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302 CHAPTER 5 Shared Memory Multiprocessors

enhanced version of it is used in the Sun SparcServer multiprocessors (Catanzaro
1997).

The Dragon protocol consists of four states: exclusive—clean (E), shared—clean
(Sc), shared—modified (Sm), and modified (M). Exclusive—clean (or exclusive) has
the same meaning and the same motivation as before: only one cache (this cache)
has a copy of the block, and it has not been modified (i.e., the main memory is up-
to~date). Shared-clean means that potentially two or more caches (including this
one) have this block, and main memory may or may not be up—to-date. Shared-
modified means that potentially two or more caches have this block, main memory is
not up-to—date, and it is this cache’s responsibility to update the main memory at the
time this block is replaced from the cache (i.e., this cache is the owner). A block
may be in Sm state in only one cache at a time. However, it is quite possible that one
cache has the block in Sm state, while others have it in Sc state. Or it may be that no
cache has it in Sm state, but some have it in Sc state. This is why, when a cache has
the block in Sc state, memory may or may not be up—to-date; it depends on whether
some other cache has it in Sm state. M signifies exclusive ownership as before: the
block is modified (dirty) and present in this cache alone, main memory is stale, and
it is this cache’s responsibility to supply the data and to update main memory on
replacement. Note that there is no explicit invalid (I) state as in the previous proto-
cols. This is because Dragon is an update—based protocol; the protocol always keeps
the blocks in the cache up—to-date, so it is always okay to use the data present in the
cache if the tag match succeeds. However, if a block is not present in a cache at all, it
can be imagined in a special invalid or not-present state.4

The processor requests, bus transactions, and actions for the Dragon protocol are
similar to the Illinois MES1 protocol. The processor is still assumed to issue only
read (PrRd) and write (PrWr) requests. However, since we do not have an invalid
state, to specify actions on a tag mismatch we add two more request types: processor
read miss (PrRdMiss) and write miss (PrWrMiss). As for bus transactions, we have
bus read (BusRd), bus write back (BusWB), and a new transaction called bus update
(BusUpd). The BusRd and BusWB transactions have the usual semantics. The
BusUpd transaction takes the specific word (or bytes) written by the processor and
broadcasts it on the bus so that all other processors’ caches can update themselves.

By broadcasting only the contents of the specific modified word rather than the
whole cache block, it is hoped that the bus bandwidth is more efficiently utilized.
(See Exercise 5.4 for reasons why this may not always be the case.) As in the MESI
protocol, to support the E state, a shared signal (S) is available to the cache control-
ler. Finally, the only new capability needed is for the cache controller to update a
locally cached memory block (labeled an Update action) with the contents that are
being broadcast on the bus by a relevant BusUpd transaction.

 

4. Logically, there is another state as well, but it is rather crude and is used to bootstrap the protocol. A
“miss mode” bit is provided with each cache line to force a miss when that block is accessed. Initializa-
tion software reads data into every line in the cache with the miss mode bit turned on to ensure that the
processor will miss the first time it references a block that maps to that line. After this first miss, the miss
mode bit is turned off and the cache operates normally.
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5.4 Assessing Protocol Design Trade—offs 307

selves do not translate into performance directly but only indirectly by increasing

the cost of misses due to contention. Contention is very difficult to estimate because

it depends on the timing parameters used and on the burstiness of the traffic, which

is not captured by the frequency measurements. Contention, timing, and hence per-

formance are also affected by lower-level interactions with hardware structures (like

queues and buffers) and policies.

The simulations used in this section do not model contention. Instead, they use a

simple PRAM cost model: all memory operations are assumed to complete in the

same amount of time (here a single cycle) regardless of whether they hit or miss in

the cache. There are three main reasons for this. First, the focus is on understanding

inherent protocol behavior and trade-offs in terms of event frequencies, not so much

on performance. Second, since we are experimenting with different cache block sizes

and organizations, we would like the interleaving of references from application pro-

cesses on the simulator to be the same regardless of these choices; that is, all proto-
cols and block sizes should see the same trace of references. With the execution-

driven rather than trace-driven simulation we use, this is only possible if we make the

cost of every memory operation the same in the simulations. Otherwise, if a reference

misses with a small cache block but hits with a larger one, for example, then it will be

delayed by different amounts in the interleaving in the two cases. It would therefore

be difficult to determine which effects are inherently due to the protocol and which

are due to the particular parameter values chosen. Third, realistic simulations that

model contention take much more time. The disadvantage of using this simple model

even to measure frequencies is that the timing model may affect some of the frequen-

cies we observe; however, this effect is small for the applications we study

The illustrative workloads we use are the six parallel programs (from the

SPLASH-2 suite) and one multiprogrammed workload described in Chapters 3 and

4. The parallel programs run in batch mode with exclusive access to the machine

and do not include operating system activity in the simulations, whereas the multi-

programmed workload includes operating system activity The number of applica-

tions used is relatively small, but the applications are primarily for illustration as

discussed in Chapter 4; the emphasis here is on choosing programs that represent

important classes of computation and with widely varying characteristics. The fre-

quencies of basic operations for the applications appear in Table 4.1. We now study

them in more detail to assess design trade-offs in cache coherency protocols.

Bandwidth Requirement under the MESI Protocol

We begin by using the default 1-MB, single-level caches per processor, as discussed

in Chapter 4. These are large enough to hold the important working sets for the

default problem sizes, which is a realistic scenario for all applications. We use four-

way set associativity (with LRU replacement) to reduce conflict misses and a 64-byte

cache block size for realism. Driving the workloads through a cache simulator that

models the Illinois MESI protocol generates the state transition frequencies shown

in Table 5.1. The data is presented as the number of state transitions of a particular

type per 1,000 references issued by the processors. Note in the table that a new state,
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