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FIGURE 7.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor increases, so does the size. This structure with the appropriate operating
mechanisms allows the processor to have an access time that is determined primarily by level 1 of the hier—
archy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hierarchy.

The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things
(books) that we needed to examine. Cache was the name chosen to represent the
level of the memory hierarchy between the processor and main memory in the
first commercial computer to have this extra level. Today, although this remains
the dominant use of the word cache, the term is also used to refer to any storage

managed to take advantage of locality of access. Caches first appeared in research
computers in the early 19605 and in production computers later in that same
decade; every general—purpose computer built today, from servers to low-power
embedded processors, includes caches.

In this section, we begin by looking at a very simple cache in which the processor

requests are each one word and the blocks also consist of a single word. (Readers
already familiar with cache basics may want to skip to Section 7.3 on page 492.)

Cache: a safe place for hid—

ing or storing things.
Webster’s New World Diction—

ary of the American Language,
Third College Edition (1988)
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direct-mapped cache A cache
structure in which each memory

location is mapped to exactly
one location in the cache.

Chapter 7 Large and Fast: Exploiting Memory Hierarchy
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FIGURE 7.4 The cache just before and just after a reference to a word X,I that is not
initially in the cache. This reference causes a miss that forces the cache to fetch anrom memory and
insert it into the cache.

Figure 7.4 shows such a simple cache, before and after requesting a data item that is
not initially in the cache. Before the request, the cache contains a collection of recent
references X1, X2, . . . , Xn_1, and the processor requests a word Xn that is not in the
cache. This request results in a miss, and the word X1 is brought from memory into
cache. ‘

In looking at the scenario in Figure 7.4, there are two questions to
answer: How do we know if a data item is in the cache? Moreover, if it is, how do
we find it? The answers to these two questions are related. If each word can go in
exactly one place in the cache, then it is straightforward to find the word if it is in
the cache. The simplest way to assign a location in the cache for each word in
memory is to assign the cache location based on the address of the word in mem-
ory. This cache structure is called direct mapped, since each memory location is
mapped directly to exactly one location in the cache. The typical mapping
between addresses and cache locations for a direct—mapped cache is usually sim—
ple. For example, almost all direct—mapped caches use the mapping

(Block address) modulo (Number of cache blocks in the cache)

This mapping is attractive because if the number of entries in the cache is a power
of two, then modulo can be computed simply by using the low—order log2 (cache
size in blocks) bits of the address; hence the cache may be accessed directly with
the low—order bits. For example, Figure 7.5 shows how the memory addresses

xi.“;x.svz..,,Aw
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