
To appear in IEEE J. Selected Areas in Communication.
Draft of August 13, 1997 11:06 a.m.

Turbo Decoding as an Instance of
Pearl’s “Belief Propagation” Algorithm

Robert J. McEliece
California Institute of Technology

David J. C. MacKay
Cambridge University

Jung-Fu Cheng
California Institute of Technology

Abstract.

In this paper we will describe the close connection between the now celebrated iterative
turbo decoding algorithm of Berrou, Glavieux, and Thitimajshima, and an algorithm that
has been well-known in the artificial intelligence community for a decade, but which is
relatively unknown to information theorists: Pearl’s belief propagation algorithm. We shall
see that if Pearl’s algorithm is applied to the “belief network” of a parallel concatenation
of two or more codes, the turbo decoding algorithm immediately results. Unfortunately,
however, this belief diagram has loops, and Pearl only proved that his algorithm works
when there are no loops, so an explanation of the excellent experimental performance of
turbo decoding is still lacking.

However, we shall also show that Pearl’s algorithm can be used to routinely derive
previously known iterative, but suboptimal, decoding algorithms for a number of other
error-control systems, including Gallager’s low-density parity-check codes, serially con-
catenated codes, and product codes. Thus belief propagation provides a very attractive
general methodology for devising low-complexity iterative decoding algorithms for hybrid
coded systems.

* This work was supported by NSF grant no. NCR-9505975, AFOSR grant no. 5F49620-
97-1-0313, and by a grant from Qualcomm, Inc. A portion of McEliece’s contribution was
done while he was visiting the Sony corporation in Tokyo. The collaboration between
MacKay and McEliece was begun at, and partially supported by, the Newton Institute for
Mathematical Sciences, Cambridge, England.

Hughes, Exh. 1033, p. 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1. Introduction and Summary.

“Turbo codes,” which were introduced in 1993 by Berrou, Glavieux, and Thitimajshima
[10], are the most exciting and potentially important development in coding theory in
many years. Many of the structural properties of turbo codes have now been put on a firm
theoretical footing ([7][18][20][21][27][45]), and several innovative variations on the turbo
theme have appeared ([5][8][9][12][27][48]).

What is still lacking, however, is a satisfactory theoretical explanation of why the
turbo decoding algorithm performs as well as it does. While we cannot yet announce a
solution to this problem, we believe the answer may come from a close study of Pearl’s
belief propagation algorithm, which is largely unknown to information theorists, but well-
known in the artificial intelligence community. (The first mention of belief propagation in
a communications paper, and indeed the paper that motivated this one, is that of MacKay
and Neal [37]. See also [38] and [39].)

In this paper, we will review the turbo decoding algorithm as originally expounded
by Berrou et al. [10], but which was perhaps explained more lucidly in [3], [18], or [50].
We will then describe Pearl’s algorithm, first in its natural “AI” setting, and then show
that if it is applied to the “belief network” of a turbo code, the turbo decoding algorithm
immediately results. Unfortunately, however, this belief network has loops, and Pearl’s
algorithm only gives exact answers when there are no loops, so the existing body of knowl-
edge about Pearl’s algorithm does not solve the central problem of turbo decoding. Still, it
is interesting and suggestive that Pearl’s algorithm yields the turbo decoding algorithm so
easily. Furthermore, we shall show that Pearl’s algorithm can also be used to derive effec-
tive iterative decoding algorithms for a number of other error-control systems, including
Gallager’s low-density parity-check codes, the recently introduced low-density generator
matrix codes, serially concatenated codes, and product codes. Some of these “BP” de-
coding algorithms agree with the ones previously derived by ad hoc methods, and some
are new, but all prove to be remarkably effective. In short, belief propagation provides
an attractive general method for devising low-complexity iterative decoding algorithms for
hybrid coded systems. This is the message of the paper. (A similar message is given in
the paper by Kschischang and Frey [33] in this issue.)

Here is an outline of the paper. In Section 2 we derive some simple but important
results about, and introduce some compact notation for, “optimal symbol decision” de-
coding algorithms. In Section 3 we define what we mean by a turbo code, and review the
turbo decoding algorithm. Our definitions are deliberately more general than what has
previously appeared in the literature. In particular, our transmitted information is not bi-
nary, but rather comes from a q-ary alphabet, which means that we must deal with q-ary
probability distributions instead of the traditional “log-likelihood ratios.” Furthermore,
the reader may be surprised to find no discussion of “interleavers,” which are an essential
component of all turbo-coding systems. This is because, as we will articulate fully in our
concluding remarks, we believe the interleaver’s contribution is to make the turbo code
a “good” code, but it has nothing directly to do with the fact that the turbo decoding
algorithm is a good approximation to an optimal decoder. In Section 4, we change gears
and give a tutorial overview of the general probabilistic inference problem, with special

1

Hughes, Exh. 1033, p. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

reference to Bayesian belief networks. In Section 5 we describe Pearl’s BP algorithm, which
can be defined on any belief network, and which gives an exact solution to the probabilis-
tic inference problem when the belief network has no loops. In Section 6, we show that
the turbo decoding algorithm follows from a routine application of Pearl’s algorithm to
the appropriate (loopy) belief network. In Section 7 we briefly sketch some other decoding
algorithms that can be derived from BP considerations. Finally in Section 8 we summarize
our findings and venture some conclusions.

2. Preliminaries.

In this section, we will describe a general class of q-ary systematic encoders, and derive
the optimal symbol-by-symbol decoding rule for a memoryless channel.

Let U = (U1, . . . , Uk) be a k-dimensional random vector of independent, but not
necessarily equiprobable, symbols from a q-letter alphabet A, with Pr{Ui = a} = πi(a), for
a ∈ A. The vector U represents information to be transmitted reliably over an unreliable
channel. We suppose that U is encoded systematically, i.e., mapped into a codeword X of
the form

(2.1) X = (U ,X1)

where U is the “systematic” part, and X1 is the “nonsystematic” part, of the codeword
X. In the rest of the paper, we will sometimes call X1 a codeword fragment.

We assume that the codeword X is transmitted over a noisy channel with transition

probabilities p(y | x)
def
= Pr{Y = y | X = x}, and received as Y = (Ys,Y1), where Ys is

the portion of Y corresponding to the systematic part of the codeword U , and Y1 is the
portion corresponding to the codeword fragment X1. We assume further that the channel
is memoryless, which implies that the conditional density factors according to the rule

p(y | x) = p(ys,y1 | u,x1)

= p(ys | u)p(y1 | x1)(2.2)

=

(
k∏

i=1

p(ysi | ui)

)
· p(y1 | x1),(2.3)

where ysi denotes the ith component of ys. The situation is depicted in Figure 1.

��
��
��
��

E

U = (U1, . . . , Uk)

X1 Y1

c
h
a
n
n
e
l

Ys = (Ys1, . . . , Ysk)

Figure 1. The codeword X = (U ,X1) is transmitted
over a memoryless channel and received as Y = (Ys,Y1).

2

Hughes, Exh. 1033, p. 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The decoding problem is to “infer” the values of the hidden variables Ui based on the
“evidence,” viz., the observed values ys and y1 of the variables Ys and Y1. The optimal
decision, i.e., the one that minimizes the probability of inferring an incorrect value for Ui,
is the one based on the conditional probability, or “belief,” that the information symbol
in question has a given value:

(2.4) BELi(a)
def
= Pr{Ui = a | Ys = ys,Y1 = y1}.

(A communication theorist would use the term “a posteriori probability,” rather than
“belief.”) If a0 is such that BELi(a0) > BELi(a), for all a �= a0, the decoder infers that
Ui = a0. The following straightforward computation is central to our results. In this
computation, and for the rest of the paper, we will use Pearl’s α notation [44].

2.1 Definition. If x = (x1, . . . , xm) and y = (y1, . . . , ym) are vectors of nonnegative real
numbers, the notation

x = α y

means that xi = yi/(
∑m

k=1 yk), for i = 1, . . . ,m. In other words, x is a probability vector
whose components are proportional to those of y. (If f(x) and g(x) are nonnegative real-
valued functions defined on a finite set, the notation f(x) = α g(x) is defined similarly.)

2.2 Lemma. If the likelihood p(ysi | ui)
1 is denoted by λi(ui), then the belief BELi(a)

defined in (2.4) is given by

BELi(a) = α
∑

u :ui=a

p(y1 | x1)
k∏

j=1

λj(uj)πj(uj)

= α λi(a)πi(a)
∑

u :ui=a

p(y1 | x1)
k∏

j=1
j �=i

λj(uj)πj(uj).(2.5)

Proof: We have, by the definition (2.4), BELi(a) = Pr{Ui = a | Y = y}. Then

Pr{Ui = a | Y = y} =
Pr{Y = y, Ui = a}

Pr{Y = y}
= α Pr{Y = y, Ui = a} (using the α-notation)

= α
∑

u :ui=a

p(y,u)

= α
∑

u :ui=a

p(y | u) · p(u)

1 If the encoder is not systematic, i.e., if the uncoded information symbols Ui are not
transmitted, these likelihoods should all be set equal to 1.

3

Hughes, Exh. 1033, p. 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

= α
∑

u :ui=a

p(y1 | x1)p(ys | u) ·
k∏

j=1

πj(uj) by (2.2)

= α
∑

u :ui=a

p(y1 | x1) ·
k∏

j=1

λj(uj)πj(uj) by (2.3)

= α λi(a)πi(a)
∑

u :ui=a

p(y1 | x1)

k∏
j=1
j �=i

λj(uj)πj(uj).

The last two lines of the above calculation are the assertions of the Lemma.

We see from (2.5) that BELi(a) is the product of three terms. The first term, λi(a),
might be called the systematic evidence term. The second term, πi(a), takes into account
the a priori distribution of Ui. Note that the effect of the systematic evidence is, in effect,
to change the prior distribution of Ui from πi(a) to απi(a)λi(a). The third term, which is
more complicated, takes into account the geometry of the code. Following [10], we will call
this term the extrinsic term, and denote it by Ei(a). The extrinsic term is so important
to what follows that we shall introduce a special notation for it. (This notation will also
prove useful in Section 5, where we shall use it to describe Pearl’s algorithm—see Table
5.1, line 6.)

Thus let A1, . . . , Ak be finite alphabets, let U ⊆ A1 × · · · × Ak, and let R denote
the set of real numbers. Let g = (g1, . . . , gk) be a function mapping U into Rk. In other
words, g is a vector of k real valued functions, and if u = (u1, . . . , uk) ∈ U , then

g(u) = (g1(u1), . . . , gk(uk)).

Now suppose that K(u) is a real-valued function defined on the set U , which we call a
kernel. The K-transform of g is the vector g′ = (g′1, . . . , g

′
k), where g′i is defined by

(2.6) g′i(a) =
∑

u :ui=a

K(u)
k∏

j=1
j �=i

gj(uj).

We summarize (2.6) by writing

(2.7) g′ = g ◦K.

Next, if f and g are vector-valued functions as above, we define their adjacent product
h = fg as a simple componentwise product, i.e., h = (h1, . . . , hk), where

(2.8) hi(a) = fi(a)gi(a).

Using the circle and adjacent notation,2 we can express the result of Lemma 2.2
compactly. To do so, we take U = Ak, and define a kernel p(u) as

p(u)
def
= p(y1 | x1),

2 We assume that “adjacent” takes precedence over “circle,” in order to minimize the
use of parentheses.

4

Hughes, Exh. 1033, p. 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

