©
L

Turbo Codes are Low Density Parity Check Codes

David J. C. MacKay

July 8, 1998 — Draft 0.2, not for distribution! (First draft written July 5,
1998)

Abstract

Turbo codes and Gallager codes (also known as low density parity check codes) are at
present neck and neck in the race towards capacity.

In this paper we note that the parity check matrix of a Turbo code can be written as
low density parity check matrix.

Turbo codes and Gallager codes are both greatly superior to error—correcting codes found in
textbooks. Some similarities between these codes have been noted. For example, both families of
codes can be defined in terms of sparse graphs which define the constraints satisfied by codewords
(cite Tanner, Wiberg, Loeliger, Frey, MacKay). Both families of codes are decoded using a
local probability propagation algorithm which is known as the sum—product algorithm or belief
propagation (cite Wiberg, McEliece and MacKay, Frey).

There are also differences between the two code families. In the original form studied by
Gallager and MacKay and Neal, Gallager codes are quick to decode but have an encoding time
that scales as N?, whereas Turbo codes are usually defined in terms of linear time encoders.
(Fast-encodeable Gallager codes have recently been investigated, MacKay.) In Turbo codes there
is a sharp distinction between the bits viewed as source bits and the bits viewed as parity check
bits; they play different roles in the decoding algorithm, and posterior probabilities over the states
of parity check bits are usually not computed. In Gallager codes, there is a symmetry between
all bits. Turbo codes as originally defined tend to suffer from low weight codewords which cause
the asymptotic performance for large Fy/Ng to have an ‘error floor’. Gallager codes, in contrast,
show no such error floor, and it has been proved that they have asymptotically good distance
properties. Gallager codes are simple to modify in order to create codes with higher or lower
rates. In contrast, increasing the rate of a Turbo code can be tricky because simple puncturing
of the parity bits might weaken the code by introducing low weight codewords.

Since these two families of codes are both so good in performance, it seems a good idea
to try to relate them so as to enhance technology transfer and hybridisation between the two
methodologies. However, to our knowledge, only a few researchers have tried to connect these
fields together and design new codes (cite Frey and MacKay).

This paper makes a simple observation about Turbo codes: treating a Turbo code as a block
code, the parity check matrix of that code is actually a low density parity check matrix. This
observation is probably extremely obvious to anyone who is familiar with convolutional codes,
but for the benefit of readers like myself who are not, I will spell this out in a little more detail.

CKET
M

A R

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

No. of bits per trellis Trellis complexity

%N T ®Turbo 91 e Turho
7 eGallager (GF(q))
23 —
22 —
4log q - eGallager (GF(q)) 28 o Gallager
4 1 o Gallager
| | |
2 M/q "M No. of trellises L 2 Mean no. of trellises

Figure 1: One view of the locations of Gallager codes and Turbo codes in ‘code space’, using
rate 1/3 codes as an example. From this perspective, Gallager codes and Turbo codes seem quite
different.

1 Definitions

A low density parity check code is a block code which has a parity check matrix, H, every row
and column of which is ‘sparse’.

A regular Gallager code is a low density parity check code in which every column of H has
the same weight ¢ and every row has the same weight ¢,; regular Gallager codes are constructed
at random subject to these constraints.

An (N, K') Turbo code is defined by a number of constituent encoders (often, two) and an equal
number of ‘interleavers’ which are K x K" permutation matrices. Without loss of generality, we take
the first interleaver to be the identity matrix. The constituent encoders are often convolutional
codes. A string of K source bits is encoded by feeding them into each constituent encoder in
the order defined by the associated interleaver, and transmitting the bits that come out of each
constituent encoder. For simplicity, let us concentrate on Turbo codes with two constituent
codes that are both convolutional codes. Often the first constituent encoder is chosen to be a
systematic encoder, and the second is a non-systematic one which emits parity bits only. The
transmitted codeword then consists of A source bits followed by M; parity bits generated by the
first convolutional code and M, parity bits from the second.

For the purposes of this paper we will not need to discuss the decoder for either of these codes.

One unifying viewpoint for these two code families is in terms of trellis constrained codes. A
trellis constrained code is a code whose codewords satisfy a set of constraints, each constraint
being compactly described by a trellis in which two or more of the codeword bits participate.
Viewing these codes as trellis constrained codes, they appear rather different. The M x N parity
check matrix of a regular Gallager code defines M trellises. Each trellis constrains the parity of
t, of the bits to be even, and each of the N bits participates in ¢ trellises. We can think of a
Turbo code as a trellis constrained code in which there are two trellises; the K source bits and
the first My parity bits participate in the first trellis and the K source bits and the last M3 parity
bits participate in the second trellis. Each codeword bit participates in either one or two trellises,
depending on whether it is a parity bit or a source bit. See figure 1.

However, we will now see that from the point of view of their parity check matrices, Turbo

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

| t(e)
(D) 200 (00 1 (0] 0L

S T

b)

1
24(D] #3(D] #2(D] #1(D
|
by ——O—E SO 1(a)

b)

1
(D) #5(1 2 (B “1(D) <0

| | | |
1 1 @)

(21/37)s
Figure 2: Linear feedback shift registers for generating convolutional codes. K = 4.

codes are actually very similar to Gallager codes.

1.1 The parity check matrix of a single convolutional code

Note different meaning for parity check matrix from convolutional code literature. Here we are
talking about the literal parity check matrix of the code viewed as a linear block code.

A systematic recursive convolutional code, as used in Turbo codes, is equivalent (in the
sense that its codewords are the same) to a nonsystematic nonrecursive convolutional code (fig-
ure ??(b)). Now, what parity constraints are satisfied by the latter code? Well, if we pass stream
b through the convolutional filter that generated stream a and vice versa, then the two resulting
streams are identical. So the parity check matrix of a single convolutional code may be written
as a low density parity check matrix as shown in figure ??(b).

Issue neglected here: termination. Termination simply adds an extra k constraints, where k
is the constraint length. Not a big deal.

1.2 The parity check matrix of a Turbo code

Note that for the standard constraint length 4 convolutional codes, the profile of the turbo code’s
parity check matrix is roughly A columns of weight about 4, and the remaining columns of weight
about 5; the row weight is about 7 for all rows.

Here puncturing ignored. How to handle it: if the bit only participates in one check, remove
that check. If it participates in more than one check, use row manipulations to create new higher
weight checks that don’t involve that bit.

Note that classic Turbo codes are punctured down to rate 1/2.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

CCC
CSC
B
B
B
B

(d)

Figure 3: Schematic pictures of the parity check matrices of (a) a regular Gallager code, rate 1/2,
(a’) an almost regular Gallager code rate 1/3 (b) a convolutional code, rate 1/2, and (c) a Turbo
code, rate 1/3. Notation: A diagonal line represents an identity matrix. A band of diagonal lines
represent a band of diagonal 1s. A circle inside a square represents the random permutation of
all the columns in that square. Horizontal and vertical lines indicate the boundaries of the blocks
within the matrix. (d) shows another code with roughly the same profile as a Turbo code.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2 Consequences

Some of the theoretical results proved for Gallager codes carry over to Turbo codes. The positive
ones (for example, that Gallager codes are ‘very good’) don’t carry over since they rely on creating
the whole matrix at random. But the negative ones do. One negative result is that Turbo codes
definitely can’t get to the Shannon limit unless the constraint length of the constituent codes
grows.

3 Discussion

For those of us who thought that there was a considerable distance in ‘code space’ between Turbo
codes and Gallager codes, this observation forces a shift in viewpoint. It also allows us to roll out
a few simple theorems about the maximum likelihood performance of Turbo codes.

So, given that they are such similar codes, what are the differences? Why are regular Gallager
codes worse than Turbo codes? We have caught up with Turbo codes only by (1) making them
over GF(16); (2) making them irregular. But notice these Turbo codes are binary and their parity
check matrices are pretty near regular!

I have some ideas about why Turbo are better.

Notice that the standard way of decoding a Gallager code is not how Turbo codes are decoded.
Message passing different and would be more inaccurate in the Gallager style. Turbo sends
messages all the way along trellises, so the within—trellis messages are correct.

3.1 Wasted checks

Consider a Gallager code with ¢, = 4. Imagine that of the four bits that participate in one check,
three of them happen to be well-determined given the output of the channel. This check allows
us instantly to correct the fourth bit, but then it plays no useful role. This is not the way a good
code works!

In contrast, in a Turbo code, if some bits are well determined, the sole effect is to prune the
trellis. Whatever bits are well-determined, the remaining bits participate in a trellis that looks
(locally) just the same.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

