
Theory Comput. Systems31, 355–376 (1998) Theory of
Computing

Systems
© 1998 Springer-Verlag

New York Inc.

Verification of Cache Coherence Protocols by
Aggregation of Distributed Transactions∗

S. Park and D. L. Dill

Department of Computer Science, Stanford University,
Stanford, CA 94305, USA
spark@cs.stanford.edu
dill@cs.stanford.edu

Abstract. This paper presents a method to verify the correctness of protocols and
distributed algorithms. The method compares a state graph of the implementation
with a specification which is a state graph representing the desired abstract behavior.
The steps in the specification correspond to atomic transactions, which are not atomic
in the implementation.

The method relies on anaggregation function, which is a type of abstraction
function that aggregates the steps of each transaction in the implementation into a
single atomic transaction in the specification. The key idea in defining the aggre-
gation function is that it must complete atomic transactions which have committed
but are not finished.

This paper illustrates the method on a directory-based cache coherence pro-
tocol developed for the Stanford FLASH multiprocessor. The coherence protocol
consisting of more than a hundred different kinds of implementation steps has been
reduced to a specification with six kinds of atomic transactions. Based on the re-
duced behavior, it is very easy to prove crucial properties of the protocol including
data consistency of cached copies at the user level. This is the first correctness proof
verified by a theorem-prover for a cache coherence protocol of this complexity. The
aggregation method is also used to prove that the reduced protocol satisfies a desired
memory consistency model.

∗ This research was supported by the Advanced Research Projects Agency through NASA Grant NAG-
2-891.

Petition for Inter Partes Review of
U.S. Pat. No. 7,296,121

IPR2015‐00158
EXHIBIT

Sony‐

f

Find authenticated court documents without watermarks at docketalarm.com.

aghiam
Typewritten Text
1007

aghiam
Typewritten Text

msander
Typewritten Text
355

https://www.docketalarm.com/

356 S. Park and D. L. Dill

1. Introduction

1.1. Basic Idea

Protocols for distributed systems often simulate atomic transactions in environments
where atomic implementations are impossible. This observation can be exploited to make
formal verification of protocols and distributed algorithms using a computer-assisted
theorem-prover much easier than it would otherwise be [34]. Indeed, the techniques de-
scribed below have been used to verify safety properties of significant examples: the cache
coherence protocol for the FLASH multiprocessor which is currently being designed at
Stanford [15], [20], a majority consensus algorithm for multiple copy databases [41],
[18], and a distributed list protocol [9].

The method proves that an implementation state graph is consistent with a speci-
fication state graph that captures the abstract behavior of the protocol, in which each
transaction appears to be atomic. The method involves constructing an abstraction func-
tion which maps the distributed steps of each transaction to the atomic transaction in the
specification. We call thisaggregation, because the abstraction function reassembles the
distributed transactions into atomic transactions.

This method addresses the primary difficulty with using theorem-proving for ver-
ification of real systems, which is the amount of human effort required to complete a
proof, by making it easier to create appropriate abstraction functions. Although our work
is based on using the PVS system from SRI International [33], the method is useful with
other mechanical theorem-provers, or manual proofs.

Although finite-state methods (e.g., [32], [10], [17], and [19]) can solve many of the
same problems with even less effort, they are basically limited to finite-state protocols.
Finite-state methods have been applied to non-finite-state systems in various ways [38],
but these techniques typically require substantial pencil-and-paper reasoning to justify.
Moreover, it is not obvious how to apply these extensions to the examples we verified
using aggregation. Theorem-provers make sure that such manual reasoning is indeed
correct, in addition to making available the full power of formal mathematics for proof,
so they can routinely deal with problems that cannot yet be solved by any finite-state
methods.

For our method to be applicable, the description must have an identifiable set of
transactions. Each transaction must have a uniquecommit point[16], from which a
state change cannot be aborted (usually, it is the point at which a state change first
becomes visible to the specification). The most important idea in the method is that the
aggregation functioncan be defined bycompletingtransactions that have committed but
not yet completed. In general, the steps to complete separate transactions are independent,
which simplifies the definition of this function. In our experience, this guideline greatly
simplifies the definition of an appropriate aggregation function.

The same idea of aggregating transactions can be applied to reverse engineer a spec-
ification where none exists, because the specification with atomic transactions is usually
consistent with the intuition of the system designer. We extract a specification model
which performs transactions atomically at their commit steps in the implementation,
and does nothing at other steps. The extracted specification provides an illusion that the
transactions take effect instantaneously at the commit steps in the implementation.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Verification of Cache Coherence Protocols by Aggregation of Distributed Transactions 357

If the extracted specification is not obviously complete or correct, it can instead be
regarded as a model of the protocol having an enormously reduced number of states. The
amount of reduction is much more than other reduction methods used in model checking,
such as partial order reduction, mainly because the state variables of the reduced system
are only those relevant to the specification, without variables such as local states and
communications buffers.

The major contribution of this work is to reduce the effort required to prove the
correctness of certain classes of cache coherence protocols (and possibly other types
of distributed algorithms). The methodology requires extracting or defining transaction-
oriented specifications. Once the specifications are in this form, aggregation provides a
simple method for defining abstraction functions based on completing unfinished trans-
actions across distributed processing elements. The effectiveness of aggregation is shown
by the example we present below: FLASH is the most complex multiprocessor cache
coherence protocol that has been formally verified using a theorem-prover.

1.2. Related Work

1.2.1. Verification of Cache Coherence Protocols. One widely used technique for val-
idating cache coherence protocols is finite-state methods (e.g., model checking). Finite-
state methods enumerate the states of the reachable state graph of the system, searching
for states that violate a specified property [31], [5], [40], [32], [17], [19]. These methods
suffer from the state explosion problem: the number of states for nontrivial numbers of
processors and cache lines is very large. Another problem with model checkers is that
it is very difficult to specify correctness conditions of the protocol using notations such
as Murϕ or temporal logic. The specification is the corresponding memory model of the
protocol so it is required to encode a full memory model in temporal logic.

Symbolic state models proposed by Pong and Dubois [38], [37] reduce the state
explosion problem by using symbolic states which abstract away from the exact number
of configurations of replicated identical components by recording only whether there
are zero, one, or more than zero replicated components. However, as in model checking,
there still remains the problem of specifying the protocol: It is not easy to find a set
of properties (in their notation), which completely describes the correct behavior of the
protocols. Moreover, their method requires the user to write an abstract description of
the protocol to be verified, which raises another verification problem: Are the abstract
description and the actual protocol equivalent?

Another approach to formal verification is computer-assisted theorem-proving.
Theorem-provers make available the full power of formal mathematics for proof, so
they can routinely deal with problems that cannot yet be solved by any finite-state meth-
ods. However, the major problem with theorem-proving is that considerable labor is
required. Consequently, previous theorem-proving approaches have not been able to
verify a problem of the scale of a full multiprocessor cache coherence protocol. The
most significant result before our work is a manual proof of “lazy caching,” a simple
and abstract cache coherence algorithm [2], [13], [21]. It should be noted that using a
theorem-prover typicallyincreasesthe labor required to complete a proof compared with
manual proof—however, the results are much more likely to be correct.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

358 S. Park and D. L. Dill

1.2.2. Abstraction Function. The idea of using abstraction functions to relate imple-
mentation and specification state graphs is very widely used, especially when manual or
automatic theorem-proving is used [30], [29], [22] (indeed, whole volumes have been
written on the subject [8]). The idea has also been used with finite-state techniques [19],
[11].

Ladkin et al. [21] have used a refinement mapping [1] to verify a simple caching algo-
rithm. Their refinement mapping hides some implementation variables, which may have
the effect of aggregating steps if the specification-visible variables do not change. Our
aggregation functions generalize on this idea by merging steps even when specification-
visible variables change more than once. This happens in most cache coherence protocols
for distributed systems. For example, in the FLASH protocol described later in this paper,
the cache states (specification variables) can change twice during a write transaction:
first, if another cache has a copy in exclusive state, the state must transition to invalid;
then the requesting cache state changes from invalid to exclusive when the cache receives
data. In this case, our aggregation function modifies the cache state and data to complete
the transaction.

A more limited notion of aggregation than ours is found in [24] and [25], where a
state function undoes or completes an unfinished process. The method only aggregates
sequential steps within a local process. The idea of an aggregated transaction has been
used to prove a protocol for database systems [36], where aggregation is obtained also in
a local process by showing the commutativity of actions from simple syntactic analysis.
Ours is the first method that aggregates steps across distributed components.

In program verification, proofs can be simplified by pretending that a statement is
atomic if its execution contains at most one access of a shared variable. This is the so-
called “single-action rule” [28], [12], [26]. The single-action rule is generalized in [27].
This method classifies program statements as “left-movers” or “right-movers” depend-
ing on their commutative properties. Using these properties, the statements are permuted
to obtain a coarser-grained version of the program, for which safety properties can be
checked.

Cohen used an idea similar to aggregation to prove global progress properties by
combining progress properties of local processes [6]. The idea of how to construct our
aggregation function was inspired by a method of Burch and Dill for defining abstraction
functions when verifying microprocessors [3].

1.3. Contents of the Paper

This paper is organized as follows. Section 2 defines the verification goal and Section 3
presents the verification method. Section 4 describes the FLASH cache coherence proto-
col in two ways: in terms of transactions and per-node-based steps. Section 5 illustrates
the method on the FLASH protocol. Using the reduced model obtained by aggrega-
tion, Section 6 proves that one of the two distinct modes supported by the protocol
implements a sequential consistency memory model. Finally, Section 7 concludes and
proposes possible lines of future research.

2. Verification Objective

The goal of formal verification is usually to show that two alternative descriptions of the
same behavior are consistent. The notion of consistency varies according to the details

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Verification of Cache Coherence Protocols by Aggregation of Distributed Transactions 359

of the verification problem. The aim of this section is to define the objective of formal
verification precisely for transaction-oriented protocols. To do so, we must first describe
our model of these protocols.

The verification method begins with two logical descriptions: a description of the
state graph of the implementation, and a description of the state graph of the specification.
The implementation description contains a set ofstate variables, which is partitioned
into specification variablesand implementation variables. The setQ of statesof the
implementation is the set of assignments of values to state variables. The description of
the implementation also includes a logical formula defining the relation between a state
and its possible successors. The next state choices are represented by a set of functionsF
from states to states. Each function inF maps a given implementation state to a possible
successor state. The implementation is nondeterministic ifF has more than one function.

We could also have represented the next state choices as a relation, but the “set of
functions” representation is much more suitable for the verification method we describe
below. It is also easy to represent protocols in this way. For example, languages of iterated
guarded commands, such as Murphi [10] and UNITY [4] can be translated directly into
the above representation.

The description of the specification state graph is similar to the implementation
description. A specification state is an assignment of values to thespecification variables
of the implementation (implementation variables do not appear in the specification).
Also, every state in the specification has a transition to itself, which we call anidle
step. The idle steps are necessary to represent implementation steps that do not change
specification variables.

The verification method relies on there being a set oftransactionswhich the com-
putation is supposed to implement. A transaction is atomic at the specification level,
meaning that it occurs in a single state transition in the specification. However, transac-
tions in the implementation are nonatomic; they may involve many steps that are executed
in several different components of the implementation.

Each transaction in the implementation must have an identifiablecommit step. In-
tuitively, when tracing through the steps of a transaction, the commit step is the im-
plementation step that first makes an inevitable change in the specification variables.
Implementation states that occur before the transaction or during the transaction but be-
fore the commit step are calledprecommit statesfor that transaction. The transaction is
completewhen the last specification variable change occurs. The states after the commit
step but before the completion of the transaction are calledpostcommit statesfor the
transaction. A state where every committed transaction has completed is called aclean
state.

Formally, all of the above concepts can be derived once the postcommit states are
known for each transaction. The precommit states for the transaction are the states that
are not postcommit; the commit step for a transaction is the transition from a precommit
state to a postcommit state for that transaction; and the completion step is the transition
from a postcommit state to a precommit state. A state is clean if it is a precommit state
for everytransaction.

We can now describe our objective in formally verifying transaction-oriented pro-
tocols. We suppose that the designer of a protocol understands how the implementation
steps correspond to the transactions he or she is trying to implement. This correspon-
dence is represented formally as a function that maps each implementation step to the

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

