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Abstract 
In the last decade remarkable progress has been made tm-vards the Shannon limit, using codes 

that are defined in terms of sparse random graphs, and \vhich are decoded by message passing. 

Designing a good error correcting code is difficult because (a) it. is hard t.o find an explicit. set. of 
\vell spaced code\vords; and (b) for a generic code, decoding, i.e., finding the clm;est code\vonl to a 
received f:>ignal, if:> intractable. 

However, a f:>imple method for designing codes~ first pioneered by Gallager (1962), has recently 
been rediscovered and generalized. The practical performance of Gallager's codes and their modern 
cousins is ·vast.ly bett.er than t.he performance of the codes "\vith which textbooks have been filled in 
the intervening years. 

In a. sparse graph code~ the nodes in the graph represent the transmitted bits and the con­
straints they satisfy. For a linear code with a codeword length Nand rateR= K/N, the number 
of constraints is of order AJ = 1V- K (there could be more constraints, if they happen to be redun­
dant). Any linear code can be described by a graph, but \vhat. makes a sparse graph code special is 
that each constraint. only involves a small nurnber of variables in the graph: t.he number of edges in 
the graph scales roughly linearly \Vith l\1• 

The graph defining a low density parity check code (Gallager code) contains two types of 
node: codeword bits~ and parity constraints. In a regular (j, k) Gallager code~ each codc,vord bit is 
connected t.o j parity constraints and each constraint is connected to k bits. The connections in the 
graph are made at random. 

Repeat-accumulate codes (Divsa.la.r et al. 1998) can be represented by a. graph \Vith four types 
of node: equality constraints c=:::J, intermediate binary variables (black circles), parity constraints 
GJ, and t.he transmitted bit.s (whit.e circles). The encoder sets each group of intermediate bits t.o 

values read from the source. These bits arc put through a fixed random permutation. The GJ 
constraints cause the transmitted stream~ working from left to right, to be the accumulated sum 
(modulo 2) of t.he permuted intermediate bit.s. 

In a. turbo code (Berrou and Glavieux 1996), the J( source bits drive hvo linear feedback shift 
registers, 1vhich emit parity bits. 

All these codes can be decoded by a local message-passing algorithm on the graph, the sum­
product algorithm (MacKac· and Neal 1996; :V!cEliece et u.l. 1998; JV!ar:Kay 1999), and, while this 
algorithm is not. t.he opt.imal decoder, t.he empirical result.s are record-breaking. 

\llhich of the three types of sparse graph code is "best' depends on the chosen rate and blocklength, 
the permitted encoding and decoding complexity~ and the question of whether occasional undetected 
errors arc acceptable (turbo codes and repeat-accumulate codes both typically make occasional 
undetected errors because they have a small nurnber of lmv \veight codev·.ronls; Gallager codes do 
not. typically show such an error floor). Gallager codes are t.he most. versatile; it/s easy to make a 
competitive Gallager code with almost any rate and blocklength. 

The best known binary Gallager codes arc irregular codes whose parity check matrices have 
non-uniform weight per column (Lub)• et al. 1998; Crbanke et al. 1999). The careful!)• constructed 
codes of Urbanke, Richardson and Shokrollahi outperform t.urbo codes at long blocklengt.hs. Turbo 
codes can also be beat.en by irregular Gallager codes defined over finit.e fields GF(q) (Davey and 
MacKay 1998). While there is a good theory for Gallager code design (Crbanke et al. 1999), there 
is no comparable theory for the construction of irregular graphs with state variables. Given the case 
\vith which simple repeat-accumulate codes achieve good results, it seems plausible that the best 
codes should make use of state variables. 
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N 7 21 73 273 1057 4161 
M 4 10 28 82 244 730 
J{ 3 11 45 191 813 3431 
d 4 6 10 18 34 66 ----tli---

k 3 5 9 17 33 65 

Figure 3: Lmv density parity check codes satisfying many redundant constraints outperform equiv­
alent Gallager codei:>. Data on DSC code performance courtesy of R. Lucas and l\1. Foi:>f:>orier. The 
table i:>hows the 1V, Af ~ K, distance d, and nJ\V 1veight k of some difference set cyclic codei:>, high­
lighting the codes that have large d/N, small k, and large N/M. In the comparison the Gallager 
code had (j, k) = (4, 13), and rate identical to the DSC code. 

The performance of Gallager codes can be enhanced by designing the code to have redundant 
sparse constraints (Tanner 1981) (R. Lucas and I\:J. Fossoricr~ personal communication). There 
is a difference-set cyclic code, for example, that has J\1 = 273, and J( = 191, but the code satisfies 
not Af = 82 but J.V, i.e., 273 lmv-1veight constraints (figure 3). It is impossible to make random 
Gallager codes that have an:pvhere near this much redundancy among their checks. 

An open problem is to discover codes sharing the remarkable properties of the difference-set 
cyclic codes but with different blocklcngths and rates. I call this task the Tanner challenge. 
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