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Abstract

We introduce a class of iteratively decodable trellis�constrained codes as a gener�

alization of turbocodes� low�density parity�check codes� serially�concatenated con�

volutional codes� and product codes� In a trellis�constrained code� multiple trellises

interact to de�ne the allowed set of codewords� As a result of these interactions� the

minimum�complexity single trellis for the code can have a state space that grows

exponentially with block length� However� as with turbocodes and low�density

parity�check codes� a decoder can approximate bit�wise maximum a posteriori de�

coding by using the sum�product algorithm on the factor graph that describes the

code� We present two new families of codes� homogenous trellis�constrained codes

and ring�connected trellis�constrained codes� and give results that show these codes

perform in the same regime as do turbo�codes and low�density parity�check codes�

� Introduction

Recent interest in the impressive performances of turbocodes and low�density parity�
check codes has led to several attempts at generalizing these codes in ways that lead
to e�cient iterative decoders� In one view that is now quickly propagating across the
research network a code is described by graphical constraints on a system of variables

and the iterative decoder is based on a decade�old expert systems algorithm applied to the
graph which describes the constraints ����� This probability propagation algorithm �
�� is
exact only in cycle�free graphs� However
 as evidenced by the excellent error�correcting
capabilities of the iterative decoders for turbocodes ��� and low�density parity�check
codes ��
 the algorithm works impressively well in the graphs that describe these codes

even though they contain many cycles� See �� and 	� for extensive dissertations on this
subject�

�
Hughes, Exh. 1055, p. 1f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


�a�

�b� R� � ���
n� � ���

R� � ���
n� � ���

�c�

Rt � ���� nt � ���� t � �� � � � � �

�d� R� � ���� n� � �

R� � ���� n� � �

�e�
Rt � ���� nt � ���� t � �� �� �

Figure �� A codeword in a trellis�constrained code must simultaneously be a codeword
of all the constituent trellises
 with the codeword bits reordered� The factor graphs are
shown for �a� a single convolutional code� �b� a turbocode
 where each parity bit is a
codeword bit of only one trellis� �c� a low�density parity�check code� �d� a homogenous
trellis�constrained code� and �e� a ring�connected trellis�constrained code� The small
un�lled discs represent codeword bits�

Fig� �a shows the factor graph �see ��� in these proceedings� for a trellis� Unlike in a
trellis
 in a factor graph the values that each state variable �large white discs� can take
on are not explicitly shown� Any two adjacent state variables and the corresponding
codeword bits �small white discs� must satisfy a linear set of equations �represented by
the small black discs with a ��� inside�� This representation is called a �factor graph�
because it shows how the indicator function for allowed trellis behaviors factors into a
product of local functions� Associated with each black disc is a local function of its
neighboring variables� Each function evaluates to � if its neighboring variables satisfy
the local set of linear equations
 and to � otherwise� The global function is equal to the
product of the local functions� A given con�guration of the codeword bits is a codeword if
the global function evaluates to � for some con�guration of the state variables� In general

the local functions may be nonlinear
 the factor graph variables may be real�valued
 and
the local functions may evaluate to elements of a semi�ring�

Although factor graphs are less explicit about local relationships than are trellises

factor graphs allow us to represent a richer set of systems� Fig� �b shows the factor graph
for a simple turbocode� A single trellis for the same turbocode would have an unwieldly
large number of states� More important than representation
 a factor graph provides
a framework for iterative decoding via message passing on the graph� The probability
propagation algorithm �
 ��
 a�k�a� the sum�product algorithm �
 ��
 can be applied to
a factor graph to approximate bit�wise maximum a posteriori �MAP� decoding� �In the
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special case of a turbocode
 this general algorithm reduces to turbodecoding �
���� Two
di�erent factor graphs for the same code may give decoders with di�erent performances�

As another example
 Fig� �c shows the factor graph for a simple low�density parity�
check code� Each of the six trellises is a simple parity�check trellis that enforces even
parity on its six codeword bits ����

In a sense
 whereas the trellis assisted in the design of low�complexity codes and ex�
act linear�time probabilistic decoders �the Viterbi algorithm and the forward�backward
algorithm�
 the factor graph assists in the design of high�complexity codes and approx�
imate linear�time probabilistic decoders� In this paper
 we present a general class of
high�complexity
 linear�time decodable codes that retain the chain�type structure of trel�
lises locally
 as do turbocodes and to a lesser degree low�density parity�check codes� A
codeword in a trellis�constrained code �TCC� must simultaneously be a codeword of mul�
tiple constituent trellises� So
 if ft�x� is the constituent codeword indicator function for
trellis t � f�� � � � � Tg
 the global codeword indicator function is

f�x� �
TY

i��

ft�x�� ���

Each constituent indicator function is given by a product of the local functions within the
corresponding trellis� Usually
 the codeword bits interact with the constituent trellises
through permuters that rearrange the order of the codeword bits�

For the turbocode in Fig� �b
 there are two constituent functions
 f���� and f�����
f���� indicates that the upper row of codeword bits are valid output from a convolutional
encoder with the middle row of codeword bits as input� f���� does not directly place any
restrictions on the lower row of codeword bits
 so it e�ectively only checks ��� of the
codeword bits� f���� indicates that the lower row of codeword bits are valid output from
a convolutional encoder with the middle row of codeword bits as input� In contrast to
f����
 f���� does not place any restrictions on the upper row of codeword bits�

The rate R of a TCC is related to the rates of the constituent trellises Rt
 t �
�� � � � � T in a simple way� If nt is the fraction of codeword bits that trellis t checks
 then
trellis t removes at most �� � Rt�ntN binary degrees of freedom from the code� It may
remove a small number less if some of its constraint equations are linearly dependent on
those given by other constituent trellises� For large
 randomly generated permuters this
e�ect is quite small
 so we will ignore it when computing rates in the remainder of this
paper� �As a result
 the actual rates may be slightly higher than the given rates�� The
total number of binary degrees of freedom left after all trellis constraints are satis�ed is
N �

PT
t����� Rt�ntN 
 so the rate of the TCC is

R � ��
TX

t��

���Rt�nt� ���

From this equation
 it is easy to verify that the turbocode in Fig� �b has rate ��� and
that the low�density parity�check code in Fig� �c also has rate ���� �Note that a k�bit
parity�check trellis has rate �k � ���k��

Unlike encoding turbocodes and serially�concatenated convolutional codes
 encoding
a general TCC takes quadratic time in N � In a general TCC
 we can designate a subset
of the codeword bits as the systematic bits of the entire code and then use Gaussian
elimination to compute a generator matrix �once only�� Using such a systematic generator
matrix for encoding requires R���R�N� binary operations�
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Decoding a TCC involves performing the forward�backward algorithm for each trellis
and exchanging information between trellises in the fashion speci�ed by the sum�product
algorithm� The constituent trellises may be processed in parallel or sequentially�

In the following two sections
 we present two new families of TCC�s and show that
they perform in the same regime as do turbocodes and low�density parity�check codes�

� Homogenous Trellis�Constrained Codes

In a turbocode
 the constituent trellises share only a systematic subset of their codeword
bits� The other parity bits of each constituent encoder are not constrained by the other
encoders� Fig� �d shows the factor graph for a simple homogenous TCC with T � �
 in
which all of the bits are constrained by each constituent trellises� From the general rate
formula in ���
 we see that the rate for a homegenous turbocode is

R � �� T ��� Ravg�� ���

where Ravg �
�PT

t��Rt

�
�T �

One di�erence between the homogenous TCC and the turbocode is that the rate of
a homogenous TCC decreases directly with the number of trellises T � In the simulations
discussed below
 we used T � � and R� � R� � Ravg � ��� to get R � ���� To obtain
the same rate with T � � would require Ravg � 	��� In contrast
 the rate for a turbocode
varies roughly inversely with T � A rate ��� turbocode with T � � can be obtained with
R� � R� � R� � ���� Another di�erence is that the permuter length of a homogenous
TCC is N 
 whereas for a turbocode
 the permuter length is RN �

��� Encoding and Decoding

The trellises in a homogenous TCC share all their bits
 so we can�t simply encode by
dividing the bits in each constituent trellis into a systematic set and a parity set and
running a linear�time encoding method for each trellis
 as is possible in a turbocode�
Instead
 we apply a previously computed generator matrix to a previously selected sys�
tematic subset of codeword bits
 which takes R��� R�N� binary operations�

The iterative decoder processes each constituent trellis using the forward�backward
algorithm
 and passes �extrinsic information� between the trellises in the manner spec�
i�ed by the sum�product algorithm� For two trellises
 the decoding schedule is straight�
forward� For T � �
 di�erent decoding schedules are possible� The trellises may be
processed sequentially
 in which case the current trellis uses the most recently computed
probabilities produced by the other trellises� Alternatively
 the trellises may be processed
in parallel
 in which case the current trellis uses the probabilities produced by the other
trellises in the previous decoding iteration�

For the sake of gaining insight into these new compound codes and the behavior of
their iterative decoders
 we prefer to decode until a codeword is found or we are sure
the iterative decoder has failed to �nd a codeword� After each decoding iteration
 the
current bit�wise MAP estimates are used to determine whether a valid codeword has
been found
 in which case the iterative procedure is terminated� If ��� iterations are
completed without �nding a codeword
 we label the block a decoding failure� Notice that
given the factor graph of a code
 determining that a codeword is valid is simply a matter
of checking that all the local functions evaluate to ��
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��� Performance on an AWGN Channel

Using Monte Carlo
 we estimated the performance of anN � ���� ���
 T � � homogenous
TCC with R� � R� � ���
 giving R � ���� �See App� A for a description of how the BER
con�dence intervals were computed�� Each rate ��� trellis was obtained by shortening
every �fth bit of a rate ��	 nonsystematic convolutional code with maximum dmin� �The
generator polynomials for this code are given in ��� and are ���� �� ��� �	� ���octal�� Fig� �
shows the performance of this homogenous TCC
 relative to the turbocode introduced
by Berrou et� al� ��� and the best rate ���
 N � �	� ��� low�density parity�check code
published to date ��� Although it does not perform as well as the turbocode
 it performs
signi�cantly better than the low�density parity�check code� We believe there is room for
improvement here
 since we chose the set of generator polynomials that gave maximum
dmin and this is quite likely not the best choice� �Keep in mind
 however
 that the
performance of a homogenous TCC is not necessarily governed by the same constituent
trellis properties that govern the performance of a turbocode�� Of signi�cant importance
compared to turbocodes
 we have observed that this homogenous TCC does not have
low�weight codewords�
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Figure �� The performances of a homogenous TCC and a ring�connected TCC compared
to the best rate ��� turbocode and low�density parity�check code performances published
to date �
 ����

� Ring�Connected Trellis�Constrained Codes

Fig� �e shows the factor graph for a simple ring�connected TCC with T � �� This code
can be viewed as a serially�concatenated convolutional code �	
��� in which some of the
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