B. J. Frey and D. J. C. MacKay (1999) In Proceedings of the 37 Allerton Conference
on Communication, Control and Computing 1999, Allerton House, Illinaois.

Irregular Turbocodes

Brendan J. Frey
Computer Science, University of Waterloo
Electrical and Computer Engineering, University of Illinois at Urbana
http://www.cs.uwaterloo.ca/~frey

David J. C. MacKay
Department of Physics, Cavendish Laboratories
Cambridge University
http://wol.ra.phy.cam.ac.uk /mackay

Abstract

Recently, several groups have increased the coding gain of iteratively decoded
Gallager codes (low density parity check codes) by varying the number of parity
check equations in which cach codeword bit participates. In regular turbocodes,
each “systematic bit” participates in exactly 2 trellis sections. We construct ir-
regular turbocodes with systematic bits that participate in varying numbers of
trellis sections. These codes can be decoded by the iterative application of the
sum-product algorithm (a low-complexity, more general form of the turbodecoding
algorithin). By making the original vate 1/2 turbocade of Bervou ef al. slightly
irregular, we obtain a coding gain of 0.15 dB at a block length of N = 131,072,
bringing the irregular turbocode within 0.3 dB of capacity. Just like regular tue-
bocodes, irregular turbocodes are lincar-time cncodable.

1 Introduction

Recent work on irregular Gallager codes (low density parity check codes) has shown that
by making the codeword bits participate in varyving numbers of parity check equations,
significant coding gains can be achieved [1-3]. Although Gallager codes have been shown
to perform better than turbocodes at BERs below 1073 [4]!, until recently Gallager codes
performed over 0.5 dB worse than turbocodes for BERs greater than 107°, However,
in [3], Richardson et al. found irregulay Gallager codes that perform 0.16 dB befter than
the original turbocode at BERs greater than 107° [5] for a block length of N ~ 131,072.

LGallager cades to not exhibit decoding errors, only decoding failures, at long block lengths with
N > 35,000.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

In this paper, we show that by tweaking a turbocode so that it is irregular, we obtain a
coding gain of 0.15 dB for a block length of N = 131, 072. For example, an N = 131,072
irregular turbocode achieves Ep/Ny = 0.48 d3 at BER = 1()_4, a performance similar to
the best irregular Gallager code published to date [3]. By further optimizing the degree
profile, the permuter and the trellis polynomials, we expect to find even better irregular
turbocodes. Like their regular cousins, irregnlar turbocodes exhibit a BER flattening
duc to low-weight codewords.

2 Irregular turbocodes

In Fig. 1, we show how to view a turbocode so that it can be made irregular. The first
picture shows the st of systematic bits (middle row of dises) being fed directly into
one convolutional code (the chain at the top) and being permuted before being fed into
another convolutional code {the chain at the bottom). For a rate 1/2 turbocode, each
coustituent convolutional code should be rate 2/3 (which may, for example, be obtained
by puncturing a lower-rate convolutional code).

Since the order of the systematic bits is irrelevant, we may also introduce a permuter
before the upper convolutional code, as shown in the second picture. In the third picture,
we have simply drawn the two permuters and convolutional codes side by side.

For long turbocodes, the values of the initial state and the final state of the convo-
lutional chains do not significantly influence performance (e.g., see [6]). So, as shown in
the fourth picture, we can view a turbocode as a code that copics the systematic bits,
permittes both sets of these bits, and then feeds them into a convolutional code. We refer
to this turbocode as “regular”, since each systematic bit is copied exactly once.

The final picture illustrates one way the above turbocode can be made irregular.
Some of the systematic bits are “tied” together, in effect causing some systematic bits to
be replicated more than once. Notice that too keep the rate of the overall code fixed at
1/2, some extra parity bits must be punctured.

More generally, an irregular turbocode has the form shown in Fig. 2, which is a type of
“trellis-constrained code” as deseribed in [7]. We specify a degree profile, fq € [0,1],d €
11,2,..., D} f4 is the fraction of codeword bits that have degree d and D is the
maximum degree. Each codeword bit with degree d is repeated d times before being fed
into the permuter. Sceveral classes of permuter lead to linear-time encodable codes. In
particular, if the bits in the convolutional code arc partitioned into “systematic bits”
and “parity bitg”, then by connecting each parity bit to a degree 1 codeword bit, we can
encode in lincar time.

The average codeword bit degree is

d=Y "d-fy (1)
d=1

The overall rate I of an irregular turbocode is related to the rate 1’ of the convolutional
code and the average degree d by

dl1—-R)=1—-R. (2)

So, if the average degree is increased, the rate of the convolutional code must also be
increased to keep the overall rate constant. This can be done by puncturing the convo-
lutional code or by designing a new, higher rate convolutional code.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Permuter

Mot — I

’ Permuter Permuter

Joléoolmlwlm W
O O O O O O O O ,

eelclopichalcloetorl

’ Permuter Permuter ‘

Permuter ‘

’ Permuter ‘

ogegogeuene

Figure 1: The first 4 pictures show that a turbocode can be viewed as a code that
copies the systematic bits, permutes both sets of these bits and then feeds them into
a convolutional code. The 5th picture shows how a turbocode can be made irregular
by “tying” some of the systematic bits together, i.e., by having some systematic bits
replicated more than once. Too keep the rate fixed, some extra parity bits must be
punctured. Too keep the block length fixed, we must start with a longer turbocode.

3 Decoding irregular turbocodes

Fig. 2 can be interpreted as the graphical model [6,8-10] for the irregular turbocode.
Decoding consists of the iterative application of the sum-product algorithm (a low-
complexity, more general form of turbodecoding) in this graph.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

’ Convolutional code ‘

’ Permuter ‘

’ RepZ‘ ’ Repz‘ ’ Rep 3 ‘ ’ Rep 3 ‘ ’ Rep D ‘ ’ Rep D ‘
bodb b b S
L fl 1 L f2 1 f3 fD
Figure 2: A general irreqular turbocode. For d = 1,..., D, fraction f; of the codeword

bits are repeated d times, permuted and connected to a convolutional code.

After receiving the channel output, the decoder computes the channel output log-
likelihood ratios for the N codeword bits,

L9, L9, ... LY, (3)

and then repeats each log-likelihood ratio appropriately. If codeword bit ¢ has degree d,
we set

Lig« LY Liog<« LY, ..., Lig+ LY. (4)

Next, the log-likelihood ratios are permuted and fed into the BCJR algorithm [11]
for the convolutional code. The BCJR algorithm assumes the inputs are a prior: log-
probability ratios and uses the forward-backward algorithm [12] to compute a set of a
posteriori log-probability ratios. If codeword bit ¢ has degree d, the algorithm produces
d a posteriori log-probability ratios,

L;17L;27'-" ;d' (5)

For a regular turbocode, there are just two a posteriori log-probability ratios, L, and
L ,, for each degree 2 blt and they correspond to the “extrinsic information” produced
by each constituent convolutional code.

The current estimate of the log-probability ratio for bit ¢ given the channel output is

ISH

Li+ LY+ (Liy = Lix). (6)
k=1

To compute the inputs to the BCJR algorithm needed for the next iteration, we sub-
tract off the corresponding outputs from the BCJR algorithm produced by the previous
iteration:

Li,k — IA/Z — L;,k (7)

So, each iteration consists of computing the inputs to the BCJR algorithm, permuting
the inputs, applying the BCJR algorithm, permuting the outputs of the BCJR algorithm,
and taking the repetitions into account to combine the outputs to form estimates of the
log-probability ratios of the codeword bits given the channel output.

In our simulations, after each iteration, we check to see if the current decision gives a
codeword. If it does, the iterations terminate and otherwise, the decoder iterates further
until some maximum number of iterations is reached and a decoding failure is declared.

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

0.02 ‘ ‘ ‘ ‘ 0.06
. 0.05
0.015 .
0.04
14 N . 14
L 0.01 ’ * w 0.03
m oo m
*
’ 0.02 f
0.005 ¢
0.01 I
f i H
0 : : : : 0 : : :
0 0.02 0.04 0.06 0.08 0.1 0 5 10 15 20
Fraction fe of degree 10 bits Degree of elite bits making up 5% of the codeword bits

Figure 3: (a) shows the effect of changing the fraction of elite bits on the BER, while
keeping the degree of the elite bits fixed at 10. (b) shows the effect of changing the degree
of the elite bits on the BER, while keeping the fraction of elite bits fixed at 0.05. For
each fraction and degree, the performance of 4 randomly drawn permuters is shown.

4 Selecting the profile

Finding a good profile is not trivial, since the best profile will depend on the parameters
of the convolutional code, the permuter and the distortion measure (bit error rate, block
error rate, decoding failure rate, high-weight decoding failure rate, etc.)

The results we report in this paper were obtained by making small changes to a block
length N = 10, 000 version of the original rate R = 1/2 turbocode proposed by Berrou et
al.. In this turbocode, f; = fo = 1/2 (see Fig. 2) and the convolutional code polynomials
are 37 and 21 (octal). The taps associated with polynomial 37 are connected to the
degree 2 codeword bits, 1/2 of the taps associated with polynomial 21 are connected to
the degree 1 bits, and the remaining 1/2 of the taps associated with polynomial 21 are
punctured, giving the required convolutional code rate of R = 2/3.

To simplify our search, we considered profiles where besides degrees 1 and 2, only one
other degree, e for “elite”, had a nonzero fraction. So, for a code with overall rate R and
fraction f, of degree e elite bits, we have

fi=1-R=1/2,
fo=1—-fi—fe=1/2— f. (8)

In this restricted class of codes, irregularity is governed by two parameters, e and f..

From (2) it is clear that when the average degree is increased, the rate of the convo-
lutional code must also be increased to keep the overall rate at 1/2. We increased the
rate of the punctured convolutional code by further puncturing the taps associated with
polynomial 21 to obtain a convolutional code with rate

1-R 1/2

Rl:l_Tzl_1/2+2(1/2—fe)+efe' ()

So, in the codes we explored, the level of puncturing was quite high and some extra
low-weight codewords were introduced.

To begin with, we made an irregular turbocode with e = 10 (chosen using intuition)
and varied f, from 0.02 to 0.08 while measuring the BER at E,/Ny, = 0.6 dB. In each

DOCKET

A R M Find authenticated court documents without watermarks at docketalarm.com.



https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE




