

Design and Performance of SMPs
With Asynchronous Caches

Fong Pong, Michel Dubois*, Ken Lee
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-149
November, 1999

E-mail: fpong@hpl.hp.com
 kenlee@exch.hpl.hp.com
 dubois@paris.usc.edu

Asynchronous,
cache coherence,
shared-memory
multiprocessor,
SMP

We propose and evaluate a cache-coherent symmetric multiprocessor system
(SMP) based on asynchronous caches. In a system with asynchronous
caches, processors and memory controllers may observe the same coherence
request at different points in time. All protocol transactions are uni-
directional and processors do not report snoop results. The need for an
extensive interlocking protocol between processor nodes and memory
controller which is characteristic of snooping buses is thus removed.

This design overcomes some of the scalability problem of a multi-drop
shared-bus by employing high-speed point-to-point links, whose scalability
prospects are much better than for shared buses. Memory and processors
communicate through a set of queues. This highly pipelined memory system
design is a better match to emerging ILP processors than bus-based
snooping. Simulation results for ILP processors show that the shared-bus
design is limited by its bandwidth. By contrast the parallel link design has
ample bandwidth and yields large performance gain for the transaction
processing and scientific benchmarks that we have considered.

Besides higher performance the asynchronous design we propose
considerably simplifies the behavior expected from the hardware. This is
important because snooping bus protocols are so complex today that their
verification has become a major challenge.

∗ Department of Electrical Engineering-Systems. University of Southern California Los Angeles,
California
 Copyright Hewlett-Packard Company 1999

f

Find authenticated court documents without watermarks at docketalarm.com.

peichman
ALL-2024

https://www.docketalarm.com/

2

1 Introduction

Because of their simplicity, shared-bus SMPs are a dominant architecture for small-scale systems.

By taking advantage of the broadcast nature of a shared-bus, snooping protocols are the de facto

schemes for achieving cache coherence. Figure 1 shows the basic configuration to support a four-

states MESI protocol [22] which is widely used in cache-coherent shared-memory multiprocessor

systems. In such a system, every processor is associated with a bus watcher (a “snooper”) which

monitors all bus activities. When a processor initiates a coherence transaction such as a load miss

on the bus, all snoopers in all processors latch in the request. These snoop requests consult the

local caches, take necessary actions and respond with appropriate snooping results. Each protocol

transaction on the bus is deemed complete when all caches have reported their snoop result.

Although the snooping bus-based design is a classic, well-understood design and offers many

good features, it is becoming harder to design a shared bus-based SMP that keeps pace with

emerging ILP processor technology.

First and foremost, the multi-drop bus architecture is reaching its speed limit. When the clocking

speed was low, the electrical length of the bus was short enough that distributed behavior of the

bus could be ignored. However, as bus speeds increase, the processor boards connected to the bus

behave as stubs resulting in reflections and ringing of bus signals. There exist several schemes for

terminations and signaling to reduced reflections, but none solves the fundamental problem of

stubs. Because of design constraints such as heat dissipation the space needed between stubs is

longer at high speeds. This limits the operating speed of buses to 150MHz in current systems.

Figure 1 A Bus-based Cache System with Shared/Dirty Signals.

For future processor designs with deep speculation, multiple cores, and/or multithreading [13, 14,

P0

C0

P1 P3

Control+Address

P2
bus-watcher

Dirty

C1 C2 C3

Shared

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

23], the shared-bus will no doubt become a major bottleneck even in small multiprocessor config-

urations. An alternative is to have multiple short bus segments bridged by the memory controller

[15, 18]. This approach has its own limitations. It is difficult to connect more than two full busses

to the memory controller without an inordinate number of I/O pins. Furthermore, all bus transac-

tions that occurs in one bus segment must be propagated to other bus segments unless the memory

controller is equipped with coherence filters. A coherence filter essentially keeps track of memory

blocks that are cached in the bus segment. Regardless of these possible extensions, the fundamen-

tal problem of a shared-bus design remains. For instance, every request must start with an arbitra-

tion cycle and spend one cycle for bus turnaround at the end. The protocol sets an upper bound on

the maximum attainable throughput.

Secondly, the bus snooping scheme requires all processors (and all snooping agents such as I/O

bridge chips with I/O caches) to synchronize their responses. Generally speaking, the snoop results

serve three purposes: 1) they indicate the safe completion of the snoop request in the cache hierar-

chy of the local processor, 2) they provide sharing information, and 3) they identify which entity

should respond with the missing data block, i.e, either another processor or memory. For the pur-

pose of illustration (see Figure 1), assume that the snooping results are propagated to all proces-

sors via two bus lines Shared and Dirty. For a load miss, the processor may load the data block into

the exclusive (E) or shared (S) state depending on whether the Shared or Dirty signal is asserted. In

the case where a processor has the most recently modified copy of the requested data, it asserts the

Dirty signal preventing the memory from responding with the data.

Figure 2 Illustration of Snooping Paths in Modern Multiprocessors.

The common approach is to require that all caches connected to the bus generate their snoop

D$ I$

L2$

Concentration

write-back$ prefetching$

L3$

snoop result

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

results in exactly the same bus cycle. This requirement imposes a fixed latency time constraint

between receiving each bus request and producing the snoop result and this fixed snooping delay

must accommodate to the worst possible case. This constraint presents a number of challenges for

the designers of highly-integrated processors with cache hierarchies. As illustrated in Figure 2,

many modules must be snooped and the final results must be concentrated. In order to meet the

fixed latency constraint, the processors may require ultra-fast snooping logic paths. The processor

may have to adopt a priority scheme assigning a higher priority to snoop requests than to requests

from the processor’s execution unit.

More relaxed designs such as Intel’s P6 bus [16] allow processors and memory controllers to insert

wait states when they are slow to respond. This scheme complicates the logic design because

every processor must closely monitor the activities of other processors on the bus in order to re-

generate snooping results when wait states are observed. In the case of Intel’s bus, for instance, the

processor must repeat its snooping result two cycles after observing a wait state cycle.

Yet another approach to synchronizing snoop results is the use of a shared wired-or Inhibit signal

on the bus as was implemented in the SGI Challenge [12]. Processors may snoop at different

speeds but must report the end of their snoop cycle on this new bus line. The transaction remains

“open” for as long as any processor has not pulled down its Inhibit line. Again this interlocking of

processor and memory signals on the bus results in complex bus protocols and bookkeeping of

pending transactions in the interface of each processor, which in fact limits the number of concur-

rent transactions on the bus. The design still relies on a shared line and on bus watching and is

complex to verify. This complexity increases with the number of concurrent transaction tolerated

on the bus. Current designs are so complex that verification has become a major development cost.

In this paper, we propose an efficient cache-coherent shared-memory multiprocessor system based

on an asynchronous-snooping scheme. In this paper asynchronous refers to a model of cache-

coherent systems first theoretically introduced and proven correct in [2]. It does not refer to vari-

able-delay snooping using an inhibit line as described above. In fact it does not require reporting

snoop results or synchronizing the snoops in any way. Because of this simplification, fast, high-

bandwidth point-to-point links can be used to communicate requests and data between processors

and memory. Snooping requests to different processors are propagated independently through

queues. The number of pending and concurrent protocol transactions is only limited by the size of

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5

these FIFO queues. However by emulating a shared-bus broadcast protocol, the topology of the

point-to-point interconnection is made transparent to the processors and the memory.

The various design aspects of the new system are given in Sections 2 and 3. Section 4 is dedicated

to the evaluation methodology and system simulation models. We compare the effectiveness of

various bus-based configurations with our parallel link design. These results are presented and dis-

cussed in Section 5 and our final comments conclude the paper in Section 6.

2 A New Asynchronous Cache System Design

2.1 The Architectural Organization

We advocate an asynchronous cache system such as the one shown in Figure 3. In this design, pro-

cessors and memory controller communicate via unidirectional high-speed links [10, 25]. A set of

queues buffer requests and data blocks in case of access conflicts and also serve as adaptor

between data paths of different width.

Figure 3 The Proposed Asynchronous Cache System.

On the memory controller side, received requests are stored in a request queue. Through a high-

state data

state data
blocks

bank0

state data

state data

bank1

{

M
em

Q

memory controller

Sn
oo

pQ

parallel links

D$

address bus

I$

L2$

Scheduling Window/

data bus

D
at

aQ

R
eq

Q

bank2 bank3

processor 0

D$ I$

L2$

processor 1

p2 p3

R
eq

ue
st

D
at

a

Memory Disambiguation

Incoming Buffer

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

