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Abstract — Gallager’s low density parity check codes
over GF(2) have been shown to have near Shannon
limit performance when decoded using a probabilis-
tic decoding algorithm. In this paper we report the
empirical performance of the analogous codes defined
over GF(q) for ¢ > 2.

I BACKGROUND

Codes defined in terms of a non-systematic low density parity
check matrix [1, 2] are asymptotically good, and can be prac-
tically decoded with Gallager’s belief propagation algorithm
[3, 4, 5]. Our proof in [5] shows that they are asymptotically
good codes for a wide class of channels, not just for the mem-
oryless binary symmetric channel.

We expect the generalization of these codes to finite fields
G F(q) for ¢ > 2 to be useful for the g-ary symmetric channel,
and possibly for other channels such as the binary symmetric
channel.
Definition 1 The weight of a vector or matriz is the number
of non-zero elements in it. We denote the weight of a vector
x by w(x). The density of a source of random elements is the
expected fraction of non-zero bits. A source of elements drawn
from GF(q) is sparse if its density is less than (g — 1)/q. A
vector v is very sparse if its density vanishes as its length

increases, for example, if a constant number t of its elements
are non-zero. The overlap between two vectors is the number
of non-zero elements in common between them.

II CONSTRUCTION

The code is defined in terms of a very sparse, non-systematic,
random parity check matrix A. A transmitted block length
N and a source block length K are selected. We define
M = N — K to be the number of parity checks. We select
a column weight t, which is an integer greater than or equal
to 3. We create a rectangular M x N matrix [M rows and
N columns] A at random with exactly weight ¢ per column
and a weight per row as uniform as possible, and with the
overlap between any two columns being either zero or one.
If N/M is chosen to be an appropriate ratio of integers then
the number per row can be constrained to be exactly tN/M.
The non-zero elements are either drawn randomly from the
non-zero elements of GF(q) or according to a carefully chosen
distribution. We then use Gaussian elimination and reorder-
ing of columns to derive an equivalent parity check matrix in
systematic form [P Ias], from which the generator matrix of
the code can be obtained. There is a possibility that the rows
of A are not independent (though for odd ¢, this has small
probability); in this case, A is a parity check matrix for a
code with the same N and with smaller M, that is, a code
with greater rate than assumed in the following.
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IIT VARIATIONS FOR BINARY SYMMETRIC CHANNELS
The issue of the choice of the non-zero elements in each row
of the matrix A can be explored theoretically by computing
bounds on the entropy of the parity check vector given by
7z = Ax, where x is a sample from the assumed channel noise
model. The larger the entropy of z, the closer the code might
be able to get to capacity [5]. In the case of the g-ary symmet-
ric channel, the entropy of one bit of z i1s independent of the
choice of the elements in the corresponding row of A. But in
the case where the noise 1s that of a binary symmetric channel
(assuming g = 2%), some choices of the elements in a row of A
are superior to others. We have found optimal selections for

GF(4), GF(8) and GF(16) by exhaustive search.

IV DEecobING
The decoding algorithm is an appropriate generalization of the
belief propagation algorithm used by Gallager [1] and MacKay
and Neal [3, 4, 5]. The complexity of decoding scales as Ntq>.

V REsULTS
We expect in early 1997 to have empirical results for codes over
GF(4), GF(8) and GF(16), applied to the g-ary symmetric
channel, the binary symmetric channel, and the binary-input
Gaussian channel.
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