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Abstract 
The FLASH multiprocessor efficiently integrates support for 

cache-coherent shared memory and high-performance message 
passing, while minimizing both hardware and software overhead. 
Each node in FLASH contains a microprocessor, a portion of the 
machine's global memory, a port to the interconnection network, 
an I/0 interface, and a custom node controller called MAGIC. 
The MAGIC chip handles all communication both within the 
node and among nodes, using hardwired data paths for efficient 
data movement and a programmable processor optimized for 
executing protocol operations. The use of the protocol processor 
makes FLASH very flexible - it can support a variety of differ­
ent communication mechanisms- and simplifies the design and 
implementation. 

This paper presents the architecture of FLASH and MAGIC, 
and discusses the base cache-coherence and message-passing 
protocols. Latency and occupancy numbers, which are derived 
from our system-level simulator and our Verilog code, are given 
for several common protocol operations. The paper also 
describes our software strategy and FLASH's current status. 

1 Introduction 

The two architectural techniques for communicating 
data among processors in a scalable multiprocessor are 
message passing and distributed shared memory (DSM). 
Despite significant differences in how programmers view 
these two architectural models, the underlying hardware 
mechanisms used to implement these approaches have 
been converging. Current DSM and message-passing 
multiprocessors consist of processing nodes intercon­
nected with a high-bandwidth network. Each node con­
tains a node processor, a portion of the physically 
distributed memory, and a node controller that connects 
the processor, memory, and network together. The princi­
pal difference between message-passing and DSM 
machines is in the protocol implemented by the node con­
troller for transferring data both within and among nodes. 

Perhaps more surprising than the similarity of the over­
all structure of these types of machines is the commonality 
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in functions performed by the node controller. In both 
cases, the primary performance-critical function of the 
node controller is the movement of data at high bandwidth 
and low latency among the processor, memory, and net­
work. In addition to these existing similarities, the archi­
tectural trends for both styles of machine favor further 
convergence in both the hardware and software mecha­
nisms used to implement the communication abstractions. 
Message-passing machines are moving to efficient support 
of short messages and a uniform address space, features 
normally associated with DSM machines. Similarly, DSM 
machines are starting to provide support for message-like 
block transfers (e.g., the Cray T3D), a feature normally 
associated with message-passing machines. 

The efficient integration and support of both cache­
coherent shared memory and low-overhead user-level 
message passing is the primary goal of the FLASH (FLex­
ible Architecture for SHared memory) multiprocessor. 
Efficiency involves both low hardware overhead and high 
performance. A major problem of current cache-coherent 
DSM machines (such as the earlier DASH machine 
(LLG+92]) is their high hardware overhead, while a major 
criticism of current message-passing machines is their 
high software overhead for user-level message passing. 
FLASH integrates and streamlines the hardware primitives 
needed to provide low-cost and high-performance support 
for global cache coherence and message passing. We aim 
to achieve this support without compromising the protec­
tion model or the ability of an operating system to control 
resource usage. The latter point is important since we want 
FLASH to operate well in a general-purpose multipro­
grammed environment with many users sharing the 
machine as well as in a traditional supercomputer environ­
ment. 

To accomplish these goals we are designing a custom 
node controller. This controller, called MAGIC (Memory 
And General Interconnect Controller), is a highly inte­
grated chip that implements all data transfers both within 
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Figure 2.1. FLASH system architecture. 

the node and between the node and the network. To deliver 
high performance, the MAGIC chip contains a specialized 
data path optimized to move data between the memory, 
network, processor, and I/0 ports in a pipelined fashion 
without redundant copying. To provide the flexible control 
needed to support a variety of DSM and message-passing 
protocols, the MAGIC chip contains an embedded proces­
sor that controls the data path and implements the proto­
col. The separate data path allows the processor to update 
the protocol data structures (e.g., the directory for cache 
coherence) in parallel with the associated data transfers. 

This paper describes the FLASH design and rationale. 
Section 2 gives an overview of FLASH. Section 3 briefly 
describes two example protocols, one for cache-coherent 
shared memory and one for message passing. Section 4 
presents the microarchitecture of the MAGIC chip. 
Section 5 briefly presents our system software strategy and 
Section 6 presents our implementation strategy and cur­
rent status. Section 7 discusses related work and we con­
clude in Section 8. 

2 FLASH Architecture Overview 

FLASH is a single-address-space machine consisting of 
a large number of processing nodes connected by a low­
latency, high-bandwidth interconnection network. Every 
node is identical (see Figure 2.1), containing a high-per­
formance off-the-shelf microprocessor with its caches, a 
portion of the machine's distributed main memory, and the 
MAGIC node controller chip. The MAGIC chip forms the 
heart of the node, integrating the memory controller, 1/0 
controller, network interface, and a progranunable proto­
col processor. This integration allows for low hardware 
overhead while supporting both cache-coherence and mes­
sage-passing protocols in a scalable and cohesive fashion. 1 
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The MAGIC architecture is designed to offer both flex­
ibility and high performance. First, MAGIC includes a 
progranunable protocol processor for flexibility. Second, 
MAGIC's central location within the node ensures that it 
sees all processor, network, and I/0 transactions, allowing 
it to control all node resources and support a variety of 
protocols. Third, to avoid limiting the node design to any 
specific protocol and to accommodate protocols with vary­
ing memory requirements, the node contains no dedicated 
protocol storage; instead, both the protocol code and pro­
tocol data reside in a reserved portion of the node's main 
memory. However, to provide high-speed access to fre­
quently-used protocol code and data, MAGIC contains on­
chip instruction and data caches. Finally, MAGIC sepa­
rates data movement logic from protocol state manipula­
tion logic. The hardwired data movement logic achieves 
low latency and high bandwidth by supporting highly­
pipelined data transfers without extra copying within the 
chip. The protocol processor employs a hardware dispatch 
table to help service requests quickly, and a coarse-level 
pipeline to reduce protocol processor occupancy. This sep­
aration and specialization of data transfer and control logic 
ensures that MAGIC does not become a latency or band­
width bottleneck. 

FLASH nodes communicate by sending intra- and 
inter-node commands, which we refer to as messages. To 
implement a protocol on FLASH, one must define what 
kinds of messages will be exchanged (the message types), 

1. Our decision to use only one compute processor per node rather than 
multiple processors was driven mainly by pragmatic concerns. Using 
only one processor considerably simplifies the node design, and given the 
high bandwidth requirements of mOdern processors, it was not clear that 
we could support multiple processors productively. However, nothing in 
our approach precludes the use of multiple processors per node. 
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and write the corresponding code sequences for the proto­
col processor (the handlers). Each handler performs the 
necessary actions based on the machine state and the infor­
mation in the message it receives. Handler actions include 
updating machine state, communicating with the local pro­
cessor, and communicating with other nodes via the net­
work. 

Multiple protocols can be integrated efficiently in 
FLASH by ensuring that messages in different protocols 
are assigned different message types. The handlers for the 
various protocols then can be dispatched as efficiently as if 
only a single protocol were resident on the machine. 
Moreover, although the handlers are dynamically inter­
leaved, each handler invocation runs without interruption 
on MAGIC's embedded processor, easing the concurrent 
sharing of state and other critical resources. MAGIC also 
provides protocol-independent deadlock avoidance sup­
port, allowing multiple protocols to coexist without dead­
locking the machine or having other negative interactions. 

Since FLASH is designed to scale to thousands of pro­
cessing nodes, a comprehensive protection and fault con­
tainment strategy is needed to assure acceptable system 
availability. At the user level, the virtual memory system 
provides protection against application software errors. 
However, system-level errors such as operating system 
bugs and hardware faults require a separate fault detection 
and containment mechanism. The hardware and operating 
system cooperate to identify, isolate, and contain these 
faults. MAGIC provides a hardware-based "firewall" 
mechanism that can be used to prevent certain operations 
(memory writes, for example) from occurring on unautho­
rized addresses. Error-detection codes ensure data integ­
rity: ECC protects main memory and CRCs protect 
network traffic. Errors are reported to the operating sys­
tem, which is responsible for taking suitable action. 

3 FLASH Protocols 

This section presents a base cache-coherence protocol 
and a base block-transfer protocol we have designed for 
FLASH. We use the term "base" to emphasize that these 
two protocols are simply the ones we chose to implement 
first; Section 3.3 discusses protocol extensions and alter­
natives. 

3.1 Cache Coherence Protocol 

The base cache-coherence protocol is directory-based 
and has two components: a scalable directory data struc­
ture, and a set of handlers. For a scalable directory struc­
ture, FLASH uses dynamic pointer allocation [Simoni92], 
illustrated in Figure 3.1. In this scheme, each cache line­
sized block- 128 bytes in the prototype- of main mem­
ory is associated with an 8-byte state word called a direc-
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tory header, which is stored in a contiguous section of 
main memory devoted solely to the cache-coherence pro­
tocol. Each directory header contains some boolean flags 
and a link field that points to a linked list of sharers. For 
efficiency, the first element of the sharer list is stored in the 
directory header itself. If a block of memory is cached by 
more than one processor, additional memory for its list of 
sharers is allocated from the pointer/link store. Like the 
directory headers, the pointer/link store is also a physically 
contiguous region of main memory. Each entry in the 
pointer/link store consists of a pointer to the sharing pro­
cessor, a link to the next entry in the list, and an end-of-list 
bit. A free list is used to track the available entries in the 
pointer/link store. Pointer/link store entries are allocated 
from the free list as cache misses are satisfied, and are 
returned to the free list either when the line is written and 
invalidations are sent to each cache on the list of sharers, 
or when a processor notifies the directory that it is no 
longer caching a block2. 

A significant advantage of dynamic pointer allocation 
is that the directory storage requirements are scalable. The 
amount of memory needed for the directory headers is pro­
portional to the local memory per node, and scales as more 
processors are added. The total amount of memory needed 
in the machine for the pointer/link store is proportional to 
the total amount of cache in the system. Since the amount 
of cache is much smaller that the amount of main memory, 
the size of the pointer/link store is sufficient to maintain 
full caching information, as long as the loading on the dif­
ferent memory modules is uniform. When this uniformity 
does not exist, a node can run out of pointer/link storage. 
While a detailed discussion is beyond the scope of this 
paper, several heuristics can be used in this situation to 
ensure reasonable performance. Overall, the directory 
occupies 7% to 9% of main memory, depending on system 
configuration. 

Apart from the data structures used to maintain direc­
tory information, the base cache-coherence protocol is 
similar to the DASH protocol [LLG+90]. Both protocols 
utilize separate request and reply networks to eliminate 
request-reply cycles in the network. Both protocols for­
ward dirty data from a processor's cache directly to a 
requesting processor, and both protocols use negative 
acknowledgments to avoid deadlock and to cause retries 
when a requested line is in a transient state. The main dif­
ference between the two protocols is that in DASH each 
cluster collects its own invalidation acknowledgments, 
whereas in FLASH invalidation acknowledgments are col-

2. The base cache-coherence protocol relies on replacement hints. The 
protocol could be modified to accommodate processors which do not pro­
vide these hints. 
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Figure 3.1. Data structures for the dynamic pointer allocation directory scheme. 

lected at the home node, that is, the node where the direc­
tory data is stored for that block. 

Avoiding deadlock is difficult in any cache-coherence 
protocol. Below we discuss how the base protocol handles 
the deadlock problem, and illustrate some of the protocol­
independent deadlock avoidance mechanisms of the 
MAGIC architecture. Although this discussion focuses on 
the base cache-coherence protocol, any protocol run on 
FLASH can use these mechanisms to eliminate the dead­
lock problem. 

As a first step, the base protocol divides all messages 
into requests (e.g., read, read-exclusive, and invalidate 
requests) and replies (e.g., read and read-exclusive data 
replies, and invalidation acknowledgments). Second, the 
protocol uses the virtual lane support in the network rout­
ers to transmit requests and replies over separate logical 
networks. Next, it guarantees that replies can be sunk, that 
is, replies generate no additional outgoing messages. This 
eliminates the possibility of request-reply circular depen­
dencies. To break request-request cycles, requests that 
cannot be sunk may be negatively acknowledged, effec­
tively turning those requests into replies. 

The final requirement for a deadlock solution is a 
restriction placed on all handlers: they must yield the pro­
tocol processor if they cannot run to completion. If a han­
dler violates this constraint and stalls waiting for space on 
one of its output queues, the machine could potentially 
deadlock because it is no longer servicing messages from 
the network. To avoid this type of deadlock, the schedul­
ing mechanism for the incoming queues is initialized to 
indicate which incoming queues contain messages that 
may require outgoing queue space. The scheduler will not 
select an incoming queue unless the corresponding outgo­
ing queue space requirements are satisfied. 

However, in some cases, the number of outgoing mes­
sages a handler will send cannot be determined before-
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hand, preventing the scheduler from ensuring adequate 
outgoing queue space for these handlers. For example, an 
incoming request (for which only outgoing reply queue 
space is guaranteed) may need to be forwarded to a dirty 
remote node. If at this point the outgoing request queue is 
full, the protocol processor negatively acknowledges the 
incoming request, converting it into a reply. A second case 
not handled by the scheduler is an incoming write miss 
that is scheduled and finds that it needs to send N invalida­
tion requests into the network. Unfortunately, the outgoing 
request queue may have fewer than N spots available. As 
stated above, the handler cannot simply wait for space to 
free up in the outgoing request queue to send the remain­
ing invalidations. To solve this problem, the protocol 
employs the software queue where it can suspend mes­
sages to be rescheduled at a later time. 

The software queue is a reserved region of main mem­
ory that any protocol can use to suspend message process­
ing temporarily. For instance, each time MAGIC receives 
a write request to a shared line, the corresponding handler 
reserves space in the software queue for possible resched­
uling. If the queue is already full, the incoming request is 
simply negatively acknowledged. This case should be 
extremely rare. If the handler discovers that it needs to 
send N invalidations, but only M < N spots are available in 
the outgoing request queue, the handler sends M invalidate 
requests and then places itself on the software queue. The 
list of sharers at this point contains only those processors 
that have not been invalidated. When the write request is 
rescheduled off of the software queue, the new handler 
invocation continues sending invalidation requests where 
the old one left off. 

3.2 Message Passing Protocol 

In FLASH, we distinguish long messages, used for 
block transfer, from short messages, such as those required 
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for synchronization. This section discusses the block 
tiansfer mechanism; Section 3.3 discusses short messages. 

The design of the block transfer protocol was driven by 
three main goals: provide user-level access to block trans­
fer without sacrificing protection; achieve tiansfer band­
width and latency comparable to a message-passing 
machine containing dedicated hardware support for this 
task; and operate in harmony with other key attributes of 
the machine including cache coherence, virtual memory, 
and multiprogramming [HGG94]. We achieve high perfor­
mance because MAGIC efficiently streams data to the 
receiver. The performance is further improved by the elim­
ination of processor interrupts and system calls in the com­
mon case, and by the avoidance of extra copying of 
message data. 

To distinguish a user-level message from the low-level 
messages MAGIC sends between nodes, this section 
explicitly refers to the former as a user message. Sending a 
user message in FLASH logically consists of three phases: 
initiation, transfer, and reception/completion. 

To send a user message, an application process calls a 
library routine to communicate the parameters of the user­
level message to MAGIC. This communication happens 
using a series of uncached writes to special addresses 
(which act as memory-mapped commands). Unlike stan­
dard uncached writes, tliese special writes invoke a differ­
ent handler that accumulates information from the 
command into a message description record in MAGIC's 
memory. The final command is an uncached read, to which 
MAGIC replies with a value indicating if the message is 
accepted. Once the message is accepted, MAGIC invokes 
a transfer handler that takes over responsibility for trans­
ferring the user message to its destination, allowing the 
main processor to run in parallel with the message transfer. 

The transfer handler sends the user message data as a 
series of independent, cache line-sized messages. The 
tiansfer handler keeps the user message data coherent by 
checking the directory state as the transfer proceeds, tak­
ing appropriate coherence actions as needed. Block trans­
fers are broken into cache line-sized chunks because the 
system is optimized for data transfers of this size, and 
because block transfers can then utilize the deadlock pre­
vention mechanisms implemented for the base cache­
coherence protocol. From a deadlock avoidance perspec­
tive, the user message transfer is similar to sending a long 
list of invalidations: the transfer handler may only be able 
to send part of the user message in a single activation. To 
avoid filling the outgoing queue and to allow other han­
dlers to execute, the transfer handler periodically marks its 
progress and suspends itself on the software queue. 

When each component of the user-level message 
arrives at the destination node, a reception handler is 
invoked which stores the associated message data in mem-
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ory and updates the number of message components 
received. Using information provided in advance by the 
receiving process, the handler can store the data directly in 
the user process's memory without extra copying. When 
all the user message data has been received, the handler 
notifies the local processor that a user message has arrived 
(the application can choose to poll for the user message 
arrival or be interrupted), and sends a single acknowledg­
ment back to the sender, completing the tiansfer. 

Section 4.3 discusses the anticipated performance of 
this protocol. 

3.3 Protocol Extensions and Alternatives 

MAGIC's flexible design supports a variety of proto­
cols, not just the two described in Section 3.1 and 
Section 3.2. By changing the handlers, one can implement 
other cache-coherence and message-passing protocols, or 
support completely different operations and communica­
tion models. Consequently, FLASH is ideal for experi­
menting with new protocols. 

For example, the handlers can be modified to emulate 
the "attraction memory" found in a cache-only memory 
architecture, such as Kendall Square Research's ALL­
CACHE [KSR92]. A handler that normally forwards a 
remote request to the home node in the base cache-coher­
ence protocol can be expanded to first check the local 
memory for the presence of the data. Because MAGIC 
stores protocol data structures in main memory, it has no 
difficulty accommodating the different state information 
(e.g., attraction memory tags) maintained by a COMA 
protocol. 

Another possibility is to implement synchronization 
primitives as MAGIC handlers. Primitives executing on 
MAGIC avoid the cost of interrupting the main processor 
and can exploit MAGIC's ability to communicate effi­
ciently with other nodes. In addition, guaranteeing the ato­
micity of the primitives is simplified since MAGIC 
handlers are non-interruptible. Operations such as 
fetch-and-op and tree barriers are ideal candidates for this 
type of implementation. 

FLASH's short message support corresponds closely to 
the structuring of communication using active messages as 
advocated by von Eicken et al. [vECG+92]. However, the 
MAGIC chip supports fast active messages only at the sys­
tem level, as opposed to the user level. While von Eicken 
et al. argue for user-level active messages, we have found 
that system-level active messages suffice and in many 
ways simplify matters. For example, consider the shared­
memory model and the ordinary read/write requests issued 
by compute processors. Since the virtual addresses issued 
by the processor are translated into physical addresses and 
are protection-checked by the TLB before they reach the 
MAGIC chip, no further translation or protection checks 
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