
13.7 STATIC TIMING ANALYSIS 677

Instance name in pin-->out pin tr total incr cell

END OF PATH
D.a r ff b2 R 4.52 0.00 DFI - - -
INBUF 24 PAD--->Y R 4.52 4.52 INBUF
a 2 R 0.00 0.00
BEGIN OF PATH

---------------------CLOCK to SETUP longest path--------------------­
Rise delay, worst case

Instance name in pin-->out pin tr total incr cell

END OF PATH
D.sel r ff R 9.99 0.00 DFI

I 1 CMS SI0--->Y R 9.99 0.00 CMS

I 3 CMS SOO--->Y R 9.99 4.40 CMS
a r ff bl CLK--->Q R 5.60 5.60 DFI - - -
BEGIN OF PATH

---------------------CLOCK to OUTPAD longest path-------------------­
Rise delay, Worst case

Instance name

END OF PATH
outp_2_
OUTBUF 31

outp_ff_b2
BEGIN OF PATH

in pin-->out pin

D--->PAD

CLK--->Q

tr

R

R

R

The timing analyzer has examined the following:

total

11. 95

11. 95

4.40

incr

7.55

4.40

cell

OUTBUF

DFI

1. Paths that start at an input pad and end on the data input of a sequential logic
cell (the D input to a D flip-flop, for example). We might call this an entry
path (or input-to-D path) to a pipe lined design. The longest entry delay (or
input-to-setup delay) is 4.52 ns.

2. Paths that start at a clock input to a sequential logic cell and end at the data
input of a sequential logic cell. This is a stage path (register-to-register path or
clock-to-D path) in a pipeline stage. The longest stage delay (clock-to-D
delay) is 9.99 ns.

3. Paths that start at a sequential logic cell output and end at an output pad. This
is an exit path (clock-to-output path) from the pipeline. The longest exit delay
(clock-to-output delay) is 11.95 ns.

692

678 CHAPTER 13 SIMULATION

By pipelining the design we added three clock periods of latency, but we
increased the estimated operating speed. The longest prelayout critical path is now
an exit delay, approximately 12 ns-more than doubling the maximum operating fre­
quency. Next, we route the registered version of the design. The Actel software
informs us that the postroute maximum stage delay is 11.3 ns (close to the preroute
estimate of 9.99 ns). To check this figure we can perform another timing analysis.
This time we shall measure the stage delays (the start points are all clock pins, and
the end points are all inputs to sequential cells, in our case the D input to a D flip­
flop). We need to define the sets of nodes at which to start and end the timing analy­
sis (similar to the path clusters we used to specify timing constraints in logic synthe­
sis). In the Actel timing analyzer we can use predefined sets 'clock' (flip-flop
clock pins) and' gated' (flip-flop inputs) as follows:

timer> startset clock

timer> endset gated

timer> longest
1st longest path to all endpins

Rank Total Start pin
o 11.3 a r ff b2:CLK
1 6.6 sel r ff:CLK

First Net
a r 2

sel r
8 similar lines omitted ...

End Net

block 0 OUTI
DEF NET 50

End pin
sel r ff:D

outp_ff_bO:D

We could try to reduce the long stage delay (11.3 ns), but we have already seen from
the preroute timing estimates that an exit delay may be the critical path. Next, we
check some other important timing parameters.

13.7.1 Hold Time
Hold-time problems can occur if there is clock skew between adjacent flip-flops, for
example. We first need to check for the shortest exit delays using the same sets that
we used to check stage delays,

timer> shortest

1st shortest path to all endpins
Rank Total Start pin First Net

0 4.0 b rr ff bl :CLK b rr 1 - - - - - -
1 4.1 a rr ff b2:CLK a rr 2 - - - - - -

8 similar lines omitted ...

End Net

DEF NET 48
DEF NET 46

End pin

outp_ff_bl:D
outp_ff_b2:D

The shortest path delay, 4 ns, is between the clock input of a D flip-flop with
instance name b_rr_ff_bI (call this x) and the D input of flip-flop instance name
outp _ ff_bI (Y). Due to clock skew, the clock signal may not arrive at both flip­
flops simultaneously. Suppose the clock arrives at flip-flop Y 3 ns earlier than at flip­
flop x. The D input to flip-flop Y is only stable for (4 - 3) = 1 ns after the clock edge.
To check for hold-time violations we thus need to find the clock skew corresponding

693

13.7 STATIC TIMING ANALYSIS 679

to each clock-to-D path. This is tedious and normally timing-analysis tools check
hold-time requirements automatically, but we shall show the steps to illustrate the
process.

13.7.2 Entry Delay
Before we can measure clock skew, we need to analyze the entry delays, including
the clock tree. The synthesis tools automatically add I/O pads and the clock cells.
This means that extra nodes are automatically added to the netlist with automatically
generated names. The EDIF conversion tools may then modify these names. Before
we can perform an analysis of entry delays and the clocknetwork delay, we need to
find the input node names. By looking for the EDIF I rename I construct in the
EDIF netlist we can associate the input and output node names in the behavioral
Verilog model, comp _ mux _ rrr, and the ED IF names,

piron% grep rename comp_mux_rrr_o.edn

(port (rename a_2_ "a[2]") (direction INPUT))
8 similar lines renaming ports omitted ...

(net (rename a_rr_O_ "a_rr[O]") (joined
9 similar lines renaming nets omitted ...

piron%

Thus, for example, the ED IF conversion program has renamed input port a [2]

to a _2_ because the design tools do not like the Verilog bus notation using square
brackets. Next we find the connections between the ports and the added I/O cells by
looking for I PAD I in the Actel format netlist, which indicates a connection to a pad
and the pins of the chip, as follows:

piron% grep PAD comp_mux_rrr_o.adl

NET DEF_NET_148; outp_2_, OUTBUF 31:PAD.
NET DEF_NET_151; outp_1_, OUTBUF_32:PAD.

NET DEF NET 154; outp_O_, OUTBUF 33:PAD.

NET DEF NET 127; a 2 , INBUF 24:PAD. - -
NET DEF NET 130 ; a 1 , INBUF 25:PAD. -
NET DEF NET 133; a ° , INBUF 26:PAD. -
NET DEF NET 136; b 2 , INBUF 27:PAD.

-
NET DEF NET 139; b 1 , INBUF 28:PAD.

-
NET DEF NET 142; b 0 , INBUF 29:PAD.

NET DEF NET 145; clock, CLKBUF 30:PAD.
-

piron%

This tells us, for example, that the node we called clock in our behavioral
model has been joined to a node (with automatically generated name) called
CLKBUF_30:PAD, using a net (connection) named DEF_NET_145 (again automati­
cally generated). This net is the connection between the node clock that is dangling
in the behavioral model and the clock-buffer pad cell that the synthesis tools auto­
matically added.

694

680 CHAPTER 13 SIMULATION

13.7.3 Exit Delay
We now know that the clock-pad input is CLKBUF 30 : PAD, so we can find the exit
delays (the longest path between clock-pad input and an output) as follows (using
the clock-pad input as the start set):

timer> startset clockpad
Working startset 'clockpad' contains 0 pins.

timer> adds tart CLKBUF_30:PAD
Working startset 'clockpad' contains 2 pins.

I shall explain why this set contains two pins and not just one presently. Next, we
define the end set and trace the longest exit paths as follows:

timer> endset outpad
Working endset 'outpad' contains 3 pins.

timer> longest
1st longest path to all endpins

Rank Total Start pin First Net End Net End pin

0 16.1

1 16.0

2 16.0

3 pins

CLKBUF 30/UO:PAD DEF NET 144
CLKBUF 30/UO:PAD DEF NET 144
CLKBUF 30/UO:PAD DEF NET 144

DEF NET 154
DEF NET 151

DEF NET 148

OUTBUF 33:PAD
OUTBUF 32:PAD

OUTBUF 31:PAD

This tells us we have three paths from the clock-pad input to the three output pins
(outp [°], outp [1], and outp [2]). We can examine the longest exit delay in more
detail as follows:

timer> expand 0

1st longest path to OUTBUF - 33:PAD (rising) (Rank: 0)
Total Delay Typ Load Macro Start pin Net name

16.1 3.7 Tpd 0 OUTBUF OUTBUF 33:D DEF NET 154
12.4 4.5 Tpd 1 DF1 outp_ff_bO:CLK DEF NET 1530
7.9 7.9 Tpd 16 CLKEXT 0 CLKBUF 30/UO:PAD DEF NET 144

The input-to-clock delay, tIC, due to the clock-buffer cell (or macro) CLKEXT_O,
instance name CLKBUF_30/uo, is 7.9ns. The clock-to-Q delay, tCQ' of flip-flop cell
DF1, instance name outp_ff_bO, is 4.5 ns. The delay, tQo, due to the output buffer
cell OUTBUF, instance name OUTBUF _33, is 3.7 ns. The longest path between clock­
pad input and the output, tco, is thus

tco = tIC + tCQ + tQo= 16.1 ns. (13.23)

This is the critical path and limits the operating frequency to (1 / 16.1 ns) "'" 62 MHz.

695

13.7 STATIC TIMING ANALYSIS 681

When we created a start set using CLKBUF_30 : PAD, the timing analyzer told us
that this set consisted of two pins. We can list the names of the two pins as follows:

timer> showset clockpad

Pin name

CLKBUF 30/UO : PAD

CLKBUF 30/Ul : PAD

2 pins

Net name

<no net>

DEF NET 145

Macro name

CLKEXT 0

CLKTRI 0

The clock-buffer instance name, CLKBUF _30 luO, is hierarchical (with a '/' hierar­
chy separator). This indicates that there is more than one instance inside the clock­
buffer cell, CLKBUF 30. Instance CLKBUF 30/uo is the input driver, instance - -
CLKBUF_30/Ul is the output driver (which is disabled and unused in this case).

13.7.4 External Setup Time

Each of the six chip data inputs must satisfy the following set-up equation:

tsu (external) > tsu (internal) - (clock delay) + (data delay) (13.24)

(where both clock and data delays end at the same flip-flop instance). We find the
clock delays in Eq. 13.24 using the clock input pin as the start set and the end set

I clock I. The timing analyzer tells us all 16 clock path delays are the same at 7.9 ns
in our design, and the clock skew is thus zero. Actel's clock distribution system min­
imizes clock skew, but clock skew will not always be zero. From the discussion in
Section 13.7.1, we see there is no possibility of internal hold-time violations with a
clock skew of zero.

Next, we find the data delays in Eq, 13.24 using a start set of all input pads and
an end set of I gated I,

timer> longest

... lines omitted ...
1st longest path to all endpins

Rank 'Total Start pin First Net End Net End pin

10 10.0 INBUF 26:PAD DEF NET 1320 DEF NET 1320 a r ff bO:D - - -
11 9.7 INBUF 28 :PAD DEF NET 1380 DEF NET 1380 b r ff bl: D

- - - - -
12 9.4 INBUF 25:PAD DEF NET 1290 DEF NET 1290 a r ff bl:D - - -
13 9.3 INBUF 27:PAD DEF NET 1350 DEF NET 1350 b r ff b2:D - - -
14 9.2 INBUF 29:PAD DEF NET 1410 DEF NET 1410 b r ff bO :D - - - - -
15 9.1 INBUF 24:PAD DEF NET 1260 DEF NET 1260 a r ff b2:D - - - -

16 pins

We are only interested in the last six paths of this analysis (rank 10-15) that describe
the delays from each data input pad (a [0] , a [1], a [2], b [0], b [1] , b [2]) to the D
input of a flip-flop. The maximum data delay, 10 ns, occurs on input buffer instance
name INBUF 26 (pad 26); pin INBUF 26 : PAD is node a 0 III the EDIF file or

696

682 CHAPTER 13 SIMULATION

input a [0] in our behavioral model. The six tsu (external) equations corresponding
to Eq, 13.24 may be reduced to the following worst-case relation:

tsu (external)max > tsu (internal) -7.9 ns + max (9.1 ns, 10.0 ns)

> tsu (internal) + 2.1 ns (13.25)

We calculated the clock and data delay terms in Eq. 13.24 separately, but timing
analyzers can normally perform a single analysis as follows:

tsu (external)max > tsu (internal) - (clock delay - data delaY)min' (13.26)

Finally, we check that there is no external hold-time requirement. That is to say,
we must check that tsu (external) is never negative or

tsu (external)min > tsu (internal) - (clock delay - data delaY)max > 0

> tsu (internal) + 1.2 ns > O. (13.27)

Since tsu (internal) is always positive on Actel FPGAs, tsu (external)min is always
positive for this design. In large ASICs, with large clock delays, it is possible to
have external hold-time requirements on inputs. This is the reason that some FPGAs
(Xilinx, for example) have programmable delay elements that deliberately increase
the data delay and eliminate irksome external hold-time requirements.

13.8 Formal Verification

Using logic synthesis we move from a behavioral model to a structural model. How
are we to know (other than by trusting the logic synthesizer) that the two representa­
tions are the same? We have already seen that we may have to alter the original ref­
erence model because the HDL acceptable to a synthesis tool is a subset of HDL
acceptable to simulators. Formal verification can prove, in the mathematical sense,
that two representations are equivalent. If they are not, the software can tell us why
and how two representations differ.

13.8.1 An Example
We shall use the following VHDL entity with two architectures as an example:3

entity Alarm is
port(Clock, Key, Trip: in bit; Ring: out bit);

end Alarm;

3By one of the architects of the Compass VFormal software, Erich Marschner.

--1

--2
--3

697

13.8 FORMAL VERIFICATION 683

The following behavioral architecture is the reference model:

architecture RTL of Alarm is

type States is (Armed, Off, Ringing); signal State

begin

process (Clock) begin

if Clock = 'I' and Clock'EVENT then

case State is

States;

when Off => if Key = 'I' then State <= Armed; end if;

when Armed => if Key = '0' then State <= Off;

elsif Trip = 'I' then State <= Ringing;

end if;

when Ringing => if Key '0' then State <= Off; end ifi

end case;

end ifi

end process;

Ring <= 'I' when State

end RTLi

Ringing else '0';

The following synthesized structural architecture is the derived model:

library cells; use cells.all; II ... contains logic cell models

architecture Gates of Alarm is

component Inverter port(i : in BITiZ : out BIT) i end component;

component NAnd2 port(a,b : in BITiZ : out BIT) i end component;

component NAnd3 port(a,b,c : in BIT;z : out BIT) ; end component;

component OFF port(d,c : in BIT; q,qn : out BIT) ; end component;

signal, State, NextState : BIT_VECTOR(1 downto 0);

signal sO, sl, s2, s3 : BIT;

begin

g2: Inverter port map (i => State(O), Z => sl);

g3: NAnd2 port map (a => sl, b => State(I), Z => s2);

g4: Inverter port map (i => s2, Z => Ring);

g5: NAnd2 port map a => State(I), b => Key, Z => sO);

g6: NAnd3 port map (a => Trip, b => sl, C => Key, Z => s3);

g7: NAnd2 port map (a => sO, b => s3, Z => NextState(l));

g8: Inverter port map (i => Key, Z => NextState(O));

state_ff_bO: OFF port map

(d => NextState(O), c => Clock, q => State(O), qn => open);

state_ff_bl: OFF port map

d => NextState(l), c => Clock, q => State(I), qn => open);

end Gates;

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10

--11

--12

--13

--14

--15

--16

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10

--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

698

684 CHAPTER 13 SIMULATION

To compare the reference and the derived models (two representations), formal
verification performs the following steps: (1) the HDL is parsed, (2) a finite-state
machine compiler extracts the states present in any sequential logic, (3) a proof
generator automatically generates formulas to be proved, (4) the theorem prover
attempts to prove the formulas. The results from the last step are as follows:

formulas to be proved: 8

formulas proved VALID: 8

By constructing and then proving formulas the software tells us that
architecture RTL implies architecture Gates (implication is the default
proof mechanism-we could also have asked if the architectures are exactly equiva­
lent). Next, we shall explore what this means and how formal verification works.

13.8.2 Understanding Formal Verification
The formulas to be proved are generated in a separate file of proof statements:

axioms

Let Axiom ref = Axioms Of alarm-rtl

Let Axiom_der = Axioms Of alarm-gates

ProveNotAlwaysFalse (Axiom_ref)

Prove (Axiom_ref => Axiom_der)

assertions

Let Assert ref = Asserts Of alarm-rtl

Let Assert der = Asserts Of alarm-gates

Prove (Axiom_ref => (Assert_ref => Assert_der))

clocks

Let ClockEvents ref = Clocks Of alarm-rtl

Let ClockEvents der = Clocks Of alarm-gates

Let Master clock event ref =

Value (master_clock'event Of alarm-rtl)

Prove (Axiom_ref => (ClockEvents_ref <=> ClockEvents_der))

next state of memories

Prove ((Axiom_ref And Master_clock event ref) =>

(Transition (state(l) Of alarm-rtl) <=>

Transition (state_ff_b1.t Of alarm-gates)))

Prove ((Axiom_ref And Master_clock event ref) =>

(Transition (state(O) Of alarm-rtl) <=>

Transition (state_ff_bO.t Of alarm-gates)))
validity value of outbuses

Prove (Axiom_ref => (Domain (ring Of alarm-rtl) <=>

Domain (ring Of alarm-gates)))

Prove (Axiom_ref => (Domain (ring Of alarm-rtl) =>

(Value (ring Of alarm-rtl) <=>

Value (ring Of alarm-gates))))

//1

//2

//3

//4

//5

//6

//7
//8

//9

//10

/ /11
//12

/ /13
//14

//15

//16

/ /17
//18

/ /19
//20

//21

//22

//23

//24

//25

//26

//27

//28

699

13.8 FORMAL VERIFICATION 685

Formal verification makes strict use of the terms axiom and assertion. An axiom
is an explicit or implicit fact. For example, if a VHDL signal is declared to be type
BIT, an implicit axiom is that this signal may only take the logic values I 0 I and

I 1 I • An assertion is derived from a statement placed in the HDL code. For exam­
ple, the following VHDL statement is an assertion:

assert Key /= '1' or Trip /= '1' or NextState = Ringing

report "Alarm on and tripped but not ringing";

A VHDL assert statement prints only if the condition is FALSE. We know
from de Morgan's theorem that (A + B + C) I = A I B 'e'. Thus, this statement checks
for a burglar alarm that does not ring when it is on and we are burgled.

In the proof statements the symbol I => I means implies. In logic calculus we
write A =} B to mean A implies B. The symbol '<=> I means equivalence, and this
is stricter than implication. We write A q B to mean: A is equivalent to B.
Table 13 .13 show the truth tables for these two logic operators.

TABLE 13.13 Implication and equivalence.

A B A=>B A<=>B

F F T T

F T T F

T F F F

T T T T

13.8.3 Adding an Assertion
If we include the assert statement from the previous section in architecture
RTL and repeat formal verification, we get the following message from the FSM
compiler:

<E> Assertion may be violated

SEVERITY: ERROR
REPORT: Alarm on and tripped but not ringing

FILE: ... /alarm-rtl3.vhdl

FSM: a1arm-rtl3
STATEMENT or DECLARATION: line8
... /alarm-rtl3.vhdl (line 8)

Context of the message is:
(key And trip And memoryofdriver __ state(O»

This message tells us that the assert statement that we included may be triggered
under a certain condition: (key And trip And state (0». The prefix
'memoryofdriver_' is used by the theorem prover to refer to the memory element

700

686 CHAPTER 13 SIMULATION

used for state (0). The state' off' in the reference model corresponds to state (0)

in the encoding that the finite-state machine compiler has used (and also to state (0)

in the derived model). From this message we can isolate the problem to the following
case statement (the line numbers follow the original code in architecture RTL):

case State is --6
when Off => if Key = 'I' then State <= Armed; end if; --7
when Armed => if Key = '0' then State <= Off: --8

elsif Trip = 'I' then State <= Ringing: --9

end if: --10
when Ringing => if Key = '0' then State <= Off: end if: --11

end case: --12

When we start in state Off and the two inputs are Trip = '1' and Key =

, 1 " we go to state Armed, and not to state Ringing. On the subsequent clock
cycle we will go state Ringing, but only if Trip does not change. Since we have
all seen "Mission Impossible" and the burglar who exits the top-secret computer
room at the Pentagon at the exact moment the alarm is set, we know this is perfectly
possible and the software is warning us of this fact. Continuing on, we get the fol­
lowing results from the theorem prover:

Prove (Axiom_ref => (Assert_ref => Assert_der))
Formula is NOT VALID
But is VALID under Assert Context of alarm-rtl3

We included the assert statement in the reference model (architecture
RTL) but not in the derived model (architecture Gates). Now we are really
mixed up: The assertion statement in the reference model says one thing, but the
case statement in the reference model describes another. The theorem prover
retorts: "The axioms of the reference model do not imply that the assertions of the
reference model imply the assertions of the derived model." Translation: "These two
architectures differ in some way." However, if we assume that the assertion is true
(despite what the case statement says) then the formula is true. The prover is also
saying: "Make up your mind, you cannot have it both ways." The prover goes on to
explain the differences between the two representations:

***Difference is:
(Not state(l) And key And state(O) And trip)
There are 1 cubes and 4 literals in the complete equation

***Local Variable Assert der is:
Not key Or Not state(O) Or Not trip
There are 3 cubes and 3 literals in the complete equation

***Local Variable Assert ref is: 1

***Local Variable Axiom ref is:
Not state(l) Or Not state(O)

701

13.8 FORMAL VERIFICATION 687

There are 2 cubes and 2 literals in the complete equation

formulas to be proved: 8

formulas proved VALID: 7
formulas VALID under assert context of der.model: 1

Study these messages hard and you will see that the differences between the two
models are consistent with our explanation.

13.8.4 Completing a Proof
To fix the problem we change the code as follows:

case State is
when Off => if Key = '1' then

if Trip = '1' then NextState <= Ringing;

else NextState <= Armed;

end if;
end if;

when Armed => if Key = '0' then NextState <= Off;
elsif Trip = '1' then NextState <= Ringing;

end if;
when Ringing => if Key = '0' then NextState <= Off; end if;

end case;

This results in a minor change in the synthesized netlist,

g2: Inverter port map i => State(O), z => sl) ;

g3: NAnd2 port map a => 51, b => State(I), z => s2) ;

g4: Inverter port map i => s2, Z => Ring) ;

gS: NAnd2 port map a => State(1), b => Key, z => sO) ;

g6: NAnd3 port map a => Trip, b => sl, C => Key, z => s3

g7: NAnd2 port map a => sO, b => s3, Z => NextState(l)) ;

g8: Inverter port map i => Key, z => NextState(O)) ;

) ;

state ff bO: DFF port map d => NextState(O), c => Clock, q =>

State(O), qn => open);
state ff bl: DFF port map

State(I), qn => open);

d => NextState(I), c => Clock, q =>

Repeating the formal verification confirms and formally proves that the derived
model will operate correctly. Strictly, we say that the operation of the derived model
is implied by the reference model.

702

688 CHAPTER 13 SIMULATION

13.9 Switch-Level Simulation

The switch-level simulator is a more detailed level of simulation than we have dis­
cussed so far. Figure 13.1 shows the circuit schematic of a true single-phase flip­
flop using true single-phase clocking (TSPC). TSPC has been used in some full­
custom ICs to attempt to save area and power.

(a)

P3

(b)

chargeDecayTime = 5 ns
~

chargeDecayTime = co

...

3/2,0 $----1---1 3/2,0

z

D 15<'l-lPi>-_----1

3/2,0 N
Z

n
(L

P2

P1

N2

N1

FIGURE 13.1 A TSPC (true single-phase clock) flip-flop.
(a) The schematic (all devices are W /L = 3/2) created using a
Compass schematic-entry tool. (b) The switch-level simula­
tion results (Compass MixSim). The parameter
chargeDecayTime sets the time after which the simulator
sets an undriven node to an invalid logic level (shown
shaded).

ON

C

D

0 100
time/ns

In a CMOS logic cell every node is driven to a strong '1' or a strong '0'. This
is not true in TSPC, some nodes are left floating, so we ask the switch-level simula­
tor to model charge leakage or charge decay (normally we need not worry about this
low-level device issue). Figure 13.1 shows the waveform results. After five clock
cycles, or 100 ns, we set the charge decay time to 5 ns. We notice two things. First,
some of the node waveforms have values that are between logic '0' and '1'. Sec­
ond, there are shaded areas on some node waveforms that represent the fact that,
during the period of time marked, the logic value of the node is unknown. We can
see that initially, before t = 100 ns (while we neglect the effects of charge decay), the
circuit functions as a flip-flop. After t= lOOns (when we begin including the effects
of charge decay), the simulator tells us that this circuit may not function correctly. It

703

13.10. TRANSISTOR-LEVEL SIMULATION 689

is unlikely that all the charge would leak from a node in 5 ns, but we could not stop
the clock in a design that uses a TSPC flip-flop. In ASIC design we do not use dan­
gerous techniques such as TSPC and therefore do not normally need to use switch­
level simulation.

A switch-level simulator keeps track of voltage levels as well as logic levels,
and it may do this in several ways. The simulator may use a large possible set of dis­
crete values or the value of a node may be allowed to vary continuously.

13.10 Transistor-Level Simulation

Sometimes we need to simulate a logic circuit with more accuracy than provided by
switch-level simulation. In this case we turn to simulators that can solve circuit
equations exactly, given models for the nonlinear transistors, and predict the analog
behavior of the node voltages and currents in continuous time. This type of
transistor-level simulation or circuit-level simulation is costly in computer time.
It is impossible to simulate more than a few hundred logic cells using a circuit-level
simulator. Virtually all circuit-level simulators used for ASIC design are commercial
versions of the SPICE (or Spice, Simulation Program with Integrated Circuit
Emphasis) developed at UC Berkeley.

+5V
"

rn2

output
FIGURE 13.2 Output buffer
(OB.IN) schematic (created using
Capilano's OesignWorks) ~----------~--~.~

rnl

'~-l-' c1

10pF -::-

13.10.1 A PSpice Example
Figure 13.2 shows the schematic for the output section of a CMOS I/O buffer driv­
ing a 10 pF output capacitor representing an off-chip load. The PSpice input file that
follows is called a deck (from the days of punched cards):

OB September 5, 1996 17:27
.TRAN/OP Ins 20ns
. PROBE
cl output Ground 10pF

704

690 CHAPTER 13 SIMULATION

VIN input
VGround 0
Vdd +5V 0

Ground

Ground
DC 5V

PWL(OuS 5V IOns 5V 12ns OV 20ns OV)

DC OV

ml output input Ground Ground NMOS W=lOOu L=2u
m2 output input +5V +5V PMOS W=200u L=2u

.model nmos nmos level=2 vto=O.78 tox=400e-IO nsub=8.0e15 xj=-O.15e-6

+ ld=O.20e-6 uo=650 ucrit=O.62e5 uexp=O.125 vmax=5.1e4 neff=4.0
+ delta=1.4 rsh=37 cgso=2.95e-IO cgdo=2.95e-IO cj=195e-6 cjsw=500e-12

+ mj=O.76 mjsw=O.30 pb=O.80
.model pmos pmos level=2 vto=-O.8 tox=400e-10 nsub=6.0e15 xj=-O.05e-6

+ ld=O.20e-6 uo=255 ucrit=O.86e5 uexp=O.29 vmax=3.0e4 neff=2.65

+ delta=l rsh=125 cgso=2.65e-IO cgdo=2.65e-IO cj=250e-6 cjsw=350e-12

+ mj=O.535 mjsw=O.34 pb=O.80

.end

Figure 13.3 shows the input and output waveforms as well as the current flow­
ing in the devices.We can quickly check our circuit simulation results as follows.
The total charge transferred to the 10 pF load capacitor as it charges from 0 V to 5 V
is 50 pC (equal to 5 V x 10 pF). This total charge should be very nearly equal to the
integral of the drain current of the pull-up (p-channel) transistor h(m2). We can get
a quick estimate of the integral of the current by approximating the area under the
waveform for id(m2) in Figure 13.3 as a triangle-half the base (about 12ns) mul­
tiplied by the height (about SmA), so that

f
22ns

I L (m2) dt =
IOns

0.5 (SmA) (l2ns) z 50pC = 5 (lOpF) .

Notice that the two estimates for the transferred charge are equal.

(13.2S)

Next, we can check the time derivative of the pull-up current. (We can also do
this by using the Probe program and requesting a plot of did (m2); the symbol dn

represents the time derivative of quantity n for Probe. The symbol id (m2) requests
Probe to plot the drain current of m2.) The maximum derivative should be roughly
equal to the maximum change of the drain current (tlh(m2) = 8 mA) divided by the
time taken for that change (about tlt = 2 ns from Figure 13.3) or

tlt 2ns
6 -1

4 xlO As . (13.29)

705

13.10 TRANSISTOR-LEVEL SIMULATION 691

6.00V+--------------4--------------~--------------+--------------+

or----or---------..\

\
I

O~-----------------D--4

-1.00V+--------------4--------------~--------------+--------------+

Ons 5ns 10ns 15ns 20ns
o v(input) II v(OI..~tput)

Time

10mA4-----------------~---------------+----------------~----------------+

OmA 0 • o-----------.--~~--~~--------+_-----[r-------_+

Ons 5ns 10ns 15ns 20ns
o id(ml) II -id(m2)

Time

FIGURE 13.3 Output Buffer (OB.IN). (Top) The input and output voltage waveforms.
(Bottom) The current flowing in the drains of the output devices.

The large time derivative of the device current, here 4 MAs-I, causes problems
in high-speed CMOS I/O. This sharp change in current must flow in the supply leads
to the chip, and through the inductance associated with the bonding wires to the chip
which may be of the order of lOnanohenrys. An electromotive force (emf), Vp , will
be generated in the inductance as follows,

706

692 CHAPTER 13 SIMULATION

dI 6 -1
V P = -L dt = -lOnH (4xlO) As = -40 m V . (13.30)

The result is a glitch in the power supply voltage during the buffer output transient.
This is known as supply bounce or ground bounce. To limit the amount of bounce
we may do one of two things:

1. Limit the power supply lead inductance (minimize L)

2. Reduce the current pulse (minimize dIldt)

We can work on the first solution by careful design of the packages and by using
parallel bonding wires (inductors add in series, reduce in parallel).

13.10.2 SPICE Models
Table 13.14 shows the SPICE parameters for the typical 0.5!lm CMOS process
(0.6!lm drawn gate length), 05, that we used in Section 2.1. These LEVEL = 3

parameters may be used with Spice3, PSpice, and HSPICE (see also Table 2.1 and
Figure 2.4).

There are several levels of the SPICE MOSFET models, the following is a sim­
plified overview (a huge number of confusing variations, fixes, and options have
been added to these models-see Meta Software's HSPICE User's Manual, Vol. II,
for a comprehensive description [1996]):

1. LEVEL = 1 (Schichman-Hodges model) uses the simple square-law IDs-V DS
relation we derived in Section 2.1 (Eqs. 2.9 and 2.12).

2. LEVEL = 2 (Grove-Frohman model) uses the 3/2 power equations that result
if we include the variation of threshold voltage across the channel.

3. LEVEL = 3 (empirical model) uses empirical equations.

4. The UCB BSIMI model (~1984, PSpice LEVEL = 4, HSPICE LEVEL = 13)

focuses on modeling observed device data rather than on device physics. A
commercial derivative (HSPICE LEVEL = 28) is widely used by ASIC vendors.

5. The UCB BSIM2 model (~1991, the commercial derivative is HSPICE
LEVEL = 39) improves modeling of subthreshold conduction.

6. The DCB BSIM3 model (~1995, the commercial derivative is HSPICE
LEVEL = 49) corrects potential nonphysical behavior of earlier models.

Table 13.15 shows the BSIMI parameters (in the PSpice LEVEL = 4 format) for
the G5 process. The Berkeley short-channel IGFET model (BSIM) family models
capacitance in terms of charge. In Sections 2.1 and 3.2 we treated the gate-drain

707

13.10 TRANSISTOR-LEVEL SIMULATION 693

TABLE 13.14 SPICE transistor model parameters (LEVEL = 3).

p-channel
SPICE n-channel value

parameter value (if different) Units Explanation

CGBO 4.0E-10 3.8E-10 Fm-1 Gate-bulk overlap capacitance (CGBoh, not CGBzero)

CGDO 3.0E-10 2.4E-10 Fm-1 Gate-drain overlap capacitance (CGDoh, not CGDzero)

CGSO 3.0E-10 2.4E-10 Fm-1 Gate-source overlap capacitance (CGSoh, not CGSzero)

CJ 5.6E-4 9.3E-4 Fm-2 Junction area capacitance

CJSW 5E-ll 2.9E-10 Fm-1 Junction sidewall capacitance

DELTA 0.7 0.29 m Narrow-width factor for adjusting threshold voltage

ETA 3.7E-2 2.45E-2 1 Static-feedback factor for adjusting threshold voltage

GAMMA 0.6 0.47 VO.5 Body-effect factor

KAPPA 2.9E-2 8 V-1 Saturation-field factor (channel-length modulation)

KP 2E-4 4.9E-5 AV-2 Intrinsic transconductance (j.1Cox ' not O.5j.1Cox)

LD 5E-8 3.5E-8 m Lateral diffusion into channel

LEVEL 3 none Empirical model

MJ 0.56 0.47 1 Junction area exponent

MJSW 0.52 0.50 Junction sidewall exponent

NFS 6Ell 6. SEll cm-2V-1 Fast surface-state density

NSUB 1. 4E1 7 8.5E16 cm-3 Bulk surface doping

PB 1 1 V Junction area contact potential

PHI 0.7 V Surface inversion potential

RSH 2 Q/square Sheet resistance of source and drain

THETA 0.27 0.29 V-1 Mobility-degradation factor

TOX 1E-8 m Gate-oxide thickness

TPG 1 -1 none Type of polysilicon gate

UO 550 135 cm2V-1s-1 Low-field bulk carrier mobility (Uzero, not Uoh)

XJ 0.2E-6 m Junction depth

VMAX 2E5 2.5E5 ms-1 Saturated carrier velocity

VTO 0.65 -0.92 V Zero-bias threshold voltage (VTzero, not VToh)

Meta Software's HSPICE User's Manual [1996], p. 15-36 and pp.16-13 to 16-15, explains these parameters.
Note that m or M both represent milli or 10-3 in SPICE, not mega or 106 (u or u = micro or 10-6 and so on).

708

694 CHAPTER 13 SIMULATION

TABLE 13.15 PSpice parameters for process G5 (PSpice LEVEL = 4) .

.MODEL NMl NMOS LEVEL=4

+ VFB=-O.7, LVFB=-4E-2, WVFB=SE-2

+ PHI=0.S4, LPHI=O, WPHI=O

+ Kl=0.7S, LKl=-SE-4, WKl=-SE-2

+ K2=2.7E-2, LK2=SE-2, WK2=-3E-2

+ ETA=-2E-3, LETA=2E-02, WETA=-SE-3

+ MUZ=600, DL=0.2, DW=O.S

+ UO=0.33, LUO=O.l, WUO=-O.l

+ Ul=3.3E-2, LUl=3E-2, WUl=-lE-2

+ X2MZ=9.7, LX2MZ=-6, WX2MZ=7

+ X2E=4.4E-4, LX2E=-3E-3, WX2E=9E-4

+ X3E=-5E-S, LX3E=-2E-3, WX3E=-lE-3

+ X2UO=-lE-2, LX2UO=-lE-3, WX2UO=SE-3

+ X2Ul=-lE-3, LX2Ul=lE-3, WX2Ul=-7E-4

+ MUS=700, LMUS=-SO, WMUS=7

+ X2MS=-6E-2, LX2MS=l, WX2MS=4

+ X3MS=9, LX3MS=2, WX3MS=-6

+ X3Ul=9E-3, LX3Ul=2E-4, WX3Ul=-SE-3

+ TOX=lE-2, TEMP=2S, VDD=S

+ CGDO=3E-lO, CGSO=3E-lO, CGBO=4E-lO

+ XPART=l

+ NO=l, LNO=O, WNO=O

+ NB=O, LNB=O, WNB=O

+ ND=O, LND=O, WND=O

* n+ diffusion

+ RSH=2.l, CJ=3.SE-4, CJSW=2.9E-lO

+ JS=lE-S, PB=O.S, PBSW=O.S

+ MJ=0.44, MJSW=0.26, WDF=O

*, DS=O

. MODEL PMl PMOS LEVEL=4

+ VFB=-0.2, LVFB=4E-2, WVFB=-O.l

+ PHI=0.S3, LPHI=O, WPHI=O

+ Kl=0.3S, LKl=-7E-02, WKl=0.2

+ K2=-4.SE-2, LK2=9E-3, WK2=4E-2

+ ETA=-lE-2, LETA=2E-2, WETA=-4E-4

+ MUZ=l40, DL=0.2, DW=O.S

+ UO=0.2, LUO=6E-2, WUO=-6E-2

+ Ul=lE-2, LUl=lE-2, WUl=7E-4

+ X2MZ=7, LX2MZ=-2, WX2MZ=l

+ X2E= SE-S, LX2E=-lE-3, WX2E=-2E-4

+ X3E=SE-4, LX3E=-2E-4, WX3E=-lE-3

+ X2UO=9E-3, LX2UO=-2E-3, WX2UO=2E-3

+ X2Ul=6E-4, LX2Ul=SE-4, WX2Ul=3E-4

+ MUS=lSO, LMUS=lO, WMUS=4

+ X2MS=6, LX2MS=-0.7, WX2MS=2

+ X3MS=-lE-2, LX3MS=2, WX3MS=l

+ X3Ul=-lE-3, LX3Ul=-SE-4, WX3Ul=lE-3

+ TOX=lE-2, TEMP=2S, VDD=S

+ CGDO=2.4E-lO, CGSO=2.4E-lO, CGBO=3.SE-lO

+ XPART=l

+ NO=l, LNO=O, WNO=O

+ NB=O, LNB=O, WNB=O

+ ND=O, LND=O, WND=O

* p+ diffusion

+ RSH=2, CJ=9.SE-4, CJSW=2.SE-lO

+ JS=lE-S, PB=O.SS, PBSW=O.SS

+ MJ=0.44, MJSW=0.24, WDF=O

*, DS=O

PSpice LEVEL = 4 is almost exactly equivalent to the UCB BSIM1 model, and closely equivalent to the HSPICE
LEVEL = 13 model (see Table 14-1 and pp. 16-86 to 16-89 in Meta Software's HSPICE User's Manual [1996].

capacitance, CGD , for example, as if it were a reciprocal capacitance, and could be
written assuming there was charge associated with the gate, QG, and the drain, QD,

as follows:

(13.31)

Equation 13.31 (the Meyer model) would be true if the gate and drain formed a
parallel plate capacitor and QG = -QD, but they do not. In general, QG:f::. -QD and
Eq. 13.31 is not true. In an MOS transistor we have four regions of charge: QG

709

13.10. TRANSISTOR-LEVEL SIMULATION 695

(gate), QD (channel charge associated with the drain), Qs (channel charge associated
with the drain), and QB (charge in the bulk depletion region). These charges are not
independent, since

(13.32)

We can form a 4x4 matrix, M, whose entries are oQ/oV j , where Vj = V G'VS'
VD, and VB. Then CU=Mii are the terminal capacitances; and Cij=-Mij' where it=j,
is a transcapacitance. Equation 13.32 forces the sum of each column of M to be
zero. Since the charges depend on voltage differences, there are only three indepen­
dent voltages (V GB, V DB, and VSB' for example) and each row of M must sum to
zero. Thus, we have nine (= 16 - 7) independent entries in the matrix M. In general,
Cij is not necessarily equal to Cp. For example, using PSpice and a LEVEL = 4 BSIM
model, there are nine independent partial derivatives, printed as follows:

Derivatives of gate (dQg/dVxy) and bulk (dQb/dVxy) charges

DQGDVGB 1.04E-14

DQGDVDB -1.99E-15

DQGDVSB -7.33E-15

DQDDVGB -1.99E-15

DQDDVDB 1. 99E-15

DQDDVSB O.OOE+OO

DQBDVGB -7.51E-16

DQBDVDB O.OOE+OO

DQBDVSB -2.72E-15

From these derivatives we may compute six nonreciprocal capacitances:

CGB = oQGloV GB + oQGloV DB + oQGloVSB

C BG = -oQB1oV GB

CGS = -oQG1oVSB

CSG = oQGloV GB + oQB1oV GB + oQD1oV GB

CGD = -oQG1oV DB

C DG = -oQD1oV GB

and three terminal capacitances:

C GG = oQGloV GB

C DD = oQD1oV DB

CSS = -(oQG1dVSB + oQB1oVSB + oQD1oVSB)

(13.33)

(13.34)

710

696 CHAPTER 13 SIMULATION

Nonreciprocal transistor capacitances cast a cloud over our analysis of gate
capacitance in Section 3.2, but the error we made in neglecting this effect is small
compared to the approximations we made in the sections that followed. Even though
we now find the theoretical analysis was simplified, the conclusions in our treatment
of logical effort and delay modeling are still sound. Sections 7.3 and 9.2 in the book
on transistor modeling by Tsividis [1987] describe nonreciprocal capacitance in
detail. Pages 15-42 to 15-44 in Vol. II of Meta Software's HSPICE User Manual
[1996] also gives an explanation of transcapacitance.

13.11 Summary

We discussed the following types of simulation (from high level to low level):

• Behavioral simulation includes no timing information and can tell you only if
your design will not work.

• Prelayout simulation of a structural model can give you estimates of perfor­
mance, but finding a critical path is difficult because you need to construct
input vectors to exercise the model.

• Static timing analysis is the most widely used form of simulation. It is conve­
nient because you do not need to create input vectors. Its limitations are that
it can produce false paths-critical paths that may never be activated.

• Formal verification is a powerful adjunct to simulation to compare two dif­
ferent representations and formally prove if they are equal. It cannot prove
your design will work.

• Switch-level simulation is required to check the behavior of circuits that may
not always have nodes that are driven or that use logic that is not comple­
mentary.

• Transistor-level simulation is used when you need to know the analog, rather
than the digital, behavior of circuit voltages.

There is a trade-off in accuracy against run time. The high-level simulators are
fast but are less accurate.

13 .. 12 Problems

* = Difficult, ** = Very difficult, *** = Extremely difficult

13.1 (Errors, 30 min.) Change a <= b to a >= b in line 4 in module reference
in Section 13.2.1. Simulate the testbench (write models for the five logic cell models
not shown in Section 13.2.1). How many errors are there, and why? Answer: 56.

711

13.12 PROBLEMS 697

13.2 (False paths, 15 min.) The following code forces an output pin to a con­
stant value. Perform a timing analysis on this model and comment on the results.

module check_critical_path_2 (a, z);

input a; output Zi supply! VDDi supplyO VSSi

nd02dO bl_i3 (.al(a), .a2(VSS), .zn(z»i II 2-input NAND
endmodule

III
112
1/3

114

13.3 (Timing loops, 30 min.) The following code models a set-reset latch with
feedback to implement a memory element. Perform a timing analysis on this model
and comment on the results.

module check_critical_path_3 (s, r, q, qn)i
input s, ri output q, qn; supply! VDD; supplyO VSS;

nr02dO bl il (.al(s), .a2(qn), .zn(q»i II 2-input NOR

nr02dO bl_i2 (.al(r), .a2(q), .zn(qn»i II 2-input NOR
endmodule

III
112
113

114
liS

13.4 (Simulation script, 30 min.) Perform a gate-level simulation of the
comparator/MUX in Section 13.2.3. Write a script to set input values and so on.

13.5 (Verilog loops, 30 min.) Change the index from integer to reg (width
three) in each loop in testbench. v from Section 13.2. Explain the simulation
result.

13.6 (Verilog time, 30 min.) Remove '#1' from line 15 in testbench. v from
Section 13.2. Explain carefully the simulation result.

13.7 (Infinite loops, 30 min.) Construct an HDL program that loops infinitely
on a UNIX machine (with no output file!) and explain how the following helps:

<293> ps

PID TT STAT TIME COMMAND

28920 pI R 0:30 verilog infinite_loop.v

<294> kill -9 28920

13.8 (Verilog graphics, 30 min.) Experiment with graphical waveform dumps
from Verilog. For example, in VeriWell you need to include the following statement:

initial $dumpvarsi

The file Dump file veriwell. drop should appear. Next, select File ... , then
Convert Duropvar... Write a cheat sheet on how to use and display simulation
results from a hierarchical model.

13.9 (Unknowns, 30 min.) Explain, using truth tables, the function of primitive
G6 in module mx21dl from Section 13.2.1. Hint: Consider unknown propagation.
Eliminate primitive G6 as follows and use simulation to compare the two models:

not G3(N3,s)i and G4(N4,iO,N3), G5(N5,s,il)i or G7(z,N4,N5);

712

698 CHAPTER 13 SIMULATION

13.10 (Data books, 10min.) Explain carefully what you safely can and cannot
deduce from the data book figures in Table 13.16.

TABLE 13.16 Input capacitances-AOlabcd family (Problem 13.10).

Area

Performance

1X drive

0.034 pF

0.145 pF

2X drive

0.069 pF

0.294 pF

4X drive

0.138 pF

0.588 pF

13.11 (Synthesis, 30 min.) Synthesize comp_mux_rrr.v in Section 13.7. What
type and how many sequential elements result? Answer: 16.

13.12 (Place and route, 60 min.) Route both comp_mux.v (Section 13.2) and
comp _ mux _rrr. v (Section 13.7) using an FPGA. What fraction of the chip is used?
Answer: For an Actel 1415 FPGA, comp _ mux _ rrr . v uses about 10 percent of the
available logic.

13.13 (Timing analysis, 60 min.) Perform timing analysis on a routed version of
comp _mux. v from Section 13.2. Use worst-case commercial conditions.

13.14 (***NAND gate delay, 120min.) The following example of a six-input
NAND gate illustrates the difference between transistor-level and other levels of
simulation. A designer once needed a delay element (do not ask why!). Looking at
the data book they found a six-input NAND gate had the right delay, but they did not
know what to do with the other five inputs. So they tied all six inputs together. This
is a horrendous error, but why? Hint: You might have to simulate a structural model
using both digital simulation and a circuit-level simulation in order to explain.

13.15 (Logic systems, 30 min.) Compare the 12 value system of Table 13.5
with the IEEE 1164 standard and explain: Which logic values are equivalent in both
systems, which logic values have no equivalents, and why there is a difference in the
number of values (12 versus 9) when both systems have the same number of logic
levels and logic strengths?

13.16 (VHDL overloaded functions, 30 min.) Write a definition for the type
stdlogic _table used in the and function in Section 13.3.2,

constant and_table:stdlogic_table

Compile, simulate, and test the and function.

13.17 (**Scheduling transactions in VHDL, 60 min.) (From an example in the
VHDL LRM.) Consider this assignment to an integer S in a VHDL process:

S <= reject 15 ns inertial 12 after 20 ns, 18 after 41 ns;

713

13.12 PROBLEMS 699

Assume that at the time this signal assignment is executed, the driver for s in the
process has the following contents (the first entry is the current driving value):

1 2 2 12 5 8

now +3ns +12ns +13ns +20ns +42ns

This is called the projected output waveform (times are relative to the current
time). The LRM states the rule for updating a projected output waveform consists of
the deletion of zero or more previously computed transactions (called old transac­
tions) from the projected output waveform, and the addition of the new transactions,
as follows:

1. All old transactions that are projected to occur at or after the time at which the
earliest new transaction is projected to occur are deleted from the projected
output waveform.

2. The new transactions are then appended to the projected output waveform in
the order of their projected occurrence.

If the initial delay is inertial delay, the projected output waveform is further modi­
fied as follows:

1. All of the new transactions are marked.

2. An old transaction is marked if the time at which it is projected to occur is less
than the time at which the first new transaction is projected to occur minus the
pulse rejection limit.

3. For each remaining unmarked, old transaction, the old transaction is marked if
it immediately precedes a marked transaction and its value component is the
same as that of the marked transaction.

4. The transaction that determines the current value of the driver is marked.

5. All unmarked transactions (all of which are old transactions) are deleted from
the projected output waveform.

For the purposes of marking transactions, any two successive null transactions in a
projected output waveform are considered to have the same value component. Using
these rules compute the new projected output waveform.

13.18 (***awk, 120min.) Write an awk program with the following specifica­
tion to compare two simulations:

program to check two files with the format:
time signal value

to check agreement within time tolerance delta (by default 0.1)

Use: check file1 file2 [delta]

13.19 (VITAL, 60 min.) Simulate the model, sdf _ testbench, shown in
Section 13.5.5, with and without back-annotation timing information in SDF _b. sdf.

714

700 CHAPTER 13 SIMULATION

13.20 (Formal verification, 60 min.) Write a cheat sheet explaining how to run
your formal verification tool. Repeat the example in Section 13.8.I.

13.21 (***Beetle problem) (Based on a problem by Seitz.) A planet has many
geological gem mazes: A maze covers a square km or so, on a 10 mm grid; a maze
cell is 10 mm by 10 mm and gems lie at cell centers; there is a path from every maze
cell to every other; on average one in 64 cells has an overhead opening; on average
one in seven cells has a single gem; there are no gems under overhead openings.

You are to design a gem-mining beetle ASIC with the following inputs: a nomi­
nal 1 MHz single-phase clock, CLK; wall sensors: WL, WR, WF, WB (wall to
left/right/forward!behind); light sensors: LL, LR, LF, LB (light left/right/for­
ward!behind); low-battery indicator: BLOW; gem sensor: GEM (directly over a gem);
opening sensor: OPEN (when under an opening).

All signals are active high and the light sensor outputs are mutually exclusive.
The beetle ASIC must produce the following (mutually exclusive) signals: move for­
ward, MF; move backward, MB; turn 90 degrees clockwise, TC; turn 90 degrees
anticlockwise, TA; pick up a gem, PICKUP; throw gem up and out of overhead
opening, THROWUP; jump up to surface and shut down, SHUTUP.

The beetle specifications and limitations are as follows: Beetles are dropped into
the maze to find the gems; beetles must find gems and carry them to an opening;
beetles can eject gems through openings; beetles can carry only one gem at a time.

A beetle move is one of the following: taking one step (moving to an adjacent
cell), turning 90 degrees, picking up a gem, ejecting a gem, jumping out of open­
ing-all take the same time and energy. A battery can provide energy for about 200
moves before the low-battery signal comes on. After the low-battery warning is sig­
naled the battery has energy for 50 moves to find an overhead opening, and the bee­
tle must then eject itself for recharging. The cost of the beetle determines that we
would like the probability of losing a beetle be below 0.01.

The following describes a state machine to drive a beetle. Jim Rowson used a
state-machine language that he developed-along with the first CAD tool that could
automatically create state machines:

Jim Rowson's beetle
sm smbtl;

clock clk;
reset res --> resetState;
inputs WL WL WR WB GEM LF LL LR LB OPEN BLOW;
outputs MF=O MB=O TC=O TA=O PICKUP=O THROWUP=O SHUTUP=O;
outputs haveAgem SHUTUP;

let getout = (BLOWlhaveAgem) & (LLILFILRILB);

state resetState

state searchState
BLOW & OPEN
haveAgem & OPEN

--> searchState haveAgem=O SHUTUP=O;

--> jumpState,

--> ejectstate,

715

getout & LL
getout & LF

getout & LR
getout & LB

!haveAgem & GEM
!WL

!WF

!WR
!WB

state goFwdState
state turnLState

state turnRState

state turnAroundState
state ejectState
state jumpState
state getGemState
state shutDownState

state turnAgainState
end

13.12 PROBLEMS 701

--> turnLstate,
--> goFwdState,

--> turnRstate,
--> turnAroundState,

--> getGemState,
--> turnLState,

--> goFwdState,

--> turnRState,

--> turnAroundStatei
--> MF searchStatei
--> TA goFwdStatei

--> TC goFwdStatei

--> TC turnAgainStatei
--> THROWUP !haveAgem searchState;

--> SHUTUP shutdownState;

--> PICKUP haveAgem searchState;
--> SHUTUP shutDownState;

--> TC searchState;

a. (120 min.) Draw Jim's state machine diagram and translate it to an HDL.

b. (120 min.) Build a model for the maze that will work with Jim's design.

c. (120 min.) Simulate the operation of Jim's beetle using your maze model.

d. (Hours) Can you do better than Jim?

13.22 (Switch-level simulation, 120 min.) Perform the switch-level simulation
shown in Section 13.9.

13.23 (**Simulation, 60 min.) (From a question posed by Ray Ryan to the
VITAL timing group.) Suppose we have a two-input NAND gate (inputs 11 and 12,
and output Q) with separate path delays from 11 to Q and from 12 to Q with delays
as follows:

tpd_Il_Q =>

(trOl => 10 ns,
trIO => 7 ns)

tpd_I2_Q =>

falling II -> rising Q

rising II -> falling Q

(trOl => 5 ns, -- falling 12 -> rising Q

trIO => 3 ns) -- rising II -> falling Q

a. For inputs: (11:0->1,9 ns; 12:0->1,10 ns), should Q fall at:

12 ns, 13 ns, 16 ns, 17 ns or other?

b. For inputs: (12:0->1,9 ns; 11:0->1,10 ns), should Q fall at:

12 ns, 13 ns, 16 ns, 17 ns or other?

c. For inputs: (12:0->1, 10 ns; 11:0->1,10 ns), should Q fall at:

13 ns, 15 ns, 17 ns, 20 ns or other?

d. For inputs: (11:1->0,9 ns; 12:1->0,10 ns), should Q rise at:

716

702 CHAPTER 13 SIMULATION

14 ns, 15 ns, 19 ns, 20 ns or other?

e. For inputs: (12:1->0,9 ns; 11:1->0, 10 ns), should Q rise at:

14 ns, 15 ns, 19 ns, 20 ns or other?

f. For inputs: (11:0->1,10 ns; 12:0->1,10 ns), should Q fall at:

13 ns, 15 ns, 17 ns, 20 ns or other?

In each case explain your answer using actual simulation results to help you.

13.24 (VHDL trace, 30 min.) Write a simple testbench and trace through the
following VHDL behavioral simulation.

library IEEE;

use IEEE.std_logic_1164.all; use IEEE.NUMERIC_STD.all;

entity comp_mux is

generic (TPD : TIME := 1 ns);

port (A, B : in STD_LOGIC VECTOR (2 downto 0);

Y : out STD LOGIC VECTOR (2 downto 0));

end;

architecture Behave of comp_mux is

begin

Y <= A after TPD when (A <= B) else B after TPD;

end;

--1

--2

--3

--4

--5

--6
--7

--8
--9

--10
--11

13.25 (VHDL simulator, 30 min.) Explain the steps in using your VHDL simu­
lator. Are there separate compile, analyze, elaborate, initialization, and simulate
phases. Where and when do they occur. How do you know?

13.26 (Debugging VHDL, 60 min.) Correct the errors in the following code:

entity counter8 is port (

rset, updn, clock : in bit; carry : out bit; count : buffer integer

range 0 to 255);

end counter8;

architecture behave of counter8 is

begin process

begin

wait until clock'event and clock = 'I';

if (rset = 'I') then count <= 0; carry <= '0';

else case updn

when 'I' => count <= count + 1;

if (count = 255) then carry <= 'I'; else carry <= '0'; end if;

when '0' => count <= count - 1;

if (count 0) then carry <= 1; else carry <= 0; end if;
end case;

end if;

end process;

end behave;

717

13.12 PROBLEMS 703

13.27 (***VITAL flip-flop) The following VITAL code models a D flip-flop:

LIBRARY ieee; USE ieee.Std_Logic_1164.all;

USE ieee.Vital_Timing.all; USE ieee.Vital_Primitives.all;
ENTITY dff IS

GENERIC (

TimingChecksOn : BOOLEAN := TRUE;

XGenerationOn : BOOLEAN := TRUE;

InstancePath : STRING := "*";

tipd_Clock: DelayTypeOl:= (0 ns, 0 ns);

tipd_Data: DelayTypeOl:= (0 ns, 0 ns);

tsetup_Data_Clock : DelayTypeOl := (0 ns, 0 ns);
thold_Data_Clock : DelayTypeOl := (0 ns, 0 ns);

tpd_Clock_Q : DelayTypeOl := (0 ns, 0 ns);

tpd_Clock_Qbar : DelayTypeOl := (0 ns, 0 ns));
PORT (Clock, Data: Std_Logic; Q,Qbar:OUT Std_Logic);

END dff;

ARCHITECTURE Gate OF dff IS

ATTRIBUTE Vital Levell of gate : ARCHITECTURE IS TRUE;
SIGNAL Clock_ipd Std_Logic:= 'X';

SIGNAL Data_ipd : Std_Logic := 'X';

BEGIN
Wire_Delay:BLOCK BEGIN -- INPUT PATH DELAYs

vitalPropagateWireDelay
(Clock_ipd, Clock, vitaIExtendToFilIDelay(tipd_Clock));

VitalPropagateWireDelay
(Data_ipd, Data, VitalExtendToFilIDelay(tipd_Data));

END BLOCK;
VitalBehavior : PROCESS (Clock_ipd, Data_ipd)

CONSTANT Dff_tab:VitaIStateTableType:= (

--Vio CLOCK DATA IQ Q QBAR
'X· 1

, - , , - , 'X' , 'X') ,
(

, - , '\' , 10 ' I
, - , 10 1

, '1 ') , ,
(

, - ,
t \ 1, '1', , - , , 1 ' 1 '0 ') , ,

(
, - , , \' , I X t ,

, - ,
I X I, 'X') ,

(
, '0 I, 10' , 10 1

, , I') ,
(

, - ,
1 I' , I I' 1 I I' , '0 ') , ,

(
, 'D', , - , , - , 'X' , 'X') ,

(
, fBI, , - , , - ,

I S I, 'S') ,
(

, - , 'X' , , - , , - ,
I S I, 'S')) ; ,

-- Anything else generates X on Q and QBAR

-- Timing Check Results

VARIABLE Tviol Data Clock XOI := '0';

Timing Violation
Active Clock Edge

X Reduction

X Generation

Non-Active Clock Edge

VARIABLE Tmkr Data Clock TimeMarkerType;

-- Functionality Results
VARIABLE Violation:XOl:='O';
VARIABLE PrevData:Std_Logic_Vector(1 to 3):=(OTHERS=>'X');

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10
--11

--12

--13

--14

--15

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10

--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

--22

--23

--24

--25

--26

--27

--28

--29

--30

718

704 CHAPTER 13 SIMULATION

VARIABLE Results:Std_Logic_Vector(l to 2):=(OTHERS =>'X');

ALIAS Q_zd:Std_Logic IS Results(l);

ALIAS Qbar_zd:Std_Logic IS Results(2)i

-- Output Glitch Detection Variables

VARIABLE Q_GlitchData : GlitchDataType;

VARIABLE Qbar_GlitchData : GlitchDataTypei

BEGIN -- Timing Check Section

IF (TimingChecksOn) THEN

VitalTimingCheck (

Data_ipd, "Data", Clock_ipd, "Clock",

t_setup_hi => tsetup_Data_Clock(tr01),

t_setup_lo => tsetup_Data_Clock(tr10),

t hold hi => thold_Data_Clock(tr01),

t_hold_lo => thold_Data_Clock(tr10),

CheckEnabled => TRUE,

Ref Transition => (Clock_ipd = '0'),

HeaderMsg => InstancePath & "/DFF",

TimeMarker => Tmkr_Data_Clock,

Violation => Tviol_Data_Clock);

END IF;

Functionality Section

Violation := Tviol_Data Clock ;

VitalStateTable(StateTable => Dff_tab,

DataIn => (Violation, Clock_ipd, Data_ipd),

NumStates => 1,

Result => Results,

PreviousDataIn => PrevData);

Path Delay Section

VitalPropagatePathDelay (Q, "Q", Q_zd,

Paths => (0 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Q), TRUE),

1 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Q), TRUE)),

GlitchData => Q_GlitchData,

GlitchMode => MessagePlusX,

GlitchKind => OnEvent)i

VitalPropagatePathDelay (Qbar, "Qbar", Qbar_zd,

Paths => (0 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Qbar), TRUE),

1 => (Clock_ipd'LAST_EVENT,

VitalExtendToFillDelay(tpd_Clock_Qbar), TRUE)),

GlitchData => Qbar_GlitchData,

GlitchMode => MessagePlusX,

GlitchKind => OnEvent)i
END PROCESS;

END Gate;

a. (120 min.) Build a testbench for this model.

--31

--32

--33

--34

--35

--36

--37

--38

--39

--40

--41

--42

--43

--44

--45

--46

--47

--48

--49

--50

--51

--52

--53

--54

--55

--56

--57

--58

--59

--60

--61

--62

--63

--64

--65

--66

--67

--68

--69

--70

--71

--72

--73

--74

--75

--76

719

13.12 PROBLEMS 705

b. (30 min.) Simulate and check the model using your testbench.

c. (60 min.) Explain the function of each line.

d. (60 min.) Explain the glitch detection.

e. (120 min.) Explain the unknown propagation behavior.

13.28 (VCD, 30 min.) Verilog can create a value change dump (VCD) file:

module waves; reg clock; integer count;

initial begin clock = 0; count = 0; $dumpvars; #340 $finish; end
always #10 clock = - clock;

always begin @ (negedge clock); if (count == 7) count = 0;
else count = count + 1; end

endmodule

A VCD file contains header information, variable definitions, and the value changes
for variables [Verilog LRM 15]. Try and explain the format of the file that results.

13.29 (*Formal verification, 60 min.) (Based on an example by Browne,
Clarke, Dill, and Mishra.) A designer needs to fold an 8-bit ripple-carry adder into a
small space on an ASIC and check the circuit extracted from the layout. With two
8-bit inputs, A and B, and a I-bit carry Cin, exhaustively testing all possible inputs
requires 217 or over 128,000 input vectors. Instead the designer selects a subset of
tests. The three tests in Table 13.17 check that all the bits of the output can be '0'

or 'I'. The two tests in Table 13.18 make sure that the carry propagates through the

TABLE 13.17 Test to check for output toggling TABLE 13.18 Test to check for carry
(Problem 13.29). propagation (Problem 13.29).

A 00000000 00000000 01010101 A 00000001

B 00000000 11111111 10101010 B 11111111

Cin 0 0 0 Cin 0

Sum 000000000 011111111 011111111 Sum 100000000

adder, and that the adder can handle the largest numbers. The designer then repeats
all of these five tests with the carry-in Cin set to '1' instead of '0'. Next the
designer performs a series of 24 tests using the three patterns shown in Table 13.19,
with all eight possible combinations of '0' and '1' for x, y, and z. These patterns
test each full adder in isolation for all possible sum inputs (A and B) and carry input
(Cin). These tests appear comprehensive and reduce the number of vectors required
from over 128,000 to 34. Confident, the designer releases the chip for fabrication.
Unfortunately, the chip does not work. Which connections between adders did the
designer's tests fail to check?

11111111

11111111

0

111111110

720

706 CHAPTER 13 SIMULATION

TABLE 13.19 Test with all possible combinations of' 0' and' l' forx,
y, and z (Problem 13.29).

A

B

C

Sum

xzOxzOxz

yzOyzOyz

o
csOcsOcsO

zOxzOxzO

zOyzOyzO

z

zOcsOcsOz

OxzOxzOx

OyzOyzOy

z

OcsOcsOcs

13.30 (*BSIMI parameters, 120 min.) SPICE models are tangled webs. For
example, there are two formats for the 69 UCB BSIMI transistor parameters: (1)
using parameter names (Table 13.15); and (2) without parameter names
(Table 13.20). MOSIS uses format (2). The first 58 parameters starting with VFB (19
rows of 3 parameters plus one, XPART) are the same order in format (1) and (2). For­
mat (2) uses two dummy parameters (zero) following XPART. The final nine parame­
ters (NO to WND) are the same order in both formats. There are 10 additional
parameters that follow the /1- and p-channel transistor parameters that model the /1-

and p-diffusion, respectively (in the same order in both formats). To complicate
things further: (i) HSPICE, SPICE, and PSpice use different names for some param­
eters (for example PSpice uses VFB, HSPICE uses VFBO); (ii) HSPICE accepts
names for the dummy parameters (DUMI and DUM2), but PSpice does not; (iii)
HSPICE accepts the final parameter DS (though it is ignored), but PSpice does not
(DS models mask bias and can be neglected without too much fear).

Convert the models shown in Table 13.20 to format (2) for your chosen simula­
tor (PSpice LEVEL = 4, HSPICE LEVEL = 13). Compare the resulting I DS-V DS char­
acteristics with the LEVEL = 3 parameters (Table 13.14) and the (PSpice) LEVEL = 4

parameters (Table 13.15) for the G5 process. MOSIS has stored the results of its
process runs in the format shown in Table 13.20.

13.31 (**Nonreciprocal capacitance, 120 min.)

a. Starting from the equation for transient current flowing into the gate,

. dQG dV D dQG dV G dQGdVS dQG dV B
l = ----+----+----+----
G d V D dt d V G dt d V S dt d V B dt '

(13.35)

(where 8Q/6Vj are elements of matrix M), show

dV dV G dVs dV B
iG = -CGD -

I
D + C GG -

1
- - C GS -

d
-CGB (, t (, t .t dt

(13.36)

and thus that the rows of M sum to zero by showing that

(13.37)

721

13.12 PROBLEMS 707

TABLE 13.20 MOSIS SPICE parameters (Problem 13.30).

*NMOS PARAMETERS

-7.05628E-Ol,-3.86432E-02, 4.98790E-02

8.41845E-Ol, O.OOOOOE+OO, O.OOOOOE+OO

7.76570E-Ol,-7.65089E-04,-4.83494E-02

2.66993E-02, 4.57480E-02,-2.58917E-02

-1.94480E-03, 1.74351E-02,-5.08914E-03

5.75297E+02,1.70587E-00l,4.75746E-00l

3.30513E-Ol, 9.75110E-02,-8.58678E-02

3.26384E-02, 2.94349E-02,-1.38002E-02

9.73293E+00,-5.62944E+00, 6.55955E+00

4.37180E-04,-3.07010E-03, 8.94355E-04

-5.05012E-05,-1.68530E-03,-1.42701E-03

-1.11542E-02,-9.58423E-04, 4.61645E-03

-1.04401E-03, 1.29001E-03,-7.10095E-04

6.92716E+02,-5.21760E+Ol, 7.00912E+00

-6.41307E-02, 1.37809E+00, 4.15455E+00

8.86387E+00, 2.06021E+OO,-6.19817E+OO

9.02467E-03, 2.06380E-04,-5.20218E-03

9.60000E-003, 2.70000E+Ol, 5.00000E+00

3.60204E-OIO,3.60204E-OIO,4.37925E-OIO

1.00000E+000,0.00000E+000,0.00000E+OOO

1.00000E+000,O.00000E+000,0.OOOOOE+000

O.OOOOOE+OOO,O.OOOOOE+OOO,O.OOOOOE+OOO

O.OOOOOE+OOO,O.OOOOOE+OOO,O.OOOOOE+OOO

*N+ diffusion::

2.1, 3.5e-04, 2.ge-lO, le-08, 0.8

0.8, 0.44, 0.26, 0, 0

*PMOS PARAMETERS

-2.02610E-Ol, 3.59493E-02,-1.10651E-Ol

8.25364E-Ol, O.OOOOOE+OO, O.OOOOOE+OO

3.54162E-Ol,-6.88193E-02, 1.52476E-Ol

-4.51065E-02, 9.41324E-03, 3.52243E-02

-1.07507E-02, 1.96344E-02,-3.51067E-04

1.37992E+02,1.92169E-00l,4.68470E-00l

1.89331E-Ol, 6.30898E-02,-6.38388E-02

1.31710E-02, 1.44096E-02, 6.92372E-04

6.57709E+00,-1.56096E+00, 1.13564E+00

4.68478E-05,-1.09352E-03,-1.53111E-04

7.76679E-04,-1.97213E-04,-1.12034E-03

8.71439E-03,-1.92306E-03, 1.86243E-03

5.98941E-04, 4.54922E-04, 3.11794E-04

1.49460E+02, 1.36152E+Ol, 3.55246E+00

6.37235E+00,-6.63305E-Ol, 2.25929E+OO

-1.21135E-02, 1.92973E+00, 1.00182E+OO

-1.16599E-03,-5.08278E-04, 9.56791E-04

9.60000E-003, 2.70000E+Ol, 5.00000E+00

4.18427E-OIO,4.18427E-OIO,4.33943E-OIO

1.00000E+000,0.00000E+000,0.00000E+000

1.00000E+000,0.00000E+000,0.00000E+000

O.OOOOOE+OOO,O.OOOOOE+OOO,O.OOOOOE+OOO

O.OOOOOE+OOO,O.OOOOOE+OOO,O.OOOOOE+OOO

*P+ diffusion::

2, 9.452ge-04, 2.4583e-lO, le-08, 0.85

0.85, 0.439735, 0.237251, 0, 0

Source: MOSIS, process = HP-NID, technology = scn05h, run = n5bo, wafer= 42, date = 1-Feb-1996.

and three other similar equations for C DD, C ss' and C BB'

b.Show

dVDB elV CB elVSB -C --+C --- C --
CD elt cc dt cs dt

and derive similar equations for the transient currents is, if), and iB .

c. Using the fact that ic + is + iD + iB = 0, show

(13.38)

(13.39)

722

13.14 REFERENCES 709

Capilano Computing. 1997. LogicWorks Verilog Modeler: Interactive Circuit Simulation
Software for Windows and Macintosh. Menlo Park, CA: Capilano Computing, 102 p. ISBN
0201895854. TK7888.4.L64.

Carey, G. F., et al. 1996. Circuit, Device, and Process Simulation: Mathematical and Numerical
Aspects. New York: Wiley, 425 p. ISBN 0471960195. TK7867.C4973. 31 pages of refer­
ences.

Cheng, K.-T., and V. D. Agrawal. 1989. Unified Methods for VLSI Simulation and Test
Generation. Norwell, MA: Kluwer, 148 p. ISBN 0-7923-9025-3. TK7874.C525. 377
references. The first three chapters give a good introduction to fault simulation and test­
vector generation.

Ciccarelli, F. A. 1995. Circuit Modeling: Exercises and Software. 3rd ed. Englewood Cliffs:
Prentice-Hall, 190 p. ISBN 0023224738. TK454.C59. Includes BreadBoard, an IBM-PC
compatible circuit analysis computer program.

Conant, R. 1993. Engineering Circuit Analysis with PSpice and Probe: Macintosh Version. New
York: McGraw-Hill, 176 p. ISBN 0079116795. TK454.C674.

Divekar, D. 1988. FET Modeling for Circuit Simulation. Boston: Kluwer, 183 p. ISBN
0898382645. TK7871.95.D58. 12 pages of references.

Fenical, L. H. 1992. PSpice: A Tutorial. Englewood Cliffs, NJ: Prentice-Hall, 344 p. ISBN
0136811493. TK454.F46.

Fjeldly, T. A., T. Ytterdal, and M. Shur. 1997. Introduction to Device Modeling and Circuit
Simulation. New York: Wiley, ISBN 0471157783. TK7871.85.F593.

Heorbst, E. (Ed.). 1986. Logic Design and Simulation. New York: Elsevier Science. ISBN 0-
444-87892-0. TK7868.L6L624.

Hill, D. D., and D. R. Coelho. 1987. Multi-Level Simulation for VLSI Design. Boston: Kluwer,
206 p. ISBN 0-89838-184-3. TK7874.H525.

IEEE 1076.4-1995. IEEE Standard VITAL Applicatioll-Specijic Integrated Circuit (ASIC) Mod­
eling Specification. 96p. ISBN 1-55937-691-0. IEEE Ref. SH94382-NYF. The Institute of
Electrical and Electronics Engineers. Available from The IEEE, 345 East 47th Street, New
York, NY 10017 USA. [cited on p. 664 of this chapter]

Kielkowski, R. M. 1994. Inside SPICE: Overcoming the Obstacles of Circuit Simulation. New
York: McGraw-Hill, 188 p. ISBN 0-07-911525-X. TK454.K48.

Lamey, R. 1995. The Illustrated Guide to PSpice. Albany, NY: Delmar, 219 p. ISBN
0827365241. TK454.L35.

Massobrio, G., and P. Antognetti. 1993. Semiconductor Device Modeling with SPICE. New
York: McGraw-Hill, 479 p. ISBN 0-07-002469-3. TK7871.85.S4454. Contains a more
detailed analysis of the SPICE models than other introductory texts.

McCalla, W. J. 1988. Fundamentals of Computer-Aided Circuit Simulation. Boston: Kluwer,
175 p. ISBN 0-89838-248-3. TK7874.M355.

Meta Software. 1996. HSPICE User's Manual. No catalog information. Available from Cus­
tomer Service, 1300 White Oaks Road, Campbell, CA 95008, cs@metasw. com. This is a
three-volume paperback set that is available separately from the HSPICE program. Volume
I, Simulation and Analysis, explains the operation of the HSPICE program. Volume II, Ele­
ments and Device Models, contains a comprehensive description of all device models used
in HSPICE. Volume III, Analysis and Methods, details input control, types of analysis, out­
put format, optimization, filter and system design, statistical and worst-case analysis, char­
acterization, behavioral applications, and signal integrity (packaging). [cited on p. 692,
p. 693, p. 694, p. 696 of this chapter]

Miczo, A. 1994. Digital Logic Testing and Simulation. New York: Harper & Row, 414 p. ISBN
0-06-044444-4. TK7868.D5M49. .

723

TEST

14.1 The Importance of Test 14.8 A Simple Test Example

14.2 Boundary-Scan Test 14.9 The Viterbi Decoder Example

14.3 Faults 14.10 Summary

14.4 Fault Simulation 14.11 Problems

14.5 Automatic Test-Pattern Generation 14.12 Bibliography

14.6 Scan Test 14.13 References

14.7 Built-in Self-test

ASICs are tested at two stages during manufacture using production tests. First, the
silicon die are tested after fabrication is complete at wafer test or wafer sort. Each
wafer is tested, one die at a time, using an array of probes on a probe card that
descend onto the bonding pads of a single die. The production tester applies signals
generated by a test program and measures the ASIC test response. A test program
often generates hundreds of thousands of different test vectors applied at a fre­
quency of several megahertz over several hundred milliseconds. Chips that fail are
automatically marked with an ink spot. Production testers are large machines that
take up their own room and are very expensive (typically well over $1 million).
Either the customer, or the ASIC manufacturer, or both, develops the test program.

A diamond saw separates the die, and the good die are bonded to a lead carrier
and packaged. A second, final test is carried out on the packaged ASIC (usually
with the same test vectors used at wafer sort) before the ASIC is shipped to the cus­
tomer. The customer may apply a goods-inward test to incoming ASICs if the cus­
tomer has the resources and the product volume is large enough. Normally, though,
parts are directly assembled onto a bare printed-circuit board (PCB or board) and
then the board is tested. If the board test shows that an ASIC is bad at this point, it is

711

724

712 CHAPTER 14 TEST

difficult to replace a surface-mounted component soldered on the board, for exam­
ple. If there are several board failures due to a particular ASIC, the board manufac­
turer typically ships the defective chips back to the ASIC vendor. ASIC vendors
have sophisticated failure analysis departments that take packaged ASICs apart and
can often determine the failure mechanism. If the ASIC production tests are ade­
quate, failures are often due to the soldering process, electrostatic damage during
handling, or other problems that can occur between the part being shipped and board
test. If the problem is traced to defective ASIC fabrication, this indicates that the test
program may be inadequate. As we shall see, failure and diagnosis at the board level
is very expensive. Finally, ASICs may be tested and replaced (usually by swapping
boards) either by a customer who buys the final product or by servicing-this is
field repair. Such system-level diagnosis and repair is even more expensive.

Programmable ASICs (including FPGAs) are a special case. Each programma­
ble ASIC is tested to the point that the manufacturer can guarantee with a high
degree of confidence that if your design works, and if you program the FPGA cor­
rectly, then your ASIC will work. Production testing is easier for some programma­
ble ASIC architectures than others. In a reprogrammable technology the
manufacturer can test the programming features. This cannot be done for a one-time
programmable antifuse technology, for example. A programmable ASIC is still
tested in a similar fashion to any other ASIC and you are still paying for test devel­
opment and design. Programmable ASICs also have similar test, defect, and manu­
facturing problems to other members of the ASIC family. Finally, once a
programmable ASIC is soldered to a board and part of a system, it looks just like
any other ASIC. As you will see in the next section, considering board-level and sys­
tem-level testing is a very important part of ASIC design.

14m 1 The Importance of Test

One measure of product quality is the defect level. If the ABC Company sells
100,000 copies of a product and 10 of these are defective, then we say the defect
level is 0.1 percent or 100 ppm. The average quality level (AQL) is equal to one
minus the defect level (ABC's AQL is thus 99.9 percent).

Suppose the semiconductor division of ABC makes an ASIC, the bASIC, for the
PC division. The PC division buys 100,000 bASICs, tested by the semiconductor
division, at $10 each. The PC division includes one surface-mounted bASIC on each
PC motherboard it assembles for the aPC computer division. The aPC division tests
the finished motherboards. Rejected boards due to defective bASICs incur an aver­
age $200 board repair cost. The board repair cost as a function of the ASIC defect
level is shown in Table 14.1. A defect level of 5 percent in bASICs costs $1 million
dollars in board repair costs (the same as the total ASIC part cost). Things are even
worse at the system level, however.

725

14.1 THE IMPORTANCE OF TEST 713

TABLE 14.1 Defect levels in printed-circuit boards (PCB).1

ASIC defect level Defective ASICs Total PCB repair cost

5% 5000 $1 million

1% 1000 $200,000

0.1% 100 $20,000

0.01% 10 $2,000

1 Assumptions: The number of parts shipped is 100,000; part price is $10; total part cost
is $1 million; the cost of a fault in an assembled PCB is $200.

Suppose the ABC Company sells its aPC computers for $5,000, with a profit of
$500 on each. Unfortunately the aPC division also has a defect level. Suppose that
10 percent of the motherboards that contain defective bASICs that passed the chip
test also manage to pass the board tests (10 percent may seem high, but chips that
have hard-to-test faults at the chip level may be very hard to find at the board
level-catching 90 percent of these rogue chips would be considered good). The
system-level repair cost as a function of the bASIC defect level is shown in
Table 14.2. In this example a 5 percent defect level in a $10 bASIC part now results
in a $5 million cost at the system level. From Table 14.2 we can see it would be
worth spending $4 million (i.e., $5 million - $1 million) to reduce the bASIC
defect density from 5 percent to 1 percent.

TABLE 14.2 Defect levels in systems.1

ASIC defect level Defective ASICs Defective boards

5% 5000 500

1% 1000 100

0.1% 100 10

0.01% 10 1

Total repair cost at
system level

$5 million

$1 million

$100,000

$10,000

1 Assumptions: The number of systems shipped is 100,000; system cost is $5,000; total cost of systems shipped
is $500 million; the cost of repairing or replacing a system due to failure is $10,000; profit on 100,000 systems
is $50 million.

726

714 CHAPTER 14 TEST

14.2 Boundary-Scan Test

It is possible to test ICs in dual-in-line packages (DIPs) with 0.1 inch (2.5 mm) lead
spacing on low-density boards using a bed-of-nails tester with probes that contact
test points underneath the board. Mechanical testing becomes difficult with board
trace widths and separations below 0.1 mm or 1 00 ~m, package-pin separations of
0.3 mm or less, packages with 200 or more pins, surface-mount packages on both
sides of the board, and multilayer boards [Scheiber, 1995].

In 1985 a group of European manufacturers formed the Joint European Test
Action Group (JETAG) to study board testing. With the addition of North Ameri­
can companies, JETAG became the Joint Test Action Group (JTAG) in 1986. The
JTAG 2.0 test standard formed the basis of the IEEE Standard 1149.1 Test Port
and Boundary-Scan Architecture [IEEE 1149.lb, 1994], approved in February
1990 and also approved as a standard by the American National Standards Institute
(ANSI) in August 1990 [Bleeker, v. d. Eijnden, and de Jong, 1993; Maunder and
Tulloss, 1990; Parker, 1992]. The IEEE standard is still often referred to as JTAG,
although there are important differences between the last JTAG specification (ver­
sion 2.0) and the IEEE 1149.1 standard.

Boundary-scan test (BST) is a method for testing boards using a four-wire
interface (five wires with an optional master reset signal). A good analogy would be
the RS-232 interface for PCs. The BST standard interface was designed to test
boards, but it is also useful to test ASICs. The BST interface provides a standard
means of communicating with test circuits on-board an ASIC. We do need to include
extra circuits on an ASIC in order to use BST. This is an example of increasing the
cost and complexity (as well as potentially reducing the performance) of an ASIC to
reduce the cost of testing the ASIC and the system.

Figure 14.1 (a) illustrates failures that may occur on a PCB due to shorts or
opens in the copper traces on the board. Less frequently, failures in the ASIC pack­
age may also arise from shorts and opens in the wire bonds between the die and the
package frame (Figure 14.1b). Failures in an ASIC package that occur during ASIC
fabrication are caught by the ASIC production test, but stress during automated han­
dling and board assembly may cause package failures. Figure 14.1(c) shows how a
group of ASICs are linked together in boundary-scan testing. To detect the failures
shown in Figure 14.1(a) or (b) manufacturers use boundary scan to test every con­
nection between ASICs on a board. During boundary scan, test data is loaded into
each ASIC and then driven onto the board traces. Each ASIC monitors its inputs,
captures the data received, and then shifts the captured data out. Any defects in the
board or ASIC connections will show up as a discrepancy between expected and
actual measured continuity data.

In order to include BST on an ASIC, we add a special logic cell to each ASIC
I/O pad. These cells are joined together to form a chain and create a boundary-scan
shift register that extends around each ASIC. The input to a boundary-scan shift
register is the test-data input (TDI). The output of a boundary-scan shift register is

727

14.2 BOUNDARY-SCAN TEST 715

U2

package pin open PCB trace

(a)

TDI
TCK
TMS

TDO-----.

TCK
TMS

TCK
TMS

22 pins separation

"I sent you a one" "I didn't get it"

U1 U2 TOO ...- other
serial data

, ...- shifted

-----------'~. time thro.ugh
chain

(b) (c)

FIGURE 14.1 IEEE 1149.1 boundary scan. (a) Boundary scan is intended to check for
shorts or opens between ICs mounted on a board. (b) Shorts and opens may also occur
inside the IC package. (c) The boundary-scan architecture is a long chain of shift registers
allowing data to be sent over all the connections between the ICs on a board.

the test-data output (TDO). These boundary-scan shift registers are then linked in a
serial fashion with the boundary-scan shift registers on other ASICs to form one
long boundary-scan shift register. The boundary-scan shift register in each ASIC is
one of several test-data registers (TDR) that may be included in each ASIC. All the
TDRs in an ASIC are connected directly between the TDI and TDO ports. A special
register that decodes instructions provides a way to select a particular TDR and con­
trol operation of the boundary-scan test process.

Controlling all of the operations involved in selecting registers, loading data,
performing a test, and shifting out results are the test clock (TCK) and test-mode
select (TMS). The boundary-scan standard specifies a four-wire test interface using
the four signals: TDI, TDO, TCK, and TMS. These four dedicated signals, the test­
access port (TAP), are connected to the TAP controller inside each ASIC. The TAP
controller is a state machine clocked on the rising edge of TCK, and with state tran­
sitions controlled by the TMS signal. The test-reset input signal (TRST*, nTRST,
or TRST-always an active-low signal) is an optional (fifth) dedicated interface pin
to reset the TAP controller.

Normally the boundary-scan shift-register cells at each ASIC I/O pad are trans­
parent, allowing signals to pass between the I/O pad and the core logic. When an
ASIC is put into boundary-scan test mode, we first tell the TAP controller which

728

716 CHAPTER 14 TEST

TDR to select. The TAP controller then tells each boundary-scan shift register in the
appropriate TDR either to capture input data, to shift data to the neighboring cell, or
to output data.

There are many acronyms in the IEEE 1149.1 standard (referred to as "dot
one"); Table 14.3 provides a list of the most common terms.

TABLE 14.3 Boundary-scan terminology.

Acronym

BR

BSC

BSR

BST

IDCODE

IR

JTAG

TAP

TCK

TDI

TDO

TDR

TMS

TRST* or nTRST

Meaning

Bypass register

Boundary-scan cell

Boundary-scan register

Boundary-scan test

Device-identification register

Instruction register

Joint Test Action Group

Test-access port

Test clock

Test-data input

Test-data output

Test-data register

Test-mode select

Test-reset input signal

14.2.1 BST Cells

Explanation

A TDR, directly connects TDI and TDO, bypassing BSR

Each I/O pad has a BSC to monitor signals

A TDR, a shift register formed from a chain of BSCs

Not to be confused with BIST (built-in self-test)

Optional TDR, contains manufacturer and part number

Holds a BST instruction, provides control signals

The organization that developed boundary scan

Four- (or five-)wire test interface to an ASIC

A TAP wire, the clock that controls BST operation

A TAP wire, the input to the IR and TDRs

A TAP wire, the output from the IR and TDRs

Group of BST registers: IDCODE, BR, BSR

A TAP wire, together with TCK controls the BST state

Optional TAP wire, resets the TAP controller (active-low)

Figure 14.2 shows a data-register ceB (DR cell) that may be used to implement any
of the TDRs. The most common DR cell is a boundary-scan cell (BS cell, or BSC),
or boundary-t'egister cell (this last name is not abbreviated to BR cell, since this
term is reserved for another type of cell) [IEEE 1149.1b-1994, p. 10-18, Fig. 10-16].

A BSC contains two sequential elements. The capture flip-flop or capture
register is part of a shift register formed by series connection of BSCs. The update
flip-flop, or update latch, is normally drawn as an edge-triggered D flip-flop,
though it may be a transparent latch. The inputs to a BSC are: scan in (serial in or
SI); data in (parallel in or PI); and a control signal, mode (also called
test/normal). The BSC outputs are: scan out (serial out or SO); data out (parallel

729

14.2 BOUNDARY-SCAN TEST 717

out or PO). The BSC in Figure 14.2 is reversible and can be used for both chip
inputs and outputs. Thus data_in may be connected to a pad and data_out to the
core logic or vice versa.

, ,.
rl r--~
: ,-------- I
I ~ _____________________________________ _

, , ,

,
I ---------- I
I I I I - -< t-,

' __________ ' I

, -------

entity DR_cell is port (mode, data_in, shiftDR, scan_in, clockDR, updateDR: BIT; --1

data_out, scan_out: out BIT); end DR_cell; --2

architecture behave of DR_cell is signal q1, q2 BIT; begin --3
CAP: process (clockDR) begin if clockDR = '1' then --4

if shiftDR = '0' then q1 <= data_in; else q1 <= scan_in; end if; end if; --5
end process; --6
UPD : process (updateDR) begin if updateDR = '1' then q2 <= q1; end if; end process; --7
data out <= data in when mode = '0' else q2; scan out <= q1; --8
end behave; --9

FIGURE 14.2 ADR (data register) cell. The most common use of this cell is as a boundary­
scan cell (BSC).

The IEEE 1149.1 standard shows the sequential logic in a BSC controlled by
the gated clocks: clockDR (whose positive edge occurs at the positive edge of TCK)
and updateDR (whose positive edge occurs at the negative edge of TCK). The IEEE
1149.1 schematics illustrate the standard but do not define how circuits should be
implemented. The function of the circuit in Figure 14.2 (and its model) follows the
IEEE 1149.1 standard and many other published schematics, but this is not necessar­
ily the best, or even a safe, implementation. For example, as drawn here, signals
clockDR and updateDR are gated clocks-normally to be avoided if possible. The
update sequential element is shown as an edge-triggered D flip-flop but may be
implemented using a latch.

730

718 CHAPTER 14 TEST

Figure 14.3 [IEEE 1149.1b-1994, Chapter 9] shows a bypass-register cell (BR
cell). The BR inputs and outputs, scan in (serial in, SI) and scan out (serial out, SO),
have the same names as the DR cell ports, but DR cells and BR cells are not directly
connected.

entity BR_cell is port (--1

clockDR,shiftDR,scan_in : BIT; scan_out out BIT); --2
end BR_cell; --3

architecture behave of BR cell is --4

signal t1 : BIT; begin t1 <= shiftDR and scan_in; --5
process (clockDR) begin --6

if (clockDR = '1') then scan out <= t1; end if; --7
end process; --8
end behave; --9

FIGURE 14.3 A BR (bypass register) cell.

Figure 14.4 shows an instruction-register cell (IR cell) [IEEE 1149.1b-l994,
Chapter 6]. The IR cell inputs are: scan_in, data_in; as well as clock, shift, and
update signals (with names and functions similar to those of the corresponding sig­
nals in the BSC). The reset signals are nTRST and reset bar (active-low signals
often use an asterisk, reset* for example, but this is not a legal VHDL name). The
two LSBs of data_in must permanently be set to '0 I' (this helps in checking the
integrity of the scan chain during testing). The remaining data in bits are status
bits under the control of the designer. The update sequential element (sometimes
called the shadow register) in each IR cell may be set or reset (depending on
reset_value). The IR cell outputs are: data_out (the instruction bit passed to the
instruction decoder) and scan_out (the data passed to the next IR cell in the IR).

14.2.2 SST Registers
Figure 14.5 shows a boundary-scan register (BSR), which consists of a series con­
nection, or chain, of BSCs. The BSR surrounds the ASIC core logic and is con­
nected to the I/O pad cells. The BSR monitors (and optionally controls) the inputs
and outputs of an ASIC. The direction of information flow is shown by an arrow on
each of the BSCs in Figure 14.5. The control signal, mode, is decoded from the IR.
Signal mode is drawn as common to all cells for the BSR in Figure 14.5, but that is
not always the case.

Figure 14.6 shows an instruction register (IR), which consists of at least two
IR cells connected in series. The IEEE 1149.1 standard specifies that the IR cell is
reset to '00 ••• 01' (the optional IDCODE instruction). If there is no IDCODE TDR,
then the IDCODE instruction defaults to the BYPASS instruction.

731

14.2 BOUNDARY-SCAN TEST 719

I
I
I _________ _

, I
r --I
11 _________ _

I

entity IR_cell is port (

set (S) if reset_value = 1
reset (R) if reseCvalue = 0

shiftIR, data_in, scan_in, clockIR, updateIR, reset_bar, nTRST, reset value

data_out, scan_out: out BIT); end IR_cell;

architecture behave of IR_cell is signal ql, SR BIT; begin

scan_out <= ql; SR <= reset_bar and nTRST;

CAP:process (clockIR) begin

if (clockIR = 'I') then

if (shiftIR = '0') then ql <= data_in; else q1 <= scan_in; end if;

end if;

end process;

UPD:process (updateIR, SRi begin

if (SR = '0') then data_out <= reset_value;

elsif ((updateIR = '1') and updateIR'EVENT) then data out <= q1;

end if;

end process;

end behave;

FIGURE 14.4 An IR (instruction register) cell.

14.2.3 Instruction Decoder
Table 14.4 on page 722 shows an instruction decoder. This model is capable of
decoding the following minimum set of boundary-scan instructions:

1. EXTEST, external test. Drives a known value onto each output pin to test con­
nections between ASICs.

2. SAMPLE/PRELOAD (often abbreviated to SAMPLE). Performs two functions:
first sampling the present input value from input pad during capture; and then
preloading the BSC update register output during update (in preparation for an
EXTEST instruction, for example).

3. IDCODE. An optional instruction that allows the device-identification register
(IDCODE) to be shifted out. The IDCODE TDR is an optional register that

--1

BIT; --2

--3

--4

--5

--6

--7

--8

--9

--10
--11

--12

--13

--14

--15

--16

732

720 CHAPTER 14 TEST

entity BSR is

generic (width: INTEGER := 3);

port (shiftDR, clockDR, updateDR, mode, scan_in

scan_out : out BIT;

data_in: BIT_VECTOR(width-l downto OJ;
data out: out BIT_VECTOR(width-l downto OJ};

end BSR;

architecture structure of BSR is

component DR_cell port (

BIT;

mode, data_in, shiftDR, scan_in, clockDR, update DR

data_out, scan_out: out BIT);

end component;

for all: DR cell use entity WORK.DR_Cell(behave};

signal int_scan : BIT VECTOR (data_in'RANGE);

begin

BSR : for i in data_in'LOW to data_in'HIGH generate

RIGHT: if (i = O) generate

BIT;

BSR_LSB : DR_cell port map (mode, data_in(i), shiftDR,

int_scan(i}, clockDR, updateDR, data_out(i}, scan_out}';

end generate;

MIDDLE: if «i > O) and (i < data_in'HIGH)} generate

BSR_i : DR_cell port map (mode, data_in(i), shiftDR,

int_scan(i}, clockDR, updateDR, data_out(i}, int_scan(i-l}};

end generate;

LFET : if (i = data_in'HIGH) generate

BSR MSB : DR cell port map (mode, data_in(i), shiftDR,

scan_in, clockDR, updateDR, data_out(i}, int_scan(i-l}};

end generate;

end generate;

end structure;

FIGURE 14.5 A BSR (boundary-scan register). An example of the component data­
register (DR) cells (used as boundary-scan cells) is shown in Figure 14.2.

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10

--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

--22

--23

--24

--25

--26

--27

--28

--29

--30

allows the tester to query the ASIC for the manufacturer's name, part number,
and other data that is shifted out on TDO. IDCODE defaults to the BYPASS

instruction if there is no IDCODE TDR.

733

14.2 BOUNDARY-SCAN TEST 721

width 2 LSBs of
fixed values
'O'~'1'

reseCvalue = '1' for all cells
(BYPASS instruction)

entity IR is generic (width: INTEGER := 4); port (

shiftIR, clockIR, updateIR, reset_bar, nTRST, scan_in

data_in: BIT_VECTOR (width-l downto 0) ;

data out: out BIT VECTOR (width-l downto 0));

end IR;

architecture structure of IR is

BIT; scan out

component IR_cell port (shiftIR, data_in, scan_in, clockIR,

out BIT;

updateIR, reset_bar, nTRST, reset_value: BIT; data_out, scan out

end component;

out BIT);

for all: IR cell use entity WORK.IR_cell(behave);

signal int scan: BIT VECTOR (data_in'RANGE);

signal Vdd : BIT := 'I'; signal GND : BIT := '0';

begin

IRGEN : for i in data in'LOW to data in'HIGH generate

FIRST : if (i = 0) generate

IR_LSB: IR_cell port map (shiftIR, Vdd, int_scan(i),

clockIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), scan_out);

end generate;

SECOND: if «i = 1) and (data_in'HIGH > 1)) generate

IRI : IR_cell port map (shiftIR, GND, int_scan(i),

clo~kIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), int_scan(i-l));

end generate;

MIDDLE: if «i < data_in'HIGH) and (i > 1)) generate

IRi : IR_cell port map (shiftIR, data_in(i), int_scan(i),

clockIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), int_scan(i-l));

end generate;

LAST: if (i = data_in 'HIGH) generate

IR_MSB : IR_cell port map (shiftIR, data_in(i), scan_in,

clockIR, updateIR, reset_bar, nTRST, Vdd, data_out(i), int_scan(i-l));

end generate; end generate ;

end structure;

FIGURE 14.6 An IR (instruction register).

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10

--11

--12

--l3

--14

--15

--16

--17

--18

--19

--20

--21

--22

--23

--24

--25

--26

--27

--28

--29

--30

--31

734

722 CHAPTER 14 TEST

4. BYPASS. Selects the single-cell bypass register (instead of the BSR) and
allows data to be quickly shifted between ASICs.

The IEEE 1149.1 standard predefines additional optional instructions and also
defines the implementation of custom instructions that may use additional TDRs.

TABLE 14.4 An IR (instruction register) decoder.

entity IR_decoder is generic (width: INTEGER := 4); port (--1

shiftDR, clockDR, updateDR : BIT; IR_PO : BIT_VECTOR (width-1 downto 0) ; --2

test_mode, selectBR, shiftBR, clockBR, shiftBSR, clockBSR, updateBSR : out BIT); --3

end IR_decoder; --4

architecture behave of IR decoder is --5

type INSTRUCTION is (EXTEST, SAMPLE_PRELOAD, IDCODE, BYPASS); --6

signal I : INSTRUCTION; --7
begin process (IR_PO) begin case BIT_VECTOR'(IR_PO(l), IR_PO(O)

when "00" => I <= EXTEST; when "01" => I <= SAMPLE_PRELOAD;

when "10" => I <= IDCODE; when "II" => I <= BYPASS;

is --8

--9

--10
end case; end process; --11

test mode <= 'I' when I = EXTEST else '0'; --12
selectBR <= 'I' when (I = BYPASS or I IDCODE) else '0'; --13

shiftBR <= shiftDR; --14
clockBR <= clockDR when (I = BYPASS or I = IDCODE) else 'I';

shiftBSR <= shiftDR;
--15

--16
clockBSR <= clockDR when (I = EXTEST or I SAMPLE_PRELOAD) else 'I';

updateBSR <= updateDR when (I = EXTEST or I SAMPLE_PRELOAD) else '0';

end behave;

14.2.4 TAP Controller

--17

--18

--19

Figure 14.7 shows the TAP controller finite-state machine. The 16-state diagram con­
tains some symmetry: states with suffix ' DR I operate on the data registers and those
with suffix ' IR I apply to the instruction register. All transitions between states are
determined by the TMS (test mode select) signal and occur at the rising edge of TCK,

the boundary-scan clock. An optional active-low reset signal, nTRST or TRST*, resets
the state machine to the initial state, Reset. If the dedicated nTRST is not used, there
must be a power-on reset signal (POR)-not an existing system reset signal.

The outputs of the TAP controller are not shown in Figure 14.7, but are derived
from each TAP controller state. The TAP controller operates rather like a four-button
digital watch that cycles through several states (alarm, stopwatch, 12 hr / 24 hr,
countdown timer, and so on) as you press the buttons. Only the shaded states in
Figure 14.7 affect the ASIC core logic; the other states are intermediate steps. The
pause states let the controller jog in place while the tester reloads its memory with a
new set of test vectors, for example.

735

14.2 BOUNDARY-SCAN TEST 723

(nTRST =0)

o 0

use work.TAP.all; entity TAP_sm_states is --1
port (TMS, TCK, nTRST : in BIT; S : out TAP_STATE); end TAP_sm_states; --2

architecture behave of TAP sm states is --3
type STATE_ARRAY is array (TAP_STATE, 0 to 1) of TAP_STATE; --4
constaqt T : STATE_ARRAY := ((Run_Idle, Reset), --5
(Run_Idle, Select_DR), (Capture_DR, Select_IR), (Shift_DR, Exitl_DR), --6
(Shift_DR, Exitl_DR), (Pause_DR, Update_DR), (Pause_DR, Exit2_DR), --7
(Shift_DR, Update_DR), (Run_Idle, Select_DR), (Capture_IR, Reset), --8
(Shift_IR, Exitl_IR), (Shift_IR, Exitl IR), (PauSe_IR, Update_IR), --9
(Pause_IR, Exit2 IR), (Shift_IR, Update_IR), (Run_idle, Select_DR)); --10
begin process (TCK, nTRST) variable S_i: TAP_STATE; begin --11

if (nTRST = '0') then S_i := Reset;
elsif (TCK = '1' and TCK'EVENT) then -- transition on +VE clock edge

if (TMS = '1') then S i := T(S_i, 1); else S_i := T(S i, 0); end if;
end if; S <= S_ii -- update signal with already updated internal variable

end processi
end behave;

FIGURE 14.7 The TAP (test-access port) controller state machine.

--12

--13

--14

--15

--16

--17

736

724 CHAPTER 14 TEST

Table 14.5 shows the output control signals generated by the TAP state
machine. I have taken the unusual step of writing separate entities for the state
machine and its outputs. Normally this is bad practice because it makes it difficult
for synthesis tools to extract and optimize the logic, for example. This separation of
functions reflects the fact that the operation of the TAP controller state machine is
precisely defined by the IEEE 1149.1 standard-independent of the implementation
of the register cells and number of instructions supported. The model in Table 14.5
contains the following combinational, registered, and gated output signals and will
change with different implementations:

• reset_bar. Resets the IR to IDCODE (or BYPASS in absence of IDCODE
TDR).

• selectIR. Connects a register, the IR or a TDR, to TDO.

• enableTDO. Enables the three-state buffer that drives TDO. This allows data
to be shifted out of the ASIC on TDO, either from the IR or from the DR, in
states shift_IR or shift_DR respectively.

• shiftIR. Selects the serial input to the capture flip-flop in the IR cells.

• clockIR. Causes data at the input of the IR to be captured or the contents of
the IR to be shifted toward TDO (depending on shiftIR) on the negative
edge of TCK following the entry to the states shift_IR or capture_IR.

This is a dirty signal.

• updateIR. Clocks the update sequential element on the positive edge of TCK

at the same time as the exit from state update IR. This is a dirty signal.

• shiftDR, clockDR, and updateDR. Same functions as corresponding IR sig­
nals applied to the TDRs. These signals may be gated to the appropriate TDR
by the instruction decoder.

The signals reset_bar, enableTDO, shiftIR, and shiftDR are registered or
clocked by TCK (on the positive edge of TCK). We say these signals are clean (as
opposed to being dirty gated clocks).

14.2.5 Boundary-Scan Controller
Figure 14.8 shows a boundary-scan controller. It contains the following four parts:

1. Bypass register.

2. TDO output circuit. The data to be shifted out of the ASIC on TDO is selected
from the serial outputs of bypass register (BR_SO), instruction register
(IR_SO), or boundary-scan register (BSR_SO). Notice the registered output
means that data appears on TDO at the negative edge of TCK. This prevents race
conditions between ASICs.

3. Instruction register and instruction decoder.

4. TAP controller.

737

14.2 BOUNDARY-SCAN TEST 725

TABLE 14.5 The TAP (test-access port) control.1

p::; p::; p::;

State
Q Q Q

I I I
r-l Q) N
+l Ul +l

Output
• .-j ;j • .-j

~ m ~
~ p., ~

reset bar

selectIR 1

enableTDO

shiftIR

clockIR

updateIR

shiftDR

clockDR

updateDR

use work. TAP. all; entity TAP_sm_output is

port (TCK : in BIT; S : in TAP_STATE; reset_bar, selectIR, enableTDO, shiftIR,

clockIR, updateIR, shiftDR, clockDR, updateDR : out BIT);

end TAP_sm_output;

architecture behave_l of TAP_sm_output is begin -- registered outputs

process (TCK) begin if ((TCK = '0') and TCK'EVENT) then

p::; p::;
H H

I I
Q) N
Ul +l
;j • .-j

m ~
p., ~

1 1

--1

--2

--3

--4

--5

--6

ifS

ifS

ifS

ifS

Reset then rese-t_bar <= '0'; else reset_bar <= '1'; end if; --7

Shift IR or S = Shift DR then enableTDO <= '1'; else enableTDO <= '0'; end if; --8

Shift IR then ShiftIR <= '1'; else shiftIR <= '0'; end if; --9

Shift DR then ShiftDR <= I I' i else shiftDR <=

end if;

end process;

process (TCK) begin -- dirty outputs gated with not(TCK)

if (TCK = '0' and (S = Capture_IR or S = Shift_IR))

then clockIR <= '0'; else clockIR <= '1'; end if;

if (TCK = '0' and (S = Capture_DR or S = Shift_DR))

10 1
; end if; --10

--11

--12
--13

--14

--15

--16

then clockDR <= '0'; else clockDR <= '1'; end if; --17

if TCK = '0' and S=Update_IR then updateIR <= '1'; else updateIR <= '0'; end ifi --18

if TCK = '0' and S=Update_DR then updateDR <= '1'; else updateDR <= '0'; end if; --19

end process; --20

selectIR <= '1' when (S = Reset or S = Run_Idle or S = Capture_IR or S = Shift IR --21

or, S = Exitl_IR or S = Pause_IR or S = Exit2 IR or S = Update_IR) else '0'; --22

end behave_I; --23

10utputs: G = gated with - TCK, R = registered on falling edge of TCK. Only active levels are shown in the table.

738

726 CHAPTER 14 TEST

library IEEE; use IEEE.std_logic_1164.all; use work.TAP.all;

entity Control is generic (width: INTEGER := 2); port (TMS, TCK, TOI, nTRST

TOO: out STO_LOGIC; BS~SO : BIT; BSR_PO BIT_VECTOR (width-l downto 0);

shiftBSR, clockBSR, updateBSR, test mode out BIT); end Control;

architecture mixed of Control is use work.BST_components.all;

signal reset_bar, selectIR, enableTOO, shiftIR, clockIR, updateIR, shiftOR,

clockOR, updateOR, IR_SO, BR_SO, TOO_reg, TOO_data, TOR_SO, selectBR,

clockBR, shiftBR : BIT;

signal IR_PI, IR_PO BIT VECTOR (1 downto 0); signal S : TAP_STATE;

begin

IR PI <= "01";

TOO <= TO STOULOGIC(TOO_reg) when enableTOO = 'I' else 'Z';

BIT;

Rl : process (TCK) begin if (TCK='O') then TOO_reg <= TOO_data; end if; end process;

TOO_data <= IR_SO when selectIR = 'I' else TOR_SO;

TOR_SO <= BR_SO when selectBR = 'I' else BSR_SO;

TCI : TAP sm states port map (TMS, TCK, nTRST, S);

TC2 : TAP_sm_output port map (TCK, S, reset_bar, selectIR, enableTOO,

shiftIR, clockIR, updateIR, shiftOR, clockOR, updateOR);

IRI : IR generic map (width => 2) port map (shiftIR, clockIR, updateIR,

reset_bar, nTRST, TOI, IR_SO, IR_PI, IR_PO);

OECI : IR_decoder generic map (width => 2) port map (shiftOR, clockOR, updateOR,

IR_PO, test_mode, selectBR, shiftBR, clockBR, shiftBSR, clockBSR, updateBSR)i

BRI : BR cell port map (clockBR, shiftBR, TOI, BR_SO);

end mixed;

FIGURE 14.8 A boundary-scan controller.

--1

--2

--3

--4

--5

--6
--7

--8
--9

--10
--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

--22

--23

--24

739

14.2 BOUNDARY-SCAN 1EST 727

The BSR (and other optional TDRs) are connected to the ASIC core logic out­
side the BST controller.

14.2.6 A Simple Boundary-Scan Example
Figure 14.9 shows an example of a simple ASIC (our comparator/MUX example)
containing boundary scan. The following two packages define the TAP states and
the components (these are not essential to understanding what follows, but are
included so that the code presented here forms a complete BST model):

package TAP is --1
type TAP_STATE is (reset, run_idle, select_DR, capture_DR, --2

shift_DR, exit I_DR , pause_DR, exit2_DR, update_DR, select_IR, --3

capture_IR, shift_IR, exitl_IR, pause_IR, exit2 IR, update_IR); --4

end TAP; --5

use work.TAP.all; library IEEE; use IEEE.std_logic_1164.all; --1

package BST_Components is --2

component DR_cell port --3

mode, data_in, shiftDR, scan_in, clockDR, updateDR: BIT;

data_out, scan_out: out BIT);

end component;

component IR_cell port (

shiftIR, data_in, scan_in, clockIR, updateIR, reset_bar,

nTRST, reset_value: BIT; data_out, scan out: out BIT);

end component;

component BR_cell port (

clockDR,shiftDR,scan_in

end component;

BIT; scan out: out BIT);

component BSR

generic (width: INTEGER := 5); port (

shiftDR, clockDR, updateDR, mode, scan_in

scan_out : out BIT;

data_in: BIT_VECTOR(width-l downto O)i

BIT;

data out: out BIT_VECTOR(width-l downto 0));

end component;

component IR generic (width: INTEGER := 4); port

shiftIR, clockIR, updateIR, reset_bar, nTRST,

scan_in : BIT; scan_out : out BIT;

data_in: BIT_VECTOR (width-l downto 0) ;

data out: out BIT VECTOR (width-l downto 0));

end component;

component IR_decoder generic (width: INTEGER := 4); port (

shiftDR, clockDR, updateDR : BIT;

IR PO BIT VECTOR (width-l downto 0);

--4

--5

--6

--7

--8

--9

--10

--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

--22

--23

--24

--25

--26

--27

--28

--29

740

728 CHAPTER 14 TEST

boundary-scan

scan out r-c..:..e;......I1_---.
data_~n~ --+--_ .. -r-I- data_out
scan_In I

mode, shiftBSR, clockBSR, updateBSR

entity Core is port (a, b : BIT_VECTOR (2 downto 0);

outp : out BIT_VECTOR (2 downto 0»; end Core;

TDO
nTRST
TMS
TCK
TDI

architecture behave of Core is begin outp <= a when a < b else b;

end behave;

library IEEE; use IEEE.std_logic_1164.all;

control
signals

entity BST_ASIC is port (TMS, TCK, TDI, nTRST : BIT; TDO : out STD LOGIC;

a_PAD, b_PAD BIT VECTOR (2 downto 0); z PAD: out BIT VECTOR (2 downto 0»;
end BST_ASIC;

architecture structure of BST ASIC is use work.BST_components.all;

component Core port (a, b: BIT_VECTOR (2 downto 0);

outp: out BIT_VECTOR (2 downto 0»; end component;

for all: Core use entity work.Core(behave);

constant BSR_width : INTEGER := 9;

signal BSR_SO, test_mode, shiftBSR, clockBSR, updateBSR : BIT;

signal BSR_PI, BSR_PO : BIT_VECTOR (BSR_width-1 downto 0);

signal a, b, z : BIT_VECTOR (2 downto 0);

begin BSR_PI <= a_PAD & b_PAD & z ;

a <= BSR_PO(8 downto 6); b <= BSR_PO(5 downto 3)i z_pad <= BSR_PO(2 downto 0);

COREl: Core port map (a, b, Z)i

C1 : Control generic map (width => BSR_width) port map (TMS, TCK, TDI, nTRST,

TDO, BSR_SO, BSR_PO, shiftBSR, clockBSR, updateBSR, test_mode);

BSR1 : BSR generic map (width => BSR_width) port map (shiftBSR, clockBSR,

updateBSR, test_mode, TDI, BSR_SO, BSR_PI, BSR_PO);

end structure;

FIGURE 14.9 A boundary-scan example.

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10
--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

--22

--23

--24

741

14.2 BOUNDARY-SCAN TEST 729

test_mode, selectBR, shiftBR, clockBR, shiftBSR, clockBSR,

updateBSR: out BIT);
end component;

component TAP_sm_states port (

TMS, TCK, nTRST : in BIT; S

component TAP_sm_output port (

out TAP_STATE); end component;

TCK: BIT; S : TAP STATE; reset_bar, selectIR,
enableTDO, shiftIR, clockIR, updateIR, shiftDR, clockDR,

update DR : out BIT);
end component;

component Control generic (width: INTEGER := 2); port (

TMS, TCK, TDI, nTRST : BIT; TDO : out STD_LOGIC;

BSR_SO : BIT; BSR_PO : BIT_VECTOR (width-1 downto 0);
shiftBSR, clockBSR, updateBSR, test mode: out BIT);

end component;

component BST_ASIC port (

TMS, TCK, TDI : BIT; TDO : out STD LOGIC;

a_PAD, b_PAD : BIT_VECTOR (2 downto 0);
z PAD: out BIT VECTOR (2 downto 0));

end component;

end;

The following testbench, Test_EST, performs these functions:

1. Resets the TAP controller at t = 10 ns using nTRST.

--30
--31

--32

--33
--34

--35

--36
--37

--38

--39

--40

--41

--42

--43
--44

--45
--46

--47

--48

--49

--50

2. Continuously clocks the BST clock, TCK, at a frequency of 10 MHz. Rising
edges of TCK occur at 100 ns, 200 ns, and so on.

3. Drives a series of values onto the TAP inputs TDI and TMS. The sequence shifts
in instruction code '01 I (SAMPLE/PRELOAD), followed by

I 00 I (EXTEST).

library IEEE; use IEEE.std_Iogic_1164.all; --1

library STD; use STD.TEXTIO.all; --2

entity Test_BST is end; --3
architecture behave of Test BST is --4

component BST_ASIC port (TMS, TCK, TDI, nTRST: BIT; --5
TDO : out STD_LOGIC; a_PAD, b_PAD : BIT_VECTOR (2 downto 0); --6

z_PAD : out BIT_VECTOR (2 downto 0)); --7

end component; --8
for all: BST_ASIC use entity work.BST_ASIC(behave); --9
signal TMS, TCK, TDI, nTRST : BIT; signal TDO : STD_LOGIC; --10

signal TDI_TMS : BIT_VECTOR (1 downto 0); --11
signal a_PAD, b_PAD, z_PAD : BIT VECTOR (2 downto 0); --12

begin --13

TDI <= TDI TMS(I) ; TMS <= TDI_TMS(O) --14
ASIC1 : BST ASIC port map --15

742

730 CHAPTER 14 TEST

(TMS, TCK, TDI, nTRST, TDO, a_PAD, b_PAD, z_PAD);
nTRST DRIVE : process begin

nTRST <= '1', '0' after 10 ns, '1' after 20 nSj wait;
PAD DRIVE : process begin

a PAD <= ('0', '1', '0'); b PAD <= ('0', '1', '1'); wait;
end process;
end process;
TCK_DRIVE : process begin -- rising edge at 100 ns

TCK <= '0' after 50 ns, '1' after 100 ns; wait for 100 ns;
if (now> 3000 ns) then wait; end if;

end process;
BST_DRIVE : process begin TDI TMS <=

State after +VE edge:
(, 0 " '1') after 0 ns,
('0', '0') after 101 ns,
(, 0 " '1') after 201 ns,

('0', '1') after 301 ns,
('0', '0') after 401 ns,
('0', '0') after 501 ns,
('1', '0') after 601 ns,
(, 0 " '1') after 701 ns,

Reset
Run Idle
Select DR
Select IR
Capture_IR
Shift IR
Shift IR
Exit1 IR

('0', '1') after 801 ns, Update_IR, 01 SAMPLE/PRELOAD
('0', '1') after 901 ns, Select DR
('0', '0') after 1001 ns, Capture_DR
('0', '0') after 1101 ns, Shift DR

shift 111111101 into BSR, TDI(time) = 101111111 starting now
('I', '0') after 1201 ns, Shift DR
('0', '0') after l301 ns, Shift DR

Shift DR
Shift DR
Exit1 DR
Update_DR
Select DR
Select IR
Capture_IR
Shift IR
Shift IR
Exit1 IR

shift 4 more l's
in-between

('I', '0') after 1401 ns,
('I', '0') after 1901 ns,
('1', 'I') after 2001 ns,
('0', 'I') after 2101 ns,
('0', 'I') after 2201 ns,
('0', '1') after 2301 ns,
('0', '0') after 2401 ns,
('0', '0') after 2501 ns,
('0', '0') after 2601 ns,
(, 0 " '1') after 2701 ns,
(, 0 " '1') after 2801 ns,
('0', '0') after 2901 ns;
wait;

Update_IR, OO=EXTEST
Run Idle

end process;
process (TDO, a_pad, b_pad, z_pad) variable L : LINE; begin

write (L, now, RIGHT, 10); write (L, STRING' (" TDO="»;
if TDO = 'Z' then write (L, STRING'("Z"»

else write (L, TO_BIT(TDO»; end if;
write (L, STRING' (.. PADS="»; write (L, a_pad & b_pad & z_pad);
writeline (output, L);

--16
--17
--18
--19
--20
--21
--22
--23
--24
--25
--26
--27
--28
--29
--30
--31
--32
--33
--34
--35
--36
--37
--38
--39
--40
--41
--42
--43
--44
--45
--46
--47
--48
--49
--50
--51
--52
--53
--54
--55
--56
--57
--58
--59
--60
--61
--62
--63

743

14.2 BOUNDARY-SCAN TEST 731

end process; --64
end behave; --65

Here is the output from this testbench:

0 ns TDO=O PADS=OOOOooooo

0 ns TDO=Z PADS=010011000

0 ns TDO=Z PADS=010011010

650 ns TDO=l PADS=010011010

750 ns TDO=O PADS=010011010

850 ns TDO=Z PADS=010011010

1250 ns TDO=O PADS=010011010

1350 ns TDO=l PADS=010011010

1450 ns TDO=O PADS=010011010

1550 ns TDO=l PADS=010011010

1750 ns TDO=O PADS=010011010

1950 ns TDO=l PADS=010011010

2050 ns TDO=O PADS=010011010

2150 ns TDO=Z PADS=010011010

2650 ns TDO=l PADS=01001l010

2750 ns TDO=O PADS=010011010

2850 ns TDO=Z PADS=010011010

2950 ns TDO=Z PADS=010011101

This trace shows the following activities:

• All changes to TDO and at the pads occur at the negative edge of TCK.

• The core logic output is z pad = ' 010' and appears at the I/O pads at t = 0 ns.
This is the smaller of the two inputs, a_pad = ' 010' and b _pad = ' 011 ' , and
the correct output when the pads are connected to the core logic.

• At t = 650 ns the IDCODE instruction '01' is shifted out on TDO (with '1'

appearing first). If we had multiple ASICs in the boundary-scan chain, this
would show us that the chain was intact.

e.At t = 850 ns the TDO output is floated (to 'z') as we exit the shift IR state.

• At t = 1200 ns the TAP controller begins shifting the serial data input from
TDI ('111111101') into the BSR.

• At t = 1250 ns the BSR data starts shifting out. This is data that was captured
during the SAMPLE/PRELOAD instruction from the device input pins,
a_pad and b _pad, as well as the driver of the output pins, z _pad. The data
appears as the pattern '010011010'. This pattern consists of
a_pad = ' 010' , b _pad = ' 0 II' , followed by z _pad = ' 010 "-. (notice that
TDO does not change at t = 1650 ns or 1850 ns).

• At t=2150ns, TDO is floated after we exit the shift_DR state.

• At t = 2650 ns the IDCODE instruction '01' (loaded into the IR as we
passed through capture _ IR the second time) is again shifted out as we shift
the EXTEST instruction from TDI into the IR.

744

732 CHAPTER 14 TEST

Itck

Itms

Itdi

la_pad 0

Ib_pad 0

Iz_pad 0

10

11

10

• At t = 2650 ns the TDO output is floated after we exit the shift _ IR state.

• At t = 2950 ns the output, z _pad, is driven with '101 ' . The inputs a_pad

and b _pad remain unchanged since they are driven from outside the chip.
The change on z pad occurs on the negative edge of TCK because the IR is
loaded with the instruction EXTEST on the negative edge of TCK. When this
instruction is decoded, the signal mode changes (this signal controls the
MUX at the output of the BSCs).

Figure 14.10 shows a signal trace from the MTI simulator for the last four
negative edges of TCK. Notice that we shifted in the test pattern on TDI in the order
, 101111111 '. The output z pad (3 bits wide) is last in the BSR (nearest TDO) and
thus is driven with the first 3 bits of this pattern, '101'. Forcing '101' onto the
ASIC output pins would allow us to check that this pattern is correctly received at
inputs of other connected ASICs through the bonding wires and board traces. In a
later test cycle we can force '010' onto z _pad to check that both logic levels can
be transmitted and received. We may also capture other signals (which are similarly
being forced onto the outputs of neighboring ASICs) at the inputs.

I I I

+
I

+
I

I 101 t

hift ir exit1 ir update ir * run idle
I

/asic1/c1/s s

lasic1/c1/dec1/i s amQle preload extest T

I
I I I I I I I I I I 1 1 IllIillllllllllllll I I I I I I 1 I I I 1 1 I 1 I III I I ! I I i I I I I I I ! I I I I

2800 2900 3 us

FIGURE 14.10 Results from the MTI simulator for the boundary-scan testbench.

14.2.7 BSDL

The boundary-scan description language (BSDL) is an extension of IEEE 1149.1
but without any overlap. BSDL uses a subset of VHDL. The BSDL for an ASIC is
pmt of an imaginary data sheet; it is not intended for simulation and does not
include models for any boundary-scan components. BSDL is a standard way to
describe the features and behavior of an ASIC that includes IEEE 1149.1 boundary
scan and a standard way to pass information to test-generation software. Using
BSDL, test software can also check that the BST features ·are correct. As an exam-

745

14.2 BOUNDARY-SCAN TEST 733

pIe, test software can use the BSDL to check that the ASIC uses the correct
boundary-scan cells for the instructions that claim to be supported. BSDL cannot
prove that an implementation works, however.

The following example BSDL description corresponds to our halfgate ASIC
example with BST (this code was generated automatically by the Compass tools):

entity asic_p is

generic (PHYSICAL_PIN MAP : STRING := "DUMMY_PACKAGE");

port (

pad_a:in BIT_VECTOR (0 to O)i
pad_z:buffer BIT VECTOR (0 to 0);

TCK:in BIT;

TDI:in BIT;

TDO:out BIT;

TMS:in BIT;

TRST: in BIT);

use STD_1149_1_1994.all;

attribute PIN MAP of asic_p : entity is PHYSICAL_PIN_MAP;

-- CUSTOMIZE package pin mapping.

constant DUMMY PACKAGE PIN MAP STRING :=

"pad_a:(l)," &
"pad_z:(2)," &
"TCK:3," &

"TDI:4," &
"TDO:5," &

"TMS:6," &
"TRST:7";

attribute TAP SCAN_IN of TDI : signal is TRUE;

attribute TAP_SCAN_MODE of TMS : signal is TRUEi

attribute TAP_SCAN_OUT of TDO : signal is TRUE;

attribute TAP_SCAN_RESET of TRST : signal is TRUE;

-- CUSTOMIZE TCK max freq and safe stop state.

attribute TAP SCAN CLOCK of TCK : signal is (20.0e6, BOTH);

attrioute INSTRUCTION LENGTH of asic_p entity is 3;

attribute INSTRUCTION OPCODE of asic_p entity is

"IDCODE (001)," &

"STCTEST (101)," &

"INTEST (100)," &
"BYPASS (111)," &

"SAMPLE (010)," &

"EXTEST (000)";
attribute INSTRUCTION CAPTURE of asic_p : entity is "001";

attribute INSTRUCTION DISABLE of asic_p : entity is

-- attribute INSTRUCTION_GUARD of asic_p : entity is " "

-- attribute INSTRUCTION PRIVATE of asic_p entity is

attribute IDCODE REGISTER of asic_p : entity is

"0000" & 4-bit version

"0000000000000000" & -- 16-bit part number

--1

--2

--3

--4

--5

--6

--7

--8

--9

--10
--11

--12

--13

--14

--15

--16

--17

--18

--19

--20

--21

--22

--23

--24

--25

--26

--27

--28

--29

--30

--31

--32

--33

--34

--35

--36

--37

--38

--39

--40

--41

--42

746

734 CHAPTER 14 TEST

"00000101011" & -- II-bit manufacturer

"1"; -- mandatory LSB
attribute USERCODE_REGISTER of asic_p : entity is

attribute REGISTER_ACCESS of asic_p : entity is

"BOUNDARY (STCTEST)";
attribute BOUNDARY_CELLS of asic_p : entity is

"BC_l, BC_2";

--43
--44

--45
--46
--47

--48
--49

attribute BOUNDARY_LENGTH of asic_p : entity is 2; --50
attribute BOUNDARY REGISTER of asic_p : entity is --51

num cell port function safe [ccell disval rslt] --52

1 (BC_2, pad_a(O), input, X)," & --53

o (BC_l, pad_z(O), output2, X)"; --54

" 98 (BC_l, OE, input, X), " & --55

" 98

" 99
end asic_Pi

BC_l, *, control, 0), " &
BC 1, myport(O), output3, X, 98, 0, Z);

The functions of the lines of this BSDL description are as follows:

--56

--57

--58

• Line 2 refers to the ASIC package. We can have the same part (with identical
pad numbers on the silicon die) in different ASIC packages. We include the
name of the ASIC package in line 2 and the pin mapping between bonding
pads and ASIC package pins in lines 14-21.

• Lines 3-10 describe the signal names of inputs and outputs, the TAP pins,
and the optional fifth TAP reset signal. The BST signals do not have to be
given the names used in the standard: TCK, TDI, and so on.

• Line 11 refers to the VHDL package, STD _1149 _1_1994. This is a small
VHDL package (just over 100 lines) that contains definitions of the con­
stants, types, and attributes used in a BSDL description. It does not contain
any models for simulation.

• Lines 22-25 attach signal names to the required TAP pins and the optional
fifth TAP reset signal.

cLines 26-27 refer to the maximum test clock frequency in hertz, and whether
the clock may be stopped in both states or just the low state Uust the high
state is not valid).

" Line 28 describes a 3-bit IR (in the comparator/MUX example we used a
2-bit IR). Length must be greater than or equal to 2.

Q Lines 29-35 describe the three required instruction opcodes and mnemonics
(BYPASS 1 SAMPLE 1 EXTEST) and three optional instructions: IDCODE,

STCTEST (which is a scan test mode), and INTEST (which supports internal
testing in the same fashion as EXTEST supports external testing). EXTEST

must be all ones; BYPASS must be all zeros. A mnemonic may have more
than one opcode (and opcodes may be specified using I x '). Other instruc­
tions that may appear here include CLAMP and HIGHZ; both optional instruc-

747

14.2 BOUNDARY-SCAN TEST 735

tions that were added to 1149.1 (see Supplement A, 1149.1a). String
concatenation is used in BSDL to avoid line-break problems.

o Lines 37-39 include instruction attributes INSTRUCTION_DISABLE (for HIGHZ),

INSTRUCTION_GUARD (for CLAMP), as well as INSTRUCTION_PRIVATE (for
user-defined instructions) that are not used in this example.

• Lines 40-44 describe the IDCODE TDR. The II-bit manufacturer number is
determined from codes assigned by JEDEC Publication 1Q6-A.

• Line 45 describes the USERCODE TDR in a similar fashion to IDCODE, but
is not used here.

• Lines 46-47 describe the TDRs for user-defined instructions. In this case the
existing BOUNDARY TDR is inserted between TDI and TDO during
STCTEST. User-defined instructions listed here may use the other existing
IDCODE and BYPASS TDRs or define new TDRs.

• Lines 48-49 list the boundary-scan cells used in the ASIC. These may be any
of the following cells defined in the 1149.1 standard and defined in the
VHDL package, STD _1149 _1_1994: BC _1 (Figs. 10-18, 10-29, 10-31c, 10-
31d, and 1Q-33c), BC_2 (Figs. 10-14, 10-30, 10-32c, 1Q-32d, 10-35c), BC_3

(Fig. 10-15), BC_4 (Figs. 10-16, 10-17), BC_5 (Fig. lQA1c), BC_6 (Fig. 10-
34d). The figure numbers in parentheses here refer to the IEEE 1149.1 stan­
dard [IEEE 1149.1b-1994]. Alternatively the cells may be user-defined (and
must then be declared in a package).

• Line 50 must be an integer greater than zero and match the number defined
by the following register description.

o Lines 51-54 are an array of records, numbered by cell, with seven fields:
four required and three that only appear for certain cells. Field 1 specifies the
scan cell name as defined in the STD _1149_1_1994 or user-defined package.
Field 2 is the port name, with a subscript if the type is BIT_VECTOR. An I * I

denotes no connection. Field 3 is one of the following cell functions (with
figure or page numbers from the IEEE standard [IEEE 1149.1b-1994]):
input (Fig. 10-18), clock (Fig. 10-17), output2 (two-state output,
Fig. 10-29), output3 (three-state, Fig. 1Q-31d), internal (p. 33, 1149.1 b),
control (Fig. 1Q-31c), controlr (Fig. 1Q-33c), bidir_in (a reversible
cell acting as an input, Fig. 1Q-34d), bidir out (a reversible cell acting as
an output, Fig. 10-34d). Field 4, safe, contains the safe value to be loaded
into the update flip-flop when otherwise unspecified, with I X I as a don't care
value.

• Lines 55-57 illustrate the use of the optional three fields. Field 5, ccell or
control cell, refers to the cell number (98 in this example) of the cell that con­
trols an output or bidirectional cell. The control cell number 98 is a merged
cell in this example with an input cell, input signal name OE, also labeled as
cell number 98. The ASIC input OE (for output enable) thus directly controls.
(enables) the ASIC three-state output, myport (0).

748

736 CHAPTER 14 TEST

The boundary-scan standard may seem like a complicated way to test the con­
nections outside an ASIC. However, the IEEE 1149.1 standard also gives us a
method to communicate with test circuits inside an ASIC. Next, we turn our atten­
tion from problems at the board level to problems that may occur within the ASIC.

14.3 Faults

Fabrication of an ASIC is a complicated process requiring hundreds of processing
steps. Problems may introduce a defect that in turn may introduce a fault (Sabnis
[1990] describes defect mechanisms). Any problem during fabrication may prevent
a transistor from working and may break or join interconnections. Two common
types of defects occur in metallization [Rao, 1993]: either underetching the metal (a
problem between long, closely spaced lines), which results in a bridge or short cir­
cuit (shorts) between adjacent lines, or overetching the metal and causing breaks or
open circuits (opens). Defects may also arise after chip fabrication is complete­
while testing the wafer, cutting the die from the wafer, or mounting the die in a
package. Wafer probing, wafer saw, die attach, wire bonding, and the intermediate
handling steps each have their own defect and failure mechanisms. Many different
materials are involved in the packaging process that have different mechanical, elec­
trical, and thermal properties, and these differences can cause defects due to corro­
sion, stress, adhesion failure, cracking, and peeling. Yield loss also occurs from
human error-using the wrong mask, incorrectly setting the implant dose-as well
as from physical sources: contaminated chemicals, dirty etch sinks, or a troublesome
process step. It is possible to repeat or rework some of the reversible steps (a lithog­
raphy step, for example-but not etching) if there are problems. However, reliance
on rework indicates a poorly controlled process.

14.3.1 Reliability
It is possible for defects to be nonfatal but to cause failures early in the life of a
product. We call this infant mortality. Most products follow the same kinds of trend
for failures as a function of life. Failure rates decrease rapidly to a low value that
remains steady until the end of life when failure rates increase again; this is called a
bathtub curve. The end of a product lifetime is determined by various wearout
mechanisms (usually these are controlled by an exponential energy process). Some
of the most important wearout mechanisms in ASICs are hot-electron wearout,
electromigration, and the failure of antifuses in FPGAs.

We can catch some of the products that are susceptible to early failure using
burn-in. Many failure mechanisms have a failure rate proportional to exp (-EalkT).
This is the Arrhenius equation, where Ea is a known activation energy (k is
Boltzmann's constant, 8.62 x 10-5 e VK- 1, and T the absolute temperature). Operat­
ing an ASIC at an elevated temperature accelerates this type of failure mechanism.
Depending on the physics of the failure mechanism, additional stresses, such as ele-

749

14.3 FAULTS 737

vated current or voltage, may also accelerate failures. The longer and harsher the
burn-in conditions, the more likely we are to find problems, but the more costly the
process and the more costly the parts.

We can measure the overall reliability of any product using the mean time
between failures (MTBF) for a repairable product or mean time to failure
(MTTF) for a fatal failure. We also use failures in time (FITs) where I FIT equals
a single failure in 109 hours. We can sum the FITs for all the components in a prod­
uct to determine an overall measure for the product reliability. Suppose we have a
system with the following components:

• Microprocessor (standard part) 5 FITs

• 100 TTL parts, 50 parts at 10 FITs, 50 parts at 15 FITs

• 100 RAM chips, 6 FITs

The overall failure rate for this system is 5 + 50 x 10 + 50 x 15 + 100 x 6 = 1855
FITs. Suppose we could reduce the component count using ASICs to the following:

• Microprocessor (custom) 7 FITs

• 9 ASICs, 10 FITs

• 5 SIMMs, 15 FITs

The failure rate is now 10 + 9x 10 + 5x 15 = 175 FITs, or about an order of mag­
nitude lower. This is the rationale behind the Sun SparcStation 1 design described in
Section 1.3, "Case Study."

14.3.2 Fault Models
Table 14.6 shows some of the causes of faults. The first column shows the fault
level-whether the fault occurs in the logic gates on the chip or in the package. The
second column describes the physical fault. There are too many of these and we
need a way to reduce and simplify their effects-by using a fault model.

There are several types of fault model. First, we simplify things by mapping
from a physical fault to a logical fault. Next, we distinguish between those logical
faults that degrade the ASIC performance and those faults that are fatal and stop the
ASIC from working at all. There are three kinds of logical faults in Table 14.6: a
degradation fault, an open-circuit fault, and a short-circuit fault.

A degradation fault may be a parametric fault or delay fault (timing fault).
A parametric fault might lead to an incorrect switching threshold in a TTL/CMOS
level converter at an input, for example. We can test for parametric faults using a
production tester. A delay fault might lead to a critical path being slower than speci­
fication. Delay faults are much harder to test in production. An open-circuit fault
results from physical faults such as a bad contact, a piece of metal that is missing or
overetched, or a break in a polysilicon line. These physical faults all result in failure
to transmit a logic level from one part of a circuit to another-an open circuit. A
short-circuit fault results from such physical faults as: underetching of metal; spik­
ing, pinholes or shorts across the gate oxide; and diffusion shorts. These faults result .

750

738 CHAPTER 14 TEST

TABLE 14.6 Mapping physical faults to logical faults.

Fault
level

Chip

Gate

Logical fault

Physical fault Degradation Open-circuit Short-circuit
fault fault fault

Leakage or short between package leads .. •

Broken, misaligned, or poor wire bonding ..
Surface contamination, moisture •

Metal migration, stress, peeling
Metallization (open or short) • ..

Contact opens ..
Gate to SID junction short • ..
Field-oxide parasitic device
Gate-oxide imperfection, spiking
Mask misalignment • It

in a circuit being accidentally connected-a short circuit. Most short-circuit faults
occur in interconnect; often we call these bridging faults (BF). A BF usually results
from metal coverage problems that lead to shorts. You may see reference to feed­
back bridging faults and nonfeedback bridging faults, a useful distinction when
trying to predict the results of faults on logic operation. Bridging faults are a fre­
quent problem in CMOS ICs.

14.3.3 PhYSical Faults
Figure 14.11 shows the following examples of physical faults in a logic cell:

• Fl is a short between ml lines and connects node nl to VSS.

• F2 is an open on the poly layer and disconnects the gate of transistor tl from
the rest of the circuit.

• F3 is an open on the poly layer and disconnects the gate of transistor t3 from
the rest of the circuit.

• F4 is a short on the poly layer and connects the gate of transistor t4 to the
gate of transistor t5.

.. F5 is an open on ml and disconnects node n4 from the output Zl.

• F6 is a short on m 1 and connects nodes p5 and p6.

• F7 is a nonfatal defect that causes necking on mI.

751

short
on m1

short on poly

14.3 FAULTS 739

FIGURE 14.11 Defects and physical faults. Many types of defects occur during fabrication.
Defects can be of any size and on any layer. Only a few small sample defects are shown here
using a typical standard cell as an example. Defect density for a modern CMOS process is of
the order of 1 cm-2 or less across a whole wafer. The logic cell shown here is approximately
64 x 32 A.2, or 250 ~lm2 for a A= 0.25 ~m process. We would thus have to examine approxi-
mately 1 cm-2/250 ~m2 or 400,000 such logic cells to find a single defect. .

752

740 CHAPTER 14 TEST

Once we have reduced the large number of physical faults to fewer logical
faults, we need a model to predict their effect. The most common model is the
stuck-at fault model.

14.3.4 Stuck-at Fault Model
The single stuck-at fault (SSF) model assumes that there is just one fault in the
logic we are testing. We use a single stuck-at fault model because a mUltiple stuck­
at fault model that could handle several faults in the logic at the same time is too
complicated to implement. We hope that any multiple faults are caught by single
stuck-at fault tests [Agarwal and Fung, 1981; Hughes and McCluskey, 1986]. In
practice this seems to be true.

There are other fault models. For example, we can assume that faults are located
in the transistors using a stuck-on fault and stuck-open fault (or stuck-off fault).
Fault models such as these are more realistic in that they more closely model the
actual physical faults. However, in practice the simple SSF model has been found to
work-and work well. We shall concentrate on the SSF model.

In the SSF model we further assume that the effect of the physical fault (what­
ever it may be) is to create only two kinds of logical fault. The two types of logical
faults or stuck-at faults are: a stuck-at-l fault (abbreviated to SAl or s@l) and a
stuck-at-O fault (SAO or s@O). We say that we place faults (inject faults, seed
faults, or apply faults) on a node (or net), on an input of a circuit, or on an output
of a circuit. The location at which we place the fault is the fault origin.

A net fault forces all the logic cell inputs that the net drives to a logic '1' or
, 0 ' . An input fault attached to a logic cell input forces the logic cell input to a '1 '

or '0', but does not affect other logic cell inputs on the same net. An output fault
attached to the output of a logic cell can have different strengths. If an output fault is
a supply-strength fault (or rail-strength fault) the logic-cell output node and every
other node on that net is forced to a '1' or '0' -as if all these nodes were con­
nected to one of the supply rails. An alternative assigns the same strength to the out­
put fault as the drive strength of the logic cell. This allows contention between
outputs on a net driving the same node. There is no standard method of handling
output-fault strength, and no standard for using types of stuck-at faults. Usually
we do not inject net faults; instead we inject only input faults and output faults.
Some people use the term node fault-but in different ways to mean either a net
fault, input fault, or output fault.

We usually inject stuck-at faults to the inputs and outputs, the pins, of logic
cells (AND gates, OR gates, flip-flops, and so on). We do not inject faults to the
internal nodes of a flip-flop, for example. We call this a pin-fault model and say the
fault level is at the structural level, gate level, or cell level. We could apply faults
to the internal logic of a logic cell (such as a flip-flop) and (the fault level would
then be at the transistor level or switch level. We do not use transistor-level or
switch-level fault models because there is often no need. From experience, but not

753

14.3 FAULTS 741

from any theoretical reason, it turns out that using a fault model that applies faults at
the logic-cell level is sufficient to catch the bad chips in a production test.

vVhen a fault changes the circuit behavior, the change is called the fault effect.
Fault effects travel through the circuit to other logic cells causing other fault effects.
This phenomenon is fault propagation. If the fault level is at the structural level,
the phenomenon is structural fault propagation. If we have one or more large
functional blocks in a design, we want to apply faults to the functional blocks only
at the inputs and outputs of the blocks. We do not want to place (or cannot place)
faults inside the blocks, but we do want faults to propagate through the blocks. This
is behavioral fault propagation.

Designers adjust the fault level to the appropriate level at which they think there
may be faults. Suppose we are performing a fault simulation on a board and we have
already tested the chips. Then we might set the fault level to the chip level, placing
faults only at the chip pins. For ASICs we use the logic-cell level. You have to be
careful, though, if you mix behavioral level and structural level models in a mixed­
level fault simulation. You need to be sure that the behavioral models propagates
faults correctly. In particular, if the behavioral model responds to faults on its inputs
by propagating too many unknown I X I values to its outputs, this will decrease the
fault coverage, because the model is hiding the logic beyond it.

14.3.5 Logical Faults
Figure 14.12 and the following list show how the defects and physical faults of
Figure 14.11 translate to logical faults (not all physical faults translate to logical
faults-most do not):

• F1 translates to node n1 being stuck at 0, equivalent to Al being stuck at l.

• F2 will probably result in node n1 remaining high, equivalent to Al being
stuck at 0.

• F3 will affect half of the n-channel pull-down stack and may result in a deg­
radation fault, depending on what happens to the floating gate of T3. The cell
will still work, but the fall time at the output will approximately double. A
fault such as this in the middle of a chain of logic is extremely hard to detect.

• F4 is a bridging fault whose effect depends on the relative strength of the
transistors driving this node. The fault effect is not well modeled by a
stuck-at fault model.

• F5 completely disables half of the n-channel pulldown stack and will result
in a degradation fault.

• F6 shorts the output node to VDD and is equivalent to Zl stuck at 1.

e Fault F7 could result in infant mortality. Ifthis line did break due to electromi­
gration the cell could no longer pull Zl up to VDD. This would translate to a
Zl stuck at 0. This fault would probably be fatal and stop the ASIC working.

754

742 CHAPTER 14 TEST

A1

VDD

p2

12/1

simplify Z1

n2 n2 n6
~------~------~=+--~V~S~S

(b)

'::" (a)

F1: node stuck at '0'
SAO

A1

B 1 [><}---="-'

(c)

Z1

simplify

all faults modeled by: SAO and
SA 1 on each cell pin

A1 ~I ~ I Z1
B1~

(d)

FIGURE 14.12 Fault models. (a) Physical faults at the layout level (problems during fabri­
cation) shown in Figure 14.11 translate to electrical problems on the detailed circuit sche­
matic. The location and effect of fault F1 is shown. The locations of the other fault examples
from Figure 14.11 (F2-F6) are shown, but not their effect. (b) We can translate some of these
faults to the simplified transistor schematic. (c) Only a few of the physical faults still remain in
a gate-level fault model of the logic cell. (d) Finally at the functional-level fault model of a logic
cell, we abandon the connection between physical and logical faults and model all faults by
stuck-at faults. This is a very poor model of the physical reality, but it works well in practice.

14.3.6 IDDQ Test

When they receive a prototype ASIC, experienced designers measure the resistance
between VDD and GND pins. Providing there is not a short between VDD and
GND, they connect the power supplies and measure the power-supply CUlTent. From
experience they know that a supply current of more than a few milliamperes indi­
cates a bad chip. This is exactly what we want in production -test: Find the bad chips

755

14.3 FAULTS 743

quickly, get them off the tester, and save expensive tester time. An IDDQ (IDD
stands for the supply current, and Q stands for quiescent) test is one of the first pro­
duction tests applied to a chip on the tester, after the chip logic has been initialized
[Gulati and Hawkins, 1993; Rajsuman, 1994]. High supply current can result from
bridging faults that we described in Section 14.3.2. For example, the bridging fault
F4 in Figure 14.11 and Figure 14.12 would cause excessive IDDQ if node nl and
input B 1 are being driven to opposite values.

14.3.7 Fault Collapsing
Figure 14.l3(a) shows a test for a stuck-at-l output of a two-input NAND gate.
Figure 14. 13 (b) shows tests for other stuck-at faults. We assume that the NAND gate
still works correctly in the bad circuit (also called the faulty circuit or faulty
machine) even if we have an input fault. The input fault on a logic cell is presumed
to arise either from a fault from a preceding logic cell or a fault on the connection to
the input.

Stuck -at faults attached to different points in a circuit may produce identical fault
effects. Using fault collapsing we can group these equivalent faults (or
indistinguishable faults) into a fault-equivalence class. To save time we need only
consider one fault, called the prime fault or representative fault, from a fault-equiva­
lence class. For example, Figure 14.l3(a) and (b) show that a stuck-at-O input and a
stuck-at-l output are equivalent faults for a two-input NAND gate. We only need to
check for one fault, ZI (output stuck at 1), to catch any of the equivalent faults.

Suppose that any of the tests that detect a fault B also detects fault A, but only
some of the tests for fault A also detect fault B. W say A is a dominant fault, or that
fault A dominates fault B (this the definition of fault dominance that we shall use,
some texts say fault B dominates fault A in this situation). Clearly to reduce the
number of tests using dominant fault collapsing we will pick the test for fault B.
For example, Figure 14.13(c) shows that the output stuck at 0 dominates either input
stuck at 1 for a two-input NAND. By testing for fault AI, we automatically detect
the fault Zl. Confusion over dominance arises because of the difference between
focusing on faults (Figure 14.l3d) or test vectors (Figure 14.13e).

Figure 14.13(f) shows the six stuck-at faults for a two-input NAND gate. We
can place SA 1 or SAO on each of the two input pins (four faults in total) and SA 1 or
SAO on the output pins. Using fault equivalence (Figure 14.13g) we can collapse six
faults to four: SAlon each input, and SAl or SAO on the output. Using fault domi­
nance (Figure 14.13h) we can collapse six faults to three. There is no way to tell the
difference between equivalent faults, but if we use dominant fault collapsing we
may lose information about the fault location.

14.3.8 Fault-Collapsing Example
Figure 14.14 shows an example of fault collapsing. Using the properties of logic
cells to reduce the number of faults that we need to consider is called gate collaps­
ing. We can also use node collapsing by examining the effect of faults on the same

756

744 CHAPTER 14 TEST

1
good circuit NAND(A, B)

~~2=0
1 !different

A
o 1

Fault 20 20 ---'[]1 Faults B1

bad circuit o dominates I AO, BO, 21
A 1 and B 1 . t are

1

20

1

20 SA1 B
A ?~ BO
B ~V 2=1

equivalent

LJ1 ~"4'1 faults sf{!~,'~E . ~'~l 1 A1 1 Zol~~! ;:~i!~~l~l!~~:~?~~ii:i

(c) ! (a) {11} = test for 2 SA 1 (21) (b)

fault-equivalence

Test sets class ~

SAO SA1
AO ~BO

2 {OO, 01, 1 O} ~ E 11

1---t---'---1--=-+=,----~:T'---<-.--{ dominance, ~ A {11 } representative

fault 01[A1~}B1Lo B {11 }

equivalence, E

(d)

stuck-at-O ..,

~
stuck-lt-1 logic-cell pin

(f)

collapsing by
fault equivalence

E

~
:-~i~ >;+0.-

E

AO collapses to 21
BO collapses to 21

(g)

(e)

collapsing by
fault dominance

20 dominates A 1 and B1
AO and BO dominate 21

(h)

FIGURE 14.13 Fault dominance and fault equivalence. (a) We can test for fault 20 (2 stuck
at 0) by applying a test vector that makes the bad (faulty) circuit produce a different output
than the good circuit. (b) Some test vectors provide tests for more than one fault. (c) A test for
A stuck at 1 (A 1) will also test for 2 stuck at 0; 20 dominates A 1. The fault effects of faults: AO,
BO and 21 are the same. These faults are equivalent. (d) There are six sets of input vectors
that test for the six stuck-at faults. (e) We only need to choose a subset of all test vectors that
test for all faults. (f) The six stuck-at faults for a two-input NAND logic cell. (g) Using fault
equivalence we can collapse six faults to four. (h) Using fault dominance we can collapse six
faults to three.

757

14.4 FAULT SIMULATION 745

node. Consider two inverters in series. An output fault on the first inverter collapses
with the node fault on the net connecting the inverters. We can collapse the node
fault in turn with the input fault of the second inverter. The details of fault collaps­
ing depends on whether the simulator uses net or pin faults, the fanin and fanout of
nodes, and the output fault-strength model used.

U4
C C
B B

Z

A A gate
collapsing

(a) (b)

C C
B B

Z

A A

(c) (d)

Z

Z

FIGURE 14.14 Fault collapsing for A'B + BC. (a) A pin-fault model. Each pin has stuck-at­
o and stuck-at-1 faults. (b) Using fault equivalence the pin faults at the input pins and output
pins of logic cells are collapsed. This is gate collapsing. (c) We can reduce the number of
faults we need to consider further by collapsing equivalent faults on nodes and between logic
cells. This is node collapsing. (d) The final circuit has eight stuck-at faults (reduced from the
22 original faults). If we wished to use fault dominance we could also eliminate the stuck-at-O
fault on Z. Notice that in a pin-fault model we cannot collapse the faults U4.A 1 .SA 1 and
U3.A2.SA 1 even though they are on the same net.

14.4 Fault Simulation

We use fault simulation after we have completed logic simulation to see what hap­
pens in a design when we deliberately introduce faults. In a production test we only
have access to the package pins-the primary inputs (PIs) and primary outputs
(POs). To test an ASIC we must devise a series of sets of input patterns that will
detect any faults. A stimulus is the application of one such set of inputs (a test

758

746 CHAPTER 14 TEST

vector) to the PIs of an ASIC. A typical ASIC may have several hundred PIs and
therefore each test vector is several hundred bits long. A test program consists of a
set of test vectors. Typical ASIC test programs require tens of thousands and some­
times hundreds of thousands of test vectors.

The test-cycle time is the period of time the tester requires to apply the stimu­
lus, sense the POs, and check that the actual output is equal to the expected output.
Suppose the test cycle time is 100 ns (corresponding to a test frequency of 10 MHz),
in which case we might sense (or strobe) the POs at 90 ns after the beginning of
each test cycle. Using fault simulation we mimic the behavior of the production test.
The fault simulator deliberately introduces all possible faults into our ASIC, one at a
time, to see if the test program will find them. For the moment we dodge the prob­
lem of how to create the thousands of test vectors required in a typical test program
and focus on fault simulation.

As each fault is inserted, the fault simulator runs our test program. If the fault
simulation shows that the POs of the faulty circuit are different than the PIs of the
good circuit at any strobe time, then we have a detected fault; otherwise we have an
undetected fault. The list of fault origins is collected in a file and as the faults are
inserted and simulated, the results are recorded and the faults are marked according
to the result. At the end of fault simulation we can find the fault coverage,

fault coverage = detected faults / detectable faults. (14.1)

Detected faults and detectable faults will be defined in Section 14.4.5, after the
description of fault simulation. For now assume that we wish to achieve close to 100
percent fault coverage. How does fault coverage relate to the ASIC defect level?

Table 14.7 shows the results of a typical experiment to measure the relationship
between single stuck-at fault coverage and AQL. Table 14.7 completes a circle with
test and repair costs in Table 14.1 and defect levels in Table 14.2. These experimen­
tal results are the only justification (but a good one) for our assumptions in adopting
the SSF model. We are not quite sure why this model works so well, but, being engi­
neers, as long as it continues to work we do not worry too much.

TABLE 14.7 . Average quality level as a function of single stuck-at fault coverage.

Average quality level
Fault coverage Average defect level (AQL)

50% 7% 93%

90% 3% 97%

95% 1% 99%

99% 0.1% 99.9%

99.9% 0.01% 99.99 %

759

14.4 FAULT SIMULATION 747

There are several algorithms for fault simulation: serial fault simulation, parallel
fault simulation, and concurrent fault simulation. Next, we shall discuss each of
these types of fault simulation in turn.

14.4.1 Serial Fault Simulation
Serial fault simulation is the simplest fault-simulation algorithm. We simulate two
copies of the circuit, the first copy is a good circuit. We then pick a fault and insert it
into the faulty circuit. In test terminology, the circuits are called machines, so the
two copies are a good machine and a faulty machine. We shall continue to use the
term circuit here to show the similarity between logic and fault simulation (the sim­
ulators are often the same program used in different modes). We then repeat the pro­
cess, simulating one faulty circuit at a time. Serial simulation is slow and is
impractical for large ASICs.

14.4.2 Parallel Fault Simulation
Parallel fault simulation takes advantage of multiple bits of the words in computer
memory. In the simplest case we need only one bit to represent either a ' 1 ' or '0' for
each node in the circuit. In a computer that uses a 32-bit word memory we can simu­
late a set of 32 copies of the circuit at the same time. One copy is the good circuit, and
we insert different faults into the other copies. When we need to perform a logic oper­
ation, to model an AND gate for example, we can perform the operation across all bits
in the word simultaneously. In this case, using one bit per node on a 32-bit machine,
we would expect parallel fault simulation to be about 32 times faster than serial simu­
lation. The number of bits per node that we need in order to simulate each circuit
depends on the number of states in the logic system we are using. Thus, if we use a
four-state system with '1', '0', 'X' (unknown), and 'Z' (high-impedance) states,
we need two bits per node.

Parallel fault simulation is not quite as fast as our simple prediction because we
have to simulate all the circuits in parallel until the last fault in the current set is
detected. If we use serial simulation we can stop as soon as a fault is detected and
then start another fault simulation. Parallel fault simulation is faster than serial fault
simulation but not as fast as concurrent fault simulation. It is also difficult to include
behavioral models using parallel fault simulation.

14.4.3 Concurrent Fault Simulation
Concurrent fault simulation is the most widely used fault-simulation algorithm
and takes advantage of the fact that a fault does not affect the whole circuit. Thus we
do not need to simulate the whole circuit for each new fault. In concurrent simula­
tion we first completely simulate the good circuit. We then inject a fault and resimu­
late a copy of only that part of the circuit that behaves differently (this is the
diverged circuit). For example, if the fault is in an inverter that is at a primary out-

760

748 CHAPTER 14 TEST

put, only the inverter needs to be simulated-we can remove everything preceding
the inverter.

Keeping track of exactly which parts of the circuit need to be diverged for each
new fault is complicated, but the savings in memory and processing that result allow
hundreds of faults to be simulated concurrently. Concurrent simulation is split into
several chunks, you can usually control how many faults (usually around 100) are
simulated in each chunk or pass. Each pass thus consists of a series of test cycles.
Every circuit has a unique fault-activity signature that governs the divergence that
occurs with different test vectors. Thus every circuit has a different optimum setting
for faults per pass. Too few faults per pass will not use resources efficiently. Too
many faults per pass will overflow the memory.

14.4.4 Nondeterministic Fault Simulation
Serial, parallel, and concurrent fault-simulation algorithms are forms of
deterministic fault simulation. In each of these algorithms we use a set of test vec­
tors to simulate a circuit and discover which faults we can detect. If the fault cover­
age is inadequate, we modify the test vectors and repeat the fault simulation. This is
a very time-consuming process.

As an alternative we give up trying to simulate every possible fault and instead,
using probabilistic fault simulation, we simulate a subset or sample of the faults
and extrapolate fault coverage from the sample.

In statistical fault simulation we perform a fault-free simulation and use the
results to predict fault coverage. This is done by computing measures of observabil­
ity and controllability at every node.

We know that a node is not stuck if we can make the node toggle-that is,
change from a I 0 I to I 1 I or vice versa. A toggle test checks which nodes toggle as
a result of applying test vectors and gives a statistical estimate of vector quality, a
measure of faults detected per test vector. There is a strong correlation between
high-quality test vectors, the vectors that will detect most faults, and the test vectors
that have the highest toggle coverage. Testing for nodes toggling simply requires a
single logic simulation that is much faster than complete fault simulation.

We can obtain a considerable improvement in fault simulation speed by putting
the high-quality test vectors at the beginning of the simulation. The sooner we can
detect faults and eliminate them from having to be considered in each simulation,
the faster the simulation will progress. We take the same approach when running a
production test and initially order the test vectors by their contribution to fault cov­
erage. This assumes that all faults are equally likely. Test engineers can then modify
the test program if they discover vectors late in the test program that are efficient in
detecting faulty chips.

14.4.5 Fault-Simulation Results
The output of a fault simulator separates faults into several fault categories. If we
can detect a fault at a location, it is a testable fault. A testable fault must be placed

761

14.4 FAULT SIMULATION 749

on a controllable net, so that we can change the logic level at that location from
, 0' to '1 I and from '1 I to I 0 I • A testable fault must also be on an observable
net, so that we can see the effect of the fault at a PO. This means that uncontrolla­
ble nets and unobservable nets result in faults we cannot detect. We call these
faults untested faults, untestable faults, or impossible faults.

If a PO of the good circuit is the opposite to that of the faulty circuit, we have a
detected fault (sometimes called a hard-detected fault or a definitely detected
fault). If the POs of the good circuit and faulty circuit are identical, we have an
undetected fault. If a PO of the good circuit is a I 1 I or a I 0 I but the corresponding
PO of the faulty circuit is an I X I (unknown, either '0 ' or I 1'), we have a possibly
detected fault (also called a possible-detected fault, potential fault, or potentially
detected fault).

If the PO of the good circuit changes between a I 1 I and a I 0 I while the faulty
circuit remains at I X I , then we have a soft-detected fault. Soft-detected faults are a
subset of possibly detected faults. Some simulators keep track of these soft-detected
faults separately. Soft-detected faults are likely to be detected on a real tester if this
sequence occurs often. Most fault simulators allow you to set a fault-drop
threshold so that the simulator will remove faults from further consideration after
soft-detecting or possibly detecting them a specified number of times. This is called
fault dropping (or fault discarding). The more often a fault is possibly detected,
the more likely it is to be detected on a real tester.

A redundant fault is a fault that makes no difference to the circuit operation. A
combinational circuit with no such faults is irredundant. There are close links
between logic-synthesis algorithms and redundancy. Logic-synthesis algorithms can
produce combinational logic that is irredundant and 100 % testable for single
stuck-at faults by removing redundant logic as part of logic minimization.

If a fault causes a circuit to oscillate, it is an oscillatory fault. Oscillation can
occur within feedback loops in combinational circuits with zero-delay models. A
fault that affects a larger than normal portion of the circuit is a hyperactive fault.
Fault simulators have settings to prevent such faults from using excessive amounts
of computation time. It is very annoying to run a fault simulation for several days
only to discover that the entire time was taken up by simulating a single fault in a
RS flip-flop or on the clock net, for example. Figure 14.15 shows some examples of
fault categories.

14.4.6 Fault-Simulator logic Systems
In addition to the way the fault simulator counts faults in various fault categories,
the number of detected faults during fault simulation also depends on the logic sys­
tem used by the fault simulator. As an example, Cadence's VeriFault concurrent fault
simulator uses a logic system with the six logic values: '0 I, '1', I Z I, I L I, I H',

I X I. Table 14.8 shows the results of comparing the faulty and the good circuit simu­
lations.

762

750 CHAPTER 14 TEST

Pis

undetectable fault

observe
D = '1' (good circuit)

o
ON

t ~observable
undetectable net

detectable fault D = '0' (bad circuit)
uncontrollable
net fault

(a)

'X'

(b)

Z = '1' or '0' (good circuit)
Z = 'X' (bad circuit)

(c)

~ possible-detect
fault

(d) (e)

FIGURE 14.15 Fault categories. (a) A detectable fault requires the ability to control and
observe the fault origin. (b) A net that is fixed in value is uncontrollable and therefore will pro­
duce one undetected fault. (c) Any net that is unconnected is unobservable and will produce
undetected faults. (d) A net that produces an unknown 'X' in the faulty circuit and a '1' or a '0' in
the good circuit may be detected (depending on whether the 'X' is in fact a '0' or '1 '), but we can­
not say for sure. At some point this type of fault is likely to produce a discrepancy between good
and bad circuits and will eventually be detected. (e) A redundant fault does not affect the oper­
ation of the good circuit. In this case the AND gate is redundant since AS + S' = A + S'.

From Table 14.8 we can deduce that, in this logic system:

o Fault detection is possible only if the good circuit and the bad circuit both
produce either a '1' or a I 0 ' .

o If the good circuit produces a I Z I at a three-state output, no faults can be
detected (not even a fault on the three-state output).

o If the good circuit produces anything other than a I l' or I 0 I , no faults can
be detected.

A fault simulator assigns faults to each of the categories we have described. We
define the fault coverage as:

fault coverage = detected faults/ detectable faults. (14.2)

The number of detectable faults excludes any undetectable fault categories
(untestable or redundant faults). Thus,

763

14.4 FAULT SIMULATION 751

detectable faults = faults - undetectable faults,

undetectable faults = untested faults + redundant faults.

(14.3)

(14.4)

The fault simulator may also produce an analysis of fault grading. This is a
graph, histogram, or tabular listing showing the cumulative fault coverage as a func­
tion of the number of test vectors. This information is useful to remove dead test
cycles, which contain vectors that do not add to fault coverage. If you reinitialize the
circuit at regular intervals, you can remove vectors up to an initialization without
altering the function of any vectors after the initialization. The list of faults that the
simulator inserted is the fault list. In addition to the fault list, a fault dictionary
lists the faults with their corresponding primary outputs (the faulty output vector).
The set of input vectors and faulty output vectors that uniquely identify a fault is the
fault signature. This information can be useful to test engineers, allowing them to
work backward from production test results and pinpoint the cause of a problem if
several ASICs fail on the tester for the same reasons.

TABLE 14.8 The VeriFault concurrent fault simulator logic system.1

Faulty circuit

0 1 Z L

0 U D P P

:: 1 D U P P
::::l
0 Z U U U U ~

0
"C L U U U U
0
0 H U U U U G

X U U U U

H X

P P

P P

U U

U U

U U

U U

1 L = 0 or Z; H = 1 or Z; Z = high impedance; X = unknown; D = detected; P = potentially detected; U = undetected.

14.4.7 Hardware Acceleration
Simulation engines or hardware accelerators use computer architectures that are
tuned to fault-simulation algorithms. These special computers allow you to add mul­
tiple simulation boards in one chassis. Since each board is essentially a workstation
produced in relatively low volume and there are between 2 and 10 boards in one
accelerator, these machines are between one and two orders of magnitude more
expensive than a workstation. There are two ways to use mUltiple boards for fault
simulation. One method runs good circuits on each board in parallel with the same

764

752 CHAPTER 14 TEST

stimulus and generates faulty circuits concurrently with other boards. The accelera­
tion factor is less than the number of boards because of overhead. This method is
usually faster than distributing a good circuit across multiple boards. Some fault
simulators allow you to use multiple circuits across multiple machines on a network
in distributed fault simulation.

1 Vectors Good Bad
Fault Type (hex) output output

F1 SA1 3 ° 1

F2 SA1 0,4 0,0 1, 1

F3 SA1 4,5 0,0 1, 1

F4 SA1 3 ° 1

F5 SA1 2 1 ° detect

Zg :9 F6 SA1 7 1 ° F7 SA1 0,1,3,4,5 0,0,0,0,0 1,1,1,1,1 j=~
F8 SAO 2,6,7 1, 1, 1 0,0,0

1 Test vector format:
3 = 011, so that CBA = 011: C = '0', B = '1', A = '1'

FIGURE 14.16 Fault simulation of A'B + BC. The simulation results for fault F1 (U2 output stuck at 1) with test
vector value hex 3 (shown in bold in the table) are shown on the LogicWorks schematic. Notice that the output of
U2 is ° in the good circuit and stuck at 1 in the bad circuit.

14.4.8 A Fault-Simulation Example
Figure 14.16 illustrates fault simulation using the circuit of Figure 14.14. We have
used all possible inputs as a test vector set in the following order: {O 0 0 f 001, 010,

011, 100, 101, 11 0, 111 }. There are eight collapsed SSFs in this circuit, Fl-F8.
Since the good circuit is irredundant, we have 100 percent fault coverage. The follow­
ing fault-simulation results were derived from a logic simulator rather than a fault sim­
ulator, but are presented in the same format as output from an automated test system.

Total number of faults: 22

Number of faults in collapsed fault list: 8

Test Vector

000

001

Faults detected

F2, F7

F7

Coverage/%

25.0

12 .. 5

Cumulative/%

25.0

25.0

765

010 F5,
011 F1,
100 F2,
101 F3,
110 F8
111 F6,

Total number of vectors

Fault counts:

Detected

untested

Detectable

Redundant
Tied

FAULT COVERAGE

F8

F4, F7
F3, F7

F7

F8

8
Noncollapsed

16

0

16

0
0

100.00

14.4 FAULT SIMULATION 753

25.0 50.0
37.5 75.0
37.5 87.5
25.0 87.5
12.5 87.5
25.0 100.0

Collapsed

8

0

8

0

0
% 100.00 %

Fault simulation tells us that we need to apply seven test vectors in order to
achieve full fault coverage. The highest-quality test vectors are {O 11} and {I 0 O}.

For example, test vector {OIl} detects three faults (FI, F4, and F7) out of eight.
This means if we were to reduce the test set to just {OIl} the fault coverage would
be 3/8, or 37 percent. Proceeding in this fashion we reorder the test vectors in terms
of their contribution to cumulative test coverage as follows: {OIl, 100, 010,

111, 000, 001, 101, 110}. This is a hard problem for large numbers of test
vectors because of the interdependencies between the faults detected by the different
vectors. Repeating the fault simulation gives the following fault grading:

Test Vector Faults detected Coverage/% Cumulative/%

----------- --------------- ---------- ------------
011 F1, F4, F7 37.5 37.5

100 F2, F3, F7 37.5 62.5

010 F5, F8 25.0 87.5

111 F6, F8 25.0 100.0

000 F2, F7 25.0 100.0

001 F7 12.5 100.0

101 F3, F7 25.0 100.0

110 F8 12.5 100.0

Now, instead of using seven test vectors, we need only apply the first four vec­
tors from this set to achieve 100 percent fault coverage, cutting the expensive pro­
duction test time nearly in half. Reducing the number of test vectors in this fashion
is called test-vector compression or test-vector compaction.

766

754 CHAPTER 14 TEST

The fault signatures for faults FI-F8 for the last test sequence, {OIl , 100,

010, 111, 000, 001, 101, 11 0 }, are as follows:

fail good bad
-------- -------- --------

Fl 10000000 00110001 10110001

F2 01001000 00110001 01111001

F3 01000010 00110001 01110011

F4 10000000 00110001 10110001

FS 00100000 00110001 00010001

F6 00010000 00110001 00100001

F7 11001110 00110001 11111111

F8 00110001 00110001 00000000

The first pattern for each fault indicates which test vectors will fail on the tester
(we say a test vector fails when it successfully detects a faulty circuit during a pro­
duction test). Thus, for fault FI, pattern '10000000 I indicates that only the first test
vector will fail if fault FI is present. The second and third patterns for each fault are
the POs of the good and bad circuits for each test vector. Since we only have one PO
in our simple example, these patterns do not help further distinguish between faults.
Notice, that as far as an external view is concerned, faults Fl and F4 have identical
fault signatures and are therefore indistinguishable. Faults Fl and F4 are said to be
structurally equivalent. In general, we cannot detect structural equivalence by
looking at the circuit. If we apply only the first four test vectors, then faults F2 and
F3 also have identical fault signatures. Fault signatures are only useful in diagnosing
fault locations if we have one, or a very few faults.

Not all fault simulators give all the information we have described. Most fault
sini.ulators drop hard-detected faults from consideration once they are detected to
increase the speed of simulation. With dropped hard-detected faults we cannot inde­
pendently grade each vector and we cannot construct a fault dictionary. This is the
reason we used a logic simulator to generate the preceding results.

14.4.9 Fault Simulation in an ASIC Design Flow
At the beginning of this section we dodged the issue of test-vector generation. It is
possible to automatically generate test vectors and test programs (with certain
restrictions), and we shall discuss these methods in Section 14.5. A by-product of
some of these automated systems is a measure of fault coverage. However, fault
simulation is still used for the following reasons:

G Test-generation software is expensive, and many designers still create test
programs manually and then grade the test vectors using fault simulation.

Q Automatic test programs are not yet at the stage where fault simulation can
be completely omitted in an ASIC design flow. Usually we need fault simula­
tion to add some vectors to test logic not covered automatically, to check that

767

14.5 AUTOMATIC TEST-PATTERN GENERATION 755

test logic has been inserted correctly, or to understand and correct fault cov­
erage problems.

• It is far too expensive to use a production tester to debug a production test.
One use of a fault simulator is to perform this function off line.

• The reuse and automatic generation of large cells is essential to decrease the
complexity of large ASIC designs. Megacells and embedded blocks (an
embedded microcontroller, for example) are normally provided with canned
test vectors that have already been fault simulated and fault graded. The
megacell has to be isolated during test to apply these vectors and measure the
response. Cell compilers for RAM, ROM, multipliers, and other regular
structures may also generate test vectors. Fault simulation is one way to
check that the various embedded blocks and their vectors have been correctly
glued together with the rest of the ASIC to produce a complete set of test
vectors and a test program.

• Production testers are very expensive. There is a trend away from the use of
test vectors to include more of the test function on an ASIC. Some internal
test logic structures generate test vectors in a random or pseudorandom fash­
ion. For these structures there is no known way to generate the fault cover­
age. For these types of test structures we will need some type of fault
simulation to measure fault coverage and estimate defect levels.

14.5 Automatic Test-Pattern Generation

In this section we shall describe a widely used algorithm, PODEM, for automatic
test-pattern generation (ATPG) or automatic test-vector generation (ATVG).
Before we can explain the PODEM algorithm we need to develop a shorthand nota­
tion and explain some terms and definitions using a simpler ATPG algorithm.

14.5.1 The D-Calculus
Figure 14.17(a) and (b) shows a shorthand notation, the D-calculus, for tracing
faults. The D-calculus was developed by Roth [1966] together with an ATPG algo­
rithm, the D-algorithm. The symbol D (for detect) indicates the value of a node is a
logic '0' in the good circuit and a logic' l' in the bad circuit. We can also write this
as D = 0/1. In general we write g/b, a composite logic value, to indicate a node
value in the good circuit is g and b in the bad circuit (by convention we always write
the good circuit value first and the faulty circuit value second). The complement of
D is is = 1/0 05 is rarely written as D' since is is a logic value just like' l' and '0').
Notice that is does not mean not detected, but simply that we see a '0' in the good
circuit and a '1' in the bad circuit. We can apply Boolean algebra to the composite
logic values D and is as shown in Figure 14.17(c). The composite values 1/1 and
0/0 are equivalent to '1' and '0' respectively. We use the unknown logic value 'X' to

768

756 CHAPTER 14 TEST

good bad

=[)- ~SAO

A
good 0 1

B 0 0 0

1 0 1
A

bad 0 1
B 0

0 0

1
0 0

(a)

A~ y~
1 A

A

~~O=D
B

0l1R]
good/bad 1 0 D

1

good/bad

B 0

o

good/bad

o
o

D

(b)

A~ ~ 1 NOT(A)

A

BO~
1 0 110

good/bad

A

1

o

A~y o NOT(A)

(c) NAND 0!1!D!Dlx\
10 1 L1 1 111!

~il61DfXl
ID 1TD 1 11X!

rg 11l:?W-lD!Xj
L?51J?51?51~1~j

FIGURE 14.17 The D-calculus. (a) We need a way to represent the behavior of the good
circuit and the bad circuit at the same time. (b) The composite logic value D (for detect) rep­
resents a logic '1' in the good circuit and a logic '0' in the bad circuit. We can also write this as
D = 1/0. (c) The logic behavior of simple logic cells using the D-calculus. Composite logic val­
ues can propagate through simple logic gates if the other inputs are set to their enabling val­
ues.

represent a logic value that is one of '0', '1', D, or j5, but we do not know or care
which.

If we wish to propagate a signal from one or more inputs of a logic cell to the
logic cell output, we set the remaining inputs of that logic cell to what we call the
enabling value. The enabling value is '1' for AND and NAND gates and '0' for OR
and NOR gates. Figure 14.17(c) illustrates the use of enabling values. In contrast, set­
ting at least one input of a logic gate to the controlling value, the opposite of the
enabling value for that gate, forces or justifies the output node of that logic gate to a

769

14.5 AUTOMATIC TEST-PATTERN GENERATION 757

fixed value. The controlling value of '0' for an AND gate justifies the output to '0' and
for a NAND gate justifies the output to 'I'. The controlling. values of 'I' justifies the
output of an OR gate to 'I' and justifies the output of a NOR gate to '0'. To find control­
ling and enabling values for more complex logic cells, such as AOI and OAI logic
cens, we can use their simpler AND, OR, NAND, and NOR gate representations.

1. Choose a fault

C------/
8 ----.----1

A

t
Pis

U4

activate fault

PO

(a)

3. (N)AND gates to 1, (N)OR gates to 0

C------1
8----.----1

enabling values

D-frontier

sensitized path
0---- 0 is -+-

(c) propagate fault

2. Work backward

C------I
8 ----.----1

~~~1!~ is 
~ = 0/1 

justifyO~ 

4. Work backward 

(b) 

.. : .... : ... :.:.: ...• :.~ ~·ustify 1 'O:P ............ 0 
C~----

8 1 

A 

o 
test vector 

(d) 

Z 

Z 

FIGURE 14.18 A basic ATPG (automatic test-pattern generation) algorithm for A'8 + 8C. 
(a) We activate a fault, U2.ZN stuck at 1, by setting the pin or node to '0', the opposite value 
of the fault. (b) We work backward from the fault origin to the Pis (primary inputs) by recur­
sively justifying signals at the output of logic cells. (c) We then work forward from the fault ori­
gin to a PO (primary output), setting inputs to gates on a sensitized path to their enabling 
values. We propagate the fault until the D-frontier reaches a PO. (d) We then work backward 
from the PO to the Pis recursively justifying outputs to generate the sensitized path. This sim­
ple algorithm always works, providing signals do not branch out and then rejoin again. 

14.5.2 A Basic ATPG Algorithm 
A basic algorithm to generate test vectors automatically is shown in Figure 14.18. 
We detect a fault by first activating (or exciting the fault). To do this we must drive 
the faulty node to the opposite value of the fault. Figure 14.18(a) shows a stuck-at-l 

770



758 CHAPTER 14 TEST 

fault at the output pin, ZN, of the inverter U2 (we call this fault U2.ZN.SAl). To 
create a test for U2.ZN.SAl we have to find the values of the PIs that will justify 
node U2.ZN to . 0 •. We work backward from node U2.ZN justifying each logic gate 
output until we reach a PI. In this case we only have to justify U2.ZN to . 0', and 
this is easily done by setting the PI A = '0'. Next we work forward from the fault ori­
gin and sensitize a path to a PO (there is only one PO in this example). This propa­
gates the fault effect to the PO so that it may be observed. To propagate the fault 
effect to the PO Z, we set U3.A2 = 'I' and then US.A2 = 'I'. 

We can visualize fault propagation by supposing that we set all nodes in a cir­
cuit to unknown, 'X'. Then, as we successively propagate the fault effect toward the 
POs, we can imagine a wave of D's and is's, called the D-frontier, that propagates 
from the fault origin toward the POs. As a value of D or is reaches the inputs of a 
logic cell whose other inputs are 'X', we add that logic cell to the D-frontier. Then 
we find values for the other inputs to propagate the D-frontier through the logic cell 
to continue the process. 

This basic algorithm of justifying and then propagating a fault works when we 
can justify nodes without interference from other nodes. This algorithm breaks d~n 
when we have reconvergent fanout. Figure 14.19(a) shows another example of jus­
tifying and propagating a fault in a circuit with reconvergent fanout. For direct com­
parison Figure 14.19(b) shows an irredundant circuit, similar to part (a), except the 
fault signal, B stuck at 1, branches and then reconverges at the inputs to gate US. 
The reconvergent fanout in this new circuit breaks our basic algorithm. We now 
have two sensitized paths that propagate the fault effect to US. These paths combine 
to produce a constant 'I' at Z, the PO. We have a multipath sensitization problem. 

C-";':'-:------i 

B -";':'-'----<r--x--I 

C------l 
B -x-__ --___ -l 

A 

z 

A-------' 

(a) (b) 

reconvergent 
fanout 

FIGURE 14.19 Reconvergent fanout. (a) Signal B branches and then reconverges at logic 
gate U5, but the fault U4.A 1 stuck at 1 can still be excited and a path sensitized using the 
basic algorithm of Figure 14.18. (b) Fault B stuck at 1 branches and then reconverges at gate 
US. When we enable the inputs to both gates U3 and U4 we create two sensitized paths that 
prevent the fault from propagating to the PO (primary output). We can solve this problem by 
changing A to '0', but this breaks the rules of the algorithm illustrated in Figure 14.18. The 
PODEM algorithm solves this problem. 

771



14.5 AUTOMATIC TEST-PATTERN GENERATION 759 

14.5.3 The PODEM Algorithm 
The path-oriented decision making (PODEM) algorithm solves the problem of 
reconvergent fanout and allows multipath sensitization [Goel, 1981]. The method is 
similar to the basic algorithm we have already described except PODEM will retry a 
step, reversing an incorrect decision. There are four basic steps that we label: 
objective, backtrace, implication, and D-frontier. These steps are as follows: 

1. Pick an objective to set a node to a value. Start with the fault origin as an 
objective and all other nodes set to 'X'. 

2. Backtrace to a PI and set it to a value that will help. meet the objective. 

3. Simulate the network to calculate the effect of fixing the value of the PI (this 
step is called implication). If there is no possibility of sensitizing a path to a 
PO, then retry by reversing the value of the PI that was set in step 2 and simu­
late again. 

4. Update the D-frontier and return to step 1. Stop if the D-frontier reaches a PO. 

Figure 14.20 shows an example that uses the following iterations of the four 
steps in the PODEM algorithm: 

1. We start with activation of the fault as our objective, U3 .A2 = '0'. We backtrace 
to J. We set J = 'I'. Since K is still 'X', implication gives us no further informa­
tion. We have no D-frontier to update. 

2. The objective is unchanged, but this time we backtrace to K. We set K = 'I'. 
Implication gives us U2.ZN='I' (since now J='I' and K='I') and therefore 
U7.ZN = 'I'. We still have no D-frontier to update. 

3. We set U3.AI = 'I' as our objective in order to propagate the fault through U3. 
We backtrace to M. We set M = 'I'. Implication gives us U2.ZN = 'I' and 
U3.zN = D. We update the D-frontier to reflect that U4.A2 = D and U6.Al = D, 
so the D-frontier is U4 and U6. 

4. ,We pick U6.A2 = 'I' as an objective in order to propagate the fault through U6. 
We backtrace to N. We set N = 'I'. Implication gives us U6.ZN =5. We update 
the D-frontier to reflect that U4.A2 = D and U8.AI = 5, so the D-frontier is 
U4 and U8. 

5. We pick U8.A 1 = 'I' as an objective in order to propagate the fault through U8. 
We backtrace to L. We set L = '0'. Implication gives us U5.ZN = '0' and there­
fore U8.ZN = '0' (this node is Z, the PO). There is then no possible sensitized 
path to the PO Z. We must have made an incorrect decision, we retry and set 
L = 'I'. Implication now gives us US.ZN = D and we have propagated the D­
frontier to a PO. 

We can see that the PODEM algorithm proceeds in two phases. In the first 
phase, iterations 1 and 2 in Figure 14.20, the objective is fixed in order to activate 
the fault. In the second phase, iterations 3-5, the objective changes in order to prop-

772



760 CHAPTER 14 TEST 

J 
K 

L 

U2 B U3 D U4 

U5 

D US 

r----~~~ ZN 

A3 

A4 

D 
start 

Z 

M ~fr--------+-~--------~r---~ 

U6 
N ~~--------~----------~~~ 

D 

Iteration 

1 

2 

3 

4 

5a 

5b 

Objective 

U3.A2=O 

U3.A2=O 

U3.A1 = 1 

U6.A2= 1 

US.A1 = 1 

Retry 

U7 

Backtrace1 

J=1 

K=1 

M=1 

N=1 

L=O 

L=1 

1 retry ~ ~ 
(backtrack) V 

Implication 

U7.zN = 1 

U3.ZN= D 

U6.ZN= 0 

US.ZN=1 

US.ZN= D 

finish 

D-frontier 

U4,U6 

U4,US 

U4,US 

A 

1 Backtrace is not the same as retry or backtrack. 

FIGURE 14.20 The PODEM (path-oriented decision making) algorithm. 

agate the fault. In step 3 of the PODEM algorithm there must be at least one path 
containing unknown values between the gates of the D-frontier and a PO in order to 
be able to complete a sensitized path to a PO. This is called the X-path check. 

You may wonder why there has been no explanation of the backtrace mecha­
nism or how to decide a value for a PI in step 2 of the PODEM algorithm. The deci­
sion tree shown in Figure 14.20 shows that it does not matter. PODEM conducts an 
implicit binary search over all the PIs. If we make an incorrect decision and assign 
the wrong value to a PI at some step, we will simply need to retry that step. Texts, 
programs, and articles use the term backtrace as we have described it, but then most 
use the term backtrack to describe what we have called a retry, which can be con­
fusing. I also did not explain how to choose the objective in step 1 of the PODEM 
algorithm. The initial objective is to activate the fault. Subsequently we select a 
logic gate from the D-frontier and set one of its inputs to the enabling value in an 
attempt to propagate the fault. 

773



14.5 AUTOMATIC1EST-PATTERN GENERATION 761 

We can use intelligent procedures, based on controllability and observability, to 
guide PODEM and reduce the number of incorrect decisions. PODEM is a develop­
ment of the D-algorithm, and there are several other ATPG algorithms that are 
developments of PODEM. One of these is FAN (fanout-oriented test generation) 
that removes the need to backtrace all the way to a PI, reducing the search time 
[Fujiwara and Shimono, 1983; Schulz, Trischler, and Sarfert, 1988]. Algorithms 
based on the D-algorithm, PODEM, and FAN are the basis of many commercial 
ATPG systems. 

14.5.4 Controllability and Observability 
In order for an ATPG system to provide a test for a fault on a node it must be possi­
ble to both control and observe the behavior of the node. There are both theoretical 
and practical issues involved in making sure that a design does not contain buried 
circuits that are impossible to observe and control. A software program that mea­
sures the controllability (with three l's) and observability of nodes in a circuit is 
useful in conjunction with ATPG software. 

There are several different measures for controllability and observability [Butler 
and Mercer, 1992]. We shall describe one of the first such systems called SCOAP 
(Sandia Controllability/Observability Analysis Program) [Goldstein, 1979]. 
These measures are also used by ATPG algorithms. 

Combinational controllability is defined separately from sequential 
controllability. We also separate zero-controllability and one-controllability. For 
example, the combinational zero-controllability for a two-input AND gate, 
Y = AND (X l' X2), is recursively defined in terms of the input controllability values 
as follows: 

ceo (Y) = min { eeo (Xl), eeo (X2) } + 1. (14.5) 

We choose the minimum value of the two-input controllability values to reflect the 
fact that we can justify the output of an AND gate to '0' by setting any input to the 
control value of '0'. We then add one to this value to reflect the fact that we have 
passed through an additional level of logic. Incrementing the controllability mea­
sures for each level of logic represents a measure of the logic distance between two 
nodes. 

We define the combinational one-controllability for a two-input AND gate as 

(14.6) 

This equation reflects the fact that we need to set all inputs of an AND gate to the 
enabling value of 'I' to justify a 'I' at the output. Figure 14.2I(a) illustrates these 
definitions. 

An inverter, Y = NOT (X), reverses the controllability values: 

eel (Y) = eeo (X) + 1 and eeo (Y) = eel (X) + 1. (14.7) 

774



762 CHAPTER 14 TEST 

X1 =[)-y 
X2 

CCO(Y) = min {CCO(X1), CCO(X2)} + 1 

CC1 (Y) = CC1 (X1) +CC1 (X2) + 1 

~=CY- ~~ 
CCO CC1 

4:2~4 
2:1~ 

CCO:CC1 

(a) 

n 
3:4--c:>ct- 5:4 

\J 
3:4) 

C;;-~4:3 
2:1~~ 

\~2:5 2:1 

1:2) 

(b) 

C------l 
B -----<~---; 

U4 

(c) 

FIGURE 14.21 Controllability measures. (a) Definition of combinational zero­
controllability, CCO, and combinational one-controllability, CC1 , for a two-input AND gate. 
(b) Examples of controllability calculations for simple gates, showing intermediate steps. 
(c) Controllability in a combinational circuit. 

z 

Since we can construct all other logic cells from combinations of two-input 
AND gates and inverters we can use Eqs. 14.5-14.7 to derive their controllability 
equations. When we do this we only increment the controllability by one for each 
primitive gate. Thus for a three-input NAND with an inverting input, 
Y = NAND (Xl, Xl> NOT (X3)): 

eeo (Y) = eel (Xl) + eel (X2) + eeo (X3) + 1, 

(14.8) 

For a two-input NOR, Y = NOR (Xl' X2) = NOT (AND (NOT (Xl)' NOT (X2)): 

eel (Y) = min { eel (Xl), eCl (X2) } + 1, 

eeo (Y) = eeo (X 1) + eeo (X2) + 1. (14.9) 

Figure 14.21(b) shows examples of controllability calculations. A bubble on a 
logic gate at the input or output swaps the values of eel and ceo. Figure 14.21(c) 
shows how controllability values for a combinational circuit are calculated by work­
ing forward from each PI that is defined to have a controllability of one. 

775



14.5 AUTOMATIC lEST-PATTERN GENERATION 763 

We define observability in terms of the controllability measures. The 
combinational observability, oe (Xl), of input Xl of a two-input AND gate can be 
expressed in terms of the controllability of the other input eel (X2) and the combi­
national observability of the output, oe (Y): 

(14.10) 

If a node Xl branches (has fanout) to nodes X2 and X3 we choose the most 
observable of the branches: 

(14.11) 

Figure l4.22(a) and (b) show the definitions of observability. Figure l4.22(c) 
illustrates calculation of observability at a three-input NAND; notice we sum the 
eel values for the other inputs (since the enabling value for a NAND gate is one, 
the same as for an AND gate). Figure l4.22(d) shows the calculation of observabil­
ity working back from the PO which, by definition, has an observability of zero. 

X1=D-X Y 
2 

~X2 
X1~ 

1:1 U4 
C-----l 

B 1:1 
O(X1) = CC1 (X2) + O(Y) + 1 

X3 

O(X1) = min {OC(X2), OC(X3)} 

(b) 

OC 

4:2---1\:3:4 

2:1~ 
CCO:CC1 

1 +1+1 

31 )1 
4~ 

1+2+1 

(a) 

1:1~2:2 
2:3 
5:7 

CCO:CC1 

5+3+7+1 =16~_~ 
5+1+7+1=14~ 
5+1+3+1=10 

OC 

(c) 

3+1+1=5 

3+2+1=6 

5+1=6 

FIGURE 14.22 Observability measures. (a) The combinational observability, OC(X1), of 
an input, X1, to a two-input AND gate defined in terms of the controllability of the other input 
and the observability of the output. (b) The observability of a fanout node is equal to the 
observability of the most observable branch. (c) Example of an observability calculation at a 
three-input NAND gate. (d) The observability of a combinational network can be calculated 
from the controllability measures, CCO:CC1. The observability of a PO (primary output) is 
defined to be zero. 

z 

776



764 CHAPTER 14 TEST 

Sequential controllability and observability can be measured using similar equa­
tions to the combinational measures except that in the sequential measures (SCI, 
SCO, and OS) we measure logic distance in terms of the layers of sequential logic, 
not the layers of combinational logic. 

14.6 Scan Test 

Sequential logic poses a very difficult ATPG problem. Consider the example of a 32-
bit counter with a final carry. If the designer included a reset, we have to clock the 
counter 232 (approximately 4 x 109) times to check the carry logic. Using a 1 MHz 
tester clock this requires 4x 103 seconds, 1 hour, or (at approximately $0.25 per sec­
ond) $1,000 of tester time. Consider a 16-bit state machine implemented using a 
one-hot state register with 16 D flip-flops. If the designer did not include a reset we 
have a very complicated initialization problem. A sequential ATPG algorithm must 
consider over 2000 states when constructing sequential test vectors. In an ad hoc 
approach to testing we could construct special reset circuits or create manual test 
vectors to deal with these special situations, one at a time, as they arise. Instead we 
can take a structured test approach (also called design for test, though this term 
covers a wider field). 

We can automatically generate test vectors for combinational logic, but ATPG is 
much harder for sequential logic. Therefore the most common sequential structured 
test approach converts sequential logic to combinational logic. In full-scan design 
we replace every sequential element with a scan flip-flop. The result is an internal 
form of boundary scan and, if we wish, we can use the IEEE 1149.1 TAP to access 
(and the boundary-scan controller to control) an internal-scan chain. 

Table 14.9 shows a VHDL model and schematic symbols for a scan flip-flop. 
There is an area and performance penalty to pay for scan design. The scan MUX 
adds the delay of a 2: 1 MUX to the setup time of the flip-flop; this will directly sub­
tract from the critical path delay. The 2: 1 MUX and any separate driver for the scan 
output also adds approximately 10 percent to the area of the flip-flop (depending on 
the features present in the original flip-flop). The scan chain must also be routed, and 
this complicates physical design and adds to the interconnect area. In ASIC design 
the benefits of eliminating complex sequential ATPG and the addition of observabil­
ity and controllability usually outweigh these disadvantages. 

The highly structured nature of full scan allows test software (usually called a 
test compiler) to perform automatic scan insertion. Using scan design we turn the 
output of each flip-flop into a pseudoprimary input and the input to each flip-flop 
into a pseudoprimary output. ATPG software can then generate test vectors for the 
combinational logic between scan flip-flops. 

There are other approaches to scan design. In partial scan we replace a subset 
of the sequential elements with scan flip-flops. We can choose this subset using heu­
ristic procedures to allow the remaining sequential logic to be tested using sequen-

777



14.6 SCAN TEST 765 

TABLE 14.9 Scan flip-flop. 

o 
SCIN 

SCEN 

SCOUT 
o 

SCIN 
SCEN 

ClK 

library IEEE; use IEEE.STD_LOGIC_1164.all; 

entity DFFSCAN is 
generic (reset_value: STD_LOGIC := '0'); 

port ( 

SCOUT 

in STD_LOGIC; 

SCEN 

o 
SCIN 

Q : out STD_LOGIC ; D, CLK, RST 

SCOUT : out STD_LOGIC; SCIN, SCEN 

end DFFSCAN; 

: in STD LOGIC ); 

architecture behave of DFFSCAN is 
signal RST_IN, CLK_IN , SCEN_IN , SCIN_IN, D_IN 

begin 

RST IN <= to_X01(RST); CLK_IN <= to_X01(CLK); 

STD LOGIC 

SCEN_IN <= to_X01(SCEN); SCIN_IN <= to_X01(SCIN); D_IN <= to_X01(D); 

DFSCAN : process (CLK_IN, RST_IN) begin 

if RST_IN = '0' then Q <= reset_value; SCOUT <= reset_value; 

elsif RST_IN = '1' and rising_edge (CLK_IN) then 

if SCEN IN = '1' then Q <= SCIN_IN; SCOUT <= SCIN_IN; 

end if; 

elsif SCEN IN '0' then Q <= D_IN; SCOUT <= D_IN; 

else Q <= 'X' SCOUT <= 'X'; 

end if; 

Q 

SCOUT 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 

--11 

--12 

--13 

--14 

--15 

--16 

--17 

--18 

--19 

elsif RST IN = 'X' or CLK IN = 'X' or SCEN IN 

end if; 

'X' then Q <= 'X'; SCOUT <= 'X'; --20 

end process DFSCAN; 

end behave; 

tial ATPG techniques. In destructive scan we remove the values at the outputs of 
the flip-flops during the scan process (this is the usual form of scan design). In 
nondestructive scan we keep the flip-flop outputs intact so that we can shift out the 
scan chain and then resume where we left off. Level-sensitive scan design (LSSD) 
is a form of scan design developed at IBM that uses separate clock phases to drive 
scan elements. 

We shall describe scan design, automated scan insertion, and test-program gen­
eration with several examples. First, though, we describe another important struc­
tured-test technique. 

--21 

--22 

--23 

778



766 CHAPTER 14 TEST 

14.7 Built-in Self-test 

The trend to include more test logic on an ASIC has already been mentioned. 
Built-in self-test (BIST) is a set of structured-test techniques for combinational and 
sequential logic, memories, multipliers, and other embedded logic blocks. In each 
case the principle is to generate test vectors, apply them to the circuit under test 
(CUT) or device under test (DUT), and then check the response. 

14.7.1 LFSR 
Figure 14.23 shows a linear feedback shift register (LFSR). The exclusive-OR 
gates and shift register act to produce a pseudorandom binary sequence (PRBS) at 
each of the flip-flop outputs. By correctly choosing the points at which we take the 
feedback from an n-bit shift register (see Section 14.7.5), we can produce a PRBS of 
length 2/1 -1, a maximal-length sequence that includes all possible patterns (or vec­
tors) of n bits, excluding the all-zeros pattern. 

FIGURE 14.23 A linear feedback shift register 
(lFSR). A 3-bit maximal-length lFSR produces a repeat­
ing string of seven pseudorandom binary numbers: 7, 3, 
1,4,2,5,6. 

1110010 ... 

1100101 ... 

0010111 ... 1001011 ... 

DO 

ClK 

00 01 
1--'--+----1 

D1 

ClK 

D2 

elK 

02 

Table 14.10 shows the maximal-length sequence, with length 23 - 1 = 7, for the 
3-bit LFSR shown in Figure 14.23. Notice that the first (clock tick 1) and last rows 
(clock tick 8) are identical. Rows following the seventh row repeat rows 1-7, so that 
the length of this 3-bit LFSR sequence is 7 = 23 - 1, the maximal length. The shaded 
regions show how bits are shifted from one clock cycle to the next. We assume the 
register is initialized to the all-ones state, but any initial state will work and produce 
the same PRBS, as long as the initial state is not all zeros (in which case the LFSR 
will stay stuck at all zeros). 

14.7.2 Signature Analysis 
Figure 14.24 shows the LFSR of Figure 14.23 with an additional XOR gate used in 
the first stage of the shift register. If we apply a binary input sequence to IN, the 
shift register will perform data compaction (or compression) on the input 
sequence. At the end of the input sequence the shift-register contents, QOQIQ2, will 
form a pattern that we call a signature. If the input sequence and the serial-input 

779



14.7 BUILT-IN SELF-TEST 767 

TABLE 14.10 LFSR example of Figure 14.23. 

Clock tick, t = 000102 

1 

2 

3 

4 

5 

o 
1 

o 
o 
1 

1 

o 
o 

7 

3 

1 

4 

2 

6 1 0 1 5 

7 1 1 0 6 
----_._-_ .. _-_._--_ .. _-_._ ..... _-----_._ .. _-----------.. _-_._-_ .. _------------_._--_. __ ._-_._---_ .. __ . __ ._.-------------_._----_._---_._----_._-_._-----_._-----------_. 

8 1 1 1 7 

signature register (SISR) are long enough, it is unlikely (though possible) that two 
different input sequences will produce the same signature. If the input sequence 
comes from logic that we wish to test, a fault in the logic will cause the input 
sequence to change. This causes the signature to change from a known good value 
and we shall then know that the circuit under test is bad. This technique, called 
signature analysis, was developed by Hewlett-Packard to test equipment in the field 
in the late 1970s. 

FIGURE 14.24 A3-bit serial-input signature register 
(SISR) using an LFSR (linear feedback shift register). 
The LFSR is initialized to 010203 = '000' using the 
common RES (reset) signal. The signature, 010203, 
is formed from shift-and-add operations on the 
sequence of input bits (IN). 

14.7.3 A Simple BIST Example 

F1 

00 
D1 

We can combine the PRBS generator of Figure 14.23 together with the signature 
register of Figure 14.24 to form the simple BIST structure shown in Figure 14.2S(a). 
LFSRI generates a maximal-length (23 -1 = 7 cycles) PRBS. LFSR2 computes the 
signature (,OIl' for the good circuit) of the CUT. LFSRI is initialized to '100' 
(QO= 1, Ql =0, Q2=0) and LFSR2 is initialized to '000'. The schematic in 
Figure 14.2S(a) shows the bit sequences in the circuit, both for a good circuit and for 
a bad circuit with a stuck-at-l fault, Fl. Figure 14.2S(b) shows how the bit 
sequences are calculated in the good circuit. The signature is formed as RORIR2 

01 
D2 

02 

780



768 CHAPTER 14 TEST 

seven clock edges (on the eighth clock cycle) after the active-low reset is taken high. 
Figure 14.26 shows the waveforms in the good and bad circuit. The bad circuit sig­
nature, '000', differs from the good circuit and the signature can either be compared 
with the known good signature on-chip or the signature may be shifted out and com­
pared off-chip (both approaches are used in practice). 

14.7.4 Aliasing 
In Figure 14.26 the good and bad circuits produced different signatures. There is a 
small probability that the signature of a bad circuit will be the same as a good cir­
cuit. This problem is known as aliasing or error masking. For the example in 
Figure 14.25, the bit stream input to the signature analysis register is 7 bits long. 
There are 27 or 128 possible 7-bit-long bit-stream patterns. We assume that each of 
these 128 bit-stream patterns is equally likely to produce any of the eight (all-zeros 
is an allowed pattern in a signature register) possible 3-bit signatures. It turns out 
that this is a good assumption. Thus there are 128/8 or 16 bit-streams that produce 
the good signature, one of these belongs to the good circuit, the remaining 15 cause 
aliasing. Since there are a total of 128 - 1 = 127 bit-streams due to bad circuits, the 
fraction of bad-circuit bit-streams that cause aliasing is 15/127, or 0.118. If all bad 
circuit bit-streams are equally likely (and this is a poor assumption) then 0.118 is 
also the probability of aliasing. 

In general, if the length of the test sequence is L and the length of the signature 
register is R the probability p of aliasing (not detecting an error) is 

p = (14.12) 

Thus, for the example in Figure 14.25, L = 7 and R = 3, and the probability of 
aliasing is p = (2(7 3) -1) / (27 -1) = 15/127 = 0.118, as we have just calculated. 
This is a very high probability of error and we would not use such a short test 
sequence and such a short signature register in practice. 

For L» R the error probability is 

(14.13) 

For example, if R = 16, P "" 0.0000152 corresponding to an error coverage 
(1 - p) of approximately 99.9984 percent. Unfortunately, these equations for error 
coverage are rather meaningless since there is no easy way to relate the error cover­
age to fault coverage. The problem lies in our assumption that all bad-circuit bit­
streams are equally likely, and this is not true in practice (for example, bit-stream 
outputs of all ones or all zeros are more likely to occur as a result of faults). Never­
theless signature analysis with high error-coverage rates is found to produce high 
fault coverage. 

781



good 1011100 0101110 

bad 1011100 0101110 

1 

1 

o 
o 
1 

1 

1 

1 

o 
o 

(a) 

0010111 01001100 

0010111 01011100 

(b) 

14.7 BUILT-IN SELF-TEST 769 

0011111f{ii) 000111 000011 

00111 OG~ 000111 O~ 0000111£~ 

t t t 
signatures: 

good = hex 3 = 011 
RO = 0, R1 = 1, R2 = 1 

bad (F1) = hex 0 = 000 
RO = 0, R1 = 0, R2 = 0 

Q2t+1=Q1t Z= ROt+1= R1 t+1=ROt R2t+1=R1 t 

o 
1 

1 

o 

QO'.Q1 +Q1.Q2 ZtEBROtEBR2t 

o 
1 

o 
o 
1 

1 

o 
o 

1 

1 

1 

1 

o 

--------------------

1 

1 

1 

1 

1 

o 
1 

1 

1 

1 

FIGURE 14.25 BIST example. (a) A simple BIST structure showing bit sequences for both good and bad cir­
cuits. (b) Bit sequence calculations for the good circuit. The signature appears on the eighth clock cycle (after 
seven positive clock edges) and is RO= '0', R1 = '1', R2= '1'; with R2 as the MSB this is '011' or hex 3. 

782



77(} CHAPTER 14 TEST 

00 
01 
02 
Z 

RO 
R1 
R2 
reset 

clock 

o 
R 

reset 

clock 

z 

o 
R 

reset 

clock 

z 

(a) 

(b) 

(c) 

FIGURE 14.26 The waveforms of the BIST circuit of Figure 14.25. (a) The good-circuit 
response. The waveforms 01 and 02, as well as R1 and R2, are delayed by one clock cycle 
as they move through each stage of the shift registers. (b) The same good-circuit response 
with the register outputs 00-02 and RO-R2 grouped and their values displayed in hexadec­
imal (00 and RO are the MSBs). The signature hex 3 or '011' (RO = 0, R1 = 1, R2 = 1) in R 
appears seven positive clock edges after the reset signal is taken high. This is one clock 
cycle after the generator completes its first sequence (hex pattern 4, 2, 5, 6, 7, 3, 1). (c) The 
response of the bad circuit with fault F1 and fault signature hex 0 (circled). 

783



14.7 BUilT-IN SELF-TEST 771 

14.7.5 LFSR Theory 
The operation of LFSRs is related to the mathematics of polynomials and Galois­
field theory. The properties and behavior of these polynomials are well known and 
they are also used extensively in coding theory. Every LFSR has a characteristic 
polynomial that describes its behavior. The characteristic polynomials that cause an 
LFSR to generate a maximum-length PRBS are called primitive polynomials. Con­
sider the primitive polynomial 

p (x) = 1 EB xl EB x 3 , (14.14) 

where a EB b represents the exclusive-OR of a and b. The order of this polynomial is 
three, and the corresponding LFSR will generate a PRBS of length 23 - 1 = 7. For a 
primitive polynomial of order n, the length of the PRBS is 211 -1. Figure 14.27 
shows the nonzero coefficients of some primitive polynomials [Golomb et al., 1982]. 

n s Octal 

1 0, 1 3 

2 0,1,2 7 

4 0,1,4 3 

5 0,2,5 45 

6 0,1,6 103 

7 0,1,7 211 

8 0,1,5,6,8 435 

9 0,4,9 1021 

10 0,3,10 2011 

Binary 

11 

111 

611 
10011 

100101 

1000011 

10001001 

100011101 

1000010001 

10000001001 

For n= 3 and s = 0, 1,3: co= 1, C1 = 1, c2 = 0, c3 = 1 

P(x) = 1 EEl c1xEEl ..• EEl cn_1xn-1 EEl xn 

elK 

00 

elK 

°n-1 

elK 

FIGURE 14.27 Primitive polynomial coefficients for lFSRs (linear feedback shift registers) that generate a max­
imal-length PRBS (pseudorandom binary sequence). A schematic for a type 1 lFSR is shown. 

Any primitive polynomial can be written as 

(14.15) 

where Co and cl1 are always one. Thus for example, from Figure 14.27 for n = 3, we 
see s = 0, 1, 3; and thus the nonzero coefficients are co' cl, and c3' This corresponds 
to the primitive polynomial P (x) = 1 EB xl EB x3 . There is no easy way to deter­
mine the coefficients of primitive polynomials, especially for large 11. There are 
many primitive polynomials for each n, but Figure 14.27 lists the one with the few­
est nonzero coefficients. 

784



772 CHAPTER 14 TEST 

The schematic in Figure 14.27 shows how the feedback taps on a LFSR corre­
spond to the nonzero coefficients of the primitive polynomial. If the ith coefficient ci 

is 1, then we include a feedback connection and an XOR gate in that position. If ci is 
zero, there is no feedback connection and no XOR gate in that position. 

The reciprocal of a primitive polynomial, P*(x), is also primitive, where 

(14.16) 

For example, by taking the reciprocal of the primitive polynomial 
P (x) = 1 EB xl EB x 3 from Eq. 14.16, we can form 

(14.17) 

which is also a primitive polynomial. 
This means that there are two possible LFSR implementations for every P(x). 

Or, looked at another way, for every LFSR implementation, the characteristic poly­
nomial can be written in terms of two primitive polynomials, P(x) and P*(x), that 
are reciprocals of each other. 

We may also implement an LFSR by using XOR gates in series with each flip­
flop output rather than external to the shift register. The external-XOR LFSR is 
called a type 1 LFSR and the internal-XOR LFSR is called a type 2 LFSR (this is 
a nomenclature that most follow). Figure 14.28 shows the four different LFSRs that 
may be constructed for each primitive polynomial, P(x). 

There are differences between the four different LFSRs for each polynomial. 
Each gives a different output sequence. The outputs for the type 1 LFSRs, taken 
from the Q outputs of each flip-flop, are identical, but delayed by one clock cycle 
from the previous output. This is a problem when we use the parallel output from an 
LFSR to test logic because of the strong correlation between the test signals. The 
type 2 LFSRs do not have this problem. The type 2 LFSRs also are capable of 
higher-frequency operation since there are fewer series XOR gates in the signal path 
than in the corresponding type 1 LFSR. For these reasons, the type 2 LFSRs are usu­
ally used in BIST structures. The type 1 LFSR does have the advantage that it can be 
more easily constructed using register structures that already exist on an ASIC. 

Table 14.11 shows primitive polynomial coefficients for higher values of n than 
Figure 14.27. Test length grows quickly with the size of the LFSR. For example, a 
32-bit generator will produce a sequence with 232 = 4,294,967,296 ::::4.3 x 109 bits. 
With a 100 MHz clock (with 10 ns cycle time), the test time of 43 seconds would be 
impractical. 

There is confusion over naming, labeling, and drawing of LFSRs in texts and 
test programs. Looking at the schematic in Figure 14.27, we can draw the LFSR 
with signals flowing from left to right or vice versa (two ways), we can name the 
leftmost flip-flop output Qo or Qn (two more ways), and we can name the coefficient 
that goes with Qo either Co or Cn-l (two more ways). There are thus at least 23 x 4 

785



14.7 BUilT-IN SELF-TEST 773 

0010111 ... 1110010 ... 

1001011 ... 1100101 ... 

DO 

elK 

FO 

elK 

01 
00 01 

elK 

000102 = 7314256 ... 
020100 = 7641253 ... 

F1 
SO 

elK 

(a) 

SOS1 S2 = 7634215 .. . 
S2S1S0 = 7361245 .. . 

(c) 

02 

elK 

elK 

02 

S2 

EO 

elK 

GO 

elK 

RO 
E2 

E1 R1 

elK elK 

ROR1 R2 = 7352146 ... 
R2R1RO = 7652413 ... 

(b) 

elK 

G2 
T1 

elK 

TOT1T2 = 7542163 .. . 
T2T1TO = 7512436 .. . 

(d) 

R2 

T2 

FIGURE 14.28 For every primitive polynomial there are four linear feedback shift registers 
(LFSRs). There are two types of LFSR; one type uses external XOR gates (type 1) and the 
other type uses internal XOR gates (type 2). For each type the feedback taps can be con­
structed either from the polynomial P(x) or from its reciprocal, P*(x). The LFSRs in this figure 
correspond to P(x) = 1 EB x EB x3 and P*(x)= 1 EB x2EB x3. Each LFSR produces a different pseu­
dorandom sequence, as shown. The binary values of the LFSR seen as a register, with the bit 
labeled as zero being the MSB, are shown in hexadecimal. The sequences shown are for 
each register initialized to '111', hex 7. (a) Type 1, P*(x). (b) Type 1, P(x). (c) Type 2, P(x). 
(d) Type 1, P*(x). 

different ways to draw an LFSR for a given polynomial. Four of these are distinct. 
You can connect the LFSR feedback in the reverse order and the LFSR will still 
work-you will, however, get a different sequence. Usually this does not matter. 

14.7.6 LFSR Example 
We can use a cell compiler to produce LFSR and signature register BIST structures. 
For example, we might complete a property sheet as follows: 

786



774 CHAPTER 14 TEST 

TABLE 14.11 Nonzero coefficients of primitive polynomials for LFSRs (linear feedback shift registers) 
that generate a maximal-length PRBS (pseudorandom binary sequence). 

n s 

1 0,1 

2 0,1,2 

3 0,1,3 

4 0,1,4 

5 0,2,5 

6 0,1,6 

7 0,1,7 

8 0,1,5,6,8 

9 0,4,9 

10 0,3,10 

n s n s n s 

11 0,2,11 21 0,2,21 31 0,3,31 

12 0,3,4,7,12 22 0,1,22 32 0,1,27,28,32 

13 0,1,3,4,13 23 0,5,23 40 0,2,19,21,40 

14 0,1,11,12,14 24 0,1,3,4,24 50 0,1,26,27,50 

15 0,1,15 25 0,3,25 60 0,1,60 

16 0,2,3,5,16 26 0,1,7,26 70 0,1,15,16,70 

17 0,3,17 27 0,1,7,27 80 0,1,37,38,80 

18 0,7,18 28 0,3,28 90 0,1,18,19,90 

19 0,1,5,6,19 29 0,2,29 100 0,37,100 

20 0,3,20 30 0,1,15,16,30 256 0,1,3,16,256 

property name value property name value 

------------------ ------------------
LFSR is bilbo - false LFSR configuration generator 
LFSR length 3 LFSR init hex value 4 -
LFSR scan false LFSR mux data false 
LFSR _mux_output false LFSR xor hex function max length 

-
LFSR zero state false LFSR_signature_inputs 1 

The Verilog structural netlist for the compiled type 2 LFSR generator is shown 
in Table 14.12. According to our notation and the primitive polynomials in 
Figure 14.27, the corresponding primitive polynomial is P*(x) = 1 EBx2EBx3. The 
LFSR has both serial and parallel outputs (taken from the inverted flip-flop outputs 
with inverting buffers, cell names in02dl). The clock and reset inputs are buffered 
(with noninverting buffers, cell names niO Idl) since these inputs would normally 
have to drive a load of more than 3 bits. Looking in the cell data book we find that 
the flip-flop corresponding to the MSB, instance FFO with cell name dfptnb, has an 
active-low set input SDN. The remaining flip-flops, cell name dfctnb, have active­
low clears, CDN. This gives us the initial value '100'. 

Table 14.13 shows the serial-input signature register compiled using the recipro­
cal polynomial. Again the compiler has included buffers. All the flip-flops, cell 
names dfctnb, have active-low clear so that the initial content of the register is 
'000'. 

787



TABLE 14.12 Compiled LFSR generator, using P*(x}=1EBx 2 EBx3• 

module Ifsr_generator (OUT, SERIAL_OUT, INITN, CP); 

output [2:0] OUT; output SERIAL_OUT; input INITN, CP; 

14.7 BUILT-IN SELF-TEST 775 

dfptnb FF2 (.D(FFO_Q), .CP(u4_Z), .SDN(u2_Z), .Q(FF2_Q), .QN(FF2_QN)); 

dfctnb FFI (.D(XORO_Z), .CP(u4_Z), .CDN(u2_Z), .Q(FFl_Q), .QN(FFl_QN)); 

dfctnb FFO (.D(FFl_Q), .CP(u4_Z), .CDN(u2_Z), .Q(FFO_Q), .QN(FFO_QN)); 

niOldl u2 (.I(u3_Z), .Z(u2_Z)); niOldl u3 (.I(INITN), .Z(u3_Z)); 

niOldl u4 (.I(uS_Z), .Z(u4_Z)); niOldl uS (.I(CP), .Z(uS_Z)); 

xo02dl XORO (.Al(FF2_Q), .A2(FFO_Q), .Z(XORO_Z)); 

in02dl INV2XO (.I(FFO_QN), .ZN(OUT[O])); 

in02dl INV2Xl (.I(FFl_QN), .ZN(OUT[l])); 

in02dl INV2X2 (.I(FF2_QN), .ZN(OUT[2])); 

in02dl INV2X3 (.I(FFO_QN), .ZN(SERIAL_OUT)); 

endmodule 

TABLE 14.13 Compiled serial-input signature register, using P(x} = 1 EB x EB x3. 

module Ifsr_signature (OUT, SERIAL_OUT, INITN, CP, IN); 

output [2:0] OUT; output SERIAL_OUT; input INITN, CP; input [0:0] IN; 

dfctnb FF2 (.D(XORl_Z), .CP(u4_Z), .CDN(u2_Z), .Q(FF2_Q), .QN(FF2_QN)); 

dfctnb FFI (.D(FF2_Q), .CP(u4_Z), .CDN(u2_Z), .Q(FFl_Q), .QN(FFl_QN)); 

dfctnb FFO (.D(XORO_Z), .CP(u4 Z), .CDN(u2_Z), .Q(FFO_Q), .QN(FFO_QN)); 

niOldl u2 (.I(u3_Z), .Z(u2_Z)); niOldl u3 (.I(INITN), .Z(u3_Z)); 

niOldl u4 (.I(uS_Z), .Z(u4 Z)); niOldl uS (.I(CP), .Z(uS_Z)); 

xo02dl XORI (.Al(IN[O]), .A2(FFO_Q), .Z(XORl_Z)); 

xo02dl XORO (.Al(FFl_Q), .A2(FFO_Q), .Z(XORO_Z)); 

in02dl INV2Xl (.I(FFl_QN), .ZN(OUT[l])); 

in02dl INV2X2 (.I(FF2_QN), .ZN(OUT[2])); 

in02dl INV2X3 (.I(FFO_QN), .ZN(SERIAL_OUT)); 

in02dl INV2XO (.I(FFO_QN), .ZN(OUT[O])); 

endmodule 

14.7.7 MISR 

A serial-input signature register can only be used to test logic with a single output. 
We can extend the idea of a serial-input signature register to the multiple-input 
signature register (MISR) shown in Figure 14.29. There are several ways to con­
nect the inputs to both types (type 1 and type 2) of LFSRs to form an MISR. Since 
the XOR operation is linear and associative, so that (A EB B) EB C= A EB (BEB C), as 
long as the result of the additions are the same then the different representations are 
equivalent. If we have an n-bit long MISR we can accommodate up to 11 inputs to 

788



776 CHAPTER 14 TEST 

in[O] 

form the signature. If we use m < n inputs we do not need the extra XOR gates in the 
last n - m positions of the MISR. 

in[1 ] in[2] 

MISR 
xoU1 xoU2 xoU3 

cp out[2] out[2] 
initn R 

FIGURE 14.29 Multiple-input signature register (MISR). This MISR is formed from the type 
2 LFSR (with P*(x) = 1 EB x2 EB x3 ) shown in Figure 14.28(d) by adding XOR gates xoU1, 
xoCi2, and xoU3. This 3-bit MISR can form a signature from logic with three outputs. If we 
only need to test two outputs then we do not need XOR gate, xoU3, corresponding to input 
in[2]. 

There are several types of BIST architecture based on the MISR. By including 
extra logic we can reconfigure an MISR to be an LFSR or a signature register; this is 
called a built-in logic block observer (BILBO). By including the logic that we 
wish to test in the feedback path of an MISR, we can construct circular BIST struc­
tures. One of these is known as the circular self-test path (CSTP). 

We can test compiled blocks including RAM, ROM, and datapath elements 
using an LFSR generator and a MISR. To generate all 211 address values for a RAM 
or ROM we can modify the LFSR feedback path to force entrance and exit from the 
all-zeros state. This is known as a complete LFSR. The pattern generator does not 
have to be an LFSR or exhaustive. 

For example, if we were to apply an exhaustive test to a 4-bit by 4-bit multiplier 
this would require 28 or 256 vectors. An 8-bit by 8-bit multiplier requires 65,536 vec­
tors and, if it were possible to test a 32-bit by 32-bit multiplier exhaustively, it would 
require 1.8 x 1019 vectors. Table 14.14 shows two sets of nonexhaustive test patterns, 
{ SA} and {SAE}, if A and B are both 4 bits wide. The test sequences {SA} and 
{SAE} consist of nested sequences of walking 1's and walking O's (SI and SIB), 
walking pairs (S2 and S2B), and triplets (S3, S3B). The sequences are extended for 
larger inputs, so that, for example, {S2} is a sequence of seven vectors for an 8-bit 
input and so on. Intermediate sequences {SX} and {SXB} are concatenated from S 1, 
S2, and S3; and from SIB, S2B, and S3B respectively. These sequences are chosen to 
exercise as many of the add-and-carry functions within the multiplier as possible. 

789



14.7 BUILT-IN SELF-TEST 777 

TABLE 14.14 Multiplier test patterns.1 

Sequence Sequence Sequence Sequence 
{SX} {SXB} {SA} {SAE} 

Sl={lOOO 0100 0010 OOOl} SlB= {Olll 1011 1101 Olll} { { { AB={Sl, SX} } 

S2 = {1l00 0110 DOll} S2B= {DOll 1001 1l00} AB= {Sl, SX} { AB= {SIB, SXB} } 

S3 = {11l0 DIll} S3B= {OOOI 1000} } { AB= {S2, SX} } 

{ AB= {S2B, SXB} } 

SX= { {Sl} {S2} {S3}} SXB= { {SIB} {S2B} {S3B} } { AB= {S3, SX} } 

{ AB= {S3B, SXB} } 

} 
._-_ ....... _--_._._._-_._._ .. _--_ .. _-_._-_ .. _ .. _._._ .... '-,_ .. __ .. _--_ .. _ ... _--_.- ... --_ ... _ ..... _----_.-.-._ ... __ ._--_.- ... _ .. _---_ ... _ .. __ .. __ ...... _ ............. _ ... _-_ ....... _ ..... _ ..... _-_.-_._--_. __ ._. __ ._ .... _ ......... __ .... -.. __ .-._._._._ ...... _._-_ ....... _ ....... _.. .. -.. _ .. _. __ ._---_ .... _ ..... _ .. __ ....... _.... -...... _--_ .... _ ... _._. __ ... _--_._- . 

Total=3(X-1)=9,X=4 Total=3(X-1)=9,X=4 Total=4x9 Total=3(2A-1)(3B-2) 
=3A(B-1)=36 =3x7x10=210 

1 {AB = {S1, SB} } means for each value of A in the sequence {S1} set B equal to all the values in {SB}. 

The sequence length of {SA} is 3A (B - 1), and 3(2A - 1)(3B - 2) for {SAE}, 
where A and B are the sizes of the multiplier inputs. For example, {SA} is 168 vec­
tors for A = B = 8 and 2976 vectors for A = B = 32; {SAE} is 990 vectors 
(A = B = 8) and 17,766 vectors (A = B = 32). From fault simulation, the stuck-at 
fault coverage is 93 percent for sequence {SA} and 97 percent for sequence 
{SAE}. 

Figure 14.30 shows an MISR with a scan chain. We can now include the BIST 
logic as part of a boundary-scan chain, this approach is called scanBIST. 

scan_selectn ---.----------------1'"----------~ 

cp 
initn 

cp 
initn 

cp 
initn R 

FIGURE 14.30 Multiple-input signature register (MISR) with scan generated from the 
MISR of Figure 14.29. 

out[2] 

790



778 CHAPTER 14 TEST 

14.8 A Simple Test Example 

As an example, we will describe automatic test generation using boundary scan 
together with internal scan. We shall use the function Z = AlB + Be for the core logic 
and register the three inputs using three flip-flops. We shall test the resulting sequen­
tial logic using a scan chain. The simple logic will allow us to see how the test vec­
tors are generated. 

14.8.1 Test-logic Insertion 
Figure 14.31 shows a structural Verilog model of the logic core. The three flip-flops 
(cell name dfctnb) implement the input register. The combinational logic imple­
ments the function, outp = a_r[O] I .a_r[11 + a_r[l] .a_r[2J. This is the 
same function as Figure 14.14 and Figure 14.16. 

~ a[2:0] 

0- elk 

I reset)- reset 

a[O] 

reset elk 

module eore_p (outp, reset, a, elk); 
output outp; input reset, elk; input 
dfetnb a_r_ff_bO (.D(a[O]), .CP(elk), 
dfetnb a_r_ff_bl (.D(a[l]), .CP(elk), 
dfetnb a_r_ff_b2 (.D(a[2]), .CP(elk), 
inOldO u2 (.I(a_r[O]), .ZN(u2_ZN»; 
nd02dO u3 (.Al(u2_ZN), .A2(a_r[1]), 
nd02dO u4 (.Al(a_r[l]), .A2(a_r[2]), 
nd02dO uS (.Al(u3_ZN), 
endmodule 

a[1] a[2] 

reset elk reset elk 

[2:0] a; wire [2:0] a_r; 
.CDN(reset), .Q(a_r[O]), .QN(\a_r_ff_bO.QN 
.CDN(reset), .Q(a_r[l]), .QN(\a_r_ff_bl.QN 
.CDN(reset), .Q(a_r[2]), .QN(\a_r_ff_b2.QN 

. ZN(u3_ZN»; 

. ZN(u4_ZN»; 

.ZN(outp»; 

FIGURE 14.31 Core of the Threegates ASIC. 

//1 
//2 

»; //3 
»; //4 

»; //5 

//6 

//7 
//8 

//9 

//10 

791



14.8 A SIMPLE TEST EXAMPLE 779 

Table 14.15 shows the structural Verilog for the top-level logic of the Three­
gates ASIC including the I/O pads. There are nine pad cells. Three instances 
(upl_bO, upl_bl, and upl_b2) are the data-input pads, and one instance, up2_1, is 
the output pad. These were vectorized pads (even for the output that had a range of 
1), so the synthesizer has added suffixes (, _I' and so on) to the pad instance names. 
Two pads are for power, one each for ground and the positive supply, instances upll 

and upl2. One pad, instance up3_1, is for the reset signal. There are two pad cells 
for the clock. Instance up4 1 is the clock input pad attached to the package pin and 
instance up6 is the clock input buffer. 

The next step is to insert the boundary-scan logic and the internal-scan logic. 
Some synthesis tools can create test logic as they synthesize, but for most tools we 
need to perform test-logic insertion as a separate step. Normally we complete a 
parameter sheet specifying the type of test logic (boundary scan with internal scan in 
this case), as well as the ordering of the scan chain. In our example, we shall include 
all of the sequential cells in the boundary-scan register and order the boundary-scan 
cells using the pad numbers (in the original behavioral input). Figure 14.32 shows 
the modified core logic. The test software has changed all the flip-flops (cell names 
dfctnb) to scan flip-flops (with the same instance names, but the cell names are 
changed to mfctnb). The test software also adds a non inverting buffer to drive the 
scan-select signal to all the scan flip-flops. 

The test software also adds logic to the top level. We do not need a detailed 
understanding of the automatically generated logic, but later in the design flow we 
will need to understand what has been done. Figure 14.33 shows a high-level view 
of the Threegates ASIC before and after test-logic insertion. 

TABLE 14.15 The top level of the Threegates ASIC before test-logic insertion. 

module asic_p (pad_outp, pad_a, pad_reset, pad_clk); 

output [0:0] pad_outp; input [2:0] pad_a; input [0:0] pad_reset, pad_clk; 

wire [0:0] reset_sv, clk_sv, outp_sv; wire [2:0] a_sv; supply! VDD; supplyO VSS; 
core_p ue1 (.outp(outp_sv[O]), .reset(reset_sv[O]}, .a(a_sv[2:0]}, .clk(clk_bit}}; 

pc3007 up2 1 (.PAD(pad_outp[O]), .I(outp_sv[O]}}; 
pc3c01 up6 (.CCLK(clk_sv[O]), .CP(clk_bit}} ; 
pc3d01r up3 1 (.PAD(pad_reset[O]), .CIN(reset_sv[O]}}; -
pc3d01r up4_ 1 (.PAD(pad_clk[O]), .CIN(clk_sv[O]}}; 
pc3d01r upl_bO ( . PAD ( pad _a [ ° ] ) , .CIN(a_sv[O]}}; 
pc3d01r up1_b1 ( . PAD ( pad _a [ 1] ) , .CIN(a_sv[l]}}; 
pc3d01r upl_b2 (.PAD(pad_a[2]), .CIN(a_sv[2]}}; 
pvOf upll ( . VSS (VSS) } ; 
pvdf up12 (. VDD(VDD}); 
endmodule 

792



780 CHAPTER 14 TEST 

taOriver12 

taOriver12_1 

a[O] 

~ a[2:0] 

§-clk 
I reset>- reset 

reset clk 

scan chain 

module eore_p_ta (a_r_2, outp, a_r_ff_bO_DA, taDriver12_I, a, elk, reset); //1 
output a_r_2, outp; input a_r_ff_bO_DA, taDriver12_I; //2 
input [2:0] a; input elk, reset; wire [1:0] a_r; supplyl VDD; supplyO VSS; //3 
niOld5 taDriver12 (.I(taDriver12_I), .Z(taDriver12_Z»; //4 
mfetnb a_r_ff_bO (.DA(a_r_ff_bO_DA), .DB(a[O]), .SA(taDriver12_Z), .CP(elk), //5 

.CDN(reset), .Q(a_r[O]), .QN(\a_r_ff_bO.QN »; //6 
mfetnb a_r_ff_bl (.DA(a_r[O]), .DB(a[l]), .SA(taDriver12_Z), .CP(elk), .CDN(reset), //7 

.Q(a_r[l]), .QN(\a_r_ff_bl.QN »; //8 

mfetnb a_r_ff_b2 (.DA(a_r[l]), .DB(a[2]), .SA(taDriver12_Z), .CP(elk), .CDN(reset), //9 

.Q(a_r_2), .QN(\a_r_ff_b2.QN »; //10 
inOldO u2 (.I(a_r[O]), .ZN(u2_ZN»; //11 
nd02dO u3 (.Al(u2_ZN), .A2(a_r[1]), .ZN(u3_ZN»; //12 
nd02dO u4 (.Al(a_r[l]), .A2(a_r_2), .ZN(u4_ZN»; //13 
nd02dO uS (.Al(u3_ZN), 
endmodule 

.ZN(outp»; //14 
//15 

FIGURE 14.32 The core of the Threegates ASIC after test-logic insertion. 

14.8.2 How the Test Software Works 
The structural Verilog for the Threegates ASIC is lengthy, so Figure 14.34 shows 
only the essential parts. The following main blocks are labeled in Figure 14.34: 

A. This block is the logic core shown in Figure 14.32. The Verilog module header 
shows the "local" and "formal" pori names. Arrows indicate 'vvhether each sig­
nal is an input or an output. 

B. This is the main body of logic added by the test software. It includes the 
boundary-scan controller and clock controL 

793



14.8 ASIMPLE1EST EXAMPLE 781 

clk 
reset 
outp 

a[O] 

a[1 ] 

a[2] 

clk 
reset 
outp 

a[O] 

a[1 ] 

a[2] 
internal 
scan 

scan 

control bundle 

(a) (b) 

FIGURE 14.33 The Threegates ASIC. (a) Before test-logic insertion. (b) After test-logic 
insertion. 

C. This block groups together the buffers that the test software has added at the 
top level to drive the control signals throughout the boundary-scan logic. 

D. This block is the first boundary-scan cell in the BSR. There are six boundary­
scan cells: three input cells for the data inputs, one output cell for the data out­
put, one input cell for the reset, and one input cell for the clock. Only the first 
(the boundary-scan input cell for a [ 0 ]) and the last boundary-scan cells are 
shown. The others are similar. 

E. This is the last boundary-scan cell in the BSR, the output cell for the clock. 

F. This is the clock pad (with input connected to the ASIC package pin). The cell 
itself is unchanged by the test software, but the connections have been altered. 

G. This is the clock-buffer cell that has not been changed. 

H. The test software adds five I/O pads for the TAP. Four are input pad cells for 
TCK, TMS, TDO, and TRST. One is a three-state output pad cell for TDO. 

I. The power pad cells remain unchanged. 

TOO 
nTRST 
TMS 
TCK 
TOI 

794



782 CHAPTER 14 TEST 

J. The remaining I/O pad cells for the three data inputs, the data output, and reset 
remain unchanged, but the connections to the core logic are broken and the 
boundary-scan cells inserted. 

The numbers in Figure 14.34 link the signals in each block to the following 
explanations: 

1. The control signals for the input BSCs are C _ 0, C _1 f C _ 2, and C _ 4 and 
these are all buffered, together with the test clock TCK. The single output BSC 
also requires the control signal C _ 3 and this is driven from the BST controller. 

2. The clock enters the ASIC package through the clock pad as . PAD (clk [ 0 ] ) 

and exits the clock pad cell as . CIN (up _4_1_ CIN1). The test software routes 
this to the data input of the last boundary-scan cell as . PI (up _ 4 _1_ CIN 1 ) 
and the clock exits as .PO(up_4_1_cin). The clock then passes through the 
clock buffer, as before. 

3. The serial input of the first boundary-scan cell comes from the controller as 
.bst_control_BST_SI(test_logic_bst_control_BST_SI). 

4. The serial output of the last boundary-scan cell goes to the controller as 
.bst_control_BST(up4_1_bst_SO). 

5. The beginning of the BSR is the first scan flip-flop in the core, which is con­
nected to the TDI input as . a_r_ff _bO _DA( ta _TDI _ CIN). 

6. The end of the scan chain leaves the core as . a _ r _2 (uc I_a _ r _2) and enters 
the controller as .bst_control_scan_SO(uc1_a_r_2). 

7. The scan-enable signal. bst _ control_ C _9 (test_logic _bst _control..:... C _9) 
is generated by the boundary-scan controller, and connects to the core as 
.taDriver12_I(test_logic_bst_control_C_9). 

The added test logic is shown in Figure 14.35. The blocks are as follows: 

A. This is the module declaration for the test logic in the rest of the diagram, it 
corresponds to block B in Table 14.34. 

B. This block contains buffers and clock control logic. 

C. This is the boundary-scan controller. 

D. This is the first of 26 IDR cells. In this implementation the IDCODE register 
is combined with the BSR. Since there are only six BSR cells we need (32 - 6) 
or 26 IDR cells to complete the 32-bit IDR. 

E. This is the last IDR cell. 

The numbers in Figure 14.35 refer to the following explanations: 

1. The system clock (CLK, not the test clock TCK) from the top level (after pass­
ing through the boundary-scan cell) is fed through a MUX so that CLK may be 
controlled during scan. 

795



last boundary scan cell 

mybs 1 celaO. u p4 _1_bst· ( 
.SO(up4_1_bst..:SO),A 
.PO(up4_1_cin), .. 
.C_O(bus1 [1 D, 
. TCK(taDriver9_ZN), 
.SI(up3_1_bsCSO), 
.C_1 (bus1 [2]), 
.C_2(bus1 [3]), 
.8_ 4(taDriver8_Z), 
.PI(up4_1_CIN1 )); 

14.8 ASIMPLETEST EXAMPLE 783 

clock pad e 
up4_1 (.PAD(pad_clk[O)), 
.CIN(up4..:; 1~CIN1)); 

clock buffer 

up6 (.CCLK(clk_sv[O]), 
.CP(clk_bit)); 

TAP pads I/O pads 

DO 
power pads 

FIGURE 14.34 The top level of the Threegates ASIC after test-logic insertion. 

796



784 CHAPTER 14 TEST 

first IDR cell 

., 

FIGURE 14.35 Test logic inserted in the Threegate ASIC. 

module asic_p_testlogic_ta ( 
id_reg_25_C_1, 
id_reg_25_C_O, 
c_4,c_3,c_2,c_1,c_O, 
ta_ TRST _CIN, 
ta_TDO_OEN, 
ta_TDO_I, 
ta_TDLCIN, 
ta_ TMS_CIN, 
ta_ TCK_CIN, 
clock_ controLZ, 
bst_controL C_9, 
clock_ control_) 0, 
bsCcontrol_BST _SI, 
bsCcontroLscan_SO, 
id_reg_25_ TCK, 
bst_control_BST, 
taDriver5_1, 
taDriver10_1, 
taDriver2_1); 

last IDR cell 

797



14.8 A SIMPLE TEST EXAMPLE 785 

TABLE 14.16 The TAP (test-access port) control.1 

TAP state C_O C_1 C_2 C_3 C_4 C_5 C_6 C_7 c_a2 C_9 

Reset x x xxxxOxx xxxxOxx xxxxOxx xxxxOxx xxxx1xx xxxxOxx xxxxOxx xxxxOxx 

Run_Idle OOxOxxx 11x1xxx 0 1001011 0001011 0000010 1 0000001 0000000 0000000 

SelecCDR OOxOxxx 11x1xxx 0 1001011 0001011 0000010 1 0000001 0000000 0000000 

Capture_DR 00x01xx OOxOOxx 0 1001011 0001011 0000010 0000001 ooOooOT 0000000 

Shift_DR 11x11xx 11x11xx 0 1001011 0001011 0000010 1111101 0000001 ooooOOT 0000001 

Exit1_DR ooxOOxx 11x11xx 0 1001011 0001011 0000010 1 0000001 0000000 0000000 

Pause_DR ooxooxx 11x11xx 0 1001011 0001011 0000010 1 0000001 0000000 0000000 

Exit2_DR OOxOOxx 11x11xx 0 1001011 0001011 0000010 1 0000001 0000000 0000000 

Update_DR ooxOxxx 11x1xxx 110100 1001011 0001011 0 1111101 0000001 0000000 0000000 

SelecCIR x x 0 1001011 0001011 OOOOOxO 11111x1 0000001 0000000 0000000 

Capture_IR x x 0 1001011 0001011 OooooxO 11111x1 0000001 0000000 0000000 

Shift_IR x x 0 1001011 0001011 OooOOxO 11111x1 0000001 0000000 0000000 

Exit1_IR x x 0 1001011 0001011 OOooOxO 11111 x1 0000001 0000000 0000000 

Pause_IR x x 0 1001011 0001011 OOOOOxO 11111 x1 0000001 0000000 0000000 

Exit2_IR x x 0 1001011 0001011 OOOOOxO 11111x1 0000001 0000000 0000000 

Update_IR x x 0 1001011 0001011 OooOOxO 1111101 0000001 0000000 0000000 

10utputs are specified for each instruction as 0123456, where: 0 = EXTEST, 1 = SAMPLE, 2 = BYPASS, 
3=INTEST, 4=IDCODE, 5=RUNBIST, 6=SCANM. 

2T denotes gated clock TCK. 

2. The signal bst_control_BST is the end (output) of the boundary-scan cells 
and the start (input) to the ID register only cells. 

3. The signal id _ reg_ 0 _so is the end (output) of the ID register. 

4. The signal bst _ control_ BST _ SI is the start of the boundary-scan chain. 

The job of the boundary-scan controller is to produce the control signals (C_1 

through C _9) for each of the 16 TAP controller states (reset through update _ IR) 

for each different instruction. In this BST implementation there are seven instruc­
tions: the required EXTEST, SAMPLE, and BYPASS; IDCODE; INTEST (which is the 
equivalent of EXTEST, but for internal test); RUNBIST (which allows on-chip test 
structures to operate); and SCANM (which controls the internal-scan chains). The 
boundary-scan controller outputs are shown in Table 14.16. 

798



786 CHAPTER 14 TEST 

There are two very important differences between this controller and the one 
described in Table 14.5. The first, and most obvious, is that the control signals now 
depend on the instruction. This is primarily because INTEST requires the control sig­
nal at the output of the BSCs to be in different states for the input and output cells. 
The second difference is that the logic for the boundary-scan cell control signals is 
now purely combinational-we have removed the gated clocks. For example, 
Figure 14.36 shows the input boundary-scan celL The clock for the shift flip-flop is 
now TCK and not a gated clock as it was in Table 14.5. We can do this because the 
output of the flip-flop, so, the scan output, is added as input to the MUX that feeds 
the flip-flop data input. Thus, when we wish to hold the state of the flip-flop, the 
control signals select so to be connected from the output to the input. This is called 
a polarity-hold flip-flop. Unfortunately, we have little choice but to gate the system 
clock if we make the scan chain part of the BSR. We cannot have one clock for part 
of the BSR and another for the rest. The costly alternative is to change every scan 
flip-flop to a scanned polarity-hold flip-flop. 

mybs1ceiaO mybs1ceiaO 

module mybs1celaO (SO, PO, C_O, TCK, SI, C_1, C_2, C_4, PI); //1 
output SO, PO; 
in01d1 inv ° 
in01d1 inv 1 
oa03d1 oai221 
nd02d1 nand2 1 

nd03d1 nand3 1 
mx21d1 mux21 1 
dfntnb dff 1 
lantnb latch 1 
endmodule 

1 

input C_O, C_1, C_2, C_4, TCK, SI, PI; //2 

( . I ( C _ ° ), . ZN ( i vO _ ZN) ) ; / /3 
(.I(C_1), .ZN(iv1_ZN)); //4 
(.A1(C_O), .A2(SO), .B1(ivO_ZN), .B2(SI), .C(C_1), .ZN(oa1 ZN)); //5 
(.A1(na2_ZN), .A2(oa1_ZN), .ZN(na1_ZN)); 
(.A1(PO), .A2(ivO_ZN), .A3(iv1_ZN), .ZN(na2_ZN)); 
(.IO(PI), .I1(upo), .S(C_4), .Z(PO)); 
(.D(na1_ZN), .CP(TCK), .Q(SO), .QN(\so.QN )); 
(.E(C_2), .D(SO), .Q(upo), .QN(\upo.QN )); 

//6 

//7 

//8 

//9 

//10 

/ /11 

FIGU RE 14.36 Input boundary-scan cell (SSC) for the Threegates ASIC. Compare this to the generic data-reg­
ister (DR) cell (used as a SSC) shown in Figure 14.2. 

799



14.8 A SIMPLE TEST EXAMPLE 787 

14.8.3 ATVG and Fault Simulation 
Table 14.17 shows the results of running the Compass ATVG software on the Three­
gates ASIC. 'vVe might ask: Why so many faults? and why is the fault coverage so 
poor? First we look at the details of the test software output. We notice the following: 

• Line 2. The backtrace limit is 30. We do not have any deep complex combi­
national logic so that this should not cause a problem. 

• Lines 4-6. An uncollapsed fault count of 184 indicates the test software has 
inserted faults on approximately 100 nodes, or at most 50 gates assuming a 
fanout of 1, less gates with any realistic fanout. Clearly this is less than all of 
the test logic that we have inserted. 

To discover why the fault coverage is 68.25 percent we must examine each of the 
fault categories. First, Table 14.18 shows the undetected faults. 

The ATVG program is generating tests for the core using internal scan. We can­
not test the BST logic itself, for example. During the production test we shall test 
the BST logic first, separately from the core-this is often called a flush test. Thus 
we can ignore any faults from the BST logic for the purposes of internal-scan test­
mg. 

Next we find two redundant faults: TA TOO. 1. I saO and sal. Since TOO is 
three-stated during the test, it makes no difference to the function of the logic if this 
node is tied high or low-hence these faults are redundant. Again we should ensure 
these faults will be caught during the flush test. Finally, Table 14.19 shows the tied 
faults. 

Now that we can explain all of the undetectable faults, we examine the detected 
faults. Table 14.20 shows only the detected faults in the core logic. Faults F1-F8 in 
the first part of Table 14.20 correspond to the faults in Figure 14.16. The fault list in 
the second part of Table 14.20 shows each fault in the core and whether it was 
detected (D) or collapsed and detected as an equivalent fault (CD). There are no 
undetected faults (U) in the logic core. 

14.8.4 Test Vectors 
Next we generate the test vectors for the Threegates ASIC. There are three types of 
vectors in scan testing. Serial vectors are the bit patterns that we shift into the scan 
chain. We have three flip-flops in the scan chain plus six boundary-scan cells, so 
each serial vector is 9 bits long. There are serial input vectors that we apply as a 
stimulus and serial output vectors that we expect as a response. Parallel vectors 
are applied to the pads before we shift the serial vectors into the scan chain. We 
have nine input pads (three core data, one core clock, one core reset, and four input 
TAP pads-TMs, TCK, TRST, and TOI) and two outputs (one core data output and 
TOO). Each parallel vector is thus 11 bits long and contains 9 bits of stimulus and 2 
bits of response. A test program consists of applying the stimulus bits from one par­
allel vector to the nine input pins for one test cycle. In the next nine test cycles we 
shift a 9-bit stimulus from a serial vector into the scan chain (and receive a 9-bit . 

800



788 CHAPTER 14 TEST 

TABLE 14.17 ATVG (automatic test-vector generation) report for the Threegates ASIC. 

CREATE: Output vector database cell defaulted to [svf]asic_p_ta 

CREATE: Backtrack limit defaulted to 30 

CREATE: Minimal compression effort: 10 (default) 

Fault list generation/collapsing 

Total number of faults: 184 

Number of faults in collapsed fault list: 80 

Vector generation 
jf 

jf VECTORS FAULTS FAULT COVER 

jf processed 
jf 

jf 

jf 

5 184 60.54% 

jf Total number of backtracks: 0 

jf Highest backtrack 0 

jf Total number of vectors 
jf 

5 

jf STAR RESULTS summary 
jf Noncollapsed 

jf Fault counts: 

jf Aborted 

jf Detected 

jf Untested 
jf 

jf 

jf 

# 
jf 

jf 

Total of detectable 

Redundant 

Tied 

jf FAULT COVERAGE 
jf 

o 
89 

58 

147 

6 

31 

60.54 % 

Collapsed 

o 
43 

20 

63 

2 

15 

68.25 % 

jf Fault coverage = nb of detected faults / nb of detectable faults 

Vector/fault list database [svf]asic_p_ta created. 

--1 

--2 

--3 

--4 

--5 

--6 

--7 

--8 

--9 

--10 
--11 

--12 

--13 

--14 

--15 

--16 

--17 

--18 

--19 

--20 

--21 

--22 

--23 

--24 

--25 

--26 
--27 

--28 

--29 

--30 

--31 

--32 

--33 

response, the result of the previous tests, from the scan chain). We can generate the 
serial and parallel vectors separately, or we can merge the vectors to give a set of 
broadside vectors. Each broadside vector corresponds to one test cycle and can be 
used for simulation. Some testers require broadside vectors; others can generate 
them from the serial and parallel vectors. 

Table 14.21 shows the serial test vectors for the Threegates ASIC. The third 
serial test vector is I 110111010 I. This test vector is shifted into the BSR, so that 
the first three bits in this vector end up in the first three bits of the BSR. The first 
three bits of the BSR, nearest TDI, are the scan flip-flops, the other six bits are 

801



14.8 ASIMPLE TEST EXAMPLE 789 

TABLE 14.18 Untested faults (not observable) for the Threegates ASIC. 

Faults 

TADRIVER4.ZN saO 

TA_TRST.I.CIN saO 
TDI.O saO sal 

UPI BO.l.CIN saO sal 

UP3 1.1.CIN saO 
UP4 1.1.CIN saO sal 

# Total number: 20 

TABLE 14.19 Tied faults. 

Fault(s) 

TADRIVERl.ZN saO 

TA TMS.l.CIN saO 
TA TRST.I.CIN sal 

TEST LOGIC.BST CONTROL.Ul.ZN sal 
- -

UPI BO BST.Ul.A2 saO 
UP3 1.1.CIN sal 

# Total number: 15 

Explanation 

Internal driver for BST control bundle (seven more faults like this). 
BST reset TRST is active-low and tied high during test. 
TDI is BST serial input. 
Data input pad (two more faults like this one). 
System reset is active-low and tied high during test. 
System clock input pad. 

Explanation 

Internal BST buffer (seven more faults like this one). 
TMS input tied low. 
TRST input tied high. 
Internal BST logic. 
Input pad (two more faults like this). 
Reset input pad tied high. 

boundary-scan cells). Since UC1.A_R_FF_BO.Q is a_r[O] and so on, the third test 
vector will set a _ r = 011 where a _ r [ 2] = o. This is the vector we require to test 
the function a _ r [0] I • a _ r [1] + a _ r [ 1] • a _ r [2] for fault UCI. U2 • ZN sal in the 
Threegates ASIC. From Figure 14.31 we see that this is a stuck-at-l fault on the out­
put of the inverter whose input is connected to a r [ 0 ]. This fault corresponds to 
fault F1 in the circuit of Figure 14.16. The fault simulation we performed earlier told 
us the vector ABC = 011 is a test for fault Fl for the function A'B + BC. 

14.8.5 Production Tester Vector Formats 
The final step in test-program generation is to format the test vectors for the produc­
tion tester. As an example the following shows the Sentry tester file format for test­
ing a D flip-flop. For an average ASIC there would be thousands of vectors in this 
file. 

# Pin declaration: pin names are separated by semi-colons (all pins 
# on a bus must be listed and separated by commas) 

pre_; clr_; d; clk; q; q_; 

802



790 CHAPTER 14 TEST 

TABLE 14.20 Detected core-logic faults in the Threegates ASIC. 

UCI. U2. ZN sal 

UCI. U3 .A2 sal 

UC1.U3. ZN sal 

UCI. U4 .AI sal 

UC1. U4. ZN sal 

UC1. US. ZN saO 

UC1.US. ZN sal 

UCI.A_R_FF_B2.Q.O 

Fault list 

UCI.A R FF _BO.Q: - -
UC1.A R FF B1.Q: - - -
UCI.A_R_FF_B2.Q: 

Fault(s) 

sal 

(0) CD CD 

(0) D D 

(0) CD D 

F1 
F2 
F5 
F3 
F6 
F8 
F7 
F4 

Explanation 

SAO and SA 1 collapsed to U3.A 1 
SAO and SA1 detected. 
SAO collapsed to U2. SA 1 is F4. 

UC1.U2: (I) CD CD (ZN) 

UC1. U3: (AI) CD CD (A2) 

CD D 

CD D ( ZN) CD D 
I.SA1/0 collapsed to O.SA1/0. O. SA1 is F1. 
A1.SA1 collapsed to U2.zN.SA1. 

UCI.U4: (AI) CD D (A2 ) 

UC1. US: (AI) CD CD (A2 ) 

CD CD (ZN) 

CD CD (ZN) 

CD 

D 

D 

D 

A2.SA 1 collapsed to A_R_FF _B2.Q.SA 1. 
A 1.SA 1 collapsed to U3.ZN.SA 1 

TABLE 14.21 Serial test vectors 

#1 
#2 

#3 

#4 

I 

I 

I 

o 

I 

o 
I 

o 

I 

I 

o 
o 

0 

I 

I 

I 

Serial-input scan data 

I 0 I I 0 

0 I 0 0 I 

I I 0 I 0 

0 0 0 0 0 

#5 0 I 0 0 I I I 0 I 

AUCI.A_R_FF_BO.Q AUPI_B2_BST.SO.Q AUP2_I_BST.SO.Q 

AUCI.A_R_FF_BI.Q AUPI_BI_BST.SO.Q AUP3_I_BST.SO.Q 

AUC I.A_R_FF_B2.Q AUPI_BO_BST.SO.Q AUP4 I BST.SO.Q 

Fault Fault number Vector number Core input 

UCl.U2.ZN sal F1 3 011 
UCI. U3 .A2 sal F2 4 000 
UC1. U3. ZN sal F5 5 010 
UCI.U4.AI sal F3 2 101 
UCI. U4. ZN sal F6 1 111 
UCI. US. ZN saO F8 1 111 
Uel. U5. ZN sal F7 2 101 
UCI.A_R_FF_B2.Q.0 sal F4 2 101 

803



14.9· THE VITERBI DECODER EXAMPLE 791 

* Pin declarations are separated from test vectors by $ 
$ 

* The first number on each line is the time since start in ns, 

* followed by space or a tab. 

* The symbols following the time are the test vectors 

* (in the same order as the pin declaration) 

* an "=" means don't do anything 

* an "s" means sense the pin at the beginning of this time point 

* (before the input changes at this time point have any effect) 

* 
* 
* 
* # 
00 

10 

20 

30 
40 

50 

60 

70 

pcdcqq 

rIal 

ertk 

a 

1010== 

1l10ss 

llllss 

1l10ss 

1l00ss 

1l01ss 

1l00ss 

====ss 

14.8.6 

* clear the flip-flop 

* d=l, clock=O 

* d=l, clock=l 

* d=l, clock=O 

* d=O, clock=O 

* d=O, clock=l 

* d=O, clock=O 

Test Flow 

Normally we leave test-vector generation and the production-test program genera­
tion until the very last step in ASIC design after physical design is complete. All of 
the steps have been described before the discussion of physical design, because it is 
still important to consider test very early in the design flow. Next, as an example of 
considering test as part of logical design, we shall return to our Viterbi decoder 
example. 

14.9 The Viterbi Decoder Example 

Table 14.22 shows the timing analysis for the Viterbi decoder before and after test 
insertion. The Compass test software inserts internal scan and boundary scan exactly 
as in the Threegates example. The timing analysis is in the form of histograms 
showing the distributions of the timing delays for all paths. In this analysis we set an 
aggressive constraint of 20 ns (50 MHz) for the clock. The critical path before test 
insertion is 21.75 ns (the slack is thus negative at -1.75 ns). The path starts at 
ul.subout6.Q_ff bO and ends at u2.metricO.Q_ff_b4, both flip-flops inside 
the flattened block, v_I. u100, that we created during synthesis in an attempt to 
improve speed. The first flip-flop in the path is a dfctnb; the last flip-flop is a 
dfctnh. The suffix 'b' denotes IX drive and suffix 'h' denotes 2X drive. 

804



792 CHAPTER 14 TEST 

TABLE 14.22 Timing effects of test-logic insertion for the Viterbi decoder. 

Timing of critical paths before test-logic insertion 

# Slack(ns) 
# -3.3826 

# -1.7536 

# -.1245 
# 1. 5045 
# 3.1336 

# 4.7626 

Num Paths 

1 * 
18 ******* 

4 ** 
1 * 

o * 
o * 

# 6.3916 134 ****************************************** 
# 8.0207 6 *** 
# 9.6497 3 ** 
# 11.2787 o * 
# 12.9078 24 

# instance name 
# inPin --> outPin 

# 

******** 

incr 

(ns) 

# v_1.u100.u1.subout6.Q_ff bO 

# CP --> QN 1.73 

# v_1.u100.u2.metricO.Q_ff b4 

# setup: D --> CP .16 

-4.0034 1 * 
-1.9835 18 ***** 

.0365 4 ** 
2.0565 1 * 
4.0764 0 * 

arrival trs 

(ns) 

1. 73 R 

21.75 F 

rampDel 

(ns) 

.20 

.00 

cap 

(pf) 

.10 

.00 

After test-logic insertion 

6.0964 138 ******************************* 

8.1164 2 * 
10.1363 3 ** 

12.1563 24 ****** 
14.1763 0 * 

cell 

dfctnb 

dfctnh 

# 
# 
# 
# 

# 

# 
# 
# 

# 
# 
# 16.1963 187 ****************************************** 

# v 1.u100.u1.subout7.Q_ff b1 

# CP --> Q 1.40 

# v_1.u100.u2.metricO.Q_ff b4 
# setup: DB --> CP .39 

1. 40 

21. 98 

R 

F 

.28 .13 mfctnb 

.00 .00 mfctnh 

805



14.9 THE VITERBI DECODER EXAMPLE 793 

After test insertion the critical path is 21.98 ns. The end point is identical, but 
the start point is now subout7 • Q_f f_b 1. This is not too surprising. What is hap­
pening is that there are a set of paths of nearly equal length. Changing the flip-flops 
to their scan versions (mfctnb and mfctnh) increases the delay slightly. The exact 
delay depends on the capacitive load at the output, the path (clock-to-Q, clock-to­
QN, or setup), and the input signal rise time. 

Adding test logic has not increased the critical path delay substantially. Almost 
as important is that the distribution of delays has not changed substantially. Also 
very important is the fact that the distributions show that there are only approxi-

TABLE 14.23 Fault coverage for the Viterbi decoder. 

Fault list generation/collapsing 

Total number of faults: 8846 
Number of faults in collapsed fault list: 3869 
Vector generation 

# 
# VECTORS FAULTS FAULT COVER 

# processed 

# 
# 20 7515 82.92% 

# 40 8087 89.39% 

# 60 8313 91.74% 

# 80 8632 95.29% 

# 87 8846 96.06% 

# Total number of backtracks: 3000 

# Highest backtrack 30 
# Total number of vectors 87 

# STAR RESULTS summary 

# Noncollapsed 

# Fault counts: 

# Aborted 178 

# Detected 8427 

# untested 168 

# ------

# Total of detectable 8773 

# 
# Redundant 10 

# Tied 63 

# 
# FAULT COVERAGE 96.06 % 

Collapsed 

85 

3680 
60 

3825 

6 

38 

96.21 % 

806



794 CHAPTER 14 TEST 

mately 20 paths with delays close to the critical path delay. This means that we 
should be able to constrain these paths during physical design and achieve a perfor­
mance after routing that is close to our preroute predictions. 

Next we check the logic for fault coverage. Table 14.23 shows that the ATPG 
software has inserted nearly 9000 faults, which is reasonable for the size of our 
design. Fault coverage is 96 percent. Most of the untested and tied faults arise from 
the BST logic exactly as we have already described in the Threegates example. If we 
had not completed this small test case first, we might not have noticed this. The 
aborted faults are almost all within the large flattened block, v_I. u 1 0 o. If we 
assume the approximately 60 faults due to the BST logic are covered by a flush test, 
our fault coverage increases to 3740/3825 or 98 percent. To improve upon this fig­
ure, some, but not all, of the aborted faults can be detected by substantially increas­
ing the backtrack limit from the default value of 30. To discover the reasons for the 
remaining aborted faults, we could use a controllability/observability program. If we 
wish to increase the fault coverage even further, we either need to change our test 
approach or change the design architecture. In our case we believe that we can prob­
ably obtain close to 99 percent stuck-at fault coverage with the existing architecture 
and thus we are ready to move on to physical design. 

14.1 0 Summary 

The primary reason to consider test early during ASIC design is that it can become 
very expensive if we do not. The important points we covered in this chapter are: 

• Boundary scan 

• Single stuck-at fault model 

• Controllability and observability 

, • ATPG using test vectors 

• BIST with no test vectors 

14.11 Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

14.1 (Acronyms, 10 min.) Translate the following excerpt from a MOSIS 
report: "Chip description: DLX RISC ASIC with DFT, IEEE 1149 BST, and BIST 
using PRBS LFSR and MISR. Test results: compaction shorted words." 

14.2 (Economics of defect levels, 15 min.) You are the product manager for a 
new workstation. You use 10 similar ASICs as the key component in a computer that 
sells for $10,000 with a profit margin of 20 percent. You' buy the ASICs for $10 

807



14.11 PROBLEMS 795 

each, and the shipping defect level is certified to be 0.1 percent by the ASIC vendor. 
You are having a problem with a large number of field failures, which you have 
traced to one of the ASICs. In the first nine months of shipment you have sold 
49,500 computers, but 51 have failed in the field, 26 due to the ASIC. Finance esti­
mates that all the field failures have cost at least $1 million in revenue and goodwill. 
You do not have the time, money, or capability to improve your incoming inspection 
or assembly tests. You estimate the product lifetime is another 18 months, in which 
time you will sell another 50,000 units at roughly the same price and profit margin. 
At an emergency meeting, the ASIC vendor's test engineer proposes to reduce the 
ASIC defect level to 0.01 percent immediately by improving the test program, but at 
a cost. You suggest a coffee break. With the information that you have, you have 15 
minutes to estimate just how much extra you are prepared to pay for each ASIC. 

14.3 (Defect level, 10 min.) In a series of experiments a customer of Zycad, 
which makes hardware fault-simulation accelerators, tested 10,000 parts from a lot 
with 30 percent yield. Each experiment used a different fraction of the test vector 
set. Fit the data in Table 14.24 to a model. 

TABLE 14.24 Defect level as a function of fault coverage (Problem 14.3). 

Fault coverage/% Rejects Defective parts Defect level/% 

50 6773 227 7 

90 6877 133 3 

99 6910 90 1 

99.99 6997 3 0.01 

14.4 (Test cost, 5 min.) Suppose, in the example of Section 14.1, reducing the 
bASIC defect level to 0.1 percent added an extra cost of $1 to each part. Now what 
is the best way to build the system? 

14.5 (Defects,S min.) Finding defects in an ASIC is a hard problem. The aver-
age defect density for a submicron process is 1 cm-2 or less. 

a. On average how many defects are there on a 1 cm chip? 

b. If the average defect is 1 A 2, and A = 0.25 !lm, what is defect area/chip area? 

c. Estimate the ratio of needle volume to haystack volume and comment. 

14.6 (Faults and nodes, 10 min.) 

a. How many faults are there in a circuit with 11 nodes? 

b. Considering fanout how many collapsed faults are there? 

c. Estimate how many test cycles a fault simulator needs to find these faults. 

808



796 CHAPTER 14 TEST 

d. With a 10 MHz clock, how long is a 100 k-gate test (with your estimates)? 

e. Using a 100 MHz computer, how long does this fault simulation take? 
(Assume simulation time is four orders of magnitude slower than real time.) 

14.7 (PRBS, 10 min.) What are the first three patterns for a 4-bit maximal-
length LFSR, given a seed of '0001 '? Hint: Is there more than one answer? 

14.8 (Test time, 10 min.) 

a. How long does a 16-bit shift-register test take at a clock speed of 1 MHz? 

b. Estimate how long it takes to test a 64 k-bit static RAM using a walking 1 's 
(or marching 1 's) pattern. 

14.9 (Test time, 10 min.) A modem production tester costs $5-10 million. This 
cost is depreciated over the life of the tester (usually five years in the United States 
due to Internal Revenue Service guidelines). 

a. If the tester is in use 24 hours a day, 365 days a year, how much does 1 sec­
ond of test time cost? 

b. If, due to down time (maintenance, operator sick time and so on) a $10 mil­
lion tester is actually in use 50 percent of the time for chip testing and test 
time is 2 seconds, how much does test add to the cost of an ASIC? 

c. Suppose the ASIC die is 300 mils on a side, is fabricated on a 6-inch wafer 
whose fabrication cost is $1750, and the yield is 68 percent. What is the frac­
tion of test cost to total die cost (fabrication plus test costs)? Assume that the 
number of die per wafer is equal to wafer area divided by chip area. 

14.10 (Fault collapsing, 10 min.) Draw up tables to show how input and output 
faults collapse using gate collapsing for the following primitive logic gates: AND, 
OR, NAND, NOR, and EXOR (assume two-input logic cells in each case with 
inputs A, B and output F); a two-input MUX (inputs SO, Sl, and SELO; output F). 

14.11 (Fault simulation, 15 min.) Mentor Graphic Corporation's QuickFault 
concurrent fault simulator uses a 12-state logic system with three logic values ('0', 
'1', 'X') and four strengths (strong = S, resistive = R, high impedance = Z, 
I = indeterminate). Complete Table 14.25 using D = detected fault, P = possibly 
detected fault, and '-' = undetected fault. Give two values, 1/2, for each cell: The 
first value is for the default fault model in which a tester cannot tell the difference 
between Z/S/R; the second value is for testers that can differentiate between Z and 
SIR. Hint: One line of the table has been completed as an example. 

14.12 (Finding faults, 30 min.) 

a. List all the possible stuck-at faults for the circuit in Figure 14.37 using node 
faults. 

b. Find all of the equivalent fault classes using node collapsing. 

c. List the prime faults. 

d. List all possible stuck-at faults using input and output faults (use A1.B and 
A2.B to distinguish between different inputs and outputs on the same net). 

809



14.11 PROBLEMS 797 

TABLE 14.25 The logic system used by Mentor Graphic Corporation's fault simulator, QuickFault 
(Problem 14.11 ).1 

Faulty circuit 

01 XI 11 OZ XZ 1Z OR XR 1R os xs 1S 

01 

XI 

11 

OZ 

:!:: XZ 
::l 
0 1Z -/P -/P -/P ~ -/0 -/0 -/0 -/0 -/0 -/0 
0 
't:I OR 
0 
0 XR (!} 

1R 

OS 

XS 

1S 

10=detected; P=possibly detected; '-'=undetected; x/y means x is the result of the default detection mecha­
nism and y is the result when three-state detection is enabled (allowing the detection of the difference 
between Z and R/S strength). 

FIGURE 14.37 An example circuit for fault collaps­
ing (Problem 14.12). 

~ ----.---A-2----l~ 
A -c)o-F---lD ~ 

e. List the fault-equivalence classes using gate collapsing. 

f. List the prime faults. 

14.13 (Blind faith, 10 min.) Consider the following code: a = b & & f (c) . 

Verilog stops executing an expression as soon as it determines that the expression is 
false, whereas VeriFault does not. What effect does this have? 

14.14 (Fault collapsing, 10 min.) Draw the Karnaugh maps including stuck-at 
faults for four-input NAND, AND, OR, and NOR gates. 

810



798 CHAPTER 14 TEST 

14.15 (Fault dominance, 10 min.) If Tx is the set of test vectors that test for 
fault x and T b eTa' what can you say about faults a and b? 

14.16 (*Fault dominance, 10 min.) Consider the network C = AND (A, B), 
D = NOT (B). List the PIs, POs, and faults under a pin-fault model. For each fault, 
state whether it is an equivalent fault, dominant fault, or dominated fault. Now con­
sider this more formal definition of fault dominance: Fault a dominates b if and only 
if a and b are equivalent under the set of tests T for b. Two faults are equivalent 
under a test T if and only if the circuit response of the two faulty circuits is identical. 
Hint: Consider the fault at the input of the inverter very carefully. 

14.17 (Japanese TVs, 20 min.) As an experiment a Japanese manufacturer 
decided not to perform any testing of its TV s before turning them on at the end of the 
production line. They achieved over a 90 percent tum-on rate. Build a cost model for 
this approach to testing. Make a one-page list of its advantages and disadvantages. 

14.18 (Test costs, 20 min.) The CEO of an ASIC vendor called a meeting and 
asked the production manager to bring all wafers queued for rework. The CEO pro­
duced a hammer and smashed the several hundred wafers on the boardroom table. 
Construct a model around the following assumptions: 2 percent of wafers-in-process 
currently require rework after each of the 12 photo steps in the process, wafer cost is 
$2,000, 30 percent of the wafer costs are in the photo steps; current process yield is 
85 percent, 30 percent of the reworked wafers have to be scrapped. Explain why you 
were not as shocked by this episode as the production manager and how it helped 
you to explain to the CEO the need to add time to your ASIC design schedule to 
include design for test. 

14.19 (ZyCAD RP, 10 min.) The ZyCAD Paradigm RP rapid prototyping sys­
tem consists of a set of emulation boards. Each emulation board contains 18 
Xilinx 3090 chips and 16 Xilinx 4010 chips. The Xilinx 4010 chips are mounted on 
eight daughterboards, and the 3090 chips are mounted directly on the motherboard. 
The Xilinx 4010 chips are used for logic block emulation and the Xilinx 3090 chips 
are used for crossbar routing. Each daughterboard has 288 I/O pins that are available 
to the crossbar chips for routing. Each Xilinx 4010 device has the capability to inter­
face with any other 4010 device on the emulation board. The Xilinx 4010 devices 
have 400 Configurable Logic Blocks (CLBs) per device and 160 programmable 
I/Ols. Estimate the size of an ASIC that you could prototype with this system. 

14.20 (IDDQ testing, 10 min.) In the six-shorts-per-transistor fault model for 
IDDQ testing we model six shorts per transistor. What are they? 

14.21 (PRBS) Consider Table 14.26. 

a. (15 min.) What is the autocorrelation function for a maximal-length pseudo­
random binary sequence? 

b. ** (30 min.) Suppose we apply a pseudorandom sequence to a linear system. 
What is its response? 

811



14.11 PROBLEMS 799 

c. *** (60 min.) Suppose we correlate this response with the original pseudoran­
dom sequence delayed by n cycles. What is this correlation function? 

TABLE 14.26 Autocorrelation of pseudorandom binary sequences (Problem 14.21). 

Delay (clock ticks) 

0 1 2 3 4 5 

02t 02t _ 1 02t - 2 02t - 3 02t - 4 Q2t-s 
1 0 1 0 0 

1 1 0 1 0 

1 1 1 0 1 

0 1 1 1 0 

0 0 1 1 1 

1 0 0 1 1 

0 1 0 0 1 

Correlation 4 2 2 2 2 
with 02t 

14.22 (Sentry, 20 min.) Write a Sentry test file to check the preset of a D flip­
flop. 

14.23 (Synthesis, 20 min.) Consider the following equations: 

f1 = x1'x2' + y3; f2 = x1x2' + x1'x2 = y2i f3 = x1x2y2' + x1'x2' = y3 

How many untestable stuck-at faults are there in this network? Suppose we 
simplify the logic to the following: 

f1* = y2'i f2* = x1x2' + x1'x2 

How many untestable stuck-at faults are there? Hint: If you are stuck, see [Bart­
lett et aI., 1988; Brayton, Hachtel, and Sangiovanni-Vincentelli, 1990]. 

14.24 (Threegates, 30 min.) Recreate the Threegates example. 

14.25 (LFSR) Determine the pattern sequence generated by the 4-bit LFSR 
shown in Figure 14.38. Use the same format as Table 14.10. 

14.26 (BIST, 15 min.) Find the signature if the CUT of Figure 14.25 is 
Z=A'B+ AC. 

1 

0 

0 

1 

0 

1 

1 

2 

6 

02t - 6 

1 

1 

0 

0 

1 

0 

1 

2 

812



800 CHAPTER 14 TEST 

FIGURE 14.38 A 4-bit linear feed­
back shift register (LFSR) (Problem 
14.25). D 

eLK 

14.12 Bibliography 

01 D 

CLK 

02 D 

eLK 
03 D 

eLK 
04 

Books by Feugate and McIntyre [1988], Cheng and Agrawal [1989], and 
Fritzemeier, Nagle, and Hawkins [1989] contain explanations of basic testing terms 
and techniques. The book by Abramovici, Breuer, and Friedman [1990] is an 
advanced undergraduate and graduate-level review of test techniques. Needham's 
[1991] book reviews wafer and package testing. The text by Russell and Sayers 
[1989] is an undergraduate-level text with explanations of test algorithms. Turino's 
[1990] book covers a wide range of testing topics. 

There are a number of books with collections of research papers on test, includ­
ing works by Eichelberger, Lindblom, Waicukauski, and Williams [1991]; 
Lombardi and Sami [1987]; Williams [1986]; and Zobrist [1993]. Tsui's book con­
tains a review of scan test and a large bibliography [1987]. The book by Ghosh, 
Devadas, and Newton [1992] describes test-generation algorithms for state machines 
at a level intended for CAD researchers. Bardell, McAnney, and Savir [1987] focus 
on pseudorandom BIST. A book by Yarmolik [1990] covers BIST and signature 
analysis; a second book by Yarmolik and Kachan [1993] concentrates on self-test. 
Books by Lavagno and Sangiovanni-Vincentelli [1993] and by Lee [1997] are 
advanced works on the integration of test synthesis and logic synthesis. The text by 
Jha and Kundu [1990] covers reliability in design. The book by Bhattacharya and 
Hayes [1990] covers modeling for testing (and includes a good description of the D 
and PODEM algorithms). There are alternative ASIC test techniques that we have 
not covered. For example, Chandra's paper describes the CrossCheck architecture 
for gate arrays [1993]. A book by Chakradhar, Agrawal, and Bushnell [1991] covers 
neural models for testing. 

The major conferences in the area of test are the International Test Conference, 
known as the ITC (TK7874.I593, ISSN 0743-1686), the International Test 
Symposium (TK7874.I3274, ISBN depends on year), and the European Design and 
Test Conference (TK7888.4.E968, 1994: ISBN 0-8186-5410-4). The IEEE 
International Workshop on Memory Technology, Design, and Testing 
(TK7895.M4.I334) is a conference on memory testing. US DoD standard procedure 

813



14.13 REFERENCES 801 

5012 of Mil-Std-883 sets requirements for simulation algorithms, fault collapsing, 
undetectable faults, potential detection, and detection strobing (see also IEEE 
Design & Test Magazine, Sept. 1993, pp. 68-79). 

The IEEE has published a series of tutorials on test: VLSI Support Technologies: 
Computer-Aided Design, Testing, and Packaging, TK7874.T886, 1982; VLSI Testing 
& Validation Techniques, ISBN 0818606681, TK7874.T8855, 1985; Test Generation 
for VLSI Chips, ISBN 081868786X, TK7874.T8857, 1988. 

The Waveform and Vector Exchange Specification (WAVES), IEEE Std 
1029.1-1991 [IEEE 1029.1-1991], is a standard representation for digital stimulus 
and response for both design and test and allows digital stimulus and response infor­
mation to be exchanged between different simulation and test tools. The syntax of 
WAVES is a subset of VHDL. WAVES was developed by the WAVES Analysis and 
Standardization Group (WASG). The WASG was jointly sponsored by the Auto­
matic Test Program Generation (ATPG) subcommittee of the Standards Coordina­
tion Committee 20 (SCC20) and the Design Automation Standards Subcommittee 
(DASS) of the Computer Society. 

14.13 References 

Page numbers in brackets after the reference indicate the location in the chapter body. 
Abramovici, M., M. A. Breuer, and A. D. Friedman. 1990. Digital Systems Testing and Testable 

Design. New York: W. H. Freeman, 653 p. ISBN 0~7167-8179-4. TK7874.A23. Introduction 
to testing and BIST. See also Breuer, M. A., and A. D. Friedman, 1976. Diagnosis and 
Reliable Design of Digital Systems. 2nd ed. Potomac, MD: Computer Science Press, ISBN 
0-914894-57-9. TK7868.D5B73. [po 800] 

Agarwal, V. K., and A. S. F. Fung. 1981. "Multiple fault testing of large circuits by single fault 
test sets." IEEE Transactions on Computing, Vol. C-30, no. 11, pp. 855-865. [po 740] 

Bardell, P. H., W. H. McAnney, and J. Savir. 1987. Built-In Testfor VLSI: Pseudorandom 
Techniques. New York: Wiley, 354 p. ISBN 0-471-62463-2. TK7874.B374. [p. 800] 

Bartlett, K., et al. 1988. "Multilevel logic minimization using implicit don't cares," IEEE Trans­
actions on Computer-Aided Design, Vol. CAD-7, no. 6, pp. 723-740. [po 799] 

Bhattacharya, D., and J. P. Hayes. 1990. Hierarchical Modeling for VLSI Circuit Testing. 
Boston: Kluwer, 159 p. ISBN 079239058X. TK7874.B484. Contains a good description of 
the D and PODEM algorithms. [po 800] 

Bleeker, H., P. v. d. Eijnden, and F. de Jong. 1993. Boundary-Scan Test: A Practical Approach. 
Boston: Kluwer, 225 p. ISBN 0-7923-9296-5. [po 714] 

Brayton, R. K., G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. 1990. "Multilevel logic 
synthesis." Proceedings of the IEEE, Vol. 78, no. 2, pp. 264-300. [po 799] 

Butler, K. M., and M. R. Mercer. 1992. Assessing Fault Model and Test Quality. Norwell, MA: 
Kluwer, 125 p. ISBN 0-7923-9222-1. TK7874.B85. Introductory level discussion oftest ter­
minology, fault models and their limitations. Research-level discussion of the use of BDDs, 
ATPG, and controllability/observability. [po 761] 

Chandra, S., et al. 1993. "CrossCheck: an innovative testability solution." IEEE Design & Test 
of Computers, Vol. 10, no. 2, pp. 56-68. Describes a gate-array test architecture used by 
Sony, for example. [po 800] 

814



802 CHAPTER 14 TEST 

Chakradhar, S. T., V. D. Agrawal, and M. L. Bushnell. 1991. Neural Models and Algorithms for 
Digital Testing. Boston: Kluwer, 184 p. ISBN 0792391659. TK7868.L6.C44. [po 800] 

Cheng, K.-T., and V. D. Agrawal. 1989. Unified Methods for VLSI Simulation and Test 
Generation. Norwell, MA: Kluwer, 148 p. ISBN 0-7923-9025-3. TK7874.C525. 377 refer­
ences. The first three chapters give a good introduction to fault simulation and test vector 
generation. [po 800] 

Eichelberger, E. B., E. Lindblom, J. A. Waicukauski, and T. W. Williams. 1991. Structured 
Logic Testing. Englewood Cliffs, NJ: Prentice-Hall, 183 p. ISBN 0-13-8536805. 
TK7868.L6S78. Includes material printed in 19 articles by the authors from 1987 to 1989. 
[po 800] 

Feugate Jr., R. J., and S. M. McIntyre. 1988. Introduction to VLSI Testing. Englewood Cliffs, 
NJ: Prentice-Hall, 226 p. ISBN 0134988663. TK7874 .F48. Chapters on: Automated Testing 
Overview; IC Fabrication and Device Specifications; Testing Integrated Circuits: Parametric 
Tests; Functional Tests; Example of a Functional Test Program; Characterization testing; 
Developing Test Patterns; Special Testing Problems: Memories; Special Testing Problems: 
Microcontrollers; Design for Testability; LSTL Language Summary; Example of a Produc­
tion Test program; The D-Algorithm. [po 800] 

Fujiwara, H., and T. Shimono. 1983. "On the acceleration of test generation algorithms." IEEE 
Transactions on Computers, Vol. C-32, no. 12, pp. 1137-1144. Describes the FAN ATPG 
algorithm. [po 761] 

Fritzemeier, R. R., H. T. Nagle, and C. F. Hawkins. 1989. "Fundamentals of testability-a 
tutorial." IEEE Transactions on Industrial Electronics, Vol. 36, no. 2, pp. 117-128.54 refs. 
A review of testing, failure mechanisms, fault models, fault simulation, testability analysis, 
and test-generation methods for CMOS VLSI circuits. [po 800] 

Ghosh, A., S. Devadas, and A. R. Newton. 1992. Sequential Logic Testing and Verification. Nor­
well, MA: Kluwer, 214 p. ISBN 0-7923-91888. TK7868.L6G47. Describes test generation 
algorithms for state machines at a level intended for CAD researchers. [po 800] 

Goel, P. 1981. "An implicit enumeration algorithm to generate tests for combinational logic cir­
cuits." IEEE Transactions on Computers, Vol. C-30, no. 3, pp. 215-222. [po 759] 

Goldstein, L. H. 1979. "Controllability/observability analysis of digital circuits." IEEE 
Transactions on Circuits and Systems, Vol. CAS-26, no. 9, pp. 685-693. Describes SCOAP 
measures. [po 761] 

Golomb, S. w., et al. 1982. Shift Register Sequences. 2nd ed. Laguna Hills, CA: Aegean Park 
Press, 247 p. ISBN 0-89412-048-4. QA267.5.S4 G6. See also: Golomb, S. W., Shift Register 
Sequences (with portions co-authored by L. R. Welch, R. M. Goldstein and A. W. Hales). 
San Francisco: Holden-Day (1967),224 p. QA267.5.S4 G6. The second edition has a long 
bibliography. [po 771] 

Gulati, R. K., and C. F. Hawkins. (Ed.). 1993. IDDQ Testing ofVLSI Circuits. Boston: Kluwer, 
120 p. ISBN 0792393155. TK7874.I3223. [po 743] 

Hughes, 1. L. A., and E. J. McCluskey. 1986. "Multiple stuck-at fault coverage of single stuck­
at fault test sets." In Proceedings of the IEEE International Test Conference, pp. 368-374. 
[po 740] 

IEEE 1029.1. 1991. IEEE Standard for Waveform and Vector Exchange (WAVES) (ANSI). 
96 p. IEEE reference numbers: [1-55937-195-1] [SHI5032-NYF]. [po 801] 

IEEE 1149.1 b. 1994. IEEE Std 1149.1-1990 Access Port and Boundary-Scan Architecture. 
176 p. The first part of this updated standard includes supplement 1149.1 a-1993. IEEE ref­
erence numbers: [1-55937-350-4] [SHI6626-NYK] The second part of this standard 
includes 1149.1b-1994 Supplement to IEEE Std 1149.1-1990, IEEE Standard Test Access 
Port and Boundary-Scan Architecture (ANSI) (available separately). 80 p. IEEE reference 
numbers: [1-55937-497-7] [SH94256-NYK]. [po 714, p. 716, p. 718, p. 718, p. 735, p. 735] 

815



14.13 REFERENCES 803 

Jha, N. K., and S. Kundu. 1990. Testing and Reliable Design of CMOS Circuits. Boston: 
Kluwer, 231 p. ISBN 0792390563. TK7871.99.M44.J49. [po 800] 

Lavagno, L., and A. Sangiovanni-Vincentelli. 1993. Algorithms for Synthesis and Testing of 
Asynchronous Circuits. Boston: Kluwer, 339 p. ISBN 0792393643. TK7888.4.L38. [po 800] 

Lee, M. T.-C. 1997. High-Level Test Synthesis of Digital VLSI Circuits. Boston: Artech House, 
ISBN 0890069077. TK7874.75.L44. [po 800] 

Lombardi, F., and M. Sami (Ed.). 1987. Testing and Diagnosis ofVLSI and ULSI.Norwell, MA: 
Kluwer, 533 p. ISBN 90-247-3794-X. TK7874.N345. A series of 20 research-level papers 
presented at a NATO advanced Study Institute. Contents: Trends in Design for Testability; 
Statistical Testing; Fault Models; Fault Detection and Design for Testability of CMOS Logic 
Circuits; Parallel Computer Systems Testing and Integration; Analog Fault Diagnosis; Spec­
tral Techniques for Digital Testing; Logic Verification, Testing and Their Relationships to 
Logic Synthesis; Proving the Next Stage from Simulation; Petri Nets and Their Relation to 
Design Validation and Testing; Functional Test of ASICs and Boards; Fault Simulation Tech­
niques - Theory and Practical Examples; Threshold-Value Simulation and Test Generation; 
Behavioral Testing of Programmable Systems; Testing of Processing Arrays; Old and New 
Approaches for the Repair of Redundant Memories; Reconfiguration of Orthogonal Alrays 
by Front Deletion; Device Testing and SEM Testing Tools; Advances in Electron Beam Test­
ing. [po 800] 

Maunder, C. M., and R. E. Tulloss (Ed.). 1990. The Test Access Port and Boundary-Scan 
Architecture. Washington, DC: IEEE Computer Society Press. ISBN 0-8186-9070-4. 
TK867.T39. [po 714] 

Needham, W. M. 1991. Designer's Guide to Testable ASIC Devices. New York: Van Nostrand 
Reinhold, 284 p. ISBN 0-442-00221-1. TK7874.N385. Practical review of wafer and pack­
age testing. Includes summary of features and test file formats used by logic testers. [po 800] 

Parker, K. P. 1992. The Boundary-Scan Handbook. Norwell, MA: Kluwer, 262 p. ISBN 0-7923-
9270-1. TK7868.P7 P3. Describes BSDL. [po 714] 

Rajsuman, R. 1994.lddq Testingfor CMOS VLSI. Boston: Artech House, 193 p. ISBN 0-89006-
726-0. TK7871.99.M44R35. [po 743] 

Rao, G. K. 1993. Multilevel Interconnect Technology. New York: McGraw-Hill. ISBN 0-07-
051224-8. Covers the design of a multilevel interconnect process, and manufacturing and 
reliability issues. [po 736] 

Roth, J. P. 1966. "Diagnosis of automata failures: A calculus and a method." IBM Journal of 
Research and Development, Vol. 10, no. 4, pp. 278-291. Describes the D-calculus and the 
D-algorithm. [po 755] 

Russell, G., and 1. L. Sayers. 1989. Advanced Simulation and Test Methodologies for VLSI 
Design. London: Van Nostrand Reinhold (International), 378 p. ISBN 0-7476-0001-5. 
TK7874.R89. Good explanations with a simple example of the D-algorithm. [po 800] 

Sabnis, A. G. (Ed.). 1990. VLSI Reliability. San Diego: Academic Press. ISBN 0-12-234122-8. 
Covers ESD, electromigration, packaging issues, quality assurance, failure analysis, radia­
tion damage. [po 736] 

Scheiber, S.F. 1995. Building a Successful Board-Test Strategy. Boston: 
Butterworth-Heineman, 286 p. ISBN 0-7506-9432-7. TK7868.P7S33. Practical description 
from a management point of view of board-level testing. [po 714] 

Schulz, M. H., E. Trischler, and T. M. Sarfert. 1988. "SOCRATES: a highly efficient automatic 
test pattern generation system." IEEE Transactions 011 Computer-Aided Design, Vol. 7, no. 
I, pp. 126-137. [po 761] 

Turino, J. 1990. Design to Test-A Definitive Guide for Electronic Design, Manufacture and 
Service. 2nd ed. New York: Van Nostrand Reinhold, 368 p. ISBN 0-442-00170-3 .. 
TK7874.T83. A small encyclopedia of testing. Includes a general introduction to testability, 

816



804 CHAPTER 14 TEST 

and guidelines for: system-level, analog, and general circuit testing; board-level guidelines, 
boundary scan, built-in test, testability buses, mechanical issues, surface-mount technology, 
test software, documentation, implementation, ad-hoc test techniques and strategies, test­
ability checklists, and a testability rating system. [po 800] 

Tsui, F. F. 1987. LSIIVLSI Testability Design. New York: McGraw-Hill, 700 p. ISBN 0-07-
065341-0. TK7874.T78. Extensive review of scan-test techniques. Approximately 100-page 
bibliography of papers published on test from 1962-1986. [po 800] 

Williams, T. W. (Ed.). 1986. VLSI Testing. Amsterdam: Elsevier Science, 275 p. ISBN 0-444-
87895-5 (part of set 0-444-87890-4). TK7874.V5666. Seven papers on fault modeling, test 
generation, and fault simulation, testable PLA designs, design for testability, memory test­
ing, semiconductor test equipment, and board level test equipment. [po 800] 

Yarmolik, V. N. 1990. Fault Diagnosis of Digital Circuits. New York: Wiley. Translated from 
Russian text. Covers D-algorithm, LSSD, random and pseudorandom testing and analysis, 
and signature analysis. [po 800] 

Yarmolik, V. N., and 1. V. Kachan. 1993. Self-Testing VLSI Design. New York: Elsevier, 345 p. 
ISBN 0-444-89640-6. TK7874.I16. Extensive reference on pseudorandom testing tech­
niques. Includes description of pseudorandom sequence generators and polynomials. 
[p.800] 

Zobrist, G.W. (Ed.). 1993. VLSI Fault Modeling and Testing Techniques. Norwood, NJ: Ablex, 
199 p. ISBN 0-89391-781-8. TK7874.V5625. Includes six research-level papers on physical 
fault modeling, testing of CMOS open faults, testing bridging faults, BIST for PLAs, design 
for testability, and synthesis methods for testable circuits. [po 800] 

817



ASIC 
CONSTRUCTION 

1S.1 Physical Design 15.7 

1S.2 CAD Tools 1S.8 

1S.3 System Partitioning 1S.9 

1S.4 Estimating ASIC Size 1S.10 

1S.S Power Dissipation 1S.11 

1S.6 FPGA Partitioning 

Partitioning Methods 

Summary 

Problems 

Bibliography 

References 

A town planner works out the number, types, and sizes of buildings in a develop­
ment project. An architect designs each building, including the arrangement of the 
rooms in each building. Then a builder carries out the construction according to the 
architect's drawings. Electrical wiring is one of the last steps in the construction of 
each building. The physical design of ASICs is normally divided into system 
partitioning, jioorplanning, placement, and routing. A microelectronic system is the 
town and the ASICs are the buildings. System partitioning corresponds to town plan­
ning, ASIC floorplanning is the architect's job, placement is done by the builder, and 
the routing is done by the electrician. We shall design most, but not all, ASICs using 
these design steps. 

15.1 Physical Design 

Figure 15.1 shows part of the design flow, the physical design steps, for an ASIC 
(omitting simulation, test, and other logical design steps that have already been cov­
ered). Some of the steps in Figure 15.1 might be performed in a different order from 
that shown. For example, we might, depending on the size of the system, perform 
system partitioning before we do any design entry or synthesis. There may be some 
iteration between the different steps too. 

80S 

818



806 CHAPTER 15 ASIC CONSTRUCTION 

FIGURE 15.1 Part of an ASIC design flow show­
ing the system partitioning, floorplanning, placement, 
and routing steps. These steps may be performed in 
a slightly different order, iterated or omitted depend­
ing on the type and size of the system and its ASICs. 
As the focus shifts from logic to interconnect, floor­
planning assumes an increasingly important role. 
Each of the steps shown in the figure must be per­
formed and each depends on the previous step. 
However, the trend is toward completing these steps 
in a parallel fashion and iterating, rather than in a 
sequential manner. 

Design entry 

+ 
Synthesis 

• System 
partitioning 

+ 
Floorplanning 

~ 
Placement 

~ 
Routing 

< vjuveril09 

<gnetlist 

IIl1lilblock 

• 109;ccelis 

We must first apply system partitioning to divide a microelectronics system 
into separate ASICs. In fioorplanning we estimate sizes and set the initial relative 
locations of the various blocks in our ASIC (sometimes we also call this chip 
planning). At the same time we allocate space for clock and power wiring and 
decide on the location of the I/O and power pads. Placement defines the location of 
the logic cells within the flexible blocks and sets aside space for the interconnect to 
each logic cell. Placement for a gate-array or standard-cell design assigns each logic 
cell to a position in a row. For an FPGA, placement chooses which of the fixed logic 
resources on the chip are used for which logic cells. Floorplanning and placement 
are closely related and are sometimes combined in a single CAD tool. Routing 
makes the connections between logic cells. Routing is a hard problem by itself and 
is normally split into two distinct steps, called global and local routing. Global 
routing determines where the interconnections between the placed logic cells and 
blocks will be situated. Only the routes to be used by the interconnections are 
decided in this step, not the actual locations of the interconnections within the wir-

819



15.2 CAD TOOLS 807 

ing areas. Global routing is sometimes called loose routing for this reason. Local 
routing joins the logic cells with interconnections. Information on which intercon­
nection areas to use comes from the global router. Only at this stage of layout do we 
finally decide on the width, mask layer, and exact location of the interconnections. 
Local routing is also known as detailed routing. 

15.2 CADTools 

In order to develop a CAD tool it is necessary to convert each of the physical design 
steps to a problem with well-defined goals and objectives. The goals for each physi­
cal design step are the things we must achieve. The objectives for each step are 
things we would like to meet on the way to achieving the goals. Some examples of 
goals and objectives for each of the ASIC physical design steps are as follows: 

System partitioning: 

o Goal. Partition a system into a number of ASICs. 

• Objectives. Minimize the number of external connections between the ASICs. 
Keep each ASIC smaller than a maximum size. 

Floorplanning: 

• Goal. Calculate the sizes of all the blocks and assign them locations. 

• Objective. Keep the highly connected blocks physically close to each other. 

Placement: 

o Goal. Assign the interconnect areas and the location of all the logic cells 
within the flexible blocks. 

• Objectives. Minimize the ASIC area and the interconnect density. 

Global routing: 

e Goal. Determine the location of all the interconnect. 

• Objective. Minimize the total interconnect area used. 

Detailed routing: 

• Goal. Completely route all the interconnect on the chip. 

• Objective. Minimize the total interconnect length used. 

There is no magic recipe involved in the choice of the ASIC physical design 
steps. These steps have been chosen simply because, as tools and techniques have 
developed historically, these steps proved to be the easiest way to split up the larger 
problem of ASIC physical design. The boundaries between the steps are not cast in 
stone. For example, fioorplanning and placement are often thought of as one step 
and in some tools placement and routing are performed together. 

820



808 CHAPTER 15 ASIC CONSTRUCTION 

15.2.1 Methods and Algorithms 
A CAD tool needs methods or algorithms to generate a solution to each problem 
using a reasonable amount of computer time. Often there is no best solution possible 
to a particular problem, and the tools must use heuristic algorithms, or rules of 
thumb, to try and find a good solution. The term algorithm is usually reserved for a 
method that always gives a solution. 

We need to know how practical any algorithm is. We say the complexity of an 
algorithm is 0 (f(n)) (read as order f (n)) if there are constants k and no so that the 
running time of the algorithm T (n) is less than kf(n) for all n > no [Sedgewick, 
1988]. Here n is a measure of the size of the problem (number of transistors, number 
of wires, and so on). In ASIC design 11 is usually very large. We have to be careful, 
though. The notation does not specify the units of time. An algorithm that is 0 (n2) 

nanoseconds might be better than an algorithm that is 0 (n) seconds, for quite large 
values of 11. The notation 0 (n) refers to an upper limit on the running time of the 
algorithm. A practical example may take less running time-it is just that we cannot 
prove it. We also have to be careful of the constants k and no' They can hide over­
head present in the implementation and may be large enough to mask the depen­
dence on 11, up to large values of 11. The functionf(n) is usually one of the following 
kinds: 

• f( 11) = constant. The algorithm is constant in time. In this case, steps of the 
algorithm are repeated once or just a few times. It would be nice if our algo­
rithms had this property, but it does not usually happen in ASIC design. 

• f(n) = log rt. The algorithm is logarithmic in time. This usually happens 
when a big problem is (possibly recursively) transformed into a smaller one. 

• f(l1) = rt. The algorithm is linear in time. This is a good situation for an 
ASIC algorithm that works with n objects. 

• f(n) = 11 log n. This type of algorithm arises when a large problem is split 
into a number of smaller problems, each solved independently. 

• f(n) = n2
. The algorithm is quadratic in time and usually only practical for 

small ASIC problems. 

If the time it takes to solve a problem increases with the size of the problem at a 
rate that is polynomial but faster than quadratic (or worse in an exponential fashion), 
it is usually not appropriate for ASIC design. Even after subdividing the ASIC phys­
ical design problem into smaller steps, each of the steps still results in problems that 
are hard to solve automatically. In fact, each of the ASIC physical design steps, in 
general, belongs to a class of mathematical problems known as NPftcomplete prob­
lems. This means that it is unlikely we can find an algorithm to solve the problem 
exactly in polynomial time. 

Suppose we find a practical method to solve our problem, even if we can find a 
solution we now have a dilemma. How shall we know if we have a good solution if, 
because the problem is NP-complete, we cannot find the optimum or best solution 
to which to compare it? We need to know how close we are to the optimum solution 

821



15.3 SYSTEM PARTITIONING 809 

to a problem, even if that optimum solution cannot be found exactly. We need to 
make a quantitative measurement of the quality of the solution that we are able to 
find. Often we combine several parameters or metrics that measure our goals and 
objectives into a measurement function or objective function. If we are minimiz­
ing the measurement function, it is a cost function. If we are maximizing the mea­
surement function, we call the function a gain function (sometimes just gain). 

Now we are ready to solve each of the ASIC physical design steps with the fol­
lowing items in hand: a set of goals and objectives, a way to measure the goals and 
objectives, and an algorithm or method to find a solution that meets the goals and 
objectives. As designers attempt to achieve a desired ASIC performance they make a 
continuous trade-off between speed, area, power, and several other factors. Presently 
CAD tools are not smart enough to be able to do this alone. In fact, cunent CAD 
tools are only capable of finding a solution subject to a few, very simple, objectives. 

System Partitioning 

Microelectronic systems typically consist of many functional blocks. If a functional 
block is too large to fit in one ASIC, we may have to split, or partition, the function 
into pieces using goals and objectives that we need to specify. For example, we 
might want to minimize the number of pins for each ASIC to minimize package 
cost. We can use CAD tools to help us with this type of system partitioning. 

Figure 15.2 shows the system diagram of the Sun Microsystems 
SPARCstation 1. The system is partitioned as follows; the numbers refer to the 
labels in Figure 15.2. (See Section 1.3, "Case Study" for the sources of infomation 
in this section.) 

• Nine custom ASICs (1-9) 

• Memory subsystems (SIMMs, single-in-line memory modules): CPU cache 
(10), RAM (11), memory cache (12, 13) 

e Six ASSPs (application-specific standard products) for I/O (14-19) 

• An ASSP for time of day (20) 

e An EPROM (21) 

• Video memory subsystem (22) 

• One analog/digital ASSP DAC (digital-to-analog converter) (23) 

Table 15.1 shows the details of the nine custom ASICs used 111 the 
SPARCstation 1. Some of the partitioning of the system shown in Figure 15.2 is 
determined by whether to use ASSPs or custom ASICs. Some of these design deci­
sions are based on intangible issues: time to market, previous experience with a 
technology, the ability to reuse part of a design from a previous product. No CAD 
tools can help with such decisions. The goals and objectives are too poorly defined 
and finding a way to measure these factors is very difficult. CAD tools cannot 

822



810 CHAPTER 15 ASIC CONSTRUCTION 

serial port A 
serial port B 

keyboard 
mouse 

keyboard 
mouse 

floppy disk 

® 
I Clock 

ASIC 

32-bit data 
and address 
SBus 

@ 
DMA 
ASIC 

SBus slot #1 

SBus slot #2 

SBus slot #3 

8-bit color video board 

FIGURE 15.2 The Sun Microsystems SPARCstation 1 system block diagram. The acro­
nyms for the various ASICs are listed in Table 15.1. 

answer a question such as: "What is the cheapest way to build my system?" but can 
help the designer answer the question: "How do I split this circuit into pieces that 
will fit on a chip?" Table 15.2 shows the partitioning of the SPARCstation 10 so you 
can compare it to the SPARCstation 1. Notice that the gate counts of nearly all of the 
SPARCstation 10 ASICs have increased by a factor of 10, but the pin counts have 
increased by a smaller factor. 

823



15.4 ESTIMATING ASIC SIZE 811 

TABLE 15.1 System partitioning for the Sun Microsystems SPARCstation 1. 

SPARCstation 1 ASIC Gates 
Ik-gate Pins Package 

1 SPARC IU (integer unit) 20 179 PGA 

2 SPARC FPU (floating-point unit) 50 144 PGA 

3 Cache controller 9 160 POFP 

4 MMU (memory-management unit) 5 120 POFP 

5 Data buffer 3 120 POFP 

6 DMA (direct memory access) controller 9 120 POFP 

7 Video controller/data buffer 4 120 POFP 

8 RAM controller 1 100 POFP 

9 Clock generator 1 44 PLCC 

Abbreviations: 

PGA = pin-grid array CBIC = LSI Logic cell-based ASIC 

POFP = plastic quad flat pack GA = LSI Logic channelless gate array 

PLCC = plastic leaded chip carrier FC = full custom 

15.4 Estimating ASIC Size 

Table 15.3 shows some useful numbers for estimating ASIC die size. Suppose we 
wish to estimate the die size of a 40 k-gate ASIC in a 0.35)lm gate array, three-level 
metal process with 166 I/O pads. For this ASIC the minimum feature size is 
0.35)lm. Thus A (one-half the minimum feature size) =0.35I-lm/2=0.175I-lm. Using 
our data and Table 15.3, we can derive the following information. We know that 
0.35 )lm standard-cell density is roughly 5 x 10-4gate/A2. From this we can calculate 
the gate density for a 0.35 )lm gate array: 

gate density = 0.35 )lm standard-cell density x (0.8 to 0.9) 

= 4 X 10-4 to 4.5 x 10-4 gate/A 2. (15.1) 

This gives the core size (logic and routing only) as 

(4 x 104 gates/gate density) x routing factor x (l/gate-array utilization) 

= 4 x 104/(4 X 10-4 to 4.5 x 10-4 ) x (l to 2) x 1/(0.8 to 0.9) = 108 to 2.5 x 108 A2 

= 4840 to 11,900 mi12. (15.2) 

Type 

CBIC 

FC 

GA 

GA 

GA 

GA 

GA 

GA 

GA 

824



812 CHAPTER 15 ASIC CONSTRUCTION 

TABLE 15.2 System partitioning for the Sun Microsystems SPARCstation 10. 

SPARCstation 10 ASIC Gates Pins Package Type 

1 SuperSPARC Superscalar SPARC 3 M-transistors 293 PGA FC 

2 SuperCache cache controller 2 M-transistors 369 PGA FC 

3 EMC memory control 40 k-gate 299 PGA GA 

4 MSI MBus-SBus interface 40 k-gate 223 PGA GA 

5 DMA2 Ethernet, SCSI, parallel port 30 k-gate 160 POFP GA 

6 SEC SBus to 8-bit bus 20 k-gate 160 POFP GA 

7 DBRI dual ISDN interface 72 k-gate 132 POFP GA 

8 MMCodec stereo codec 32 k-gate 44 PLCC FC 

Abbreviations: 

PGA = pin-grid array GA = channelless gate array 

POFP = plastic quad flat pack FC = full custom 

PLCC = plastic leaded chip carrier 

We shall need to add (0.175/0.5)x2x(l5 to 20) = 10.5 to 21 mil (per side) for the 
pad heights (we included the effects of scaling in this calculation). With a pad pitch 
of 5 mil and roughly 166/4 = 42 lIOs per side (not counting any power pads), we 
need a die at least 5 x 42 = 210 mil on a side for the lIOs. Thus the die size must be 
at least 21Ox21O=4.4x 104mil2 to fit 166 l/Os. Of this die area only 
1.19x 104/(4.4 x 104)=27% (at most) is used by the core logic. This is a severely 
pad-limited design and we need to rethink the partitioning of this system. 

Table 15.4 shows some typical areas for datapath elements. You would use 
many of these datapath elements in floating-point arithmetic (these elements are 
large-you should not use floating-point arithmetic unless you have to): 

.. A leading-one detector with barrel shifter normalizes a mantissa. 

e A priority encoder corrects exponents due to mantissa normalization. 

" A denormalizing barrel shifter aligns mantissas. 

e A normalizing barrel shifter with a leading-one detector normalizes mantissa 
subtraction. 

Most datapath elements have an area per bit that depends on the number of bits 
in the datapath (the datapath width). Sometimes this dependency is linear (for the 
multipliers and the barrel shifter, for example); in other elements it depends on the 
logarithm (to base 2) of the datapath width (the leading one, all ones, and zero 
detectors, for example). In some elements you might expect there to be a depen­
dency on datapath width, but it is small (the comparators are an example). 

825



15.4 ESTIMATING ASIC SIZE 813 

TABLE 15.3 Some useful numbers for ASIC estimates, normalized to a 1!-lm technology unless noted. 

Parameter 

Lambda, A 

CAD pitch 

Typical value 

0.5 !-lm = 0.5 (minimum 
feature size) 

Comment1 

In a 1 !-lm technology, A::: 0.5 !-lm. 

1 micron = 1 m = 1 11m Not to be confused with minimum CAD grid 
= minimum feature size size (which is usually less than 0.01 !-lm). 

Scaling 

NA 

Effective gate length 0.25 to 1.0!-lm Less than drawn gate length, usually by A 
about 10 percent. 

._._._-------------------_. __ .. _-----_ .. _._--_ .. ,._._--._---_._---._ ... __ ._ .. _._-_ .... _-_ .. _._-_._-----_._-_.-_._._--------------_._-------------------._-_ ... _--_.-._ ... _----_. 
I/O-pad width (pitch) 5 to 10 mil For a 1 !-lm technology, 2LM (A= 0.5 !-lm). A 

= 125 to 250 !-lm Scales less than linearly with A. 

I/O-pad height 15 to 20 mil For a 1 !-lm technology, 2LM (A= 0.5 11m). A 
= 375 to 500 ~lm Scales approximately linearly with A. 

Large die Approximately constant 

Small die 100 mil/side, 1 Approximately constant 

Standard-cell density 1.5x 1 For 111m, 2LM, library 
= 1.0 gate/mil2 = 4 x 10-4 gate/A 2 (independent of scaling). 

.,,·w·,_.,·· .. ·.·_··_·· __ ··· __ ·········_····_ ......... --_ ........ _._ .. _ ...... __ . __ . 
Standard-cell density 8x10=3gatej~m·2 For 0.5 11m, 3LM, library 

= 5.0 gate/mil2 = 5 x 10-4 gate/A 2 (independent of scaling). 

Gate-array utilization 60 to 80% For 2LM, approximately constant 

80 to 90% For 3LM, approximately constant 

Gate-array density (0.8 to 0.9) x standard cell For the same process as standard cells 
density 

Standard-cell routing 1.5 to 2.5 (2LM) Approximately constant 
factor = (cell area + route 1.0 to 2.0 (3LM) 
area)/cell area 

Package cost $0.01/pin, "penny per pin" Varies widely, figure is for low-cost plastic 
package, approximately constant 

Wafer cost $1kto$5k Varies widely, figure is for a mature, 2LM 
average $2 k CMOS process, approximately constant 

12LM = two-level metal; 3LM = three-level metal. 

The area estimates given in Table 15.4 can be misleading. The exact size of an 
adder, for example, depends on the architecture: carry-save, carry-select, carry­
lookahead, or ripple-carry (which depends on the speed you require). These area fig­
ures also exclude the routing between datapath elements, which is difficult to pre­
dict-it will depend on the number and size of the datapath elements, their type, and. 
how much logic is random and how much is datapath. 

1 

1 

1/)..2 

1 

1 

1 

1 

1 

1 

826



814 CHAPTER is ASIC CONSTRUCTION 

TABLE 15.4 Area estimates for datapath functions.1 

Datapath function Area per bit/A? Area/)..? Area//..,2 
(32-bit) (64-bit) 

High-speed comparator (4-32 bit) 24,000 7.7E+OS 1.SE+06 

High-speed comparator (32-128 bit) 28,800 9.2E+OS 1.8E+06 

Leading-one detector (n-bit) 720010g2n 1.2E+06 2.8E+06 

All-ones detector (n-bit) 6000 + 800 log2n 3.2E+OS 6.9E+OS 

Priority encoder (n-bit) 19,000 + 1400 log2(n-2) 8.4E+OS 1.8E+06 

Zero detector (n-bit) SSOO + 800 log2n 3.0E+OS 6.6E+OS 

Barrel shifter/rotator (n- by m-bit) 19,000 + 1 000 n + 1600 m 3.4E+06 1.2E+07 

Carry-save adder 24,000 7.7E+OS 1.SE+06 

Digital delay line (n delay stages, toutput taps) 12,000 + 6000n + 8400 t 1.SE+07 6.0E+07 

Synchronous FIFO (n-bit) 34,000 + 9600n 1.1 E+07 4.1E+07 

Multiplier-accumulator (n-bit) 190,000 + 18,000n 2.4E+07 8.SE+07 

Unsigned multiplier (n- by m-bit) S4,000 + 18,000 (n- 2) 1.9E+07 7.4E+07 

2:1 MUX 7200 2.3E+OS 4.6E+OS 

8:1 MUX 29,000 9.2E+OS 1.8E+06 

Low-speed adder 28,000 8.8E+OS 1.8E+ 06 

2901 ALU 41,000 1.3E+06 2.6E+06 

Low-speed adder/subtracter 30,000 9.6E+OS 1.9E+06 

Sync. up-down counter with sync. load and clear 43,000 1.4E+ 06 2.8E+06 

Low-speed decrementer 14,000 4.6E+OS 9.2E+OS 

Low-speed incrementer 14,000 4.6E+OS 9.2E+OS 

Low-speed incrementer/decrementer 20,000 6.SE+OS 1.3E+06 

1 Area estimates are for a two-level metal (2 LM) process. Areas for a three-level metal (3LM) process are 
approximately 0.7S to 1.0 times these figures. 

Figure 15.3(a) shows the typical size of SRAM constructed on an ASIC. These 
figures are based on the use of a RAM compiler (as opposed to building memory 
from flip-flops or latches) using a standard CMOS ASIC process, typically using a 

827



15.4 ESTIMATING ASIC SIZE 815 

six -transistor cell. The actual size of a memory will depend on (1) the required 
access time, (2) the use of synchronous or asynchronous read or write, (3) the num­
ber and type of ports (read-write), (4) the use of special design rules, (S) the number 
of interconnect layers available, (6) the RAM architecture (number of devices in 
RAM cell), and (7) the process technology (active pull-up devices or pull-up resis­
tors). 

(a) (b) 

RAM areaf),? multiplier area!'),? 

108 109 

108 

107 

-0-16 107 

106 
word length/bits -¢-32 

co (0 C\J '<:j- co (0 

106 C\J IJ') .,.- C\J '<:j- Q) 
.,.- C\J IJ') 0 0 0 

.,.- C\J "<t 64 256 1024 4096 
word depth/bits multiplier size = mxn /bits 2 

FIGURE 15.3 (a) ASIC memory size. These figures are for static RAM constructed using 
compilers in a 2LM ASIC process, but with no special memory design rules. The actual area 
of a RAM will depend on the speed and number of read-write ports. (b) Multiplier size for a 
2LM process. The actual area will depend on the multiplier architecture and speed. 

The maximum size of SRAM in Figure 1S.3(a) is 32 k-bit, which occupies 
approximately 6.0x107)..2. In a O.S/-lm process (with )..=O.2S/-lm), the area of a 
32k-bit SRAM is 6.0xI07 xO.2SxO.25=3.75x106 /-lm2 (or about 2mm on a 
side-a large piece of silicon). If you need an SRAM that is larger than this, you 
probably need to consult with your ASIC vendor to determine the best way to imple­
ment a large on-chip memory. Figure IS.3(b) shows the typical sizes for multipliers. 
Again the actual multiplier size will depend on the architecture (Booth encoding, 
Wallace tree, and so on), the process technology, and design rules. Table 15.5 shows 
some estimated gate counts for medium-size functions corresponding to some popu­
lar ASSP devices. 

828



816 CHAPTER 15 ASIC CONSTRUCTION 

TABLE 15.5 Gate size estimates for popular ASSP functions. 

ASSP 
device 

8251A 

8253 

8255A 

8259 

8237 

8284 

8288 

8254 

6845 

87030 

87012 

2901 

2902 

2904 

Function 

Universal synchronous/asynchronous receiver/transmitter (USART) 

Programmable interval timer 

Programmable peripheral interface 

Programmable interrupt controller 

Programmable DMA controller 

Clock generator/driver 

Bus controller 

Programmable interval timer 

CRT controller 

SCSI controller 

Ethernet controller 

4bitALU 

Carry-Iookahead ALU 

Status and shift control 

Gate estimate 

2900 

5680 

784-1403 

2205 

5100 

99 

250 

3500 

2843 

3600 

3900 

2910 12-bit microprogram controller 

917 

33 

500 

1100 

Source: Fujitsu channelless gate-array data book, AU and CG21 series. 

15.5 Power Dissipation 

Power dissipation in CMOS logic arises from the following sources: 

.. Dynamic power dissipation due to switching current from charging and dis­
charging parasitic capacitance. 

e Dynamic power dissipation due to short-circuit current when both 
n-channel and p-channel transistors are momentarily on at the same time. 

.. Static power dissipation due to leakage current and subthreshold current. 

15.5.1 Switching Current 
When the p-channel transistor in an inverter is charging a capacitance, C, at a fre­
quency, f, the current through the transistor is C(dV/dt). The power dissipation is 
thus CV(dV/dt) during one-half the period of the input, t= 1/(2f). The energy (in 
joules) dissipated in the p-channel transistor is thus 

829



15.5 POWER DISSIPATION 817 

11 (2f) V DD 

f ( dV) - f - 1 2 CV dt dt- CVdV-iCVDD · (15.3) 

o o 

"When the n-channel transistor discharges the capacitor, the energy dissipated is the 
same. The average power dissipation over the whole cycle (in watts) is thus 

(15.4) 

Most of the power dissipation in a CMOS ASIC arises from this source-the 
switching current. The best way to reduce power is to reduce V DD (because it 
appears as a squared term in Eq. 15.4), and to reduce C, the amount of capacitance 
we have to switch. A rough estimate is that 20 percent of the nodes switch (or 
toggle) in a circuit per clock cycle. To determine more accurately the power dissipa­
tion due to switching, we need to find out how many nodes toggle during typical cir­
cuit operation using a dynamic logic simulator. This requires input vectors that 
correspond to typical operation, which can be difficult to produce. Using a digital 
simulator also will not take into account the effect of glitches, which can be signifi­
cant. Power simulators are usually a hybrid between SPICE transistor-level simula­
tors and digital event-driven simulators [Najm, 1994]. 

15.5.2 Short-Circuit Current 
The short-circuit current or crowbar current can be particularly important for out­
put drivers and large clock buffers. For a CMOS inverter (see Problem 15.17) the 
power dissipation due to the crowbar current is 

(15.5) 

where we assume the following: We ratio the p-channel and n-channel transistor sizes so 
that ~ = (W IL )JlCox is the same for both p- and n-channel transistors, the magnitude of 
the threshold voltages IYtnl are assumed equal for both transistor types, and t1fis the rise 
and fall time (assumed equal) of the input signal [Yeendrick, 1984]. For example, con­
sider an output buffer that is capable of sinking 12 rnA at an output voltage of 0.5 V. 
From Eq. 2.9 we can derive the transistor gain factor that we need as follows: 

IDS 
~=--------

[ (V GS - Y tn) - ~ V DS J V DS 

= [ (3.3 - 0.65) - (0.5) (0.5)] (0.5) 

12 X 10-3 
(15.6) 

= ---------------------------
[ (3.3 - 0.65) - (0.5) (0.5)] (0.5) 

= O.OIAy-I. 

830



818 CHAPTER 15 ASIC CONSTRUCTION 

If the output buffer is switching at 100 MHz and the input rise time to the buffer 
is 2 ns, we can calculate the power dissipation due to short-circuit current as 

~ft,j 3 
P 2 = ----u- (V DD - 2Vt) 

(0.01) (100 x 10
6

) (2 x 10-
9

) 3 
= 12 (3.3 - (2) (0.65») 

(15.7) 

= 0.00133333W or about 1 mW. 

If the output load is 10 pF, the dissipation due to switching current is 

2 6 -12 2 
P 1 = fCV DD = (100 x 10 ) (10 x 10 ) (3.3) = 0.01089 W or about lOmW. 

As a general rule, if we adjust the transistor sizes so that the rise times and fall times 
through a chain of logic are approximately equal (as they should be), the short­
circuit current is typically less than 20 percent of the switching current. 

For the example output buffer, we can make a rough estimate of the output-node 
switching time by assuming the buffer output drive current is constant at 12 rnA. 
This current will cause the voltage on the output load capacitance to change between 
3.3 V and 0 Vat a constant slew rate dVjdt for a time 

f),t = Cf),V = (10 x 10-
12

) (3.3) 

I (12XlO-3
) 

== 2.75 ns. (15.8) 

This is close to the input rise time of 2 ns. So our estimate of the short-circuit cur­
rent being less than 20 percent of the switching current assuming equal input rise 
time and output rise time is valid in this case. 

15.5.3 Subthreshold and Leakage Current 
Despite the claim made in Section 2.1, a CMOS transistor is never completely off. 
For example, a typical specification for a 0.5)..lm process for the subthreshold 
current (per micron of gate width for V GS = 0 V) is less than 5 pA)..lm-1, but not 
zero. With 10 million transistors on a large chip and with each transistor 10)..tm 
wide, we will have a total subthreshold current of 0.1 rnA; high, but reasonable. The 
problem is that the subthreshold current does not scale with process technology. 

When the gate-to-source voltage, F GS, of an MOS transistor is less than the 
threshold voltage, Vt , the transistor conducts a very small subthreshold current in the 
subthreshold region 

(15.9) 

where 10 is a constant, and the constant, n, is normally between 1 and 2. 

831



15.5 POWER DISSIPATION 819 

The slope, S, of the transistor current in the subthreshold region is 

-nkT nkT 
S = --logloe = 2.3- V/decade. 

q q 
(15.10) 

For example, at a junction temperature, T = 125°C ("'" 400 K) and assuming 
il"",1.5, S=120mV/decade (q=1.6x10-19 Fm-1, k=1.38xlO-23 JK-1), which 
does not scale. The constant value of S = 120 m V /decade means it takes 120 m V to 
reduce the subthreshold current by a factor of 10 in any process. If we reduce the 
threshold voltages to 0.36 V in a deep-submicron process, for example, this means at 
V GS = 0 V we can only reduce IDS to 0.001 times its value at V GS = Vt. This problem 
can lead to large static currents. 

Transistor leakage is caused by the fact that a reverse-biased diode conducts a 
very small leakage current. The sources and drains of every transistor, as well as 
the junctions between the wells and substrate, form parasitic diodes. The parasitic­
diode leakage currents are strongly dependent on the type and quality of the process 
as well as temperature. The parasitic diodes have two components in parallel: an 
area diode and a perimeter diode. The ideal parasitic diode currents are given by the 
following equation: 

(
qV D ) 

I = I exp --1 . 
S nkT 

(15.11) 

Table 15.6 shows specified maximum leakage currents of junction paraSl11c 
diodes as well as the leakage currents of the field transistors (the parasitic MOS 
transistors formed when poly crosses over the thick oxide, or field oxide) in a typical 
0.5 I-lm process. 

TABLE 15.6 Diffusion leakage currents (at25°C)for a typical O.5/lm (A=O.25 /lm) 
CMOS process. 

Junction Diode type Leakage (max.) Unit 

n-diffusionl p-substrate area 0.6 fAl-lm 2V 1 

n-diffusionl p-substrate perimeter 2.0 fA~lm-1V-1 

p-diffusionl n-well area 0.6 fAl-lm-2V-1 

p-diffl n-well perimeter 3.0 fAl-lm-1V-1 

n-weilip-substrate area 1.0 fAl-lm-2V-1 

Field NMOS transistor 100 fA~lm-1 

Field PMOS transistor 30 fAl-lm-1 

832



820 CHAPTER 15 ASIC CONSTRUCTION 

For example, if we have an n-diffusion region at a potential of 3.3 V that is 
1 0 ~m by 4 ~m in size, the parasitic leakage current due to the area diode would be 

2 -15 -14 
40 ~m x 3.3V x 0.6fA ~m-2V-l = (40) (3.3) (0.6 x 10 ) = 7.92 x 10 A, 

or approximately 80 fA. 
The perimeter of this drain region is 28 ~m, so that the leakage current due to 

the perimeter diode is 

1 1 -15-13 
28 ~m x 3.3V x 2.0 fA ~m- V- = (28) (3.3) (2.0 x 10 ) = 1.848 x 10 A, 

or approximately 0.2 pA, over twice as large as the area-diode leakage current. 
As a very rough estimate, if we have 100,000 transistors each with a source and 

a drain 10 ~m by 4 ~m, and half of them are biased at 3.3 V, then the total leakage 
current would be 

(100 X 105) (2) (0.5) (280 x 10-
15

) = 2.8 x 10-
6 

A, (15.12) 

or approximately 3 ~A. This is the same order of magnitude (a few microamperes) 
as the quiescent leakage current, I DDQ' that we expect to measure when we test an 
ASIC with power applied, but with no signal activity. A measurement of more cur­
rent than this in a nonactive CMOS ASIC indicates a problem with the chip manu­
facture or the design. We use this measurement to test an ASIC using an IDDQ test. 

15.6 FPGA Partitioning 

In Section 15.3 we saw how many different issues have to be considered when parti­
tioning a complex system into custom ASICs. There are no commercial tools that 
can help us with all of these issues-a spreadsheet is the best tool in this case. 
Things are a little easier if we limit ourselves to partitioning a group of logic cells 
into FPGAs-and restrict the FPGAs to be all of the same type. 

15.6.1 ATM Simulator 
In this section we shall examine a hardware simulator for Asynchronous Transfer 
Mode (ATM). ATM is a signaling protocol for many different types of traffic 
including constant bit rates (voice signals) as well as variable bit rates (compressed 
video). The ATM Connection Simulator is a card that is connected to a computer. 
Under computer control the card monitors and corrupts the ATM signals to simulate 
the effects of real networks. An example would be to test different video compres­
sion algorithms. Compressed video is very bursty (brief periods of very high activ­
ity), has very strict delay constraints, and is susceptible to errors. ATM is based on 
ATM cells (packets). Each ATM cell has 53 bytes: a 5-byte header and a 48-byte 

833



15.6 FPGA PARTITIONING 821 

payload; Figure 15.4 shows the format of the ATM packet. The ATM Connection 
Simulator looks at the entire header as an address. 

bit number 
byte 
number 8 7 6 5 4 3 2 1 

1 GFC/vPI 
I 

VPI 

2 VPI 

3 VCI 

4 VCI 
I 

PTI ICLP 

5 HEC 

6 payload 

~ 0 

payload J 

GFC = generic flow control 
VPI = virtual path identifier 
VCI = virtual channel identifier 
PTI = payload type identifier 
CLP = cell loss priority 
HEC = header error control 

FIGURE 15.4 The asynchronous transfer mode (ATM) cell format. The ATM protocol uses 
53-byte cells or packets of information with a data payload and header information for routing 
and error control. 

Figure 15.5 shows the system block diagram of the ATM simulator designed by 
Craig Fujikami at the University of Hawaii. Now produced by AdTech, the simulator 
emulates the characteristics of a single connection in an ATM network and models 
ATM traffic policing, ATM cell delays, and ATM cell errors. The simulator is parti­
tioned into the three major blocks, shown in Figure 15.5, and connected to an IBM­
compatible PC through an Intel 80186 controller board together with an interface 
board. These three blocks are 

e The traffic policer, which regulates the input to the simulator. 

o The delay generator, which delays ATM cells, reorders ATM cells, and 
inserts ATM cells with valid ATM cell headers. 

o The error generator, which produces bit errors and four random variables that 
are needed by the other two blocks. 

The error generator performs the following operations on ATM cells: 

1. Payload bit error ratio generation. The user specifies the Bernoulli probability, 
PEER, of the payload bit error ratio. 

834



UTOPIA 
interface, 
receiver 

Traffic policer 31 t 

Header.remapper I 19 
& screener --, h 

3 
126 

2 

8 I Remapper 
sRAM 

.....J 

~ 
Generic cell· rate 

4 I algorithrnfor peak I 11 J I 
cell rate & cel.1 
delay variation 

4 
Generic cell rate 
algorithm for I.2L 
sustainable cell rate 

'--J & bursttolerance 

Delay generator 

12 1 

j I 4 

lit 
L 5 

8 
c::ell~torag~ 

.... : i read/write 

1 
controller· 

I 
2 

38 

20 

112 

2 

FIGURE 15.5 An asynchronous transfer mode (ATM) connection simulator. 

24 

UTOPIA 
interface, 
transmitter 

Error generator 12 

il~3 
; I .. · "" ';;'","';.';; ;mh",.;1 

8 

5 

.-------_.- .. _----_.- .... _---------_.- .......... - ... --

0) 
J\) 
J\) 

() 
I 
::t> 
"1J 
-l m 
::0 
-J. 

CJl 

::t> 
(J) 

o 
o o z 
(J) 
-l 
::0 
C 
o 
-l 
6 z 

835



15.6 FPGA PARTITIONING 823 

2. Random-variable generation for ATM cell loss, misinsertion, reordering, and 
deletion. 

The delay generator delays, misinserts, and reorders the target ATM cells. 
Finally, the traffic policer performs the following operations: 

3. Performs header screening and remapping. 

4. Checks ATM cell conformance. 

5. Deletes selected ATM cells. 

Table 15.7 shows the partitioning of the ATM board into 12 Lattice Logic 
FPGAs (ispLSI 1048) corresponding to the 12 blocks shown in Figure 15.5. The 
Lattice Logic ispLSI 1048 has 48 GLBs (generic logic blocks) on each chip. This 
system was partitioned by hand-with difficulty. Tools for automatic partitioning of 
systems like this will become increasingly important. In Section 15.6.2 we shall 
briefly look at some examples of such tools, before examining the partitioning meth­
ods that are used in Section 15.7. 

TABLE 15.7 Partitioning of the ATM board using Lattice Logic ispLSI 
1048 FPGAs. Each FPGA contains 48 generic logic blocks (GLBs). 

Chip# Size Chip# Size 

1 42 GLBs 7 36 GLBs 

2 64k-bit x 8 SRAM 8 22 GLBs 

3 38 GLBs 9 256k-bit x 16 SRAM 

4 38 GLBs 10 43 GLBs 

5 42 GLBs 11 40 GLBs 

6 64k-bitx 16SRAM 12 30 GLBs 

15.6.2 Automatic Partitioning with FPGAs 
Some vendors of programmable ASICs provide partitioning software. For example, 
Altera uses its own software system for design. You can perform design entry using 
an HDL, schematic entry, or using the Altera hardware design language (AHDL)­
similar to PALASM or ABEL. In AHDL you can direct the partitioner to automati­
cally partition logic into chips within the same family, using the AUTO keyword: 

DEVICE top_level IS AUTO; % let the partitioner assign logic 

You can use the CLIQUE keyword to keep logic together (this is not quite the 
same as a clique in a graph-more on this in Section 15.7.3): 

CLIQUE fast_logic 

BEGIN 

836



824 CHAPTER 15 ASIC CONSTRUCTION 

I shift_register: MACRO; % keep this in one device 

END; 

An additional option, to reserve space on a device, is very useful for making last 
minute additions or changes. 

15.7 Partitioning Methods 

System partitioning requires goals and objectives, methods and algorithms to find 
solutions, and ways to evaluate these solutions. We start with measuring connectiv­
ity, proceed to an example that illustrates the concepts of system partitioning and 
then to the algorithms for partitioning. 

Assume that we have decided which parts of the system will use ASICs. The 
goal of partitioning is to divide this part of the system so that each partition is a sin­
gle ASIC. To do this we may need to take into account any or all of the following 
objectives: 

• A maximum size for each ASIC 

• A maximum number of ASICs 

• A maximum number of connections for each ASIC 

• A maximum number of total connections between all ASICs 

We know how to measure the first two objectives. Next we shall explain ways to 
measure the last two. 

15.7.1 Measuring Connectivity 
To measure connectivity we need some help from the mathematics of graph theory. 
It turns out that the terms, definitions, and ideas of graph theory are central to ASIC 
construction, and they are often used in manuals and books that describe the knobs 
and dials of ASIC design tools. 

Figure lS.6(a) shows a circuit schematic, netlist, or network. The network con­
sists of circuit modules A-F. Equivalent terms for a circuit module are a cell, logic 
cell, macro, or a block. A cell or logic cell usually refers to a small logic gate 
(NAND etc.), but can also be a collection of other cells; macro refers to gate-array 
cells; a block is usually a collection of gates or cells. We shall use the term logic cell 
in this chapter to cover all of these. 

Each logic cell has electrical connections between the terminals (connectors or 
pins). The network can be represented as the mathematical graph shown in 
Figure lS.6(b). A graph is like a spider's web: it contains vertexes (or vertices) A-F 
(also known as graph nodes or points) that are connected by edges. A graph vertex 
corresponds to a logic cell. An electrical connection (a net or a signal) between two 
logic cells corresponds to a graph edge. 

837



logic 
module 

15.7 PARTITIONING METHODS 825 

A 1 B C 

+- mOdu~:gV1 ~~ 
cell, /D E F l or block / 

--------------------------- vertex, 

network 

(a) 

net cutset = two nets 

(c) 

Only one 

graph 

(b) 

A three-terminal 

node, 
or point 

net requires A C "./' A.sin9le 
three edges. o---l---'---9AA wire IS 

wire is D E 

modeled by 
multiple 
edges in 

needed to 
connect 
several 
modules G 

F the network 
graph. 

on the .-~--~------
same net. 

edgecu~ 

edge cutset = four edges 

(d) 

FIGURE 15.6 Networks, graphs, and partitioning. (a) A network containing circuit logic 
cells and nets. (b) The equivalent graph with vertexes and edges. For example: logic cell D 
maps to node D in the graph; net 1 maps to the edge (A, B) in the graph. Net 3 (with three con­
nections) maps to three edges in the graph: (B, C), (B, F), and (C, F). (c) Partitioning a net­
work and its graph. A network with a net cut that cuts two nets. (d) The network graph showing 
the corresponding edge cut. The net cutset in c contains two nets, but the corresponding 
edge cutset in d contains four edges. This means a graph is not an exact model of a network 
for partitioning purposes. 

Figure lS.6(c) shows a network with nine logic cells A-I. A connection, for 
example between logic cells A and B in Figure lS.6(c), is written as net (A, B). Net 
(A, B) is represented by the single edge (A, B) in the network graph, shown in 
Figure lS.6(d). A net with three terminals, for example net (B, e, F), must be mod­
eled with three edges in the network graph: edges (B, e), (B, F), and (e, F). A net 

838



826 CHAPTER 15 ASIC CONSTRUCTION 

with four terminals requires six edges and so on. Figure 1S.6 illustrates the differ­
ences between the nets of a network and the edges in the network graphs. Notice 
that a net can have more than two terminals, but a terminal has only one net. 

If we divide, or partition, the network shown in Figure 1S.6(c) into two parts, 
corresponding to creating two ASICs, we can divide the network's graph in the same 
way. Figure 1S.6(d) shows a possible division, called a cutset. We say that there is a 
net cutset (for the network) and an edge cutset (for the graph). The connections 
between the two ASICs are external connections, the connections inside each ASIC 
are internal connections. 

Notice that the number of external connections is not modeled correctly by the 
network graph. When we divide the network into two by drawing a line across con­
nections, we make net cuts. The resulting set of net cuts is the net cutset. The num­
ber of net cuts we make corresponds to the number of external connections between 
the two partitions. When we divide the network graph into the same partitions we 
make edge cuts and we create the edge cutset. We have already shown that nets and 
graph edges are not equivalent when a net has more than two terminals. Thus the 
number of edge cuts made when we partition a graph into two is not necessarily 
equal to the number of net cuts in the network. As we shall see presently the differ­
ences between nets and graph edges is important when we consider partitioning a 
network by partitioning its graph [Schweikert and Kernighan, 1979]. 

15.7.2 A Simple Partitioning Example 
Figure 1S.7(a) shows a simple network we need to partition [Goto and Matsud, 
1986]. There are 12 logic cells, labeled A-L, connected by 12 nets (labeled 1-12). 
At this level, each logic cell is a large circuit block and might be RAM, ROM, an 
ALU, and so on. Each net might also be a bus, but, for the moment, we assume that 
each net is a single connection and all nets are weighted equally. The goal is to parti­
tion our simple network into ASICs. Our objectives are the following: 

• Use no more than three ASICs. 

• Each ASIC is to contain no more than four logic cells. 

• Use the minimum number of external connections for each ASIC. 

• Use the minimum total number of external connections. 

Figure 1S.7(b) shows a partitioning with five external connections; two of the ASICs 
have three pins; the third has four pins.We might be able to find this arrangement by 
hand, but for larger systems we need help. 

Splitting a network into several pieces is a network partitioning problem. In 
the following sections we shall examine two types of algorithms to solve this prob­
lem and describe how they are used in system partitioning. Section IS.7.3 describes 
constructive partitioning, which uses a set of rules to find a solution. 
Section 1S.7.4 describes iterative partitioning improvement (or iterative 
partitioning refinement), which takes an existing solution and tries to improve it. 

839



15.7 PARTITIONING METHODS 827 

(a) 

FIGURE 15.7 Partitioning example. 
(a) We wish to partition this network into 
three ASICs with no more than four logic cells 
per ASIC. (b) A partitioning with five external 
connections (nets 2, 4, 5, 6, and 8)-the 
minimum number. (c) A constructed partition 
using logic cell C as a seed. It is difficult to get 
from this local minimum, with seven external 
connections (2, 3, 5, 7, 9,11,12), to the opti­
mum solution of b. 

ASIC 1 

(b) 

~ __________ +-__ ~6 

ASIC 2 

(c) 

Often we apply iterative improvement to a constructive partitioning. We also use 
many of these partitioning algorithms in solving ftoorplanning and placement prob­
lems that we shall discuss in Chapter 16. 

15.7.3 Constructive Partitioning 
The most common constructive partitioning algorithms use seed growth or cluster 
growth. A simple seed-growth algorithm for constructive partitioning consists of the 
following steps: 

1. Start a new partition with a seed logic cell. 

2. Consider all the logic cells that are not yet in a partition. Select each of these 
logic cells in turn. 

3. Calculate a gain function, g(m), that measures the benefit of adding logic cell 
111 to the current partition. One measure of gain is the number of connections 
between logic cell 111 and the current partition. 

4. Add the logic cell with the highest gain g(m) to the current partition. 

ASIC 3 

840



828 CHAPTER 15 ASIC CONSTRUCTION 

5. Repeat the process from step 2. If you reach the limit of logic cells in a parti­
tion, start again at step 1. 

We may choose different gain functions according to our objectives (but we 
have to be careful to distinguish between connections and nets). The algorithm starts 
with the choice of a seed logic cell (seed module, or just seed). The logic cell with 
the most nets is a good choice as the seed logic cell. You can also use a set of seed 
logic cells known as a cluster. Some people also use the term clique-borrowed 
from graph theory. A clique of a graph is a subset of nodes where each pair of nodes 
is connected by an edge-like your group of friends at school where everyone 
knows everyone else in your clique. In some tools you can use schematic pages (at 
the leaf or lowest hierarchical level) as a starting point for partitioning. If you use a 
high-level design language, you can use a Verilog module (different from a circuit 
module) or VHDL entity/architecture as seeds (again at the leaf level). 

15.7.4 Iterative Partitioning Improvement 
The most common iterative improvement algorithms are based on interchange and 
group migration. The process of interchanging (swapping) logic cells in an effort to 
improve the partition is an interchange method. If the swap improves the partition, 
we accept the trial interchange; otherwise we select a new set of logic cells to swap. 

There is a limit to what we can achieve with a partitioning algorithm based on 
simple interchange. For example, Figure 15.7(c) shows a partitioning of the network 
of part a using a constructed partitioning algorithm with logic cell C as the seed. To 
get from the solution shown in part c to the solution of part b, which has a minimum 
number of external connections, requires a complicated swap. The three pairs: D and 
F, J and K, C and L need to be swapped-all at the same time. It would take a very 
long time to consider all possible swaps of this complexity. A simple interchange 
algorithm considers only one change and rejects it immediately if it is not an 
improvement. Algorithms of this type are greedy algorithms in the sense that they 
will accept a move only if it provides immediate benefit. Such shortsightedness 
leads an algorithm to a local minimum from which it cannot escape. Stuck in a val­
ley, a greedy algorithm is not prepared to walk over a hill to see if there is a better 
solution in the next valley. This type of problem occurs repeatedly in CAD algo­
rithms. 

Group migration consists of swapping groups of logic cells between partitions. 
The group migration algorithms are better than simple interchange methods at 
improving a solution but are more complex. Almost all group migration methods are 
based on the powerful and general Kernighan-Lin algorithm (K-L algorithm) 
that partitions a graph [Kernighan and Lin, 1970]. The problem of dividing a graph 
into two pieces, minimizing the nets that are cut, is the min-cut problem-a very 
important one in VLSI design. As the next section shows, the K-L algorithm can be 
applied to many different problems in ASIC design. We shall examine the algorithm 
next and then see how to apply it to system partitioning. 

841



15.7 PARTITIONING METHODS 829 

15.7.5 The Kernighan-lin Algorithm 
Figure 15.8 illustrates some of the terms and definitions needed to describe the K-L 
algorithm. External edges cross between partitions; internal edges are contained 
inside a partition. Consider a network with 2 m nodes (where m is an integer) each of 
equal size. If we assign a cost to each edge of the network graph, we can define a 
cost matrix C = Cij' where Cij = Cji and cn = 0. If all connections are equal in impor­
tance, the elements of the cost matrix are 1 or 0, and in this special case we usually 
call the matrix the connectivity matrix. Costs higher than 1 could represent the 
number of wires in a bus, multiple connections to a single logic cell, or nets that we 
need to keep close for timing reasons. 

internal 
edge 

A B 
external edge 

(a) 

\ connectivity 
t matrix 

0000001iOOO 1 
0000010100 2 
0001100000 3 
0010000100 4 

c= g~6ggggggg ~ 
1000000010 7 
0101000001 8 
0000001001 9 
0000000110 10 
1234567891 

o 
(b) 

FIGURE 15.8 Terms used by the Kernighan-Lin partitioning algorithm. (a) An example 
network graph. (b) The connectivity matrix, C; the column and rows are labeled to help you 
see how the matrix entries correspond to the node numbers in the graph. For example, C 17 
(column 1, row 7) equals 1 because nodes 1 and 7 are connected. In this example all edges 
have an equal weight of 1, but in general the edges may have different weights. 

Suppose we already have split a network into two partitions, A and B, each with 
m nodes (perhaps using a constructed partitioning). Our goal now is to swap nodes 
between A and B with the objective of minimizing the number of external edges con­
necting the two partitions. Each external edge may be weighted by a cost, and our 
objective corresponds to minimizing a cost function that we shall call the total exter­
nal cost, cut cost, or cut weight, W: 

W = I. Cab' 

a E A, b E B 

In Figure 15.8(a) the cut weight is 4 (all the edges have weights of 1). 

(15.13) 

842



830 CHAPTER 15 ASIC CONSTRUCTION 

In order to simplify the measurement of the change in cut weight when we inter­
change nodes, we need some more definitions. First, for any node a in partition A, 
we define an external edge cost, which measures the connections from node a to B, 

E="'c. a £...i ay (15.14) 

yE B 

For example, in Figure IS.8(a) E1 = 1, and E3 = 0. Second, we define the internal 
edge cost to measure the internal connections to a, 

I="'c. a £...i az 
(15.15) 

ZE A 

So, in Figure IS.8(a), h = 0, and 13 = 2. We define the edge costs for partition B in a 
similar way (so E8 = 2, and 18 = 1). The cost difference is the difference between 
external edge costs and internal edge costs, 

D = E -I x x x (15.16) 

Thus, in Figure IS.8(a) D1 = 1, D3 = -2, and D8 = 1. Now pick any node in A, and 
any node in B. If we swap these nodes, a and b, we need to measure the reduction in 
cut weight, which we call the gain, g. We can express g in terms of the edge costs as 
follows: 

g = Da+ D b- 2cab' (15.17) 

The last term accounts for the fact that a and b may be connected. So, in 
Figure IS.8(a), if we swap nodes 1 and 6, then g = D1 + D6 - 2cI6 = 1 + 1. If we swap 
nodes 2 and 8, then g = D2 + D8 - 2c28 = 1 + 2 - 2. 

The K-L algorithm finds a group of node pairs to swap that increases the gain 
even though swapping individual node pairs from that group might decrease the 
gain. First we pretend to swap all of the nodes a pair at a time. Pretend swaps are 
like studying chess games when you make a series of trial moves in your head. 

This is the algorithm: 

1. Find two nodes, ai from A, and bi from B, so that the gain from swapping them 
is a maximum. The gain is 

g. = D + D -2c . 
< I a. b. a.b. 

f 1 1 1 

(15.18) 

2. Next pretend swap ai and b i even if the gain gi is zero or negative, and do not 
consider aj and bi eligible for being swapped again. 

3. Repeat steps 1 and 2 a total of m times until all the nodes of A and B have been 
pretend swapped. We are back where we started, but we have ordered pairs of 
nodes in A and B according to the gain from interchanging those pairs. 

843



15.7 PARTITIONING METHODS 831 

4. Now we can choose which nodes we shall actually swap. Suppose we only 
swap the first n pairs of nodes that we found in the preceding process. In other 
words we swap nodes X = aI, a2, . .. , an from A with nodes Y = b I , b2,···, bn 
from B. The total gain would be 

Il 

Gn = L gi· (15.19) 

i = 1 

5. We now choose 11 corresponding to the maximum value of Gil" 

If the maximum value of Gn > 0, then we swap the sets of nodes X and Y and 
thus reduce the cut weight by Gn. We use this new partitioning to start the process 
again at the first step. If the maximum value of Gil = 0, then we cannot improve the 
current partitioning and we stop. We have found a locally optimum solution. 

Figure 15.9 shows an example of partitioning a graph using the K-L algorithm. 
Each completion of steps 1 through 5 is a pass through the algorithm. Kernighan and 
Lin found that typically 2-4 passes were required to reach a solution. The most 
important feature of the K-L algorithm is that we are prepared to consider moves 
even though they seem to make things worse. This is like unraveling a tangled ball 
of string or solving a Rubik's cube puzzle. Sometimes you need to make things 
worse so they can get better later. The K-L algorithm works well for partitioning 
graphs. However, there are the following problems that we need to address before 
we can apply the algorithm to network partitioning: 

• It minimizes the number of edges cut, not the number of nets cut. 

• It does not allow logic cells to be different sizes. 

• It is expensive in computation time. 

o It does not allow partitions to be unequal or find the optimum partition size. 

• It does not allow for selected logic cells to be fixed in place. 

• The results are random. 

• It does not directly allow for more than two partitions. 

To implement a net-cut partitioning rather than an edge-cut partitioning, we 
can just keep track of the nets rather than the edges [Schweikert and Kernighan, 
1979]. We can no longer use a connectivity or cost matrix to represent connections, 
though. Fortunately, several people have found efficient data structures to handle the 
bookkeeping tasks. One example is the Fiduccia-Mattheyses algorithm to be 
described shortly. 

To represent nets with multiple terminals in a network accurately, we can extend 
the definition of a network graph. Figure 15.10 shows how a hypergraph with a 
special type of vertex, a star, and a hyperedge, represents a net with more than two 
terminals in a network. 

844



832 CHAPTER 15 ASIC CONSTRUCTION 

+2 

+1 

nodes 1 and 6 

edges cut= 4 edges cut=2 

(a) 

Gain from swapping i th pair of nodes, gi 

after swapping nodes 1 and 6, 
gain, g1 =4-2=2 

--~~O~----.-----~-----.----~~----, 
original 
configuration-1 

-2 

+2 

+1 

(b) 

i, number of pairs of 
nodes pretend swapped 

Total gain from swapping the first n pairs of nodes, Gn 

max {Gn } 

O~----,------,-----,-----,,---~ 

-1 1 2 

(c) 

3 4 5 n, number of pairs of 
nodes actually swapped 

FIGURE 15.9 Partitioning a graph using the Kernighan-Lin algorithm. (a) Shows how 
swapping node 1 of partition A with node 6 of partition B results in a gain of g = 1. (b) A graph 
of the gain resulting from swapping pairs of nodes. (c) The total gain is equal to the sum of the 
gains obtained at each step. 

845



(a) 

15.7 PARTITIONING METHODS 833 

One wire corresponds 
to one hyperedge in a 
hypergraph. 

A 8 
w 

x 

(b) 

hyperedge 
-Ar_- star 

FIGURE 15.10 A hypergraph. (a) The network contains a net y with three terminals. (b) In 
the network hypergraph we can model net y by a single hyperedge (8, C, D) and a star node. 
Now there is a direct correspondence between wires or nets in the network and hyperedges 
in the graph. 

In the K-L algorithm, the internal and external edge costs have to be calculated 
for all the nodes before we can select the nodes to be swapped. Then we have to find 
the pair of nodes that give the largest gain when swapped. This requires an amount 
of computer time that grows as n2log n for a graph with 2n nodes. This n2 depen­
dency is a major problem for partitioning large networks. The Fiduccia-Mattheyses 
algorithm (the F-M algorithm) is an extension to the K-L algorithm that addresses 
the differences between nets and edges and also reduces the computational effort 
[Fiduccia and Mattheyses, 1982]. The key features of this algorithm are the follow­
mg: 

• Only one logic cell, the base logic cell, moves at a time. In order to stop the 
algorithm from moving all the logic cells to one large partition, the base 
logic cell is chosen to maintain balance between partitions. The balance is 
the ratio of total logic cell size in one partition to the total logic cell size in 
the other. Altering the balance allows us to vary the sizes of the partitions. 

• Critical nets are used to simplify the gain calculations. A net is a critical net 
if it has an attached logic cell that, when swapped, changes the number of 
nets cut. It is only necessary to recalculate the gains of logic cells on critical 
nets that are attached to the base logic cell. 

o The logic cells that are free to move are stored in a doubly linked list. The lists 
are sorted according to gain. This allows the logic cells with maximum gain to 
be found quickly. 

These techniques reduce the computation time so that it increases only slightly 
more than linearly with the number of logic cells in the network, a very important 
improvement [Fiduccia and Mattheyses, 1982]. 

846



834 CHAPTER 15 ASIC CONSTRUCTION 

Kernighan and Lin suggested simulating logic cells of different sizes by clump­
ing s logic cells together with highly weighted nets to simulate a logic cell of size s. 
The F-M algorithm takes logic-cell size into account as it selects a logic cell to 
swap based on maintaining the balance between the total logic-cell size of each of 
the partitions. To generate unequal partitions using the K-L algorithm, we can intro­
duce dummy logic cells with no connections into one of the partitions. The F-M 
algorithm adjusts the partition size according to the balance parameter. 

Often we need to fix logic cells in place during partitioning. This may be 
because we need to keep logic cells together or apart for reasons other than connec­
tivity, perhaps due to timing, power, or noise constraints. Another reason to fix logic 
cells would be to improve a partitioning that you have already partially completed. 
The F-M algorithm allows you to fix logic cells by removing them from consider­
ation as the base logic cells you move. Methods based on the K-L algorithm find 
locally optimum solutions in a random fashion. There are two reasons for this. The 
first reason is the random starting partition. The second reason is that the choice of 
nodes to swap is based on the gain. The choice between moves that have equal gain 
is arbitrary. Extensions to the K-L algorithm address both of these problems. Find­
ing nodes that are naturally grouped or clustered and assigning them to one of the 
initial partitions improves the results of the K-L algorithm. Although these are con­
structive partitioning methods, they are covered here because they are closely linked 
with the K-L iterative improvement algorithm. 

15.7.6 The Ratio-Cut Algorithm 
The ratio-cut algorithm removes the restriction of constant partition sizes. The cut 
weight W for a cut that divides a network into two partitions, A and B, is given by 

W I. cab' 
a E A, b E B 

(15.20) 

The K-L algorithm minimizes W while keeping partitions A and B the same 
size. The ratio of a cut is defined as 

W 
R = IAIIBI' (15.21) 

In this equation IAI and IBI are the sizes of partitions A and B. The size of a partition 
is equal to the number of nodes it contains (also known as the set cardinality). The 
cut that minimizes R is called the ratio cut. The original description of the ratio-cut 
algorithm uses ratio cuts to partition a network into small, highly connected groups. 
Then you form a reduced network from these groups-each small group of logic 
cells forms a node in the reduced network. Finally, you use the F-M algorithm to 
improve the reduced network [Cheng and Wei, 1991]. . 

847



15.7 PARTITIONING METHODS 835 

15.7.7 The Look-ahead Algorithm 
Both the K-L and F-M algorithms consider only the immediate gain to be made by 
moving a node. When there is a tie between nodes with equal gain (as often hap­
pens), there is no mechanism to make the best choice. This is like playing chess 
looking only one move ahead. Figure 15.11 shows an example of two nodes that 
have equal gains, but moving one of the nodes will allow a move that has a higher 
gain later. 

gain = +1 
A 

A B 
(a) 

gain = +1 A 

A B 
(b) (e) 

A 

1 e-===---j---t--. 1 

A B 
(c) (f) 

B 

B 

B 

6 
7 

4~ 10 9 

5 

FIGURE 15.11 An example of network partitioning that shows the need to look ahead 
when selecting logic cells to be moved between partitions. Partitionings (a), (b), and (c) show 
one sequence of moves, partitionings (d), (e), and (f) show a second sequence. The partition­
ing in (a) can be improved by moving node 2 from A to B with a gain of 1. The result of this 
move is shown in (b). This partitioning can be improved by moving node 3 to B, again with a 
gain of 1. The partitioning shown in (d) is the same as (a). We can move node 5 to B with a 
gain of 1 as shown in (e), but now we can move node 4 to B with a gain of 2. 

848



836 CHAPTER 15 ASIC CONSTRUCTION 

We call the gain for the initial move the first-level gain. Gains from subsequent 
moves are then second-level and higher gains. We can define a gain vector that con­
tains these gains. Figure 15.11 shows how the first-level and second-level gains are 
calculated. Using the gain vector allows us to use a look-ahead algorithm in the 
choice of nodes to be swapped. This reduces both the mean and variation in the 
number of cuts in the resulting partitions. 

We have described algorithms that are efficient at dividing a network into two 
pieces. Normally we wish to divide a system into more than two pieces. We can do 
this by recursively applying the algorithms. For example, if we wish to divide a sys­
tem network into three pieces, we could apply the F-M algorithm first, using a bal­
ance of 2: 1, to generate two partitions, with one twice as large as the other. Then we 
apply the algorithm again to the larger of the two partitions, with a balance of l: l, 
which will give us three partitions of roughly the same size. 

15.7.8 Simulated Annealing 
A different approach to solving large graph problems (and other types of problems) 
that arise in VLSI layout, including system partitioning, uses the simulated­
annealing algorithm [Kirkpatrick et aI., 1983]. Simulated annealing takes an exist­
ing solution and then makes successive changes in a series of random moves. Each 
move is accepted or rejected based on an energy function, calculated for each new 
trial configuration. The minimums of the energy function correspond to possible 
solutions. The best solution is the global minimum. 

So far the description of simulated annealing is similar to the interchange algo­
rithms, but there is an important difference. In an interchange strategy we accept the 
new trial configuration only if the energy function decreases, which means the new 
configuration is an improvement. However, in the simulated-annealing algorithm, 
we accept the new configuration even if the energy function increases for the new 
configuration-which means things are getting worse. The probability of accepting a 
worse configuration is controlled by the exponential expression exp( -M / T), where 
M is the resulting increase in the energy function. The parameter T is a variable that 
we control and corresponds to the temperature in the annealing of a metal cooling 
(this is why the process is called simulated annealing). 

We accept moves that seemingly take us away from a desirable solution to allow 
the system to escape from a local minimum and find other, better, solutions. The 
name for this strategy is hill climbing. As the temperature is slowly decreased, we 
decrease the probability of making moves that increase the energy function. Finally, 
as the temperature approaches zero, we refuse to make any moves that increase the 
energy of the system and the system falls and comes to rest at the nearest local mini­
mum. Hopefully, the solution that corresponds to the minimum we have found is a 
good one. 

849



15.7 PARTITIONING METHODS 837 

The critical parameter governing the behavior of the simulated-annealing algo­
rithm is the rate at which the temperature T is reduced. This rate is known as the 
cooling schedule. Often we set a parameter a that relates the temperatures, Ti and 
Ti+ 1, at the ith and i + lth iteration: 

(15.22) 

To find a good solution, a local minimum close to the global minimum, requires 
a high initial temperature and a slow cooling schedule. This results in many trial 
moves and very long computer run times [Rose, Klebsch, and Wolf, 1990]. If we are 
prepared to wait a long time (forever in the worst case), simulated annealing is use­
ful because we can guarantee that we can find the optimum solution. Simulated 
annealing is useful in several of the ASIC construction steps and we shall return to it 
in Section 16.2.7. 

15.7.9 Other Partitioning Objectives 
In partitioning a real system we need to weight each logic cell according to its area 
in order to control the total areas of each ASIC. This can be done if the area of each 
logic cell can either be calculated or estimated. This is usually done as part of ftoor­
planning, so we may need to return to partitioning after ftoorplanning. 

There will be many objectives or constraints that we need to take into account 
during partitioning. For example, certain logic cells in a system may need to be 
located on the same ASIC in order to avoid adding the delay of any external inter­
connections. These timing constraints can be implemented by adding weights to 
nets to make them more important than others. Some logic cells may consume more 
power than others and you may need to add power constraints to avoid exceeding 
the power-handling capability of a single ASIC. It is difficult, though, to assign more 
than rough estimates of power consumption for each logic cell at the system plan­
ning stage, before any simulation has been completed. Certain logic cells may only 
be available in a certain technology-if you want to include memory on an ASIC, 
for example. In this case, technology constraints will keep together logic cells 
requiring similar technologies. We probably want to impose cost constraints to 
implement certain logic cells in the lowest cost technology available or to keep 
ASICs below a certain size in order to use a low-cost package. The type of test strat­
egy you adopt will also affect the partitioning of logic. Large RAM blocks may 
require BIST circuitry; large amounts of sequential logic may require scan testing, 
possibly with a boundary-scan interface. One of the objects of testability is to main­
tain controllability and observability of logic inside each ASIC. In order to do this, 
test constraints may require that we force certain connections to be external. No 
automated partitioning tools can take into account all of these constraints. The best 
CAD tool to help you with these decisions is a spreadsheet. 

850



838 CHAPTER 15 ASIC CONSTRUCTION 

15.8 Summary 

The construction or physical design of ASICs in a microelectronics system is a very 
large and complex problem. To solve the problem we divide it into several steps: 
system partitioning, floorplanning, placement, and routing. To solve each of these 
smaller problems we need goals and objectives, measurement metrics, as well as 
algorithms and methods. 

System partitioning is the first step in ASIC assembly. An example of the 
SPARCstation 1 illustrated the various issues involved in partitioning. Presently 
commercial CAD tools are able to automatically partition systems and chips only at 
a low level, at the level of a network or netlist. Partitioning for FPGAs is currently 
the most advanced. Next we discussed the methods to use for system partitioning. 
We saw how to represent networks as graphs, containing nets and edges, and how 
the mathematics of graph theory is useful in system partitioning and the other steps 
of ASIC assembly. We covered methods and algorithms for partitioning and 
explained that most are based on the Kernighan-Lin min-cut algorithm. 

The important points in this chapter are 

• The goals and objectives of partitioning 

• Partitioning as an art not a science 

• The simple nature of the algorithms necessary for VLSI-sized problems 

• The random nature of the algorithms we use 

• The controls for the algorithms used in ASIC design 

15.9 Problems 

*=Difficult, **= Very difficult, ***=Extremely difficult 

15.1 (Complexity, 10 min.) Suppose the workstations we use to design ASICs 
increase in power (measured in MIPS-a million instructions per second) by a fac­
tor of 2 every year. If we want to keep the length of time to solve an ASIC design 
problem fixed, calculate how much larger chips can get each year if constrained by 
an algorithm with the following complexities: 

a.O(k). 

b.O(n). 

c. O(log n). 

d. O(n log n). 

e.0(n2 ). 

851



15.9 PROBLEMS 839 

15.2 (Complexity, 10 min.) In a film the main character looks 12 moves ahead 
to win a chess championship. 

a. Estimate (stating your assumptions) the number of possible chess moves 
looking 12 moves ahead. 

b. How long would it take to evaluate all these moves on a modern workstation? 

15.3 (Chips and towns, 20 min.) This problem is adapted from an analogy cred­
ited to Chuck Seitz. Complete the entries in Table 15.8, which shows the progres­
sion of integrated circuit complexity using the analogy of town and city planning. If 
A is half the minimum feature size, assume that a transistor is a square 2 A on a side 
and is equivalent to a city block (which we estimate at 200 m on a side). 

TABLE 15.8 Complexity of ASICs (Problems 15.3 and 15.4). 

Year AJllm Chip size Transistor Transistors = city blocks City size 
(mmona size (km on a side, 

side) (Ilm on a 1 block = 200m) 
side) 

1970 50 5 200 25 x 25 = 625 5 

1980 5 10 20 500 x 500 = 25x 103 

1990 0.5 20 1 1,000 x 1,000 = 1 xi 06 

2000 0.05 40 0.2 20,000 x 20,000 = 400x 106 

15.4 (Polygons, 10 min.) Estimate (stating and explaining all your assumptions) 
how many polygons there are on the layouts for each of the chips in Table 15.8. 

15.5 (Algorithm complexity, 10 min.) I think of a number between 1 and 100. 
You guess the number and I shall tell you whether you are high or low. We then 
repeat the process. If you were to write a computer program to play this game, what 
would be the complexity of your algorithm? 

15.6 (Algorithms, 60 min.) For each of these problems write or find (stating 
your source) an algorithm to solve the problem: 

a. An algorithm to sort 11 numbers. 

b. An algorithm to discover whether a number n is prime. 

c. An algorithm to generate a random number between 1 and 11. 

List the algorithm using a sequence of steps, pseudocode, or a flow chart. What 
is the complexity of each algorithm? 

15.7 (Measurement, 30 min.) The traveling-salesman problem is a well-known 
example of an NP-complete problem (you have a list of cities and their locations and 
you have to find the shortest route between them, visiting each only once). Propose a. 

Example 

Palo Alto 

852



840 CHAPTER 15 ASIC CONSTRUCTION 

simple measure to estimate the length of the solution. If I had to visit the 50 capitals 
of the United States, what is your estimate of my frequent-flyer mileage? 

15.8 (Construction, 30 min.) Try and make a quantitative comparison (stating 
and explaining all your assumptions) of the difficulty and complexity of construction 
(for example, how many components in each?) for each of the following: a Boeing 
747 jumbo jet, the space shuttle, and an Intel Pentium microprocessor. Which, in 
your estimation, is the most complex and why? Smailagic [1995] proposes measures 
of design and construction complexity in a description of the wearable computer 
project at Carnegie-Mellon University. 

15.9 (Productivity, 20 min.). If I have six months to design an ASIC: 

a. What is the productivity (in transistors/day) required for each of the chips in 
Table 15.8? 

b. What does this translate to in terms of a productivity increase (measured in 
percent increase in productivity per month)? 

c. Moore's Law says that chip sizes double every 18 months. What does this 
correspond to in terms of a percentage increase per month? 

d. Comment on your answers. 

15.10 (Graphs and edges, 30 min.) We know a net with two connections requires a 
single edge in the network graph, a net with three connections requires three edges, 
and a net with four connections requires six edges. 

a. Can you guess a formula for the number of edges in the network graph corre­
sponding to a net with n connections? 

b. Can you prove the formula you guessed in part a? Hint: How many edges are 
there from one node to n - 1 other nodes? 

c. Large nets cause problems for partitioning algorithms based on a connectivity 
matrix (edges rather than wires). Suppose we have a 50-net connection that is 
no more critical for timing than any other net. Suggest a way to fool the par­
titioning algorithm so this net does not drag all its logic cells into one parti­
tion. 

Most CAD programs treat large nets (like the clock, reset, or power nets) sepa­
rately, but the nets are required to have special names and you only can have a limited 
number of them. The average net in an ASIC has between two and four connections 
and as a rule of thumb 80 percent of nets have a fanout of 4 or less (a fanout of 4 
means a gate drives four others, making a total of five connections on the net). 

15.11 (PC partitioning, 60 min.) Open an IBM-compatible PC, Apple Macin­
tosh, or PowerPC that has a motherboard that you can see easily. Make a list of the 
chips (manufacturer and type), their packages, and pin counts. Make intelligent 
guesses as to the function of most of the chips. Obviously manufacturer's logos and 
chip identification markings help-perhaps they are in a data book. Identify the 
types of packages (pin-grid array, quad flat pack). Look for nearby components that 
may give a hint-crystals for clock generators or the video subsystem. Where are 

853



15.9 PROBLEMS 841 

the chips located on the board-are they near the connectors for the floppy disk sub­
system, the modem or serial port, or video output? To help you, Table IS.9 shows an 
example-a list of the first row of chips on an old H-P Vectra ES/12 motherboard. 
Use the same format for your list. 

TABLE 15.9 A list of the chips on the first row of an HP Vectra PC (Problem 15.11). 

Manufacturer Chip Package Function Comment 

HP 87411AAE 24-pin DIP 

Intel L7220048 40-pin DIP EPROM (9/3/87) Boot commands 

Chips 7014-0093 80-pin quad flat pack Custom ASIC 

Intel 80286-12 68-pin package Microprocessor CPU 

TI ASOO 14-pin DIP Quad 2-input NAND gate Addressing 

S74F08D 14-pin DIP Quad 2-input AND gate Addressing 

F74F51 14-pin DIP AOI gate Addressing 

15.12 (Estimates, 60 min.) System partitioning is not exact science. Estimate: 

a. The power developed by a grasshopper, in watts (from a Cambridge Univer-
sity entrance exam). 

b. The number of doors in New York City. 

c. The number of grains of sand on Hawaii's beaches. 

d. The total length of the roads in the continental United States in kilometers. 

In each case: (i) Provide an equation that depends on parameters and symbols that 
you define. (ii) List the parameters in your equation, and the values that you assume 
with their uncertainty. (iii) Give the answer as a number (with units where neces­
sary). (iv) Include a numerical estimate of the uncertainty in your answer. 

15.13 (Pad-limited and core-limited die, 10 min.) As the number of I/O pads 
increases, an ASIC can become pad-limited. The spacing between I/O pads is deter­
mined by mechanical limitations of the equipment used for bonding-usually 
2-S mil (a mil is a thousandth of an inch). In a pad-limited design the number of 
pads around the outer edge of the die determines the die size, not the number of 
gates (see Figure IS.l2). For the pad-limited design, shown in Figure IS.12(a), the 
price per I/O pad is more important than the price per gate. When we have a lot of 
logic but few I/O pads, we have a core-limited design-the opposite of a pad-lim­
ited ASIC-as shown in Figure IS.l2(b). For a given number ofI/O pads and a pad­
limited design, all the different ASIC types will have the same die size, determined 
by a graph such as the one shown in Figure lS.12(c). IfI/O pad spacing is S mil and 
gate density is 1.0 gate/mill, when does an ASIC becomes pad-limited? Express 
your answer as a function of the number of gates, G, and the number of I/Os, I. 

854



844 CHAPTER 15 ASIC CONSTRUCTION 

15.18 (Connectivity matrix, 10 min.) Find the connectivity matrix for the ATM 
Connection Simulator shown in Figure IS.5. Use the following scheme to number 
the blocks and ordering of the matrix rows and columns: 1 = Personal Computer, 
2= Intel 80186, 3 = UTOPIA receiver, 4 = UTOPIA transmitter, S = Header remapper 
and screener, 6 = Remapper SRAM, ... IS = Random-number and bit error rate gen­
erator, 16 = Random-variable generator. All buses are labeled with their width except 
for two single connections (the arrows). 

15.19 (K-L algorithm, IS min.) 

a. Draw the network graph for the following connectivity matrix: 

o 0 0 0 0 0 1 000 
00000 1 0 1 0 0 
000 1 000 1 0 0 
o 0 1 0 1 000 1 0 

C 0001000000 (1S.26) = o 1 0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 1 0 
o 1 1 0 0 0 0 0 1 0 
000 1 001 101 
o 0 0 0 0 0 0 0 1 0 

b. Draw the partitioned network graph for C with nodes l-S in partition A and 
nodes 6-10 in partition B. What is the cut weight? 

c. Improve the initial partitioning using the K-L algorithm. Show the gains at 
each stage. What problems did you find in following the algorithm and how 
do you resolve them? 

15.20 (The gain graph in the K-L algorithm, 20 min.). Continue with the K-L 
algorithm for the network that we started to partition in Figure lS.9(a). 

a. Show that choices of logic cells to swap and the gains correspond to . the 
graph of Figure lS.9(b). 

b. Notice that Gs = O. In fact Gm (where there are 2 m nodes to be partitioned) 
will always be zero. Can you explain why? 

15.21 (Look-ahead gain in the K-L algorithm, 20 min.) In the K-L algorithm 
we have to compute the gain each time we consider swapping one pair of nodes: 

(1S.27) 

If we swap two pairs of nodes (al and b l followed by a2 and b2), show that the 
gam IS 

(1S.28) 

855



15.9 PROBLEMS 845 

15.22 (FPGA partitioning, 30 min.) Table 15.10 shows some data on FPGAs 
from company Z. 

TABLE 15.10 FPGAs from company Z (Problem 15.22). 

Die area/cm2 
Average gate 

FPGAsize count Package pins Cost 

S 0.26 1500 68 $26 

M 0.36 2300 44 $35 

L 0.46 2800 84 $50 

XL 0.64 4700 84 $90 

XXL 0.84 6200 84 $130 

3. Notice that the FPGAs come in differc:nt package sizes. To eliminate the 
effect of package price, multiply the price for the S chip by 106 percent, and 
the M chip by 113 percent. Now all prices are normalized for an 84-pin plas­
tic package. All the chips are the same speed grade; if they were not, we 
could normalize for this too (a little harder to justify though). 

b. Plot the normalized chip prices vs.gate count. What is the cost per gate? 

c. The part cost ought to be related to the yield, which is directly related to die 
area. If the cost of a 6-inch-diameter wafer is fixed (approximately $1000), 
calculate the cost per die, assuming a yield Y (in percent), as a function of the 
die area, A (in cm2). Assume you completely fill the wafer and you can have 
fractional die (i.e., do not worry about packing square die into a circular 
wafer). 

d. There are many models for the yield of a process, Y. Two common models are 

Y = exp (-JAD) (15.29) 

and 

Y = (1 -eX~~-AD) y (15.30) 

Parameter A is the die area in cm 2 and D is the spot defect density in 
defects/cm2 and is usually around 1.0 defects/cm2 for a good submicron CMOS pro­
cess (above 5.0 defects/cm2 is unusual). The most important thing is the yield; any­
thing below about 50 percent good die per wafer is usually bad news for an ASIC 
foundry. Does the FPGA cost data fit either model? 

e. Now disregard the current pricing strategy of company Z. If you had to bet 
that physics would determine the true price of the chip, how much worse or . 

856



846 CHAPTER 15 ASIC CONSTRUCTION 

better off are you using two small FPGAs rather than one larger FPGA 
(assume the larger die is exactly twice the area of the smaller one) under 
these two yield models? 

f. What assumptions are inherent in the calculation you made in part e? How 
much do you think they might affect your answer, and what else would affect 
your judgment? 

g. Give some reasons why you might select two smaller FPGAs rather than a 
larger FPGA, even if the larger FPGA is a cheaper solution. 

h. Give some reasons why you would select a larger FPGA rather than two 
smaller FPGAs, even if the smaller FPGAs were a cheaper solution. 

15.23 (Constructive partitioning, 30 min.) We shall use the simple network 
with 12 blocks shown in Figure 15.7 to experiment with constructive partitioning. 
This example is topologically equivalent to that used in [Goto and Matsud, 1986]. 

a. We shall use a gain function, g(m), calculated as follows: Sum the number of 
the nets (not connections) from the selected logic cell, m, that connect to the 
current partition-call this P(m). Now calculate the number of nets that con­
nect logic cell m to logic cells which are not yet in partitions-call this N(m). 
Then g(m) = P(m) -N(m) is the gain of adding the logic cell m to the parti­
tion currently being filled. 

b. Partition the network using the seed growth algorithm with logic cell C as the 
seed. Show how this choice of seed can lead to the partitioning shown in 
Figure IS.7(c). Use a table like Table 15.11 as a bookkeeping aid (a spread­
sheet will help too). Each row corresponds to a pass through the algorithm. 
Fill in the measures, P(m) -N(m), equal to the gain, g(m). Once a logic cell is 
assigned to a partition, fill in the name of the partition (X, Y, or Z) in that 
column. The first row shows you how logic cell L is selected; proceed from 
there. What problems do you encounter while completing the algorithm, and 
how do you resolve them? 

c. Now partition using logic cell F as the seed instead-the logic cell with the 
highest number of nets. When you have a tie between logic cells with the 
same gain, or you are starting a new partition, pick the logic cell with the 
largest P(m). Use a copy of Table 15.12 as a bookkeeping aid. How does 
your partition compare with those we have already made (summarized in 
Table IS.13)? 

d. Comment on your results. 

Table 15.14 will help in constructing the gain function at each step of the algo­
rithm. 

15.24 (Simulated annealing, 15 min.) If you have a fixed amount of time to 
solve a partitioning problem, comment on the following alternatives and choose one: 

i. Run a single simulated annealing cycle using a slow cooling schedule. 

857



15.9 PROBLEMS 847 

TABLE 15.11 Bookkeeping table for Problem 15.23 (b). 

Pass Gain A B C 0 E F G H 

1 P-N 0-2 1-2 X 0-2 1-4 0-5 0-2 0-2 
=g = -2 = -1 = -2 = -3 = -5 = -2 = -2 

2 X 

TABLE 15.12 Bookkeeping table for Problem 15.23 (c). 

Pass Gain A B C 0 E F G H 

1 P-N 1-2 0-2 1-1 1-1 1-3 X 0-2 1-2 
=g =-1 =-2 =0 =0 =-2 =-2 =-1 

2 X 

TABLE 15.13 Different partitions for the network shown in Figure 15.7 
(Problem 15.23 c). 

0-3 
= -3 

2-2 
=0 

X 

Connections 

Partitioning 

Figure 15.7(b) 

Figure 15.7(c) 

Total external 
connections 

5 
(2, 4, 5, 6, 8) 

Partition contents to each 
X, Y, Z partition 

X=(A, B, C, L) 3 
Y=(O, F, H, I) 3 
Z=(E, G, J, K) 4 

7 X=(A, B, F, D) 5 
5 
4 

(2,3,5,7,9,11,12) Y=(H, I, J, K) 
Z=(C, E, G, L) 

ii. Run several (faster) min-cut based partitionings, using different seeds, 
and pick the best one. 
iii. Run several simulated annealing cycles using a faster cooling schedule, 
and pick the best result. 

15.25 (Net weights, 15 min.) Figure 15.13 shows a small part of a system and 
will help illustrate some potential problems when you weight nets for partitioning. 
Nets sl-s3 are critical, nets cl-c4 are not. Assume that all nets are weighted by a 
cost of one unless the special net weight symbol is attached. 

a. Explain the problem with the net weights as shown in Figure 15.13(a). 

b. Figure 15.13(b) shows a different way to assign weights. What problems 
might this cause in the rest of the system? 

J K L 

0-3 0-2 0-1 
= -3 = -2 = -1 

X X 

J K L 

0-3 0-2 0-1 
=-3 =-2 =-1 

858



848 CHAPTER 15 ASIC CONSTRUCTION 

TABLE 15.14 An aid to calculating the gains for Problem 15.23. 

Logic cell 

A 

B 

C 

0 

E 

F 

G 

H 

I 

J 

K 

L 

Number of Number of 
Connects to: nets connections 

8, F 2 2 

A, (C, E) 2 3 

(8, E) 1 2 

F, H 2 2 

(8, C), F, (G, L), J 4 6 

A, D, E, (H, 11), 12 5 6 

(E, L), (J, K) 2 4 

D, (F, I) 2 3 

F1, (F2, H), (J, K) 3 5 

E, (G, K1), (I, K2) 3 5 

(G, J1), (I, J2) 2 4 

(E, G) 1 2 

c. Figure 15 .13( c) shows another possible solution. Discuss the advantages of 
this approach. 

d. Can you think of another way to solve the problem? 

This situation represents a very real problem with using net weights and tools 
that use min-cut algorithms. As soon as you get one critical net right, the tool makes 
several other nets too long and they become critical. The problem is worse during 
system partitioning when the blocks are big and there are many different nets with 
differing importance attached to each block-but it can happen during floorplanning 
and placement also. 

15.26 (Cost, 60 min.) You have three chip sizes available for your part of 
project "DreamOn" (a new video game): S, M, and L. The L chip has twice the logic 
of the M chip. The M chip has twice the logic of the S chip. The L chip costs $16, 
which is 4 times as much as the M chip and 16 times as much as the S chip. There 
are two speed grades available: fast (F) and turbocharged (T). The T chip costs twice 
as much as the F version. Using a partitioning program, you find you need the equiv­
alent of 1.8 of the L chips, but only a third of your logic needs a T chip. 

a. What is the cheapest way to build "DreamOn"? 

b. During prototyping you find you can use 90 percent of the Sand M type 
chips, but for reliable routing you can only count on a maximum utilization 
of 85 percent for the L chip. You also find that, to maximize performance, 
you need to keep all of the logic that requires the turbo speed on one chip. 

859



15.9 PROBLEMS 849 

c1 
c2 

c3 

I f4 I I 
I A l I B I I I 

s2 s3 s2 s3 
2 fO) fo1 s 

s3 f01f01 
I C I 

(a) (b) (c) 

FIGURE 15.13 (For Problem 15.25.) An example of a problem in weighting nets. The sym­
bols attached to the nets apply a weight or cost to that net during partitioning. Nets c1-c4 are 
control lines-they are not critical for timing purposes. Nets s1-s3 are signal lines that are 
critical-they must be kept short. The figure shows three different ways to handle this using 
net weights. 

Our ASIC vendor, Xactera, promises us that the chip prices will fall by the 
time we go into production in one year. The estimates are that the prices will 
be almost proportional to chip size: The L chip will cost 2.2 times the M chip 
and 4.4 times whatever is the cost of the S chip by then (but Xactera will not 
commit to a future price for the S chip, only the present price). You predict 
the price of the S chip will fall 20 percent in one year (this is about average 
for the annual rate of price decrease for semiconductors). Xactera says the 
turbocharged speed grade will stay about twice the cost of the fast grade. 
How does this information affect your decision? 

c. Some time later, as you are ready to go on vacation, the production depart­
ment tells you that the board cost is about the same as the chip cost! The 
board area does not make much difference to the price, but there is an extra 
charge per package pin to reflow solder the surface-mount chips. We only 
need each chip to have the minimum size package-a 44-pin quad plastic 
package. Production has two price quotes: Boards-R-Us charges $5 per board 
plus $0.01 per pin, and PCB Inc. quotes at $0.05 per pin. What should we 
do? The CEO needs a recommendation today. 

d. You come back from holiday and find out from your e-mail that we went with 
your recommendation on the board vendor but now we have other problems. 
The test company is charging per chip pin on the board since we are using an 

860



850 CHAPTER 15 ASIC CONSTRUCTION 

old style bed-of-nails tester. The cost is about $0.01 per chip pin. You can go 
back and add a test interface to all the chips, which is the equivalent of add­
ing lO percent of a small chip (type S) on each chip (S, M, or L). This would 
eliminate the bed-of-nails test, and reduce board test cost to $1 per board. 
Xactera also just lowered their prices: L chips are now $4, M chips are $2, 
and S chips are $0.95. There is also a new Xactera XL chip that has twice the 
capacity of the L chips and costs $8 (but you do not know what utilization to 
expect). These prices are for the fast speed grades, the turbo versions are now 
2.5 times more expensive. 

e. There are some serious consequences to making any design changes now 
(including schedule slips). We have an emergency meeting with production, 
finance, marketing, and the CEO this afternoon in the boardroom. I have to 
prepare a presentation outlining our past decisions and the advantages and 
disadvantages of each of our options (with quantitative estimates of their 
effect). Can you prepare four foils for me, and a one-page spreadsheet that 
will allow us to make some rapid "what-if' decisions in the meeting? Print 
the foils and the one-page spreadsheet. 

f. A year later we are in full production and all is well. We are reviewing your 
performance on project "DreamOn." What did you learn from this project 
and how would you do things differently next time? (You only have room for 
100 words on your review form.) 

15.1 0 Bibliography 

Many of the references in the bibliography in Chapter 1 are also sources for infor­
mation on the physical design of ASICs. The European Conference on Design Auto­
mation is known as EuroDAC (TK7867.E93, ISBN and cataloging varies with year). 
Another European conference, EuroASIC, was absorbed by EuroDAC 
(TK7874.6.E88, ISSN 1066-1409 and ISSN 1064-5322, cataloging varies). 

Preas and Lorenzetti's book [1988] contains an overview chapter on partitioning 
and placement. To dig a little deeper see the review article by Goto and Matsud 
[1986]. If you want to explore further the detailed workings of partitioning algo­
rithms, Sherwani's book [1993] catalogs physical design algorithms, including those 
for partitioning. To learn more about simulated annealing see Sechen's book [1988]. 
Partitioning is an important part of high-level synthesis, and the book by Gajski et 
al. [1992] contains a chapter on partitioning for allocation and scheduling as well as 
system partitioning-including a description of clustering methods, which are not 
well covered elsewhere. This book describes SpecSyn, a tool that allows you to enter 
a design using a behavioral description with a graphical tool. SpecSyn can then par­
tition the design given area, timing, and cost specifications. System partitioning at 
the behavioral level (architectural partitioning) is an area of current research (see 
[Lagnese and Thomas, 1991] for a description of the APARTY system). This means 

861



15.11 REFERENCES 851 

we partition a design based on a hardware design language rather than a schematic 
or other physical description. Papers published in the Proceedings of the Design 
Automation Conference (DAC) and articles in the IEEE Transactions on Computer­
Aided Design of Integrated Circuits and Systems form a point at which to start 
working back through the recent research literature on system partitioning, an exam­
ple is [Kucukcakar and Parker, 1991]. 

The Proceedings of the 32nd Design Automation Conference (1995) describe a 
special session on the design of the Sun Microsystems UltraSPARC-! (albeit from 
more of a systems perspective), which forms an interesting comparison to the 
SPARCstation 1 and SPARCstation 10 designs. 

15.11 References 

Page numbers in brackets after the reference indicate the location in the chapter body. 

Cheng, C.-K., and Y.-c. A. Wei. 1991. "An improved two-way partitioning algorithm with sta­
ble performance." IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, Vol. 10, no. 12, pp. 1502-1511. Describes the ratio-cut algorithm. [po 834] 

Fiduccia, C. M., and R. M. Mattheyses. 1982. "A linear-time heuristic for improving network 
partitions." In Proceedings of the 19th Design Automation Conference, pp. 175-18l. 
Describes modification to Kernighan-Lin algorithm to reduce computation time. [po 833] 

Gajski, D. D., N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin. 1992. High-Level Synthesis: 
Introduction to Chip and System Design. Norwell, MA: Kluwer. ISBN 0-7923-9194-2. 
TK7874.H52422. Chapter 6, Partitioning, is an introduction to system-level partitioning 
algorithms. It also includes a description of the system partitioning features of SpecSyn, a 
research tool developed at UC-Irvine. [po 850] 

Goto, S., and T. Matsud. 1986. "Partitioning, assignment and placement." In Layout Design and 
Verification. Vol. 4 of Advances in CAD for VLSI (T. Ohtsuki, Ed.) pp. 55-97, New York: 
Elsevier. [po 826] 

Kernighan, B. w., and S. Lin. 1970. "An efficient heuristic procedure for partitioning graphs." 
Bell Systems Technical Journal, Vol. 49, no. 2, February, pp. 291-307. The original descrip­
tion of the Kernighan-Lin partitioning algorithm. [po 828] 

Kirkpatrick, S., et al. 1983. "Optimization by simulated annealing." Science, Vol. 220, no. 4598, 
pp. 671-680. [po 836] 

Kucukcakar, K., and A. C. Parker, 1991. "CHOP: A constraint-driven system-level partitioner." 
In Proceedings of the 28th Design Automation Conference, pp. 514--519. [po 851] 

Lagnese, E., and D. Thomas. 1991. "Architectural partitioning for system level synthesis of 
integrated circuits." IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, Vol. 10, no. 7, pp. 847-860. [po 850] 

Najm, F. N. 1994. "A survey of power estimation techniques in VLSI circuits." IEEE Transac­
tions 011 Very Large Scale Integration (VLSl) Systems, Vol. 2, no. 4, pp. 446-455. 43 refs. 
[p.817] 

Preas, B. T., and P. G. Karger, 1988. "Placement, assignment and fioorplanning." In Physical 
Design Automation of VLSI Systems (B. T. Preas and M. J. Lorenzetti, Eds.), pp. 87-155. 
Menlo Park, CA: Benjamin-Cummings. ISBN 0-8053-0412-9. TK7874.P47. [po 850] 

862



852 CHAPTER 15 ASIC CONSTRUCTION 

Rose, J., W. Klebsch, and J. Wolf, 1990. "Temperature measurement and equilibrium dynamics 
of simulated annealing placements." IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, Vol. 9, no. 3, pp. 253-259. Discusses ways to speed up sim­
ulated annealing. [po 837] 

Schweikert, D. G., and B. W. Kernighan. 1979. "A proper model for the partitioning of electri­
cal circuits." In Proceedings of the 9th Design Automation Workshop. Points out the differ­
ence between nets and edges. [pp. 831, 831] 

Sechen, C. 1988. VLSI Placement and Global Routing Using Simulated Annealing. New York: 
Kluwer. Introduction; The Simulated Annealing Algorithm; Placement and Global Routing 
of Standard Cell Integrated Circuits; Macro/Custom Cell Chip-Planning, Placement, and 
Global Routing; Average Interconnection Length Estimation; Interconnect-Area Estimation 
for Macro Cell Placements; An Edge-Based Channel Definition Algorithm for Rectilinear 
Cells; A Graph-Based Global Router Algorithm; Conclusion; Island-Style Gate Array Place­
ment. [po 850] 

Sedgewick, R. 1988. Algorithms. Reading, MA: Addison-Wesley. ISBN 0-201-06673-4. 
QA76.6.S435. Reference for basic sorting and graph-searching algorithms. [po 808] 

Sherwani, N. A. 1993. Algorithms for VLSI Physical Design Automation. Norwell, MA: Kluwer. 
ISBN 0-7923-9294-9. TK874.S455. [po 850] 

Smailagic, A., et al. 1995. "Benchmarking an interdisciplinary concurrent design methodology 
for electronic/mechanical systems." In Proceedings of the 32nd Design Automation Confer­
ence. San Francisco. Describes the evolution of the VuMan wearable computer. Includes 
some interesting measures of the complexity of system design. [po 840] 

Veendrick, H. J. M. 1984. "Short-circuit dissipation of static CMOS circuitry and its impact on 
the design of buffer circuits." IEEE Journal of Solid-State Circuits, Vol. SC-19, no. 4, 
pp.468-473. [pp. 817,843] 

863



FLOORPLANNING 
AND 
PLACEMENT 

16.1 Floorplanning 16.5 Summary 

16.2 Placement 16.6 Problems 

16.3 Physical Design Flow 16.7 Bibliography 

16.4 Information Formats 16.8 References 

The input to the ftoorplanning step is the output of system partitioning and design 
entry-a netlist. Floorplanning precedes placement, but we shall cover them 
together. The output of the placement step is a set of directions for the routing tools. 

At the start of ftoorplanning we have a netlist describing circuit blocks, the logic 
cells within the blocks, and their connections. For example, Figure 16.1 shows the 
Viterbi decoder example as a collection of standard cells with no room set aside yet 
for routing. We can think of the standard cells as a hod of bricks to be made into a 
wall. What we have to do now is set aside spaces (we call these spaces the 
channels) for interconnect, the mortar, and arrange the cells. Figure 16.2 shows a 
finished wall-after ftoorplanning and placement steps are complete. We still have 
not completed any routing at this point-that comes later-all we have done is 
placed the logic cells in a fashion that we hope will minimize the total interconnect 
length, for example. 

16.1 Floorplanning 

Figure 16.3 shows that both interconnect delay and gate delay decrease as we scale 
down feature sizes-but at different rates. This is because interconnect capacitance 
tends to a limit of about 2 pFcm-1 for a minimum-width wire while gate delay con­
tinues to decrease (see Section 17.4, "Circuit Extraction and DRC"). FloOl'planning 
allows us to predict this interconnect delay by estimating interconnect length. 

853 

864



854 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

+ 
+ + + + 
++ 
+ + + + 
+ + + + 
+ + + + + + 
+ + 

FIGURE 16.1 The starting point for the floorplanning and placement steps for the Viterbi 
decoder (containing only standard cells). This is the initial display of the floorplanning and 
placement tool. The small boxes that look like bricks are the outlines of the standard cells. 
The largest standard cells, at the bottom of the display (labeled dfctnb) are 188 D flip-flops. 
The '+' symbols represent the drawing origins of the standard cells-for the 0 flip-flops they 
are shifted to the left and below the logic cell bottom left-hand corner. The large box surround­
ing all the logic cells represents the estimated chip size. (This is a screen shot from Cadence 
Cell Ensemble.) 

The input to a floorplanning tool is a hierarchical netlist that describes the intercon­
nection of the blocks (RAM, ROM, ALU, cache controller, and so on); the logic 
cells (NAND, NOR, D flip-flop, and so on) within the blocks; and the logic cell 
connectors (the terms terminals, pins, or ports mean the same thing as connectors). 
The netlist is a logical description of the ASIC; the floorplan is a physical descrip­
tion of an ASIC. Floorplanning is thus a mapping between the logical description 
(the netlist) and the physical description (the floOl-plan). 

865



16.1 FLOORPLANNING 855 

FIGURE 16.2 The Viterbi Decoder (from Figure 16.1) after floorplanning and placement. 
There are 18 rows of standard cells separated by 17 horizontal channels (labeled 2-18). The 
channels are routed as numbered. In this example, the I/O pads are omitted to show the cell 
placement more clearly. Figure 17.1 shows the same placement without the channel labels. 
(A screen shot from Cadence Cell Ensemble.) 

The goals of ftoorplanning are to: 

G arrange the blocks on a chip, 

.. decide the location of the I/O pads, 

o decide the location and number of the power pads, 

866



856 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

FIGURE 16.3 Interconnect and gate 
delays. As feature sizes decrease, both 
average interconnect delay and average 
gate delay decrease-but at different 
rates. This is because interconnect 
capacitance tends to a limit that is inde­
pendent of scaling. Interconnect delay 
now dominates gate delay. 

delay Ins 

1.0 

0.1 

1.0 

• decide the type of power distribution, and 

interconnect 
delay 

0.5 0.25 minimum feature 
size/11m 

• decide the location and type of clock distribution. 

The objectives of floorplanning are to minimize the chip area and minimize 
delay. Measuring area is straightforward, but measuring delay is more difficult and 
we shall explore this next. 

16.1.2 Measurement of Delay in Floorplanning 
Throughout the ASIC design process we need to predict the performance of the final 
layout. In floorplanning we wish to predict the interconnect delay before we com­
plete any routing. Imagine trying to predict how long it takes to get from Russia to 
China without knowing where in Russia we are or where our destination is in China. 
Actually it is worse, because in floorplanning we may move Russia or China. 

To predict delay we need to know the parasitics associated with interconnect: 
the interconnect capacitance (wiring capacitance or routing capacitance) as 
well as the interconnect resistance. At the floorplanning stage we know only the 
fanout (FO) of a net (the number of gates driven by a net) and the size of the block 
that the net belongs to. We cannot predict the resistance of the various pieces of the 
interconnect path since we do not yet know the shape of the interconnect for a net. 
However, we can estimate the total length of the interconnect and thus estimate the 
total capacitance. We estimate interconnect length by collecting statistics from pre­
viously routed chips and analyzing the results. From these statistics we create tables 
that predict the interconnect capacitance as a function of net fanout and block size. 
A floorplanning tool can then use these predicted-capacitance tables (also known 
as interconnect-load tables or wire-load tables). Figure 16.4 shows how we derive 
and use wire-load tables and illustrates the following facts: 

o Typically between 60 and 70 percent of nets have a FO = 1. 

• The distribution for a FO = 1 has a very long tail, stretching to interconnects 
that run from corner to corner of the chip. 

867



100 

100 

I 
o 

I 
o 

I 
o 

I 
0.25 

net C 

_____ FO=3 

~-_____ FO =2 

I 
0.5 

J---_ FO=1 
net B 

I 
0.75 

I 
1.0 

(b) 

average net 
capacitance 

delay Ins 

16.1 FLOORPLANNING 857 

1 2 

10 

~o 

block size 
(k-gate) 

1.2 

fanout 

345 

1.9 2.4 3.0 

predicted capacitance 
(standard loads) as a 
function of fanout (FO) and 
block size (k-gate) 

I 
9·~standard 
loads = 0.009 pF 

I 
0.03 pF 

I I I I 
0.03 pF . FO=4 

0.01 0.02 0.03 

I I 
2 3 

1 standard load = 0.01 pF 

(a) 

0.04 
capacitance I pF 

I 
4 
standard loads 

I 
-:: 

/ logic cells 
row-based ASIC flexible block 
(20 k-gate) 

(c) 

FIGURE 16.4 Predicted capacitance. (a) Interconnect lengths as a function of fanout (FO) 
and circuit-block size. (b) Wire-load table. There is only one capacitance value for each 
fanout (typically the average value). (c) The wire-load table predicts the capacitance and 
delay of a net (with a considerable error). Net A and net B both have a fanout of 1, both have 
the same predicted net delay, but net B in fact has a much greater delay than net A in the 
actual layout (of course we shall not know what the actual layout is until much later in the 
design process). 

o The distribution for a FO = 1 often has two peaks, corresponding to a distri­
bution for close neighbors in subgroups within a block, superimposed on a 
distribution corresponding to routing between subgroups. 

e We often see a twin-peaked distribution at the chip level also, corresponding 
to separate distributions for interblock routing (inside blocks) and 
intrablock routing (between blocks). 

868



858 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

• The distributions for FO > 1 are more symmetrical and flatter than for FO = 1. 

• The wire-load tables can only contain one number, for example the average net 
capacitance, for anyone distribution. Many tools take a worst-case approach 
and use the 80- or 90-percentile point instead of the average. Thus a tool may 
use a predicted capacitance for which we know 90 percent of the nets will have 
less than the estimated capacitance. 

• We need to repeat the statistical analysis for blocks with different sizes. For 
example, a net with a FO = 1 in a 25 k-gate block will have a different 
(larger) average length than if the net were in a 5 k-gate block. 

• The statistics depend on the shape (aspect ratio) of the block (usually the sta­
tistics are only calculated for square blocks). 

• The statistics will also depend on the type of netlist. For example, the distri­
butions will be different for a netlist generated by setting a constraint for 
minimum logic delay during synthesis-which tends to generate large num­
bers of two-input NAND gates-than for netlists generated using minimum­
area constraints. 

There are no standards for the wire-load tables themselves, but there are some 
standards for their use and for presenting the extracted loads (see Section 16.4). 
Wire-load tables often present loads in terms of a standard load that is usually the 
input capacitance of a two-input NAND gate with a IX (default) drive strength. 

TABLE 16.1 A wire-load table showing average interconnect lengths (mm).1 

Fanout 

Array (available gates) Chip size (mm) 1 2 4 

3k 3.45 0.56 0.85 1.46 

11 k 5.11 0.84 1.34 2.25 

105k 12.50 1.75 2.70 4.92 

1 Interconnect lengths are derived from interconnect capacitance data. Interconnect capacitance is 2 pFcm -1 . 

Table 16.1 shows the estimated metal interconnect lengths, as a function of die 
size and fanout, for a series of three-level metal gate arrays. In this case the inter­
connect capacitance is about 2 pFcm-1, a typical figure. 

Figure 16.5 shows that, because we do not decrease chip size as we scale down 
feature size, the worst-case interconnect delay increases. One way to measure the 
worst-case delay uses an interconnect that completely crosses the chip, a 
coast-to-coast interconnect. In certain cases the worst-case delay of a 0.25 !-lm pro­
cess may be worse than a 0.35 !-lm process, for example. 

869



16.1 FLOORPLANNING 859 

interconnect 
delay Ins 

interconnect 
delay Ins 

FIGURE 16.5 Worst­
case interconnect delay. As 
we scale circuits, but avoid 
scaling the chip size, the 
worst-case interconnect 
delay increases. 

1.0 ns 

0.1 ns 

worst case is 
increasing 

1.0 

feature 
1.0 0.5 0.25 size l!-lm 

16.1.3 Floorplanning Tools 
Figure 16.6(a) shows an initial random floorplan generated by a floorplanning tool. 
Two of the blocks, A and C in this example, are standard-cell areas (the chip shown 
in Figure 16.1 is one large standard-cell area). These are flexible blocks (or variable 
blocks) because, although their total area is fixed, their shape (aspect ratio) and con­
nector locations may be adjusted during the placement step. The dimensions and 
connector locations of the other fixed blocks (perhaps RAM, ROM, compiled cells, 
or megacells) can only be modified when they are created. We may force logic cells 
to be in selected flexible blocks by seeding. We choose seed cells by name. For 
example, ram_control * would select all logic cells whose names started with 
ram control to be placed in one flexible block. The special symbol, usually '*', is 
a wildcard symbol. Seeding may be hard or soft. A hard seed is fixed and not 
allowed to move during the remaining floorplanning and placement steps. A soft 
seed is an initial suggestion only and can be altered if necessary by the floorplanner. 
We may also use seed connectors within flexible blocks-forcing certain nets to 
appear in a specified order, or location at the boundary of a flexible block. 

The floorplanner can complete an estimated placement to determine the posi­
tions of connectors at the boundaries of the flexible blocks. Figure 16.6(b) illustrates 
a rat's nest display of the connections between blocks. Connections are shown as 
bundles between the centers of blocks or as flight lines between connectors. 
Figure 16.6(c) and (d) show how we can move the blocks in a fioorplanning tool to 
minimize routing congestion. 

We need to control the aspect ratio of our fioorplan because we have to fit our 
chip into the die cavity (a fixed-size hole, usually square) inside a package. 
Figure 16.7(a)-(c) show how we can rearrange our chip to achieve a square aspect 
ratio. Figure 16.7(c) also shows a congestion map, another form of routability dis­
play. There is no standard measure of routability. Generally the interconnect 
channels, (or wiring channels-I shall call them channels from now on) have a cer-

from 
wire-load 
table 

100% 

870



860 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

core 
boundary 

flexible standard-cell blocks 
(not yet placed) 

fixed blocks (a) 

(c) 

flexible standard-cell blocks 
(with estimated placement) 

flight 
line 

bundle 
line 
nets in 
bundle 

D 
terminal, pin, or 
port location 

F 

E 

(b) 

E D 

(d) 

FIGURE 16.6 Floorplanning a cell-based ASIC. (a) Initial floorplan generated by the floor­
planning tool. Two of the blocks are flexible (A and C) and contain rows of standard cells 
(unplaced). A pop-up window shows the status of block A. (b) An estimated placement for 
flexible blocks A and C. The connector positions are known and a rat's nest display shows the 
heavy congestion below block B. (c) Moving blocks to improve the floorplan. (d) The updated 
display shows the reduced congestion after the changes. 

tain channel capacity; that is, they can handle only a fixed number of interconnects. 
One measure of congestion is the difference between the number of interconnects 
that we actually need, called the channel density, and the channel capacity. Another 
measure, shown in Figure 16.7(c), uses the ratio of channel density to the channel 
capacity. With practice, we can create a good initial placement by fioorplanning and 
a pictorial display. This is one area where the human ability to recognize patterns 
and spatial relations is currently superior to a computer program's ability. 

871



16.1 FLOORPLANNING 861 

2 ... 

D 

o [9 

Routing congestion 
111200% 

100% 
50% 

1.5 

E 
F 

(a) 

1.75 

(c) 

1.75 

1.75 

A lD C 

~ 

E 
D 

'--- F 

(b) 

1.75 

(d) 

FIGURE 16.7 Congestion analysis. (a) The initial floorplan with a 2:1.5 die aspect ratio. 
(b) Altering the floorplan to give a 1:1 chip aspect ratio. (c) A trial floorplan with a congestion 
map. Blocks A and C have been placed so that we know the terminal positions in the chan­
nels. Shading indicates the ratio of channel density to the channel capacity. Dark areas show 
regions that cannot be routed because the channel congestion exceeds the estimated capac­
ity. (d) Resizing flexible blocks A and C alleviates congestion. 

16.1.4 Channel Definition 
During the fioorplanning step we assign the areas between blocks that are to be used 
for interconnect. This process is known as channel definition or channel 
allocation. Figure 16.8 shows a T-shaped junction between two rectangular channels 

872



862 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

o 
Adjust 
channel A 
first. 

channelB 

Now we 
cannot 
adjust 
channel A. 

II!> ANowwecan 
V adjust channel B. 

(a) 

channelB 

FIGURE 16.8 Routing a T-junction between two channels in two-level metal. The dots rep­
resent logic cell pins. (a) Routing channel A (the stem of the T) first allows us to adjust the 
width of channel B. (b) If we route channel B first (the top of the T), this fixes the width of chan­
nel A. We have to route the stem of a T-junction before we route the top. 

circuit 
block 

and illustrates why we must route the stem (vertical) of the T before the bar. The 
general problem of choosing the order of rectangular channels to route is channel 
ordering. 

route 
channels 
in this 

slice order 

1 2 

3 3 

4~4 
A B 

2 cut C E 
(a) (b) number (c) 

FIGURE 16.9 Defining the channel routing order for a slicing floorplan using a slicing tree. 
(a) Make a cut all the way across the chip between circuit blocks. Continue slicing until each 
piece contains just one circuit block. Each cut divides a piece into two without cutting through 
a circuit block. (b) A sequence of cuts: 1, 2, 3, and 4 that successively slices the chip until only 
circuit blocks are left. (c) The slicing tree corresponding to the sequence of cuts gives the 
order in which to route the channels: 4, 3, 2, and finally 1. 

873



16.1 FLOORPLANNING 863 

Figure 16.9 shows a floorplan of a chip containing several blocks. Suppose we 
cut along the block boundaries slicing the chip into two pieces (Figure 16.9a). Then 
suppose we can slice each of these pieces into two. If we can continue in this fash­
ion until all the blocks are separated, then we have a slicing fioorpian 
(Figure 16.9b). Figure 16.9(c) shows how the sequence we use to slice the chip 
defines a hierarchy of the blocks. Reversing the slicing order ensures that we route 
the stems of all the channel T -junctions first. 

0000000000 
o 1 0 
o 0 
o 40 
o 0 
o 0 
o 0 
o 0 

03 0 
0000000000 

(a) 

0000000000 
o 0 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 

0000000000 

(b) (c) 

FIGURE 16.10 Cyclic constraints. (a) A nonslicing floorplan with a cyclic constraint that 
prevents channel routing. (b) In this case it is difficult to find a slicing floorplan without increas­
ing the chip area. (c) This floorplan may be sliced (with initial cuts 1 or 2) and has no cyclic 
constraints, but it is inefficient in area use and will be very difficult to route. 

Figure 16.10 shows a floorplan that is not a slicing structure. We cannot cut the 
chip all the way across with a knife without chopping a circuit block in two. This 
means we cannot route any of the channels in this floorplan without routing all of 
the other channels first. We say there is a cyclic constraint in this floorplan. There 
are two solutions to this problem. One solution is to move the blocks until we obtain 
a slicing floorplan. The other solution is to allow the use of L-shaped, rather than 
rectangular, channels (or areas with fixed connectors on all sides-a switch box). 
We need an area-based router rather than a channel router to route L-shaped regions 
or switch boxes (see Section 17.2.6, "Area-Routing Algorithms"). 

Figure 16.11 (a) displays the floorplan of the ASIC shown in Figure 16.7. We 
can remove the cyclic constraint by moving the blocks again, but this increases the 
chip size. Figure 16.11 (b) shows an alternative solution. We merge the flexible stan­
dard cell areas A and C. We can do this by selective flattening of the netlist. Some­
times flattening can reduce the routing area because routing between blocks is 
usually less efficient than routing inside the row-based blocks. Figure 16.11 (b) 
shows the channel definition and routing order for our chip. 

874



864 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

(a) 

cyclic constraint: 
1,2,3,4 

(b) 

merge 
standard 
cell areas 
Aand C 

6 

channel 
number 
(in routing 
order) 

FIGURE 16.11 Channel definition and ordering. (a) We can eliminate the cyclic constraint 
by merging the blocks A and C. (b) A slicing structure. 

16.1.5 1/0 and Power Planning 
Every chip communicates with the outside world. Signals flow onto and off the chip 
and we need to supply power. We need to consider the I/O and power constraints 
early in the floorplanning process. A silicon chip or die (plural die, dies, or dice) is 
mounted on a chip carrier inside a chip package. Connections are made by 
bonding the chip pads to fingers on a metal lead frame that is part of the package. 
The metal lead-frame fingers connect to the package pins. A die consists of a logic 
core inside a pad ring. Figure 16.12(a) shows a pad-limited die and 
Figure 16.12(b) shows a core-limited die. On a pad-limited die we use tall, thin 
pad-limited pads, which maximize the number of pads we can fit around the out­
side of the chip. On a core-limited die we use short, wide core-limited pads. 
Figure 16.12( c) shows how we can use both types of pad to change the aspect ratio 
of a die to be different from that of the core. 

Special power pads are used for the positive supply, or VDD, power buses (or 
power rails) and the ground or negative supply, VSS or GND. Usually one set of 
VDD/VSS pads supplies one power ring that runs around the pad ring and supplies 
power to the I/O pads only. Another set of VDD/VSS pads connects to a second 
power ring that supplies the logic core. We sometimes call the I/O power dirty 
power since it has to supply large transient currents to the output transistors. We 
keep dirty power separate to avoid injecting noise into the internal-logic power (the 
clean power). I/O pads also contain special circuits to protect against electrostatic 
discharge (ESD). These circuits can withstand very short high-voltage (several 
kilovolt) pulses that can be generated during human or machine handling. 

Depending on the type of package and how the foundry attaches the silicon die 
to the chip cavity in the chip carrier, there may be an electrical connection between 
the chip carrier and the die substrate. Usually the die is cemented in the chip cavity 
with a conductive epoxy, making an electrical connection between substrate and the 

875



16.1 FLOORPLANNING 865 

corner pad bonding pad m2 power ring I/O pad (pad-limited) 

core -H±::=:='-H-

VDD(I/O) 

VSS(I/O) 

~'H-- VDD(core) 

He==Ff-I- VSS(core) 

~========:=:?~ VSS (core) 
power pad 
I/O power pad 

I/O pads (pad-limited) I/O pad m1 I/O pad m1 
(core-limited) jumper (core-limited) jumper 

(a) (b) (c) 

FIGURE 16.12 Pad-limited and core-limited die. (a) A pad-limited die. The number of pads 
determines the die size. (b) A core-limited die: The core logic determines the die size. 
(c) Using both pad-limited pads and core-limited pads for a square die. 

package cavity in the chip carrier. If we make an electrical connection between the 
substrate and a chip pad, or to a package pin, it must be to VDD (n-type substrate) 
or VSS (p-type substrate). This substrate connection (for the whole chip) employs 
a down bond (or drop bond) to the carrier. We have several options: 

• \Ve can dedicate one (or more) chip pad(s) to down bond to the chip carrier. 

• We can make a connection from a chip pad to the lead frame and down bond 
from the chip pad to the chip carrier. 

e We can make a connection from a chip pad to the lead frame and down bond 
from the lead frame. 

• We can down bond from the lead frame without using a chip pad. 

• We can leave the substrate and/or chip carrier unconnected. 

Depending on the package design, the type and positioning of down bonds may 
be fixed. This means we need to fix the position of the chip pad for down bonding 
using a pad seed. 

A double bond connects two pads to one chip-carrier finger and one package 
pin. We can do this to save package pins or reduce the series inductance of bond 
wires (typically a few nanohenries) by parallel connection of the pads. A multiple­
signal pad or pad group is a set of pads. For example, an oscillator pad usually 
comprises a set of two adjacent pads that we connect to an external crystal. The 
oscillator circuit and the two signal pads form a single logic cell. Another common 
example is a clock pad. Some foundries allow a special form of corner pad (normal-

876



866 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

pads are edge pads) that squeezes two pads into the area at the comers of a chip 
using a special two-pad corner cell, to help meet bond-wire angle design rules 
(see also Figure 16.13b and c). 

To reduce the series resistive and inductive impedance of power supply net­
works, it is normal to use multiple VDD and VSS pads. This is particularly impor­
tant with the simultaneously switching outputs (SSOs) that occur when driving 
buses off-chip [Wada, Eino, and Anami, 1990]. The output pads can easily consume 
most of the power on a CMOS ASIC, because the load on a pad (usually tens of 
picofarads) is much larger than typical on-chip capacitive loads. Depending on the 
technology it may be necessary to provide dedicated VDD and VSS pads for every 
few SSOs. Design rules set how many SSOs can be used per VDD/VSS pad pair. 
These dedicated VDDNSS pads must "follow" groups of output pads as they are 
seeded or planned on the floorplan. With some chip packages this can become diffi­
cult because design rules limit the location of package pins that may be used for 
supplies (due to the differing series inductance of each pin). 

Using a pad mapping we translate the logical pad in a netlist to a physical pad 
from a pad library. We might control pad seeding and mapping in the floorplanner. 
The handling of I/O pads can become quite complex; there are several nonobvious 
factors that must be considered when generating a pad ring: 

• Ideally we would only need to design library pad cells for one orientation. 
For example, an edge pad for the south side of the chip, and a comer pad for 
the southeast comer. We could then generate other orientations by rotation 
and flipping (mirroring). Some ASIC vendors will not allow rotation or mir­
roring of logic cells in the mask file. To avoid these problems we may need 
to have separate horizontal, vertical, left-handed, and right-handed pad cells 
in the library with appropriate logical to physical pad mappings. 

• If we mix pad-limited and core-limited edge pads in the same pad ring, this 
complicates the design of comer pads. Usually the two types of edge pad 
cannot abut. In this case a comer pad also becomes a pad-format changer, 
or hybrid corner pad. 

• In single-supply chips we have one VDD net and one VSS net, both global 
power nets. It is also possible to use mixed power supplies (for example, 
3.3 V and 5 V) or multiple power supplies (digital VDD, analog VDD). 

Figure 16.13(a) and (b) are magnified views of the southeast comer of our 
example chip and show the different types of I/O cells. Figure 16.13(c) shows a 
stagger-bond arrangement using two rows of I/O pads. In this case the design rules 
for bond wires (the spacing and the angle at which the bond wires leave the pads) 
become very important. 

Figure 16.13(d) shows an area-bump bonding arrangement (also known as 
flip-chip, solder-bump or C4, terms coined by IBM who developed this technology 
[Masleid, 1991]) used, for example, with ball-grid array (BGA) packages. Even 

877



core-limited 
pad pitch pad-limited 

I/O circuit and 
ESD 
protection 

16.1 FLOORPLANNING 867 

I/O pad power ring 

\ pad-cell ~ ~ pad pitch 
r-----~~------~ 

1 
T 

core power ~ I bounding box 
VDD (core) ring ~ 

VSS (core)~ II 
VSS (pad ring)~ l 

...<.iI-+t--!; 

VDD (pad ring) ~ 0 [] 0 

'------------------' ~southeast core-limited~r 
corner I/O pad 

core-limited VDD bonding 
core-power pad pad 

(a) (b) 

package pin 

lead-frame 

pad-limited I/O pad 

pad-limited VSS 
core-power pad 

two-pad corner pad 
format changer: 
core-limited to 
pad-limited 

chip die 

stagger 
bond wi res (n 0 t \... J.o4'!;..r,;L+-.,iL--J.-.-.L\--,--'---'-----1 

all shown) 

(c) 

-+.­
minimum 
lead-frame pitch 

solder bump (not 
shown on all pads) 

(d) 

FIGURE 16.13 Bonding pads. (a) This chip uses both pad-limited and core-limited pads. 
(b) A hybrid corner pad. (c) A chip with stagger-bonded pads. (d) An area-bump bonded chip 
(or flip-chip). The chip is turned upside down and solder bumps connect the pads to the lead 
frame. 

though the bonding pads are located in the center of the chip, the I/O circuits are still 
often located at the edges of the chip because of difficulties in power supply distri­
bution and integrating I/O circuits together with logic in the center of the die. 

878



868 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

In an MGA the pad spacing and I/O-cell spacing is fixed-each pad occupies a 
fixed pad slot (or pad site). This means that the properties of the pad I/O are also 
fixed but, if we need to, we can parallel adjacent output cells to increase the drive. 
To increase flexibility further the I/O cells can use a separation, the I/O-cell pitch, 
that is smaller than the pad pitch. For example, three 4 rnA driver cells can occupy 
two pad slots. Then we can use two 4 rnA output cells in parallel to drive one pad, 
forming an 8 rnA output pad as shown in Figure 16.14. This arrangement also means 
the I/O pad cells can be changed without changing the base array. This is useful as 
bonding techniques improve and the pads can be moved closer together. 

(a) 

(b) 

gate-array 
pads are 
fixed 

4 mA output 
driver cell 

I/O-cell _ I 
pitch -JIIi 

~~=r~~~~~~. 

bonding pad 1/0 circuit 
(not shown 

o~tput cell~!.-:J ~ for all slots) 
pitch empty pad 

slot 
4 mA output 8 mA output pad cell 
pad pad 

(c) 

FIGURE 16.14 Gate-array I/O pads. (a) Cell-based ASICs may contain pad cells of differ­
ent sizes and widths. (b) A corner of a gate-array base. (c) A gate-array base with different 
I/O cell and pad pitches. 

Figure 16.15 shows two possible power distribution schemes. The long direc­
tion of a rectangular channel is the channel spine. Some automatic routers may 
require that metal lines parallel to a channel spine use a preferred layer (either m1, 
m2, or m3). Alternatively we say that a particular metal layer runs in a preferred 
direction. Since we can have both horizontal and vertical channels, we may have 
the situation shown in Figure 16.15, where we have to decide whether to use a pre­
ferred layer or the preferred direction for some channels. This mayor may not be 
handled automatically by the routing software. 

879



16.1 FLOORPLANNING 869 

(a) 
standard-cell area 

rLJ~f-=D~~D-~=D~D~D~~D~~=D~D~D~~D~~~D~-=D~D~~D~~~D~-=D~D~~D::-=-1§ 
o 

horizontal 0 
channel 0 

~~~~~~~~~~D 

m2

m1

o
o
o
o
o
o
o
o
o
o

~~~~~~~D~D~D~D~D~D~D~D8 

(b) 

LJ 0 00000000000000000 D 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 
o 
o 
o 
o 
o 
o 
o 
o 

B~========~======~ GDDDDDDDDD 

layer 
crossing 

vertical 
( channel 

VDD t vss VDD 

( All power rails run in m1 parallel to sp. ine. 

t vss m1/m2 via 

(m2) (m1) (m1) 

signal~ I r: 
(m2) J) 
signals need to 
change layers 

(c) 

(m1) 

m1 

L 

m1 
(d) 

FIGURE 16.15 Power distribution. (a) Power distributed using m1 for VSS and m2 for 
VDD. This helps minimize the number of vias and layer crossings needed but causes prob­
lems in the routing channels. (b) In this floorplan m1 is run parallel to the longest side of all 
channels, the channel spine. This can make automatic routing easier but may increase the 
number of vias and layer crossings. (c) An expanded view of part of a channel (interconnect 
is shown as lines). If power runs on different layers along the spine of a channel, this forces 
signals to change layers. (d) A closeup of VDD and VSS buses as they cross. Changing lay­
ers requires a large number of via contacts to reduce resistance. 

16.1.6 Clock Planning 
Figure 16.16(a) shows a clock spine (not to be confused with a channel spine) rout­
ing scheme with all clock pins driven directly from the clock driver. MGAs and. 
FPGAs often use this fish bone type of clock distribution scheme. Figure 16.16(b) 

880



870 CHAPTER 16 FlOORPlANNING AND PLACEMENT 

spine 

clock-driver cell 

base cells 

(a) 

A1,B1,B2 

(] 0 00000000000000000 D 

o 
o 
o 
o 
o 

.~~i2<J~D 

F1D 
'--'-'-'''-'---''---'-' 0 

o 0 
~DDDDDDDDDDDDDDDDDDDD 

block 
connector 

(b) 

clock spine 

t m2 

~ 

D1,D2,E1 ClK 

D2 

F1 -+-t-' 

\...-skew 

fL ~ D3, E2, F1 

-= \ clock 
spine 

(c) (d) 

FIGURE 16.16 Clock distribution. (a) A clock spine for a gate array. (b) A clock spine for a 
cell-based ASIC (typical chips have thousands of clock nets). (c) A clock spine is usually 
driven from one or more clock-driver cells. Delay in the driver cell is a function of the number 
of stages and the ratio of output to input capacitance for each stage (taper). (d) Clock latency 
and clock skew. We would like to minimize both latency and skew. 

shows a clock spine for a cell-based ASIC. Figure 16.16(c) shows the clock-driver 
cell, often part of a special clock -pad cell. Figure 16.16( d) illustrates clock skew 
and clock latency. Since all clocked elements are driven from one net with a clock 
spine, skew is caused by differing interconnect lengths and loads. If the clock-driver 
delay is much larger than the interconnect delays, a clock spine achieves minimum 
skew but with long latency. 

881



16.1 FLOORPLANNING 871 

Clock skew represents a fraction of the clock period that we cannot use for 
computation. A clock skew of 500 ps with a 200 MHz clock means that we waste 
500 ps of every 5 ns clock cycle, or 10 percent of performance. Latency can cause a 
similar loss of performance at the system level when we need to resynchronize our 
output signals with a master system clock. 

Figure 16.16(c) illustrates the construction of a clock-driver cell. The delay 
through a chain of CMOS gates is minimized when the ratio between the input 
capacitance C1 and the output (load) capacitance C2 is about 3 (exactly e~2.7, an 
exponential ratio, if we neglect the effect of parasitics). This means that the fastest 
way to drive a large load is to use a chain of buffers with their input and output 
loads chosen to maintain this ratio, or taper (we use this as a noun and a verb). This 
is not necessarily the smallest or lowest-power method, though. 

Suppose we have an ASIC with the following specifications: 

• 40,000 flip-flops 

• Input capacitance of the clock input to each flip-flop is 0.025 pF 

• Clock frequency is 200 MHz 

• VDD =3.3V 

• Chip size is 20 mm on a side 

• Clock spine consists of 200 lines across the chip 

• Interconnect capacitance is 2 pFcm-1 

In this case the clock -spine capacitance C L = 200 x 2 cm x 2 pFcm -1 = 800 pF. If 
we drive the clock spine with a chain of buffers with taper equal to e ~ 2.7, and with 
a first-stage input capacitance of 0.025 pF (a reasonable value for a 0.5 /lm process), 
we will need 

800 X 10-12 

100- = 1004, or 11 stages. 
/::>0.025 x 10-12 

(16.1) 

The power dissipated charging the input capacitance of the flip-flop clock is 
jCV2 or 

1 4 2 
PI = (4x 10 ) (200 MHz) (0.025 pF) (3.3 V) = 2.178 W, (16.2) 

or approximately 2 W. This is only a little larger than the power dissipated driving 
the 800 pF clock-spine interconnect that we can calculate as follows: 

2 -1 2 
PI = (200) (200 MHz) (20 mm) (2 pFcm ) (3.3 V) = 1.7424 W. (16.3) 

882



872 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

(a) 

(b) 

taper 

taper 

All of this power is dissipated in the clock-driver cell. The worst problem, how­
ever, is the enormous peak current in the final inverter stage. If we assume the 
needed rise time is 0.1 ns (with a 200 MHz clock whose period is 5 ns), the peak cur­
rent would have to approach 

I = (800 pF) (3.3V) = 25 A. 
0.1 ns 

(16.4) 

Clearly such a current is not possible without extraordinary design techniques. 
Clock spines are used to drive loads of 100-200 pF but, as is apparent from the 
power dissipation problems of this example, it would be better to find a way to 
spread the power dissipation more evenly across the chip. 

We can design a tree of clock buffers so that the taper of each stage is e"'" 2.7 by 
using a fanout of three at each node, as shown in Figure 16.17(a) and (b). The clock 
tree, shown in Figure 16.17(c), uses the same number of stages as a clock spine, but 
with a lower peak current for the inverter buffers. Figure 16.17 (c) illustrates that we 
now have another problem-we need to balance the delays through the tree carefully 
to minimize clock skew (see Section 17.3.1, "Clock Routing"). 

clock tree inside block F 

(c) 

FIGURE 16.17 A clock tree. (a) Minimum delay is achieved when the taper of successive 
stages is about 3. (b) Using a fanout of three at successive nodes. (c) A clock tree for the cell­
based ASIC of Figure 16.16b. We have to balance the clock arrival. times at all of the leaf 
nodes to minimize clock skew. 

883



16.2 PLACEMENT 873 

Designing a clock tree that balances the rise and fall times at the leaf nodes has 
the beneficial side-effect of minimizing the effect of hot-electron wearout. This 
problem occurs when an electron gains enough energy to become "hot" and jump 
out of the channel into the gate oxide (the problem is worse for electrons in 
n-channel devices because electrons are more mobile than holes). The trapped elec­
trons change the threshold voltage of the device and this alters the delay of the buff­
ers. As the buffer delays change with time, this introduces unpredictable skew. The 
problem is worst when the n-channel device is carrying maximum current with a 
high voltage across the channel-this occurs during the rise-and fall-time transi­
tions. Balancing the rise and fall times in each buffer means that they all wear out at 
the same rate, minimizing any additional skew. 

A phase-locked loop (PLL) is an electronic flywheel that locks in frequency to 
an input clock signal. The input and output frequencies may differ in phase, how­
ever. This means that we can, for example, drive a clock network with a PLL in such 
a way that the output of the clock network is locked in phase to the incoming clock, 
thus eliminating the latency of the clock network. A PLL can also help to reduce 
random variation of the input clock frequency, known as jitter, which, since it is 
unpredictable, must also be discounted from the time available for computation in 
each clock cycle. Actel was one of the first FPGA vendors to incorporate PLLs, and 
Actel's online product literature explains their use in ASIC design. 

16.2 Placement 

After completing a floorplan we can begin placement of the logic cells within the 
flexible blocks. Placement is much more suited to automation than floorplanning. 
Thus we shall need measurement techniques and algorithms. After we complete 
floorplanning and placement, we can predict both intrablock and interblock capaci­
tances. This allows us to return to logic synthesis with more accurate estimates of 
the capacitive loads that each logic cell must drive. 

16.2.1 Placement Terms and Definitions 
CBIC, MGA, and FPGA architectures all have rows of logic cells separated by the 
interconnect-these are row-based ASICs. Figure 16.18 shows an example of the 
interconnect structure for a CBIC. Interconnect runs in horizontal and vertical direc­
tions in the channels and in the vertical direction by crossing through the logic cells. 
Figure 16.18( c) illustrates the fact that it is possible to use over-the-cell routing 
(OTC routing) in areas that are not blocked. However, OTC routing is complicated 
by the fact that the logic cells themselves may contain metal on the routing layers. 
We shall return to this topic in Section 17.2.7, "Multilevel Routing." Figure 16.19 
shows the interconnect structure of a two-level metal MGA. 

884



874 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

r:::::::::::::::::::::::.' 

(a) 

feedthrough using 
logic cell 

over-the-cell routing in m2 

feedthrough cell 
(vertical capacity = 1 ) 

(b) 

(c) 

channel 
density 
=7 

t m2 

~ 

FIGURE 16.18 Interconnect structure. (a) The two-level metal CBIC floorplan shown in 
Figure 16.11 b. (b) A channel from the flexible block A. This channel has a channel height 
equal to the maximum channel density of 7 (there is room for seven interconnects to run hor­
izontally in m1). (c) A channel that uses OTC (over-the-cell) routing in m2. 

Most ASICs currently use two or three levels of metal for signal routing. With 
two layers of metal, we route within the rectangular channels using the first metal 
layer for horizontal routing, parallel to the channel spine, and the second metal layer 
for the vertical direction (if there is a third metal layer it will normally run in the 
horizontal direction again). The maximum number of horizontal interconnects that 
can be placed side by side, parallel to the channel spine, is the channel capacity. 

Vertical interconnect uses feedthroughs (or feedthrus in the United States) to 
cross the logic cells. Here are some commonly used terms with explanations (there 
are no generally accepted definitions): 

• An unused vertical track (or just track) in a logic cell is called an uncommitted 
feedthrough (also built-in feedthrough, implicit feedthrough, or jumper). 

• A vertical strip of metal that runs from the top to bottom of a cell (for 
double-entry cells), but has no connections inside the cell, is also called a 
feedthrough or jumper. 

885



16.2 PLACEMENT 875 

gate-array base 
= 36 blocks by 128 sites 
= 4608 sites 

(c) 

(a) (b) 

1 block = 128 sites 

site or base cell 

3 columns 

base cells ~: logic cell 

1= [=::::-:! unused space 

~f~J----channeIA(density=10) 
2-ro:-v-high chann.el ~ 
(horizontal capacity = 14) : : -

/ =i channel B (density = 5) 

single row channel ~ _ •. j t fixed channel height 

row 

t m2 

U 
(horizontal capacity = 7)~i+- channel C (density = 7) 

IJ~ feedthrough (vertical capacity = 3) 

FIGURE 16.19 Gate-array interconnect. (a) A small two-level metal gate array (about 
4.6 k-gate). (b) Routing in a block. (c) Channel routing showing channel density and channel 
capacity. The channel height on a gate array may only be increased in increments of a row. If 
the interconnect does not use up all of the channel, the rest of the space is wasted. The inter­
connect in the channel runs in m1 in the horizontal direction with m2 in the vertical direction. 

• Two connectors for the same physical net are electrically equivalent 
connectors (or equipotential connectors). For double-entry cells these are 
usually at the top and bottom of the logic cell. 

o A dedicated feedthrough cell (or crosser cell) is an empty cell (with no 
logic) that can hold one or more vertical interconnects. These are used if 
there are no other feedthroughs available. 

886



876 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

• A feedthrough pin or feedthrough terminal is an input or output that has 
connections at both the top and bottom of the standard cell. 

• A spacer cell (usually the same as a feedthrough cell) is used to fill space in 
rows so that the ends of all rows in a flexible block may be aligned to connect 
to power buses, for example. 

There is no standard terminology for connectors and the terms can be very con­
fusing. There is a difference between connectors that are joined inside the logic cell 
using a high-resistance material such as polysilicon and connectors that are joined 
by low-resistance metal. The high-resistance kind are really two separate alterna­
tive connectors (that cannot be used as a feedthrough), whereas the low-resistance 
kind are electrically equivalent connectors. There may be two or more connectors to 
a logic cell, which are not joined inside the cell, and which must be joined by the 
router (must-join connectors). 

There are also logically equivalent connectors (or functionally equivalent con­
nectors, sometimes also called just equivalent connectors-which is very confus­
ing). The two inputs of a two-input NAND gate may be logically equivalent 
connectors. The placement tool can swap these without altering the logic (but the 
two inputs may have different delay properties, so it is not always a good idea to 
swap them). There can also be logically equivalent connector groups. For exam­
ple, in an OAI22 (OR-AND-INVERT) gate there are four inputs: AI, A2 are inputs 
to one OR gate (gate A), and Bl, B2 are inputs to the second OR gate (gate B). Then 
group A = (AI, A2) is logically equivalent to group B = (B 1, B2)-if we swap one 
input (AI or A2) from gate A to gate B, we must swap the other input in the group 
(A2 or AI). 

In the case of channeled gate arrays and FPGAs, the horizontal interconnect 
areas-the channels, usually on ml-have a fixed capacity (sometimes they are 
called fixed-resource ASICs for this reason). The channel capacity of CBICs and 
channelless MGAs can be expanded to hold as many interconnects as are needed. 
Normally we choose, as an objective, to minimize the number of interconnects that 
use each channel. In the vertical interconnect direction, usually m2, FPGAs still 
have fixed resources. In contrast the placement tool can always add vertical 
feedthroughs to a channeled MGA, channelless MGA, or CBIC. These problems 
become less important as we move to three and more levels of interconnect. 

16.2.2 Placement Goals and Objectives 
The goal of a placement tool is to arrange all the logic cells within the flexible 
blocks on a chip. Ideally, the objectives of the placement step are to 

• Guarantee the router can complete the routing step 

• Minimize all the critical net delays 

• Make the chip as dense as possible 

887



16.2 PLACEMENT 877 

We may also have the following additional objectives: 

• Minimize power dissipation 

• Minimize cross talk between signals 

Objectives such as these are difficult to define in a way that can be solved with 
an algorithm and even harder to actually meet. Current placement tools use more 
specific and achievable criteria. The most commonly used placement objectives are 
one or more of the following: 

• Minimize the total estimated interconnect length 

• Meet the timing requirements for critical nets 

• Minimize the interconnect congestion 

Each of these objectives in some way represents a compromise. 

16.2.3 Measurement of Placement Goals and Objectives 
In order to determine the quality of a placement, we need to be able to measure it. 
We need an approximate measure of interconnect length, closely correlated with the 
final interconnect length, that is easy to calculate. 

The graph structures that correspond to making all the connections for a net are 
known as trees on graphs (or just trees). Special classes of trees-Steiner trees­
minimize the total length of interconnect and they are central to ASIC routing algo­
rithms. Figure 16.20 shows a minimum Steiner tree. This type of tree uses diagonal 
connections-we want to solve a restricted version of this problem, using intercon­
nects on a rectangular grid. This is called rectilinear routing or Manhattan rout­
ing (because of the east-west and north-south grid of streets in Manhattan). We say 
that the Euclidean distance between two points is the straight-line distance ("as the 
crow flies"). The Manhattan distance (or rectangular distance) between two points 
is the distance we would have to walk in New York. 

The minimum rectilinear Steiner tree (MRST) is the shortest interconnect 
using a rectangular grid. The determination of the MRST is in general an 
NP-complete problem-which means it is hard to solve. For small numbers of ter­
minals heuristic algorithms do exist, but they are expensive to compute. Fortunately 
we only need to estimate the length of the interconnect. Two approximations to the 
MRST are shown in Figure 16.2l. 

The complete graph has connections from each terminal to every other termi­
nal [Hanan, Wolff, and Agule, 1973]. The complete-graph measure adds all the 
interconnect lengths of the complete-graph connection together and then divides by 
n12, where n is the number of terminals. We can justify this since, in a graph with n 
terminals, (n - 1) interconnects will emanate from each terminal to join the other 
(n - 1) terminals in a complete graph connection. That makes n(n - 1) interconnects 
in total. However, we have then made each connection twice. So there are one-half 

888



878 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

expanded view of part of flexible block A 
ltermi·naX············································ ...................................................... . 

A.25 : ............................. , ....................................... : ................... . 
rows of cell instance name -.,J L..-

(a) 

W1234567 

standard (b) 50", 
cells 

1 ---r:r::r=:r=II--l X minimum 
rectilinear 
Steiner tree 3 i-+ --j---H-L+-----,---+ -I 

4 :_+ __ j __ '+_L ___ ,', __ ,+ ____ _ 
5 
6 
7 

-.,J L..- Z 
50", 

(c) 

L=16 

-.J L..- Z 
50", 

(d) 

Steiner 
point 

L=15 

FIGURE 16.20 Placement using trees on graphs. (a) The floorplan from Figure 16.11b. 
(b) An expanded view of the flexible block A showing four rows of standard cells for place­
ment (typical blocks may contain thousands or tens of thousands of logic cells). We want to 
find the length of the net shown with four terminals, W through Z, given the placement of four 
logic cells (labeled: A.211 , A.19, A.43, A.25). (c) The problem for net (W, X, Y, Z) drawn as a 
graph. The shortest connection is the minimum Steiner tree. (d) The minimum rectilinear 
Steiner tree using Manhattan routing. The rectangular (Manhattan) interconnect-length mea­
sures are shown for each tree. 

this many, or 12(n - 1)/2, interconnects needed for a complete graph connection. Now 
we actually only need (n - 1) interconnects to join 11 terminals, so we have n/2 times 
as many interconnects as we really need. Hence we divide the total net length of the 
complete graph connection by n/2 to obtain a more reasonable estimate of minimum 
interconnect length. Figure 16.21(a) shows an example of the complete-graph mea­
sure. 

889



16.2 PLACEMENT 879 

FIGURE 16.21 Interconnect-length mea­
sures. (a) Complete-graph measure. (b)-Half­
perimeter measure. 

(a) 28 26 24 22 
___ 30- 42\ 40 

2 144! I 20 
--I]---r:~ 

4 I : i 18 

6 ;~::F 16 

8 10 12 14 

(b) 

2 1--+-+--.-+--1-

4 f--I- _+_+ __ 

6 

8 

20 

18 

16 

complete-graph measure 

L=44/2=22 

half-perimeter measure 

L=28/2 = 14 

The bounding box is the smallest rectangle that encloses all the terminals (not 
to be confused with a logic cell bounding box, which encloses all the layout in a 
logic cell). The half-perimeter measure (or bounding-box measure) is one-half the 
perimeter of the bounding box (Figure 16.21b) [Schweikert, 1976]. For nets with 
two or three terminals (corresponding to a fanout of one or two, which usually 
includes over 50 percent of all nets on a chip), the half-perimeter measure is the 
same as the minimum Steiner tree. For nets with four or five terminals, the minimum 
Steiner tree is between one and two times the half-perimeter measure [Hanan, 1966]. 
For a circuit with m nets, using the half-perimeter measure corresponds to minimiz­
ing the cost function, 

m 

f = ! " h. 2 L... I 

i = 1 

where hi is the half-perimeter measure for net i. 

(16.5) 

It does not really matter if our approximations are inaccurate if there is a good 
correlation between actual interconnect lengths (after routing) and our approxima­
tions. Figure 16.22 shows that we can adjust the complete-graph and half-perimeter 
measures using correction factors [Goto and Matsuda, 1986]. Now our wiring length 
approximations are functions, not just of the terminal positions, but also of the num­
ber of terminals, and the size of the bounding box. One practical example adjusts a 
Steiner-tree approximation using the number of terminals [Chao, Nequist, and 
Vuong, 1990]. This technique is used in the Cadence Gate Ensemble placement tool, 
for example. 

890



880 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

FIGURE 16.22 Correlation between total length of chip inter­
connect and the half-perimeter and complete-graph measures. 

chip wire 
length 
(arbitrary 
units) 

2.5 

2.0 

1.5 

'" half-perimeter 
measure 

1.5 2.0 
wire-length prediction using 
approximation (arbitrary units) 

One problem with the measurements we have described is that the MRST may 
only approximate the interconnect that will be completed by the detailed router. 
Some programs have a meander factor that specifies, on average, the ratio of the 
interconnect created by the routing tool to the interconnect-length estimate used by 
the placement tool. Another problem is that we have concentrated on finding esti­
mates to the MRST, but the MRST that minimizes total net length may not minimize 
net delay (see Section 16.2.8). 

There is no point in minimizing the interconnect length if we create a placement 
that is too congested to route. If we use minimum interconnect congestion as an 
additional placement objective, we need some way of measuring it. What we are try­
ing to measure is interconnect density. Unfortunately we always use the term density 
to mean channel density (which we shall discuss in Section 17.2.2, "Measurement of 
Channel Density"). In this chapter, while we are discussing placement, we shall try 
to use the term congestion, instead of density, to avoid any confusion. 

One measure of interconnect congestion uses the maximum cut line. Imagine a 
horizontal or vertical line drawn anywhere across a chip or block, as shown in 
Figure 16.23. The number of interconnects that must cross this line is the cut size (the 
number of interconnects we cut). The maximum cut line has the highest cut size. 

891



0000000000000000000 D expanded view of part of flexible block A 
o 0 
o 0 
o 
o 
o 
o 
o 
o 
o 

(a) 
maximum 
cut line (b) 

16.2 PLACEMENT 881 

built-in channels 
feedthrough 

FIGURE 16.23 Interconnect congestion for the cell-based ASIC from Figure 16.11 (b). 
(a) Measurement of congestion. (b) An expanded view of flexible block A shows a maximum 
cut line. 

Many placement tools minimize estimated interconnect length or interconnect 
congestion as objectives. The problem with this approach is that a logic cell may be 
placed a long way from another logic cell to which it has just one connection. This 
logic cell with one connection is less important as far as the total wire length is con­
cerned than other logic cells, to which there are many connections. However, the 
one long connection may be critical as far as timing delay is concerned. As technol­
ogy is scaled, interconnection delays become larger relative to circuit delays and this 
problem gets worse. 

In timing-driven placement we must estimate delay for every net for every 
trial placement, possibly for hundreds of thousands of gates. We cannot afford to use 
anything other than the very simplest estimates of net delay. Unfortunately, the mini­
mum-length Steiner tree does not necessarily correspond to the interconnect path 
that minimizes delay. To construct a minimum-delay path we may have to route with 
non-Steiner trees. In the placement phase typically we take a simple interconnect­
length approximation to this minimum-delay path (typically the half-perimeter mea­
sure). Even when we can estimate the length of the interconnect, we do not yet have 
information on which layers and how many vias the interconnect will use or how 
wide it will be. Some tools allow us to include estimates for these parameters. Often 
we can specify metal usage, the percentage of routing on the different layers to 
expect from the router. This allows the placement tool to estimate RC values and 
delays-and thus minimize delay. 

892



882 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

16.2.4 Placement Algorithms 
There are two classes of placement algorithms commonly used in commercial CAD 
tools: constructive placement and iterative placement improvement. A constructive 
placement method uses a set of rules to arrive at a constructed placement. The most 
commonly used methods are variations on the min-cut algorithm. The other com­
monly used constructive placement algorithm is the eigenvalue method. As in sys­
tem partitioning, placement usually starts with a constructed solution and then 
improves it using an iterative algorithm. In most tools we can specify the locations 
and relative placements of certain critical logic cells as seed placements. 

The min-cut placement method uses successive application of partitioning 
[Breuer, 1977]. The following steps are shown in Figure 16.24: 

1. Cut the placement area into two pieces. 

2. Swap the logic cells to minimize the cut cost. 

3. Repeat the process from step 1, cutting smaller pieces until all the logic cells 
are placed. 

Usually we divide the placement area into bins. The size of a bin can vary, from 
a bin size equal to the base cell (for a gate array) to a bin size that would hold sev­
erallogic cells. We can start with a large bin size, to get a rough placement, and then 
reduce the bin size to get a final placement. 

The eigenvalue placement algorithm uses the cost matrix or weighted 
connectivity matrix (eigenvalue methods are also known as spectral methods) 
[Hall, 1970]. The measure we use is a cost function f that we shall minimize, given 
by 

n 

f 
1 I c .. d .. 

2 - , 
2 I] I] 

(16.6) 

i, j = 1 

where C = [cij] is the (possibly weighted) connectivIty matrix, and dij is the 
Euclidean distance between the centers of logic cell i and logic cell j. Since we are 
going to minimize a cost function that is the square of the distance between logic 
cells, these methods are also known as quadratic placement methods. This type of 
cost function leads to a simple mathematical solution. We can rewrite the cost func­
tion f in matrix form: 

11 

1 L 2 2 T T f = - c .. (x.-x.) + (y.-y.) = x Bx+y By , 2 I] I ] I ] 
(16.7) 

i, j = 1 

In Eq. 16.7, B is a symmetric matrix, the disconnection matrix (also called the 
Laplacian). 

893



binA1 

logic cell 

connections ---;----11 ... \ 

between modules 

bin /' X Z y 

binA2 

Swap 
modules to 
minimize 
cut cost. 

cut-line edges cut = 9 

ABCDEF 

chip 

(a) 

cut cost = 20 (weights are not shown) 
(c) (d) 

16.2 PLACEMENT 883 

Lump all connections to 
the center of each bin. 

~~ ....... T ... B ! 

edg;f21-" .1- 1 

weight! 2 

/r··· 
bin . 

Throwaway 
these edges. 

edges between bins 
represent connections 

(b) 

i=~~I=i~: a:·· +-"("i cut line , ,3, ' 
, i edges cut= 1 

swap r-tf cut cost = 3 
iL2L. 

(e) 

FIGURE 16.24 Min-cut placement. (a) Divide the chip into bins using a grid. (b) Merge all 
connections to the center of each bin. (c) Make a cut and swap logic cells between bins to 
minimize the cost of the cut. (d) Take the cut pieces and throw out all the edges that are not 
inside the piece. (e) Repeat the process with a new cut and continue until we reach the indi­
vidual bins. 

We may express the Laplacian B in terms of the connectivity matrix C; and D, a 
diagonal matrix (known as the degree matrix), defined as follows: 

11 

B = D - C; d ii = I. cij ' i = 1, ... , n; d ij = 0, i * j. 
j = 1 

(16.8) 

We can simplify the problem by noticing that it is symmetric in the x- and 
y-coordinates. Let us solve the simpler problem of minimizing the cost function for 
the placement of logic cells along just the x-axis first. We can then apply this solu­
tion to the more general two-dimensional placement problem. Before we solve this 
simpler problem, we introduce a constraint that the coordinates of the logic cells 
must correspond to valid positions (the cells do not overlap and they are placed on-

894



884 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

grid). We make another simplifying assumption that all logic cells are the same size 
and we must place them in fixed positions. We can define a vector p consisting of 
the valid positions: 

(16.9) 

For a valid placement the x-coordinates of the logic cells, 

(16.10) 

must be a permutation of the fixed positions, p. We can show that requiring the logic 
cells to be in fixed positions in this way leads to a series of n equations restricting 
the values of the logic cell coordinates [Cheng and Kuh, 1984]. If we impose all of 
these constraint equations the problem becomes very complex. Instead we choose 
just one of the equations: 

n n 

I x i
2 

= I Pi
2

. (16.11) 

i=l i=l 

Simplifying the problem in this way will lead to an approximate solution to the 
placement problem. We can write this single constraint on the x-coordinates in 
matrix form: 

n 
T 

X X = P; P = I P~' (16.12) 

i = 1 

where P is a constant. We can now summarize the formulation of the problem, with 
the simplifications that we have made, for a one-dimensional solution. We must min­
imize a cost function, g (analogous to the cost functionfthat we defined for the two­
dimensional problem in Eq. 16.7), where 

T 
g = x Bx (16.13) 

subject to the constraint: 

T 
x X = P. (16.14) 

This is a standard problem that we can solve using a Lagrangian multiplier: 

T T 
A = x Bx-;"'[x x-P] . (16.15) 

To find the value of x that minimizes g we differentiate A partially with respect 
to x and set the result equal to zero. We get the following equation: 

[B-;"'I]x = O. (16.16) 

895



16.2 PLACEMENT 885 

This last equation is called the characteristic equation for the disconnection 
matrix B and occurs frequently in matrix algebra (this A has nothing to do with scal­
ing). The solutions to this equation are the eigenvectors and eigenvalues of B. Mul­
tiplying Eq. 16.16 by xT we get: 

(16.17) 

However, since we imposed the constraint xT x = P and xT Bx = g, then 

(16.18) 

The eigenvectors of the disconnection matrix B are the solutions to our place­
ment problem. It turns out that (because something called the rank of matrix B is 
n - 1) there is a degenerate solution with all x-coordinates equal (A = O)-this makes 
some sense because putting all the logic cells on top of one another certainly mini­
mizes the interconnect. The smallest, nonzero, eigenvalue and the corresponding 
eigenvector provides the solution that we want. In the two-dimensional placement 
problem, the x- and y-coordinates are given by the eigenvectors corresponding to the 
two smallest, nonzero, eigenvalues. (In the next section a simple example illustrates 
this mathematical derivation.) 

16.2.5 Eigenvalue Placement Example 
Consider the following connectivity matrix C and its disconnection matrix B, calcu­
lated from Eq. 16.8 [Hall, 1970]: 

0001 1000 o 0 0 1 1 0 0 -1 

C=OOII B=0200 o 0 1 1 ° 2 -1 -1 = (16.19) 
0100 0010 o 1 0 ° ° -1 1 0 

1 1 ° ° 000 2 1 1 0 0 -1 -1 ° 2 

Figure 16.25(a) shows the corresponding network with four logic cells (1-4) 
and three nets (A-C). Here is a MatLab script to find the eigenvalues and eigenvec­
tors of B: 

C=[O 0 0 1· , 0 0 1 1· , 0 1 0 0; 1 1 0 0] 

D=[l 0 0 0; 0 2 0 o· , 0 0 1 0; 0 0 0 2] 

B=D-C 
[X,D] = eig(B) 

896



886 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 . 0.8 

3\ Y\ 1\ 11 
logic B C A 

cell (b) 
(a) 

0.6 

0.4 

0.2 
(c) 

0 B A 

-0.2 

-0.4 ..-cell 
abutment 

-0.6 box 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

(d) 

FIGURE 16.25 Eigenvalue placement. (a) An example network. (b) The one-dimensional 
placement.The small black squares represent the centers of the logic cells. (c) The two­
dimensional placement. The eigenvalue method takes no account of the logic cell sizes or 
actual location of logic cell connectors. (d) A complete layout. We snap the logic cells to valid 
locations, leaving room for the routing in the channel. 

Running this script, we find the eigenvalues of Bare 0.5858, 0.0, 2.0, and 
3.4142. The corresponding eigenvectors of Bare 

0.6533 0.5000 0.5000 -0.2706 

-0.2706 0.5000 -0.5000 -0.6533 

-0.6533 0.5000 0.5000 0.2706 

0.2706 0.5000 -0.5000 0.6533 

(16.20) 

897



16.2 PLACEMENT 887 

For a one-dimensional placement (Figure 16.25b), we use the eigenvector 
(0.6533, -0.2706, -0.6533, -0.2706) corresponding to the smallest nonzero eigenvalue 
(which is 0.5858) to place the logic cells along the x-axis. The two-dimensional place­
ment (Figure 16.25c) uses these same values for the x-coordinates and the eigenvector 
(0.5, -0.5, 0.5, -0.5) that corresponds to the next largest eigenvalue (which is 2.0) for 
the y-coordinates. Notice that the placement shown in Figure 16.25(c), which shows 
logic-cell outlines (the logic-cell abutment boxes), takes no account of the cell sizes, 
and cells may even overlap at this stage. This is because, in Eq. 16.11, we discarded all 
but one of the constraints necessary to ensure valid solutions. Often we use the 
approximate eigenvalue solution as an initial placement for one of the iterative 
improvement algorithms that we shall discuss in Section 16.2.6. 

16.2.6 Iterative Placement Improvement 
An iterative placement improvement algorithm takes an existing placement and 
tries to improve it by moving the logic cells. There are two parts to the algorithm: 

• The selection criteria that decides which logic cells to try moving. 

• The measurement criteria that decides whether to move the selected cells. 

There are several interchange or iterative exchange methods that differ in their 
selection and measurement criteria: 

• pairwise interchange, 

• force-directed interchange, 

• force-directed relaxation, and 

• force-directed pairwise relaxation. 

All of these methods usually consider only pairs of logic cells to be exchanged. 
A source logic cell is picked for trial exchange with a destination logic cell. We have 
already discussed the use of interchange methods applied to the system partitioning 
step. The most widely used methods use group migration, especially the 
Kernighan-Lin algorithm. The pairwise-interchange algorithm is similar to the 
interchange algorithm used for iterative improvement in the system partitioning 
step: 

1. Select the source logic cell at random. 

2. Try all the other logic cells in turn as the destination logic cell. 

3. Use any of the measurement methods we have discussed to decide on whether 
to accept the interchange. 

4. The process repeats from step 1, selecting each logic cell in turn as a source 
logic cell. 

Figure 16.26(a) and (b) show how we can extend pairwise interchange to swap 
more than two logic cells at a time. If we swap A logic cells at a time and find a 
locally optimum solution, we say that solution is A-optimum. The neighborhood 
exchange algorithm is a modification to pairwise interchange that considers only 

898



888 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

source 
module 

~ 

trial destination module 

3 4 

7 8 

11 12 

15 16 

(a) 

/...=3 swap 

,--~ ;\ ·-1 I 1 j 2 I 3 I 4 
i·· .......... I ....... --f .... J]-+ .. i 
: 5j 6! 71 81 
r····-·-·········--···t·········-····~·-+ .... ··· .. -···-·-· ... ! .... _·_·_····_·1 

; 9 : 10111 i 121 
r·-·--; -.-... -,.-.--.~.-.-.-j 
113 l 14115' 161 
l~_~ ___ ~; __ .~,_~l __ .. _L"~ __ J 

(b) 

i-neighborhood of 
module 1 

/ 
1 2 3 4 

5 6 7 8 

9 10 11 12 

14 15 16 

(c) 

2-neighborhood of 
module 1 

/ 
11 2 3 4 
I 

5 6 7 8 

9 10 11 12 

13 14 15 16 

(d) 

FIGURE 16.26 Interchange. (a) Swapping the source logic cell with a destination logic cell 
in pairwise interchange. (b) Sometimes we have to swap more than two logic cells at a time 
to reach an optimum placement, but this is expensive in computation time. Limiting the search 
to neighborhoods reduces the search time. Logic cells within a distance c of a logic cell form 
an c-neighborhood. (c) A one-neighborhood. (d) A two-neighborhood. 

destination logic cells in a neighborhood-cells within a certain distance, c, of the 
source logic cell. Limiting the search area for the destination logic cell to the 
c-neighborhood reduces the search time. Figure 16.26(c) and (d) show the one- and 
two-neighborhoods (based on Manhattan distance) for a logic cell. 

Neighborhoods are also used in some of the force-directed placement 
methods. Imagine identical springs connecting all the logic cells we wish to place. 
The number of springs is equal to the number of connections between logic cells. 
The effect of the springs is to pull connected logic cells together. The more highly 
connected the logic cells, the stronger the pull of the springs. The force on a logic 
cell i due to logic cell j is given by Hooke's law, which says the force of a spring is 
proportional to its extension: 

F .. = -c .. X .. 
IJ IJ IJ 

(16.21) 

The vector component xij is directed from the center of logic cell i to the center 
of logic cell j. The vector magnitude is calculated as either the Euclidean or Manhat­
tan distance between the logic cell centers. The cij form the connectivity or cost 
matrix (the matrix element Cij is the number of connections between logic cell i and 
logic cell j). If we want, we can also weight the Cij to denote critical connections. 
Figure 16.27 illustrates the force-directed placement algorithm. 

In the definition of connectivity (Section 15.7.1, "Measuring Connectivity") it 
was pointed out that the network graph does not accurately model connections for 
nets with more than two terminals. Nets such as clock nets, power nets, and global 
reset lines have a huge number of terminals. The force-directed placement algo­
rithms usually make special allowances for these situations to prevent the largest 

899



16.2 PLACEMENT 889 

spring 
(-5,4) 

~
-2'2) 

(-2,2) 

(-1 ,0) I 

(a) (b) (c) (d) 

FIGURE 16.27 Force-directed placement. (a) A network with nine logic cells. (b) We make 
a grid (one logic cell per bin). (c) Forces are calculated as if springs were attached to the cen­
ters of each logic cell for each connection. The two nets connecting logic cells A and I corre­
spond to two springs. (d) The forces are proportional to the spring extensions. 

nets from snapping all the logic cells together. In fact, without external forces to 
counteract the pull of the springs between logic cells, the network will collapse to a 
single point as it settles. An important part of force-directed placement is fixing 
some of the logic cells in position. Normally ASIC designers use the I/O pads or 
other external connections to act as anchor points or fixed seeds. 

Figure 16.28 illustrates the different kinds of force-directed placement algo­
rithms. The force-directed interchange algorithm uses the force vector to select a 

r~~-T~~-~f--c·~r--?j 

E: FiG l H! 

'. '·1J.I.t[Vi ~:~t~r r'M<--~Ni 0 p. ~ 

Move P to 
location 
that 
minimizes 
force 
vector. 

Move P to 
location 
that 
minimizes 
force 
vector ...7 D:J 

Trial swap P with nearest 
neighbors in direction of force 
vector. 

Repeat process, 
forming a chain. Swap is accepted if 

destination module moves 
to E-neighborhood of P. 

(a) (b) (c) 

FIGURE 16.28 Force-directed iterative placement improvement. (a) Force-directed inter­
change. (b) Force-directed relaxation. (c) Force-directed pairwise relaxation. 

pair of logic cells to swap. In force-directed relaxation a chain of logic cells is 
moved. The force-directed pairwise relaxation algorithm swaps one pair of logic 
cells at a time. 

900



890 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

We reach a force-directed solution when we minimize the energy of the system, 
corresponding to minimizing the sum of the squares of the distances separating logic 
cells. Force-directed placement algorithms thus also use a quadratic cost function. 

16.2.7 Placement Using Simulated Annealing 
The principles of simulated annealing were explained in Section 15.7.8, "Simulated 
Annealing." Because simulated annealing requires so many iterations, it is critical 
that the placement objectives be easy and fast to calculate. The optimum connection 
pattern, the MRST, is difficult to calculate: Using the half-perimeter measure 
(Section 16.2.3) corresponds to minimizing the total interconnect length. Applying 
simulated annealing to placement, the algorithm is as follows: 

1. Select logic cells for a trial interchange, usually at random. 

2. Evaluate the objective function E for the new placement. 

3. If M is negative or zero, then exchange the logic cells. If M is positive, then 
exchange the logic cells with a probability of exp(-M/1). 

4. Go back to step 1 for a fixed number of times, and then lower the temperature 
T according to a cooling schedule: Tn+l = 0.9 Tn' for example. 

Kirkpatrick, Gerlatt, and Vecchi first described the use of simulated annealing 
applied to VLSI problems [1983]. Experience since that time has shown that simu­
lated annealing normally requires the use of a slow cooling schedule and this means 
long CPU run times [Sechen, 1988; Wong, Leong, and Liu, 1988]. As a general rule, 
experiments show that simple min-cut based constructive placement is faster than 
simulated annealing but that simulated annealing is capable of giving better results 
at the expense of long computer run times. The iterative improvement methods that 
we described earlier are capable of giving results as good as simulated annealing, 
but they use more complex algorithms. 

While I am making wild generalizations, I will digress to discuss benchmarks 
of placement algorithms (or any CAD algorithm that is random). It is important to 
remember that the results of random methods are themselves random. Suppose the 
results from two random algorithms, A and B, can each vary by ±1O percent for any 
chip placement, but both algorithms have the same average performance. If we com­
pare single chip placements by both algorithms, they could falsely show algorithm A 
to be better than B by up to 20 percent or vice versa. Put another way, if we run 
enough test cases we will eventually find some for which A is better than B by 20 
percent-a trick that Ph.D. students and marketing managers both know well. Even 
single-run evaluations over multiple chips is hardly a fair comparison. The only way 
to obtain meaningful results is to compare a statistically meaningful number of runs 
for a statistically meaningful number of chips for each algorithm. This same caution 
applies to any VLSI algorithm that is random. There was a Design Automation Con­
ference panel session whose theme was "Enough of algorithms claiming improve-
ments of 5 %." . 

901



16.2 PLACEMENT 891 

16.2.8 Timing-Driven Placement Methods 
Minimizing delay is becoming more and more important as a placement objective. 
There are two main approaches: net based and path based. We know that we can use 
net weights in our algorithms. The problem is to calculate the weights. One method 
finds the n most critical paths (using a timing-analysis engine, possibly in the syn­
thesis tool). The net weights might then be the number of times each net appears in 
this list. The problem with this approach is that as soon as we fix (for example) the 
first 100 critical nets, suddenly another 200 become critical. This is rather like trying 
to put worms in a can-as soon as we open the lid to put one in, two more pop out. 

Another method to find the net weights uses the zero-slack algorithm [Hauge 
et aI., 1987]. Figure 16.29 shows how this works (all times are in nanoseconds). 
Figure 16.29(a) shows a circuit with primary inputs at which we know the arrival 
times (this is the original definition, some people use the term actual times) of each 
signal. We also know the required times for the primary outputs-the points in 
time at which we want the signals to be valid. We can work forward from the pri­
mary inputs and backward from the primary outputs to determine arrival and 
required times at each input pin for each net. The difference between the required 
and arrival times at each input pin is the slack time (the time we have to spare). The 
zero-slack algorithm adds delay to each net until the slacks are zero, as shown in 
Figure 16.29(b). The net delays can then be converted to weights or constraints in 
the placement. Notice that we have assumed that all the gates on a net switch at the 
same time so that the net delay can be placed at the output of the gate driving the 
net-a rather poor timing model but the best we can use without any routing infor­
mation. 

An important point to remember is that adjusting the net weight, even for every 
net on a chip, does not theoretically make the placement algorithms any more com­
plex-we have to deal with the numbers anyway. It does not matter whether the net 
weight is 1 or 6.6, for example. The practical problem, however, is getting the 
weight information for each net (usually in the form of timing constraints) from a 
synthesis tool or timing verifier. These files can easily be hundreds of megabytes in 
size (see Section 16.4). 

With the zero-slack algorithm we simplify but overconstrain the problem. For 
example, we might be able to do a better job by making some nets a little longer 
than the slack indicates if we can tighten up other nets. What we would really like to 
do is deal with paths such as the critical path shown in Figure 16.29(a) and not just 
nets. Path-based algorithms have been proposed to do this, but they are complex and 
not all commercial tools have this capability (see, for example, [Youssef, Lin, and 
Shragowitz, 1992]). 

There is still the question of how to predict path delays between gates with only 
placement information. Usually we still do not compute a routing tree but use simple 
approximations to the total net length (such as the half-perimeter measure) and then 
use this to estimate a net delay (the same to each pin on a net). It is not until the 
routing step that we can make accurate estimates of the actual interconnect delays. 

902



892 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

(a) 

(b) 

A 

primary 
input 

1 1 

1/4/3 3/6/3 2 
1 ~ 2 

, "" arrival/required/slack 

gate delay 

4/4/0 

2+0.5 

1.5/1.5/0 

4/4/0 
1 +0.5 1 + 1.5 

2.5/2.5/0 2+0 
1 + 1.5 " 2 + 1.5 

, arrival/required/slack 
gate delay + net delay 

FIGURE 16.29 The zero-slack algorithm. (a) The circuit with no net delays. (b) The zero­
slack algorithm adds net delays (at the outputs of each gate, equivalent to increasing the gate 
delay) to reduce the slack times to zero. 

903



16.2 PLACEMENT 893 

16.2.9 A Simple Placement Example 
Figure 16.30 shows an example network and placements to illustrate the measures 

maximum capacity of 
cut line (y) = 4 each bin 

wire edge=2 
length = 1 ,------- ----T~ 

routing length = 7 
maximum cut (x and y) = 2 

~ I A B IE' 
~ ! '_ cut line=2 

C D F 
1.~-~~AI~~~~1 

I ; ; 

'+--I-IQ-~-,-~ 
!_!?~l~_± ... ~J 

-+-_+--+_1-'- cut line = 1 

total routing length = 8 

(a) (b) 

FIGURE 16.30 Placement example. 
(a) An example network. (b) In this place­
ment, the bin size is equal to the logic cell size 
and all the logic cells are assumed equal size. 
(c) An alternative placement with a lower total 
routing length. (d) A layout that might result (d) 
from the placement shown in b. The channel 
densities correspond to the cut-line sizes. 
Notice that the logic cells are not all the same 
size (which means there are errors in the 
interconnect-length estimates we made dur-
ing placement). 

for interconnect length and interconnect congestion. Figure 16.30(b) and (c) illus­
trate the meaning of total routing length, the maximum cut line in the x-direction, the 
maximum cut line in the y-direction, and the maximum density. In this example we 
have assumed that the logic cells are all the same size, connections can be made to 
terminals on any side, and the routing channels between each adjacent logic cell have 
a capacity of 2. Figure 16.30(d) shows what the completed layout might look like. 

(c) 

~channel 
density=2 

cell abutment 
box 

904



894 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

16.3 Physical Design Flow 

Historically placement was included with routing as a single tool (the term P&R is 
often used for place and route). Because interconnect delay now dominates gate 
delay, the trend is to include placement within a floorplanning tool and use a sepa­
rate router. Figure 16.31 shows a design flow using synthesis and a floorplanning 
tool that includes placement. This flow consists of the following steps: 

1. Design entry. The input is a logical description with no physical information. 

2. Synthesis. The initial synthesis contains little or no information on any inter­
connect loading. The output of the synthesis tool (typically an ED IF netlist) is 
the input to the floorplanner. 

3. Initialfloorplan. From the initial floorplan interblock capacitances are input to 
the synthesis tool as load constraints and intrablock capacitances are input as 
wire-load tables. 

4. Synthesis with load constraints. At this point the synthesis tool is able to 
resynthesize the logic based on estimates of the interconnect capacitance each 

~ VHDUVeriiog 
A~§ netlist 

design entry 
increasing 
accuracy of 
wire-load 
estimates 

initial synthesis 

~ 
~~terconnect 

load 

initial floorplan 

· Allf::~C~~~s 
synthesis with load 
constraints 

timing-driven placement A 
-----------Il~~ L.:.:.2:I---et--tt---., 

synthesis 
with in-place 
optimization A 

o error 

FIGURE 16.31 Timing-driven floorplanning and placement design flow. Compare with Fig­
ure 15.1 on p. 806. 

905



16.4 INFORMATION FORMATS 895 

gate is driving. The synthesis tool produces a forward annotation file to con­
strain path delays in the placement step. 

5. Timing-driven placement. After placement using constraints from the synthe­
sis tool, the location of every logic cell on the chip is fixed and accurate esti­
mates of interconnect delay can be passed back to the synthesis tool. 

6. Synthesis with in-place optimization (IPO). The synthesis tool changes the 
drive strength of gates based on the accurate interconnect delay estimates from 
the floorplanner without altering the netlist structure. 

7. Detailed placement. The placement information is ready to be input to the 
routing step. 

In Figure 16.31 we iterate between floorplanning and synthesis, continuously 
improving our estimate for the interconnect delay as we do so. 

16.4 Information Formats 

With the increasing importance of interconnect a great deal of information needs to 
flow between design tools. There are some de facto standards that we shall look at 
next. Some of the companies involved are working toward releasing these formats as 
IEEE standards. 

16.4.1 SDF for Floorplanning and Placement 
In Section 13.5.6, "SDF in Simulation," we discussed the structure and use of the 
standard delay format (SDF) to describe gate delay and interconnect delay. We may 
also use SDF with floorplanning and synthesis tools to back-annotate an intercon­
nect delay. A synthesis tool can use this information to improve the logic structure. 
Here is a fragment of SDF: 

(INSTANCE B) (DELAY (ABSOLUTE 
(INTERCONNECT A.INVS.OUT B.DFFl.Q (:0.6:) (:0.6:)))) 

In this example the rising and falling delay is 60 ps (equal to 0.6 units multi­
plied by the time scale of 100 ps per unit specified in a TIMESCALE construct that is 
not shown). The delay is specified between the output port of an inverter with 
instance name A. INV8 in block A and the Q input port of a D flip-flop (instance 
name B. DFF 1) in block B. A I. I (period or fullstop) is set to be the hierarchy 
divider in another construct that is not shown. 

There is another way of specifying interconnect delay using NETDELAY (a short 
form of the INTERCONNECT construct) as follows: 

(TIMESCALE lOOps) (INSTANCE B) (DELAY (ABSOLUTE 

(NETDELAY netl (0.6))) 

906



896 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

In this case all delays from an output port to, possibly multiple, input ports have 
the same value (we can also specify the output port name instead 6f the net name to 
identify the net). Alternatively we can lump interconnect delay at an input port: 

(TIMESCALE lOOps) (INSTANCE B.DFF1) (DELAY (ABSOLUTE 

(PORT CLR (16:18:22) (17:20:25»» 

This PORT construct specifies an interconnect delay placed at the input port of a 
logic cell (in this case the CLR pin of a flip-flop). We do not need to specify the start 
of a path (as we do for INTERCONNECT). 

We can also use SDP to forward-annotate path delays using timing 
constraints (there may be hundreds or thousands of these in a file). A synthesis tool 
can pass this information to the floorplanning and placement steps to allow them to 
create better layout. SDP describes timing checks using a range of TIMINGCHECK 

constructs. Here is an example of a single path constraint: 

(TIMESCALE lOOps) (INSTANCE B) (TIMINGCHECK 

(PATHCONSTRAINT A.AOI22 1.0 B.ND02 34.0 (0.8) (0.8») 

This describes a constraint (keyword PATHCONSTRAINT) for the rising and falling 
delays between two ports at each end of a path (which may consist of several nets) 
to be less than 80 ps. Using the SUM construct we can constrain the sum of path 
delays to be less than a specific value as follows: 

(TIMESCALE lOOps) (INSTANCE B) (TIMINGCHECK 

(SUM (AOI22 1.0 ND02_34.I1) (ND02 34.0 ND02 35.I1) (0.8») 

We can also constrain skew between two paths (in this case to be less than 
] 0 ps) using the DIFF construct: 

(TIMESCALE lOOps) (INSTANCE B) (TIMINGCHECK 

(DIFF (A.I 1.0 B.ND02_1.I1) (A.I 1.0.0 B.ND02_2.I1) (0.1») 

In addition we can constrain the skew between a reference signal (normally the 
clock) and all other ports in an instance (again in this case to be less than 10 ps) 
using the SKEWCONSTRAINT construct: 

(TIMESCALE lOOps) (INSTANCE B) (TIMINGCHECK 

(SKEWCONSTRAINT (posedge elk) (0.1») 

At present there is no easy way in SDP to constrain the skew between a refer­
ence signal and other signals to be greater than a specified amount. 

16.4.2 PDEF 

The physical design exchange format (PDEF) is a proprietary file format used by 
Synopsys to describe placement information and the clustering of logic cells. Here is 
a simple, but complete PDEP file: 

(CLUSTERFILE 

(PDEFVERSION "1.0") 

907



(DESIGN "myDesign") 

(DATE "THU AUG 6 12:00 1995") 

(VENDOR "ASICS_R_US") 
(PROGRAM "PDEF _ GEN" ) 
(VERSION "V2.2") 

(DIVIDER .) 

(CLUSTER (NAME "ROOT") 
( WIRE_LOAD "1 Omm x 1 Omm" ) 

(UTILIZATION 50.0) 
(MAX_UTILIZATION 60.0) 

(X_BOUNDS 100 1000) 

(Y_BOUNDS 100 1000) 

(CLUSTER (NAME "LEAF_1") 
(WIRE_LOAD "50k gates") 

(UTILIZATION 50.0) 

(K~X_UTILIZATION 60.0) 

(X_BOUNDS 100 500) 
(Y_BOUNDS 100 200) 

(CELL (NAME L1.RAM01) 
(CELL (NAME L1.ALU01) 

) 

This file describes two clusters: 

16.4 INFORMATION FORMATS 897 

• ROOT, which is the top-level (the whole chip). The file describes the size (x­
and y-bounds), current and maximum area utilization (i.e., leaving space for 
interconnect), and the name of the wire-load table, '10mm x 10mm', to use for 
this block, chosen because the chip is expected to be about 10 mm on a side. 

• LEAF _1, a block below the top level in the hierarchy. This block is to use pre­
dicted capacitances from a wire-load table named '50k gates I (chosen 
because we know there are roughly 50 k-gate in this block). The LEAF _1 block 
contains two logic cells: L1.RAM01 and L1.ALUOl. 

16.4.3 lEF and DEF 
The library exchange format (LEF) and design exchange format (DEF) are both 
proprietary formats originated by Tangent in the TanCell and TanGate place-and­
route tools which were bought by Cadence and now known as Cell3 Ensemble and 
Gate Ensemble respectively. These tools, and their derivatives, are so widely used 
that these formats have become a de facto standard. LEF is used to define an IC pro­
cess and a logic cell library. For example, you would use LEF to describe a gate 
array: the base cells, the legal sites for base cells, the logic macros with their size and 
connectivity information, the interconnect layers and other information to set up the 
database that the physical design tools need. You would use DEF to describe all the 
physical aspects of a particular chip design including the netlist and physical location 

908



898 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

of cells on the chip. For example, if you had a complete placement from a floorplan­
ning tool and wanted to exchange this information with Cadence Gate Ensemble or 
Ce1l3 Ensemble, you would use DEF. 

16.5 Summary 

Floorplanning follows the system partitioning step and is the first step in arranging 
circuit blocks on an ASIC. There are many factors to be considered during floorplan­
ning: minimizing connection length and signal delay between blocks; arranging 
fixed blocks and reshaping flexible blocks to occupy the minimum die area; organiz­
ing the interconnect areas between blocks; planning the power, clock, and I/O distri­
bution. The handling of some of these factors may be automated using CAD tools, 
but many still need to be dealt with by hand. Placement follows the floorp1anning 
step and is more automated. It consists of organizing an array of logic cells within a 
flexible block. The criterion for optimization may be minimum interconnect area, 
minimum total interconnect length, or performance. There are two main types of 
placement algorithms: based on min-cut or eigenvector methods. Because intercon­
nect delay in a submicron CMOS process dominates logic-cell delay, planning of 
interconnect will become more and more important. Instead of completing synthesis 
before starting floorplanning and placement, we will have to use synthesis and floor­
planning/placement tools together to achieve an accurate estimate of timing. 

The key points of this chapter are: 

• Interconnect delay now dominates gate delay. 

• Floorplanning is a mapping between logical and physical design. 

• Floorplanning is the center of ASIC design operations for all types of ASIC. 

• Timing-driven floorplanning is becoming an essential ASIC design tool. 

• Placement is now an automated function. 

16.6 Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

16.1 (Wire loads, 30 min.) Table 16.2 shows a wire-load table. Since you might 
expect the interconnect load to be a monotonic increasing function of fanout and 
block area, it seems as though some of the data in Table 16.2 may be in error; these 
figures are shown preceded by an asterisk, '*' (this table is from an ASIC vendor 
data book). Using a spreadsheet, analyze the data in Table 16.2. 

a. By graphing the data, indicate any figures in Table 16.2 that you think might 
be in error. If you think that there is an error, predict the correct values­
either by interpolation (for values in ~rror in the body of the table), or by fit-

909



16.6 PROBLEMS 899 

ting the linear model parameters, the slope and the intercept (for any values 
in error in the last two columns of the table). 

b. Including any corrections, how accurate is the model that predicts load as a 
linear function of fanout for a given block size? (Use the maximum error of 
the linear model expressed as a percentage of the table value.) 

c. Can you fit a simple function to the (possibly corrected) figures in the last 
column of the table and explain its form? 

d. What did you learn about wire-load tables from this problem? 

TABLE 16.2 Wire-load table. Predicted interconnect loads (measured in standard loads) as a function 
of block size and fanout (Problem 16.1). 

Size Fanout Slope Intercept 
(/mm2) 1 2 3 4 5 6 7 8 16 32 64 

0.5xO.5 0.65 0.95 1.25 1.54 1.84 2.14 2.44 2.74 5.13 9.91 19.47 0.299 0.349 

1x1 0.80 1.20 1.59 1.99 2.39 2.79 3.19 3.59 6.77 13.15 25.9 0.398 0.398 

2x2 0.96 1.48 1.99 2.51 3.02 3.54 4.05 4.57 8.68 16.92 33.38 0.515 0.448 

3x3 1.20 1.83 2.46 3.09 3.72 4.35 4.98 5.61 10.66 20.75 40.94 0.631 0.564 

4x4 1.41 2.11 2.81 3.50 4.20 4.90 5.59 6.29 11.87 23.02 45.33 0.697 0.714 

5x5 1.51 2.24 2.97 3.70 4.43 5.16 5.89 6.62 12.47 24.15 47.53 0.730 0.780 

6x6 1.56 2.31 3.05 3.80 4.55 5.30 6.04 6.79 12.77 24.72 48.62 0.747 0.813 

7x7 1.83 2.62 3.42 4.22 5.01 5.81 6.61 7.40 13.78 26.53 52.02 0.797 * 1.029 

8x8 1.88 2.74 3.6 4.47 5.33 6.19 7.06 7.92 14.82 26.64 56.26 0.863 1.013 

9x9 2.01 2.94 3.87 4.80 5.73 6.66 7.59 8.52 15.95 30.83 60.57 0.930 1.079 

10x10 2.01 2.98 3.94 4.90 5.86 6.83 7.79 8.75 16.45 31.86 62.67 0.963 * 1.050 

11 xii 2.46 3.46 4.45 5.45 6.44 7.44 8.44 9.43 17.4 33.33 65.20 0.996 1.465 

12x 12 3.04 4.1 5.17 6.23 7.3 8.35 9.42 10.48 18.8 36.03 70.00 1.063 1.964 

16.2 (Trees, 20 min.) For the network graph shown in Figure 16.32(f), draw the 
following trees and calculate their Manhattan lengths: 

a. The minimum Steiner tree. 

b. The chain connection. 

c. The minimum rectilinear Steiner tree. 

d. The minimum rectilinear spanning tree [Hwang, 1976]. 

e. The minimum single-trunk rectilinear Steiner tree (with a horizontal or verti-
cal trunk). 

f. The minimum rectilinear chain connection (easy to compute). 

910



900 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

(a) 

(d) 

g. The minimum source-to-sink connection. 

Calculate: 

h. The complete-graph measure and the half-perimeter measure. 

Figure 16.32 parts (a-e) illustrate the definitions of these trees. There is no known 
solution to the minimum Steiner-tree problem for nets with more than five terminals. 

minimum 
rectilinear 
Steiner tree 

L= 15 

Steiner 
point 

8 
minimum 2 
rectilinear 
chain 4 
connection 

6 
L= 19 

16 

minimum 
10 rectilinear 

spanning 
tree 

L=16 

(b) 

~'""""i""-'~-+-' 18 

"":""'+""i+"",20 

I"-"+'-+"","'~'+---'i'---I 22 

minimum 
source­
to-sink 
connection 

L=26 

24 

(e) 

(c) 

(f) 

FIGURE 16.32 Tree routing. (a) The minimum rectilinear Steiner tree (MRST). (b) The 
minimum rectilinear spanning tree. (c) The minimum single-trunk rectilinear Steiner tree 
(1-MRST). (d) The minimum rectilinear chain connection. (e) The minimum source-to-sink 
connection. (f) Example net for Problem 16.2. 

16.3 (Eigenvalue placement constraints, 10 min. [Cheng and Kuh, 1984]) Con­
sider the one-dimensional placement problem with a vector list of valid positions for 
the logic cells p = [Pi] and a vector list of x-coordinates for the logic cells x = [xiJ. 

Show that for a valid placement x (where the vector elements Xi are some per­
mutation of the vector elements Pi), the following equations hold: 

11 11 11 n II IJ 

L~\ LPi LXi 2 LPi 2 LXi IJ L n (16.22) = = = P' I 
i = 1 i = 1 i = 1 i = 1 i = 1 i = 1 

(Hint: Consider the polynomial (x + Xi)'l. In our simplification to the problem, we 
chose to impose only the second equation of these constraints.) 

911



16.6 PROBLEMS 901 

16.4 (*Eigenvalue placement, 30 min.) You will need MatLab, Mathematica, or 
a similar mathematical calculus program for this problem. 

a. Find the eigenvalues and eigenvectors for the disconnection matrix corre-
sponding to the following connection matrix: 

c= 
0 1 1 0 0 0 1 0 0; 

1 0 0 0 0 0 0 0 0; 

1 0 0 1 0 0 0 1 0; 

0 0 1 0 0 1 0 0 0; 

0 0 0 0 0 1 0 0 l' , 
0 0 0 1 1 0 1 0 0; 

1 0 0 0 0 1 0 0 o· , 
0 0 1 0 0 0 0 0 1; 
0 0 0 0 1 0 0 1 0; ] 

(Hint: Check your answer. The smallest, nonzero, eigenvalue should be 0.5045.) 

b. Use your results to place the logic cells. Plot the placement and show the 
connections between logic cells (this is easy to do using an X-Y plot in an 
Excel spreadsheet). 

c. Check that the following equation holds: 

16.5 (Die size, 10 min.) Suppose the minimum spacing between pad centers is 
W mil (1 mil = 10-3 inch), there are N I/O pads on a chip, and the die area (assume a 
square die) is A mil2: 

a. Derive a relationship between W, N, and A that corresponds to the point at 
which the die changes from being pad-limited to core-limited. 

b. Plot this relationship with N (ranging from 50 to 500 pads) on the x-axis, A 
on the y-axis (for dies ranging in size from I mm to 20 mm on a side), and W 
as a parameter (for W = I, 2, 3, and 4 mil). 

16.6 (Power buses, 20 min.) Assume aluminum metal interconnect has a resis­
tance of about 30 mQ/square (a low value). Consider a power ring for the I/O pads. 
Suppose you have a high-power chip that dissipates 5 W at V DD = 5 V, and assume 
that half of the supply current (0.5 A) is due to I/O. Suppose the square die is L mil 
on a side, and that the I/O current is equally distributed among the N VDD pads that 
are on the chip. In the worst case, you want no more than 100 m V drop between any 
VDD pad and the I/O circuits drawing power (notice that there will be an equal drop 
on the VSS side; just consider the VDD drop). 

a. Model the power distribution as a ring of N equally spaced pads. Each pad is 
connected by a resistor equal to the aluminum VDD power-bus resistance 
between two pads. Assume the I/O circuits associated with each pad can be' 

912



902 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

considered to connect to just one point on the resistors between each pad. If 
the resistance between each pad is R, what is the worst-case resistance 
between the I/O circuits and the supply? 

b. Plot a graph showing L (in mil) on the x-axis, W (the required power-bus 
width in microns) on the y-axis, with N as a parameter (with N = 1, 2, 5, 10). 

c. Comment on your results. 

d. An upper limit on current density for aluminum metallization is about 
50 kAcm-2; at current densities higher than this, failure due to electromigra­
tion (which we shall cover in Section 17.3.2, "Power Routing") is a problem. 
Assume the metallization is 0.5 11m thick. Calculate the current density in the 
VDD power bus for this chip in terms of the power-bus width and the num­
ber of pads. Comment on your answer. 

16.7 (Interconnect-length approximation, 10 min.) Figure 16.22 shows the cor­
relation between actual interconnect length and two approximations. Use this graph 
to derive a correction function (together with an estimation of the error) for the 
complete-graph measure and the half-perimeter measure. 

16.8 (Half-perimeter measure, 10 min.) Draw a tree on a rectangular grid for 
which the MRST is equal to the half-perimeter measure. Draw a tree on a rectangu­
lar grid for which the MRST is twice the half-perimeter measure. 

16.9 (***Min-cut, 120 min.) Many ftoorplanning and placement tools use min­
cut methods and allow you to alter the type and sequence of bisection cuts. Research 
and describe the difference between: quadrature min-cut placement, bisection min­
cut placement, and slice/bisection min-cut placement. 

16.10 (***Terminal propagation, 120 min.) There is a problem with the min-cut 
algorithm in the way connectivity is measured. Figure 16.33 shows a situation in 
which logic cells G and H are connected to other logic cells (A and F) outside the 
area R 1 that is currently being partitioned. The min-cut algorithm ignores connec­
tions outside the area to be divided. Thus logic cells G and H may be placed in parti­
tion R3 rather than partition R2. Suggest solutions to this problem. Hint: See 
Dunlop [1983]; Hartoog [1986]; or the Barnes-Hut galaxy model. 

16.11 (Benchmarks and statistics, 30 min.) Your boss asks you to compare two 
placement programs from companies ABC and XYZ. You run five test cases for both 
on a single netlist, PI. You get results (measured in arbitrary units) of 9, 8, 9, 7, 11 
for ABC; 6, 9, 10, 13,8 for XYZ. 

3. Calculate the mean and standard deviations for these results. 

b. What confidence (in the statistical sense) do you have in these figures? 

c. What can you say about the relative performance of ABC and XYZ? 

On average each test case takes about 0.5 hours (wall clock) for both ABC and 
XYZ. Next you run six test cases on another netlist, P2 with the following results: 4, 
6,7,8,5,7 for ABC, and 4,5,3,6,4,3 for XYZ. These test cases take about 0.75 
hours (wall clock) each. 

913



16.6 PROBLEMS 903 

We ignore this connection The algorithm treats these two 

when we make cuts

R

: and~1 as ::Uivalent 

Bi~L~J •. ~!~~i ~~_~, __ Li 

cut 1 

.. __ . __ ... _. . .. -.--.~ ,._ .. =-+_ .... -.=: .. 
i 

l_~~ __ EI_~.""'{_._-'-" .......... G ... i ..... H: i .... _ ... _ ............. cut 2 L .. __ .. -'---_ •. j 
i 

l.~L·f-·-~··I~~:."-+--... --:::-~ cut 2 ===::===cut 2' cut 2' 

I Ml N .... -.--..... - ... - . ___ .1. __ ._ .. = .... L._ .•... _ ..... _· 

(a) (b) (c) 

FIGURE 16.33 (For Problem 16.10.) A problem with the min-cut algorithm is that it ignores 
connections to logic cells outside the area being partitioned. (a) We perform a vertical cut 1 
producing the areas R1 and R2. (b) Next we make a horizontal cut 2, producing L2 and L3, 
and a cut 2', producing R2 and R3. (c) The min-cut algorithm ignores the connection from L2 
and is equally likely to produce the arrangement shown here when we make cut 2'. 

d. What can you say about the P2 results? 

e. Given the PI and P2 results together, what can you say about ABC and XYZ? 

f. How many PI test cases should you run to get a result so that you can say 
ABC is better or worse than XYZ with 90 percent confidence (i.e., you make 
the right decision 9 out of 10 times)? How long would this take? 

g. Find the same figures for the P2 netlist. Comment on your answers. 

h. Suppose you had more netlists and information about the variation of results 
from each netlist, together with the average time to run each netlist. How 
would you use this information to get the most meaningful result in the 
shortest time? 

16.12 (Linear and quadratic placement, 20 min.) [Sigl, Doll, and Johannes, 
1991] Figure 16.34(a) shows a simple network that we will place. Figure 16.34(b) 
shows the problem. The logic cells are all the same size: 1 grid unit wide by 1 grid 
unit high. Logic cells 1 and 3 are fixed at the locations shown. Logic cell 2 is 
movable and placed at coordinates (for the lower-left corner) of (x2' Y2)' The 
lower-left corners of logic cells should be placed at grid locations and should not 
overlap. 

a. What is the connection matrix cij for this network? 

914



904 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

(a) 

b. Calculate and draw (showing the logic-cell coordinates) the placement that 
minimizes the linear cost function (or objective function) fL> 

n 

fL = ~ I. ciiij (16.23) 

i, j = 1 

where d ij is the distance between logic cells i and j. 

c. Calculate and draw (showing coordinates) the placement that minimizes the 
quadratic cost functionfQ' 

n 

fQ = 2! '" c .. d? . £.. IJ IJ 
(16.24) 

i, j = 1 

--------------------------------
I I I I I I I 
I I I I I 
I I I I I 
I I I I I I I I 

~ (b) ~~~~~[~~~~~~~J~~~~ 
logic 
cell (0,0) 

fixed 
(X2, Y2) 

movable 
~ ... 

(6,0) 
fixed 

FIGURE 16.34 Problem 16.12 illustrates placement objectives. (a) An example network 
for placement. (b) The placement restrictions. Logic cells 1 and 3 are fixed in position, the 
placement problem is to optimize the position of logic cell 2 under different placement objec­
tives. 

16.13 (Placement interconnect lengths, 45 min.) Figure 16.30(d) shows the 
actual routing corresponding to a placement with an estimated routing length of 8 
units (Figure 16.30b). 

a. Draw the layout (with routing) corresponding to the placement of 
Figure 16.30( c), which has a lower estimated total routing length of 7 units. 

b. Compare the actual total routing length for both layouts and explain why they 
are different from the estimated lengths and describe the sources of the 
errors. 

c. Consider flipping both logic cells A and B about the y-axis in the layout 
shown in Figure 16.30(d). How much does this shorten the total interconnect 
length? Some placement algorithms consider such moves. 

16.14 (Zero-slack algorithm, 60 min.) For the circuit of Figure 16.35: 

a. Find all of the arrival, required, and slack times (all delays are in nanoseconds). 

b. What is the critical path? 

c. If the gate delay of A2 is increased to 5 ns, what is the new critical path? 

915



16.6 PROBLEMS 905 

FIGURE 16.35 A circuit to illustrate the zero-slack algorithm (Problem 16.14). 

d. ** Using your answer to part a find the upper bounds on net delays by means 
of the zero-slack algorithm as follows: 

i. Find arrival, required, and slack times on all nets. 
ii. Find an input pin p with the least nonzero slack Sp on a net which has not 
already been selected. If there are none go to step 6. 
ii. Find the path through p (may include several gates) on which all pins 
have slack S p. 

iv. Distribute a delay equal to the slack Sp along the path assigning a frac­
tion to each net at the output pins of the gates on the path. 
v. Work backward from p updating all the required times as necessary and 
forward from p updating all the arrival times. 
vi. Convert net delays to net lengths. 

Hint: You can consult the original description of the zero-slack algorithm if this is 
not clear [Hauge et aI., 1987]. 

16.15 (World planning, 60 min.) The seven continents are (with areas in mil­
lions of square miles): Europe-strictly a peninsula of Asia (4.1), Asia 07.2), North 
America (9.4), South America (6.9), Australia (3.0), Africa 0l.7), and Antarctica 
(5.1). Assume the continents are flexible blocks whose aspect ratio may be adjusted. 

a. Create a slicing floorplan of the world with a square aspect ratio. 

b. Draw a world connectivity graph with seven nodes and whose edges are 
labeled with the distances between Moscow, Beijing, Chicago, Rio de 
Janeiro, Sydney, Nairobi, and the South Pole. 

916



906 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

c. Suppose you want to floorplan the world so that the difference in distances 
between the centers of the continental blocks and the corresponding edges in 
the world connectivity graph is minimized. How would you measure the dif­
ferences in distance? Suggest a method to minimize your measure. 

d. Use an eigenvalue method to floorplan the world. Draw the result with coor­
dinates for each block and explain your approach. 

16.7 Bibliography 

There are no recent monographs or review articles on floorplanning modern ASICs 
with interconnect delay dominating gate delay. Placement is a much more developed 
topic. Perhaps the simplest place to dig deeper is the book by Preas and Lorenzetti 
that contains a chapter titled "Placement, assignment, and floorplanning" [Preas and 
Karger, 1988]. The collection edited by Ohtsuki [1986] contains a review paper by 
Yoshida titled "Partitioning, assignment, and placement." Sangiovanni -Vincentelli' s 
review article [1986] complements Ohtsuki's edited book, but both are now dated. 
Sechen's book [1988] describes simulated annealing and its application to placement 
and chip-planning for standard cell and gate array ASICs. Part III of the IEEE Press 
book edited by Hu and Kuh [1983] is a collection of papers on wireability, partition­
ing, and placement covering some of the earlier and fundamental work in this area. 
For a more recent and detailed look at the inner workings of floorplanning and 
placement tools, Lengauer's [1990] book on algorithms contains a chapter on graph 
algorithms and a chapter on placement, assignment, and floorplanning. Most of 
these earlier book references deal with placement before the use of timing as an 
additional objective. The tutorial paper by Benkoski and Strojwas [1991] contains a 
number of references on performance-driven placement. Luk's book [1991] 
describes methods for estimating net delay during placement. 

Papers and tutorials on all aspects of floorplanning and placement (with an 
emphasis on algorithms) are published in IEEE Transactions on Computer-Aided 
Design. The newest developments in floorplanning and placement appear every year 
in the Proceedings of the ACMIIEEE Design Automation Conference (DAC) and 
Proceedings of the IEEE International Conference on Computer-Aided Design 
(ICCAD). 

16.8 References 

Page numbers in brackets after a reference indicate its location in the chapter body. 
Benkoski, J., and A. J. Strojwas. 1991. "The role of timing verification in layout synthesis." In 

Proceedings of the 28th ACMIIEEE Design Automation Conference, San Francisco, 
pp. 612-619. Tutorial paper with 60 references. This was an introduction to a session on 
Placement for Performance Optimization containing five other papers on this topic. [po 906] 

917



16.8 REFERENCES 907 

Breuer, M. A. 1977. "Min-cut placement." Journal of Design Automation and Fault Tolerant 
Computing, Vol. 1, no. 4, pp. 343-362. [po 882] 

Chao, A. H., E. M. Nequist, and T. D. Vuong. 1990. "Direct solution of performance constraints 
during placement." In Proceedings of the IEEE Custom Integrated Circuits Conference. 
Describes algorithms used in Cadence Gate Ensemble for performance-driven placement. 
Wiring estimate is based on single trunk Steiner tree with corrections for bounding rectangle 
aspect ratio and pin count. [po 879] 

Cheng, c.-K., and E. S. Kuh. 1984. "Module placement based on resistive network optimiza­
tion." IEEE Transactions on Computer-Aided Design for Integrated-Circuits and Systems, 
Vol. CAD-3, pp. 218-225. [pp. 884, 900] 

Dunlop, A. E., and B. W. Kernighan. 1983. "A placement procedure for polycell VLSI circuits." 
In Proceedings of the IEEE International Conference on Computer Aided Design, Santa 
Clara, CA, September 13-15. Describes the terminal propagation algorithm. [po 902] 

Goto, S. and T. Matsuda. 1986. "Partitioning, assignment and placement." In Layout Design 
and Verification, T. Ohtsuki (Ed.), Vol. 4, pp. 55-97. New York: Elsevier. ISBN 
0444878947. TK 7874. L318. [po 879] 

Hall, K. M. 1970. "An r-dimensional quadratic placement algorithm." Management Science, 
Vol. 17, no. 3, pp. 219-229. [po 885] 

Hanan, M. 1966. "On Steiner's problem with rectilinear distance." Journal SIAM Applied 
Mathematics, Vol. 14, no. 2, pp. 255-265. [po 879] 

Hanan, M., P. K. Wolff Sr., and B. J. Agule. 1973. "Some experimental results on placement 
techniques." In Proceedings of the 13th Design Automation Conference. Reference to com­
plete graph wire measure. [po 877] 

Hartoog, M. R., 1986. "Analysis of placement procedures for VLSI standard cell layout." In 
Proceedings of the 23rd Design Automation Conference. [po 902] 

Hauge, P. S., et aI. 1987. "Circuit placement for predictable performance." In Proceedings of the 
IEEE International Conference on Computer Aided Design, pp. 88-91. Describes the zero­
slack algorithm. See also: Nair, R., C. L. Berman, P. S. Hauge, and E. J. Yoffa, "Generation 
of performance constraints for layout," IEEE Transactions on Computer Aided Design, Vol. 
8, no. 8, pp. 860-874, August 1989; and Burstein, M. and M. N. Housewife, "Timing influ­
enced layout design," in Proceedings of the 22nd Design Automation Conference, 1985. 
Defines required, actual, and slack times. Describes application oftiming-driven restrictions 
to placement using F-M algorithm and hierarchical global routing. [po 905] 

Hu, T. c., and E. S. Kuh (Eds.). 1983. VLSI Circuit Layout: Theory and Design. New York: 
IEEE Press. Contains 26 papers divided into six parts; Part 1: Overview; Part II: General; 
Part III: Wireability, Partitioning and Placement; Part IV: Routing; Part V: Layout Systems; 
Part VI: Module Generation. ISBN 0879421932. TK7874. V5573. [po 906] 

Hwang, F. K. 1976. "On Steiner minimal trees with rectilinear distance." SIAM Journal of 
Applied Mathematics, Vol. 30, pp. 104-114. See also: Hwang, F. K., "An O(n log n) Algo­
rithm for Suboptimal Rectilinear Steiner Trees," IEEE Transactions on Circuits and 
Systems, Vol. CAS-26, no. 1, pp. 75-77, January 1979. Describes an algorithm to improve 
the rectilinear minimum spanning tree (RMST) approximation to the minimal rectilinear 
Steiner tree (minimal RST). The approximation is at most 1.5 times longer than the minimal 
RST, since the RMST is at worst 1.5 times the length of the minimal RST. [po 899] 

Kirkpatrick, S., C. D. Gerlatt Jr., and M. P. Vecchio 1983. "Optimization by simulated anneal­
ing," Science, Vol. 220, no. 4598, pp. 671-680. [po 890] 

Lengauer, T. 1990. Combinatorial Algorithms for Integrated Circuit Layout. Chichester, 
England: Wiley. ISBN 0-471-92838-0. TK7874.L36. Contains chapters on circuit layout; 
optimization problems; graph algorithms; operations research and statistics; combinatorial . 

918



908 CHAPTER 16 FLOORPLANNING AND PLACEMENT 

layout problems; circuit partitioning; placement; assignment; ftoorplanning; global routing 
and area routing; detailed routing; and compaction. 484 references. [po 906] 

Luk, W. K. 1991. "A fast physical constraint generator for timing driven layout." In 
Proceedings of the 28th ACMIIEEE Design Automation Conference. Introduction to timing­
driven placement and net- and path-based approaches. Describes some different methods to 
estimate interconnect delay during placement. ISBN 0-89791-395-7. [po 906]. 

Masleid, R. P. 1991. "High-density central I/O circuits for CMOS." IEEE Journal of Solid-State 
Circuits, Vol. 26, no. 3, pp. 431-435. An I/O circuit design that reduces the percentage of 
chip area occupied by I/O circuits from roughly 22 percent to under 3 percent for a 256 I/O 
chip. Uses IBM C4 technology that allows package connections to be located over chip cir­
cuitry. 10 references. [po 866] 

Ohtsuki, T. (Ed.). 1986. Layout Design and Verification. New York: Elsevier. Includes nine papers 
on CAD tools and algorithms: "Layout strategy, standardisation, and CAD tools," Veda, Kasai 
and Sudo; "Layout compaction," Mylynski and Sung; "Layout verification," Yoshida; "Parti­
tioning, assignment and placement," Goto and Matsuda; "Computational complexity of layout 
problems," Shing and Hu; "Computational and geometry algorithms," Asano, Sato and Oht­
suki; an excellent survey and tutorial paper by M. Burstein: "Channel routing"; "Maze-running 
and line-search algorithms" an easily-readable paper on detailed routing by Ohtsuki; and a 
mathematical paper, "Global routing," by Kuh and Marek-Sadowska. ISBN 0444878947. 
TK7874. L318. [po 906] 

Preas, B. T., and P. G. Karger. 1988. "Placement, assignment and ftoorplanning." In Physical 
Design Automation ofVLSI Systems, B. T. Preas and M. J. Lorenzetti (Eds.), pp. 87-155. 
Menlo Park, CA: Benjamin-Cummings. ISBN 0-8053-0412-9. TK7874.P47. [po 906] 

Sangiovanni-Vincentelli, A. 1986. "Automatic layout of integrated circuits." In Nato Advanced 
Study on "Logic Synthesis and Silicon Compilers for VLSI Design", G. De Micheli, A. 
Sangiovanni-Vincentelli, andA. Paolo (Eds.). Norwell, MA: Kluwer. ISBN 90-247-2689-1, 
90-247-3561-0. TK7874.N338. [po 906] 

Schweikert, D. G., 1976. "A 2-dimensional placement algorithm for the layout of electrical cir­
cuits." In Proceedings of the 9th Design Automation Conference. Description of half­
perimeter wire measure. [po 879] 

Sechen, C. 1988. VLSI Placement and Global Routing Using Simulated Annealing. Norwell, 
MA: Kluwer. Contains chapters on the simulated annealing algorithm; placement and global 
routing; ftoorplanning; average interconnection length estimation; interconnect-area estima­
tion; a channel definition algorithm; and a global router algorithm. ISBN 0898382815. 
TK7874. S38. [po 890] 

Sigl, G., K. Doll, and F. M. Johannes. 1991. "Analytical placement: a linear or quadratic objec­
tive function?" In Proceedings of the 28th ACMIIEEE Design Automation Conference. Com­
pares quadratic and linear cost function for placement algorithms. Explains the Gordian 
place-and-route system from the Technical University of Munich. ISBN 0-89791-395-7. 
[po 903]. 

Wada, T., M. Eino, and K. Anami. 1990. "Simple noise model and low-noise data-output buffer for 
ultrahigh-speed memories." IEEE J oumal of Solid-State Circuits, Vol. 25, no. 6, pp. 1586-1588. 
An analytic noise model for voltage bounce on intemal VDDNSS lines. [po 866] 

Wong, D. F., H. W. Leong, and C. L. Liu. 1988. Simulated Annealing for VLSI Design. Norwell, 
MA: Kluwer. Introduction; Placement; Floorplan Design; Channel Routing; Permutation 
Channel Routing; PLA Folding; Gate Matrix Layout; Array Optimization. ISBN 
0898382564. TK7874. W65. [po 890] 

Youssef, H., R.-B. Lin, and E. Shragowitz. 1992. "Bounds on net delays for VLSI circuits." 
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, Vol. 
39, no. 11, pp. 315-324. An alternative to the weight-based approach is development of 
delay bounds on all nets. 21 references. [po 891]. 

919



ROUTING 

17.1 Global Routing 17.5 Summary 

17.2 Detailed Routing 17.6 Problems 

17.3 Special Routing 17.7 Bibliography 

17.4 Circuit Extraction and DRC 17.8 References 

Once the designer has floorplanned a chip and the logic cells within the flexible 
blocks have been placed, it is time to make the connections by routing the chip. This 
is still a hard problem that is made easier by dividing it into smaller problems. Rout­
ing is usually split into global routing followed by detailed routing. 

Suppose the ASIC is North America and some travelers in California need 
advice on how to drive from Stanford (near San Francisco) to Caltech (near Los 
Angeles). The floorplanner has decided that California is on the left (west) side of 
the ASIC and the placement tool has put Stanford in Northern California and 
Caltech in Southern California. Floorplanning and placement have defined the roads 
and freeways. There are two ways to go: the coastal route (using Highway 101) or 
the inland route (using Interstate IS, which is usually faster). The global router spec­
ifies the coastal route because the travelers are not in a hurry and IS is congested 
(the global router knows this because it has already routed onto IS many other trav­
elers that are in a hurry today). Next, the detailed router looks at a map and gives 
indications from Stanford onto Highway 101 south through San Jose, Monterey, and 
Santa Barbara to Los Angeles and then off the freeway to Caltech in Pasadena. 

Figure 17.1 shows the core of the Viterbi decoder after the placement step. This 
implementation consists entirely of standard cells (18 rows). The I/O pads are not 
included in this example-we can route the I/O pads after we route the core (though 
this is not always a good idea). Figure 17.2 shows the Viterbi decoder chip after glo­
bal and detailed routing. The routing runs in the channels between the rows of logic 
cells, but the individual interconnections are too small to see. 

909 

920



910 CHAPTER 17 ROUTING 

+ 
+ 
+ 

+ 

+ 

+ 
:: 

II II I III • I 11111111111 I II II III I I III 111111 I 111111 III III 1111 allllill 

I n JII III I 11111 111 lUll III 11 III I I 1 31 11 1 J I I I 1 I I 

I ) n I 11111 In 1111 lUll 111111 II II 

III I 11 J I I III I II ) JI II III III II U 

1 III III 1111I II 1111 

411 l i III U iO Itl IU lUI II 

FIGURE 17.1 The core of the Viterbi decoder chip after placement (a screen shot from 
Cadence Cell Ensemble). This is the same placement as shown in Figure 16.2, but without 
the channel labels. You can see the rows of standard cells; the widest cells are the 0 flip-flops. 

1 .. 1 Global Routing 

4-

+ 
+ 
t 

+ 

+ 

The details of global routing differ slightly between cell-based ASICs, gate arrays, 
and FPGAs, but the principles are the same in each case. A global router does not 
make any connections, it just plans them. We typically global route the whole chip 

921



+ 
+ 

+ 

+ 

17.1 GLOBAL ROUTING 911 

FIGURE 17.2 The core of the Viterbi decoder chip after the completion of global and 
detailed routing (a screen shot from Cadence Cell Ensemble). This chip uses two-level metal. 
Although you cannot see the difference, m1 runs in the horizontal direction and m2 in the ver­
tical direction. 

(or large pieces if it is a large chip) before detail routing the whole chip (or the 
pieces). There are two types of areas to global route: inside the flexible blocks and 
between blocks (the Viterbi decoder, although a cell-based ASIC, only involved the 
global routing of one large flexible block). 

17.1.1 Goals and Objectives 
The input to the global router is a floorplan that includes the locations of all the 
fixed and flexible blocks; the placement information for flexible blocks; and the 

922



912 CHAPTER 17 ROUTING 

locations of all the logic cells. The goal of global routing is to provide complete 
instructions to the detailed router on where to route every net The objectives of 
global routing are one or more of the following: 

• Minimize the total interconnect length. 

• Maximize the probability that the detailed router can complete the routing. 

• Minimize the critical path delay. 

In both floorplanning and placement, with minimum interconnect length as an 
objective, it is necessary to find the shortest total path length connecting a set of 
terminals. This path is the MRST, which is hard to find. The alternative, for both 
floorplanning and placement, is to use simple approximations to the length of the 
MRST (usually the half-perimeter measure). Floorplanning and placement both 
assume that interconnect may be put anywhere on a rectangular grid, since at this 
point nets have not been assigned to the channels, but the global router must use the 
wiring channels and find the actual path. Often the global router needs to find a path 
that minimizes the delay between two terminals-this is not necessarily the same as 
finding the shortest total path length for a set of terminals. 

17.1.2 Measurement of Interconnect Delay 
Floorplanning and placement need a fast and easy way to estimate the interconnect 
delay in order to evaluate each trial placement; often this is a predefined look-up 
table. After placement, the logic cell positions are fixed and the global router can 
afford to use better estimates of the interconnect delay. To illustrate one method, we 
shall use the Elmore constant to estimate the interconnect delay for the circuit 
shown in Figure 17 .3. 

The problem is to find the voltages at the inputs to logic cells Band C taking 
into account the parasitic resistance and capacitance of the metal interconnect. 
Figure 17.3(c) models logic cell A as an ideal switch with a pull-down resistance 
equal to Rpd and models the metal interconnect using resistors and capacitors for 
each segment of the interconnect. 

The Elmore constant for node 4 (labeled V 4) in the network shown in 
Figure 17.3(c) is 

4 
"CD4 = L R k4 Ck = R l4C1 +R24C2 +R34C 3 + R 44C4 , (17.1) 

k = 1 

where, 

R14 = Rpd+Rl R24 = Rpd+RI 

R34 = Rpd+RI +R3 R44 = Rpd+RI +R3 +R4 
(17.2) 

In Eq. 17.2 notice that R24 = Rpd + R 1 (and not Rpd + R 1 + R 2) because R 1 is the resis­
tance to Vo (ground) shared by node 2 and node 4. 

923



17.1 GLOBAL ROUTING 913 

~Vd V1 V2 B 

(a) 
4X v

3
1 V4~ 

1X 

0.1 mm V1 V2 

~~ \ 
At B 

(b) 
Vd 

2mm ... ~ 1mm 

~ 
V4 

Va Rpd R1 V1 

Ii C1 

'1 

pull-down 
resistance of 
inverter A 

Ii C2 

'2 
R3 

-::-

(c) 

resistance of 
interconnect 
segments 

FIGURE 17.3 Measuring the delay of a net. (a) A simple circuit with an inverter A driving a 
net with a fanout of two. Voltages V1, V2, V3, and V4 are the voltages at intermediate points 
along the net. (b) The layout showing the net segments (pieces of interconnect). (c) The RC 
model with each segment replaced by a capacitance and resistance. The ideal switch and 
pull-down resistance Rpd model the inverter A. 

Suppose we have the following parameters (from the generic 0.5 /-lm CMOS 
process, G5) for the layout shown in Figure 17.3(b): 

• m2 resistance is 50 mQ/square. 

G m2 capacitance (for a minimum-width line) is 0.2 pFmm-1. 

• 4X inverter delay is 0.02 ns + 0.5CL ns (C L is in picofarads). 

• Delay is measured using 0.35/0.65 output trip points. 

o m2 minimum width is 3 A = 0.9 /-lm. 

G IX inverter input capacitance is 0.02 pF (a standard load). 

First we need to find the pull-down resistance, Rpd' of the 4X inverter. If we 
model the gate with a linear pull-down resistor, Rpd' driving a load C L, the output 
waveform is exp -t/(C0pd) (normalized to 1 V). The output reaches 63 percent of its 
final value when t= CLRpd' because exp(-l) = 0.63. Then, because the delay is mea­
sured with a 0.65 trip point, the constant 0.5 nspF-1 = 0.5 kQ is very close to the. 
equivalent pull-down resistance. Thus, Rpd = 500 Q. 

924



914 CHAPTER 17 ROUTING 

From the given data, we can calculate the R's and C's: 

-3 
(0.1 mm) (50 x 10 Q) 

R 1 = R2 = 0.9 flm =6Q 

-3 

R3 = (1 mm)o.~~: 10 Q) = 56 Q 

-3 
(2 mm) (50 x 10 Q) 

R4 = -------- = 112 Q 
0.9 flm 

-1 
C 1 = (O.lmm) (0.2 pFmm ) = 0.02 pF 

-1 
C2 = (0.1 mm) (0.2 pFmm ) + 0.02 pF = 0.04 pF 

-1 
C3 = (1 mm) (0.2 pFmm ) = 0.2 pF 

-1 
C4 = (2 mm) (0.2 pFmm ) + 0.02 pF = 0.42 pF 

(17.3) 

(17.4) 

Now we can calculate the path resistance, R ki , values (notice that Rki = R ik): 

R 14 = 500 Q + 6 Q = 506 Q 

R24 = 500 Q + 6 Q = 506 Q 

R34 = 500 Q + 6 Q + 56 Q = 562 Q 

R44 = 500 Q + 6 Q + 56 Q + ll2 Q = 674 Q 

(17.5) 

Finally, we can calculate Elmore's constants for node 4 and node 2 as follows: 

= (506) (0.02) + (506) (0.04) + (562) (0.2) + (674) (0.42) 

= 425 ps, 

'TD2 = R 12C 1 + R n C 2 + R 32C 3 + R 42C 4 

= (Rpd+RI +R2)C2 + (Rpd+R 1) eC
1 +C3 +C4) 

= (500 + 6 + 6) (0.04) + (500 + 6) (0.02 + 0.2 + 0.42) 

= 344 ps, 

and 'TD4 -'tD2 = (425 - 344) = 81 ps. 

(17.6) 

(17.7) 

925



17.1 GLOBAL ROUTING 915 

A lumped-delay model neglects the effects of interconnect resistance and sim­
ply sums all the node capacitances (the lumped capacitance) as follows: 

tD = Rpd(C1 +C2 +C3 +C4 ) 

= (500) (0.02 + 0.04 + 0.2 + 0.42) 

= 340 ps. 

(17.8) 

Comparing Eqs. 17.6-17.8, we can see that the delay of the inverter can be 
assigned as follows: 20 ps (the intrinsic delay, 0.2 ns, due to the cell output capaci­
tance), 340ps (due to the pull-down resistance and the output capacitance), 4ps (due 
to the interconnect from A to B), and 65 ps (due to the interconnect from A to C). 
We can see that the error from neglecting interconnect resistance can be important. 

Even using the Elmore constant we still made the following assumptions in esti-
mating the path delays: 

• A step-function waveform drives the net. 

• The delay is measured from when the gate input changes. 

• The delay is equal to the time constant of an exponential waveform that 
approximates the actual output waveform. 

• The interconnect is modeled by discrete resistance and capacitance elements. 

The global router could use more sophisticated estimates that remove some of 
these assumptions, but there is a limit to the accuracy with which delay can be esti­
mated during global routing. For example, the global router does not know how much 
of the routing is on which of the layers, or how many vias will be used and of which 
type, or how wide the metal lines will be. It may be possible to estimate how much 
interconnect will be horizontal and how much is vertical. Unfortunately, this knowledge 
does not help much if horizontal interconnect may be completed in either ml or m3 and 
there is a large difference in parasitic capacitance between ml and m3, for example. 

When the global router attempts to minimize interconnect delay, there is an 
important difference between a path and a net. The path that minimizes the delay 
between two terminals on a net is not necessarily the same as the path that mini­
mizes the total path length of the net. For example, to minimize the path delay 
(using the Elmore constant as a measure) from the output of inverter A in 
Figure 17.3(a) to the input of inverter B requires a rather complicated algorithm to 
construct the best path. We shall return to this problem in Section 17 .l.6. 

17.1.3 Global Routing Methods 
Global routing cannot use the interconnect-length approximations, such as the half­
perimeter measure, that were used in placement. What is needed now is the actual 
path and not an approximation to the path length. However, many of the methods 
used in global routing are still based on the solutions to the tree on a graph problem. 

926



916 CHAPTER 17 ROUTING 

One approach to global routing takes each net in turn and calculates the shortest 
path using tree on graph algorithms-with the added restriction of using the avail­
able channels. This process is known as sequential routing. As a sequential routing 
algorithm proceeds, some channels will become more congested since they hold 
more interconnects than others. In the case of FPGAs and channeled gate arrays, the 
channels have a fixed channel capacity and can only hold a certain number of inter­
connects. There are two different ways that a global router normally handles this 
problem. Using order-independent routing, a global router proceeds by routing 
each net, ignoring how crowded the channels are. Whether a particular net is pro­
cessed first or last does not matter, the channel assignment will be the same. In 
order-independent routing, after all the interconnects are assigned to channels, the 
global router returns to those channels that are the most crowded and reassigns some 
interconnects to other, less crowded, channels. Alternatively, a global router can 
consider the number of interconnects already placed in various channels as it pro­
ceeds. In this case the global routing is order dependent-the routing is still 
sequential, but now the order of processing the nets will affect the results. Iterative 
improvement or simulated annealing may be applied to the solutions found from 
both order-dependent and order-independent algorithms. This is implemented in the 
same way as for system partitioning and placement: A constructed solution is suc­
cessively changed, one interconnect path at a time, in a series of random moves. 

In contrast to sequential global-routing methods, which handle nets one at a 
time, hierarchical routing handles all nets at a particular level at once. Rather than 
handling all of the nets on the chip at the same time, the global-routing problem is 
made more tractable by dividing the chip area into levels of hierarchy. By consider­
ing only one level of hierarchy at a time the size of the problem is reduced at each 
level. There are two ways to traverse the levels of hierarchy. Starting at the whole 
chip, or highest level, and proceeding down to the logic cells is the top-down 
approach. The bottom-up approach starts at the lowest level of hierarchy and glo­
bally routes the smallest areas first. 

17.1.4 Global Routing Between Blocks 
Figure 17.4 illustrates the global-routing problem for a cell-based ASIC. Each edge 
in the channel-intcl"section graph in Figure 17.4( c) represents a channel. The glo­
bal router is restricted to using these channels. The weight of each edge in the graph 
corresponds to the length of the channel. The global router plans a path for each 
interconnect using this graph. 

Figure 17.5 shows an example of global routing for a net with five terminals, 
labeled A 1 through F 1, for the cell-based ASIC shown in Figure 17.4. If a designer 
wishes to use minimum total interconnect path length as an objective, the global 
router finds the minimum-length tree shown in Figure 17 .S(b). This tree determines 
the channels the interconnects will use. For example, the shortest connection from 
A 1 to B 1 uses channels 2, 1, and S (in that order). This is the information the global 
router passes to the detailed router. Figure 17.S(c) shows that minimizing the total 
path length may not correspond to minimizing the path delay between two points. 

927



17.1 GLOBAL ROUTING 917 

(a) (b) (c) 

FIGURE 17.4 Global routing for a cell-based ASIC formulated as a graph problem. (a) A 
cell-based ASIC with numbered channels. (b) The channels form the edges of a graph. 
(c) The channel-intersection graph. Each channel corresponds to an edge on a graph whose 
weight corresponds to the channel length. 

terminal 

(a) 

r----------------------------, , , 
Ai , l _______ _ 

, , , 
B1 

, , , 
----------------~ 

E1 

, , , , , , 
t--ft----.:----< )---,.---0- - - - - - , 

,01 , 

, , 

F1 

__________________ J 

minimum-length tree 

(b) 

r----------------------------, , , 
: Ai : , , 
1----.. - - ,- - - - - - - - - - - - - - - - ~ 

: ' 

B1 : E1 

, 01 , 

, 

, , 

F1 

_________________ J 

(c) 

minimum delay 
from Ai to 01 

FIGURE 17.5 Finding paths in global routing. (a) A cell-based ASIC (from Figure 17.4) 
showing a single net with a fanout of four (five terminals). We have to order the numbered 
channels to complete the interconnect path for terminals Ai through F1. (b) The terminals are 
projected to the center of the nearest channel, forming a graph. A minimum-length tree for the 
net that uses the channels and takes into account the channel capacities. (c) The 
minimum-length tree does not necessarily correspond to minimum delay. If we wish to mini­
mize the delay from terminal Ai to 01, a different tree might be better. 

928



918 CHAPTER 17 ROUTING 

Global routing is very similar for cell-based ASICs and gate arrays, but there is 
a very important difference between the types of channels in these ASICs. The size 
of the channels in sea-of-gates arrays, channelless gate arrays, and cell-based ASICs 
can be varied to make sure there is enough space to complete the wiring. In chan­
neled gate-arrays and FPGAs the size, number, and location of channels are fixed. 
The good news is that the global router can allocate as many interconnects to each 
channel as it likes, since that space is committed anyway. The bad news is that there 
is a maximum number of interconnects that each channel can hold. If the global 
router needs more room, even in just one channel on the whole chip, the designer 
has to repeat the placement-and-routing steps and try again (or use a bigger chip). 

17.1.5 Global Routing Inside Flexible Blocks 
We shall illustrate global routing using a gate array. Figure 17 .6( a) shows the routing 
resources on a sea-of-gates or channelless gate array. The gate array base cells are 
arranged in 36 blocks, each block containing an array of 8-by-16 gate-array base 
cells, making a total of 4068 base cells. 

The horizontal interconnect resources are the routing channels that are formed 
from unused rows of the gate-array base cells, as shown in Figure 17.6(b) and (c). 
The vertical resources are feedthroughs. For example, the logic cell shown in 
Figure 17.6(d) is an inverter that contains two types of feedthrough. The inverter 
logic cell uses a single gate-array base cell with terminals (or connectors) located at 
the top and bottom of the logic cell. The inverter input pin has two electrically 
equivalent terminals that the global router can use as a feedthrough. The output of 
the inverter is connected to only one terminal. The remaining vertical track is 
unused by the inverter logic cell, so this track forms an uncommitted feedthrough. 

You may see any of the terms landing pad (because we say that we "drop" a via 
to a landing pad), pick-up point, connector, terminal, pin, or port used for the 
connection to a logic cell. The term pick-up point refers to the physical pieces of 
metal (or sometimes polysilicon) in the logic cell to which the router connects. In a 
three-level metal process, the global router may be able to connect to anywhere in 
an area-an area pick-up point. In this book we use the term connector to refer to 
the physical pick-up point. The term pin more often refers to the connection on a 
logic schematic icon (a dot, square box, or whatever symbol is used), rather than 
layout. Thus the difference between a pin and a connector is that we can have multi­
ple connectors for one pin. Terminal is often used when we talk about routing. The 
term port is used when we are using text (EDIF netlists or HDLs, for example) to 
describe circuits. 

In a gate array the channel capacity must be a multiple of the number of 
horizontal tracks in the gate-array base cell. Figure 17.6(e) shows a gate-array base 
cell with seven horizontal tracks (see Section 17.2 for the factors that determine the 
track width and track spacing). Thus, in this gate array, we can have a channel with a 
capacity of 7, 14, 21, ... horizontal tracks-but not between these values. 

929



sea-of-gates array 

(a) 

pitch of vertical ~i 
tracks (m2) 

electrically 
equivalent 
connectors 

connector 

(d) 

one block 

base 
cells 

base cell used by 
macro (logic cell) 

pitch of 
horizontal 
tracks (m1) T --

17.1 GLOBAL ROUTING 919 

base cells 

channel routing 
m2 

L m1 

~~ fixed channel height 

(c) 

r--'---"-'--'-~ 

base cell used for 
routing 

-- 2 

3 

-- 4 
......1-----'----"---/ 

base-cell 
outline 

feedthrough 

I---'--'---'-~ _ _I-- 5 

(e) 

6 

7 

FIGURE 17.6 Gate-array global routing. (a) A small gate array. (b) An enlarged view of the 
routing. The top channel uses three rows of gate-array base cells; the other channels use 
only one. (c) A further enlarged view showing how the routing in the channels connects to the 
logic cells. (d) One of the logic cells, an inverter. (e) There are seven horizontal wiring tracks 
available in one row of gate-array base cells-the channel capacity is thus 7. 

Figure 17.7 shows the inverter macro for the sea-of-gates array shown in 
Figure l7.6. Figure l7.7(a) shows the base cell. Figure 17.7(b) shows how the inter­
nal inverter wiring on ml leaves one vertical track free as a feedthrough in a two­
level metal process (connectors placed at the top and bottom of the cell). In a three­
level metal process the connectors may be placed inside the cell abutment box 
(Figure l7.7c). Figure 17.8 shows the global routing for the sea-of-gates array. We 

930



920 CHAPTER 17 ROUTING 

(a) 

input output feedthrough 

abutment ~ 
box 

via 1 stacked 
over contact 

(b) 

m1 

contact 

via1 

connector 

vo 
~~-m1 

~-+-output 

abutment 
box 

I~-+- connector 

input --llllHllla f.oIIlII---~+-- connector 

(c) 

FIGURE 17.7 The gate-array inverter from Figure 17.6d. (a) An oxide-isolated gate-array 
base cell, showing the diffusion and polysilicon layers. (b) The metal and contact layers for 
the inverter in a 2LM (two-level metal) process. (c) The router's view of the cell in a 3LM pro­
cess. 

divide the array into nonoverlapping routing bins (or just bins, also called global 
routing cells or GRCs), each containing a number of gate-array base cells. 

We need an aside to discuss our use of the term cell. Be careful not to confuse 
the global routing cells with gate-array base cells (the smallest element of a gate 
array, consisting of a small number of n-type and p-type transistors), or with logic 
cells (which are NAND gates, NOR gates, and so on). 

A large routing bin reduces the size of the routing problem, and a small routing 
bin allows the router to calculate the wiring capacities more accurately. Some tools 
permit routing bins of different size in different areas of the chip (with smaller rout­
ing bins helping in areas of dense routing). Figure 17.8(a) shows a routing bin that is 
2-by-4 gate-array base cells. The logic cells occupy the lower half of the routing 
bin. The upper half of the routing bin is the channel area, reserved for wiring. The 
global router calculates the edge capacities for this routing bin, including the vertical 
feedthroughs. The global router then determines the shortest path for each net con­
sidering these edge capacities. An example of a global-routing calculation is shown 
in Figure 17.S(b). The path, described by a series of adjacent routing bins, is passed 
to the detailed router. 

17.1.6 Timing-Driven Methods 
Minimizing the total pathlength using a Steiner tree does not necessarily minimize 
the interconnect delay of a path. Alternative tree algorithms apply in this situation, 
most using the Elmore constant as a method to estimate the delay of a path 
(Section 17.1.2). As in timing-driven placement, there are-two main approaches to 

931



17.1 GLOBAL ROUTING 921 

north global route for net 1 : 
~:~~~i~y ~2 4 vertic;l+eed+hro~9hS C3-north; B3-east; B4-east; BS-east 

base cells~LL1JJJ,lJJTL1J 1 7 
~ , , , ~ 
~ I I I ~ 

~ ~ , ' 
~ channel ~ 
~ ~ , , 
~ ~ 
~ ~ 

west 
, 

tracks = 14 
capacity = 7 

1 2 f:f f 3 4 S f 6 7 

logi? cells east 

1 2 f:f f 3 4 f 6 7 
tracks = 14 
capacity = 7 , 

connectors ;Jf 

vertical feedthroughs 

(a) 

tracks = 12 
capacity = 4 

A 

B 

C 

o 

global cell 
edge 
BS-east & 
B6-west 

(b) 

bins 
or global 
routing 
cells (GRC) 

FIGURE 17.8 Global routing a gate array. (a) A single global-routing cell (GRC or routing 
bin) containing 2-by-4 gate-array base cells. For this choice of routing bin the maximum hor­
izontal track capacity is 14, the maximum vertical track capacity is 12. The routing bin labeled 
C3 contains three logic cells, two of which have feedthroughs marked 'f'. This results in the 
edge capacities shown. (b) A view of the top left-hand corner of the gate array showing 28 
routing bins. The global router uses the edge capacities to find a sequence of routing bins to 
connect the nets. 

timing-driven routing: net-based and path-based. Path-based methods are more 
sophisticated. For example, if there is a critical path from logic cell A to B to C, the 
global router may increase the delay due to the interconnect between logic cells A 
and B if it can reduce the delay between logic cells Band C. Placement and global 
routing tools mayor may not use the same algorithm to estimate net delay. If these 
tools are from different companies, the algorithms are probably different. The algo­
rithms must be compatible, however. There is no use performing placement to mini­
mize predicted delay if the global router uses completely different measurement 
methods. Companies that produce floorplanning and placement tools make sure that 
the output is compatible with different routing tools-often to the extent of using 
different algorithms to target different routers. 

17.1.7 Back-annotation 
After global routing is complete it is possible to accurately predict what the length 
of each interconnect in every net will be after detailed routing, probably to within 5 

932



922 CHAPTER 17 ROUTING 

percent. The global router can give us not just an estimate of the total net length 
(which was all we knew at the placement stage), but the resistance and capacitance 
of each path in each net. This RC information is used to calculate net delays. We 
can back-annotate this net delay information to the synthesis tool for in-place opti­
mization or to a timing verifier to make sure there are no timing surprises. Differ­
ences in timing predictions at this point arise due to the different ways in which the 
placement algorithms estimate the paths and the way the global router actually 
builds the paths. 

17.2 Detailed Routing 

The global routing step determines the channels to be used for each interconnect. 
U sing this information the detailed router decides the exact location and layers for 
each interconnect. Figure 17.9(a) shows typical metal rules. These rules determine 
the ml routing pitch (track pitch, track spacing, or just pitch). We can set the m1 
pitch to one of three values: 

1. via-to-via (VTV) pitch (or spacing), 

2. via-to-line (VTL or line-to-via) pitch, or 

3. line-to-line (LTL) pitch. 

The same choices apply to the m2 and other metal layers if they are present. 
Via-to-via spacing allows the router to place vias adjacent to each other. Via-to-line 
spacing is hard to use in practice because it restricts the router to nonadjacent vias. 
Using line-to-line spacing prevents the router from placing a via at all without using 
jogs and is rarely used. Via-to-via spacing is the easiest for a router to use and the 
most common. Using either via-to-line or via-to-via spacing means that the routing 
pitch is larger than the minimum metal pitch. 

Sometimes people draw a distinction between a cut and a via when they talk 
about large connections such as shown in Figure 17.1O(a). We split or stitch a large 
via into identically sized cuts (sometimes called a waffle via). Because of the profile 
of the metal in a contact and the way current flows into a contact, often the total 
resistance of several small cuts is less than that of one large cut. Using identically 
sized cuts also means the processing conditions during contact etching, which may 
vary with the area and perimeter of a contact, are the same for every cut on the chip. 

In a stacked via the contact cuts all overlap in a layout plot and it is impossible 
to tell just how many vias on which layers are present. Figure l7 . 10 (b-f) show an 
alternative way to draw contacts and vias. Though this is not a standard, using the 
diagonal box convention makes it possible to recognize stacked vias and contacts on 
a layout (in any orientation). I shall use these conventions when it is necessary. 

933



17.2 DETAILED ROUTING 923 

via-to-line or 

via-to-via pitch line-to-via 
pitch line-to-line pitch 

m1 j j j 
311, 711, 6.511, 611, 

via1 311, 

1 1 1 1411,1 

(a) (b) (c) (d) 

FIGURE 17.9 The metal routing pitch. (a) An example of A-based metal design rules for 
m1 and via1 (m1/m2 via). (b) Via-to-via pitch for adjacent vias. (c) Via-to-Iine (or line-to-via) 
pitch for nonadjacent vias. (d) Line-to-line pitch with no vias. 

m2 

via1 contact 

(a) 
cut 

(b) (c) 

m2 m2 

stacked via2 
contact and 
via1 

(d) (e) 

m2 

stacked 
contact, via1, 
and via2 

(f) 

FIGURE 17.10 (a) A large m1 to m2 via. The black squares represent the holes (or cuts) 
that are etched in the insulating material between the m1 and 2 layers. (b) A m1 to m2 via (a 
via1). (c) A contact from m1 to diffusion or polysilicon (a contact). (d) A via1 placed over (or 
stacked over) a contact. (e) A m2 to m3 via (a via2) (f) A via2 stacked over a via1 stacked over 
a contact. Notice that the black square in parts b-c do not represent the actual location of the 
cuts. The black squares are offset so you can recognize stacked vias and contacts. 

In a two-level metal CMOS ASIC technology we complete the wiring using the 
two different metal layers for the horizontal and vertical directions, one layer for each 
direction. This is Manhattan routing, because the results look similar to the rectangu­
lar north-south and east-west layout of streets in New York City. Thus, for example, if 
tenninals are on the m2 layer, then we route the horizontal branches in a channel using 
m2 and the vertical trunks using m 1. Figure 17.11 shows that, although we may choose 
a preferred direction for each metal layer (for example, ml for horizontal routing and 
m2 for vertical routing), this may lead to problems in cases that have both horizontal . 
and vertical channels. In these cases we define a preferred metal layer in the direction 

934



924 CHAPTER 17 ROUTING 

m2 

L 
m1 

of the channel spine. In Figure 17.11, because the logic cell connectors are on m2, any 
vertical channel has to use vias at every logic cell location. By changing the orientation 
of the metal directions in vertical channels, we can avoid this, and instead we only 
need to place vias at the intersection of horizontal and vertical channels. 

channel 4 

(a) 

E 

F 

m2 

L 
m1 

channel 4 

(b) 

E 

F 

FIGURE 17.11 An expanded view of part of a cell-based ASIC. (a) Both channel 4 and 
channel 5 use m1 in the horizontal direction and m2 in the vertical direction. If the logic cell 
connectors are on m2 this requires vias to be placed at every logic cell connector in channel 
4. (b) Channel 4 and 5 are routed with m1 along the direction of the channel spine (the long 
direction of the channel). Now vias are required only for nets 1 and 2, at the intersection of the 
channels. 

Figure 17.12 shows an imaginary logic cell with connectors. Double-entry logic 
cells intended for two-level metal routing have connectors at the top and bottom of 
the logic cell, usually in m2. Logic cells intended for processes with three or more 
levels of metal have connectors in the center of the cell, again usually on m2. Logic 
cells may use both m 1 and m2 internally, but the use of m2 is usually minimized. 
The router normally uses a simplified view of the logic cell called a phantom. The 
phantom contains only the logic cell information that the router needs: the connector 
locations, types, and names; the abutment and bounding boxes; enough layer infor­
mation to be able to place cells without violating design rules; and a blockage 
map-the locations of any metal inside the cell that blocks i·outing. 

935



1. electrically 
equivalent connectors; 
router can connect to 
top or bottom and use 
connectors as a 
feedthrough 

2. equivalent 
connectors; router can 
connect to top or 
bottom but cannot use 
as a feedthrough 

5. track location blocked 
by m2 inside cell 

3. must-join connectors, 
router must connect 
to top and bottom 

17.2 DETAILED ROUTING 925 

7. connector 
with no 

4. internal 
connector 

equivalent 
connectors 
with internal jog 

9. routing 
grid 

FIGURE 17.12 The different types of connections that can be made to a cell. This cell has 
connectors at the top and bottom of the cell (normal for cells intended for use with a two-level 
metal process) and internal connectors (normal for logic cells intended for use with a three­
level metal process). The interconnect and connections are drawn to scale. 

Figure 17.13 illustrates some terms used in the detailed routing of a channel. 
The channel spine in Figure 17.13 is horizontal with terminals at the top and the bot­
tom, but a channel can also be vertical. In either case terminals are spaced along the 
longest edges of the channel at given, fixed locations. Terminals are usually located 
on a grid defined by the routing pitch on that layer (we say terminals are either 
on-grid or off-grid). We make connections between terminals using interconnects 
that consist of one or more trunks running parallel to the length of the channel and 
branches that connect the trunk to the terminals. If more than one trunk is used, the 
trunks are connected by doglegs. Connections exit the channel at pseudoterminals. 

The trunk and branch connections run in tracks (equispaced, like railway tracks). 
If the trunk connections use mI, the horizontal track spacing (usually just called the 
track spacing for channel routing) is equal to the mi routing pitch. The maximum 
number of interconnects we need in a channel multiplied by the horizontal track spac­
ing gives the minimum height of a channel (see Section 17.2.2 on how to determine" 

936



926 CHAPTER 17 ROUTING 

(a) 

(b) 

unused 

4 horizontal 

tracks ""=~:.:.c: 
~ trunk or 

I ................... ~~~~ T .................. . 

t:::::::::::::::::: pseudo-
horizontal track terminal 
pitch = 8 'A 

LJ 

4'A 

expanded 
view of 
channel 

4'A 

cell 
abutment 
box t.-

via1 

m2 

connector, 
terminal, port, 
or pin 

I vertical track 
pitch = 8 'A 

~= + 

via1 m1 

(c) 

exiting 
channel 

+ III 

m2 contact 

FIGURE 17.13 Terms used in channel routing. (a) A channel with four horizontal tracks. 
(b) An expanded view of the left-hand portion of the channel showing (approximately to scale) 
how the m 1 and m2 layers connect to the logic cells on either side of the channel. (c) The con­
struction of a via1 (m1/m2 via). 

the maximum number of interconnects needed). Each tenninal occupies a column. If 
the branches use m2, the column spacing (or vertical track spacing) is equal to the 
m2 routing pitch. 

17.2.1 Goals and Objectives 
The goal of detailed routing is to complete all the connections between logic cells. 
The most common objective is to minimize one or more of the following: 

" The total interconnect length and area 

" The number of layer changes that the connections have to make 

" The delay of critical paths 

937



17.2 DETAILED ROUTING 927 

Minimizing the number of layer changes corresponds to minimizing the number of 
vias that add parasitic resistance and capacitance to a connection. 

In some cases the detailed router may not be able to complete the routing in the 
area provided. In the case of a cell-based ASIC or sea-of-gates array, it is possible to 
increase the channel size and try the routing steps again. A channeled gate array or 
FPGA has fixed routing resources and in these cases we must start all over again 
with floorplanning and placement, or use a larger chip. 

17.2.2 Measurement of Channel Density 
We can describe a channel-routing problem by specifying two lists of nets: one for 
the top edge of the channel and one for the bottom edge. The position of the net 
number in the list gives the column position. The net number zero represents a 
vacant or unused terminal. Figure 17.14 shows a channel with the numbered termi­
nals to be connected along the top and the bottom of the channel. 

We call the number of nets that cross a line drawn vertically anywhere in a 
channel the local density. We call the maximum local density of the channel the 
global density or sometimes just channel density. Figure 17.14 has a channel den­
sity of 4. Channel density is an important measure in routing-it tells a router the 
absolute fewest number of horizontal interconnects that it needs at the point where 
the local density is highest. In two-level routing (all the horizontal interconnects run 
on one routing layer) the channel density determines the minimum height of the 
channel. The channel capacity is the maximum number of interconnects that a chan­
nel can hold. If the channel density is greater than the channel capacity, that channel 
definitely cannot be routed (to learn how channel density is calculated, see 
Section 17.2.5). 

t
m2 

m1 ! .-.. 
via1 

localdensity=3 .. 
localclensity=2 

10caidEmsity == 1 . 

localdensity 
=globald~nsity or 
channeldensity= 4 

FIGURE 17.14 The definitions of local channel density and global channel density. Lines 
represent the m1 and m2 interconnect in the channel to simplify the drawing. 

938



928 CHAPTER 17 ROUTING 

17.2.3 Algorithms 
We start discussion of routing methods by simplifying the general channel-routing 
problem. The restricted channel-routing problem limits each net in a channel to 
use only one horizontal segment. In other words the channel router uses only one 
trunk for each net. This restriction has the effect of minimizing the number of con­
nections between the routing layers. This is equivalent to minimizing the number of 
vias used by the channel router in a two-layer metal technology. Minimizing the 
number of vias is an important objective in routing a channel, but it is not always 
practical. Sometimes constraints will force a channel router to use jogs or other 
methods to complete the routing (see Section 17.2.5). Next, though, we shall study 
an algorithm that solves the restricted channel-routing problem. 

17.2.4 Left-Edge Algorithm 
The left-edge algorithm (LEA) is the basis for several routing algorithms 
[Hashimoto and Stevens, 1971]. The LEA applies to two-layer channel routing, 
using one layer for the trunks and the other layer for the branches. For example, m1 
may be used in the horizontal direction and m2 in the vertical direction. The LEA 
proceeds as follows: 

1. Sort the nets according to the leftmost edges of the net's horizontal segment. 

2. Assign the first net on the list to the first free track. 

3. Assign the next net on the list, which will fit, to the track. 

4. Repeat this process from step 3 until no more nets will fit in the current track. 

5. Repeat steps 2-4 until all nets have been assigned to tracks. 

6. Connect the net segments to the top and bottom of the channel. 

Figure 17 .15 illustrates the LEA. The algorithm works as long as none of the 
branches touch-which may occur if there are terminals in the same column belong­
ing to different nets. In this situation we have to make sure that the trunk that con­
nects to the top of the channel is placed above the lower trunk. Otherwise two 
branches will overlap and short the nets together. In the next section we shall exam­
ine this situation more closely. 

17.2.5 Constraints and Routing Graphs 
Two terminals that are in the same column in a channel create a vertical constraint. 
We say that the terminal at the top of the column imposes a vertical constraint on the 
lower terminal. We can draw a graph showing the vertical constraints imposed by 
terminals. The nodes in a vertical~constraint graph represent terminals. A vertical 
constraint between two terminals is shown by an edge of the graph connecting the 
two terminals. A graph that contains information in the direction of an edge is a 
directed graph. The arrow on the graph edge shows the direction of the con-

939



17.2 DETAILED ROUTING 929 

Segments sorted 
their left edge. 

1 ~~;;C!~~l?7A:;;~'i!:2""ijI~!j;'1 

(a) Net 6 has 3 terminals. 

Left edge of segment 7 
connects to top 
of channel. 

3 

Left edge of 
connects to bottom 
of channel. 

7 

(b) 

1~ 9 

Segments assigned to tracks by their left edges. 

o 0 3 0 2 5 4 7 5 8 6 3 10 10 7 

(c) 

201 400 6 0 608 9 0 9 

1
m2 

m1 
~ 

via1 

FIGURE 17.15 Left-edge algorithm. (a) Sorted list of segments. (b) Assignment to tracks. 
(c) Completed channel route (with m1 and m2 interconnect represented by lines). 

straint-pointing to the lower terminal, which is constrained. Figure 17.16(a) shows 
an example of a channel, and Figure 17 .16(b) shows its vertical constraint graph. 

We can also define a horizontal constraint and a corresponding horizontal-con~ 
straint graph. If the trunk for net 1 overlaps the trunk of net 2, then we say there is a 
horizontal constraint between net 1 and net 2. Unlike a vertical constraint, a horizontal 
constraint has no direction. Figure 17 .16( c) shows an example of a horizontal con­
straint graph and shows a group of 4 terminals (numbered 3, 5, 6, and 7) that must all 
overlap. Since this is the largest such group, the global channel density is 4. 

If there are no vertical constraints at all in a channel, we can guarantee that the 
LEA will find the minimum number of routing tracks. The addition of vertical con­
straints transforms the restricted routing problem into an NP-complete problem. 
There is also an arrangement of vertical constraints that none of the algorithms 
based on the LEA can cope with. In Figure l7.l7(a) net 1 is above net 2 in the first' 

940



930 CHAPTER 17 ROUTING 

FIGURE 17.16 Routing graphs. (a) Channel with a global density of 4. (b) The vertical con­
straint graph. If two nets occupy the same column, the net at the top of the channel imposes a ver­
tical constraint on the net at the bottom. For example, net 2 imposes a vertical constraint on net 
4. Thus the interconnect for net 4 must use a track above net 2. (c) Horizontal-constraint graph. 
If the segments of two nets overlap, they are connected in the horizontal-constraint graph. This 
graph determines the global channel density. 

column of the channel. Thus net 1 imposes a vertical constraint on net 2. Net 2 is 
above net 1 in the last column of the channel. Then net 2 also imposes a vertical 
constraint on net 1. It is impossible to route this arrangement using two routing lay­
ers with the restriction of using only one trunk for each net. If we construct the verti­
cal-constraint graph for this situation, shown in Figure 17 .17 (b), there is a loop or 
cycle between nets 1 and 2. If there is any such vertical-constraint cycle (or cyclic 
constraint) between two or more nets, the LEA will fail. A dogleg router removes 
the restriction that each net can use only one track or trunk. Figure 17.17(c) shows 
how adding a dogleg permits a channel with a cyclic constraint to be routed. 

The channel-routing algorithms we have described so far do not allow intercon­
nects on one layer to run on top of other interconnects on a different layer. These 
algorithms allow interconnects to cross at right angles to each other on different lay­
ers, but not to overlap. When we remove the restriction that horizontal and vertical 
routing must use different layers, the density of a channel is no longer the lower 
bound for the number of tracks required. For two routing layers the ultimate lower 

941



17.2 DETAILED ROUTING 931 

FIGURE 17.17 The addition of a 
dogleg, an extra trunk, in the wiring 
of a net can resolve cyclic vertical 
constraints. 

1 1 2 

2 0 1 

(a) 

1 1 1 2 

o 
2 201 

(b) (c) 

bound becomes half of the channel density. The practical reasoning for restricting 
overlap is the parasitic overlap capacitance between signal interconnects. As the 
dimensions of the metal interconnect are reduced, the capacitance between adjacent 
interconnects on the same layer (coupling capacitance) is comparable to the capaci­
tance of interconnects that overlap on different layers (overlap capacitance). Thus, 
allowing a short overlap between interconnects on different layers may not be as bad 
as allowing two interconnects to run adjacent to each other for a long distance on the 
same layer. Some routers allow you to specify that two interconnects must not run 
adjacent to each other for more than a specified length. 

The channel height is fixed for channeled gate arrays; it is variable in discrete 
steps for channelless gate arrays; it is continuously variable for cell-based ASICs. 
However, for all these types of ASICs, the channel wiring is fully customized and so 
may be compacted or compressed after a channel router has completed the intercon­
nect. The use of channel-routing compaction for a two-layer channel can reduce 
the channel height by 15 percent to 20 percent [Cheng et aI., 1992]. 

Modem channel routers are capable of routing a channel at or near the theoreti­
cal minimum density. We can thus consider channel routing a solved problem. Most 
of the, difficulty in detailed routing now comes from the need to route more than two 
layers and to route arbitrary shaped regions. These problems are best handled by 
area routers. 

17.2.6 Area-Routing Algorithms 
There are many algorithms used for the detailed routing of general-shaped areas (see 
the paper by Ohtsuki in [Ohtsuki, 1986]). Many of these were originally developed 
for PCB wiring. The first group we shall cover and the earliest to be used histori­
cally are the grid-expansion or maze-running algorithms. A second group of meth­
ods, which are more efficient, are the line-search algorithms. 

Figure 17.18 illustrates the Lee maze-running algorithm. The goal is to find a 
path from X to Y-i.e., from the start (or source) to the finish (or target)-avoiding 
any obstacles. The algorithm is often called wave propagation because it sends out 
waves, which spread out like those created by dropping a stone into a pond. 

dogleg-more 
than one trunk 
per net 

942



932 CHAPTER 17 ROUTING 

FIGURE 17.18 The Lee maze-running algorithm. The 
algorithm finds a path from source (X) to target (Y) by 
emitting a wave from both the source and the target at 
the same time. Successive outward moves are marked 
in each bin. Once the target is reached, the path is found 
by backtracking (if there is a choice of bins with equal 
labeled values, we choose the bin that avoids changing 
direction). (The original form of the Lee algorithm uses a 
single wave.) 

Algorithms that use lines rather than waves to search for connections are more 
efficient than algorithms based on the Lee algorithm. Figure 17.19 illustrates the 
Hightower algorithm-a line-search algorithm (or line-probe algorithm): 

1. Extend lines from both the source and target toward each other. 

2. When an extended line, known as an escape line, meets an obstacle, choose a 
point on the escape line from which to project another escape line at right 
angles to the old one. This point is the escape point. 

3. Place an escape point on the line so that the next escape line just misses the 
edge of the obstacle. Escape lines emanating from the source and target inter­
sect to form the path. 

FIGURE 17.19 Hightower area-routing algorithm. (a) 
Escape lines are constructed from source (X) and target 
(Y) toward each other until they hit obstacles. (b) An 
escape point is found on the escape line so that the next 
escape line perpendicular to the original misses the next 
obstacle. The path is complete when escape lines from 
source and target meet. 

source 
escape line 

escape line target ! 

(a) 

escape 
point 

intersection 
of escape 
lines 

(b) 

943



17.2 DETAILED ROUTING 933 

The Hightower algorithm is faster and requires less memory than methods based on 
the Lee algorithm. 

17.2.7 Multilevel Routing 
Using two-layer routing, if the logic cells do not contain any m2, it is possible to 
complete some routing in m2 using over-the-cell (OTC) routing. Sometimes poly is 
used for short connections in the channel in a two-level metal technology; this is 
known as 2.5-layer routing. Using a third level of metal in three-layer routing, 
there is a choice of approaches. Reserved-layer routing restricts all the intercon­
nect on each layer to flow in one direction in a given routing area (for example, in a 
channel, either parallel or perpendicular to the channel spine). Unreserved-layer 
routing moves in both horizontal and vertical directions on a given layer. Most rout­
ers use reserved routing. Reserved three-level metal routing offers another choice: 
Either use ml and m3 for horizontal routing (parallel to the channel spine), with m2 
for vertical routing (HVH routing) or use VHV routing. Since the logic cell inter­
connect usually blocks most of the area on the ml layer, HVH routing is normally 
used. It is also important to consider the pitch of the layers when routing in the same 
direction on two different layers. Using HVH routing it is preferable for the m3 
pitch to be a simple multiple of the ml pitch (ideally they are the same). Some pro­
cesses have more than three levels of metal. Sometimes the upper one or two metal 
layers have a coarser pitch than the lower layers and are used in multilevel routing 
for power and clock lines rather than for signal interconnect. 

Figure 17.20 shows an example of three-layer channel routing. The logic cells 
are 64 A high, the ml routing pitch is 8 A, and the m2 and m3 routing pitch is 16 A. 
The channel in Figure 17.20 is the same as the channel using two-layer metal shown 
in Figure 17.13, but using three-level metal reduces the channel height from 40 A 
(=5 x 8 A) to 16 A. Submicron processes try to use the same metal pitch on all metal 
layers. This makes routing easier but processing more difficult. 

With three or more levels of metal routing it is possible to reduce the channel 
height in a row-based ASIC to zero. All of the interconnect is then completed over 
the cell. If all of the channels are eliminated, the core area (logic cells plus routing) 
is determined solely by the logic-cell area. The point at which this happens depends 
on not only the number of metal layers and channel density, but also the routing 
resources (the blockages and feedthroughs) in the logic cell. This the cell porosity. 
Designing porous cells that help to minimize routing area is an art. For example, it is 
quite common to be able to produce a smaller chip using larger logic cells if the 
larger cells have more routing resources. 

17.2.8 Timing-Driven Detailed Routing 
In detailed routing the global router has already set the path the interconnect will 
follow. At this point little can be done to improve timing except to reduce the num­
ber of vias, alter the interconnect width to optimize delay, and minimize overlap 

944



934 CHAPTER 17 ROUTING 

interconnect to 

m2 

m2 routing pitch 

-.16A+ 

L 

8A' 

m1 • 
routing 
pitch 

m1 and 
m3 

• 16A 

m3 .. 
routing 
pitch 

~=E3+~+. 
via1 m1 m2 contact via2 m2 m3 contact via1 via2 

FIGURE 17.20 Three-level channel routing. In this diagram the m2 and m3 routing pitch is 
set to twice the m1 routing pitch. Routing density can be increased further if all the routing 
pitches can be made equal-a difficult process challenge. 

capacitance. The gains here are relatively small, but for very long branching nets 
even small gains may be important. For high-frequency clock nets it may be impor­
tant to shape and chamfer (round) the interconnect to match impedances at branches 
and control reflections at corners. 

17.2.9 Final Routing Steps 
If the algorithms to estimate congestion in the floorplanning tool accurately per­
fectly reflected the algorithms used by the global router and detailed router, routing 
completion should be guaranteed. Often, however, the detailed router will not be 
able to completely route all the nets. These problematical nets are known as 
unroutes. Routers handle this situation in one of two ways. The first method leaves 
the problematical nets unconnected. The second method completes all interconnects 
anyway but with some design-rule violations (the problematical nets may be shorted 
to other nets, for example). Some tools flag these problems as a warning (in fact 
there can be no more serious error). 

945



17.3 SPECIAL ROUTING 935 

If there are many unroutes the designer needs to discover the reason and return 
to the fioorplanner and change channel sizes (for a cell-based ASIC) or increase the 
base-array size (for a gate array). Returning to the global router and changing bin 
sizes or adjusting the algorithms may also help. In drastic cases it may be necessary 
to change the ftoorplan. If just a handful of difficult nets remain to be routed, some 
tools allow the designer to perform hand edits using a rip-up and reroute router 
(sometimes this is done automatically by the detailed router as a last phase in the 
routing procedure anyway). This capability also permits engineering change orders 
(ECO)-corresponding to the little yellow wires on a PCB. One of the last steps in 
routing is via removal-the detailed router looks to see if it can eliminate any vias 
(which can contribute a significant amount to the interconnect resistance) by chang­
ing layers or making other modifications to the completed routing. Routing 
compaction can then be performed as the final step. 

17.3 Special Routing 

The routing of nets that require special attention, clock and power nets for example, 
is normally done before detailed routing of signal nets. The architecture and struc­
ture of these nets is performed as part of ftoorplanning, but the sizing and topology 
of these nets is finalized as part of the routing step. 

17.3.1 Clock Routing 
Gate arrays normally use a clock spine (a regular grid), eliminating the need for spe­
cial routing (see Section 16.1.6, "Clock Planning"). The clock distribution grid is 
designed at the same time as the gate-array base to ensure a minimum clock skew 
and minimum clock latency-given power dissipation and clock buffer area limita­
tions. Cell-based ASICs may use either a clock spine, a clock tree, or a hybrid 
approach. Figure 17.21 shows how a clock router may minimize clock skew in a 
clock spine by making the path lengths, and thus net delays, to every leaf node 
equal-using jogs in the interconnect paths if necessary. More sophisticated clock 
routers perform clock-tree synthesis (automatically choosing the depth and struc­
ture of the clock tree) and clock-buffer insertion (equalizing the delay to the leaf 
nodes by balancing interconnect delays and buffer delays). 

The clock tree may contain multiply-driven nodes (more than one active ele­
ment driving a net). The net delay models that we have used break down in this case 
and we may have to extract the clock network and perform circuit simulation, fol­
lowed by back-annotation of the clock delays to the netlist (for circuit extraction, 
see Section 17.4) and the bus currents to the clock router. The sizes of the clock 
buses depend on the current they must carry. The limits are set by reliability issues 
to be discussed next. 

946



936 CHAPTER 17 ROUTING 

00 00000000000000000 D 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 

ClK 0 B 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
o 0 
GDDDDDDDDDDDDDDDDDDDD 

(a) 

A1 I
jOg 

E1 
E2 

ClK_-r~ __ ).< 

D3 

(b) 

FIGURE 17.21 Clock routing. (a) A clock network for the cell-based ASIC from 
Figure 16.11. (b) Equalizing the interconnect segments between ClK and all destinations (by 
including jogs if necessary) minimizes clock skew. 

Clock skew induced by hot-electron wearout was mentioned in Section 16.1.6, 
"Clock Planning." Another factor contributing to unpredictable clock skew is 
changes in clock-buffer delays with variations in power-supply voltage due to data­
dependent activity. This activity-induced clock skew can easily be larger than the 
skew achievable using a clock router. For example, there is little point in using soft­
ware capable of reducing clock skew to less than 100 ps if, due to fluctuations in 
power-supply voltage when part of the chip becomes active, the clock-network 
delays change by 200 ps. 

The power buses supplying the buffers driving the clock spine carry direct cur­
rent (unidirectional current or DC), but the clock spine itself carries alternating cur­
rent (bidirectional current or AC). The difference between electromigration failure 
rates due to AC and DC leads to different rules for sizing clock buses. As we 
explained in Section 16.1.6, "Clock Planning," the fastest way to drive a large load 
in CMOS is to taper successive stages by approximately e "'" 3. This is not necessar­
ily the smallest-area or lowest-power approach, however [Veendrick, 1984]. 

17.3.2 Power Routing 
Each of the power buses has to be sized according to the current it will carry. Too 
much current in a power bus can lead to a failure through a mechanism known as 
electromigration [Young and Christou, 1994]. The required power-bus widths can 
be estimated automatically from library information, from a separate power simula­
tion tool, or by entering the power-bus widths to the rottting software by hand. 

947



17.3 SPECIAL ROUTING 937 

Many routers use a default power-bus width so that it is quite easy to complete rout­
ing of an ASIC without even knowing about this problem. 

For a direct current (DC) the mean time to failure (MTTF) due to electromi­
gration is experimentally found to obey the following equation: 

-2 -E 
MTTF = Al exp kT ' (17.9) 

where I is the current density; E is approximately 0.5 e V; k, Boltzmann's constant, is 
8.62 x 10-5 e VK-1; and T is absolute temperature in kelvins. 

There are a number of different approaches to model the effect of an AC com­
ponent. A typical expression is 

MTTF = 
-E 

AexPkT 

-- -2' 
1111 + k AC/Dc!JI 

(17.10) 

where] is the average of l(t), and III is the average of Ill. The constant kAC/DC 
relates the relative effects of AC and DC and is typically between 0.01 and 0.0001. 
Electromigration problems become serious with a MTTF of less than 105 hours 
(approximately 10 years) for current densities (DC) greater than 0.5 GAm-2 at tem­
peratures above 150°C. 

Table 17.1 lists example metallization reliability rules-limits for the current 
you can pass through a metal layer, contact, or via-for the typical 0.5!lm three­
level metal CMOS process, G5. The limit of 1 rnA of current per square micron of 
metal cross section is a good rule-of-thumb to follow for current density in 
aluminum-based interconnect. 

Some CMOS processes also have maximum metal-width rules (or fat-metal 
rules). This is because stress (especially at the corners of the die, which occurs dur­
ing die attach-mounting the die on the chip carrier) can cause large metal areas to 
lift. Asolution to this problem is to place slots in the wide metal lines. These rules 
are dependent on the ASIC vendor's level of experience. 

To determine the power-bus widths we need to determine the bus currents. The 
largest problem is emulating the system's operating conditions. Input vectors to test 
the system are not necessarily representative of actual system operation. Clock-bus 
sizing depends strongly on the parameter kAC/DC in Eq. 17.10, since the clock spine 
carries alternating current. (For the sources of power dissipation in CMOS, see 
Section 15.5, "Power Dissipation.") 

Gate arrays normally use a regular power grid as part of the gate-array base. 
The gate-array logic cells contain two fixed-width power buses inside the cell, run­
ning horizontally on ml. The horizontal ml power buses are then strapped in a verti­
cal direction by m2 buses, which run vertically across the chip. The resistance of the 
power grid is extracted and simulated with SPICE during the base-array design to 
model the effects of IR drops under worst-case conditions. 

948



938 CHAPTER 17 ROUTING 

TABLE 17.1 Metallization reliability rules for a typical 0.5 micron (A. = 0.25!-lm) CMOS process. 

Layer/contact/via Current Iimit1 Metal thickness2 Resistance3 

m1 1 mA!-lm-1 7000 A 95 mQ/square 

m2 1 mA!-lm-1 7000 A 95 mQ/square 

m3 2mA!-lm-1 12,000A 48 mQ/square 

0.8!-lm square m1 contact to diffusion 0.7mA 11 Q 

0.8!-lm square m1 contact to poly 0.7mA 16Q 

0.8 ~Lm square m1/m2 via (via1) 0.7mA 3.6Q 

0.8!-lm square m2/m3 via (via2) 0.7mA 3.6Q 

1 At 125°C for unidirectional current. Limits for 110°C are x 1.5 higher. Limits for 85°C are x 3 higher. Current 
limits for bidirectional current are x 1.5 higher than the unidirectional limits. 

210,000 A (ten thousand angstroms) = 1 !-lm. 
3Worst case at 110°C. 

Standard cells are constructed in a similar fashion to gate-array cells, with 
power buses running horizontally in ml at the top and bottom of each cell. A row of 
standard cells uses end-cap cells that connect to the VDD and VSS power buses 
placed by the power router. Power routing of cell-based ASICs may include the 
option to include vertical m2 straps at a specified intervals. Alternatively the number 
of standard cells that can be placed in a row may be limited during placement. The 
power router forms an interdigitated comb structure, minimizing the number of 
times a VDD or VSS power bus needs to change layers. This is achieved by routing 
with a routing bias on preferred layers. For example, VDD may be routed with a 
left-and-down bias on m l, with VSS routed using right-and-up bias on m2. 

Three-level metal processes either use a m3 with a thickness and pitch that is 
comparable to ml and m2 (which usually have approximately the same thickness 
and pitch) or they use metal that is much thicker (up to twice as thick as ml and m2) 
with a coarser pitch (up to twice as wide as ml and m2). The factor that determines 
the m3/4/5 properties is normally the sophistication of the fabrication process. 

In a three-level metal process, power routing is similar to two-level metal 
ASICs. Power buses inside the logic cells are still normally run on ml. Using HVH 
routing it would be possible to run the power buses on m3 and drop vias all the way 
down to m 1 when power is required in the cells. The problem with this approach is 
that it creates pillars of blockage across all three layers. 

Using three or more layers of metal for routing, it is possible to eliminate some 
of the channels completely. In these cases we complete all the routing in m2 and m3 
on top of the logic cells using connectors placed in the center of the cells on mI. If 
we can eliminate the channels between cell rows, we can flip rows about a horizon­
tal axis and abut adjacent rows together (a technique known as flip and abut). If the 

949



17.4 CIRCUIT EXTRACTION AND DRC 939 

power buses are at the top (VDD) and bottom (VSS) of the cells in m1 we can abut 
or overlap the power buses (joining VDD to VDD and VSS to VSS in alternate 
rows). 

Power distribution schemes are also a function of process and packaging tech­
nology. Recall that flip-chip technology allows pads to be placed anywhere on a chip 
(see Section 16.1.5, "I/O and Power Planning," especially Figure 16.13d). Four­
level metal and aggressive stacked-via rules allow I/O pad circuits to be placed in 
the core. The problems with this approach include placing the ESD and latch-up pro­
tection circuits required in the I/O pads (normally kept widely separated from core 
logic) adjacent to the logic cells in the core. 

17.4 Circuit Extraction and ORC 

After detailed routing is complete, the exact length and position of each interconnect 
for every net is known. Now the parasitic capacitance and resistance associated with 
each interconnect, via, and contact can be calculated. This data is generated by a 
circuit-extraction tool in one of the formats described next. It is important to 
extract the parasitic values that will be on the silicon wafer. The mask data or CIF 
widths and dimensions that are drawn in the logic cells are not necessarily the same 
as the final silicon dimensions. Normally mask dimensions are altered from drawn 
values to allow for process bias or other effects that occur during the transfer of the 
pattern from mask to silicon. Since this is a problem that is dealt with by the ASIC 
vendor and not the design software vendor, ASIC designers normally have to ask 
very carefully about the details of this problem. 

Table 17.2 shows values for the parasitic capacitances for a typical II.un CMOS 
process. Notice that the fringing capacitance is greater than the parallel-plate (area) 
capacitance for all layers except poly. Next, we shall describe how the parasitic 
information is passed between tools. 

17.4.1 SPF, RSPF, and DSPF 

The standard parasitic format (SPF) (developed by Cadence [1990], now in the 
hands of OVI) describes interconnect delay and loading due to parasitic resistance 
and capacitance. There are three different forms of SPF: two of them (regular SPF 
and reduced SPF) contain the same information, but in different formats, and model 
the behavior of interconnect; the third form of SPF (detailed SPF) describes the 
actual parasitic resistance and capacitance components of a net. Figure 17.22 shows 
the different types of simplified models that regular and reduced SPF support. The 
load at the output of gate A is represented by one of three models: lumped-C, 
lumped-RC, or PI segment. The pin-to-pin delays are modeled by RC delays. You 
can represent the pin-to-pin interconnect delay by an ideal voltage source, V(A_I) in 
this case, driving an RC network attached to each input pin. The actual pin-to-pin 
delays may not be calculated this way, however. 

950



940 CHAPTER 17 ROUTING 

TABLE 17.2 Parasitic capacitances for a typical 111m (A = 0.5Ilm) three­
level metal CMOS process.1 

Element Area/fFllm-2 Fringing/fFllm-1 

poly (over gate oxide) to substrate 1.73 NA2 

poly (over field oxide) to substrate 0.058 0.043 

m1 to diffusion or poly 0.055 0.049 

m1 to substrate 0.031 0.044 

m2 to diffusion 0.019 0.038 

m2 to substrate 0.015 0.035 

m2 to poly 0.022 0.040 

m2 to m1 0.035 0.046 

m3 to diffusion 0.011 0.034 

m3 to substrate 0.010 0.033 

m3to poly 0.012 0.034 

m3 to m1 0.016 0.039 

m3to m2 0.035 0.049 

n+ junction (at OV bias) 0.36 NA 

p+ junction (at OV bias) 0.46 NA 

1 Fringing capacitances are per isolated line. Closely spaced lines will have 
reduced fringing capacitance and increased interline capacitance, with increased 
total capacitance. 

2NA = not applicable. 

The key features of regular and reduced SPF are as follows: 

e The loading effect of a net as seen by the driving gate is represented by 
choosing one of three different RC networks: lumped-C, lumped-RC, or PI 
segment (selected when generating the SPF) [O'Brien and Savarino, 1989]. 

• The pin-to-pin delays of each path in the net are modeled by a simple RC delay 
(one for each path). This can be the Elmore constant for each path (see 
Section 17.1.2), but it need not be. 

Here is an example regular SPF file for just one net that uses the PI segment 
model shown in Figure 17.22(e): 

#Design Name : EXAMPLE1 

#Date : 6 August 1995 
#Time : 12:00:00 
#Resistance Units : 1 ohms 

#Capacitance Units : 1 pica farads 

951



#Syntax : 

17.4 CIRCUIT EXTRACTION AND DRC 941 

lumped-C 

(c) 

(a) 

(d) 

(b) (e) 

FIGURE 17.22 The regular and reduced standard parasitic format (SPF) models for inter­
connect. (a) An example of an interconnect network with fanout. The driving-point admittance 
of the interconnect network is Y(s). (b) The SPF model of the interconnect. (c) The lumped­
capacitance interconnect model. (d) The lumped-RC interconnect model. (e) The PI segment 
interconnect model (notice the capacitor nearest the output node is labeled C2 rather than 
C1). The values of C, R, C1, and C2 are calculated so that Y1(s), Y2(s) , and Y3(s) are the first-, 
second-, and third-order Taylor-series approximations to Y(s). 

#N <netName> 

#C <capVal> 
# F <from CompName> <fromPinName> 

# GC <conductance> 

# 
# REQ <res> 

# GRC <conductance> 

952



942 CHAPTER 17 ROUTING 

# T <toCompName> <toPinName> RC <rcConstant> A <value> 

# 
# RPI <res> 

# C1 <cap> 

# C2 <cap> 

# GPI <conductance> 
# T <toCompName> <toPinName> RC <rcConstant> A <value> 

# TIMING.ADMITTANCE.MODEL = PI 
# TIMING.CAPACITANCE.MODEL = PP 

N CLOCK 

C 3.66 
F ROOT Z 

RPI 8.85 

C1 2.49 

C2 1.17 

GPI = 0.0 
T DF1 G RC 22.20 

T DF2 G RC 13.05 

This file describes the following: 

• The preamble contains the file format. 

• This representation uses the PI segment model (Figure 17.22e). 

• This net uses pin-to-pin timing. 

• The driving gate of this net is ROOT and the output pin name is z. 

• The PI segment elements have values: Cl = 2.49 pF, C2 = 1.17 pF, 
RPI = 8.85 Q. Notice the order of Cl and C2 in Figure 17.22(e). The element 
GPI is not normally used in SPF files. 

o The delay from output pin z of ROOT to input pin G of DFl is 22.20 ns. 

e The delay from pin z of ROOT to pin G of DF2 is 13.05 ns. 

The reduced SPF (RSPF) contains the same information as regular SPF, but 
uses the SPICE format. Here is an example RSPF file that corresponds to the previ­
ous regular SPF example: 

* Design Name : EXAMPLE1 

* Date : 6 August 1995 
* Time: 12:00:00 
* Resistance Units : 1 ohms 

* Capacitance Units : 1 pico farads 

*1 RSPF 1.0 

*1 DELIMITER "_" 
.SUBCKT EXAMPLE1 OUT IN 

*1 GROUND_NET VSS 
* TIMING.CAPACITANCE.MODEL PP 

*INET CLOCK 3.66PF 
* 1 DRIVER ROOT Z ROOT Z 

953



*Is (ROOT_Z_OUTPI 0.0 0.0) 
R2 ROOT Z ROOT Z OUTPI 8.85 
Cl ROOT Z OUTPI VSS 2.49PF 

C2 ROOT Z VSS 1.17PF 

* 1 LOAD DF2_G DFI G 

*IS (DFl_G_INPl 0.0 0.0) 
El DFI G INPI VSS ROOT Z VSS 1.0 - - -
R3 DFI G INPI DFI G 22.20 

C3 DFI G VSS 1.OPF 

* 1 LOAD DF2_G DF2 G 

*IS (DF2_G_INPI 0.0 0.0) 
E2 DF2 G INPI VSS ROOT Z VSS 1.0 

- - -
R4 DF2 G INPI DF2 G 13.05 

C4 DF2 G VSS 1.OPF 
*Instance Section 

17.4 CIRCUIT EXTRACTION AND DRC 943 

XDFI DFl_Q DFl_QN DFl_D DFI G DFI CD DFI VDD DFI vss DFF3 
XDF2 DF2_Q DF2_QN DF2_D DF2_G DF2_CD DF2_VDD DF2 vss DFF3 
XROOT ROOT Z ROOT A ROOT VDD ROOT VSS BUF 
. ENDS 

.END 

This file has the following features: 

• The PI segment elements (Cl, C2, and R2) have the same values as the previ­
ous example. 

• The pin-to-pin delays are modeled at each of the gate inputs with a capacitor 
of value 1 pF (C3 and C4 here) and a resistor (R3 and R4) adjusted to give the 
correct RC delay. Since the load on the output gate is modeled by the PI seg­
ment it does not matter what value of capacitance is chosen here. 

• The RC elements at the gate inputs are driven by ideal voltage sources (El and 
E2) that are equal to the voltage at the output of the driving gate. 

The detailed SPF (DSPF) shows the resistance and capacitance of each seg­
ment in a net, again in a SPICE format. There are no models or assumptions on cal­
culating the net delays in this format. Here is an example DSPF file that describes 
the interconnect shown in Figure 17.23(a): 

.SUBCKT BUFFER OUT IN 

* Net Section 

* 1 GROUND NET VSS 

*INET IN 3.8E-OlPF 
*Ip (IN I 0.0 0.0 5.0) 

*11 (INVl:A INV A I 0.0 10.0 5.0) 
Cl IN VSS 1.lE-OlPF 
C2 INVl:A VSS 2.7E-OlPF 
Rl IN INVl:A 1.7EOO 

*INET OUT 1.54E-OlPF 

*Is (OUT:l 30.0 10.0) 

954



944 CHAPTER 17 ROUTING 

*Ip (OUT 0 0.0 30.0 0.0) 

*11 (1NV:OUT 1NVI OUT 0 0.0 20.0 10.0) 

C3 1NVl:OUT VSS 1.4E-OIPF 

C4 OUT:l VSS 6.3E-03PF 

CS OUT VSS 7.7E-03PF 

R2 1NVl:OUT OUT:l 3.llEOO 

R3 OUT:l OUT 3.03EOO 

*1nstance Section 

X1NVI 1NV:A 1NVl:OUT 1NV 

.ENDS 

The nonstandard SPICE statements in DSPF are comments that start with '* I ' 
and have the following formats: 

* 1 I (1nstancePinName 1nstanceName PinName PinType PinCap x Y) 

*IP(PinName PinType PinCap x Y) 

*INET NetName NetCap 

*IS(SubNodeName x Y) 

* 1 GROUND NET NetName 

Figure 17.23(b) illustrates the meanings of the DSPF terms: InstancePinName, 

InstanceName, PinName, NetName, and SubNodeName. The pinType is I (for IN) 
or 0 (the letter '0', not zero, for OUT). The NetCap is the total capacitance on each 
net. Thus for net IN, the net capacitance is 

0.38 pF = Cl + C2 = 0.11 pF + 0.27 pF. 

This particular file does not use the pin capacitances, pinCap. Since the DSPF rep­
resents every interconnect segment, DSPF files can be very large in size (hundreds 
of megabytes). 

17.4.2 Design Checks 

ASIC designers perform two major checks before fabrication. The first check is a 
design-rule check (DRC) to ensure that nothing has gone wrong in the process of 
assembling the logic cells and routing. The DRC may be performed at two levels. 
Since the detailed router normally works with logic-cell phantoms, the first level of 
DRC is a phantom-level DRC, which checks for shorts, spacing violations, or other 
design-rule problems between logic cells. This is principally a check of the detailed 
router. If we have access to the real library-cell layouts (sometimes called hard 
layout), we can instantiate the phantom cells and perform a second-level DRC at the 
transistor level. This is principally a check of the correctness of the library cells. 
Normally the ASIC vendor will perform this check using its own software as a type 
of incoming inspection. The Cadence Dracula software is one de facto standard in 
this area, and you will often hear reference to a Dracula deck that consists of the 
Dracula code describing an ASIC vendor's design rules. Sometimes ASIC vendors 
will give their Dracula decks to customers so that the customers can perform the 
DRCs themselves. 

955



17A CIRCUIT EXTRACTION AND DRC 945 

OUT 

instance instance C4 

m2 name ------.... I NV 1 pin name 
pin 

\ subnode name 
T 

net INV1:0~~ -= 
/name OUT OUT:1 

R1 INV1:A 

T IN A 

I INV1 

(0,1 0) 1----1----1 

INi~~~IIA 
-= 

C3 TC1 T C2 - - Tcs - -
(0,0) (10,0) (20,0) 

(a) (b) 

FIGURE 17.23 The detailed standard parasitic format (DSPF) for interconnect representa­
tion. (a) An example network with two m2 paths connected to a logic cell, INV1. The grid 
shows the coordinates. (b) The equivalent DSPF circuit corresponding to the DSPF file in the 
text. 

The other check is a layout versus schematic (LVS) check to ensure that what 
is about to be committed to silicon is what is really wanted. An electrical schematic 
is extracted from the physical layout and compared to the netlist. This closes a loop 
between the logical and physical design processes and ensures that both are the 
same. The LVS check is not as straightforward as it may sound, however. 

The first problem with an LVS check is that the transistor-level netlist for a 
large ASIC forms an enormous graph. LVS software essentially has to match this 
graph against a reference graph that describes the design. Ensuring that every node 
corresponds exactly to a corresponding element in the schematic (or HDL code) is a 
very difficult task. The first step is normally to match certain key nodes (such as the 
power supplies, inputs, and outputs), .but the process can very quickly become 
bogged down in the thousands of mismatch errors that are inevitably generated ini­
tially. 

The second problem with an LVS check is creating a true reference. The starting 
point may be HDL code or a schematic. However, logic synthesis, test insertion, 
clock-tree synthesis, logical-to-physical pad mapping, and several other design steps 
each modify the netlist. The reference netlist may not be what we wish to fabricate. 
In this case designers increasingly resort to formal verification that extracts a Bool­
ean description of the function of the layout and compare that to a known good HDL 
description. 

17.4.3 Mask Preparation 
Final preparation for the ASIC artwork includes the addition of a maskwork symbol 
(M inside a circle), copyright symbol (C inside a circle), and company logos on each 
mask layer. A bonding editor creates a bonding diagram that will show the connec- . 

956



946 CHAPTER 17 ROUTING 

tion of pads to the lead carrier as well as checking that there are no design-rule vio­
lations (bond wires that are too close to each other or that leave the chip at extreme 
angles). We also add the kerf (which contains alignment marks, mask identification, 
and other artifacts required in fabrication), the scribe lines (the area where the die 
will be separated from each other by a diamond saw), and any special hermetic 
edge-seal structures (usually metal). 

The final output of the design process is normally a magnetic tape written in 
Caltech Intermediate Format (CIF, a public domain text format) or GDSn 
Stream (formerly also called Calma Stream, now Cadence Stream), which is a pro­
prietary binary format. The tape is processed by the ASIC vendor or foundry (the 
fab) before being transferred to the mask shop. 

If the layout contains drawn n-diffusion and p-diffusion regions, then the fab 
generates the active (thin-oxide), p-type implant, and n-type implant layers. The fab 
then runs another polygon-level DRC to check polygon spacing and overlap for all 
mask levels. A grace value (typically 0.01 11m) is included to prevent false errors 
stemming from rounding problems and so on. The fab will then adjust the mask 
dimensions for fabrication either by bloating (expanding), shrinking, and merging 
shapes in a procedure called sizing 'or mask tooling. The exact procedures are 
described in a tooling specification. A mask bias is an amount added to a drawn 
polygon to allow for a difference between the mask size and the feature as it will 
eventually appear in silicon. The most common adjustment is to the active mask to 
allow for the bird's beak effect, which causes an active area to be several tenths of 
a micron smaller on silicon than on the mask. 

The mask shop will use e-beam mask equipment to generate'metal (usually 
chromium) on glass masks or reticles. The e-beam spot size determines the resolu­
tion of the mask-making equipment and is usually 0.05 11m or 0.025 11m (the smaller 
the spot size, the more expensive is the mask). The spot size is significant when we 
break the integer-lambda scaling rules in a deep-submicron process. For example, 
for a 0.35 11m process CA = 0.175 11m), a 1.5 A separation is 0.525 11m, which 
requires more expensive mask-making equipment with a 0.025 11m spot size. For 
critical layers (usually the polys iii con mask) the mask shop may use optical 
proximity correction (OPC), which adjusts the position of the mask edges to allow 
for light diffraction and reflection (the deep-UV light used for printing mask images 
on the wafer has a wavelength comparable to the minimum feature sizes). 

1755 Summary 

The completion of routing finishes the ASIC physical design process. Routing is a 
complicated problem best divided into two steps: global and detailed routing. Global 
routing plans the wiring by finding the channels to be lIsed for each path. There are 
differences between global rOllting for different types of ASICs, but the algorithms 
to find the shortest path are similar. Two main approaches to global routing are: one 

957



17.6 PROBLEMS 947 

net at a time, or all nets at once. With the inclusion of timing-driven routing objec­
tives, the routing problem becomes much harder and requires understanding the dif­
ferences between finding the shortest net and finding the net with the shortest delay. 
Different types of detail routing include channel routing and area-based or maze 
routing. Detailed routing with two layers of metal is a fairly well understood prob­
lem. 

The most important points in this chapter are: 

• Routing is divided into global and detailed routing. 

• Routing algorithms should match the placement algorithms. 

• Routing is not complete if there are unroutes. 

• Clock and power nets are handled as special cases. 

• Clock-net widths and power-bus widths must usually be set by hand. 

o DRC and LVS checks are needed before a design is complete. 

17.6 Problems 

* = Difficult, ** = Very difficult, *** = Extremely difficult 

17.1 (Routing measures, 20 min.). Channel density is a useful measure, but 
with the availability of more than two layers of metal, area-based maze routers are 
becoming more common. Lyle Smith, in his 1983 Stanford Ph.D. thesis, defines the 
Manhattan area measure (MAM) as: 

MAM = area needed / area available, (17.11) 

where you calculate the area needed by assuming routing on a single layer and 
ignore any interconnect overlaps. Calculate the MAM for Figure 17.14. Once the 
MAM reaches 0.5, most two-layer routers have difficulty. 

17.2 (*Benchmarking routers, 30 min.) Your design team needs a new router to 
complete your ASIC project. Your boss puts you in charge of benchmarking. She 
wants a list of the items you will test, and a description of how you will test them. 

17.3 (Timing-driven routing) (a) Calculate the delay from A to C in 
Figure 17.3(b) if the wire between V3 and V4 is increased to 5 mm. (b) If you want 
to measure the delay to the 90 percent point, what is the skew in signal arrival time 
between inverters Band C? (c) If you use the Elmore constant to characterize the 
delay between inverter A and inverter C as an RC element, what is the delay (mea­
sured to the 50 percent trip point) if you replace the step function at the output of 
inverter A with a linear ramp with a fall time of 0.1 ns? 

17.4 (Elmore delay, 30 min.) Recalculate 'CD4' 'CD2' and 'CD4 -'tD2 for the exam­
ple in Section 17 .1.2 neglecting the pull-down resistance Rpd and comment on your 
answers. 

958



948 CHAPTER 17 ROUTING 

17.5 (Clock routing, 30 min.) Design a clock distribution system with minimum 
latency given the following specifications: The clocked elements are distributed ran­
domly, but uniformly across the chip. The chip is 400 mil per side. There are 16,000 
flip-flops to clock; each flip-flop clock input presents a load of 0.02 pF (one standard 
load). There are four different types of inverting buffer available (typical for a 
0.5 J.lm process): 

IX buffer: T D = 0.1 + 1.5 C L ns; 4X buffer: T D = 0.3 + 0.55 C L ns; 

8X buffer: T D = 0.5 + 0.25 C L ns; 32X buffer: T D = 2 + 0.004 C L ns. 

In these equations T D is the buffer delay (assume rise and fall times are approximately 
equal) and C L is the buffer load expressed in standard loads. Electromigration limits 
require a limit of 1 rnA (DC) per micron metal width or lOrnA per micron for AC sig­
nals with no DC component. No metal bus may be wider than 100 J.lm. The m2 line 
capacitance is 0.015 fFJ.lm-2 (area) and 0.035 fFJ.lm-1 (fringing). 

17.6 (Power and ground routing, 10 min.) Calculate the parallel-plate capaci­
tance between a VDD power ring routed on m2 and an identical VSS ring routed on 
ml directly underneath. The chip is 500 mil on a side; assume the power ring runs 
around the edge of the chip. The VDD and VSS bus are capable of carrying 0.5 A 
and are both 500 J.lm wide. Assume that m1 and m2 are separated by a Si02 dielec­
tric 10,000 A thick. This capacitance can actually be used for decoupling supplies. 

17.7 (Overlap capacitance, 10 min.) Consider two interconnects, both of width 
W, separated by a layer of Si02 of thickness T, and that overlap for a distance L. 

a. What is the overlap capacitance, assuming there are no fringing effects? 

b. Calculate the overlap capacitance if W = 1 J.lm, T = 0.5 J.lm, for L = 1, 10, and 
100 J.lm. 

c. Calculate the gate capacitance of an n-channel transistor with transistor size 
W/L = 2/1 (that is, W = 2 J.lm, L = 1 J.lm), with a gate oxide thickness of 200 A 
(again assuming no fringing effects). 

d. Comment on your answers. 

17.8 (Standard load, 10 min.) Calculate the size of a standard load for the 1 J.lm 
process with the parasitic capacitance values shown in Table 17.2. Assume the 
n-channel and p-channel devices in a two-input NAND gate are all 10/1 with mini­
mum length. 

17.9 (Fringing capacitance, 45 min) You can calculate the capacitance per unit 
length (including fringing capacitance) of an interconnect with rectangular cross 
section (width W, thickness T, and a distance H above a ground plane) from the 
approximate formula (from [Barke, 1988]-the equation was originally proposed 
by van der Meijs and Fokkema): 

(17.12) 

959



17.6 PROBLEMS 949 

where C = crco is the dielectric constant of the insulator surrounding the intercon­
nect. The relative permittivity of a Si02 dielectric cr =3.9, and the permittivity of 
free space co = 3.45 X 10-11 Fm-I. 

a. Calculate C for W = T = H = I j.lm. 

b. Compare this value with the parallel-plate value (assuming no fringing 
capacitance) . 

c. Assume that the interconnect cross-sectional area (i.e., WH) is kept constant 
as technology scales, in order to keep the resistance per unit length of the 
interconnect constant. Assume that the width scales as sW, the height as sH, 
and the thickness as Tis, where s is a scaling factor from one to 0.1. Use a 
spreadsheet to calculate values for different scaling factors, assuming that for 
s = 1: W = T= H = I j.lm. 

d. Plot your results (with C on the y-axis vs. s on the x-axis). 

17.10 (Coupling capacitance, 30 min.) One of the reasons to follow quasi-ideal 
scaling for the physical dimensions of the interconnect is to try and reduce the para­
sitic area capacitance as we scale. (The other reason is to try and keep interconnect 
resistance constant.) Area capacitance scales as l/s by following ideal scaling rules, 
but scales as 1/s1.5 by using quasi-ideal scaling. Using quasi-ideal scaling means 
reducing the widths and horizontal spacing of the interconnect by lis and the height 
of the lines and their vertical separation from other layers by only l/sO.5. The effect 
is rather like turning the interconnects on their sides. As a result we must consider 
parasitic capacitances other than just the parallel-plate capacitance between two lay­
ers. The parasitic capacitance between neighboring interconnects is called coupling 
capacitance. Fringing capacitance results from the fact that the electric field lines 
spill out from the edges of a conductor. This means the total parasitic capacitance is 
greater than if we just considered the capacitance to be formed by two parallel 
plates. 

The following equation is an approximate expression for the capacitance per 
unit length of an isolated conductor of width Wand thickness T, separated by a dis­
tance H from a conducting plane, and surrounded by a medium of permittivity c 
[Sakurai and Tamaru, 1983]: 

~1 = 1.15 (~) + 2.80 (~r·222 . (17.13) 

This equation is of the form, 

(17.14) 

where Ca represents the contribution from two parallel plates and Cb is the fringing 
capacitance (for both edges). The following equation then takes into account the 

960



950 CHAPTER 17 ROUTING 

coupling capacitance to a neighbor conductor separated horizontally by a gap G 
between the edges of the conductors: 

C2 C 1 [(W) (T) (T)O.222J(G)-1.34 £" = £" + 0.03 H + 0.83 H - 0.07 H H (17.15) 

This equation is of the form, 

(17.16) 

where C c is the coupling capacitance from the conductor to one neighbor. For a con­
ductor having two neighbors (one on each side), the total capacitance will be 

(17.17) 

Table 17.3 shows the result of evaluating these equations for different values of TIH, 
WIH, and SIH for A = 0.5 )lm. 

3. Calculate the corresponding values for A = 0.125)lm assuming quasi-ideal 
scaling. 

Table 17.4 shows the predicted fringing and coupling capacitance for a 
A = 0.5 !-Lm process expressed in pFcm-1. 

h. Complete the corresponding values for A = 0.125 )lm, again assuming quasi­
ideal scaling. 

c. Comment on the difference between A = 0.5 )lm and A = 0.125 )lm. 

17.11 (**Routing algorithms, 60 min.) "The Lee algorithm is guaranteed to find . 
a path if it exists, but not necessarily the shortest path." Do you agree with this state­
ment? Can you prove or disprove it? 

"The Hightower algorithm is not guaranteed to find a path, even if one exists." Do 
you agree with this statement? Can you prove or disprove it? Hint: The problems 
occur not with routing anyone net but with routing a sequence of nets. 

17.12 (Constraint graphs, 10 min.) Draw the horizontal and vertical constraint 
graphs for the channel shown in Figure 17 .13(a). Explain how to handle the net that 
exits the channel and its pseudoterminal. 

17.13 (**Electromigration, 60 min.) You just received the first prototype of 
your new ASIC. The first thing you do is measure the resistance between VDD and 
VSS and find they are shorted. Horrified, you find that you added your initials on m1 
instead of m2 and shorted the supplies, next to the power pads. Your initials are only 
10)lm wide, but about 200)lm high! Fortunately only the first capital "I" is actually 
shorting the supplies. The power-supply rails are approximately 100)lm wide at that 

961



17.6 PROBLEMS 951 

TABLE 17.3 Calculated fringing capacitance (per unit length and normalized 
by permittivity) using quasi-ideal scaling and the Sakurai-Tamaru equations. 
Problem 17.10 completes this table. 

Parameter A,= 0.5/lm A,= 0.125 /lm 

T(/lm) 0.5 

W(/lm) 1.5 

S (/lm) 1.5 

H(/lm) 0.5 

TIH 1 

WIH, SIH 3 

C1 =Ca+Cb 6.25 

C2 = C1 + Ce 6.44 

C3 = C1 +2 Ce 6.63 

Ca = parallel plate 3.45 

Cb=fringe (two edges) 2.80 

Ce=coupling (one neighbor) 0.19 

CelCa 6% 

CiC3 52% 

CblC3 42% 

CclC3 3% 

TABLE 17.4 Predicted line capacitance including fringing and coupling capacitance (pFcm-1) for 
A= 0.125 11m and using quasi-ideal scaling and the Sakurai equations. Problem 17.10 completes this 
table. 

Parameter A= 0.5 11m A= 0.125 11m Comment 

C1=Ca+C 2.16 C1 is capacitance of line to ground. 

C2 = C1 + Cc 2.22 C2 is capacitance including one neighbor. 

C3 = C1 +2Ce 2.29 C3 is capacitance including two neighbors. 

Ca = plate 1.19 Ca is parallel-plate capacitance. 

Cb = fringe 0.97 Cb is fringe for both edges. 

Cc = coupling 0.07 Cc is coupling to one neighbor only. 

962



952 CHAPTER 17 ROUTING 

point. A thought occurs to you-maybe you can electromigrate your initial away. 
You remember that electromigration obeys an equation of the form: 

-E 
AexPkT 

MTTF = --::--­
J2 

(17.18) 

where MTTF is the mean time to failure, A is a constant, J is the current density, E 
is an activation energy, k is Boltzmann's constant, and T is absolute temperature. 
You also remember the rule that you can have about 1 rnA of current for every A of 
metal width for a reasonable time to failure of more than 10 years. Since this chip is 
in 0.5 !lm CMOS (A = 0.25 !lm), you guess that the metal is about 0.5 !lm thick, and 
the resistance is at least 50 mO/square. 

a. How much current do you estimate you need to make your initials fail so that 
you can test the chip before your boss gets back in a week's time? 

b. What else could you do to speed things up? 

c. How are you going to do this? (P.S. This sometimes actually works.) 

17.14 (**Routing problems, 20 min.) We have finished the third iteration on the 
new game chip and are having yield problems in production. This is what we know: 

1. We changed the routing on v3 by using an ECO mechanism in the detailed 
router from Shortem. We just ripped up a few nets and rerouted them without chang­
ing anything else. 

2. The ASIC vendor, Meltem, is having yield problems due to long metal lines 
shorting-but only in one place. It looks as though they are the metal lines we 
changed in v3. Meltem blames the mask vendor-Smokem. 

3. To save money we changed mask vendors after completing the prototype version 
vI, so that v2 and v3 uses the new mask vendor (Smokem). Smokem confirms there is 
a problem with the v3 mask-the lines we changed are shifted very slightly toward oth­
ers and have a design rule violation. However, the v2 mask was virtually identical'to v3 
and there are no problems with that one, so Smokem blames the router from Shortem. 

4. Shortem checks the CIF files for us, claims the mask data is correct, and they 
suggest we blame Meltem. 

We do not care (yet) who is to blame, we just need the problem fixed. We need 
suggestions for the source of the problem (however crazy), some possible fixes, and 
some ideas to test them. Can you help? 

17.15 (*Coupling capacitance, 30 min.) Suppose we have three interconnect 
lines running parallel to each other on a bus. Consider the following situations 
(VDD=5V, VSS=OV): 

a. The center line switches from VSS to VDD. The neighbor lines are at VSS. 

b. The center line switches from VSS to VDD. At the same time the neighbor 
lines switch from VDD to VSS. 

963



17.6 PROBLEMS 953 

C. The center line switches from VSS to VDD. At the same time the neighbor 
lines also switch from VDD to VSS. 

How do you define capacitance in these cases? In each case what is the effective 
capacitance from the center to the neighboring lines using your definition? 

17.16 (**2LM and 3LM routing, 10 min.) How would you attempt to measure 
the difference in die area obtained by using the same standard-cell library with two­
level and three-level routing? 

17.17 (***SPF, 60 min) 

a. Write a regular SPF file for the circuit shown in Figure 17.3(b), using the 
lumped-C model and the Elmore constant for the pin-to-pin timings. 

b. Write the equivalent RSPF file. 

c. Write a DSPF file for the same circuit. 

d. Calculate the PI segment parameters for the circuit shown in Figure 17.3(b). 
Hint: You may need to consult [O'Brien and Savarino, 1989] if you need 
help. 

17.18 (***Standard-cell aspect ratio, 30 min.) How would you decide the opti­
mum value for the logic cell height of a standard-cell library? 

17.19 (Electromigration, 20 min.) 

a. What is the current density in a 1 flm wide wire that is 1 flm thick and carries 
a current of 1 rnA? 

b. Using Eq. 17.9, can you explain the temperature behavior of the parameters 
in Table 17.1? 

c. Using Eq. 17.10, can you explain the dependence on current direction? 

17.20 (***SPF parameters, 120 min.). Hint: You may need help from [O'Brien 
and Savarino, 1989] for this question. 

a. Find an expression for Yes), where s = jw, the driving-point admittance (the 
reciprocal of the driving-point impedance), for the interconnect network 
shown in Figure 17.22(a), in terms of C A, C B, Cc, RAB , and RBC. 

b. Find the first three terms of the Taylor-series expansion for Yes). 

c. Derive expressions for Y1(s), Y2(s), and Y3(s) for the lumped-C, the 
lumped-RC, and the PI segment network models (Figure 17.22b-d). 

d. Comparing your answers to parts band c, derive the values of the parameters 
of the lumped-C, the lumped-RC, and the PI segment network models in 
terms of CA, CB, Cc, RAB , and RBC· 

17.21 (**Distributed-delay routing, 120 min. [Kahng and Robins, 1995]) The 
Elmore constant is one measure of net delay, 

(17.19) 

964



954 CHAPTER 17 ROUTING 

The distributed delay, defined as follows, is another measure of delay in a 
network: 

We can write this equation in terms of network components as follows: 

'tp = L (ROLkn+Rd) (Co + Cn) 
nodesk 

(17.20) 

(17.21) 

In this equation there are two types of capacitors: those due to the interconnect, 
Co' and those due to the gate loads at each sink, Cn- Rd is the driving resistance of 
the driving gate (the pull-up or pull-down resistance); Ro is the resistance of a 
one-grid-Iong piece of interconnect; and Co is the capacitance of a one-grid-Iong 
piece of interconnect. Thus, 

(17.22) 

since every path to ground must pass through Rd' Lkn is the path length (in routing­
grid units) between a node k and one of the n sink nodes. 

With these definitions we can expand Eq. 17.21 to the following: 

'tp = L COROLkn+ L CnROLkn+RdCO+RdCn' (17.23) 
nodesk nodesk 

Figure 17.24 shows examples of three different types of trees. The MRST mini-' 
mizes the rectilinear path length. The shortest-path tree (SPT) minimizes the sum'.· 
of path lengths to all sinks. The quadratic minimum Steiner tree (QMST) mini­
mizes the sum of path lengths to all nodes (every grid-point on the tree). 

a. Find the measures for the MRST, SPT, and QMST for each of the three dif-
ferent tree types shown in Figure 17.24. 

b. Explain how to apply these trees to Eq. 17.23. 

c. Compare Eqs.17 .19 and 17.20 for the purposes of timing-driven routing. 

17.22 (**Elmore delay, 120 min.) Figure 17.25 shows an RC tree. The mth 
moment of the impulse response for node i in an RC tree network with n nodes is 

n 

III (i) = L RkiC k 

k = 1 
n 

11m + lei) = (m + 1) L RkP kllm(k) .. 
k = 1 

(17.24) 

965



6 

2 

source 

(a) 

12 
I 

14 

I 

T1 =minimum 6 
i1inear rect 

Stei ner tree 
(M RST) 2 

18 routing grid 

~ 
\ 

/' 
Yk "'~In, s, 

I:rf 
v 

6 

(b) 

11 

10 

T2 = shortest- 6 
path tree 5 
(SPT) 4 

3 
2 
1 

17.6 PROBLEMS 955 

7 9 11 
8 10 12 

... ~5?2e~ 

.~ .. ~ I-.t.. 
1 2 345 6 

(c) 

13 
14 

T3 = quadratic 
minimum 
Steiner tree 
(QMST) 

FIGURE 17.24 Examples of trees for timing-driven layout. (a) The MRST. (b) The 
shortest-path tree (SPT). (c) The quadratic minimum Steiner tree (QMST). (Problem 17.21) 

(b) (c) 

(a) (d) 

FIGURE 17.25 Standard parasitic format (SPF) (Problem 17.22). (a) An RC interconnect 
tree driven by a NAND gate. (b) The NAND gate modeled by an ideal switch. (c) The NAND 
gate modeled with a pull-down resistance, RF , and output capacitance, CL. (d) The PI seg­
ment model for the RC tree (the order of Cpi1-last-and Cpi2 is correct). 

The Elmore constant is the first moment of the impulse response. We calculate 
the weighted-capacitance values in Eq. 17.24 as follows: 

n 

n 

km = ~! I.. C kJlm(k). 
k = 1 

(17.25) 

966



956 CHAPTER 17 ROUTING 

We derive the PI segment parameters used in SPF from the k j as follows: 

223 
Cpil = k1lk2 ; Rpil = k21k1; C '2 = ko - C '1' pl pl 

a. Calculate Elmore's constant for the RC tree in Figure 17.25(a). 

b. Derive the PI segment model shown in Figure 17.25(d). 

c. What is the difference between using the model of Figure 17.25(b) and the 
model of Figure 17 .25( c) for the NAND gate? 

17.7 Bibliography 

The IEEE Transactions on Computer-Aided Design (TK7874.I327, ISSN 0278-
0070) contains papers and tutorials on routing (with an emphasis on algorithms). 
The Proceedings of the ACMIIEEE Design Automation Conference (DAC, 
TAI74.D46a, ISSN 0146-7123, catalogued under various titles) and the Proceedings 
of the IEEE International Conference on Computer-Aided Design (ICCAD, 
TK7874.I3235a, ISSN 1063-6757 and 1092-3152) document the two conferences at 
which new ideas on routing are often presented. 

The edited book by Preas and Lorenzetti [1988] is the best place to learn more 
about routing. Books by Sarrafzadeh and Wong [1996] and Sait and Youssef [1995] 
are more recent introductions to physical design including routing. The book Hu and 
Kuh [1983] edited for IEEE Press contains early papers on routing, including an intro­
ductory paper with many references. Ohtsuki's [1986] edited book on layout contains 
tutorials on routing, including reviews of channel routing by Burstein and area routing 
by Ohtsuki; a more recent edited book by Zobrist [1994] also contains papers on rout­
ing. A good introduction to routing is Joobanni's thesis published as a book [1986]. 
New routing techniques are becoming important for FPGAs, a recent paper describes 
some of these [Roy, 1993]. Books by Lengauer [1990] and Sherwani [1993] describe 
algorithms for both the global and detailed routing problems. A book by Sherwani et 
al. [1995] covers two-level and three-level routing. Kahng and Robins [1995] cover 
timing-driven detailed routing in their book; Sapatnekar and Kang [1993] cover tim­
ing-driven physical design in general. The book by Pillage et al. [1994] includes a 
chapter on bounding and asymptotic approximations that are related to the models 
used in SPF. Nakhla and Zhang [1994] and Goel [1994] cover modeling of intercon­
nect. The IEEE Press book edited by Friedman [1995] covers clock distribution. Rout­
ing is often performed in parallel on several machines; books by Banerjee [1994] and 
Ravikumar [1996] describe parallel algorithms for physical design. Taylor and Russell 
[1992] review knowledge-based physical design in an edited book. 

Najm's review paper covers power estimation [1994]. Books by Shenai [1991] 
and Murarka [1993] cover all aspects of metallization. To learn more about the 
causes of electromigration in particular, see D'Heurle's [1971] classic paper and a 
paper by Black [1969]. The edited book by Gildenblat and Schwartz [1991] covers 

967



17.8 REFERENCES 957 

metallization reliability. A tutorial paper by Young and Christou [1994] reviews cur­
rent theories of the causes of electromigration. To learn more about masks and 
microlithography in VLSI, see the handbook by Glendinning and Helbert [1991]. 

17.8 References 

Page numbers in brackets after a reference indicate its location in the chapter body. 
Banerjee, P. 1994. Parallel Algorithms for VLSI Computer-Aided Design Applications. 

Englewood Cliffs, NJ: Prentice-Hall, 699 p. ISBN 0130158356. TK7874.75.B36. [po 956] 
Barke, E. 1988. "Line-to-ground capacitance calculation for VLSI: A comparison." IEEE 

Transactions on Computer-Aided Design, Vol. 7, no. 2, pp. 295-298. Compares various 
equations for line to ground capacitance and finds the van der Meijs and Fokkema equation 
the most accurate. [po 948] 

Black, J. R. 1969. "Electromigration failure modes in aluminum metallization for semiconduc­
tor devices." Proceedings of the IEEE, Vol. 57, no. 9, pp. 1587-1594. Describes mechanism 
and theory of electromigration. Two failure modes are discussed: dissolution of silicon into 
aluminum, and condensation of aluminum vacancies to form voids. Electromigration fail­
ures in aluminum become important (less than 10 year lifetime) at current densities greater 
than 50 kA/sq.cm and temperatures greater than 150°C. [po 956] 

Cadence. 1990. "Gate Ensemble User Guide." Product Release 2.0. Describes gate-array place­
and-route software. The algorithms for timing-driven placement are described in A. H. Chao, 
E. M. Nequist, and T. D. Vuong, "Direct solution of performance constraints during place­
ment," in Proceedings of the IEEE Custom Integrated Circuits Conference, 1990. The delay 
models for timing analysis are described in "Modeling the driving-point characteristic of 
resistive interconnect for accurate delay estimation," in P. R. O'Brien and T. L. Savarino, in 
Proceedings of the International Conference on Computer-Aided Design, 1989. [po 939] 

Cheng, c.-K., et al. 1992. "Geometric compaction on channel routing." IEEE Transactions on 
Computer-Aided Design, Vol. 11, no. 1, pp. 115-127. [po 931] 

Chowdhury, S., and J. S. Barkatullah. 1988. "Current estimation in MOS IC logic circuits." In 
Proceedings of the International Conference on Computer-Aided Design. Compares esti­
mates for transient current flow for CMOS logic gates. Algebraic models give results close 
to SPICE simulations. The rest of the paper discusses the calculation of static current flow 
for nMOS logic gates. A model for static current for CMOS gates is developed in terms of 
the nMOS models. 

D 'HeurIe, F. M. 1971. "Electromigration and failure in electronics: an introduction." 
Proceedings of the IEEE, Vol. 59, no. 10, pp. 1409-1417. Describes the theory behind elec­
tromigration in bulk and thin-film metals. Includes some experimental results and reviews 
work by others. Describes the beneficial effects of adding copper to aluminum metallization. 
[p.956] 

Friedman, E. G. (Ed.). 1995. Clock Distribution Networks in VLSI Circuits and Systems. New 
York: IEEE Press, ISBN 0780310586. TK7874.75.C58. [po 956] 

Gildenblat, G. S., and G. P. Schwartz (Eds.). 1991. Metallization: Performance and Reliability 
Issues for VLSI and ULSI. Bellingham, WA: SPIE, the International Society for Optical 
Engineering, 159 p. ISBN 0819407275. TK7874.M437. [po 956] 

Glendinning, W. B., and J. N. Helbert, (Eds.). 1991. Handbook ofVLSI Microlithography : 
Principles, Technology, and Applications. Park Ridge, NJ: Noyes Publications, 649 p. ISBN 
0815512813. TK7874.H3494. [po 957] 

968



958 CHAPTER 17 ROUTING 

Goel, A. K. 1994. High Speed VLSI Interconnections: Modeling, Analysis, and Simulation. New 
York: Wiley-Interscience, 622 p. ISBN 0471571229. TK7874.7.G63. 21 pages of references. 
[p.956] 

Hashimoto, A., and J. Stevens. 1971. "Wire routing by optimal channel assignment within large 
apertures." In Proceedings of the 8th Design Automation Workshop, pp. 155-169. [po 928] 

Hu, T. c., and E. S. Kuh (Eds.). 1983. VLSI Circuit Layout: Theory and Design. New York: 
IEEE Press. ISBN 0879421932. TK7874 .V5573. Contains 26 papers divided into six chap­
ters; Part 1: Overview (a paper written for this book with 167 references on layout and rout­
ing); Part II: General; Part III: Wireability, Partitioning and Placement; Part IV: Routing; 
Part V: Layout Systems; Part VI: Module Generation. [po 956] 

Joobbani, R. 1986. An Artificial Intelligence Approach to VLSI Routing. Hingham, MA: Kluwer. 
ISBN 0-89838-205-X. TK7874.J663. Ph.D thesis on the development and testing of an intel­
ligent router including an overview of the detailed routing problem and the Lee and "greedy" 
algorithms. [po 956] 

Kahng, A. B., and G. Robins. 1995. On Optimal Interconnections for VLSI. Norwell, MA: 
Kluwer. ISBN 0-7923-9483-6. TK7874.75.K34. Extensive reference work on timing-driven 
detailed routing. [pp. 953, 956] 

Lengauer, T. 1990. Combinatorial Algorithms for Integrated Circuit Layout. Chichester, 
England: Wiley. ISBN 0-471-92838-0. TK7874.L36. Background: Introduction to circuit 
layout; Optimization problems; Graph algorithms; Operations research and statistics. Com­
binatoriallayout problems: The layout problem; Circuit partitioning; Placement, assign­
ment, and ftoorplanning; Global routing and area routing; Detailed routing; Compaction. 
484 references. [po 956] 

Nakhla, M. S., and Q. J. Zhang (Eds.). 1994. Modeling and Simulation of High Speed VLSI 
Interconnects. Boston: Kluwer, 106 p. ISBN 0792394410. TK7874.75.M64. [po 956] 

Murarka, S. P. 1993. Metallization: Theory and Practice for VLSI and ULSI. Stoneham, MA: 
Butterworth-Heinemann, 250 p. ISBN 0-7506-9001-1. TK7874.M868. Includes chapters on 
metal properties; crystal structure; electrical and mechanical properties; diffusion and reac­
tion in thin metallic films; deposition method and techniques; pattern definition; packaging 
applications; reliability. [po 956] 

Najm, F. N. 1994. "A survey of power estimation techniques in VLSI circuits." IEEE 
Transactions on Very Large Scale Integration (VLSl) Systems, Vol. 2, no. 4, pp. 446-55. 43 
references. [po 956] 

O'Brien, P. R., and T. L. Savarino. 1989. "Modeling the driving-point characteristic of resistive 
interconnect for accurate delay estimation." In Proceedings of the I nternational Conference on 
Computer-Aided Design, pp. 512-515. Describes SPF PI segment model. [pp. 940, 953]. 

Ohtsuki, T. (Ed.). 1986. Layout Design and Verification. New York: Elsevier Science, ISBN 
0444878947. TK7874.L318. Includes nine papers on CAD tools and algorithms: "Layout 
strategy, standardisation, and CAD tools," Ueda, Kasai, and Sudo; "Layout compaction," 
Mylynski and Sung; "Layout verification," Yoshida; "Partitioning, assignment and place­
ment," Goto and Matsuda; "Computational complexity of layout problems," Shing and Hu; 
"Computational and geometry algorithms," Asano, Sato, and Ohtsuki; an excellent survey 
and tutorial paper by M. Burstein - "Channel routing;" "Maze-running and line-search 
algorithms," a good, easily readable paper on detailed routing by Ohtsuki; and a more math­
ematical paper, "Global routing," by Kuh and Marek-Sadowska. [pp. 932,957] 

Pillage, L., et a1. 1994. Electronic Circuit and System Simulation Methods. New York: McGraw­
Hill, 392 p. ISBN 0-07-050169-6. TK7874.P52. [po 956] 

Preas, B. T., and M. J. Lorenzetti. 1988. Physical Design Automation ofVLSI Systems. Menlo 
Park, CA: Benjamin-Cummings, 510 p. ISBN 0805304129. TK7874.P47. Chapters on: 
physical design automation; interconnection analysis, logic partitioning; placement, assign-

969



17.8 REFERENCES 959 

ment and floorplanning; routing; symbolic layout and compaction; module generation and 
silicon compilation; layout analysis and verification; knowledge-based physical design auto­
mation; combinatatorial complexity of layout problems. [po 956] 

Ravikumar, C. P. 1996. Parallel Methodsfor VLSI Layout Design. Norwood, NJ: Ablex, 195 p. 
ISBN 0893918288. TK7874.R39. [po 956] 

Roy, K. 1993. "A bounded search algorithm for segmented channel routing for FPGA's and 
associated channel architecture issues." IEEE Transactions on Computer-Aided Design, Vol. 
12, no. 11, pp. 1695-1704. [po 956]. 

Sait, S. M., and H. Youssef. 1995. VLSI Physical Design Automation, Theory and Practice. New 
York: IEEE Press/McGraw-Hill copublication, 426 p. ISBN 0-07-707742-3. 
TK7874.75.S24. Covers floorplanning, placement, and routing. [po 956] 

Sakurai, T., and K. Tamaru. 1983. "Simple formulas for two- and three-dimensional capaci­
tances." IEEE Transactions on Electron Devices. Vol. 30, no. 2. [po 949] 

Sapatnekar, S. S., and S.-M. Kang. 1993. Design Automation for Timing-Driven Layout 
Synthesis. Boston: Kluwer, 269 p. ISBN 0792392817. TK7871.99 .M44.S37. 19 pages of ref­
erences. [po 956] 

Sarrafzadeh, M., and C. K. Wong. 1996. An Introduction to VLSI Physical Design. New York: 
McGraw-Hill, 334 p. ISBN 0070571945. TK7874.75.S27. 17 pages of references. [po 956] 

Shenai, K. (Ed.). 1991. VLSI Metallization: Physics and Technologies. Boston: Artech House, 
529 p. ISBN 0890065012. TK7872.C68.V58. [po 956] 

Sherwani, N. A. 1993. Algorithmsfor VLSI Physical Design Automation. 2nd ed. Norwell, MA: 
Kluwer, 538 p. ISBN 0-7923-9294-9. TK874.S455. See also the first edition. [po 956] 

Sherwani, N. A., et al. 1995. Routing in the Third Dimension: From VLSI Chips to MCMs. New 
York: IEEE Press. ISBN 0-7803-1089-6. TK7874.75.R68. Reviews two-layer and multilayer 
routing algorithms. Contains chapters on: graphs and basic algorithms; channel routing; 
routing models; routing algorithms for two- and three-layer processes and MCMs. [po 956] 

Taylor, G., and G. Russell. (Eds.). 1992. Algorithmic and Knowledge Based CAD for VLSI. 
London: P. Peregrinus, 273 p. ISBN 086341267X. TK7874.A416. [po 956] 

Veendrick, H. J. M. 1984. "Short-circuit dissipation of static CMOS circuitry and its impact on 
the design of buffer circuits." IEEE lournal of Solid-State Circuits, Vol. 19, no. 4, pp. 
468-473. [po 936] 

Young, D., and A. Christou. 1994. "Failure mechanism models for electromigration." IEEE 
Transactions on Reliability, Vol. 43, no. 2, pp. 186-192. A tutorial on electromigration and 
its relation to microstructure. [pp. 936, 957] 

Zobrist, G. W. (Ed.). 1994. Routing, Placement, and Partitioning. Norwood, NJ: Ablex, 293 p. 
ISBN 0893917842. TK7874.R677. [po 956] 

970



VHDL 
RESOURCES 

The definitive reference for VHDL is the VHDL language reference manual (LRM), currently IEEE Std 
1076-1993. 1 References here such as [93LRM 1.1], for example, refer to Section 1.1 of the VHDL-93 LRM 
[IEEE 1076-1993]. According to IEEE bylaws all standards are updated (reaffirmed, reballoted, or 
dropped) every five years, and thus VHDL-87 (the original standard) is superceded by VHDL-93. However, 
some software systems (and some IEEE standards, notably VITAL) are based on VHDL-87 [IEEE 
1076-1987]. Both VHDL-93 and VHDL-87 are covered in this Appendix. 

A.1 BNF 

Appendix A of the LRM describes the syntax of VHDL using keywords (or reserved words) and charac­
ters in a shorthand notation called the BNF (Backus-Naur form). As an example, the BNF definition 
given in Appendix A of the LRM for the syntax of the wai t statement is 

wait statement ::= 

[label : 1 wait [ sensitivity_clause 1 [ condition_clause 1 
J timeout_clause 1 ; 

This definition means: "The wait statement consists of the keyword, wait, followed by three optional 
parts: a sensitivity clause, a condition clause, and a timeout clause." 

You treat the BNF as a series of equations. The left-hand side is called a production or construct, the 
symbol: : = (two colons and an equal sign) represents equivalence, the right-hand side contains the parts 
that comprise the production. Parts may be keywords (in bold here). Parts may be other productions con­
tained in square brackets []. This signifies that the part is optional. Parts may also have curly brackets or 

lIEEE Std 1076-1993, © Copyright 1995 IEEE. All rights reserved. The BNF in this appendix is derived from the 
IEEE copyright material with permission. 

961 

971



962 APPENDIX A 

braces {}. This indicates that the part is optional and may be repeated. The BNF is hierarchical; for exam­
ple, the wait statement is defined in terms of other constructs. We can expand the wait statement defini­
tion, by substituting the BNF for sensitivity clause, condition clause, and timeout clause: - - -
wait statement ::= 

[label : ] wait 

[ on signal_name { , signal_name } ] 

[ until boolean_expression 

for time_expression ] ; 

Expanding the BNF makes it easier to see the structure of the wait statement. The expanded BNF 
shows that the following are valid wai t statements (as far as syntax is concerned): 

wait; 

wait on a; 

wait on a, b, c until count = 0 for 1 + 1 ns; 

A disadvantage of expanding the BNF is that we lose the names and the definitions of the intermediate con­
structs (sensitivity_clause, condition_clause, and timeout_clause). The VHDL-93 LRM uses 
238 production rules; the following section contains the same definitions in BNF, but in expanded form 
(using 94 rules). 

There is one other disadvantage of expanding the BNF syntax definitions. Expanding the definition of a 
loop statement illustrates this problem: 

loop_statement ::= 

[ loop_label : 

[ iteration_scheme ] loop 

sequence_of_statements 

end loop [ loop_label ] ; 

The definition of sequence_of _statements is 

sequence_of_statements ::= {sequential_statement} 

The definition of iteration scheme is 

iteration scheme ::= while condition I for loop_parameter_specification 

The definitions of condition and parameter_specification are 

condition ::= boolean_expression 

parameter_specification ::= identifier in discrete_range 

The definition of discrete_range is 

discrete_range ::= discrete_subtype_indication I range 

If we stop expanding at this level, we can write out what we have so far in our expanded definition of a 
loop statement: 

loop_statement 

loop_label : 

[ while boolean_expression 

972



I for identifier in discrete_range 
loop 

{sequential_statement} 

end loop [ loop_label ] ; 

A.2 VHDLSYNTAX 963 

There is (theoretically) some ambiguity in this definition as far as the choices either side of the I symbol 
are concerned. Does this definition mean that we choose between while boolean_expression and 
for identifier in discrete_range? If we were in a contrary mood, we could also interpret the BNF 
as indicating a choice between boolean_expression and for. Notice that this ambiguity is also present 
in the definition of iteration scheme. 

Adding angle brackets around the clauses, < while ••• > I < for ••• >, makes the grouping of 
choices clear: 

loop_statement ::= 

loop_label: 

[ < while boolean_expression> 

I < for identifier in discrete_range > ] 
loop 

{ sequential_statement } 

end loop [ loop_label ] ; 

Unfortunately the symbols < and> are already valid lexical elements in VHDL. In fact, since {} and [ ] are 
already used, and ( ) are part of the language too, there are no brackets left to use. We live with this incon­
venience. The BNF (here or in the LRM) does not define VHDL, but helps us understand it. 

A.2 VHDL Syntax 

In the rules that follow an underline (like this) indicates syntax that is present in VHDL-93, but not in 
VHDL-87. A strikethrough (like "this) indicates syntax that is present in VHDL-87, but not in VHDL-
93; this occurs only in the rule for file_declaration (rule 38 on p. 968). This means that any VHDL-87 
code .;~hat contains keywords in or out in a file declaration will not compile in a VHDL-93 environment. 
Apart for this one exception, VHDL-93 is a superset of VHDL-87. 

The VHDL productions are in alphabetical order. The highest-level production is the definition for 
design file; this is where you start to traverse the tree starting at the top level. The following parts 
(indicated by the use of uppercase in the BNF) are the lowest-level constructions: UPPER CASE LETTER - -
(A-Z plus accented uppercase letters), LOWER_CASE _LETTER (a-z and accented lowercase letters, e, and so 
on), LETTER (either uppercase or lowercase letters, a-Z, and all accented letters), DIGIT (0-9), 

SPACE CHARACTER (' 'and nonbreaking space), UNDERLINE (' ,), SPECIAL CHARACTER (n # & ' () 
- - -

* + f - • / : ; < = > [ ] _ I), and OTHER_SPECIAL _CHARACTER (all remaining characters such 
as! $ % @ ? and so on, but not including format effectors). Format effectors are the ISO (and ASCII) 
characters called horizontal tabulation, vertical tabulation, carriage return, line feed, and form feed. 

Keywords are shown in bold. Notice that the terms label, literal, and range are keywords (label, 
literal, range) and are also used as the name of a part (label, literal, range), as they are in the 
LRM. Construct names that commence with italics, such as time_expression, are intended to make the 

973



964 APPENDIX A 

syntax definitions easier to read. The italic part of the construct is treated as a comment. You look up the 
definition for time_expression under 'e' for expression, not 't' for time. There are no formal defi­
nitions of the italic modifiers; if you are not sure exactly what is meant, you must look up the semantics in 
the body of the LRM. 

actual_part ::= [93LRM 4.3.2.2] [1] 

expression 

signal_name , variable_name , file name , open 

function_name (expression, signal_name, variable_name 'file name' open) 

type mark ( expression I signal name I variable name , file name I open) 

aggregate ::= [93LRM 7.3.2] 
( [ choice { , choice } => expression {, [ choice { , choice} => ] expression} ) 

alias_declaration ::= [93LRM 4.3.3] 

alias identifier , • graphic character • I " { graphic character } " 

1 : subtype_indication 1 is name [ signature] 

architecture_body ::= [93LRM 1.2] 

architecture identifier of entity_name is 

{ block_declarative_item } 

begin 

{ concurrent_statement } 

end [ architecture] [architecture_identifier ]; 

assertion ::= [93LRM 8.2] 
assert boolean_expression [ report expression] [ severity expression 

association list ::= [93LRM 4.3.2.2] 
[ formal_part => ] actual_part {, formal_part => ] actual_part } 

attribute declaration ::= [93LRM 4.4] attribute identifier : type_mark 

attribute_name ::= [93LRM 6.6] prefix [ signature] • attribute identifier 

[ ( expression ) ] 

attribute_specification ::= [93LRM 5.1] 
attribute attribute identifier of entity_name list entity_class is expression 

based_literal ::= [93LRM 13.4.2] 
integer # DIGIT , LETTER { [ UNDERLINE ] DIGIT , LETTER } 

DIGIT , LETTER { [ UNDERLINE ] DIGIT , LETTER } ] 

# [ E [ + ] integer , E - integer ] 

basic_graphic_character ::= [93LRM 13.1] 
UPPER_CASE_LETTER , DIGIT , SPECIAL CHARACTER 

bit_string_literal ::= [93LRM 13.7] 

SPACE CHARACTER 

B , 0 , X " [DIGIT, LETTER { [ UNDERLINE] DIGIT' LETTER} ]" 

block_configuration ::= [93LRM 1.3.1] 
for architecture name 

block statement label 

[2 ] 

[3 ] 

[ 4 ] 

[ 5] 

[ 6] 

[7 ] 

[8 ] 

[9 ] 

[10] 

[11 ] 

[ 12] 

[13 ] 

974



A.2 VHDL SYNTAX 965 

generate_statement_label 

[ ( discrete_subtype_indication I range I static_expression ) ] 
{ use prefix. suffix {, prefix. suffix } ; } 

{ block_configuration 

end for ; 

component_configuration} 

block declarative_item ::= [93LRM 1.2.1] 

subprogram_specification; I subprogram_body 

I subtype_declaration I constant_declaration 

type_declaration 

signal_declaration 

shared variable declaration I 
I 
I 
I 
I 
I 

file_declaration I alias_declaration 

component_declaration I attribute_declaration 

attribute specification I configuration specification - -
disconnection_specification I use_clause 

group template declaration I group declaration 

block_statement ::= [93LRM 9.1] 

block label : 

block [ ( guard_expression ) ] [ is ] 

[ generic ( generic_interface_list ); 

generic map (generic_association_list ]] 

port (port_interface_list ); 

port map (port_association_list ]] 

{ block_declarative_item } 

begin 

{ concurrent_statement } 

end block [ block_label ] ; 

case statement ::= [93LRM 8.8] 

case label : ] case expression is 

when choice { I choice } => { sequential statement } 

{ when choice { I choice } => { sequential_statement } } 

end case [ case label] ; 

choice ::= [93LRM 7.3.2] 

simple_expression I discrete_range I element_identifier I others 

component_configuration ::= [93LRM 1.3.2] 

for 

instantiation_label { , instantiation label } 

others : component_name 

all : component_name 

1 use 

component_name 

entity entity_name [ ( architecture_identifier ) ] 

I configuration configuration_name 

I open 1 
generic map (generic_association_list ) ] 

port map ( port_association_list ) ] ; ] 

block_configuration 

end for ; 

[14] 

[15] 

[16] 

[17 ] 

[18 ] 

975



966 APPENDIX A 

component_declaration ::= [93LRM 4.5] 
component identifier [ is ] 

generic (local_generic_interface_list 

port (local_port_interface_list) ] 

end component [ component identifier] 

component_instantiation_statement ::= [93LRM 9.6] 
instantiation_label : [ component] component_name 

I entity entity name [ ( architecture identifier ) ] 

I configuration configuration name 

generic map ( generic_association_list )] 

port map ( port_association_list ) ] ; 

concurrent statement ::= [93LRM 9] 
block statement 

process_statement 

label postponed 

label 

label 

label 

postponed 

postponed 

postponed 

procedure_call ; 

assertion ; 

conditional_signal_assignment 

selected_signal_assignment 

component_instantiation statement 

generate_statement 

[19 ] 

[20] 

[21] 

conditional_signal_assignment ::= [93LRM 9.5.1] [22] 
name I aggregate <= [ guarded ] [ transport I [ reject time expression ] inertial ] 

{ waveform when boolean_expression else } 

waveform [ when boolean expression] ; 

configuration_declaration ::= [93LRM 1.3] 
configuration identifier of entity_name is 

{ use prefix. suffix { , prefix. suffix } ; 

I attribute_specification 

I group declaration} 

block_configuration 

end [configuration] [ configuration_identifier 

configuration_specification ::= [93LRM 5.2] 
for 

instantiation_label { ,instantiation_label} 

I others : component_name 

component_name 

I all : component name 

1 use 

entity entity_name [ ( architecture identifier ) ] 

I configuration configuration_name 

I open ] 

generic map ( generic_association_list ) ] 

port map ( port_association_list ) ] 

constant_declaration ::= [93LRM 4.3.1.1] 
constant identifier { , identifier } : subtype_indication := expression 

[23] 

[ 24] 

[25] 

976



A.2 VHDL SYNTAX 967 

constraint ::= range_constraint 1 index_constraint [93LRM 4.2] 

decimal_literal ::= [93LRM 13.4.1] 

integer [ . integer ] [ E [ + ] integer 1 E - integer ] 

design_file ::= [93LRM 11.1] 

{ library_clause 1 use_clause} library_unit 

{ { library_clause 1 use_clause } library_unit } 

disconnection_specification ::= [93LRM 5.3] 

disconnect guarded_signal_list : type_mark after time_expression ; 

discrete_range ::= [93LRM 3.2.1] discrete_subtype_indication 1 range 

entity_class : := [93LRM 5.1] 
entity 

1 architecture configuration 

1 package type 

1 signa1 variable 

1 literal units 

entity_declaration ::= [93LRM 1.1] 

entity identifier is 

procedure function 

subtype constant 

component label 

group file 

generic ( formal_generic_interface_list ) ; ] 

port ( formal_port_interface_list ) ; ] 

{ subprogram_specification 

1 subtype_declaration 

1 

1 

1 

1 

1 

1 

signal_declaration 

alias declaration 

attribute_specification 

disconnection_specification 

shared variable declaration 

group template declaration 

begin 

1 subprogram_body 

1 constant declaration 

1 file declaration 

1 

1 

attribute declaration 

type_declaration 

1 use clause 

group declaration } 

{ [ label : ] [ postponed] assertion ; 

I. [ label: ] [ postponed] passive_procedure_call 

1 passive_process statement } ] 

end [ entity] [entity_identifier 

[26] 

[27] 

[28] 

[29] 

[30] 

[31] 

[32] 

entity_name_list ::= [93LRM 5.1] [33] 
identifier 1 " { graphic_character } " 1 • graphic character • [ signature] 

{ f identifier 1 " { graphic_character } " 1 • graphic character • [ signature] } 

1 others 

1 all 

enumeration literal ::= [93LRM 3.1.1] identifier 1 • graphic_character' [34] 

exit_statement ::= [93LRM 8.11] [35] 

[label:] exit [ loop_label] [ when boolean_expression 

expression ::= [93LRM 7.1] [36] 

relation { and relation } 

977



968 APPENDIX A 

relation { or relation } 

relation { xor relation } 

relation nand relation ] 

relation nor relation ] 

relation { xnor relation } 

factor ::= [93LRM 7.1] primary [ ** primary] I abs primary I not primary 

file_declaration ::= [93LRM 4.3.1.4] 

file identifier { , identifier} : subtype_indication 

1 [ open file open kind expression] is [ ia I ee~ ] string_expression 1 

formal_part ::= [93LRM 4.3.2.2] 

generic_name I port_name I parameter_name 

I function_name ( generic_name I port_name I parameter_name) 

I type mark ( generic name I port name I parameter name) 

function_call ::= [93LRM 7.3.3] function_name [ ( parameter_association list) ] 

generate_statement ::= [93LRM9.7] 

generate_label: 

for identifier in 

discrete_subtype_indication I range 

I if boolean_expression 

generate 

[ { block declarative item } begin 

{ concurrent_statement } 

end generate [ generate_label ] 

graphic_character ::= [93LRM 13.1] 

basic_graphic_character I LOWER_CASE_LETTER 

group_declaration ::= [93LRM 4.7] 

group identifier : group template name 

name I . graphic character' 

{ , name I . graphic character • } ) 

group_template_declaration ::= [93LRM 4.6] 

OTHER SPECIAL CHARACTER 

group identifier is ( entity class [ <> ] { , entity class [ <> ] } ) 

identifier ::= [93LRM 13.3] 

LETTER { [ UNDERLINE ] LETTER DIGIT } 

I \ graphic character { graphic character } \ 

if_statement ::= [93LRM 8.7] 

[ if label : ] if boolean_expressiori then { sequential_statement } 

{ elsif boolean_expression then { sequential_statement } } 

else { sequential_statement } ] 

end if [ if label] ; 

index_constraint ::= [93LRM 3.2.1] ( discrete_range { , discrete_range} ) 

integer ::= [§ 13.4.1] DIGIT { [ UNDERLINE] DIGIT} 

[37] 

[38] 

[39] 

[40] 

[41] 

[42] 

[43] 

[44] 

[45] 

[46] 

[47] 

[48] 

978



A.2 VHDL SYNTAX 969 

interface_declaration ::= [93LRM 4.3.2] 

[constant] identifier { , identifier } 

[ in ] subtype_indication [ := static_expression 

[ signal ] identifier { , identifier } 

: [ in lout I inout I buffer I linkage ] 

subtype_indication [ bus ] [ := static_expression 

[ variable ] identifier { , identifier} 

: [in lout I inout I buffer I linkage ] subtype_indication 

file identifier { , identifier } : subtype indication 

[49] 

:= static_expression] 

interface_list ::= [93LRM 4.3.2.1] interface declaration {i interface_declaration} [50] 

label ::= identifier [93LRM 9.7] 

library_clause ::= [93LRM 11.2] library identifier {, identifier} 

library_unit ::= [93LRM 11.1] 

entity_declaration I configuration_declaration 

I architecture_body I package_body 

literal ::= [93LRM 7.3.1] 

decimal literal 

I enumeration literal 

based literal 

string_literal 

loop_statement ::= [93LRM 8.9] 

loop_label : ] 

package_declaration 

physical_literal 

bit_string_literal I null 

while boolean expression I for identifier in discrete_range 

loop 

{ sequential_statement } 

end loop [ loop_label ] i 

name ::= [93LRM 6.1] 

identifier 

" { graphic_character } " 

prefix. suffix 

prefix ( expression { , expression } ) 

p"refix ( discrete_range 

attribute name 

next_statement ::= [93LRM 8.10] 

[ label : ] next [ loop_label [ when boolean_expression 

null_statement ::= [93LRM 8.13] [ label: ] null; 

package_body ::= [93LRM 2.6] 

package body package_identifier is 

~ subprogram_specification i I subprogram_body I type declaration 

I subtype_declaration I constant_declaration I file declaration 

I alias_declaration I use_clause 

I shared variable declaration 

I group template declaration I group declaration } 

end 1 package body 1 [ package_identifier ] i 

[51] 

[52] 

[53] 

[54] 

[55] 

[56] 

[57] 

[58] 

[59] 

979



970 APPENDIX A 

package_declaration ::= [93LRM 2.5] 
package identifier is 
{ subprogram_specification ; , type_declaration , subtype_declaration 
, constant_declaration , signal_declaration , file_declaration 

,alias_declaration , component_declaration 
, attribute_declaration , attribute_specification 

, disconnection_specification , use_clause 
, shared variable declaration 

, group template declaration I group declaration } 
end [ package] [ package_identifier ] ; 

physical_literal ::= [93LRM 3.1.3] [ decimal_literal 

physical_type_definition ::= [93LRM 3.1.3] 
range_constraint 

units identifier 

{ identifier = physical_literal ; } 
end units [ physical type identifier 

prefix ::= [93LRM 6.1] name function call 

based literal unit name 

[60] 

[61] 

[62] 

[63] 

primary ::= [93LRM 7.1] [64] 
name , literal ,aggregate function call 

, type_mark ' ( expression type_mark ' aggregate , type_mark ( expression 
, ( expression ) 

, new subtype_indication , new type_mark ' (expression) , new type_mark ' aggregate 

procedure_call ::= [93LRM 8.6] procedure_name [ ( parameter_association_list ) ] [65] 

process_statement ::= [93LRM 9.2 ] [66] 
process_label : ] 

postponed] process [ ( signal_name { , signal name } ) ] [ is 
{ subprogram_specification; , subprogram_body 
, type_declaration 

, subtype_declaration , constant_declaration 

! variable declaration 
, file_declaration , alias_declaration , attribute_declaration 

, attribute_specification , use_clause 
, group template declaration , group declaration } 

begin 

{ sequential_statement } 

end [ postponed] process process_label 

range ::= [93LRM 3.1] [67] 
range_attribute_name 

, simple_expression to I downto simple_expression 

range_constraint ::= [93LRM 3.1] range range 

record_type_definition ::= [93LRM 3.2.2] 

record 
identifier {, identifier} : subtype_indication 

[68] 

[69] 

980



A.2 VHDL SYNTAX 971 

{ identifier {, identifier} : subtype_indication } 

end record [ record type identifier] 

relation : := [93LRM 7.1] 
simple _expression [ sll I srI 

[ = I /= I < I <= I > I >= 

simple _expression sll srI 

report_statement ::= [93LRM 8.3] 

[ label : ] report expression 

sla sra rol ror simple 

sla sra rol ror simple 

severity expression ] ; 

expression 

expression 

return_statement ::= [93LRM 8.12] [ label: ] return [ expression 

selected_signal_assignment ::= [93LRM 9.5.2] 

with expression select 

name I aggregate <= [ guarded ] 

transport I [ reject time expression inertial 

waveform when choice { I choice } 

{ , waveform when choice { I choice } } ; 

[70] 

[71] 

[72 ] 

[73] 

sequential_statement ::= [93LRM 8] [74] 

wait statement 

[ label : ] assertion ; 

report statement 

signal_assignment_statement 

variable_assignment_statement 

[ label : ] procedure_call 

if statement 

case statement 

loop_statement 

next statement 

exit statement 

return statement 

null statement 

signal_assignment_statement ::= [93LRM 8.4] 

label : ] name I aggregate <= 

[ transport I [ reject time expression inertial] waveform 

signal_declaration ::= [93LRM 4.3.1.2] 

signal identifier {, identifier} : subtype_indication 

[register I bus] [ := expression] 

signal_list ::= [93LRM 5.3] signal_name { , signal_name} I others I all 

signature ::= [93LRM 2.3.2] 

[ [ type mark { , type mark } ] [ return type mark ] ] 

simple~expression ::= [93LRM 7.1] [ + I - ] term { + I - I & term} 

string_literal ::= [93LRM 13.6] " { graphic_character} " 

[75] 

[76] 

[77] 

[78] 

[79 ] 

[80 J 

981



972 APPENDIX A 

subprogram_body ::= [93LRM 2.2] 
subprogram_specification is 
{ subprogram_specification 

subprogram_body 
type_declaration 
subtype_declaration 
constant declaration 

variable declaration 

file declaration 
alias declaration 

attribute declaration 
attribute_specification 

use clause 

group template declaration 

group declaration } 
begin 

{ sequential_statement } 

end [procedure function 
identifier I .. { graphic_character } .. ] 

subprogram_specification ::= [93LRM 2.1] 
procedure identifier I .. { graphic character } .. 

[ (parameter_interface_list ) ] 
I [ pure I impure] function identifier I .. { graphic_character} .. 

[ ( parameter_interface_list ) ] 
return type_mark 

subtype_declaration ::= [93LRM 4.2] 

subtype identifier is 
[ resolution_function_name ] type mark [ constraint ] 

subtype_indication ::= [93LRM 4.2] 

[resolution_function_name type_mark [ constraint ] 

suffix ::= [93LRM 6.3] 
identifier 

, graphic_character ' 
.. { graphic_character } .. 

all 

term ::= [93LRM 7.1] factor { * I / I mod I rem factor} 

type_declaration ::= [93LRM 4.1] 
type identifier ; 

type identifier is 
identifier I ' graphic_character ' 

{ , identifier I ' graphic_character ' } ) 
range_constraint ; 
physical_type_definition 

record_type_definition 

[81] 

[82] 

[83] 

[84] 

[85] 

[86] 

[87] 

982



A.3 BNF INDEX 973 

access subtype_indication 

file of type_mark ; 

array index_constraint of element_subtype_indication ; 

array ( type_mark range <> { , type_mark range <> } ) of 

element_subtype_indication ; 

type_mark ::= [93LRM 4.2] type_name subtype_name 

use_clause ::= [93LRM 10.4] use prefix.suffix {, prefix. suffix} 

variable_assignment_statement ::= [93LRM 8.5] 

[ label : ] name I aggregate := expression 

variable_declaration ::= [93LRM 4.3.1.3] 

[ shared] variable identifier {, identifier} 

[ : = expression ] ; 

subtype_indication 

wait_statement ::= [93LRM 8.1] 

label : ] wait 

on signal_name { , signal name } ] 

until boolean_expression 

for time_expression ] ; 

waveform ::= [93LRM 8.4] waveform_element { , waveform_element} unaffected 

waveform element ::= [93LRM 8.4.1] 

value_expression after time_expression 

A.3 BNF Index 

I null [ after time_expression 

[88] 

[89] 

[90] 

[91] 

[92 ] 

[93] 

[94] 

Table A.l is an index to the VHDL BNF productions. For example, to find the legal positions for a 
process statement you would locate production rules 21 and 32 opposite process_statement in 
Table A. I. These rule numbers correspond to the productions for concurrent statement (21) and 
entity_declaration (32). Next, turning to rule 32 for entity_declaration on page 967, you will 
find that only a passi ve _process _statement is allowed in an entity declaration. Table A.2 is a list of 
VHDL keywords and an index to rules that reference a keyword. 

A.4 Bibliography 

The book by Ashenden [1995] covers VHDL-93 in detail. Other books on VHDL include: Coelho [1989]; 
Lipsett, Schaefer, and Ussery [1989]; Armstrong [1989]; Augustin et al. [1991]; Perry [1991]; Mazor and 
Langstraat [1992]; three books by Bhasker [1992, 1995, 1996]; Armstrong and Gray [1993]; Baker [1993]; 
Navabi [1993]; Ott and Wilderotter [1994]; Airiau, Berge, and Olive [1994]; two books by Cohen [1995, 
1997]; Pick [1996]; Jerraya et al. [1997]; Pellerin and Taylor [1997]; Sjoholm and Lindh [1997]; and 
Chang [1997]. Of these, the book by Armstrong and Gray and Perry's books (two editions) are easy-to-read 

983



974 APPENDIX A 

TABLE A.1 Index to VHDL BNF rules (list of rules that reference a rule). 

1 actual_part 6 48 integer 10, 27 
2 aggregate 22, 64, 73, 75, 90 49 interface_declaration 50 
3 alias_declaration 14,32,59,60,66,81 50 interface_list 15,19,32,82 
4 architecture_body 53 51 label1 

5 assertion 21, 32, 74 52 library-clause 28 
6 association_list 15, 18,20,24,40, 65 53 library_unit 28 
7 attribute_declaration 14, 32, 60, 66, 81 54 literal 64 
8 attribute_name 56, 67 55 loop_statement 74 
9 attribute_specification 14, 23, 32, 60, 66, 81 56 name2 

10 based_literal 54, 61 57 nexCstatement 74 
11 basic_graphic_character 42 58 null_statement 74 
12 bit_string_literaI54 59 package_body 53 
13 block_configuration 13, 18, 23 60 package_declaration 53 
14 block_declarative_item 4,15,41 61 physical_literal 54, 62 
15 block_statement 21 62 physical_type_definition 87 
16 case_statement 74 63 prefix 8,13,23,56,89 
17 choice 2,16,74 64 primary 37 
18 component30nfiguration 13 65 procedure_call 21, 32, 74 
19 component_declaration 14, 60 66 process_statement 21 , 32 
20 componenUnstantiation_statement 21 67 range 13, 30, 41, 68, 87 
21 concurrent_statement' 4, 15, 21, 41 68 range_constraint 26, 62, 87 
22 conditionaLsignaLassignment 21 69 record_type_definition 87 
23 configuration_declaration 53 70 relation 36 
24 configuration_specification 14 71 report_statement 74 
25 constanCdeclaration 14,32,59,60,66,81 72 return_statement 74 
26 constraint 83,84 73 selected_signaLassignment 21 
27 decimaUiteral54,61 74 sequential_statement 16,46,55,66,81 
28 design_file ° 75 signal_assign me nt_statement 74 
29 disconnection_specification 14, 32, 60 76 signaLdeclaration 14, 32, 60 
30 discrete_range 17, 47, 55, 56, 61 77 signaUist 29 
31 entity-class 9, 44 78 signature 3, 8, 33 
32 entity_declaration 53 79 simple_expression 17,67,70 
33 entity_name_list 9 80 string_literal 54 
34 enumeration_literal 54 81 subprogram_body 14,32,59,66,81 
35 exit statement 74 82 subprogram_specification 14,32,59,60,66,81 
36 expression3 83 subtype_declaration 14, 32, 59, 60, 66, 81 
37 factor 86 84 subtype_indication4 

38 file_declaration 14, 32, 59, 60, 66, 81 85 suffix 13, 23, 56, 89 
39 formaLpart 6 86 term 79 
40 function_call 63, 64 I 87 type_declaration 14,32,59,60,66,81 
41 generate_statement 21 I 88 type_mark 1, 7, 29, 39, 64, 78, 82, 83, 84, 87 
42 graphic_character 3,33,34,42,43,45,56,80,81,82,85,87 I 89 use_clause 14, 28, 32, 59, 60, 66, 81 
43 group_declaration 14,23,32,59,60,66,81 I 90 variable_assignmenCstatement 74 
44 group_template_declaration 14, 32, 59, 60, 66, 81 i 91 variable_declaration 14, 32, 59, 60, 66, 81 
45 identifier5 

I' 92 wait_statement 74 
46 if statement 74 , 93 waveform 22, 73, 75 
47 index constraint 26,87 I 94 waveform element 93 

113,15,16,18,20,21,24,31,32,35,41,46,55,57,66,71, 72, 74, 75,90,92 
21,3,4,13,18,20,22,23,24,39,40,43,61,63,64,65,66, 73, 75, 77,83,84,88,90,92 
31,2,5,8,9,13,15, 16, 17,22,25,29,35,39,41,46,49,55,56,57,64,67,70,71, 72, 73, 75, 76, 79,90,91,92,94 
43,13,25,30,38,41,49,64,69,76,87,91 
53,4,7,8,9,17,18,18,20, 23,24,25,32, 33,34,38,41,43,44,49,51,52,55, 56, 59,60,61,62,69,76,81,82,83,85,87,91 

984



A.4 BIBLIOGRAPHY 975 

TABLE A.2 VHDL keywords and index (list of rules that reference a keyword).1 

abs37 disconnect 29 inout 49 package 31 , 59, 60 sra 70 
access 87 downto 67 is 3, 4, 9,15,16,19, port 15, 18, 19,20, srl 70 
after 29,94 else 22,46 23, 32, 38, 44, 59, 24,32 subtype 31, 83 
alias 3 elsif 46 60,66,81,83,87 ,eost,eoned 21, 32, then 46 
all 18,24, 77, 85 end 4, 13, 15, 16, 18, label 31 66 to 67 
and 36 19,23,32,41,46, library 52 ,erocedure 31,81, transport 22, 73, 
archi tecture 4, 55, 59, 60, 62, 66, linkage 49 82 75 

31 69,81 literal 31 process 66 type 31,87 
array 87 enti ty 18, 20, 24, loop 55 pure 82 unaffected 93 
assert 5 31,32 map 15, 18,20,24 range 68 units 31,62 
attribute 7, 9 exit 35 mod 86 record 69 until 92 
begin 4, 15,32,41, file 31, 38, 87 nand 36 register 76 use 13, 18, 23, 24, 

66,81 for 13, 18, 24, 41, new 64 rej ect 22, 73, 75 89 
block 15 55,92 next 57 rem 86 variable 31,49, 91 
body 59 function 31,81,82 nor 36 report 5,71 wait 92 
buffer 49 generate 41 not 37 return 72, 78, 82 when 16, 22, 35, 57, 
bus 49, 76 generic 15,18,19, null 54, 58, 94 rol70 73 
case 16 20,24,32 of 4, 9, 23, 87 ror70 while 55 
component 19, 20, group 31 , 43, 44 on 92 select 73 with 73 

31 guarded 22, 73 open 1,18,24,38 severi ty 5, 71 xnor 36 
configuration if 41, 46 or 36 signal 31,49,76 xor36 

18,20,23,24,31 im~ure 82 others 17,18,24, shared 91 
constant 25, 31, in 41,49,55 33, 77 sla 70 

49 inertial 22, 73, 75 out3 49 sll 70 

1 Underlines denote VHDL-93 keywords that are not VHDL-87 keywords. 
2ExcJuding VHDL-87 file declaration. 
3Excluding VHDL-87 file=:declaration. 

introductions. The following books describe example VHDL models for ASICs: Leung and Shanblatt 
[1989], Skahill [1996], Smith [1996]. Edited books by Berge et al. [1992, 1993]; Harr and Stanculescu 
[1991]; Mermet [1992]; and Schoen et al. [1991] contain papers on more advanced aspects ofVHDL. 

There are some issues and interpretations of VHDL that are covered in a separate IEEE document 
[IEEE 1076-1991]; also relevant are the IEEE standard logic system for VHDL [IEEE 1164-1993], the 
WAVES standard [IEEE 1029.1-1991], and the VITAL standard [IEEE 1076.4-1995]. The IEEE has pro­
duced a VHDL interactive tutorial on CD-ROM [IEEE 1164-1997]. Hanna et al. [1997] cover the IEEE 
WAVES standard. 

Updates and extensions to VHDL are controlled by the IEEE working groups (WG). These include 
study and WGs on: Object Oriented VHDL, Open Modeling Forum, Simulation Control Language 
(SimCL), System Design & Description Language, VHDL Analog Extensions (PAR 1076.1), VHDL Math 
Package (PAR 1076.2), VHDL Synthesis Package (PAR 1076.3),' Utility (PAR 1076.5), VHDL Shared 
Variables (PAR 1076; mod a), VHDL Analysis and Standards Group (VAS G) Issues Screening and Analy-

985



976 APPENDIX A 

sis Committee (ISAC), VHDL Library, VHDL Parallel Simulation, and VHDL Test. Links to the activities 
of these groups, as well as an explanation of a Project Authorization Request (PAR) and the standards pro­

cess, may be found at http://ieee.organdhttp:/ / stdsbbs. ieee. org. 

A.5 References 

Page numbers in brackets after a reference indicate its location in the chapter body. 

The current IEEE standards and material listed here are published by The Institute of Electrical and Electronics Engi­
neers, Inc., 345 East 47th Street, New York, NY 10017 USA. Inside the United States, IEEE standards may be ordered at 
1-800-678-4333. See also http://ieee.organdhttp://stdsbbs • ieee. org. 
Airiau, R, J.-M. Berge, and V. Olive. 1994. Circuit Synthesis with VHDL. Boston: Kluwer, 221 p. ISBN 0792394291. 
TK7885.7.A37. Introduction to VHDL aimed at ASIC designers. 
Armstrong, J. R 1989. Chip-Level Modeling with VHDL. Englewood Cliffs, NJ: Prentice-Hall, 148 p. ISBN 
0131331906. TK7874.A75 1989. 
Armstrong, J. R., and F. G. Gray. 1993. Structured Logic Design with VHDL. Englewood Cliffs, NJ: Prentice-Hall, 482 p. 
ISBN 0138552061. TK7885.7.A76. 20 pages of references. 
Ashenden, P. J. 1995. The Designer's Guide to VHDL. San Francisco: Morgan Kaufmann, 688 p. ISBN 1-55860-270-4. 
TK7888.3.A863. A complete reference to VHDL from a system design perspective. 

Augustin, L. M., et al. 1991. Hardware Design and Simulation in VALlVHDL. Boston: Kluwer, 322 p. ISBN 0792390873. 
TK7885.7.H38. Two pages of references. 
Baker, L. 1993. VHDLProgramming with Advanced Topics. New York: Wiley, 365 p. ISBN 0471574643. TK7885.7.B35. 
Basic to intermediate level coverage of VHDL. 

Berge, J.-M., et al. (Eds.). 1992. VHDLDesigner's Reference. Boston: Kluwer, 455 p. ISBN 0792317564. TK7885.7.V47. 
Two pages of references. 
Berge, J.-M., et al. (Eds.). 1993. VHDL '92. Boston: Kluwer, 214 p. ISBN 0792393562. TK7885.7.V46. Covers new con­
structs in VHDL-93. 
Bhasker, J. 1992. A VHDL Primer. Englewood Cliffs, NJ: Prentice-Hall, 253 p. ISBN 013952987X. TK7885.7.B53. See 
also the revised edition, ISBN 0131814478,1995. A basic introduction to VHDL. 
Bhasker, J. 1995. A Guide to VHDL Syntax: Based on the New IEEE Std 1076-1993. Englewood Cliffs, NJ: Prentice-Hall, 
268 p. ISBN 0133243516. TK7885.7.B52. Uses graphics to illustrate BNF syntax. 
Bhasker, J. 1996. A VHDL Synthesis Primer. Allentown, PA: Star Galaxy, 238 p. ISBN 0965039102. TK7885.7.B534. 

Chang, K. C. 1997. Digital Design and Modeling with VHDL and Synthesis. Los Alamitos, CA: IEEE Computer Society 
Press. ISBN 0818677163. TK7874.7.C47. 

Coelho, D. R 1989. The VHDL Handbook. Boston: Kluwer, 389 p. ISBN 0792390318. TK7874.C6. A description of 
VHDL models, including details of models for simple combinational and sequential logic devices and memory. Two 
pages of references. 
Cohen, B. 1995. VHDL Coding Styles and Methodologies. Boston: Kluwer, 365 p. ISBN 0792395980. TK7885.7.C65. 

Cohen, B. 1997. VHDL Answers to Frequently Asked Questions. Boston: Kluwer, 291 p. ISBN 0792397916. 
TK7885.7.C64. 

Hanna, J. P., et al. 1997. Using WAVES and VHDL for Effective Design and Testing. Boston: Kluwer, 304 p. ISBN 
0792397991. TK787 4. 7. U87. 
Harr, R. E., and A. G. Stanculescu (Eds.). 1991. Applications ofVHDL to Circuit Design. Boston: Kluwer, 232 p ISBN 
0792391535. TK7867.A64. 
IEEE 1076-1987. IEEE Standard VHDL Language Reference Manual. This version of the VHDL LRM is replaced by 

VHDL-93; however, some systems (and some IEEE Standards, notably VITAL) are based on VHDL-87. For instruc-

986



977 APPENDIX A 

tions on how to obtain obsolete IEEE standards (known as archive standards), see http: / / stdsbbs • ieee. org. 
[cited on p. 961] 

IEEE 1076-1991. 1076 Interpretations, 1991 IEEE Standards Interpretations: IEEE Std 1076-1987, IEEE Standard 
VHDLLanguage Reference Manual. 208 p. ISBN 1-55937-181-1. TK7885.7.I58. IEEE Ref. SHI4894-NYF. 

IEEE 1029.1-1991. IEEE Standard for Waveform and Vector Exchange (WAVES) (ANSI). 96 p. ISBN 1-55937-195-1. 
IEEE Ref. SHI5032-NYF. 

IEEE 1164-1993. IEEE Standard Multivalue Logic System for VHDL Model Interoperability (Std_Iogic_1I64). 24 p. 
ISBN 1-55937-299-0. IEEE Ref. SHI6097-NYF. 

IEEE 1076-1993. IEEE Standard VHDL Language Reference Manual (ANSI). 288 p. ISBN 1-55937-376-8. IEEE Ref. 
SHI6840-NYF. [cited on p. 961] 

IEEE 1076.4-1995. IEEE Standard VITAL Application-Specific Integrated Circuit (ASIC) Modeling Specification. 96 p. 
ISBN 1-55937-691-0. IEEE Ref. SH94382-NYF. Includes an MS-DOS diskette containing the ASCII code for the 
VITAL_Timing and VITAL_primitives packages. 

IEEE 1076-1997. VHDL Interactive Tutorial. This CD-ROM tutorial is available from IEEE by itself or with a printed 
version of the VHDL LRM. The CD-ROM is available in the following formats: IBM Windows (Windows 3.1 and 
Windows 95), Macintosh, Sun OS, and Sun Solaris. 

Jerraya, A. A., et al. 1997. Behavioral Synthesis and Component Reuse with VHDL. Boston: Kluwer, 263 p. ISBN 
0792398270. TK7874.75.B45. Eight pages of references. 

Leung, S. S., and M. A. Shanblatt. 1989. ASIC System Design with VHDL: A Paradigm. Boston: Kluwer, 206 p. ISBN 0-
7923-90932-6. TK7874.L396. Describes VHDL models for an ASIC intended for IKS (inverse kinematic solution) 
which converts cartesian space to the robot-joint space. Eight pages of references. 

Lipsett, R., C. Schaefer, and C. Ussery. 1989. VHDL: Hardware Description and Design. Boston: Kluwer, 299 p. ISBN 
079239030X. TK7887.5.L57. Intermediate guide to VHDL. 

Mazor, S., and P. Langstraat. 1992. A Guide to VHDL. Boston: Kluwer. ISBN 0792392558. TK7885.7.M39. See also 2nd 
ed., ISBN 0792393872, 1993. Basic introduction to VHDL. 

Mermet, J. (Ed.). 1992. VHDL for Simulation, Synthesis, and Formal Proofs of Hardware. Boston: Kluwer. ISBN 
0792392531. TK7885.7.V48. 

Navabi, Z. 1993. VHDL: Analysis and Modeling of Digital Systems. New York: McGraw-Hill, 375 p. ISBN 0070464723. 
TK7874.N36. Introduction to VHDL. 

Ott, D. E., and T. J. Wilderotter. 1994. A Designer's Guide to VHDL Synthesis. Boston: Kluwer. ISBN 0792394720. 
TK7885.7.089. 

Pellerin, D., and D. Taylor. 1997. VHDL Made Easy! Upper Saddle River, NJ: Prentice-Hall, 419 p. ISBN 0136507638. 
TK78 85.7 .P46. 

Perry, D: L. 1991. VHDL. New York: McGraw-Hill, 458 p. ISBN 0070494339. TK7885.7.P47. See also 2nd ed., ISBN 
0070494347, 1994. Good introduction to VHDL. 

Pick, J. 1996. VHDL Techniques, Experiments, and Caveats. New York: McGraw-Hill, 382 p. ISBN 0070499063. 
TK7885.7.P53. A series of intermediate to advanced examples that illustrate mistakes in VHDL. 

Schoen, J. M., et al. (Eds.). 1991. Performance and Fault Modeling with VHDL. Englewood Cliffs, NJ: Prentice-Hall, 
406 p ISBN 0136588166. TK7888.4.P47. 

Sjoholm, S., and L. Lindh. 1997. VHDL for Designers. Englewood Cliffs, NJ: Prentice-Hall. ISBN 0134734149. 
TK7885.7.S54. 

Skahill, K. 1996. VHDL for Programmable Logic. Menlo Park, CA: Addison-Wesley, 593 p. ISBN 0-201-89573-0. 
TK7885.7.S55. Covers VHDL design for PLDs using Cypress Warp. 

Smith, D. J. 1996. HDL Chip Design: A Practical Guide for Designing, Synthesizing. and Simulating ASICs and FPGAs 
using VHDL or Verilog. Madison, AL: Doone Publications, 448 p. ISBN 0965193438. TK7874.6.S62. 

987



VERILOG HDL 
RESOURCES 

The definitive reference for the Verilog HDL is IEEE Std 1364-1995. This standard is known as the IEEE 
Verilog® HDL language reference manual (LRM) and the 1995 version is referred to here as the 95 
LRM [IEEE 1364-1995].1 Verilog is a registered trademark of Cadence Design Systems and Verilog-XL is 
a commercial simulator. 

B.1 Explanation of the Verilog HDL BNF 

Annex A of the Verilog HDL LRM describes syntax using the BNF (Backus-Naur form). The Verilog HDL 
BNF is slightly different from that employed in the VHDL LRM (see Appendix A, Section A.l, "BNF"). 
The BNF syntax in the Verilog LRM is normative, which means that the syntax is part of the definition of 
the language (and the complete BNF description is contained in an annex). The BNF syntax in the VHDL 
LRM is informative, which means the BNF is not part of the standard defining the language (and the com­
plete BNF description is contained in an appendix). The following items summarize the Verilog HDL BNF 
syntax: 

• name (in lowercase) is a syntax construct item (term, or syntactic category) defined by other syn­
tax construct token items (items, parts, or tokens) or by lexical token items. 

• NAME (in uppercase) is a lexical token item, the leaves in a tree of definitions. 

[ name ] is an optional item. 

• { name } is one or more items. 

• The symbol: : = gives a syntax definition (definition, rule, construct, or production) for an item 
(i.e., the symbol : : = means is equivalent to). 

e I introduces an alternative syntax definition (i.e., the symbol I means or). 

• Braces and brackets, { } and [ ], that are required by the syntax are set in bold, { } [ ], in the 95 
LRM, but are difficult to distinguish from the plain versions. Here they are set in outline, like this: 
{ » l[ ]. 

lIEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. The Verilog HDL syntax section in this appendix 
is reprinted from the IEEE copyright material with permission. 

979 

988



980 APPENDIX B 

• The vertical bar, I, that represents an alternative definition is set in bold, I, in the 95 LRM, but is dif­
ficult to distinguish from the plain version. Here it is set in outline, like this: L 

• All other characters that are set in bold (as they are in Annex A of the 95 LRM) are literals required 
by the syntax (for example, a plus sign I + I ). 

• Italic prefixes, for example, msb _constant_expression, are comments. 

• Keywords are printed in bold, as they are in Annex A of the 95 LRM. 

• Definitions here are in alphabetical order (Annex A of the 95 LRM groups definitions by function). 
The highest-level definition is source text; this is where you start. The lowest-level items are in 
uppercase; these are where you end. 

• The BNF is reproduced exactly as it appears in Annex A of the 95 LRM. Footnotes explain a num­
ber of typographical issues. 

• References in brackets immediately following the : : = symbol form backward-pointing links to the 
constructs that reference a particular item. Thus, for example, always_construct :: = [94] indi­
cates that construct number 94 (module _item) references the item always _construct (see also 
Table B.l on p. 995, which collects all these links together, and Table B.2 on p. 996, which is a key­
word index). 

• References in brackets following the construct links refer to the 95 LRM. Thus, for example, 
always _construct :: = [94] [95LRM 9.9.2], indicates that section 9.9.2 of the 95 LRM con­
tains the definition for always _construct. 

B.2 Verilog HDL Syntax 

always_construct ::= [94] [95LRN 9.9.2] always statement 

binary_base ::= [4] [95LRN 2.5.1]'b 'B 

binary_digit ::= [4] [95LRN 2.5.1] x X 1 z 1 z 1 0 1 1 

binary_number ::= [114] [95LRN 2.5.1] 

[ size ] binary_base binary_digit { _ 1 binary_digit } 

binary_operator ::= [19, 52] [95LRN 4.1.2] 

+ 1 1 * 1 / 1 % 1 -- 1 != !== 1 && 1 ~ ~ 
< <= > 1 >= 1 & ~ 

blocking assignment 2 ::= [181] [95LRN 9.2.1] 

reg_lvalue = [ delay_or_event_control ] expression 

block item declaration ::= [57, 133, 166, 190] [95LRN 9.8.1] 

parameter_declaration reg_declaration 

1»1« 

2The term blocking(space)assignment is referenced as blocking(underscore)assignment. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

[ 1] 

[2 ] 

[3 ] 

[ 4 ] 

[5 ] 

[6] 

[7 ] 

989



B.2 VERILOG HDLSYNTAX 981 

integer_declaration I real_declaration I time declaration 

realtime_declaration I event_declaration 

case item ::= [9] [9sLRM 9.5] expression { , expression} 

I default [ : ] statement_or_null 

case_statement ::= [181] [9sLRM 9.5] 

I case ( expression ) case_item { case_item } endcase 

I casez expression case item { case item } endcase 

I casex ( expression ) case_item { case_item } endcase 

statement or null 

charge_strength ::= [107] [9sLRM 3.4.1] ( small) I ( medium) I ( large) 

cmos_switchtype ::= [58] [9sLRM 7.7] cmos 

cmos switch instance ::= [58] [9sLRM 7.1] 

output_terminal , input_terminal , 

ncontrol terminal , pcontrol_terminal 

combinational_body ::= [198] [9sLRM 8.1.4] 

rcmos 

table combinational_entry { combinational_entry} endtable 

combinational_entry ::= [13] [9sLRM 8.1.4] level_input_list 

[8] 

[9 ] 

[10] 

[11 ] 

[12 ] 

[13] 

[14] 

comment ::= [-] [9sLRM 2.3] short_comment I long_comment [15] 

comment_text ::= [88, 168] [9sLRM 2.3] { Any_ASCII_character } [16] 

concatenation ::= [21, 109, 146, 161] [9sLRM 4.1.14] { expression { , expression}} [17] 

conditional statement ::= [181] [9sLRM 9.4] [18] 

I if ( expression ) statement or null [ else statement_or_null ] 

constant_expression ::= [see Table B.1] [9sLRM 4.1] constant_primary [19] 

I unary_operator constant_primary 

I constant_expression binary_operator constant_expression 

I constant_expression ? constant_expression constant_expression 

I string 

constant mintypmax_expression ::= [34, 74, 139] [9sLRM 4.3] constant_expression [20] 

I constant_expression : constant_expression constant_expression 

constant_primary ::= [19] [9sLRM 4.1] number I parameter_identifier 

I constant_concatenation I constant_multiple_concatenation 

continuous_assign ::= [94] [9sLRM 6.1] 

assign [ drive_strength ] [ delay3 

controlled_timing_check_event ::= [189] [9sLRM 14.5.11] 

timing_check_event_control 

specify_terminal_descriptor [ &&& timing_check_condition 

current state ::= [165] [9sLRM 8.1] level_symbol 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

[21] 

[22] 

[23] 

[24] 

990



982 APPENDIX B 

data source_expression ::= [53, 127] [95LRM 13.3.3] expression 

decimal_base ::= [28] [95LRM 2.5.1] 'd I 'D 

decimal_digit ::= [206] [95LRM 2.5.1] 0 I 1 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 0 

decimal_number ::= [114] [95LRM 2.5.1] [sign unsigned_number 

I [ size ] decimal_base unsigned_number 

delay2 ::= [58, 202] [95LRM 7.1, 7.15] 

# delay_value I # ( delay_value [ , delay_value ] ) 

delay3 ::= [22,58,107] [95LRM 7.1,7.15] 

# delay_value I # ( delay_value [ , delay_value [ , delay_value ] ] ) 

delay_control ::= [32] [95LRM 9.7, 9.7.1] 

# delay_value I # ( mintypmax_expression 

delay_or_event_control ::= [6, 112, 148] [95LRM 9.7] 

delay_control I event_control I repeat ( expression 

delay_value ::= [29, 30, 31] [95LRM 7.1.3, 7.15] 

event control 

unsigned_number I parameter_identifier I constant_mintypmax_expression 

description ::= [173] [95LRM 8.1, 12.1] module declaration 

disable_statement3 ::= [181] [95LRM 11] 

I disable task_identifier ; I disable block_identifier ; 

udp_declaration 

drive_strength ::= [22, 58, 

( strengthO , strength1 

I strengthO, highzl ) 

I ( highzl , strengthO ) 

107, 202] [95LRM 3.2.1, 3.4.2, 6.1.4] 

( strength1 , strengthO ) 

strength1 , highzO 

highzO , strength1 ) 

edge_control_specifier4 ::= [196] [95LRM 14.5.9] edge 

[ edge_descriptor [ , edge_descriptor ] ] 

edge_descriptor ::= [37] [95LRM 14.5.9] 01 I 10 I Ox 

edge_identifier ::= [53, 127] [95LRM 14.5.9] posedge 

edge_indicator ::= [41] [95LRM 8.1, 8.1.6, 8.4] 

( level_symbol level_symbol ) I edge_symbol 

edge_input_list ::= [167] [95LRM 8.1, 8.1.6, 8.4] 

{ level_symbol } edge_indicator { level_symbol } 

xl I Ix I xO 

negedge 

edge_sensitive_path_declaration ::= [138, 183] [95LRM 13.3.3] 

parallel_edge_sensitive_path_description = path_delay_value 

I full_edge_sensitive_path_description path_delay_value 

3The construct for disable_statement has a leading vertical bar, I, in Annex A ofthe 95 LRM. 

[25] 

[26] 

[27] 

[28] 

[29] 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

[36] 

[37] 

[38] 

[39] 

[40] 

[41] 

[42] 

4The outer brackets in term edge control specifier are lexical elements; the inner brackets are an optional item. - -
The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

991



B.2 VERILOG HDLSYNTAX 983 

edge_symbol ::= [40] [95LRM 8.1.6] r I R I f I F I p 

enable_gatetype ::= [58] [95LRM 7.1] bufifO I bufifl notifO I notifl 

enable gate instance ::= [58] [95LRM 7.1] [ name_of_gate_instance 

( output_terminal , input_terminal , enable_terminal ) 

enable terminal ::= 45, 98, 134] [95LRM 7.1] scalar_expression 

escaped_identifier ::= [63] [95LRM 2.7.1] 

\ {Any_ASCII_character_except_white_space} white_space 

event control ::= [32] [95LRM 9.7] @ event identifier I @ event_expression 

event declaration ::= [7, 95] [95LRM 9.7.3] 

event event identifier { , event identifier } ; 

event_expression ::= [48, 50] [95LRM 9.7] expression 

posedge expression I negedge expression 

I event_expression or event_expression 

I 

event identifier 

[43] 

[44] 

[45] 

[46] 

[47] 

[48] 

[49] 

[50] 

event_triggerS ::= [181] [95LRM 9.7.3] I -> event_identifier; [51] 

expression ::= [see Table B.1] [95LRM 4] primary I unary_operator primary [52] 

expression binary_operator expression I expression ? expression : expression 

I string 

full edge sensitive_path_description6 ::= [42] [95LRM 13.3.2] [53] 

[ edge_identifier ] list_of_path_inputs *> 

list_of_path_outputs 

[ polarity_operator ] : data_source_expression ) ) 

full_path_description ::= [171] [95LRM 13.3.2, 13.3.5] 

( list_of_path_inputs [ polarity_operator ] *> list_of_path_outputs 

function_call ::= [146] [95LRM 10.3.3] 

function_identifier ( expression { , expression} ) 

I name_of_system_function [ ( expression { , expression} ) ] 

function_declaration ::= [95] [95LRM 10.3.1] 

function [ range_or_type ] function identifier 

function item declaration { function item declaration } 

statement 

endfunction 

function item declaration ::= [56] [95LRM 10.3.1] 

block item declaration I input_declaration 

5The construct for event _ tr igger has a leading vertical bar, I, in Annex A of the 95 LRM. 

[54] 

[55] 

[56] 

[57] 

6The term full_edge _sensi ti ve _path_description contains an unmatched right parenthesis in Annex A 
and Section 13.3.3 of the 95 LRM. The examples in Section 13.3.3 of the 95 LRM do not include the final trailing right 
parenthesis. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

992



984 APPENDIX B 

gate_instantiation7 ::= [94] [95LRM 7.1] n_input_gatetype [ drive_strength 

[delay2] n_input_gate_instance { I n_input_gate_instance } ; 

I n_output_gatetype [ drive_strength ] [ delay2 ] 

n_output_gate_instance { I n_output_gate_instance } ; 

enable_gatetype [ drive_strength ] [ delay3 ] 

enable_gate_instance { I enable_gate_instance} ; 

mos_switchtype [ delay3 ] 

mos_switch_instance { I mos_switch_instance } ; 

pass_switchtype pass_switch_instance { I pass_switch_instance } 

pass_en_switchtype [ delay3 ] 

pass_en_switch_instance { I pass_en_switchinstance } 

cmos_switchtype [ delay3 

cmos_switch_instance { I cmos_switch_instance } 

pullup [ pullup_strength ] 

pUll_gate_instance { I pUll_gate_instance } 

pulldown [ pulldown_strength ] 

pUll_gate_instance { I pull_gate_instance } 

hex_base ::= [61] [95LRM 2.5.1] 'h I 'H 

hex_digit ::= [61] [95LRM 2.5.1] 

x I X I z I z 101 1 I 2 I 3 145 
I a I b I c I die I f I A I B I c 

hex number ::= [114] [95LRM 2.5.1] [ size] hex_base hex_digit { _ I hex_digit} 

identifier ::= [see Table B.1] [95LRM 2.7] IDENTIFIER [ { • IDENTIFIER} ] 

The period in identifier may not be preceded or followed by a space. 

IDENTIFIER ::= [62] [95LRM 2.7] simple_identifier I escaped_identifier 

initial_construct ::= [94] [95LRM 9.9.1] initial statement 

in it val ::= [200] [95LRM 8.1, 8.5] 

l'bO I l'b1 I l'bx I l'bX I l'BO I l'B1 I l'Bx I l'BX I 1 I 0 

inout declaration ::= [95, 190] [95LRM 12.3.2] 

inout [ range ] list_of_port_identifiers 

inout_terminal ::= [134, 137] [95LRM 7.1] 

terminal identifier terminal identifier [ constant_expression 

input_declaration ::= [57, 95, 203] [95LRM 12.3.2] 

input [ range ] list_of_port_identifiers 

input_identifier ::= [175] [95LRM 13.3.2] 

input_port_identifier I inout-port_identifier 

input_terminal ::= [12, 45, 98, 116, 118] [95LRM 7.1] scalar_expression 

7The term pass_en _switch_instance is defined as pass_enable _switch_instance. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

[58] 

[59] 

[60] 

[61] 

[62] 

[63] 

[64] 

[65] 

[66] 

[67] 

[68] 

[69] 

[70 ] 

993



B.2 VERI LOG HDL SYNTAX 985 

integer_declaration ::= [7, 95] [95LRM 3.9] integer list_of_register_identifiers 

level_input_list ::= [14, 167] [95LRM 8.1, 8.1.6] level_symbol { level_symbol} 

level_symbol ::= [24, 40, 41, 72] [95LRM 8.1,8.1.6] 0 11 I x I X I ? I biB 

limit_value ::= [152] [95LRM 13.7] constant_mintypmax_expression 

list_of_module_connections ::= [92] [95LRM 12.1.2, 12.3.3, 12.3.4] 

ordered_port_connection { , ordered_port_connection } 

I named_port_connection { , named-port_connection } 

list of net _assignments : : = [22] [9SLRM 3.10] net assignment -
list of net decl assignments : := [107] [95LRM 3.2.1] -

net_decl_assignment { , net decl _assignment } 

list of net identifiers : := [107] [95LRM 2.7] net identifier -
list_of_param_assignments ::= [129, 130] [95LRM 3.10] 

param_assignment { , param_assignment } 

list_of_path_delay_expressions ::= [140] [95LRM 13.4] 

t_path_delay_expression 

I trise_path_delay_expression, tfall_path_delay_expression 

{ , net 

{ , net 

assignment 

identifier 

} 

} 

I trise_path_delay_expression, tfall_path_delay_expression, tz_path_delay_expression 

I tOl_path_delay_expression, tlO_path_delay_expression, tOz_path_delay_expression, 

tzl_path_delay_expression, tlz_path_delay_expression, tzO_path_delay_expression 

I tOl_path_delay_expression, tlO_path_delay_expression, tOz_path_delay_expression, 

tzl_path_delay_expression, tlz_path_delay_expression, tzO_path_delay_expression, 

tOx_path_delay_expression, txl_path_delay_expression, tlx_path_delay_expression, 

txO_path_delay_expression, txz_path_delay_expression, tzx_path_delay_expression 

list_of_path_inputs ::= [53, 54] [9SLRM 13.3.2] 

specify_input_terminal_descriptor { , specify_input_terminal_descriptor } 

list_of_path_outputs ::= [53, 54] [95LRM 13.3.2] 

specify_output_terminal_descriptor { , specify_output_terminal_descriptor } 

list_of_ports ::= [91] [95LRM 12] ( port { ,port} ) 

list_of_port_identifiers ::= [66, 68, 123] [9SLRM 12.3.2] 

port_identifier { , port_identifier } 

list_of_real_identifiers ::= [155, 156] - [95LRM 2.7] 

real_identifier { , real_identifier } 

list_of_register_identifiers ::= [71, 160, 193] [95LRM 3.2.2] 

register_name { , register_name } 

list_of_specparam_assignments ::= [180] [95LRM 13.2] 

specparam_assignment { , specparam_assignment } 

long_comment ::= [15] [95LRM 2.3] /* comment_text */ 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

[71 ] 

[72] 

[73] 

[74] 

[75] 

[76 ] 

[77] 

[78] 

[79] 

[80] 

[81] 

[82] 

[83] 

[84] 

[85] 

[86] 

[87] 

[88] 

994



986 APPENDIX B 

loop_statement ::= [181] [95LRM 9.6] 

I forever statement 

I repeat ( expression ) statement 

I while ( expression ) statement 

I for ( reg_assignment ; expression ; reg_assignment ) statement 

mintypmax_expression ::= [31, 146] [95LRM 4.3] expression 

I expression : expression : expression 

module_declaration ::= [34] [95LRM 12.1] module_keyword module identifier 

[ list_of-ports ] ; {module_item } endmodule 

module instance ::= [93] [95LRM 12.1, 12.1.2] 

name of instance ( [ list_of_module_connections ] ) 

mOdule instantiation ::= [94] [95LRM 12.1.2] 

module identifier [ parameter_value_assignment 

module_instance { , module_instance } ; 

module_item ::= [91] [95LRM 12.1] 

module_item_declaration I parameter_override 

I continuous_assign I gate_instantiation I udp_instantiation 

I module instantiation I specify_block I initial construct 

I always_construct 

module item declaration ::= [94] [95LRM 12.1] 

parameter_declaration I input_declaration 

I output_declaration I inout_declaration I net_declaration 

I reg_declaration I integer_declaration I real declaration 

I time declaration I realtime declaration event declaration 

I task_declaration I function declaration 

module_keyword ::= [91] [95LRM 12.1] module macromodule 

mos_switchtype ::= [58] [95LRM 7.1, 7.5] nmos I pmos I rnmos I rpmos 

mos switch instance ::= [58] [95LRM 7.1] 

[ name_of_gate_instance ] ( output_terminal , input_terminal , enable terminal 

multiple_concatenationS ::= [21, 146] [95LRM 4.1.14] 

{ expression { expression { , expression } } } 

named_port_connection ::= [75] [95LRM 12.1.2, 12.3.4] 

. port_identifier ( [ expression ] ) 

name_of_gate_instance ::= [12, 45, 98, 116, 118, 134, 137, 151] [95LRM 7.1] 

gate_instance_identifier [ range ] 

[89] 

[90] 

[91] 

[92] 

[93] 

[94] 

[95] 

[96] 

[97 ] 

[98] 

[99] 

[100] 

[101] 

8The two sets of outer braces (four) in the term mul tiple _concatenation are lexical elements; the inner braces 
(two) indicate an optional item. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

995



B.2 VERILOG HDLSYNTAX 987 

name_of_instance ::= [92] [9SLRM 12.1.2] module_instance_identifier [ range] 

name_of_system_function ::= [SS] [9SLRM 14] $identifier 
Note: the $ in name_of_system_function may not be followed by a space. 

name_of_udp_instance ::= [201] [9SLRM 8.6] udp_instance_identifier [ range 

ncontrol_terminal ::= [12] [9SLRM 7.1] scalar_expression 

net_assignment ::= [76, 147] [9SLRM 6.1, 9.3] net lvalue = expression 

net_declaration ::= [9S] [9SLRM 3.2.1] 

net_type [ vectored I scalared ] [ range ] [ delay3 ] list_of_net_identifiers 

I trireg [ vectored I scalared ] 
[ charge_strength ] [ range ] [ delay3 ] list_of_net_identifiers 

net_type [ vectored I scalared ] 
[drive_strength] [range] [delay3] list_of_net_decl_assignments ; 

net_decl_assignment ::= [77] [9SLRM 3.2.1] net identifier = expression 

net_lvalue ::= [106, 147] [9SLRM 6.1] 

net_identifier I net_identifier [ expression 
I net_identifier [msb_constant_expression lsb constant_expression 

I net concatenation 

net_type ::= [107] [9SLRM 3.2.1] 

wire I tri I tri! I supplyO I wand triand I triO supply! I wor I trior 

next state ::= [16S] [9SLRM 8.1, 8.1.6] output_symbol I -

non-blocking assignment 9 ::= [181] [9SLRM 9.2.2] 
reg_lvalue <= [ delay_or_event_control ] expression 

notify_register ::= [189] [9SLRM 14.S.10] register_identifier 

number ::= [21, 146] [9SLRM 2.S] 
decimal_number I octal_number I binary_number I hex_number I real_number 

n_in~ut_gatetype ::= [S8] [9SLRM 7.1] and I nand I or I nor I xor I xnor 

[102] 

[103] 

[104] 

[lOS] 

[106] 

[107 ] 

[108] 

[109] 

[110 ] 

[111 ] 

[112] 

[113 ] 

[114 ] 

[ l1S] 

n_input_gate_instance ::= [S8] [9SLRM 7.1] [116] 
[ name_of_gate_instance ] ( output_terminal , input_terminal { , input_terminal } ) 

n_output_gatetype ::= [S8] [9SLRM 7.1] buf I not [117 ] 

n_output_gate_instance ::= [S8] [9SLRM 7.1] [118] 
[ name_of_gate_instance ] ( output_terminal { , output_terminal } , input_terminal ) 

octal_base ::= [121] [9SLRM 2.S.1] '0 I '0 

octal_digit ::= [121] [9SLRM 2.S.1] 

x I X I z I z 101 ! I 2 I 3 I 4 I 5 I 6 I 7 

[119 ] 

[120] 

9The tenn, non(hyphen)blocking(space)as s ignment, is referenced as non(underscore)blocking(space)as s ign­
ment. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

996



988 APPENDIX B 

octal_number ::= [114] [95LRM 2.5.1] 

[ size ] octal_base octal_digit { _ 

ordered_port_connection ::= [75] [95LRM 12.1.2, 12.3.3] 

output_declaration ::= [95, 190, 203] [95LRM 12.3.2] 

output [ range ] list_of-port_identifiers 

expression 

output_identifier ::= [177] [95LRM 13.3.2] 

output-port_identifier I inout-port_identifier 

output_symbol ~:= [14, 111] [95LRM 8.1, 8.1.6] 0 I 1 I x I X 

output_terminal ::= [12, 45,98,116,118,151] [95LRM 7.1] 

terminal_identifier I terminal_identifier [ constant_expression 

parallel_edge_sensitive_path_description10 ::= [42] [95LRM 13.3.2] 

( [ edge_identifier ] specify_input_terminal_descriptor => 
specify_output_terminal_descriptor 

[ polarity_operator ] : data_source_expression ) ) 

parallel_path_description ::= [171] [95LRM 13.3.2] 

( specify_input_terminal_descriptor 

[ polarity_operator ] => specify_output_terminal_descriptor ) 

parameter_declaration ::= [7, 95] [95LRM 3.10] 

parameter list_of-param_assignments ; 

parameter_override ::= [94] [95LRM 12.2] defparam list_of_param_assignments 

parameter_value_assignment ::= [93] [95LRM 12.1.2] 

# ( expression { , expression } ) 

param_assignment ::= [79] [95LRM 3.10] parameter_identifier 

par_block ::= [181] [95LRM 9.8.2] 

constant_expression 

fork [ : block identifier { block_item declaration } ] { statement } join 

pas~_enable_switch_instancell ::= [58] [95LRM 7.1] 

[name_of_gate_instance (inout_terminal, inout terminal , enable terminal 

pass_en_switchtype ::= [58] [95LRM 7.1] 

tranifO I tranif1 I rtranifl I rtranifO 

pass_switchtype ::= [58] [95LRM 7.1] tran I rtran 

pass_switch_instance ::= [58] [95LRM 7.1] 

name_of_gate_instance ] ( inout terminal , inout terminal 

[121] 

[122] 

[123] 

[124] 

[125] 

[126] 

[127] 

[128] 

[129] 

[130 ] 

[131] 

[132 ] 

[133] 

[134 ] 

[135 ] 

[136 ] 

[ 137] 

lOThe term parallel_edge _sensitive_path_description has an unmatched right parenthesis in Annex 
A and Section 13.3.3 of the 95 LRM. The examples in Section 13.3.3 do not include the final trailing right parenthesis. 

llThe term pass_enable _ swi tch _instance is referenced as pass_en _ swi tch _instance. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

997



8.2 VERILOG HDL SYNTAX 989 

path_declaration12 ::= [176] [95LRM 13.3] simple_path_declaration ; 

I edge_sensitive_path_declaration ; I state-dependent_path_declaration 

path_de1ay_expression ::= [80] [95LRM 13.4] constant_mintypmax_expression 

path_delay_value ::= [42, 171] [95LRM 13.4] 

list_of_path_delay_expressions I ( list_of_path_delay_expressions 

pcontrol_termina1 ::= [12] [95LRM 7.1] scalar_expression 

polarity_operator ::= [53, 54, 127, 128] [95LRM 13.3.2] + I -

port ::= [83] [95LRM 12.3.1] 

[ port_expression ] I . port_identifier ( [ port_expression ] ) 

port_expression ::= [143] [95LRM 12.3.1] 

port_reference I { port_reference { , port_reference} } 

port_reference ::= [144] [95LRM 12.3.1] port_identifier 

port_identifier [ constant_expression ] 

I port_identifier [msb_constant_expression lsb constant_expression 

primary ::= [52] [95LRM 4] number I identifier identifier [ expression 

I 
I 
I 

identifier [ msb_constant_expression : 

concatenation I multiple_concatenation 

( mintypmax_expression ) 

lSb_constant_expression 

function call 

procedural_continuous_assignment13 ::= [181] [95LRM 9.3] 

assign reg_assignment ; 

deassign reg lvalue ; I force reg_assignment ; 

force net_assignment ; I release reg_lvalue 

release net_lvalue ; 

procedural_timing_control_statement ::= [181] [95LRM 9.7] 

delay_or_event_control statement_or_null 

pulldown_strength ::= [58] [95LRM 7.1] ( strengthO , strength 1 ) 

I ( strength 1 , strengthO ) I ( strengthO ) 

pullup_strength ::= [58] [95LRM 7.1] ( strengthO , strength 1 ) 

I ( strength 1 , strengthO ) I ( strength 1 ) 

pUlI_gate_instance ::= [58] [95LRM 7.1] [ name_of_gate_instance ] ( output_terminal 

pulse_control_specparam14 ::= [179] [95LRM 13.7] 

PATHPULSE$ = ( reject_Iimit_value [ , error limit value ] ) 

[138] 

[139 ] 

[140] 

[141 ] 

[142] 

[143] 

[144] 

[145] 

[146] 

[147] 

[148] 

[149] 

[150] 

[151] 

[152] 

llnletennstate-dependent _path_declaration is defined as state _dependent_path _declaration. 

l3The construct for procedural_ continuous _assignment has a leading vertical bar, I, in Annex A of the 95 LRM. 

14The specparam PATHPULSE$ is shown in bold in the 95 LRM but is not a keyword. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

998



990 APPENDIX B 

PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor 

= ( reject_limit_value [ , error_limit_value ] ) 

range ::= [66,68,101,102,104,107,123,154,160] [95LRM 7.1.5] 

[ mSb_constant_expression : lsb_constant_expression ] 

range_or_type ::= [56] [95LRM 10.3.1] 

range I integer I real I realtime I time 

realtime declaration ::= [7, 95] [95LRM 3.9] realtime list of real identifiers 

real declaration ::= [7, 95] [95LRM 3.9] real list of real identifiers 

real number15 ::= [114] [95LRM 2.5.1] 

[ sign ] unsigned_number . unsigned_number 

I [sign unsigned_number [ • unsigned_number] e [ sign 

I [ sign ] unsigned_number [ • unsigned_number] e [ sign 

register_name ::= [86] [95LRM 3.2.2] register_identifier 

I memory_identifier [ upper_limit_constant_expression 

lower_limit_constant_expression ] 

unsigned_number 

unsigned_number 

reg_assignment ::= [89, 147] [95LRM 9.3] reg_lvalue = expression 

[153] 

[154] 

[155] 

[156 ] 

[157] 

[158 ] 

[159 ] 

reg_declaration ::= [7, 95, 203] [95LRM 3.2.2] [160] 
reg [ range ] list_of_register_identifiers ; 

reg_lvalue ::= [6,112,147,159] [95LRM 9.2.1] [161] 
reg_identifier I reg_identifier [ expression 

I reg_identifier [msb_constant_expression lsb constant_expression 

I reg concatenation 

scalar constant ::= [163] [95LRM 2.5.1] 

1'bO I l'b1 I l'BO I l'B1 I 'bO I 'b1 I 'BO I 'B1 I 1 I 0 

scalar_timing_check_condition ::= [194] [95LRM 14.5.11] expression 

I - expression I expression == scalar constant 
I expression === scalar constant 
I expression 1= scalar constant 

I expression !== scalar constant 

sequential_body ::= [198] [95LRM 8.1, 8.1.4] [ udp_initial_statement 
table sequential_entry { sequential_entry } endtable 

sequential_entry ::= [164] [9SLRM 8.1, 8.3, 8.4] 

seq_input_list : current_state : next_state ; 

seq_block ::= [181] [95LRM 9.8.1] begin [ : block identifier 

{ block item declaration } ] { statement } end 

[162] 

[163] 

[164] 

[165] 

[166] 

15The term real number has identical entries for the two forms of scientific notation in Annex A of the 95 LRM. In 
Section 2.5 of the 95 LRM the last alternative uses E (uppercase) instead of e (lowercase). 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

999



B.2 VERILOG HDL SYNTAX 991 

se~input_list ::= [165] [95LRM 8.1] level_input_list I edge_input_list 

short comment ::= [15] [95LRM 2.3] II comment text \n 

sign ::= [28,157] [95LRM 2.5.1] + 1-
simple_identifier16 ::= [63] [95LRM 2.7] [ a-zA-Z_ ][ a-zA-Z_$ 

simple_path_declaration ::= [138, 183] [95LRM 13.3.2] 

parallel_path_description = path_delay_value 

I full_path_description = path_delay_value 

size ::= [4, 28, 61, 121] [95LRM 2.5.1] unsigned~number 

source_text ::= [-I [95LRM 2.1] { description} 

specify_block ::= [94] [95LRM 13.1] specify [ specify_item] endspecify 

specify_input_terminal_descriptor ::= [81, 127, 128, 152, 178] [95LRM 13.3.2] 

input_identifier 

input_identifier 

I input identifier 

constant_expression ] 

msb_constant_expression 

specify_item ::= [174] [95LRM 13.1] 

isb constant_expression 

specparam_declaration I path_declaration I system_timing_check 

specify_output_terminal_descriptor ::= [82, 127, 128, 152, 178] [95LRM 13.3.2] 
output_identifier 

output_identifier 

I output identifier 

constant_expression ] 

msb_constant_expression : isb constant_expression 

specify_terminal_descriptor ::= [23, 195] [95LRM 13.3.2] 

specify_input_terminal_descriptor 

I specify_output_terminal_descriptor 

specparam_assignment ::= [87] [95LRM 13.2] 

specparam_identifier = constant_expression 

specp'~ram_declaration ::= [176] [95LRM 13.2] 

specparam list_of_specparam_assignments i 

statement17 ::= [1, 56, 64, 89, 133, 166, 182] [95LRM 9.1] 

blocking_assignment ; I non_blocking assignment ; 

I procedural_continuous_assignments ; 

I procedural_timing_control_statement I conditional_statement 

I case_statement I loop_statement I wait statement 

I disable_statement I event_trigger seq_block par_block 

I task enable I system_task_enable 

16The underscore in the first bracket is missing in the 95 LRM. 

[167] 

[168] 

[169] 

[170 ] 

[171] 

[172 ] 

[173] 

[174] 

[175] 

[176] 

[177 ] 

[178] 

[179] 

[180] 

[181] 

17The term blocking(underscore)assignment is defined as blocking(space)assignment. The term non(under­
score)blocking(space)assignment is a single term defined as non(hyphen)blocking(space)assignment. The term 
procedural_continuous _assignments is defined as procedural_.continuous _assignment (singular). 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

1000



992 APPENDIX B 

statement or null17 ::= [8, 18, 148, 191, 207] [95LRM 9.1] 

statement I i 

state_dependent_path_declaration18 ::= [138] [95LRM 13.3.4] 

if ( conditional_expression ) simple-Eath_declaration 

I if ( conditional_expression ) edge_sensitive_path_declaration 

I ifnone simple-Eath_declaration 

strengthO ::= [36, 149, 150] [95LRM 7.10] 

supplyO I strongO I pullO I weakO 

strength 1 ::= [36, 149, 150] [95LRM 7.10] 

supplyl I strongl I pulll I weakl 

string ::= [19] [95LRM 2.6] .. {Any ASCII_Characters_except_new_line } .. 

system_task_enable ::= [181] [95LRM 2.7.3] 

expression { , expression } ) 

system_task_name ::= [187] [95LRM 2.7.3] $identifier 

Note: The $ may not be followed by a space. 

system_timing_check 19 ::= [176] [95LRM 14.5] 

$setup ( timing_check_event , timing_check_event , 

timing_check_limit [ , notify_register ] ) i 

$hold ( timing_check_event , timing_check_event , 

timing_check_limit [ , notify_register ] ) i 

$period ( controlled_timing_check_event , timing_check_limit 

[ , notify_register ] ) i 

$width ( controlled_timing_check_event , timing_check_limit , 

constant_expression [ , notify_register ] ) i 

$skew ( timing_check_event , timing_check_event , 

timing_check_limit [ , notify_register ] ) 

$recovery ( controlled_timing_check_event , timing_check_event , 

timing_check_limit [ , notify_register ] ) i 

$setuphold ( timing_check_event , timing_check_event , 

timing_check_limit , timing_check_limit [ , notify_register ] ) 

task_argument_declaration20 ::= [191?] [95LRM 10.2.1] 

block item declaration output_declaration I inout declaration 

[182] 

[183 ] 

[184] 

[185] 

[186] 

[187] 

[188] 

[189] 

[190] 

17The term statement_or _null is equivalent to a statement term (which, when expanded, will be terminated by a 
semicolon) or the combination of nothing (null) followed by a semicolon. 

18The term state_dependent _path_declaration is referenced as 
state-dependent_path_declaration. 

19The names of the system timing check tasks are shown in bold in the 95 LRM but are not keywords. 

20Annex A of the 95 LRM defines task _argument_declaration, which is not referenced in Annex A; see the 
footnote for the term task declaration. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

1001



B.2 VERILOG HDLSYNTAX 993 

task_declaration21 ::= [95] [95LRM 10.2.1] 

task task_identifier ; {task_item_dec1aration} statement or null endtask 

task_enable ::= [181] [95LRM 10.2.2] 

task_identifier [ ( expression { , expression } ) ] ; 

time_declaration ::= [7, 95] [95LRM 3.9] time list_of_register_identifiers 

timing_check_condition ::= [23, 195] [95LRM 14.5.11] 

scalar_timing_check_condition I ( scalar_timing_check_condition ) 

timing_check_event ::= [189] [95LRM 14.5] 

[ timing_check_event_control ] 

specify_terminal_descriptor [ &&& timing_check_condition 

timing_check_event_control ::= [23, 195] [95LRM 14.5] 

po sedge I negedge I edge_control_specifier 

timing_check_limit ::= [189] [95LRM 14.5] expression 

udp_body ::= [199] [95LRM 8.1] combinational_body 

udp_dec~aration ::= [34] [95LRM 8.1, 8.1.1] 

sequential_body 

primitive udp_identifier ( udp_port_list ) ; 

udp_port_declaration { udp_port_declaration } udp_body 

endprimitive 

udp_initial_statement ::= [164] [95LRM 8.1, 8.5] 

udp_instance ::= [202] [95LRM 8.6] 

[ name_of_udp_instance ] 

init val 

( output_part_connection , input_port connection { , input_part_connection } ) 

udp_instantiation ::= [94] [95LRM 8.6] 

udp_identifier [ drive_strength ] [ de1ay2 udp_instance { , udp_instance } 

udp_port_declaration ::= [199] [95LRM 8.1] 

output_declaration I input_declaration I reg_declaration 

udp_port_list ::= [199] [95LRM 8.1, 8.1.2] 

output_part_identifier , input_part_identifier { , input-port_identifier } 

unary operator ::= [19, 52] [95LRM 4.1] 

+ I - I ! I - I & I -& I I I -I I " I _A I "-
unsigned_number ::= [28, 33, 157, 172] [95LRM 2.5.1] 

decimal_digit { _ I decimal_digit } 

[191] 

[192] 

[193] 

[194] 

[195] 

[196] 

[197] 

[198] 

[199] 

[200] 

[201] 

[202] 

[203] 

[204] 

[205] 

[206] 

21AnnexAandSection 10.2.1 of the 95 LRM define task _declaration using the term task_item_declaration, 
which is not defined in Annex A. Section 10.2.1 defines task _ i tern_declaration similarly to the Annex A definition of 
task _ argument_declaration, but with the addition of the alternative term input_declaration. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

1002



994 APPENDIX B 

wait_statement22 ::= [181] [95LRM 9.7.5] [207] 
I wait ( expression ) statement_or_null 

white_space ::= [47] [95LRM 2.2] space I tab I newline [208] 

B.3 BNF Index 

Table B.1 is an index to the 208 Verilog HDL BNF productions, as defined in Annex A of the 95 LRM. For exam­
ple, to find the legal positions of wait_statement (rule 207) we look up 207 in TableB.1 and find rule 181 
(statement), which is in tum referenced by rules 1,56,64,89, 133, 166, and 182. Thus we know a wait state­
ment is legal in the following places: always construct (1), function declaration (56), - -
ini tial_ construct (64), loop_statement (89), par_block (a parallel block, 133), seq_block (a 
sequential block, 166), and anywhere statement_or_null (182) is legal. Turning again to TableB.1 (or using 
the backward-pointing links in rule 182), we find statement_or _null (rule 182) is legal in the following places: 
8 (case_item), 18 (conditional_statement), 148 (procedural_timing_control_statement), 191 
(task_declaration), and 207 (wait_statement). 

Table B.2 is a list of the 102 Verilog HDL keywords in the 95 LRM and an index to the rules that refer­
ence these keywords. Note the spelling of the keyword scalared (not scalered). For example, to find out 
how to use the keyword parameter to define a constant, we look up parameter in Table B.2 to find rule 
129 (parameter_declaration), which includes a reference to section 3.10 of the 95 LRM. The index in 
this book will also help (the entry for parameter points you to examples in Section 11.2.4, "Numbers," in 
this case). 

There are many Verilog tools currently available that use many versions of the Verilog language. Most 
tool vendors explain which of the Verilog constructs are supported; many use the 95 LRM BNF syntax in 
this explanation. 

8.4 Verilog HDL LRM 

An important feature of Verilog is the ability to extend tools by writing your own code and integrating it 
with a Verilog-based tool. Forexample, the following code calls a user-written system task, $hello: 

initial $hello(a_reg)i 

Here is the C program, hello.c, that prints the full hierarchical name of the instance in 
which the Verilog code containing the call to $hello is located: 

#include "veriuser.h" 
#include "acc user.h" 
int hello() 

22The construct for wai t _statement has a leading vertical bar, I, in Annex A of the 95 LRM. 

The BNF syntax on this page is from IEEE Std 1364-1995, Copyright © 1995. IEEE. All rights reserved. 

1003



804 VERILOG HDL LRM 995 

TABLE B.1 Index to Verilog HDL BNF rules (list of rules that reference a rule). 

1 94 
1
43 40 85 155,156 127 42 169 28,157 

2 4 144 58 86 71,160,193 128 171 170 63 
3 4 145 58 87 180 129 7,95 171 138,183 
4 114 146 45,98,134 88 15 130 94 172 4,28,61,121 
5 19,52 147 63 89 181 131 93 173 Highest-level 
6 181 ! 48 32 90 31,146 132 79 174 94 
7 57,133,166,190149 7,95 91 34 133 181 175 81,127,128,152,178 
8 9 50 48,50 92 93 134 58 176 174 
9 181 151 181 93 94 135 58 177 82,127,128,152,178 
10 107 ; 52 See below 94 91 .136 58 178 23,195 
11 58 153 42 95 94 137 58 179 87 
12 58 154 171 96 91 138 176 180 176 
13 198 155 146 97 58 139 80 181 See below I 
14 13 

1

56 95 98 58 140 42, 171 182 8,18,148,191,207 
15 Not referenced 

1
57 56 99 21,146 141 12 183 138 

16 88,168 158 94 100 75 142 53,54,127,128 184 36,149,150 
17 2",09,,46,,6'159 61 101 See below 143 83 185 36,149,150 
18 181 60 61 102 92 144 143 186 19 
19 See below 61 114 103 55 145 144 187 181 
20 33,74,139 :62 See below 104 201 146 52 188 187 
21 19 163 62 105 12 147 181 189 176 
22 94 164 94 106 76, 147 148 181 190 191 (See BNF footnote) 
23 189 165 200 107 95 149 58 191 95 
24 165 166 95, 190 108 77 150 58 192 181 
25 53,127 167 134,137 109 106, 147 151 58 193 7,95 
26 28 168 57,95,203 110 107 152 179 194 23,195 
27 206 169 175 111 165 153 See below 195 189 
28 114 :70 See below 112 181 154 56 196 23,195 
29 58,202 171 7,95 ,113 189 155 7,95 197 189 
30 22,58,107 i72 14,167 1114 21,146 156 7,95 198 199 
31 32 i 73 24,40,41,72 1115 58 157 114 199 34 
32 6,112,148 174 152 116 58 158 86 200 164 
33 29,30,31 :75 92 

1'17 
58 159 89,147 201 202 

34 173 176 22 118 58 160 7,95,203 202 94 
35 181 :77 107 119 121 161 6,112,147,159 203 199 
36 22,58,107,202 178 107 

1

120 121 1162 163 204 199 
37 '196 i 79 129,130 121 114 ,163 194 205 19,52 
38 37 ! 80 140 1122 75 1164 198 206 28,33,157,172 
39 53, 127 ! 81 53,54 

1
123 95,190,2031165 164 207 181 

40 41 i 82 53,54 1124 177 1166 181 208 47 
41 167 ! 83 91 125 14, 111 1167 165 
42 138,183 i 84 66,68,123 1126 See below 

1
168 15 

19 19,20,67,109,126,132,145,146,153,158,161,175,177, 179, 189 
52 6,8,9,17,18,25,32,50,52,55,89,90,99,100,106,108, 109, 112, 122, 131, 146, 159, 161, 163, 187, 192, 197,207 

62 
21,35,48,49,50,51,55,56,67,69,78,84,85,91,93,100, 101, 102, 103, 104, 108, 109, 113, 124, 126, 132, 133, 143, 
145,146,158,161,166,179,188,191,192,199,200,202,204 

70 12,45,98,116,118 
101 12,45,98,116,118,134,137,151 
126 12,45,98,116,118,151 
153 66,68,101,102,104,107,123,154,160 
181 1,56,64,89,133,166,182 

1004



996 APPENDIX B 

TABLE B.2 Verilog HDL keywords and index (list of rules that reference a keyword). 

always 1 endprimitive 199 medium 10 
and 115 endspecify 174 module 96 
assign 22,147 endtable 13, 164 nand 115 
begin 166 endtask 191 negedge 39, 50, 196 
buf 117 event 49 nmos 97 
bufifO 44 for 89 nor115 
bufifl44 force 147 not 117 
case 9 forever 89 notifO 44 
casex 9 fork 133 notifl44 
casez 9 function 56 or 50,115 
cmos 11 highzO 36 output 123 
deassign 147 highzl36 parameter 129 
default 8 if18,183 pmos 97 
defparam 130 ifnone 183 posedge 39,50, 196 
disable 35 ini tial 64, 200 primitive 199 
edge 37 inout 66 pullO 184 
else 18 input 68 pull1185 
end 166 integer 71,154 pulldown 58 
endcase 9 join 133 pullup 58 
endfunction 56 large 10 rcmos 11 
endmodule 91 macromodule 96 real 154, 156 

{ handle mod_handle; char *full_name; acc_initialize(); 

mod_handle = acc_handle_tfarg(l); 

real time 154, 155 
reg 160 
release 147 
repeat 32,89 
rnmos 97 
rpmos 97 
rtran 136 
rtranifO 135 
rtranifl135 
scalared 107 
small 10 
specify 174 
specparam 180 
strongO 184 
strongl185 
supplyO 110, 184 
supplyl110, 185 
table 13, 164 
task 191 
time 154, 193 
tran 136 

io_printf(nHello from: %s\nn, acc_fetch_fullname(mod_handle)); 

acc_close(); } 

tranifO 135 
tranifl135 
tri 110 
triO 110 
tril110 
triand110 
trior 110 
trireg 107 
vectored 107 
wait 207 
wand 110 
weakO 184 
weakl185 
while 89 
wire 110 
wor110 
xnor 1115 
xor 115 

The details of how to compile and link your program with the Verilog executable depend on the partic­
ular tool; the names, functions, and parameters of ACC routines, the header files, veriuser. hand 
acc user. h (most companies include these with their Verilog products), as well as older TF routines and 
the newer VPI routines are described in detail in Sections 17-23 of the 95 LRM. 

Annex F of the 95 LRM describes widely used Verilog system tasks and functions that are not required to 
be supported as part ofIEEE Std 1364-1995. Table B.3 summarizes these tasks and functions. Annex G of the 
95 LRM describes additional compiler directives that are not part of IEEE Std 1364-1995 and are not often 
used by ASIC designers. Two directives, 'default_decay _time and' defaul t _ trireg_ strength, are 
used to model charge decay and the strength of high-impedance trireg nets. Four more compiler directives: 
'delay_mode_distributed, 'delay_mode_path, 'delay_mode_unit, and 'delay_mode_zero 
are used to specify the delay mode for modules. 

1005



B.5 BIBLIOGRAPHY 997 

TABLE B.3 System tasks and functions (not required in IEEE Std 1364-1995). 

$countdrivers ( net, [ net_is_forced, number_of_Olx_drivers, nUmber_of_O_drivers, 
number_of_l_drivers, number_of_x_drivers ] ) ; 

Returns a 0 if there is no more than one driver on the net and returns a 1 otherwise (indicating contention). 

$getpattern ( mem element) ; II Drive a pattern from an indexed memory. 

Exam~e: assign {iI, i2, i3, i4} = $getpattern ( mem [ index] ) 

$input ("filename"); II Allows input from fi;t.e rather than terminal. 

$key [ ( "filename" ) ] i $nokey i II Enableldisable key file in interactive mode. 

$list [ ( hierarchical_name) ] ; II List current or specified object. 

$log [ ( "filename" ) ] ; $nolog ; II Enableldisable log file for standard output. 

$reset [ ( stop_value [ , reset_value, [ diagnostics_value] ] ) ] ; II Reset time. 

$reset_count ; II Count the number of resets. 
$reset_value ; II Pass information prior to reset to simulation after reset. 

$save ( "file_name" ) ; II Save simulation for later restart. 
$restart ( "file_name" ) ; II Restart simulation from saved file. 
$incsave ( "incremental_file_name" ) ; II Save only changes since last $save 

$scale 

$scope 
scope. 

hierarchical name 

hierarchical name 

II Convert to time units of invoking module. 

II Sets the specified level of hierarchy as current 

$showscopes [ ( n ) ]; II Show scope (n = none or zero) else show all items below 
scope. 

$showvars [ ( list_of_ variables ) ] ; I I Show status of scope or specified variables. 

$sreadmemb ( mem_name , start_address , finish_address , string { string} 
$sreadmemh ( mem_name , start_address , finish_address , string { , string } ) ; 

Load pata into mem _name from character string (same format as $readmemb/h). 

B.5 Bibliography 

There are fewer books available on Verilog than on VHDL. The best reference book is the IEEE Verilog 
HDL LRM [IEEE 1364-1995]; it is detailed as well as containing many examples. In addition to the refer­
ences given in Chapter 11, the following books concentrate on Verilog: Stemheim, Singh, and Trivedi 
[1990] (Yatin Trivedi was the technical editor for the 95 LRM); Thomas and Moorby [1991]; Smith [1996]; 
and Golze and Blinzer [1996]. Capilano Computing Systems has produced a book to accompany its Verilog 
Modeler product [Capilano, 1997]. 

1006



B.5 BIBLIOGRAPHY 998 

Sandstrom compiled an interesting cross-reference between Verilog and VHDL (a 2.5 page table listing 
the correspondence between major constructs in both languages) in a pull-out supph~ment to Integrated 
System Design Magazine. An electronic version of this article is at http://www.isdmag.com (the article 
is labeled January 1996, but filed under October 1995). Other online articles related to Verilog at 
www.isdmag.com. include case studies of Sun Microsystems' ULTRASparc-1 (June 1996) and 
Hewlett-Packard's PA-8000 (January, February, and March 1997); both CPUs were designed with Verilog 
behavioral models. The March 1997 issue also contains an article on the recent history and the future plans 
of Open Verilog International (OVI). OVI helped create IEEE Std 1364-1995 and sponsored the annual 
International Verilog HDL Conference (IVC). In 1997 the IVC merged with the VHDL International Users' 
Forum (VIUF) to form the IVC/VIUF Conference (see http://www . hdlcon. ~rg). 

In January of 1995 OVI reactivated the Technical Coordinating Committee (TCC) to recommend 
updates and changes to Verilog HDL. The TCC comprises technical subcommittees (TSC), which are 
developing a delay calculator standard (LM-TSC), analog extensions to Verilog HDL (VA-TSC), an ASIC 
library modeling standard (PS-TSC), cycle-based simulation standard (VC-TSC), timing-constraint formats 
(VS-TSC), as well as Verilog language enhancements and extensions (VD-TSC). Links and information 
about OVI are available at http://www . avanticorp. com and http://www.chronologic.com. The 
OVI web site is http://www.verilog.org/ovi. Information on the activities of the OVI committees is 
available at the Meta-Software site, ftp: / / ftp.metasw. com/pub. 

The work of the OVI and IEEE groups is related. For example, the IEEE Design Automation Standards 
Committee (DASC) contains the Verilog Working Group (PAR 1364), the Circuit Delay and Power Calcu­
lation (DPC) System Study Group (P1481), as well as the VHDL and other WGs. Thus, the OVI DC-TSC 
directory contains the Standard Delay Calculation System (DCS) Specification (v 1.0) approved by 
OVI/CFI and currently being studied by the IEEE DPC Study Group. DCS provides a standard system for 
designers to calculate chip delay and power using the following methods: Delay Calculation Language 
(DCL) from IBM and CPI, Detailed Standard Parasitic Format (DSPF) and Reduced Standard Parasitic 
Format (RSPF) from Cadence Design Systems (combined into a new Standard Parasitics Exchange Format, 
SPEF), and Physical Design Exchange Format (PDEF) from Synopsys. The current IEEE standardization 
work is expanding the scope to add power calculation. Thus, useful information relating to Verilog may be 
found at the VHDL site, VIUF Internet Services (VIIS at http://www . vhdl. org), as well as the OVI 
site. 

Two usenet news groups are related to Verilog: comp .lang. verilog and comp. cad. synthesis. In 
January of 1997 the Verilog news archive was lost due to a disk problem. While attempts are made to restore 
the archive, the Verilog Frequently Asked Questions (FAQ) list is still available at 
http://www.lib.ox.ac.uk/internet/news/faq/archive/verilog-faq.html.Alist of CAD­
related newsgroups (including comp.lang. verilog) is maintained at Sun Microsystems' DACafe 
(http://www.ibsystems.com/DACafe/TECHNICAL/Resources/NewsGps.html.Sun(-/DACafe/US 
ERSGROUPS) also maintains the following user groups that often discuss Verilog: Cadence, Mentor Graphics, 
Synopsys, VeriBest, and Viewlogic. A number of tools and resources are available on the World Wide Web, 
including Verilog modes for the emacs editor; Verilog preprocessors in Perl and C (which allow the use of 
'define and' ifdef with logic synthesis tools, for example); and demonstration versions of the following 
simulators: Viper from InterHDL (http://www.interhdl.com) and VeriWell from Wellspring Solutions 
(http://www.wellspring.com). VeriWell now supports the Verilog PLI, including the ace and tf rou­
tines in IEEE Std 1364-1995 (requiring Visual C++ 4.0 or newer for the Windows version, Code Warrior 9 or 
newer for the Macintosh, and GNU C 2.7.0 or newer for the Linux and Sparc versions). 

1007



B.6 REFERENCES 999 

Several personal Web pages focus on Verilog HDL; these change frequently but can be found by 
searching. Actel has placed a number of Verilog examples (including synthesizable code for a FIFO and a 
RAM) at its site: http://wwwtest.actel.com/HLD/verimain. html. Many universities maintain Web 

. pages for Verilog-related classes. Examples are the Web site for the ee282 class at Stanford 
(http://lurnmi.Stanford.EDU/class/ee282), which contains Verilog models for the DLX processor 
in the second edition of Hennessy and Patterson's "Computer Architecture: A Quantitative Approach"; and 
course material for 18-360, "Introduction to Computer-Aided Digital Design," by Prof. Don Thomas at 
http://www.ece.cmu.edu. 

8.6 References 

P~ge numbers in brackets after a reference indicate its location in the chapter body. 
Capilano. 1997. LogicWorks Verilog Mpdeler: Interactive Circuit Simulation Software for Windows and Macintosh. 

Menlo Park, CA: Capilano Comp1,lting»02 p. ISBN 0201895854. TK7888.4.L64 (as cataloged by the LOC). Addison­
Wesley also gives the following addition,al ISBN numbers for this work: ISBN 0-201-49885-5 (Windows book and 
software), ISBN 0-201-49884-7 (Macinto'sh book and software); also available bundled with LogicWorks 3: ISBN 0-
201-87436-9 (Macintosh), ISBN 0-201-87417-7 (Windows). 

Golze, D., and P. Blinzer. 1996. VLSI Chip Desigil with the Hardware Description Language VERILOG: An Introduction 
Based on a Large RISC Processor Design. New York: Springer, 358 p. ISBN 3540600329. TK7874.75.G65. Four 
pages of references. Includes a version of VeriW~p from Wellsprings Solutions. 

IEEE 1364-1995. IEEE Standard Description Langu~'ge Based on the Verilog® Hardware Description Language. 688 p. 
ISBN 1-55937-727-5. IEEE Ref. SH94418-NYF. Published by The IEEE, Inc., 345 East 47th Street, New York, NY 
10017, USA. Inside the Dnited States, IEEE standards may be ordered at 1-800-678-4333. See also 
http://www . ieee. org and http://stdsbbs.ieee • ~rg. This standard was approved by the IEEE on 12 
December, 1995; and approved by ANSI on 1 August, 1996 (and thus these two organizations have different publica­
tion dates). Contents: overview (4 pages); lexical conventions (8 pages); data types (13 pages); expressions (18 pages); 
scheduling semantics (5 pages); assignments (4 pages); gate and switch level modeling (31 pages); user-defined prim­
itives (11 pages); behavioral modeling (26 pages); tasks and functions (6 pages); disabling of named blocks and tasks 
(1 page); hierarchical structures (16 pages); specify blocks (18 pages); system tasks and functions (35 pages); value 
change dump file (11 pages); compiler directives (8 pages); PLI TF and ACC interface mechanism (6 pages); using 
ACC routines (36 pages); ACC routine definitions (178 pages); using TF routines (5 pages); TF routine definitions (76 
page-s); using VPI routines (6 pages); VPI routine definitions (25 pages); formal syntax definition; list of keywords; 
system tasks and functions; compiler directives; acc _user. h; veriuser. h; vpi _user. h. [po 979] 

Smith, D. J. 1996. HDL Chip Design: A Practical Guide for Designing, Synthesizing, and Simulating ASICs and FPGAs 
using VHDL or Verilog. Madison, AL: Doone Publications, 448 p. ISBN 0965193438. TK7874.6.S62. 

Sternheim, E., R. Singh, and Y. Trivedi. 1990. Digital Design with Verilog HDL. Cupertino, CA: Automata Publishing, 
215 p. ISBN 0962748803. TK7885.7.S74. 

Thomas, D. E., and P. Moorby. 1991. The Verilog Hardware Description Language. Boston, MA: Kluwer, 223 p. ISBN 0-
7923-9126-8, TK7885.7.T48 (1st ed.). ISBN 0-7923-9523-9 (2nd ed.). ISBN 0792397231 (3rd ed.). 

1008



GLOSSARY OF SYMBOLS 
AND ACRONYMS 

Symbols 
Ao, parameter in input-slope delay model 673 
AI' parameter in input-slope delay model 673 
AD' transistor drain area 124 
As, transistor source area 124 
~n' transistor gain factor 44 
C, transistor gate capacitance 43 
CBD, bulk-to-drain capacitance 123 
C BDJ, bulk-to-drain junction area capacitance 123 
C BDSW, bulk-to-drain junction sidewall capacitance 123 
CBS' bulk-to-source capacitance 123 
C BSJ' bulk-t~-source junction area capacitance 123 
CBDJGATE' bulk-to-drain channel-edge capacitance 123 
CBSJGATE, bulk-to-drain channel-edge capacitance 123 
C BSSW' bulk -to-source junction sidewall capacitance 123 
CGB , gate-to-bulk capacitance 123 
CGBOY, gate-to-bulk overlap capacitance 123 
CGD , gate-to-drain variable capacitance 123 
CGDOY, gate-to-drain overlap capacitance 123 
CGS' gate-t~-source capacitance 123 
CGSOV, gate-to-source overlap capacitance 123 
Cinv, input capacitance of minimum-size inverter 131 
CJGATE, channel edge capacitance 124 
Cv output load capacitance 138 
Co' transistor gate capacitance (calculated using effective gate 

width and effective gate length) 126 
C out' extrinsic output capacitance 118 
Cox' gate capacitance per unit area 43 
Cp, intrinsic output capacitance 118 
CR , critical ramp delay in input-slope model 673 
Cs, transistor channel-bulk depletion capacitance 126 
D, delay in input-slope model 673 
D, path delay in logical effort model 136 
Do, experimentally determined factor in input-slope delay model 

673 
Do, parameter in input-slope delay model 673 
D 1, parameter in input-slope delay model 673 

dA, parameter in input-slope delay model 673 
dD , parameter in input-slope delay model 673 
D tO , time from the beginning of the input to the beginning of the 

output (input-slope delay model) 672 
D t ], time from the beginning of the input to the end of the output 

(input-slope delay model) 672 
E, electric field (vector) 42 
to, vacuum permittivity 104 
lop relative permittivity of silicon 104 
tSi, permittivity of silicon 104 
t ox, permittivity of silicon dioxide 43 
Ex, horizontal component of electric field in a transistor 42 
F, path effort 139 
j, effort delay 131 
<1>0, surface potential 104 
G, path logical effort 138 
y, back-gate bias coefficient 104 
g, logical effort 131 
H, path electrical effort 139 
h, electrical effort 131 
hi, stage electrical effort 139 
J DS(sat), transistor drain-source saturation current 44 
I DSn' transistor drain-source current 42 
JR , time from the beginning to the end of the input ramp (input­

slope delay model) 672 
k' , process transconductance parameter 44 

n . 
L, transIstor length 43 
LD, lateral diffusion 123 
Leff, transistor effective gate length 45 
!-Ln, electron mobility 42 
!-LP' hole mobility 42 
N, number of inverters in an inverter chain 140 
n, number of inputs to a logic cell 133 
OR' output ramp delay in input-slope model 673 
P, path parasitic delay 139 
p, parasitic delay 132 
Po, transistor drain perimeter (excluding channel edge) 124 
Ps, transistor source perimeter (excluding channel edge) 124 
Q, path nonideal delay 139 

1000 

1009



Q, transistor channel charge 42 
q, nonideal delay 133 

R, pull resistance 120 
r, logic ratio 132 

Rinv' pull resistance of minimum-size inverter 131 
Rpd' pull-down resistance 117 

Rpu' pull-up resistance 117 
't, time constant for delay measurement 131 
t', time after input crosses trip-point 120 

ft' transistor time-of-flight 42 
T ox' transistor gate-oxide thickness 43 
t PD, inverter propagation delay 117 

tPDf' inverter fall-time propagation delay 117 

tPDr' inverter rise-time propagation delay 117 
tq, nonideal delay 130 
v, electron velocity (vector) 42 

V DD, positive supply voltage 40 
V DS, transistor drain-source voltage 41 

V DS(sat), transistor drain-source saturation voltage 44 
V GC' transistor gate-channel potential 43 
V GS, transistor gate-source voltage 41 
Vss, negative supply voltage 40 

VtOn ' threshold voltage at zero substrate-bias 104 
Vtn, n-channel transistor threshold voltage 41 

V tp' p-channel transistor threshold voltage 45 
vx' horizontal component of carrier velocity in a transistor 43 
W, transistor width 43 
WEFF, effective transistor width 124 
xd, transistor channel-bulk depletion width 126 
Z, experimentally determined factor in input-slope delay model 

673 

A ',-:-

AID, analog-to-digital converter 248 
AB, cell abutment box 150 

ACC, (Verilog) access routines 541 
ACM, area-calculation method, SPICE model parameter 124 
ACM, Association of Computing Machinery 114 
ALU, arithmetic and logical unit 10 

AOI, AND-OR-INVERT 60 
AQL, average quality level 712 
ASIC, application-specific integrated circuit 1 

ASSP, application-specific standard product 4 
ATM, Asynchronous Transfer Mode 820 

ATPG, automatic test-pattern generation 755 
ATVG, automatic test-vector generation 755 
AWE, asymptotic waveform evaluation 708 

B 
BB, cell bounding box 150 
BEOL, back end of the line 60 
BGA, ball-grid array 866 

BiCMOS, bipolar/CMOS 3 
BIDI, bidirectional 284 

GLOSSARY 

BILBO, built-in logic block observer 776 
BIST, built-in self-test 766 
BNF, Backus-Naur form 390 
BOM, bill of materials 398 
BPSG, boron-doped phosphosilicate glass 58 
BR, bypass register 716 
BSC, boundary-scan cell 716 
BSDL, boundary-scan description language 732 
BSIM, Berkeley short-channel IGFET model 692 
BSR, boundary-scan register 716 

c 
C5, industrial 0.5 j..lm process 130 
CAE, computer-aided engineering 176 
CBA, carry-bypass adder 81 
CBA, cell-based array 149 
CBIC, cell-based integrated circuit 6 
CDM, charge-device model 101 
CGBO, SPICE parameter 693 
CGDO, SPICE parameter 693 
CGSO, SPICE parameter 693 
CICC, Custom Integrated Circuits Conference 3 
CIF, Caltech Intermediate Format 946 
CIN, carry in 75 
CJ, SPICE parameter 693 

1001 

CJGATE, channel-edge capacitance, SPICE model parameter 124 

CJSW, SPICE parameter 693 
CLA, carry-Iookahead adder 83 
CMOS, complementary MOS 2 
CMP, chemical mechanical polishing 57 
COT, customer-owned tooling 28 
COUT, carry out 75 
CPA, carry-propagate adder 81 
CPU, central processing unit 4 
CR, carriage return 391 
CSA, carry-save adder 80 
CSD, canonical signed digit 87 
CSTP, circular self-test path 776 
CUT, circuit under test 766 
CVD, chemical vapor deposition 51 

1010



1002 GLOSSARY 

D 
DAC, Design Automation Conference 851 
DASC, Design Automation Standards Committee 998 
DASS, Design Automation Standards Subcommittee 801 
DC, direct current 937 
DCL, Delay Calculation Language 998 
DCS, Delay Calculation System 998 
DEF, design-exchange format 897 
DEL, delete 400 
DELTA, SPICE parameter 693 
DES, data encryption standard 639 
DIP, dual-in-line package 714 
DMA, direct memory access 18 
DoD, (U.S.) Department of Defense 379 
DP, datapath 9 
DPC, Delay and Power Calculation 998 
DRAM, dynamic random-access memory 3 
DRC, design-rule check 944 
DS, SPICE parameter 706 
DSPF, detailed SPF (standard parasitic format) 943 
DUMl, SPICE parameter 706 
DUT, device under test 766 

E 
E2W3, Electrical Engineering on the World Wide Web 37 
ECL, emitter-coupled logic 2 
EDA, electronic design automation 21 
EDAC, Electronic Design Automation Companies 37 
EEPROM, electrically erasable PROM 15 
EIA, Electronic Industries Association 37 
emf, electromotive force 691 
EOS, electrical overstress 101 
EPLD, erasable PLD 15 
EPROM, electrically programmable read-only memory 15 
ESD, electrostatic discharge 100, 864 
ETA, SPICE parameter 693 
EXOR, exclusive-OR 69 

F 
FA, full adder 75 
FAMOS, floating-gate avalanche MOS 175 
FAN, fanout-oriented test generation 761 
FAQ, frequently asked questions 321 
FEOL, front end of the line 60 
FF, form feed 391, 400 
FIFO, first-in first-out register 98 
FIT, failures in time 737 
FO, fanout 856 

FOX, field oxide 52 
FPU, floating-point unit 18 
FS, ASCn control character (FSP in VHDL) 400 
FSB, functional system block 7 
FSM, finite-state machine 605 

G 
GA, gate array 11 
GaAs, gallium arsenide 36 
GAMMA, SPICE parameter 693 
GB, gain-bandwidth product 251 
GDS, small-signal drain-source conductance, SPICE output 

parameter 122 
GM, small-signal transconductance, SPICE output parameter 122 
GMB, small-signal back-gate transconductance, SPICE output 

parameter 122 
GND, negative supply voltage 40 
GRC, global-routing cell 920 
GS, ASCn control character (GSP in VHDL) 400 
GTL, Gunning transistor logic 242 

H 
HBM, human-body model 101 
HDL, hardware description language 300 
HT, horizontal tabulation 391 
HTTP, HyperText Transfer Protocol 37 
HVH, horizontal-vertical-horizontal 933 

ICCAD, International Conference on Computer-Aided Design 956 
ICCD, International Conference on Computer Design 114 
IDCODE, device identification register 716 
IDD, supply current 743 
IDDQ, quiescent supply current (IDD) 743 
IEC, International Electrotechnical Committee 101 
IEEE, Institute of Electrical and Electronics Engineers 3 
ILD, inter-level dielectric 58 
IMO, inter-metal oxide 58 
lOB, input/output block 258 
IOC, I/O Control Block 261 
IOE, I/O Element 261 
IR, instruction register 716 
IRE, Institute of Radio Engineers 114 
ISAC, VHDL Issues Screening and Analysis Committee 976 
ISBN, International Standard Book Number vii 
lSI, InfOlmation Sciences Institute 37 
ISP, in-system programming 172 

1011



ISSN, International Standard Serials Number vii 
lTC, International Test Conference 800 
IU, integer unit 18 

J 
JETAG, Joint European Test Action Group 714 
nT, just-in-tirne 177 
JTAG, Joint Test Action Group 716 

K 
KAPPA, SPICE parameter 693 
KP, SPICE parameter 693 

L 
A, minimum feature size 3 
LC, Logic Cell (Xilinx) 207 
LCA, Logic Cell Array 301 
LD, SPICE parameter 693 
LDD, lightly doped drain 105 
LE, Logic Element 209 
LEA, left-edge algorithm 928 
LEF, library-exchange format 897 
LEVEL, SPICE parameter 693 
LF, line feed 391, 400 
LFSR, linear feedback shift register 766 
LHS, left-hand side 424 
LI, local interconnect 57 
LIFO, last-in first-out register 98 
LOC, Library of Congress vii 
LOCIS, LOC information system vii 
LPCVD, low-pressure chemical vapor deposition 105 
LPM, Library of Parameterized Modules 355 
LRM, Language Reference Manual 380 
LSB, least-significant bit 77 
LSI, large-scale integration 2 
LSSD, level-sensitive scan design 765 
L TL, line to line 922 
LUT, look-up table 204 
L VS, layout versus schematic 30 
L VT, long vertical track 277 

M 
MAC, multiplier-accumulator 98 
MAJ, majority function 75 
ME, matrix element 228 
MGA, masked gate array 11 

GLOSSARY 

MIPS, million instructions per second 20 
MISR, multiple-input signature register 775 . 
MIT, Massachussetts Institute of Technology 37 
MJ, SPICE parameter 693 
MJSW, SPICE parameter 693 
MM"machine model 101 
MMU, memory management unit 18 
modem, modulator-demodulator 4 
MOS, metal-oxide-silicon 2 
MOSIS, MOS Implementation Service 37 
MRST, minimum rectilinear Steiner tree 877 
MSB, most-significant bit 77 
MSI, medium-scale integration 2 
MTBF, meantime between failures 737 
MTBU, mean time between upsets 250 
MTTF, mean time to failure 737, 937 
MUG, MOSIS user's group 37 
MUX, multiplexer 67 

N 
NAND, not an acronym-a type of logic gate 2 
NBSP, nonbreaking space 391 
NFS, SPICE parameter 693 
NMOS, n-channel MOS 2 
NOR, not an acronym, a type of logic gate 2 
NSUB, SPICE parameter 693 

o 
OAI,OR-AND-INVERT 60 
OE, output enable 99 
OEM, original equipment manufacturer 299 
ONO, oxide-nitride-oxide 170 
OPC, optical proximity correction 946 
OTC, over the cell 873 
OTP, one-time programmable 170 
OVI, Open Verilog International 479 

p 
P&R, place and route 894 
PAL, programmable array logic 15 
PARITY, parity function 75 
PB, SPICE parameter 693 
PCB, printed-circuit board 177 
PCM, process control monitor 30 
PDEF, physical design exchange format 896 
PGA, pin-grid array 1 
PHI, SPICE parameter 693 

1003 

1012



1004 GLOSSARY 

PI, parallel in (boundary scan) 716 
PI, primary input 745 
PIA, Programmable Interconnect Array 289 
PLA, programmable logic array 15 
PLD, programmable logic device 14 
PLI, Programming Language Interface 541 
PLL, phase-locked loop 873 
PO, parallel out (boundary scan) 717 
PO, primary output 745 
PODEM, path-oriented decision-making 759 
PRBS, pseudorandom binary sequence 766 
PREP, Programmable Electronics Performance Company 179 
PROM, programmable read-only memory 14 
PSK, phase-shift keying 517 
PS-TSC, ASIC library modeling standard technical subcommittee 

998 
PTO, (U.S.) Patent and Trademark Office 188 

Q 
QMST, quadratic minimum Steiner tree 954 

R 
RAC, Rambus access cell 243 
RCA, ripple-carry adder 75 
ROM, read-only memory 14 
RPM, Relationally Placed Modules 302 
RS, ASCII control character (RSP in VHDL) 400 
RSH, SPICE parameter 693 
RSPF, reduced SPF (standard parasitic format) 939 
RTL, register-transfer level 468 

s 
s/t/s, sustained three-state 238 
SCOAP, Sandia controllability/observability analysis program 761 
SCR, silicon-controlled rectifier 101 
SDF, Standard Delay Format 512 
SEMA TECH, SEmiconductor MAnufacturing TECHnology 37 
SI, serial in (boundary scan) 716 
SISR, serial-input signature register 767 
SLM, system-level macro 7 
SO, serial out (boundary scan) 716 
SOG, sea-of-gates 12 
SOG, silicon overglass 105 
SP, space 391 
SPEF, Standard Parasitics Exchange Format 998 
SPF, Standard Parasitic Format 939 
SPT, shortest-path tree 954 

SRAM, static random-access memory 3 
SSF, single stuck-at fault 740 
SSO, simultaneously switching output 99 
STD_ULOGIC, VHDL type 402 

T 
TAP, test-acess port 715 
TCC, OVl Technical Coordinating Committee 998 
TCK, test clock 716 
TDI, test data input 716 
TDO, test data output 716 
TDR, test data register 716 
TF, (Verilog) task/function routine 541 
TG, transmission gate 66 
THETA, SPICE parameter 693 
TMS, test-mode select 716 
TOX, SPICE parameter 693 
TPG, SPICE parameter 693 
TRST*, test-reset input signal 716 
TSC, OVI technical subcommittee 998 
TSPC, true single-phase clocking 688 
TTL, transistor-transistor logic 2 
TX, transmission (as in TX gate) 66 

u 
UCB, University of California at Berkeley 638 
ULSI, ultralarge scale integration 2 
US, ASCII control character (USP in VHDL) 400 
USC, University of Southern California 37 
UVPROM, UV-erasable programmable read-only memory 15 

v 
VASG, VHDL Analysis and Standards Group 975 
VA-TSC, analog extensions to Verilog HDL technical subcom-

mittee 998 
VCD, value change dump (file) 705 
VDD, positive supply voltage 40 
VHDL, VHSIC Hardware Description Language 379 
VHSIC, very high-speed IC 379 
VHV, vertical-horizontal-vertical 933 
VIIS, VIUF Internet Services 998 
VITAL, VHDL initiative towards ASIC libraries 405 
VIUF, VHDL International Users' Forum 477 
VLSI, very large-scale integration 2 
VMAX, SPICE parameter 693 
VPI, Verilog Procedural Interface 541 
VQFP, very thin quad flatpack 257 

1013



VSS, negative supply voltage 40 
VS-TSC, timing-constraint formats technical subcommittee 998 
VT, vertical tabulation 391 
VTL, via to line 922 
VTO, SPICE parameter 693 
VTV, via to via 922 

w 
w-c, worst-case 203 

x 
XJ, SPICE parameter 693 
XNOR, exclusive-NOR 70 
XOR, exclusive-OR 69 

GLOSSARY 1005 

1014



INDEX 

Page references in bold refer to principal entries. For acronyms see the glossary. 

Symbols 
(ab), *, or?, in a Verilog UDP table 511 
?, use of, in Verilog 507 
\ 

{} 

use of, in Verilog 482 
use of, in VHDL 392 

use of, in Verilog BNF 979 
use of, in VHDL BNF 962 

See also characters; symbol 

Numerics 
1076, IEEE VHDL standard 380 
1164, IEEE VHDL logic system 654 
2.5-layer routing 933 
22VlO, programmable logic device 211 
2-bit, or (7,3), full adder 93 
2LM, 2-layer metal 58 
3 to 2 compressor 90 
3LM, 3-layer metal 58 
74AS4374, metastable-hardened TTL 

flip-flop 253 
74LS74, TTL flip-flop metastability 253 
87 LRl'v1 (VHDL) 380,961 
93 LRM (VHDL) 380 
95 LRM (Verilog HDL) 479, 979 
93 LRM (VHDL) 961 

A 
ABEL hardware design language 300, 346 
absolute value operator, VHDL 431 
abstract literals, in VHDL 393 
AC supply, for I/O circuits 100 
access routines (ACC), Verilog 541, 996 

acc_close 994 
acc_fetchjullname 994 
acc_handle_tfarg 994 
acc_initialize 994 
acc_user.h 996 

access types, in VHDL 412 

accumulator, description of 98, 383 
activation 

energy, in the Arrhenius equation 736 
of a fault 757 

'ACTIVE, VHDL attribute 421 
active 

clock edge, of a flip-flop 73 
extension, in design rules 61 
mask layer 52 

activity-induced clock skew 936 
actual times, in zero-slack algorithm 891 
actuals, VHDL 

and locals, in a port map 407 
as ports 395 
declaration as parameters 416 
used as subprogram parameters 426 

ad hoc test methods 764 
adder 75-86 

addend 78 
adder/subtracter 97 
augend 78 
Brent-Kung 83 
carry bypass 81 
carry completion 86 
carry lookahead 83 
carry propagate 81 
carry save 80 
carry select 83 
carry skip 82 
conditional sum 83, 112 
delete signal 79 
full adder 75 
generate signal 79 
kill signal 79 
Manchester carry chain 81 
overflow signals, in a datapath 77 
overflow, in Veri log (exercise) 635 
parallel 86 
propagate signal 79 
ripple carry 75, 603 
serial 86, 604 
See also arithmetic; multiplier; sub­

tracter 
adding operators, VHDL 430 
addition 

in Verilog 493, 588, 592, 620, 631, 
633 

in Verilog (exercise) 544, 550 
in VHDL381,431,432, 434,444,449, 

597,603 
address contention, in RAM 102,612 
adiabatic logic (exercise) 843 
adjacent encoding, for FSM synthesis 606 
aggregate notation, VHDL 413,471,616 
algorithms, in design automation 808 
alias declaration, in VHDL 418 
aliased 

error patterns, in testing 768 
nets, in schematic entry 341 

all-ones detector, description of 98 
all-zeros detector, description of 98 
Alta Frequenza, as a source of information 

on computer-arithmetic architectures 
114 

alternative connectors, in a logic cell 876 
ambient temperature, in specifications 

201,672 
Analog Extensions, VHDL, IEEE working 

group 975 
analog VDD 866 
analysis phase 

in logic synthesis 564 
in simulation 380 

AND plane, in a PLA or PAL 15,211 
AND-OR-INVERT logic cells 60 
angstrom, unit of measure 50 
annex, in Verilog LRM 979 
anonymous subtype, in VHDL 413 
ANSI A-E, schematic sheet sizes 328 
antifuse 

as an FPGA technology 170 
oxide-nitride-oxide dielectric 170 
resistance 170, 172, 283 

AOI logic-cell famiiy 63 
appendix, in VHDL LRM 979 
application, offaults 740 
application-specific IC (ASIC) 

core limited 841 
definition of 1 
foundry 28 
NASA design guide 37 
package limited 32 
pad limited 841 
vendor 27 

1006 

1015



vendor library 28 
See also chip; die; integrated circuit; 

package; 
application-specific standard product 

(ASSP), definition of 4 
architectural partitioning 850 
architecture, in VHDL 394 
area pick-up point in a logic cell 918 
area-bump bonding 866 
arithmetic 

in Verilog, on n-bit objects 492 
in VHDL, using packages 403 
operations, VHDL type checking and 

conversion in 432 
operators, in Verilog 490 
using NUMERIC_STD VHDL pack­

age 596 
See also adder; addition; multiplier 

arithmetic and logical unit (ALU), as a 
datapath cell 10 

array 
as a VHDL composite type 413 
bundle, in schematic entry 338 
of Verilog modules 547 
structures, in Verilog 485 

Arrhenius equation, for failure rate 736 
arrival time 

in zero-slack algorithm 891 
of signal, in timing constraints 622 

'ASCENDING, VHDL attribute 420 
ascending range, in VHDL 412 
ASIC & EDA magazine 37 
aspect ratio of a die or chip, adjustment 

during floorplanning 859 
assertion 

as used in formal verification 685 
statement, in VHDL 423 

association 
of Verilog ports 495 
of VHDL formals and locals, in con­

figuration declaration 396 
of VHDL locals with actuals and for­

mals 407 
associative property of resolution 

functions 653 
asympt~Ctic waveform evaluation (A WE), 

a simulation method 708 
asynchronous 

input signal 250 
RAM 102 
se t/rese t 73 
See also clock; flip-flop; metastability 

attribute 
of cells, in schematic entry 341 
declaration, in VHDL 418 
names of, in VHDL 392 
predefined, in VHDL 419 

augend, term used in addition 78 
automatic naming in schematic entry 342 
automatic test-pattern generation (ATPG) 

755 
avalanche injection, as used in FPGA 

technology 175 
average quality level (AQL) 712 

axiom, as used in formal verification 685 

B 
b, in a Verilog UDP table 511 
back slash, in Verilog constants 489 
back-annotation 895 

using configurations, in VHDL 411 
in FPGA design 300 
using generics, in VHDL (exercise) 

475 
using schematic entry 345 
using SDF in Verilog 512 
$sdCannotate task, in yerilog 663 

back end of the line (BEOL) 60 
back-gate bias, in a transistor 104 
backtrack, in PODEM algorithm 760 
Backus-Naur form 

definition of 961 
index to VHDL definitions 973 
in-text references to, in VHDL con-

structs 391 
use of, in Verilog syntax 482 
use of, in VHDL syntax 390 
See also examples, of using BNF 

backward links, to Verilog BNF defini-
tions 980 

bad circuit, term used in testing 743 
balance, in network partitioning 833 
barrel shifter 

description of 97 
estimating area of 812 

'BASE, VHDL attribute 420 
base 

array, of a gate array 11 
cell, in a gate array 11,144 
logic cell, in F-M algorithm 833 
of Veri log numbers 486 

Base Connectivity Model (BCM), in CFI 
standard 372 

based literals, in VHDL 393 
basic logic cell, in FPGAs 191 
bathtub curve, in failure mechanisms 736 
bed-of-nails tester 714 
'BEHAVIOR, VHDL-87 attribute 419 
behavioral 

cell model 29 
fault propagation 741 
model, in HDLs 560 
simulation 642 
See also cell; model 

benchmarking design software 890 
bent transistor gate, in a base cell 147 
Berkeley Logic Interchange Format 

(BLIF) 569 
Berkeley PLA tools 353, 569, 638 
Berkeley short-channel IGFET model 

(BSIM) 692, 706 
BiCMOS technology, description of 3 .. 36 
bidirectional 

I/O buffer 100 
interconnect buffer (BIDI), in Xilinx 

FPGAs 284 

INDEX 

bin 
in global routing 920 
use in placement 882 

binary 
numbers, in Verilog 486 
operators, in Verilog 490 

binding, VHDL 

1007 

default binding between component 
and entity 408 

entities and architectures 396, 444 
entities and components 408 
using direct instantiation 444 

binning circuit, in Actel FPGAs 201 
bipolar logic technology, description of 2, 

5-6 
bird's beak effect 

figure showing 123 
in IC fabrication 946 

bit 
line, in logic arrays 211 
slice, in a datapath 81 

BIT, BIT_VECTOR, VHDL types 399 
bit-select, in Verilog 485 
bit-string literal, in VHDL 393 
bitwise logical operators, in Verilog 492 
block 

configuration, in VHDL 447 
fixed 7, 859 
flexible 6, 8 
full-custom 7 
functional standard, (FSB) 7 
in floorplanning 854 
megacell or megafunction 7 
See also cell; circuit 

blockage map in a logic cell phantom 924 
blocked execution, in Verilog 503 
body, of a VHDL package 398 
bold type 

use of, in Verilog code 480 
use of, in VHDL BNF 963 
use of, in VHDL code 456 

Boltzmann's constant 109 
bonding-pad width 62 
bond-wire design rules 866 
book (gate-array macro) 11 
Boolean relations, in timing analysis 647 
BOOLEAN, VHDL type 399 
Booth-encoded multiplier 90 
border, for schematic sheets 328 
boron-doped phosphosilicate glass 

(BPS G) 58 
boundary-register cell 716 
boundary-scan 

cell (BSC) 716 
description language (BSDL) 732 
register (BSR) 718 
test (EST) 714 

bounding box (BB), of a logic cell 150 
bounding-box measure, for estimating 

wire-length 879 
box notation, in VHDL arrays 413 
BR cell, used in boundary-scan test 718 
brace 

use of, in Veri log BNF 979 

1016



1008 INDEX 

use of, in VHDL BNF 962 
bracket, square 

use of, in Verilog BNF 979 
use of, in VHDL BNF 961 

branches, in interconnect patterns 925 
branching effort, in delay analysis 159 
breakdown, of transistor-gate oxide 100 
break-even graph 21 
break-even volume 21,31 
breakout, for a bus in schematic entry 338 
breaks, failure mechanism in ICs 736 
Brent-Kung adder 83 
bridge, failure mechanism in ICs 736 
bridging fault 738 
broadside test vector 788 
BSIM MOS models 692, 706 
bubble 

inversion, in cell design 63 
on a p-channel transistor 40 
pushing bubbles, in a schematic 63 

buffer 
clock-buffer insertion 935 
used in a logic cell 67 
VHDL mode, definition of 406 
VHDL mode, limitations of 409 
See also I/O 

built-in 
feedthrough 874 
logic block obserVer (BILBO) 776 
self-test (BIST) 766 

bulk connection, in a CMOS transistor 41 
bundle 

as a type of bus 338 
in floorplanning displays 859 

buried delay, in Actel FPGAs 199 
bum-in, to reduce infant mortality 736 
burning service, for FPGAs 325 
bus 338 

bus-keeper (bus-holder) circuit 99 
contention on a bus 99 
hi-Z state on a bus 235 
PCI, synthesis for 610 
ripper, in schematic entry 338 
SBus, in SP ARCstation 18 
signal kind, in VHDL 438 
sustained three-state (s/t/s) 238, 268 
symbol, in schematics 77 
three-state bus, in Verilog 497 
three-state bus, in VHDL 402, 439, 

451,619 
transaction 235 
transceiver 235 
turnaround cycle on s/t/s bus 238 
See also high-impedance; buffer 

Bus Friendly, type of three-state logic 99 
butting contact 111 
bypass-register cell (BR cell) 718 

c 
C preprocessor for Verilog 998 
C5, industrial 0.5 micron process 130 
CAD Framework Initiative (CFI) 325, 369 

CAD pitch 813 
Cadence (Calma) Stream layout file 

format 946 
Caltech Intermediate Format (ClF) 946 

centimicron, CIF unit 164 
syntax of key CIF statements 164 

canned test vectors 755 
canonical form of Boolean equations 193 
capacitance 

coupling, of interconnect 931, 949 
estimates, during floorplanning 856 
extrinsic, of a logic cell 118 
fringing, of interconnect 949 
intrinsic, of a logic cell 118 
load, of a logic cell 118 
lumped model 915 
net capacitance simulation model 651 
nonreciprocal capacitance 695 
of transistor gate 43 
overlap 931 
reciprocal transistor capacitance 694 
standard load, definition of 118 
standard load, use in schematics 343 
transistor transcapacitance 695 
See also cell; interconnect; model; tim­

ing; transistor; wiring 
capacity 

of a routing channel 874 
of channels, in an FPGA 275 

capture flip-flop, in boundary-scan cell 
716 

cardinality 
measurement of network size 834 
of a bus 343 
of an instance 334 

carriage return, in VHDL 963 
case sensitivity 368 

in Verilog 482 
in VHDL 392 

case temperature, in specifications 201 
cavity size of IC packages 32 
cell 

abutment box (AB) 150 
base cell, in a gate array 11 
behavioral model of 29 
bounding box (BB) 150, 879 
cardinality, in schematic entry 343 
characterization of 29 
circuit extraction from 29 
datapath cell 75 
double entry 874 
drive strength of 65 
end cap 938 
feedthrough 874 
global routing cell (GRC) 920 
I/O 99-101 
I/O, in FPGAs 231 
icon of30 
icon, in schematic entry 332 
importance, in a cell library 142 
layout of 29 
library of 5 
logic cell 40 
logical connector 150 
naming, in schematic entry 332 

pad cells, in logic synthesis 576 
phantom (see phantom) 28 
physical connector 150 
pitch-matching of 10 
porosity, effect on chip density 933 
power cell 9 
pull-down resistance of 117 
row-end standard cell 9 
scaling 130 
schematic of 30 
spacer cell 9 
standard cell 6-10, 150 
subcell in schematic entry 334 
timing model of 29 
two-pad corner pad cell 866 
See also block; circuit; logic, cell 

centimicron, unit of measure in CIF 164 
chain connection, wire-length estimate 

899 
chamfering, of interconnect 934 
channel 853 

allocation 861 
capacity 860, 874 
channel-intersection graph 916 
column 926 
column spacing 926 
compaction 931 
definition 861 
density 860, 927 
density, in a channeled FPGA 283 
global density 927 
in a channeled FPGA 275 
local density 927 
ordering 862 
spine 868 
See also interconnect; routing 

CHARACTER, VHDL type 400 
characteristic polynomial, of LFSR 771 
characters 

ASCII codes of 400 
brace, use of, in VHDL BNF 961, 962 
carriage return, in VHDL 963 
form feed, in VHDL 963 
format effector, in VHDL 391 
international, use of, in VHDL 400 
legal, in Verilog names 482 
legal, in VHDL identifiers 392 
quote and accent, in Verilog 489 
quote, use of, in VHDL strings 393 
smart quote, use of, in VHDL 391 
space, in VHDL 391 
special, in VHDL 391 
tab, in VHDL 392 
tab, used in a Verilog constant 489 
underscore, in Verilog names 482 
underscore, in VHDL names 392 
Verilog character set 489 
VHDL character set 391 
VHDL literals 393 
See also notation; symbol 

charge sharing, problem in CMOS 67 
charge-device model, for ESD 101 
check-out of cells, in design systems 344 
child of parent cell/schematic 330 
chip 

1017



carrier 864 
cavity 1, 864 
planning 806 
See also die; package 

circuit 
bidirectional I/O buffer 100 
circuit-level simulation 689 
extraction 29, 939 
modules 824 
NAND gate (cell) 40 
NOR gate (cell) 40 
under test (CUT) 766 
See also block; cell 

Circuit Delay and Power Calculation 
System Study Group 998 

circular 
built-in self-test 776 
self-test path (CSTP) 776 

clamp diode 101,235 
clean power 100,864 
clique, of a graph 828 
clock 

active clock edge, of a flip-flop 73 
activity-induced clock skew 936 
buffer insertion 935 
clock skew 253 
clock-pad cell 100 
duty cycle (mark-space ratio) 252 
latency 253, 681, 870 
multiphase clocking 70 
pad 865 
skew 870 
skew, checking, using timing analysis 

678,681 
spine 869 
synthesis 935 
tree 872, 935 
two-phase clocking, in FPGAs 196 
See also asynchronous; flip-flop; syn-

chronous 
clocked inverter 73 
closely related types, in VHDL 434 
cluster 

growth, in partitioning 827 
of l()gic cells, as a seed 828 

CLUSTER statement, in PDEF 896 
C-Module, in Actel FPGAs 197 
coarse-grain FPGA architecture 204 
coast-to-coast interconnect 858 
cofactor, in logic expansion 192 
column, in an interconnect channel 926 
combinational 

controllability 761 
observability 763 

combinatorial module, in Actel FPGAs 
197 

command file, to run design tools 306 
command-line switch, for back-annotation 

646 
comments 

in Verilog 482 
in VHDL 392 

commutative property, of resolution 
functions 653 

comp.cad.synthesis 998 

comp.lang.verilog 557, 998 
compatibility, of types, in VHDL 402 
compiled-code simulator 656 
compiler directives, Verilog. See directive, 

Verilog 
complementary MOS technology 

(CMOS) 2 
complete LFSR, in random testing 776 
complete-graph measure, for estimating 

wire-length 877 
complex PLD, description of 16 
complexity, of an algorithm 808 
component 

configuration, in VHDL 449 
declaration, in VHDL 395, 449 
package, in VHDL 404 
in a schematic 330 

composite 
logic value 755 
type, in VHDL 412 

compression 
of binary sequences 766 
in a multiplier 90 
of test vectors 753 

Computer Design magazine 37 
computer-aided engineering (CAE) 176 
concatenation 

equivalence to rotation in VHDL 432 
example of, in VHDL 393 
operator, in Verilog 490 
operator. in VHDL 431 

concurrent 
execution, in Verilog 495 
execution, in VHDL 445 
fault simulation 747 

condition clause, in VHDL wait statement 
422 

conditional expression, in Verilog 492 
conferences 

ASIC Conference 3, 36 
CICC 3, 36 
Computer Arithmetic 114 
DAC 851 
EuroASIC 850 
EuroDAC 850 
European Design and Test 800 
ICCAD 956 
ICCD 114 
International Test Conference (ITC) 

800 
ISSCC 114 
IVCNIUF Conference 998 
Test Symposium 800 
Verilog HDL Conference 557 
Workshop on Memory Technology, 

Design, and Testing 800 
configurable logic block (CLB), in Xilinx 

FPGAs 204 
configuration 

declaration, in VHDL 396, 447 
file, for an FPGA 169 
specification, in VHDL 449 

congestion of routing, in floorplanning 
859 

connections, in a network graph 824 

connectivity matrix 
definition of 829 

INDEX 1009 

use of, in eigenvalue placement 882 
connector 

alternative connector 876 
alternative tenns for, in floorplanning 

and placement 854 
alternative tenns for, in routing 918 
on a cell icon 338 
functionally equivalent 876 
global signals (e.g. GND) 345 
locations 859 
logically equivalent connectors 876 
logically equivalent groups 876 
modeled as a graph node 824 
multipage connector 345 
must-join connectors 876 
off-grid 925 
off-page connector 345 
See also pin; tenninal 

constants 
in Veri log 486 
in VHDL 414 

construct 
definition of, in BNF 961 
use of, in Verilog BNF 979 

constructive 
partitioning 826 
placement method 882 

contact 
barrier metal 57 
butting coniaci 111 
conventions in layout 922 
cut 58 
mask layer 51 
metal via 58 
plug 57 
resistance of 58 
stacked via 58 
stitched 922 
to diffusion 57 
to polysilicon 57 
to substrate or well 52 
tub tie 52 
via 58 
via plug 57 
See also design rules; interconnect; via 

contention 
in RAM addresses 102,612 
on a bus 99 

controllability, of sequential and combina­
tionallogic 761 

controllable net, in testing 749 
controlled timing check event, Verilog 

553 
controlling value of a logic cell input 756 
core logic, in an ASIC 864 
core-limited 

die 841,864 
pads 864 

corner pad 865 
correct by construction 102 
cost 

break-even volume 21, 31 
base FPGA price 183 

1018



1010 INDEX 

constraints, in design partitioning 837 
cut cost, in network partitioning 829 
of design for test 22 
of die 26 
fixed part cost 20 
FPGA cost adjustment factors 183 
of FPGA programming 22 
function, in partitioning algorithm 809 
of hardware and software 21 
inventory 177 
of mask, as part of NRE 22 
matrix, in network partitioning 829 
nonrecurring-engineering costs 22 
of parts 20, 27 
price per gate 27 
of test-program development 22 
of training 21 
variable part cost 20 
of wafers 25, 49 

coupler, a transmission gate 66 
coupling capacitance 931, 949 
cover, for a logic function 569 
critical path 197, 642 

delay 203 
See also delay; timing 

crosser cell, in a row-based ASIC 875 
cross-talk minimization 877 
CSD vector (number representation) 87 
CUPL hardware design language 300, 

324,348-350 
curly bracket, use of, in VHDL BNF 961 
current 

crowbar current 817 
due to leakage 816 
during switching 816 
effect on electromigration 936 
short-circuit current 816 
See also power; supply 

custom IC, description of 3 
cut size, measure of congestion 880 
cut weight, in network partitioning 829 
cutset of a graph 826 
cyclic constraints 

in floorplanning 863 
in routing 930 

D 
D, a logic value in the D-calculus 755 
DACafe 998 
Dadda multiplier 90 
D-algorithm, for test-pattern generation 

755 
data 

compaction, of binary sequences 766 
slip, in VHDL (exercise) 636 
slip, Veri log example 501 
types, in Verilog 483 

datapath 9, 75, 179 
bit slice 81 
bus symbol 77 
compiler 9 
control signals 75 

data signals 75 
datapath cell 75 
estimating area of 812 
library 10 
logic 10 
logic synthesis 591 
routing of 99 
schematic entry 342 
symbol convention 95 
vector notation 96 
width of812 
See also block; cell 

data-register cell (DR cell) 716 
datestamping in a design system 343 
D-calculus 755 
de Morgan equivalents in FPGAs 213 
de Morgan's theorem 63 
dead test cycles 751 
debouncing logic signals 243 
decimal literals, in VHDL 393 
deck, SPICE input 689 
decoder, logic synthesis of VHDL 595 
decrementer, description of 98 
default 

binding, in VHDL 408 
expression, in VHDL 407 
initial value (implicit and explicit), in 

VHDL414 
initial value, of a Verilog reg 484 
initial value, of a Verilog wire 483 
initial value, of VHDT, types 419 

defect 
density, description of 26 
level, and relation to quality 712 
mechanisms, causes, and effects 736 

deferred constants, in VHDL 474 
definitely detected fault 749 
definition, use of term, in BNF 979 
degradation fault 737 
delay 

control, in Verilog 498 
critical path 642 
delay models, in cell libraries 659 
delta delay 658 
difference between timing models and 

delay models 669 
disable time, for I/O buffer 237 
distributed delay ( exercise) 954 
effort delay 131 
electrical effort 132 
Elmore time constant 280 
fault, in testing 737 
in-place optimization of 895 
input-slope model 674 
logical effort vector 134 
logical effort, of a logic-cell input 131 
lumped-delay model 915 
model, for an inverter 117 
models for, in VHDL 426 
net (wire) delay model, for simulation 

669 
nonideal, in a logic cell 133 
nonlinear delay model 672 
parasitic delay 132 
path delay 136 

pin (and pin-to-pin) delays 669 
pin-to-pin, in Verilog 513 
pipeline delay paths 677 
prop-ramp delay model 670 
state-dependent delays 675 
tau, time constant 131 
time to begin hi-Z for I/O buffer 237 
time to float a bus 237 
time to tum off output buffer 237 
VHDL delay mechanisms 658 
See also simulation; timing 

Delay Calculation Language (DCL) 998 
DELA Y _LENGTH, VHDL-93 subtype 

399 
'DELAYED, VHDL attribute 421 
delimiter, in a net/instance name 336 
delta 

cycle, in VHDL execution 425,440 
time, in simulation 658 

density, of logic 26, 811 
derating factors 202, 672 
derived 

icon (symbol) 333 
schematic 562 

design 
EDA 21, 327 
entity, in VHDL 396 
entry, using schematics 327 
file, in VHDL 393 
hand off 28 
I/O locking 177 
kit 27,299 
layout versus schematic 30 
logical 18 
management software 344 
NASA guide 37 
pass 23 
physical 18 
portable FPGA design 306 
product design 24 
productivity 21 
representation standards 369 
spin 23 
synchronous style 70 
turn 23 
unit, in VHDL 393 

Design Automation Standards Committee 
(DASC) 998 

Design Automation Standards Subcom­
mittee (DASS) 801 

design flow 16 
physical design 894 
retargeting 30 
sign off 23 

design for test 764 
design rules 58-60 

for active extension 61 
and bloating layers 54 
for bond-wires 866 
for butting contacts III 
design-rule check (DRC) 944 
for dogbone shapes 111 
and feature size 2 
for gate extension 61 
for glass opening 62 

1019



in terms of lambda 3 
lambda-based rules 60 
maximum metal width 937 
metal stress rules 937 
metallization reliability 937 
phantom-level check 944 
sizing 946 
tooling specification 946 
waiver of, from ASIC vendor 141 
See also fabrication; field; manufac-

ture; silicon 
design-exchange format (DEF) 897 
DesignWare, in datapath design 591,631 
destructive scan test 765 
detailed routing 807, 909,922-935 
detailed SPF (dSPF) 939, 943, 998 
detected fault 746 
deterministic 

comparison, in Verilog 553 
fault simulation 748 
FPGA architecture 212 

device under test (DUT) 766 
device-identification register 719 
D-frontier, in PODEM algorithm 758 
dictionary 

fault 751 
in schematic entry 341 

die 
aspect ratio, in floorplanning 859 
attach 937 
cavity size 32 
cost, factors determining 26 
edge seal 946 
kerf 946 
maximum size of 32 
minimum size of 32 
size, factors determining 26 
See also chip; package 

DIFF, SDF keyword 896 
digital simulation 652 
digital VDD 866 
direct connections, in Xii in x FPGAs 284 
direct current (DC), effect of, in electromi-

gration 937 
directed"graph, in channel routing 928 
directive, in logic synthesis 585, 592 
directive, Verilog 490 

'default_decay_time 996 
'default_trireg_strength 996 
'define 490 
'delay_mode_distributed 996 
'delay_mode_path 996 
'delay_mode_unit 996 
'delay_mode_zero 996 
'else 555 
'endif 555 
'ifdef 555 
'timescale 499, 514 
'undef 555 

dirty power supply 100, 864 
discrete types, in VHDL 412 
distributed 

delay (exercise) 954 
fault simulation 752 

diverged circuit, in fault simulation 747 

division 
in Verilog 493 
in VHDL432 
See also arithmetic 

documentation, a function of circuit 
schematics 328 

dogbones, in design rules 111 
dogleg router 930 
dominant fault 743 
don't care logic value 623 

external don't care set 623 
in IEEE 1164 VHDL package 402 
in logic functions 569 
in logic synthesis 586 
in Verilog casex statement 507 
in VHDL statements 595 

dont_touch command, use in logic 
synthesis 590 

dot extensions, in ABEL 324 
dot one, synonym for IEEE 1149.1 

Standard 716 
double bond, to reduce lead inductance 

865 
double-entry standard cell 874 
down bond, to connect die and package 

865 
down-binning of ASICs 179 
download file, to program an FPGA 301 
Dracula deck, in design-rule checks 944 
drain, of a transistor 39 
drive strength 

of logic cell 65 
of Verilog primitives 509 
in VHDL402 

driver 
in simulation 653 
multiple drivers in logic synthesis 601 
multiple drivers in VHDL model 440 

'DRIVING, VHDL attribute 421 
'DRIVING_ VALUE, VHDL attribute 421 
driving-point admittance (exercise) 953 
dual networks, in CMOS logic cells 65 
dual-grain FPGA architecture 290 
dual-port RAM 102 
dummy SPICE parameters 706 
duty cycle (mark-space ratio), of a clock 

252 
dynamic 

E 

power dissipation 816 
simulation 647 

edge 
of a graph 824 
cuts, in partitioning 826 
cutset of a graph 826 
detection of, in Veri log UDPs 511 
detection of, in VHDL using attributes 

419 
detection of, in VHDL using functions 

402 

INDEX 1011 

detection of, using Verilog negedge 
and posedge 499 

pads 866 
seal, on a die 946 

edge-triggered flip-flop 73 
edit-in-place, in schematic entry 340 
EE Times magazine 37 
effective transistor gate length 813 
effort (logical and electrical) 132 
eigenvalue placement algorithm 882 
elaboration phase 

in logic synthesis 564 
in VHDL simulation 658 

electrical overstress 101 
electrically equivalent connectors 875 
electrically erasable PROM 15 
electrically programmable ROM 14, 174 
electromigration 936 

effect of current direction 936 
failure mechanism 58, 736 

electron mobility 
in gallium arsenide 109 
in silicon 42 

electronic design automation (EDA) 21, 
327 

Electronic Design Automation Companies 
37 

Electronic Design Interchange Format 
(EDIF) 355 

abridged syntax rules 375 
icon 359 
identifier 356 
issues in FPGA design 322 
keywords 356 
library translation 365 
netlist 357 

Electronic Industries Association (EIA) 
37,272,355 

electrostatic discharge (ESD) 100, 864 
Elmore time constant, for RC trees 280 
emacs editor, Verilog mode 998 
embedded quote, in Velilog constant 489 
emitter-coupled logic (ECL) 2 
empirical MOS model 692 
enable signal, in a latch 70 
enabling value, at logic cell inputs 756 
end 

cap, as a design rule III 
set, in timing specifications 622 

end-cap standard cells 938 
energy function, use in simulated 

annealing 836 
engineering change order (ECO) 935 
entity, VHDL 394 
enumeration type, in VHDL 412 
environment, for design synthesis 625 
eqntott, UC Berkeley software 353, 569 
equipotential connectors 875 
equivalence 

as a type of logic gate (cell) 70 
definition of, in VHDL BNF 961 
in fOlmal verification 685 

equivalent faults 743 
erasable PLD 15, 174-176 

1020



1012 INDEX 

error 
coverage, of random test patterns 768 
masking, in random tests 768 

escape line, in line search routing 
algorithm 932 

escaped identifier 
in Verilog 482 
in VHDL. See extended identifier; 

VHDL 
ESD implant 101 
espresso, logic minimization software 354 
Euclidean distance 

in a Viterbi decoder 519 
in routing 877 

evaluation 
list, in a simulator 657 
phase, in simulation 656 

'EVENT, VHDL attribute 421 
use in detecting clock edge 419 

event 
control, in Verilog 499 
declaration of, in Verilog 483 
in VHDL simulation 425 
simulator event queue (list) 656 
triggering and detecting, in Verilog 

501 
event-driven simulator 656 
event-evaluation cycle, in simulation 657 
exact contact size design rule 61,111 
examples 

4-bit carry-Iookahead adder datapath 
83 

4-bit carry-save adder datapath 80 
4-bit ripple-carry adder datapath 75 
8-bit conditional-sum adder 85 
ABEL code 346 
asynchronous inputs and metastability 

250 
comparator/MUX (optimization) 622 
comparator/MUX (simulation) 643 
comparator/MUX (synthesis) 560 
comparator/MUX (timing analysis) 

675 
comparison of synthesis and hand de-

sign 560 
CUPL code 348 
designing a flip-flop 71 
designing a latch 70 
designing logic cells 63 
digital filter coefficients 89 
EDIF icon 359 
EDIF netlist 310, 357 
EDIF translation 365 
expanding logic functions 192 
EXPRESS 370 
formal verification 682 
formal verification (exercise) 705 
FPGA power dissipation 257,283 
FPGA pricing 183 
G5 generic process 44 
gate-level simulation 648 
halfgate ASIC (Actel) 310 
halfgate ASIC (AItera) 310 
halfgate ASIC (Xilinx) 307 
logic cell notation 63 

logic levels 232 
logic minimization 353 
PALASM code 350 
pipelined datapath adder 81 
programmable inversion 213 
of recoding binary numbers 89 
SDF and the halfgate ASIC 667 
sequence detector 303 
serial-in/parallel-out shift register 601 
sizing logic cells 66 
SPARCstation 1 design study 18-20 
SPICE 689 
SRAM-based FPGA delay calculation 

285 
static timing analysis 647 
supply bounce 692 
switch-level simulation 688 
synthesis of adder/subtracter 604 
synthesis of engine controller 619 
three-state bus 235 
timing calculation 203 
transistor current calculations 44 
transistors as logic switches 47 
vendor primitive model 659 
Verilog inverter model 661 
VHDL inverter model 663 
VHDL multiplier synthesis 614 
VHDL resolution function 655 
video frame-grabber resources 322 
video shift register 350 
VITAL flip-flop model 703 
VITAL inverter model 664 
voice-mail machine resources 322 

examples, of using BNF 
simple language example 390 
Verilog BNF construct 980 
Verilog BNF index 994 
Veri log keyword index 994 

examples, Veri log 
arithmetic operations 492 
blocking and nonblocking assign-

ments 503 
case and if statements 506 
combinational logic 484 
constants 487 
continuous assignment 496 
counter 480 ~ 
data slip 501 
delays in assignments 499 
functions and tasks 506 
loop statements 507 
module instantiation and port associa-

tion 494 
negative numbers 488, 493 
net and gate delays 512 
operators 490 
PREP benchmarks 179 
procedural assignment 498 
procedural continuous assignment 504 
sequential block 497 
sequential UDP 511 
strings 489 
vectors and buses 485 
wait statements 502 

examples, VHDL 

4-bit multiplier 381 
8-bit ripple-carry adder 381 
aggregates 413 
alias declaration 418 
array declarations 413 
array types and subtypes 433 
assertion statement 423 
assignments 424 
behavioral architecture body 394 
binding 407 
component instantiation 444 
concurrent and sequential execution 

445 
concurrent assertion 443 
concurrent procedure call 441 
conditional signal assignment 442 
configuration declaration 396, 411 
configurations 449 
conversion functions 388 
counter (simple version) 380 
counter (using IEEE packages) 436 
D flip-flop 381 
datapath MUX 383 
digital filter 450 
engine controller 449 
entity declaration 394, 406 
FIFO 450 
finite-state machine 428 
full adder 381 
functions 417 
generate statement 444 
generics 110 
identifiers and names 392 
if statement 427 
literals 392 
loop statements 429 
operators 431 
output to screen 403 
packages 404 
PREP benchmarks 179 
procedures 427 
process statements 440 
programmable clock 388 
record type 413 
selected signal assignment 442 
shift register 384 
signal declarations 414 
state machine 385 
structural architecture body 395 
testbench 389 
three-state bus 439 
type checking and conversion 432 
type declarations 412 
variable declarations 415 
wait statements 422 
zero detector 383 

excitation, offaults in testing 757 
exclusive-NOR logic gate (cell) 70 
exclusive-OR logic gate (cell) 69 
exercising HDL models 643 
exhaustive case statement 

in Veri log 585 
in VHDL429 

expanded name, in VHDL 392 
expander, in complex PLDs 

1021



expander tenns 212 
shared 212 

expanding Boolean equations 192 
exponent, in floating-point arithmetic 97 
exponentiating operator, in VHDL 431 
EXPRESS language and design represen-

tation 370 
EXPRESS-G, graphical EXPRESS 370 
expression, in Verilog 490 
extended identifier, in VHDL 392 
extension (suffix), in CUPL 349 
extension, as a design rule 111 
external 

connections, in network partitioning 
826 

don't care set, in logic synthesis 623 
nets in schematic entry 336 

external-XOR LFSR 772 
extraction of state machines 608 
extractor (ripper) in schematic entry 338 
extrinsic output capacitance, of a logic cell 

118 

F 
f in a Verilog UDP table 511 
fab, tenn for IC fabrication facility 26, 946 
fabless ASIC vendor 26 
fabrication 49-58, 172 

salicide process 57 
self-aligned silicide 57 
tungsten silicide 57 
See also manufacture; silicon 

failure analysis 712 
failures in time (FITs) 737 
falling_edge, VHDL function 402 
false paths, in timing analysis 648 
fanin 

ofa cell 343 
ofa net 329 

fanout 202, 278 
checking, in schematic entry 343 
infonnation, in floorplanning 856 

fanout-oriented test generation (FAN) 761 
fast-fast process comer 201 
Fast-Fuse, on an Actel FPGA 283 
fat metal design rules 111 
fault 736 

activation 757 
category 748 
collapsing 743 
coverage 746 
dictionary 751 
discarding 749 
dropping 749 
effect 741 
excitation 757 
fault-activity signature 748 
fault-drop threshold 749 
fault-equivalence class 743 
faults per pass 748 
grading 751 
level 737 

level, cell level 740 
level, transistor level 740 
list 751 
model 737 
origin 740, 746 
propagation 741 
signature 751 
simulation 745 
types of faults 737 

faulty 
circuit, in test tenninology 743 
machine, in fault simulation 747 
ouput vector, in fault dictionary 751 

feature size 2 
feedback bridging faults 738 
feed through . 

description of 9 
different types of 874 

Fenni potential, in a transistor 104 
Ferrari-Stefanelli multiplier 92 
Fiduccia-Mattheyses algorithm, in 

network partitioning 833 
field 

region, description of 52 
repair 712 
tenn used in design rules 111 
transistor 819 
See also capacitance; design rules; fab­

rication; process; manufacture 
field-programmable gate array 

design kit 299 

file 

introduction to 16 
one-time programmable 170 
patents 189 
summary of I/O-cell types 262 
summary of interconnect types 292 
summary oflogic-cell types 218 
summary of technologies 184 

declaration of, in VHDL 414 
I/O, in VHDL 402 
types, in VHDL 412 
Verilog file I/O 533 

final test, in IC production 711 
fine-grain FPGA architecture 204 
finite-state machine (FSM) 

compiler 684 
logic synthesis of 605 

first-level metal, metall, ml 57 
fitting logic to FPGAs 323, 349 
fixed 

block 7,859 
cost 20 

fixed block 
See also block; cell; circuit 

fixed-resource ASICs 876 
flat netlist 

flat design, in schematic entry 330 
flattening, in floorplanning 863 
flattening, in synthesis 626 

nexible block 6, 8, 859 
See also block; cell; circuit 

flight lines, in noorplanning displays 859 
flip and abut, in row-based ASICs 938 
flip-chip, packaging technology 866 

INDEX 

nip-nop 71 
asynchronous set/reset 73 
characteristic equation 160 
clear/preset 73 
dominant set/reset 73 
hold time 73 
master latch 71 
metastable hardened 253 
setup time 73 
slave latch 71 
synchronizer 253 
synchronous set/reset 160 
TTL74LS74 metastability 253 

1013 

See also clock; metastability; synchro-
nous 

noating a bus to high-impedance state 235 
noating license for design software 176 
noating-point arithmetic 

area estimates 812 
exponent 97 
noating-point unit 18 
mantissa 97 
mantissa nonnalization 812 
sign 97 

noating-point type, in VHDL 412 
floorplanning 806 

power nets 866 
nush test, as part of production test 787 
for, Verilog keyword 507 
force-directed pairwise relaxation 889 
forever, Verilog keyword 507 
fonn feed, in VHDL 963 
formal verification, description of 682 
formals, VHDL 

as subprogram parameters 416 
association with locals in configura­

tion declaration 396 
association with locals, in a port map 

407 
formal port 394 
use as subprogram parameters 426 

format effectors, in VHDL 391,963 
formulas to be proved, in formal verifi­

cation 684 
forward-annotation 

in FPGA design 301 
using SDF 896 

four-value logic system 653 
frequently asked questions (FAQ) 

Actel FPGAs 321 
Verilog 998 

fringing capacitance 949 
front end of the line (FEOL) 60 
full 

adder 75 
connection, in Verilog 514 
subtracter 96 

full-custom block- 7 
fully populated FPGA architecture 277 
function 

in Veri log 495 
in VHDL4l5 
wheel, Actellogic module 194 

functional 

1022



1014 INDEX 

equivalence, of designs 581 
simulation 642 

Functional Standard Block (FSB) 7 
functionally equivalent connectors 876 
fuse, as alternative term for antifuse 170 
fusemap, JEDEC 324 

G 
G5, typical CMOS process 44 
gain functions, in VLSI design algorithms 

809 
gain vector, in lookahead algorithms 836 
gain-bandwidth product, of a flip-flop 251 
Galois field theory, applied to testing 771 
gamma, back-gate bias parameter 104 
gang programmer, for FPGAs 172 
gate (logic) 

collapsing, in testing 743 
density 26 
equivalent (unit of measure) 2 
gate level, in testing 740 
NAND equivalent 2 
NAND gate 40 
utilization 26 
Verilog primitive gate 510 

gate (transistor) 39 
bent, in a gate array 147 
effective length 813 
gate extension, in design rules 61 
mask layer 51 
oxide dielectric permittivity 43 

gate array 11-14 
base array 11, 144 
base cell 11,144 
cell-based array (CBA) 149 
channel free 12 
channeled 12 
channelless 12 
embedded 13 
field programmable 16 
gate isolated 144 
inverse embedded 36 
masked 11 
masterslice 13 
oxide isolated 146 
prediffused array 11 
primitive cell 11 
RAM 149 
sea-of-gates 12 
structured 13 

gated clocks, in boundary-scan circuits 
717 

gate-level simulation 642 
GDSII Stream layout file format 946 
general-purpose interconnect, FPGA 284 
generic 

cell library, for FPGA design 300 
VHDL keyword 410 

glass layer 51, 57 
glitch, in a logic signal 239 
global 

mInImUm or optimum solution, in 
VLSI design problems 836 

nets, in schematic entry 345 
routing 806, 909, 910-922 

global-routing cell (GRC) 920 
glue logic 3 
GND, negative supply voltage 40 
goals, in VLSI design problems 807 
golden simulator 663 
good machine, in fault simulation 747 
goods-inward test 711 
grace value, in design rules 946 
graph, as a model of connectivity 824 
Gray code, for FSM synthesis 606 
greedy algorithms, in VLSI design 

problems 828 
grid-expansion routing algorithms 931 
group migration, in network partitioning 

828 
groups and group templates, in VHDL 414 
Grove-Frohman MOS model 692 
guard ring 101 
guarded signal, in VHDL 415, 438 
Gunning transistor logic (GTL) 242 

H 
half-perimeter measure, to estimate wire­

length 879 
handle, use with a schematic 341 
hard 

layout, in cell libraries 944 
macro 332 
seed 859 

hard-detected fault 749 
hardware accelerators, for fault simulation 

751 
hardware description language (HDL) 328 

See also Verilog; VHDL 
HardWire, Xilinx FPGA to MGA 

migration 319 
header file, Verilog 996 
helper term, in complex PLDs 213 
heuristic algorithms 808 
hex 

literal, in VHDL 393 
number, in Verilog 486 

hierarchy 
divider, in SDF 895 
hierarchical design 330 
hierarchical routing 916 
hierarchical Verilog name 495 
use of, in design 330 

'HIGH, VHDL attribute 420 
high impedance 

and VHDL disconnect statement 439 
and VHDL guarded signals 439 
in IEEE VHDL package 401 
in Verilog logic-value system 483 
logic state, in simulation 652 
simulation logic strength 654 
state, on a bus 235 
See also buffer; bus 

High Performance Systems magazine 37 
Hightower routing algorithm 932 
highz (Hi), Verilog logic strength 655 
hill climbing, in simulated annealing 836 
hold time 

checking, in Verilog 513 
checking, using timing analysis 678 
of a flip-flop 73 
See also flip-flop 

hole mobility 
in gallium arsenide 109 
in silicon 42 

Hooke's law, applied to placement 888 
horizontal 

constraints, in routing 929 
lines, in a Xilinx FPGA 284 
tab, use in VHDL 963 

horizontal-constraint graph 929 
hostid, in design-software security 176 
hot insertion, of ICs into systems 261 
hot well, in design rules 61 
hot-electron 

injection, in FPGA technology 175 
wearout 736, 873 

human-body ESD model 101 
HVH routing 933 
hybrid corner pad 866 
hyperactive fault 749 
hyperedge, of a hypergraph 831 
hysteresis, in a I/O cell 100, 243 

I/O 
5 V -tolerant I/O 248 
Altera I/O Control Block 261 
Altera I/O Element 261 
bidirectional buffer 100 
cell 99-101 
cell pitch 868 
disable time, for output buffer 237 
FPGA I/O cells 231 
high-level input voltage 245 
high-level output voltage 232 
hi-Z state of a buffer 235 
hysteresis 100, 243 
input/output cell in FPGAs 231 
low-level input voltage 245 
low-level output voltage 232 
open-drain output 100 
output enable 99 
pad height 813 
pad width (pitch) 813 
pull-up 100 
quiet I/O 100 
SSOs 99 
three-state 99 
Xilinx input/output block 258 
See also buffer; cell; circuit 

I/O locking, in ASIC design 177 
icon 

edit-in-place, in schematic entry 343 
in schematic entry 332 

1023



IDCODE, boundary-scan instruction 719 
IDDQ test 820 
identifier 

in schematic entry 341 
semantics of, in Verilog 482 
semantics of, in VHDL 392 

IEEE 
Design & Test Magazine 801 
Design Automation Standards Com-

mittee (DASC) 998 
PARs, VHDL975 
Std 1029.1-1991 977 
Std 1076.4-1995 977 
Std 1076-1987976 
Std 1076-1991 Interpretations 977 
Std 1076-1993961,977 
Std 1164-1993 977 
Transactions on CAD 956 
Transactions on Computers 114 
Transactions on VLSI 36 
Verilog LRM 979 
VHDL CD-ROM tutorial 975 
VHDL library 596 
VHDLLRM961 
VHDL packages 477 
working groups, VHDL 975 
See also standards 

'IMAGE, VHDL attribute 420 
implication, in formal verification 685 
implicit feedthrough 874 
implying and inferring logic 572 
impossible faull 749 
impure function, in VHDL 416 
in, VHDL mode 406 
incrementer/decrementer, description of 

98 
index 

to Verilog BNF 994 
to VHDL BNF 973 
to VHDL definitions 456 
to VHDL keywords 973 

indexed name, in VHDL 392 
indistinguishable fault, in testing 743 
industrial worst-case specifications 202 
inertial, VHDL keyword 426 
infant mortality 736 
infinite loop, in simulation (exercise) 697 
information model (CF!) 369 
Information Sciences Institute (lSI) 37 
informative, term used in standards 979 
initial value 

of a Verilog reg 484 
of a Verilog wire 483 
of a VHDL type 414 

inout 
Veri log port type 494 
VHDL mode, definition of 406 

in-place optimization (IPO) 895 
input 

fault 740 
plane, of espresso file 354 
stubs, of an Actel Logic Module 276 
Verilog port type 494 

input-slope model 674 

instance 
hand instantiation, in synthesis 590, 

598 
name, in schematic entry 332 
Verilog module instantiation 494 
VHDL component instantiation 395 
See also cell; names 

'INST ANCE_NAME, VHDL attribute 
420 

InstanceName, dSPF keyword 944 
InstancePinName, dSPF keyword 944 
instruction 

decoder, in boundary-scan test 719 
register, in boundary-scan test 718 

instruction-register cell (IR cell) 718 
in-system programming (ISP), for FPGAs 

172 
integer 

data type, in Verilog 483 
literal, in VHDL 393 
type, in VHDL 399 
unit, in SP ARCstation 1 18 
See also arithmetic 

integrated circuit 
ASSP4 
cell-based ASIC 6 
cell-based IC (CBIC) 6 
core, as a circuit block 7 
custom IC 3 
full-custom ASIC 4 
introduction to 1 
programmable ASIC 5 
programmable logic device (PLD) 14-

15 
semicustom ASIC 5 
standard part 3 
See also application-specific IC 

(ASIC); application-specific stan­
. dard product (ASSP); chip; circuit; 
field-programmable gate array 

Integrated System Design magazine 37, 
998 

interblock routing 857 
interchange methods 

in partitioning 828 
interconnect 

branches 925 
cell feed through 9 
chamfering 934 
channel 859 
channel-column spacing 926 
coast to coast 858 
column 926 
compaction 931 
congestion 880 
description of 4 
electromigration 58 
estimation, during fIoorplanning 856 
global density 927 
horizontal track spacing 925 
interconnect-load tables 856 
line-to-line pitch 922 
line-to-via pitch 922 
metal layers 57 
metal 1 mask layer 9 

INDEX 

metal2 mask layer 9 
off-grid 925 
overlap, of interconnect 931 
programmable interconnect 275 
SDF keyword 895 
silicides 57 
titanium silicide 57 

1015 

tracks, horizontal and vertical 144 
See also design rules; routing 

INTERCONNECT, SDF keyword 668 
interface 

declaration, in VHDL 405 
of module, in Verilog 494 

inter-level dielectric 58 
inter-metal oxide (IMO) 57 
internal-XOR LFSR, in random testing 

772 
International 

Electrotechnical Committee (1EC) 101 
Standard Book Number (ISBN) vii 
Standard Serial Number (ISSN) vii 
Verilog HDL Conference 998 

interpreted-code simulator 656 
intra-assignment delay, in Verilog 499 
intrinsic carrier concentration 155 
intrinsic output capacitance 118 
inventory, as an issue in ASIC design 177 
inverter 

explanation of operation 40 
timing model 117 

IOPATH, SDF keyword 668 
IRE Transactions on Compuiers 114 
irredundant logic, connection between 

logic synthesis and test 749 
island mask layer 51 
isolator transistor, in a gate array 144 
italics, use of, in VHDL BNF 963 
item, definition of, in BNF 979 
iterative placement improvement 887 
IVCNIUF Conference 998 

J 
JEDEC fusemap 324 
jitter, in clock signals 873 
J-K flip-flop 73 
Joint European Test Action Group 714 
Joint Test Action Group (JTAG) 714 
jumper, alternative term for feedthrough 

874 
junction temperature, in specifications 202 
justification, of a fault 756 
just-in-time (JIT) inventory system 177 

K 
Karnaugh map 569 
kerf, perimeter of a die 946 
Kernighan-Lin algorithm 828 
keywords 

index, for Veri log 994 
index, for VHDL 973 

1024



1016 INDEX 

~n-text fonnat of, in Verilog 480 
m-text fonnat of, in VHDL 381 
use of, in VHDL syntax 961 

kind, as a VHDL signal property 406 

L 
label, in schematic entry 341 
lambda 

application to estimating ASIC area 
813 

definition of 3 
feature size 2 

lambda-based design rules 60 
landing pad, in a cell layout 918 
language reference manual (LRM) 

Verilog 479, 979 
VHDL 380, 961 

large 
charge strength of Verilog trireg 486 
Verilog logic strength (La) 655 

large-scale integration (LSI) 2 
'LAST_ACTIVE, VHDL attribute 421 
'LAST_EVENT, VHDL attribute 421 
'LAST_VALUE, VHDL attribute 421 
latch 70 

active-high D latch 71 
enable 70 
positive-enable 71 
S-R latch, Verilog exercise 697 
static 70 
transparency 70 
See also flip-flop 

latch-up 101 
latency 

in a pipeline 81, 678 
in clock distribution 253, 681 

layout . 
capture (exercise) 107 
drawing contacts and vias 922 
stipple patterns 55 
Stream fonnat 946 
symbolic (logs and sticks) 141 
versus schematic (L VS) check 945 

lead frame 864 
leading-one detector 

description and use of 97 
estimating area 812 

leakage current 816,819 
least-.significant bit (Isb), access of, in 

Venlog 485 
Lee maze-running algorithm 931 
'LEFT, VHDL attribute 420 

as default initial value 419 
left-edge scheduling algorithm 928 
'LEFTOF, VHDL attribute 420 
'LENGTH, VHDL attribute 420 
level-sensitive scan design (LSSD) 765 
level-shifter 100 
lexical 

rules for languages, with VHDL as an 
example 391 

token item, in BNF 979 

Library 
of Congress vii 
of Congress (LOC) 36 
of Congress Call Number vii 
of Parameterized Modules (LPM) 355 
VHDL, IEEE working group 976 

library 
area-optimized 150, 670 
buy or build decision 28 
cell importance 142 
cell library 5 
characterization of 29 
clause, in VHDL 399 
customer-owned tooling 28 
datapath library 10 
development of 29 
generic library for FPGA design 300 
hard layout 944 
IEEE VHDL library 596 
linking VHDL libraries 405 
manager 344 
of pads 866 
of parameterized modules 592 
perfonnance-optimized 150,670 
phantom 28 
qualified 29 
radiation hard 112 
schematic library 330 
standard cell 7 
target library in logic synthesis 560 
technology-independent library 590 
unii, in VHDL 393 
vendor 28 
VHDL design library 398 
VITAL 405 
work, in VHDL 398 

library-exchange fonnat (LEF) 897 
line feed, in VHDL 963 
LINE, VHDL textio type 403 
linear feedback shift register (LFSR) 766 
line-probe algorithm 932 
line-search routing algorithm 932 
line-to-line routing pitch 922 
line-to-via routing pitch 922 
link, part of a programmed antifuse 170 
linkage, VHDL mode, limited use of 406 
linking VHDL libraries 405 
links, in Verilog BNF 980 
literal 

as VHDL actual parameter 617 
fonns of, in VHDL 392 

LM-TSC, OVI delay calculator technical 
subcommittee 998 

load capacitance 118 
local 

density 927 
minimum, in ASIC design problems 

828 
nets, in schematic entry 336 
routing 807 

locals, VHDL 
as ports 395 
association with fonnals and actuals 

in port maps 407 ' 

association with fonnals in configura­
tion declaration 396 

logic 
adiabatic (exercise) 843 
AND-OR-INVERT gate 60 
AOI family 63 
array 15 
assignment in FPGAs 212 
cell 60-102 
datapath 10,75-99 
degraded logic-level 49 
distance, as a test measure 761 
ECL2 
exclusive-OR gate 69 
expander, AHera examples 211 
expander, used as parallel expander 

217 
glitch 239 
glue logic 3 
IEEE 1164 logic system 654 
inverter, explanation of operation 40 
inverter, propagation delay 117 
level 49, 652 
macron notation 60 
middle-dot notation 60 
module (LM), in Actel FPGAs 191 
NAND gate equivalent 2 
NAND logic cell, circuit of 40 
NOR logic cell, circuit of 40 
notation 60 
positive logic 40 
programmable array 15 
ratio of a logic cell 65 
sequential logic cell 70 
simulation 642 
stable signal 73 
stack, in CMOS gate 63 
state 652 
strength 49 
strong '0' 49 
synthesis 30 
system 652 
three-state 99 
thresholds 245 
TTL 2 
value 652 
vinculum notation 60 
weak '1' 49 
weak level 49 

Logic Cell Array (LCA) file 301 
Logic Cell, in Xilinx XC5200 FPGAs 207 
Logic Element, in Altera FLEX complex 

PLDs 209 
logic synthesis 

of clock trees 935 
directive 585, 592 
introduction to 559 
logic minimization step 569 
logic optimization 564, 569 
of memory 611 
of mutually exclusive Verilog case 

statement 586 
need for static bounds in loops 587 
relation to schematic entry 328 
resource allocation and sharing 588 

1025



of sequential logic, in VHDL 597 
standard components 590 
structural port mapping 590 
technology-mapping step 564, 571 
timing-driven logic optimization 622 
of a Verilog case statement 585 
of Verilog paired processes 607 
of a VHDL case statement 594 
of a VHDL level-sensitive process 594 
of VHDL process 593 

logical 
area, of a logic cell, 135 
design 18 
efficiency, of a logic cell 135 
fault, in testing 737 
operators, in Verilog 490 
operators, in VHDL 430 
pad, in an I/O library 866 
reduction operators, in Verilog 492 
squares, area measure of a logic cell 

135 
logically equivalent connectors 876 
logic-value system 

Verilog 483 
VHDL400 

long lines 
in a Xilinx FPGA 284 
in an Actel FPGA 276 

look-ahead algorithm, in partitioning 836 
look-up table (LUT), in Xilinx FPGAs 204 
loose routing 807 
;LOW, YHDL attribute 420 
low-level design entry 328 
lumped capacitance, interconnect model 

915 
lumped delay, interconnect model 915 

M 
mO (or metalO), local interconnect (LI) 57 
m1 (or metall), first-level metal 57 
m2/m3 via, mask layer 51 
machine ESD model 101 
machine,jn fault simulation 747 
macro 

hard macro 332 
in a sate-array library 11 
soft macro 332 
system level 7 
use in Veri log (exercise) 555 

macrocell 
in Altera MAX complex PLDs 211 
in complex PLDs 211 

macron, in logic notation 60 
magic boxes in a Xilinx FPGA 284 
majority logic function 75 
Manhattan 

area measure (exercise) 947 
distance measure 877 
routing 877, 923 

mantissa in floating-point arithmetic 97 
manufacture 

critical layers 946 

defect density 26 
design pass 23 
down-binning 179 
drop-in test chip 30 
foundry 28 
lead time 5 
process control monitor 30 
second source 25 
tooling 28 
tooling specification 946 
turnaround time 11 
yield 26, 845 
yield (exercise) 32, 105 
See also fabrication; process 

map, as part of a VHDL port map 407 
mapping FPGA logic 305 
mask 4, 50, 946 

active layer 52 
bias 946 
channel-stop implant 52 
cost of 22 
critical layers 946 
e-beam spot size 946 
layer 4 
reticles 946 
shop 946 
sizing 946 
tooling 946 

mask-programmable ROM 15 
mask-programmed PLD 15 
maskwork, a form of copyright for ICs 

188,945 
masterslice or masterimage 13 
math package, VHDL 404 
Math Package, VHDL, IEEE working 

group 975 
matrix element in Xilinx FPGAs 228 
maximal-length binary sequences 766 
maximum cut line, as a congestion 

measure 880 
maze-running routing algorithms 931 
Mealy state machine, synthesis of 610 
mean time 

between failure (MTBF) 737 
between flip-flop upsets 250 
to failure (MTTF), for electromigra­

tion 937 
to failure (MTTF), of a product 737 

meander factor, in placement 880 
measurement, in ASIC design algorithms 

809 
medium (Me), Verilog logic strength 655 
medium, charge strength of Verilog trireg 

486 
medium-scale integration (MS!) 2 
megacell or megafunction 7 
memory 

logic synthesis of 611 
of sequential logic elements 70 
Verilog data structure 485 

merged cell, in boundary-scan I/O 735 
merging 

flexible blocks during floorplanning 
863 

INDEX 

FPGA design files 301 
netlists during synthesis 626 

1017 

met or violated, in timing constraint 627 
metal 

m2/m3 via, mask layer 51 
metal 1 (or m1), mask layer 9, 51 
metall/meta12 (or ml/m2) via 58 
metal2 (or m2), 2nd-level metal 9, 51, 

57 
meta12/meta13 (or m2/m3) via 58 
meta13 (or m3), 3rd-level metal 51, 58 
pitch 58 

metal coverage, as a failure mechanism 
738 

metallization reliability rules 937 
metal-metal antifuse in FPGAs 172 
metalogical values 

in logic synthesis 584 
in VHDL401 

metal-oxide-silicon 2 
metal-stress rules 937 
metastability 249 
metastable-hardened dual flip-flops 253 
methods for solving VLSI design 

problems 808 
metrics for ASIC design problems 809 
Meyer MOS transistor model 694 
microelectronic system 3 
Microelectronic Systems Newsletter 37 
middle-dot in logic notation 60 
military worst-case specifications 202 
min-cut placement 882 
minterm in Boolean logic equations 193 
minuend, term used in subtraction 78 
miscellaneous operators, VHDL 430 
misII, logic minimization software 569 
mixed power supply 866 
mixed-level 

fault simulation 741 
logic simulation 642 

mixed-logic convention 77 
mixed-mode logic simulation 642 
moat mask layer 51 
mod operator, in VHDL, rules of 432 
mode 

boundary scan control signal 716 
VHDL, definition of 406 

model 
ASIC vendor models 660 
BSIM MOS models 692 
cell behavioral 29 
derived model, example 683 
derived model, of a system 645 
device charge-discharge ESD model 

101 
fault 737 
Grove-Frohman MOS model 692 
input-slope model 674 
lumped capacitance model 915 
lumped delay model 915 
Meyer MOS transistor model 694 
nonlinear delay model 672 
power, for simulation 659 
primitive FPGA model 313 

1026



1018 INDEX 

routing 30 
Schichman-Hodges MOS model 692 
soft models 590 
standard component 590 
structural model 560 
timing 29 
wire load 30 
wire-load 651 

modeling style, for logic synthesis 581 
module 

as alternative term for logic cell 330 
Verilog unit of code 494 

Moore 
encoding, for FSM synthesis 606 
state machine example 608 

Moore's Law 26, 840 
MOS Implementation Service (MOSIS) 

37 
most-significant bit (msb) 

in a datapath 77 
Verilog vector 485 

multilevel routing 933 
multipath sensitization, in test-pattern 

generation 758 
multiphase clocking 70 
multiple power supplies 866 
multiple stuck-at fault model 740 
multiple VDD and VSS pads 866 
multiple-input signature register (MISR) 

775 
multiple-signal pad, for crystal oscillators 

or other special circuits 865 
multiplexer (MUX) 67, 193, 383, 440, 

506,596,632,644,764,796 
multiplicand, term used in multiplication 

87 
multiplier 87-94 

Booth encoding 90 
compiler 102 
Dadda 90 
estimating area of 815 
Ferrari-Stefanelli 92 
multiplier-accumulator 98 
tree based 90 
Veri log exercise 635 
Wallace-tree 90 
See also arithmetic 

multiplying operators, VHDL 430 
multiport RAM 102 
must-join connectors 876 
MVL9 logic system, VHDL 402 

N 
n in a Verilog UDP table 511 
n+ mask layer 51 
named 

aggregate, in VHDL 413 
association, for VHDL parameters 427 
association, for VHDL ports 408 
association, in a Verilog module inter-

face 494 
names 

attribute, in VHDL 392 
hierarchical, in a VHDL generate loop 

445 
in schematic entry 341 
semantics of, in Verilog 482 
semantics of, in VHDL 392 

NAND logic gate (cell) 40 
NAND logic gate equivalent 2 
native-code simulator 656 
NATURAL, VHDL subtype 399 
n-channel MOS transistor 2 
n-diffusion (ndiff) implant mask 51 
negative resist 54 
negative-edge-triggered flip-flop 73 
negedge, Verilog keyword to detect edges 

499 
neighborhood exchange placement 

algorithms 887 
net 

capacitance simulation model 651 
cutset of a graph 826 
fault, in testing 740 
in schematic entry 338 
net (wire) delay model, for simulation 

669 . 
Verilog data type 483 
See also interconnect; routing 

NetCap, DSPF keyword 944 
net-cut partitioning 831 
NETDELA Y, SDF keyword 895 
netlist 17 

compiler 102 
created by schematic entry 327 
portable netlist 99 
screening in schematic entry 341 

NetName, dSPF keyword 944 
network dual, in CMOS logic cells 65 
network model for partitioning 824 
newline character in Verilog constant 489 
node 

collapsing 743 
fault, in testing 740 
of a graph 824 

node-locked license, EDA software 176 
noise margin 246 
noisy power 100 
nonbreaking space, in VHDL 963 
nondestructive scan 765 
nondeterministic 

comparison, Verilog 553 
FPGA architecture 197 

nonfeedback bridging faults 738 
nonideal delay in a logic cell 133 
nonlinear delay model 672 
nonstatic names, in VHDL 423 
NOR logic gate (cell) 40 
normalize, in floating-point arithmetic 97 
normative, term used in standards 979 
NOR-NOR logic arrays 211 
notation 

in Verilog UDP 511 
logic 60 

notch, in IEEE logic symbols 73 
not-equivalence logic gate (cell) 69 

now, VHDL function to return time 399 
NP-complete problems in ASIC design 

808 
nplus mask layer 51 
n-select mask layer 51 
n-tub mask layer 51 
null range, in VHDL (exercise) 477 
numeric types, in VHDL 412 
NUMERIC BIT and NUMERIC_STD 

IEEE VHDL packages 434 
n-well 

mask layer 51 
type of fabrication process 52 

o 
OAI logic cell family 60 
object declarations, in VHDL 414-415 
Object Oriented VHDL, IEEE working 

group 975 
objectives in ASIC design problems 807 
observability, of a node or net 761 
observable net, condition for testability 

749 
observation of test signals 758 
octal 

literal, in VHDL 393 
number, in Verilog 486 

off-grid 925 
ohm/square, measurement of resistance 56 
Ohm's law, applied to a transistor 42 
one-controllability 761 
one-hot encoding, for FSM synthesis 606 
ones' complement representation 77 
on-grid 

objects, in routing 925 
objects, in schematic entry 364 

op-amps, use of, in an output circuit 234 
Open Modeling Forum 975 
Open Verilog International (OVI) 479 
open, keyword, use in VHDL port maps 

407 
open-circuit fault 737 
opens, as a defect mechanism 736 
operators 

list of, in Verilog 490 
list of, in VHDL 430 

opposite, in design rules 111 
optical proximity correction (OPC) 946 
optional item, in BNF 979 
OR plane, in a PLA or PAL 15 
OR-AND-INVERT logic cell family 60 
order-dependent routing 916 
order-independent routing 916 
original equipment manufacturer (OEM) 

299 
oscillator pad 865 
oscillatory fault 749 
others, VHDL keyword, use in aggregates 

413 
out of range (OR), in adder 78 
out, VHDL mode, definition of 406 
outline, in Verilog BNF 979 

1027



output 
current capability of FPGAs 232 
fault 740 
plane of espresso program 354 
stubs of an Actel Logic Module 275 
Verilog port type 494 

output-fault strength 740 
overflow (OV),in adders 77 
overglass mask 51 
overlap 

between interconnect layers 930 
capacitance 931 
in design rules III 

overloading 
of VHDL operators 402 
ofVHDL types 412 

overriding Verilog parameters 515 
overshoot, in logic signals 101 
over-the-cell routing 873 
oxynitride, an interdielectric layer 58 

p 
p in a Verilog UDP table 511 
p+ mask layer 51 
P1481, Circuit Delay and Power Calcu­

lation (DPC) System Study Group 998 
package 864 

ball-grid array (BGA) 866 
cavity of 1 
cavity size, of IC package 32 
ceramic PGA 1 
chip carrier 864 
chip cavity 864 
die inside 1 
estimating cost of 813 
flip-chip 866 
lead frame, of an IC package 864 
lid 1 
nonwindowed 175 
pin-grid array (PGA) 1 
pins 864 
plastic 1 
plas'iic leaded chip carrier (PLCC) 33 
plastic pin-grid array (PPGA) 33 
plastic quad flat pack (PQFP) 33 
solder-bump (C4) 866 
very-thin quad flatpack (VQFP) 257 

package, VHDL 398 
arithmetic 403 
math 404 
Std_logic_116440l 
synthesis 404 
textio 402 

pad 864 
format changer 866 
mapping 866 
mask 51 
pad-limited die 864 
pad-limited pads 864 
pitch 868 
ring 864 
seed 865 
site 868 

slot 868 
two-pad comer pad cell 866 

pad-limited ASIC 841 
pairwise interchange placement algorithm 

887 
P ALASM hardware design language 300, 

350-353 
PAR 1364998 
parallel 

connection, in Verilog 514 
fault simulation 747 
logic expander 217 
vectors, in testing 787 

Parallel Simulation, VHDL, IEEE 
working group 976 

parameter 
use as a Verilog constant 487 
use in VHDL subprograms 416 

parametric fault 737 
parasitic 

capacitance of interconnect 856 
delay, in a logic cell 132 
diodes 819 

parent of child schematic 330 
parity logic function 75 
PARs, VHDL IEEE 975 
part 

assignment in schematic entry 337 
cost 20, 27 
definition of term, in BNF 961 
use of, in Verilog BNF 979 

partial scan 764 
partitioning 

iterative improvement 826 
of a network or circuit 809 

part-select, in a Verilog vector 485 
pass 

gate, in a logic cell 66 
in concurrent fault simulation 748 
transistor, in a logic cell 67 

passivation mask 51, 62 
passive process, in VHDL 419 
Patent and Trademark Office, U.S. 188 
patents 

FPGA 189 
I/O cell 113 
logic synthesis 637 

path 
branching effort, in delay analysis 158 
delay paths in a pipeline 677 
electrical effort, in delay analysis 139 
logical effort, in delay analysis 136, 

138 
memory, in a Viterbi decoder 522 
path delay, in delay analysis 136 
path effort, in delay analysis 139, 159 

'PATH_NAME, VHDL attribute 420 
pathcluster, in timing constraints 622 
PATH CONSTRAINT, SDF keyword 896 
path-oriented decision making (PODEM) 

algorithm 759 
PCI bus, state machine synthesis for 610 
p-diffusion implant (or pdiff) mask 51 

INDEX 1019 

Peripheral Control Bus, in Altera CPLDs 
261 

Perl preprocessor, for Verilog 998 
permittivity 

of silicon 104 
of silicon dioxide 43 

personalization, of a masked gate array 
147 

phantom 28 
cell 53 
instantiation 28 
library 28 
use in routing 30, 924 

phantom-level DRC 944 
phase-locked loop (PLL) 873 
phase-shift keying (PSK), used in trans-

mission 517 
phi, transistor parameter 104 
photolithography, fabrication step 51 
physical 

design 18 
fault 737 
pad 866 
types, in VHDL 412 

physical design exchange format (PDEF) 
896,998 

pick-up point 918 
pin 

feedthrough 876 
locking, in FPGA design 177 
modeled by nodes on a graph 824 
numbers, of IC symbols 337 
in routing 918 
of schematic icon 338 
See also connector; terminal 

PinCap, DSPF keyword 944 
pin-fault model 740 
PinName, DSPF keyword 944 
pin-to-pin delays in Verilog 513 
Pin Type, DSPF keyword 944 
pipeline 

comparator/MUX example 678 
in a datapath 81 

pitch types, used in routing 922 
place-and-route (P&R) 894 
placement 806 

meander factor 880 
metal-usage adjustment factors 881 
min-cut placement algorithm 902 
offaults 740 

Planck's constant 109 
PODEM, ATPG algorithm 759 
polarity-hold flip-flop 786 
poly 

(abbreviation for polysilicon), descrip­
tion of 51 

contact mask 51 
mask layer 51 

polyimide, interdielectric layer 58 
polynomials, for generating PRBS 771 
poly silicon mask layer 51 
port 

declaration of, in Verilog 494 
declaration of, in VHDL 406 

1028



1020 INDEX 

tenn used in routing 918 
Veri10g UDP port convention 510 
VHDL, default value of 407 
VHDL, mode of 406 

PORT, SDF keyword 896 
portable 

FPGA design 306 
netlist 99 

porting schematic designs 331 
'POS, VHDL attribute 420 
posedge, Verilog keyword to detect edges 

499 
positional 

aggregate, in VHDL 413 
association, for VHDL parameters 427 
association, for VHDL ports 408 
association, in a Verilog module inter-

face 494 
positive resist 54 
POSITIVE, VHDL subtype 399 
positive-edge-triggered flip-flop 73 
possibly detected fault 749 
postlayout simulation 642 
postponed process, in VHDL, limited use 

of 658 
potential fault 749 
power 

buses in floorplanning 864 
cell 9 
clean 864 
constraints 837 
dirty 864 
dissipation, dynamic 816 
end-cap cells 938 
estimation, using node toggling 817 
floorplanning global nets 866 
grid in gate arrays 937 
mixed supplies 866 
model for simulation 659 
multiple supplies 866 
pads 864 
power-bus width 937 
rails 864 
ring 864 
simulation 936 
sizing bus widths 936 
static power dissipation 816 
static power in complex PLDs 217 

pplus mask layer 51 
recision of time 

~ in erilog 499 
in V L399 

'PRED, V DL attribute 420 
predefined attributes, in VHDL 419 
predicted-capacitance table 856 
preferred direction when routing 868, 923 
preferred layer when routing 868, 923 
prelayout simulation 642 
preprocessor 

use of, in Verilog 998 
primary 

input (PI), in testing 745 
input (PI), in zero-slack algOlithm 891 
output (PO), in testing 745 

output (PO), in zero-slack algorithm 
891 

unit, in VHDL 393 
prime fault 743 
primitive 

cell in schematic library 332 
cell, in a gate array 11 
FPGA cell models 313 
polynomials, describing LFSRs 771 
simulation model 659 
Verilog primitive gates 509 

printed-circuit board (PCB) 177,711 
priority encoder 

description of 97 
estimating area 812 

probabalistic fault simulation 748 
probability of upset, in metastability 250 
probe 

card, in production test 711 
pad, design rules 62 

procedure 
definition of, in Veri log 495 
definition of, in VHDL 415 

process 
definition of, in VHDL 440 
in VHDL simulation cycle 658 

process (fabrication) 50, 52 
back-end 60 
process comer 201 

product quality 712 
production 

rule, definition of, in BNF 961 
rule, use of, in Verilog BNF 979 
test 22, 711 

product-tenn array, in logic arrays 211 
product-tenn line, in complex PLDs 211 
profit margin 26 
programmable 

array logic (PAL) 15,211 
interconnect, in FPGAs 275 
inversion, in CPLDs 213 
logic (see under integrated circuit) 
low-impedance circuit element, Actel 

PLICE 170 
ROM (PROM) 14, 174 

Programmable Electronics Performance 
Company (PREP) 179 

Programmable Interconnect Array (PIA), 
in Altera CPLDs 289 

Programmable Interconnection Points 
(PIPs), in a Xilinx FPGA 284 

programmable logic array (PLA) 15 
programmable-AND array 211 
programming 

current, in anti fuse-based FPGAs 170 
technology, in FPGAs 170 

Programming Language Interface (PU), 
Verilog 541 

projected output wavefonn, VHDL 699 
proof, in formal verification 684 
propagation, of faults 756 
property of a schematic object 341 
prop-ramp delay model 670 
p-select mask layer 51 

pseudocomment, in logic synthesis 585, 
607,620 

pseudoprimary input and output 764 
pseudorandom binary sequence (PRBS) 

766 
pseudotenninal, in routing 925 
PSpice input deck 689 
p-tub mask layer 51 
pull (Pu), Verilog logic strength 655 
pull resistance of a logic cell 120 
pull-down 100 

resistance, of a logic cell 117 
pull-up 100 

current, in Xilinx XC3000 268 
resistor in logic arrays 211 

pulse-rejection limit, in VHDL 426, 658 
pure function, in VHDL 416 
p-well 

mask layer 51 
type of fabrication process 52 

Q 
quadratic minimum Steiner tree 954 
qualification kit for FPGA design 178 
quantization errors, in a Viterbi decoder 

519 
'QUIET, VHDL attribute 421 
quiet supply 100 
quote 

character embedded in a Veri log con­
stant 489 

characters, in VHDL 391 

R 
r in a Verilog UDP table 511 
race condition, Verilog example 582 
radiation-hard FPGA technology 171 
radix 

in a Verilog constant 486 
of a number representation 89 

rail-strength fault 740 
RAM 

address contention in 102, 612 
compiler 102 
estimating area of SRAM 814 
muItiport RAM 102 
used in a gate array 13, 149 
using static RAM in FPGAs 174 

Rambus access cell, for dRAM 243 
random 

encoding, for FSM synthesis 606 
initial floorplan 859 

'RANGE, VHDL attribute 420 
range 

checking, in VHDL 433 
constraint, in VHDL 412 
of bits in a Verilog vector 485 
of a type, in VHDL 414 

rat's nest congestion display 859 
ratio of a logic cell 65 

1029



ratio-cut partitioning algorithm 834 
RC information 922 
RC-tree delay analysis 278 
READ, VHDL textio procedure 403 
reading 

ports, in Verilog 494 
ports, in VHDL 406 
a VHDL port of mode out 408 
VHDL signals in a sensitivity list 423 

READLINE, VHDL textio procedure 403 
read-only memory (ROM) 14 
real 

data type, in Verilog 483 
literal, in VHDL 393 
type, in VHDL 399 

recoding of binary numbers 89 
reconfigurable hardware using FPGAs 

174 
reconvergent fanout 758 
rectangular distance in routing 877 
rectilinear routing 877 
reduced SPF (rSPF) 939, 942, 998 
redundant 

binary encoding 94 
fault 749 
logic, removal of, in logic synthesis 

617 
reference 

designators, in schematics 336 
model, for a system 645 
model, in formal verification 683 

region, VHDL, in SDF back-annotation 
666 

register 73 
data type (reg), in Verilog 483 
first-in first-out (FIFO) 98 
last-in first-out (LIFO) 98 
multi-port file 98 
register delay, in complex PLDs 217 
register file 98 
signal kind, in VHDL 438 
See also datapath; flip-flop 

registered PAL 211 
register-transfer level (RTL) 468 
regular SPF 939 
relational operators 

in Verilog 490 
in VHDL430 

Relationally Placed Modules (RPM) 302, 
592 

reliability, of a product 173,737 
rem operator, in VHDL, rules of 432 
repeat, Verilog keyword, use in loop state-

ments 507 
replication, in Verilog 490 
representative fault 743 
required time 

as a timing constraint 622 
in zero-slack algorithm 891 

reserved words 
in Verilog 994 
in VHDL 961 

reserved-layer routing 933 
residue number system 95 

resistance 
of contacts 58 
of vias 58 
ohm/square 56 
pull resistance of a logic cell 120 
sheet resistance 56 
silicide process 57 

resistive' l' and '0' 654 
resolution 

function, for multiple drivers 653 
function, in VHDL 402 
of a latch output 250 
using IEEE VHDL package 655 

resource allocation and sharing 588 
restricted channel-routing problem 928 
retargeting 

an FPGA design 306 
schematic designs 331 

reticles and masks 946 
'REVERSE_RANGE, VHDL attribute 

420 
reversible, boundary-scan cell 717 
rework, of a fabrication step 736 
'RIGHT, VHDL attribute 420 
'RIGHTOF, VHDL attribute 420 
ring-OR, type of logic cell 69 
ripper, to make connections to a bus 338 
rip-up and reroute 935 
rising_edge, VHDL function 402 

use of, in logic synthesis 602 
risk inventory, as a design issue 177 
rotate operators, in VHDL, rules of 432 
routing 806 

bias 938 
bin, in global routing 920 
capacitance 856 
channel ordering 863 
compaction 935 
detailed 807 
displays and measures 859 
factor 813 
global density 927 
interblock 857 
intrablock routing 857 
line-to via-pitch 922 
line-to-line pitch 922 . 
on a Manhattan grid 877 
model 30 
multilevel 933 
off-grid 925 
order-dependent 916 
over-the-cell routing 873 
pitch 922 
power-bus width 937 
river route 99 
segmented channels in FPGAs 276 
two-layer 933 
unreserved-layer routing 933 
use of routing factor in estimating die 

area 579 
row-based ASICs 873 
row-end standard cell 9 
rubber banding, in schematic entry 344 
rule, definition of, in BNF 979 

INDEX 

s 
SAO (s@O), stuck-at-zero fault 740 
SAl (s@l), stuck-at-one fault 740 
safety supply, as a design issue 177 

1021 

sales volume, determining variable costs 
21 

same, in design rules 111 
Sandia controllability and observability 

analysis program (SCOAP) 761 
scalar 

data type, in Verilog 485 
type, in VHDL 412 

scalared 
spelling of 994 
Verilog vector property 486 

scaling of logic cells 130 
scan insertion 764 
scanBIST 777 
schema, part of EXPRESS code 370 
schematic 

capture 327 
cell 30 
sheet sizes 328 

Schichman-Hodges MOS model 692 
Schmitt trigger 100 

at an FPGA input 243 
scope 

in Verilog 487 
of Verilog directives 490 
of Veri log parameters 515 

scratchpad memory 98 
scribe line on a die 296, 946 
script 

in logic synthesis 561 
to automate FPGA design 306 

secondary unit, in VHDL 393 
. second-level metal 57 
seed 

cells 859 
connectors 859 
fault 740 
flexible block 859 
logic cell 828 
placements 882 

seed-growth partitioning algorithm 827 
segmented-channel routing in FPGAs 276 
selected name, in VHDL 392 
selective flattening of netlists during 

physical design 863 
self-aligned fabrication process 54 
semantic rules, using VHDL as an 

example 391 
sense amplifier, in complex PLDs 289 
sensing, during IC test 746 
sensitivity 

clause, in VHDL wait statement 422 
list and set, in a VHDL process 440 
list and set, in a VHDL wait statement 

422 
list, effect on logic synthesis in Verilog 

582 
list, in VHDL process 593 

sensitization, of faults 758 

1030



1022 INDEX 

Sentry test-file fonnat 789 
sequential 

controllability 761 
execution, in Verilog 495 
execution, in VHDL 445 
logic 70-74 
module in Actel FPGAs 197 
routing 916 

serial 
fault simulation 747 
test vectors 787 

serial-input signature register (SISR) 766 
sets, in timing analysis 678 
setup time 

checking, in Verilog 513 
of a flip-flop 73 

SEVERITY_LEVEL, VHDL type 399 
shadow register, in IR cell 718 
Shannon's expansion theorem 192 
shared 

(logic) expander 212 
variable, in VHDL 415 

Shared Variables, VHDL, IEEE working 
group 975 

sheet resistance 56 
shift operators 

in Verilog 490 
,in VHDL430 
niles of, in VHDL 432 

short-circuit 
current 816 
fault 737 
operators, in Verilog490 

shortest-path tree 954 
shorts, as failure mechanism 736 
shovels, traditional logic symbols 328 
SIDE, VHDc textio type 403 
sign off, in IC design flow 23 
sign operators, in VHDL 430 
sign, in floating-point arithmetic 97 
signal 

constellation, in a Viterbi enooder 517 
declaration of, in VHDL 405 
difference between VHDL functions 

returning signal and BOOLEAN 419 
or""net, as connections in schematics 

338 
object class of, in VHDL 414 

signal-resolution function 653 
signature 

analysis, as developed by H-P 767 
of logic under test using BIST 766 

signed magnitude binary representation 77 
signed Verilog number 488 
SIGNED, type in IEEE synthesis package 

434,'j97 
sign-off, using VITAL libraries 664 
silicon 

boule (ingot) 49 
chip 1 
compiler 102 
dioxide,' transistor gate oxide 50 
dopant atom 49, 54 
pennittivity 104 

." ".': .... 

See also die; fabrication; manufacture 
silicon-controlled rectifier '101 
simbits, alternative term for metalogical 

values 584 
SimCL 975 
simple identifier, in Verilog 482 
'SIMPLE_NAME, VHDL attribute 420 
simulated annealing 

algorithm 836 
cooling schedule 837 

simulation 641 
cycle 657 
cycle, in VHDL 425 
delta cycle 658 
engines 751 , 
evaluation list 657 \ 
event-evaluation cycle 657 
input vectors 643 
modes 641 , 
of power dissipation 936 
prelayout 642 
primitive models 659 
prop-ramp delay model 670 
simulation program with integrated 

circuit emphasis (SPICE) 689 
time wheel 657 
types of simulation 641 
See also timing 

Simulation Control Language 975 
simultaneously switching output (SSO) 

99,866 
single stuck-at fault model 740 
single-port RAM 102 
sink current capability of FPGA I/Os 232 
sis, logic minimization software 569 
six-shorts-per-transistor fault model 798 
sized Verilog number 486 
sizing 

of logic cell transistors 65-66 
of mask layers 946 
of power-bus widths 936 

skew constraints, in SDF 896 
SKEWCONSTRAINT, SDF keyword 896 
slack 

in timing constraints 627 
time, in zero-slack algorithm 891 

slew rate 
effect on logic cell delay 126 
FPGA I/O example 238 
of a logic signal 99 

slice 
in a datapath 81 
name, in VHDL 392 

slicing floorplan 863 
slow-fast process comer 201 
small (Sm), Verilog logic strength 655 
small, charge strength of Verilog trireg 

486 
small-scale integration (SSI) 2 
smart quotes, in VHDL 391 
S-Module in Actel FPGAs 197 
snap to grid, in schematic entry 342 
soft 

macro 332 

models, in logic synthesis 590 
seed 859 

soft-detected fault 749 
solder-bump technology (C4) 866 
source (transistor) 39 
source current, capability of FPGA I/Os 

233 
space characters, in VHDL 391 
spacer cell, in standard-cell rows 9, 876 
spades, traditional logic-cell symbols 328 
sparkle sheet 18,37 
special characters, use of, in VHDL 391 
speed binning (grading) in FPGAs 179, 

201/ 
SPICE 

BSIM1 model 706 
dummy parameters 706 
example input deck 689 
G5 LEVEL = 3 parameters 47, 692 
G5 LEVEL = 4 parameters 692 

spot size, of e-beam mask equipment 946 
sputtered quartz, interdielectric layer 57 
square bracket, use of, in VHDL BNF 961 
S-R flip-flop 73 
'STABLE, VHDL attribute 421 
stable logic signal 73 
stack, in CMOS logic 63 
stacked via 58, 922 
stagger-bond, to increase I/O density 866 
standard 

cell 6-10, 150, 159,738,854,855,911 
component, in logic synthesis 590 
load capacitance 118,858 
package, VHDL 399 

Standard Delay Calculation System 998 
standard delay fonnat (SDF) 667, 895 

used in Verilog back-annotation 512 
standard parasitic fonnat (SPF) 939 
standard parasitics exchange format 

(SPEF) 998 
standard-cell library 7 
standards 

ANSIjEIA Standard 548-1988 355 
IEEE 1164 logic system 654 
IEEE Std 1029.1-1991 801 
IEEE Std 1076.3-1997434 
IEEE Std 1076-1987379 
IEEE Std 1149.1 714 
IEEE Std 1164.1-1992401 
IEEE Std 1364-1995479 
IEEE Std 754 539 
ISO 646-1983 400 
ISO 8859-1 1987(E) 400 
ISO A4-AO sheet sizes 328 
JESDl2-lB, EIA 37 
MIL-STD-454 379 
MIL-STD-883C 201 
NUMERIC_STD VHDL package 596 
STD_LOGICI164 VHDL package 

596 
Standards Coordination Committee (20) 

801 ' 
star, in a hypergraph 831 

1031



state machine. See finite-state machine 
(FSM) 

state-dependent 
path delay 514 
timing 675 

statements, Verilog 
always 497 
begin 497 
blocking procedural assignment 503 
case 506 
casex 507 
casez statement 507 
continuous assignment 496 
defparam 515 
delayed assignment 499 
disable 508 
end 497 
fork 509 
function 506 
if 506 
initial 497 
join 509 
loop 507 
nonblocking procedural assignment 

503 
parallel block 509 
procedural assignment 498 
procedural continuous assignment 504 
quasi-continuous assignment 504 
sequential block 497 
specify block 513 
task 506 
wait 502 

statements, VHDL 
assertion 423 
block 438 
case 428 
component instantiation 444 
concurrent 437 
concurrent assertion 443 
concurrent procedure call 441 
concurrent signal assignment 442 
conditional signal assignment 442 
disconnect 439 
exit 430 
generate ,444 
if 427 
loop 429 
next 429 
null 430 
procedure call 426 
process 440 
report 423 
return 430 
selected signal assignment 442 
sequential 419 
signal assignment 424 
variable assignment 424 
wait 421 

static 
bounds, in logic synthesis 587 
choices, in VHDL case statement 428 
electricity, in ESD 100 
indexed name, in VHDL 392 
latch 70 

power dissipation 816 
timing analysis 642 

statistical fault simulation 748 
SID _LOGIC_1164, VHDL package 596 
STD_MATCH, in IEEE VHDL package 

436 
STD_MATCH, VHDL function, use in 

logic synthesis 593 
Steiner trees for wire-length minimization 

877 
step-coverage of metals 57 
stimulus, application of test vectors 745 
stitched contact 922 
stoichiometry of silicides '(>7 
storage \ 

loop, in a latch 70 
node, in sequential logic 70 

Stream, layout file format 946 
strength, resistive 654 
strikethrough, in VHDL BNF 963 
string literal, in VHDL 393 
STRING, VHDL type 399 
strobe, in testing 746 
stroke, databus symbol 77 
strong (St), Verilog logic strength 655 
strongO and strongl, in Verilog primitives 

509 
structural 

equivalence, between faults 754 
fault propagation 741 
level, in testing 740 
model, in logic synthesis 560 

'STRUCTURE, VHDL-87 attribute 419 
structured test 764 
stubs, use in developing synthesis models 

580 
stuck-at fault 740 
stuck-at-O fault 740 
stuck-at-l fault 740 
stuck -off fault 740 
stuck-on fault 740 
stuck-open fault 740 
submodule in schematic entry 334 
SubNodeName, dSPF keyword 944 
subprogram, definition of, in VHDL 415 
subschematic in schematic entry 330 
substrate connection ' 

at the chip level 865 
to a transistor 41 

subthreshold current 818 
subtracter 96 

minuend 78 
subtrahend 78 

'SUCC, VHDL attribute 420 
SUM, SDF keyword 896 
sum-of-products in a complex PLD 209 
supply 

(Su), Veri log logic strength 655 
AC, for I/O circuits 100 
clean power 100 
DC supply 100 
dirty supply 100 
GND, negative supply 40 
noisy power 100 

INDEX 

power-bus width 937 
power-supply bounce 99 
quiet supply 100 

1023 

supply bounce in FPGAs 239 
supply/ground bounce, simulation ex-

ample 692 
supply 1 and supplyO, Verilog 483 
VDD, postive supply 39 
VSS, negative supply 40 
See also power 

supply~strength fault 740 
. surface potential, in a transistor 104 
suspending a procedure, in Verilog 502 
switch --' 

box (matrix) in FPGAs 284 
boxes and switch-box routing 863 
for Verilog back-annotation 646 
level, in fault simulation 740 

switching current, in CMOS logic 816 
switch-level simulation 642 

example of 688 
swizzle, used to rearrange bus signals 338 
symbol 

AND dependency notation, in IEEE 
symbols 67 

for AOI/OAl logic cell 60 
datapath stroke 77 
datapath symbol conventions 95 
IEEE common control block 67 
in schematic entry 332 
for a MUX67 
notch, for sequential logic 73 
preset/reset notation, in IEEE symbols 

73 
See also under section Symbols 

synchronous 
design style 70 
RAM 102 

syntactic category, definition of, inBNF 
979 

syntax 
construct item, definition of, in BNF 

979 
Verilog, introduction to 482 
VHDL, introduction to 390 

synthesis 
(compiler) directive 585, 592 
style guide 589 

Synthesis Package, VHDL, IEEE working 
group 975 

synthesizable code 581 
synthesized network 569 
System Design & DeSCription Language, 

IEEE working group 975 
system partitioning 806 
system tasks and functions, Verilog 532-

541,996 
$bitstoreal 539 
$countdrivers 997 
$display 533 
$disCchCsquare 540 
$disCerlang 540 
$disCexponential540 
$disCnormal 540 
$disCpoisson 540 

1032



1024 INDEX 

$dist t 540 
$dist-unifonn 540 
$fclose 534 
$fdisplay 533 
$finish 535 
$fmonitor 533 
$fopen 533 
$fstrobe 533 
$fwrite 533 
$getpattern 997 
$hold535 
$incsave 997 
$input 997 
$itor 539 
$key 997 
$list 997 
Slog 997 
$monitor 533 
$monitoroff 533 
$monitoron 533 
$nochange 536 
$nokey 997 
$nolog 997 
$period 536 
$q_add 538 
$q_exam 539 
$q_fu1l539 
$q_initialize 538 
$qJemove 538 
$readmemb 534 
$readmemh 534 
$realtobits 539 
$recovery 536 
$reset 997 
$reset count 997 
$reset:::: value 997 
$restart 997 
$rtoi 539 
$save 997 
$scale 997 
$scope 997 
$setup 535 
$setuphold 535 
$showscopes 997 
$showvars 997 
$~kew 536 
$sreadrnemb997 
$sreadmemh 997 
$stop 535 
$strobe 533 
$width 536 
$write 533 
conversion functions for reals 539 
display system tasks 533 
edge specifier 536 
file I/O 533 
fonnat specification 533 
multichannel descriptor 533 
notifier register 536 
PLA modeling 537 
simulation control tasks 535 
simulation time functions 539 
stochastic analysis 538 
timescale tasks 534 
timing check tasks 535 

system-level macro 7 

T 
T (toggle) flip-flop 73 
tab character, used in a Verilog constant 

489 ' 
taper, for driving large loads 871 
target library, in logic synthesis 560 
targeting an FPGA architecture 306 
task, Verilog 495 
tau, delay time constant 131 
technical coordinating committee (TCC), 

OVI998 < 

technical subcommittee ',(TSC), OVI 998 
technology 

BiCMOS 3, 36 
bipolar 2, 5--6 
CMOS 2 
constraints, in system partitioning 837 
decomposition, in logic synthesis 571 
ECL2 
flip-chip 866 
gallium arsenide 36 
MOS2 
NMOS 2 
solder-bump 866 
TTL 2 
See also fabrication; manufacture; pro-

cess (fabrication);' silicon 
technology-independent library 590 
template, HDL, for logic synthesis 589 
tenn, definition of, in BNF 979 
tenninal 

as a pin, in schematic entry 338 
direction, in schematic entry 343 
feedthrough 876 
in floorplanning 854 
modeled by graph node 824 
polarity, in schematic entry 343 
pseudotenninal 925 
in routing 918 
See also connector; pin 

ternary operator, in Verilog 490 
test 

clock (TCK), boundary-scan clock 715 
compiler 764 
constraints, in syst~m partitioning 837 
cycle time 746 
production 22 
program 711, 746 
response 711 
Test Port and Boundary-Scan Archi­

tecture, IEEE Std 1149.1 714 
test-acess port (TAP) 715 
test-data input (TDl), boundary-scan 

input signal 714 
test-data output (TDO), boundary-scan 

test output 715 
test-data register (TDR) 715 
test-logic insertion 779 
test-mode select (TMS), boundary­

scan control signal 715 

test-reset input signal (TRST), bound­
ary-scan control signal 715 

test-vector compression 753 
vector 22,711, 745 

Test, VHDL, IEEE working group 976 
testable fault 748 
testbench, use of, in VHDL 389 
TEXT, VHDL textio type 403 
TF routine, in Verilog 996 
theorem prover, in fonnal verification 684 
thennal stress, during ESD event 101 
thin oxide, mask layer 51 
third-level metal, metal3, m3 58 
third-party FPGA vendors 323 
three-layer routin~33 
three-state buffer 99 
time 

delta time 658 
of flight, in a transistor 42 
step, in simulation 656, 658 
step, in Verilog 498 
Verilog data type 483 
wheel, in simulation 657 

TIME'HIGH, end of VHDL simulation 
time 658 

TIME, VHDL type 399 
timeout, in VHDL wait statement 422 
TIMESCALE, SDF keyword 895 
timescale, Verilog 498 
timestamps in schematic entry 343 
timing 

ACT FPGA model 197 
actual times 891 
analysis 564, 642-
arcs 622 . 

. arrival times 891 
constraints, in forward-a'npotatio~ 896 
constraints, in system partItioning 837 
constraints, met or violated 627 
control, in Verilog 498 
critical path 642 
difference between timing models and 

delay models 669 
Elmore time constant 280 
end set 622 
engine 564 
fault 737 
FPGA timing analysis 300 
FPGA timing constraints 300 
in-place optimization of 895 
interconnect timing model 659 
model 669 
model, for an inverter 117 
nonlinear delay model 672 
of Verilog transitions 513 
pathcluster 622 
pin-to-pin timing parameter 254 
prop-ramp delay model 670 
required time 622 
sets, in timing analysis 678 
simulation 642 
slack 627 
state-dependent 675 
tau, logic delay time constant 131 
timing-driven logic optimization 622 

1033



worst-case timing in FPGAs 201 
See also delay; model; simulation 

TTIMmNGCHECKinSDF896 
timing-driven placement 881 
toggle . 

coverage 748 
test 748 

token, definition of, in BNF 979 
tooling specification 946 
totem-pole output buffer 234 
track 874, 918, 925 

horizontal, in gate-array base 918 
in a channeled FPGA 275 
in interconnect 144 
long vertical track (L VT), in an Actel 

FPGA277 
pitch 922 
spacing 922, 925 
vertical track spacing 926 
See also channel; interconnect; routing 

training cost 21 
'1RANSACTION, VHDL attribute 421 
transaction, in VHDL 425 
transcapacitance, in MOS transistors 695 
transistor 39 

back-gate bias 104 
body-effect coefficient 104 
BSIM models 692 
bulk connection 41 
bulk mobility 47 
bulk potentia1104 
carrier mobility 42 
channel charge 42 
channel-stop implant 52 
depletion region 41 
diffusion layer 56 
drain 39, 45 
drain engineering 55 
drain-source current 44 
effective length 45 
electrical channel length 45 
electron mobility 42 
empirical model 692 
gain factor 44 
~gamma 104 

gate 39 
hole mobility 42 
intrinsic transconductance 44 
ion implantation 50 
LDD process 55 
leakage current 816 
linear region 44 
matching 6 
Meyer model 694 
mobility degradation 47 
nonreciprocal capacitance 695 
parasitic capacitance 122-128 
p-channel current equations 45 
pentode region 44 
process transconductance 44 
reciprocal capacitance 694 
saturation region 44 
Schichman-Hodges model 692 
series and parallel connection of 65 
shape factor 44 

short-circuit current 816 
source 39, 45 
substrate bias 104 
subthreshold current 41 
threshold voltage 41 
tracking 6 
transcapacitance 695 
triode region 44 
velocity saturated 45 
well connection 41 
See also model; SPICE 

transistor-level simulation 642, 689 
transistor-transistor logic (TTL) 2 
transit time, in a transistor 42 
transmission gate 6rr:{)7 

in pass-transitor logic (exercise) 108 
inputs 69 

transmission line 
characteristic impedance 240 
time of flight 240 

transparent latch 70 
transport, VHDL keyword 426 
trees 

on graphs, use in physical design 877 
triO and tri1, Verilog wire types 486 
triand, trior, trireg, Verilog wire types 486 
trip point 

description of 73 
triplet notation in SDF 668 
triple-well process 52 
Tri-State (trademark) 99 
true single-phase clocking (TSPC) 688 
true single-phase flip-flop 688 
trunk, in routing 925 
tub 

mask layer 51 
of a transistor 41 

Turbo Bit, in complex PLDs 217 
twin-well (twin-tub) process 52 
two's complement 

binary representation 77 
number representation, in Verilog 493 

two-layer routing 933 
two-level metal technology 58 
two-pass logic 213 
two-value logic system 652 
type 1 LFSR 772 
type 2 LFSR 772 
type, VHDL 411 

checking of 432 
class of 412 
composite array type 413 
conversion of 432 
declaration of 411 
record type 413 
std_Iogic 402 
subtype 412 

typographical issues, in Verilog BNF 980 

u 
UCB PLA tools 353, 569,638 
unary operators, in Verilog 490 

INDEX 1025 

uncommitted feedthrough 874 
unconditioned ·timing check, in Verilog 

554 
unconstrained array, in VHDL 413 
uncontrollable nets 749 
underline, in-text use of, in VHDL BNF 

392,963 
underscore 

use of, in Verilog names 482 
use of, in VHDL names 392 

undershoot, in logic signals 101 
undetected fault 746, 749 
undo, in schematic entry software 344 
ungrouping netlists during synthesis 626 
uninitialized logic value, in Verilog 483 
unit-delay simulation 642 
units . 

of code, in VHDL 393 
of time, in Verilog 499 
of time, in VHDL 399 

Universal Interconnection Module 288 
University Video Communication 37 
unknown logic value 

definition of, in Verilog 483 
detection of, in VHDL 402 
in simulation 652 
propagation of 652, 697 

unobservable nets 749 
unreserved-layer routing 933 
unroutes 934 
unsettled logic signal 649 
unsigned 

binary representation 77 
Verilog number 488 

UNSIGNED, type in IEEE synthesis 
package 434, 597 

unsized Verilog number 486 
untested fault 749 
update 

flip-flop, in a boundary-scan cell 716 
of a VHDL object, definition 406 
of a VHDL port of mode in 408 
of a VHDL signal of mode buffer 410 
of a VHDL signal of mode inout 410 
of Verilog register 484 

uppercase, use of, for IEEE VHDL types 
399 

upset, in flip-flop metastability 250 
use clause, in VHDL 399 
user groups for CAD tools 998 
user-defined primitive (UDP), Verilog 510 
user-written system task, Verilog 994 
Utility, VHDL, IEEE working group 975 
UV-erasable PROM 15 

v 
'VAL, VHDL attribute 420 
'VALUE, VHDL attribute 420 
value change dump (VCD) file, in Verilog 

(exercise) 705 
variable part cost 20 
variable, VHDL 405, 414 

1034



1026 INDEX 

variable-size circuit blocks 859 
variably pipelined multiplier 93 
VC-TSC, cycle-based simulation standard 

technical subcommittee 998 
VDD, positive supply voltage 39 
VD-TSC, Verilog language enhancements 

and extensions technical subcommittee 
998 

vector 
in a datapath 96 
quality, in testing 748 
Verilog data type 485 

vector-based simulation 647 
vectored cell instance 334, 343 
vectored, Verilog.YeCtor property 486 
vendor 

independence 305 
models 660 

Verilog 
BNFindex 994 
BNF links 980 
emacs mode 998 
FAQ998 
hardware description language 479 
HDLLRM979 
keywords 994 
logic system 654 
preprocessors 998 
Procedural Interface (VPI) 541 
Working Group 998 
See also characters; examples, Ver­

ilog; statements, Verilog; system 
tasks and functions, Verilog 

Verilog-VHDL conversion 474 
veriuser.h 996 
version control, in schematic entry 344 
vertex of a graph 824 
vertical 

bar, meaning of, in Verilog BNF 980 
constraint cycle, in routing 930 
lines, in a Xilinx FPGA 284 
tab, in VHDL 963 
track, in a logic cell 874 

vertical constraints in routing 928 
very large-scale integration (VLSI) 2 
VHDL '" 

1029.1-1991977 
1076.4-1995977 
1076-1987976 
1076-1991 Interpretations 977 
1076-1993977 
1164-1993 977 
Analysis and Standards Group 

(VAS G) 975 
BNF, index to 973 
IEEE groups 975 
IEEE PARs 975 
Initiative Towards ASIC Libraries 

(VITAL) 411, 664 
International (VI) 477 
International Users' Forum (VIUF) 

477,998 
keyword index 973 
keyword list 973 
keywords in syntax 961 

language reference manual (LRM) 961 
tutorial 975 
See also characters; examples, VHDL; 

statements, VHDL . 
VHSIC hardware description language 

(VHDL) 379 
VHV routing 933 
via 58 

conventions in layout 922 
drawing convention 922 
removing vias in routing 935 
resistance 58 
stacked 922 
stitched 922 
vial, ml/m2 via 58 
via2, m2/m3 via 58 
waffle 922 
See also contact; design rules 

via2 mask layer 51 . 
ViaLink, an antifuse technology 172 
via-to-line routing pitch 922 
via-to-via routing pitch 922 
vinculum, in logic notatien.60 
violation 

o{ set-up or hold times 249 
offiming constraints 627 

visibility 
in a VHDL package 399 
of VHDL signals 395 

Viterbi decoder 515 
VIUF Internet Services (VIIS) 998 
VLSI Design magazine 37 
VLSI Design Series 36 
VPI routine, in Veri log 996 
VSS, negative power supply 40 

w 
wafer 4 

boat 34, 50 
cost 25,49 
die per wafer 26 
estimating cost 813 
flat 49 
lot 5. 
resiStivity of 49 
size 25 
test, during manfacture 711 

waffle via 922 
walking l's test pattern 776 
Wallace-tree multiplier 90 
wand, wor, Verilog wire types 486 
wave propagation, in routing 931 
waveform 

dump, Verilog (exercise) 697 
relaxation (WR) 708 

Waveform and Vector Exchange Specifi­
cation (WAVES) 801 

WAVES Analysis and Standardization 
Group (WAS G) 801 

weak (We), Verilog logic strength 655 
wearout mechanism, as a cause of failures 

736 

weight of numbers 89 
well of a transistor 41 
while, Verilog keyword, use in loop state-

ments 507 
white metal, type of interconnect 57 
width, of Veri log variable 486 
WIDTH, VHDL textio type 403 
wildcard 

matching in schematic entry 342 
symbol, in seeding floorplans 859 

WlR format in Viewlogic tools 325 
wire 

definition of, in Verilog 483 
other Veri\og wire types 486 
segments (nets) in schematic entry 338 
segments in a channeled FPGA 276 

wired-logic in logic arrays 211 
wire-load 

(wire-delay, or interconnect) model 
30,651 

. tables 856 
wirjng 

,capacitance 856 
channels 859 

•• 1 
wIIJng trees 

minimum rectilinear Steiner tree 877 
rectilinear chain connection 899 
rectilinear spanning tree 899 
rectilinear Steiner tree 877 
.source to sink connection 900 

word line ip logic arrays 211 
worst-case commercial specifications 202 
WRITE, lWRITELINE, VHDL textio 

procedures 403 

x 
X-BLOX, Xilinx datapath system 302, 

592,631 
Xilinx netlist format (XNF) 301 
X-path check, in the PODEM algorithm 

760 

y 
yield, of ICs 26, 845 

(exercise) 32, 105 

z 
See also fabrication; manufacture; sili­

con 

zero-controllability 761 
zero-slack algorithm 891 

1035



This comprehensive book on application-specific integrated circuits (ASICs) describes the 
latest methods in VLSI-systems design. ASIC design, using commercial tools and pre­
designed cell libraries, is the fastest, most cost-effective, and least error-prone method of IC 
design. As a consequence, ASICs and ASIC-design methods have become increasingly pop­
ular in industry for a wide range of applications. 

The book covers both semicustom and programmable ASIC types. Mter describing 
the fundamentals of digital logic design and the physical features of each ASIC type, the 
book turns to ASIC logic design--design entry, logic synthesis, simulation, and test-and 
then to physical design- partitioning, floorplanning, placement, and routing. You will find 
here, in practical, well-explained detail, everything you need to know to understand the 
design of an ASIC, and everything you must do to begin and to complete your own design. 

Features 
• Broad coverage includes, in one information-packed volume, cell-based ICs, gate 

arrays, field-programmable gate arrays (FPGAs), and complex programmable logic 
devices (PLDs). 

• Examples throughout the book have been checked with a wide range of commercial 
tools to ensure their accuracy and utility. 

• Separate chapters and appendixes on both Verilog and VHDL, including material from 
IEEE standards, serve as a complete reference for high-level, ASIC-design entry. 

As in other landmark VLSI books published by Addison-Wesley-from Mead and Conway 
to Weste and Eshraghian-the author's teaching expertise and industry experience illumi­
nate the presentation of useful design methods. Any engineer, manager, or student who is 
working with ASICs in a design project, or who is simply interested in knowing more about 
the different ASIC types and design styles, will find this book to be an invaluable resource, 
reference, and guide. 

Michael John Sebastian Smith is an ASIC researcher, designer, and educator. He teaches 
at the University of Hawaii and is a consultant in ASIC design. Previously, he worked at the 
IBM T. J. Watson Research Center and was a member of the team that founded Compass 
Design Automation , which is now part of Avant! Corporation. Smith received B.A. and M.A. 
degrees from Queens' College, Cambridge University, and M.S. and Ph.D. degrees from 
Stanford University. In 1989, he was named a U .S. National Science Foundation 
Presidential Young Investigator. 

ISBN 0-201-50022-1 

$64.95 US $97 .50 CANADA 

1036




