```
From ???@??? Mon Apr 05 23:52:59 1999
Return-Path: <psiegel@cwc.ucsd.edu>
Received: from mailbox2.ucsd.edu ([132.239.1.54]) by mail3.san.rr.com
           (Post.Office MTA v3.5.3 release 223 ID# 0-53939U80000L80000S0V35)
          with ESMTP id com for <hpfister@san.rr.com>;
          Mon, 5 Apr 1999 16:29:03 -0700
Received: from split.ucsd.edu (split.ucsd.edu [132.239.24.94])
        by mailbox2.ucsd.edu (8.9.1a/8.9.1) with ESMTP id QAA24841
        for <hpfister@ucsd.edu>; Mon, 5 Apr 1999 16:30:52 -0700 (PDT)
Received: from localhost by split.ucsd.edu (8.9.3/8.9.1) with ESMTP id
        Mon, 5 Apr 1999 16:30:49 -0700 (PDT)
X-Authentication-Warning: split.ucsd.edu: psiegel owned process doing -bs
Date: Mon, 5 Apr 1999 16:30:49 -0700 (PDT)
From: Paul Siegel <psiegel@cwc.ucsd.edu>
X-Sender: psiegel@split.ucsd.edu
To: andre desrosiers <andre.desrosiers@conexant.com>,
        bruce moision <bmoision@cwc.ucsd.edu>,
        henry pfister <hpfister@ucsd.edu>,
        hugo tullberg <a href="https://example.com/hugotullbergece.ucsd.edu">hugo tullberg <a href="https://example.com/hugotullbergece.ucsd.edu">hugo tullberg <a href="https://example.com/hugotullbergece.ucsd.edu">https://example.com/hugotullbergece.ucsd.edu</a>, jilei hou <jhou@cwc.ucsd.edu</a>,
        kai tang <ktang@ece.ucsd.edu>, mats oberg <moberg@cwc.ucsd.edu>,
        Subject: Forwarded mail....
Message-ID: <Pine.GSO.4.05.9904051630020.7620-100000@split.ucsd.edu>
MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII
Status: OR
Hi. Some of you may be interested in this new
paper from Rudi Urbanki, et al.
Paul
**************
Paul H. Siegel
Professor
Department of Electrical and
  Computer Engineering, 0407
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0407
TEL: 1-619-822-0158
                           FAX: 1-619-534-2486
*************
----- Forwarded message -----
Date: Mon, 5 Apr 1999 18:19:26 -0400
From: ART@scarpia.research.bell-labs.com
To: psiegel@ucsd.edu
```

Dear Colleague:

In recent weeks we designed sequences of low-density parity check codes that provably perform at rates extremely close to the Shannon capacity. For instance, our best code of rate 1/2 is asymptotically less than 0.06dB away from capacity for the AWGN channel. Simulation results indicate that for a length of 1,000,000 we can achieve an error probability of $10^{(-6)}$ at 0.13dB from capacity. Our codes are built from highly irregular bipartite graphs with carefully chosen degree patterns on both sides, by optimizing the threshold obtained in our previous paper.

Moreover, the paper gives some more theoretical insight into the behavior of the decoding process.

A preprint of our paper, entitled "Design of provably good low-density parity check codes" can be obtained at

http://cm.bell-labs.com/who/{ruediger or tjr}/pub.html

As always, comments are most welcome.

Best regards,

Tom Richardson Amin Shokrollahi Ruediger Urbanke

