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Abstract

We present two families of error�correcting codes de�ned in terms of very sparse matrices�
�MN codes� are new� and �GL codes� were �rst investigated by Gallager in �	
�� but appear to
have been largely forgotten� in spite of their excellent properties� The decoding of both codes
can be tackled with a practical belief propagation algorithm�

We prove that these codes are �very good�� in that sequences of codes exist which� when
optimally decoded� achieve information rates up to the Shannon limit� This result holds not
only for the binary symmetric channel but also for any channel with symmetric stationary
ergodic noise�

We give experimental results for binary symmetric channels and Gaussian channels demon�
strating that practical performance substantially better than that of standard convolutional and
concatenated codes can be achieved� indeed the performance of GL codes is almost as close to
the Shannon limit as that of Turbo codes�
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� Introduction

For a glossary of symbols used in this paper� please see appendix A�

��� Background

In ����� Shannon 	
�� proved that for any channel there exist block codes that achieve arbitrarily
small probability of error at any communication rate up to the capacity of the channel� We will
refer to such code families as 
very good� codes� By 
good� codes we mean code families that achieve
arbitrarily small probability of error at non�zero communication rates up to some maximum rate
that may be less than the capacity of the given channel� By 
bad� codes we mean code families that
can only achieve arbitrarily small probability of error by decreasing the information rate to zero�
�Bad codes are not necessarily useless for practical purposes�� By 
practical� codes we mean code
families which can be encoded and decoded in time and space polynomial in the block length�

Shannon�s proof was non�constructive and employed random codes for which there is no practi�
cal encoding or decoding algorithm� Since ����� it has been proved that there exist very good linear
codes �non�constructively�� that there exist very good cyclic codes �non�constructively� 	���� that
there exist very good codes that have structure �non�constructively� 	���� and that very good codes
can be produced with a short description in terms of permutations 	��� But no practical decoding
algorithm is known for any of these codes� and it is known that the general linear decoding problem
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��nd the maximum likelihood s in the equation GTs� n � r� is NP�complete 	���� Convolutional
codes �which can be viewed as block codes with memory� can approach the Shannon limit as their
constraint length increases but the complexity of their decoding grows exponentially with the con�
straint length� For a long time a generally held view was that for practical purposes a channel�s
e�ective capacity was a rate 
R�� smaller than the Shannon capacity� if convolutional codes were
used� and many believed this conjecture applied to all codes� speculating that practical commu�
nication beyond R� was impossible� Forney proved that there do exist very good 
concatenated�
codes that are practical 	���� but the proof was also non�constructive 	����

When it comes to practical� constructive codes� constructions have been demonstrated of codes
based on concatenation that are good� though not very good� but most known practical codes are
asymptotically bad 	���� Goppa�s recent algebraic geometry codes �reviewed in 	���� appear to be
both practical and good �with practical decoding proven possible up to the Gilbert bound�� but
we believe that the literature has not established whether they are very good� The most practi�
cal decoding algorithm 	��� appears to be prohibitively costly �N�� to implement� and algebraic
geometry codes do not appear to be destined for practical use�

Thus the conventional view is that there are few known constructive codes that are good� fewer
still that are practical� and none at all that are both practical and very good� It seems to be widely
believed that whereas almost any random linear code is good� codes with structure that allows
practical coding are likely to be bad 	���� 	���� Battail expresses an alternative view� however� that

we can think of good codes� and we can decode them� 	��� This statement is supported by the
results of the present paper�

In this paper we present two code families� Gallager�s low�density parity�check codes �
GL
codes�� are de�ned in terms of a very sparse random parity check matrix 	��� ��� ���� 
MN codes�
are also de�ned in terms of very sparse random matrices� and were �rst presented in 	���� �We
generalized MN codes to GL codes� then realised that we had rediscovered Gallager�s work�� MN
codes are unconventional in that redundancy can be incorporated in the transmitted codewords not
only by using a K �N generator matrix with transmitted block length N greater than the source
block length K� but also by using a source that is itself redundant�

These code families both have two important properties� First� because of the construction in
terms of sparse matrices� practical decoding seems to be possible at good communication rates�
Second� we prove in section � that in spite of their simple construction these codes are very good �
that is� sequences of codes exist which when optimally decoded achieve information rates up to the
Shannon limit of the binary symmetric channel� We further prove that the same codes are in fact
good for any ergodic symmetric channel model� Our proof may be viewed as a semi�constructive
proof of Shannon�s noisy channel coding theorem� It is indeed easy to think of good codes�

In section � we present a 
belief propagation� algorithm for solving the decoding problem� �rst
presented by Gallager 	���� We give an analysis of the decoding algorithm in section ���� These
results lead us to conjecture that there exist GL and MN codes which are not only good but which
also achieve error rates approaching zero at a non�zero information rate when decoded using a
practical algorithm� In sections � and � we describe empirical results of computer experiments
using the belief propagation algorithm to decode GL and MN codes� Our experiments show that
practical performance signi�cantly superior to that of textbook codes can be achieved by these
codes� Section � contains discussion speci�c to MN codes�

��� De�nitions

The input and output alphabets of the binary symmetric channel �BSC� will be denoted f�� �g�
We will denote the error probability of the BSC by fn� where fn � ��
�

De�nition � The binary entropy functions H��f� and He
��f� are

H��f� � f log����f� � ��� f� log������� f�� ���

�
Hughes, Exh. 1053, p. 2f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


He
��f� � f loge���f� � ��� f� loge������ f��� ���

De�nition � The weight of a binary vector or matrix is the number of �s in it� We denote the
weight of a vector x by w�x�� The density of a source of random bits is the expected fraction of
� bits� A source is sparse if its density is less than ���� A vector v is very sparse if its density
vanishes as its length increases� for example� if a constant number t of its bits are �s� The overlap
between two vectors is the number of �s in common between them�

De�nition � The capacity C�fn� of a binary symmetric channel with noise density fn is� in bits
per cycle�

C�fn� � ��H��fn�� ���

The rate R��fn� is

R��fn� � �� log�

�
� � �

q
fn��� fn�

�
� ���

This is the computational cuto� of sequential decoding for convolutional codes�the rate beyond
which the expected cost of achieving vanishing error probability using sequential decoding becomes
in	nite�

The Gilbert bound GV �fn� is

GV �fn� �

�
��H���fn� fn � ���
� fn � ���

� �
�

This is the maximum rate at which one can communicate with a code whose codewords satisfy the
Gilbert
Varshamov minimum distance bound� assuming bounded distance decoding ��
��

De�nition � A model that de	nes a probability distribution over strings x of any length N �
P �xjN�� has mean entropy Hx if for any � � � and � � � there exists an N� such that for all
N � N��

P

����� �N log�
�

P �xjN�
�Hx

���� � �

�
� �� ���

For example� a memoryless binary symmetric channel�s noise has mean entropy Hn � H��fn��
where fn is the density of the noise� the proof of this statement� by the law of large numbers� is
well known 	�
�� We will prove that the codes presented in this paper are good codes not only for
the binary symmetric channel but also a wide class of channels with memory�

De�nition � A binary channel with symmetric stationary ergodic noise is a channel whose output
in response to a transmitted binary vector t is given by r � t� nmod �� where n� the noise vector�
has a probability distribution that is �a� independent of t and �b� stationary and ergodic�

For example� burst noise might be modelled by a stationary and ergodic Markov process� Such
a process has a mean entropy� though the evaluation of this quantity may be challenging� The
standard Gaussian channel with binary inputs is also equivalent to a binary channel with stationary
stationary ergodic noise�

We will concentrate on the case of a binary channel with symmetric noise �see de�nition 
� in
the body of this paper� Channels with memory whose inputs are binary and whose outputs are in
some more general alphabet are addressed in appendix H�
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����� Linear codes

A linear error correcting code can be represented by a N by K binary matrix GT �the generator
matrix�� such that a K�bit binary message s is encoded as the N �bit vector t � GTsmod�� �Note
that we have chosen to use column vectors so the generator matrices act to the right rather than
the left�� The generator matrix is in 
systematic form� if it can be written as

GT �

�
IK
P

�
� ���

where IK is the K�K identity matrix� and P is a binary matrix� The channel adds noise n to the
vector t with the resulting received signal r being given by�

r � �GTs� n�mod�� ���

The decoder�s task is to infer s given the received message r� and the assumed noise properties of
the channel� The optimal decoder returns the message s that maximizes the posterior probability

P �sjr�G� �
P �rjs�G�P �s�

P �rjG�
� ���

It is often not practical to implement the optimal decoder�
If the prior probability of s is assumed uniform� and the probability of n is assumed to be

independent of s �c�f� de�nition 
�� then it is convenient to introduce the �N � K� � N parity
check matrix�H� which in systematic form is 	P IN�K �� The parity check matrix has the property
HGT � �mod�� so that� applying H to equation ����

Hn � Hrmod�� ����

Any other �N �K� � N matrix A whose rows span the same space as H is a valid parity check
matrix�

The decoding problem thus reduces� given the above assumptions� to the task of �nding the
most probable noise vector n such that

Hnmod � � z� ����

where the syndrome vector z � Hrmod��

��� Description of the two code families

We de�ne two code families� We explain the more conventional GL codes �rst�

����� The idea behind GL codes

We construct a linear code by �rst making a very sparse random parity check matrix A� �Very
sparse� but not systematic�� We then use linear algebra to obtain a corresponding generator matrix�
This can be done by �rst putting A into systematic form H� then deducing a systematic G� This
simple construction is complemented by a straightforward decoding algorithm which implements
an approximation to the ideal Bayesian inference of equation ����
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����� Construction of GL codes

The parity check matrix A can be constructed as follows� We will describe variations on this
construction later�

A transmitted block length N and a source block length K are selected� We de�ne M � N �K
to be the number of parity checks� We select a column weight t� which is an integer greater than
or equal to �� We create a rectangular M �N matrix 	M rows and N columns� A at random with
exactly weight t per column and a weight per row as uniform as possible� If N�M is chosen to be
an appropriate ratio of integers then the number per row can be constrained to be exactly tN�M �
We then use Gaussian elimination and reordering of columns to derive an equivalent parity check
matrix in systematic form 	PIM �� There is a possibility that the rows of A are not independent
�though for odd t� this has small probability�� in this case� A is a parity check matrix for a code with
the same N and with smaller M � that is� a code with greater rate than assumed in the following
sections� Rede�ning A to be the original matrix with its columns reordered as in the Gaussian
elimination� we have the following situation�

The matrix A � 	C�C�� is composed of two very sparse matrices C� and C� as follows�

The matrix C� is a square M �M matrix that is very sparse and invertible� The inverse C��
�

of this matrix has been computed during the Gaussian elimination which produced the matrix
P � C��

� C�� The inversion takes order M�N time and is performed once only�

The matrix C� is a rectangular M �K matrix that is very sparse�

Encoding� We de�ne the generator matrix of the GL code to be

GT �

�
IK
P

�
�

�
IK

C��
� C�

�
mod�� ����

where IK is the K �K identity matrix�

����� Variations

�� When generating the matrix A� one can constrain all pairs of columns in the matrix to have
an overlap � �� This is expected to improve the properties of the ensemble of codes� for
reasons that will become apparent in section ����

�� One can further constrain the matrix A so that the topology of the corresponding bipartite
graph does not contain short cycles� This is discussed further in section ����

����� The decoding problem for GL codes

A source vector s of length K is encoded into a transmitted vector t de�ned by�

t � GTsmod�� ����

If the generator matrix has been computed explicitly �which takesM�N time� then the transmitted
vector can be computed by explicit multiplication inNK time� However� encoding might be possible
in less time using sparse matrix methods�

The received vector is
r � t� nmod�� ����

where the noise is n� In the case of a binary symmetric channel� n is assumed to be a sparse random
vector with independent� identically�distributed bits of density fn� We will discuss more general
channels below�
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