting node is also the home node, only an intem al data
u·ansfer is required. Altem atively, where the home node is not the requesting node,
then the global interface of the home node (global interface 425 in the above exrunple)
responds by reu·ieving the requested data line from the main mem01y 424 or from a

- 156-

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Par-ties

FIG.1

PRIOR MW

Ekanadham, Figure I

0 US. Patent No, 6,141,692 to Loewenstein: See, 9.3., 6:29-33 (“Requests for data and

responses to those requests are exchanged between nodes by the respective HA, SA,

and RA of each global interface (i.e., 415, 425, 435, and 445) in the form of

datalcontrol packets, thereby enabling each node to keep track of the status of all data

cached therein”)

0 Loewenstein: See, e.g., 11:1-9 (“When the system is operating in NINA mode, a

typical read request (e.g., a Read—- To-- Share request) by processor 41 1a ofnode 410

occurs in the following manner. To initiate the request, processor 411a presents a

virtual address (VA) to M1V1'U 412a, which converts the VA into a GA and presents the

GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,

a shared or owned copy), then cache 4133 provides the data to processor 41 la via

mm 412a, thereby completing the read request”)

0 Loewenstein: See, eg. _, 11:10- 15 (“However, if cache 4133 does not have a valid copy,

then cache 413a presents the GA to the local interconnect 419 of its associated node. If

the GA is not part of the node 410's local address space (i.e., node 410 is not the home

node for the requested address), then the request is forwarded to the appropriate home

node (i.e., node 420).”)

o Loewenstein: See, e.g. , 11:40-50 (“If the home node is determined to have a valid copy

of the requested data line, then the home node provides the data to the requesting node.

In the case where the requesting node is also the home node, only an internal data

transfer is required. Alternatively, where the home node is not the requesting node,

then the global interface of the home node (global interface 425 in the above example)

responds by retrieving the requested data line from the main memory 424 or from a

-156-

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Par-ties

FIG.1

PRIOR MW

Ekanadham, Figure I

0 US. Patent No, 6,141,692 to Loewenstein: See, 9.3., 6:29-33 (“Requests for data and

responses to those requests are exchanged between nodes by the respective HA, SA,

and RA of each global interface (i.e., 415, 425, 435, and 445) in the form of

datalcontrol packets, thereby enabling each node to keep track of the status of all data

cached therein”)

0 Loewenstein: See, e.g., 11:1-9 (“When the system is operating in NINA mode, a

typical read request (e.g., a Read—- To-- Share request) by processor 41 1a ofnode 410

occurs in the following manner. To initiate the request, processor 411a presents a

virtual address (VA) to M1V1'U 412a, which converts the VA into a GA and presents the

GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,

a shared or owned copy), then cache 4133 provides the data to processor 41 la via

mm 412a, thereby completing the read request”)

0 Loewenstein: See, eg. _, 11:10- 15 (“However, if cache 4133 does not have a valid copy,

then cache 413a presents the GA to the local interconnect 419 of its associated node. If

the GA is not part of the node 410's local address space (i.e., node 410 is not the home

node for the requested address), then the request is forwarded to the appropriate home

node (i.e., node 420).”)

o Loewenstein: See, e.g. , 11:40-50 (“If the home node is determined to have a valid copy

of the requested data line, then the home node provides the data to the requesting node.

In the case where the requesting node is also the home node, only an internal data

transfer is required. Alternatively, where the home node is not the requesting node,

then the global interface of the home node (global interface 425 in the above example)

responds by retrieving the requested data line from the main memory 424 or from a

-156-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

cache line which is owned by a processor within node 420, and sends the data line to
the global interface 415 of the requesting node 410 via global interconnect 450.")

• Loewenstein: See, e.g., 11:60-64 ("Upon receiving the data line, global interface 415
f01wru·ds the data line to cache 413a, which provides the data to the requesting
processor 411 a.")

Fig. 4

Loewenstein, Figure 4

• U.S. Patent No, 6,751 ,721 to Webb: See, e.g., Absu·act ("A direct01y-based
multiprocessor cache control scheme for distributing invalidate messages to change the
state of shru·ed data in a computer system. The plurality of processors ru·e grouped into
a plurality of clusters. A direct01y conu·oller u·acks copies of shru·ed data sent to
processors in the clusters. Upon receiving an exclusive request from a processor
requesting permission to modify a shru·ed copy of the data, the direct01y conu·oller
generates invalidate messages requesting that other processors sharing the same data
invalidate that data. These invalidate messages ru·e sent via a point-to-point
u·ansmission only to master processors in clusters actually containing a shru·ed copy of
the data. Upon receiving the invalidate message, the master processors broadcast the
invalidate message in an ordered fan-in/fan-out process to each processor in the cluster.
All processors within the cluster invalidate a local copy of the shared data if it exists
and once the master processor receives acknowledgements from all processors in the
cluster, the master processor sends an invalidate acknowledgment message to the
processor that originally requested the exclusive rights to the shru·ed data. The cache
coherency is scalable and may be implemented using the hybrid

- 157 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

point-to-point/broadcast scheme or a conventional point-to-point only direct01y-based
invalidate scheme.")

As illustrated by the prior rui references above, it was well known before the priority dates

of the Asse1ied Patents to implement a "cache coherence controller" "constm cted to act as an

aggregate remote cache" in multiprocessor systems, at least under Mem01y Integrity's apparent

infringement theories. Indeed, a person of ordinruy skill would have been motivated to implement

a "cache coherence controller" "constm cted to act as an aggregate remote cache" in a

multiprocessor system as described below:

• Ekanadham: See, e.g. , 1:23-35 ("Technology considerations limit the size of an SMP
node to a small number of processors. A method for building a shru·ed-mem01y
multiprocessor with a larger number of processors is to connect a number of SMP
nodes with a network, and provide an adapter to extend the SMP's mem01y across the
SMP nodes (see FIG. 1). Existing adapter designs plug into the mem01y bus of
bus-based SMP nodes and collectively provide shru·ed mem01y across the system, so
that any processor in any node can access any location in any mem01y module in the
system. Resom ces within a node ru·e te1med local and resomces on other nodes ru·e
tenned remote.")

• Ekanadham: See, e.g. , 2:37-41 ("By apperu·ing as either a local processor or a local
mem01y, the adapter uses the local SMP coherence protocol within a node to
accomplish the above tasks, without any changes to the mem01y controllers.")

• Loewenstein: See, e.g., 5: 1-8 ("Since global interface 115 is also responsible for
maintaining global cache coherency, global interface 115 includes a hru·dwru·e and/or
softwru·e implemented cache-coherency mechanism for maintaining coherency
between the respective caches and main memories of nodes 110, 120, ... 180. Cache
coherency is essential in order for the system 100 to properly execute shru·ed-mem01y
programs conectly.")

Accordingly, it would have been obvious to implement a "cache coherence controller"

"constm cted to act as an aggregate remote cache" in a multiprocessor system having multiple

clusters of processors while maintaining coherency with a reasonable expectation of success.

Fmthe1more, it would have been obvious to implement a "cache coherence controller"

"constm cted to act as an aggregate remote cache" because such a modification would simply be

the use of a known technique (e.g., a cache coherence controller "constm cted to act as an aggregate

- 158-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

remote cache") to improve similru· devices (e.g. , multiprocessor systems) in the same way (e.g.,

improve perfonnance and scalability while maintaining coherency) .

9. "Cache Coherence Controller" "Constructed to Act As A Probing Agent
Pair"

Some of the Asse1ied Claims ru·e directed to a "cache coherence controller" "constm cted to

act as a probing agent pair." For exrunple, claim 19.1 of the '409 patent recites "the cache

coherence controller is constmcted to act as a probing agent pair." See also, e.g. , '409 patent claim

48.1; and '636 patent claim 30.1. At least lmder Mem01y Integrity's apparent infringement

theories, cache coherence controllers "constmcted to act as a probing agent pair" were well-known

in the rui before the priority dates of the Asse1ied Patents. See, e.g., Exhibits A-1- A-9, claims

19.1 and 48.1; and Exhibits B-1- B-19, claim 30.1. The following discussion fmi her shows that,

at leas t lmder Mem01y Integrity's appru·ent infringement the01y, it was well known and

conventional to implement cache coherence controllers "constmcted to act as a probing agent pair"

in multiprocessor systems.

At least under Mem01y Integrity's appru·ent infringement theories, there are many

examples of prior rui references that disclose implementing cache coherence controllers

"constm cted to act as a probing agent pair." Examples of prior rut references that disclose and

fmiher demonstrate that such was well known include:

• "The Direct01y-Based Cache Coherence Protocol for the DASH Multiprocessor."
Lenoski (1990): See, e.g. , p. 1, pru·a. 2 ("We ru·e cunently building a prototype of a
scalable shared mem01y multiprocessor. The system provides high processor
perfonnance and scalability though the use of coherent caches and a direct01y-based
coherence protocol. The high-level organization of the prototype, called DASH
(Direct01y Architecture for SHru·ed mem01y) [17]. is shown in Figure 1. The
ru·chitecture consists of a number of processing nodes connected through a
high-bandwidth low-latency interconnection network. The physical mem01y in the
machine is distributed among the nodes of the multiprocessor, with all mem01y
accessible to each node. Each processing node, or cluster, consists of a small number of
high-perfonnance processors with their individual caches, a p01iion of the
shru·ed-memOiy, a common cache for pending remote accesses, and a direct01y

- 159 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

controller interfacing the cluster to the network. A bus-based snoopy scheme is used to
keep caches coherent within a cluster, while inter-node cache consistency is maintained
using a distributed direct01y-based coherence protocol.")

Figure l: General an:h.itecture of DASH.

Lenoski (1990), Figure 1

• Lenoski (1990): See, e.g. , p. 1, pru·a. 4 ("In DASH, each processing node has a
direct01y mem01y conesponding to its p01iion of the shru·ed physical mem01y . For each
mem01y block, the direct01y mem01y stores the identities of all remote nodes caching
that block. Using the direct01y mem01y , a node writing a location can send
point-to-point invalidation or update messages to those processors that ru·e actually
caching that block.")

• Lenoski (1990): See, e.g. , p. 3, pru·a. 5 ("The direct01y conu·oller (DC) contains the
direct01y mem01y conesponding to the p01iion of main mem01y present within the
cluster. It also initiates out-bound network requests and replies. The pseudo-CPU
(PCPU) is responsible for buffering incoming requests and issuing such requests on the
cluster bus. It mimics a CPU on this bus on behalf of remote processors except that
responses from the bus are sent out by the direct01y conu·oller. The reply conu·oller
(RC) u·acks outstanding requests made by the local processors and receives and buffers
the conesponding replies from remote clusters. It acts as mem01y when the local
processors ru·e allowed to retry their remote requests. The network interface and the
local p01iion of the network itself reside on the direct01y card. The interconnection
network consists of a pair of meshes. One mesh is dedicated to the request messages
while the other handles replies. These meshes utilize wonnhole routing [9] to minimize
latency. Finally, the board contains hru·dwru·e monitoring logic and miscellaneous
control and status registers. The monitoring logic samples a vru·iety of direct01y boru·d
and bus events from which usage and perf01mance statistics can be derived.")

• Lenoski (1990): See, e.g. , p. 4.5 , para. 4 ("In the protocol, invalidation acknowledges
are sent to the local cluster that initiated the mem01y request. An altemative would be
for the home cluster to gather the acknowledges, and, when all have been received,

- 160 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

send a message to the requesting cluster indicating that the request has been completed.
We chose the fonner because it reduces the waiting time for completion of a
subsequent fence operation by the requesting cluster and reduces the potential of a hot
spot developing at the mem01y .")

• "The Direct01y-Based Cache Coherence Protocol for the DASH Multiprocessor."
Lenoski (I 992): See, e.g. , p. I 50 ("A DASH system consists of a number of modified
4D/240 systems that have been supplemented with a direct01y controller boru·d. This
direct01y conu·oller board is responsible for maintaining the cache coherence across the
nodes and serving as the interface to the interconnection network.")

Figure 2: Block diagram of sample 2 x 2 DASH system.

Lenoski (I 992), Figure 2

• U.S. Patent No. 6,055,6IO to Smith: See, e.g. , II :44-55 ("A flow chrui of the basic
method MI of handling a data request is flow chruied in FIG. 3. At step SI , processor
PII issues a read request of data stored in main mem01y MMO. At step S2, caches
CIO-C13 of requester cell MCI ru·e exrunined to detennine if the request can be met
locally. First, associated cache CII is checked. A hit allows the request to be met
locally. A miss refers the request to the requestor's coherency conu·oller CCI .
Coherency controller CCI initiates a local snoop while refening the request to owner
cell MCO. If the snoop results in a hit, the request can be met locally. If the data is held
privately by another local processor, e.g., processor PI2, coherency conu·oller requests
that the data be made public so that the request can be met. Only if the local snoop
misses is involvement of the owner cell MCO required.")

• Smith: See, e.g. , II :56-63 ("At step S3, coherency controller CCO of owner cell MCO
initiates a local snoop of its caches, accesses fast direct01y FDO, and initiates access of
main mem01y MMO. Coherency conu·oller CCO detennines whether or not the

- 161 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

fast-direct01y data calls for a recall and whether the direct01y cache data is consistent
with the local snoop results. If the direct01y data is consistent with the snoop results and
if a recall is indicated, it is initiated at step S4.")

• Smith: See, e.g. , 12:3-8 ("Once the recall process is complete, the requested data is
transfened to the requester cell MCl , coherency conu·oller CCI, cache Cll, and
processor Pll , at step S6. State inf01mation in cache Cll, fast direct01y FDO, and the
coherency direct01y of main mem01y MMO is updated as necessa1y. This completes
method Ml.")

PROCESSOR REQUESTS DATA READ
a

1
CHECK IF REQUEST

CAN BE MET BY REQUESTOR CELL
~

l
CHECK OWNER DIRECTORY CACHE AND SNOOP

OWNER CACHES
~

l
ISSUE PRWICTIVE RECALLS

Si

1
CH£CK PREDICTION AGAINST MAIN DIRECTORY

TAKE CORRECTIVE ACTION AND ISSUE NEW
RECALL IF NECESSARY

S1

1
PROVIDE DATA TO REQUESTOR

& UPDATE STATES & FAST DIRECTORY
~

J"igure 3

Smith, Figure 3

• U.S. Patent No, 6,085,295 to Ekanadham: See, e.g., 2:25-33 ("In a node where a
remote line is brought into the cache of a processor, but not into the node's mem01y , the
adapter acts as a proxy mem01y representing the remote mem01y that the line is
mapped onto. More specifically, when a mem01y command is issued from a local
processor to a remote mem01y , the mem01y command is directed to the adapter which
is responsible for insuring that the command is executed at that remote mem01y .")

• Ekanadham: See, e.g., 3:37-45 ("The prefened embodiment of our system that is based
on a network of switch-based SMP nodes with an adapter attached to each node. FIG. 1
illusu·ates a high-level diagram of such a multiprocessing system. Each node has a
plurality of processors Pl , P2, . .. , PN interconnected to each other by a switch (SW).

- 162 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

The switch also interconnects the mem01y modules Ml, M2, . .. , MN and adapters A.
The nodes in tum, ru·e connected to each other through a network as shown.")

• Ekanadham: See, e.g., 3:49-56 ("The adapter connects to the switch and plays the role
of either a mem01y or a processor. The behavior of the adapter is different for different
mem01y lines. When a line is homed at the local mem01y of the node, the adapter
behaves as a proxy processor for that line. When a line is homed at the mem01y of a
remote node, the adapter behaves as a proxy mem01y for that line. These roles ru·e
illusu·ated in FIGS. 3A-3C and are elaborated fmiher below.")

• Ekanadham: See, e.g., 4:7-24 ("In a node in which a line is homed in the local mem01y ,
the adapter plays the role of a proxy processor representing the accesses to the line
made by the processors in other nodes of the system. In this role, the adapter maintains
a state for the line and the list of all nodes sharing that line. The state can be I
(indicating that no other node has this line), E (indicating that some other node has
exclusive copy of this line) or S (indicating that this line is shru·ed by this and other
nodes). As a proxy processor, the adapter receives requests from other adapters and
perfonns the reads and writes in this node on their behalf. Whenever a local processor
requires exclusive access to the line while it is in shared state, it cornmlmicates with
other adapters and invalidates the line in all other nodes. When another node requests
for exclusive copy of the line. The adapter only invalidates the copies in all other nodes,
but also requests the local memory to grant the exclusive access. The memory
controller u·eats the adapter as another processor.")

• Ekanadham: See, e.g. , 4:26-41 ("In a node in which a line is homed at a remote
mem01y , the adapter acts as a proxy memory . It captures all the u·ansactions for the
conesponding address and nms the memory protocol. In this role, the adapter
maintains a state for the line and the list of local caches shru·ing the line. The state can
be I (indicating that no local cache this line), E (indicating that some local cache has
exclusive copy of this line) or S (indicating that this line is shru·ed by this and other
nodes). As a proxy memory , the adapter responds to all requests to the line and obtains
the contents of the line from the remote node (where that line is backed by memory)
and supplies the contents to the local caches. It performs the usual coherence control
operations in the node and coordinates with other adapters. In order to maintain global
coherence, it may have to issue some bus u·ansactions as a master, as illustrated later.")

- 163 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

FIG.1
PRIOR ART

Ekanadham, Figure 1

• U.S. Patent No, 6,141 ,692 to Loewenstein: See, e.g. , 6:29-33 ("Requests for data and
responses to those requests ru·e exchanged between nodes by the respective HA, SA,
and RA of each global interface (i.e., 415, 425, 435, and 445) in the f01m of
data/conu·ol packets, thereby enabling each node to keep u·ack of the status of all data
cached therein.")

• Loewenstein: See, e.g., 11: 1-9 ("When the system is operating in NUMA mode, a
typical read request (e.g., a Read-- To-- Shru·e request) by processor 411a of node 410
occurs in the following manner. To initiate the request, processor 411 a presents a
virtual address (VA) to MMU 412a, which conve1is the VA into a GA and presents the
GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,
a shared or owned copy), then cache 413a provides the data to processor 411a via
MMU 412a, thereby completing the read request.")

• Loewenstein: See, e.g. , 11:10-15 ("However, if cache 413a does not have a valid copy,
then cache 413a presents the GA to the local interconnect 419 of its associated node. If
the GA is not pa1i of the node 410's local address space (i.e., node 410 is not the home
node for the requested address), then the request is f01warded to the appropriate home
node (i.e. , node 420).")

• Loewenstein: See, e.g., 11:40-50 ("If the home node is dete1mined to have a valid copy
of the requested data line, then the home node provides the data to the requesting node.
In the case where the requesting node is also the home node, only an intem al data
u·ansfer is required. Altem atively, where the home node is not the requesting node,
then the global interface of the home node (global interface 425 in the above exrunple)
responds by reu·ieving the requested data line from the main mem01y 424 or from a

- 164-

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Par-ties

FIG.1

PRIOR MW

Ekanadham, Figure I

0 US. Patent No, 6,141,692 to Loewenstein: See, 9.3., 6:29-33 (“Requests for data and

responses to those requests are exchanged between nodes by the respective HA, SA,

and RA of each global interface (i.e., 415, 425, 435, and 445) in the form of

datalcontrol packets, thereby enabling each node to keep track of the status of all data

cached therein”)

0 Loewenstein: See, e.g., 11:1-9 (“When the system is operating in NINA mode, a

typical read request (e.g., a Read—- To-- Share request) by processor 41 1a ofnode 410

occurs in the following manner. To initiate the request, processor 411a presents a

virtual address (VA) to M1V1'U 412a, which converts the VA into a GA and presents the

GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,

a shared or owned copy), then cache 4133 provides the data to processor 41 la via

mm 412a, thereby completing the read request”)

0 Loewenstein: See, eg. _, 11:10- 15 (“However, if cache 4133 does not have a valid copy,

then cache 413a presents the GA to the local interconnect 419 of its associated node. If

the GA is not part of the node 410's local address space (i.e., node 410 is not the home

node for the requested address), then the request is forwarded to the appropriate home

node (i.e., node 420).”)

o Loewenstein: See, e.g. , 11:40-50 (“If the home node is determined to have a valid copy

of the requested data line, then the home node provides the data to the requesting node.

In the case where the requesting node is also the home node, only an internal data

transfer is required. Alternatively, where the home node is not the requesting node,

then the global interface of the home node (global interface 425 in the above example)

responds by retrieving the requested data line from the main memory 424 or from a

-154-

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Par-ties

FIG.1

PRIOR MW

Ekanadham, Figure I

0 US. Patent No, 6,141,692 to Loewenstein: See, 9.3., 6:29-33 (“Requests for data and

responses to those requests are exchanged between nodes by the respective HA, SA,

and RA of each global interface (i.e., 415, 425, 435, and 445) in the form of

datalcontrol packets, thereby enabling each node to keep track of the status of all data

cached therein”)

0 Loewenstein: See, e.g., 11:1-9 (“When the system is operating in NINA mode, a

typical read request (e.g., a Read—- To-- Share request) by processor 41 1a ofnode 410

occurs in the following manner. To initiate the request, processor 411a presents a

virtual address (VA) to M1V1'U 412a, which converts the VA into a GA and presents the

GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,

a shared or owned copy), then cache 4133 provides the data to processor 41 la via

mm 412a, thereby completing the read request”)

0 Loewenstein: See, eg. _, 11:10- 15 (“However, if cache 4133 does not have a valid copy,

then cache 413a presents the GA to the local interconnect 419 of its associated node. If

the GA is not part of the node 410's local address space (i.e., node 410 is not the home

node for the requested address), then the request is forwarded to the appropriate home

node (i.e., node 420).”)

o Loewenstein: See, e.g. , 11:40-50 (“If the home node is determined to have a valid copy

of the requested data line, then the home node provides the data to the requesting node.

In the case where the requesting node is also the home node, only an internal data

transfer is required. Alternatively, where the home node is not the requesting node,

then the global interface of the home node (global interface 425 in the above example)

responds by retrieving the requested data line from the main memory 424 or from a

-154-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

cache line which is owned by a processor within node 420, and sends the data line to
the global interface 415 of the requesting node 410 via global interconnect 450.")

• Loewenstein: See, e.g., 11:60-64 ("Upon receiving the data line, global interface 415
f01wru·ds the data line to cache 413a, which provides the data to the requesting
processor 411 a.")

Fig. 4

Loewenstein, Figure 4

• U.S. Patent No, 6,751 ,721 to Webb: See, e.g., Absu·act ("A direct01y-based
multiprocessor cache conu·ol scheme for distributing invalidate messages to change the
state of shru·ed data in a computer system. The plurality of processors ru·e grouped into
a plurality of clusters. A direct01y conu·oller u·acks copies of shru·ed data sent to
processors in the clusters. Upon receiving an exclusive request from a processor
requesting permission to modify a shru·ed copy of the data, the direct01y conu·oller
generates invalidate messages requesting that other processors sharing the same data
invalidate that data. These invalidate messages ru·e sent via a point-to-point
u·ansmission only to master processors in clusters actually containing a shru·ed copy of
the data. Upon receiving the invalidate message, the master processors broadcast the
invalidate message in an ordered fan-in/fan-out process to each processor in the cluster.
All processors within the cluster invalidate a local copy of the shared data if it exists
and once the master processor receives acknowledgements from all processors in the
cluster, the master processor sends an invalidate acknowledgment message to the
processor that originally requested the exclusive rights to the shru·ed data. The cache
coherency is scalable and may be implemented using the hybrid

- 165 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

point-to-point/broadcast scheme or a conventional point-to-point only direct01y -based
invalidate scheme.")

As illustrated by the prior rui references above, it was well known before the priority dates

of the Asse1ied Patents to implement a "cache coherence controller" "constm cted to act as a

probing agent pair" in multiprocessor systems. Indeed, a person of ordinruy skill would have been

motivated to implement a "cache coherence controller" "constmcted to act as a probing agent pair"

in a multiprocessor system as described below:

• Ekanadham: See, e.g. , 1:23-35 ("Technology considerations limit the size of an SMP
node to a small number of processors. A method for building a shared-mem01y
multiprocessor with a lru·ger number of processors is to connect a number of SMP
nodes with a network, and provide an adapter to extend the SMP's mem01y across the
SMP nodes (see FIG. 1). Existing adapter designs plug into the mem01y bus of
bus-based SMP nodes and collectively provide shru·ed mem01y across the system, so
that any processor in any node can access any location in any mem01y module in the
system. Resomces within a node ru·e te1med local and resomces on other nodes ru·e
tenned remote.")

• Ekanadham: See, e.g. , 2:37-41 ("By appearing as either a local processor or a local
mem01y , the adapter uses the local SMP coherence protocol within a node to
accomplish the above tasks, without any changes to the mem01y controllers.")

• Loewenstein: See, e.g., 5: 1-8 ("Since global interface 115 is also responsible for
maintaining global cache coherency, global interface 115 includes a hardware and/or
softwru·e implemented cache-coherency mechanism for maintaining coherency
between the respective caches and main memories of nodes 110, 120, ... 180. Cache
coherency is essential in order for the system 100 to properly execute shru·ed-mem01y
programs conectly.")

Accordingly, it would have been obvious to implement a "cache coherence controller"

"constm cted to act as a probing agent pair" in a multiprocessor system having multiple clusters of

processors while maintaining coherency with a reasonable expectation of success. Fmihennore, it

would have been obvious to implement a "cache coherence controller" "constm cted to act as a

probing agent pair" because such a modification would simply be the use of a known technique

(e.g., a cache coherence controller "constm cted to act as a probing agent pair") to improve silnilru·

- 166-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

devices (e.g., multiprocessor systems) in the same way (e.g. , improve perfonnance and scalability

while maintaining coherency).

10. "Cache Coherence Controller " "Constructed to Act As A Remote
Memory "

Some of the Asse1ied Claims ru·e directed to a "cache coherence controller" "constm cted to

act as a remote mem01y." For example, claim 20.1 of the '409 patent recites "the cache coherence

controller is constmcted to act as a remote mem01y." See also, e.g., '409 patent claim 49.1; and

'636 patent claim 31.1. At least under Mem01y Integrity's apparent infringement theories, "cache

coherence controllers" "constm cted to act as a remote mem01y" were well-known in the rui before

the priority dates of the Asse1ied Patents. See, e.g. , Exhibits A-1- A-9, claims 20.1 and 49.1 ; and

Exhibits B-1 - B-19, claim 31.1. The following discussion fmiher shows that, at least under

Mem01y Integrity's appru·ent infringement the01y, it was well known and conventional to

implement "cache coherence controllers" "constmcted to act as a remote mem01y" in

multiprocessor systems.

At least under Mem01y Integrity's appru·ent infringement theories, there are many

examples of prior rui references that disclose implementing "cache coherence controllers"

"constm cted to act as a remote mem01y." Examples of prior rui references that disclose and

fmiher demonstrate that such was well known include:

• "The Direct01y-Based Cache Coherence Protocol for the DASH Multiprocessor."
Lenoski (1990): See, e.g. , p. 1, pru·a. 2 ("We ru·e cunently building a prototype of a
scalable shared mem01y multiprocessor. The system provides high processor
perfonnance and scalability though the use of coherent caches and a direct01y-based
coherence protocol. The high-level organization of the prototype, called DASH
(Direct01y Architecture for Shru·ed mem01y) [17]. is shown in Figure 1. The
ru·chitecture consists of a number of processing nodes connected through a
high-bandwidth low-latency interconnection network. The physical mem01y in the
machine is distributed among the nodes of the multiprocessor, with all mem01y
accessible to each node. Each processing node, or cluster, consists of a small number of
high-perfonnance processors with their individual caches, a p01iion of the
shru·ed-memOiy, a common cache for pending remote accesses, and a direct01y

- 167 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

controller interfacing the cluster to the network. A bus-based snoopy scheme is used to
keep caches coherent within a cluster, while inter-node cache consistency is maintained
using a distributed direct01y-based coherence protocol.")

Figure l: General an:h.itecture of DASH.

Lenoski (1990), Figure 1

• Lenoski (1990): See, e.g. , p. 1, pru·a. 4 ("In DASH, each processing node has a
direct01y mem01y conesponding to its p01iion of the shru·ed physical mem01y . For each
mem01y block, the direct01y mem01y stores the identities of all remote nodes caching
that block. Using the direct01y mem01y , a node writing a location can send
point-to-point invalidation or update messages to those processors that ru·e actually
caching that block.")

• Lenoski (1990): See, e.g. , p. 3, pru·a. 5 ("The direct01y conu·oller (DC) contains the
direct01y mem01y conesponding to the p01iion of main mem01y present within the
cluster. It also initiates out-bound network requests and replies. The pseudo-CPU
(PCPU) is responsible for buffering incoming requests and issuing such requests on the
cluster bus. It mimics a CPU on this bus on behalf of remote processors except that
responses from the bus are sent out by the direct01y conu·oller. The reply conu·oller
(RC) u·acks outstanding requests made by the local processors and receives and buffers
the conesponding replies from remote clusters. It acts as mem01y when the local
processors ru·e allowed to retry their remote requests. The network interface and the
local p01iion of the network itself reside on the direct01y card. The interconnection
network consists of a pair of meshes. One mesh is dedicated to the request messages
while the other handles replies. These meshes utilize wonnhole routing [9] to minimize
latency. Finally, the board contains hru·dwru·e monitoring logic and miscellaneous
control and status registers. The monitoring logic samples a vru·iety of direct01y boru·d
and bus events from which usage and perf01mance statistics can be derived.")

• Lenoski (1990): See, e.g. , p. 4.5 , para. 4 ("In the protocol, invalidation acknowledges
are sent to the local cluster that initiated the mem01y request. An altemative would be
for the home cluster to gather the acknowledges, and, when all have been received,

- 168 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

send a message to the requesting cluster indicating that the request has been completed.
We chose the fonner because it reduces the waiting time for completion of a
subsequent fence operation by the requesting cluster and reduces the potential of a hot
spot developing at the mem01y .")

• "The Direct01y-Based Cache Coherence Protocol for the DASH Multiprocessor."
Lenoski (I 992): See, e.g. , p. I 50 ("A DASH system consists of a number of modified
4D/240 systems that have been supplemented with a direct01y controller boru·d. This
direct01y conu·oller board is responsible for maintaining the cache coherence across the
nodes and serving as the interface to the interconnection network.")

Figure 2: Block diagram of sample 2 x 2 DASH system.

Lenoski (I 992), Figure 2

• U.S. Patent No. 6,055,6IO to Smith: See, e.g. , II :44-55 ("A flow chrui of the basic
method MI of handling a data request is flow chruied in FIG. 3. At step SI , processor
PII issues a read request of data stored in main mem01y MMO. At step S2, caches
CIO-C13 of requester cell MCI ru·e exrunined to detennine if the request can be met
locally. First, associated cache CII is checked. A hit allows the request to be met
locally. A miss refers the request to the requestor's coherency conu·oller CCI .
Coherency controller CCI initiates a local snoop while refening the request to owner
cell MCO. If the snoop results in a hit, the request can be met locally. If the data is held
privately by another local processor, e.g., processor PI2, coherency conu·oller requests
that the data be made public so that the request can be met. Only if the local snoop
misses is involvement of the owner cell MCO required.")

• Smith: See, e.g. , II :56-63 ("At step S3, coherency controller CCO of owner cell MCO
initiates a local snoop of its caches, accesses fast direct01y FDO, and initiates access of
main mem01y MMO. Coherency conu·oller CCO detennines whether or not the

- 169-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

fast-direct01y data calls for a recall and whether the direct01y cache data is consistent
with the local snoop results. If the direct01y data is consistent with the snoop results and
if a recall is indicated, it is initiated at step S4.")

• Smith: See, e.g. , 12:3-8 ("Once the recall process is complete, the requested data is
transfened to the requester cell MCl , coherency controller CCI, cache Cll, and
processor Pll , at step S6. State inf01mation in cache Cll, fast direct01y FDO, and the
coherency direct01y of main mem01y MMO is updated as necessa1y. This completes
method Ml.")

PROCESSOR REQUESTS DATA READ
a

1
CHECK IF REQUEST

CAN BE MET BY REQUESTOR CELL
~

l
CHECK OWNER DIRECTORY CACHE AND SNOOP

OWNER CACHES
~

l
ISSUE PRWICTIVE RECALLS

Si

1
CH£CK PREDICTION AGAINST MAIN DIRECTORY

TAKE CORRECTIVE ACTION AND ISSUE NEW
RECALL IF NECESSARY

S1

1
PROVIDE DATA TO REQUESTOR

& UPDATE STATES & FAST DIRECTORY
~

J"igure 3

Smith, Figure 3

• U.S. Patent No, 6,085,295 to Ekanadham: See, e.g., 2:25-33 ("In a node where a
remote line is brought into the cache of a processor, but not into the node's mem01y , the
adapter acts as a proxy mem01y representing the remote mem01y that the line is
mapped onto. More specifically, when a mem01y command is issued from a local
processor to a remote mem01y , the mem01y command is directed to the adapter which
is responsible for insuring that the command is executed at that remote mem01y .")

• Ekanadham: See, e.g., 3:37-45 ("The prefened embodiment of our system that is based
on a network of switch-based SMP nodes with an adapter attached to each node. FIG. 1
illustrates a high-level diagram of such a multiprocessing system. Each node has a
plurality of processors Pl , P2, . .. , PN interconnected to each other by a switch (SW).

- 170 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

The switch also interconnects the mem01y modules Ml, M2, . .. , MN and adapters A.
The nodes in tum, ru·e connected to each other through a network as shown.")

• Ekanadham: See, e.g., 3:49-56 ("The adapter connects to the switch and plays the role
of either a mem01y or a processor. The behavior of the adapter is different for different
mem01y lines. When a line is homed at the local mem01y of the node, the adapter
behaves as a proxy processor for that line. When a line is homed at the mem01y of a
remote node, the adapter behaves as a proxy mem01y for that line. These roles ru·e
illusu·ated in FIGS. 3A-3C and are elaborated fmiher below.")

• Ekanadham: See, e.g., 4:7-24 ("In a node in which a line is homed in the local mem01y ,
the adapter plays the role of a proxy processor representing the accesses to the line
made by the processors in other nodes of the system. In this role, the adapter maintains
a state for the line and the list of all nodes sharing that line. The state can be I
(indicating that no other node has this line), E (indicating that some other node has
exclusive copy of this line) or S (indicating that this line is shru·ed by this and other
nodes). As a proxy processor, the adapter receives requests from other adapters and
perfonns the reads and writes in this node on their behalf. Whenever a local processor
requires exclusive access to the line while it is in shared state, it cornmlmicates with
other adapters and invalidates the line in all other nodes. When another node requests
for exclusive copy of the line. The adapter only invalidates the copies in all other nodes,
but also requests the local memory to grant the exclusive access. The memory
controller u·eats the adapter as another processor.")

• Ekanadham: See, e.g. , 4:26-41 ("In a node in which a line is homed at a remote
mem01y , the adapter acts as a proxy memory . It captures all the u·ansactions for the
conesponding address and nms the memory protocol. In this role, the adapter
maintains a state for the line and the list of local caches shru·ing the line. The state can
be I (indicating that no local cache this line), E (indicating that some local cache has
exclusive copy of this line) or S (indicating that this line is shru·ed by this and other
nodes). As a proxy memory , the adapter responds to all requests to the line and obtains
the contents of the line from the remote node (where that line is backed by memory)
and supplies the contents to the local caches. It performs the usual coherence control
operations in the node and coordinates with other adapters. In order to maintain global
coherence, it may have to issue some bus u·ansactions as a master, as illustrated later.")

- 171 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

FIG.1
PRIOR ART

Ekanadham, Figure 1

• U.S. Patent No, 6,141 ,692 to Loewenstein: See, e.g. , 6:29-33 ("Requests for data and
responses to those requests ru·e exchanged between nodes by the respective HA, SA,
and RA of each global interface (i.e., 415, 425, 435, and 445) in the f01m of
data/conu·ol packets, thereby enabling each node to keep u·ack of the status of all data
cached therein.")

• Loewenstein: See, e.g., 11: 1-9 ("When the system is operating in NUMA mode, a
typical read request (e.g., a Read-- To-- Shru·e request) by processor 411a of node 410
occurs in the following manner. To initiate the request, processor 411 a presents a
virtual address (VA) to MMU 412a, which conve1is the VA into a GA and presents the
GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,
a shared or owned copy), then cache 413a provides the data to processor 411a via
MMU 412a, thereby completing the read request.")

• Loewenstein: See, e.g. , 11:10-15 ("However, if cache 413a does not have a valid copy,
then cache 413a presents the GA to the local interconnect 419 of its associated node. If
the GA is not pa1i of the node 410's local address space (i.e., node 410 is not the home
node for the requested address), then the request is f01warded to the appropriate home
node (i.e. , node 420).")

• Loewenstein: See, e.g., 11:40-50 ("If the home node is dete1mined to have a valid copy
of the requested data line, then the home node provides the data to the requesting node.
In the case where the requesting node is also the home node, only an intem al data
u·ansfer is required. Altem atively, where the home node is not the requesting node,
then the global interface of the home node (global interface 425 in the above exrunple)
responds by reu·ieving the requested data line from the main mem01y 424 or from a

- 172-

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Par-ties

FIG.1

PRIOR MW

Ekanadham, Figure I

0 US. Patent No, 6,141,692 to Loewenstein: See, 9.3., 6:29-33 (“Requests for data and

responses to those requests are exchanged between nodes by the respective HA, SA,

and RA of each global interface (i.e., 415, 425, 435, and 445) in the form of

datalcontrol packets, thereby enabling each node to keep track of the status of all data

cached therein”)

0 Loewenstein: See, e.g., 11:1-9 (“When the system is operating in NINA mode, a

typical read request (e.g., a Read—- To-- Share request) by processor 41 1a ofnode 410

occurs in the following manner. To initiate the request, processor 411a presents a

virtual address (VA) to M1V1'U 412a, which converts the VA into a GA and presents the

GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,

a shared or owned copy), then cache 4133 provides the data to processor 41 la via

mm 412a, thereby completing the read request”)

0 Loewenstein: See, eg. _, 11:10- 15 (“However, if cache 4133 does not have a valid copy,

then cache 413a presents the GA to the local interconnect 419 of its associated node. If

the GA is not part of the node 410's local address space (i.e., node 410 is not the home

node for the requested address), then the request is forwarded to the appropriate home

node (i.e., node 420).”)

o Loewenstein: See, e.g. , 11:40-50 (“If the home node is determined to have a valid copy

of the requested data line, then the home node provides the data to the requesting node.

In the case where the requesting node is also the home node, only an internal data

transfer is required. Alternatively, where the home node is not the requesting node,

then the global interface of the home node (global interface 425 in the above example)

responds by retrieving the requested data line from the main memory 424 or from a

-172-

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Par-ties

FIG.1

PRIOR MW

Ekanadham, Figure I

0 US. Patent No, 6,141,692 to Loewenstein: See, 9.3., 6:29-33 (“Requests for data and

responses to those requests are exchanged between nodes by the respective HA, SA,

and RA of each global interface (i.e., 415, 425, 435, and 445) in the form of

datalcontrol packets, thereby enabling each node to keep track of the status of all data

cached therein”)

0 Loewenstein: See, e.g., 11:1-9 (“When the system is operating in NINA mode, a

typical read request (e.g., a Read—- To-- Share request) by processor 41 1a ofnode 410

occurs in the following manner. To initiate the request, processor 411a presents a

virtual address (VA) to M1V1'U 412a, which converts the VA into a GA and presents the

GA to cache 413a. If there is a valid copy of the data line of interest in cache 413a (e.g.,

a shared or owned copy), then cache 4133 provides the data to processor 41 la via

mm 412a, thereby completing the read request”)

0 Loewenstein: See, eg. _, 11:10- 15 (“However, if cache 4133 does not have a valid copy,

then cache 413a presents the GA to the local interconnect 419 of its associated node. If

the GA is not part of the node 410's local address space (i.e., node 410 is not the home

node for the requested address), then the request is forwarded to the appropriate home

node (i.e., node 420).”)

o Loewenstein: See, e.g. , 11:40-50 (“If the home node is determined to have a valid copy

of the requested data line, then the home node provides the data to the requesting node.

In the case where the requesting node is also the home node, only an internal data

transfer is required. Alternatively, where the home node is not the requesting node,

then the global interface of the home node (global interface 425 in the above example)

responds by retrieving the requested data line from the main memory 424 or from a

-172-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

cache line which is owned by a processor within node 420, and sends the data line to
the global interface 415 of the requesting node 410 via global interconnect 450.")

• Loewenstein: See, e.g., 11:60-64 ("Upon receiving the data line, global interface 415
f01wru·ds the data line to cache 413a, which provides the data to the requesting
processor 411 a.")

Fig. 4

Loewenstein, Figure 4

• U.S. Patent No, 6,751 ,721 to Webb: See, e.g., Absu·act ("A direct01y-based
multiprocessor cache conu·ol scheme for distributing invalidate messages to change the
state of shru·ed data in a computer system. The plurality of processors ru·e grouped into
a plurality of clusters. A direct01y conu·oller u·acks copies of shru·ed data sent to
processors in the clusters. Upon receiving an exclusive request from a processor
requesting permission to modify a shru·ed copy of the data, the direct01y conu·oller
generates invalidate messages requesting that other processors shru·ing the same data
invalidate that data. These invalidate messages ru·e sent via a point-to-point
u·ansmission only to master processors in clusters actually containing a shru·ed copy of
the data. Upon receiving the invalidate message, the master processors broadcast the
invalidate message in an ordered fan-in/fan-out process to each processor in the cluster.
All processors within the cluster invalidate a local copy of the shared data if it exists
and once the master processor receives acknowledgements from all processors in the
cluster, the master processor sends an invalidate acknowledgment message to the
processor that originally requested the exclusive rights to the shru·ed data. The cache

- 173 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

coherency is scalable and may be implemented using the hybrid
point-to-point/broadcast scheme or a conventional point-to-point only direct01y-based
invalidate scheme.")

As illustrated by the prior rui references above, it was well known before the priority dates

of the Asse1ied Patents to implement a "cache coherence controller" "constm cted to act as a

remote mem01y" in a multiprocessor system, at least lmder Mem01y Integrity's apparent

infringement theories. A person of ordinruy skill would have been motivated to implement a

"cache coherence controller" "constmcted to act as a remote mem01y" in a multiprocessor system

as described below:

• Ekanadham: See, e.g. , 1:23-35 ("Technology considerations limit the size of an SMP
node to a small number of processors. A method for building a shared-mem01y
multiprocessor with a larger number of processors is to connect a number of SMP
nodes with a network, and provide an adapter to extend the SMP's mem01y across the
SMP nodes (see FIG. 1). Existing adapter designs plug into the mem01y bus of
bus-based SMP nodes and collectively provide shru·ed mem01y across the system, so
that any processor in any node can access any location in any mem01y module in the
system. Resom ces within a node ru·e te1med local and resomces on other nodes ru·e
tenned remote.")

• Ekanadham: See, e.g. , 2:37-4 1 ("By apperu·ing as either a local processor or a local
mem01y, the adapter uses the local SMP coherence protocol within a node to
accomplish the above tasks, without any changes to the mem01y controllers.")

• Loewenstein: See, e.g., 5: 1-8 ("Since global interface 115 is also responsible for
maintaining global cache coherency, global interface 115 includes a hru·dwru·e and/or
softwru·e implemented cache-coherency mechanism for maintaining coherency
between the respective caches and main memories of nodes 110, 120, ... 180. Cache
coherency is essential in order for the system 100 to properly execute shru·ed-mem01y
programs conectly.")

Accordingly, it would have been obvious to implement a "cache coherence controller"

"constructed to act as a remote mem01y" in a multiprocessor system having multiple clusters of

processors while maintaining coherency with a reasonable expectation of success. Fmihennore, it

would have been obvious to implement a "cache coherence controller" "constm cted to act as a

remote mem01y" because such a modification would simply be the use of a known technique (e.g. ,

- 174 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

a cache coherence conu·oller "constructed to act as a remote mem01y") to improve similar devices

(e.g. , multiprocessor systems) in the same way (e.g. , improve perfonnance and scalability while

maintaining coherency).

11. "Shared Mem01y Address Space "

Some of the Asse1ied Claims are directed to a shared mem01y address space. For exrunple,

claim 9.1 of the '409 patent recites "the plmality of local processors in the local cluster shru·e a

mem01y address space with a plmality of non-local processors in the non-local cluster." See also,

e.g. , '409 patent claims 25.6, 27.1 , 34.6, and 36.1; '636 patent claims 13.1 and 24.1; and '254

patent claims 1.5-1 .11 and 8.1 . Claim 42.4 of ' 409 patent also recites "the first and second

processors sharing a common viliual address space." At least lmder Mem01y Integrity's appru·ent

infringement theories, shru·ing an address space and/or shru·ing a common viliual address space

between processors in a multiprocessor system was well-known in the rui before the priority dates

of the Asselied Patents. See, e.g., Exhibits A-1- A-9, claims 9.1 , 25.6, 27.1, 34.6, 36.1, and 42.4;

Exhibits B-1- B-19, claims 13.1 and 24. 1; and Exhibits E-1- E-14, claims 1.5-1.11 and 8.1. The

following discussion fmiher shows that, at least under Mem01y Integrity's apparent infringement

the01y, it was well known and conventional to shru·e an address space and/or shru·e a common

vi1i ual address space between processors in multiprocessor systems.

As an initial matter, the Asse1i ed Patents acknowledge that a shared mem01y address space

was well known. See, e.g. , '409 patent at 2:18-3:40 ("Backgrmmd of the Invention ... Although,

cache coherency mechanisms such as bus arbiu·ation ru·e effective, using a shared bus limits the

number of processors that can be implemented in a single system with a single mem01y space.

Perf01mance limitations have led to the development of a point-to-point architectme for

connecting processors in a system with a single mem01y space However, using a point-to-point

ru·chitectme to connect multiple processors in a multiple cluster system shru·ing a single mem01y

- 175-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

space presents its own problems."); '636 patent at 1 :33-2:59; '121 patent at 1 :20-2:38; '206 patent

at 1:13-38; and '254 patent at 1:16-41.

Indeed, lmder Mem01y Integrity's appru·ent infringement theories, there ru·e many

examples of prior rui references that disclose shru·ing an address space and/or a common vi1i ual

address space between processors in a multiprocessor system and fmi her demonstrate that such

features were well known include:

• "Computer Organization & Design," Patterson et al. (1998): See, e.g. , p. 713 ("Single
address space multiprocessors come in two styles. The first takes the same time to
access main mem01y no matter which processor requests it and no matter which word
is asked. Such machines ru·e called uniform mem01y access (UMA) multiprocessors or
symmetric multiprocessors (SMP) . In the second style, some mem01y accesses are
faster than others depending on which processor asks for which word. Such machines
are called nonuniform memory access (NUMA) multiprocessors. As you might expect,
there ru·e more programming challenges to get highest perf01mance from a NUMA
multiprocessor than a UMAmultiprocessor, but NUMAmachines can scale to lru·ger
sizes and hence ru·e potentially higher perfonnance.")

• Patterson: See, e.g. , p. 713 ("The altemative model to shru·ed memory for
communicating uses message passing for commlmicating among processors. Message
passing is required for machines with private memories, in contras t to shru·ed mem01y.
As an extreme exrunple, processors in different desktop computers communicate by
passing messages over a local ru·ea network. Provided the system has routines to send
and receive messages, coordination is built in with message passing since one
processor knows when a message is sent and the receiving processor knows when a
message ruTives. The receiving processor can then send a message back to the sender
saying the message has ruTived, if the sender needs that confi1mation. ")

- 176 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

Name

Sun Enterprise
10000

Maximum
memory size/

system

FIGURE 9.9 Charactertauu of multiprocessor computers connected by • network thllt •• for
sale In 1HT. All these machines have a shared address space with nonuniform memory access time
except for the Sun Enterprise 10000, which offers a shared address with unifonn memory access time.
And all these machines except the Cray Research T3E are cache coherent, with the HP, Sequent, and sqi
using directories. The Sun machine uses buses for addresses and a switch for data, so it supports coher­
ency with conventional snooping on the address buses. Communication bandwidth is peak per link,
counting all bytes sent including network headers. The bisection bandwidth typically scales with the
number of processors. (See www.mkp.com/codle.htm for pointers to these and more recent network-
connected multiprocessors.) '

Patterson, Figure 9.9

• Patterson: See, e.g., p. 579 ("7.4 Virtual Mem01y In the previous section, we saw how
caches served as a method for providing fast access to recently used p01i ions of a
program's code and data. Similarly, the main mem01y can act as a 'cache ' for the
secondaty storage, usually implemented with magnetic disks. This technique is called
virtual mem01y . There are two major motivations for virtual mem01y: to allow efficient
and safe shru·ing of mem01y among multiple progrruns and to remove the programming
burdens of a small, limited amount of main mem01y .")

FIGURE 7.20 ., Yirtll&l ~~~emory, blocks of memol')' (called paces) are -peel from one
- ., addraases (ca•ecl wtual , to 8ft0tlter ... (call•d physical addNu•a).
The processor generates vittual a ddresses while the memory is aoc'ii!Ssed using physical
addresses. Both the virtual memory and the physical memory are broken into pages, so that a vir­
tual page is really mapped to a physical page. Of course, it is also possible lor a virtual page to be
absent from main memory and not be mapped to a physical address, residing instead on disk.
l'hysical pages can be shared by having two virtual addresses point to the same physical address.
This capability is used to allow two ctiff<1rent programs to share data or code.

Patterson, Figure 7.20

- 177 -

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Parties

Maximum Processor Maxi mu m Commarit-

numher of Processor clock memory size/ cations

Name pracessors name rate 3y stem BW/link Topology

ICray____Research T3E I 2043 IAlpha 21164 I, 524,288 MB 1200 NIB/ml May 8MP I an torus I

HP/Corwe—i— IPASOGO _I 130MHz 65,536MB I SEEMS/sec 2mSMP 8-way I

crossnar I

I

Exemplar x-class I .
l I I .— I «r ring—I
I Sequent NUMA-Q I lPentlum Pro 200 MHz 1.31072 Ml_3 I 1024 MB/sec 4way 5MP I Ring —I

SGI ongmzooo I 128 I MIPS R10000 195 MHz 131.0?2 ME I 800 MB/secJI 2mm 5MP Ecuoe I
Sun Enterprise 64 I UltraSPARC 1 I 250 MHz 65.536 ME I 1600 MB/sec Way 5MP I lit-way1.0000 I i crossbar Il i.

I___.

FIGURE 9.! Characteristics of multiprocessor mutton connected try a network that are for

sale In 199?. All these machines have a shared address Space with nonuniform memory access time
except for the Sun Enterprise 10000, which offers a shared address with uniform memory access time.
And all these machines except the Cray Research TSE are cache coherent. with the HP. Sequenr, and SQI
using directories. The Sun machine uses hoses for addresses and a switch for data, so it supports coher-

' . ency with conventional snooping on the address buses. Communication bandwidth is peak per link,

E N @‘E D counting all bytes sent including network headers. The bisection bandwidth typically scales with thenumber of processors. [See marvmkpcomlcoflehtm for pointers to these and more recent network-
connected multiprocessors.)

Patterson, Figure 9.9

0 Patterson: See, e.g., p. 579 (“7.4 Virtual Memory In the previous section, we saw how

caches served as a method for providing fast access to recently used portions of a

program’s code and data. Similarly, the main memory can act as a ‘cache’ for the

secondary storage, usually implemented with magietic disks. This technique is called

virtual memory. There are two major motivations for virtual memory: to allow efficient

and safe sharing ofmemory among multiple programs and to remove the programming

burdens of a small, limited amount of main memory”)

W with!” Physlcdm

- Disk uddrems

HENRI 1.21! hi virtual memory, til-dis at memory {called Man] He manned from one
set of addresses (called virtual ultimo-us) to Mar out [outed physical Mme).
The processor generates virtual addnfisrrs while the memunr is amassed using physical
addresses. Both the virtual memory and the ph)site] memory arebtoken into pages, so that a vir-
tual page is really mapped to a physical page. CH course. it as also possible[or a virtual page to be
absent from main memory and not be mapped to a physical address, residing instead on disk.
Physical pages can be shared by baiting two Virtual addresses point to the same physical address.
This capability ls used to allow two different programs to share data or code

Patterson, Figure 7.20

-1'I'?-

Public Version — Confidential Information Redacted and Confidentiality Designation Removed Per Agreement
Between the Parties

Maximum Processor Maxi mu m Commarit-

numher of Processor clock memory size/ cations

Name pracessors name rate 3y stem BW/link Topology

ICray____Research T3E I 2043 IAlpha 21164 I, 524,288 MB 1200 NIB/ml May 8MP I an torus I

HP/Corwe—i— IPASOGO _I 130MHz 65,536MB I SEEMS/sec 2mSMP 8-way I

crossnar I

I

Exemplar x-class I .
l I I .— I «r ring—I
I Sequent NUMA-Q I lPentlum Pro 200 MHz 1.31072 Ml_3 I 1024 MB/sec 4way 5MP I Ring —I

SGI ongmzooo I 128 I MIPS R10000 195 MHz 131.0?2 ME I 800 MB/secJI 2mm 5MP Ecuoe I
Sun Enterprise 64 I UltraSPARC 1 I 250 MHz 65.536 ME I 1600 MB/sec Way 5MP I lit-way1.0000 I i crossbar Il i.

I___.

FIGURE 9.! Characteristics of multiprocessor mutton connected try a network that are for

sale In 199?. All these machines have a shared address Space with nonuniform memory access time
except for the Sun Enterprise 10000, which offers a shared address with uniform memory access time.
And all these machines except the Cray Research TSE are cache coherent. with the HP. Sequenr, and SQI
using directories. The Sun machine uses hoses for addresses and a switch for data, so it supports coher-

' . ency with conventional snooping on the address buses. Communication bandwidth is peak per link,

E N @‘E D counting all bytes sent including network headers. The bisection bandwidth typically scales with thenumber of processors. [See marvmkpcomlcoflehtm for pointers to these and more recent network-
connected multiprocessors.)

Patterson, Figure 9.9

0 Patterson: See, e.g., p. 579 (“7.4 Virtual Memory In the previous section, we saw how

caches served as a method for providing fast access to recently used portions of a

program’s code and data. Similarly, the main memory can act as a ‘cache’ for the

secondary storage, usually implemented with magietic disks. This technique is called

virtual memory. There are two major motivations for virtual memory: to allow efficient

and safe sharing ofmemory among multiple programs and to remove the programming

burdens of a small, limited amount of main memory”)

W with!” Physlcdm

- Disk uddrems

HENRI 1.21! hi virtual memory, til-dis at memory {called Man] He manned from one
set of addresses (called virtual ultimo-us) to Mar out [outed physical Mme).
The processor generates virtual addnfisrrs while the memunr is amassed using physical
addresses. Both the virtual memory and the ph)site] memory arebtoken into pages, so that a vir-
tual page is really mapped to a physical page. CH course. it as also possible[or a virtual page to be
absent from main memory and not be mapped to a physical address, residing instead on disk.
Physical pages can be shared by baiting two Virtual addresses point to the same physical address.
This capability ls used to allow two different programs to share data or code

Patterson, Figure 7.20

-1'I'?-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• "Computer Organization," Hamacher (2001): See, e.g. , p. 637 ("In Chapter 5 we saw
that the organization of the mem01y in a uniprocessor system has a large impact on
perf01mance. The same is tm e in multiprocessor systems. To exploit the locality of
reference phenomenon, each processor usually includes a primaty cache and a
secondruy cache. If the organization in Figm e 12.2 is used, then each processor module
can be connected to the commlmication network as shown in Figm e 12.12. Only the
secondaty cache is shown in the figme since the primruy cache is assumed to be a pati
of the processor chip. The mem01y modules are accessed using a single global address
space, where a range of physical addresses is assigned to each mem01y module. In such
a shru·ed mem01y system, the processors access all mem01y modules in the srune way.
From the softwru·e standpoint, this is the simplest use of the address space.")

• Hrunacher: See, e.g., p. 637-638 ("In NUMA-organized multiprocessors, shown in
Figme 12.3, each node contains a processor and a p01iion of the mem01y. A natmal
way of implementing the node is illustrated in Figme 12.13. In this case, it is also
convenient to use a single global address space. Again, the processor accesses all
mem01y modules in the same way, but the accesses to the local mem01y component of
the global address space take less time to complete than accesses to remote mem01y
modules.")

• Hrunacher: See, e.g., p. 638 ("In the organization ofFigme 12.4, each processor
accesses directly only its own local mem01y . Thus, each mem01y module constitutes
the private address space of one processor; there is no global address space. Any
interaction among programs or processes mnning on different processors is
implemented by sending messages from one processor to another. In this fonn of
communication, each processor views the interconnection network as an 1/0 device. In
effect, each node in such a system behaves as a computer in the srune manner as
discussed in previous chapters for lmiprocessor machines. For this reason, systems of
this type ru·e refened to also as multicomputers. This organization, provides the easiest
way to connect a number of computers into a lru·ge system. Communication between
tasks nmning on different computers is relatively slow because the exchange of
messages requires softwru·e intervention. We consider this type of system in Section
12.7.")

• "Parallel Computer Architectme," Culler et al. (1998): See, e.g., p. 28 ("One of the
most imp01iant classes of pru·allel machines is shru·ed mem01y multiprocessors. The
key property of this class is that communication occms implicitly as a result of
conventional mem01y access instructions (i.e., loads and stores). This class has a long
hist01y, dating at least to precmsors of mainfrrunes in the early 1960s,3 and today it has
a role in almost evety segment of the computer industry. Shared mem01y
multiprocessors serve to provide better throughput on multiprograllllning workloads,
as well as to support pru·allel programs. Thus, they ru·e natmally found across a wide
range of scale, from a few processors to perhaps hlmdreds. This section examines the
communicator architectme of shru·ed mem01y machines and the key organizational
issues for small-scale designs and large configmations.")

- 178 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• U.S. Patent No. 5,796,605 to Hagersten: See, e.g. , Abstr·act ("A technique for system
mem01y space address mapping in a multiprocessor computer system is provided. The
disclosed mapping ru·chitecture may be applied to a multiprocessor computer system
having multiple processing nodes (SMP nodes), where each processing node may
include multiple processors. The system mem01y address space is split into different
regions such that each of the n SMP nodes is assigned 1/n of the total address space.
Cache coherency state infonnation is stored for the mem01y in each SMP node.")

• U.S. Patent No. 6,336,177 to Stevens: See, e.g. , 6:59-65 ("The light shaded sections,
402, 406, 410, and 414 indicate that these areas of the vniual address space ru·e shru·ed
by at least two threads. Note that in this exrunple, the vniual address space 304 is
represented in a wrap-ru·ound fashion so that the shru·ed section 402 apperu·s both the
top and at the bottom of the vniual address space 304."); See, e.g., 7:49-57 ("FIG. 5
depicts an example of mem01y placement that could occur, if the known mem01y
access pattems, as described above with reference to FIG. 4, are not taken into accmmt
for the pmpose of maximizing mem01y placement locality. Accordingly, in this
example, the threads 302 a and 302 b ru·e randomly mapped to the node 502, in one
comer of the system 316, while the threads 302 c and 302 d ru·e randomly mapped to the
node 504, in the opposite comer of the system 316.")

• U.S. Patent No. 6,490,671 to Frank: See, e.g. , 1:46-56 ("In a multi-processor machine,
a process may be divided into threads of execution, some threads executing on different
CPUs. All of a process's threads share a common vniual address space. Each of the
CPUs, however, maintains its own copy of the TLB. When any of the CPUs in the
machine invalidates an entry in the TLB, each CPU is notified, tr·aditionally by means
of a hru·dware intenupt, that there has been a change to the TLB and refreshes its copy.
Invalidating TLB entr·ies, however, is ve1y expensive, because all of the CPUs on the
machine stop then· processing to perfonn the refresh.")

• U.S. Patent No. 6,63 1,448 to Weber: See, e.g., 1:34-51 ("A distr·ibuted,
shru·ed-mem01y system is known as a distr·ibuted shru·ed-mem01y (DSM) or a
non-unif01m mem01y access (NUMA) ru·chitecture." "DSM ru·chitecture provides a
single shared address space to the progrrunmer where all mem01y locations may be
accessed by eve1y processor. As there is no need to distribute data. or explicitly
communicate data. between the processors in software, the burden of programming a
pru·allel machine is simpler in a DSM model. In addition, by dynrunically pruiitioning
the work, DSM architecture makes it easier to balance the computational load between
processors. Finally, as shared mem01y is the model provided on small-scale
multiprocessors, DSM ru·chitecture facilitates the p01iability of programs pru·allelized
for a small system to a lru·ger shru·ed-mem01y system. In contr·ast, in a message-passing
system, the programmer is responsible for pruiitioning all shru·ed data and managing
communication of any updates.")

• U.S. Patent Application No. 2003/0009640 to Arllnilli: See, e.g. , para. [0043] ("To
illustr·ate the present invention, an embodiinent will be described in which instruction
sequencing unit 52 and LSU 68 of each CPU 20 in NUMA data processing system 10
reference instructions and data utilizing 32-bit effective addresses, meaning that CPUs

- 179-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

20 have a 4 Gbyte (232
) effective address space. This effective address space is a subset

of a much lru·ger virtual address space referenced by 52-bit virtual addresses. This
virtual address space, which is shared by all CPUs 20 in NUMA data processing system
10, is pruiitioned into a number of (e.g. , 4 Kbyte) mem01y pages, which each have an
Page Table Ent:Iy (PTE) address descriptor that associates the base virtual address of
the mem01y page with the conesponding physical address of the mem01y page in one
of system memories 26.")

• U.S. Patent No. 6,684,305 to Deneau: See, e.g., 7:21-36 ("The main processor
operating system 206 creates and maintains both the main processor page tables 200
and the co-processor page tables 202, and embodies virtual-to-physical address
t:I·anslation mechanisms of both the main processor 102 and the co-processor, 104. The
main processor page tables 200 ru·e used by the main processor 102 to t:I·anslate virtual
addresses generated within the main processor 102 to physical addresses within the
shru·ed mem01y 106. The co-processor page tables 202 are used by the co-processor
104 to t:I·anslate virtual addresses generated within the co-processor 104 to physical
addresses within the shru·ed mem01y 106. The main processor 102 and the co-processor
104 shru·e a common physical address space within the shared mem01y 106. For
simplicity of operation, the main processor 102 and the co-processor 104 may also
shru·e a common vniual address space.")

As illustrated by the prior rui references above, it was well known before the priority dates

of the Asse1ied Patents to share an address space and/or a common vniual address space between

processors in a multiprocessor system, at least lmder Mem01y Integrity's appru·ent infringement

theories. Indeed, a person of ordinruy skill would have been motivated to implement a shared an

address space and/or a common vniual address space as described below:

• Hrunacher: See, e.g. , p. 637 ("The mem01y modules ru·e accessed using a single global
address space, where a range of physical addresses is assigned to each mem01y module.
In such a shared mem01y system, the processors access all mem01y modules in the
srune way. From the softwru·e standpoint, this is the simplest use of the address space.")

• Weber: See, e.g., 1:38-51 ("DSM ru·chitecture provides a single shru·ed address space
to the programmer where all mem01y locations may be accessed by eve1y processor.
As there is no need to distribute data. or explicitly communicate data between the
processors in softwru·e, the burden of programming a parallel machine is simpler in a
DSM model. In addition, by dynamically pruiitioning the work, DSM ru·chitecture
makes it easier to balance the computational load between processors. Finally, as
shru·ed mem01y is the model provided on small-scale multiprocessors, DSM
architecture facilitates the p01iability of programs pru·allelized for a small system to a
larger shru·ed-memOiy system. In cont:I·ast, in a message-passing system, the
programmer is responsible for pruiitioning all shru·ed data and managing
communication of any updates.")

- 180 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruties

• Patterson: See, e.g. , p. 579 ("7.4 Virtual Mem01y ... This technique is called virtual
mem01y. There are two major motivations for viiiual mem01y: to allow efficient and
safe sharing of mem01y among multiple programs and to remove the programming
burdens of a small, limited amount of main mem01y. ")

Accordingly, it would have been obvious to iinplement a shared address and/or a common

virtual address space between processors in a multiprocessor system because doing so would

siinply be an obvious engineering design choice by selecting one of a finite number of known

options (e.g., shru·ed address space or message passing and physical mapping or viiiual address

mapping) according to the desii·ed multiprocessor system implementation with a reasonable

expectation of success. Fmthennore, it would have been obvious to implement a shru·ed address

space and/or a common viiiual address space between processors in a multiprocessor system

because such a modification would simply be the use of a known technique (e.g., shared address

space and/or a common vii·tual address space) to improve similru· devices (e.g. , multiprocessor

systems) in the srune way (e.g., siinplified programming, iinproved computational load balancing,

efficient and safe shru·ing of mem01y among multiple progt·runs, etc.).

12. "Protocol Engines "

Some of the Asse1ied Claiins are dii·ected to one or more protocol engines. For example,

some of the Asse1ied claims ru·e directed to a cache coherence controller comprising a protocol

engine coupled to interface cii·cuitiy. See, e.g. , '409 patent claims 7.4, 8.1 , 10.1 , 12.1 , and 22.1 ;

'636 patent claims 22.3. 22.4, 23.1 , 27.1 , and 33.1. Some of the Asseiied Claims are directed to an

interconnection conu·oller including one or more protocol engines for processing u·ansactions, for

example, in accordance with a cache coherence protocol, or for processing inten11pts . See, e.g.,

'206 patent claims 1.4, 1.5, 1.6, 14.2, 19.2, 19.3, 21.4, 21.5, 21.6, 30.3, 30.4, 30.5, 35.1 , 38.2, 39.4,

39.5, 39.7, 39.8, 41.1 , and 44.2; '254 patent claims 1.4, 1.5, 1.6, 1.8, 1.10, 1.11, 6.2, and 7 .1. At

least under Mem01y Integrity's apparent infringement theories, an interconnection or cache

- 181 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

coherence controller including one or more protocol engines coupled to interface circuitry, for

processing tr·ansactions in accordance with a cache coherence protocol, etc. was well-known in the

rui at the time of the alleged invention of the Asserted Claims. See, e.g., Exhibits A -1 -A -9 claims

7.4, 8.1, 10.1, 12.1 , and 22.1; Exhibits B-1 - B-19 claims 22.3. 22.4, 23.1, 27 .1 , and 33.1; Exhibits

D-1- D-14, claims 1.4, 1.5, 1.6, 14.2, 19.2, 19.3, 21.4, 21.5, 21.6, 30.3, 30.4, 30.5, 35.1, 38.2,

39.4, 39.5, 39.7, 39.8, 41.1 , and 44.2; and Exhibits E-1 - E-14 claims 1.4, 1.5, 1.6, 1.8, 1.10, 1.11 ,

6.2, and 7 .1. At least under Mem01y Integrity's apparent infringement theories, there ru·e many

additional exemplruy prior rui references that disclose an interconnection or cache coherence

controller including a plurality of protocol engines coupled to interface circuitry, for processing

tr·ansactions in accordance with a cache coherence protocol, etc. Some examples include:

• See, e.g. , Tendler et al., "POWER4 system microru·chitecture," at

• Page 6 ("The two processors share a unified second-level cache, also on the srune
chip, through a core interface unit (CIU), as shown in Figure 1. The CIU is a
crossbru· switch between the L2, implemented as three sepru·ate, autonomous cache
controllers, and the two processors. Each L2 cache controller can operate
concunently and feed 32 bytes of data per cycle. The CIU connects each of the
three L2 contr·ollers to either the data cache or the instm ction cache in either of the
two processors. Additionally, the CIU accepts stores from the processors across
8-byte-wide buses and sequences them to the L2 controllers."),

• Figure 1,

• Page 7 ("Four POWER4 chips can be packaged on a single module to f01m an
eight-way SMP. Four such modules can be interconnected to f01m a 32-way SMP.
To accomplish this, each chip contains five primruy interfaces. To communicate
with other POWER4 chips on the same module, there ru·e logically four 16-byte
buses. Physically, these four logical buses ru·e implemented with six buses, three on
and three off, as shown in Figure 1. To commlmicate with POWER4 chips on other
modules, there ru·e two 8-byte buses, one on and one off. Each chip has its own
interface to the off-chip L3 across two 16-bytewide buses, one on and one off,
operating at one-third processor frequency."),

• Page 15 ("The unified second-level cache is shared across the two processors on the
POWER4 chip. Figure 5 shows a logical view of the L2 cache. The L2 is
implemented as three identical slices, each with its own controller. Cache lines ru·e
hashed across the three controllers."),

- 182-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Figure 5,

• Page 16 ("The majority of control for L2 cache management is handled by four
coherency processors in each contr·oller. A sepru·ate coherency processor is
assigned to handle each request to the L2. Requests can come from either of the two
processors (for either an Ll data-cache reload or an instruction fetch) or from one
of the store queues."),

• Page 16 ("Included in each L2 contr·oller ru·e four snoop processors responsible for
managing coherency operations snooped from the fabric."),

• Page 16 ("The L2 cache implements an enhanced version of the MESI coherency
protocol ... ").

• See, e.g. , Behling et al., "The POWER4 Processor Introduction and Tuning Guide," at

• Page 15 ("Stores can be sent to the L2 cache at a maximum rate of one store per
cycle. Store data is directed to the proper L2 controller (through a hashing
function) by way of the storage slice queue (SSQ) and the L2 store queue (STQ)."),

• Page 17 ("Each POWER4 chip has an L2 cache that is supervised by three L2
controllers, each of which manages 480 KB, for a total L2 size of 1440 KB. Cache
lines ru·e hashed across the three contr·ollers. Cache line replacement is
implemented as a binaty -tr·ee pseudo-LRU algorithm. The L2 cache is a unified
cache: it caches instm ctions, data, and page table entries . The L2 cache is also
shru·ed by the processors on the chip."),

• Page 18 ("Mem01y coherency in the system is enforced primru·ily at the L2 cache
level by L2 cache controllers. Each L2 has associated command queues, known as
coherency processors. Snoop processors within each controller observe all
tr·ansactions in the system and respond accordingly, providing responses or
delivering cache lines if the situation merits."),

• Page 30 ("The size of the L2 cache is 1440 KB per POWER4 chip, and this is
shru·ed between the two processors in the chip. As with the Ll data cache, the cache
line size is 128 bytes. The replacement policy is pseudo-LRU (least recently used)
so frequently accessed cache lines should be readily maintained in the cache. The
L2 cache is a combined data and instruction cache. Instm ction caching aspects of
the L2 cache ru·e not considered here. The L2 cache is divided into three equal pruis,
each lmder contr·ol of a separate L2 cache controller. The pruiiculru· p01iion a line is
stored is in is detennined from the real mem01y address using a hashing algorithm.
Sixteen consecutive double-precision Fortran ruTay elements (138 bytes) ru·e held in
the same cache line, and therefore under contr·ol of the same cache contr·oller. The
17th element will be in a different cache line and the hashing algorithm guru·antees
it will be stored under contr·ol of a different cache contr·oller.").

• See, e.g. , IBM POWER4 processor (as disclosed at least in the above references)

- 183 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I­
I

I

I

- 184 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I
I

I

- 185 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102
may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Fmiher, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. "),

• Figme 1

• [4:20-32] ("In one embodiment, the snoop filter 204 may be divided into fom
snoop filter (SF) interleaves 208. While in one embodiment the snoop filter 204
maintains coherency data for all lines of the caches 114, each SF interleave 208
may maintain coherency data for a unique subset of the cache lines. For example,
two bits of a line's mem01y address may be used to identify which of the SF
interleaves 208 maintains the coherency data for the patiicular line. Fmiher, by
assigning unique subsets to each of the SF interleaves 208, the SF interleaves 208
may operate in pru·allel and may increase the overall perfonnance of the coherent
switch 106 in compru·ison to a non-interleaved snoop filter 204 that may process a
single request at time."),

• Figme 2

• [4:61-5:13] ("The CPL 212 may provide global functions for processing
ti·ansactions regru·dless of which p01i 200 the ti·ansaction originated. For exrunple,
the CPL 212 for each p01i 200 may check for-ti·ansaction conflicts, may prevent
ti·ansaction struvation, and may maintain data coherency in accordance with a
snoop-based protocol. In pruiiculru·, the CPL 212 in response to processing a read,
snoop, or invalidate request may check the state of the line of the request in the
caches 114 and may issue requests to one or more cache nodes 102, 104 based upon
the state of the line. In one embodiment, the CPL 212 may use the coherency data
of the snoop filter 204 to reduce the number of requests sent to the cache nodes 102,
104 and may update coherency data in the snoop filter 204 based upon the
ti·ansaction type and snoop responses received from the cache nodes 102, 104. The
CPL 212 may fmther comprise logic to bypass the snoop filter 204 and to maintain
data coherency without using the coherency data of the snoop filter 204. Moreover,
the CPL 212 may be divided into fom interleaves 214, and a separate CPL
interleave 214 may be associated with each of the fom SF interleaves 208.").

- 186 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

As acknowledged by the Applicant during prosecution of U.S. Patent No. 8,815,602, to

which both the '206 and '254 patents claim priority, U.S. Patent Publication No. 2002/0007443 to

Ghru·achorloo discloses an interconnection controller including two protocol engines for

processing transactions in accordance with a cache coherence protocol, specifically a local

protocol engine and a remote protocol engine. See, e.g. , U.S. Patent No. 8,815,602 Prosecution

Hist01y , Applicant Response 2-13-2008 at Pages 8-9, Appeal Brief 10-3-2008 at Pages 7-8, 10.

For example, Applicant stated that "Ghru·achorloo clearly teaches that each multi-processor node

includes only a single protocol engine for processing local mem01y transactions, i.e. , the HPE, and

a single protocol engine for processing remote mem01y transaction, i.e., the RPE." See, e.g., U.S.

Patent No. 8,815,602 Prosecution Hist01y, Applicant Response 2-13-2008 at Page 9, Appeal Brief

10-3-2008 at Page 8. Furthe1more, the Boru·d of Patent Appeals and Interferences found that U.S.

Patent No. 6,370,585 to Hagersten in view of Gharachorloo teaches or suggests a plurality of

remote protocol engines for processing transactions tru·geting remote mem01y and a plurality of

local protocol engines for processing transactions tru·geting local mem01y. See, e.g. , U.S. Patent

No. 8,815,602 Prosecution Hist01y, Decision on Appeal 10-27-2011 at Pages 7-9.

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and Exhibits E-1 - E-14 to include a plurality of protocol engines coupled to interface circuit:Iy and

for processing u·ansactions in accordance with a cache coherence protocol, at least lmder Mem01y

Integrity's appru·ent infringement theories. See, e.g., Exhibits A-1- A-9 claims 7.4, 8.1 , 10.1,

12.1 , and 22.1 ; Exhibits B-1- B-19 claims 22.3. 22.4, 23.1 , 27.1 , and 33.1; Exhibits D-1- D-14,

claims 1.4, 1.5, 1.6, 14.2, 19.2, 19.3, 21.4, 21.5, 21.6, 30.3, 30.4, 30.5, 35.1 , 38.2, 39.4, 39.5, 39.7,

- 187 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

39.8, 41.1 , and 44.2; and Exhibits E-1- E-14 claims 1.4, 1.5, 1.6, 1.8, 1.10, 1.11, 6.2, and 7.1.

Multiple protocol engines may improve interconnection conu·oller perfonnance by allowing

multiple coherence u·ansactions to be processed in pru·allel, thereby improving throughput. See,

e.g. , id. The improved throughput allows a cluster con esponding to an interconnection conu·oller

to have more processors. See, e.g. , id.

a) Each protocol engine assigned a subset of global mem01y space

Some of the Asserted Claims are fmiher directed to each protocol engine being assigned a

subset of global mem01y space. See, e.g., '206 claims 1.5, 1.6, 14.2, 19.2, 21.5, 21.6, 30.4, 30.5,

35.1 , 38.2, 39.5,39.7, 39.8, 41.1; '254 claims 1.5, 1.6, 1.8, 1.10, 1.11 , 6.2, and7.1. Atleast under

Mem01y Integrity's appru·ent infringement theories, assigning each protocol engine a subset of

global mem01y space was well-known in the rut at the time of the alleged invention of the Assetied

Claims. See, e.g. , Exhibits D-1 - D-14, claims 1.5, 1.6, 14.2, 19.2, 21.5, 21.6, 30.4, 30.5, 35.1 ,

38.2, 39.5, 39.7, 39.8, 41.1;ExhibitsE-1-E-14claims 1.5, 1.6, 1.8, 1.10, 1.11, 6.2, and7.1. At

least under Mem01y Integrity's apparent infringement theories, there ru·e many additional

exemplaty prior rui references that disclose an interconnection conu·oller including a plurality of

protocol engines for processing u·ansactions in accordance with a cache coherence protocol, where

each protocol engine of the plurality of protocol engines is assigned a subset of global mem01y

space. Some examples include:

• See, e.g. , Tendler et al., "POWER4 system microru·chitecture," at

• Page 6 ("The two processors shru·e a lmified second-level cache, also on the same
chip, through a core interface unit (CIU), as shown in Figure 1. The CIU is a
crossbru· switch between the L2, implemented as three sepru·ate, autonomous cache
controllers, and the two processors. Each L2 cache controller can operate
concunently and feed 32 bytes of data per cycle. The CIU connects each of the
three L2 conu·ollers to either the data cache or the instmction cache in either of the
two processors. Additionally, the CIU accepts stores from the processors across
8-byte-wide buses and sequences them to the L2 controllers."),

- 188-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Figure 1,

• Page 7 ("Four POWER4 chips can be packaged on a single module to f01m an
eight-way SMP. Four such modules can be interconnected to f01m a 32-way SMP.
To accomplish this, each chip contains five primruy interfaces. To communicate
with other POWER4 chips on the same module, there ru·e logically four 16-byte
buses. Physically, these four logical buses ru·e implemented with six buses, three on
and three off, as shown in Figure 1. To commlmicate with POWER4 chips on other
modules, there ru·e two 8-byte buses, one on and one off. Each chip has its own
interface to the off-chip L3 across two 16-bytewide buses, one on and one off,
operating at one-third processor frequency."),

• Page 15 ("The unified second-level cache is shared across the two processors on the
POWER4 chip. Figure 5 shows a logical view of the L2 cache. The L2 is
implemented as three identical slices, each with its own controller. Cache lines ru·e
hashed across the three controllers."),

• Figure 5,

• Page 16 ("The majority of control for L2 cache management is handled by four
coherency processors in each conu·oller. A sepru·ate coherency processor is
assigned to handle each request to the L2. Requests can come from either of the two
processors (for either an L1 data-cache reload or an instruction fetch) or from one
of the store queues."),

• Page 16 ("Included in each L2 conu·oller ru·e four snoop processors responsible for
managing coherency operations snooped from the fabric."),

• Page 16 ("The L2 cache implements an enhanced version of the MESI coherency
protocol ... ").

• See, e.g. , Behling et al., "The POWER4 Processor Introduction and Tuning Guide," at

• Page 15 ("Stores can be sent to the L2 cache at a maximum rate of one store per
cycle. Store data is directed to the proper L2 controller (through a hashing
function) by way of the storage slice queue (SSQ) and the L2 store queue (STQ)."),

• Page 17 ("Each POWER4 chip has an L2 cache that is supervised by three L2
controllers, each of which manages 480 KB, for a total L2 size of 1440 KB. Cache
lines ru·e hashed across the three conu·ollers. Cache line replacement is
implemented as a binruy -u·ee pseudo-LRU algorithm. The L2 cache is a unified
cache: it caches instm ctions, data, and page table entries. The L2 cache is also
shru·ed by the processors on the chip."),

• Page 18 ("Mem01y coherency in the system is enforced primru·ily at the L2 cache
level by L2 cache controllers. Each L2 has associated command queues, known as
coherency processors. Snoop processors within each controller observe all
u·ansactions in the system and respond accordingly, providing responses or
delivering cache lines if the situation merits."),

- 189 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Page 30 ("The size of the L2 cache is 1440 KB per POWER4 chip, and this is
shru·ed between the two processors in the chip. As with the L l data cache, the cache
line size is 128 bytes. The replacement policy is pseudo-LRU (least recently used)
so frequently accessed cache lines should be readily maintained in the cache. The
L2 cache is a combined data and instruction cache. Instm ction caching aspects of
the L2 cache ru·e not considered here. The L2 cache is divided into three equal pruis,
each lmder conu·ol of a separate L2 cache controller. The pruiiculru· p01iion a line is
stored is in is detennined from the real mem01y address using a hashing algorithm.
Sixteen consecutive double-precision Fortran an ay elements (138 bytes) are held in
the same cache line, and therefore under conu·ol of the same cache conu·oller. The
17th element will be in a different cache line and the hashing algorithm guru·antees
it will be stored under conu·ol of a different cache conu·oller.").

• See, e.g. , IBM POWER4 processor (as disclosed at least in the above references)

I­
I

I

- 190 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I

I
I

I
I

I

I

- 191 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102
may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Further, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. "),

• Figure 1

• [4:20-32] ("In one embodiment, the snoop filter 204 may be divided into four
snoop filter (SF) interleaves 208. While in one embodiment the snoop filter 204
maintains coherency data for all lines of the caches 114, each SF interleave 208
may maintain coherency data for a unique subset of the cache lines. For example,
two bits of a line's mem01y address may be used to identify which of the SF
interleaves 208 maintains the coherency data for the patiicular line. Fmiher, by
assigning unique subsets to each of the SF interleaves 208, the SF interleaves 208
may operate in parallel and may increase the overall perfonnance of the coherent
switch 106 in compru·ison to a non-interleaved snoop filter 204 that may process a
single request at time."),

- 192-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Figure 2

• [4:61-5:13] ("The CPL 212 may provide global functions for processing
transactions regru·dless of which p01i 200 the transaction originated. For exrunple,
the CPL 212 for each port 200 may check for-transaction conflicts, may prevent
transaction struvation, and may maintain data coherency in accordance with a
snoop-based protocol. In pruiiculru·, the CPL 212 in response to processing a read,
snoop, or invalidate request may check the state of the line of the request in the
caches 114 and may issue requests to one or more cache nodes 102, 104 based upon
the state of the line. In one embodiment, the CPL 2 12 may use the coherency data
of the snoop filter 204 to reduce the number of requests sent to the cache nodes 102,
104 and may update coherency data in the snoop filter 204 based upon the
transaction type and snoop responses received from the cache nodes 102, 104. The
CPL 2 12 may fmiher comprise logic to bypass the snoop filter 204 and to maintain
data coherency without using the coherency data of the snoop filter 204. Moreover,
the CPL 212 may be divided into four interleaves 2 14, and a sepru·ate CPL
interleave 2 14 may be associated with each of the four SF interleaves 208.").

As acknowledged by the Applicant during prosecution of U.S. Patent No. 8,815,602, to

which both the '206 and '254 patents claim priority, U.S. Patent Publication No. 2002/0007443 to

Ghru·achorloo discloses a local protocol engine, which is assigned a subset of global mem01y space

consisting of local mem01y addresses, and a remote protocol engine, which is assigned a subset of

global mem01y space consisting of remote mem01y addresses. (U.S. Patent No. 8,815,602

Prosecution Hist01y, Applicant Response 2-13-2008 at Pages 8-9, Appeal Brief 10-3-2008 at

Pages 7-8, 10.) For example, Applicant stated that "Ghru·achorloo cleru·ly teaches that each

multi-processor node includes only a single protocol engine for processing local mem01y

transactions, i.e. , the HPE, and a single protocol engine for processing remote mem01y transaction,

i.e., the RPE." (U.S. Patent No. 8,815,602 Prosecution Hist01y, Applicant Response 2-13-2008 at

Page 9, Appeal Brief 10-3-2008 at Page 8.) Fmi he1more, the Board of Patent Appeals and

Interferences fmmd that U.S. Patent No. 6,370,585 to Hagersten in view of Ghru·achorloo teaches

or suggests a plurality of remote protocol engines for processing transactions targeting remote

mem01y and a plurality of local protocol engines for processing transactions tru·geting local

- 193 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

mem01y. (U.S. Patent No. 8,815,602 Prosecution Hist01y, Decision on Appeal10-27-2011 at

Pages 7-9.)

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asserted Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and Exhibits E-1- E-14 so that each protocol engine of the plurality of protocol engines is

assigned a subset of global mem01y space, at least under Mem01y Integrity's apparent

infringement theories. See, e.g. , Exhibits D-1- D-14, claims 1.5, 1.6, 14.2, 19.2, 19.2, 21.5, 21.6,

30.4, 30.5, 35.1 , 38.2, 39.5, 39.7, 39.8, 41.1; Exhibits E-1- E1-4 claims 1.5, 1.6, 1.8, 1.10, 1.11,

6.2, and 7 .1. Assigning subsets of global mem01y space to protocol engines may be simple to

implement relative to other methods of assigning transactions to protocol engines. See, e.g. , id.

For example, assigning addresses to protocol engines by interleaving is simple to implement and

may provide good load balance across the protocol engines. See, e.g. , Nguyen, "High-Throughput

Coherence Controllers" at Pages 29-30.

b) Remote protocol engine, local protocol engine

Some of the Asse1i ed Claims ru·e further directed to a remote protocol engine for

processing transactions tru·geting remote mem01y and a local protocol engine for processing

transactions tru·geting local mem01y. See, e.g. , '206 patent claims 1.5, 1.6, 14.2, 19.2, 19.3, 21.5,

21.6, 30.4, 30.5, 35.1 , 38.2, 39.5, 39.7, 39.8, 41.1 , and 44.2; '254 patent claims 1.5-1.11, 6.2, and

7 .1. At least under Mem01y Integrity's apparent infringement theories, a remote protocol engine

for processing transactions tru·geting remote mem01y and a local protocol engine for processing

transactions tru·geting local mem01y were well-known in the rut at the time of the alleged invention

oftheAsse1iedClaims. See, e.g. , ExhibitsD-1-D-14, claims 1.5, 1.6, 14.2, 19.2, 19.3, 21.5, 21.6,

- 194-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

30.4, 30.5, 35.1 , 38.2, 39.5, 39.7, 39.8, 41.1 , and 44.2; Exhibits E-1- E-14 claims 1.5-1.11, 6.2,

and 7.1.

As acknowledged by the Applicant during prosecution of U.S. Patent No. 8,815,602, to

which both the '206 and '254 patents claim priority, U.S. Patent Publication No. 2002/0007443 to

Ghru·achorloo discloses a remote protocol engine for processing u·ansactions targeting remote

mem01y and a local protocol engine for processing u·ansactions tru·geting local mem01y . See,

e.g. ,U.S. Patent No. 8,815,602 Prosecution Hist01y , Applicant Response 2-13-2008 at Pages 8-9,

Appeal Brief 10-3-2008 at Pages 7-8, 10. For example, Applicant stated that "Ghru·achorloo

cleru·ly teaches that each multi-processor node includes only a single protocol engine for

processing local mem01y u·ansactions, i.e., the HPE, and a single protocol engine for processing

remote mem01y u·ansaction, i.e., the RPE." See, e.g., U.S. Patent No. 8,815,602 Prosecution

Hist01y , Applicant Response 2-13-2008 at Page 9, Appeal Brief 10-3-2008 at Page 8.

Furthe1more, the Boru·d of Patent Appeals and Interferences fmmd that U.S. Patent No. 6,370,585

to Hagersten in view of Ghru·achorloo teaches or suggests a plurality of remote protocol engines

for processing u·ansactions tru·geting remote mem01y and a plurality of local protocol engines for

processing u·ansactions tru·geting local mem01y. See, e.g., U.S. Patent No. 8,815,602 Prosecution

Hist01y , Decision on Appeal10-27-2011 at Pages 7-9.

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asserted Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and Exhibits E-1 - E-14 so that the plurality of protocol engines includes a remote protocol engine

for processing u·ansactions targeting remote mem01y and a local protocol engine for processing

u·ansactions tru·geting local mem01y, at least under Mem01y Integrity's apparent infringement

- 195-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

theories. See, e.g. , Exhibits D-1- D-14, claims 1.5, 1.6, 14.2, 19.2, 19.3, 21.5, 21.6, 30.4, 30.5,

35.1 , 38.2, 39.5, 39.7, 39.8, 41.1 , and 44.2; Exhibits E-1- E-14 claims 1.5-1.11, 6.2, and 7.1.

Assigning u·ansactions tru·geting local versus remote mem01y to different protocol engines is

beneficial when processing of u·ansactions differs based on whether the u·ansaction targets local or

remote mem01y . See, e.g., id. For exrunple, ifu·ansactions targeting local mem01y require a

direct01y look-up, but u·ansactions tru·geting remote mem01y do not, then having a remote protocol

engine allows u·ansactions targeting remote mem01y to be processed faster, without having to wait

for access to the direct01y. See, e.g., Nguyen, "High-Throughput Coherence Conu·ollers" at Pages

30-31. Sepru·ating local and remote protocol engines can also simplify protocol engine design and

gives designers another dimension to vaty the number of protocol engines by, for example, having

a higher number of one type of protocol engine over the other. See, e.g., id. at Pages 31-32,

Pragaspathy et al, "Address Pruiitioning in DSM Clusters with Parallel Coherence Conu·ollers" at

50 ("Because, only the home FSMs access the direct01y and only the remote FSMs access the

remote cache, home-based pruiitioning reduces the shru·ing and contention in resources by a factor

of two. As such, home-based pruiitioning reduces the hru·dwru·e complexity of the resources (e.g. ,

by obviating the need for multip01iing for two-engine designs) and the FSMs managing access to

the resources, making this patiitioning scheme the least expensive in hru·dwru·e complexity and

cost.") .

c) Selecting or mapping a u·ansaction to a protocol engine

Some of the Assetied Claims are fmiher directed to selecting or mapping a u·ansaction to a

protocol engine using destination inf01mation associated with the u·ansaction. See, e.g., '206

claims 1.6, 2.1, 14.1, 19.2, 19.3, 21.6, 30.5, 34.1 , 35.1 , 39.7, 40.1, and41.1 ; '254claims 1.10, 1.11 ,

5.1 , 6.1 , and 6.2. At least under Mem01y Integrity's apparent infringement theories, selecting or

mapping a u·ansaction to a protocol engine using destination information associated with the

- 196 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

transaction was well-known in the rui at the time of the alleged invention of the Asse1ied Claims.

See, e.g. , Exhibits D-1- D-14, claims 1.6, 2.1, 14.1, 19.2, 19.3, 21.6, 30.5, 34.1, 35.1, 39.7, 40.1,

and 41.1; Exhibits E-1- E-14 claims 1.10, 1.11, 5.1, 6.1, and 6.2. At least under Mem01y

Integrity's appru·ent infringement theories, there ru·e many additional exemplruy prior rui

references that disclose selecting or mapping a transaction to a protocol engine using destination

infonnation associated with the transaction. Some examples include:

• See, e.g. , Tendler et al., "POWER4 system microarchitecture," at

• Page 6 ("The two processors shru·e a lmified second-level cache, also on the same
chip, through a core interface unit (CIU), as shown in Figure 1. The CIU is a
crossbru· switch between the L2, implemented as three separate, autonomous cache
controllers, and the two processors. Each L2 cache controller can operate
concunently and feed 32 bytes of data per cycle. The CIU connects each of the
three L2 controllers to either the data cache or the instm ction cache in either of the
two processors. Additionally, the CIU accepts stores from the processors across
8-byte-wide buses and sequences them to the L2 controllers."),

• Figure 1,

• Page 7 ("Four POWER4 chips can be packaged on a single module to f01m an
eight-way SMP. Four such modules can be interconnected to f01m a 32-way SMP.
To accomplish this, each chip contains five primruy interfaces. To communicate
with other POWER4 chips on the same module, there ru·e logically four 16-byte
buses. Physically, these four logical buses ru·e implemented with six buses, three on
and three off, as shown in Figure 1. To commlmicate with POWER4 chips on other
modules, there ru·e two 8-byte buses, one on and one off. Each chip has its own
interface to the off-chip L3 across two 16-bytewide buses, one on and one off,
operating at one-third processor frequency."),

• Page 15 ("The unified second-level cache is shared across the two processors on the
POWER4 chip. Figure 5 shows a logical view of the L2 cache. The L2 is
implemented as three identical slices, each with its own controller. Cache lines are
hashed across the three controllers."),

• Figure 5,

• Page 16 ("The majority of control for L2 cache management is handled by four
coherency processors in each controller. A sepru·ate coherency processor is
assigned to handle each request to the L2. Requests can come from either of the two
processors (for either an L1 data-cache reload or an instruction fetch) or from one
of the store queues."),

- 197-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Page 16 ("Included in each L2 conu·oller ru·e four snoop processors responsible for
managing coherency operations snooped from the fabric."),

• Page 16 ("The L2 cache implements an enhanced version of the MESI coherency
protocol ... ").

• See, e.g. , Behling et al., "The POWER4 Processor Introduction and Tuning Guide," at

• Page 15 ("Stores can be sent to the L2 cache at a maximum rate of one store per
cycle. Store data is directed to the proper L2 controller (through a hashing
function) by way of the storage slice queue (SSQ) and the L2 store queue (STQ)."),

• Page 17 ("Each POWER4 chip has an L2 cache that is supervised by three L2
controllers, each of which manages 480 KB, for a total L2 size of 1440 KB. Cache
lines ru·e hashed across the three conu·ollers. Cache line replacement is
implemented as a binruy -u·ee pseudo-LRU algorithm. The L2 cache is a unified
cache: it caches instm ctions, data, and page table entries . The L2 cache is also
shru·ed by the processors on the chip."),

• Page 18 ("Mem01y coherency in the system is enforced primru·ily at the L2 cache
level by L2 cache controllers. Each L2 has associated command queues, known as
coherency processors. Snoop processors within each controller observe all
u·ansactions in the system and respond accordingly, providing responses or
delivering cache lines if the situation merits."),

• Page 30 ("The size of the L2 cache is 1440 KB per POWER4 chip, and this is
shru·ed between the two processors in the chip. As with the Ll data cache, the cache
line size is 128 bytes. The replacement policy is pseudo-LRU (least recently used)
so frequently accessed cache lines should be readily maintained in the cache. The
L2 cache is a combined data and instruction cache. Instm ction caching aspects of
the L2 cache ru·e not considered here. The L2 cache is divided into three equal pruis,
each lmder conu·ol of a sepru·ate L2 cache conu·oller. The pruiiculru· portion a line is
stored is in is detennined from the real mem01y address using a hashing algorithm.
Sixteen consecutive double-precision Fortran anay elements (138 bytes) are held in
the same cache line, and therefore under conu·ol of the same cache conu·oller. The
17th element will be in a different cache line and the hashing algorithm guru·antees
it will be stored under conu·ol of a different cache conu·oller.").

• See, e.g. , IBM POWER4 processor (as disclosed at least in the above references)

• ,, , • .. : I • ...

I­
I

- 198 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I

I
I

I

I

- 199 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I
I

I

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

- 200 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102
may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Fmiher, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. "),

• Figme 1

• [4:20-32] ("In one embodiment, the snoop filter 204 may be divided into four
snoop filter (SF) interleaves 208. While in one embodiment the snoop filter 204
maintains coherency data for all lines of the caches 114, each SF interleave 208
may maintain coherency data for a unique subset of the cache lines. For example,
two bits of a line's mem01y address may be used to identify which of the SF
interleaves 208 maintains the coherency data for the patiicular line. Fmiher, by
assigning unique subsets to each of the SF interleaves 208, the SF interleaves 208
may operate in pru·allel and may increase the overall perfonnance of the coherent
switch 106 in compru·ison to a non-interleaved snoop filter 204 that may process a
single request at time."),

• Figme 2

• [4:61-5:13] ("The CPL 212 may provide global functions for processing
tr·ansactions regru·dless of which p01i 200 the tr·ansaction originated. For exrunple,
the CPL 212 for each p01i 200 may check for-tr·ansaction conflicts, may prevent
tr·ansaction struvation, and may maintain data coherency in accordance with a
snoop-based protocol. In pruiiculru·, the CPL 212 in response to processing a read,
snoop, or invalidate request may check the state of the line of the request in the
caches 114 and may issue requests to one or more cache nodes 102, 104 based upon
the state of the line. In one embodiment, the CPL 212 may use the coherency data
of the snoop filter 204 to reduce the number of requests sent to the cache nodes 102,
104 and may update coherency data in the snoop filter 204 based upon the
tr·ansaction type and snoop responses received from the cache nodes 102, 104. The
CPL 212 may fmiher comprise logic to bypass the snoop filter 204 and to maintain
data coherency without using the coherency data of the snoop filter 204. Moreover,
the CPL 212 may be divided into fom interleaves 214, and a separate CPL
interleave 214 may be associated with each of the fom SF interleaves 208.").

Circuitry or other means for selecting or mapping a tr·ansaction to a protocol engine using

destination infonnation associated with the transaction may be in the interconnection contr·oller or

in a processing node, at least under Mem01y Integrity's appru·ent infringement theories. See, e.g. ,

-201-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

Exhibits D-1- D-14, claims 1.6, 2.1 , 14.1 , 19.2, 19.3, 21.6, 30.5, 34.1, 35.1, 39.7, 40.1, and 41.1;

Exhibits E-1 - E-14 claims 1.10, 1.11, 5.1, 6.1, and 6.2.

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asserted Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include selecting or mapping a transaction to a protocol engine using destination

inf01mation associated with the transaction, at least lmder Mem01y Integrity 's apparent

infringement theories. See, e.g., Exhibits D-1- D-14, claims 1.6, 2.1, 14.1, 19.2, 19.3, 21.6, 30.5,

34.1 , 35.1 , 39.7, 40.1 , and 41.1; Exhibits E-1 - E-14 claims 1.10, 1.11, 5.1, 6.1, and 6.2.

Destination infonnation may include a tru·get address associated with the transaction, in which

case selecting or mapping a transaction to a protocol engine using destination inf01mation results

in assigning subsets of global mem01y space to protocol engines. See, e.g. , '206 claims 2.1, 7.1,

14.1 , 14.2, 19.3, 34.1 , 35.1 , 38.1 , 38.2, 40.1 , 41.1 , 43.1 , 44.1, 44.2; '254 claim 5.1. As discussed

above, assigning subsets of global mem01y space to protocol engines may be simple to implement

relative to other methods of assigning transactions to protocol engines. See, e.g., Exhibits D-1 -

D-14, claims 1.5, 1.6, 14.2, 19.2, 19.2, 21.5, 21.6, 30.4, 30.5, 35.1 , 38.2, 39.5, 39.7, 39.8, 41.1;

ExhibitsE-1-E-14claims 1.5, 1.6, 1.8, 1.10, 1.11, 6.1, 6.2, and7.1. Forexample,interleaving-

selecting a protocol engine based on destination inf01mation or specific bits of a tru·get address

con esponding to a transaction- is simple to implement and may provide good load balancing

across the protocol engines. See, e.g., Nguyen, "High-Throughput Coherence Controllers" at

Pages 29-30.

d) Destination infonnation comprises a target address associated with the transaction

Some of the Asse1ied Claims are fmiher directed to the destination infonnation comprising

a tru·get address associated with the transaction. See, e.g. , '206 claims 2.1, 7.1, 14. 1, 14.2, 19.3,

-202-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

34.1 , 35.1 , 38.1 , 38.2, 40.1 , 41.1 , 43.1 , 44.1 , 44.2; '254 claim 5.1. At least under Mem01y

Integrity's apparent infringement theories, destination infonnation comprising a tru·get address

associated with the transaction was well-known in the rui at the time of the alleged invention of the

Asse1i ed Claims. See, e.g., Exhibits D-1-D-14, claims 2.1 , 7.1 , 14.1, 14.2, 19.3, 34.1, 35.1, 38.1 ,

38.2, 40.1 , 41.1 , 43.1 , 44.1 , 44.2; Exhibits E-1- E-14 claim 5.1. At least lmder Mem01y

Integrity's appru·ent infringement theories, there ru·e many additional exemplruy prior rui

references that disclose destination information comprising a target address associated with the

transaction. Some examples include:

• See, e.g. , Tendler et al., "POWER4 system microarchitecture," at

• Page 6 ("The two processors shru·e a lmified second-level cache, also on the same
chip, through a core interface unit (CIU), as shown in Figure 1. The CIU is a
crossbru· switch between the L2, implemented as three sepru·ate, autonomous cache
controllers, and the two processors. Each L2 cache controller can operate
concunently and feed 32 bytes of data per cycle. The CIU connects each of the
three L2 controllers to either the data cache or the instm ction cache in either of the
two processors. Additionally, the CIU accepts stores from the processors across
8-byte-wide buses and sequences them to the L2 controllers."),

• Figure 1,

• Page 7 ("Four POWER4 chips can be packaged on a single module to f01m an
eight-way SMP. Four such modules can be interconnected to f01m a 32-way SMP.
To accomplish this, each chip contains five primruy interfaces. To communicate
with other POWER4 chips on the same module, there ru·e logically four 16-byte
buses. Physically, these four logical buses ru·e implemented with six buses, three on
and three off, as shown in Figure 1. To commlmicate with POWER4 chips on other
modules, there ru·e two 8-byte buses, one on and one off. Each chip has its own
interface to the off-chip L3 across two 16-bytewide buses, one on and one off,
operating at one-third processor frequency."),

• Page 15 ("The unified second-level cache is shared across the two processors on the
POWER4 chip. Figure 5 shows a logical view of the L2 cache. The L2 is
implemented as three identical slices, each with its own controller. Cache lines ru·e
hashed across the three controllers."),

• Figure 5,

• Page 16 ("The majority of control for L2 cache management is handled by four
coherency processors in each controller. A sepru·ate coherency processor is
assigned to handle each request to the L2. Requests can come from either of the two

-203 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I
I

• See, e.g. , Behling et al., "The POWER4 Processor Introduction and Tuning Guide," at

• Page 15 ("Stores can be sent to the L2 cache at a maximum rate of one store per
cycle. Store data is directed to the proper L2 controller (through a hashing
function) by way of the storage slice queue (SSQ) and the L2 store queue (STQ)."),

• Page 17 ("Each POWER4 chip has an L2 cache that is supervised by three L2
controllers, each of which manages 480 KB, for a total L2 size of 1440 KB. Cache
lines ru·e hashed across the three controllers. Cache line replacement is
implemented as a binruy -tree pseudo-LRU algorithm. The L2 cache is a unified
cache: it caches instm ctions, data, and page table entries . The L2 cache is also
shru·ed by the processors on the chip."),

• Page 18 ("Mem01y coherency in the system is enforced primru·ily at the L2 cache
level by L2 cache controllers. Each L2 has associated command queues, known as
coherency processors. Snoop processors within each controller observe all
transactions in the system and respond accordingly, providing responses or
delivering cache lines if the situation merits."),

• Page 30 ("The size of the L2 cache is 1440 KB per POWER4 chip, and this is
shru·ed between the two processors in the chip. As with the Ll data cache, the cache
line size is 128 bytes. The replacement policy is pseudo-LRU (least recently used)
so frequently accessed cache lines should be readily maintained in the cache. The
L2 cache is a combined data and instruction cache. Instm ction caching aspects of
the L2 cache ru·e not considered here. The L2 cache is divided into three equal pruis,
each lmder conu·ol of a separate L2 cache controller. The pruiiculru· p01iion a line is
stored is in is detennined from the real mem01y address using a hashing algorithm.
Sixteen consecutive double-precision Fortran anay elements (138 bytes) are held in
the same cache line, and therefore under conu·ol of the same cache conu·oller. The
17th element will be in a different cache line and the hashing algorithm guru·antees
it will be stored under conu·ol of a different cache conu·oller.") .

• See, e.g. , IBM POWER4 processor (as disclosed at least in the above references)

I­
I

- 204 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I

I

I
I

I

- 205 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I
I

I

I

- 206 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102
may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Fmiher, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. "),

• Figme 1

• [4:20-32] ("In one embodiment, the snoop filter 204 may be divided into four
snoop filter (SF) interleaves 208. While in one embodiment the snoop filter 204
maintains coherency data for all lines of the caches 114, each SF interleave 208
may maintain coherency data for a unique subset of the cache lines. For example,
two bits of a line's mem01y address may be used to identify which of the SF
interleaves 208 maintains the coherency data for the patiicular line. Fmi her, by
assigning unique subsets to each of the SF interleaves 208, the SF interleaves 208
may operate in parallel and may increase the overall perfonnance of the coherent
switch 106 in compru·ison to a non-interleaved snoop filter 204 that may process a
single request at time."),

• Figme 2

• [4:61-5:13] ("The CPL 212 may provide global functions for processing
ti·ansactions regru·dless of which p01i 200 the ti·ansaction originated. For exrunple,
the CPL 212 for each port 200 may check for-ti·ansaction conflicts, may prevent
ti·ansaction struvation, and may maintain data coherency in accordance with a
snoop-based protocol. In pruiiculru·, the CPL 212 in response to processing a read,
snoop, or invalidate request may check the state of the line of the request in the
caches 114 and may issue requests to one or more cache nodes 102, 104 based upon
the state of the line. In one embodiment, the CPL 212 may use the coherency data
of the snoop filter 204 to reduce the number of requests sent to the cache nodes 102,
104 and may update coherency data in the snoop filter 204 based upon the
ti·ansaction type and snoop responses received from the cache nodes 102, 104. The
CPL 212 may fmther comprise logic to bypass the snoop filter 204 and to maintain
data coherency without using the coherency data of the snoop filter 204. Moreover,
the CPL 212 may be divided into fom interleaves 214, and a separate CPL
interleave 214 may be associated with each of the fom SF interleaves 208.").

- 207 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and Exhibits E-1- E-14 to include destination inf01mation comprising a target address associated

with the transaction, at least under Mem01y Integrity's apparent infringement theories. See, e.g.,

Exhibits D-1-D-14, claims 2.1, 7.1, 14. 1, 14.2, 19.3, 34.1, 35.1, 38.1, 38.2, 40.1, 41.1, 43.1, 44.1 ,

44.2; Exhibits E-1- E-14 claim 5.1. Using a target address associated with the transaction as the

destination infonnation used to select or map a transaction to a protocol engine results in assigning

subsets of global mem01y space to protocol engines. As discussed above, assigning subsets of

global mem01y space to protocol engines may be simple to implement relative to other methods of

assigning transactions to protocol engines. See, e.g., Exhibits D-1- D-14, claims 1.5, 1.6, 14.2,

19.2, 19.2, 21.5, 21.6, 30.4, 30.5, 35.1 , 38.2, 39.5, 39.7, 39.8, 41.1; Exhibits E-1-E-14 claims 1.5,

1.6, 1.8, 1.1 0, 1.11, 6.1, 6.2, and 7 .1. For example, interleaving- selecting a protocol engine based

on specific bits of a tru·get address, or destination inf01mation, conesponding to a transaction - is

simple to implement and may provide good load balance across the protocol engines. See, e.g.,

Nguyen, "High-Throughput Coherence Controllers" at Pages 29-30.

e) Packet associated with a transaction

Some of the Asse1ied Claims are fmi her directed to associating a packet with a transaction.

See, e.g. , '206 claims 2.1, 7.1, 19.1, 19.2, 34. 1, 37.1, 40.1, 43.1; '254 claims 5.1 , 6.2. At least

under Mem01y Integrity's apparent infringement theories, associating a packet with a transaction

was well-known in the rui at the time of the alleged invention of the Asse1i ed Claims. See, e.g. ,

Exhibits D-1- D-14, claims 2.1, 7.1, 19.1, 19.2, 34.1, 37.1, 40.1, 43.1; Exhibits E-1- E-14, 5.1,

6.2. At least under Mem01y Integrity's apparent infringement theories, there are many additional

- 208 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

exemplruy prior rui references that disclose associating a packet with a transaction. Some

examples include:

I­
I

I

I

I

- 209 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I
I

I
I

I

I

- 210 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

• See, e.g. , Alan Charlesw01ih, "Starfire:Extending the SMP Envelope," IEEE Micro,
Januruy/Febmruy 1998, pp. 39-49 at

• Page 40 ("Changed from a circuit-switched protocol to a packet-switched protocol.
In a circuit-switched organization, each processor 's bus request must complete
before the next can begin. Packet switching separates the requests fi:om the replies,
letting bus transactions from several processors overlap.")

• Page 40 ("All cmTent Slm workstations and servers use Sun's Ultm P01i
Architecture.3 The UPA provides writeback MOESI (exclusive modified, shared
modified, exclusive clean, shru·ed clean, and invalid) coherency on 64-byte-wide
cache blocks. The UPA uses packet-switched transactions with sepru·ate address
and 18-byte-wide data lines, including two bytes of en or-con ecting code (ECC).")

• Table 1

• Pages 41-42 ("Table 3 characterizes the data interconnect. Data packets take four
cycles. In the case of a load-miss, the missed-upon 16 bytes ru·e sent first. The
Stru·fu e data buffer ASICs provide temporruy storage for packets that ru·e waiting
their tmn to be moved across the cente1p lane. The local and global routers ru·e not
buffered, and transfers take a fixed eight clocks from the data buffer on the sending
board to the data buffer on the receiving board.")

• Table 4

• Page 45 ("In addition to the ECC for data that is generated and checked by the
processor module, Starfu e ASICs also generate and check ECC for address
packets. To help isolate faults, the Stru·fire data-buffer chips check data-packet
ECC along the way through the interconnect.")

• See, e.g. , Alan Chru·lesworth, Nicholas Aneshansley, Mru·k Haakmeester, Dan
Drogichen, Ga1y Gilbe1i, Ricki Williams, Andrew Phelps, "The Stru·fire SMP
Interconnect" Proceedings of the 1997 ACMIIEEE conference on Supercomputing,
November 1997, pp. 1-20

- 211 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Page 3 ("All Slm workstations and servers use the srune Ultra P01i Architecture
(UP A) [7] interconnect protocol. This is Sun's third-generation SMP interconnect
architecture, following the second-generation XDBus and the first-generation
MBus. The UPA does writeback MOESI (exclusively modified, shru·ed modified,
exclusively clean, shru·ed clean, and invalid) coherency on 64-byte-wide cache
blocks. It is a packet-switched protocol, with sepru·ate address and 18-byte-wide
data lines, which includes two bytes of en or-conecting code (ECC). The highest
system clock rate so far is 100 MHz, which yields a peak UP A_ databus rate of
1,600 MBps.")

• Page 6 ("Data packets take four cycles on the data interconnect.")

• Page 11 ("In addition to the ECC for data that is generated and checked by the
processor module, the Stru·fire ASICs also generate and check ECC for address
packets. The Stru·fire Data Buffer chips check data-packet ECC along the way
through the interconnect to help isolate faults.")

• See, e.g. , Alan Charlesw01ih, Andy Phelps, Ricki Williams, Gruy Gilbe1i
"Gigaplane-XB: Extending the Ultra Enterprise Family" July 30, 1997, pp. 1-16

• Page 2 ("To allow scaling beyond traditional snoopy buses, the UPA defines a
point-to-point packet-switched protocol between the distributed system control
function.")

• Page 6 ("Address packets take two cycles to convey address inf01m ation over one
of the address buses. As explained above, the address buses act logically as buses,
but ru·e physically implemented with point-to-point connections and broadcast
router ASICs.")

• See, e.g. , Alan Charlesw01ih, "The Sun Fireplane Interconnect in the Mid- Range Slm
Fire Servers," Presentation at Symposium on High Perf01m ance Interconnects (Hot
Interconnects), August 22-24, 2001 at Slide 5 (disclosing XDBus, UPA, Fireplane ru·e
packet switched

• See, e.g. , Alan Charlesw01ih, "The Sun Fireplane System Interconnect," Proceedings
of the 2001 ACMIIEEE conference on Supercomputing, November 2001 at Table 1,
Section 7

• See, e.g. , Alan Charlesworth, "SMP Interconnect@ Slm," SUPerG conference, Spring
2002 at

• Page 1 ("This dimension is called horizontal scaling. Multiple computers ru·e
connected together by a network switch that routes network packets between the
computers. The cluster interconnect is usually based on open-standru·d technology.
These systems ru·e more cost and power efficient, because their interconnect is
simpler than in large SMPs, and they are built in higher volumes. Each computer
nms its own instance of the operating system, and the whole ensemble is
orchestrated by cluster-management softwru·e.")

-212-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Table 1

• Page 6 ("The protocol is improved so that address and data packets need only to
traverse the sh01i est path between source and destination. In the previous
generation, packets always had to go all the way to the oute1most level of the
interconnect, even if they were going to a destination on the same boru·d. This
enhancement lowers the latency for "close" transfers.")

• See, e.g. , Slm ru·chitectures, including Sun XDBus, UltraP01i Architecture (UP A), and
Fireplane, as disclosed in the above references

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include associating a packet with a transaction, at least under Mem01y

Integrity's apparent infringement theories. See, e.g., Exhibits D-1-D-14, claims 2.1 , 7.1 , 19.1,

19.2, 34.1 , 37.1 , 40.1 , 43.1; Exhibits D-1- D-14, 5.1, 6.2. For exrunple, packet-based

transmissions for communications between, for example, processors and cache coherence

controllers, allow multiple transactions to overlap. See, e.g., Alan Chru·leswOii h, "Stru·fue:

Extending the SMP Envelope," IEEE Micro, Januruy/Febmruy 1998 at page 40.

f) Target address conesponds to or is in a packet

Some of the Asse1i ed Claims are fmiher directed to a target address that conesponds to or

is in a packet. See, e.g. , '206 claims 2.1 , 7.1, 34.1, 37.1, 40.1, 43.1; '254 claim 5.1. At leashmder

Mem01y Integrity's appru·ent infringement theories, a target address that conesponds to or is in a

packet was well-known in the rui at the time of the alleged invention of the Asse1ied Claims. See,

e.g. , Exhibits D-1- D-14, claims 2.1, 7.1, 34.1, 37.1, 40.1, 43.1; Exhibits E-1- E-14 claim 5.1. At

least under Mem01y Integrity's apparent infringement theories, there ru·e many additional

exemplruy prior rui references that disclose a tru·get address that conesponds to or is in a packet.

Some examples include:

-213 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

•

·-1

I

I

I

I

- 214 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I
I

I

I

I

- 215 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

• See, e.g. , Alan Chru·lesworth, "Stru·fire:Extending the SMP Envelope," IEEE Micro,
Januruy/Febmruy 1998, pp. 39-49 at

• Page 40 ("Changed from a circuit-switched protocol to a packet-switched protocol.
In a circuit-switched organization, each processor's bus request must complete
before the next can begin. Packet switching separates the requests fi:om the replies,
letting bus transactions from several processors overlap.")

• Page 40 ("All cmTent Slm workstations and servers use Sun's Ultm P01i
Architecture.3 The UPA provides writeback MOESI (exclusive modified, shru·ed
modified, exclusive clean, shru·ed clean, and invalid) coherency on 64-byte-wide
cache blocks. The UPA uses packet-switched transactions with sepru·ate address
and 18-byte-wide data lines, including two bytes of enor-conecting code (ECC).")

• Table 1

• Pages 41-42 ("Table 3 chru·acterizes the data interconnect. Data packets take four
cycles. In the case of a load-miss, the missed-upon 16 bytes are sent first. The
Starfue data buffer ASICs provide temporruy storage for packets that are waiting
their tmn to be moved across the cente1plane. The local and global routers ru·e not
buffered, and transfers take a fixed eight clocks from the data buffer on the sending
boru·d to the data buffer on the receiving board.")

• Table 4

• Page 45 ("In addition to the ECC for data that is generated and checked by the
processor module, Stru·fue ASICs also generate and check ECC for address
packets. To help isolate faults , the Stru·fire data-buffer chips check data-packet
ECC along the way through the interconnect.")

• See, e.g. , Alan Charlesw01ih, Nicholas Aneshansley, Mru·k Haakmeester, Dan
Drogichen, Gruy Gilbe1i, Ricki Williams, Andrew Phelps, "The Stru·fire SMP
Interconnect" Proceedings of the 1997 ACMIIEEE conference on Supercomputing,
November 1997, pp. 1-20

• Page 3 ("All Slm workstations and servers use the srune Ultra P01i Architectm·e
(UP A) [7] interconnect protocol. This is Sun's third-generation SMP interconnect
ru·chitectm·e, following the second-generation XDBus and the first-generation

- 216 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

MBus. The UPA does writeback MOESI (exclusively modified, shru·ed modified,
exclusively clean, shru·ed clean, and invalid) coherency on 64-byte-wide cache
blocks. It is a packet-switched protocol, with separate address and 18-byte-wide
data lines, which includes two bytes of enor-conecting code (ECC). The highest
system clock rate so far is 100 MHz, which yields a peak UP A_ databus rate of
1,600 MBps.")

• Page 6 ("Data packets take fom cycles on the data interconnect.")

• Page 11 ("In addition to the ECC for data that is generated and checked by the
processor module, the Stru·fire ASICs also generate and check ECC for address
packets. The Stru·fire Data Buffer chips check data-packet ECC along the way
through the interconnect to help isolate faults .")

• See, e.g. , Alan Charlesw01ih, Andy Phelps, Ricki Williams, Gruy Gilbe1i
"Gigaplane-XB: Extending the Ultra Enterprise Family" July 30, 1997, pp. 1-16

• Page 2 ("To allow scaling beyond traditional snoopy buses, the UPA defines a
point-to-point packet-switched protocol between the distributed system control
function.")

• Page 6 ("Address packets take two cycles to convey address inf01mation over one
of the address buses. As explained above, the address buses act logically as buses,
but are physically implemented with point-to-point connections and broadcast
router ASICs.")

• See, e.g. , Alan Chru·lesworth, "The Sun Fireplane Interconnect in the Mid- Range Slm
Fire Servers," Presentation at Symposium on High Perf01mance Interconnects (Hot
Interconnects), August 22-24, 2001 at Slide 5 (disclosing XDBus, UPA, Fireplane ru·e
packet switched)

• See, e.g. , Alan Charlesw01ih, "The Sun Fireplane System Interconnect," Proceedings
of the 2001 ACMIIEEE conference on Supercomputing, November 2001 at Table 1,
Section 7

• See, e.g., Alan Charlesw01ih, "SMP Interconnect @ Slm," SUPerG conference, Spring
2002 at

• Page 1 ("This dimension is called horizontal scaling. Multiple computers ru·e
connected together by a network switch that routes network packets between the
computers. The cluster interconnect is usually based on open-standard technology.
These systems ru·e more cost and power efficient, because their interconnect is
simpler than in large SMPs, and they ru·e built in higher volumes. Each computer
nms its own instance of the operating system, and the whole ensemble is
orchestrated by cluster-management softwru·e.")

• Table 1

• Page 6 ("The protocol is improved so that address and data packets need only to
traverse the sh01iest path between somce and destination. In the previous

- 217 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruties

generation, packets always had to go all the way to the oute1most level of the
interconnect, even if they were going to a destination on the same boru·d. This
enhancement lowers the latency for "close" transfers.")

• See, e.g. , Slm ru·chitectures, including Sun XDBus, UltraP01t Architecture (UP A), and
Fireplane, as disclosed in the above references

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rut at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rut

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include a target address that conesponds to or is in a packet, at least lmder

Mem01y Integrity's appru·ent infringement theories. See, e.g., Exhibits D-1- D-14, claims 2.1,

7.1 , 34.1 , 37.1, 40. 1, 43.1; Exhibits E-1-E-14 claim 5.1. By placing a target address in a packet or

having a target address conespond to a packet, circuitry may use the target address to dete1mine

which protocol engine has been assigned the tru·get address.

g) Disti·ibuting n·ansactions over protocol engines by interleaving target addresses, selecting
protocol engines with reference to at least one bit in a tru·get address, and assigning mutually
exclusive subsets of mem01y space to protocol engines

Some of the Asse1ted Claims ru·e ftnther directed to distributing n·ansactions over protocol

engines by interleaving target addresses. See, e.g., '206 claims 14.1, 38.2, 44.2. Interleaving

assigns an address to a protocol engine based on the values of specific bits of a target address.

Interleaving thus allows protocol engines to be selected with reference to at least one bit in a tru·get

address, as recited in some Asseiied Claims. See, e.g. , '206 claims 35.1 , 41.1; '254 claim 6.2.

Interleaving results in the subsets of mem01y space assigned to protocol engines being mutually

exclusive, as recited in some Asse1ted Claims. See, e.g., '254 claim 8.1. At least under Mem01y

Integrity's apparent infringement theories, distributing n·ansactions over protocol engines by

interleaving tru·get addresses, selecting protocol engines with reference to at least one bit in a tru·get

address, and assigning mutually exclusive subsets of mem01y space to protocol engines were

-218-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

well-known in the rut at the time of the alleged invention of the Asseiied Claims. See, e.g. ,

Exhibits D-1- D-14, claims 14.1, 35.1, 38.1, 41.1, 44.2; Exhibits E-1- E-14 claims 6.2, 8.1. At

least under Mem01y Integrity's apparent infringement theories, there ru·e many additional

exemplruy prior rui references that disclose disu·ibuting u·ansactions over protocol engines by

interleaving tru·get addresses, selecting protocol engines with reference to at least one bit in a tru·get

address, and assigning mutually exclusive subsets of mem01y space to protocol engines. Some

examples include:

• See, e.g. , Tendler et al., "POWER4 system microru·chitecture," at

• Page 6 ("The two processors shru·e a lmified second-level cache, also on the same
chip, through a core interface unit (CIU), as shown in Figure 1. The CIU is a
crossbru· switch between the L2, implemented as three separate, autonomous cache
controllers, and the two processors. Each L2 cache controller can operate
concunently and feed 32 bytes of data per cycle. The CIU connects each of the
three L2 conu·ollers to either the data cache or the instm ction cache in either of the
two processors. Additionally, the CIU accepts stores from the processors across
8-byte-wide buses and sequences them to the L2 controllers."),

• Figure 1,

• Page 7 ("Four POWER4 chips can be packaged on a single module to f01m an
eight-way SMP. Four such modules can be interconnected to f01m a 32-way SMP.
To accomplish this, each chip contains five primruy interfaces. To communicate
with other POWER4 chips on the same module, there ru·e logically four 16-byte
buses. Physically, these four logical buses ru·e implemented with six buses, three on
and three off, as shown in Figure 1. To commlmicate with POWER4 chips on other
modules, there ru·e two 8-byte buses, one on and one off. Each chip has its own
interface to the off-chip L3 across two 16-bytewide buses, one on and one off,
operating at one-third processor frequency."),

• Page 15 ("The unified second-level cache is shared across the two processors on the
POWER4 chip. Figure 5 shows a logical view of the L2 cache. The L2 is
implemented as three identical slices, each with its own controller. Cache lines are
hashed across the three controllers."),

• Figure 5,

• Page 16 ("The majority of control for L2 cache management is handled by four
coherency processors in each conu·oller. A sepru·ate coherency processor is
assigned to handle each request to the L2. Requests can come from either of the two
processors (for either an L1 data-cache reload or an instruction fetch) or from one
of the store queues."),

-219-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• Page 16 ("Included in each L2 conu·oller ru·e four snoop processors responsible for
managing coherency operations snooped from the fabric."),

• Page 16 ("The L2 cache implements an enhanced version of the MESI coherency
protocol ... ").

• See, e.g. , Behling et al., "The POWER4 Processor Introduction and Tuning Guide," at

• Page 15 ("Stores can be sent to the L2 cache at a maximum rate of one store per
cycle. Store data is directed to the proper L2 controller (through a hashing
function) by way of the storage slice queue (SSQ) and the L2 store queue (STQ)."),

• Page 17 ("Each POWER4 chip has an L2 cache that is supervised by three L2
controllers, each of which manages 480 KB, for a total L2 size of 1440 KB. Cache
lines ru·e hashed across the three conu·ollers. Cache line replacement is
implemented as a binruy -u·ee pseudo-LRU algorithm. The L2 cache is a unified
cache: it caches instm ctions, data, and page table entries . The L2 cache is also
shru·ed by the processors on the chip."),

• Page 18 ("Mem01y coherency in the system is enforced primru·ily at the L2 cache
level by L2 cache controllers. Each L2 has associated command queues, known as
coherency processors. Snoop processors within each controller observe all
u·ansactions in the system and respond accordingly, providing responses or
delivering cache lines if the situation merits."),

• Page 30 ("The size of the L2 cache is 1440 KB per POWER4 chip, and this is
shru·ed between the two processors in the chip. As with the Ll data cache, the cache
line size is 128 bytes. The replacement policy is pseudo-LRU (least recently used)
so frequently accessed cache lines should be readily maintained in the cache. The
L2 cache is a combined data and instruction cache. Instm ction caching aspects of
the L2 cache ru·e not considered here. The L2 cache is divided into three equal pruis,
each lmder conu·ol of a sepru·ate L2 cache conu·oller. The pruiiculru· portion a line is
stored is in is detennined from the real mem01y address using a hashing algorithm.
Sixteen consecutive double-precision Fortran anay elements (138 bytes) are held in
the same cache line, and therefore under conu·ol of the same cache conu·oller. The
17th element will be in a different cache line and the hashing algorithm guru·antees
it will be stored under conu·ol of a different cache conu·oller.").

• See, e.g. , IBM POWER4 processor (as disclosed at least in the above references)

•

I­
I

- 220 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I

I
I

I

I

- 221 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I
I

I

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

- 222 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102
may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Fmiher, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. "),

• Figme 1

• [4:20-32] ("In one embodiment, the snoop filter 204 may be divided into four
snoop filter (SF) interleaves 208. While in one embodiment the snoop filter 204
maintains coherency data for all lines of the caches 114, each SF interleave 208
may maintain coherency data for a unique subset of the cache lines. For example,
two bits of a line's mem01y address may be used to identify which of the SF
interleaves 208 maintains the coherency data for the patiicular line. Fmiher, by
assigning unique subsets to each of the SF interleaves 208, the SF interleaves 208
may operate in pru·allel and may increase the overall perfonnance of the coherent
switch 106 in compru·ison to a non-interleaved snoop filter 204 that may process a
single request at time."),

• Figme 2

• [4:61-5:13] ("The CPL 212 may provide global functions for processing
ti·ansactions regru·dless of which p01i 200 the ti·ansaction originated. For exrunple,
the CPL 212 for each p01i 200 may check for-ti·ansaction conflicts, may prevent
ti·ansaction struvation, and may maintain data coherency in accordance with a
snoop-based protocol. In pruiiculru·, the CPL 212 in response to processing a read,
snoop, or invalidate request may check the state of the line of the request in the
caches 114 and may issue requests to one or more cache nodes 102, 104 based upon
the state of the line. In one embodiment, the CPL 212 may use the coherency data
of the snoop filter 204 to reduce the number of requests sent to the cache nodes 102,
104 and may update coherency data in the snoop filter 204 based upon the
ti·ansaction type and snoop responses received from the cache nodes 102, 104. The
CPL 212 may fmiher comprise logic to bypass the snoop filter 204 and to maintain
data coherency without using the coherency data of the snoop filter 204. Moreover,
the CPL 212 may be divided into fom interleaves 214, and a separate CPL
interleave 214 may be associated with each of the fom SF interleaves 208.").

Fmthetmore, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Assetied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1- E-14 to include disti·ibuting ti·ansactions over protocol engines by interleaving target

-223 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

addresses, selecting protocol engines with reference to at least one bit in a tru·get address, and

assigning mutually exclusive subsets of mem01y space to protocol engines, at least under Mem01y

Integrity's appru·ent infringement theories. See, e.g. , Exhibits D-1- D-14, claims 14.1 , 35.1, 38.1 ,

41.1 , 44.2; Exhibits E-1- E-14 claims 6.2, 8.1. For example, methods for selecting protocol

engines with reference to at least one bit in a tru·get address, such as interleaving - selecting a

protocol engine based on specific bits of a tru·get address, or destination inf01mation,

conesponding to a transaction- are simple to implement and may provide good load balance

across the protocol engines. See, e.g. , Nguyen, "High-Throughput Coherence Controllers" at

Pages 29-30. Assigning mutually exclusive subsets of mem01y space to protocol engines

simplifies maintenance of cache coherency, as each protocol engine has exclusive access to a set of

addresses. See, e.g., Nguyen, "High-Throughput Coherence Controllers" at Pages 29-30, Page 30

n.l.

h) A packet con esponding to a transaction includes a node identifier conesponding to a
protocol engine, where the transaction is mapped to the protocol engine by a node generating the
node identifier with reference to a tru·get address associated with the transaction

Some of the Asse1ied Claims are fmiher directed to a packet conesponding to a transaction

that includes a node identifier conesponding to a protocol engine, where the transaction is mapped

to the protocol engine by a node generating the node identifier with reference to a tru·get address

associated with the transaction. See, e.g. , '206 claims 19 .2, 19.3. At least lmder Mem01y

Integrity's appru·ent infringement theories, a packet conesponding to a transaction that includes a

node identifier conesponding to a protocol engine, where the transaction is mapped to the protocol

engine by a node generating the node identifier with reference to a tru·get address associated with

the transaction, was well-known in the rut at the time of the alleged invention of the Asserted

Claims. See, e.g. , Exhibits D-1- D-14, claims 19.2, 19.3. At least lmder Mem01y Integrity's

appru·ent infringement theories, there ru·e many additional exempla1y prior rui references that

-224-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

disclose a packet conesponding to a u·ansaction that includes a node identifier conesponding to a

protocol engine, where the u·ansaction is mapped to the protocol engine by a node generating the

node identifier with reference to a tru·get address associated with the u·ansaction. Some examples

include:

• See, e.g. , Tendler et aL, "POWER4 system microarchitecture," at

• Page 6 ("The two processors shru·e a lmified second-level cache, also on the same
chip, through a core interface unit (CIU), as shown in Figure 1. The CIU is a
crossbru· switch between the L2, implemented as three separate, autonomous cache
controllers, and the two processors. Each L2 cache controller can operate
concunently and feed 32 bytes of data per cycle. The CIU connects each of the
three L2 conu·ollers to either the data cache or the instm ction cache in either of the
two processors. Additionally, the CIU accepts stores from the processors across
8-byte-wide buses and sequences them to the L2 controllers."),

• Figure 1,

• Page 7 ("Four POWER4 chips can be packaged on a single module to f01m an
eight-way SMP. Four such modules can be interconnected to f01m a 32-way SMP.
To accomplish this, each chip contains five primruy interfaces. To communicate
with other POWER4 chips on the same module, there ru·e logically four 16-byte
buses. Physically, these four logical buses ru·e implemented with six buses, three on
and three off, as shown in Figure 1. To commlmicate with POWER4 chips on other
modules, there ru·e two 8-byte buses, one on and one off Each chip has its own
interface to the off-chip L3 across two 16-bytewide buses, one on and one off,
operating at one-third processor frequency."),

• Page 15 ("The unified second-level cache is shared across the two processors on the
POWER4 chip. Figure 5 shows a logical view of the L2 cache. The L2 is
implemented as three identical slices, each with its own controller. Cache lines are
hashed across the three controllers."),

• Figure 5,

• Page 16 ("The majority of control for L2 cache management is handled by four
coherency processors in each conu·oller. A sepru·ate coherency processor is
assigned to handle each request to the L2. Requests can come from either of the two
processors (for either an L1 data-cache reload or an instruction fetch) or from one
of the store queues."),

• Page 16 ("Included in each L2 conu·oller ru·e four snoop processors responsible for
managing coherency operations snooped from the fabric."),

• Page 16 ("The L2 cache implements an enhanced version of the MESI coherency
protocol ... ").

- 225 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• See, e.g. , Behling et al., "The POWER4 Processor Introduction and Tuning Guide," at

• Page 15 ("Stores can be sent to the L2 cache at a maximum rate of one store per
cycle. Store data is directed to the proper L2 controller (through a hashing
function) by way of the storage slice queue (SSQ) and the L2 store queue (STQ)."),

• Page 17 ("Each POWER4 chip has an L2 cache that is supervised by three L2
controllers, each of which manages 480 KB, for a total L2 size of 1440 KB. Cache
lines ru·e hashed across the three controllers. Cache line replacement is
implemented as a binruy -tree pseudo-LRU algorithm. The L2 cache is a unified
cache: it caches instm ctions, data, and page table entries . The L2 cache is also
shru·ed by the processors on the chip."),

• Page 18 ("Mem01y coherency in the system is enforced primru·ily at the L2 cache
level by L2 cache controllers. Each L2 has associated command queues, known as
coherency processors. Snoop processors within each controller observe all
transactions in the system and respond accordingly, providing responses or
delivering cache lines if the situation merits."),

• Page 30 ("The size of the L2 cache is 1440 KB per POWER4 chip, and this is
shru·ed between the two processors in the chip. As with the Ll data cache, the cache
line size is 128 bytes. The replacement policy is pseudo-LRU (least recently used)
so frequently accessed cache lines should be readily maintained in the cache. The
L2 cache is a combined data and instruction cache. Instm ction caching aspects of
the L2 cache ru·e not considered here. The L2 cache is divided into three equal pruis,
each lmder conu·ol of a sepru·ate L2 cache conu·oller. The pruiiculru· portion a line is
stored is in is detennined from the real mem01y address using a hashing algorithm.
Sixteen consecutive double-precision Fortran anay elements (138 bytes) are held in
the same cache line, and therefore under conu·ol of the same cache conu·oller. The
17th element will be in a different cache line and the hashing algorithm guru·antees
it will be stored under conu·ol of a different cache conu·oller.").

• See, e.g. , IBM POWER4 processor (as disclosed at least in the above references)

I­
I

-226-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

I

I

I
I

I

I

- 227 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I
I

I

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102

-228-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Fmiher, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. "),

• Figme 1

• [4:20-32] ("In one embodiment, the snoop filter 204 may be divided into four
snoop filter (SF) interleaves 208. While in one embodiment the snoop filter 204
maintains coherency data for all lines of the caches 114, each SF interleave 208
may maintain coherency data for a unique subset of the cache lines. For example,
two bits of a line's mem01y address may be used to identify which of the SF
interleaves 208 maintains the coherency data for the patiicular line. Fmiher, by
assigning unique subsets to each of the SF interleaves 208, the SF interleaves 208
may operate in pru·allel and may increase the overall perfonnance of the coherent
switch 106 in compru·ison to a non-interleaved snoop filter 204 that may process a
single request at time."),

• Figme 2

• [4:61-5:13] ("The CPL 212 may provide global functions for processing
ti·ansactions regru·dless of which p01i 200 the ti·ansaction originated. For exrunple,
the CPL 212 for each p01i 200 may check for-ti·ansaction conflicts, may prevent
ti·ansaction struvation, and may maintain data coherency in accordance with a
snoop-based protocol. In pruiiculru·, the CPL 212 in response to processing a read,
snoop, or invalidate request may check the state of the line of the request in the
caches 114 and may issue requests to one or more cache nodes 102, 104 based upon
the state of the line. In one embodiment, the CPL 212 may use the coherency data
of the snoop filter 204 to reduce the number of requests sent to the cache nodes 102,
104 and may update coherency data in the snoop filter 204 based upon the
ti·ansaction type and snoop responses received from the cache nodes 102, 104. The
CPL 212 may fmiher comprise logic to bypass the snoop filter 204 and to maintain
data coherency without using the coherency data of the snoop filter 204. Moreover,
the CPL 212 may be divided into fom interleaves 214, and a separate CPL
interleave 214 may be associated with each of the fom SF interleaves 208.").

Fmthetmore, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include a packet conesponding to a ti·ansaction that includes a node identifier

conesponding to a protocol engine, where the ti·ansaction is mapped to the protocol engine by a

node generating the node identifier with reference to a target address associated with the

-229-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

transaction, at least under Mem01y Integrity's appru·ent infringement theories . See, e.g., Exhibits

D-1- D-14, claims 19.2, 19.3. For exrunple, it is well-known that a packet may include

destination information such as a node identifier to allow the packet to be routed to the node

identified by the node identifier. A u·ansaction may thus be mapped to a protocol engine by

generating the node identifier for the protocol engine based on whether the tru·get address

con esponding to the packet is assigned to that protocol engine, for example, by generating the

node identifier for a remote protocol engine if the target address is in remote mem01y and

generating the node identifier for a local protocol engine if the tru·get address is in local mem01y .

13. Protocol engine configured to process interrupts

Some of the Asse1ied Claims are directed to a protocol engine configured to process

intenupts. See, e.g. , '254 claim 7 .1 . At least lmder Mem01y Integrity's appru·ent infringement

theories, a protocol engine configured to process intem1pts was well-known in the rui at the time of

the alleged invention of the Asseiied Claims. See, e.g. , E-1- E-14, claim 7.1. At least under

Mem01y Integrity's appru·ent infringement theories, there ru·e many additional exemplruy prior rut

references that disclose a protocol engine configured to process intenupts. Some exrunples

include:

• See, e.g. , Tendler et aL, "POWER4 system microarchitecture," at

• Page 15 ("The L1 caches are pru·ity-protected. A parity en or detected in the L1
instruction cache forces the line to be invalidated and reloaded from the L2. Enors
encmmtered in the L 1 data cache ru·e rep01ied as a synchronous machine-check
intenupt. To supp01i enor recove1y, the machine-check intem1pt handler is
implemented in system-specific fmnware code. When the intem1pt occurs, the
fi1mware saves the processor-ru·chitected states and exrunines the processor
registers to detennine the recove1y and enor status. If the intem1pt is recoverable,
the system fi1mwru·e removes the en or by invalidating the L 1 data-cache line and
incrementing an enor cmmter. If the L1 data-cache enor counter is greater than a
predefmed threshold, which is an indication of a solid en or, the system fi1mware
disables the failing p01iion of the L 1 data cache. The system fmnware then restores
the processor-ru·chitected states and "calls back" the operating system
machine-check handler with the "fully recovered" status. The operating system

-230-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

I

checks the retum status from finnwru·e and resume execution. With the L1
data-cache line invalidated, data is now reloaded from the L2. All data stored in the
L1 data cache is available in the L2 cache, guru·anteeing no data loss.")

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1- E-14 to include a protocol engine configured to process intem1pts, at least under

Memmy Integrity's appru·ent infringement theories. See, e.g. , E-1- E-14 claim 7.1. For exrunple,

intenupts ru·e a well-known non-coherent transaction that traverse through interconnection

controllers in multiprocessor systems.

14. Integrated circuit, computer-readable medium, and semiconductor
processing masks

Some of the Asse1i ed Claims are directed to :

-231 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• an integrated circuit comprising a probe filtering lmit or interconnection controller (see,
e.g., ' 121 claim 17.1; '206claim 22.1),

• non-transit01y computer-readable medium having data stmctures stored therein
representative of a probe filtering lmit or interconnection controller (see, e.g., ' 121
claim 19.1; '206 claim 24.1),

• the data stm ctures comprising a simulatable representation of a probe filtering lmit or
interconnection controller (see, e.g. , ' 121 claim 20.1; '206 claim 25.1),

• the simulatable representation comprising a netlist (see, e.g.,' 121 claim 21.1 ; '206
claim 26.1),

• the data stm ctures comprising a code description of a probe filtering unit or
interconnection controller (see, e.g. , ' 121 claim 22.1; '206 claim 27.1) ,

• the code description conesponding to a hardware description language (see, e.g., ' 121
claim 23.1; '206 claim 28.1) , and

• a set of semiconductor processing masks representative of at least a p01i ion of a probe
filtering unit or interconnection controller (see, e.g., '121 claim 24.1; '206 claim 29.1).

At least under Mem01y Integrity's appru·ent infringement theories, all of the above were

well-known in the a1i at the time of the alleged invention of the Asselied Claims. See, e.g.,

Exhibits C-1- C-8 claims 17.1, 19.1, 20.1, 21 .1, 22.1, 23.1.24.1; Exhibits D-1- D-14, claims 22.1 ,

24.1 , 25.1 , 26.1 , 27.1 , 28.1 , 29.1. At least under Mem01y Integ!'ity's appru·ent infringement

theories, there are many additional exemplruy prior a1i references that disclose the above

limitations. Some examples include:

• See, e.g. , Michael John Sebastian Smith, "Application-Specific Integrated Circuits,"
1997 at

• Page 1 ("Figure 1.1 (a) shows an Ie package (this is a pin-grid ruTay, or PGA,
shown upside down; the pins will go through holes in a printed-circuit board).
People often call the package a chip, but, as you can see in Figure 1.1 (b), the
silicon chip itself (more properly called a die) is mounted in the cavity under the
sealed lid. A PGA package is usually made from a ceramic material, but plastic
packages ru·e also common.")

• Figure 1.1

• Page 3 ("With the advent ofVLSI in the 1980s engineers began to realize the
advantages of designing an IC that was customized or tailored to a prui iculru·

-232 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

system or application rather than using standru·d ICs alone. Microelectronic system
design then becomes a matter of defming the functions that you can implement
using standard ICs and then implementing the remaining logic functions
(sometimes called glue logic) with one or more custom ICs. As VLSI became
possible you could build a system from a smaller number of components by
combining many standru·d ICs into a few custom ICs. Building a microelectronic
system with fewer ICs allows you to reduce cost and improve reliability.")

• Page 4 ("ICs are made on a thin (a few hlmdred rnicrons thick), circular silicon
wafer, with each wafer holding hundreds of die (sometimes people use dies or dice
for the plural of die). The transistors and wiring ru·e made from many layers
(usually between 10 and 15 distinct layers) built on top of one another. Each
successive mask layer has a pattern that is defined using a mask similru· to a glass
photographic slide. The first half-dozen or so layers define the transistors. The last
half-dozen or so layers define the metal wires between the transistors (the
interconnect). A full-custom IC includes some (possibly all) logic cells that ru·e
customized and all mask layers that are customized.")

• Pages 16-18 (Section 1.2 Design Flow)

• Page 28 ("If you complete an ASIC design using a celllibrruy that you bought, you
also own the masks (the tooling) that ru·e used to manufacture your ASIC.")

• Pages 49-55 (Section 2.2 The CMOS Process)

• See, e.g. , J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J. Kircher, B. L
Krauter, P. J. Restle, B. A. Zoric, C. J. Anderson, "The circuit and physical design of
the POWER4 rnicroprocessor," IBM Jomnal ofReseru·ch and Development, VoL 46
No. 1, Januruy 2002, pp. 27-51 at

• Page 27 ("The IBM POWER4 processor is a 174-million transistor chip that nms at
a clock frequency of greater than 1.3 GHz. It contains two rnicroprocessor cores,
high-speed buses, and an on-chip memory subsystem. The complexity and size of
POWER4, together with its high operating frequency, presented a number of
significant challenges for its multisite design team. This paper describes the circuit
and physical design of POWER4 and gives results that were achieved. Emphasis is
placed on aspects of the design methodology, clock distribution, circuits, power,
integration, and timing that enabled the design terun to meet the project goals and to
complete the design on schedule.")

• Page 27 ("The POWER4 chip provides the processing power for eServer p690, the
recently introduced high-end, IBM 64-bit POWER-architecture, 8-to-32-way
server system [1]. The chip, shown in Figure 1, includes two rnicroprocessors, 1.44
MB of shru·ed L2 cache memory plus the directory for a 32MB off-chip cache, a
500-MHz interconnection fabric, high-bandwidth buses and I/0 designed to allow
building an eight-way system on a single multi-chip module, and the logic needed
to support lru·ge SMPs [2]. The microprocessor core is an out-of-order, speculative,
eight-issue superscalru· design containing eight execution lmits, a 64KB L1
instruction cache, and a 32KB, dual-ported data cache [1, 3]. The POWER4 chips

-233-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

were fabricated in the state-of-the-rut IBM 0.18-m CMOS 8S3 SOl
(silicon-on-insulator) technology with seven levels of copper wiring [4]. Some of
the features of this technology ru·e given in Table 1. Characteristics of the POWER4
chip fabricated in this technology ru·e given in Table 2. Using these chips, a 32-way
SMP system has been operated in om laborat01y at clock frequencies exceeding 1.3
GHz. Work is in progress to release the POWER4 design in CMOS 9S technology,
which will significantly reduce the chip ru·ea as well as improve perfonnance and
decrease power dissipation.")

• Figme 1 POWER4 chip photograph showing the principal ftmctional units in the
microprocessor core and in the mem01y subsystem.

• Table 1 Featmes of the IBM CMOS 8S3 SOl technology.

• Table 2 Characteristics of the POWER4 chip fabricated in CMOS 8S3 SOl.

• Pages 29-30 (Design phases)

• Pages 30-31 (Design flow and tools)

• Figme 3 Design flow used dming high-level design. The rectangular shapes
represent tools used to complete a p01iion of the design. The cylinders represent
design data, and the circle the verification of the VHDL logic.

• Figme 4 Design flow used dming schematic design. The rectangular shapes
represent tools used to complete a p01iion of the design. The cylinders represent
design data and the circle the verification of the VHDL logic.

• Figme 5 Design flow used dming physical design. The rectangulru· shapes
represent tools used to complete a p01iion of the design. The cylinders represent
design data and the circle the verification of the VHDL logic.

• Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richru·d Simoni, Komosh
Ghru·achorloo, John Chapin, David Nakahira, Joel Baxter, Mru·k Horowitz, Anoop
Gupta, Mendel Rosenblum, and John Hennessy, "The Stanford FLASH
Multiprocessor," Proceedings of the 21st Intemational Symposium on Computer
Architecture, 1994, pp. 302-313 at

• Page 302 ("The FLASH multiprocessor efficiently integrates supp01i for
cache-coherent shru·ed mem01y and high-perfonnance message passing, while
minimizing both hardware and software overhead. Each node in FLASH contains a
microprocessor, a p01iion of the machine's global mem01y, a p01i to the
interconnection network, an UO interface, and a custom node controller called
MAGIC. The MAGIC chip handles all communication both within the node and
among nodes, using hru·dwired data paths for efficient data movement and a
programmable processor optimized for executing protocol operations. The use of
the protocol processor makes FLASH vety flexible - it can supp01i a variety of
different communication mechanisms - and simplifies the design and
implementation. This paper presents the ru·chitecture of FLASH and MAGIC, and
discusses the base cache-coherence and message-passing protocols. Latency and

- 234 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

occupancy numbers, which ru·e derived from om system-level simulator and our
Verilog code, ru·e given for several common protocol operations. The paper also
describes our software str·ategy and FLASH'S cunent status.")

• Pages 302-303 ("To accomplish these goals we are designing a custom node
controller. This controller, called MAGIC (Mem01y And General Interconnect
Contr·oller) , is a highly integrated chip that implements all data tr·ansfers both
within the node and between the node and the network. To deliver high
perf01mance, the MAGIC chip contains a specialized data path optimized to move
data between the mem01y , network, processor, and I/0 po1is in a pipelined fashion
without redundant copying. To provide the flexible contr·ol needed to support a
vru·iety ofDSM and message-passing protocols, the MAGIC chip contains an
embedded processor that contr·ols the data path and implements the protocol. The
separate data path allows the processor to update the protocol data structmes (e.g.,
the direct01y for cache coherence) in parallel with the associated data tr·ansfers.")

• Page 303 ("First, MAGIC includes a programmable protocol processor for
flexibility.")

• Page 309 ("To demonstr·ate that MAGIC can achieve competitive perf01mance, we
present the latency for servicing a processor read miss to local mem01y. Table 4.1
lists the latency through each stage of the data tr·ansfer logic and contr·ol
macropipeline for this operation, assuming that the MAGIC chip was initially idle.
The cycle counts are based on a 100 MHz (10 ns) MAGIC clock rate and are
derived from the cmTent Verilog models of the various units.")

• Page 311 ("FLASH will use the MIPS TS, a follow-on to the R4000, as its prima1y
processor. Like the R4000, the TS manages its own second-level cache. The tru·get
speed of the node board and the MAGIC chip is 100 MHz. The multiply-banked
mem01y system is designed to match the node's bandwidth requirements and is
optimized for 128-byte tr·ansfers, the system cache line size. FLASH will
implement the PCI standard bus for its I/0 subsystem and will use next-generation
Intel routers for the interconnection network. ' The initial FLASH prototype will
contain 256 processing nodes. We plan to collaborate with the Intel C01poration
and Silicon Graphics on the design and construction of the prototype machine. We
cmTently have a detailed system-level simulator up and mnning. The simulator is
written in C++ as a multithreaded mem01y simulator for Tango-Lite [Golds93].
The entire system, called FlashLite, 1uns real applications and enables us to verify
protocols, analyze system perf01mance, and identify architectmal bottlenecks. We
have coded the entire base cache-coherence and base block-tr·ansfer protocols for
FlashLite, and have nm complete simulations of several SPLASH applications. The
FlashLite code is structured identically to the actual hru·dware, with each hru·dwru·e
block conesponding to a FlashLite thread. To aid the debugging of protocols
implemented in FlashLite we have developed a random test case generator, the
FLASH Protocol Verifier. On the hardware design front we are busily coding the
Verilog description of the MAGIC chip. To verify om hru·dware description we
plan to have FlashLite provide test vectors for a Verilog 1un, and to 1un real N
processor applications with N-1 FlashLite nodes and one Verilog node. Since the

- 235 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

FlashLite code is structured like the Verilog description, we also plan to replace a
single FlashLite thread with the appropriate hru·dwru·e block description to allow
more efficient and accurate verification. Software tools for the protocol processor
are another major eff01i . We ru·e po1i ing the GNU C compiler [Stall93] to generate
code for the 64-bit PP. We have also po1ied a superscalru· instm ction scheduler and
an assembler from the Torch project [SHL92]. Finally, we have a PP instmction set
emulator ported from Mable. This emulator will help us verify the actual PP code
sequences by becoming the PP thread in FlashLite simulations. Operating system
development is proceeding concunently with the hardware design. Hive's
implementation is based on IRIX (UNIX SVR4 from Silicon Graphics), with
extensive modifications in progress to the virtual mem01y, I/0, and process
management subsystems.")

Fmihe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asserted Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1- E-14 to include the above limitations, at least under Mem01y Integrity's apparent

infringement theories. See, e.g. , Exhibits C-1- C-8 claims 17.1, 19.1 , 20.1, 21.1 , 22.1, 23.1 , 24.1;

D-1- D-14, claims 22.1, 24.1, 25.1, 26.1, 27.1, 28.1, 29.1. It was well-known and routine at the

time of the alleged invention of the Asse1ied Claims for components that communicate with

processors, such as a probe filtering unit or interconnection contr·oller, to be an integrated circuit,

represented in a set of semiconductor processing masks for manufacturing an integrated circuit, or

represented by data structures stored on a non-tr·ansitOiy computer readable medium, where the

data stm ctures are a code description, such as a hru·dwru·e description language, or used to simulate

the component, such as a netlist. For exrunple, an integrated circuit was the most common

implementation of a computer component, and integrated circuits were known to have been

created with a set of semiconductor processing masks. Also, simulations were commonly

perf01med for purposes of testing perf01mance, and the design of a component was routinely

described in code by, for example, a hardware description language.

-236-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

15. Probe filtering unit corresponds to an additional node interconnected with
the processing nodes, additional node comprises a cache coherence
controller, cache coherence controller comprises the probe filtering unit

Some of the Asse1ied Claims are directed to a probe filtering unit that conesponds to an

additional node interconnected with the processing nodes (see, e.g. , '121 claim 2.1) , where the

additional node comprises a cache coherence controller (see, e.g. , '121 claim 3.1). Some of the

Asse1ied Claims ru·e directed to a cache coherence controller that comprises the probe filtering

unit. See, e.g., '121 claim 6.1. At least under Mem01y Integrity's appru·ent infringement theories,

a probe filtering unit that conesponds to an additional node interconnected with the processing

nodes, where the additional node comprises a cache coherence controller, or a cache coherence

controller comprising the probe filtering unit was well-known in the rui at the time of the alleged

invention of the Asse1ied Claims. See, e.g. , Exhibits C-1 - C-8 claims 2.1, 3.1, 6.1. At least lmder

Mem01y Integrity's appru·ent infringement theories, there ru·e many additional exemplruy prior rut

references that disclose a probe filtering unit that con esponds to an additional node interconnected

with the processing nodes, where the additional node comprises a cache coherence controller, or a

cache coherence controller comprising the probe filtering unit. Some exrunples include:

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102
may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Fmiher, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. ")

• Figme 1

- 237 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• [3:38-41] ("The coherent switches 106 may couple the processor cache nodes 102
and the 1/0 cache nodes 104 together and may help maintain data consistency or
coherency among the cache nodes 102, 104.")

Fmihetmore, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asserted Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1- E-14 to include a probe filtering unit that con esponds to an additional node

interconnected with the processing nodes, where the additional node comprises a cache coherence

controller, or a cache coherence controller comprising the probe filtering lmit, at least under

Mem01y Integrity's appru·ent infringement theories. See, e.g. , Exhibits C-1- C-8 claims 2.1, 3.1,

6.1. A node controller for interconnecting and maintaining coherence between processing nodes

and that included cache coherence directories for reducing coherence traffic was a well-known,

common component for building multiprocessor systems having a relatively high number of

processors as described above with respect to the "cache coherence controller."

16. Probe filtering information comprises a cache coherence direct01y which
includes entries corresponding to memory lines stored in the selected cache
memories

Some of the Assetied Claims are directed to probe filtering infonnation comprising a cache

coherence direct01y which includes entries conesponding to mem01y lines stored in the selected

cache memories. See, e.g., ' 121 claims 3.2, 6.1. At least under Mem01y Integrity's apparent

infringement theories, probe filtering information comprising a cache coherence direct01y which

includes entries conesponding to mem01y lines stored in the selected cache memories was

well-known in the rut at the time of the alleged invention of the Asseiied Claims. See, e.g.,

Exhibits C-1- C-8 claims 3.2, 6.1. At least under Mem01y Integrity's appru·ent infringement

theories, there are many additional exemplruy prior ati references that disclose probe filtering

- 238 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

infonnation comprising a cache coherence direct01y which includes entries conesponding to

mem01y lines stored in the selected cache memories. Some examples include:

• C. K. Tang, "Cache System Design in the Tightly Coupled Multiprocessor System,"
Proceedings of the National Computer Conference and Exposition, June 1976, pp.
749-753

• Lucien M. Censier and Paul Feauu·ier, "A New Solution to Coherence Problems in
Multicache Systems," IEEE Transactions on Computers, Vol. C-27, No. 12, December
1978, pp. 1112-1118

• Jrunes Archibald and Jean-Loup Baer, "An Economical Solution to the Cache
Coherence Problem," Proceedings of the 11th Annual Intemational Symposium on
Computer Architecture, Vol. 12, No. 3, June 1984, pp. 355-362

• Anant Agruwal et al. , "An Evaluation ofDirect01y Schemes for Cache Coherence,"
Proceedings of the 15th Annual Intem ational Symposium on Computer Architecture,
May 30-Jlme 2, 1988, pp. 280-289

• Per Stensu·om, "A Survey of Cache Coherence Schemes for Multiprocessors," IEEE
Computer, Vol. 23, No. 6, June 1990, pp. 12-24

• Daniel Lenoski et al. , "The Stanford Dash Multiprocessor," IEEE Computer, Vol. 25,
No. 3, March 1992, pp. 63-79

• John Hennessy et al., "Cache-Coherent Disu·ibuted Shru·ed Mem01y: Perspectives on
Its Development and Future Challenges," Proceedings of the IEEE, Special Issue on
Disu·ibuted Shru·ed Mem01y, Vol. 87, No. 3, March 1999, pp. 418-429

• U.S. Patent No. 6,085,295 to Ekanadham

• U.S. Publication No. 2001/0034816 to Michael

• Ashwini Nanda, Anthony-Tnmg Nguyen, Maged Michael, Doug Joseph,
"High-throughput Coherence Control and Hardware Messaging in Everest," IBM
Joumal ofReseru·ch and Development, Vol. 45, No.2, Mru·ch 2001, pp. 229-243

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include probe filtering inf01mation comprising a cache coherence directory

which includes enu·ies conesponding to mem01y lines stored in the selected cache memories, at

- 239 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

least under Mem01y Integrity's appru·ent infringement theories. See, e.g. , Exhibits C-1- C-8

claims 3.2, 6.1. For exrunple, a cache coherence direct01y includes inf01mation regarding the data

stored in caches in the system, which can obviate the need to send probes to those caches, thus

reducing coherence tmffic in the system. Such directories are a well-known, routine mechanism

for reducing coherence tmffic that have been known and used for decades.

17. Each of the processing nodes is operable to transmit the probes only to the
probe filtering unit

Some of the Asse1ied Claims are fmiher directed to each of the processing nodes being

operable to transmit the probes only to the probe filtering unit. See, e.g., ' 121 claim 8.1. At least

under Mem01y Integrity's appru·ent infringement theories, processing nodes operable to transmit

the probes only to the probe filtering unit were well-known in the a1i at the time of the alleged

invention of the Asserted Claims. See, e.g. , Exhibits C-1 - C-8 claim 8.1. At least lmder Mem01y

Integrity's apparent infringement theories, there are many additional exemplruy prior ali

references that disclose processing nodes operable to transmit the probes only to the probe filtering

unit. Some examples include:

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• [2:10-22] ("Refening now to FIG. 1, an exrunple computing device 100 may
comprise one or more processor cache nodes 102, one or more input/output (I/0)
cache nodes 104, and one or more coherent switches 106 that interconnect the
processor nodes 102 and the I/0 cache nodes 104. Each processor cache node 102
may comprise one or more processors 108, a node controller (SNC) 110 and
mem01y 112. The processors 108 may execute code or instm ctions of the mem01y
112 and may process data of the mem01y 112 in response to executing such
instructions. Fmiher, the processors 108 may have associated caches 114 in which
lines of the mem01y 112 may be stored and accessed more quickly by the
associated processors 108. ")

• Figme 1

• [3:38-41] ("The coherent switches 106 may couple the processor cache nodes 102
and the I/0 cache nodes 104 together and may help maintain data consistency or
coherency among the cache nodes 102, 104.")

- 240 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1- E-14 to include processing nodes operable to transmit the probes only to the probe

filtering unit, at least lmder Mem01y Integrity's apparent infringement theories. See, e.g. , Exhibits

C-1 - C-8 claim 8.1. For exrunple, processing nodes operable to transmit the probes only to the

probe filtering unit may reduce the ammmt of coherence traffic in the system. Instead of

transmitting probes to the other processing nodes in the system, a processing node transmits probes

only to the probe filtering unit, which uses probe filtering infonnation to f01w ru·d the probe only to

selected processing nodes in the system. For example, processing nodes that ru·e connected to each

other only via a switch that includes the probe filtering unit necessru·ily transmit probes only to the

probe filtering unit. Using a switch to connect processing nodes was a well-known, common

interconnect mechanism as described above.

18. Each of the processing nodes is programmed to complete a memory
transaction after receiving a first number of responses to a first probe, the
first number being fewer than the number of processing nodes

Some of the Asse1ied Claims ru·e directed to each of the processing nodes being

programmed to complete a mem01y transaction after receiving a first number of responses to a first

probe, the first number being fewer than the number of processing nodes. See, e.g. , ' 121 claim

11.1. At least under Mem01y Integrity's appru·ent infringement theories, processing nodes

programmed to complete a mem01y transaction after receiving a first number of responses to a first

probe, the first number being fewer than the number of processing nodes, were well-known in the

rui at the time of the alleged invention of the Asse1ied Claims. See, e.g., Exhibits C-1- C-8 claim

11.1.

-241-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

Furthetmore, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include processing nodes progrrunmed to complete a mem01y transaction after

receiving a first number of responses to a first probe, the first number being fewer than the number

of processing nodes, at least under Mem01y Integrity's apparent infringement theories. See, e.g. ,

Exhibits C-1 - C-8 claim 11 .1. For exrunple, by sending probes to only selected processing nodes,

instead of all processing nodes, a mem01y transaction may be completed after receiving responses

only from those selected processing nodes, namely a number of responses equal to the number of

selected processing nodes, which is fewer than the total number of processing nodes. Waiting for

fewer responses generally may reduce the time needed to complete a transaction.

a) Probe filtering lmit having temporruy storage associated therewith for holding read
response data from one of the cache memories, where the first number is one

Some of the Asserted Claims ru·e fmiher directed to a probe filtering lmit having temporruy

storage associated therewith for holding read response data from one of the cache memories,

where the first number is one. See, e.g. , ' 121 claim 12.1. At least under Mem01y Integrity's

appru·ent infringement theories, a probe filtering lmit having temporaty storage associated

therewith for holding read response data from one of the cache memories, where the first number is

one, was well-known in the rut at the time of the alleged invention of the Asseti ed Claims. See,

e.g. , Exhibits C-1 - C-8 claim 12.1. At least under Mem01y Integrity's apparent infringement

theories, there are many additional exemplruy prior ati references that disclose a probe filtering

unit having temporruy storage associated therewith for holding read response data from one of the

cache memories, where the first number is one. Some exrunples include:

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

-242-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• [6: 16-3 6] ("The snoop completion detector 312 may detennine based upon data of
the snoop pending table 310 whether a final snoop response may be obtained for a
transaction. In one embodiment, the snoop completion detector 312 may detennine
that a final snoop response may be obtained if the snoop pending table 310
indicates that all snoop requests associated with the transaction have completed
(e.g. no snoop requests still in pending state). In another embodiment, the snoop
completion detector 312 may determine that the final snoop response has been
obtained prior to the snoop pending table 310 indicating that all snoop requests
associated with the transaction have completed. For example, in one embodiment,
the coherency protocol requires that a line modified in one cache node 102, 104 be
in the invalid state in all other cache nodes 102, 104. Accordingly, if the snoop
pending table 310 indicates a modified state for one of the cache nodes 102, 104,
the snoop completion detector 312 may detennine that the final snoop response for
the u·ansaction is the modified snoop response even if other snoop requests have yet
to complete since the other cache nodes should have the line in the invalid state.")

• [8: 17-37] ("Accordingly, the snoop completion detector 312 in the non-bypass
mode may determine the final snoop response after receiving a snoop response
from a single non-requesting cache node. However, in one embodiment, the
coherent switch 106 may receive multiple types of snoop responses from the
non-requesting cache nodes when in bypass-mode. Accordingly, the snoop
completion detector 312 in one embodiment may simply detennine the final snoop
response after all snoop requests for the originating request have completed. In
another embodiment, the snoop completion detector 312 may detennine the final
snoop response after receiving only a subset of the snoop responses for the issued
snoop requests. For example, in one embodiment, the coherency protocol ensures
that if one cache node has the line in the modified state, the other cache nodes
should have the line in the invalid state. Accordingly, the snoop completion
detector 312 may determine that the final snoop response is a modified snoop
response after the CPL interleave 214 has received a modified snoop response and
prior to receiving all the invalid snoop responses from the other non-requesting
cache nodes.")

• See, e.g. , U.S. Patent No. 6,185,662 to Beyerlein at

• [6:28-35] ("In fast f01wru·d mode, the data component from the first reply that
contains no enor and is not in a u·ansitional state is f01wru·ded to the requester such
as processor 110 immediately. The processing element interface chip 114 stores the
reply, and ensures the set modes fi:om all replies with the same u·ansaction
identifier f01m a valid combination and that there ru·e no other enors.")

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include a probe filtering unit having temporruy storage associated therewith for

- 243 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

holding read response data from one of the cache memories, where the first number is one, at least

under Mem01y Integrity's apparent infringement theories. See, e.g. , Exhibits C-1- C-8 claim

12.1. For example, a probe filtering unit that provides responses, including read response data

from one of the cache memories, to a requesting processing node has temporruy storage associated

therewith for holding the read response data. In addition, a mem01y transaction may be completed

after receiving one response to a probe when, for exrunple, probes ru·e sent to one processing node

as indicated by the probe filtering inf01mation. Being able to send a single probe, instead of

multiple probes, reduces the runount of coherence traffic. Waiting for fewer responses generally

may reduce the time needed to complete a transaction. In another exrunple, a mem01y transaction

may be completed after receiving one response to a probe when the first probe response indicates

the probed cache had the requested data in a modified state, indicating that the remaining caches

have the requested data in an invalid state. See, e.g., Quach at 6:16-36, 8:13-17.

b) Probe filtering lmit operable to f01wru·d read response data to a requesting node before
accumulating all probe responses associated with the mem01y transaction, where the first number
is two

Some of the Asse1ied Claims are fmiher directed to a probe filtering unit operable to

fo1wru·d read response data to a requesting node before accmnulating all probe responses

associated with the mem01y transaction, where the first number is two. See, e.g. , ' 121 claim 13.1.

At least under Mem01y Integrity's apparent infi:ingement theories, a probe filtering lmit operable

to fo1wru·d read response data to a requesting node before accumulating all probe responses

associated with the mem01y transaction, where the first number is two, was well-known in the ati

at the time of the alleged invention of the Asse1ied Claims. See, e.g. , Exhibits C-1 - C-8 claim

13 .1. At least under Mem01y Integrity's apparent infringement theories, there m·e many additional

exemplruy prior ati references that disclose a probe filtering unit operable to fo1wru·d read response

-244-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

data to a requesting node before accumulating all probe responses associated with the mem01y

transaction, where the first number is two. Some examples include:

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• [6: 16-3 6] ("The snoop completion detector 312 may detennine based upon data of
the snoop pending table 310 whether a final snoop response may be obtained for a
transaction. In one embodiment, the snoop completion detector 312 may detennine
that a final snoop response may be obtained if the snoop pending table 310
indicates that all snoop requests associated with the transaction have completed
(e.g. no snoop requests still in pending state). In another embodiment, the snoop
completion detector 312 may determine that the final snoop response has been
obtained prior to the snoop pending table 310 indicating that all snoop requests
associated with the transaction have completed. For example, in one embodiment,
the coherency protocol requires that a line modified in one cache node 102, 104 be
in the invalid state in all other cache nodes 102, 104. Accordingly, if the snoop
pending table 310 indicates a modified state for one of the cache nodes 102, 104,
the snoop completion detector 312 may detennine that the final snoop response for
the u·ansaction is the modified snoop response even if other snoop requests have yet
to complete since the other cache nodes should have the line in the invalid state.")

• [8: 17-37] ("Accordingly, the snoop completion detector 312 in the non-bypass
mode may determine the final snoop response after receiving a snoop response
from a single non-requesting cache node. However, in one embodiment, the
coherent switch 106 may receive multiple types of snoop responses from the
non-requesting cache nodes when in bypass-mode. Accordingly, the snoop
completion detector 312 in one embodiment may simply determine the final snoop
response after all snoop requests for the originating request have completed. In
another embodiment, the snoop completion detector 312 may detennine the final
snoop response after receiving only a subset of the snoop responses for the issued
snoop requests. For example, in one embodiment, the coherency protocol ensures
that if one cache node has the line in the modified state, the other cache nodes
should have the line in the invalid state. Accordingly, the snoop completion
detector 312 may detennine that the final snoop response is a modified snoop
response after the CPL interleave 214 has received a modified snoop response and
prior to receiving all the invalid snoop responses from the other non-requesting
cache nodes.")

• See, e.g. , U.S. Patent No. 6,185,662 to Beyerlein at

• [6:28-35] ("In fast f01wru·d mode, the data component from the first reply that
contains no enor and is not in a u·ansitional state is f01wru·ded to the requester such
as processor 110 immediately. The processing element interface chip 114 stores the
reply, and ensures the set modes fi:om all replies with the same u·ansaction
identifier f01m a valid combination and that there ru·e no other enors.")

- 245 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruties

Furthe1more, to the extent not disclosed, a person of ordinruy skill in the rut at the time of

the alleged invention of the Asseiied Claims would have been motivated to modify the prior rut

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include a probe filtering unit operable to fmward read response data to a

requesting node before accumulating all probe responses associated with the memmy transaction,

where the first number is two, at least lmder Memmy Integrity's appru·ent infringement theories.

See, e.g. , Exhibits C-1 - C-8 claim 13 .1. For example, fmwarding read response data before

accumulating all probe responses associated with the memmy transaction allows the requesting

processing node to receive the requested data faster. See, e.g. , Beyerlein at 6:36-39. In addition, a

memmy transaction may be completed after receiving two responses to a probe when, for

example, probes ru·e sent to two processing nodes as indicated by the probe filtering information.

Being able to send two probes, instead of more than two probes, reduces the ammmt of coherence

traffic. Waiting for fewer responses generally may reduce the time needed to complete a

transaction. In another example, a memmy transaction may be completed after receiving two

responses to a probe when the second probe response indicates the probed cache had the requested

data in a modified state, indicating that the remaining caches have the requested data in an invalid

state. See, e.g. , Quach at 6:16-36, 8:13-17.

19. Probe filtering unit operable to modify the probes such that the selected
processing nodes transmit responses to the probes to the probe filtering unit

At least one of the Asse1t ed Claims is ftnther directed to a probe filtering unit operable to

modify the probes such that the selected processing nodes transmit responses to the probes to the

probe filtering unit. See, e.g., ' 121 claim 14. 1. At least under Memmy Integrity's appru·ent

infringement theories, a probe filtering unit operable to modify the probes such that the selected

processing nodes transmit responses to the probes to the probe filtering lmit was well-known in the

-246-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

rui at the time of the alleged invention of the Asse1ied Claims. See, e.g., Exhibits C-1- C-8 claim

14.1. At least under Mem01y Integrity's apparent infringement theories, there are many additional

exemplruy prior rui references that disclose a probe filtering unit operable to modify the probes

such that the selected processing nodes transmit responses to the probes to the probe filtering unit.

Some examples include:

• See, e.g. , U.S. Patent No. 5,890,217 to Kabemoto at

• Figure 39

• [47:49-57] ("The inter-subsystem connection unit 513 of the subsystem #2 which
received the bus command from the inter-subsystem connection unit 512 of the
subsystem #1 changes the unit ID in the source field of the first word of the bus
command to the designation of the unit ID #7 of itself. Fmiher, the unit 513 changes
the destination field to the designation of the unit ID #3 decoded from the second
word and transmits to the system bus #2. The second word of the bus command is
transmitted as it is.")

• Figure 52

• [47:65-48:3] ("When the read data can be prepru·ed, as shown in (4), the reply bus
command is transmitted. The reply bus command sets the subsystem extension
identifier EX to the source field of the first word, fmi her, sets the bus ID #2 and unit
ID #3 , and designates the lmit ID #7 of the inter-subsystem connection lmit 513 for
the destination field.")

• See, e.g. , U.S. Patent No. 6,085,295 to Ekanadham at

• Abstract ("A method of providing coherent shru·ed mem01y access runong a
plurality of shared mem01y multiprocessor nodes. For each line of data in each of
the nodes, a list of those processors of the node that have copies of the line in their
caches is maintained. If a mem01y command is issued from a processor of one
node, and if the command is directed to a line of mem01y of another node, then the
mem01y command is sent directly to an adapter of the one node. When the adapter
receives the command, it f01wards the command from the one adapter to another
adapter of the other node. When the other adapter receives the command, the
command is f01warded to the local mem01y of the other node. The list of processors
is then updated in the local mem01y of the other node to include or exclude the
other adapter depending on the command. If the mem01y command is issued from
one of the processors of one of the nodes, and if the command is directed to a line of
mem01y of the one node, then the command is sent directly to local mem01y. When
the local mem01y receives the command and if the adapter of the node is in the list
of processors for a line associated with the command and if the command is a write
command, then the command is fo1wru·ded to the adapter of the one node. When the

-247-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

adapter receives the command, the command is f01wru·ded to remote adapters in
each of the remote nodes which have processors which have cache copies of the
line. Finally, when the latter remote adapters receive the command, the command is
f01wru·ded to the processors having the cache copies of the line.")

• [1 : 13-2:2] ("A shru·ed-mem01y multiprocessor system, comprised of a plurality of
processing nodes with mem01y and caches, provides system-wide access to the
mem01y in the system. It is imminent that each node of such parallel systems in the
near fhture is a small cache-coherent multiprocessor, e.g, a symmetric
multiprocessor (SMP), that consists of a small number (8 to 16) of slots connected
by a bus or switch. Each slot can be occupied by a processor or a mem01y module.
Each processor in the node can access any mem01y location in the node.

• Technology considerations limit the size of an SMP node to a small number of
processors. A method for building a shared-mem01y multiprocessor with a larger
number of processors is to connect a number of SMP nodes with a network, and
provide an adapter to extend the SMP's mem01y across the SMP nodes (see FIG. 1).
Existing adapter designs plug into the mem01y bus of bus-based SMP nodes and
collectively provide shared mem01y across the system, so that any processor in any
node can access any location in any mem01y module in the system. Resources
within a node ru·e termed local and resources on other nodes ru·e te1med remote.

• The adapter maintains a direct01y of all nodes sharing a line and monitors local
accesses to the line in order to ensure coherence across nodes. On bus-based SMPs,
the monitoring is straightf01wru·d. All address transactions appear on the bus and
the adapter can snoop and respond to them. Thus, it is possible to design the adapter
without having to make any changes to the SMP hru·dwru·e, provided that the
adapter can be connected to the bus as a master/slave device.

• However, as the size and speed of an SMP node grows, technology limitations
force the transition from bus-based to switch-based interconnects for both address
and data transactions within the node. The design of an adapter for switch-based
systems is complicated by the fact that a switch-based system uses a point-to-point
interconnection that, lmlike a bus, does not allow an adapter to observe all address
transactions. In a switch-based SMP, the mem01y M maintains a direct01y 26. For
each line 25 the direct01y keeps a list 24-x of the processors within the node that
have cached copies of the line (see FIG. 2), where xis an integer between 1 and n,
where n is the number of lines 25. See for example one of the lines 25 and its list
24-4 at the bottom of FIG. 2. It is understood that mem01y M can be any one of the
memories M1 through :MN.

• Each processor communicates directly with the mem01y via the switch. In tum, the
mem01y sends appropriate messages only to processors that need to be involved in
the cache coherence protocol, and the mem01y has no knowledge of the adapter.

• There is, therefore, a need for an adapter which extends shru·ed mem01y access
across multiple switch-based multiprocessor nodes. Such an adapter must not rely
on a broadcast of mem01y commands within a multiprocessor node, and must not
require changes to the existing mem01y controller of a multiprocessor node.")

- 248 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

• [2:5-3:4] ("It is therefore an objective of this invention to provide a solution to the
problem of providing shared-mem01y access across multiple switch-based SMP
nodes.

• The invention comprises an adapter to extend cache-coherent mem01y access
across SMP nodes, and a method for using the mem01y system of a switch-based
SMP node to interface to the adapter.

• The key concepts in the adapter design ru·e:

• All communications between the processors, the memories and the adapters are
made point to point without the need for broadcasts within the SMP node.

• In a node where a line is mapped onto the node's mem01y , the adapter acts as a
proxy processor representing all the processors outside the node that share the line.
More specifically, when a remote processor issues a mem01y command to a local
mem01y , the remote adapter at the remote processor's node, f01wru·ds the mem01y
command to the local adapter, which is responsible for insuring that the command
is executed at the local mem01y .

• In a node where a remote line is brought into the cache of a processor, but not into
the node's mem01y, the adapter acts as a proxy mem01y representing the remote
mem01y that the line is mapped onto. More specifically, when a mem01y command
is issued from a local processor to a remote mem01y , the mem01y command is
directed to the adapter which is responsible for insuring that the command is
executed at that remote mem01y .

• The adapter is versatile enough to be used for either CC-NUMA (Cache Coherent
Non Unifonn Mem01y Access) and S-COMA (Simple Cache Only Mem01y
Architecture) systems.

• By apperu·ing as either a local processor or a local mem01y , the adapter uses the
local SMP coherence protocol within a node to accomplish the above tasks, without
any changes to the mem01y controllers.

• In situations where the mem01y controller is limited in the amount of storage it can
use for the direct01y and must employ a dynamic allocation scheme for the
direct01y enu·ies, an extension of this invention involves a modification to the
mem01y controller that overcomes the the storage limitation of the mem01y
controller.

• Accordingly, this invention provides coherent shared mem01y access across a
number of interconnected multiprocessor nodes. With this invention each line of
data in each mem01y of the node maintains a list of processors of the node that have
copies of the line in their caches. When a mem01y command is issued from one of
the processors of a node to a mem01y of another node, the command is directed to
an adapter of the issuing node. The adapter of the issuing node then receives the
command and f01wru·ds the command to the adapter at the remote node. When the
adapter at the remote node receives the command, it then f01wru·ds the command to
its local mem01y, which then updates its list of processors to include or exclude the

- 249 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

adapter. However, if the mem01y command is issued from a processor to a local
mem01y then the command is simply fOiwru·ded directly to that local mem01y.
When that local mem01y receives the command and if an adapter is in the list of
processors for the line in the mem01y command, then the command is f01warded to
that adapter. The adapter then fOiwru·ds the command to the other adapters of
remote nodes which have cache copies of the line conesponding to the command.
If the adapter is not found in the list, then the mem01y proceeds in accordance with
the standard SMP protocoL")

• See, e.g. , Luiz A. BruToso, Michel Dubois, "Cache Coherence on a Slotted Ring,"
Proceedings of the 20th Intem ational Conference on Parallel Processing, August 1991
at

• Page 6 ("In this class of protocols [14] evety coherence message is directed to the
block 's home cluster, which keeps track of the state and location of all cached
copies of the block. In direct01y protocols, the home cluster allows shru·ing of a
block for read-only copies but enforces exclusive access for writable copies. The
home cluster satisfies all misses ifthere is no writable (ditty) copy of the block,
f01wru·ding the request to the dniy cluster othetwise. When receiving an
invalidation, the home cluster sends invalidation messages selectively only to the
clusters shru·ing a pruticulru· block, and replies to the requesting cluster once all
copies have been invalidated. The main difference between direct01y and snooping
schemes is that dii·ectOiy-based protocols do not rely on the broadcasting of
coherence inf01mation. ")

Fmihetmore, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asserted Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include a probe filtering unit operable to modify the probes such that the selected

processing nodes transmit responses to the probes to the probe filtering unit, at least lmder

Mem01y Integrity's apparent infringement theories. See, e.g., Exhibits C-1- C-8 claim 14.1. For

example, a probe filtering unit operable to modify the probes such that the selected processing

nodes transmit responses to the probes to the probe filtering unit may reduce the amount of

coherence traffic in the system. Instead of each probe response being sent to both the requesting

processing node and the probe filtering lmit, to allow the probe filtering inf01mation to be updated,

it may be sent to only the probe filtering unit, which can accumulate all the probe responses to send

-250-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

a single response, in accordance with the accumulated responses, to the requesting processing

node.

20. Probe filtering unit operable to accumulate responses to each probe, and
respond to requesting nodes in accordance with the accumulated responses

Some of the Asse1i ed Claims ru·e further directed to a probe filtering unit operable to

accumulate responses to each probe, and respond to requesting nodes in accordance with the

accumulated responses. See, e.g. , '121 claims 15.1, 25.7, 25.8. At least under Mem01y Integrity 's

apparent infringement theories, a probe filtering lmit operable to accumulate responses to each

probe, and respond to requesting nodes in accordance with the accumulated responses was

well-known in the rut at the time of the alleged invention of the Asseiied Claims. See, e.g.,

Exhibits C-1- C-8 claims 15.1, 25.7, 25.8. At least under Mem01y Integrity 's apparent

infringement theories, there ru·e many additional exemplruy prior rui references that disclose a

probe filtering unit operable to accumulate responses to each probe, and respond to requesting

nodes in accordance with the accumulated responses. Some examples include:

• See, e.g. , U.S. Patent No. 7,093,079 to Quach at

• Figures 1, 4

• [3 :38-41] ("The coherent switches 106 may couple the processor cache nodes 102
and the 1/0 cache nodes 104 together and may help maintain data consistency or
coherency among the cache nodes 102, 104.")

• [4:44-60] ("The protocol logic 202 may service transactions such as, for example,
requests and responses received from the cache nodes 102, 104 and may issue
transactions to the cache nodes 102, 104. In pruiiculru·, the protocol logic 202 may
decode transactions, may handle conflicts, may interface with the snoop filter 204,
and may process transactions. In one embodiment, the protocol logic 202 may
comprise distributed protocol logic (DPL) 210 and centralized protocol logic (CPL)
212. In one embodiment, each p01i 200 has an associated DPL 210 to locally
implement p01i ions of the protocol logic 202 for the respective port 200. In
prui iculru·, the DPL 210 may comprise decode logic to decode incoming
transactions and may comprise one or more buffers or queues to store data and/or
other inf01mation associated with incoming and outgoing transactions while being

- 251 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

processed by the protocol logic 202 and/or awaiting responses from cache nodes
102, 104. ")

• [6: 16-36] ("The snoop completion detector 312 may determine based upon data of
the snoop pending table 310 whether a final snoop response may be obtained for a
transaction. In one embodiment, the snoop completion detector 312 may detennine
that a final snoop response may be obtained if the snoop pending table 310
indicates that all snoop requests associated with the transaction have completed
(e.g. no snoop requests still in pending state). In another embodiment, the snoop
completion detector 312 may determine that the final snoop response has been
obtained prior to the snoop pending table 310 indicating that all snoop requests
associated with the transaction have completed. For example, in one embodiment,
the coherency protocol requires that a line modified in one cache node 102, 104 be
in the invalid state in all other cache nodes 102, 104. Accordingly, if the snoop
pending table 310 indicates a modified state for one of the cache nodes 102, 104,
the snoop completion detector 312 may detennine that the final snoop response for
the u·ansaction is the modified snoop response even if other snoop requests have yet
to complete since the other cache nodes should have the line in the invalid state.")

• [7:50-8:46] ("In block 416, the po1is 200 of the coherent switch 106 may receive
responses from the non-requesting cache nodes 102, 104. In pruiiculru·, the ports
200 may receive snoop responses or coherency state infonnation for the line of the
originating request and may receive a cunent copy of the line from the mem01y 112
of the home cache node or a cache 114 of the remote cache node 102, 104. The DPL
210 associated with the non-requesting po1is 200 may f01ward the snoop responses
to the CPL interleave 214 for further processing and may f01wru·d a cunent copy of
the line to the DPL 210 associated with the requesting cache node and the DPL 210
associated with the home cache node. For example, one of the non-requesting
cache nodes 102, 104 may have modified the line and may provide its associated
non-requesting p01i 200 with the modified line. The DPL 210 associated with the
p01i 200 that received the modified line may f01wru·d the modified line to the DPL
210 of the requesting port 200 for delive1y to the requesting cache node and may
f01wru·d the modified line to the DPL 210 of the home p01i 200 for writing the
modified line to the mem01y 112 of the home cache node 102, 104.

• The CPL interleave 2 14 in block 418 may update the snoop pending table 310 with
the received snoop response and may update the associated snoop request to a
complete or not pending state. In block 420, the-snoop completion detector 312
may detennine whether a fmal snoop response may be determined. In one
embodiment, due to the coherency protocol used and the coherency data and
presence vector of the snoop filter 204, the coherent switch 106 receives only one
type of snoop response in response to the issued snoop requests. In pruiiculru· all
snoop responses received by the coherent request 106 for an originating request ru·e
invalid snoop responses, shared snoop responses, modified/shru·ed snoop
responses, or modified snoop responses. Accordingly, the snoop completion
detector 312 in the non-bypass mode may detennine the fmal snoop response after
receiving a snoop response from a single non-requesting cache node. However, in
one embodiment, the coherent switch 106 may receive multiple types of snoop

- 252 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

responses from the non-requesting cache nodes when in bypass-mode.
Accordingly, the snoop completion detector 312 in one embodiment may simply
detennine the fmal snoop response after all snoop requests for the originating
request have completed. In another embodiment, the snoop completion detector
312 may detennine the final snoop response after receiving only a subset of the
snoop responses for the issued snoop requests. For exrunple, in one embodiment,
the coherency protocol ensures that if one cache node has the line in the modified
state, the other cache nodes should have the line in the invalid state. Accordingly,
the snoop completion detector 312 may detennine that the final snoop response is a
modified snoop response after the CPL interleave 214 has received a modified
snoop response and prior to receiving all the invalid snoop responses from the other
non-requesting cache nodes.

• In block 422, the coherent switch 106 may complete the request. In pruiiculru·, the
DPL 210 associated with the requesting p01i 200 may provide the requesting cache
node 102, 104 with the final snoop response and the requested line. Further, if the
line was modified, the DPL 210 associated with the home cache node 102, 104 may
write the modified line back to the mem01y 112 of the home cache node 102, 104.")

Fmihe1more, to the extent not disclosed, a person of ordinruy skill in the rui at the time of

the alleged invention of the Asserted Claims would have been motivated to modify the prior rui

references identified in Section III and Exhibits A-1- A-9; B-1- B-19; C-1- C-8; D-1- D-14;

and E-1 - E-14 to include a probe filtering unit operable to accumulate responses to each probe,

and respond to requesting nodes in accordance with the accumulated responses, at least under

Mem01y Integrity's appru·ent infringement theories. See, e.g., Exhibits C-1 - C-8 claims 15.1,

25.7, 25.8. For example, a probe filtering lmit operable to accumulate responses to each probe and

respond to requesting nodes in accordance with the accumulated responses may reduce the runount

of coherence traffic in the system. Instead of each probe response being sent to both the requesting

processing node and the probe filtering lmit, to allow the probe filtering inf01mation to be updated,

it may be sent to only the probe filtering unit, which can accumulate all the probe responses to send

a single response, in accordance with the accumulated responses, to the requesting processing

node.

-253 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

G. Contentions Under 35 U.S.C. § 112

Intel provides the following initial disclosures of invalidity contentions based on 35 U.S.C.

§ 112 . Intel reserves the right to runend and/or supplement its invalidity contentions, including its

contentions based on 35 U.S. C. § 112, as discovety proceeds. Mem01y Integrity failed to describe

its Infringement Contentions with the required degree of prui iculru·ity. Intel reserves the right to

amend its invalidity contentions in the event that Mem01y Integrity nruTows its asseti ed claims,

and/or supplements or amends its Infringement Contentions. Intel also reserves the right to amend

its invalidity contentions in the event that Mem01y Integrity contends that any item of prior ati that

Intel contends either anticipates or renders obvious an assetied claim does not describe or enable

one or more of the elements of the asseti ed claim. Intel further reserves its right to amend its

invalidity contentions in response to developments in fact and expe1i discovety.

1. The Written Description and Enablement Requirements

The written description and enablement requirements of patent law are provided in

35 U.S. C. § 112, first pru·agraph, which reads as follows:

The specification shall contain a written description of the invention, and of the manner
and process of making and using it, in such full, clear, concise, and exact tenus as to enable
any person skilled in the ati to which it peti ains, or with which it is most nem·ly connected,
to make and use the same, and shall set forth the best mode contemplated by the inventor of
cm1y ing out his invention.

See Ariad Pharmaceuticals, Inc. v. Eli Lilly and Co. , 598 F.3d 1336, 1344 (Fed. Cir. 2010) (en

bane) (holding "that§ 112, first pm·agraph, contains two sepm·ate description requirements: a

written description [i] of the invention, and [ii] of the manner and process of making and using [the

invention]") .

2. Lack of Written Description

Under MI's infringement theories, Ml's assetied patent specifications do not describe the

full scope of its claims as required by 35 U.S.C § 112, first paragraph, and the asseti ed patent

- 254 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

claims ru·e therefore invalid. The asse1ied patent claims fail to meet the written description

requirement for multiple independent reasons.

First, for all of the asserted claims of all of the asserted patents, MI has alleged that the

claim tenus "cluster of processors" and "plurality of processing nodes" could be met by a single

processor chip with multiple cores. But the specifications for the '409, '636, ' 121, '206, and '254

patents do not describe a single processor chip with multiple cores, and never suggest that the

required "cluster of processors" or "plurality of processing nodes" could be a single processor chip

with multiple cores. The difference between a cluster of sepru·ate processor chips and a single chip

with multiple cores is imp01iant and material because multi-core chips require ftmdrunentally

different designs, protocols, and manufacturing process technology. The specifications of the

asse1ied patents thus do not adequately describe the frill scope of the claims under Ml's appru·ent

infringement theories because the asse1ied patent specifications do not show that MI was in

possession of an embodiment of the invention in which a cluster included a plurality of cores and

in which the cores and cache coherence controller were integrated in a single chip. In addition, the

asse1ied patent specifications would not "cleru·ly allow persons of ordinruy skill in the ati to

recognize that [the inventors] invented" an implementation of the claimed invention where a

cluster of processors is embodied in a single multi-core processor chip. See Ariad, 598 F.3d at

1351 ("[T]he test for sufficiency is whether the disclosure of the application relied upon

reasonably conveys to those skilled in the ati that the inventor had possession of the claimed

subject matter as of the filing date."); id. (" [T]he description must clearly allow persons of

ordinaty skill in the mt to recognize that [the inventor] invented what is claimed." (quotation

mru'lcs omitted)).

- 255 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

Accordingly, under Ml's infringement theories, all the asse1i ed claims of all the asse1ied

patents are invalid for failure to satisfy the written description requirement because the

specifications do not describe implementing the claimed invention using a single processor chip

with multiple cores as the "cluster of processors" or ''plurality of processing nodes." See Centocor

Ortho Biotech, Inc. v. Abbott Labs., 636 F.3d 1341 , 1353 (Fed. Cir. 2011) (finding plaintiff's

patent invalid for lack of written description and explaining that " [t]he scope of [the patentee 's]

right to exclude cannot over-reach the scope of [its] contribution to the field of rui as described in

the patent specification." (intemal quotation mru·ks omitted)); Abbvie Deutschland GmbH & Co. v.

Janssen Biotech, Inc. , 759 F.3d 1285, 1300 (Fed. Cir. 2014) (holding that to satisfy the written

description requirement, patentees must demonstrate that they have "conceived and described

sufficient representative species encompassing the breadth of the genus. Othe1wise, one has only a

research plan, leaving it to others to explore the unknown contours of the claimed genus.").

Second, at least lmder MI's infringement theories, Ml's patents do not provide any

substantive or meaningful description of many of the elements of its claims-e.g., there is no

substantial description of the intemal hardware, fum ware, or software required to implement

many of the claim elements. This is not sufficient to show that MI was in possession of the

claimed inventions as of the filing of the applications for the asse1ied patents. See Ariad, 598 F .3d

at 1351. For this reason, all of the asserted claims that require the following claim elements ru·e

invalid for lack of written description. See id.

• "Cache Coherence Controllers" I "Interconnection Controller." Many of the
asse1ied patent claims require cache coherence controllers or interconnection
controllers. For example, claim 15 of the '409 patent recites "a fn·st cache coherence
controller" and claim 1 of the '121 patent recites "an interconnection controller." See
also, e.g., '409 patent claims 1.2-1.7, 6.2-6.8, 7.1 , 7.2, 8.1 , 9.1 , 10.1 , 11.1 , 12.1 , 18.1 ,
19.1 , 20.1 , 22.1 , 23.1 , 25.1 , 25.4, 25.5, 34.4, 34.5, 51.1-51.4, and 52.1-52.4; '636
patent claims 11.1-11.5, 12.1 , 15.2-15.7, 18.1, 21.2-21.8, 22.1-22.5, 23.1, 24.1, 25.1,
26.1 , 27.1 , 28.1 , 29.1 , 30.1 , 31.1 , 33.1 , 34.1 , 35.1 , and 36.1-36.5; ' 121 patent claims

- 256 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

3.1 , 3.2, 5.1 , and 6.1; '206 patent claims 1.3, 1.4, 1.5, 1.6, 2.1, 15.1, 19.2, 21.1-21.6,
22.1 , 24.1 , 51.1 , 27.1 , 29.1 , 30.2, 30.3, 31.1 , 35.1 , 38.2, 39.3, 39.4, and 39.6; and '254
patent claims 1.3, 1.4, 2.1, 7.1, and 8.1. However, MI's patents do not provide any
substantive or meaningful description of these elements--e.g. , there is no substantial
description of the intemal hru·dwru·e, fnmwru·e, or software required to implement the
cache coherence controllers or interconnection controllers. Instead, Ml's patents
provide only a generic box diagram of the cache coherence conu·oller (e.g. , '409 patent,
Fig. 3) and other generic statements such as the "cache coherence conu·oller 230 is a
specially configured programmable chip" ('409 patent, 7:47-50). Ml's asse1ied patent
specifications thus do not show that the patentees were in possession of a cache
coherence conu·oller or interconnection controller that could meet all the requirements
of the claimed inventions-and thus the claims that require these elements ru·e invalid
for lack of written description. See Ariad, 598 F .3d at 13 51 .

• "Probe Filtering Unit." All ofthe asse1i ed claims of the ' 121 patent- i.e., claims 1-6,
8, 11-17, 19-25-require a probe filtering unit. MI's patents do not provide any
substantive or meaningful description of this claim element-e.g. , there is no
substantial description of the intemal hardwru·e, fi1mware, or softwru·e required to
implement the probe filtering unit. Instead, the '121 patent specification describes the
functions perf01med or the desired result to be achieved by the probe filtering
unit--e.g. , that the "probe filtering unit is operable to receive probes conesponding to
mem01y lines from the processing nodes and to u·ansmit the probes only to selected
ones of the processing nodes with reference to probe filtering infonnation." (See ' 121
patent, 2:52-55.) The specification also provides only generic diagrruns and asselis
that the "probe filtering unit" is not limited to any particulru· implementation or
structure. (See ' 121 patent, 26:52-57 ("It should be understood that the use of the tenn
'probe filtering unit' or 'PFU' in the following discussion is not intended to be limiting
or exclusive. Rather, any device or object operable to perfonn the described
functionalities, e.g. , a cache coherency controller as described herein, is within the
scope of the invention.").) These disclosures ru·e not sufficient to show that the
patentees were in possession of a probe filtering unit that could meet all the
requirements of the claimed invention-and thus the claims that require a probe
filtering lmit are invalid for lack of written description. See Ariad, 598 F.3d at 1351.

• "Protocol Engines." All of the asse1ied claims of the '206 and '254 patents-i.e.,
'206 claims 1-2, 7, 14-15, 19, 21-22, 24-32, 34-35, 37-41, and 43-44 and '254 claims
1-3 and 5-8-require protocol engines. Ml's patents do not provide any substantive or
meaningful description of these protocol engines--e.g., there is no substantial
description of the intemal hru·dwru·e, fnmwru·e, or software required to implement the
claimed protocol engines. Instead, the '206 and '254 patent specifications describe the
functions perf01med or the desired result to be achieved by the claimed protocol
engines--e.g. , that the "protocol engine 305 [is] configured to handle packets such as
probes and requests received from processors in vru·ious clusters of a multi-processor
system." ('206 patent, 4:46-50.) Similru·ly, the '206 and '254 patent specifications
asse1i that "protocol engines ru·e blocks ofhru·dwru·e on the interconnection conu·oller
ASIC chip" ('206 patent, 12:11-13), but the specifications do not describe that

-257-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

hru·dwru·e in any meaningful detail. These disclosures are not sufficient to show that the
patentees were in possession of protocol engines that could meet all the requirements of
the claimed invention-and thus the claims that require protocol engines are invalid for
lack of written description. See Ariad, 598 F.3d at 1351.

3. Lack of Enablement

Under 35 U.S.C. § 112, first pru·agraph, a patent claim is invalid as not enabled if it fails to

" teach those skilled in the rui how to make and use the full scope of the claimed invention without

undue experimentation." MagSil Corp. v. Hitachi Global Storage Techs., Inc. , 687 F.3d 1377,

1380 (Fed. Cir. 2012). The enablement requirement "prevents both inadequate disclosure of an

invention and overbroad claiming that might othe1wise attempt to cover more than was actually

invented." !d. at 1381. The asse1ied patent claims ru·e invalid for failure to meet the enablement

requirement for multiple independent reasons:

First, for all of the asserted claims of all of the asserted patents, MI has alleged that the

claim tenus "cluster of processors" and "plurality of processing nodes" could be met by a single

processor chip with multiple cores. But the specifications for the '409, '636, ' 121, '206, and '254

patents do not enable a person of skill in the rui, as of the filing date of the asse1ied patents'

applications, to implement the claimed inventions without undue experimentation where the

required "cluster of processors" or ''plurality of processing nodes" is a single processor chip with

multiple cores. Indeed, the asserted patents never even suggest that the required "cluster of

processors" or "plurality of processing nodes" could be implemented on a single processor chip

with multiple cores, and the specifications provide no teaching or guidance on how to implement

such a system without undue experimentation. The difference between a cluster of sepru·ate

processor chips and a single chip with multiple cores is imp01iant and material because multi-core

chips require fundamentally different designs, protocols, and manufacturing process technology.

Thus, if the claims were to be construed to cover implementations of the claimed invention where

- 258 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

the claimed "cluster of processors" or "plurality of processing nodes" could be a single processor

chip, as MI appru·ently contends, then all the asse1ied patent claims would be invalid for lack of

enablement. See Automotive Techs. Int 'l, Inc. v. BMW ofN Am., Inc. , 501 F.3d 1274, 1282 (Fed.

Cir. 2007) (claims not enabled because they covered both mechanical and electronic side impact

sensors, but specification failed to enable electronic side impact sensors); Liebel-Flarsheim Co. v.

Medrad, Inc., 48 1 F.3d 1371 , 1380 (Fed. Cir. 2007) ("The irony of this situation is that Liebel

successfully pressed to have its claims include a jacketless system, but, having won that battle, it

then had to show that such a claim was fully enabled, a challenge it could not meet. The motto,

'bewru·e of what one asks for,' Inight be applicable here."); AK Steel C01p. v. Sollac & Ugine, 344

F.3d 1234, 1244-1245 (Fed. Cir. 2003) (affnming finding ofnon-enablement where the claim was

construed to cover steel strips containing either a Type 1 or a Type 2 alulninum coating, but the

patent did not enable sn·ips containing Type 1 alulninum coating) .

Second, at least lmder MI's infringement theories, MI's patents do not provide any

substantive or meaningful teaching regru·ding how to enable the claimed inventions- e.g. , there is

no substantial teaching regarding the intemal hardwru·e, fnmwru·e, or software required to

implement the claimed inventions. Accordingly, the patent specifications do not enable a person

of ordinruy skill in the mi, as of the filing date of the asse1i ed patents' applications, to practice the

claimed inventions without lmdue experimentation-and thus the asse1ied claims are invalid for

lack of enablement. MagSil, 687 F.3d at 1380. In pmticulm·, all of the asse1i ed claims that require

the following claim elements are invalid for lack of enablement. See id.

• "Cache Coherence Controllers" I "Interconnection Controller." Many of the
asse1ied patent claims require cache coherence controllers or interconnection
controllers. For example, claim 15 of the '409 patent recites "a fn·st cache coherence
controller" and claim 1 of the '121 patent recites "an interconnection controller." See
also, e.g. , '409 patent claims 1.2-1.7, 6.2-6.8, 7.1 , 7.2, 8.1 , 9.1 , 10.1 , 11.1 , 12.1 , 18.1 ,
19.1 , 20.1 , 22.1 , 23.1 , 25.1 , 25.4, 25.5, 34.4, 34.5, 51.1-51.4, and 52.1-52.4; '636

-259-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

patent claims 11.1-11.5, 12.1 , 15.2-15.7, 18.1, 21.2-21.8, 22.1-22.5, 23.1, 24.1, 25.1,
26.1 , 27.1 , 28.1 , 29.1 , 30.1 , 31.1 , 33.1 , 34.1 , 35.1 , and 36.1-36.5; ' 121 patent claims
3.1 , 3.2, 5.1 , and 6.1; '206 patent claims 1.3, 1.4, 1.5, 1.6, 2.1, 15.1, 19.2, 21.1-21.6,
22.1 , 24.1 , 51.1 , 27.1 , 29.1 , 30.2, 30.3, 31.1 , 35.1 , 38.2, 39.3, 39.4, and 39.6; and '254
patent claims 1.3, 1.4, 2.1, 7.1, and 8.1. However, MI's patents do not provide any
substantive or meaningful teaching regru·ding how to practice these elements-e.g. ,
there is no substantial teaching regru·ding the intemal hru·dwru·e, fitmwru·e, or softwru·e
required to implement the claimed cache coherence controller or interconnection
controller. Instead, Ml's patents provide only a generic box diagram of the cache
coherence controller (e.g., '409 patent, Fig. 3) and other generic statements such as the
"cache coherence controller 230 is a specially configured programmable chip" (' 409
patent, 7:47-50). MI's assetied patent specifications thus do not enable a person of
ordinaty skill in the ati, as of the filing date of the assetied patents ' applications, to
practice the claimed cache coherence controller or interconnection controller without
undue experimentation-and thus the claims that require these elements ru·e invalid for
lack of enablement. MagSil, 687 F.3d at 1380.

• "Probe Filtering Unit." All ofthe assetied claims of the ' 121 patent-i.e., claims 1-6,
8, 11-17, 19-25-require a probe filtering lmit. However, MI's patents do not provide
any substantive or meaningful teaching regru·ding how to practice the claimed probe
filtering lmit-e.g., there is no substantial teaching regarding the intemal hardware,
fitmware, or softwru·e required to implement the probe filtering lmit. Instead, the ' 121
patent specification describes the functions perf01med or the desired result to be
achieved by the probe filtering unit-e.g., that the "probe filtering unit is operable to
receive probes conesponding to mem01y lines from the processing nodes and to
transmit the probes only to selected ones of the processing nodes with reference to
probe filtering inf01mation." (See ' 121 patent, 2:52-55.) The specification also
provides only generic diagrams and asseti s that the "probe filtering lmit" is not limited
to any pruiicular implementation or stmcture. (See ' 121 patent, 26:52-57 ("It should be
understood that the use of the te1m 'probe filtering lmit' or 'PFU' in the following
discussion is not intended to be limiting or exclusive. Rather, any device or object
operable to perf01m the described functionalities, e.g. , a cache coherency controller as
described herein, is within the scope of the invention.").) MI's assetied patent
specifications thus do not enable a person of ordinaty skill in the art, as of the filing
date of the asserted patents ' applications, to practice the claimed probe filtering unit
without lmdue experimentation-and thus the claims that require this element ru·e
invalid for lack of enablement. MagSil, 687 F.3d at 1380.

• "Protocol Engines." All of the assetied claims of the '206 and '254 patents-i.e.,
'206 claims 1-2, 7, 14-15, 19, 21-22, 24-32, 34-35, 37-41, and 43-44 and '254 claims
1-3 and 5-8-require protocol engines. However, MI's patents do not provide any
substantive or meaningful teaching regru·ding how to practice the claimed protocol
engines-e.g. , there is no substantial teaching regarding the intemal hardware,
fitmwru·e, or software required to implement the claimed protocol engines. Instead, the
'206 and '254 patent specifications describe the fimctions perf01med or the desired
result to be achieved by the claimed protocol engines-e.g., that the "protocol engine

-260-

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruties

305 [is] configured to handle packets such as probes and requests received from
processors in vru·ious clusters of a multi-processor system." ('206 patent, 4:46-50.)
Similarly, the '206 and '254 patent specifications asse1t that "protocol engines are
blocks of hardware on the interconnection controller ASIC chip" ('206 patent,
12:11-13), but the specifications do not describe that hru·dwru·e in any meaningful
detail. MI's asse1ted patent specifications thus do not enable a person of ordinruy skill
in the rut, as of the filing date of the asse1t ed patents' applications, to practice the
claimed protocol engines without undue experimentation-and thus the claims that
require this element ru·e invalid for lack of enablement MagSil, 687 F.3d at 1380.

4. Indefiniteness

Under 35 U.S. C. § 112, a patent claim is invalid for indefmiteness if its language, when

"read in light of the specification and the prosecution hist01y, fail[s] to inf01m, with reasonable

certainty, those skilled in the rut about the scope of the invention." Nautilus, Inc. v. Biosig

Instrnments, Inc. , 134 S. Ct. 2120, 2124 (2014) (quotation mru·ks omitted).

Dependent claim 6 of the '254 patent is invalid as indefinite. Claim 6 reads as follows:

6. The cluster of claim 5, wherein the circuitry is contained in at least one of said
plurality of processing nodes and said circuitry is fi.uther configured to f01ward at
least one of said one or more packets to a selected the first one or more protocol
engines ofthe plurality of protocol engines with reference to at least one bit of the
target address.

('254 patent, claim 6 (emphasis added).) In claim 6, the use of the phrase "to a selected the first

one or more protocol engines of the plurality of protocol engines" is nonsensical and thus does not

provide "reasonable ce1tainty" to a person of ordinruy skill in the rut regarding the scope of the

claim. Nautilus, 134 S. Ct. at 2124.

In addition, claim 34 of the '409 patent and claim 36 of the '636 patent recite a cache

coherence contr·oller or aspects of such a contr·oller with "means-plus-function" elements.

Accordingly, the scope of these claim elements is lilnited to the specific stm ctures disclosed in the

'409 and '636 patent specifications for perf01ming the functions recited in the claim elements, as

well as equivalent stm ctures. See 35 U.S. C. § 112, sixth pru·agraph.

- 261 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

However, as noted above, the '409 and '636 patent specifications do not disclose

substantive or meaningful structure for these elements- e.g., there is no substantial description of

the intemal hru·dwru·e, fi1mwru·e, or softwru·e required to implement the cache coherence

controllers or interconnection controllers. Instead, MI's patents provide only a generic box

diagrrun of the cache coherence controller (e.g., '409 patent, Fig. 3) and other generic statements

such that the "cache coherence controller 230 is a specially configured programmable chip" (' 409

patent, 7:47-50). Since the scope of these claim elements is limited to the structure disclosed in the

patents for perf01ming their claimed function, and since the specification does not disclose the

details of stm cture for these elements, the claims ru·e invalid for being indefinite under 35 U.S.C. §

112, second paragraph. See, e.g., Biomedino, LLCv. Waters Tech. C01p., 490 F.3d 946, 952 (Fed.

Cir. 2007) (holding that claim reciting a "control means for operating [a] valving" was indefinite

because the specification's disclosure that a valve "may be contr·olled by known differential

pressure, valving and contr·ol equipment" did not constitute sufficient structure).

IV. Invalidity under 35 U.S.C. § 101

Under 35 U.S. C. § 101, tr·ansitOiy signals and computer media ru·e not patentable subject

matter. See In re Nuijten , 500 F.3d 1346, 1357 (Fed. Cir. 2007) ("[S]ignals, standing alone, ru·e not

' manufacture[s]' under the meaning of that tenn in § 101."); see also Ex Parte Satish Laxmanrao,

2015 WL 2378820, at *4 n.4 (P.T.A.B. May 14, 2015) ("Because Appellant's Specification does

not defme computer-usable storage medium to exclude tr·ansitOiy media, the claimed medium

encompasses tr·ansitOiy media, which is not patent eligible."); Ex parte Mewherter, No.

2012-7692, 2013 Pat. App. LEXIS 5934, at *6 (P.T.A.B. May 8, 2013) (precedential) (holding that

claims directed to a "machine-readable storage medium" were directed to non-patentable subject

matter lmder § 101).

- 262 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

Under this precedent, claims 19-23 of the ' 121 patent ru·e directed to non-patentable subject

matter lmder 35 U.S. C. § 101 because they claim a "computer readable medium" and ru·e not

limited to a non-u·ansit01y computer readable medium. See Ex parte Mewherter, 2013 Pat. App.

LEXIS 5934, at *6 (explaining that claims directed to a "computer readable storage medium"

encompass both non-u·ansit01y and u·ansit01y media and that u·ansit01y media are not patentable

under § 101).

- 263 -

Public Version - Confidential Infonnation Redacted and Confidentiality Designation Removed Per Agreement
Between the Pruiies

DATED this 27th day of May 2015.

Grant K. Rowan (admitted pro hac vice)
WILMERHALE LLP
1875 Pennsylvania Avenue NW
Washington, DC 20006
(202) 663-6011
grant.rowan@wilmerhale.com

Alihur W. Coviello (admitted pro hac vice)
WILMERHALE LLP
950 Page Mill Road
Palo Alto, CA 94304
(650) 858-6000
Alihur.coviello@wilmerhale.com

By:

Is/ Michael J. Summersgill

Renee E. Rothauge (OSB #903712)
MARKOWITZ HERBOLD PC
1211 SW Fifth Avenue, Suite 3000
P01iland, OR 97204-3730
(503) 295-3085

Michael J. Summersgill (admitted pro hac vice)
Jordan L. Hirsch (admitted pro hac vice)
Sean K. Thompson (admitted pro hac vice)
WILMERliALE LLP
60 State Street
Boston, MA 02109
(617) 526-6000
michael. summersgill@wilmerhale. com
jordan .hirsch@wilmerhale.com
sean .thompson@wilmerhale.com

Attorneys for Intel Corporation

- 264 -

