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Abstract
In the last decade remarkable progress has been made towards the Shannon limit, using codes
that are defined in terms of sparse random graphs, and which are decoded by message passing.

Designing a good error correcting code is difficult because (a) it is hard to find an explicit set of
well spaced codewords; and (b) for a generie code, decoding, i.e., finding the closest cadeword to a
received signal, is infractable.

However, a simple method for designing codes, first pioneered by Gallager (1962), has recently
been rediscovered and generalized. The practical performance of Gallager’s codes and their modern
cousing is vastly better than the performance of the codes with which textbooks have been filled in
the intervening vears.

In a sparse graph code, the nodes in the graph represent the transmitted bits and the con-
straints they satisfy. For a lincar code with a codeword length ¥ and rate 2 = K/N, the number
of constraints is of order M = N — K (there could be more constraints, if they happen to be redun-
dant). Any linear code can be described by a graph, but what makes a sparse graph code special is
that each constraint only involves a small number of variables in the graph: the number of edges in
the graph scales roughly linearly with N.

The graph defining a low density parity check code (Gallager code) contains two types of
node: codeword bits, and parity constraints. In a regular (7, £) Gallager code, cach codeword hit is
connected to j parity constraints and each constraint is connected to & bits. The connections in the
graph are made at random.

Repeat—accumulate codes (Divsalar et al. 1998) can be represented by a graph with four types
of node: cquality constraints [=], intermediate binary variables (black circles), parity constraints
, and the transmitted bits (white circles). The encoder sets each group of intermediate bits to

values read from the source. These bits are put through a fixed random permutation. The
constraints causc the transmitted stream, working from left to right, to be the accumulated sum
{modulo 2) of the permuted intermediate bits.

In a turbo code (Berrou and Glavieux 1996}, the K source bits drive two linear feedback shift
registers, which emit parity bits.

All these codes can be decoded by a local message—passing algorithm on the graph, the sum-—
product algorithm (MacKay and Neal 1996; McEliece et al. 1998; MacKay 1999), and, while this
algorithm i8 not the optimal decoder, the empirical results are record-breaking.

Which of the three types of sparse graph codeis ‘best’ depends on the chosen rate and blocklength,
the permitted encoding and decoding complexity, and the question of whether occasional undetected
crrors arc acceptable (turbo codes and repeat—accumulate codes both typically make occasional
undetected errors because they have a small number of low weight codewords; Gallager codes do
not typically show such an error floor). Gallager codes are the most versatile; it’s easy to make a
competitive Gallager code with almost any rate and blocklength.

The best known bhinary Gallager codes are érregular codes whose parity check matrices have
nonuniform weight per column (Luby et al. 1998; Urbanke et ¢l 1999). The carcfully constructed
codes of Urbanke, Richardson and Shokrollahi outperform turbo codes at long blocklengths., Turbo
codes can also be beaten by irregular Gallager codes defined over finite fields GF(g) {(Davey and
MacKay 1998). While there is a good theory for Gallager code design (Urbanke et ol. 1999), there
is no comparable theory for the construction of irregular graphs with state variables. Given the case
with which simple repeat—accumulate codes achicve good results, it scoms plausible that the hest
codes should make use of state variables.
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Figure 1: Graphs of three sparse graph codes.

(a) A rate 1/4 low density parity check code (Gallager code) with blocklength N = 16, and M = 12
constraints. Each white circle represents a transmitted bit. Each bit participates in j = 3 constraints,
represented by squares. Each constraint forces the sum of the k¥ = 4 bits to which it is
connected to be even.

(b) A repeat—accumulate code with rate 1/3. Each white circle represents a transmitted bit. Each
black circle represents an intermediate binary variable. Each [=] constraint forces the variables to
which it is connected to be equal.

(c) A turbo code with rate 1/3. (c1) The circles represent the codeword bits. The two rectangles
represent rate 1/2 convolutional codes, with the systematic bits occupying the left half of the rectan-
gle and the parity bits occupying the right half. (c¢2) Each trellis is generated by a (21/37)s recursive
filter which has a state space of 4 bits.
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Figure 2: (a) Empirical results for Gaussian Channel, Rate 1/4 Left-Right : Irregular LDPC, GF(8)
blocklength 24000 bits; JPL turbo, blocklength 65536 bits; Regular LDPC, GF'(16), blocklength
24448 bits; Irregular LDPC , GF(2), blocklength 64000 bits; Regular LDPC, GF(2), blocklength
40000 bits. (Reproduced from (Davey and MacKay 1998).)

(b) Block error probability of repeat—accumulate codes with rate 1/3 and various blocklengths,
versus E, /Ng. The dotted lines show the frequency of undetected errors.
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Figure 3: Low density parity check codes satisfying many redundant constraints outperform equiv-
alent Gallager codes. Data on DSC code performance courtesy of R. Lucas and M. Fossorier. The
table shows the N, M, K| distance d, and row weight £ of some difference set cyclic codes, high-
lighting the codes that have large d/N, small &, and large N/M. In the comparison the Gallager
code had (4, k) = {4, 13), and rate identical to the DSC code.

The performance of Gallager codes can be enhanced by designing the code to have redundant
sparse constraints (Tanner 1981) (R. Lucas and M. Fossoricr, personal communication). There
is a difference—set cyclic code, for example, that has N = 273, and K = 191, but the code satisfies
not M = 82 but N, i.e, 273 low-weight constraints {figure 3). It is impossible to make random
Gallager codes that have anywhere near this much redundancy among their checks.

An open problem is to discover codes sharing the remarkable propertics of the difference—sct
cyclic codes but with different blocklengths and rates. I call this task the Tanner challenge.

References

Berrou, C., and Glavienx, A. (1996) Near optimum error correcting coding and decoding: Turbo-
codes, IEEE Transections on Commmunications 44: 1261-1271.

Davey, M. C., and MacKay, D. J. C. {1998) Low density parity check codes over GF(q). In
Proceedings of the 1998 IEEE Information Theory Workshop. 1ERE.

Diysalar, D., Jin, H., and McEliece, R. J., (1998) Coding theorems for ‘turbo like’ codes.
Gallager, R. G. (1962) Low density parity check codes, IRE Trans. Info. Theory IT-8: 21-28,

Luby, M. G., Mitzcnmacher, M., Shokrollahi, M. A., and Spiclman, D. A. (1998) Improved low—
densgity parity—check codes using irregular graphs and belief propagation. In Proceedings of the
IEEE International Symposiurm on Informati on Theory (ISIT), p. 117.

MacKay, D. J. C. (1999) Good error correcting codes based on very sparse matrices. [EEE
Transactions on Information Theory 45 (2): 399—431.

MacKay, D. J. C., and Neal, R. M. (1996) Near Shannon limit performance of low density parity
check codes. Flectronies Letters 32 (18): 1645-1646. Reprinted Electronics Letters, 33(6):457-438,
March 1997.
McEliece, R. J., MacKay, D. J. C., and Cheng, J.-F. (1998) Turbo decoding as an instance of
Pcarl’s ‘helief propagation’ algotithm. IEEE Journal on Selected Arcas in Communications 16
(2): 140-152.

Tanner, R. M. (1981} A recursive approach to low complexity codes. TEEE Transections on
Information Theory 27 (5): 533 547.

Urbhanke, R., Richardson, T., and Shokrollahi, A., {1999) Decsign of provably good low density
parity check codes,

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

