
f

F
in

d
 a

u
th

e
n
tic

a
te

d
 c

o
u
rt d

o
c
u
m

e
n
ts

 w
ith

o
u
t w

a
te

rm
a
rk

s
 a

t d
o
c
k
e
ta

la
rm

.c
o
m

.

peichman
158-2011

https://www.docketalarm.com/

Parallel Computer
Architecture

A Hardware/Software Approach

David E. Culler jaswinder Pal Singh

with Anoop Gupta

IWI4

MORGAN KAUFMANN PUBLISHERS, INC.

San Francisco, California

f

F
in

d
 a

u
th

e
n
tic

a
te

d
 c

o
u
rt d

o
c
u
m

e
n
ts

 w
ith

o
u
t w

a
te

rm
a
rk

s
 a

t d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

Senior Editor Denise E.M. Penrose
Director of Production and Yonie Overton

Manufacturing
Senior Production Editor Elisabeth Beller

Editorial Coordinator Meghan Keeffe
Cover Design Martin Heirakuji Graphic Design
Cover Photo Image copyright © 1998 PhotoDisc, Inc.
Text Design Mark Ong, Side by Side Studios
Copyeditor Jennifer McClain
Proofreaders Jennifer McClain, Jeff Van Beuren,

Ken DellaPenta, Christine Sabooni

Cornpositor Nancy Logan
Illustrators Nancy Logan, Dartmouth Publishing, Inc., Cherie Plumlee
Indexer Steve Rath

Printer Quebecor Printing

Designations used by companies to distinguish their products are often claimed as trademarks or regis-
tered trademarks. In all instances where Morgan Kaufmann Publishers, Inc. is aware of a claim, the prod-
uct names appear in initial capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers, Inc.
Editorial and Sales Office

340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205
USA

Telephone 415/392-2665
Facsimile 415/982-2665

Email mkp@mkp. corn
W W W http://www.mkp.com
Order toll free 800/745-7323

Advice, Praise, and Errors: Any correspondence related to this publication or intended for the authors
should be addressed to the Editorial and Sales Office of Morgan Kaufmann Publishers, Inc., Dept. PCA
APE or sent electronically to pca@mkp.c0m. Please report errors by email to pcabugs@mkp.com. Please
check the errata page at http://www.mkp.com/pca to see if the bug has already been reported and fixed.

© 1999 Morgan Kaufmann Publishers, Inc.
All rights reserved
Printed in the United States of America

03 02 01 00 99 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any Ineans—electronic, mechanical, photocopying, recording, or otherwise—Without the prior written
permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Culler, David E.

Parallel computer architecture: a hardware/software approach /
David E. Culler, Jaswinder Pal Singh, with Anoop Gupta.

p. cm.

Includes bibliographical references and index.
ISBN 155860-343-3

1. Parallel computers. 2. Computer architecture. I. Singh,JasWinder Pal. II. Gupta, Anoop. III. Title.
QA76.58.C85 1999
004’.35—dc2I 98-28034

CIP

f

F
in

d
 a

u
th

e
n
ti
c
a
te

d
 c

o
u
rt

 d
o
c
u
m

e
n
ts

 w
it
h
o
u
t

w
a
te

rm
a
rk

s
 a

t
d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

302 CHAPTER 5 Shared Memory Multiprocessors

enhanced version of it is used in the Sun SparcServer multiprocessors (Catanzaro
1997).

The Dragon protocol consists of four states: exclusive—clean (E), shared—clean
(Sc), shared—modified (Sm), and modified (M). Exclusive—clean (or exclusive) has
the same meaning and the same motivation as before: only one cache (this cache)
has a copy of the block, and it has not been modified (i.e., the main memory is up-
to~date). Shared-clean means that potentially two or more caches (including this
one) have this block, and main memory may or may not be up—to-date. Shared-
modified means that potentially two or more caches have this block, main memory is
not up-to—date, and it is this cache’s responsibility to update the main memory at the
time this block is replaced from the cache (i.e., this cache is the owner). A block
may be in Sm state in only one cache at a time. However, it is quite possible that one
cache has the block in Sm state, while others have it in Sc state. Or it may be that no
cache has it in Sm state, but some have it in Sc state. This is why, when a cache has
the block in Sc state, memory may or may not be up—to-date; it depends on whether
some other cache has it in Sm state. M signifies exclusive ownership as before: the
block is modified (dirty) and present in this cache alone, main memory is stale, and
it is this cache’s responsibility to supply the data and to update main memory on
replacement. Note that there is no explicit invalid (I) state as in the previous proto-
cols. This is because Dragon is an update—based protocol; the protocol always keeps
the blocks in the cache up—to-date, so it is always okay to use the data present in the
cache if the tag match succeeds. However, if a block is not present in a cache at all, it
can be imagined in a special invalid or not-present state.4

The processor requests, bus transactions, and actions for the Dragon protocol are
similar to the Illinois MES1 protocol. The processor is still assumed to issue only
read (PrRd) and write (PrWr) requests. However, since we do not have an invalid
state, to specify actions on a tag mismatch we add two more request types: processor
read miss (PrRdMiss) and write miss (PrWrMiss). As for bus transactions, we have
bus read (BusRd), bus write back (BusWB), and a new transaction called bus update
(BusUpd). The BusRd and BusWB transactions have the usual semantics. The
BusUpd transaction takes the specific word (or bytes) written by the processor and
broadcasts it on the bus so that all other processors’ caches can update themselves.

By broadcasting only the contents of the specific modified word rather than the
whole cache block, it is hoped that the bus bandwidth is more efficiently utilized.
(See Exercise 5.4 for reasons why this may not always be the case.) As in the MESI
protocol, to support the E state, a shared signal (S) is available to the cache control-
ler. Finally, the only new capability needed is for the cache controller to update a
locally cached memory block (labeled an Update action) with the contents that are
being broadcast on the bus by a relevant BusUpd transaction.

4. Logically, there is another state as well, but it is rather crude and is used to bootstrap the protocol. A
“miss mode” bit is provided with each cache line to force a miss when that block is accessed. Initializa-
tion software reads data into every line in the cache with the miss mode bit turned on to ensure that the
processor will miss the first time it references a block that maps to that line. After this first miss, the miss
mode bit is turned off and the cache operates normally.

f

F
in

d
 a

u
th

e
n
tic

a
te

d
 c

o
u
rt d

o
c
u
m

e
n
ts

 w
ith

o
u
t w

a
te

rm
a
rk

s
 a

t d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

5.4.2

5.4 Assessing Protocol Design Trade—offs 307

selves do not translate into performance directly but only indirectly by increasing

the cost of misses due to contention. Contention is very difficult to estimate because

it depends on the timing parameters used and on the burstiness of the traffic, which

is not captured by the frequency measurements. Contention, timing, and hence per-

formance are also affected by lower-level interactions with hardware structures (like

queues and buffers) and policies.

The simulations used in this section do not model contention. Instead, they use a

simple PRAM cost model: all memory operations are assumed to complete in the

same amount of time (here a single cycle) regardless of whether they hit or miss in

the cache. There are three main reasons for this. First, the focus is on understanding

inherent protocol behavior and trade-offs in terms of event frequencies, not so much

on performance. Second, since we are experimenting with different cache block sizes

and organizations, we would like the interleaving of references from application pro-

cesses on the simulator to be the same regardless of these choices; that is, all proto-
cols and block sizes should see the same trace of references. With the execution-

driven rather than trace-driven simulation we use, this is only possible if we make the

cost of every memory operation the same in the simulations. Otherwise, if a reference

misses with a small cache block but hits with a larger one, for example, then it will be

delayed by different amounts in the interleaving in the two cases. It would therefore

be difficult to determine which effects are inherently due to the protocol and which

are due to the particular parameter values chosen. Third, realistic simulations that

model contention take much more time. The disadvantage of using this simple model

even to measure frequencies is that the timing model may affect some of the frequen-

cies we observe; however, this effect is small for the applications we study

The illustrative workloads we use are the six parallel programs (from the

SPLASH-2 suite) and one multiprogrammed workload described in Chapters 3 and

4. The parallel programs run in batch mode with exclusive access to the machine

and do not include operating system activity in the simulations, whereas the multi-

programmed workload includes operating system activity The number of applica-

tions used is relatively small, but the applications are primarily for illustration as

discussed in Chapter 4; the emphasis here is on choosing programs that represent

important classes of computation and with widely varying characteristics. The fre-

quencies of basic operations for the applications appear in Table 4.1. We now study

them in more detail to assess design trade-offs in cache coherency protocols.

Bandwidth Requirement under the MESI Protocol

We begin by using the default 1-MB, single-level caches per processor, as discussed

in Chapter 4. These are large enough to hold the important working sets for the

default problem sizes, which is a realistic scenario for all applications. We use four-

way set associativity (with LRU replacement) to reduce conflict misses and a 64-byte

cache block size for realism. Driving the workloads through a cache simulator that

models the Illinois MESI protocol generates the state transition frequencies shown

in Table 5.1. The data is presented as the number of state transitions of a particular

type per 1,000 references issued by the processors. Note in the table that a new state,

f

F
in

d
 a

u
th

e
n
tic

a
te

d
 c

o
u
rt d

o
c
u
m

e
n
ts

 w
ith

o
u
t w

a
te

rm
a
rk

s
 a

t d
o
c
k
e
ta

la
rm

.c
o
m

.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

