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Comparison of Constructions of Irregular Gallager Cod s 
David J. C. MacKay, Simon T. Wilson, Associate Member, IEEE, and Matthew C. Davey 

Abstract- The low-density parity check codes whose perfor­
mance is closest to the Shannon limit are "Gallager codes" 
based on irregular graphs. We compare alternative methods for 
constructing these graphs and present two results. First, we find 
a "super-Poisson" construction which gives a small improvement 
in empirical performance over a random construction. Second, 
whereas Gallager codes normally take N 2 time to encode, we 
investigate constructions of regular and irregular Gallager codes 
that allow more rapid encoding and have smaller memory re­
quirements in the encoder. We find that these "fast encoding" 
Gallager codes have equally good performance. 

Index Terms---Channel coding, error correction coding, Gauss­
ian channels, graph theory, iterative probabilistic decoding, ran­
dom codes. 

I. INTRODUCTION ~-

GALLAGER codes [3], [4] are low-density parity check 
codes constructed at random subject to constraints on the 

weight of each row and of each column. The original regular 
Gallager codes have very sparse random parity check matrices 
with uniform weight t per column and tr per row. (We will 
also use the term "regular" for codes that have nearly uniform 
weight columns and rows-for example, codes which have 
some weight 2 columns and some weight 3 columns.) These 
codes are asymptotically good and can be practically decoded 
with Gallager's sum-product algorithm giving near Shannon 
limit performance when large block lengths are used [6]-[8]. 
Regular Gallager codes have also been found to. be competitive 
codes for short block-length code-division multiple-access 
(CDMA) applications [10]. 

Recent advances in the performance of Gallager codes 
are summarized in Fi~ I. The rightmost curve shows the 
performance of a regular'Oinaf)'__Gallager code with rate 1/4. 
The best known binary Gallager-codes are irregular codes 
whose parity check matrices have nonuniform weight per 
column [5]; the performance of one such code is shown by 

· the second curve from the right. The best known Gallager 
codes of all are Gallager codes defined over finite fields GF(q) 
[I], [2]. The remaining two solid curves in Fig. I show the 
performance of a regular Gallager code over GF(l6) [2] and 

Paper approved by S. B. Wicker, the Editor for Coding Theory and 
Techniques of the IEEE Communications Society. Manuscript received 
August 11, 1998; revised January 27, 1999. This paper was presented in 
part at the 1998 Allerton Conference on Communications, Control, and 
Computing, Allerton House, IL, September 1998. 
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Fig. I. Empirical results for Gaussian channel, rate l/4 left-right: irregular 
LDPC, GF(8) blocklength 24000 bits; JPL Turbo, blocklength 65536 bits; 
regular LDPC, GF(16), blocklength 24448 bits; irregular LDPC, GF(2), 
blocklength 64000 bits; regular LDPC, GF(2), blocklength 40000 bits. 
(Reproduced from [!].) 

an irregular code over GF(8) with bit-error probability of 
10-4 at Eb/No = -0.05 dB [1]. In comparing this code with 
the rate 1/4 turbo-code shown by the dotted line, the following 
points should be noted. I) The transmitted blocklength of the 
irregular Gallager code is only 24 000 bits, whereas that of the 
turbo-code is 65 536 bits. 2) The errors made by the Gallager 
codes were all detected errors, whereas turbo-codes make 
undetected errors at high signal-to-noise ratio. This difference 
is not caused by a difference in the decoding algorithm: both 
codes are decoded by the sum-product algorithm [9]. Turbo­
codes make undetected errors because they have low-weight 
codewords. For Gallager codes, the rate of occurrence of 
undetected errors is extremely small because they have good 
distance properties (the minimum distance scales linearly with 
the blocklength) [4]. In all our experiments with Gallager 
codes of block length greater than I 000 and column weight at 
least 3, undetected errors have never occurred. 

The excellent performance of irregular Gallager codes is the 
motivation for this paper, in which we explore ways of further 
enhancing these codes. 

The irregular codes of Luby, Mitzenmacher, Shokrollahi, 
and Spielman [5] have parity check matrices with both nonuni­
form weight per row and nonuniform weight per column. It has 
not yet been established whether both of these non uniformities 
are desirable. In our experience with codes for noisy channels, 
performance is more sensitive to the distribution of column 
weights. In this paper, we concentrate on irregular codes with 
the weight per row as uniform as possible. 

We can define an irregular Gallager code in two steps. 
First, we select a profile that describes the desired number 
of columns of each weight and the desired number of rows of 

0090-6778/99$10.00 © 1999 IEEE 
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Fig. 2. Upper panels: constructions of regular and irregular codes. Lower panels: performance of these codes. The construction types shown are regular, 
(3, 33), Poisson (93p), sub-Poisson (93a), super-Poisson (93x), and super-Poisson (93y). Notation for upper panels for all constructions except 93p: an integer 
represents a number of permutation matrices superposed on the surrounding square. Horizontal and vertical lines indicate the boundaries of the permutation 
blocks. Notation for the Poisson construction 93p: integers "3" and "9" represent column weights. The integer "7" represents the row weight. Lower panels 
show the performance of several random codes of each construction. Vertical axis: block error probability. Horizontal axis: Eb/No in dB. All codes have 
N = 9972 and K = M = 4986. All errors were detected errors, as is usual with Gallager codes. 

each weight. The parity check matrix of a code can be viewed 
as defining a bipartite graph with "bit" vertices corresponding 
to the columns and "check" vertices corresponding to the 
rows. Each nonzero entry in the matrix corresponds to an edge 
connecting a bit to a check. The profile specifies the degrees 
of the vertices in this graph. 

Second, we choose a construction method, that is, a pseudo­
random algorithm for putting edges between the vertices in a 

way that satisfies the constraints. (In the case of nonbinary 
Gallager codes, we also need tQ. choose an algorithm for 
assigning values to the nonzero entries in the matrix.) 

This paper has two parts. In the first part (Section III), we 
compare alternative construction methods for a fixed profile in 
order to find out whether the construction method matters. In 
the second part (Section IV), we examine regular and irregular 

. constructions which lend themselves to rapid encoding. One 
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motivation for this second study is that the only drawback of 
regular Gallager codes compared to turbo-codes for CDMA 
applications appears to be their greater encoding complexity 
[10]. 

In the experiments presented here, we study binary codes 
with rate 1/2 and blocklength about N = 10 000. We simulate 
an additive white Gaussian noise channel in the usual way 
[2] and examine the block error probability as a function 
of the signal-to-noise ratio. The error bars we show are one 
standard deviation error bars on the estimate of the logarithm 
of the block error probability p defined. Thus, when we 
observer failures out of n trials, P± = p exp(±alog p) where 
ITlog p = J(n- r)j(rn). 

II. CONSTRUCTIONS 

We compare the following methods. 
Poisson: The edges are placed "completely at random," 

subject to the profile constraints and the rule that you cannot 
put two edges between one pair of vertices, which would 
correspond to a double entry in the parity check matrix. One 
way to implement a Poisson construction is to make a list of 
all the columns in the matrix, with each column appearing in 
the list a number of times equal to its weight, then make a 
similar list of all the rows in the matrix, each row appearing 
with multiplicity equal to its weight, and then map one list 
onto the other by a random permutation, taking care not to 
create duplicate entries [5]. 

A variation of this construction is to require that no two 
columns in the parity check matrix have an overlap greater 
than one, i.e., forbid cycles of length 4 in the graph. (Similar 
to construction IA in [8].) A second variation requires that the 
graph have no cycles of length less than some I. (Similar to 
construction IB in [8].) This constraint can be quite hard to 
enforce if the profile includes high weight rows or columns. 

Permutations: We can build parity check matrices by su­
perposing random permutation matrices [4]. The convenience 
of this method depends on the profile. There are many ways of 
laying out these permutation matrices to satisfy a given pro­
file. We will distinguish "super-Poisson" and "sub-Poisson" 
constructions. 

In a super-Poisson construction, the distribution of high 
weight columns per row has greater variance than a 
Poisson distribution. 

• In a sub-Poisson construction, the distribution of high 
weight columns per row has smaller variance than a 
Poisson distribution. 

III. COMPARING POISSON, SUPER-POISSON, 

AND SUB-POISSON CONSTRUCTIONS 

. A. Profiles and Constructions Studied in this Paper 

1) Regular Codes-3 and 33: As our baseline, we study 
regular Gallager codes with weight per column exactly t = 3 
and weight per row exactly tr = 6. We construct parity check 
matrices satisfying this profile from permutation matrices in 
two ways, labeled "3" and "33," shown diagrammatically in 
the upper panels of Fig. 2. In the figure, a square containing 

0.1 
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0.001 

0.0001 

3-
93p .. 
93y ..... 

1.1 1.2 1.3 1.4 1.5 

(a) 

0.1 
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3-
33 ····-

93a --·-
93p . 
93x -----
93y ....• 

1451 

1.1 1.2 1.3 1.4 1.5 

(b) 

Fig. 3. -(a) Comparison of one representative of each of the constructions: 3 
(regular), 93p (Poisson) and 93y (super-Poisson). (b) Representatives of all 
six constructions in Fig. 2. Vertical axis: block error probability. Horizontal 
axis: Eb/No in dB. 

TABLE I 
THE Two PROFILES STUDIED IN THIS PAPER 

Profile 3 
Column weight Fraction of columns Row weight Fraction 

3 1 6 1 
Profile 93 Column weight Fraction of columns Row weight Fraction 

3 11/12 7 I 
9 1 12 

an integer (for example, "3") denotes the superposition inside 
that square of that number of random permutation matrices. 
The matri~es are generated at random subject to the constraint 
that no two nonzero entries coincide. 

2) Irregular Codes-93p, 93a, 93x, and 93y: We chose 
the profile "93" shown in Table I. It has columns of weight 
9 and of weight 3; all rows have weight 7. Note that this 
profile only differs from the regular profile "3" in that some 
extra I' s are added to 1/12 of the columD.s. We emphasize that 
this profile has not been carefully optimized, so the results of 
this paper should not be taken as describing the best that can 
be done with irregular binary Gallager codes. We chose this 
profile because it lends itself to interesting experiments. 

We will refer to the bits that connect to nine checks as 
"elite" bits. We use four different constructions that match this 
profile, named as follows. These constructions are depicted 
diagrammatically in the upper panels of Fig. 2. 
Poisso~93p: In this construction, while most checks will 

connect to one or two elite bits, a fraction of them will connect 
to more than two elite bits, and some will connect to none. 
Sub-Poisso~93a: This construction allocates exactly one 

or two elite bits to each check. 
Super-Poisson: 93x and 93y are, respectively, moderately 

and very super-Poisson. In 93y, one third of the checks are 
connected to four elite bits, one third are connected to one, 
and one third are connected to none. 

B. Results 

1) Variability Within Each Construction: For each · con­
struction, we created several codes in order to assess the 
variability of performance within each ensemble. All codes 

1-

i. 

!I 
i i 

i,i 
II' 
" 

11· 

·ll 
1! 

I! 
ii 
! ~ 

t: 

i·l 

I! 
1: 

.,, 

I 
I 

f 

I 

I • 
\ 

: 

' . 
~ 

~ 

:,~ . 

~ 
I 

i f' 

f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


