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Guest Editorial 

.. 
I 't I 1 , • 

-.;!rom Shannon theory1 we know that increa~1ng the code· output pi:bvided by an a posteriori probability'illgorithrri) to the 
.I' ' word iengfh n of block cadets (or the constraint H:~g~ of next decoding· stag~, Strictly speaking;· the name- ''turbo~· has 
convolutional codes) leads to better performance. It is also weU nothing to do with the encoder: rather', it is justified because 
known that the· comple~ity of maximum likelihood decoding the decoder uses its processed output values as a priori input 
algorithl,llS inc~::eases }Yith n, up to a point where decoding for the next iteration, similar to a turbo engine-. 
becomes physically· unrealizable. Since 'the first appe'aranc'e of turb'o• codes and a related 
~us, r~ ,'e~h .!~ ~.oilln!; t~eo~ has ~een ~il.?Y, ptqpos:us struc.ture 'iri t993 [4j; (sU maily ot the snucturat properties of 

aimed at th~ constructtQn of p~;>werfuJ codes wtth large equtv- tlt.rbo c:odps· hliv~ how beeri put oh ' firm~ theoretical foothi~ 
alent block lengths: s~ctured so ~s to permit breaJting the ML [ 6J-C81; ~d . of he · .forms· 'of conctiteiul.t!'btls 'witfi . inferfeavet!i 
decod~ngr iqtq ~lfriP, . e.r par,t,j~ d~~pcJing ~~~ps! thu~. obt,ai~jng have beed studied ?nd sh Wh to · o~er s!~ilaf. lh s(u;ne caSes 
a subopdi'Il.iun yet gowerful decoding strategy. Iterated codes e~en · better', performance' ~lOJ--[1~]'.. TheY. fonn a class .of 
(Jl, product codes and their extension [2]\ co!leatenated codes· ' codes that, under -iterat\ve dec'odirig pemtit' us to apprdadi· 
[3}, ohd . large ·const!atned·rengtfl corivolutfonnl ' cod~s with lhe' Shan'non calmcity· at'a' blt:en'or probaHi1lty cirl fht!' 'ord~k 
suboptimaL decoding_ strategies,· lilce sequential deco_din.g, are of , w-'6-10'-T, s'tilf , quite· far ' fr'om-• the ' unhfnitea reliability 
rlonexhaustlve ·examples :or these 11tteh1pts: ' . promised by the Shannon' ~ap'&city ' the'dr~rtr, yet more ha.(i 

Furthermore} '· Shanrto~c· theory' h~s proved' that ' "ra'ndom" enough 'for 1l,~ver~ oppJlp.ati~p~: ; '· '.. ' : ' ' 'I . r:. 
co~es arefeC?od; their dec~i,ng, co,mplexity; ~owever, increases Sui::ce~sfvely , appJ ed (;· the ' iterative. d~c. oding of coilc~te" 
cxponentia~y wi.tli 1~e blo~k lengt~: On the other hand, noted codes [9), w~'at' we would call the "turbb principl~," i.e., 
the structute imposed :on, the codeS in order to· decrease rt 'strategyhploiting the l(erated excbartge of soft information 
their decoding complexity often resuft's in relatively 'poor between differen't'bidcks in ' a "co~muni~atioh receiver, could 
performance: As a result approaching the channel capacity or (a .. ~ ih part ·~a8' nlieadr· .~~~gY su~ceisfuli{applied' tti jnli~Y 
even, more modestly, goint 'significantly beyond the channel derectioti/de'coding problems such as channei ' equalization, 
cutoff rate had .been• an unreachable dreaih Of coding theorists codea .¥l;duf~tiO~, I~U~~·user detec~i<?D, JOint source a~a· ch~~ 
for many years; . . . .• . . . . . . nel d~coding, and 'o*ers.. . . · 

Iri decreasing .the bit~error prbbabilit}' of a sy_stem through At the tiine t.llis' tssue was completed, there was stili a lack of 
channel cbdlng; w~ ca'r{use ~wo· 'approqci'Jes. The . more tradi· a sdtisfactpry arlalysts 'of the: iterativ~ proc~s·s\ and pf rl' tfieoret~ 
tional one has attempted to increase· the minimum Hamming icaf explanation of why the turiJ6' decoding algorithm performs 
distance of the code, thus reducing at the same time the word- as well as it does. Also, some performance bounds· seem to 
and bit~error probabilities. The goal of the second approach point to the fact that, theoretically, the same performance 
is rather to reduce the multiplicity of codewords with low should. be obtainable with significantly shorter block lengths. 
Hamming weights. This was the approach applied to the design ' r1lese seem, at the moment, to be two of the major open 
of "turbon codes [4], ~new cod!ng strate~y that, to quote Dave proble~s· in the field. On o more practical ground, convincing· 
Forney (3J: "Rather than attacking error exponents, they attack results are still ' to 'come in those applications where decoding 
multiplicities;. turning conventional· wisdom' on, its head." .: - latency' 18 'hfl issue, like fof voice triinsmjssion' and. others. · 

Turbo·codes, in the consid~r?tion. of many..expe~s of the The ' fir~t papbr i'ri thls iss ue, by McEJiece eta/:, describes 
field; are one of the most excttmg and potentially Important rhe' close connections be ~~eh the iterative ''turbo" decoding 
~leveloprrtents in coding t~eor~ in ~any years. Th~y · cJeverly. · alg~rithrii with P~arl's beiie/propagatfolf algorithi,~~; which. is 
tp.tegrate code concatenallon tn a pseu~orandom a~proach well k~own in the artifiCial lhtelligence scientific conimunity. 
whe.re the randomne~s .and long block stze are · provrded by Once this· connecti6n is established, the belief propagation 
an tn~erleaver, a .butldt~g: block that_doe~ not: add to the algorithtb becplhcs tl general framework to devise (terative 
decodmg complexity .. Thts ts du~ to an tterat~ve strategy based decoding algorithms for nther codes: Closely related to trye Orst 
on ~lternately clecodrng ~w~ ~tmple c.onstltuent codes and paper is the pnper by Kschischang and Frey, which presents a 
passtng the so-called extmwc tnformatwn (a part of the soft unified f.ramework, based on a Bayesian network description of 

codes, for describing compound codes and deriving iterative 
Publisher flcm ldcntilicr s 073.l -87 16(98)00160·7 decoding algorithms. 
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Iterative Decoding of Compound Codes by 
Probability Propagation in Graphical Models 

Frank R. Kschischang, Member, IEEE, and Brendan J. Frey 

Abstract-We present a unified graphical model framework for 
describing compound codes and derJving iterative decoding algo­
rithms. After reviewing a vnriety of graphlcaJ models (Markov 
rnndom fields, Tanner graphs, and Bayesian networks), we derive 
a general distributed marginalization algorithm for functions 
described by factor graphs. From this general algorithm, Pearl's 
belief propagation nlgorlthm is easily derived as a special case. 
We point out that recently developed iterative decoding algo­
rithms for various code.'!, Including "turbo decodlng>t of parallel­
concatenated convolutional codes, may be viewed as probabWty 
propagation In a graphical model of the code. We focus on 
Bayeslan network descriptions of codes, which give a natural 
lnput/stateloutput/channel description of a code and channel, and 
we indicate how iterative decoders can be developed for parallei­
JDd serially concatenated coding systems, product codes, and 
ow-density parity-check codes. 

Index Terms- Concatenated coding, decoding, graph theory, 
terative methods, product codes. 

I. INTRODUCTION 

COMPOUND codes are codes composed of a collection 
of interacting constituent codes, each of' which can 

>e decoded tractably. rn this paper, we describe various 
traphical models that can be used not only to describe a 
vide variety of compound codes, but also to derive a variety 
,f iterative decoding algorithms for these codes. Prominent 
1mong compound codes are the t11rbo codes introduced by 
Jerrou eta/. [ 1], in which the constituent convolutional codes 
nteract in "parallel concatenation" through an interleaver. 
t is probably fair to say that the near-capacity error-rate 
terfonnance of turbo codes has sparked much of the current 
nterest in iterative decoding techniques, as evidenced by this 
pecial issue. Other examples of compound codes include 
lassical serially concatenated codes [2] (see also [3], [4]), 
}allager's low-density parity-check codes [5], and various 
roduct codes [6], [7]. 

propagation algorithms and [15] for an extensive treatment of 
graphical models.) 

The first to connect Pearl's "belief propagation" algorithm 
with coding were MacKay and Neal [16]-[18], who showed 
that Gallager's 35-year-old algorithm [5] for decoding low­
density parity-check codes is essentially an instance of Pearl's 
algorithm. Extensive simulation results of MacKay and Neal 
show that Gallager codes can perfonn nearly as well as turbo 
codes, indicating that we probably "sailed" much closer to 
capacity 35 years ago than might have been appreciated in the 
interim. McEiiece eta/. [ 19] have also independently observed 
that turbo decoding is an instance of "belief' propagation. 
They provide a description of Pearl's algorithm, and make 
explicit the connection to the basic turbo decoding algorithm 
described in [1]. 

Recently, and independently of developments in the expert 
systems literature, Wiberg et a/. 'in [201 and Wiberg in his 
doctoral dissertation [21] have refocused attention on graphical 
models for codes. They show that a type of graphical model 
called a "Tanner graph" (first introduced by Tanner [22] to 
describe a generalization of Gallager codes) provides a natural 
setting in which to describe and study iterative soft-decision 
decoding techniques, much as the code trellis [23] is an ap­
propriate model in which to describe and study "conventional" 
maximum likelihood soft-decision decoding using the Viterbi 
algorithm. Forney [24] gives a nice description of the history 
of various "two-way" algorithms and their connections with 
coding theory. 

In this paper, we seek to unify this recent work by develop­
ing a graphical model framework that can be used to describe 
a broad class of compound codes and derive correspo~ding 
iterative decoding algorithms. In Section II, we review and 
relate various graphical models, such as Markov random 
fields, Tanner graphs, and Bayesian networks. These graphs 
all support the basic probability propagation algorithm. which 
is developed in Section III in the general setting of a "factor 
graph,". and in Section IV for the specific case of a Bayesian 
network. 

In [8] and [9], we observed that iterative decoding algo­
ithms developed for these compound codes are often instances 
f probability propagation algorithms that operate in a graphi­
al model of the code. These algorithms have been developed 
1 the past decade in the expert systems literature, most notably 
y Pearl [!OJ and Lauritzen and Spiegelhalter [II]. (See 
12]-[ 14J for textbook treatments on probability or "belief' 
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Given a graphical code model, probability propagation can 
be used to compute the conditional probability of a message 
symbol given the observed channel output. For richly con-• 
nected graphs containing cycles, exact probability propagation 
becomes computationally infeasible, in which case iterative 
decoding can still yield excellent results. The basic iterative 
decoding algorithm proceeds as if no cycles were present in 
the graph, with no guarantee that the computed "conditional 
probabilities" are close to the correct values, or that they even 
converge! Nevertheless, the excellent perfonnance of turbo 
codes and Gallager codes is testimony to the efficacy of these 
iterative decoding procedures. 
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(a) (b) (c) 

Fig. 1. Graphical models for the (7, 4) Hamming code. (a) Markov rnnt.lom field with a maximal clique indicated. (b) Tanner gmph. (c) Bayesian network. 

In Section V, we describe Bayesian network models for 
a variety of compound codes, and describe how probubility 
propagation can be used to decode these codes. As it is a 
straightforward exercise to develop Bayesian network models 
for many coding schemes such as multilevel codes and coset 
codes, and also for channels more general than the usual mem­
ory less channels, we believe that there are many possibilities 
for application of iterative decoding techniques beyond what 
has been described in the literature to date. 

m.+ U {0}, the joint probability mass (or density) function 
over V = {vt,· .. 1 VN} is given by 

p(Vt 1 ••• 1 VN)=z-t IJ 1/!q({vEVq}) (l) 
'I,EQ 

where z- 1 is a nonnalizing constant, assuming that the 
product in (I) is not everywhere zero. It is possible to define 
an MRF in tenns of potential functions defined over all cliques 
in G. not just the mnximal cliques, but any potential function 
defined over a nonmaximaJ clique q can be absorbed into the 
potential function defined over the maximal clique containing 
q. 

II. GRAPHICAL CODE MODELS 

ln this section, we present several gr1;1ph-based models that 
can be used to describe the conditional dependence structure in 
codes and channels. Given a set U = {vt, ···, 'UN } of random 
variables with joint probability distribution p(vt 1 • • ·, 'IJN ), a 
graphical model attempts to cupture the conditional depen­
dency structure inherent in this distribution, essentially by 
expressing how the distribution factors us a product of "local 
functions" (e.g., conditional probabilities) involving various 
subsets of U. Graphical models are useful for describing the 
structure of codes, and are the key to "probability propagation" 
and iterative decoding. 

A. Markov Rcmdom Fields 

A Markov random field (see, e.g., [25]) is a graphical model 
based on an undirected graph G = (V1 E) in which each vertex 
corresponds to a random variable, i.e., an element of U. Denote 
by n( v) the neighbors of 11 E V. i.e., the set of vertices of 
V connected to v by a single edge of E. The graph C is a 
Markov random field (MRF) if the distribution p(V1 1 • • • 1 ·u,.) 
satisfies the local Markov property: ('Vv E V)p(U/ V\ { 11 }) = 
1J(v/n(v)). rn other words, G is an MRF if every variable 
v is independent of nonneighboring variables in the graph, 
given the values of its immediate neighbors. MRF' are well 
developed in , tatistics, and have been used in a variety of 
upplicatlons (see, e.g., [25)-[281). 

The joint probability 111uss (or density) function for the 
vertices of a MRF G is often expressed in tenns of u Gibbs 
pmential function defined on the maximul cliques f G. A 
·/ique in G i a collection of vertices ~hic h arc all pairwl. e 

neighbors, and such a clique is maximal if it is not property 
cnntained in any olher clique. orrespon ling 1 ea h clique 
11 ln the set of maximal cliques (j is a collccti n of vertice 

,1 that are contninet..f in q. Denote by S', the sample space f r 
the ran 1om variable 11. 'iven a nonnegative poteutial function 
r1lr each clique 'I E fj, i.e .. 1.1 fnnctiun 1/•,1: IT _1• s·, _, 

'''= '# 

From the structure of the potential functions, it is a straight­
forward exercise (see, e.g., [25]) to show that the resulting 
probability distribution satisfies the local Markov property. 
[ndeed, every strictly positive MRF can be expressed in terms 
of a Gibbs potential. although the proof of this result (given, 
e.g .• in [26, ch. L]) is less straightforward. Lauritzen (15, pp. 
37-38] gives an example due to Moussouris of a nonstrictly 
positive MRP satisfying the local Markov property for which 
it is impossible to express the joint distribution as a product 
of potentials as in ( 1). 

To illustrate how MRF's can be used to describe codes, con­
sider the MRF with seven binary variables shown in Fig. l(a). 
There are four maximal cliques: q1 = { 11 213, 5} (dashed 
loop), q2 = { 1, 2, 41 6}, q:; -r= {1 , 3,4 7}. and Q4 = { 1, 2, 3, 4}. 
From (l), the joint probability distribution for v 11 · • · 1 vr, can 
be written as a product of Gibbs potential functions defined 
over the variable subsets indicnted by these four cliques. This 
MRF can be used to describe a Humming code by setting 
t/Jq~ = 1 (which is equivalent to neglecting q,t), and by Jetting 
the first three potentials be even parity indicator functions. That 
is, 1/Jq(·) = 1 if its arguments form a configurution with even 
parity and 0 otherwise. The MRP places a uniform p_robability 
distribution on all configurations that satisfy even parity in 
cliques q11 q2, and q3 , and zero probability on configurations 
not satisfying these parity relations. 

While the potential functions ch~sen in this example define a 
linear code, it is clear that such potential function ' can be used 
to determine a code satisfying any set f local check condi­
tions. rn particular, given a set of variables U = f v11 ···, 'UN}, 
let Q be a collection of subsets of . COITe:;ponding to each 
element E of (J, o local check condition enforces structure on 
the variables cuntuined in F: by restricting the values that these 
variables ctm assume. (For example, the check condition could 
enforce even parity, as i11 rhe example above.) By defining an 
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alcutor function for each local check condition that assumes 
::~ value unity for valid configurations and zero for invalid 
configurations, and by defining a graph in which each elemept 
of Q fonns a clique, an MRF description that assigns a 
unifonn probability distribution over the valid configurations is 
obtained, provided that at least one valid configuration exists. 
As we shall see, a Tanner graph is another way to represent 
the same local check structure. 

B. Tanner Graphs 

Tanner graphs were introduced in [22] for the construction 
of good long error-correcting codes in tenns of shorter codes. 
Our treatment follows the slightly different presentation of 
Wiberg et al. [20]. 

A Tanner graph is a bipartite graph representation for a 
check structure, similar to the one described above. In such 
a graph, there are two types of vertices corresponding to 
the variables and the "checks," respectively, with no edges 
connecting vertices of the same type. For example, a Tanner 
graph corresponding to the Hamming code described above is 
shown in Fig. l(b). Each check vertex q in the set of check 
vertices Q is shown as a filled circle. In this case, a check 
vertex ensures that its set of neighbors satisfies even parity in 
a valid configuration. 

We see that the check vertices play precisely the same role 
in a Tanner graph as do the maximal cliques in an MRF. 
In general.- for each check vertex q with neighbors n(q), 
we can assqciate a nonnegative real-valued potential function 
1/lq ( { v E n('q)}) that assigns positive potent(al only to valid 
configuration$ of its arguments. We then write a probability 
distribution over the variables as 

p(vt, .. ·,vN)=z-t IJ 1/lq({vEn(q)}) (2) 
qEQ 

where z-t is a nonnalizing constant. Of course, (2) is 
analogous to (1). 

An MRF can be ·converted to a Tanner graph by introducing 
a check vertex for each maximal clique, with edges connecting 
that check vertex to each variable in the clique. The potential 
function assigned to the check vertex would be the same as 
that assigned to the clique. 

A Tanner graph can be converted to an MRF by eliminating 
the check vertices and fonning cliques from all variables 
originally coimected to the same check vertex. The potential 
associated with the clique would be the same as that assigned 
to the check vertex. It is possible that some new cliques may be 
fonned in this process, whiCh are not associated with a check 
vertex of the Tanner graph. A unit potential is assigned to these 
"induced" cliques. Different Tanner graphs may map to the 
same MRF; hence, Tanner graphs may be more specific about 
dependencies than MRF's. For example, the graph in Fig. l(b) 
with an additional check vertex connected to v11 v21 VJ, and v4 

.will also map to the MRF in Fig. l(a). 

C. Bayesian Nenvorks 

We now introduce Bayesian networks that, unlike MRF's 
and Tanner graphs, are directed acyclic graphs [ 12]. A directed 
acyclic graph is one where there are no graph cycles when the 
edge directions are followed (although there may be cycles 

when the edge directions are ignored). As in an MRF, a 
random variable is associated with each graph vertex. Given a 
directed graph G = ( V1 E), let the parents (or direct ancestors) 
a(v) of vertex v be the set of vertices of V that have directed 
edges connecting to v. For a Bayesian network, the joint 
probability distribution can be written 

N 

p(v11 · .. 1 VN) =IT p(vda(v;)) (3) 
i=l 

where, if a( Vi) = 0 (i.e., Vi has no parents), then we take 
p(v;l0) = p(v;). 

Every distribution can be described by a Bayesian network 
since, by the chain rule of probability, 

p(v11 · .. 1 VN) = p(v1)p(v2jvl)p(v3lvt 1 v2) x .. · 

• X p(v'NIVl, V2, · · ·, VN-t)· 

It follows that we can pick any ordering of the variables, 
ahd then condition each variable on all variables that 
precede it. However, this trivial network does not capture 
any useful probabilistic structure because the last factor 
P(vNIVt,V2 1' · · ,VN-t) contains all N variables, and so is 
really just as complicated as the full joint distribution. 

A Bayesian network for the Hamming code described above 
is shown in Fig. l(c). The joint distribution is obtained from 
(3) using parent-child relationships 

P(vt, · · · 1 v7) = P(vt)P(v2)P(vJ)P(v4)P(vslvt, v2, v3) 
>( P(v6jv11 v2, v4)P(v1lvt, V3, v4). 

i 

The first four factors express the prior probabilities of 
v1 , · · · , v4 , while the last three factors capture the parity 
checks: e.g., P(vslvt,V2 1VJ) = 1 if Vt 1V2,v3, and vs have 
even parity and 0 otherwise. 

A Tanner graph (and by extension, an MRF) can be con­
verted into a Bayesian network simply by directing edges 
toward the check vertices. A binary {01 1} indicator ran­
dom variable is introduced at each check site qi .such that 
p(qi ja(qi)) = 1 only if. the random variables in the set a(qi) 
satisfy the constraint checked by the corresponding vertex in 
the Tanner graph. 

A potential advantage of Bayesian networks is that the 
directed edges (arrows) can be used to model causality ex­
plicitly. By inspecting the arrows in such models, it is easy 
to detennine which variables directly influence others. This 
often makes it possible to simulate the network, i.e., draw 
a configuration of variables consistent with the distribution 
specified by the network. One simply draws a configuration 
for variables having no parents, consistent with the (prior) 
distribution affecting those variables. One~ a configuration has 
been drawn for all parents a( v) of a variable v, a configuration 
for v can be drawn consistent with the conditional probability 
p(via(v)). For example, in Fig. l(c}, we simply pick values for 
the parentless vertices v11 v2, v3, and v4, and then determine 
the remainder of the codeword 'V5, v5, and 117 . This explicit 
representation of causality is also useful for modeling physical 
effects, such as channel noise and intersymbol interference. 

[t should be noted that simulating a Bayesian network can 
become a hard problem when variables v for which a( v) f. 0 
arc required to take on a specific value, i.e., when some child 

rl 
•·l 
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ENCODER CHANNEL 

Fig. 2. Gencrul Buyesian network for channel coding. 

variables are "clamped." For example, drawing a configuration 
of variables consistent with the observed output of a channel 
is essentially as hard as (or harder than) decoding. Similarly, 
when a Tanner graph is converted into a Bayesian network 
in the manner described above, it may be difficult to draw a 
valid configuration of the variables, as all indicator variables 
have a nonempty set of parents and all are required to take 
on the value one. 

ln coding, the relationships among the information sym­
bols u, the encoder state variables s (if there are any), the 
transmitted codeword symbols x, and the received signals y 
completely define the encoding and decoding problem for a 
given code. Without loss of generality, these relationships can 
be expressed probabilisticaUy and depicted pictorially using 
graphical models. The Bayesian network for channel coding 
in general is shown in Pig. 2. By inspection of the network, 
the joint distribution is 

P(u,s,a:,y) = P(u)P(slu)P(xju,s)p(yjx). 

Usually, P(u) is a unifom1 distribution and P(sju) and 
P(xlu .9) are deterministic (i.e., all probability mass is placed 
on a single outcome). The channel likelihood p(y/x) expresses 
the noise and intersymbol interference introduced by the 
channel. . 

Fig. 3(a) shows the Bayesian network for a systematic 
convolutional code with a memoryless channel. The systematic 
codeword symbols a:.fol are simply copies of the information 
symbols "k · The other codeword symbols are outputs of the 
encoder; :ck2 depends on u~.: and state .9,.. By inspecting 
the parents of the received signal·~ we lind that P(yjx) = 
IT~.: P(v~.:d:r.~· t)P(yd:CAJ:!) which expresses the absence of 
memory in the channel. Pig. 3(b) shows a cycle-free network 
for the same code, obtained by grouping information and state 
variables together. This elimimlles undirected cycles at the 
expense of increasing the complexity of some of the network 
variables. 

further examples of Bayesian networks for codes will be 
discussed in Section V. In the next section, we will describe 
the basic distributed marginalization algorithm that will form 
the basis for iterative decoding. 

simplify this computation, as Wf: now show. A derivation alorig 
similar lines has also been carried out recently by Aji and 
McEliece [291, who also develop an algorithm for "information 
distribution" on a graph. 

A. Notation 

We begin by introducing some notation. Let I be a finite 
index set, and let { Ak: k E I} be a collection of finite 
sets called symbol alphabets, indexed by I. The configuration 
space W is defined as the Cartesian product of symbol 
alphabets W = fl~.:e r ilk, and elements of W are. cal.led 
configurations. For J c I, let WIJ denote the proJeCtion 
of W onto the coordinates indexed by .!, so that W/J = 
flkeJ Ak> which is taken to be empty when J is empty. For 
a configuration x E Wand nonempty .J, we denote by x iJ the 
image of x under this projection. We denote the complement 
of J relative to I as Ja. By abuse of notation, we equate the 
pair (xiJ, xiJ•) with x although formally, some reordering of 
coordinates may be necessary for this equality strictly to hold. 

A function Z: W -+ Rover the set of configurations is said 
to be a globalfimction. Initially, we assume that the codomain 
R is the set of real numbers, but later, we wiU allow R to be 
an arbitrary commutative semiring [21], [29j- [31]. 

It will often be useful to introduce families of global 
functions, indexed by a set of finite-dimensional real-valued 
parameters y, which are fixed in any instance of distributed 
marginalization. In this case, we write Z(x; y) for the value 
the function assumes at configuration x. Introducing such 
parameters allows us to take into account the influence of 
continuous-valued variables such as channel outputs. How­
ever, for notational convenience, we will sometimes omit the 
explicit dependence on y. 

For a set J C I, we define the marginal function 
Z1 : W/ 1 -+ R with respect to J as 

XIJ<EWIJ• 

In other words, the value of the marginal function with respect 
to .J at the point xl 1 is obtained by summing the glob~l 
function over aU configurations that agree with xiJ in the 
coordinates indexed by J. Any variable not indexed by J is 
said to be marginalized out in Z .r. Note that Z0 is the constant 
obtained by summing over all configurations of variable/!, 
while Zi = Z. We have chosen the symbol Z for the global 
function, as we view Z0 as a "Zustandssumme" (a sum-over­
states), i.e., a partition function as in statistical physics (see, 
e.g., [32, p. 13]). 

I 
I 

IlL A FRAMEWORK FOR DISTRIBUTED MARGINALIZATION 

In this section, we develop the basic "probability prop­
agation" algorithm that can be used to compute marginal 
probabilities in graphical models, given some observations. 
A common feature of the graphical models described in the 
prev iou .~ ·c tion is that r.hey ·an be used to describe a "global" 
jniut prt nubility distribution ;1s a product of "local" functions. 
Th computo1ion of a c nditional probability then amounts 
I!Ssentinlly to a ''marginaliza ti l n" of this global function. Using 
I he 'i lruc tmc uf rhe l1 l al fun ·tious, it may he possible to greatly 

If the function Z is the joint probtibility mass function of 
a collection of random variables indexed by I, then Z..t is 
the marginal joint probability mass function for the random 
variables indexed by II, and Z0 = L. Reintroducing the 
parameter y, . uppose the function Z(x; 11) is the contlitionul 
joint probability mass function of a collection of random 
variables given the observation of continuous-valued random 
vector y. Then the murginal functions represent conditional 
probability mass functions. For example, Z(• ) (.~h }iY) = 
P(:r.;jy), the conditional probability mass fun c.: ti n fo r :c; given 
the observed value of y. Such formulations will ften be us ful 
in decoding problems, when the continuous-valued output of 
a noise channel is observed. 

I 
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(n) (b) 

Fig. 3. (a) Bayesian network for a systematic convolutional code and a memoryless channel. (b) Cycle-free connected network for the same code and channel. 

When I fl. the number of arguments of Z, is small, 
we will sometimes use a modified notation for the mar­
ginal functions. We replace an argument Xi of Z with 
a "+" sign to indicate that the corresponding variable 
is to be summed over, i.e., marginalized out. Thus, if 
III = 4, Z(:r:t . +, +, +) = z{ l} (xL) , Z(xt, +, X3, + ) = . 
Z(I ,J}(:r:t,X3),Z(+,+,+, + ) = Ze, and so on. 

It will often be useful to marginalize some variables while 
holding other variables constant, for example, in the case of 
computing a conditional probability mass function given that 
some variables are observed. Since the key operation in the 
computation of a marginal function or in the computation of 
a condi tional probability is marginalization, we shall focus 
attention on developing efficient algorithms for this operation. 

8. Local Functions 'and Factor Graphs 

The key to efficient marginalization is to take into account 
any structure that the global function Z possesses. Suppose 
that Z Is "separable,'' i.e., that Z can be written as the product 
of a number of local functions, each a function of the variables 
contained in a subset of I . More precisely, let At,· · · , A.v be 
a collection of nonempty subsets of I, and suppose 

N 

Z(~) =II lPj(Xi.4j). (4) 
j=l 

The functions 1/ii: WI.·L; -+ R are called local funct ions. 
For example, suppose that X 1 ,X 2 , X:~ are random variables 

forming a Markov chain (In that order) given a specific 
observation Y = y. (For example, these random variables 
might represent the state sequence of a convolutional code 
in successive time intervals, and Y might represent the cor­
responding channel output.) The concUtional joint probability 
mass function can be written as 

p.(xr, x2, :z::liY) = p( :v rly)p(:r:2lx1, y)p(x:~lx2, y). 

Translating to the notation of this section, and observing 
that a conditional probability mass function p(x;+dx;, y) is 
essentially a function of two variables (since y is a constant), 
we write 

Z( :1: 1, :1>2, :J::J) = 1/J t (:v t)lj;.l(:c 1, :1:2 )·1/1:1 (:~:2, :1:3). (5) 

We will have occasion to consider products of local func­
tions. For example, in (5), the product of 1/12 (:r 1 , :1: 2 ) and 
tfi:l( :1>1 , :1::1) is a function of three variables that we denote 

(a) (b) 

.. A., o/,Ao/, 
(d) 

Fig. 4. Factor graphs for (a) a Markov chain, (b) a loopy example, and their 
corresponding second higher power graphs, (c) and (d). omitting self-loops. 

·t/J21/13(xr x2, x3) . We will also apply the "+"-sign notation 
to local functions and their products. 

It will be useful to display a particular factorization of 
the global function by means of a bipartite graph caJled 
a factor graph . Suppose Z(x) factors as in (4). A factor 
graph G = ( V, E) is a bipartite graph with vertex set 
V = I U {Aj: 1 ~ j ~ N}. The only edges in E are those 
that connect a vertex i E I to a vertex Aj if and only 
if i E Aj. i.e., E = { {'i , A1 }: i e Ai }. (n words,' each 
vertex of a factor graph G corresponds to either a variable 
or a local function. Art edge joins a variable x to a local 
funct ion '1/J if and only if x appears as an argument of 1/1. 
For example, Fig. 4 shows the factor graph corresponding to 
the Markov chain (5). Note that a factor graph is essentially 
a generalization of a Tanner graph, in which local "checks" 
involving the incident variables have been replaced with 
local functions involving the incident variables. 

(t is a straightforward exercise to convert the vru-ious graph­
ical models described in Section 11 lnto a factor graph repre­
sentation. A Markov random field G that expresses a Gibbs 
potential function yields a factor graph with one local function 
vertex for every maximal clique, i.e., n local function vertex 
for every factor in (I). A Tanner graph directly yields a factor 
graph by associating with each check verte .~ n binary indicator 
function that indicates whether the local check condition is sat­
isfied. More generally, each factor of (2 can b associated with 
u luc:l l funct ion vertex,"· In !he fR P asc. Piuully, n Bayesian 
network Is converted in to a factor graph by introducing a local 
functinn vertex for every factor of (3). and a vu riuble vertex fo r 
ach variable. !early, I he lu al fu nction vertex a. :odated with 
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')"· 
vertex set as G, but with edges connecting two vertices if and 

Fig. 5. \mrplilal ion of marginal functions by message passing. The mes­
sage.~ :1r~ d ••crip1ions of lpos.~ibly marginalilcd) local function product!, :md 
are pass.:d nlong lhc graph edges as indicntcd by the arrows. (The arrows 
thclll~clvcs 11rc nul pnrt of lhe graph.) 

p(u; Ia( v;)) is connected by an edge to the variable vertices in 
the set {v;}Ua{u; ). Thus, a Bayesian network with N variables 
yields a factor graph with 2N vertices. 

C. J'v!argirwlization by Message Passing 

Our aim is to derive a graph--based algorithm for computing 
the marginal functions Z{i}(x/{i}) for all -i E /.The functions 
'ifJ; are called "local" functions because we assume that access 
to these functions is local to a specific vertex in the graph. 
Knowledge of local functions (or functions derived from local 
functions) can be propagated to nonlocal vertices by "message 
pass ing" nlong the edges of the graph. The "messages" are 
descriptions of (possibly marginalized) local function products. 
To illustrate what we mean by this, and to motivate the · 
general situation in which this "graph-based message-passing" 
paradigm is made more precise, we consider the specific case 
where Z(:1: 11 :z:2 , :1:3 ) is defined in (5). 

Consider the computation of Z(:v1, +, +) = p(:vdy). We 
write 

only if there is a path of length two between the vertices in G. 
Self-loops are ignored. Since C: is bipartite, CP will always 
split into at •leust two disconnected components, G~ having 
vertices associated with variubles and G} having vertices 
associated with local functions . For example, Fig. 4(c) and 
(d) shows the second higher power graphs associuted with the 
factor graphs shown in (a) and (b). 

Observe that in G~. two variables will be joined by an edge 
if they are both arguments of the same local. function, so all 
arguments of a particular local function fonn a clique. When 
the local functions of the fuctor graph correspond to Gibbs 
potential functions, then G~ is the corresponding Markov 
random field. In other words, an MRF can be recovered as 
u component of the second higher power graph (omitting 
self-loops) of the correspon<.ling factor graph. 

Consider now G}. which we call the propagation graph 
corresponding to G. We assume that G} consists of a single 
connected component; if not. marginalization can be carried 
out independently in the various components. The vertices of 
G} correspond to local functions. Two vertices are joined 
by an edge for each argument that the corresponding local 
functions have in common, aiLhough we will collapse multiple 
edges between two vertices to a single edge. A description of 
the general message-passing algorithm is simplified by imag­
ining that a vertex is an active processing element, capable of 
receiving and tronsmitting messages (i.e., marginalized local 
function products) along the edges incident on the vertex, and 
·capable of performing computations involving messages and 
the local function associated with the vertex. Z (:1: 1, +, +') = L L ·r/11 (:2: t) ·VJ2 {:r1, :r2)?j;3 (:z:2, :r.3) 

"'
2 

.,, We now describe a general distributed marginalization algo-
~ ~ rithm that operates in a tree spanning the propagation graph; 

= ·r/JJ (:t:t) .L..J ?jJ2 (:-c1,:v2 ) .L..J 'rP3(X2, x3) (6) we refer to this spanning tree as a propagation tree. Given a 
X J .._,_,_.. 

1/JJ (a:o ,+) 

.P~I/J;~(>: ,,+,+) 

where we have identified the various factors that need to be 
compured to obtain Z(:c 1, +, + ). Our primary observation is 
thnt Z(.l:t .+ . +) cun be computed knowing just ?/Jt(:r1) and 
rh r/la (.1: 1 , +, + ). The latter factor can be computed knowing 
just 'rfi2 (.r:1,:1:2) und 'l/1a {.c2 , +) . 

Analyzing the computation of the remaining marginal func­
tions ih the same manner, we find that 

factor graph G, we must 
I) specify a spanning tree T for a;, and 
2) identify a "fusion vertex '' in T for each marginal func­

tion to be computed. 
Note that T L~ in generaJ quite different from the graphical 

model (MRF, Tanner graph, or Bayesian network) from which 
Tis derived. ln general, it may be a difficult problem to choose 
T optimally so as, e.g., to minimize overall computational 
complexity. For now, we assume that T is chosen in some 
(arbitrary) manner. 

Z(-1-,:r~,+) ='if13(:r:2,+) L 1/Jt(:t•t) ·r/Jz(:tt,x2) 
For a given T, we say that a variable :v; is involved at a 

(7) vertex ofT if :1:; is an argument of the corresponding local 
function , Let e be an edge ofT. We say that a given variable 

(8) :v; must be carried over e if e is part of a path that joins any 
vertex in which :t; is involved with the fusion vertex for :r:;. 
ln essence, :c; must be carried over an edge of the subtree of 
T that spans the fusion vertex for :z:; and the other vertices 

Examining (6)-(8), we see that all marginal functions can be 
computed recursively from a chain of local function products, 
which we view as messages passed between the vertices of the 
"propagation tree" shown in Fig. 5. omparing with (6)-(8), 
we observe that the information pa:;sed 10 the vertex associated 
with rf;1, l .::; i .::; :1. is prec ise ly that n edcd to ompute the 
marginal function for :1:,. and : w choose that ve rtex as a 
"fusion site" for the va ri able :r;. 

We consider now the general case. Let G == ( V, /~' ) be a 
factor grnph, describing the way in which the global function 
X(x) fadors as a product of local functions as in (4) . Consider 
the second higher pt;wer graph(; :! , delined a .~ having the same 

in which :t:; is involved. Outside this subtree, only marginal 
knowledge of :t; is needed, and hence :z:; can be marginalized 
out. Given a propagation tree T, and an assignment of fusion I 
vertices, it is easy to determine which variables must be carried 
over any given edge in T . (For example, each edge of the 
trees shown in Figs. 5 and 6 is labeled with the indexes of the 
variables to be carried over that edge.) 

The size of the messages sent over an edge is greatly 
influenced by the number of variables that must be carried I 
over the edge. nnd hy the uumhcr of possible values that each 

L------~~~-------------
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such variable can assume. A simplistic measure of complexity 
associated with an edge is its thickness, defined as the number 
of variables that are to be carried over that edge. (A more 
useful measure would be the product of the sizes of the 
symbol alphabets corresponding to these variables, or the size 
of a minimal description of the corresponding local function 
product.) lt may be de irnble to find a propagation tree and an 
assignment of fusion vertices so that the maximum thickness 
is minimized, but we conjecture that this is n hard problem in 
general. (Given a propagation tree the maximum thickness is 
minimized if the fusion vertex for a variable :r1 is a vertex in 
the subtree ofT that spans the vertices in which xi is involved, 
so the problem is to find a suitable propagation tree.) 

To illustrate that it is not always possible to achieve 
unit maximum thickness, consider the global function 
Z(:r1,x2, :r:3) = VJ1(x J ,:t·2}1/J2(x2, x3 )¢3 (;~: 1 , :t·3 ). The factor 
graph and its econd higher power graph are shown in Fig. 4(b) 
and (d). By symmetry, there is essentially only one propagation 
tree for this function, as shown in Fig. 6. Numbering the 
vertices in the figure from 1-3 (left to right), we choose 
vertex 'i as a fusion vertex for Xj. We observe that :z: 1 must be 
carried over both of the edges in the propagation tree, while 
x2 and XJ each need to be carried over only one edge, as 
indicated in Fig. 6. The thickness of each edge is two, and no 
assignment of fusion vertices can reduce this number. 

D. Marginalization Algorithms 

The fundamental idea behind marginalization algorithms is 
to compute the product of local functions (i.e., messages) 
marginalizing out unnecessary variables. We now describe two 
versions of a gener-al message-pas ing algorithm that can be 
used to compute marginal functions. In the first version (the 
two-way schedule), messages are passed once in each direction 
along each edge in the propagation tree. This is the minimum 
possible, and for this reason, the two-way schedule is best 
suited for serial implementation. 

The Two- Way Schedule 

Let T be a propagation tree. We al1ow each vertex of T to 
be in one of way two states: "inbound" or "outbound." 
Initially, all vertices are placed in the inbound state. 

1) (The inbound state) At a vertex in the inbound state, 
wait until messages have arrived on all edges but one, and 
call this remaining edge the "prime" edge. Compute the 
product of all incoming messages with the local function, 
marginalize out any variables not to be carried on the 
prime edge, and send the result on the prime edge. Toggle 
to the "outbound" state. 

} ljl~ ~ \lf~,xJ) ~ 
Z(x1, +, +) Z(+, x2, +) Z(+, +,x

3
) 

:ig. 6. . Ano~he.r example. of marginalization by message passing. Sets of 
tndexes tdenllfymg the vanables carried along each edge are shown. 

Observe that only a single edge is incident on any leaf 
vertex, and so leaf vertices are not required to "wait" in 
the inbound state. Thus, message passing is initiated at the 
leaf vertices. Messages propagate from the leaves to the 
interior of the graph, and then back toward the leaves. The 
<llgorithm terminates when aU leaf vertices have received a 
message. Since each edge is used to convey exactly one 
"inbound" message and exactly one "outbound" message, the 
total number of messages transmitted is twice the number of 
propagation tree edges, namely, 2(N- 1). 

In the secortd version of the algorithm (the Hooding sched­
ule), nodes do not necessarily "wait" before passing messages, 
and hence messages may pass more than once in a given 
direction along an edge in the propagation tree. The flooding 
schedule is better suited for parallel implementation since 
more than the minimum number of messages will usually be 
passed. · 

The Flooding Schedule 

1) (Initialization) At any collection of vertices, carry 
out the "flooding" procedure described in the next step, 
with a unit message arriving on a fictitious edge. 

2) (Flooding) When a message is received on any any 
edge e at a vertex, define this message as the "current" 
message for e, designate e as "incoming" and all other 
edges as "outgoing." For each outgoing edge e', compute 
the product of the local function with all current messages 
except the current message on e', and marginaHze out any 
variables not to be carried on e'. passing the result on e' . 
For a (!eat) vertex with no outgoing edges, simply 
"absorb" the message received; 

3) (Marginalization) The algorithm terminates when no 
vertices have more messages to pass, at which point mar­
ginalization can be carried out at each fusion vertex in 
the same way as in the two-way schedule. Indeed, 
marginalization can take place at any time during the 
previous step to yield a "current estimate" of the 
marginal function. 2) (The outbound state) At a vertex in the outbound 

state, wait until a message arrives on the prime edge. For 
each nonprime edge e, compute the product of all incom­
ing messages with the local function, except the message 
un e. Marginalize out any variables not to be carried on e, 
and pass the result on P.. If this vertex is a fusion vertex, 
the desired marginal function(s) can be computed as the 
product of all incoming messages with the local function, 
marginalizing out any undesired variables. 

The basic principle behind the nooding s'hedule is Jhat the 
receipt of a message at · vertex "trigger" thut vc11e to send 
ll tessuges on nil olher ·dg(!s. At a leaf vertex, there is no 
·'other" edg . so a rccei v u message is absorbed. Sine · I he 
prnpagation tree has no cycles, eventually. all mess<~gcs are 
absorbed at the leaf vertices. 

C), 
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[I is clear thut both the two-wuy schedule and the 11ooding 
scheJule are versions of the same algorithm, the difference 
being only the order in which messages are propagated. 
Indeed, one can also devise hybrid schedules. When a message 
:Jrrives on an edge at a vertex, that message effectively creates 
"pending" messages on aH other edges incident on that vertex. 
These pending messages neeJ not be sent immediately; indeed. 
the pending messages may change to reflect the content of 
other messages arriving at the vertex. ln general, a wide variety 
of such schedules is possible, of which the two-way and 
Hooding schedules represent two extremes. ln our simulations 

f the flooding schedule for a turbo decoder [33], we observed 
that, compared with the tandard message-passing schedule, 
several order of magnitude more messages are passed, but if 
the messages are passed concurrently, then several orders of 
magnitude fewer time steps are required to achieve a given 
decoding perfonnance. 

Note that, regardless of the message-passing schedule, mes­
sage passing in a tree is guaranteed to converge to a state in 
which no messages are pending. At this point, marginalization 
at each fusion vertex can be carried out, with exactly the arne 
result for each different message-passing schedule. 

E. Generalization to Commutative ~emirings 

Up to now, we have made the assumption that the global 
function ·Z is real valued. However, the only properties of 
the reals of which we have made use are essentially the 
commutativity of multiplication and the distribution of multi­
plication over addition. Hence, the distributed marginalization 
algorithm described wiiJ work over any commutative semiring 
(see, e.g., [30, Sect. 3.2] and [21], [29], [31]). For example, 
replacing the real-valued product operation with summation 
and the summation operation with the max operator will yield 
a generalization of the Viterbi algorithm equivalent to Pearl's 
"belief revision" algorithm [ 12; Sect. 5.3] and the "min-suin" 
algorithm described by Wiberg et a/. [20]. We conjecture that 
many of the distributed algorithms used in data networks for 
routing, network topology detetmination, etc., such as the 
distributed Bellman-Ford algorithm (see, e.g., [34, ch. 5]) 
are instances of this general marginalization algorithm in an 
appropriately defined semiring~ 

(u) 

(c) 

ep(xl) 

(x41xJ) 

X3 8--@ 
(b) 

Fig. 7. Translating a cycle-free Bayesian network (a) into a factor graph (b) 
and a propagation tree (c). 

product of L local functions, each representing the conditional 
probabiiHy mass funct ion for a variable given its parents. 

fn this subsection, we assume that B fonns a tree, i.e., that 
it contains no undirected cycles. We take D us a spanning tree 
for G}, in which the vertex corresponding to the variable X; is 
associated with the local function p(:t:; la(X;)). We choose this 
vertex as the fusion site for X;. For example, Fig. 7(a) shows 
a simple· cycle-free Bayesian network B. The corresponding 
factor graph and propagation tree are shown in Fig. 7(b) and 
(c), respectively. 

For simplicity, we refer to the vertex of the propagation tree 
into which X; translates as vertex x;. If Xi is a child (parent) 
of X; in the Bayesian network, then we refer to• :t; as a child 
(parent) of x; in the propagation tree, even though the edges 
of the propagation tree are undirected. 

Observe that a variable x; i.n the propagadon network is 
involved with vertex Xi, and all of the children of this vertex. 
Thus, in the propagation network, x; must be carried along 
all edges connecting vertex :~: .; to its children, but these are 
the only edges along which x; must be carried. Since a given 
edge connects precisely one parent to one child, precisely one 
variable must be earned along that edge, namely, the parent 
variable. In other words, a cycle-free Bayesian network yields 
a propagation tree of unit thickness. This observation is the 
key to Pearl's "belief propagation" algorithm. 

We now detennine the messages that must be propagated. 

IV. PROBABILITY PROPAGATION IN BAYESIAN NETWORKS 

We now specialize the general messuge-pussing algorithm 
described in rhe pr~!vious section to rhe special case of 
Bayesian networks. We begin with the special case of a 
Bayesian network that (neglecting the direction of edges) has 
no cycles, i.e., is a tree. 

Following Pearl ( 12], we denote child-to-parent messages as 
,\ messages, and parent-to-child messages as rr messages, so 
that, e.g., A.,1(x;) and ?r.,.~,(:v;), are, respectively, message 
transmitted from vertex x; to its parent x; and to its child x~.; . 

Note that a message is always u function of the parent variable. 

A. The Cycle-Free Case 

L I (] b a Bayesian netw rk n L random vuriubles 
. I ' . ..• Xr.. By dctiniliou r n Bayesian network 3). the 
joint probabi lity mass function 1f the e random variubles can 
be written us p(.1:1, · · · .. r£.) = TI{-:,_1 p(:t;;jt!(X; )) . In nther 
words, the joint probab ility mass functi on ~:an he writrcn as tt 

Consider a vertex x; , and suppose the chi ldren of Xi are 
inde,'(ed by rhe set [(, and the parents a(:vi) of :c; are indexed 
by the set./, written exp licitly as .J = Ut.i:z,· · · ,j/.1 / }. 

F r k E /(, the message sent by :1:i to its chiJd :c~,: is g iven by 

1r,..(:c;) = IT AJ)e (:c;) 2:.:: 
k'EK\{k} "'h 

... 2: rr 1l',.,,(:r1)p(:J:da(:1:;)) . 

" 1 1JI jEJ 

O)l 
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For j E J, the message sent by Xi to its parent x1 is given by Each ,\ message sent to a parent of v requires the com­
putation of the product of the incoming >. messages, which 
requires on the order of lvl · jd(v)l operations, together with 
la(v)!·lv, a(v)l operations, since we must sum over l·u a(u)l 
nonzero products of ja(v)l factors to marginalize the product 
of the incoming 11' messages. Each 11' message sent to a 
child of v can be computed from (9) using approximately 
ld(v)l·lvl operations. The total number of operations at vis 
ap.proximately 2lvl · id(v) l + la(·u)i21v, a(v)j, which is usually 
dominated. by the second term. We conclude, therefore, that 
the total number of operations x performed by the two-way 
schedule for a Bayesian network with vertex set V scales as 
X = O(Lvev la(v)l2!v, a(v)l). 

.\,,(xi) = L II ..\.,k (xi) 
X; kE/( 

X L · .. L II rr,,(xi')p(xda(xi)) 
"'it "'iJJI j'EJ\{j} 

omit:ri 

The conditional probability mass function for Xi, given the set 
of messages received (which we denote by 0 for "observa­
tions") is given by 

p(xiiO) = II ..\.,~(xi) x L 
leEK 

.. · L IT rr,, (xJ)p(xila(x;)). 
"'JIJI jEJ 

Note that 

(9) 

Alth~ugh these expressions may at first ·' glance seem com­
plicated, 'they are really a simple application of the general 
propagation rule, which states that an outgoing message sent 
on edge e is computed as the product of all incoming messages 
(except that on edge e) with the local function, with any 
variables not to be carried on e marginalized out. For Bayesian 
networks common in codjng applications, these. propagation 
updates are quite simple. 

In applications of Bayesian networks, it will often be useful 
to include variables that are continuous valued so as to 
model, for example, channel outputs. While, strictly speaking, 
continuous-valued variables do not enter the framework as 
we have described it (except through the parameter y), we 
wi ll allow our Bayesian networks to have continuous-valued 
variables, provided that such variables are observed and that 
the corresponding vertices have no children. Since y is re­
stricted to be childless, the problem of describing a continuous 
conditional density function (needed for a 1r message sent 
from y) is avoided. In our diagrams of Bayesian networks, 
continuous-valued observed vertices will be shown as filled 
circles. 

The complexity of probability propagation in a Bayesian 
network (using the two-way schedule) depends on the manner 
in which the messages are represented. Assuming that each 
message is a vector of values of size given by the size of the 
parent's sample space, the computational complexity cun be 
estimated as follows. Denote the set of hildren f a vertex 
v as r.l(v), and let ld(v)J denote the size of this set. Recall 
that the parents of v are denoted a( v). Let Jv, a( v) J denote the 
number of nonzero entries in the table corresponding to the 
local function at v, and let JvJ denote the size of the sample 
space for v. 

B. Probability Propagation in Bayesian Networks with Cycles 

The tactic of deriving a propagation tree from the structure 
of the Bayesian network itself does not apply to Bayesian net­
works with (undirected) cycles because, clearly, the Bayesian 
network does not form a tree. In this subsection, we show with 
a small example that exact probability propagation is possible, 
but only at the expense of greater than unit thickness of the 
propagation tree. While this may be an acceptable tradeoff 
for simple networks, i.t may not be acceptable in complicated 
networks. 

Consider the Bayesian network shown in Fig. 8(a). Two 
possible propagation trees for this Bayesian net:work are shown 
in Fig. S(d) and (e), each of which has thickness 2. For this 
Bayesian network, it is not possible to achieve a propagation 
tree of unit thickness. 

V. COMPOUND CODES 

In Section I, we defined a compound code to be one which 
can be described by the interaction between constituent codes, 
each of which is tractably decodable on its own. Graphically, 
each constituent code is represented by a cycle-free constituent 
Bayesian network. These constituent networks share some 
variables so that, taken as a whole, the total Bay~sian network 
is not cycle free. In general, there does not exist a unique 
decomposition of a compound code into its constituent codes, 
but the compound code is usually designed' using well-known 
constituent codes. 

A. Bayesian Networks for Some Known Codes 

The Bayesian network for a systematic rate-l/3 compound 
turbo code is shown in Fig. 9(a), along with its cycle-free 
constituent networks. This compound code consists of two 
chain-type networks that are connected using u different or­
dering of the information symbol vertices. Whereas the upper 
chain directly u. es the information sequence u, the lower chain 
uses a permuted sequence, obtained by applying an interleaver. 
The systematic codeword comp nent has been included with 
the upper constituent code. Wiberg et al. [20], [211 were 
probably the first to descri be turbo c de using this type of 
graphical model. 

A "serially concatenated" convolutional compound code 
was proposed by Benedetto and Montorsi [3]. Their system is 
essentially the same as Forney's concatenated codes [2), with 
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(a) (b) (c) 

(d) (e) 

Fig. 8. In a Bayesian network with cycles (a), with factor graph (b), and propagation graph (c), the corresponding propagation trees must have maximum 
thickness at least 2. 1\vo examples are shown in (d) and (e). 
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(a) (b) 

(c) (d) 

Fig. 9. Bayesian networks for three compound codes nnd their constituent codes. (a) Systematic rate-1/3 turbo code. (b) Rate-1/2 "serially concatenated" 
convolutional code. (c) Low-density parity check code. (d) (15, 9) product code. 

convolutional inner and outer codes. The Bayesian network 
for a nonsystematic rute-1/2 compound code of this sort is 
shown in Pig. 9{b), along with its two cycle-free constituent 
networks. Notice that the output of the outer convolutional 
code (including the systematic part) is used as the input to the 
inner convolutional code, via an interJeuver. Only the output of 
the inner convolutional code is Iran ·mitted over the channel. 

Fig. 9(c) hows an example of a GaUuger low-density parity 
check code [5]. This code consists of parity check restrictions 
on subsets of the codeword symbols, denoted by x . (The 
mapping from information bloc ks to codeword i. not di rectly 
specified.) Each variable in lhe ro w of var iables ab ve the 
codeword symbol row is a binary indicator. which takes on 
the nonzero vulue onl y h r · nligurations of it s parents that 

have even parity. The channel outputs are indicated below the 
row of codeword symbols. MacKay and Neal [ 16] were the 
first to describe Gallager's codes using Baye~ian networks. 

. Fig. 9(d) shows an example of a simple product code, in 
which a single parity bit checks the parity of each row and 
column of the information bit nrrny (enclosed in the dotted I 
box). The channel output symbols are not shown. 

B. Iterative Decoding: Probability Propagation 
for Compound Codes 

Si nce ea h onstituent Bayesian network in a compound 
coue is cycle free, probabilities for eacb random variable given 
the observet.l random variables can be efficiently computed 
e. adly within each constituent network. However, because the : 

~~--------------------------- 1 
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--- 12!' • 
compound network has cycles, probability propagation is only 
an approximate algorithm for computing these probabilities. 
As we see it, the general idea of iterative decoding is to 
make use of the efficient probability propagation algorithm 
for each constituent network, while either ignoring the cycles 
or somehow taking them into account. This graphical frame~ 
work unifies several iterative decoding algorithms. The turbo 
decoding algorithm, the "separable MAP filter" algorithm [6), 
the new iterative decoding algorithm [4) used for decod~ 

ing "serially concatenated" convolutional codes, and, as first 
pointed out by MacKay and Neal [16], Gallager's algorithm 
for decoding low-density parity check codes [5] are aU a fonn 
of probability propagation in the compound code networks 
shown in Fig. 9. 

·------ ------ .. -- .... -- ·--- ---- --- -----·-- --. -----... --- --... 

The overall decoding procedul'e essentially consists of a~ 
plying probability propagation while ignoring the graph cycles. 
The procedure can be broken down into a series of processing 
cycles. In each cycle, probabilities are propagated across a 
particular constituent network, producing current estimates of 
the distributions over infonnation symbols, state variables, 
and codeword symbols, given the observed channel output. 
The next cycie then uses the probability estimate~ produced 
by the previous cycle when processing the next constituent 
network. Usually, th.e constituent codes ace processed in order, 
and one pass through all of the codes is called an iteration. 
An iteration essentially consists of propagating probabilities 
across the network as if it were cycle free, stopping when each 
vertex has been processed once. In fact, because the compound 
code "ftwork has cycles, the propagatiOJ1 procedure actually 
never s~lf-tem1inates. Usually, the cyclic procedure is allowed 
to iterate until some termination criterion is satisfied. Then, the 
infonnation symbols ace detected, usually in the fashion of the 
maximum a posteriori (MAP) symbol probability decoding 
rule. 

C. Turbo Decoding: Probability Propagation/or Turbo Codes 

For example, as shown explicitly in [ 19), this probability 
propagation algorithm, when applied to turbo codes, is the 
standard turbo decoding algorithm. The turbo decoding algo­
rithm uses the forward-backward algorithm [35], [36] (or an 
approximation to it) to process each constituent trellis. The 
algorithm uses "extrinsic information" [1.], [7] produced by 
the previous step when processing the next trellis. This is the 
information that is passed from one trellis to the other thro1,1gh 
the information symbols. rn probability propagation tenninol­
ogy, extrinsic information is the set of parent-child probability 
messages that are passed down from the information symbols 
to one constituent network, in response to the child- parent 
messages received from the other network. 

D--0---<{J, m tn m m 
1 : 
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Fig. 10. ·Probability propagation in the Bayesian network for a turbo code. 
The dashed polygon encloses the steps in a single iteration. Black dots without 
arrows represent pending messages. 

code, the information symbols lire each connected by a single 
edge, and so propagation terminates. In this case, however, 
a set of messages is passed to the other constituent network 
(these messages ace the "extrinsic infonnation"). Since there 
will always be messages pending, the overall procedure repeats 
the basic "iteration" shown in the pictures outlined by the 
dashed polygon. 

VI. CONCLUSIONS 

Ill this paper, we have attempted to unify various recently 
developed themes in iterative decoding. We have reviewed 
graphical code models, including Markov random fields, Tan­
ner graphs, and Bayesian networks, all of which encode the 
"local" probabilistic structure of codes and channels. 

We have developed a distributed marginalization algorithm 
in the general setting of a factor graph. Given a function 
of discrete variables that can be written aS' a product of 
local potentiaJ f!Jnctions, marginalization can be carried out 
by a message-passing procedure in a propagation tree, de­
rived from the second higher power of the factor graph. The 
"thickness" of an edge in this tree is equal to the number 
of variables· that must be carried over this edge to perform 
exact marginalization. In a cycle-free Bayesian network, the 
network itself- when used as a propagation tree--achieves a 
maximum edge thickness of unity. This observation is the key 
to Pearl's "belief' or probability propagation algorithm. which 
computes the a po~·teriori distribution exactly in a cycle-free 
Bayesian network. Fig. 10 shows the message-passing dynamics for a simpli­

fied turbo code Bayesian nerwork. When the channel output is 
observed (as shown by the filled disks), messages propagate 
up to the "state vertiCes of both constituent networks, creating 
pending mes ·ages on the incident edges (ns indicated by 
black dots in the figure). These messages are the codeword 
•ymboi lil<e llh od a determ ined by the channel model and 
the channel output. Each consti tuent nl! twork is pro es ed oe 
nt n time in the manner of the forward- backward algorithm. 
The information symbols receive probability messages from 
I he constituent network just processed. In the case of the single 

For compQuod codes, however, the Bayesian networks . are 
not cycle free. Nevertheless, the networks are broken into 
tractable subnetworks, each describing a constituent code and 
in which probability propagation can be applied. Herntlng over 
these constituent decoders can result in excellent decoding 
performance in practice, as demonstrated by Berrou et a/. [IJ. 
We have hown that many recently proposed iterative decoJers 
can be described as message passing in a grnphical code mpde l. 

rn general, it is a stmightforward exercise to develop 
Bayesian network models for many ending scheme , ·uch 
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as multilevel codes and coset codes, and also for channels 
more general than the usual mcmoryless channels. We believe 
that there arc many possibilities for the application of iterative 
decoJing techniques beyond what has been described in the 
literature to date. 
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