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Abstract

In 1948, Claude Shannon posed and solved one of the fundamental
problems of information theory, The question was whether it is possible
to communicate reliably over noisy channels, and, if so, at what rate.
He defined a theoretical limit, now known as the Shannon limit, up
to which communication is possible, and bevond which communication
is not possible. Since 1948, coding theorists have attempted to design
error-correcting codes capable of getting close to the Shannon limit.

In the last decade remarkable progress has been made using codes
that are defined in terms of sparse random graphs, and which are de-
coded by a sitnple probability based message pasgsing algorithrn,

This paper reviews low—density parity—check codes (Gallager codes),
repeat accumulate codes, and turbo codes, emphasising recent advances,
Some previously unpublished results are then presented, deseribing (a)
experiments on Gallager codes with small blocklengths: (b) a stopping
rule for decoding of repeat—accumulate codes, which saves computer
time and allows block decoding errors to be detected and flagged; and
(¢) the empirical power laws obeyed by decoding times of sparse graph
codes.

1 Introduction

The central problem of communication theory is to construct an encoding and
a decoding svstem that make it possible to communicate reliably over a noisy
channel. The encoding system uses the source data to select a codeword
from a set of codewords. The decoding algorithm ideally infers. given the
output of the channcl, which codeword in the code is the most likely to have
been transmitted; for an appropriate definition of distance, this is the ‘closest’
codeword to the received signal. A good code is one in which the codewords
are well spaced apart, so that codewords are unlikely to be confused.

Designing a good and practical error correcting code is difficult becanse
(a) it is hard to find an cxplicit sct of well-spaced codewords; and (b) for a
generic code, decoding, i.e., finding the closest codeword to a reccived signal,
18 intractable.

However, a simple method for designing codes, first pioneered by Gallager
{1962), has recently been rediscovered and generalized. The codes are de-
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fined in terms of sparse random graphs. Because the graphs are constructed
randomly, the codes are likely to have well spaced codewords. And becanse
the codes’ constraints arce defined by a sparse graph, the decoding problem
can be solved — almost optimally — by message—passing on the graph. The
practical performance of Gallager’s codes and their modern cousing is vastly
better than the performance of the codes with which textbooks have been
filled in the intervening years.

2 Sparse Graph Codes

In a sparse graph code, the nodes in the graph represent the transmmitted
bits and the constraints they satisfy. For a linear code with a cadeword length
N and rate B = K/N, the number of constraints is of order M = N — K.
[There could be more constraints, if they happen to be redundant.] Any lincar
code can be described by a graph, but what makes a sparse graph code spocial
is that each constraint involves only a small number of variables in the graph:
the number of edges in the graph scales roughly linearly with &, rather than
as N2,

The graph defining a low—density parity—check code, or Gallager code
(Gallager 1962; Gallager 1963; MacKay 1999), contains two types of node:
codeword hits, and parity constraints. In a regular (4, k) Gallager code (fig-
ure la), each codeword bit is connected to j parity constraints and each
consgtraint is connected to & bhits. The connections in the graph are made af
random.

Repeat—accumulate codes (Divsalar et . 1998) can be represented
by a graph with four types of node (figure 1b): equality constraints [=], in-
termediate binary variables (black circles), parity constraints [+], and the
transmitted bits (white circles). The encoder sets each group of intermediate
bits to values read from the source. These bits are put through a fixed random
permutation. The transmitted stream is the accumulated sum {modulo 2) of
the permuted intermediate hits.

In a turbo code {Berrou and Glavieux 1996), the K source bits drive two
lincar feedback shift registers, which emit parity bits {figure 1c).

All these codes can he decoded by a local message—passing algorithm on
the graph, the sum-product algorithm (MacKay and Neal 1996; McEliece
et al. 1998), and, while this algorithm is not the optimal decoder, the empirical
results are record breaking. Figure 2 shows the performance of various sparse
graph codes on a Gaussian channel. In figure 2(a) turbo codes with rate 1/4
arc comparced with regular and irregular Gallager codes over GF(2), GF(8)
and GF{16). In figure 2(b} the performance of repeat—accumulate codes of
varions blocklengths and rate 1/3 is shown.

THE BEST SPARSE GRAPH CODES

Which of the three types of sparse graph code is ‘hest’ depends on the chosen
rate and blocklength, the permitted encoding and decoding complexity, and
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Figure 1. Graphs of three sparse graph codes.

{a) A rate 1/4 low density parity check code (Gallager code) with
blocklength N = 16, and M = 12 constraints. Each white circle rep-
resents a transmitted bit. Each bit participates in § = 3 constraints,
represented by squares. Each constraint forces the sum of the
k = 4 bits to which it is connected to be even,

{(b) A repeat—accumulate code with rate 1/3. Each white circle rep-
regents a transmitted bit. Each black circle represents an intermediate
binary variable. Each [=] constraint forces the variables to which it is
connected to be equal.

{¢) A turbo code with rate 1/3. (c1) The circles represent the code-
word bits. The two rectangles represent rate 1/2 convolutional codes
(¢2), with the systematic bits {t'’} occupying the left half of the rect-
angle and the parity bits {t(l’)} ocenpying the right half,
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Figure 2. (a) Bit error probabilities for communication over a Gaussian channel at
rate 1/4: left-right : Irregular LDPC, GF(8), transmitted blocklength
24000 bits; JPL turbo, N = 65536 bits (dotted line); Regular LDPC,
GF(16), N = 24448 bits; Irregular LDPC, GF(2), N = 64000 bits;
Regular LDPC, GF(2), N = 40000 bits. [From Davey and MacKay
(1998).]
(b) Block error probability of repeat—accumulate codes with rate
1/3 and various blocklengths, versus Ej/No. The dotted lines show the
frequency of undetected errors.
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Figure 3. (a) A regular binary Gallager code with column weight j = 4, rate R =
0.936 and blocklength N = 4376 (K = 4094), compared with BCH codes
and interleaved Reed—Solomon codes with similar rates, on a Gaussian
channel. Hard-input bounded-distance decoding is assumed for the
BCH and RS codes. Vertical axis: block error probability. Horizontal
axis: Ejp/No [Curves that are further to the left are best.] (b) A Gallager
code over GF(16), rate 8/9, blocklength N = 3996 bits, applied to a 16—
ary symmetric channel, and compared with interleaved RS codes with
similar rates. Vertical axis: block error probability. Horizontal axis:
channel symbol error probability. [Curves that are further to the right
are best.] From MacKay and Davey (1998).

the question of whether occasional undetected errors are acceptable (turbo
codes and repeat—accumulate codes both typically make occasional undetected
errors, even at high signal-to—noise ratios, because they have a small number
of low weight codewords; Gallager codes do not typically show such an error
floor).

Gallager codes are the most versatile; it’s easy to make a competitive Gal-
lager code with almost any rate and blocklength, as is illustrated in figure 3.
Figure 3(a) shows the performance of a high-rate regular binary Gallager
code; it outperforms BCH codes and Reed—Solomon codes on this channel.
And figure 3(b) shows the performance of a high rate Gallager code over
GF(16) on a 16-ary symmetric channel: even though this channel is the sort
of channel for which Reed—Solomon codes are intended, the Gallager code still
manages to perform a little better than the RS code.

The best binary Gallager codes found so far are irreqular codes whose
parity check matrices have nonuniform weight per column (Luby et al. 1998;
Urbanke et al. 1999). The carefully constructed codes of Urbanke, Richard-
son and Shokrollahi outperform turbo codes at blocklengths longer than 10*
bits, with especially impressive results at 10° bits, where a rate 1/2 irregular
Gallager code has a bit error probability of 107¢ at just 0.13dB from capac-
ity, beating comparable turbo codes by more than 0.3 dB. Turbo codes can
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