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Abstract

We present a randomized construction of lincar-time encodable and decodable codes
thal can transmil over lossy channels al rales exlremely close lo capacity. The encoding
and decoding algorithms for these codes have fast and simaple software implementations.
Partial implementations of our algorithms are faster by orders of magnitude than the
best soltware implementations of any previous algorithm lor this problem. We expect
these codes will be extromely usetul for applications such as real-time audio and video
transmission over the Tulernel, where lossy channels are comunon and [ast decoding is
a requircment.

Despite the simplicity of the algorithms, their design and analysis are mathemati-
cally intricate. The design requires the carelul choice of a random irregular bipartite
graph, where the structure of the irregular graph is extremely important. We model the
progress of the decoding algorithm by a set of dilferential equations. The solution to
these cquations can then be cxpressed as polynomials in one variable with coctficients
determined by the graph structure. Based on these polynomials, we design a graph
structure thal guarantees successlul decoding with high probability.
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1 Introduction

In many communication sitnations, data is lost in fransit. A standard response to this
problem is to request retransmission of data that is not received. When some of this
retransmission is lost, another request is made, and so on. Such communication protocols
can lead to delays due to the need for several rounds of communication between sender and
receiver.

An allernalive solution, olten called forward error-correclion In the nelworking liter-
ature, is sometimes desirable: Suppose an application sends a real-time stream of data
symbols that is partitioned and fransmitted in logical units of blocks.) Iurthermore, sup-
pose the network experiences transient and unpredictable losses of at most a p fraction of
svmbaols out of each block., The following insurance policy can be used to tradeoff the effects
ol such nncontrollable losses on the receiver [or controllable degradation in quality. Suppose
originally a particu]al’ block consists ol n data symbols. Instead ol sending a message of »

data sy
important pa,lth fmm the or |g|na.| (Iata, stream and omitting the remainder, or by generating
a slightly lower quality stream at a (1 —p) fraction of the original rate. Fill out the block to
its original length of n with pn redundant {check) symbols. This scheme provides optimal
loss protection il the (1 — pyn symbols in the message can all be recovered [rom any set of
{1 —p)n received symbols from the block. Such a scheme can be used as the basic building
block for the more robust and general protection scheme deseribed in [1].

The problem is to design fast encugh encoding and decoding algorithms to make this
solution feasible. In this paper, we present codes that can be encoded and decoded in linear
tire while providing near optimal loss protection. Morcover, these linear time algorithms

y (1 = p)n data symbols, by either selecting the most

can be implemented to tun very gnickly in soltwarce.

Our results hold whether each symbol is a single bit or a packef of many bits. We
assume that the receiver knows the position of each received symbol within the stream of
all encoding symbols. This is appropriate for the Internet, where packets are indexed. We
adopt as our madel of losses the erasure channel, introduced by Elias [6], in which each
cncoding syvibol 1s lost with a lixed constant probabilily pin transit independent ol all the
other svmbols. This assumption is not appropriate for the Internet, where losses can be
highly correlated and bursty. However, losses on the Internet in general are not sensitive to
the actual contents of each packet, and thus if we place the encoding into the packets in a
random order then the independent loss assumption is valid,

Flias [6] showed that the capacily of the crasure channel is 1 — p and that a random
lincar code can be used Lo transmit over the eragsure channel al any rate B < 1 — p. This
means that a random linear code can be used to convert a message of length 2n into a
transmission of length n from which the message can be recovered from most portions of
length greater than Fn. Moreover, every linear code has quadratic time encoding algorithms
and cubic time decoding algorithms. One cannot hope for better information recovery, but

YAn example of this s an MPEG stream, whore a group of piclarcs can constitute such a block, and
where each symbol corresponds to the contents of one packet in the block. The latency incurred by the
application is proportional to the time it takes between when the first and last packet of the block is sent,
plus the one-way travel time through the network.
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[aster cncoding and decoding times are desirable, especially [or real-time applications.

Reed-Solomon codes can be used Lo transmit al the capacity ol the erasure channel with
order nlogn encoding time and quadratic decoding time. These codes have recently been
customized to compensate for Internet packet loss in real-time transmission of moderate-
quality video [1]. Even this optimized implementation required the use of dedicated worksta-
tions. Transmission of significantly higher quality video requires faster Codmg algarithms.

In theory, it is possible to decode Reed-Solomon codes in time (n log? nloglo n) (see,
[4. Chapter 11.7] and [9, p. 369]). However, for small values of n. quadratic time algorithms
are faster than the fast algorithms for the Reed-Solomon based codes, and for larger values
of 7 the O(log? nlog log n) multiplicative overhead in the running time of the fast algorithms
{with a moderate sized constant hidden by the big-Qh notation) is large, i.e., in the hundreds
or largoer.

We obtain very [ast linecar-time algorithms by transmitting just below channel capacity.
We produce rate 2 = 1—p(14¢) codes along with decoding algorithms that recover from the
random loss of a p fraction of the transmitted symbols in time proportional to n In(1/¢). with
high probability. They can also be encoded in time proportional to rlu(l/e). In Section 7 ;
we do this for all € > (). The fastest previously known encoding and decoding algorithms
[2] with such a performance guaranice have ran times proportional to wlu(1/c)/c. (See also
[3] for related work.)

The overall structure of our codes are related to codes introduced in [12] for error-
correction. We explain the general construction along with the encoding and decoding
algorithms in Section 2

Our encoding and decoding algorithms are almost symmelrical. Both are extremely
sitnple, computing exactly one XOR operation [or cach edge in a randomly chosen bipartite
graph. Asin many similar applications, the graph is chosen to be sparse, which immediately
implies that the encoding and decoding algorithms are fast. Unlike many similar applica-
tions, the graph is not regular; instead it is quite irregular with a carefully chosen degree
sequence. We describe the decoding algorithm as a process on the graph in Section 3. Our
main tool is a model thai characierizes almost exacily the performance ol the decoding
algorithm as a function of the degree sequence of the graph. In Section 4, we use this
tool to model the progress of the decoding algorithm by a set of differential equations. As
shown in Lemma 1, the sclution to these equations can then be expressed as polynomials in
one variable with coefficients determined by the degree sequence. The positivity of one of
these polyvnomials on the interval (0, 1] with respect Lo a parameter § gnarantees that, with
high probability, the decoding algorithm can recover almost all the message symbols [rom
a loss of up to a § fraction of the encoding symbols. T'he complete success of the decoding
algorithm can then be demonstrated by combinatorial arguments such as Lemma 3.

Our analytical tools allow us to almost exactly characterize the performance of the
decoding algorithm for any given degree sequence. Using these tools, we analyze regular
graphs in Seclion 6, and conclude that they cannol yicld codes that are close to oplimal.
Hence irregular graphs are a necessary component of our design.

Not only do our tools allow us fo analyze a given degree sequence, but they also help
us to design good irregular degree sequences. In Section 7 we describe, given a parameter
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¢ > 0, a degree sequence [or which the decoding is successlul with high probability [or a loss
[raction é thatl is within ¢ of 1 — R. Allhough these graphs are Irregular, with some nodes
of degree 1/, the average degree of each nodes is only In(1/€). "This is the main result of
the paper, i.e., a code with encoding and decoding times proportional to In(1/¢) that can
recover from a loss fraction that is within ¢ of optimal.

In Section 9, we show how linear programming techniques can be used to find goad
degree sequences [or the nodes on the right given a degree sequence [or the lelt nodes. We
demonstrate these techniques by finding the right degree sequences that are optimal for a
series of example left degree sequences.

1.1 Terminology

The block length of a code is the number of symbols in the transmission. In a systematic
code, the transmitted symbols can be divided into message symhbols and check symbols. We
take the symbols to he elements of GF(2), and all arithmetic operations to be aver this field;
l.e., addition is equivalent to taking the exclusive-or of two elements. The message symhols

can he chosen [realy, and the check symbols are computed [rom the message symbals. The
rale of a code is the ratio of the number of message symbols 1o the block length. For
example, in a code of block length n and rate 2. the encoder takes as input ffn message
symbols and produces n symbols to be transmitted. In all of our constructions, we assume
that the symbols are bits. It is easy to extend our constructions to work with symbols that
are packets of bits: where we would take the snm of two bits, just take the bit-wise sum of
two packels.

2 The Codes

In this section, we explain the overall construction, as well as the encoding and decoding
algorithms. We begin by defining a code C(B) with n message bits and Sn check hits,
by associating these bits with a bipartite graph B. The graph B has n left nodes and
An righl nodes, corresponding Lo the message bils and the check bits, respectively. The
encoding consists of computing each check bit as the sum of the bits of its neighbors in B
{(see igure 1{a]). Thus, the encoding time is proportional to the number of edges in A.

The main contribution of our work is the design and analysis of the bipartite graph B
so that the repetition of the following simplistic decoding operation recovers all the missing
message bits,

If one knows the value of a check bit and all but one of the message
bits on which it depends,

Then the value of the missing message bit can he found by computing
the sum of the check bit and its known message bits.

See Figure 1(b) for an example of this operation. The advantage of relyving solely on this

recovery operation is that the total decoding time is {al most) proportional to the number
of edges in the graph. Our main technical innovatlion is in the design ol sparse random
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Figure 1: (a) A graph defines a mapping from message bits to check bits.
(b) Bits z1, 22, and ¢y are used to solve for z3.

graphs where repetition of this operation is guaranteed to usually recover all the message
bits if at most (1 — €)fn of the message bits have been lost from C(B).

To produce codes that can recover from losses regardless of their location, we cascade
codes of the form C(B): we first use C(B) to produce n check bits for the original n message
bits, we then use a similar code to produce $%n check bits for the Bn check bits of C(B),
and so on (see Figure 2). At the last level, we use a more conventional loss-resilient code.
Formally, we begin with a sequence of graphs By, ..., B,,, where B; has 'n left nodes and
B3+1n right nodes, to construct a sequence of codes C(By),...,C(B,,). We select m so that
™1 is roughly /7 and we end the cascade with a loss-resilient code C' of rate 1 — 3 with
37 +1n message bits for which we know how to recover from the random loss of 3 fraction
of its bits with high probability. We then define the code C(By, By, ..., Bm,C) to be a code
with n message bits and

m+1

> B+ /(1= 5) = np/(1-5)

=1

check bits formed by using C(Bp) to produce n check bits for the n message bits, using
C(B;) to form 3t check bits for the Bin bits produced by C(B;_;), and finally using C
to produce an additional n3™*2/(1 — 3) check bits for the 3™ *!n bits output by C(B,,).
As C(By, B1,..., By, C) has n message bits and nf3/(1 — ) check bits, it is a code of rate
1 - 4.

Assuming that the code ' can be encoded and decoded in quadratic time?, the code

2A good candidate for the code C is the low-density parity-check [7, 11] version of these codes: only
send the messages that cause all the check bits to be zero. These codes can be decoded in linear time and
encoded in quadratic time with miniscule constants. In the final version of this paper, we show how C' can
be replaced with an even simpler code C’ that can be encoded and decoded in linear time but that has a
worse decoding guarantee. Using C’, we can end the cascade with roughly en nodes instead of \/n for C.
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