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Unveiling Turbo Codes: Some Results on 
Parallel Concatenated Coding Schemes 

Sergio Benedetto, Senior Member, IEEE, and Guido Montorsi, Member, IEEE 

Abstruct- A parallel concatenated coding scheme consists of 
two simple constituent systematic encoders linked by an inter- 
leaver. The input bits to the first encoder are scrambled by the 
interleaver before entering the second encoder. The codeword 
of the parallel concatenated code consists of the input bits to 
the first encoder followed by the parity check bits of both 
encoders. This construction can be generalized to any number 
of constituent codes. Parallel concatenated schemes employing 
two convolutional codes as constituent codes, in connection with 
an iterative decoding algorithm of complexity comparable to 
that of the constituent codes, have been recently shown to yield 
remarkable coding gains close to theoretical limits. They have 
been named, and are known as, “turbo codes.” We propose a 
method to evaluate an upper bound to the bit error probability 
of a parallel concatenated coding scheme averaged over all 
interleavers of a given length. The analytical bounding technique 
is then used to shed some light on some crucial questions which 
have been floating around in the communications community 
since the proposal of turbo codes. 

Index Terms- Turbo codes, concatenated codes, iterative de- 
coding. 

I. INTRODUCTION AND MOTIVATIONS 
NOWLEDGE of the fact that increasing the codeword K length n of block codes (or the constraint length of 

convolutional codes) leads to better performance dates back 
to Shannon theory. It is also well known that the complexity 
of maximum-likelihood (ML) decoding algorithms increases 
with n, up to a point where decoding becomes physically 
unrealizable. 

Thus the research in coding theory has seen many proposals 
aiming at constructing powerful codes with large equivalent 
block lengths structured so as to permit breaking the ML de- 
coding into simpler partial decoding steps. Iterated codes [l], 
product codes and their extension [2], concatenated codes [3] 
and their generalized version [4], and large constraint-length 
convolutional codes with suboptimal decoding strategies, like 
sequential decoding, are nonexhaustive examples of these 
attempts, and some of them have been successfully employed 
in applications where large coding gains are required, such as, 
for example, deep-space communication. 
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The most recent successful attempt consists of the so-called 
“turbo codes” [5], whose astonishing performance has given 
rise to a large interest in the coding community. They are 
parallel concatenated codes (PCC) (see Fig. 1 for the case 
of block PCC) whose encoder is formed by two (or more) 
constituent systematic encoders joined through an interleaver. 
The input information bits feed the first encoder and, after 
having been interleaved by the interleaver, enter the second 
encoder. The codeword of the parallel concatenated code 
consists of the input bits to the first encoder followed by the 
parity check bits of both encoders. 

The suboptimal iterative decoder is modular, and consists of 
a number of equal component blocks formed by concatenating 
the decoders of the constituent codes (CC) separated by the 
same interleaver used in the encoder. Each decoder produces 
weighted soft decoding of the input sequence. By increasing 
the number of decoding modules, and thus the number of 
decoding iterations, bit error probabilities as low as 
at &,/No = 0.0 dB have been shown by simulation [6] .  A 
version of turbo codes employing two eight-state convolutional 
codes as constituent codes, an interleaver of 32 x 32 bits 
and an iterative decoder performing two and a half iterations 
with a complexity of the order of nine times the ML Viterbi 
decoding of each constituent code is presently available on a 
chip yielding a measured bit error probability of 9.0 . lop7  at 

Bandwidth-efficient versions of turbo codes, compared to 
trellis-coded modulation schemes have also been proposed [8], 
as well as turbo codes based on block (instead of convolu- 
tional) codes [9], [lo]. 

A careful examination of the literature shows that, rather 
than being a sudden apparition, turbo codes are the result 
of a clever intuition building on several concepts already 
available. We can cite in general the literature on product 
and concatenated codes in relation with the idea of paral- 
lel concatenation, the pioneering work on symbol-by-symbol 
maximum a posteriori decoding of linear codes [ 111 and the 
proposals in [ 121-[ 141 of the soft-decisions Viterbi algorithm 
in relation to the way of implementing the iterative decoder. 
Very close to turbo codes are also the separable “filters” 
described in [ 151 to iteratively decode multidimensional codes. 

As for the applications, it must be mentioned that PCC’s, 
like all codes with very long codewords, suffer from one 
important drawback, namely the delay due to the interleaver 
and to the iterative decoding (as an example, the previously 
mentioned “chip” has a latency of 2318 bits). This prevents 
them from being used in applications where the combination 

&/No = 3 dB [7].  
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of decoding delay and data rate leads to intolerable delays, like 
digital telephony. A broad range of applications still remains, 
such as digital audio and video broadcasting, data packet 
transmission, and space applications. It is also worthwhile 
mentioning that the interleaver inherently present in the PCC 
can prove beneficial for transmission on fading channels [8]. 

Since the successful proposal of turbo codes, neither a good 
theoretical explanation of the codes behavior/performance nor 
an adequate comprehension of the role and relative importance 
of the PCC ingredients (constituent codes and interleaver) have 
appeared. 

In terms of performance of PCC’s, apart from the measure- 
ments on the chip [7], what is known is essentially due to 
simulation [5] ,  [8], [15]-[18], which, in itself, is not at all a 
simple task, as it requires a huge amount of computer time to 
obtain reliable results down to bit error probabilities like lop6. 

As a consequence, a number of basic questions are still 
unanswered: 

What is the performance of the ML decoder ? 
What are the relative contributions of the constituent 
codes and of the interleaver length in determining the 
PCC performance ? 
For a given interleaver length, how sensitive is the 
performance to the interleaver choice ? 
How crucial is the use of recursive (feedback) systematic 
convolutional codes (as opposed to nonrecursive ones) 
as constituent codes of the PCC scheme ? 
How close are the proposed suboptimal iterative decod- 
ing algorithms to ML decoding? 

Answering these questions is certainly important from a the- 
oretical point of view. Some of them, however, have significant 
practical relevance as well. For example, questions 1 and 5 can 
encourage (or discourage) the search for improved decoding 
algorithms, and question 2 may lead to the optimization 
of the PCC for given system constraints such as delay or 
complexity. Question 3, in turn, is related to the importance of 
the interleaver optimization, a topic which has already received 
some “cut-and-try’’ attention [ 171-[ 191. Finally, question 4 has 
been discussed in [20] where the authors seem to believe 
that recursive convolutional codes have superior merits in 
themselves, rather than only when used as CC of a PCC. 

Formidable complexity obstacles discourage classical the- 
oretical analysis of the PCC’s. As an example, the code 
implemented in VLSI in [7], when seen as a whole convo- 
lutional code, consists of an equivalent time-varying convolu- 
tional code with 21°30 states, thus preventing any analytical 
evaluation of the main performance parameters. 

In this paper, we will try to shed some light on the theoret- 
ical comprehension of PCC’s. We will propose answers to the 
previous questions, some of which may be only preliminary 
yet indicative of the right direction. 

In particular, we will define and evaluate an upper bound 
to the average pe~ormance of the ML soft decoder for a 
PCC, stemming from characteristics of the CC’s. Owing to 
its definition, the average performance, expressed in terms of 
bit error probability, turns out to be independent from the 
particular interleaver used, and helps in assessing what can 

be gained with given CC’s and with an interleaver of a given 
length. 

We will also present simulation results for PCC’s with 
differently chosen interleavers of the same length and com- 
pare them with the proposed bound. The results show that 
“random” interleavers offer performance close to the average 
ones evaluated through the upper bound, independent, to a 
large extent, from the particular interleaver. Bad interleavers 
are very easy to avoid in practice. 

Moreover, we will show that recursive convolutional codes, 
although providing almost the same performance as nonrecur- 
sive codes when used alone, are indeed crucial when embedded 
in a PCC as CC’s. 

Finally, by comparing our bound on ML performance with 
simulation results based on iterative decoding, we will give 
heuristic evidence that the suboptimal algorithms can come 
very close to the optimum. 

To help the reader, we will accompany the description with 
frequent examples, and will start from the simpler case of 
PCC schemes using block codes as CC’s (parallel concatenated 
block code (PCBC)) leaving for the final sections the more 
complicated case of parallel concatenated convolutional codes 
(PCCC). 

11. NOTATIONS AND DEFINITIONS 
Notations and definitions will be introduced for the case of 

parallel concatenated block codes, the extension to convolu- 
tional codes being straightforward. 

Given an ( n , k )  systematic block code C, its well-known 
weight enumerating function (WEF) is 

n 

B c ( H )  B,H2 
2=0 

where B, is the (integer) number of codewords with Hamming 
weight (number of ones) z and H is a dummy variable. The 
WEF of a code can be used to compute the exact expression 
of the probability of undetected errors and an upper bound to 
the word error probability [21]. 

We define the input-redundancy weight enumerating func- 
tion (RWEF) of the code as 

w,3 

where Aw,J denotes the (integer) number of codewords gen- 
erated by an input information word of Hamming weight w 
whose parity check bits have Hamming weight j, so that the 
overall Hamming weight is w + j. 

The IRWEF makes explicit in each term of the WEF the 
separate contributions of the information and of the parity- 
check bits to the total Hamming weight of the codewords, and 
thus provides additional information on the (Hamming) weight 
profile of the code. It will prove crucial in the following when 
dealing with parallel concatenated codes (PCC), since the two 
input words to the constituent encoders, the- second being 
obtained by interleaving the first, share the same Hamming 
weight, so that the redundant bits generated by the two 
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encoders derive from terms of the IRWEF with the same input 
weight w. 

We mention also that the IRWEF characterizes the whole 
encoder, as it depends on both input information words and 
codewords, whereas the WEF only depends upon the code. As 
a consequence, the WEF is related to the word error probability 
of the code, whereas the IRWEF provides information on the 
bit error probability. 

Obviously, the following relationship holds true: 

B c ( H )  = AC(W = H ,  2 = H )  

The second and third line of (3) represent two equivalent 
expressions to bound the bit error probability. The first expres- 
sion keeps distinct the contributions of information words with 
different weight w, whereas the second sums the contributions 
according to the overall weight m of the codeword through 
the coefficient Dm defined in (4). 

A tighter bound can also be obtained from (3) [22] exploit- 
ing the inequality 

with It assumes the form 

A C ( H ,  H )  = Aw,,Hw+j = B ~ H ~  
WJ k 

where 

Example 1: The (7 ,4 )  Hamming code has the following 
WEF: 

Bc(H)  = 1 + 7H3 + 7H4 + H7.  

Splitting the contribution of the information and redundancy 
bits to the total codeword weight we obtain the IRWEF of 
the code 

Ac(W, 2) = 1 + W ( 3 Z 2  + Z3) + W2(32 + 32’)  
+ w3(1+ 3 2 )  + ~ 4 2 3 .  (1) 

0 

Consider now the conditional weight enumerating function 
A g ( 2 )  o f  the parity check bits generated by the code C 
corresponding to the input words of weight w. It can be 
obtained from the IRWEF as 

so that we can also write the inverse relationship 

Ac(W, 2) = W W A z ( Z ) .  (2)  
W 

Both IRWEF and the A: (2) can be used with the union bound 
to compute an upper bound to the bit error probability for ML 
soft decoding of the code over a channel with additive white 
Gaussian noise in the form 

Pb(e) I ’) l w = ~ = ~ - R . E b / N o  

with 

(3) 

(4) 

which admits of course a further development like (3). 
For parallel concatenated convolutional codes the infor- 

mation and code sequences are semi-infinite and, as a a 
consequence, the summation (explicit in (3) and implicit in 
(5 ) )  must be truncated to a finite value. For the bound in the 
second line of (3) the truncation involves the computation of 
the complete conditional weight distributions up to a given 
information weight, whereas for the bound in the third line the 
truncation leads to the computation of the weight multiplicities 
of the unconditional weight distribution up to a given overall 
weight of the code sequences. Computing algorithms and a 
comparison of the two approximations are discussed in [23]. 

Using a finite number of terms in ( 5 )  transforms the upper 
bound into the approximation 

In the following, all the results in terms of bit error probability 
will be computed using (6). 

Example 2: The conditional WEF’s of the Hamming code 
(7 ,4 )  considered in the previous example are 

A f ( 2 )  = 1 

A ~ ( z )  = 3 2 2  + 2 3  

A f ( 2 )  = 3 2  + 32’ 
A?(’) = 1 + 3 2  
A;(z) = 2 3  

so that the upper bound on the bit error probability computed 
through (6) and (4) becomes 

0 

where R, is the code rate. 
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c, (n1+n2-k7k) 
- 4- - - - - _ _ _ _ _ _  - - - - -  _ _ _ _ _ _ _  _ _ _ _ - - - -  

* -  - -  
- - - -  - - _ _ _ _ _ _  

Fig. 1. Parallel concatenated block code. 

111. PARALLEL CONCATENATED BLOCK CODES 

Consider now a parallel concatenated block code (PCBC) 
obtained as in Fig. 1. Two linear systematic block codes Cl 
with parameters (721, k )  and C, with parameters (nz, k ) ,  the 
constituent codes (CC), having in common the length k of the 
input information bits, are linked through an interleaver so that 
the information part of the second codeword is just a permuted 
version of the first one. The PCBC codeword is then formed 
by adding to the input bits the parity-check bits generated by 
the first and second encoder. The PCBC, that we denote as 
Cp, is then a (nl  + n2 - k ,  k )  linear code as the interleaver 
performs a linear operation on the input bits. 

If w is the (Hamming) weight of the input word, and z1 
and zz the weights of the parity check bits introduced by 
the first and second encoders, respectively, the weight of the 
corresponding codeword of Cp will be w + z1 + z2. 

We want now to obtain the IRWEF ACP(W, 2) of Cp star- 
ing from the knowledge of those of the constituent codes. For 
a given interleaver, this operation is exceedingly complicated, 
as the redundant bits generated by the second encoder will not 
only depend on the weight of the input word, but also on how 
its bits have been permuted by the interleaver. The only viable 
solution, in theory, would be an exhaustive enumeration of all 
possible cases; in practice, this is an impossible achievement 
for large k ,  and this was precisely the reason for lengthy 
computer simulations. 

TO overcome this difficulty, we introduce an abstract inter- 
leaver called uniform interleaver, defined as follows. 

Definition I :  A uniform interleaver of length k is a prob- 
abilistic device which maps a given input word of weight w 

I 

permutations of it with equal probability 

n 
From the definition, it is apparent that the conditional weight 

enumerating function A,C"(Z) of the second code becomes 
independent from that of the first code thanks to the uniform 
randomization produced by the interleaver. 

As a nice consequence of this, we can easily evaluate the 
conditional weight enumerating function of the PCBC which 
uses the uniform interleaver as the product, suitably normal- 
ized, of the two conditional weight enumerating functions of 
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the constituent codes 

(7) 

\w 1 
Also, from (2) we obtain the IRWEF of the code Cp as 

,+ 

ACP (W, 2) = WwA,CP (2). (8) 
w=l 

ExampZe3: The IRWEF of the PCBC constructed using 
as constituent codes two identical (7,4) Hamming codes can 
be obtained plugging the conditional WEF obtained in the 
previous example into (7) and applying (8) 
ACP (W, Z )  = 1 + W(2.25Z4 + 1.5Z5 + 0.25Z6)+ 

+ W2(1.5Z2 + 3Z3  + 1.5Z4)+ 

(9) 
Notice in (9) the presence of fractional coefficients represent- 
ing the multiplicity of the various terms. They are a direct 

The introduction of the uniform interleaver permits an easy 
derivation of the weight enumerating functions of the PCBC. 
However, in practice, one is confronted with deterministic 
interleavers, which'give rise to one particular permutation of 
the input bits. So, what is the significance of the preceding 
definitions and equations ? 

To answer this question, we prove now the main property 
of a PCBC which uses the uniform interleaver. 

Theorem I :  Let A C p k  (W, 2) be the IRWEF of the code 
Cp, obtained using the particular interleaver I k .  Then 

+ W3(0.25 + 1.52 + 2.252') + W4Z6. 

consequence of the use of the uniform interleaver. 0 

E,+ [ACPk (W, Z)] = ACP (W, 2) (10) 

of mterleavers. v 
where EI, means expectation with respect to the whole class 

Proof of Theorem I :  The proof makes use of (2) through 
the following equality chain: 

(1 1) I Ek [ACpk (W, Z)] = E,+ 

= WwEk ["2k (Z)] 
W 

= CWwA,CP(Z) = ACP(W)Z).  (13) 

where the third equality comes from the definition of the 
uniform interleaver. QED 

A second result, which comes as a corollary of the previous 
one from the linear dependency of (6) with respect to the 
conditional weight enumerating function, is the following. 

Corollary I :  The upper bound computed using the IRWEF 
AcP (W, 2) coincides with the average of the upper bounds 
obtainable with the whole class of deterministic interleavers. 

v 
The corollary guarantees that, for each value of the signal- 

to-noise ratio, the performance obtained with the uniform inter- 
leaver are achievable by at least one deterministic interleaver. 

Example 4: We can check the result (10) by computing, for 
the simple example of Hamming code previously examined, 
the IRWEF's of the PCBC's constructed using all the inter- 

W 
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TABLE I 
IRWEF OF THE PARALLEL CONCATENATED CODES BASED ON THE (7,4) HAMMING CODE FOR ALL POSSIBLE INTERLEAVERS 

Perm. I A C p k  ( W, 2)  
0123 
0321 
1023 
1320 
3021 
3120 
0132 
0213 
0231 
0312 
1032 
1203 
1230 
1302 
2013 
2031 
2103 
2130 
2301 
2310 
3012 
3102 
3201 
3210 

1 + W(3Z4 + Z6) + W2(3Z2 + 3Z4) + W3(1 + 3Z2) + W4Z6 

1 

10'' 

lo-2 

lo4 

lo6 

lo-8 

Fig. 2. 

leavers originating from the 24 = 4! permutations of the input 
bits. The computed IRWEF's are reported in Table I. 

From the table, it is apparent that, for this scheme, only two 
types of IRWEF are possible: 

ACpl (W, 2)  = 1 + W(2Z4 + 2Z5) + W'(2' + 4Z3 + Z4) 
(14) 

Upper bounds for Example 4. 

+ w3(22 + 2 2 2 )  + w4z6 

which derives from 18 different permutations and 

ACpz(W, 2) = 1 + W(3Z4 + Z6) + W2(3Z2 + 3Z4) 
+ w3(1+ 32') + ~ 4 2 6  (15) 

which appears six times. The average computed over all 
possible interleavers yields 

18 6 
24 24 

The upper bounds obtained substituting (14), (15), and (9) 

Let n, I C ,  t )  denote the parameters of a t-error correcting 
(n, I C )  code. We have also analyzed the performance achieved 
by a PCBC using as CC the (63,57,3) and the (63,51,5) 
BCH codes. The interleavers have lengths IC = 57 and 51, 

Acp(W,Z)  = -ACP1(W,2)+ -ACp2(W,2) 

which coincides with (9). 

into (6) are plotted in Fig. 2. 0 
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