
1

DAVl-D-I.__'A; PATTERSON '-
JoHN LHEN N. E 5 SY

M [f
HDRGRN KAUFMANN

Sony Corp., et al. v.
Memory Imegrily, LLC

IPR2015-BD153
EXHIBIT

Memo Ime f' —20l]5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2

THIRD ED
David A. Patterson

John L. Hennessy

ELSEVIER

lTION

Computer Organization and Design

THE HARDWARE/SOFTWARE INTERFACE

University of California, Berkeley

Stanford University

With a contribution by

Peter I. Ashenden James R. Larus Daniel I. Sorin
Ashenden Designs Pty Ltd Microsoft Research Duke University

AMSTERDAM ' BOSTON ' HEIDELBERG - LONDON

NEW YORK - OXFORD - PARIS - SAN DIEGO

SAN FRANCISCO-SINGAPORE-SYDNEY~TOKYO M {{G‘)
MorganKaufmannis animprintofElsevier MORGAN KAUFMANN PUBLISHERS

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

Senior Editor Denise E. M. Penrose

Publishing Services Manager Simon Crump
Editorial Assistant Summer Block

Cover Design Ross Caron Design
Cover and Chapter Illustration Chris Asimoudis
Text Design GGS Book Services
Composition Nancy Logan and Dartmouth Publishing, Inc.
Technical Illustration Dartmouth Publishing, Inc.
Copyeditor Ken DellaPenta
Proofreader Jacqui Brownstein
Indexer Linda Buskus
Interior printer Courier
Cover printer Courier

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid—free paper.

© 2005 by Elsevier Inc. All rights reserved. I

Designations used by companies to distinguish their products are often claimed as trademarks or registered
trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names
appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies
for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—~electronic, mechanical, photocopying, scanning, or otherwise~without prior written per—
mission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, e—mail: permissions@elsevier.com.uk. You may
also complete your request on—line via the Elsevier homepage (http://elsevier.com) by selecting “Customer
Support” and then “Obtaining Permissions.”

Library of Congress Cataloging—in-Publication Data
Application submitted

ISBN: 1-55860—604-1

For information on all Morgan Kaufmann publications,
Visit our Web site at www.mkp.com.

Printed in the United States ofAmerica
0405060708 54321

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

7.2 The Basics of Caches 473

CPU

Increasing distance
from the CPU in

access time
Levels in the

< >

Size of the memory at each level

____________—____————

FIGURE 7.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor increases, so does the size. This structure with the appropriate operating
mechanisms allows the processor to have an access time that is determined primarily by level 1 of the hier—
archy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hierarchy.

The Basics of Caches

In our library example, the desk acted as a cache—a safe place to store things
(books) that we needed to examine. Cache was the name chosen to represent the
level of the memory hierarchy between the processor and main memory in the
first commercial computer to have this extra level. Today, although this remains
the dominant use of the word cache, the term is also used to refer to any storage

managed to take advantage of locality of access. Caches first appeared in research
computers in the early 19605 and in production computers later in that same
decade; every general—purpose computer built today, from servers to low-power
embedded processors, includes caches.

In this section, we begin by looking at a very simple cache in which the processor

requests are each one word and the blocks also consist of a single word. (Readers
already familiar with cache basics may want to skip to Section 7.3 on page 492.)

Cache: a safe place for hid—

ing or storing things.
Webster’s New World Diction—

ary of the American Language,
Third College Edition (1988)

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5

474

direct-mapped cache A cache
structure in which each memory

location is mapped to exactly
one location in the cache.

Chapter 7 Large and Fast: Exploiting Memory Hierarchy

x4 X4 ,
X X

XL, x”;

F X.-. X.-.

X2 X2

l:x7_::l
X3 X3

a. Before the reference to X” b. After the reference to Xn

/—
FIGURE 7.4 The cache just before and just after a reference to a word X,I that is not
initially in the cache. This reference causes a miss that forces the cache to fetch anrom memory and
insert it into the cache.

Figure 7.4 shows such a simple cache, before and after requesting a data item that is
not initially in the cache. Before the request, the cache contains a collection of recent
references X1, X2, . . . , Xn_1, and the processor requests a word Xn that is not in the
cache. This request results in a miss, and the word X1 is brought from memory into
cache. ‘

In looking at the scenario in Figure 7.4, there are two questions to
answer: How do we know if a data item is in the cache? Moreover, if it is, how do
we find it? The answers to these two questions are related. If each word can go in
exactly one place in the cache, then it is straightforward to find the word if it is in
the cache. The simplest way to assign a location in the cache for each word in
memory is to assign the cache location based on the address of the word in mem-
ory. This cache structure is called direct mapped, since each memory location is
mapped directly to exactly one location in the cache. The typical mapping
between addresses and cache locations for a direct—mapped cache is usually sim—
ple. For example, almost all direct—mapped caches use the mapping

(Block address) modulo (Number of cache blocks in the cache)

This mapping is attractive because if the number of entries in the cache is a power
of two, then modulo can be computed simply by using the low—order log2 (cache
size in blocks) bits of the address; hence the cache may be accessed directly with
the low—order bits. For example, Figure 7.5 shows how the memory addresses

xi.“;x.svz..,,Aw

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

