
Petition for Inter Partes Review of
U.S. Pat. No. 7,296,121

IPR2015‐00158
EXHIBIT

Sony‐

The Stanford FLASH Multiprocessor

Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein,
Richard Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter,

Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Abstract
The FLASH multiprocessor efficiently integrates support for

cache-coherent shared memory and high-performance message
passing, while minimizing both hardware and software overhead.
Each node in FLASH contains a microprocessor, a portion of the
machine's global memory, a port to the interconnection network,
an I/0 interface, and a custom node controller called MAGIC.
The MAGIC chip handles all communication both within the
node and among nodes, using hardwired data paths for efficient
data movement and a programmable processor optimized for
executing protocol operations. The use of the protocol processor
makes FLASH very flexible - it can support a variety of differ­
ent communication mechanisms- and simplifies the design and
implementation.

This paper presents the architecture of FLASH and MAGIC,
and discusses the base cache-coherence and message-passing
protocols. Latency and occupancy numbers, which are derived
from our system-level simulator and our Verilog code, are given
for several common protocol operations. The paper also
describes our software strategy and FLASH's current status.

1 Introduction

The two architectural techniques for communicating
data among processors in a scalable multiprocessor are
message passing and distributed shared memory (DSM).
Despite significant differences in how programmers view
these two architectural models, the underlying hardware
mechanisms used to implement these approaches have
been converging. Current DSM and message-passing
multiprocessors consist of processing nodes intercon­
nected with a high-bandwidth network. Each node con­
tains a node processor, a portion of the physically
distributed memory, and a node controller that connects
the processor, memory, and network together. The princi­
pal difference between message-passing and DSM
machines is in the protocol implemented by the node con­
troller for transferring data both within and among nodes.

Perhaps more surprising than the similarity of the over­
all structure of these types of machines is the commonality

1063-6897194 $03.00 © 1994 IEEE
302

in functions performed by the node controller. In both
cases, the primary performance-critical function of the
node controller is the movement of data at high bandwidth
and low latency among the processor, memory, and net­
work. In addition to these existing similarities, the archi­
tectural trends for both styles of machine favor further
convergence in both the hardware and software mecha­
nisms used to implement the communication abstractions.
Message-passing machines are moving to efficient support
of short messages and a uniform address space, features
normally associated with DSM machines. Similarly, DSM
machines are starting to provide support for message-like
block transfers (e.g., the Cray T3D), a feature normally
associated with message-passing machines.

The efficient integration and support of both cache­
coherent shared memory and low-overhead user-level
message passing is the primary goal of the FLASH (FLex­
ible Architecture for SHared memory) multiprocessor.
Efficiency involves both low hardware overhead and high
performance. A major problem of current cache-coherent
DSM machines (such as the earlier DASH machine
(LLG+92]) is their high hardware overhead, while a major
criticism of current message-passing machines is their
high software overhead for user-level message passing.
FLASH integrates and streamlines the hardware primitives
needed to provide low-cost and high-performance support
for global cache coherence and message passing. We aim
to achieve this support without compromising the protec­
tion model or the ability of an operating system to control
resource usage. The latter point is important since we want
FLASH to operate well in a general-purpose multipro­
grammed environment with many users sharing the
machine as well as in a traditional supercomputer environ­
ment.

To accomplish these goals we are designing a custom
node controller. This controller, called MAGIC (Memory
And General Interconnect Controller), is a highly inte­
grated chip that implements all data transfers both within

f

Find authenticated court documents without watermarks at docketalarm.com.

aghiam
Typewritten Text
1006

aghiam
Typewritten Text

aghiam
Typewritten Text

https://www.docketalarm.com/

Figure 2.1. FLASH system architecture.

the node and between the node and the network. To deliver
high performance, the MAGIC chip contains a specialized
data path optimized to move data between the memory,
network, processor, and I/0 ports in a pipelined fashion
without redundant copying. To provide the flexible control
needed to support a variety of DSM and message-passing
protocols, the MAGIC chip contains an embedded proces­
sor that controls the data path and implements the proto­
col. The separate data path allows the processor to update
the protocol data structures (e.g., the directory for cache
coherence) in parallel with the associated data transfers.

This paper describes the FLASH design and rationale.
Section 2 gives an overview of FLASH. Section 3 briefly
describes two example protocols, one for cache-coherent
shared memory and one for message passing. Section 4
presents the microarchitecture of the MAGIC chip.
Section 5 briefly presents our system software strategy and
Section 6 presents our implementation strategy and cur­
rent status. Section 7 discusses related work and we con­
clude in Section 8.

2 FLASH Architecture Overview

FLASH is a single-address-space machine consisting of
a large number of processing nodes connected by a low­
latency, high-bandwidth interconnection network. Every
node is identical (see Figure 2.1), containing a high-per­
formance off-the-shelf microprocessor with its caches, a
portion of the machine's distributed main memory, and the
MAGIC node controller chip. The MAGIC chip forms the
heart of the node, integrating the memory controller, 1/0
controller, network interface, and a progranunable proto­
col processor. This integration allows for low hardware
overhead while supporting both cache-coherence and mes­
sage-passing protocols in a scalable and cohesive fashion. 1

303

Net JJO
MAGIC

The MAGIC architecture is designed to offer both flex­
ibility and high performance. First, MAGIC includes a
progranunable protocol processor for flexibility. Second,
MAGIC's central location within the node ensures that it
sees all processor, network, and I/0 transactions, allowing
it to control all node resources and support a variety of
protocols. Third, to avoid limiting the node design to any
specific protocol and to accommodate protocols with vary­
ing memory requirements, the node contains no dedicated
protocol storage; instead, both the protocol code and pro­
tocol data reside in a reserved portion of the node's main
memory. However, to provide high-speed access to fre­
quently-used protocol code and data, MAGIC contains on­
chip instruction and data caches. Finally, MAGIC sepa­
rates data movement logic from protocol state manipula­
tion logic. The hardwired data movement logic achieves
low latency and high bandwidth by supporting highly­
pipelined data transfers without extra copying within the
chip. The protocol processor employs a hardware dispatch
table to help service requests quickly, and a coarse-level
pipeline to reduce protocol processor occupancy. This sep­
aration and specialization of data transfer and control logic
ensures that MAGIC does not become a latency or band­
width bottleneck.

FLASH nodes communicate by sending intra- and
inter-node commands, which we refer to as messages. To
implement a protocol on FLASH, one must define what
kinds of messages will be exchanged (the message types),

1. Our decision to use only one compute processor per node rather than
multiple processors was driven mainly by pragmatic concerns. Using
only one processor considerably simplifies the node design, and given the
high bandwidth requirements of mOdern processors, it was not clear that
we could support multiple processors productively. However, nothing in
our approach precludes the use of multiple processors per node.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

and write the corresponding code sequences for the proto­
col processor (the handlers). Each handler performs the
necessary actions based on the machine state and the infor­
mation in the message it receives. Handler actions include
updating machine state, communicating with the local pro­
cessor, and communicating with other nodes via the net­
work.

Multiple protocols can be integrated efficiently in
FLASH by ensuring that messages in different protocols
are assigned different message types. The handlers for the
various protocols then can be dispatched as efficiently as if
only a single protocol were resident on the machine.
Moreover, although the handlers are dynamically inter­
leaved, each handler invocation runs without interruption
on MAGIC's embedded processor, easing the concurrent
sharing of state and other critical resources. MAGIC also
provides protocol-independent deadlock avoidance sup­
port, allowing multiple protocols to coexist without dead­
locking the machine or having other negative interactions.

Since FLASH is designed to scale to thousands of pro­
cessing nodes, a comprehensive protection and fault con­
tainment strategy is needed to assure acceptable system
availability. At the user level, the virtual memory system
provides protection against application software errors.
However, system-level errors such as operating system
bugs and hardware faults require a separate fault detection
and containment mechanism. The hardware and operating
system cooperate to identify, isolate, and contain these
faults. MAGIC provides a hardware-based "firewall"
mechanism that can be used to prevent certain operations
(memory writes, for example) from occurring on unautho­
rized addresses. Error-detection codes ensure data integ­
rity: ECC protects main memory and CRCs protect
network traffic. Errors are reported to the operating sys­
tem, which is responsible for taking suitable action.

3 FLASH Protocols

This section presents a base cache-coherence protocol
and a base block-transfer protocol we have designed for
FLASH. We use the term "base" to emphasize that these
two protocols are simply the ones we chose to implement
first; Section 3.3 discusses protocol extensions and alter­
natives.

3.1 Cache Coherence Protocol

The base cache-coherence protocol is directory-based
and has two components: a scalable directory data struc­
ture, and a set of handlers. For a scalable directory struc­
ture, FLASH uses dynamic pointer allocation [Simoni92],
illustrated in Figure 3.1. In this scheme, each cache line­
sized block- 128 bytes in the prototype- of main mem­
ory is associated with an 8-byte state word called a direc-

304

tory header, which is stored in a contiguous section of
main memory devoted solely to the cache-coherence pro­
tocol. Each directory header contains some boolean flags
and a link field that points to a linked list of sharers. For
efficiency, the first element of the sharer list is stored in the
directory header itself. If a block of memory is cached by
more than one processor, additional memory for its list of
sharers is allocated from the pointer/link store. Like the
directory headers, the pointer/link store is also a physically
contiguous region of main memory. Each entry in the
pointer/link store consists of a pointer to the sharing pro­
cessor, a link to the next entry in the list, and an end-of-list
bit. A free list is used to track the available entries in the
pointer/link store. Pointer/link store entries are allocated
from the free list as cache misses are satisfied, and are
returned to the free list either when the line is written and
invalidations are sent to each cache on the list of sharers,
or when a processor notifies the directory that it is no
longer caching a block2.

A significant advantage of dynamic pointer allocation
is that the directory storage requirements are scalable. The
amount of memory needed for the directory headers is pro­
portional to the local memory per node, and scales as more
processors are added. The total amount of memory needed
in the machine for the pointer/link store is proportional to
the total amount of cache in the system. Since the amount
of cache is much smaller that the amount of main memory,
the size of the pointer/link store is sufficient to maintain
full caching information, as long as the loading on the dif­
ferent memory modules is uniform. When this uniformity
does not exist, a node can run out of pointer/link storage.
While a detailed discussion is beyond the scope of this
paper, several heuristics can be used in this situation to
ensure reasonable performance. Overall, the directory
occupies 7% to 9% of main memory, depending on system
configuration.

Apart from the data structures used to maintain direc­
tory information, the base cache-coherence protocol is
similar to the DASH protocol [LLG+90]. Both protocols
utilize separate request and reply networks to eliminate
request-reply cycles in the network. Both protocols for­
ward dirty data from a processor's cache directly to a
requesting processor, and both protocols use negative
acknowledgments to avoid deadlock and to cause retries
when a requested line is in a transient state. The main dif­
ference between the two protocols is that in DASH each
cluster collects its own invalidation acknowledgments,
whereas in FLASH invalidation acknowledgments are col-

2. The base cache-coherence protocol relies on replacement hints. The
protocol could be modified to accommodate processors which do not pro­
vide these hints.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Memory Lines :·.·· Directory Header Free List Pointer/Link: Store
I - ---

~ ...

. . ~
I

I - _../"

. . J.......--" . . . I--4B-4
IJ-oo•t-----,C"" 128B---i•-.!l

Figure 3.1. Data structures for the dynamic pointer allocation directory scheme.

lected at the home node, that is, the node where the direc­
tory data is stored for that block.

Avoiding deadlock is difficult in any cache-coherence
protocol. Below we discuss how the base protocol handles
the deadlock problem, and illustrate some of the protocol­
independent deadlock avoidance mechanisms of the
MAGIC architecture. Although this discussion focuses on
the base cache-coherence protocol, any protocol run on
FLASH can use these mechanisms to eliminate the dead­
lock problem.

As a first step, the base protocol divides all messages
into requests (e.g., read, read-exclusive, and invalidate
requests) and replies (e.g., read and read-exclusive data
replies, and invalidation acknowledgments). Second, the
protocol uses the virtual lane support in the network rout­
ers to transmit requests and replies over separate logical
networks. Next, it guarantees that replies can be sunk, that
is, replies generate no additional outgoing messages. This
eliminates the possibility of request-reply circular depen­
dencies. To break request-request cycles, requests that
cannot be sunk may be negatively acknowledged, effec­
tively turning those requests into replies.

The final requirement for a deadlock solution is a
restriction placed on all handlers: they must yield the pro­
tocol processor if they cannot run to completion. If a han­
dler violates this constraint and stalls waiting for space on
one of its output queues, the machine could potentially
deadlock because it is no longer servicing messages from
the network. To avoid this type of deadlock, the schedul­
ing mechanism for the incoming queues is initialized to
indicate which incoming queues contain messages that
may require outgoing queue space. The scheduler will not
select an incoming queue unless the corresponding outgo­
ing queue space requirements are satisfied.

However, in some cases, the number of outgoing mes­
sages a handler will send cannot be determined before-

305

hand, preventing the scheduler from ensuring adequate
outgoing queue space for these handlers. For example, an
incoming request (for which only outgoing reply queue
space is guaranteed) may need to be forwarded to a dirty
remote node. If at this point the outgoing request queue is
full, the protocol processor negatively acknowledges the
incoming request, converting it into a reply. A second case
not handled by the scheduler is an incoming write miss
that is scheduled and finds that it needs to send N invalida­
tion requests into the network. Unfortunately, the outgoing
request queue may have fewer than N spots available. As
stated above, the handler cannot simply wait for space to
free up in the outgoing request queue to send the remain­
ing invalidations. To solve this problem, the protocol
employs the software queue where it can suspend mes­
sages to be rescheduled at a later time.

The software queue is a reserved region of main mem­
ory that any protocol can use to suspend message process­
ing temporarily. For instance, each time MAGIC receives
a write request to a shared line, the corresponding handler
reserves space in the software queue for possible resched­
uling. If the queue is already full, the incoming request is
simply negatively acknowledged. This case should be
extremely rare. If the handler discovers that it needs to
send N invalidations, but only M < N spots are available in
the outgoing request queue, the handler sends M invalidate
requests and then places itself on the software queue. The
list of sharers at this point contains only those processors
that have not been invalidated. When the write request is
rescheduled off of the software queue, the new handler
invocation continues sending invalidation requests where
the old one left off.

3.2 Message Passing Protocol

In FLASH, we distinguish long messages, used for
block transfer, from short messages, such as those required

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

for synchronization. This section discusses the block
tiansfer mechanism; Section 3.3 discusses short messages.

The design of the block transfer protocol was driven by
three main goals: provide user-level access to block trans­
fer without sacrificing protection; achieve tiansfer band­
width and latency comparable to a message-passing
machine containing dedicated hardware support for this
task; and operate in harmony with other key attributes of
the machine including cache coherence, virtual memory,
and multiprogramming [HGG94]. We achieve high perfor­
mance because MAGIC efficiently streams data to the
receiver. The performance is further improved by the elim­
ination of processor interrupts and system calls in the com­
mon case, and by the avoidance of extra copying of
message data.

To distinguish a user-level message from the low-level
messages MAGIC sends between nodes, this section
explicitly refers to the former as a user message. Sending a
user message in FLASH logically consists of three phases:
initiation, transfer, and reception/completion.

To send a user message, an application process calls a
library routine to communicate the parameters of the user­
level message to MAGIC. This communication happens
using a series of uncached writes to special addresses
(which act as memory-mapped commands). Unlike stan­
dard uncached writes, tliese special writes invoke a differ­
ent handler that accumulates information from the
command into a message description record in MAGIC's
memory. The final command is an uncached read, to which
MAGIC replies with a value indicating if the message is
accepted. Once the message is accepted, MAGIC invokes
a transfer handler that takes over responsibility for trans­
ferring the user message to its destination, allowing the
main processor to run in parallel with the message transfer.

The transfer handler sends the user message data as a
series of independent, cache line-sized messages. The
tiansfer handler keeps the user message data coherent by
checking the directory state as the transfer proceeds, tak­
ing appropriate coherence actions as needed. Block trans­
fers are broken into cache line-sized chunks because the
system is optimized for data transfers of this size, and
because block transfers can then utilize the deadlock pre­
vention mechanisms implemented for the base cache­
coherence protocol. From a deadlock avoidance perspec­
tive, the user message transfer is similar to sending a long
list of invalidations: the transfer handler may only be able
to send part of the user message in a single activation. To
avoid filling the outgoing queue and to allow other han­
dlers to execute, the transfer handler periodically marks its
progress and suspends itself on the software queue.

When each component of the user-level message
arrives at the destination node, a reception handler is
invoked which stores the associated message data in mem-

306

ory and updates the number of message components
received. Using information provided in advance by the
receiving process, the handler can store the data directly in
the user process's memory without extra copying. When
all the user message data has been received, the handler
notifies the local processor that a user message has arrived
(the application can choose to poll for the user message
arrival or be interrupted), and sends a single acknowledg­
ment back to the sender, completing the tiansfer.

Section 4.3 discusses the anticipated performance of
this protocol.

3.3 Protocol Extensions and Alternatives

MAGIC's flexible design supports a variety of proto­
cols, not just the two described in Section 3.1 and
Section 3.2. By changing the handlers, one can implement
other cache-coherence and message-passing protocols, or
support completely different operations and communica­
tion models. Consequently, FLASH is ideal for experi­
menting with new protocols.

For example, the handlers can be modified to emulate
the "attraction memory" found in a cache-only memory
architecture, such as Kendall Square Research's ALL­
CACHE [KSR92]. A handler that normally forwards a
remote request to the home node in the base cache-coher­
ence protocol can be expanded to first check the local
memory for the presence of the data. Because MAGIC
stores protocol data structures in main memory, it has no
difficulty accommodating the different state information
(e.g., attraction memory tags) maintained by a COMA
protocol.

Another possibility is to implement synchronization
primitives as MAGIC handlers. Primitives executing on
MAGIC avoid the cost of interrupting the main processor
and can exploit MAGIC's ability to communicate effi­
ciently with other nodes. In addition, guaranteeing the ato­
micity of the primitives is simplified since MAGIC
handlers are non-interruptible. Operations such as
fetch-and-op and tree barriers are ideal candidates for this
type of implementation.

FLASH's short message support corresponds closely to
the structuring of communication using active messages as
advocated by von Eicken et al. [vECG+92]. However, the
MAGIC chip supports fast active messages only at the sys­
tem level, as opposed to the user level. While von Eicken
et al. argue for user-level active messages, we have found
that system-level active messages suffice and in many
ways simplify matters. For example, consider the shared­
memory model and the ordinary read/write requests issued
by compute processors. Since the virtual addresses issued
by the processor are translated into physical addresses and
are protection-checked by the TLB before they reach the
MAGIC chip, no further translation or protection checks

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

