O E @

LIBRARY OF CONGRESS

Office of Business Enterprises
Duplication Services Section

THIS IS TO CERTIFY that the collections of the Library of Congress contain a
publication entitted IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATION,
Volume 16, January— June 1998, call number TK5101.A1 I35, and that the attached photocopies
- the spine, February 1998 issue - Title page/Table of contents page, verso of title page/table of
contents page, Copyright date stamp page 137, back cover containing Table of Contents page,
and pages 219 through 230, - article entitled, "Iterative Decoding of Compound Codes by
Probability Propagation in Graphical Models" by Frank R. Kschisfchang, and Brendan J. Frey-
are a true representation from that work.

THIS IS TO CERTIFY FURTHER, that work is marked with a Library of Congress
Copyright Office stamp that bears the date February 23, 1998.

IN WITNESS WHEREOF, the seal of the Library of Congress is affixed hereto on

; /
7 SR

Gregory "l(,%Op
Duplication Services, Section Head
Office of Business Enterprises

Library of Congress

101 Independence Avenue, SE Washington, DC 20540-4917 Tel 202.707.5650 www.loc.gov; duplicationservices@loc.gov

Hughes, Exh. 1017, p. 1

IEEE |
JOURNAL ON.
SELECTED
AREAS IN
OMMUNICATION:

16
JAN-JUNE
1998

" Hughes, Exh. 1017, p. 2

ET—

<}:EEE JOURNAL ON

SELECTED AREAS IN
COMMUNICATIONS

A PUBLICATION OF THE IEEE CCMMUNICATIONS SOCIETY

FEBRUARY 1998 VOLUME 16 NUMBER 2 ISACEM (ISSN 0733-8716)

CONCATENATED CODING TECHNIQUES AND ITERATIVE DECODING:
~ SAILING TOWARD CHANNEL CAPACITY

\
SN Guest Editors—S. Benedetto, D. Divsalar, and J. Hagenauer
Guest BAitorialooovviieiiiiiiiiiii it iiiiiiiaiieaieenene S Benedetto, D. Divsalar, and J. Hagenauer 137
PAPERS ;
Turbo Decoding as an Instance of Pearl’s “Belief Propagation™ Algorithm........................... LA
... R. J. McEliece, D. J. C. MucKay, and J.-F. Cheng 140
Early Detection and Trellis Splicing: Reduced-Complexity lterative Decoding B.J. Frey and F. R. Kschischang 153
Design and Analysis of Turbo Codes on Rayleigh Fading Channels......................... E. K. Hall and S. G. Wilson 160
Symbol-by-Symbol MAP Decoding Algorithm for High-Rate Convolutional Codes That Use Reciprocal Dual Codes
... S. Riedel 175
Concatenated Decoding with a Reduced-Search BCIR Algorithmooo. .. V. Franz and 1. B. Anderson 186
Performance Evaluation of Superorthogonal Turbo Codes in AWGN and Flat Rayleigh Fading Channels
... P. Komulainen and K. Pehkonen 196
Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes ... P. Robertson and T. Wirz 206
Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models
... F. R Kschischang and B. J. Frey 219
Analysis, Design, and Iterative Decoding of Double Serially Concatenated Codes with Interleavers
... S. Benedetto, D. Divsalar. G. Montorsi, and F. Pollara 231
A Conceptual Framework for Understanding Turbo Codes D% 556 59 8RB IS BEFEEE £ e it mepneodbsane T G. Battail 245
Mismatched Decoding of Intersymbol [nterterence Using a Parallel Concatenated Scheme... ...,
... K. Balac /lumlum and J. B. /\Ilt/(H()ll 255
An Intuitive Justitication and a Simplified [mplementation u(ll i M/\P Decoder for Convolutional Codes .
.. /\ J Vllm/il 260
Multiple Differential Detection of Parallel Concatenated C on\'nlullwnal (huhn) G n(lu in Correlated Fast Rayleigh Fading
1D Marsland and P 1. Mathiopoulos 265
On llullllvu 50!(Dumnn D(.(\KIII]L ot Linear any Block Codes and Product Codes
R Lucas, M Bossert, and M lx/u//)m h 276
o omtineecd o Back Cover)

il
i

. Hughes, Exh. 1017, p. 3

IEEE COMMUNICATIONS SOCIETY @

-
The fickd al mterest ab the 1FkBE Commumeations Society consists ol all telecommunications including telephone, telegraphy. facsimile. and point-to-point television, by
clectomagnete propagagion mcluding radivs wire: serial, wdeqground. coanral, ind submaring cables: waveguides, communication satellites. and Jasers: in marine. acronautical,
signal storage. and eeeneration: telecommunication error detection ad coreection; multiplexing and carrier techniques:

space. and fixed sttion seeviess repeaterse o felaying.
conmnunication switchimg sysiems: A comctions and communividion theory.

In addition W the aboye, this JOURNAL o the TEEE TRANSACATIONS ON COMMUNICATIONS contains papers pertaining 1o analog and digital
audio wand video envading techniques® the theory amd design of transmilters, receisers, and repeaters for communications via optical snd sonie media, the design and analysis of
computer commngnication systems, and the develapment of communication software. Contributions of theory enhancing the understanding of communigation systems and techniques
are included. as are discussions of the social implications of the development of communication technology. All members of the 1EEE are eligible for membership in the Society upon
paymieny of the annual Socicly miémbership fee of $23.00. Members may receive this JOURNAL upon payment of an additional $27.00 ($50.00 wital). the 1EEE TRANSACATIONS
ON COMMUNICATIONS upon payment of an additonal $27 00 (350,00 total), or poth publications upon payment of an additional $54.00 ($77.00 total). For information on joining,
A the addiess below Member copies of Transactions/Journals are for personal use only.

ing and modulation,

write (o the 1L

[EEE COMMUNICATIONS SOCIETY
JOURNAL Editorial Board 1998
J-SAC Home Page URL: hitp:/gump.bellcore.com:5000

WU TRaNTER, Divector of Jowrnals L. B. MusreN, Editor-in-Chief Sue L. MCDONALD. Executive Editor
Virginia Tech Dept. Elect. and Comput. Eng. Bellcore, Rim. TA308R

432 New Engineering Bldg. Mail Code 0407 445 South Street

Blacksburg, VA 24061-0350 Uniy. of California, SD Morristown, NJ 07960-1910
btranter@ vi.edu La Jolla, CA 92093 sue @bellcore conr

milstein@cce.ucsd.cdu

Senior Editors

A. M Busi 1 F. Haves R. RAMASWAMI W. H. TRANTER
NSF Dept. Elec. Eng. lellabs Dept. Elec. Eng.
4201 Wilson Boulevard Concordia Univ. 15 Skyline Drive Univ. of Missouri-Rolla
Room {173 1455 De Maissonneuve Hawthorne, NY 10532 Rolla, MO 65401- 0249
Arlington, VA 22230 Montreal, Quebec

Canada HAG IM8
W. Brx N. MAXEMCHUK T.S. RAPPAPORT D. P. TavLor
IBM Res. Lab. Zurich AT&T Laboratories The Bradley Dept. Elec. Eng. Dept. E & E Engineering
Saumerstrasse 4 Bldg. 103. Room ALLS 615 Whittemore Hall Univ. of Canterbury
8803 Ruschlikon ZH 180 Park Ave. Virginia Polytech. Inst. & State Univ, Private Bag 4800
Switzerland N Florham Park, NJ 07932 Blucksburg, VA 24061-0111 Christchurch, New Zealand

THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
Officers

FRIEDOLF M. SMITS, Vice Presidemt, Publication Activities

DANIEL R. BENIGNI, Vice President, Regional Activities
ANTONIO C. Basros, Secretary L. JOUN RANKINE, Vice President, Standardy Association
BRrRUCE A, EISENSTEIN, Treasurer LLoyp A. MorLEY, Vice President, Technical Activities
ARINILR WINSTON, Vice President, Educational Activities Jonn R. REINERT, President, IEEE USA

Davin D, Daur, Director, Division MH-—Communications Technology Division

JosEPH BORDOGNA, President
KeNNETH R LAKER, President-Elect

]
Executive Staff
DANIEL J. SENESE, Executive Director
Doxarn Corns, Human Resources i . .
') | e RICHARD D. SCHWARTZ. Business Administration
ANTHONY I FERRARO, Prblications s g ; v 3
. e W. THOMAS SUTTLE, Professional Activities
Junitil GORMAN, Standards Activities o ; e
CruELTA JARKTINGKI. REsiiic] dctivifivs MARY WARD-CALLAN, Technical Activities
LT Al & '« 10 iy, 43 . N .
u JOHN WITSKEN, Mnformation Teclnology

Perer A Lewis, Educational Activities
IEEE Periodicals
Transactions/Journals Department
Staff Director: FRAN ZAPPULLA

Editorial Director: VALERIE CAMMARATA

Production Director: ROBERT SMREK
Transactions Manager: GAIL S. FERENC

Llectronic Publishing Manager: Tos BONTRAGER

Managing Fditor: Geratping E. KROUIN

August, Septeniher, October.
the Sochey/Couacil, or

[EE 1OV R AT ON SEERCTED AREAS IN COMMENICATTONS (ISSN O3 87161 is published s times a year in Tanwinry. Fehpey, Apeil. My, o
and Decembee by the Tnstinie of Electneal and Blectronies Fngineers. dne: Responsibility Toe thee contenis rexts wpeny the authors and oot upon the 1R,
it by IEEE Corporate Office:s VIS Past 87 Stoet, New Yok, NY 100172394, TEEE Operations Center: 245 Hoes Lane, PO Box |V Prcatsay, NJ ORR3S-1331
NI Telephone: 7029810000, Price/Pabtication Tnformmtion: tdividual copies TEEE Membits STOO0 (st copy onty 1 nonmembers $20000 per copy. (Note: Add $4.00 postage
and bt chge oeans cader fene ST G0 ST0 000 dctubing propakd ondee t Member and sommember subseription: prices avadbible upon aequest Availahle in miemoliche

and et Copyrigght and Reprint Permissfons: Ahaieting bs pretmiited with cpedit o the sodrce. Libres e permtiticd o photocopy for prvate wse of patrons, proyided
Pranvers, MA (1924 For all ather

thie pec oy fee mdicated e code at e botlony ol the T page i pand dieoueh the Copyiight Clearinee Cénter. 222 Rosewood Drise

copy et pepwet o el premibssions ot o Copraghies i Pevasoons Departient, IEEE Publications Adminestedion, 195 Hoes Lane, POL Buox |33 Piscatiwiy., NJ
GERSA 108 Cagan el PO Dy Tl Inseitanne of Bhaoniieat aoe Flsctronmes Fammcers, be AU eghns iessaved, Periodicals Podinge Pandd it New York, NY il at adeitionel ailing
oltice Vot ter:s Sead addce climses o EE 30URNAT OGN SEEEC TEE AR G COMSIUSICATONS 10T B85 oo Lase. PO Ton VR Placaway, NI OS83-1331
GST Eoamtion So 1S VEHINS Pinted m 18§ A

Hughes, Exh. 1017, p. 4

L ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY 1998

Guest Editorial /
Concatenated Coding Techniqu
and Iterative Decoding:

From Shannon theory, we know that increasing the code-
word length 7 of block codes (or the constraint length of
convolutional codes) leads to better performance. It is also well
known that the complexity of maximum likelihood decoding
algorithms increases with n, up to a point where decoding
becomes physncally unrealizable.

Thus, research in coding theory has seen many proposals
aimed at the construcnon of powerful codes with large equiv-
alent block lengths structured so as to permit breaking the ML
decoding into simpler partial decoding steps, thus obtaining
a suboptimum yet powerful decoding strategy. Iterated codes
[1], product codés and their extension [2], concatenated codes’
[3], and large ‘constrained-length corvolutional codes with
suboptimal decoding strategies, like sequential decoding, are
nonexhaustive exnmples of these attempts.

Funhermore, Shannon theory has proved that' “random”
codes are good their decoding complexity, however, increases
exponenmllly with the block length, On the other hand,
the structure imposed on the codes in order to decrease
their decoding complexity often results in relatively poor
performance: As a resulty approaching the channel capacity or
even, more modestly, going significantly beyond the channel
cutoff rate had béen an unreachable drenm of coding theorists
for many: years. -

In decreasmg the blt-error probablhty of a system through
channel coding, we carl use two approaches The more tradi
tional one has attempted to increase the minimum Hamming
distance of the code, thus reducing at the same time the word-
and bit-error probabilities. The goal of the second- approach
is rather to reduce the multiplicity of codewords with low
Hamming weights. This was the approach applied to the design
of “turbo” codes [4], a new coding strategy that, to quote Dave
Forney [3]: “Rather than attacking error exponents, they attack
multiplicities,. turning conventional wisdom on:its head.”

Turbo-codes, in the consideration: of many: experts of- the:

field; are one of the most exciting' and: poténtially important

developnients in coding theory in many years. They, cleverly .
integrate code concatenation in a “pseudorandom” approach:

where the randomness and long block size are.provided by
an interleaver, a building: block that does not add to the
decoding complexity. This is due to an iterative strategy based
on alternately decoding two simple constituent codes and
passing the so-called extrinsic information (a part of the soft

Publisher ftem [dentifier S 0733-8716(98)00160-7

output provided by an a posteriori probability*algorithmy) to the
next decoding stdge: Strictly speaking; the name “turbo® has
nothing to do with the encoder; rather, it is justified because
the decoder uses its processed output valués as a priori input
for the next iteration, similar to a turbo engine.

Since the first' appearance of turbo' codes and a related
structure in 1993 [4]; [5]; many of thé structural properties of
turbo codes have now been put on'a firm' theoretical t'ooting
[6]-[8], and other forms of concatenations with interleavers
hive been studied and shown to offer similar, in some cases
even better, performance [10]-[12]. They form a class of
codés that, under iterative decoding, permit us to npproach‘
thé Shannon capacxty at'a bit'error probability on the order
of 10~6-10-7, still, quite far from the unlimited reliability
promised by the Shannon CnpﬂClt}' thcorem, yet more than
enough for séveral applications. al

Successively applied o the iterative decoding of concate-
nated codes [9], what we would call the “turbo principle,” i.e.,
a 'strategy exploiting the iterated excharge of soft information
between different blocks in a communication recexver, could
(and in part has' already, been) successfully applied to many
de(ecnon/decodmg problems such as channel equalization,
coded modulation, multiuser detection, joirit source and chan-
nel decoding, and others. '

At the time this i issue was completed there was still a lack of
a satisfactory unalys:s of the iterative process and of a theoret-
ical explanation of why the turbo decodirig algomhm performs
as well as it does. Also, some performance bounds seem to
point to the fact that, theoretically, the same performance
should be obtainable with significantly shorter block lengths.
These seem, at the moment, to be two of the major open
problems in the field. On a more practical ground, convincing
results are still to come in those applications where decoding
latency is an issue, like for voice transmission and others.

The first paper in this lssue. by McEliece et al., describes
the close connections between the iterative “turbo” decoding
algorithm with Pearl’s belief propagation algorithm, which is
well known in the artificial intelligence scientific community.
Once this connection is established, the belief propagation
algorithm becomes a general framework to devise iterative
decoding algorithms for other codes. Closely related to the first
paper is the paper by Kschischang and Frey, which presents a
unified framework, based on a Bayesian network description of
codes, for describing compound codes and deriving iterative
decoding algorithms,

0733-8716/98510.00 @ [998 JEEE

o Hughes, Exh. 1017, p. 5

e T

& e

(Continued from Eront Cover)

dilbiting MAP Decoders.......... e Yt AT AT ST T R TR T i J. B Anderson and S. M. Hladik 297

Multilevel Turbo C{)ding L1 R g Y o G (L e i e R G S S R s L R I H. Herzberg 303

CALLS FOR PAPERS

Next Generation [P Switches and Routers M AR R T e N AU IR e S s s Ty e ok 310
Wireless Ad: Hoo Networksa oo i, Nares i RS S R e, Koo e o i e L A S M S TR 3t
X s 7 312

: Snrvue Enabling PLxlforms for Networked Mulumulm Syq(erm.....,......,....._'.....v...._............_

<\ ST

rs gy e
' ... IEEE J OURNAL ON. 4
s SELECTED AREAS IN COMMUNICATIONS

i e ,-v,..‘.

T FEAI R (LU VST Ky cio s SN 14 Tk T S St -z

Topie~ Date of Call*

August 1996 °
October 1996
October 1996~ -

- Protocol Architectures, for: 2 st Century Applications
Wireless Access Broadband Networks.
Copyright and Privacy Protection

Advances in Computational Aspects of Tdelmfhc Model:. Apﬁl 1997
High-Capacity Optical Fransport Networks y April 1997
May 1997

Signal Processing for Wireless Communications
May 1997

June 1997
August 1997
September 1997
January 1998
January 1998
February 1998

Software Radios

Multi-Media Network Radios

Future Voice Technologies , . e

Direct-to-User Satellite Systems and Technologleq at Ra Band and Beyf)nd
Wireless Ad Hoc Networks :

Service Enabling Platforms for Networked Multimedia Systems

Next Generation [P Switches and Routers

#[ssue of J-SAC in which the Call for Papers first appears.

- T Hughes, Exh. 1017, 5.6

—

—
-
o
-
_—

-

oFED AREAS IN COMMU

NICATIONS, VOL. 16, NO. 2. FEBRUARY 1998

Iterative Decoding of Compound Codes by
Probability Propagation in Graphical Models

Frank R. Kschischang, Member, IEEE, and Brendan J. Frey

Abstract—We present a unified graphical model framework for
describing compound codes and deriving iterative decoding algo-
rithms, After reviewing a variety of graphical models (Markov
random fields, Tanner graphs, and Bayesian networks), we derive
a general distributed marginalization algorithm for functions
deseribed by factor graphs. From this general algorithm, Pearl’s
belief propagation algorithm is easily derived as a special case.
We point out that recently developed iterative decoding algo-
rithms for various codes, including “turbe decoding” of parallel-
concatenated convolutional codes, may be viewed as probability

propagation in a graphical model of the code. We focus on
| Bayesian network descriptions of codes, which give a natural

input/state/output/channel description of a code and channel, and

| we indicate how iterative decoders can be developed for parallel-
| and serially concatenated coding systems, product codes, and

ow-density parity-check codes.

Index Terms— Concatenated coding, decoding, graph theory,
terative methods, product codes.

I. INTRODUCTION

OMPOUND codes are codes composed of a collection
of interacting constituent codes, each of which can

| »e decoded tractably. In this paper, we describe various

sraphical models that can be used not only to describe a

|| vide variety of compound codes, but also to derive a variety

f iterative decoding algorithms for these codes. Prominent

| imong compound codes are the furbo codes introduced by
| 3errou et al. [1], in which the constituent convolutional codes
i| nteract in “parallel concatenation” through an interleaver.
| t is probably fair to say that the near-capacity error-rate
| rerformance of turbo codes has sparked much of the current
| nterest in iterative decoding techniques, as evidenced by this

pecial issue. Other examples of compound codes include
lassical serially concatenated codes [2] (see also [3], [4]),
jallager's low-density parity-check codes [5], and various

roduct codes [6], [7]. , .
In [8) and [9], we observed that iterative decoding algo-

| ithms developed for these compound codes are often instances

f probability propagation algorithms that operate in a graphi-
al model of the code. These algorithms have been developed
1 the past decade in the expert systems literature, most notably
y Pearl [10] and Lauritzen and Spiegelhalter [11]. (See
12]-[14] for textbook treatments on probability or “belief”

Manuscript received September 27, [996; revised May 8, 1997 and July
), 1997,

E. R. Kschischang is with the Departinent of Electrical and Computer
wgineering, University of Toronto, Toronto, Ont., Canada, on leave at the
‘assachusetts Institute of Technology, Cambridge, MA 02138 USA.

B. J. Frey is with the Beckman Institute, University of [Hinois at Ur-
na-Champaign, Urbana, IL 61801 USA.

Publisher [tem [dentifier S 0733-8716(98)00225-X.

propagation algorithms and [15] for an extensive treatment of
graphical models.)

The first to connect Pearl’s “belief propagation” algorithm
with coding were MacKay and Neal [16]-[18], who showed
that Gallager’s 35-year-old algorithm [5] for decoding low-
density parity-check codes is essentially an instance of Pearl’s
algorithm. Extensive simulation results of MacKay and Neal
show that Gallager codes can perform nearly as well as turbo
codes, indicating that we probably “sailed” much closer to
capacity 35 years ago than might have been appreciated in the
interim. McEliece et al. [19] have also independently observed
that turbo decoding is an instance of “belief” propagation.
They provide a description of Pearl’s algorithm, and make
explicit the connection to the basic turbo decoding algorithm
described in [1].

Recently, and independently of developments in the expert
systems literature, Wiberg et al. ‘in [20] and Wiberg in his
doctoral dissertation [21] have refocused attention on graphical
models for codes. They show that a type of graphical model
called a “Tanner graph” (first introduced by Tanner [22] to
describe a generalization of Gallager codes) provides a natural
setting in which to describe and study iterative soft-decision
decoding techniques, much as the code trellis [23] is an ap-
propriate model in which to describe and study “conventional”
maximum likelihood soft-decision decoding using the Viterbi
algorithm. Forney [24] gives a nice description of the history
of various “two-way” algorithms and their connections with
coding theory.

In this paper, we seek to unify this recent work by develop-
ing a graphical model framework that can be used to degcribe
a broad class of compound codes and derive corresponding
iterative decoding algorithms. In Section II, we review and
relate various graphical models, such as Markov random
fields, Tanner graphs, and Bayesian networks. These graphs
all support the basic probability propagation algorithm, which
is developed in Section III in the general setting of a “factor
graph,” and in Section IV for the specific case of a Bayesian
network.

Given a graphical code model, probability propagation can
be used to compute the conditional probability of a message
symbol given the observed channel output. For richly con-
nected graphs containing cycles, exact probability propagation
becomes computationally infeasible, in which case iterative
decoding can still yield excellent results. The basic iterative
decoding algorithm proceeds as if no cycles were present in
the graph, with no guarantee that the computed “conditional
probabilities” are close to the correct values, or that they even
converge! Nevertheless, the excellent performance of turbo
codes and Gallager codes is testimony to the efficacy of these
iterative decoding procedures.

0733--8716/98S10.00 © 1998 [EEE

Hughes, Exh. 1017, p. 7

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO, 2, FEBWRY 1998

0

A
(»)

: @<

()

Fig. 1. Graphical models for the (7, 4) Hamming code. (a) Markov random field with a maximal clique indicated. (b) Tanner graph. (c) Bayesian network.

In Section V, we describe Bayesian network models for
a variety of compound codes, and describe how probability
propagation can be used to decode these codes. As it is a
straightforward exercise to develop Bayesian network models
for many coding schemes such as multilevel codes and coset
codes, and also for channels more general than the usual mem-
oryless channels, we believe that there are many possibilities
for application of iterative decoding techniques beyond what
has been described in the literature to date.

II. GrRAPHICAL CODE MODELS

In this section, we present several graph-based models that
can be used to describe the conditional dependence structure in
codes and channels. Given a set U = {vy,- -+, vy} of random
variables with joint probability distribution p(vy,-++,vy), a
graphical model attempts to capture the conditional depen-
dency structure inherent in this distribution, essentially by
expressing how the distribution factors as a product of “local
functions” (e.g., conditional probabilities) involving various
subsets of U/. Graphical models are useful for describing the
structure of codes, and are the key to “probability propagation”
and iterative decoding.

A. Markov Random Fields

A Markov random field (see, e.g., [25]) is a graphical model
based on an undirected graph G = (V, E) in which each vertex
corresponds to a random variable, i.e., an element of U. Denote
by n(v) the neighbors of v € V, i.., the set of vertices of
V' connected to v by a single edge of £. The graph ' is a
Markov random field (MRF) if the distribution p(vy, -+, v,)
satisfies the local Markov property: (Yo € V)p(v|V\{v}) =
p(v|n(v)). In other words, (¢ is an MRF if every variable
v is independent of nonneighboring variables in the graph,
given the values of its immediate neighbors. MRF's are well
developed in statistics, and have been used in a variety of
applications (see, e.g., [25]-[28]).

The joint probability mass (or density) function for the
vertices of a MRF (' is often expressed in terms of a Gibbs
potential function defined on the maximal cliques of ¢, A
clique in (/ is a collection of vertices which are all pairwise
neighbors, and such a clique is maximal if it is not properly
contained in any other clique. Corresponding to euch clique
¢ in the set of maximal cligues) is a collection of vertices
V, that are contained in ¢. Denote by S, the sample space for
the random variable v. Given a nonnegative potential function
for cach clique ¢ € @, ie. a function i, [Ty, S —

R* U {0}, the joint probability mass (or density) function

over V = {vy, -+, vy} is given by
plvs, - on) =27 T] valfv e Vi) (0
€Q

where Z~! is a normalizing constant, assuming that the
product in (1) is not everywhere zero. It is possible to define
an MREF in terms of potential functions defined over all cliques
in G, not just the maximal cliques, but any potential function
defined over a nonmaximal clique ¢ can be absorbed into the
potential function defined over the maximal clique containing

q.

From the structure of the potential functions, it is a straight-
forward exercise (see, e.g., {25]) to show that the resulting
probability distribution satisfies the local Markov property.
[ndeed, every strictly positive MRF can be expressed in terms
of a Gibbs potential, although the proof of this result (given,
e.g., in [26, ch. 1]) is less straightforward. Lauritzen [15, pp.
37-38] gives an example due to Moussouris of a nonstrictly
positive MRF satisfying the local Markov property for which
it is impossible to express the joint distribution as a product
of potentials as in (1).

To illustrate how MRF’s can be used to describe codes, con-
sider the MRF with seven binary variables shown in Fig. 1(a).
There are four maximal cliques: ¢ = {1,2,3,5}_ (dashed
loop), g2 = {1,2,4,6},q3+ {1,3,4,7}, and g4 = {1,2,3,4}.
From (1), the joint probability distribution for v, - -, vy, can
be written as a product of Gibbs potential functions defined
over the variable subsets indicated by these four cliques. This
MREF can be used to describe a Hamming code by setting
4, = 1 (which is equivalent to neglecting ¢.), and by letting
the first three potentials be even parity indicator functions. That
is, 14(+) = 1 if its arguments form a configuration with even
parity and 0 otherwise. The MRF places a uniform probability
distribution on all configurations that satisfy even parity in
cliques qy,q2, and g3, and zero probability on configurations
not satisfying these parity relations.

While the potential functions chosen in this example define a
linear code, it is clear that such potential functions can be used
to determine a code satisfying any set of local check condi-
tions. In particular, given a set of variables U/ = {v,---,vn},
let @ be a collection of subsets of [/, Corresponding to each
element F of (), a local check condition enforces structure on
the variables contained in / by restricting the values that these
variables can assume, (For example, the check condition could
enforce even parity, as in the example above.) By defining an

Hughes, ExXhT 1017, 8

/,‘ﬂj FREY: ITERATIVE DECODING OF COMPOUND CODES

Jicator function for each local check condition that assumes
~the value unity for valid configurations and zero for invalid
configurations, and by defining a graph in which each element
of @} forms a clique, an MRF description that assigns a
uniform probability distribution over the valid configurations is
obtained, provided that at least one valid configuration exists.
As we shall see, a Tanner graph is another way to represent
the same local check structure.

B. Tanner Graphs

Tanner graphs were introduced in [22] for the construction
of good long error-correcting codes in terms of shorter codes.
Our treatment follows the slightly different presentation of
Wiberg et al. [20].

A Tanner graph is a bipartite graph representation for a
check structure, similar to the one described above. In such
a graph, there are two types of vertices corresponding to
the variables and the “checks,” respectively, with no edges
connecting vertices of the same type. For example, a Tanner
graph corresponding to the Hamming code described above is
shown in Fig. 1(b). Each check vertex ¢ in the set of check
vertices @) is shown as a filled circle. In this case, a check
vertex ensures that its set of neighbors satisfies even parity in
a valid configuration,

We see that the check vertices play precxsely the same role
in a Tanner graph as do the maximal cliques in an MRF.
In general, for each check vertex g with neighbors n(g),
we can assqciate a nonnegative real-valued potential function
Yy({v € n(é)}) that assigns positive potential only to valid
configurations of its arguments. We then write a probability
distribution over the Variables as

(v, ,ow) = 271 I w,({v € n(a)})
q€Q

2

where Z~! is a normalizing constant. Of course, (2) is
analogous to (1).

An MRF can be converted to a Tanner graph by introducing
a check vertex for each maximal clique, with edges connecting
that check vertex to each variable in the clique. The potential
function assigned to the check vertex would be the same as
that assigned to the clique.

A Tanner graph can be converted to an MRF by eliminating
the check vertices and forming cliques from all variables
originally connected to the same check vertex. The potential
associated with the clique would be the same as that assigned
to the check vertex. It is possible that some new cliques may be
formed in this process, which are not associated with a check
vertex of the Tanner graph. A unit potential is assigned to these
“induced” cliques. Different Tanner graphs may map to the
same MREF; hence, Tanner graphs may be more specific about
depéndencies than MRF’s. For example, the graph in Fig. 1(b)
with an additional check vertex connected to vy, va, v3, and vy
will also map to the MREF in Fig. 1(a).

C. Bayesian Networks

We now introduce Bayesian networks that, unlike MRF's
and Tanner graphs, are directed acyclic graphs [12]. A directed
acyclic graph is one where there are no graph cycles when the
edge directions are followed (although there may be cycles

zﬁ,

when the edge directions are ignored). As in an MRF, a
random variable is associated with each graph vertex. Given a
directed graph G = (V, E), let the parents (or direct ancestors)
a(v) of vertex v be the set of vertices of V' that have directed
edges connecting to v. For a Bayesian network, the joint
probability distribution can be written

P(Ul,' * (3)

N
- on) = [p(vila(v:))
i=1
where, if a(v;) = & (i.e., v; has no parents), then we take

p(vi|@) = p(vi).
Every distribution can be described by a Bayesian network
since, by the chain rule of probability,

=p(vy)P(Uzlvl)l’(”slvh V) X -
X p(un|vr,va, - UNZ1).

P(Ul, 2ae »UN)

It follows that we can pick any ordering of the variables,
and then condition each variable on all variables that
precede it. However, this trivial network does not capture
any useful probabilistic structure because the last factor
P(uy|vi,v2, -, vy—1) contains all N variables, and so is
really just as complicated as the full joint distribution.

A Bayesian network for the Hamming code described above
is shown in Fig. 1(c). The joint distribution is obtained from
(3) using parent—child relationships

P(vy,- -+, v7) = P(v1) P(v2) P(v3) P(v4) P(vs|v1, v2, v3)
X P(vg|v1, v2,v4) P(vr|v1,v3, v4).

107)

v
The first four factors express the prior probabilities of
vy, +,v4, while the last three factors capture the parity
checks: e.g., P(vs|v1,v2,v3) = 1 if v1,v2,v3, and vs have
even parity and 0 otherwise.

A Tanner graph (and by extension, an MRF) can be con-
verted into a Bayesian network simply by directing edges
toward the check vertices. A binary {0,1} indicator ran-
dom variable is introduced at each check site ¢; .such that
p(gila(q:)) = 1 only if the random variables in the set a(g;)
satisfy the constraint checked by the corresponding vertex in
the Tanner graph. i

A potential advantage of Bayesian networks is that the
directed edges (arrows) can be used to model causality ex-
plicitly. By inspecting the arrows in such models, it is easy
to determine which variables directly influence others. This
often makes it possible to simulate the network, i.e., draw
a configuration of variables consistent with the distribution
specified by the network. One simply draws a configuration
for variables having no parents, consistent with the (prior)
distribution affecting those variables. Once a configuration has
been drawn for all parents a(v) of a variable v, a configuration
for v can be drawn consistent with the conditional probability
p(v|a(v)). For example, in Fig. 1(c), we simply pick values for
the parentless vertices vy, vz, v3, and vy, and then determine
the remainder of the codeword vg,vs, and v7. This explicit
representation of causality is also useful for modeling physical
effects, such as channel noise and intersymbol interference.

It should be noted that simulating a Bayesian network can
become a hard problem when variables v for which a(v) # &
are required to take on a specific value, i.e., when some child

M

Hughes, Exh. 1017, p. 9

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16. NO, 2, FEW- RY 1998

14
b
"

ENCODER CHANNEL

Fig. 2. General Bayesian network for channel coding.

variables are “clamped.” For example, drawing a configuration
of variables consistent with the observed output of a channel
is essentially as hard as (or harder than) decoding. Similarly,
when a Tanner graph is converted into a Bayesian network
in the manner described above, it may be difficult to draw a
valid configuration of the variables, as all indicator variables
have a nonempty set of parents and all are required to take
on the value one.

In coding, the relationships among the information sym-
bols u, the encoder state variables s (if there are any), the
transmitted codeword symbols z, and the received signals y
completely define the encoding and decoding problem for a
given code. Without loss of generality, these relationships can
be expressed probabilistically and depicted pictorially using
graphical models. The Bayesian network for channel coding
in general is shown in Fig. 2. By inspection of the network,
the joint distribution is :

P(u,s,z,y) = P(u)P(s|u)P(z|u, 3)p(y|z).

Usually, P(u) is a uniform distribution and P(s|u) and
P(x|u, s) are deterministic (i.e., all probability mass is placed
on a single outcome). The channel likelihood p(y|z) expresses
the noise and intersymbol interference introduced by the
channel. - .

Fig. 3(a) shows the Bayesian network for a systematic
convolutional code with a memoryless channel. The systematic
codeword symbols ay; are simply copies of the information
symbols u;. The other codeword symbols are outputs of the
encoder; @iz depends on wuy and state sg. By inspecting
the parents of the received signals, we find that P(y|z) =
[T P(yxtlzxr)P(yrz|zx2) which expresses the absence of
memory in the channel. Fig. 3(b) shows a cycle-free network
for the same code, obtained by grouping information and state
variables together. This eliminates undirected cycles at the
expense of increasing the complexity of some of the network
variables.

Further examples of Bayesian networks for codes will be
discussed in Section V. In the next section, we will describe
the basic distributed marginalization algorithm that will form
the basis for iterative decoding.

III. A FRAMEWORK FOR DISTRIBUTED MARGINALIZATION

In this section, we develop the basic “probability prop-
agation” algorithm that cun be used to compute marginal
probabilities in graphical models, given some observations.
A common feature of the graphical models described in the
previous section is that they can be used to describe a “global”
joint probability distribution as a product of “local” functions.
The computation of a conditional probability then amounts
essentially to a “marginalization™ of this global function. Using
the structure of the local functions, it iay be possible to greatly

simplify this computation, as we now show. A derivation alorig
similar lines has also been carried out recently by Aji and
McEliece [29], who also develop an algorithm for “information
distribution” on a graph.

A. Notation

We begin by introducing some notation. Let [be a finite
index set, and let {Ay: k& € [} be a collection of finite
sets called symbol alphabets, indexed by I. The configuration
space W is defined as the Cartesian product of symbol
alphabets W = [], ., Ax, and elements of W are called
configurations. For .J C I, let W|; denote the projection
of W onto the coordinates indexed by J, so that W|; =
[Txcs A, which is taken to be empty when J is empty. For
a configuration z € W and nonempty .J, we denote by z|; the
image of z under this projection. We denote the complement
of J relative to I as J°. By abuse of notation, we equate the
pair (z|s, z]sc) with z, although formally, some reordering of
coordinates may be necessary for this equality strictly to hold.

A function Z: W — R over the set of configurations is said
to be a global function. Initially, we assume that the codomain
R is the set of real numbers, but later, we will allow R to be
an arbitrary commutative semiring [21], [29]-[31].

It will often be useful to introduce families of global
functions, indexed by a set of finite-dimensional real-valued
parameters y, which are fixed in any instance of distributed
marginalization. In this case, we write Z(z;y) for the value
the function assumes at configuration z. Introducing such
parameters allows us to take into account the influence of
continuous-valued variables such as channel outputs. How-
ever, for notational convenience, we will sometimes omit the
explicit dependence on y.

For a set J C I, we define the marginal function
Zy: W|; — R with respect to J as

Zy(zl)= Y,

Z)jc€W|ye

Z(.’L’IJ,-’L'IJ:)

In other words, the value of the marginal function with respect
to .J at the point z|; is obtained by summing the global
function over all configurations that agree with z|; in the
coordinates indexed by J. Any variable not indexed by J is
said to be marginalized out in Z ;. Note that Z is the constant
obtained by summing over all configurations of variables,
while Z; = 7. We have chosen the symbol Z for the global
function, as we view Zg as a “Zustandssumme” (a sum-over-
states), i.e., a partition function as in statistical physics (see,
e.g., [32, p. 13]).

If the function Z is the joint probability mass function of
a collection of random variables indexed by 7, then Z, is
the marginal joint probability mass function for the random
variables indexed by A, and Zz = 1. Reintroducing the
parameter y, suppose the function Z(z;y) is the conditional
joint probability mass function of a collection of random
variables given the observation of continuous-valued random
vector y. Then the marginal functions represent conditional
probability mass functions. For example, Zy(z|iyiy) =
P(x;|y), the conditional probability mass function for x; given
the observed value of y. Such formulations will olten be usetul
in decoding problems, when the continuous-valued output of
a noise channel is observed.

]

4.0
'Y

Hughes, EXh1017;p:

/6';',\10 FREY: ITERATIVE DECODING OF COMPOUND CODES

Fig. 3.

When |I|, the number of arguments of Z, is small,
we will sometimes use a modified notation for the mar-
ginal functions. We replace an argument z; of Z with
a “+" sign to indicate that the corresponding variable
is to be summed over, i.e., marginalized out. Thus, if
III = 4) Z(.’I-‘l,’}',‘f‘, +) = Z“}(IU[),Z(SL‘[,*}',JD:‘, +) =
Z1,3y(x1,23), Z(+, +,+, +) = Zo, and so on.

It will often be useful to marginalize some variables while
holding other variables constant, for example, in the case of
computing a conditional probability mass function given that
some variables are observed. Since the key operation in the
computation of a marginal function or in the computation of
a conditional probability is marginalization, we shall focus
attention on developing efficient algorithms for this operation.

B. Local Functions and Factor Graphs

The key to efficient marginalization is to take into account
any structure that the global function Z possesses. Suppose
that Z is “separable,” i.e., that Z can be written as the product
of a number of local functions, each a function of the variables
contained in a subset of /. More precisely, let Ay,-.+, Ay be
a collection of nonempty subsets of I, and suppose

N
Z(z) = [] viala,). @
j=1

The functions ;: W[4, — R are called local functions.

For example, suppose that X, X, X4 are random variables
forming a Markov chain (in that order) given a specific
observation ¥ = y. (For example, these random variables
might represent the state sequence of a convolutional code
in successive time intervals, and ¥ might represent the cor-
responding channel output.,) The conditional joint probability
mass function can be written as

p(x1, 22, 23ly) = p(21[y)p(re|zy, y)p(es]z2, ¥).

Translating to the notation of this section, and observing
that a conditional probability mass function p(x; |z, y) is
essentially a function of two variables (since y is a constant),
we write

Z(xy, wa,w3) = Wi(x)a (e, w2) s (g,). (5)
We will have occasion to consider products of local func-

tions. For example, in (5), the product of 4)y(xy,27) and
(e, ay) is a function of three variables that we denote

(b

(a) Bayesian network for a systematic convolutional code and a memoryless channel. (b) Cycle-free connected network for the same code and channel.

* Oi.% : $|
2 2

s '
Xy Y, X3 Y,
(a) (b)
X% XN .
0—0—o0 ' |
Pu—g—2 A}
v, W W X x5 W Y,
(c) ()]

Fig. 4. Factor graphs for (a) a Markov chain, (b) a loopy example, and their
corresponding second higher power graphs, (c) and (d), omitting self-loops.

aths(xy, 20, 23). We will also apply the “+"-sign notation
to local functions and their products.

It will be useful to display a particular factorization of
the global function by means of a bipartite graph called
a factor graph. Suppose Z(z) factors as in (4). A factor
graph G = (V,E) is a bipartite graph with vertex set
V =1U{A;: 1 <j < N}. The only edges in E are those
that connect a vertex i € [to a vertex A; if and only
if i € Aj, ie, E = {{i,A;}: i € Aj}. In words, each
vertex of a factor graph G corresponds to either a variable
or a local function. An edge joins a variable = to a local
function % if and only if « appears as an argument of .
For example, Fig. 4 shows the factor graph corresponding to
the Markov chain (5). Note that a factor graph is essentially
a generalization of a Tanner graph, in which local “checks”
involving the incident variables have been replaced with
local functions involving the incident variables.

It is a straightforward exercise to convert the various graph-
ical models described in Section II into a factor graph repre-
sentation. A Markov random field G that expresses a Gibbs
potential function yields a factor graph with one local function
vertex for every maximal clique, i.e., a local function vertex
for every factor in (1). A Tanner graph directly yields a factor
graph by associating with each check vertex a binary indicator
function that indicates whether the local check condition is sat-
isfied. More generally, each factor of (2) can be associated with
a local function vertex, as in the MRF case. Finally, a Bayesian
network is converted into a factor graph by introducing a local
function vertex for every factor of (3), and a variable vertex for
each variable, Clearly, the local function vertex associated with

LA SESemeyTY

. ' Hughes, Exh. 1017, p. 11

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. 16, NO. 2. I’EBR@V 19u8
g2

¥

\yztp (05 +) \yj(Xy +)

' I

1 w,(x) 1 e
Z(x. +.+) Z(+, xp +) Z(+, + Xy

Fig. 5. Computation of marginal functions by message passing. The mes-
suges are descriptions of (possibly marginalized) local function products, and
are passed along the graph edges as indicated by the arrows. (The arows
themselves are not part of the graph.)

p(vila(v;)) is connected by an edge to the variable vertices in
the set {v, }Ua(v;). Thus, a Bayesian network with /V variables
yields a factor graph with 2/V vertices.

C. Marginalization by Message Passing

Our aim is to derive a graph-based algorithm for computing
the marginal functions Z;}(z|(;)) for all i € I. The functions
1; are called “local” functions because we assume that access
to these functions is local to a specific vertex in the graph.
Knowledge of local functions (or functions derived from local
functions) can be propagated to nonlocal vertices by “message
passing” along the edges of the graph. The “messages” are
descriptions of (possibly marginalized) local function products.

To illustrate what we mean by this, and to motivate the"

general situation in which this “graph-based message-passing”
paradigm is made more precise, we consider the specific case
where Z(u|,x2,x3) is defined in (5).

Consider the computation of Z(xy,+,+) = p(z1]y). We

write
Z(a,+,¥) = ZZ 1y (1)1 Ll,rz)%(lz, Ty)
= '91(11?1) Z tha(w1,x2) Z pa(wa,x3) (6)
N wa(az,+)

Papa(er,+,+)
where we have identified the various factors that need to be
computed to obtain Z(xy, +,+). Our primary observation is
that Z(x,+,-+) can be computed knowing just ¥4 (z;) and
ihathy (e, 4+,). The latter factor can be computed knowing
Just wha (g,) and 4y (g, +).
Analyzing the computation of the remaining marginal func-
tions in the same manner, we find that
Z(+, w0, +) =th3(e, +) Z () (e, 22) ()

€Sy

Z(+,+,23) = Z prpa(+, xa)hs (2, 23). (8)
r2 €S2

Examining (6)—(8), we see that all marginal functions can be
computed recursively from a chain of local function products,
which we view as messages passed between the vertices of the
“propagation tree” shown in Fig. 5. Comparing with (6)—(8),
we observe that the information passed to the vertex associated
with ;.1 < i < 3, is precisely that needed to compute the
marginal function for w;, and so we choose that vertex as a
“fusion site” for the variable x;.

We coansider now the general case. Let ¢ = (V,) be a
lactor graph, describing the way in which the global function
Z(:xx) factors as a product of local functions as in (4). Consider
the second higher power graph (%, defined as having the same

o8

‘13
vertex set as (7, but with edges connecting two vertices if and
only if there is a path of length two between the vertices in (/.
Self-loops are ignored. Since (7 is bipartite, G? will always
split into at least two disconnected components, G having
vertices associated with variables and G2 having vertices
associated with local functions. For example, Fig. 4(c) and
(d) shows the second higher power graphs associated with the
factor graphs shown in (a) and (b).

Observe that in G2, two variables will be joined by an edge
if they are both arguments of the same local.function, so all
arguments of a particular local function form a clique. When
the local functions of the factor graph correspond to Gibbs
potential functions, then (/% is the corresponding Markov
random field. In other words, an MRF can be recovered as
a component of the second higher power graph (omitting
self-loops) of the con‘esponding factor graph.

Consider now G% 7+ which we call the propagation graph
corresponding to (. We assume that G% consists of a single
connected component; if not, marginalization can be carried
out independently in the various components. The vertices of
G’} correspond to local functions. Two vertices are joined
by an edge for each argument that the corresponding local
functions have in common, although we will collapse multiple
edges between two vertices to a single edge. A description of
the general message-passing algorithm is simplified by imag-
ining that a vertex is an active processing element, capable of
receiving and transmitting messages (i.e., marginalized local
function products) along the edges incident on the vertex, and
capable of performing computations involving messages and
the local function associated with the vertex.

We now describe a general distributed marginalization algo-
rithm that operates in a free spanning the propagation graph;
we refer to this spanning tree as a propagation tree. Given a
factor graph G, we must

1) specify a spanning tree T' for G"’, and

2) identify a “fusion vertex” in T’ for each marginal func-

tion to be computed.

Note that 7" is in general quite different from the graphical
model (MRF, Tanner graph, or Bayesian network) from which
T is derived. In general, it may be a difficult problem to choose
T optimally so as, e.g., to minimize overall computational
complexity. For now, we assume that T is chosen in some
(arbitrary) manner.

For a given T, we say that a variable x; is involved at a
vertex of T if x; is un argument of the corresponding local
function: Let e be an edge of T'. We say that a given variable
x; must be carried over e if e is part of a path that joins any
vertex in which x; is involved with the fusion vertex for ;.
In essence, x; must be carried over an edge of the subtree of
T that spans the fusion vertex for x; and the other vertices
in which xz; is involved. Outside this subtree, only marginal
knowledge of :; is needed, and hence x; can be marginalized
out. Given a propagation tree T', and an assignment ol fusion
vertices, it is easy to determine which variables must be carried
over any given edge in T. (For example, each edge of the
trees shown in Figs. 5 and 6 is labeled with the indexes of the
variables to be carried over that edge.)

The size of the messages sent over an edge is greatly |
influenced by the number of variables that must be carried |
over the edge, and by the number of possible values that ecach |

o Hughes, Exh: 1017, p-42—

5B FREY: ITERATIVE DECODING OF COMPOUND CODES

~
such variable can assume. A simplistic measure of complexity
associated with an edge is its thickness, defined as the number
of variables that are to be carried over that edge. (A more
useful measure would be the product of the sizes of the
symbol alphabets corresponding to these variables, or the size
of a minimal description of the corresponding local function
product.) It may be desirable to find a propagation tree and an
assignment of fusion vertices so that the maximum thickness
is minimized, but we conjecture that this is a hard problem in
general. (Given a propagation tree, the maximum thickness is
minimized if the fusion vertex for a variable x; is a vertex in
the subtree of T' that spans the vertices in which x; is involved,
so the problem is to find a suitable propagation tree.)

To illustrate that it is not always possible to achieve
unit maximum thickness, consider the global function
Z(x1,x2,w3) = Py(xr, w2)Pa(x2, x3)s(y, 23). The factor
graph and its second higher power graph are shown in Fig. 4(b)
and (d). By symmetry, there is essentially only one propagation
tree for this function, as shown in Fig, 6. Numbering the
vertices in the figure from 1-3 (left to right), we choose
vertex ¢ as a fusion vertex for ;. We observe that x'; must be
carried over both of the edges in the propagation tree, while
o and z3 each need to be carried over only one edge, as
indicated in Fig. 6. The thickness of each edge is two, and no
assignment of fusion vertices can reduce this number.

D. Marginalization Algorithms

The fundamental idea behind marginalization algorithms is
to compute the product of local functions (i.e., messages)
marginalizing out unnecessary variables. We now describe two
versions of a general message-passing algorithm that can be
used to compute marginal functions. In the first version (the
two-way schedule), messages are passed once in each direction
along each edge in the propagation tree. This is the minimum
possible, and for this reason, the two-way schedule is best

suited for serial implementation.

The Two-Way Schedule

Let T be a propagation tree. We allow each vertex of T to
be in one of way two states: “inbound” or “outbound.”
Initially, all vertices are placed in the inbound state.

1) (The inbound state) At a vertex in the inbound state,
wait until messages have arrived on all edges but one, and
call this remaining edge the “prime” edge. Compute the
product of all incoming messages with the local function,
marginalize out any variables not to be carried on the
prime edge, and send the result on the prime edge. Toggle
to the “outbound” state.

2) (The outbound state) At a vertex in the outbound
state, wait until a message arrives on the prime edge. For
each nonprime edge e, compute the product of all incom-
ing messages with the local function, except the message
on e. Marginalize out any variables not to be carried on e,
and pass the result on e. If this vertex is a fusion vertex,
the desired marginal function(s) can be computed as the
product of all incoming messages with the local function,

| marginalizing out any undesired variables.

35

VoW(x), x5 +) V(X x5)

~————
l ¥, (X, X,) l \V,lv,(x,.+.x,)l
Z(x) +,4) Z(+, X, +) Z(+, +,x,)

Fig. 6. Another cxample of marginalization by message passing. Sets of
indexes identifying the variables carried along each edge are shown.

Observe that only a single edge is incident on any leaf
vertex, and so leaf vertices are not required to “wait” in
the inbound state. Thus, message passing is initiated at the
leaf vertices. Messages propagate from the leaves to the
interior of the graph, and then back toward the leaves. The
algorithm terminates when all leaf vertices have received a
message. Since each edge is used to convey exactly one
“inbound” message and exactly one “outbound’” message, the
total number of messages transmitted is twice the number of
propagation tree edges, namely, 2(N — 1).

In the second version of the algorithm (the flooding sched-
ule), nodes do not necessarily “wait” before passing messages,
and hence messages may pass more than once in a given
direction along an edge in the propagation tree. The flooding
schedule is better suited for parallel implementation since
more than the minimum number of messages will usually be

passed. -

The Flooding Schedule

1) (Initialization) At any collection of vertices, carry
out the “flooding” procedure described in the next step,
with a unit message arriving on a fictitious edge.

2) (Flooding) When a message is received on any any
edge e at a vertex, define this message as the “‘current”
message for e, designate e as “incoming’ and all other
edges as “outgoing.” For each outgoing edge e, compute
the product of the local function with all current messages
except the current message on ¢’, and marginalize out any
variables not to be carried on ¢’, passing the result on e’.
For a (leaf) vertex with no outgoing edges, simply
“absorb” the message received:

3) (Marginalization) The algorithm terminates when no
vertices have more messages to pass, at which point mar-
ginalization can be carried out at each fusion vertex in
the same way as in the two-way schedule. Indeed,
marginalization can take place at any time during the
previous step to yield a “current estimate” of the

marginal function.

The basic principle behind the flooding schedule is that the
receipt of a message at a vertex “triggers” that vertex to send
messages on all other edges. At a leaf vertex, there is no
“other” edge, so a received message is absorbed. Since the
propagation tree has no cycles, eventually, all messages are
absorbed at the leaf vertices.

Hughes, Exh. 1017, p. 13

—_—

[
El

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUARY I‘)@

= ol

It is clear that both the two-way schedule and the flooding
schedule are versions of the same algorithm, the difference
being only the order in which messages are propagated.
Indeed, one can also devise hybrid schedules. When a message
arrives on an edge at a vertex, that message effectively creates
“pending” messages on all other edges incident on that vertex.
These pending messages need not be sent immediately; indeed,
the pending messages may change to reflect the content of
other messages arriving at the vertex. In general, a wide variety
of such schedules is possible, of which the two-way and
flooding schedules represent two extremes. [n our simulations
of the flooding schedule for a turbo decoder [33], we observed
that, compared with the standard message-passing schedule,
several orders of magnitude more messages are passed, but if
the messages are passed concurrently, then several orders of
magnitude fewer time steps are required to achieve a given
decoding performance.

Note that, regardless of the message-passing schedule, mes-
sage passing in a tree is guaranteed to converge to a state in
which no messages are pending. At this point, marginalization
at each fusion vertex can be carried out, with exactly the same
result for each different message-passing schedule.

E. Generalization to Commutative Semirings

Up to now, we have made the assumption that the global
function -Z is real valued. However, the only properties of
the reals of which we have made use are essentially the
commutativity of multiplication and the distribution of multi-
plication over addition. Hence, the distributed marginalization
algorithm described will work over any commutative semiring
(see, e.g., [30, Sect. 3.2] and [21], [29], [31]). For example,
replacing the real-valued product operation with summation
and the summation operation with the max operator will yield
a generalization of the Viterbi algorithm equivalent to Pearl’s
“belief revision” algorithm {12, Sect. 5.3] and the “min-sum”
algorithm described by Wiberg et al. [20]. We conjecture that
many of the distributed algorithms used in data networks for
routing, network topology determination, etc., such as the
distributed Bellman-Ford algorithm (see, e.g., [34, ch. 5])
are instances of this general marginalization algorithm in an
appropriately defined semiring.

IV. PROBABILITY PROPAGATION IN BAYESIAN NETWORKS

We now specialize the general message-passing algorithm
described in the previous section to the special case of
Bayesian networks. We begin with the special case of a
Bayesian network that (neglecting the direction of edges) has

no cycles, i.e., is a tree.

A. The Cycle-Free Case
Let 2 be a Bayesian network on L random variables

Xy.oo+, X, By definition of a Bayesian network (3), the
joint probability mass function of these random variables can
be written as p(ry, -+, xp) = [[,’,‘ plzila(X;)). In other

words, the joint probability mass function can be written as a

x5} %, ;) ° ®p(x)

Fig. 7. Translating a cycle-free Bayesian network (a) into a factor graph (b)
and a propagation tree (c).

product of L local functions, each representing the conditional
probability mass function for a variable given its parents.

In this subsection, we assume that B forms a tree, i.e., that
it contains no undirected cycles. We take B as a spanning tree
for G%, in which the vertex corresponding to the variable X; is
associated with the local function p(x;|a(X;)). We choose this
vertex as the fusion site for X;. For example, Fig. 7(a) shows
a simple cycle-free Bayesian network B. The corresponding
factor graph and propagation tree are shown in Fig. 7(b) and
(c), respectively.

For simplicity, we refer to the vertex of the propagation tree
into which JX; translates as vertex z;. If X is a child (parent)
of X; in the Bayesian network, then we refer to z; as a child
(parent) of x; in the propagation tree, even though the edges
of the propagation tree are undirected.

Observe that a variable z; in the propagation network is
involved with vertex z;, and all of the children of this vertex.
Thus, in the propagation network, x; must be carried along
all edges connecting vertex wx; to its children, but these are
the only edges along which ; must be carried. Since a given
edge connects precisely one parent to one child, precisely one
variable must be carried along that edge, namely, the parent
variable. In other words, a cycle-free Bayesian network yields
a propagation tree of unit thickness. This observation is the
key to Pearl’s “belief propagation” algorithm.

We now determine the messages that must be propagated.
Following Pearl [12], we denote child-to-parent messages as
A messages, and parent-to-child messages as & messages, so
that, e.g., A;,(x;) and ., (x;), are, respectively, messages
transmitted from vertex x; to its parent x; and to its child wxy.
Note that a message is always a function of the parent variable.

Consider a vertex wx;, and suppose the children of wx; are
indexed by the set K, and the parents a(x;) of x; are indexed
by the set .J, written explicitly as J = {jy,ja,-*, Jjsf}-

For k € I, the message sent by x; to its child 2y, is given by

o, (B5) = H N (T Z

ke i\ (k) &
Z H T () p(2 i |a(;)).
I:J“' jEJ

Hughes, Exh. 1017, p. 14—

@

~~D FREY: ITERATIVE DECODING OF COMPOUND CODES

> /
2

For j € J, the message sent by x; to its parent x; is given by

Aoi(zi) =Y | [Aaules)

x5 keK

x3 o2 I mleyp(zila(@) |-
oo zj 4 3'€J\ {7}
omit x;
The conditional probability mass function for x;, given the set
of messages received (which we denote by O for “observa-

tions”) is given by

p(:mlO) = H /\a:,. (xi) X z
keK T3
. Z H in(m]’)p(z‘ilﬂ(if"z‘))
iy €7
Note that

7o (7:) = p(2i|0)/ Aoy (1), ®
Although these expressions may at first glance seem com-
plicated, they are really a simple application of the general
propagation rule, which states that an outgoing message sent
on edge e is computed as the product of all incoming messages
(except that on edge e) with the local function, with any
variables not to be carried on e marginalized out. For Bayesian
networks common in coding applications, these propagatxon
updates are quite simple.

In applications of Bayesian networks, it will often be useful
to include variables that are continuous valued so as to
model, for example, channel outputs. While, strictly speaking,
continuous-valued variables do not enter the framework as
we have described it (except through the parameter y), we
will allow our Bayesian networks to have continuous-valued
variables, provided that such variables are observed and that
the corresponding vertices have no children. Since y is re-
stricted to be childless, the problem of describing a continuous
conditional density function (needed for a m message sent
from y) is avoided. In our diagrams of Bayesian networks,
continuous-valued observed vertices will be shown as filled
circles.

The complexity of probability propagation in a Bayesian
network (using the two-way schedule) depends on the manner
in which the messages are represented. Assuming that each
message is a vector of values of size given by the size of the
parent’s sample space, the computational complexity can be
estimated as follows. Denote the set of children of a vertex
v as d(v), and let |d(v)| denote the size of this set. Recall
that the parents of v are denoted a(v). Let |v, a(v)| denote the
number of nonzero entries in the table corresponding to the
local function at v, and let |v]| denote the size of the sample

Space for v.

f‘\n?

Each A message sent to a parent of v requires the com-
putation of the product of the incoming A messages, which
requires on the order of |v| « |d(v)| operations, together with
|a(v)| - |v, a(v)| operations, since we must sum over |v, a(v)|
nonzero products of [a(v)| factors to marginalize the product
of the incoming = messages. Each m message sent to a
child of v can be computed from (9) using approximately
|d(v)]| - |v| operations. The total number of operations at v is
approximately 2[v| - |d(v)| + |a(v)|?|v, a(v)|, which is usually
dominated. by the second term. We conclude, therefore, that
the total number of operations x performed by the two-way
schedule for a Bayesian network with vertex set V' scales as

X = O(X,ev la(v)*jv, a(v)]).

B. Probability Propagation in Bayesian Networks with Cycles

The tactic of deriving a propagation tree from the structure
of the Bayesian network itself does not apply to Bayesian net-
works with (undirected) cycles because, clearly, the Bayesian
network does not form a tree. In this subsection, we show with
a small example that exact probability propagation is possible,
but only at the expense of greater than unit thickness of the
propagation tree. While this may be an acceptable tradeoff
for simple networks, it may not be acceptable in complicated
networks.

Consider the Bayesian network shown in Fig. 8(a). Two
possible propagation trees for this Bayesian network are shown
in Fig. 8(d) and (e), each of which has thickness 2. For this
Bayesian network, it is not possible to achieve a propagation
tree of unit thickness.

V. CompPOUND CODES

In Section I, we defined a compound code to be one which
can be described by the interaction between constituent codes,
each of which is tractably decodable on its own. Graphically,
each constituent code is represented by a cycle-free constituent
Bayesian network. These constituent networks share some
variables so that, taken as a whole, the total Bay&sian network
is not cycle free. In general, there does not exist a unique
decomposition of a compound code into its, constituent codes,
but the compound code is usually destgned using well-known

constituent codes.

A, Bayesian Networks for Some Known Codes

The Bayesian network for a systematic rate-1/3 compound
turbo code is shown in Fig. 9(a), along with its cycle-free
constituent networks. This compound code consists of two
chain-type networks that are connected using a different or-
dering of the information symbol vertices. Whereas the upper
chain directly uses the information sequence u, the lower chain
uses a permuted sequence, obtained by applying an interleaver.
The systematic codeword component has been included with
the upper constituent code. Wiberg er al. [20], [21] were
probably the first to describe turbo codes usmg this type of
graphical model.

A “serially concatenated” convolutional compound code
was proposed by Benedetto and Montorsi [3]. Their system is
essentially the same as Forney's concatenated codes [2], with

p———

Hughes, Exh. 1017, p. 15

|IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FEBRUA[Z& 1998

&

o
Fig. 8.
thickness at least 2. Two examples are shown in (d) and (e).

In a Bayesian network with cycles (a), with factor graph (b), and propagation graph (c), the corresponding propagation trees must have maximum

Fig. 9. Bayesian networks for three compound codes and their constituent codes. (a) Systematic rate-1/3 turbo code. (b) Rate-1/2 “serially concatenated”
convolutional code. (c) Low-density parity check code. (d) (15, 9) product code.

convolutional inner and outer codes. The Bayesian network
for a nonsystematic rate-1/2 compound code of this sort is
shown in Fig. 9(b), along with its two cycle-free constituent
networks. Notice that the output of the outer convolutional
code (including the systematic part) is used as the input to the
inner convolutional code, via an interleaver. Only the output of
the inner convolutional code is transmitted over the channel.

Fig. 9(c) shows an example of a Gallager low-density parity
check code [5]. This code consists of parity check restrictions
on subsets of the codeword symbols, denoted by z. (The
mapping from information blocks to codewords is not directly
specified.) Each variable in the row of variables above the
codeword symbol row is a binary indicator, which takes on
the nonzero value only tor conligurations of its parents that

have even parity. The channel outputs are indicated below the
row of codeword symbols. MacKay and Neal [16] were the
first to describe Gallager’s codes using Bayesian networks.

. Fig. 9(d) shows an example of a simple product code, in
which a single parity bit checks the parity of each row and
column of the information bit array (enclosed in the dotted
box). The channel output symbols are not shown.

B. Iterative Decoding: Probability Propagation
for Compound Codes

Since each constituent Bayesian network in a compound |
code is cycle free, probabilities for each random variable given |
the observed random variables can be efficiently computed
exactly within each constituent network. However, because the |

7 “Hughes; Exh1017;

AnD FREY: ITERATIVE DECODING OF COMPOUND CODES

> .

compound network has cycles, probability propagation is only
an approximate algorithm for computing these probabilities.
As we see it, the general idea of iterative decoding is to
make use of the efficient probability propagation algorithm
for each constituent network, while either ignoring the cycles
or somehow taking them into account. This graphical frame-
work unifies several iterative decoding algorithms. The turbo
decoding algorithm, the “separable MAP filter” algorithm [6],
the new iterative decoding algorithm [4] used for decod-
ing “serially concatenated” convolutional codes, and, as first
pointed out by MacKay and Neal [16], Gallager’s algorithm
for decoding low-density parity check codes [5] are all a form
of probability propagation in the compound code networks
shown in Fig. 9.

The overall decoding procedure essentially consists of ap-
plying probability propagation while ignoring the graph cycles.
The procedure can be broken down into a series of processing
cycles. In each cycle, probabilities are propagated across a
particular constituent network, producing current estimates of
the distributions over information symbols, state variables,
and codeword symbols, given the observed channel output.
The next cycle then uses the probability estimates produced
by the previous cycle when processing the next constituent
network. Usually, the constituent codes are processed in order,
and one pass through all of the codes is called an iteration.
An iteration essentially consists of propagating probabilities
across the network as if it were cycle free, stopping when each
vertex has been processed once. In fact, because the compound
code network has cycles, the propagation procedure actually
never self-terminates. Usually, the cyclic procedure is allowed
to iteraté until some termination criterion is satisfied. Then, the
information symbols are detected, usually in the fashion of the
maximum a posteriori (MAP) symbol probability decoding

rule.

C. Turbo Decoding: Probability Propagation for Turbo Codes

For example, as shown explicitly in [19], this probability
propagation algorithm, when applied to turbo codes, is the
standard turbo decoding algorithm. The turbo decoding algo-
rithm uses the forward-backward algorithm [35], [36] (or an
approximation to it) to process each constituent trellis. The
algorithm uses “extrinsic information™ [1], [7] produced by
the previous step when processing the next trellis. This is the
information that is passed from one trellis to the other through
the information symbols. In probability propagation terminol-
o0gy, extrinsic information is the set of parent—child probability
messages that are passed down from the information symbols
to one constituent network, in response to the child-parent
messages received from the other network. !

Fig. 10 shows the message-passing dynamics for a simpli-
fied turbo code Bayesian network. When the channel output is
observed (as shown by the filled disks), messages propagate
up to the state vertices of both constituent networks, creating
pending messages on the incident edges (as indicated by
black dots in the figure). These messages are the codeword
symbol likelihoods as determined by the channel model and
the channel output. Each constituent network is processed one
it a time in the manner of the forward—backward algorithm.
The information symbols receive probability messages from
the constituent network just processed. In the case of the single

Fig. 10. Probability propagation in the Bayesian network for a turbo code.
The dashed polygon encloses the steps in a single iteration. Black dots without
arrows represent pending messages.

code, the information symbols are each connected by a single
edge, and so propagation terminates, In this case, however,
a set of messages is passed to the other constituent network
(these messages are the “extrinsic information”). Since there
will always be messages pending, the overall procedure repeats
the basic “iteration” shown in the pictures outlined by the

dashed polygon.

VI. CONCLUSIONS

In this paper, we have attempted to unify various recently
developed themes in iterative decoding. We have reviewed
graphical code models, including Markov random fields, Tan-
ner graphs, and Bayesian networks, all of which encode the
“local™ probabilistic structure of codes and channels.

We have developed a distributed marginalization algorithm
in the general setting of a factor graph. Given a function
of discrete variables that can be written as’ a product of
local potential functions, marginalization can be carried out
by a message-passing procedure in a propagation tree, de-
rived from the second higher power of the factor graph. The
“thickness” of an edge in this tree is equal to the number
of variables: that must be carried over this edge to perform
exact marginalization. In a cycle-free Bayesian network, the
network itself—when used as a propagation tree—achieves a
maximum edge thickness of unity. This observation is the key
to Pearl’s “belief” or probability propagation algorithm, which
computes the a posteriori distribution exactly in a cycle-free
Bayesian network.

For compound codes, however, the Bayesian networks are
not cycle free. Nevertheless, the networks are broken into
tractable subnetworks, each describing a constituent code and
in which probability propagation can be applied. Iterating over
these constituent decoders can result in excellent decoding
performance in practice, as demonstrated by Berrou ef al. [1].
We have shown that many recently proposed iterative decoders
can be described as message passing in a graphical code model.

In general, it is a straightforward exercise to develop
Bayesian network models for many coding schemes, such

—_———

Hughes, Exh. 1017, p 17

|

(1

121
13
4]
[5]
[6]

171

18]

19]

(1o]
[

(12

[13]
(14]
(15]
(1o

as multilevel codes and coset codes, and also for channels
more general than the usual memoryless channels. We believe
that there are many possibilities for the application of iterative
decoding techniques beyond what has been described in the

literature to date.

ACKNOWLEDGMENT

The authors are grateful for useful comments on an ear-
lier version of this paper made by the reviewers and by
G. D. Forney, Jr., H.-A. Loeliger, and C. Asavathiratham. The
concept of factor graphs as a generalization of Tanner graphs
was devised by a group at ISIT'97 in Ulm that included the
authors, H.-A. Loeliger, D. J. C. MacKay, N. Wiberg, and
R. M. Tanner. The authors are grateful for discussions on this
topic with S. M. Aji, G. D. Forney, Jr., R. Kitter, and R. J.

McEliece.

REFERENCES

C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Sh limit
error-correcting coding and decoding: Turbo codes.” in Proc. IEEE Int.
Conf. Comnmun, (1CC), Geneva, Switzerland, 1993, pp. 1064-1070.

G. D. Forney, Jr.. Concatenated Codes. Cambridge, MA: MIT Press,
1966,

8. Benedetto and G, Montorsi, “Serial concatenation of block and
convolutional codes,” Electron. Lett., vol. 32, pp. 887-888, 1996.

, “lerative decoding of serinlly concatenated convolutional
codes,” Electron, Léit., vol. 32, pp. 11861188, 1996:
R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

J. Lodge, R. Young, P. Hocher, und J. Hagenauer, “Separable MAP
“filters’ for the decoding of product and concatenated codes,” in Proc.
1EEE tnt. Conf, Commun., 1993, pp. 1740-1745.

J. Magenaver, E. Offer, and L. Pupke, “lterutive decoding of binary
block und convolutional codes,” IEEE Trans. Inform. Theory, vol, 42,
pp. 429-445, 1996.

B. 1. Frey and F. R. Kschischang, “Probability propagation and itera-
tive decoding,” in Proc, 34th Annual Allerton Conf. Commun., Contr.,
Computing, Monticello, 1L, Oct. 1996, pp. 482493,

B. J. Frey, Graphical Models for Machine Learning and Digi-
tal Communication, Combridge, MA: MIT Press, 1998 [www).
http/iwww.cs.utoronto,.co/~frey.

L. Pearl, “Fusion, propagation, and structuring in belief networks,” Artif.
Ineedl., vol. 29, pp. 241-288, 1986.

S. L. Luuritzen and D. J. Spiegelhalter, “Local computations with
probubilities on graphical structures and their application to expert
systems,” J, Roy. Stat. Soc. B, vol. 50, pp. 157-224, 1988.

1. Pearl, Probabilistic Reasoning in Intelligent Svstems;: Networks of
Plausible ference. San Francisco, CA: Morgan Koufmann, 1988,
revised 2nd printing,

R. E, Neapolitan, Probabilistic Reasoning in Expert Systems: Theory and
Algorithms. Toronto, Ont,, Canada: Wiley, 1990,

F. V. Jensen, An Introduction to Bayesian Networks. New York:

Springer Verlag, 1996.
S. L. Lauritzen, Graphical Models. Oxford, U.K.: Oxford Univ, Press,

1996.
D. I C. MacKay and R, M, Neal, "Good codes based on very sparse
matrices,” in Cryprography and Coding, Sth IMA Conf., C. Boyd, Ed.,
no. 1025 in Lectwre Notex in Compuler Science, Berlin, Germany:
Springer, 1993, pp. 100-111.

.

(7

[18]
[19]

{201

[21]
[22]
[23]

[24]

125]
[26]
271
[28]

[291

[30]

31
[32]
133

[34)
[35]

[36]

L - S

SR ifzracs ey o Bi
Siadis wilan g,

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 2, FERRU;\R.I'JH

——— "Near Shannon limit performance of low density parity check
codes,” Electron, Lett., vol, 32, no. 18, pp. 1645-1646, [996. Reprinted
in Electron, Lett, vol, 33, pp. 457-458, Mar. 1997,

D. I C, MacKay, “Good error-correcting codes based on very sparse
matrices,” [EEE Trans. Inform. Theory, submitted for publication, 1997,
R. 1. McEliece, D. J, C. MucKay, and J.-F. Cheng, “Turbo decoding
as an jnstance of Pearl’s “belief propagation’ algorithm,” this issue, pp.
140152,

N. Wiberg, H.-A. Loeliger, and R, Kdtter, “Codes and iterative decoding
on general graphs,” Eur. Trans. Telecommun., vol. 6, pp. 513525,
Sept./Oct. 1995,

N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation,
Linkoping Univ., Sweden, 1996.

R. M. Tanner, “A recursive approach to low complexity codes," [EEE
Trans. Inform. Theory, vol. IT-27, pp. 533-547, Sept. 1981,

G. D. Fomney, Jr., “Trellises old and new,” in Communications and
Cryptography: Tvo Sides of One Tapestry, R. E. Blahut, D. J. Costello,
Ir., U. Maurer, and T. Mitelholzer, Eds. Norwell, MA: Kluwer, 1994,
pp. 115-128,

, “The forward-backward algorithm,” in Proe. J4eh Anneal Aller-
ton Conf. Commun., Contr., Computing, Monticello, IL, Oct. 1996, pp.
432-446.

R, Kindermann and J. L. Snell, Markov Random Fields and their
Applications. Providence, RI: American Mathemutical Society, [980.
C. 1. Preston, Gibbs States on Countable Sets. Cambridge, U.K.:
Cambridge Univ. Press, 1974,

V. Isham, “An introduction to spatial point processes and Markov
mndom fields,” fnL. Statist. Rev., vol. 49, pp. 21-43, 1981,

G. E. Hinton and T. I. Sejnowski, "Learning und relearning in Boltz-
mann machines," Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, D. E. Rumelhart and J, L. McClelland,
Eds, Cambridge MA: MIT Press, 1986, vol, I, pp. 282-317,

S. M. Aji and R. J. McEliece, “A general algorithm for distributing
information on a graph.” in Proc, 1997 [EEE Ini. Symp. Inform. Theory,
Ulm, Germany, July 1997, p. 6.

S, Verdd and H. V. Poor, “Abstract dynamic programming models
under commutativity conditions,” SIAM J. Contr. Optim,, vol. 25, pp.

990- 1006, July 1987.
R. J. McEliece, “On the BJCR trellis for lincar block codes,” [EEE

Trans. Inform. Theory, vol. 42, pp. 1072-1092, July 1996.
E. Schridinger, Statistical Thermodynamics, Cambridge: Cambridge

University Press, 1962

B. 1. Frey, F. R. Kschischang, and P. G. Gulak, “Concurrent turbo-
decoding,” in Proc. 1997 IEEE [nt. Symp. Inform, Theory, Ulm, Ger-
many, 1997, p. 431.

D. Bertsckas and R. Gallager, Data Networks, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1992,

L. E. Baum and T. Petrie, “Statistical inference for probubilistic func-
tions of finite stute Markov chains,”" Ann. Muth. Statist., vol. 37, pp.
1559-1563, 1966.

L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimual decoding of
linear codes for minimizing symbol eror rate.” [EEE Trans. Inform.

Theory, vol. IT-20, pp. 284287, 1974,

Frank R. Kschischang (S'83-M'91), for a photograph and biography, sce

this issue, p. 159,

Brendan J, Frey, for a photograph und biogruphy, see this issue, p.‘ 159.

Hughes; Exh—1017-p-18

i
o

I
:

